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Preface

The main purpose of this thesis is to summarize my reseanatnilootions for the fulfillment
of the requirements of the Doctoral Degree of the Hungarieademy of Sciences. This is re-
flected by the writing style where | try to be as clear as pdssithich are my own contributions
and how they are related to prior research. In addition, mymesults are listed in the form of
scientific statements at the end of the chapters outliningwry contributions.

My secondary goal with this work is to provide a coherent vawthe various filter design
techniques that | have developed with the hope that it carsériLfor the broad signal process-
ing community. Hence the choice of English language, andeibook-like presentation with
introductory chapters. Compared to the conference or glyrapers where my results have
been originally published, this format allows a more th@iodescription of the techniques, the
inclusion of additional proofs, and finally sharing my thbtsggon how these methods relate to
each other and to the ones proposed in the literature.

My Ph.D. research has been mostly dealt with the physicsdommthesis of the piano. That
topic has also required the development of some specific fiisign techniques. However, |
have turned my attention to general filter design only afierdcompletion of my Ph.D. thesis.
In year 2007, with the help of an EU Marie Curie grant, | haverd@ year in the Acoustics
Laboratory of Helsinki University of Technology (now Aaltdniversity), where, while still
working on sound synthesis topics, | have got acquainteld thig work of Matti Karjalainen
and Tuomas Paatero using Kautz structures for audio fillggdeAt that time the Kautz filter
was the most efficient approach for designing IIR filters vatfiexible resolution. In partic-
ular, it allowed the design of filters with logarithmic fregpucy resolution desirable for audio
applications, which has been unrealizable with earlidmegues. Fascinated with the favorable
properties of the Kautz filter, but discontented by its me&y complicated structure, an idea
came to my mind to substitute the Kautz structure with thatrdinary parallel second-order
filters, while keeping the fixed-pole design methodologyugtihe fixed-pole parallel filter was
born, allowing the same design accuracy as with the Kauéz fiit using a filter structure that
requires less arithmetic operations, fully parallelizaldnd much easier to understand. With
this moment | actually started my new research line of dexmtpfilter and equalizer design
algorithms for audio applications. My goal was to reachdyditter approximation compared to
earlier methods, and to do so by keeping the relative sintybé the approaches. | believe that
keeping the algorithms simple is a key to make them easy téeimgnt and thus most useful
both for the academic community and the industry.

Both due to the required page limit of the thesis and to keemtrk as coherent as possible,
only my most significant results related to fixed-pole patdilter design are included in this
work and in the list of scientific statements. Most of the pap®nnected to these statements
were published with my sole authorship. With the few puliiaras where | had a coauthor |
include only that part of the results which is clearly my owontibution. As for my other
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research not included in the list of scientific contribusphut still belonging to the audio filter
design field, I will provide a short summary in Sec. 10.1. (Mgd related contributions, even
if they were done after my Ph.D. thesis, will not be outlinedd) and the reader is referred to
the list of my publications.)

In the following, | give the outline of this thesis. To staritivthe motivation of my re-
search, Chapter 1 gives the reasons for designing filtefslagfarithmic frequency resolution
and demonstrates that this is not possible by using traditiBIR and IIR design techniques.
The idea of logarithmic frequency resolution is stronghated to fractional-octave smoothing,
a long-time tradition in the audio field for displaying freancy responses, therefore this topic
cannot be omitted from our discussion (Chapter 3). Pridmrigpies aiming at logarithmic fre-
qguency resolution filter design will be discussed in Chapteand 5. | start outlining my own
contributions in Chapter 6 by introducing the fixed-poleige®f parallel second-order filters,
giving the basic design techniques, demonstrating itsvatgnt approximation to Kautz filters
and discussing its relation to transfer function smoothihlge choice of pole positions of the
parallel filter has a decisive role, therefore Chapter 7 grissthe pole positioning methods |
have developed. It also includes a comparison to earliéinigaes showing that with the pro-
posed methodology improved performance can be achievalddaame filter order. Chapter 8
extends some of the design ideas to the multichannel cabketlvatapplication to passive ad-
mittance modeling and to the equalization of MIMO systemmalfy, Chapter 9 introduces
the idea of the delayed parallel filter with improved numarfroperties compared to the tradi-
tional parallel form and proposes an alternative methoddowerting direct form IIR filters to
parallel structures. Chapter 10 concludes my work by briegityining my other contributions
related to filter design and discusses the significance golicapons of the methods presented
in this thesis.

At this point | would also like to express my gratitude to gx@re who have helped along
the way of reaching these results. To my coauthors, most ohwhad become good friends,
Federico Fontana, Julius Smith, late Matti Karjalainemf&@to Zambon, and Vesa Valiméaki,
to name a few. | am also thankful to the colleagues at BME M§peeially to my former
Ph.D. supervisor, Laszl6 Sujbert for highly useful commseabout this manuscript, and to
the head of the department, Tamas Daboczi for his supporfangeriodically asking how
| am progressing. Finally, | am most grateful to my family foeating the atmosphere and
circumstances to become a researcher. | dedicate this tihasly mother and to my late father,
who had planted the seeds of curiosity and critical thinkiltgady in my early childhood.
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Chapter 1

Introduction

Modeling or equalizing a given transfer function is one & thost often used applications of
digital filters in the field of audio. The most typical exam@¢o correct the non-ideal frequency
response of loudspeakers, ranging from speakers in mobiieas, computer speakers, car
audio, to large-scale public address systems. Often tisferafunction of the room is also
equalized together with the loudspeaker, this is termeddpeaker-room equalization. Other
applications include the modeling of the same systems foulsition purposes, the modeling
and equalization of headphones, the modeling of head detediasfer functions for 3D audio,
and the modeling of instrument body responses for physasgd sound synthesis, to name a
few. For all of these applications a digital filter has to beigeed that achieves the best sound
quality at a given computational cost.

As in audio the final judge of quality is the human ear, it seggal to take into account
some of the properties of the auditory system during filtesigle One such property that
Is used since the early times of audio is the logarithmie-filequency resolution of hearing.
Audio transfer functions are almost always displayed ingatdhmic frequency scale and they
are often smoothed to some fractional octave resolutiom (eap. 3 for details). This long
tradition is also justified by the study of Olive [2004a,bjhdenstrating that the evenness of
the log-scale smoothed magnitude response has a stromgatiom with the subjective quality
values of loudspeakers obtained by listening tests.

Also, graphic equalizers used to manually tune the respoinse audio system have bands
with center frequencies evenly distributed in the logamithscale. As a connection to music,
it is interesting to note that the frequency distributiortlod musical scale used in the western
tradition (chromatic scale) is exactly logarithmic. Whesjning a digital filter for audio pur-
poses it seems logical to design the filter so that the erdisigbuted evenly in the logarithmic
scale, and indeed, this is the approach most often takereiliténature when designing filters
for audio applications.

Note that various auditory frequency scales exist, likeBaek, mel, or ERB [Smith and
Abel 1999; Zwicker and Fastl 1990] scale (which are actualllguite close to the logarithmic
scale) that are sometimes used for audio applicationse$waudio the logarithmic scale is far
the most commonly used, therefore the examples of thisghaliuse the logarithmic scale.
Using one type of frequency scale only has the benefit thafigiuees of the thesis will be
comparable to each other. Nevertheless, since the new deefitoposed here do not rely on
the assumption of a logarithmic scale, they can be used it type of perceptual frequency
scales (or with any kind of user-defined frequency scaleg¢é&ded. In particular, the examples
in Appendix A.4 will demonstrate the complete freedom intcolting the frequency resolution

1
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2 Chapter 1. Introduction

by using the proposed techniques.

1.1 Limitations of general purpose filter design techniques

We must note that the terfilter designis often used in a strict sense for designing low-pass,
high-pass, band-pass or band-reject filters with a certssipand ripple and stopband attenua-
tion [Parks and Burrus 1987; Oppenheim et al. 1999]. On timéraoy, this work uses the term
filter designas a general method for approximating an arbitrary impuwspanse or frequency
response.

Modeling or equalizing a transfer function by an FIR or IIRdilis a common task in other
fields of digital signal processing as well. Therefore, aemidnge of filter design techniques
exist that at first glance seem to be also appropriate foroaapplications. However, these
general filter design methods have an important propertghvimiakes them less than optimal
for audio. Namely, they have linear frequency resolutioeamng that the error of the filter is
distributed evenly in the linear frequency scale. Lineagtrency resolution is inherent in FIR
filters, since their frequency response is given as the DRMef impulse response, leading to
a transfer function vector with linearly spaced frequenitysb Thus, the frequency resolution
Af is directly determined by the length of the filtdrand the sampling frequendy, given as
the resolution of the DFTAf = f;/N.

Also, many IIR filter design algorithms (e.g., Prony [Parkel 8urrus 1987], Steiglitz-
McBride [Steiglitz and McBride 1965]) minimize the errortixeen the target impulse response
and the filter response in the mean squared sense, whichg Baeseval’s theorem, is equivalent
to minimizing the mean squared error between the target #ed fiequency response in a
linear frequency scale. Some frequency-domain IIR filtesigle methods allow the use of a
weighting function (e.g., the frequency-domain SteigMzBride algorithm [Jackson 2008] or
thei nvf r eqz function in MATLAB), or their target frequency scale can baahe logarithmic
instead of linear. So in theory it should be feasible to adhelogarithmic frequency resolution
by these methods. However, the logarithmic scale is sortistcompared to the linear one that
this is not working in practice [Waters and Sandler 1993].

The following examples will demonstrate the difficultiesaahieving logarithmic frequency
resolution with general IIR filter deign methods. The exasgase is modeling a loudspeaker—
room response. In Fig. 1.1 a 100th order IIR filter is desidneithe frequency-domain Steiglitz-
McBride algorithm [Jackson 2008]. The target is a minimuhage loudspeaker—room re-
sponse, and the target points are linearly distributedequency: 10000 points from 0 Hz
to half of the sample raté, /2 = 22050 Hz. Note that the sample rgte= 44100 Hz is the
one most commonly used in audio, and this sample rate wilkled tor all the examples of this
work, unless otherwise noted. Due to the linear distributbtarget frequency points, we ex-
pect that the error will be linearly distributed in frequgnc€his is indeed visible in Fig. 1.1 (a)
where the filter response (thick solid line) follows the &rfflashed line) by the same accuracy
for all frequencies, which is also indicated by the fact tthet frequencies of the filter poles
are evenly distributed in the linear frequency scale (seetbsses in Fig. 1.1). When we plot
the same curves in a logarithmic scale in Fig. 1.1 (b), we s#ifaaent picture and the lack of
modeling ability at low frequencies is immediately apparen
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Figure 1.1: 100th order IIR filter design by the frequghdomain Steiglitz-McBride algorithm. The
minimum-phase loudspeaker—-room response is displayedddyed line, and the modeled response by
a thick solid line. The target frequency points are lineaggced. The same responses are plotted in (a)
linear and in (b) logarithmic frequency scale. The crossdiate the pole frequencies of the filter.

The next step is to apply frequency weighting. In the exanoplEig. 1.2 a weighting of
Wi(f) = 1/f? is used, otherwise the design is the same as for Fig. 1.1.e(Matt 1V, (f)
is limited at f = 20 Hz to avoid the very large weights at the otherwise irrhg\unfrasonic
frequencies.) It can be seen in Fig. 1.2 (b) that the fit gelg slightly improved at low fre-
quencies, which is quite surprising since the lowest fregies getl0° times larger weight in
the error compared to the highest ones.

As a next trial, the filter design is based on a target respasese frequency points are
logarithmically spaced. This will inherently mean that #reor is minimized along the loga-
rithmic scale. In Fig. 1.3 the target (dashed line) was rgdadito a logarithmic scale with 100
bins per octave from 20 Hz tfi /2 = 22050 Hz, giving 1011 specification points. This is also
visible when comparing the dashed lines of Fig. 1.3 to Figsahd 1.2. No weighting is used,
since the resampling of the frequency grid already asstasthe error is minimized in the
logarithmic scale. Strangely enough, the low-frequencyletiog accuracy visible in Fig. 1.3
(b) is again practically the same as for the first design of Eigy (b), So no improvements are
found.

From the examples it appears that while in theory both thghted design and the design
based on a logarithmically spaced specification shouldtresa filter with logarithmic fre-
guency resolution, this is not happening in practice. Thengdes used only the frequency-
domain Steiglitz-McBride algorithm [Jackson 2008], bué ttame is happening with other
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Figure 1.2: 100th order IIR filter design by the frequency-domain StegWicBride algorithm. The
minimum-phase loudspeaker—room response is displayeddied line, and the modeled response by a
thick solid line. The target frequency points are lineappeed, and a/f? type weighting is used. The
same responses are plotted in (a) linear and in (b) logaidtiequency scale. The crosses indicate the
pole frequencies of the filter.

methods, lika nvfreqz in MATLAB. This complies with the findings of [Waters and San-
dler 1993] who have found that traditional IR design tecjugis using weighted least squares
minimization fail to converge when the target frequencyng®are logarithmically spaced.

The reasons for this are most probably of numerical natuogatithmic frequency resolu-
tion would require a very high pole density at low frequesaith poles near the unit circle,
and this cannot be implemented by direct form IIR filters eaedouble precision. (This can
be easily tested by converting the logarithmic frequenepigion filters discussed later in this
work to a direct form filter: the resulting filter is almost @ys unstable and its frequency re-
sponse is very different from the original due to numericedis.) Traditional IR filter design
algorithms estimate the parameters of a direct form lIRrfilteey thus cannot give such a set
of coefficients which would lead to the desired high pole dgra low frequencies, since such
a set of coefficients do not exist in the space of availablebarsdue to finite precision.

1.2 Specialized filter structures for achieving non-unifom fre-
guency resolution

By recognizing these limitations, specialized IIR filtesdg techniques have been developed
that allow a more flexible distribution of modeling detaikafsinction of frequency. Itis interest-
ing to note that all of these methods use special filter sirastinstead of the direct (rational)
form used for general purpose IIR filters and the filters aegieed directly in these special
forms.

This work, after introducing warped [Harma et al. 2000] aralikz [Paatero and Karjalainen
2003] filters, will focus on fixed-pole parallel filters, a hetlology allowing the design of IIR
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Figure 1.3: 100th order IIR filter design by the frequency-domain StaigVicBride algorithm. The
minimum-phase loudspeaker—room response is displayeddhed line, and the modeled response by a
thick solid line. The difference from Fig. 1.1 is that tar@etquency points are logarithmically spaced.
The same responses are plotted in (a) linear and in (b) thgaid frequency scale. The crosses indicate
the pole frequencies of the filter.

filters at arbitrary frequency resolution profiles, whilél $¢ading to a simple filter structure
with low computational complexity.

It has to be mentioned that another way to address the praiflEgarithmic frequency res-
olution comes from manually tuned graphic or parametricaéigers that exist from the early
times of audio. Automatic techniqgues have been developdtdratively tune the parameters
(center frequency, Q-factor, gain) of such equalizers bgrdinear optimization process (see,
e.g., [Ramos and Lopez 2006; Behrends et al. 2011; Vaitedti 2018]). This approach is ad-
vantageous when there is a need to manually fine-tune therékponse by listening, since the
parameters of the equalization filters are perceptuallyningéul and well understood by sound
engineers. Also, interpolation between different filtettings is relatively easily achieved. A
drawback that the special form of the filter sections linties degrees of freedom (3 parameters
instead of 4 for a general second-order section) and thu#ises lower accuracy for the same
filter order (see [Bank and Ramos 2011] Fig. 3 for a compares@mple). In addition, these
technigues allow magnitude equalization only, while wdtg€autz or parallel filters are also
able to model or equalize the phase behavior if desiredlliif@ar the above parametric equal-
izer approach a more complex optimization process is napgsas opposed to the relatively
simple parameter estimation techniques required for veaigautz, or parallel filters. It can be
thus said that while aiming at a similar goal, the automaiigrig of parametric equalizers is a
different line of research and therefore it will not be fathliscussed here. For an overview,
the reader is referred to [Vairetti et al. 2018].
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Chapter 2

Basic concepts and methods

Here a quick summary of the basic concepts used in this tisgsisvided, which will hopefully
also help in understanding the notations used in the foligwhapters.

2.1 Approximating a target response by a digital filter

Modeling a system by a digital filter requires that the filtesponse is close to the system
response. In the time domain this means that the error batéteetarget impulse response
hi(n) and the filter impulse responén) is minimal

||h(n) — h¢(n)|| — min (2.1)

for the sample rang@, 1, ..., N — 1], where||z(n)|| is some kind of error norm.
In the frequency domain, the error between the target frecpueesponséd; (,,) and the
filter frequency responsH (v,,) is minimized

||H(9,) — Hi(¥,)|] — min (2.2)
for a finite set of angular frequenci@$;, v, ..., ¥x]. The angular frequencies are related to
the analog frequencief as
Jn
Uy = 2m—, (2.3)
fs

wheref; is the sampling frequency.

Note that the target frequency points do not have to be ewtistyibuted. By the proper
distribution of the frequency points, we can control the modeling detail: those regions which
have more target points will have a larger weight in the tetabr, thus, they will force the
optimization procedure to obtain a better fit in that regibmaudio usually a logarithmically
spaced/,, is employed and this should in theory lead to an even didtabwf errors in the
logarithmic frequency scale. However, as we have seen ipp.Chahis alone is not enough to
achieve a logarithmic frequency resolution.

As for the norm§z(n)|| used in Egs. (2.1) and Eq. (2.2), usually thenorm is applied
which is defined as

o), = (2 |:c<n>\p> , (2.4)

6
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where thep = oo (minimax) andp = 2 (least squares or LS) are the most typical choices. For
classic lowpass, highbass, bandpass, or bandreject filgrally thel., norm is utilized (e.g.,

by the Chebyshev I, 1l and elliptic IIR filters or by the PatsClellan algorithm for FIR filters
[Parks and Burrus 1987]), while for designing filters withabitrary target response, tlig
norm is the usual choice. Complying with this common pragttbis work also employs the
L, norm in the proposed algorithms. The rationale for this chds described in the Appendix
A.1l in more detail. It must be noted however that the majarftyhe proposed algorithms can
be modified for applying other norms, most simply by intradgcan iterative weighting into
the LS design as described in [Vargas and Burrus 2001; Kab@gad Imai 1990].

2.2 Equalizing a system response

Besides modeling, a common task in signal processing is s@dea filter that equalizes a
given system. This means that when the equalizer is cortheteries with the system, then
the total response should be close to the target. Connedctisgyies means, for example, for
loudspeaker—-room equalization that the digital signalgicjuis first filtered by the equalizer
filter, and then converted to the analog domain, amplifiedfaddo the loudspeaker. In con-
trast, equalizing the response of a microphone would merihb filter comes afterwards: the
digitized signal of the microphone is filtered by the equalizSince in this thesis we assume
that the systems are linear and time-invariant (in otherd&owe model or equalize only the
linear aspects), the sequence of the system and the equitize not matter, and the two cases
can be handled jointly.

2.2.1 Direct equalizer design

In the time domain, the impulse response of the equalize@disyg n) is the convolution of the
system impulse responag(n) and the equalizer responsg (n), thatis,h(n) = hs(n)*he(n),
and this has to be close to the target impulse respbyise. Mathematically, this is expressed
as

[1h(n) = hu(n)[| = [Ihs(n) * heq(n)] = hi(n)][ — min. (2.5)

In the frequency domain, the frequency response of the egdadysten¥{ (,,) is the product
of the system frequency respongg(v,,) and the equalizer frequency respotsg (v, ), that
is, H(v,) = Hs(9,)Heq(Y,), and this has to be close to the target frequency respnss, ).
Mathematically, this is expressed as

e=||H(W,) — H(0,)|| = HHs(ﬂn)Heq(ﬁn) — Hy(9,)|| — min. (2.6)

This procedure is termedirect equalizer desigrsince we design the equalizer directly. Note
also that this is similar to a system identification probleimeve the task is to estimate the
parameters of a digital filter so that at its input we have ystesn response and at the output
we obtain the target response. Thus, we might also call tieadequalizer design based on

system identificatian
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2.2.2 Filter design based on the inverted system response

Another common choice for designing an equalizer is to definew target?/(v,,) as the ratio
of the target response and system response

H,(Vn)

H{(9n) = (0. (2.7)

and then use the optimization form developed for filter de&ig. (2.2). Since this involves the
inverse of the system responisé;(1J,,), it will be termedinversion-based equalizer design

Note this procedure can also be done in the time domain wtjéng is computed by decon-
volving the target impulse responsgn) with the system respongg(n). Deconvolution can
be either done by a least squares optimization [Mourjomoatal. 1982] or in the frequency
domain asi;(n) = IFFT{ H.(v,,)/Hs(¥,,) }. Then the equalizer is designed by Eq. (2.1) for the
new target.

The advantage of the inversion-based equalizer desigat$ttd simpler filter design forms
Egs. (2.1) and (2.2) can be used. Indeed, some filter algositire only available in the filter
design form, and have no system identification option. FangXe, whilest ncb in MATLAB
can estimate a system between input and oufpubny andi nvf r eqz cannot. In the latter
case, we can only use the inversion-based approach.

However, it should be clear that the direct and inversiosedamethods are not equivalent,
since they minimize different errors. Writing the error retZ, sense for the inversion-based
equalizer gives

e = |Hugl0) - gﬁ:; -y m|Hs(19n)Heq(ﬁn) B0 (28)

which is the same as the direct-equalzier design of Eq. (@t6)the additional weighting term
1/|Hs(9,,)]?. This means that wherevér,(¢,,) is small, the optimization will try to equalize it
more accurately compared to other target points. It is ealheproblematic if H;(v,,) is close
to zero at some frequencies, because this will mean verg laggghts at those points. This of
course can also be seen from Eq. (2.7) showing that whet&yér, ) is close to zero, the new
targetH,(v,,) will be close to infinity.

Therefore, whenever possible, the direct equalizer despgmoach should be used. If this
cannot be done, then some kind of preprocessing or regalemzhas to be applied before
computing Eqg. (2.7) that removes the dips of the system respadl his may include limiting or
smoothing the system response, or both (see, e.g. [Pedmrderhomsen 2007]). In addition,
a weighting with| H,(9,,)|? can be used to counteract tig| H (v, )|* weighting inherent in
Eq. (2.8), whenever the filter design algorithm offers ttpgan.

2.3 Solving linear-in-parameter problems by the least squas
(LS) method

Many filter design methods are based on solving a lineaanampeter problem, where the trans-
fer function or impulse response is a linear function of therficoefficients. FIR filter design
is linear in parameters both in the time- and frequency domed so is IIR filter design in
equation error setting [Parks and Burrus 1987]. The imprdsponses and transfer functions
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of Kautz filters (Chap. 5) and fixed-pole parallel filters (§h&) are also linear in their free
parameters.

For all of these cases, the outguia column vector) is a linear combination of the basis
functionsm,, with weightspy, written as

K
h =" pum; = Mp, (2.9)

k=1

whereM is the modeling matrix, whose columns contain the vectote@basis functionsy,
andp is a column vector composed of the weigpts Thep, parameters should be set in such
a way that the linear combination of the basis functibris the closest to the target vectoy,
that is,||h — h¢|| is minimal. When the., norm is used, the solution can be found in one step
in closed form, as opposed to more complicated (usuallgtiie¥) methods required for other
norms.

Minimizing the error between the output vecthrand the target vectds; in the mean
squared sense can be written as

N
ers = Y |hn = hinl* = (h=hy)"(h —hy) =
n=1
(Mp — hy)"(Mp — h;) = p"M"Mp — 2p”"M"h; + h{'h,, (2.10)

wherex!! is the conjugate transpose »f The absolute value sign, and thus the conjugation
is needed because this way the equations are also valid figple® vectors. Since Eq. (2.10)
IS quadratic inp, it has a unique minimum, which can be found by taking thevaérie of

Eq. (2.10) with respect tp, and setting it to zero [Schnell 1998; Parks and Burrus 1987]

8€LS
Jp

= 2M*"Mp — 2M*h, = 0. (2.11)

This means that we need to solve the following system of tirgaations (the so called “normal
equations”) fomp:

(M"M)p = (M"hy), (2.12)

where(M”M) is aK x K full rank (invertible) square matrix, assuming that tkiemodeling
signalsm,, are independent. BottM“h,) andp are lengthK” column vectors.
Thus, the optimal set of parameters, is given as

Popt = MJrht) (213a)
Mt = (MPM)'M¥, (2.13b)

whereM™ is the Moore-Penrose pseudoinverse.

While Eq. (2.13) is useful for problems with a modest (few thad) number of parameters,
there are faster and numerically more robust alternatives®lve least-squares problems: this
includes solving the normal equations Eq. (2.12) via Chgldactorization or obtaining the
solution by the QR decomposition of matid [Golub and Loan 2013].
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2.3.1 Weighted least squares design

It is also possible to add a specific weight to certain elemefih when we sum the errors as
N
ewts = > Walhy = houl* = (h = hy)"W(h — hy), (2.14)
n=1

wherelV,, is the weight for then-th element of the output vectdr, and W is the weight-
ing matrix havingWV,, in its diagonal and zeros elsewhere. The minimum is obtalnethe
weighted-least-squares (WLS) solution [Schnell 1998k&and Burrus 1987]:

Popt = (MIWM) " 'M”Wh;. (2.15)

Note however that it is impractical to compupe,; as in Eq. (2.15), because it involves the
multiplication with an almost empty matriv. By substitutingv = W'W' into Eq. (2.15)
whereW’ is a diagonal matrix containingW,,, it is easy to see that we simply have to multiply
the n-th element oth; and then-th row of M by /W, before using Eq. (2.13) to obtain the
same solution as with Eq. (2.15), but with less computations

2.4 Minimum-phase filter design and equalization

lIR filters can be both minimum-phase and non-minimumphdspending on the location of
their zeros. Practical experience shows that minimum-gkgstems can be modeled easier
by IIR filters (i.e., with a lower filter order for the same magde accuracy) than their non-
minimumphase counterparts. Let us take a look into thisigsthe following.

For that we first note that if the order of the IIR filter was tlaene as that of the system to
be modeled, there would be no complications in approxingaton-minimumphase responses.
However, in audio we are usually modeling or equalizing kogtler systems by lower order
filters, so the situation is different.

Minimum-phase systems have many important propertiehiey have a rational transfer
function, then their zeros also lie within the unit circleys, their inverse is stable), their phase
response is linked to the logarithm of their magnitude raspdy the Hilbert transform [Op-
penheim and Schafer 1975], and the energy in their imputgmrese is most concentrated to the
beginning part of the response (minimum energy-delay ptgp@ppenheim et al. 1999]). This
last property translates to the fact that their impulseaasp has the most decaying character
for a given magnitude response.

For all of the perceptually motivated filter design techmigdiscussed in this work (warped,
Kautz, and parallel filters) the net transfer function isg&o(has the same numerator and
denominator order). Causal IIR filters with a proper tranfi@ction compose their impulse
response as a sum of decaying exponentials as coming framl geaction expansion; thus,
they are most suited to model decaying impulse responses. nidans that minimum-phase
responses are easy targets for all of these methods duartmthenum energy-delay property.

Slightly non-minimumphase targets are usually also wellleted by IIR filters, but highly
non-minimumphase responses, such as a room impulse respoite multiple reflections, or
far-field instrument body responses where the main peakeofdbponse comes after a few
hundred samples, cannot be easily followed by the decagspnse of IIR filters.

The equalization of non-minimumphase transfer functiondm filters is even more prob-
lematic than modeling them, since their zeros outside theaincle would require unstable
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poles in the equalizer for perfect equalization. One sofutd this problem is to use a forward-
backward filtering scheme and implement the acausal patieofIR filter in the backward
filtering block [Powel and Chau 1991; Maeng and Lee 1995; Kuret al. 2003]. However,
this requires a complicated block-based processing andndigpy on the implementation, it
can lead to harmonic distortion due to the variable-lengthdation of the backward filter re-
sponse. Thus, instead of the backward IIR filter it is bothpdénand safer to use an additional
FIR path in the filter for the early (acausal) part of the ingaulesponse [Paatero and Karjalainen
2006; Karjalainen and Paatero 2007; Bank 2007] (using anfikeR for the rising part of the
response will be demonstrated for the parallel filter in Sek). Note that in both cases the filter
must be of course causal, actually the delayed version afhiaretically acausal filter. This
additional delay might be problematic in some applicatisnsh as live sound reinforcement,
and the rising part of the equalizer response can also cadidg@artifacts termegdre-echoor
pre-ringing[Karjalainen et al. 2005; Cecchi et al. 2018].

A straightforward choice to avoid these complications isdavert the system response to
minimum-phase before filter or equalizer design [Karjadairet al. 2005; Cecchi et al. 2018].
While using a minimum-phase target might seem to be a liroitatt first glance, itis a common
choice in audio signal processing. A physical motivatiamfinimum-phase filter design is that
many systems in audio (microphones and one-way loudspgakermodal range of room fre-
quency responses, analog parametric and graphic eq@li@ere a minimum-phase response
anyway. Another motivation is coming from perceptual piptes: while there is evidence that
the phase response of electroacoustic systems can be meeedan special program material
(see, e.qg., [Liski et al. 2018]), it is generally acceptedt tthe magnitude response has much
larger importance in the observed quality of audio systeSiace minimum-phase responses
are easier modeled or equalized by IR filters, this meartdthgiving up the perceptually less
important phase accuracy, lower filter orders are suffid@mthe same precision in magnitude
modeling or equalization. This explains why using a minimpihase target is so common in
the audio field.

Complying with this usual procedure, most of the design gdamof this work apply a
minimum-phase target specification. To make this cleareadader, this will be always men-
tioned in the captions of the corresponding figures. NeedsHs, it is worth emphasizing that
lIR filters can of course be used for modeling or equalizatibnon-minimumphase responses
if required (see, e.g., Fig. 7.1 for non-minimumphase warged parallel filters), albeit with
less efficiency, that is, typically requiring higher filtender compared to their minimum-phase
version?

!As an intermediate case betwemtinimum-phase and non-minimumphase filter design, | haveldped
a general method (usable with any filter design techniqueonty by fixed-pole parallel filters) that aims at
achieving magnitude and phase accuracy in those frequegigns where this is possible, and prioritizes the
magnitude over the phase whenever this cannot be done. Binttés thesis | have decided to include only those
results that are closely related to fixed-pole parallelrfittesign, the detailed description mfagnitude-priority
filter designis not given here. However, a quick summary and my relatetigaitons are listed in Sec 10.1.2.
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Fractional-octave smoothing

The quasi-logarithmic frequency resolution of human hegis also reflected in how transfer
functions are displayed in the audio field. From the eartiests, a logarithmic frequency scale
is used, and often the magnitude response is smoothed atiara-octave (e.g., third octave)
resolution. The motivation behind fractional-octave sthaw is that the original transfer func-
tion is too detailed for evaluation: the effects of smalli@dons in practice cannot be heard,
and the raggedness of the response might actually prevéosbserving the more important
global shape of the response. In other words, the smoothieref the transfer function gives
a better estimate of the perceived timbre. While smoothi@gs from analog signal analyzers,
typically all current digital audio spectrum analyzerseofthis option.

3.1 Magnitude- or power-smoothing

Traditionally, smoothing has only been applied for the miagie response of audio systems.
In the time of analog signal analyzers, a smoothed transfestion was either obtained with
exciting the system with pink noise and measuring the outpliage of bandpass filters (e.g.,
having a@ value corresponding to a third-octave resolution), or vdterodyne spectrum
analyzers thé” signal of the cathode ray tube representing the magnitulde veas low-pass
filtered. The same procedure was applied with plotters whemtite speed in th& direction
was decreased by lowpass filtering.

In digital analyzers, the starting point is usually a spgoticomputed via FFT, thus, a spec-
trum in linear frequency scale. The smoothed transfer fanas then computed by averaging
the squared magnitude response values around the freqokimtgrest. Averaging the magni-
tude itself is also an option, though less often used, antetiemagnitude smoothingsually
actually refers to power smoothing in the literature. Siweeare aiming at a fractional-octave
(constant®) resolution, the width of the averaging window will be limsaproportional to
frequency [Lipschitz et al. 1985]. This is equivalent to woling the transfer function (actu-
ally, the discrete transfer function vector) with a windawé€tion whose size increases with
frequency. In the simplest case, simple averaging is apptierresponding to a rectangular
window, but weighted averaging can also be used. For examptann window is a straight-
forward choice to weight the elements.

Smoothing is not only useful for displaying transfer funas, but also for a preprocess-
ing step before filter design, as often applied in loudspeakd room response equalization
(see, e.g., [Ramos and Lopez 2006; Craven and Gerzon 1982rdea@ and Thomsen 2007]).

12
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Smoothing in equalizer design is motivated by two reasoirst,Ehe systems to be equalized
are typically of very high order (e.g., due to the high modaisity in room responses), and cor-
rection of all this detail would lead to very high order fikeAs the final judge in sound quality
is the human ear, it is more efficient to equalize only thogeeis that lead to an audible er-
ror, and for that the smoothed response is a much betteingtaint. Besides efficiency and
perceptual aspects, there is also a physical reason foyiagpbgarithmic or logarithmic-like
frequency resolution in equalizer design. Namely, an agg&tem often has multiple outputs,
like multiple listening positions in a room, and the equalizhould maintain or improve the
sound quality at all positions. Transfer functions meagwaedifferent points in space have
more similarity at low frequencies than at high frequenaikes to the different wavelengths of
sound. Therefore, an overly precise correction computat fone measurement point would
actually worsen the response at other positions, espgeidtigh frequencies [Craven and Ger-
zon 1992; Karjalainen et al. 2005; Cecchi et al. 2018]. Thesns that as frequency increases,
it is more and more true that only the macro properties ofriduesfer function should be equal-
ized, and equalization based on fractional octave smoatsbnses does exactly this.

Figure 3.1 solid lines display a loudspeaker room respondeita smoothed versions up
to third-octave smoothing. Smoothing Btsth-octave resolution was done by weighting the
squared magnitudes by a Hann window having the full width/gf-octave (i.e., its half width,
or, the distance of its 0.5 points i Sth-octave). This complies with the results of analog
third-octave analyzers, where the half-power points ofithedpass filters have a third-octave
distance. It can be seen that with increased smoothing tiad details of the magnitude re-
sponse disappear and the macro properties become morengramNote that the amount of
smoothing required depends on the application, and alsti®@mavailable filtering resources.
That is, if we know that we will model or equalize the responsin a low-order filter, it is
advisable to smooth the response more strongly so that teeilll be forced to concentrate
on the overall response, rather than modeling some shaks pea dips that are perceptually
less relevant.

3.2 Complex smoothing

A drawback of traditional magnitude or power smoothing @sttih only considers the magni-

tude response, thus, the phase information and the conmdsptime structure of the impulse

response is lost. This is acceptable for visualization,asd for magnitude-only loudspeaker
or room response equalization, when usually a minimum-gbgscification is computed based
on the smoothed magnitude.

However, in digital processing, it is also possible to srhabe complex transfer function
so that the phase information and the time structure of thmuise response can also be re-
constructed [Hatziantoniou and Mourjopoulos 2000]. Thas the important benefit that this
way the time-domain aspects (and thus, the phase respdribe)rneasured system can also be
modeled or equalized.

Complex smoothing is very similar to power smoothing, buttioe complex transfer func-
tion (and not the squared magnitude) is convolved with ageedothing functioriV (f). This
is basically the same as smoothing the real and imaginatg pathe transfer function sepa-
rately. The interesting property of such a processing isitha equivalent to multiplying the
impulse response by a time-domain window functioft) where the length of the window is
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Figure 3.1: Fractional-octave smoothing: (a) original loudspeak®mwar response, and the responses
smoothed to (b) 24th-octave, (c) 12th-octave, (d) 6thvagtand (e) 3rd-octave resolution. The solid

lines show the power-smoothed curves, while the dashed tisplay the magnitude of the complex-

smoothed responses. The curves are offset for clarity.

frequency dependent [Hatziantoniou and Mourjopoulos 2096te that such equivalence can-
not be made for power smoothing due to the nonlinear operaticquaring the magnitude.
Frequency-dependent signal windowing, the time-domatnvatgnt of complex smoothing,

has also been proposed in [Karjalainen and Paatero 2001].

Smoothing function$V ( f) with a Hann window shape having the width of 50, 100, and
200 Hz are displayed in Fig. 3.2 (a). By taking the inverserfesaransform ofiV’( f), the cor-
responding time-domain window functiongt) are obtained. These are displayed in Fig. 3.2
(b). It can be seen that when the width of the frequency-domsraioothing function depends on
frequency, the operation corresponds to multiplying thpulse response by a window func-
tion whose length is frequency dependent. Note that in cempioothing, the smoothing
function W ( f) is chosen to be a real (zero phase) function [HatziantonmuNourjopoulos
2000], which leads to a corresponding time window that ismatnic around = 0, that is,
w(—t) = w(t). Since we are interested in smoothing causal responges-£ 0 for ¢t < 0),
it is sufficient to multiply the impulse responiét) with the right half of the window function
when the frequency-dependent windowing operation is peéd.

For obtaining a logarithmic frequency resolution, wideosithing functions have to be used
at high frequencies compared to the low ones. This meanghé&atiriginal impulse response
is windowed to shorter length at high frequencies compaoeithé low ones. Naturally, not
only fixed fractional-octave (logarithmic), but arbitrasynoothing resolution can be applied,
including those corresponding to Bark or ERB scales [Hatpiaiou and Mourjopoulos 2000].
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Figure 3.2: Complex smoothing and frequency-dependent windowingsifggothing windowsV ( f)
with a Hann shape, having the width of 50 Hz (solid line), 100 (dashed line), and 200 Hz (dash-
dotted line). (b) The corresponding time-domain windowctionsw(¢) computed by the inverse Fourier
transform oflV ( f) are displayed by the same line types.

Figure 3.1 dashed-lines display the magnitudes of the cexrgrhoothed transfer functions.
The smoothing was done by weighting the complex transfestion values by a Hann window
having the full width of2/ 5-octave (i.e., its half width, or, the distance of its 0.5rgeiis1/5th-
octave). The power-smoothed responses are displayed.iB.Eipy solid lines. It can be seen
that for mild values of smoothing, the two curves are mostlirie, while for heavier smooth-
ing the complex-smoothed transfer functions (dashed)lisesbelow the power-smoothed ones
(solid lines). This is because power smoothing retaindialenergy of the original transfer func-
tion, since it averages the power spectrum. On the other, ltangplex-smoothing is equivalent
to frequency-dependent windowing of the impulse respoasd, heavier smoothing leads to
shorter windows, thus, more energy loss. This is actuallgérantage in room equalization:
this way the position-dependent high-frequency reflestimiithe room are eliminated from the
system response, thus, they are not equalized, which hHedpsjualizer to provide an improve-
ment in a larger area of the room [Mourjopoulos and Hatziaioto 2004].

3.3 Equivalent complex smoothing

Nevertheless, if we wish to avoid the “energy loss” of compdenoothing seen in Fig. 3.1
and discussed above, Hatziantoniou and Mourjopoulos [RPfifposes an alternative solu-
tion where the magnitude response is corrected so that itheatthe power-smoothed re-
sponse. This is calledquivalent complex smoothinghich basically means computing both
the complex-smoothed and power-smoothed responses, ariring them in such a way that
the magnitude is taken from power smoothing, and the phaseéomplex smoothing. A sim-
ilar idea is proposed by [Panzer and Ferekidis 2004] wherertagnitude and phase responses
are smoothed separately.
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Warped filters

The earliest perceptually motivated design technique seth@n frequency warping. The idea
can be traced back to the paper of Constantinides [1970]hwbrioposes the substitution of
unit delays in digital filters with allpass filters in orderdbange the filter type. Such a trans-
formation can be lowpass—lowpass (change in cutoff frequemowpass—highpass, lowpass—
bandpass, lowpass—band-reject, similarly to the spectmasformations used in the design of
analog filters.

The first application of the allpass transform as a means @firubg nonlinear frequency
resolution was proposed by Oppenheim et al. [1971], whem@naumiform DFT was obtained
by passing the input signal through an allpass chain andyukaoutputs of the stages as the
input of an ordinary FFT operation. Strube [1980] has ajgpiiequency warping for approxi-
mating the frequency resolution of the human auditory systelinear predictive coding.

The use of frequency warping as a means of approximatingitbgac frequency resolution
for lIR filters was proposed in [Smith 1983; Waters and Sant®93], and the most extensive
overview on the subject was presented in [Harma et al. 2000].

4.1 The effect of warping

The basic idea of warped filters is that the unit detay of traditional FIR or IIR filters is
replaced by an allpass filter
-1
1 oz =
The transformation of the frequency axis is related to theesplresponse of the first-order all-
pass. The substitution results in the frequency mapping

(1 — A?)sin(v)
(14 A2) cos(¥) — 2\

¥ = v(¥) = arctan (4.2)

whered is the original and) is the warped angular frequency in radians [Harma et al. R000
This transformation is displayed for variods/alues in Fig. 4.1.

Accordingly, a filter originally having the transfer funati of H () will have the transfer
function of H (v(19)) after substituting its delay elements by the first orderaafpof Eq. (4.1).
For increasing the resolution at low frequencies, whicteguired for achieving a logarithmic
scale, positive\ values are used. It can be seen in Fig. 4.1 that in this casedgnan around

16
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Figure 4.1: The frequency mapping functian«}) of Eq. (4.2) for various warping parameters.

zero frequency will span a much larger frequency region ewtlarped domain, which means
increased resolution.

The change of the frequency resolution is related to theestdghe mapping function in
Fig. 4.1, that is, the derivative of Eq. (4.2). The higher skape, the larger is the increase in
frequency resolution. Accordingly, if a FIR or IIR filter hadocal resolutiom\ f( f), then its
warped variant will have the resolutiakf (/)

~ 2 _
AF(f) = L+ A 1 _2;\2005(19)

whered = 27 f/ f5, with f; being the sampling frequency [Ramos et al. 2009]. For FIRr§it
Af = f;/N, whereN is the filter order. For IIR filters such an exact number caryet
computed, nevertheless, Eqg. (4.3) still shows how the uéisol is mapped when the IIR filter
is implemented using allpasses instead of unit delays.

The relative resolution is shown in Fig. 4.2 (a) for variousalues, and the dotted line
A = 0 corresponds to no warping. The plot was computed using E8) \th Af = 1, and
the sampling frequency wag = 44.1 kHz. It can be seen in Fig. 4.2 (a) that the warped
implementations with\ > 0 increase the resolution (decreasg) at low frequencies, at the
expense of lower resolution (largéxf) at high frequencies. This tradeoff is understandable
since the degrees of freedom in the filter are unchanged, #msnprovement at a specific
frequency band will lead to poorer performance at anothedba

In audio applications we usually try to approximate lodaritc frequency resolution, there-
fore it makes sense to plot the same curves divided by frexpigiven by

Af, (4.3)

Af(f) 1+ 2 —2)\cos(¥) Af
ro (1—=22) f

In Fig. 4.2 (b)Af(f)/f is plotted forAf = 1. Again, the dotted line withh = 0 shows what
happens with an ordinary (not warped) FIR or IIR filter, andgdrithmic frequency resolution

(4.4)
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Figure 4.2: The change of frequency resolution due to warpingZ\#)according to Eq. (4.3) for various
warping parameters, and (b) “logarithmic resoluti(mjf/f computed by Eq. (4.4) The resolution prior
to warping isA f = 1 in both figures. Smaller values correspond to a higher réealu

would correspond to a horizontal line in the figure. It can bersthat while none of th&
values achieve fully logarithmic resolution (none of thevas are horizontal lines), there are
some frequency bands for eaghvhere this is relatively well achieved. Moreover, the wakpe
curves (solid lines) span a significantly smaller vertiealge compared to no warping (dotted
line), meaning that we are closer to the desired distrilbuticirequency resolution.

The relation of warping to psychoacoustic scales (ERB, Ba@reenwood) is discussed in
[Harma et al. 2000]. In addition, Smith and Abel [1999] hagegian analytical expression for
A as a function of sampling rate to match the Bark scale. Howysirailarly to the logarithmic
scale, an exact match is not possible due to the limited degrefreedom (a single warping
parameter).

The warping effect is demonstrated in Fig. 4.3, where (a)ldis the original frequency
response of an arbitrary FIR filter having random coeffigemthile (b) and (c) display the
filter response when the unit delays are exchanged for fidsrallpass filters withh = 0.5
and\ = 0.75, respectively. It can be seen in (a) that the original FIRffitas even (linear)
resolution, that is, the detail is evenly distributed in inear frequency scale. However, when
frequency warping is applied, the transfer function grélgiushifts towards lower frequencies
with increasing\, meaning that the level of detail is higher at low frequescempared to high
frequencies.

4.2 Filter design

The basic idea of warped filter design is that the filter speatifon in the time- or frequency-
domain is predistorted with the inverse of the warping éftéche filter. Then any traditional
filter design technique can be used to design an FIR or IIR,fdted finally when the filter is
implemented by using first-order allpass elements, the fiéteponse gets to the right place. A
very appealing property of warped filters is that the embddilter design step is the same as
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Figure 4.3: The frequency response of an 100th order FIR filter with ramdoefficients (a), and the
same filter having its unit delays replaced by allpass filéthe form Eqg. (4.1) with (b = 0.5 and (c)
A =0.75.

for ordinary FIR or IIR filters.

4.2.1 Frequency-domain design

Let us define the inverse mapping! () so thaty = v~!(v(99)). If the mapping function was
computed by using in Eq. (4.2), then the inverse mapping can be obtained bygusinin the
same function Eq. (4.2) [Harma et al. 2000].

The steps of filter design are the following:

1. Prewarping of the target frequency responseThe filter specification is transformed by
the inverse mapping functiar ! (¥). Mathematically, this mapping is described by

H,(9,,) = Ho(v™" (V). (4.5)

In practice this can be done by some suitable interpolatidiere we have direct con-
trol over the density of the target frequency points in thepsd domain. A simpler
alternative solution is to move the original specificatiaints H(v,,) to the frequencies
U, = v(9,), but leaving their magnitude and phase values unchanged.

2. Frequency-domain filter design.An FIR or IIR filter is designed based on the pre-warped
targetH,(v) by any of the available filter design methods, just as withirend FIR or
[IR filters. This leads to the filteH (7).

3. Filter implementation. This is actually not part of the design process, but when tuped
filter is implemented by substituting the unit delays of tHR Br IIR filter designed in
Step 2 by the first-order allpass filters, the frequencyesoélhe filter will be mapped
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back to match that of the original specification. Thus, tla@dfer function is automati-
cally shifted fromH (¢) to H(¥) so that

H(W) = H(v(®)). (4.6)

4.2.2 Time-domain design

The steps of the design are the following:

1. Prewarping of the target impulse responseln the time domain, the design of warped fil-
ters starts with warping the target impulse respdns$e) by the use of an allpass chain
with — )\ [Harma et al. 2000].

2. Time-domain filter design. Warped FIR (WFIR) filters can be simply obtained by truncat-
ing or windowing the warped target resporfaen) just as what would be done when
modeling an infinite impulse response with a finite lengtlefiltSimilarly, warped IIR
filters are designed by traditional filter design algorithesy., LPC, Prony, Steiglitz-
McBride) using this warped (n).

3. Filter implementation. When the filter designed in step 2 is implemented with firsteor
allpasses in place of the unit delays, its impulse respanaatomatically mapped back
to be in accordance with the original (unwarped) target ilsguesponse.

4.3 Filter design examples

Figure 4.4 shows various warped filter designs based on the kaudspeaker—room response
where the standard IIR filter design methods failed to preledjarithmic frequency resolution
in Chap. 1. The first three curves (a)—(c) correspond to veRpR filters with various\ values
designed by truncating the warped impulse response. Iteaeén that increasingshifts the
region with detailed modeling in accordance with the resofucurves of Fig. 4.2 (b). It can
also be seen that none of thevalues provide even distribution of the modeling accuradhe
logarithmic scale.

Figure 4.4 (d)—(f) displays warped IIR filters designs uding Steiglitz-McBride method
[Steiglitz and McBride 1965] with the samevalues as for the WFIR filters. Here again in-
creasing\ shifts the region of accurate modeling to low frequenciesm@ared to the WFIR
examples, the WIIR filters provide a better fit since they @hatribute the modeling detail by
their poles. Coming from this, the region of accurate madgis wider than for WFIR filters.
However, there is still no suchivalue where the accuracy is evenly distributed in the fulliau
bandwidth.

4.4 Implementation

4.4.1 Implementation with special filter structures

The WFIR filters have a similar structure as FIR filters, bt @imit delays are replaced by the
allpass filterD(z). That is, the WFIR filter is an allpass chain, where the sigbatween the
first-order allpass blocks are tapped and weighted by thecBd#icientsh,. On the contrary
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Figure 4.4: Modeling a minimum-phase loudspeaker-room response @ajt{d) 32nd order warped

FIR filters and (d)—(f) 32nd order warped IIR filters usingigas warping parameters= 0.5, 0.8,0.95.

The target response is displayed by thin lines, while therfiésponses are shown by thick lines. The

curves are offset for clarity.

to WFIR filters, the implementation of WIIR filters is lessaghtforward. This is because for
WIIR filters the replacement of unit delays By(z) leads to delay-free loops, and the filter
structure has to be modified for practical implementati@nfson 1979; Steiglitz 1980; Ahuja
and Roy 1980; Karjalainen et al. 1997]. Because of the sissikfilter structures, WFIR and
WIIR filters typically require 2—4 times higher computatbtime compared to normal FIR and
lIR filters of the same order [Harma et al. 2000].

4.4.2 Dewarping to direct-form filters

Instead of implementing warped filters directly, it is alsmspible to simply substitute the first-
order allpass transfer function Eq. (4.1) into the tranifaction of the FIR or IIR filter, which
will result in an IR filter with the same order for the numeraand the denominator [Johnson
1979; Smith 1983; Harma et al. 2000]. The disadvantage oadang the filter to a direct-form
realization is that it can be done only up to filter orders atb80 due to numerical problems
coming from pole clustering at low frequencies [Harma e2@00].

4.4.3 Dewarping to cascade or parallel sections

Another, numerically better behaving option is to dewarp ftitter to a cascade or parallel
second-order structure. The idea is first break up the warighction of the warped filter to
series or parallel second-order sections, and then detvagettions separately [Ahuja and Roy
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1980]. Finally, the filter is implemented in this series orgiiel form.

While [Ahuja and Roy 1980] presents the formulas of dewagirsecond-order section, in
[Tyril et al. 2001] the problem is addressed by first finding polesp, and zerosn, of the
warped IIR filter, then dewarping them by the expression

o DEtA my + A

_ _ , 4.7
T+ 23 T 14 g (4.7)

Pk

Finally, the filter is implemented as a series of second+osdetions, computed from the de-
warped (linear frequency-scale) pojgsand zerosn, [Tyril et al. 2001].

Dewarping to second-order sections is a very effective wasnplementing warped filters
since it can be used with high filter orders (while dewarpinglirect form cannot). For the
series second-order case, the number of multiplicatiansires the same as for traditional IIR
filters of the same order, requiring 4 multiplications peraed-order section. This leads to 4
multiplications per second-order section. On the contnahen the warped filter is dewarped
to parallel second-order sections, there is an increageinumber of multiplications. This is
because the decomposition of the warped filter to paraltelrsg:-order sections leads to sections
whose numerator order is 1, and denominator order is 2 (diptic#itions per section). When
this section is dewarped, the numerator order also becorfeesezo is placed at), requiring 5
multiplications per section, as opposed to 4 for the seass.c

4.5 Extensions of basic warping techniques

We have seen in Fig. 4.2 (b) that there is no singkalue which would result in a constant
resolution in the logarithmic scale. On the contrary, eadiecuses the resolution around a
certain frequency region. Therefore, a straightforwantetgment of the warped filter concept
is to use different warping parameters for the differengfiency regions.

45.1 Combination with linear filters

A special case of multi-band warping is when one of the basdsnormal FIR or IIR filter
(that is, for that band\ = 0). This is motivated by the fact that straightforward FIR dirl
filters can be implemented more efficiently compared to thvairped counterparts. Since the
resolution of normal FIR and IIR filters is linear, they aresbsuited for modeling or equal-
ization of the high-frequency region of the transfer fuanti Such a combined warped and
linear equalizer was presented in [Wang et al. 2000a]. Téwuiency band is split to two by a
crossover network, which includes a lowpass and a highpgéss fihe high-frequency part of
the signal is processed by an FIR filter, while the low-fragpyepart by a warped FIR filter. A
similar approach is presented in [Ramos et al. 2009] withrtigortant difference that the FIR
and warped FIR filters are in cascade, eliminating the neea évossover network.

4.5.2 Multiple warped filters

The first paper using multiple warped filters is [Wang et aD@), which proposes the use of a
three-band equalizer, where differentalues are chosen in the three branches to maximize the
warping effect for each warped FIR filter. In addition, theddie band incorporates decimation
and interpolation so that the processing is done at a reciaragle rate to maximize efficiency.
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The three bands are separated by a crossover network codnpiaséow-pass, band-pass and a
high-pass filter.

| have developed a multi-band warping technique for conmgutihe pole positions of the
fixed-pole parallel filter [Bank and Ramos 2011], and the fiest of the method can be directly
used as a warped IIR filter design. In this method the trarfigfation is split to two bands, and
two warped IIR filters are designed with sukkalues that lead to maximal modeling resolution
in the center of their corresponding bands. Then the two iili&s are combined (connected
in series). The details of this procedure will be outline®et. 7.3.3.

4.5.3 Custom warping

So far we have been using the frequency warping function £8),(which gives a limited
freedom due to a single parameter Improved results were obtained by combining multiple
warped filters with differenf values. However, a question arises if it is possible to usga-I
rithmic frequency mapping prior to filter design, since tivauld result in an even distribution
of approximation errors in the logarithmic scale, and thos, truly logarithmic frequency res-
olution. One solution to the problem is to design a parakeldf all-pass filters of increasing
order, based on the phase response of the logarithmic ngajhdinma and Paatero 2001]. How-
ever, a disadvantage of the method is its very heavy compn&dtioad making it impractical
for real-time applications. | have developed a more efficégproach that does not increase the
filter order. The basic idea of [Bank 2011c] is that the warfiléer designed based on the loga-
rithmically mapped specification is implemented by poleszdewarping, and not by the usual
allpass substitution. Since the filter is implemented ingheallel second-order form, it can
also be considered as a pole positioning technique for fpade-parallel filters. Accordingly,
the details will be presented in Sec. 7.3.4.

4.6 Final remarks on the various warping techniques

Warped FIR filters represent the simplest method for olbtgidilters with logarithmic-like
frequency resolution. They can be designed in the time-doimatruncating or windowing
the pre-warped target impulse response, similarly how ooeldvmodel an infinite impulse
response system by a finite impulse response filter. The mgaiéation of warped FIR filters is
also straightforward: the unit delays of the FIR filter arglaeed by first-order allpass filters.

Warped IIR filters result in more accurate models for the séitex order compared to
WEFIR filters. However, the implementation of WIIR filters isone complicated: to avoid the
problem of delay-free loops, a modified filter structure rabé used with recomputed filter
coefficients. Alternatively, the WIIR filter can be dewarpedseries or parallel second-order
sections, leading to a more efficient implementation withmgpter filter structure requiring less
additions and multiplications.

Normal WIIR filters already provide a reasonable modelingat the entire audio band-
width is used (for example, imagine modeling or equalizirgyraall computer speaker having
the bandwidth of [200 Hz, 15 kHz]). If the full audio range hasbe modeled or equalized,
then multi-band or custom warping techniques can be usehpoove accuracy. However,
as we shall see, there are even more flexible methodologiebfaining filters with arbitrary
frequency resolution: these are the Kautz and paralletdidescussed in the next chapters.
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Kautz filters

We have seen in Chap. 4 that warped filters (especially WItBr$) provide a much better ap-
proximation to logarithmic frequency resolution comparedtraightforward IIR filters shown
in Chap. 1. However, when the full audio band from 20 Hz to 2 ktds to be modeled or
equalized, a single parameter is insufficient, as either the high-, or the lowdiencies will
lack modeling detail (see Fig. 4.4). This can be improveagsnultiple A values, as it was
outlined in Sec. 4.5.

As a generalization, the question arises if it would be gmego construct the WFIR and
WIIR filters in such a way that all the allpasses have diffepemalues. This question has been
investigated by Tyril et al. [2001], who has proposed the afs@/izFIR (warped individual z
FIR) filters. No systematic procedure has been given for simgothe different\ parameters
for the various sections, rather, they were set by trial anor.e The authors have found that
the performance is slightly improved compared to normal R/fters. However, this comes at
a price of more complicated parameter estimation, sincethevprocedure of prewarping and
the use of traditional filter design techniques as shown i &€ is unfeasible. This is because
no common mapping function exists. Instead, the parameftetftee WizFIR filter have been
obtained with a least squares fit where the basis functi@tharimpulse responses computed
at the various stages of the allpass chain. Tyril et al. [20@¥e concluded that for the same
computational complexity, WizFIR filters are outperformsdWIIR filters. Thus, the use of
WizFIR filters is not encouraged. The authors have also atdgdhe use of individual-s in
WIIR filters is doubtful since WIIR filters can have differgmles anyway.

A mathematically better founded alternative to WizFIR fidtés the use of Kautz filters,
which are indeed very similar to a warped FIR filter structwrdh different \ values, with an
additional feature of orthonormal basis functions [Pamagerd Karjalainen 2003]. Before seeing
how Kautz filters can be used to achieve logarithmic frequeasolution, we first review the
history of the method.

5.1 Laguerre and Kautz models

Traditionally, Laguerre and Kautz models were proposedystem identification. These mod-
els reconstruct the system response as a linear combirddtarthonormal basis functions. In
those times orthonormal functions were essential sindewhg the parameters of the models
are obtained by a scalar product, which could be computed @véhe earliest computers.

In the case of Laguerre models [Oliveira e Silva 1995], thearormalization procedure is

24
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started from identical first-order lowpass transfer fumresil /(1 — pz—!) with a pole ap. This
gives the following set of orthonormal functions:

Li(2) = ti:;_(zq'_p)k_i (5.1)

1—pz=t \1—pz!

fork=1,2,... K.

The term in the parenthesis corresponds to an allpass filtdged, Laguerre models lead to
the same filter structure as warped FIR filters, and the offigrénce is the normalization term
V1 —7p2/(1 —pz1), which is simply a lowpass filter at the input of the allpassktene.

A straightforward generalization of Laguerre filters is wtike orthonormalization process
is started from first-order lowpasses having different pdtete that the poles, can also be
complex). For continuous-time systems the concept waedntred by Kautz [1954], while
the corresponding discrete-time orthonormal sequencesfivst presented by Broome [1965].
The orthonormal polynomials take the following form [Paatend Karjalainen 2003]:

Gulz) = ¥ {‘gpf H L n, 52)

for k = 1,... K, wherep, is the complex conjugate ¢f,. (Note that in [Paatero and Kar-
jalainen 2003] the indexing starts fratn= 0.) Again, the filter can be implemented as a tapped
allpass backbone, but now the poles of the filter are difterBmerefore, the first-order lowpass
normalization terms/T — pxp,/(1 — prz~') have to be implemented separately after the tap-
ping points of the backbone. Note that this is similar to thePAR filter of [Tyril et al. 2001]
with the added first-order lowpasses at the tap outputs.

Equation (5.2) results in complex sequences (impulse regs) for complex poles. Also,
such a model would result in a filter with complex coefficiettf®owever, usually we are inter-
ested in modeling real impulse responses, and the use of filiéh real coefficients. For such
systems complex poles always appear in complex conjugate paandp, and the complex
pole pairs can be combined to form second-order sectionsa pole pairp; andp, we obtain
a pair of real valued basis functiofi (») andG; (=) as follows [Broome 1965; Paatero and
Karjalainen 2003]:

i

B 1 (z'=pio)(z7t = 2_7j—1)
Ai(z) = 1—piz H(1—pz 1) - (1—pz—1)(1 — pjzﬂ) (5.3a)
GHz) = CFf1+2hHA(2) (5.3b)
Gi(2) = —Cr(1—2""Ai(2), (5.3¢)

fori=1,2,...1. In Eq. (5.3)C;t andC; are normalization constants computed from the pole
setp; [Broome 1965; Paatero and Karjalainen 2003]. Note thaesinc

2 =pi)(z = P)
(1=pz )1 =piz7")
thus, each;(z) can be implemented by filtering the previous tetm; (z) with a second-order

filter, meaning that thed;(z) part can be implemented as a backbone composed of second-
order stages. Then the signal is tapped between the seetnuhéltered by the first-order

444z)::44ﬁﬂ(z)( (5.4)
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Figure 5.1: The structure of the Kautz filter with real coefficients.

numerator term;" (1 + z~') and —C; (1 — z7') to obtain the output&:; (2) and G; (2)
[Broome 1965]. The total filter response is the linear coratiam of these outputs with weights
wy. The block diagram of the Kautz structure in its efficient feam is displayed in Fig. 5.1,
Whel‘eam = —QRG{pz}, ;0 = |pi|2’ b@l = wgl‘_lc;_, andbl‘g = —U}onl_

Both for Laguerre and Kautz models the impulse response ydtamh(n) is modeled as
a linear combination of basis functiomg(n), which are obtained as the inversaransform of
Ly(z) for Laguerre and-; (z) andG; (z) for Kautz filters:

K
h(n) = Zwkxk(n), (5.5)
k=1

wherew; are the weights. The goal is to estimatg such that the model responsén) is
closest to the targét;(n). Since ther,(n) sequences are orthonormal, the optimal solution in
the mean-squared sense is given by the scalar product

wy, = Z hi(n)zk(n), (5.6)
n=0

requiring much less computations compared to solving thelusS equations required for
non-orthogonal basis functions. This complexity can baeksed even more by noting that
the scalar product of Eq. (5.6) is equivalent to convolvimg time-reversed targét(—n) with
xr(n) and taking the output fat = 0 [Broome 1965; Paatero and Karjalainen 2003]. Convolu-
tion with =, (n) is actually done by filtering.(—n) with the same recursive Laguerre or Kautz
filter structure which is used for modeling, ang are simply obtained by reading the outputs
at timen = 0. This property leads to very low computational complexa@yweight estimation.

Nowadays solving a linear least squares problem is coresides one of the simplest op-
timization problems, thus, the orthonormality of Laguesrel Kautz basis functions has lost
some of its attractiveness. However, for some cases suatepsi\ filtering orthonormality is
still highly beneficial since it leads to faster convergef@alama and Cousseau 1998].

5.2 Kautz filters for audio applications

The use of Kautz filters as a means of controlling the frequeasolution of filter design was
proposed by Paatero and Karjalainen [2003]: they note thiwalgnce of warped FIR filters and
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Laguerre models, and show that for Kautz filters with indinatipoles the frequency resolution
can be directly controlled by the pole values.

For obtaining a logarithmic resolution, the poles shouldseeaccording to the following
formulas [Paatero and Karjalainen 2003; Karjalainen aratdé?a 2007]:

2

9, = mJi (5.7)
fs

pe = RO/t (5.8)

whered,, are the pole frequencies in radians determined by the libgaic frequency series,

and the sampling frequendy. The pole magnitudes form an exponentially damping sequenc
approximating a constard resolution. The pole magnitude at the Nyquist rate is setiy t
damping parameteR. As a rule of thumbR should be set so that the magnitude responses
of the neighboring taps cross at thei8 dB point, but it is said that the precise value of the
damping parameter is not critical [Karjalainen and Paa2&x@r].

Another way of finding the poles suggested in [Paatero angakaamen 2003] is by the
Brandenstein-Unbehauen method [Brandenstein and UnbehER0O8], which is an iterative
least-squares optimization technique similar to the 8teilylcBride algorithm [Steiglitz and
McBride 1965]. Itis suggested that for audio applicati@arped version of the Brandenstein-
Unbehauen technique should be used, where the algorithomisn the warped impulse re-
sponse, and then the poles are dewarped by Eq. (4.7) [Paatdr&arjalainen 2003]. The
practical performance is similar to warped filters, with #ueled flexibility of complete control
over the frequency resolution of the design.

Recently a new pole positioning technique have been predeant[Vairetti et al. 2015,
2016, 2017] for the application of sparse approximationighly reverberant room impulse
responses. Instead of aiming at modeling all the detailv@frbom impulse, the proposed
technique tries to fit the most prominent resonances bytivehp testing a set of candidate pole
positions and adding the one to the final pole set that dezsehs approximation error the most.
The examples demonstrate that the method provides a statexamation of room impulse
responses with high filter ordergv( > 1000). However, the pole frequencies and damping
factors cannot be estimated as accurately as with the Bnatele-Unbehauen technique since
they are chosen from a predefined pole set [Vairetti et al7R00herefore, for general filter or
equalizer design tasks where we are not aiming at a sparsexap@tion of very high order
systems, the Brandenstein-Unbehauen method [BrandemastéiUnbehauen 1998; Paatero and
Karjalainen 2003] can be still considered as the state ddittier finding the poles of the Kautz
filter.

The mathematical equivalence of Kautz and parallel filteliso® shown in Sec. 6.4, mean-
ing that Kautz and parallel filters provide the same appratiom for a given pole set. There-
fore, no design examples are presented here and the reaelferisd to the parallel filter exam-
ples in Chap. 6. Note that coming from this equivalence hallgole positioning methods | have
developed for parallel filters (see Chap. 7) can be used fatXdters as well, with improved
results compared to the above Brandenstein-Unbehauemdeth

We may conclude that Kautz filters provide an attractive waycbnstructing logarithmic
frequency resolution filters. However, the combined casqaatallel nature of the Kautz fil-
ter visible in Fig. 5.1 requires more computation compacefilters implemented in direct or
cascade form. For a practical DSP implementation everyrgkooder section of the Kautz
filter requires 6 multiply-and-accumulate (MAC) operasaend 2 additions (ADD), while a
direct-from or cascade IIR filter needs only 4 MAC instrunsger second-order section.
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Fixed-pole parallel filters

It has been discussed in Chap. 5 that Kautz filters provideerfiexibility in the distribution
of frequency resolution compared to warped filters, bec#useesolution is controlled by the
entire pole set and not only by the single parameteHowever, a drawback of Kautz filters
that they require a complicated series-parallel filtercttiee leading to higher computational
complexity compared to normal IR filters of the same ordeheWwworking in the Acoustics
Laboratory in the Helsinki University of Technology in 2QG#e question came to my mind
whether it is possible to find such a filter structure thatinstéhe modeling flexibility of Kautz
filters, while enables more efficient implementation. SititeeKautz basis functions were gen-
erated by orthonomalizing a set of damped exponentialeeingd logical to test whether the
control of frequency resolution remains the same even with non-orthogonal set of basis
functions. The answer was yes, and the idea of fixed-poldlekfiters was born where the
poles of the sections are predetermined and the numeratfiicoents are estimated by a least-
squares procedure [Bank 2007], as will be shown in Sec. @ferll have also developed the
mathematical equivalence of the Kautz and parallel desigmsrms of the resulting transfer
function [Bank 2013a], which will be outlined in Sec. 6.4nfdarly to Kautz filters, for com-
plex conjugate pole pairs the complex basis functions carob#ined, thus the filter structure
reduces to a parallel set of second-order filters. The adgantompared to Kautz filters is that
the required number of multiplications is reduced from 6 fwed section, while the number of
additions is reduced from 8 to 4. The simpler filter strucforedicts an even larger increase in
efficiency in practical implementations compared to whaes from the number of arithmetic
operations, especially in the view of parallel computingh&tectures gaining more and more
popularity.

The idea of implementing IIR filters in the form of paralletsad-order sections is of course
not new, and have been used traditionally because its bmpitantization noise performance
compared to direct-form filters, similarly to series bigs@idabiner and Gold 1975; Oppenheim
et al. 1999; Chen 1996]. The parameters of the second-oed&éoss are determined from the
direct form IIR filters, by, e.g., the partial fraction exg@on or a similar algorithm [Rabiner
and Gold 1975; Oppenheim et al. 1999; Price et al. 1996].

The novelty of the methodology | have developed lies in ttet faat instead of convert-
ing from a direct-form IIR filter, the parallel second-orditer-bank is designed directly, and
that by the suitable choice of the pole frequencies, we gme@tidcontrol over the frequency
resolution of the design.

Similarly to Kautz filters, the poles are set according todlesired frequency resolution.
This leads to a linear-in-parameter model for the zeros efscond-order sections. Since

28
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we have given up the orthonormality of the basis functiohs, gcalar product of Eq. (5.6)
cannot be used for parameter estimation. This added cotignabcomplexity for filter design
compared to Kautz filters is not anymore a problem with curoemputers. Actually, linear
least squares problems are considered as the simplestzgiion problems since they have a
closed-form solution, as we have seen in Sec. 2.3. Thushtheased design complexity is far
outweighed by the simpler filter structure leading to sigaifit computational savings during
real-time filtering.

6.1 Filter structure

Every transfer function of the form/ (z) = B(z)/A(z) can be rewritten in the form of partial
fractions:

P M
1 —m
i=1 ! m=0

wherep; are the poles, either real valued or forming conjugate pditee system has a real
impulse response. The second sum in Eqg. (6.1) is the FIRhidtetrof order)/. If the orders of
A(z) andB(z) are the same, the FIR part reduces to a constant coeffigienhile for transfer
functions having more poles than zeros, the FIR part vasisbmpletely. Note that in the case
of pole multiplicity, terms of higher order also appear in Ej1) [Smith 2007].

Now let us assume that we are trying to fit the IR filtész) to a target responsH; (=)
so that the poles of the filter are predefined. In this case &) pecomes linear in its free
parameters; and f,,, thus, they can be estimated by a linear least squares fit tchntlae
required response, as proposed in [Bank 2007].

The resulting filter can be implemented directly as in EqL)8orming parallel first-order
complex filters. However, it is more practical to combine tenplex pole pairs to a common
denominator resulting in a parallel set of second-ordeti@es with real valued coefficients.
Those fractions of Eq. (6.1) that have real poles can be aosabwvith other real poles to form
second-order IIR filters, yielding a canonical structurkug, the transfer function becomes

K
o + br1 2!
H(z) =Y BT N (6.2)

—1 + amz*l + ak,2272

whereK is the number of second-order sections. The filter strugtudepicted in Fig. 6.1. In
the case of multiple poles, higher order sections would laéscequired. However, as the pole
set is given by the designer, pole multiplicity can be avdj@and therefore will not be discussed
further.

For most modeling or equalization tasks, there is no neethFIR part. On the other
hand, for non-decaying responses where the peak of the tagponse is not in the beginning,
using the FIR path for the early, rising part of the responggroves modeling accuracy for a
given computational complexity [Bank 2007]. (See also tiseussion in Sec. 2.4).

For determining the parameters, one option is to estimaaad f,, in Eq. (6.1) and then
combine the complex conjugate pairs, as shown in [Bank 208@jvever, since the second-
order form is still linear in its free parametets,o, b;1, and f,,, the filter can be designed in
this form directly [Bank 2008]. This path will be taken in tf@lowing.
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Figure 6.1: Structure of the parallel second-order filter.

6.2 Filter design

Again, let us assume that the pole set of the filter is knowndua methods for choosing the
poles will be outlined later in Chap. 7). In this case the palréilter weights (numerator parts)
b0, b1 and the FIR coefficients,, can be obtained either from a target impulse respose
[Bank 2008] or from a target frequency respoisgd,, ) [Bank 2011b]. Both of these will be
presented here, together with a discussion of their difiegs.

6.2.1 Time-domain design

The impulse response of the parallel filter is given by

h(n) = brou(n) + beaug(n — 1)+ > fud(n —m), (6.3)
k=1 m=0

whereu(n) is the inverse z-transform of the transfer functighil + ax 127! + ax 2272), which

is an exponentially decaying sinusoidal function, afwl) is the discrete-time unit impulse.
Naturally, Eq. (6.3) is linear in parameters, similarlyt®z-transform counterpart Eq. (6.2).

Writing Eqg. (6.3) in matrix form yields

h = Mp, (6.4)

wherep = [b19,b11,-..bxk.o,bx1, fo--. fu)' is @ column vector composed of the free para-
meters. The columns of the modeling signal malvxcontain the modeling signals, which are
uk(n) and their delayed counterpattg(n. — 1), and for the FIR part, the unit impul$én) and

its delayed versions up ®n — M). Finally, h = [R(0)...h(N)]? is a column vector com-
posed of the resulting impulse response. Now the questibavisto obtainp if the modeling
signal matrixM and the target impulse resporisare known. The problem reduces to finding
the optimal parametens,,; such thath = Mp,,; is closest to the target resporise If the
error function is evaluated in the mean squares sense,

ers = Y [h(n) = h(n)]* = (h = 1) (h — hy), (6.5)
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the optimum is found by the least-squares (LS) equatiorslyeady outlined in Sec. 2.3:

Popt = M+ht7 (66&)
Mt = (MPM)'M¥, (6.6b)

whereM* is the Moore-Penrose pseudoinverse, &ffd is the conjugate transpoself. Note
that usually we are interested in modeling real impulsearses, and in this case the conjugate
transpose is equivalent to a simple transposition.

If the pole set and thus the modeling mafiikis fixed, the pseudo-inverdd ™ can be pre-
computed and stored, so the parameter estimation reduea®atrix multiplication according
to Eq. (6.6a). This is especially useful for designing npidtisets of filters with the same fre-
guency resolution (e.g., for modeling MIMO systems with coam poles, see Sec. 8.1.1), since
in this case Eq. (6.6b) has to be computed only once. Anott@ication when this becomes
handy is when the target response of the filter may be variedahtime while the required
frequency resolution is fixed, as in the case of a graphiclemmavhere the user can change
the target curve by sliders. Actually this property makesgdhaphic equalizer design method
proposed in [Bank et al. 2017] highly efficient.

A minimum-phase loudspeaker—-room response modeling deasphown for a 32nd or-
der parallel filter (16 second-order sections) in Fig. 6i2khine. The pole positions are set
according to a logarithmic frequency scale as will be diseddater in Sec. 7.2. The thin line
displays the target response, the thick line the filter resppand the separate transfer functions
of the second-order sections are also visualized by dashesl [It can be seen that the par-
allel filter approximates the given response as a combinatidell-shaped transfer functions,
similarly to a graphic equalizer. However, here not only glans, but also the phases of the
different “bands” are free parameters. The effect of thesisecially noticeable around the dips
of the filter response: since there the basis functions hdsega magnitude, these dips must
be produced by cancellations of the basis functions, mgahit they have opposing phase at
the dip frequency. Also note that the transfer functionctHine) follows the local average of
the target (thin line), that is, the filter design performmsdind of smoothing. The theoretical
reasons for this will be discussed in Sec. 6.5.

6.2.2 Frequency-domain design

Substitutingz~! = e~V into Eq. (6.2) for a finite set af,, angular frequencies yields

H(9,) = i bro + bgae 7 " i e imon (6.7)
n — 1+ak71€—j19n +ak72€—j219n — m 9 .

which is again written in a matrix form
h = Mp, (6.8)

wherep = [by0,b11, .- bxo,bx1, fo--- fu]' isacolumn vector composed of the free parame-
ters. The columns of the modeling math& contain the transfer functions of the second-order
sectionsl /(1 + a7 + aje7?'n) and their delayed versions?V» /(1 + a e 777" +
ar2e~9%) for thed,, angular frequencies. The last columnS\dfare the transfer functions of
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Magnitude [dB]

Frequency [Hz]

Figure 6.2: 32nd order parallel filter design with logarithmic pole gimsiing: the minimum-phase target
response (thin solid line), the magnitude response of thalpkbfilter (thick solid line) and magnitude
responses of the second-order sections (dashed linesgrdsees indicate the pole frequencies.

the FIR parte=9™%» for m = [0... M]. Finally,h = [H(¢,)... H(Yy)]* is a column vector
composed of the resulting frequency response.

Now the task is to find the optimal parametg(s; such thath = Mp,,, is closest to the
target frequency responde = [H(¢:);... H,(Jn)]". If the error is evaluated in the mean
squares sense

N
ers = O |H(0,) = Hi(0,)]* = (h = hy)" (h — hy), (6.9)
n=1
the minimum of Eq. (6.9) is found by the least-squares (L3)tgm, similarly to the time-
domain case:
Popt = M+ht7 (610&)
M* = (M'M)T'MY, (6.10b)

whereM™ is the Moore-Penrose pseudoinverse, &dd is the conjugate transpose M.
Similarly to the time-domain desighIt can be precomputed if the pole set is fixed.

Note that Eq. (6.10) assumes a filter specificafibfw,,) given for the full frequency range
9, € [—m,7]. Thus, the design can be used for obtaining filters with cempbefficients, since
the frequency specification is not constrained to be comgiaggmmetric. However, in most of
the cases we are interested in filters with real coefficientshis case we have to ensure that
H(—9,) = H(9,), whereH is the complex conjugate @, (an alternative approach using a
one-sided specification is outlined in [Bank 2011c; Ramd.&tGil4]).

A clear benefit of designing the fixed-pole parallel filterlie frequency-domain is that this
allows adding different weights to the different frequepoynts. In this case, the error becomes

ewws = > W (0,)|H(0n) = HW,)i* = (h — )" W(h = hy), (6.11)
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wherelV (9,,) is the weight for the),, frequency, andV is the weighting matrix having/ (4,,)
in its diagonal and zeros elsewhere. The minimum is obtaiyethe weighted-least-squares
(WLS) solution (see Sec. 2.3.1):

Popt = (MIWM) " 'M”Wh;. (6.12)

6.2.3 Magnitude-only design

In some applications only the magnitude of the target fraqueesponse is specified, and the
phase of the filter can be arbitrary. In this case the mageiéucbr

N

Emagn = > _([H()] = [Hi(9,)])?, (6.13)

n=1

should be minimized instead of the complex transfer fumcgoror of Eq. (6.9). This is a
much more complicated problem since Eq. (6.13) is a nonlifeection of the filter weights
bro, br.1, [ @S Opposed to the previous cases. To overcome this diffi¢uigwe proposed an
iterative least squares technique in [Bank 2011c] inspimgdhe method of [Jackson 2008].
The method is based on the fact that minimizing the compénsfier function error of Eq. (6.9)
corresponds to magnitude error minimization if the phashespecificationp{ H;(v,,) } equals
with the phase of the filtep{ H (¢,,) }, since in this case we have

ers = [H(0,) — Hi(0,)* = ||H(2,)[e?10) — | H,(9,)] o0 =
|} (|H(9,) — | H(0))|” = ([H0n)| = |Hy (00)])* = €magn- (6.14)

The condition ofp{ H(¥,,)} = ¢{H (¥,)} is assured by an iterative procedure, where the
phase of the specification is adjusted to match the phasesdiltier obtained in the previous
iteration by setting{ H, ;(9,,) } = w{H;—1(¥,,)}, while its magnitude is kept unchanged. Then,
a new filterH;(v,,) is designed based on this updated specification until cgenee is reached.
Jackson [2008] uses the above idea for his frequency-do8teiglitz-McBride algorithm and
starts the iteration with a zero-phase targgtv, ). However, | suggest to use a minimum-
phase target specificatidf; o(v,,) since that can be followed by IIR filters much more easily
(see Sec. 2.4). The target phase of the first iteratipH, , (J,,) } is thus obtained from the mag-
nitude specification(v,,)| based on the Hilbert-transform relation of magnitude arakplof
minimum-phase transfer functions [Oppenheim et al. 1988is makes the convergence of the
procedure significantly faster compared to using zeroahgthase, requiring five-ten iterations
in practice [Bank 2011c].

6.2.4 Comparison of time- and frequency-domain filter desig

The time-domain and frequency-domain versions of paréltel design provide the same re-
sult if thed,, frequencies are distributed evenly according to a lineaguency scale and the
grid is dense enough. This is due to Parseval’s theoreme iéttergy of the estimation error is
minimal in the time-domain, so itis in the frequency-domain

However, if thed,, frequencies are given at a logarithmic frequency scalé&réifit results
could be expected, because now the error is minimized ovegaithmic frequency grid as
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opposed to the linear-grid equivalent of the time-domaisigie It is actually quite surpris-
ing to see that the differences of the two designs are pedlgtinegligible if the time-domain
specification is long enough (lasts until the target impusponse has faded out completely).
The reasons can be understood by looking at the elemengargfér functions (dashed lines)
in Fig. 6.2: they are localized in frequency so that only @iget points having their frequen-
cies close to the peak of the basis functions will contrittatdne weights of the corresponding
second-order sections. Even if the linear frequency gridesponding to the time domain de-
sign means an overly dense specification at high frequemdies plotted in the logarithmic
frequency scale, the high-frequency target points havestimo effect on the low-frequency
basis functions since the basis functions die out relatifast as a function of frequency, as can
be seenin Fig. 6.2.

This is displayed in Fig. 6.3 for the same loudspeaker—ragspanse target as for Fig. 6.2.
It can be seen that if the time-domain LS fit is performed foorgl enough target response
(V= 130000 in this case), the time-domain design (b) provides praktyithe same fit as the
frequency-domain design using 1000 logarithmically spaegget points (a), with the excep-
tion of some inaccuracies below 40 Hz. On the other hand eiftéinget impulse response is
truncated V. = 2000 in this example), it can lead to unacceptable fitting err@rsi@own in
(c), thick dashed line. The low frequency boost of Fig. 6)3@ually comes from the fact that
the error is minimized in Eq. (6.5) only up to sampleand forn > N h(n) has actually a
“don’t care” region. In some cases having a good fit for thegas® > n > N can lead to
extremely large response in the latter part NV since there is actually no penalty in the error
function for such behavior. For the time-domain design ¢lis be avoided by using the entire
target impulse response until full decay, or, if that is nadikable, zero-padding the target to
force the LS design to make the filter response decay fasto@fe this means a much larger
target vector, and thus much longer design time. For rooporeses, the frequency-domain
method requires 100 times fewer specification points ansl dinound two orders of magnitude
smaller design time compared to the time-domain desigrhifesaime accuracy. Therefore, for
such long impulse responses as that of a room response,dvised to convert them to the
frequency domain by the help of an FFT and then resample @garlthmic frequency scale
so that frequency-domain design variant can be used. Ontliee band, for shorter impulse
responses, such as the anechoic response of loudspegkeatlyylasting a few thousand sam-
ples, the advantage of the frequency-domain method vasishe

6.3 Direct equalizer design

Equalizing a system (such as a loudspeaker) by the pardtkl dan be done by inverting
the system response as described in Sec. 2.2.2 and destgripgrallel filter as outlined in
the previous section. In the frequency-domain this can e diy dividing the desired target
responsed(v,,) (e.g., a bandpass response) by the system resgdyige) and designing a
parallel filter for thisH(v),,)/ Hs(,,) specification according to Sec. 6.2. However, the narrow
dips of Hs(49,,) resultin sharp peaks iH(v,,) / Hs(,,) because of the division, biasing the filter
design. While the problems of division can be reduced by legtation, a more appropriate
way of designing an equalizer is to minimize the time- or fregcy-domain error between the
final, equalized response and the target response, as skscusSec. 2.2.1. This is similar to
a system identification problem with output error minimiaat the input of the parallel filter
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Figure 6.3: 62nd order parallel filter design with logarithmic pole gmsiing: (a) frequency-domain
design with a logarithmic frequency scale specificationin@d 000 target frequency points, (b) time-
domain design with a target impulse response length of 1BB6@Mples, and (c) time-domain design with
a target impulse truncated to 2000 samples. The curvesfaet tr clarity. Thin lines: minimum-phase
target response, thick lines: filter responses. The crasdieste the pole frequencies.

is the system response and we should estimate the filter pggesrsuch that its output best
matches the target response.

6.3.1 Time-domain equalizer design

Designing an equalizer requires that the resulting respbfs), which is the convolution of the
equalizer responske.,(n) and the system responsgn), is close to the target responsgn)
(which can be a unit impulse, for example). In our case, tleams that the input of the parallel
filter is the system responge(n) and its output:(n) should match the target resporigén).
The output of the parallel filter is computed as

h(n) = heq(n) * hs(n) =

K
Z biouk(n) * hs(n) + by 1uk(n — 1) * he(n)+
k=1

Z fmd(n —m) x hg(n) =

K M
> beosi(n) + bgase(n — 1) + Y fmho(n —m), (6.15)
k=1 m=0

wherex denotes convolution. The signal(n) = ux(n) * hs(n) is the system response(n)
filtered by1/(1 + aj 127! + ar2272). It can be seen that Eq. (6.15) has the same structure as
Eq. (6.3). Therefore, the parameteéfs, b; 1, and f,, can be estimated in the same way as
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presented in the previous section. Similarly, writing thig matrix form yields
h = M.p, (6.16)

where the columns of the new signal modeling malvix, contains,(n), sx(n —1), and finally
the system responge(n) and its delayed versions up kg(n — M). The samples of the target
impulse response are forming the column vedigr The optimal set of parameters is again
obtained by

Popt = (MiMeq)_lMiht- (617)

6.3.2 Frequency-domain equalizer design

Since the input of the parallel filter is the system respaiige,,), we should estimate the filter
parameters such that its output, which is the product of yseem response and the frequency
response of the parallel equalizB(v,) = H,(V,,)Heq(V,,), best matches the target response
H(9,).

Accordingly, the equalized response is given by

bro + baz7!
+ ap 127t + ag oz

H(z) = Hog(2) Hi(2) = > =

SH(2)+ Y fuz "H(2).  (6.18)
k=1 m=0

Writing this in a matrix form for a finite set af,, angular frequencies with! = ¢=/V» again
yields
h = M,,p. (6.19)

wherep = [by0,b11,...bk0,bx1, fo--- fu]T is a column vector composed of the free parame-
ters of the parallel equalizer. The columns of the equahzedeling matrixM., are obtained
from the modeling matriXM constructed in Sec. 6.2.2 by multiplying them with the syste
frequency responsH,(¥,,). For example, instead af (1 + ax 167" + ay 2e77%"») we simply
haveH(9,,)/(1+ax 16777 + ag e 7%, Finally,h = [H(¥,) ... H(Jx)]" is a column vector
composed of the resulting final frequency response. Sincd@&tP) has the same structure
as Eq. (6.8), the optimal set of parameters are obtainedeirsdme way as in Sec. 6.2.2 by
Eq. (6.10).

Naturally, frequency weighting can also be used as destiib8ec. 6.2.2, and the discus-
sion about the advantages of the frequency-domain methedtio® time-domain one given in
Sec. 6.2.4 is valid for equalizer design as well.

6.4 Relation of Kautz and parallel filters

6.4.1 The equivalence of approximation properties

Figure 6.4 (a) and (b) show a Kautz and parallel filter desgjngithe same pole set having
31 pole pairs distributed uniformly in the logarithmic sdboth the Kautz and the parallel
filter weights have been estimated in the time-domain). Adusaseen, the same filter response
arises for both filters. This is explained by the fact thatKaeitz basis functions are the or-
thonormalized versions of decaying complex exponentratéch are the basis functions of the
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Figure 6.4: Modeling a loudspeaker—room response with a 62nd orderz{digr (a) and a 62nd order
parallel filter (b) having the same set of poles (three potgsoptave from 20 Hz to 20 kHz). The pole
frequencies are indicated by crosses in the bottom of thedfigthe thin lines show the minimum-phase
target response, while the thick lines the filter responséc)l the thin line is the sixth-octave smoothed
version of the target (thin line).

parallel filter. | have developed a formal proof for the eglénce of the two structures [Bank
2013a). The derivation is based on the partial fraction agpman of the complex Kautz basis
functions Eq. (5.2):

k k—1
\/ pkpk — 1 -1 _
Gi(x) = T Ill_pz -1 mm}ll—%fJIyz p;),  (6.20)

which arekth order filters £ = 1, 2, ... K). In the case of no pole multiplicity, which is easily
satisfied when the pole set is predetermined, Eq. (6.20) eavritten in a partial fraction form

e 1
= i (6.21)
i=1 ~ iz

where thek coefficientsc,,; are found by the usual procedure of partial fraction exgansi
[Rabiner and Gold 1975] with the Heaviside cover-up method:

k—1
(1 _pz z =p; \/ pkpk H H(l/pz_ﬁj)7 (622)
Juﬂl—pﬂm.
which finally results in
k—1
= /1 — piby :[I [T =5m). (6.23)
j=1jzi pjj 1

By noting that the partial fraction form of Eq. (6.21) is thense as the complex form of the
parallel filter Eq. (6.1) without the FIR pard{ = 0), it is clear that the Kautz basis functions
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can be reconstructed by the parallel filter exactly. As thetKé&lter response is the linear com-
bination of the Kautz basis functioris,(z), it is straightforward to convert a Kautz filter into
a parallel filter. If the parameters of the Kautz filter areegivn a vectow = [wy, ..., wk|7,
the parameter vector of the parallel filtpr = [cy,...,ckx]T can be obtained by the matrix
multiplication

p = Kw, (6.24)

where the conversion matri is given as

k k—1
1 .
Kix = 11— pDy H H(l —]_?jpi) for 1 <k,
gtz DT P G2
K, = 0 for i>k. (6.25)

The matrixK is triangular, and such matrices are nonsingular if nonéefiliagonal elements
are zero. This is satisfied singg| < 1 for all the poles (we assume that the Kautz filter is
asymptotically stable). As a result, the inverse makix' can be computed that can be used to
convert the parallel filter parameters to Kautz parameters-(K'p).

Basically, this proves that the basis functions of the palrahd Kautz filters span the same
approximation space, and converting between the two fikergerely a change of basis. There-
fore, approximating a target response using any error nerq, (theL, norm in least-squares
design) will lead to exactly the same filter response in bases for a given pole sgt. This
is shown for the LS design in the Appendix A.2 with some furtthigcussion on the conditions
of this equivalence.

While we have related the complex forms of the Kautz and ferlters, since the real
forms Egs. (5.3) and (6.2) are mathematically equivalenhéocomplex ones, the results are
valid for the more practical real forms as well. This mearst hole positioning techniques
developed for the parallel filter can also be used for the Kélier and vice versa. Also, the
smoothing properties derived for the parallel filter in S&&. will be valid for the Kautz filter
as well.

Besides its theoretical importance, the relation betwéentwo filter structures allows a
computationally more efficient design of the parallel filt&tamely, first a Kautz filter is de-
signed by the scalar product of Eq. (5.6), then the parasaterconverted by Egs. (6.24) and
(6.25). While this seems to be conceptually more compldatee number of required arith-
metic operations is reduced compared to the LS design ofe=8), (So it is a useful alternative
for high (> 100) filter orders. Unfortunately, in the case of direct equalidesign of Sec. 6.3
this cannot be done, since for that case the scalar prodid.of5.6) cannot be used and also
the Kautz filter has to be designed by a LS equation [Karjalagnd Paatero 2007]. Also note
that when the parallel filter is designed in the frequencyrdim as in Sec. 6.2.2, the benefit
of the conversion-based design is reduced, since the fnegtdomain design is already more
efficient compared to the time-domain one due to the smallerber of required specification
points as discussed in Sec. 6.2.4.

6.4.2 Computational complexity

It can be deduced from Fig. 5.1 that the Kautz backbone reg4irMAC (multiply and accu-
mulate) operations per second-order section, similarbetees biquads (except the first section
that needs 2 MAC). Then thd + >7') and(1 — 2™ !) terms need 2 additions (ADD), while
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the weights; ;, b;» and the corresponding output summing require 2 MAC operatid-or
the parallel filter every second-order section requires 40vbperations, including the output
summing (see Fig. 6.1). For DSPs where the MAC and ADD insitns take one operation
cycle, this means that using the parallel filter structustgad of the Kautz filter reduces the
number of arithmetic operations to the half (from 8 to 4). &ltitat additional operations are
also required (reading from the memory to the registers a®vwersa), but these can usually be
performed in parallel with the arithmetic operations, depeg on the processor architecture.

On general purpose processors where MAC instructions aee/adable, each second-order
section for the parallel filter requires 4 additions and 4tiplitations, while for the Kautz filter
we need 8 additions and 6 multiplicatiohs.

Coming from the fact that the fixed-pole parallel filter hasubyfparallel structure, even
more significant computational savings can be achieved @tlglkarchitectures such as graphic
processing units (GPUSs) [Belloch et al. 2014] compared éosttries backbone of the Kautz
filter that cannot be implemented in parallel.

6.5 Connections to complex smoothing

Figure 6.4 (c) thick line shows the sixth-octave complexsthed version of the thin line, which
is a measured loudspeaker—room response. By observingdiksrof parallel and Kautz filters
with a logarithmic pole distribution in Fig. 6.4 (a) and (ki)is apparent that the effect of filter
design is similar to that of fractional-octave complex-siting of transfer functions. This can
be intuitively understood by looking at Fig. 6.2 showingtttiee total transfer function of the
parallel filter (thick line) is a combination of smooth bafisictions (dashed lines). | have
systematically analyzed this smoothing behavior in [Badk® 2013a] that will be given in the
following. While only the case of the parallel filter is dissed here, since it results in exactly
the same filter response as the Kautz filter (as it was prov&em 6.4), the observations are
valid for the Kautz filter as well.

6.5.1 Uniform pole distribution

We start our analysis with the simplest case, whereihgoles of the parallel filter are dis-
tributed uniformly on a circle of radiu®& < 1. Then the complex form of the parallel filter

becomes p
H(z) = Z W - kz Rejm =t (6.26)
which, after cross-multiplying all the denominator ternakes the form
K K K
He =11 T Yo [[ a-remin, 2

where the first part of the product equaj§1 — >~ R¥), and the second is(@ — 1)th order
polynomial of z=!. Therefore, the transfer function of the parallel filter twitniform pole

Note that in [Bank 2008] | have erroneously underestimaieccomputational complexity of the Kautz filter
by assuming 6 additions per second-order section inste@dTdferefore the computational benefits of the parallel
filter are actually larger than | have stated in [Bank 200&] emmy subsequent publications.
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distribution is actually equivalent to a feedback combifitad a( /K — 1)th order FIR filter in
series:

K-1
1 _
H(z) = T, KRk > fur (6.28)
k=0

where the FIR coefficientg, arise as the linear combinations of the parallel filter wisgh
according to the second term of the product in Eq. (6.27). fékdback comb filter repeats
the FIR response with an attenuation/f in each round, therefore the first samples of the
impulse response of the parallel filter are thgs) = f,,, the second( samples aré(n+K) =
RE f,,, the third K samples aré(n + 2K) = R?*X f,, forn = [0... K — 1], and so on.

For practical pole set®”" < 1, therefore, the impulse responsg:) for n > K may be
neglected, and thus the transfer function can be approgohiat the FIR part only:

K-1
H(z"") =) frz ™" (6.29)
k=0

When designing the parallel filter according to Eq. (6.6¢ mhean-squared error between the
target impulse responge(n) and the filter responggn) is minimized. This error is minimal

if the parallel filter coefficientg; are set in a way that the equivalent FIR coefficiefitare
equal to the firstx samples of the target impulse resporfse= hi(k). As a result, the filter
impulse responsk(n) is the truncated version of the target respoge), which is equivalent
to multiplying the target response by a rectangular winddw) of length K

h(n) = w(n)hy(n), (6.30)
where

w(n)=1 for 0 <n <K —1,
w(n) =0 elsewhere. (6.31)

Note that this window is defined only for positive times> 0 (it is a half window), in
contrast to the symmetric windows used in complex smoot{gag Chap. 3). Since for causal
impulse responsés(n) = 0 for n < 0 anyway, we may think of symmetrically extending the
window w(n) to negative times by setting(—n) = w(n), without influencing the product
h(n) = hy(n)w(n). This has the advantage that now the results will be direxityparable
with those of complex smoothing.

Accordingly, designing a parallel filter with a uniform patigstribution is equivalent to
multiplying the target impulse response by a symmetricamgtilar window of total length
2K — 1. In the frequency domain, this corresponds to convolvirgytétrget transfer function
H¢(9) with a sinc-like (periodic sinc) function:

2

sin (119)

2

H) = )« )

(6.32)
which is clearly a form of transfer function smoothing. Aally, it corresponds to “filtering”
the transfer function with an ideal lowpass filter, elimingtall those components that have
a periodicity smaller thadn /(2K — 1) ~ 27 /K. Since the smoothed transfer function has
become band-limited, if it is sampled at a periodicitynof/<, all the information is still re-
tained, thus, we can say that it has @< resolution, which actually equals the half of the pole
frequency distancéd /2.
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Next we relate the behavior of the design with complex smiagtdiscussed in Chap. 3.
The central lobe of the periodic sinc function in Eg. (6.323 la somewhat similar shape to that
of a Hann window most often used in transfer function smaoaghirhe width of the main lobe
is4n /(2K —1) ~ 27/ K that actually equals to the pole distanké. Therefore, the smoothing
behavior will be comparable to smoothing the transfer fiamctvith a Hann window whose
width equals the pole distane&). According to Chap. 3, smoothing with/&f wide Hann
window corresponds tdf/2 frequency resolution.

6.5.2 Stepwise uniform pole distribution

Next, let us consider a more interesting case where the golsity is different in the various
regions of the frequency range. Since | was not able to ddrezemoothing function in a closed
form as in Sec. 6.5.1, | have suggested an alternative agipfB8ank 2013a] described in the
following.

Since the parameters of the parallel filter are determineallimear LS design, the superpo-
sition principle holds. This means that if we compose thgdaresponsé;(n) as a weighted
sum of some test functions, the filter respohée) will be equal to the weighted sum of filter
responses designed for the test functions separatelye Siaavould like to gain some insight
to the frequency-dependent nature of smoothing, a natbhmate for such a test function is the
basis function of the Fourier transform’?o”, wherey, is the angular frequency of the complex
exponential. In the frequency domain, this is equivalent(tb— vJ,), which is a Dirac delta
function at position’,. Accordingly, in the frequency domain, we are computing‘thgulse
response” of the smoothing operation, that is, we obtairstheothing function directly.

We can assume that if the overlap of the basis functions gbdinallel filter is not too large,
our test functione=77o" will be approximated by parallel sections whose centerueagies
are near taj,, while the contribution of the other sections will be nedilg. Therefore, we
expect that the width of the smoothing function in the fregryedomain, and the length of the
corresponding window function in the time domain will onlgend on théocal pole density
neard,. From Sec. 6.5.1 we expect that if the distance of the polégli;n some frequency
region, that region will be smoothed corresponding\tty 2 resolution.

A practical example is presented in Figs. 6.5 and 6.6, dyspdea parallel filter design with
30 poles (15 pole pairs) around the unit circle. The poledesgies are chosen in such a way
that 20 poles are distributed evenly in the lower half of tregjfiency rang@l| < /2, while
10 poles are spread in the upper rangé < || < w. The pole radius if2 = 0.8 for all the
poles. The dotted vertical lines show the pole frequenciésg. 6.6.

In Fig. 6.5 the target impulse responsed’ are displayed by dashed lines, and the result-
ing parallel filter responses by solid lines. Note that tligdtand filter responses are complex,
here only the real parts of the signals are shown, but theimaagparts have a similar be-
havior. (In another interpretation, the figures show how pihaeallel filter approximates the
Re{e 77"} = cos(dyn) function). Figure 6.5 (a) shows a case where the frequendiieof
exponential test function is in the high pole density regiwhile in (c) the frequency is in the
low pole density region of the filter. As expected, the rasgltimpulse response (solid line) is
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Figure 6.5: Modeling a complex exponential 7’0" by a parallel filter having stepwise uniform pole

frequency set: (ayy = 1/4m, (b) 99 = 1/27, and (c)dy = 3/4x. The dashed line is the target response
e~7%m and the solid line is the resulting parallel filter impulsspense. Only real parts of the signals
are shown.

“windowed” to a longer length in the first case compared tosbeond case. The theoretically
computed half window lengtPr /A# is 40 and 20 for (a) and (c), which is in a good agreement
with what can be observed in practice. Figure 6.5 (b) dispkay intermediate case when the
frequency of the test signal is exactly at the boundary oftwye pole density regions. This
results in a more mild windowing, where the window lengthasmgewhere in between the (a)
and (c) cases.

The same phenomenon can also be observed in the frequen@irdionfig. 6.6, for the
same cases. The solid lines display the transfer functibtiseoresulting filters trying to ap-
proximate the test functiosri?on again with (a)J, = 1/4x, (b)9y = 1/27, and (c)Jy = 3 /4.
Note that the frequency responses were computed by firstdixigthe parallel filter responses
to negative times(—n) = h(n), to comply with the symmetric windows used in complex
smoothing. Accordingly, the frequency responses displage-ig. 6.6 are real (zero phase)
functions and can be directly compared to the smoothingtiiomne used in complex smoothing.
In Fig. 6.6 the dotted vertical lines show the pole frequesaf the parallel filter. It can be seen
in (a) and (c) that the width of the main lobe equals to the pdeanceAd in that region, and
so is the periodicity. Locally, the smoothing function hasrec-like shape, similarly to the case
of the uniform pole distribution of Sec. 6.5.1. The dashaddishow the theoreticaf |9 — vy
envelopes of the sinc functions. Again, (b) is a borderliasecwhere the envelope still follows
that of a regular sinc function, but the periodicity is diéfat at the left and right sides, coming
from the different pole densities.

The results are in line with the expectation that the “widihthe frequency-domain smooth-
ing function (and the length of the corresponding time-donwndow) depends only on the
local pole density around the frequency of interest. Theq@menon can be effectively utilized
for obtaining different resolution (variable amount of ssttang) in different frequency regions
by setting the pole density appropriately.
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H(9)

H(9)

Figure 6.6: Smoothing functions corresponding to the cases of Fig.&@-%d). The dotted vertical lines
display the pole frequencies of the parallel filter. The éaslines show the /|9 — 9| envelopes of the
smoothing functions.

6.5.3 Logarithmic pole distribution

As a particularly important case for audio, let us consider tase of the logarithmic pole
frequency set. In the following example the parallel filteshhree pole pairs in each octave,
having all together 31 pole pairs from 20 to 20480 Hz. The fi@sttion is again a complex
exponential, with), = 27 f,/ fs, wheref, = 1050 Hz is the frequency of the exponential, and
fs = 44.1 kHz is the sampling frequency. The time domain (real part) flmequency domain
responses are displayed in Fig. 6.7 (a) and (b), respegtiate the linear frequency axis in
(b).

It can be seen in Fig. 6.7 (a) that now the target function imtlewed” quite mildly and
it has a low frequency tail. In the frequency domain (Fig. @&)) the density of the notches
of the sinc-like function (solid line) follow that of the podistribution (dotted vertical lines).
However, the envelope of the smoothing function still sheiesl /9 behavior, corresponding
to the envelope of a regular sinc function.

Figure 6.8 solid line displays the same frequency responsdagarithmic frequency scale.
Now it is easy to notice that the periodicity of the window ¢tion is exactly logarithmic. It
is interesting that while the periodicity (sine part) isateld to the logarithm of the frequency,
the envelope is related to linear frequency. Based on thiesereations, | have constructed a
“logsinc” function ,

sin(2marlog, ()
S()=C . : (6.33)
where C' is a positive constant, and is the pole per octave density (in our case~= 3).
This function is displayed by a dashed line in Fig. 6.8 to tetfte underlying assumptions




dc_1787 20

44 Chapter 6. Fixed-pole parallel filters

Re{h(n)}

0 200 400 600 800 1000
n [samples]

1000 1500 2000

Frequency [Hz]

0 500

Figure 6.7: Modeling an exponential test functiert/?o” with a parallel filter having a logarithmically
distributed pole set: (a) the real parts of the target inpusponse (dashed line) and the parallel filter
response (solid line), (b) the smoothing function of theapel filter (solid line) and itsl/|¢ — Oy
envelope. The vertical dotted lines display the pole fregies.

were right. Indeed, the two curves match very precisely witime differences only visible at
low frequencies. The match is similarly accurate also fbeot test frequencies, meaning that
Eq. (6.33) can be used to describe the smoothing behavibe gidrallel filter with a logarithmic
pole set.

The most important consequence is that the periodicityeéthc function and the width of
its central lobe again follow the pole distances. Since thle gistances linearly increase as a
function of frequency due to the logarithmic pole frequesey; the behavior should be similar
to fractional octave smoothing.

For example, having third-octave pole distances is confgpata fractional octave smooth-
ing by a third-octave wide Hann window. This correspondsttedttave resolution, as dis-
cussed in Chap. 3. The similarity of the filter design to tHdtaxctional octave smoothing can
be observed in Fig. 6.4, where the solid lines in (a) and (bywsKautz and parallel filter de-
signs having three poles per octave, while (c) displaysittte-ectave smoothed target. Some
difference is visible between the filter responses (a), (ol the smoothed response (c), which
is due to the fact that the response has been smoothed by avwiadhow in (c) while the in-
herent smoothing of the filter design (a), (b) correspondsioothing by a sinc-like function.
Nevertheless, their behavior is close enough so that it easohcluded that a logarithmic pole
set with1/« octave pole distances is comparable to complex smoothitig W{2«) octave
resolution.

Naturally, further examples could be presented with, stgpwise logarithmic pole distri-
bution, or that of following the Bark or ERB scales [Smith ahldel 1999; Zwicker and Fastl
1990], but according to the above examples, we already haugwation about the smoothing
behavior of the parallel filter.

As an important consequence, by the suitable choice of petgiéncies the frequency res-
olution of the design can be taken under control. This wilubkzed when designing parallel
filters with a predetermined pole set in Sec. 7.2.
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Figure 6.8: The smoothing function of Fig. 6.7 (b) displayed in a logaritc frequency axis (solid line).
The dashed line shows the approximating “logsinc” functin (6.33). The vertical dotted lines display
the pole frequencies.

6.6 Scientific contributions

Statement 1: | have created a methodology for the fixed-poleas$ign of parallel second-
order filters and demonstrated that the new method can be usetbr realizing filters with
a flexible allocation of frequency resolution similarly to Kautz filters, albeit with a signifi-
cantly reduced computational complexity.

1.1: | have developed filter design methods for fixed-pole pdralters both in the time- and
frequency-domain: after choosing the poles, the numecaiefficients are computed by a least-
squares fit in both cases. In addition, | have proposed aattiiterleast-squares technique for
magnitude-only specifications, and | have also given a tle#qualization design method both
in the time- and frequency-domain.

1.2: By using partial fraction expansion over the basis funatiofithe Kautz filter | have shown
that the Kautz and the fixed-pole parallel filters lead to #mae approximation if their pole set
is identical, while the fixed-pole parallel filter requiréthalf amount of arithmetic operations
on DSPs. | have also given a method to convert the Kautz paeasn® that of the parallel
filter.

1.3: | have shown that the fixed-pole design of second-order lparfdters leads to a filter
transfer function similar to complex smoothing the targesponse, where the frequency reso-
lution (amount of smoothing) is directly controlled by thel@ density. A local pole frequency
distanceAd (1)) atd frequency leads ta\d(+)) /2 frequency resolution in terms of smoothing. A
logarithmic pole frequency set with/« octave pole distances is thus comparable to complex
smoothing withl /(2«) octave resolution. Since the Kautz filter leads to the sampeoapma-

tion for the same pole set (see 1.2 above), the results arapgicable to the Kautz filter.

The results related to these contributions have been pddis three journal papers [Bank
2008, 2011b, 2013a] and in one conference paper [Bank 2007].
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Pole positioning

We have seen in Sec. 6.2 that the parallel filter weights aerméned by a least-squares proce-
dure leading to a unique optimum for a given set of poles. &floee, for a given filter order the
accuracy of the parallel filter design depends only on thécehaf pole frequencies. The vari-
ous pole positioning techniques can be put into two maingcaites, depending on the relation
of the system and model order, or in other words, if we wish tmleh or equalize the system
precisely or only approximately. The approximate modelpgroach has two subcategories.
Let us take a look into these categories first before proogedithe detailed description of the
pole positioning methods.

1. Accurate modeling: Pole positioning based on the systenesponse

If we aim to model a system precisely, the order of the moddiiter is approximately the
same as that of the system. In this case the filter poles sleouiespond to system poles
for best accuracy, and the LS fit discussed in Sec. 6.2 willdoast to match the zeros of
the transfer function as well. This is in a way related to tke&lfof system identification
since the parameters of the model have a direct connectjgmyical reality. In this case
a straightforward approach is that an IIR filter is designasgdd on the target response,
and the poles of this IIR filter are found as the roots of itsateimator. Then these poles
are used as the poles of the parallel filter. Here the accusa®termined by how well the
original lIR filter design approximates the target respofisas approach will be outlined
in Sec. 7.1.

2a. Approximate modeling: Predetermined pole set

On the other hand, in audio we often aim at modeling only thetimoportant features of
the transfer function (the features that can actually bed)eanhich is better described by
the logarithmically smoothed version of the measured nespg¢see Chap. 3). In this case
the model order is significantly smaller compared to the oadehe system. A typical
example is the case of equalizing a loudspeaker—room respevhose order is in the
range of hundred-thousand or mor€ (> 100000), but even for a relatively low order
system (such as an anechoic loudspeaker responséWwthl 00) we may decide to use
a lower order filter to fit the available computational res®st In this case the previous
idea based on IIR filter design will often not work becausellRedesign algorithm may
pick and model a few resonant peaks while the others are ndelad (we have seen
this behavior for warped IIR design in Fig. 4.4). In other d®rthe model implements a
subset of the original system poles instead of modeling émeigl trend of the response.

46
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To avoid this, we can take advantage of the fact that the wasalof the design can be
directly controlled by the pole density, as seen in Sec. Glerefore, instead of using
poles that have some relation to the poles of the system, wea edetermined (e.g.,
logarithmically distributed) set of poles based on the nliageresolution we wish to

achieve. Since in this case the poles of the filter, and theszénos of the filter are
unrelated to the original system, this is more like a nonpataic approach. This method
is outlined in Sec. 7.2.

e 2b. Approximate modeling: Pole positioning based on the snathed response

While using a predetermined (e.g., logarithmic) pole setkewery well for modeling
higher order systems with low order filters, it is still pddsito increase the filter design
accuracy at the price of increased design complexity. Thisecause some regions of
the system response may be smoother than others, and by s$tgetrithmic frequency
resolution may waste some computational resources at #ifresely smooth regions. For
example, a typical loudspeaker-room response has muddr lapgples at low frequencies
compared to the high ones after smoothing (see Fig. 3.1 @) This can be taken
into account in a simple way by setting higher pole densitydo frequencies manually;
however, this requires some user interaction. It would beendesirable to have such a
method that automatically recognizes which regions negtdmiresolution. The basic
idea is that the target response is smoothed to the requesedution (which again can
be different in the various frequency regions), and themsmoothed response is used to
determine the optimal pole set of the filter. The pole posgioan be either determined
based on the raggedness of the smoothed transfer functio®es. 7.3.1, or by designing
a warped IIR filter based on the smoothed response as in S&8c3, 7.3.3, and 7.3.4.
Here again the poles and the zeros of the filter will not haveexticonnection with the
system poles and zeros.

7.1 Pole positioning based on the system response

When the goal is to model a given transfer function accwyatbht is, the order of the filter
is in the same range as that of the system, it makes sense thaupeles of the system for
the design. For estimating the poles | have proposed to use@ed IR filter design in [Bank
2007], similarly to the case of Kautz filters, where the Bramstein-Unbehaunen method was
used in the warped domain [Paatero and Karjalainen 2003].

As discussed in Chap. 4, for designing a warped IIR filter dRyfilter design or system
identification technique can be used: e.qg., Prony [ParksBamcus 1987], the method of Stei-
glitz and McBride [1965], balanced model reduction [Bejiegki et al. 1992], or the method
of Brandenstein and Unbehauen [1998]. The Steiglitz-M#8method with no iterations is
equivalent to the Prony method, and while its stability i$ garanteed, in practice the itera-
tions almost always improve over the results of the Pronyhogktlt is stated in [Brandenstein
and Unbehauen 1998] that their method gives basically time $éter responses as that in [Be-
liczynski et al. 1992], albeit with much lower computatibeast. | have made various tests
using the Brandenstein-Unbehaunen technique and fouhd fractically gives the same ap-
proximation error as the Steiglitz-McBride method. On thieeo hand, the Steiglitz-McBride
method can be used for estimating an IIR filter from a giveminp a given output required for
designing equalizer filters, which is not available for thamlenstein-Unbehaunen technique.
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Figure 7.1: Anechoic loudspeaker response (a), modeled by a 50th orped IR filter usingh = 0.9

(b) and by a 100th order parallel filter based on the poles @fathrped IIR filter (c). The curves are
offset for clarity.

Based on these observations and its availability in MATLAB it b function), | have decided
to use the Steiglitz-McBride method for designing the uhaleg IIR filters used for pole po-
sitioning. However, the methods developed here are noingelgn the actual IIR estimation
technique, and the embedded IIR filter design step can beashiincluding those techniques
that minimize a norm other thah,.

In the example of Fig. 7.1, first a 100th order warped IIR fiigedentified by the Steiglitz-
McBride method [Steiglitz and McBride 1965] based on thepearversion of a loudspeaker
response (a). In this example, a warping parametet 0.9 is used and the resulting filter
response is displayed in Fig. 7.1 (b). Then, the pglesf the identified IIR filter are obtained,
and dewarped by Eq. (4.7). These dewarped poles are userddsdole parallel filter design,
shown in Fig. 7.1 (c).

It can be seen in Fig. 7.1 that the warped IIR filter (b) follaiws target response (a) very
well on the logarithmic scale. However, it is also apparbat the small ripples of the transfer
function are not followed exactly above 3 kHz. While the pi@ad need for such a detailed
modeling is questionable, the phenomenon still shows bHeatrtodeling detail is concentrated
to a specific region (approximately between 200 Hz and 3 kEz)l not spread completely
evenly on the logarithmic scale, as already discussed in48c This shortcoming will be
addressed in the pole positioning methods of Secs. 7.3.3 .8l

Figure 7.1 also shows that the frequency response of thdlgddiléer (c) and that of the
warped IIR filter from where the poles originate (b) are pradly identical. However, there is
a difference in filter implementation. Parallel filters amglemented as parallel second-order
sections, while for warped IIR filters there are differensgibilities, as discussed in Sec. 4.4.
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Table 7.1: Pole densities, number of pole frequencies and filter orfiterg/pical values of fractional-
octave resolutions using a predetermined pole set. Theffamjaencies span 10 octaves from 20 Hz to
20480 Hz.

Fractional octave resolutioff 1 | 1/3| 1/6 | 1/12 | 1/24 |
Pole frequencies per octavel1/2 | 3/2| 3 6 12
Total no. pole freqencies|| 6 | 16 | 31 | 61 | 121
Filter order 12 | 32 | 62 | 122 | 242

The most efficient possibility is to dewarp them to serie®adeorder sections, but in that case
the warped implementation will have higher quantizatiorsedhan that of the parallel filter
as demonstrated in [Bank and Horvath 2017a] using floatirigt poithmetic. Another possi-
bility for implementing the warped IIR filter is to dewarp @ parallel second-order sections.
However, that leads to second-order numerators as distusSec. 4.4.3, while when the par-
allel filter is designed using the WIIR poles, the numeratoesof first order, leading to lower
computational complexity. To sum up, while both the paftdiler Fig. 7.1 (b) and the warped
lIR filter Fig. 7.1 (c) have the same frequency response, &énallel filter is more advantageous
from the implementation point of view in terms of computaabcomplexity and quantization
noise.

7.2 Pole positioning using a predetermined pole set

As already discussed, for high-order systems, such as apea#ter—room response we usually
design a modeling filter or equalizer whose order is signitigdower than that of the system.

It has been observed for Kautz filters that a logarithmic gefeproduces logarithmic fre-
guency resolution, and the equations for obtaining suclgarithmic pole set have been given
in [Paatero and Karjalainen 2003] (see Egs. (5.7) and (5a8)ich can of course be used for
the parallel filter as well. However, no direct connectiotween the resolution of the design
and the number of poles have been given in [Paatero and Kimgal 2003]. After finding the
relation between complex smoothing and the approximatiopgrties of parallel filters, | have
given the connection of the pole density and filter resofutubich allow an accurate control of
the modeling detail of the filter [Bank 2013a], already dssrd in Sec. 6.5.

We have seen in Sec. 6.5 thaha pole frequency distance corresponds to a smoothing with
A /2 resolution. Turning this around, if the desired resolui®i in some frequency region,
the pole frequency distances should be the double, thahig,in that region.

For logarithmic frequency resolution, if we wish to achieveesult similar tol /5 octave
smoothing, we need to ha@g 5 octave pole frequency distances. In other words, this means
that we need to have a pole densityhf poles per octave. Table 7.1 displays the pole densi-
ties required to achieve the most typical fractional-oeteasolutions used in transfer function
smoothing. It also lists the number of pole frequendies= 10(/5/2) + 1 assuming a design
with the ten octaves of the full audio bandwidth, and theltiitar order, which is2K in this
case.

The equations for obtaining a logarithmic pole set has beeengn [Paatero and Kar-
jalainen 2003] (see Egs. (5.7) and (5.8)) for the Kautz filtest can also be used for parallel
filter design. However, the difficulty in their approach liesmanually setting the damping
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parameter? in Eq. (5.8); Paatero and Karjalainen [2003] suggest tredtould be tuned so that
the individual Kautz outputs cross at their -3 dB point. S@ramples are also presented by
using manually chosen pole frequencies for the Kautz fitdPaatero and Karjalainen 2003],
but in that case tuning the damping factors of each pole nigraraates a tedious task.

Therefore | have developed a more general set of pole eqsatibich can determine the
pole radii for an arbitrary set of pole frequencies [Bank 28]1 The pole radii?, = |px| are
computed based on the bandwidiké, as

_ A

Rk =€ 2 . (71)
Accordingly, the poleg, become
6, — 27’“ (7.2a)
nop
pe = e 2% (7.2b)

whered,, are the pole frequencies in radians given by the predetedr@nalog frequency series
fr and the sampling frequendy. For a filter having a real impulse response, the poles must
be in complex-conjugate pairs, therefore the pole set neetie extended by the complex-
conjugate versiop, of the polegy.
The bandwidth of théth second-order sectiahd, is computed from the neighboring pole
frequencies
A, = Dl for E=[2,. K — 1]

A0 = 0y — 0
A = O — Ox_1. (7.3)

Equation (7.1) sets the pole radi,| in such a way that the transfer functions of the parallel
sections cross approximately at their -3 dB points. Whikedkact value of where the transfer
functions cross is not critical (anything in the range of A2l a4 dB works perfectly) -3 dB is
a safe value assuring that there is sufficient overlap betweebasis functions, and also com-
plies with the usual choice for defining filter bandwidths.o®mall or no overlap means that
the target response cannot be approximated between thé&@glencies and this results in a
peaky filter frequency response. For a linear pole frequeatin this case we are violating the
assumption of?® < 1 in Eq. (6.28), meaning that the comb filter part cannot beeawgtl,
indeed leading to a peaky response. Having a large overtaeba the basis functions should
in theory cause no problems. However, in practice a too lavgelap decreases the indepen-
dence of the basis functions, which spoils the condition Imemof the normal equations. This
can cause numerical errors in the parameter estimation.

The proof of Eq. (7.1) setting the pole radii correspondim¢hie -3 dB points of the basis
functions is presented in Appendix A.3.

In the example of Fig. 7.2, first a third-octave resolutiosige (a) and then a sixth-octave
resolution design (b) is presented, the target is a minirphase loudspeaker—room response.
The filter orders are 32 and 62, respectively. In (c) the padguencies correspond to sixth
octave resolution below 300 Hz and to a third-octave regmiigbove, resulting in 22 pole fre-
guencies, and thus a 44th order parallel filter. It can be geér) that the results below 300
Hz are equivalent to the strictly logarithmic sixth-octaase (b), and to the strictly logarith-
mic third-octave case above (a), showing that it is indeessiide to apply different frequency
resolutions in the different regions of the transfer fuoies with a smooth transition in between.
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Figure 7.2: Modeling a minimum-phase loudspeaker—room response ly-finke parallel filters having

a predetermined pole set: (a) third-octave resolutiongtebly using 3/2 pole frequencies per octave
(filter order is 32), (b) sixth-octave resolution design Ipplging 3 poles per octave (filter order is 62).
In (c) the pole density is 3 poles per octave below 300 Hz a@do8les per octave above (total filter
order is 44). Thin lines: target response, thick lines: ffitesponses. The pole frequencies are indicated
by crosses. The curves are offset for clarity.

Additional examples are displayed in Appendix A.4 inclugithat of manually chosen pole
frequencies by the help of an interactive MATLAB script | kaleveloped [Parallel filter home-
page 2021], and a synthetic target response in a lineardrayuscale design. The examples
confirm the complete flexibility in controlling the frequeniesolution of the design, not only
for the logarithmic case used in most of the examples of tloikw

7.3 Pole positioning based on the smoothed system response

Similarly to the predetermined pole positioning, thesehuods are also related to modeling
or equalizing a system with a filter whose order is signifialower compared to that of the
system. However, instead of directly controlling the resoh of the design, in the following
methods a different approach is taken: first the system rsgps smoothed to the desired
resolution via complex smoothing (see Chap. 3), and thepdhes are determined based on
this smoothed response. While this increases the comypleititer design, it results in better
approximation for the same filter order compared to the gegdened pole positioning, as we
will see in the comparison later in Sec. 7.4.
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7.3.1 Ripple-density based pole positioning

While itis in principle possible to set the pole frequendased on the properties of the system
response (e.g., insert more poles in the problematic or itapbfrequency regions) as demon-
strated in Appendix A.4, this requires some expertise froenuser. For some applications it
would be thus desirable to have such a pole positioning natiett does this automatically for
a given filter order. This could be included in automatic nueasient and equalization systems,
for example. To address this, | have developed a computdlyogificient method that chooses
the pole frequencies based on the smoothed system respatis®yt any prior knowledge on
the resolution of smoothing applied in the various regideank 2013c].

The basic idea of the method is that in those regions where #re more ripples in the
transfer function, more poles are needed. The steps of gweilm are explained by using
Fig. 7.3. The sixth-octave smoothed version of the loudsgreaoom response is shown in
Fig. 7.3 (a), given at logarithmically spaced frequencyngmi The first step of the algorithm
is computing the absolute differences of the adjacent &rqy response points in dB scale.
The level of this function will be proportional to the raggeds of the transfer function, so
it is called ripple density. The result is displayed in Fig3 {b). The goal is now to divide
this ripple density function in as many equal areas as mailgspwe would like to use, and
the borders of these areas will be chosen as pole frequenties is done by integrating (in
practice cumulating) the density function giving the rgplistribution function. Then this is
scaled so that it goes from zero to the number of pole fredesmainus one, displayed in
Fig. 7.3 (c). Finally, whenever this distribution functi@integer (crosses a horizontal line in
Fig. 7.3 (c)) a pole frequency is obtained, displayed bys®es The same pole frequencies are
also displayed in Fig. 7.3 (d), showing that indeed moregate placed in those regions where
the target response (thin line) has larger variation. Oheeble frequencies are obtained, the
pole radii are determined by Egs. (7.2) and (7.3) in the sa@ane as with the predetermined
pole set. Figure 7.3 (d) thick line shows the frequency raspmf the parallel filter designed
using the pole set obtained from the ripple density functiba smoothed target is displayed by
athin line). It can be seen that the method recognizes th#gatic low-frequency region and
increases the frequency resolution by placing more polésatregion. Naturally, the method
can also be applied in exactly the same way for obtainingraryi(non-logarithmic) frequency
resolution if the target response is smoothed accordingddrequency resolution profile we
wish to achieve.

7.3.2 Pole positioning based on a warped IIR filter design

The next step in terms of design complexity is to determimegble positions of the parallel
filter by estimating a warped IIR filter based on the smoothedtiesn response [Bank 2013c].
The design procedure is similar to accurately modeling ffstesn response by a warped IIR
filter as discussed in Sec. 7.1, with the difference that t@xcbomplex-smoothed version of the
system response is used as a target. Therefore, the detatisidted here, and the performance
of the method for smoothed responses will be presented wdraparing the various techniques
in Sec. 7.4.
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Figure 7.3: Steps of ripple-density based pole positioning: (a) théhsbctave smoothed magnitude
response, (b) the ripple density (the differences betweemdjacent points of the smoothed response),
and (c) the ripple distribution (scaled cumulative sum ppke density). In (c) horizontal lines show the
pole indices, and the pole frequencies are displayed byesodn (d) these pole frequencies are used
to design a parallel filter (thick line) to fit the minimum-@easmoothed target response (thin line). The
pole frequencies are marked by crosses. The filter order, ifhd4ame as in Fig. 7.2 (c).

7.3.3 Pole positioning based on multi-band warping

We have seen in Chap. 4 that a warped IIR filter design with gleih parameter cannot
spread the frequency resolution evenly in the logarithitédes and that there is always a certain
frequency region where the resolution is maxinmf(/f is minimal in Fig. 4.2 (b)). This means
that using the poles of such a warped filter cannot have aitbgac resolution either.

To address this problem, | have developed a technique basedilbi-band warping [Bank
and Ramos 2011]. In this method the transfer function igigi@into separate frequency bands,
and different warping parameters are used in each band sihéhaarping effect is maximized
in each region. Then, separate warped IIR filters are deditprethe different regions of the
smoothed response, their poles are dewarped, and finaljyolkbesets are united and used for
parallel filter design.

The first step of filter design is splitting the frequency oegio separate bands and choosing
appropriate\ values for the bands. In its simplest form, two bands are wsttda crossover
frequency off. = 500 Hz, which is approximately in the middle of the [20 Hz, 20 kHz]
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Figure 7.4: Dual-band warped IIR filter design based on a sixth-octaveoshed loudspeaker-room
response: (a) the minimum-phase specification of the legtfency warped IIR filter (thin line) and
the filter response (thick line), (b) the minimum-phase Bpation of the high-frequency warped IIR
filter (thin line) and the filter response (thick line), anfl ffte complete minimum-phase target response
(thin line) and the final filter response (thick line) of theradkel filter using the united pole set. The
pole frequencies of the filters are displayed by crosses.véheal dashed line indicates the crossover
frequencyf. = 500 Hz of the two warped IIR designs. The curves are offset faitgla

audio band in a logarithmic scale. This is displayed in Fid. for a sixth-octave smoothed
loudspeaker—room response. The low-frequency part offbeification is displayed by a thin
line in Fig. 7.4 (a), while the high-frequency part by a thivelin Fig. 7.4 (b). As can be seenin
Fig. 7.4, the out-of-band parts of the transfer functiors@pssfaded to a constant gain. This
is done to assure that the warped IIR filters will not waste i@spurces (poles) outside their
respective bands.

Next, two warped IIR filters are designed, one for the lowgirency and one for the high-
frequency target. Th& values are chosen so that the warped filters have the maageadith-
mic resolution (minimal\ f / f) in the middle of their respective bands by finding suclalues
where the minimum of the logarithmic resolution curves Edd)is atf = /20 x 500 = 100
Hz for the low-frequency band anfl = /500 x 20000 = 3160 Hz for the high-frequency
band, giving\Lr = 0.986 and A\yr = 0.65, respectively. The corresponding resolution curves
are displayed in Fig. 7.5.

The warped filters are designed by the frequency-domaigl&zeiMcBride algorithm [Jack-
son 2008] based on the prewarped transfer functions. Thgidrey response of the low-
frequency warped IIR filter (filter order is 22) is displayeg thick solid line in Fig. 7.4 (a),
while the frequency response of the high-frequency warfdlter (filter order is 22) is shown
by thick solid line in Fig. 7.4 (b). The pole frequencies oé tliiters are displayed by crosses,
showing that indeed there are no poles outside the respdmdivds. Once the two warped IIR
filters are designed, their poles are dewarped using thesonding\;» and \gr values in
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Figure 7.5: The logarithmic frequency resolution for the two bands ofitirand pole positioning:
Eq. (4.4) computed with\ f = 1 for A\ = 0.986 and A\pgr = 0.65.

EqQ. (4.7) and the two pole sets are united, giving a totak fdteer of 44 (the same as for the
stepwise logarithmic case of Fig. 7.2 (c) and as for the e#Ensity based pole positioning
Fig. 7.3). It can be seen in Fig. 7.4 (c) that the filter respq(tisick line) follows the smoothed
target (thin line) very accurately and the modeling detsispread evenly in the logarithmic
scale.

7.3.4 Pole positioning based on custom warping

So far we have been using the allpass frequency mappingidangg. (4.2), which gives a
limited freedom due to a single parameter Improved results were obtained by combining
multiple warped filters with different values, but this still does not result in exactly logarithmi
frequency resolution. | have developed a custom warpin@potkthat can be used with arbitrary
warping profiles, including logarithmic [Bank 2011c]. Thedic idea is that a warped filter
designed based on the logarithmically mapped specificaidewarped using the logarithmic
function, and not by the usual allpass substitution.

The method starts with defining a custom frequency mappingtion that determines the
allocation of frequency resolution. Here a logarithmigfrency transformation is used, leading
to logarithmic frequency resolution, but it is emphasizbdttany other monotonic, smooth
function can be used to have a different kind of distributibthe frequency resolution. We need
to map the original angular frequenciés: [0, 7] to the warped frequencigs= v (v) € [0, 7
by a continuously differentiable’(*) function. That is,v () and its first derivative/(9) =
dv () /dv should be continuous, because these functions will be Usted for pole dewarping.
Since we would like to map = 0 to ¥ = 0, the logarithmic curve of(v) is exchanged for
a linear curve very low frequencieg  ¢.), as also suggested in [Harma and Paatero 2001]
for their high-order allpass approximation. This basicafleans that the frequency resolution
Is constant below.., while logarithmic abové...



dc_1787 20

56 Chapter 7. Pole positioning

|
H
e

[
H
o

Magnitude [dB]

!
N,
=

|
N
o

=% 0.2 0.4 0.6 0.8 1
Warped angular frequencyt/

Figure 7.6: Logarithmically warped target specification (sixth-o&asmoothed minimum-phase
loudspeaker—room response, displayed by thin line) andtactder IR filter designed bynvf r eqz
in MATLAB (thick line). Note that the warped angular frequgris displayed in a linear scale.

Then, the filter specification is transformed by this mapgungction so that the original
specification points,(v,) are moved to the frequencies = v(¥,). Mathematically, this
mapping is described b, (J,,) = H,(v~(J,)). The target specification used for illustrating
the design steps is the usual loudspeaker—room responsd iwlsmoothed to a sixth-octave
resolution. The logarithmically warped filter specificatits displayed in Fig. 7.6 thin line.
Note that the warped angular frequency is plotted in a liseale.

At this step an IIR filter is designed to the warped specifizafi; (1)) by any of the tradi-
tional filter design methods. Here thavfr eqz command of MATLAB is used to design a
44th order IIR filter. The resulting response is shown in Fig. thick line. The log-warped
specification is made minimum-phase prior to filter desigacpcal experience shows that this
helps to guarantee the stability of the designed IIR filter.

Then, the poles of this warped filté}‘(@) are found and mapped back to the original fre-
quency scale. For complex poles, we first compute the potriénecied);, = ©{pr} and radii
Ry = |px|. The pole frequencies are mapped so that the peaks of thegidteback to the
original peak frequencies of the target by using the invmappingfl(z?), leading to

0, = v (6y). (7.4)

We also need to map the pole radii in such a way that the barldsvif the resonances of
the dewarped filter\d,, match the bandwidths of the peaks of the target responske Hhiap-
ping function can be considered lineardatin the range ofAd, then the new bandwidth after
mapping will be proportional to the derivative of the magpfnction atd, pole frequency.
Accordingly, we apply the inverse mappingl(ék), so the bandwidth will be

AG = v (6,) NGy, (7.5)

wherev "' (1) is the derivative of the inverse mapping function' (). Similarly to the case of
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Figure 7.7: Minimum-phase loudspeaker—room response modeling: nafigipecification (thin line),
44th order series second-order filter after pole-zero dawgr(dashed line), and a 44th order paral-
lel second-order filter designed using the dewarped polésk(solid line). The pole frequencies are
displayed by crosses.

predetermined pole positioning, we again use the apprdiom&g. (7.1) for the pole radii:

- 7 - A6,
ARk::e*é%L¢$ln(Rk)::—~755. (7.6)
For the dewarped radii we obtain:
Re = e — o260 _ gutin 60 _ 0, a7

that is, the pole radiRz;, of the warped filter need to be raised to the to the poweré/f(ék)
to obtain the dewarped pole radtj,. Finally we compose the pole from its angle and radii as
Pk = Rkejek.

The equations can be summarized as follows:

O = v (0), (7.8a)
R.=R/ O (7.8b)
pr = Rie’’. (7.8c)

For real poles we compute their frequencies (the -3dB pdinheir transfer functions) and
remap them by ~1(¥).

While we will use only the poles of the warped filter, it is irgsting to stop for a moment
and take a look of the response that arises when both the aotegeros are dewarped and
paired based on Eqg. (7.8) to form a filter composed of a sefissawnd-order sections. The
resulting response is displayed in Fig. 7.7 dashed linesttay with the specification (thin solid
line) in the original frequency scale. (Note the logaritbiinequency axis in Fig. 7.7 as opposed
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tothe linear one in Fig. 7.6.) It can be seen that the regiiter response (dashed line) is tilted
compared to the specification (thin solid line). This conresnfthe inaccuracies of pole-zero
remapping: one reason is that in deriving Eq. (7.5) we weseragg relatively narrow pole
bandwidths so it is inaccurate for highly damped poles. Addally, when a pole is dewarped
in normal warped filters, a zero arises)atwhile when a zero is dewarped, a pole arises at
A. Since) is constant in traditional warped filters, these additigpaés and zeros cancel out.
However, in our case every dewarping corresponds to a diffezquivalent\ value, and the
effects of these not-implemented poles and zeros accuenarhat bias the response.

However, we are not intending to implement the filter as aadsstructure, but only use
the dewarped poles for fixed-pole parallel filter design. fids=ailt is displayed in Fig. 7.7 thick
line. It can be seen that now the filter response matches et tspecification quite precisely
because the LS optimization of the zeros of the transfertiobmcompensates the inaccuracies
of pole dewarping.

7.4 Pole positioning comparison

Here the various pole positioning methods presented irctiapter will be compared on three
different loudspeaker equalization applications (onsoiom and two anechoic measurements).
In the detailed explanation of the methods a modeling exampk used since it made explain-
ing the techniques easier. Nevertheless, they can all e fosequalizer design as well. In
equalizer design the goal is to estimate a filter which, whaplied to the system response,
equalizes the transfer function so that it matches the taegponse (see Sec. 2.2). Since the
target is usually a flat response within the corner frequesnef the loudspeaker, displaying the
equalized transfer functions will give us a clearer pictomehe distribution of the approxima-
tion error, something much harder to see in the modeling case

7.4.1 Loudspeaker—room response equalization

Figure 7.8 (a) thick line shows the sixth-octave smoothadiva of a loudspeaker-room re-
sponse. The target frequency response we wish to achievguiayization is a forth-order high-
pass response with a corner frequency of 30 Hz, displayedtbyndine. In all the following
examples the same target curve is used, and the paralleligiltesigned by the frequency-
domain direct equalizer design method presented in Se@.6Fowever, they will differ in
how the poles are obtained.

Figure 7.8 (b) shows the equalization using a predeternpoésiset with stepwise logarith-
mic pole positioning. The total number of pole pairs is 2@t b, the filter has 20 second-order
sections (the filter order is 40). The method gives an acbéptserformance since the ripples
of the equalized transfer function are withirl dB around the target response. There are only
a few sharp dips at 80 Hz and 250 Hz that are not equalizedofoesapplications, such as in
room response correction this is actually an advantage fivese sharp dips are usually position
dependent, and it is generally accepted that they shouldenetjualized [Craven and Gerzon
1992; Cecchi et al. 2018]. This is because that would recuisbarp peak in an equalizer,
which, at other positions in the room where the dip is not ¢eracting it, actually produces a
disturbing ringing sound. Failing to equalize these digi®ing from the “automatic” smooth-
ing behavior of the parallel filter with a predetermined ps#¢ demonstrated in Sec. 6.5. Since
the modeling resolution is fixed, the equalizer cannot cenact anything narrower than the
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Figure 7.8: Comparison of different pole positioning techniques fonimum-phase loudspeaker—room
response equalization. The sixth-octave smoothed roopomss is displayed in (a). The pole posi-
tioning techniques used are (b) predetermined pole set,gaditioning based on (c) ripple density, (d)
standard warped IIR filter design, (e) multi-band warpingd &) custom warping. The target response
is shown by thin lines. The pole frequencies are displayedrbgses. The number of pole-pairs (or,
second-order sections) is 20 in all cases, giving a total filtder 40. The curves are offset for clarity.

desired resolution. Note that for the rest of the pole pmsitig methods proposed here if we

wish to avoid the equalization of sharp dips, they need tebewred from the system response
manually or by an appropriate automatic limiting processaj@€n and Gerzon 1992; Pedersen
and Thomsen 2007]. Also note that now the parallel filter wesighed using the sixth-octave

smoothed response for making the comparison with other pad&ioning approaches more

coherent. However, for cost-effective applications thedptermined pole set has an additional
advantage besides its simplicity that it does not requieesthoothing of the measured transfer
function as it performs smoothing “automatically” basedtsrpole density.

The equalization using a ripple-density based pole set (68cl) is shown in Fig. 7.8 (c),
leading to a similar performance to the predetermined pelensthis case, but now without
the need for deciding in which regions the density of the psleould be larger. An important
difference is that now the narrow dips of the response aceeagjgalized by placing more poles
in that region (see Fig. 7.8 (c) around 80 Hz). As alreadyutised, equalizing the sharp dips
of loudspeaker—room responses is not recommended, archthize avoided by removing such
dips from the system response in a preprocessing step asstadgn [Craven and Gerzon 1992;
Pedersen and Thomsen 2007]. Nevertheless, if we conselardéthod as a general equalization
technique, it is actually an advantage that we may courttdracsharp dips if we wish so.

In the example of Fig. 7.8 (d), a 40th order IIR filter is idéietl by the frequency-domain
Steiglitz-McBride method [Jackson 2008] based on the wayeesion of the smoothed system
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Table 7.2: Errors of equalization examples presented in Figs. 7.8an®7.10. The order of the methods
correspond to those in the figures: no equalizaztion (ajigteemined pole set (b), ripple-density based
pole positioning (c), poles obtained from a warped IIR de<id), from a dual-band warped design (e),
and via custom warping (f). The smallest errors are markeil bald.

Room eq. Fig. 7.8 | No EQ (a) | Predet. (b)| Ripple d. (c)| Warping (d) | Dual-bd. (e)| Custom wp. (f)
Mean squared error|  0.482 0.122 0.116 0.059 0.043 0.040
Mean abs. dB error | 2.506dB | 0.691 dB 0.646 dB 0.324 dB 0.238 dB 0.215dB
Loudsp. eq. Fig. 7.9 | No EQ (a)| Predet. (b)| Ripple d. (c)| Warping (d) | Dual-bd. (e)| Custom wp. (f)
Mean squared error 0.322 0.052 0.054 0.038 0.022 0.027
Mean abs. dB error | 1.033dB | 0.291 dB 0.304 dB 0.211dB 0.125dB 0.147 dB
Loudsp. eq. Fig. 7.10| No EQ (a)| Predet. (b)| Ripple d. (c)| Warping (d) | Dual-bd. (e)| Custom wp. (f)
Mean squared error 0.419 0.087 0.054 0.028 0.028 0.023
Mean abs. dB error | 1.993dB | 0.489 dB 0.301dB 0.156 dB 0.159 dB 0.132dB

response as the input and the warped version of the targéeasutput. In this example, a
warping parametek = 0.95 is used since that resulted in the smallest error. It can be seen
in Fig. 7.8 (d) that the warping-based pole positioning ptes more accurate equalization
compared to the first two methods, and its only shortcomiagyttihe accuracy is concentrated
in the middle frequency range.

In Fig. 7.8 (e) dual-band warping is applied. The split freqey is 500 Hz. Similarly to
Sec. 7.3.3)\1r = 0.986 and \gr = 0.65 are used. The filter orders are 20 in both the low and
high bands, giving a total filter order of 40. Figure 7.8 (e9wh that the frequency resolution
is now spread much more evenly on the logarithmic scale ansl @h excellent equalization
performance is achieved for the same filter order as with teei@us methods. The only larger
ripples that can be seen are in the transition region of tleebmnds (around 500 Hz), the rest
of the ripples are withir-0.5 dB of the target, which can be considered negligible. Theso
pay compared to the simple warping of Sec. 7.1 is the additimsk of separating the response
to different regions and the need of designing multipleriltédiowever, the total order of filters
remains the same, so the computational complexity of thigés not increased significantly.
A small shortcoming is that the user has to manually balaet&den the number of poles used
in the two frequency bands.

The equalization using poles obtained by custom warpingsplayed in Fig. 7.8 (f). The
cutoff frequency where the linear mapping is changed torlitdgaic is set to 50 Hz. The
performance is very similar to the multi-band warping cabe, only difference is that the
ripples are smaller at 500 Hz. The computational complexityhe design is similar to the
other two warped designs. A benefit compared to the multdhearping is that only the total
filter order has to be given by the user, and not the ordersidifferent bands as for multi-band
warping.

The equalization errors for the five different pole positmmethods can be compared in
Table 7.2. The rows with “Mean squared error” are computethasquare root of the mean
squared difference of the equalized and the target frequesponses, thus, they show the error
of the complex transfer function. This kind of error meassraseful since it also shows that
the phase is correctly approximated (not shown in the figuessl it is directly related to the
error minimized during filter design. The averaging is doaneen the corner frequencies of
the target response (30 Hz and 20 kHz in this case), and owegaaithmic frequency grid with
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100 points per octave resolution.

To show a different kind of error sometimes also used in tréaafield, the second rows
display the “Mean abs. dB error”: here the magnitudes of thekzed and target responses are
computed in dB, and their absolute differences are averag@dogarithmic frequency grid, as
suggested in [Ramos and Lopez 2006]. This kind of error isemelated to what we actually
see in Fig. 7.8 since that is in dB scale as well.

It can be seen in Table 7.2 that the two kinds of errors araglyacorrelated: if a certain
method is better than an other with respect to “Mean squared’ét is also better in “Mean
abs. dB error”. For the loudspeaker-room response eqtiahzexample of Fig. 7.8, the dual-
band warping (e) and custom-warping (f) has the lowest grmoboth measures, the latter
performing slightly better.

7.4.2 Loudspeaker equalization

Here additional equalization examples are presented ®aylwoader view on the behavior of
the different methods. First the anechoic response of thee dao-way floorstanding loud-
speaker is equalized which was used in a room in the previcaimgle. Now the measured
anechoic frequency response is smoothed to 12th-octagkities. This is shown in Fig. 7.9
(a) thick line. The target response is a forth-order highpath a cutoff frequency of 50 Hz.

For the predetermined pole set, while 12th-octave reswiwtiould require higher pole den-
sity to perfectly equalize the response (six pole pairs ptave actually leads to 51 pole pairs),
we use 20 pole pairs between 50 Hz and 20 kHz, since for the sapkisticated methods
this filter order is sufficient to obtain practically perfecjualization, as we shall see later. The
results are acceptable, the ripples are withindB, as can be seen in Fig. 7.9 (b). The ripple-
density based pole positioning leads to similar result$asa in Fig. 7.9 (c).

For this example\ = 0.85 gives the best results for warping-based pole positiorshgwn
in Fig. 7.9 (d). Similarly to Fig. 7.8 (d), the accuracy is centrated to the middle range, while
the band edges are less accurately equalized. This is agaicooe by the multi-band (Fig. 7.9
(e)) and custom warping (Fig. 7.9 (f)). The better perforoeaaf these two methods manifests
also in their smaller error values in Table 7.2.

The next example is a two-way bookshelf speaker having sastect spikes in its fre-
guency response. The response is smoothed to 12th-octmtatren prior to equalizer design,
displayed in Fig. 7.10 (a). The target is the series conoedf a forth-order highpass with a
cutoff frequency of 70 Hz and a second-order lowpass withraerdrequency of 18 kHz.

First, a predetermined pole set is used with 20 pole paiittgnically distributed between
70 Hz and 20 kHz. The equalizer has a poor performance asséag.i7.10 (b), because the
pole density is too low in the problematic regions. On thesotiand, the ripple-density based
pole positioning can show its power: equalization improsiggificantly, since now the poles
are concentrated in the ragged parts of the frequency resgeae Fig. 7.10 (c)).

In this case\ = 0.8 is used for warping-based pole positioning in Fig. 7.10 @ the
contrary to the previous examples, even simple warping oawige almost perfect equalization
(with the exception of a small discrepancy around 5 kHz) sThbecause the design bandwidth
is smaller (note in Fig. 7.10 (a) that the response has gpmhdy above 400 Hz), thus, we do
not face with the problems we had at the band edges for Figdy &nd Fig. 7.9 (d).

Since we are not using the full audio band, for the multibardpmg of Fig. 7.10 (e) a
crossover frequency of of 2 kHz and lambdas\gf = 0.8 and Agr = 0.3 are used. Note
however that this does not decrease the error of the eqtiahzgee Tab. 7.2). For the custom
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Figure 7.9: Comparison of different pole positioning techniques for mimum-phase loudspeaker
response equalization. The 12th-octave smoothed anelthaispeaker response of a two-way loud-
speaker floorstanding is displayed in (a). The pole positpiechniques used are (b) predetermined
pole set, pole positioning based on (c) ripple density, {dhdard warped IIR filter design, (e) multi-
band warping, and (f) custom warping. The target responsieawn by thin lines. The pole frequencies
are displayed by crosses. The number of pole-pairs (ornskeoaler sections) is 20 in all cases, giving
a total filter order 40.

warping method, the best results are obtained wheg set so that the resolution changes from
constant to logarithmic at 1 kHz. While custom warping (fstthe lowest equalization error
according to Tab. 7.2, the relatively minor improvementrdtie results of single-band warping
might not actually worth the additional design complexity.

7.5 Discussion of pole positioning techniques

After the discussion of the pole positioning strategiesdarallel filter design and seeing a
couple of examples, some conclusions can be drawn abouettedits of the various methods.
Predetermined pole set:This is the simplest method, which works relatively well fiood-

eling or equalizing high-order systems (such as loudspeat@m response) with a lower order
filter, since in this case there are so many peaks and vati¢lys ioriginal response that waviness
of smoothed response is determined by the smoothing itdelikever, when the raggedness is
unevenly distributed in the response, such as in Fig. 7.1,0a(éogarithmic pole positioning

is not adequate, and regions with different pole densitykhbe selected manually, which is
sometimes not practical, e.g., in the case of an automatialegr system. Note however that
in certain design applications the possibility of manu&timention can be beneficial, e.g., an
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Figure 7.10: Comparison of different pole positioning techniques fonimum-phase loudspeaker re-
sponse equalization. The 12th-octave smoothed anechsponee of a bookshelf loudspeaker is dis-
played in (a). The pole positioning techniques used are (@Jgiermined pole set, pole positioning
based on (c) ripple density, (d) standard warped IIR filtasigie (e) multi-band warping, and (f) custom

warping. The target response is shown by thin lines. Thefpetpiencies are displayed by crosses. The
number of pole-pairs (or, second-order sections) is 20liceaks, giving a total filter order 40.

expert user can manually fine-tune the frequency resoluiyomoving around the poles and
listening to the result (the interactive dempar f eqdeno downloadable from [Parallel filter
homepage 2021] allows the manual positioning of the polesdasigns the equalizer imme-
diately). Bedsides its simplicity, an additional advamtag the predetermined pole set is the
automatic smoothing behavior: there is actually no needrérsfer function smoothing prior
to equalizer design, so the equalizer can be obtained frermtfasured response directly.

Ripple-density based pole positioningThis method, while simple enough, works robustly
in all cases since it allocates the frequency resolutiorcaoalance with the raggedness of the
response. It shows its main benefits compared to the predetst pole set when the response
has some specific problematic regions, as in Fig. 7.10 (c).

Warping-based pole positioning:Since this method is based on a warped IIR filter design,
it is able to actually take into account both the frequeneaied () factors of the peaks and
valleys of the smoothed response. When the system is nog tisenfull audio bandwidth
(such as in small bookshelf or multimedia speakers, see’/Fi§.(d)) it provides almost perfect
equalization. Systems having full audio bandwidth willfsuffrom low- and high-frequency
inaccuracies when using this pole positioning method (sg& F.8 (d) and 7.9 (d)).

Pole positioning using multi-band warping: This method overcomes the bandwidth limi-
tation of straightforward warping, thus, it can be used fa full audio bandwidth from 20 Hz
to 20 kHz with excellent results. The only slight shortcogia that the user has to balance
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Figure 7.11: Comparison of different filter design methods for loudspeatoom response equaliza-
tion. The smoothed room response is displayed in (a). Thnse equalized by an 1000th-order FIR
filter (b), a 40th-order standard IIR filter (c), a 40th-orgarallel filter with stepwise logarithmic pole
frequencies (d), a 40th-order warped IIR filter usig= 0.95 (e), and a 40th-order parallel with poles
obtained by custom warping (f). The target response is sHoyhin lines. The pole frequencies are
displayed by crosses.

between the filter orders of the two frequency bands by tridlexror.

Pole positioning using custom warping: This method provides excellent equalization in
the full audio frequency range similarly to multi-band wiagp A benefit over multi-band
warping is that only the total filter order has to be specifigdhe user.

7.6 Comparison with previous filter design methods

While we have discussed in Chap. 1 that standard FIR and R @iesign techniques are not
well suited to filter- or equalizer design on a logarithmedquency scale, it is instructive to see
how they actually perform on the same loudspeaker-roomleqtian example as of Fig. 7.8.
The first example is frequency-domain least squares egtializby a 1000th-order FIR
filter, shown in Fig. 7.11 (b): it can be seen that even suchng IBIR filter cannot provide
enough resolution at low frequencies to equalize the respbalow 200 Hz. Next, a 40th-order
lIR filter is designed by the frequency-domain SteiglitzBidicle method [Jackson 2008] where
the specification is given on a logarithmic frequency gridhsad the error should be minimized
on the logarithmic scale. However, as can be seen in Fig.(¢)1the equalization is unusable
below 300 Hz, which is also expected from the pole frequenaiehe filter, shown by crosses.
On the contrary, a fixed-pole parallel filter requiring thengecomputational resources pro-
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Table 7.3: Errors of equalization examples presented in Fig. 7.11. mhgking of the methods corre-
spond to those in the figure: 1000th-order FIR filter (b), 4@tther IIR filter (c), 40th-order parallel filter
with predetermined poles (d), 40th-order warped IIR deg&@n 40th-order parallel filter with custom

warping (f).
Room eq. Fig. 7.11] FIR 1000 (b)| lIR(c) | par. log. (d)| warped IIR (e)| par. custom wp. (f)
Mean squared errof 0.154 0.288 0.122 0.059 0.040
Mean abs. dB errof  0.990dB | 1.725dB| 0.691 dB 0.324 dB 0.215dB

vides a significantly better performance even with a predateed set of poles, as shown in
Fig. 7.11 (d). It follows that compared to straightforwandRFor IIR filter design techniques,
even the simplest form of parallel filter design (logaritbally positioned poles) provides a
drastically improved performance when the accuracy isuatetl on a logarithmic frequency
scale. The equalization error is also displayed in Table 7.3

Let us also compare the fixed-pole parallel filter to logamith frequency resolution fil-
ter design methods that were the state of the art at the tintieegbublication of my results.
Fig. 7.11 (e) shows a 40th-order warped IIR equalizatiomgx®a designed with a warping pa-
rameter\ = 0.95. The response of a Kautz filter with warping-based pole psiig would
be also the same, so it serves as a good comparison with Ktatz s well. When using
these poles, parallel filters result in the same responseya3.E1 (e), but with lower compu-
tational complexity compared to both warped and Kautz §lserd a completely parallel filter
structure. This means that at this point parallel filter ges$s already more efficient in terms of
accuracy/complexity ratio.

This efficiency is improved even more by the more sophisgtit@iole positioning methods
| have developed. For example, Fig. 7.11 (f) demonstrataski using custom warping a
significantly improved equalization is achieved compacethé previous state of the art for the
same filter order.

In the audio signal processing field filter design algorittares usually compared based on
real-world (measured) system responses as was done in.Eig.However, publications about
general filter design techniques often use synthetic exacgdes. The reader is invited to take
a look at such an example in Appendix A.5 where the filters as®ghed based on a target
which looks like a square wave in the logarithmic frequenzales. While this kind of a target
is very different from that of a loudspeaker—room respotisesame conclusions can be drawn
from the results. This is also true for the other synthetid sral-world examples that | have
tested, confirming the superiority of the proposed methodspared to earlier techniques.

It also worth mentioning that Maestre et al. [2016] havetfartdeveloped the pole position-
ing method based on warped IIR design by using an iterativeguiure where the poles obtained
from a single-band warped IIR design using the Prony or tegitiz-McBride technique are
post-optimized with a gradient descent algorithm. Comghénethe warped Steiglitz-McBride
technique of Sec. 7.1, the improvement is relatively miasrgcan be seen in Fig. 4 of [Maestre
et al. 2016]. In my opinion, such an improvement might nottiwéine additional complexity of
a complicated optimization algorithm. Nevertheless, fariag at the best possible modeling
accuracy, initializing the post-optimization technigueMaestre et al. [2016] with the poles
obtained using multi-band or custom warping methods pregas Secs. 7.3.3 and 7.3.4 could
be a promising topic for future research.



dc_1787 20

66 Chapter 7. Pole positioning

7.7 Scientific contributions

Statement 2: | have developed new pole positioning methodkdt can be used not only for
the fixed-pole design of parallel filters, but also for Kautz fiter design, and lead to more
accurate approximation compared to earlier methods develped for Kautz filters. As a
result, the proposed methodology leads to better filter appyximation on the logarithmic
scale compared to earlier techniques (traditional IIR, waiped and Kautz filters) for the
same filter order.

2.1: As an efficient alternative to manual pole positioning, | édeveloped a technique based
on the “ripple density” of the target response. The methtslthe pole frequencies according to
the ripples of the target, and thus results in more poles attditresolution in the problematic
regions of the transfer function. | have also given the fdemdor the pole radii that can be
used to compute the complex poles from an arbitrary set & fpetjuencies.

2.2: | have developed a dual-band warping-based pole positiomiethod where the warped
lIR filters are designed with differenikt values for the lower and upper bands. This results in
a frequency resolution closer to logarithmic, which mast$an a smaller approximation error
computed on the logarithmic scale compared to straighdiciysingle-band warping.

2.3: I have developed a “custom warping” method where the waripetilter is designed using
an arbitrary (smooth and monotonic) frequency mapping,pg®®ed to the allpass transform
of traditional warped filters. The poles obtained by such sigfeare used as the poles of the
parallel filter, and the method — when a logarithmic mappsased — results in a smaller
approximation error on the logarithmic scale comparednglstband warping.

The results have been published in two journal papers [B@i8&] and [Bank and Ramos
2011F and in two conference papers [Bank 2011c, 2013c].

IWhile the paper was published together with Prof. Germand®arie technique was developed by myself.
Prof. Ramos has helped in the comparison with his earlidnigce [Ramos and Lopez 2006] and in the prepara-
tion of the manuscript.
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MIMO extensions to the fixed-pole design
of parallel filters

After developing single-channel algorithms, a naturalich@f my research direction was to
provide their multichannel extensions. Multiple-inputltiple-output (MIMO) filtering is used
in various fields of signal processing. In audio the mostigiitéorward example is modeling
or equalizing a room having multiple listeners and multilpledspeakers. Modern car audio
systems are also designed in such a way that all passengersptamal listening experience,
and do so by applying a large number (typically between 1(2&)af loudspeakers. As a two-
by-two example, binaural crosstalk cancellation aims dependently controlling the signals
reaching the left and right ears of the listener by the usevofloudspeakers. The directivity
of loudspeakers containing multiple speaker elements eaido controlled by a MIMO filter,
and the same is true for microphone arrays. In sound systhastih the direction-dependent
radiation pattern of a musical instrument and the mechbadraittance of its various parts can
be described by MIMO filters.

The relatively trivial extensions of the single channelecasll be outlined in Sec. 8.1 that
will also show how the computational complexity can be daseel by using a common pole
set, a choice often made in modeling acoustic systems.

In Sec. 8.2 the idea of parallel filters will be applied to alamce matrix modeling: besides
being a MIMO problem, here the passivity of the transfer fioxcmust also be guaranteed
since we aim to model a passive physical system. When suctimaittance model is coupled
to other structures (such as other parts of a musical ingntimmodel), failing to guarantee
passivity may actually lead to the spurious generation efggnand to the instability of the
complete model. Besides an efficient passive design fotroalathe estimation of common
poles using a warped common-denominator all-pole modélalgb be presented that can be
used for other applications where a common pole set can beatest by physical or perceptual
considerations. At the time of the publication of the res{Btank and Karjalainen 2008, 2010],
this was the first technique that allowed the design of aamdt filters for the full audio fre-
guency range while guaranteeing passivity. Later my teghahas been further developed by
Maestre et al. [2015, 2017] that provide improved modelicguaacy at the price of applying a
more complicated optimization procedure.

Finally, Sec. 8.3 provides the extension of the direct ageatesign approach of Sec. 6.3
to the MIMO case. While MIMO patrallel filter design is trivial the sense that the elements
of the filter matrix can be estimated in the same way as foritigdeschannel case, this is not
true for equalizer design. Therefore | have developed aixfatmulation for the equalization

67
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case, which shows that by taking advantage of fixed polesjésgn of an IIR equalizer can
be equally simple as that of the commonly used FIR equalizéraaclosed-form solution can
be obtained when the problem is formulated in the leastregusense. The importance of
the results lies in the fact that for MIMO equalization almasvays FIR filters have been
employed in the literature probably due to the fact thatrediteg IIR filter design techniques to
the MIMO case is non-trivial and the implementation of iteramethods can be problematic
for the high number of parameters that needs to be optimzeMMO IIR filters. However,
these difficulties are now removed since the numerators r@illp&filters can be estimated by
a linear LS fit similarly as for FIR filters, so the methods deped for MIMO FIR equalizer
design can be easily adapted to the parallel filter case.

8.1 MIMO parallel filters

Let the input of the MIMO filter be a column vectet(z) = [z1(2),...,z(z)]T containing
all the entries corresponding to tli@nput channels, and the output a column vegtor) =
[y1(2), ..., yo(2)]" with the entries corresponding to tlieoutput channels. Thus, the MIMO
filtering can be written as

y(z) = H(z)x(2), (8.1)

with the transfer functioI(z) containing the elementd, ;(z). When the separate elements
are independent parallel filters, the transfer functiorobees

K<O’i) blgovi) + b(ovi) —1 A4(O’i)
0

Hoi(z)= 3 k1 © 3 gl (8.2)
m=0

o L a7

wherei is the index of the input channel ands the index of the output channel of the MIMO
filter. The design of such a MIMO parallel filter is done by ssiting separate SISO parallel
filters for each element of the target matiik (=), thus, it does not lead to any additional
complications compared to the single channel case outim8ec. 6.2.

8.1.1 Common-pole parallel filters

In comparison to the general form Eq. (8.2), significant cotaponal savings can be achieved
when the pole set (and thus the filter order) is the same atimessntries ofH(z), since this
allows sharing the denominator parts across the differesuticels.

Common-denominator IIR filters are often used for modelingustic transfer functions
[Haneda and Kaneda 1994; Liu and Hsieh 1988]. This is mad/al the fact that for a sin-
gle physical system that has multiple input and output goflike multiple loudspeakers and
microphones in a room, or multiple force inputs of a mechalrsgstem) the poles of all trans-
fer functions are the same by theory since they correspotiteteibrating modes of the same
system.

In addition to the physical reasons, often we would like tadelar equalize the elements
of the transfer function matrix with the same frequency h&son, again leading to the same
pole set when the predetermined pole positioning of Sedsiged.

One option is to use the same pole set, and thus the same detomifor all the outputs
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Multiplications
General case 401K
Common denominators for a specific inputf  2(O + 1)/ K
Common denominators for a specific outpyt 20(I + 1)K

Table 8.1: Number of multiplications and additions required for a MINy@rallel filter havingl inputs,
O outputs, and< second-order sections in each element of the filter matrix.

coming from a specific input channglleading to

K@ (0,0) M)
by + bk e
H,i(z) = + f 04) o= (8.3)
;14—@(”214—@“22 Z

This leads to the reduction of required numerical operatlmecause now it is possible to filter
a particular input with the denominator parts/(1 + cz,(;)l,?,«*1 + a;gﬂ) of the K sections
only once, and use this common set of filtered signals as lﬂneztsnof the numerator parts
b+ b,(:f z~1 that are different for the various outputs. A special casthisfformulation is
thé smgle input multiple-output case, where only one $eeaominator parts are needed.
Another option is to use the same pole set, and thus the samendeators for all the inputs

going to a specific output channeglleading to

K () b(o,i) b(o 1) _—1 Mo

Hoi(2) = k1 # j{: (8.4)

. 11—|—a,(€%z—1+ak22 —

In this case the computational complexity is reduced coetpéo the general form of (8.2)
because now it is possible to first compute the numeratos b(gﬁjf + bﬁff’z*l of the second-
order filters, sum those that correspond to the same outpuineto, and then filter with the
common denominatork/(1 + ,(fiz + a,gf;z—Q). A special case is the multiple-input single-
output scenario, where only one set of denominators aresimghted.

Of course it is also possible to use the same pole set forakldgments oH(z), however,
this provides no computational advantage over the two casti®ed so far. The number of
multiplications required by running a MIMO parallel filteating X' second-order sections,
inputs, O outputs are shown in Table 8.1, without the optional FIR et the FIR part no
savings can be achieved). It can be seen that if either théauai input- or output channels
is significantly larger than 1, the computational comphlexin be reduced roughly to the half
compared to the general case by using the shared denomapgtiarach.

All the pole positioning techniques presented in Chap. hesextended for finding common-
poles in a straightforward manner. As for the predetermimaleé set of Sec. 7.2, no changes
are necessary: we simply prescribe the same resolutios, the same pole frequencies for
all the transfer function paths, and this will result in tle® pole set. For pole positioning
based on ripple density described in Sec. 7.3.1, the ripgtsitles computed for the individual
transfer functions are simply averaged before numeri¢agnation and segmentation. The rest
of the techniques discussed in Chap. 7 are all based on adtlypivarped) IIR filter design and
using the poles of the IIR filter. A common-pole extensionteste techniques includes finding
a common-denominator IIR filter based on the set of impulspalses or transfer functions.
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Common-denominator IIR models are often used in acoudtasg¢da and Kaneda 1994; Liu
and Hsieh 1988], and the related technique for estimatimgneon poles will be outlined in
Sec. 8.2.4 for the case of passive admittance matrix magelin

8.2 Passive admittance matrix modeling using fixed-pole par
allel filters

In physics-based sound synthesis, the sound of an insttumgeanerated by modeling the in-
strument behavior rather than modeling the sound itsekérdfiore the model blocks correspond
to the main parts of the instrument (for an overview, seeifWaki et al. 2006]). Depending on
the modeling paradigm, these models can be parameterizedious ways.

For example, it is possible to parameterize parts of theunstnt model by a measured
mechanical or acoustical immittance (impedance or adnuéa As an example, the effect of
an immittance (e.g., the instrument bridge) connected twirrgsis that it changes the modal
frequencies and decay times of the string compared to ategitination, and provides coupling
between the horizontal, vertical, and longitudinal paations of the string. Note that the
application used here is a mechanical admittance, but dantent is equally applicable to
other passive (e.g., acoustical, electrical) systems@mdgedances instead of admittances.

The starting point of such a parameterization is a mechbhadmittance measurement of
the given part of the instrument (e.g., the bridge). Natyrall parts of acoustical instruments
are passive, that is, they can only dissipate energy thatrnsduced by the player. Therefore,
instead of straightforward filter design that may resulton{passive filters due to measurement
or approximation errors, we need such a design techniqueevthe passivity of the result is
guaranteed. In [Smith 2010], passive admittance filtereanstructed by manually tuning the
modal frequencies and decay times of second-order regsratproduce a function similar to
the guitar admittance, and a similarly simplified guitadige model is presented in [Evangelista
and Raspaud 2009] by connecting the passive admittance#dtarsng junction. In [Lambourg
and Chaigne 1993], the 2D mechanical admittance of a guitdgéup to 3 kHz is modeled by
a set of mass-spring-damper elements (second-order tesenand the matrix pencil method
is used for parameter estimation. In the frequency-domatagmodel of [Woodhouse 2004], a
standard modal analysis technique (circle fitting) is ugetbu. .4 kHz, and above that a random
number generator is applied to produce a statisticallylammodal behavior as in the measured
response.

Accordingly, at the time of my research, no methods exidbed ¢ould fit a discrete-time
passive admittance filter to measurement data in the fuibauelquency range. To overcome
this limitation, in [Bank and Karjalainen 2008] | have prgeo an admittance filter design
method using a modification of the fixed-pole design of palakcond-order filters where
the admittance transfer function is constructed as a wethbhtim of passive (positive real)
second-order transfer functions. In [Bank and Karjalaig@m0] | have extended the method
to the modeling of admittance matrices, and this multidisi@mal case will be presented in the
following.

8.2.1 Passivity and positive realness

A system is passive if it cannot produce energy, and for passistems, immittances are posi-
tive real (PR) [Anderson and Vongpanitlerd 1973]. For nagicfunctions ofs that do not have
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a pole on the closed right-half plane (that is, for asymp#dlly stable systems), the transfer
function matrixH(s) is PR if and only if

Re {H(jw)} = 5 (H(jw) + H(jw)) > 0 (8.5)

(NN

for all realw [Anderson and Vongpanitlerd 1973]. HeAemeans complex conjugate Af, and
A > 0 means thal is positive semidefinite.

The PR condition for a digital transfer functidf(z) = H(e=/?) in a rational form with
poles in the open unit disk (asymptotically stable systamsjmilar to that for the continuous
case [Jury 1974]:

Re {H(e*jﬁ)} = % (H(e*jﬁ) +ﬁ(e*jﬁ)) > 0. (8.6)

That is, it is enough to check positive realness on the urttesiby looking at the frequency
response.

8.2.2 Modal framework

First, let us define the admittance mathx

v(w) =Y (w)f(w) (8.7)
wheref = [F,..., F;]T is a column vector composed of the forces exciting the sirecat
positionsl, ..., K, andv = [vy, ..., v]7 is a column vector composed of the velocities of the

pointsl, ..., K.

In modal analysis, the general assumption is that the streictan be described as a set
of masses that are connected by linear springs and linegpatanEwins 1992]. Then, the
vibration of the structure can be decomposed to a sufm nbrmal modes with different modal
frequenciesvy, decay rates, and modal shape®,. It is a common assumption in modal
analysis that the damping is viscous and it is distributegertionally to the mass and stiffness
elements, referred as proportional damping in the liteéeatin this case the modal shapes
are real and the mechanical admittance (mobility) matrithefsystem can be written as

Jw

8.8
wi — w? + 2jopwiw)’ (8.8)

K
Yw) =) &
wheremy, is the effective mass of mode and®; ®, is a rank 1 size square matrix which
is positive semidefinite, since the elementsgfare real numbers [Marshall 1984]. The scalar
transfer functions in Eq. (8.8) are PR because their phaase fspm —x/2 to 7/2. Thus, the
real part ofY will be positive semidefinite for all frequencies, sinc¥ is a linear combination
of positive real semidefinite matricds’ @, with positive real weights.

A straightforward approach for modeling a given (measuaebiittance is to use standard
modal analysis tools [Ewins 1992] to fit a modal model of Eq8)&o the measured data, and
implement a discretized version of Eg. (8.8). However, drae two related problems which
prevent us from doing so. First, standard modal analyskigaes work only in such regions
of the transfer function where the modal overlap is low (nsaee well separated). Therefore,
accurate modal parameters could be obtained for the lowdmry region of instrument bridges
only. In addition, in the case of sound synthesis applicatiohe model order is significantly
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smaller compared to the order of the system, which meanshbatssumptions used to derive
Eq. (8.8) are no longer true. For example, the poles of thearminot necessarily correspond
to the poles of the system, and the “modal shapes” of the nsirlld approximate the gross
behavior of all the system modes having modal frequencies teethe corresponding pole
frequency of the model.

8.2.3 The passive admittance model

Motivated by the fact that the admittance can be described@sallel set of analog second-
order transfer functions Eg. (8.8), | have developed a passiriant for parallel filter design for
the one dimensional [Bank and Karjalainen 2008] and muitethsional [Bank and Karjalainen
2010] cases. Here only the more general, multidimensicas# avill be outlined. The key idea
is a madification to the modal model of Eq. (8.8) by intercingghe ®; &, rank 1 matrices
with general (full rank) symmetri&’,, matrices, giving more degrees of freedom in modeling.
This actually corresponds to allowing maximurmodal shapes for each pole-pair of the model
instead of a single mode. As a result, the admittance is radded

K
Y(2) = ) YiHi(2) (8.9a)
k=1

1—272 b
M) = T e (6.9
whereHy(z) are the bilinearly transformed discrete-time versionsiefdecond-order functions
of Eq. (8.8). If a positive real functioH (s) is converted to a discrete-time functiéf(z) by the
bilinear transform, it remains positive real [Smith 198Bherefore,H, (=) are PR. A sufficient
condition for the admittance mod& (z) to be PR is that all thé& , matrices are positive
semidefinite, because in this case we have

Re{Y(2)} =Re{d YiHi(2)} = > Y, Re{Hy(2)} >0, (8.10)
k=1 k=1

since the linear combination of positive semidefinite ncagl , with nonnegative scalar weights
Re{Hy(z)} is also positive semidefinite.

Let us now take a look how the parameters of the admittanceshtegl (8.9) are obtained
from a measured admittance mathix, (z).

8.2.4 Finding a common set of poles

The measured admittan®&,, (z) containsk? transfer functions, of which< (K + 1)/2 are
independent, due to symmetry. The task is to find a commonrderator model that best de-
scribes all theK' (K + 1)/2 transfer functions, since the poles are the same for eanhféra
function in the model of Eg. (8.9). This can be done by varioosimon-denominator algo-
rithms used in modal analysis [Ewins 1992; Woodhouse 208die we will fit a discrete-time
all-pole model, similarly as it was done for acoustic trangtinctions in [Haneda and Kaneda
1994]. The all-pole design problem is essentially the sasnegaiation error IR filter design
(Prony’s method) [Parks and Burrus 1987] without the nunegi@efficients. As a notation, let
us defineY [n] as the element-wise inversdransform ofY (z), which is actually the impulse
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response of the admittance matrix. According¥,[n| is the measured admittance impulse
response. Then, the output error for tig; ;[n] element of the matriX ,,,[n] can be written in
the mean-squared sense as

N L 2
Ey=Y_ <Ym7i,j 7] + )~ @Y n - z]) : (8.11)
n=0 =1

whereL is the order of the denominator, andis the length of the measured admittance impulse
response’, ; j[n]. Since the problem is linear in its free parametgrshe error is quadratic in
ay, thus, the solution is given in a closed form (see Sec. 2.3).

If the estimation was done independently for all th¢ elements of the impulse response
matrix, we would obtain different; parameters in each case. Since we want to force the
denominator coefficients, to be the same for all the ;7 elements in Eq. (8.11), the task is to
minimize all errors jointly such that the total error

K i

i=1 j=1
is minimal [Haneda and Kaneda 1994]. This is essentiallystrae linear least-squares prob-
lem, but it has a larger dimensionality.

As in audio applications filter design should have betteuesty at low frequencies com-
pared to the high ones, the above common-denominator meéstimated in the warped do-
main, similarly to the pole positioning based on warped IlEerfs for the single channel case
(see Sec. 7.1). For that, all the measured impulse respansdsequency warped with para-
meter\, and the common-denominator all-pole model is estimatsddban this warped data.
Then, the rootg, of the common denominator are found and “dewarped” by Eq).(4The
dewarped poleg, are then used for constructing the second-order functifris) according
to Eq. (8.9b).

Note that the other pole positioning methods discussed epCHh, such as multi-band or
custom warping, can also be used instead of the straighaforwarping discussed above with
minor modifications to the algorithms.

8.2.5 Weight matrix estimation

The final step is to estimate the weight matridg, which is a linear-in-parameter problem
with the positive-semidefiniteness constrailiis > 0.
The time-domain error for one matrix element in the mearasegisense is

N
2
E; =Y (YEhi[n] = Yani;nl) (8.13)
n=0
whererj is thei, j element ofY,, (thus, the superscrigt is not a power but an index), and
hi[n] is the inverse: transform ofH,(z).
The optimal set of parametels, are obtained by solving

I 7
¢ => Y E/;— min (8.14a)

i=1 j=1

subject to Y > 0. (8.14b)
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Instead of solving Eq. (8.14) by constrained optimizatieahniques, | have proposed a
simple and computationally efficient solution to the probl@ank and Karjalainen 2010]. The
first step of the method involves finding th&, matrices without the constraint of Eq. (8.14b).
Since now the elements &f, become independent, the total error is minimal ifﬁjjj are
minimal. Thus, the problem reduces to minimizing Eq. (8f8)ll £} ; independently, which
are separate linear least-squares problems with a clasgdsolution.

As a second step, the resultii¥f, matrices are “converted” to positive semidefinite matri-
ces. This last step involves finding the nearest positivédsfinite matrix toY,. The solution
to the problem becomes relatively simple if the distancevben the originalYy’, and the pos-
itive semidefiniteY, matrices is evaluated in terms of the Frobenius norm. Fdynthis can
be written as the optimization problem

1Y, = Yillp = [ (V5 = YVE)? — min (8.15a)

subject to Yy > 0. (8.15b)

It turns out that the optim&’,, is obtained by computing the spectral decompositiol pfdis-
carding the negative eigenvalues and their eigenvectodsiexonstructing the matrix from the
remaining positive eigenvalues and corresponding eiggok®to obtainy, [Higham 1988].

While the above two-step solution is suboptimal compareddiving the two lines of
Eq. (8.14) jointly, we will see in the example of Sec. 8.2.6tth provides reasonable accu-
racy without the need of complicated parameter estimation.

8.2.6 Design example

The example is a two-dimensional admittance modeling ofcaustic guitar bridge (Gibson,
from 1960’s) near the lowest) string. The bridge was excited by the wire breaking techaiq
[Woodhouse 2004; Bank and Karjalainen 2010] and the moveafehe bridge was measured
by a miniature accelerometer. The bridge was excited wihvtiie breaking in the direction
perpendiculary direction) and parallel to the body (irection). The acceleration was also
measured in these two directions. This gave a 2 by 2 admétamgulse response matrix

Yingyln] Yiny:[n] (8.16)

Yultl = | v 7] Yaodln

where the “m” subscript indicates that these are measutedsjavhich are then approximated
by the admittance model impulse respoi8Se|. Note that in theory}, ,.[n] = Yi, .,[n], but
there are always some differences due to measurement.eHorgever, for model fitting, a
symmetricY ,,[n] matrix is assumed (see Sec. 8.2.3). This is most easilyfisdtisither by
averaging the two responses, or by using only one of them (Beagless noisy one).

The parameters of the admittance model were estimated imteedomain by the parameter
estimation procedure outlined in Secs. 8.2.4 and 8.2.5.r@$dts of the parameter estimation
for an admittance model having 100 second-order filters{ 100) are shown in Fig. 8.2.6. The
thin black lines in Fig. 8.2.6 show the measured responskie the thick gray lines display
the parallel filter responses based¥p, before they are converted to the passive versiops
according to Sec. 8.2.5, following the measured responie gccurately. When the passivity
constraints are enforced, the filter responses still follegvstructure of the admittance, but be-
come shifted (thick black line vs. gray line). Note that thisuld not happen if the origina’,,
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Figure 8.1. Modeling a measured guitar bridge admittance by the prappassive admittance model
with 100 second-order filters for the (g), (b) vz, and (c)zz elements of the admittance matrix. Thin
line: measured, thick gray line: non-passive, thick black:| passive parallel filter responses.

responses were passive: since they follow the measureeesdmably well, it can be assumed
that the measurement results themselves correspond to-assive admittance. This is most
probably due to the fact that the wire-breaking providey aplproximately constant excitation
force as a function of frequency.

As already noted, based on my ideas, an improved paraméitaagsn method have been
later proposed by Maestre et al. [2015, 2017]. Their teammigses the same filter struc-
ture composed of positive semidefinite matrices and passeend-order transfer functions
(Eq. (8.9)). However, instead of common-pole filter desigriMaestre et al. 2015] the poles
are obtained by sequential quadratic programming, whijMaestre et al. 2017] by a peak se-
lection algorithm. Finally, th&", matrices are obtained by semidefinite programming enfgrcin
passivity. The comparison in [Maestre et al. 2017] demaitessrthat a significant improvement
is obtained in modeling accuracy compared to the simpldmigcie presented here and first
published in [Bank and Karjalainen 2010], at the cost of agrcmmplex optimization process.

8.3 MIMO equalization using fixed-pole parallel filters

Equalizing a MIMO transfer function is a common task in augli@coustic signal processing.
The process is often called multichannel inversion or declortion, and it basically means de-
signing a set of digital filters given by the matiX(z) which modifies the transfer function
matrix of the systen$(z) such that the resulting transfer function is close to thgaaresponse
matrix Q. (z). Crosstalk cancellation is mathematically the same problEhe practical differ-
ence as opposed to general equalization is that insteadutitarfjet matrixQ; (=) only certain
transfer function paths of the target response (typicdly diagonal elements @);(z)) are
nonzero.

The filter matrixH(z) can be applied both before and after the acoustic systemn whe
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the signals are filtered before they are sent to the loudspgathe equalized transfer function
becomeg)(z) = S(z)H(z) (this is shown in Fig. 8.2), while when they are filtered afiemg
picked up by the microphones, it@(z) = H(z)S(z).

IxI Ix0
. f— i< —3 ,

X' (2) H(z) S(2) Yeq(2)
input | filter system .output
- /

'
Q(2)

Figure 8.2: The block diagram of MIMO equalization.

Applications of such processing in the audio field includedlqualization of room transfer
functions [Miyoshi and Kaneda 1988; Sarris et al. 2004; Bemt et al. 2007; Brannmark and
Ahlén 2015; Cecchi et al. 2018], crosstalk cancellationsiogle [Huang et al. 2007; Mertins
et al. 2021] and multiple [Huang et al. 2008; Hollebon et BRP)] listeners, wave-field synthe-
sis with room compensation applied [Gauthier and Berry 26Qigter et al. 2005], directivity
control of loudspeaker arrays [Zotter et al. 2008; ZottedHGnd microphone array process-
ing [Benesty et al. 2007]. The implementation of personainsbbzones also requires MIMO
filtering [Betlehem et al. 2015; Vindrola et al. 2019, 2020yitet al. 2020].

The FIR equalization filters can be designed in the time-dohiyoshi and Kaneda 1988;
Sarris et al. 2004; Santillian et al. 2007; Huang et al. 2@0D8; Kirkeby and Nelson 1999] by
solving a least-squares problem for approximating theirequmpulse responses of the transfer
function paths. A more efficient alternative (often termezhfiency-domain deconvolution) is
inverting the transfer function matrix for all frequenciesparately, and then computing the
equalization filter impulse responses via IFFT [Kirkeby et1898]. This reduces the design
time significantly, but results in a sub-optimal solutioncg the various frequencies are treated
independently. As a result, the time-domain least-squappsoach requires lower order filters
for the same accuracy [Kirkeby and Nelson 1999; Fuster 04I5].

Interestingly, the elements of the equalization filter mxak (=) are almost always FIR fil-
ters. The most probable reason for using FIR filters is th#tigicase the problem is linear in
parameters, allowing a simple mathematical formulatism@posed to a general IIR filter de-
sign case. The only example | am aware of when not FIR filtersised is two-channel crosstalk
cancellation using warped FIR filters [Kirkeby et al. 19980dg et al. 2005]. Warped FIR fil-
ters are designed similarly to normal FIR filters once allithpulse responses are warped, but
they act as IIR filters when being implemented (see Chapt # shown in [Jeong et al. 2005]
that compared to a straightforward FIR equalizer, frequemarping leads to better channel
separation in the important low frequency region.

We know from single-channel IIR filter design that IIR filtexlow modeling or equalizing
physical systems at lower filter order for the same accuraaypared to FIR filters, and this is
especially true for audio applications where the inheyelirtear frequency resolution of FIR
filters does not match the logarithmic frequency resolubbhearing. Therefore, the aim of
my research at this point was to generalize the fixed-poliggdes parallel filters to the MIMO
equalization case [Bank 2018b].
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8.3.1 Two-step equalizer design

The most straightforward way of designing a MIMO equalizsing parallel filters is a two-
step procedure. First, an equalizer filter mafidx;r(z) is estimated in the FIR form either
in the frequency domain [Kirkeby et al. 1998; Vindrola et 2019] or in the time-domain
[Miyoshi and Kaneda 1988; Sarris et al. 2004; Santillianle2@07; Huang et al. 2007, 2008;
Kirkeby and Nelson 1999] by the readily available methods=d®d, for each element &f(z)

a single-channel parallel filter is designed, which cosgistiinding the suitable poles by one
of the methods of Chap. 7, then estimating the filter numesdig an LS fit as described in
Secs. 6.2. However, this is mathematically not optimal¢esithe error is minimized in two
separate steps: first, an intermediate FIR equalizer igdedithat minimizes the error between
the target response and equalized system response maamncesext separate parallel filters
are estimated where the errors between the impulse respohtfee FIR and parallel filters are
minimized.

8.3.2 Direct equalizer design

To improve the performance compared to the above two-stegeps, | have proposed a direct
equalizer design procedure in [Bank 2018Db] that is the geization of the single-channel case
described in Sec. 6.3. The poles of the parallel filters ateraened by one of the methods
presented in Chap. 7 based on the FIR filter mditixg (), similarly to the two-step case of
Sec. 8.3.1. The difference lies in the fact that here the matoes of the second-order sections
are not estimated based on the intermediate FIR equalzgy(z), but obtained in a single
step, where the error between the target response matritharejualized system response is
minimized.

In the MIMO equalization problem we have a system with therimatansfer functiorS(z)
which gives the output signal vector

y(2) = S(2)x(2) (8.17)

as a response to the input column vect(r).
The response is equalized by filtering the input sigséls with a MIMO filter H(z) prior
to sending them to the system, giving the equalized output

Yea(2) = S(2)H(2)x(2) = Q(2)x(2), (8.18)

whereQ(z) is the transfer function matrix of the equalized MIMO syst®e Fig. 8.2). Note
that in the alternative configuration, the MIMO filter is ajgol to the output of the system,
giving basically the same equations with interchangedrastithe matrices.

In equalizer design our goal is to optimize the parameteth®filter H(z) such that the
resulting equalized transfer functi@d(z) = S(z)H(z) is the closest to the targ€};(z). The
problem can be separated into independent SIMO subprolidgraglitting Q(z) andH(z) to
their columns af)(z) = [qi1(2) ... qs(z)] andH(z) = [hy(2) ... h;(z)], and thus

Q(z) =S(2)H(z) = qi(z) = S(2)h;(2) (8.19)

for all « = [1...I]. This basically corresponds to obtaining the equalizedsfex functions
from a specific input to all outputs, given in vectad;(z). Now this should be close to thith
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column of Q¢ (z) given asq; ;(z), which actually specifies the desired transfer functionalito
outputs if only input is excited.

For the sake of clarity but without the loss of generality wiéevthe equalization problem
(8.19) for a system having two inputs and two outputs. Forezi$io input: (8.19) becomes:

ql,i(z) = 8171(2)}1171'(2)+5172(2’)h27i(2), (8203.)
QQvi(Z) = SQJ(Z)hlﬂ‘(z)+5272(2)h/27i(z). (820b)

Writing this in the time-domain yields

qu(n) = slvl(n) * hLi(TL) —+ Slvg(n) * hgvi(n), (821a)
qgﬂ-(n) = 8271(71) * hLZ'(Z) + 8272(’&) * hgﬂ'(n), (821b)

wherex denotes convolution.

The impulse responsés ;(n) and hy;(n) of the equalizer filters can be written as a lin-
ear combination of the same basis functions as for the soigdaenel case, that is, the decay-
ing responses of second-order denominators, and the deimymilses of the FIR part (see
Sec. 6.2.1). To simplify the notations, here we will call mlbdeling signalsn,(n), which
means thatn, (n) = ui(n), me(n) = uy(n — 1) representing the decaying response of the first
denominator and its delayed version, theg(n) = us(n), ms(n) = uz(n — 1), and so on. In
general,mao,_1(n) = uk(n) andmai(n) = ux(n — 1), for k = 1... K. Finally, the lastn
signals contain the delayed unit pulses correspondingetoptional FIR path. Since the poles
of the filters can be different, two different sets of basisctions are neededn,,(n)" for
hu(n) andmk(n)@’i) for hgvi(n).

Thus, the equalized impulse response of the first outputregdrecomes

R R

q1,i(n) = r,gl’i)mk(n)(l’i) *51,1(n) + Z r,gz’i)mk(n)(z’i) * 512(n), (8.22)
k=1 k=1

and for the second output channel itis

R R
q2.i(n) = Z T,(:’i)mk(n)(l’i) % S91(n) + Z T,(f’i)mk(n)@’i) * S90(n), (8.23)
k=1 k=1
wherer,(j’i) contain the filter weights (numerator coefficients and thalpe FIR coefficients)
of the first filterh, ;(n) andr,(f’i) contain the filter weights of the second filtey;(n).

Now we need to jointly optimize!"” andr{*” such that, ;(n) andgs,;(n) will be close to
the targets; ; ;(n) andg; o ,(n), respectively. For this, we write Egs. (8.22) and (8.23) jioiat

matrix form
q1,i M, ;*s;1 My, *819]| |1,
T = ’ ' ' ’ "l 8.24

|:q2,i:| {Mu *Sy1 Mg * S2,J L‘Q,i] ( )

whereq,; contains the impulse response of the equalized system finpurt i to outputo,
S,; contains the system impulse response from inptat outputo, M, ; are the same type
of modeling matrices as for the single-channel case (see6S24) for the filterH, ;(z), and
finally r,, contain the free parameters of the parallel filters. Wri{®@4) in a compact form
by composing a single matrix and two column vectors yields

qc = Mcrca (825)
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which should be close to

¢.1,6
e 8.26
a [q] (8.26)

in the mean square sense, whegg ; is the target impulse response from inpub the first
output, andy, » ; is the target impulse response from inptb the second output.
The solution can be again given in a closed form:

Teopt = M+Qt,c, (8273.)
M/, = (MIM.) 'M!. (8.27b)

While Eqg. (8.27) is appealing due to its compact form, it ipartant to note that computing the
pseudoinverse for large matrices, such as the ones whiehysacur in MIMO parallel filter
design is numerically problematic. As already noted in &&,.numerically robust methods for
solving large least-squares problems include the Choldskpmposition or QR factorization
[Golub and Loan 2013]. In MATLAB the later is implemented Imetr di vi de function.

8.3.3 Design examples

As an illustrative example for the IIR MIMO equalizer, herealtichannel crosstalk cancella-
tion application is presented. Crosstalk cancellatioraipularly well suited to compare the
effectiveness of MIMO equalization techniques due to mse target function: the specifica-
tion is constant response in a few transfer function patid zaro in all the others. This allows
the easy inspection of the equalization performance.

The plant to be equalized is a spherical loudspeaker arrapmd&0 speaker elements.
Spherical loudspeaker arrays allow the separate exaitafi@ach speaker element, and thus
a sound source with controlled directivity (beamforminghde constructed. Such speakers
have been used in acoustic measurements [Warusfel et &l, 288er and Holdrich 2007; Neal
and Vigeant 2020], local sound control (noise cancellatj®afaely 2009], and in contempo-
rary music performances [Zotter et al. 2017].

The desired directivity of spherical speaker is usuallygiin terms of spherical harmonics.
A decoder matrix transforms the spherical harmonic sigmasloudspeaker signals. Accord-
ingly, directivity control requires the individual contraf each loudspeaker element. Therefore
a crosstalk canceller must be applied before the loudspesadpeals are actually sent to the
speaker elements [Zotter 2009; Zotter et al. 2017]. Thestadis canceller is usually imple-
mented as an FIR filter, in the examples below we will invedBghe possibilities of applying
fixed-pole IR filters instead.

The transfer functions of the speaker elements have beesumeebby exciting the speakers
separately with logarithmic sweep signals and measuriagéhocity of each loudspeaker cap
using a laser-vibrometer [Zotter 2009]. Since meaninggdrbforming can be achieved by
such a large array only up to a few kHz due to spatial aliadimgsampling rate was limited
to f; = 11.025 kHz. The measured responses are windowed to 2048 taps wieemnapulse
responses have already died out. This gaé a 20 transfer function matrix, ideally having
nonzero elements only in its diagonal. However, since tlealsgr elements share the same air
volume in the enclosure, there is a significant crosstaléen the channels. This is displayed
in Fig. 8.3 (a), showing the first column of the transfer fumectmatrixS(z), corresponding to
the case when loudspeaker No. 1 is excited and all speakermeasured. It can be seen in
Fig. 8.3 (a) that neither the transfer function of the disgjantry is flat (gray thick line), nor
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the off-diagonal entries are zero (thin lines). Other inghennels have a similar (though not
completely identical) behavior, since all the 20 loudsgealare of the same type, but slightly
different due to manufacturing tolerances.
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Figure 8.3: Velocity responses of a 20 channel spherical loudspeakay athen only speaker No. 1 is
excited: (a) original, equalized by (b) a single-channeéd 2&p FIR filter, (c) by a 256 tap MIMO FIR
filter designed by the fast deconvolution method of [Kirkediyal. 1998], and (d) by a 256 tap MIMO
FIR filter designed in the time domain by a least squares fitkgdy and Nelson 1999; Huang et al.
2007]. Gray thick line: diagonal element, thin line: cradisiproducts.

The first approach to equalization is designing a singlexbb256 tap FIR filter that flat-
tens the frequency response of the diagonal: the effecoisrsin Fig. 8.3 (b) using a band-pass
target response with the corner frequencies of 100 Hz andz4 ktdturally, a filter applied to
input channel 1 only will not change the relative values @f tbsponses; therefore the relative
crosstalk remains unaffected, whose worst case is aroindBat 1 kHz.

Next, different MIMO equalizers are designed that feed lal 20 loudspeaker channels.
Here we will only display the first SIMO subproblem aiming abgucing a band-pass response
for speaker 1 (the corner frequencies are 100 Hz and 4 kHz)e wikinimal (ideally, zero)
velocity output for speakers 2—20. Thus, only the first calwwhthe equalized response matrix
Q(z) will be shown. The other input channels have an almost idehbehavior due to the
symmetry of the loudspeaker arrangement.

The first example is the case of frequency-domain decorivol{Kirkeby et al. 1998]. The
full length (2048 taps) impulse responses obtained fronowlaadution (termedong Kirkeby
inversehere) are windowed to 256 taps and applied as a MIMO FIR expraljNote that “256
tap” means 256 tap FIR filters in each element of the filter matThe results are shown in
Fig. 8.3 (c). It can be seen in Fig. 8.3 (c) that a 256 tap inguésponse reduces the maximal
crosstalk from -20 dB to -40 dB compared to Fig. 8.3 (d). Hosvewa peak in the crosstalk
terms at 300 Hz arises in Fig. 8.3 (c): this corresponds tptbblematic area having sharp
notches around 300 Hz in the original transfer function (Sge 8.3 (a)). For eliminating this,
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a longer impulse response, and thus finer frequency resolutuld be needed in that region.

The time-domain FIR LS design [Kirkeby and Nelson 1999; Huahal. 2007] leads to
a slightly better performance for the same filter length du¢he fact that now the filter is
optimized for the available 256 taps, and not obtained bydaiving a long optimal filter, as
for the frequency-domain deconvolution case. This is shiowiig. 8.3 (d), and the difference
is mostly visible at low frequencies compared to Fig. 8.3 (c)
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Figure 8.4: Velocity responses of the loudspeaker array equalizedy(a) 128th order MIMO parallel
filter obtained by the two-step design and (b) by a 128th oMI&MO parallel filter obtained by the
direct-design approach. The same examples with lower fiter: the response equalized by (c) a 64th
order MIMO parallel filter obtained by the two-step designl &d) by a 64th order MIMO parallel filter
obtained by the direct-design approach. Gray thick linagdnal element, thin line: crosstalk products.

Finally, two parallel filter designs are presented. Figuee (@) shows an example where
each filter path contains a 128th order IIR filter (64 secord&nlIR sections and no parallel
FIR path) which needs the same amount of multiplication afdit@n operations as the 256
tap FIR filter. The first filter is obtained as described in &8.1, that is, separate fixed-pole
parallel filters are designed based on thieg Kirkeby inverse The poles are obtained by a
warped IIR design with\ = 0.6, as described in Sec. 7.1. As can be seen in Fig. 8.4 (a), the
performance is significantly improved around the probleoragion near 300 Hz compared to
the FIR equalizers of Fig. 8.3 (c) and (d). On the other hamelctosstalk at low frequencies is
increased.

Next, a 128th order MIMO parallel filter is obtained by theedir design method proposed
in Sec. 8.3.2. The poles of the filter are obtained fromltmg Kirkeby inversevia a warped
[IR deign with a warping parameter = 0.6 similarly to the previous example. However, the
numerator coefficients are estimated by the LS procedumgoged in Sec. 8.3.2. According to
Fig. 8.4 (b) the channel separation is improved signifigaciimpared to the FIR equalizer case
of Fig. 8.3 (d): while for the FIR case the largest crosstalkdO dB in the operating range of
the loudspeaker, this is reduced to -60 dB with the paralterfby using the same amount of
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arithmetic operations.

Fig. 8.4 (c) and (d) shows a different type of comparison: tiosvorder of the parallel filter
is 64, meaning that the number of required arithmetic operatis the half compared to the
FIR examples. On the other hand, the parallel equalizelirdadeby the direct design method
(Fig. 8.4 (d)) still outperforms the FIR equalizers of Fig3&c) and (d), since the maximal
crosstalkis -50 dB instead of -40 dB of the FIR equalizers dinect design of Fig. 8.4 (d) leads
to a significantly improved low-frequency performance canegal to the two-step procedure of
Fig. 8.4 (c), similarly to the previous example.

To sum up, this section has generalized the fixed-pole dedigarallel second-order filters
for the equalization of MIMO systems. By taking advantagdix#d poles, the design of an
IIR equalizer is equally simple as that of the commonly uskl équalizer and a closed-form
solution can be obtained when the problem is formulatederig¢hst-squares sense. The signif-
icance of this result is that in many MIMO equalization apations parallel filters can be used
instead of FIR filters without major modifications to the nuth and algorithms, with higher
flexibility in frequency resolution that can lead to bettqualization performance for the same
number of arithmetic operations.

8.4 Scientific statements

Statement 3: | have given the multichannel extension of thexed-pole parallel filter and

shown that significant computational savings can be achiedewith a common pole set. |
have given the extension of single-channel design techniggifor passive admittance matrix
modeling and MIMO equalizer design.

3.1: I have developed a filter structure and a corresponding deseghod that can be used for
modeling MIMO passive systems in the full audio frequenayges The key idea is to con-
struct the filter matrix as a linear combination of frequenuyependent positive semidefinite
matrices and single-channel positive real second-orderdil The poles are chosen based on
warped common-pole all-pole modeling, and the positiveidefimite matrices are found by an
unconstrained LS design and then finding the closest pes@midefinite matrix.

3.2: | have extended the direct equalizer design method for thlegtion of MIMO sys-

tems and showed that the problem remains linear in its pdaeasmalso for the MIMO case.
This means that the least squares method commonly useddigniteg FIR MIMO equalizers
remains applicable for the parallel filter, with the addediBgity of the arbitrary frequency
resolution achievable by fixed-pole parallel filters.

The related results have been published in one journal gjBpek 2018b] and in one con-
ference paper [Bank and Karjalainen 2010]

1The publication has been written together with late ProfttMéarjalainen. | have developed the filter design
algorithm presented in this thesis, while his contributizas about converting the admittance filters to reflection
filters so that they can be directly connected to digital vganee string models. His part of the work has not been
included in this thesis, nor in the above list of scientifetements.
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The delayed parallel filter

The original parallel filter structure of Fig. 6.1 stems frohe form used in partial fraction
expansion Eq. (6.1), where the FIR part is in parallel with R part. However, later | have
discovered that in the case of a long FIR part a dynamic rangiédlgm arises which can cause
numerical issues when the filter is implemented in a DSP: tagmtude response of the FIR
part and the second-order sections are often significaanlyet than that of the resulting filter,
requiring the downscaling of the input signal or the nunmrabefficients to avoid overflow,
which leads to a loss of useful bitdepth [Bank and Smith 2014jave realized that this is
because of the time-domain overlap of the FIR and IIR panid,|dave proposed a solution to
the problem by using a delayed parallel structure where é§ponse starts after the FIR part
[Bank and Smith 2014]. This will be presented in Sec. 9.1.

Perhaps even more importantly, | have demonstrated thatlgxhe same problem arises
when direct form IIR filters are converted to parallel seconder sections by the usual proce-
dure of partial fraction expansion. As a solution, | sugges$b use the delayed parallel form for
implementation in [Bank and Smith 2014; Bank 2018a]. In &ddj | have demonstrated that
the usual partial fraction expansion can be numericallplematic for high (v > 100) filter
orders, and proposed a more robust least-squares dirpet-étiel conversion method [Bank
2018a]. These results will be presented in Sec. 9.2.

9.1 The delayed parallel filter for fixed-pole design

Since causal lIR filters with a proper transfer function cosgtheir impulse response as a sum
of decaying exponentials, they are most suited to modeldleganpulse responses. Modeling
minimum-phase systems are thus optimal targets for IIRr fd&sign, since in that case the
energy of the impulse response is concentrated to the hagimf the response, as already
discussed in Sec. 2.4. However, many systems have non-ommimase behavior, and thus a
rising part in the beginning of their impulse response. kehstases it is more efficient to model
the first part up to the highest peak of the impulse responsnldiR filter, and the decaying
part with an IIR filter. Coming this observation, | have susigée the use of an FIR path in
parallel with the second-order sections in [Bank 2007],amain compatible with the usual
parallel form obtained by partial fraction expansion. Adtttime | did not realize that this can
lead to numerical problems especially when the FIR part Haglaorder. However, later it had
turned out that this parallel FIR part can lead to a dynammgedimitation of the filter. This is
described in the following.

83
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9.1.1 The dynamic range problem

Let us first look at an example that illustrates the problewr. this, a fixed-pole parallel filter
is designed to model a piano soundboard response with 5@derder sections. The target
impulse response is highly nonminimum-phase, as can beiséeg. 9.2 (a), thin line (notice
that the peak of the response is at around 200 and not at around = 0). Since the second-
order sections cannot efficiently model the rising part @f tesponse, a 200th order parallel
FIR part is added, as | have suggested in [Bank 2007]. As casebr in the Fig. 9.1 (a)
thick line and Fig. 9.2 left column (a) thick line, the filtesliows the specification quite well.
However, when looking at the individual responses of thé¢ices, we see a striking picture:
130 dB difference arises between the peaks of some secded-sections (thin lines) and the
peak of the final transfer function (thick line), as can benseeFig. 9.1 (a). In a fixed-point
implementation this would require the heavy downscalinthefinput signal or the numerator
coefficients to avoid overflow in the sections, and this 130ddf&rence would thus actually
lead to the loss of 21 bits precision. In floating point, no dewaling is necessary since the
number format takes care of that automatically. However]dks of useful bits is still the same
in that case.

| have given an explanation for this behavior in [Bank and t8r2i014], which will be
outlined here. According to Sec. 6.2.1, in time-domain giesif parallel filters a linear least
squares (LS) fit is performed where the basis functions degyee impulses for the FIR part
and exponentially decaying sinusoids (and their one-sami@layed versions) for the second-
order IIR sections. The weights are set by the LS design dathiedfilter impulse response
best approximates the target impulse response. Sincgtanorder FIR part gives complete
freedom for setting the first/ + 1 samples of the filter response, the LS design can set the FIR
coefficients in such a way that the firdf + 1 samples®{ = [0..)/]) are matched perfectly.
This means that the numerators of the second-order sestitirdepend only on the samples
after the FIR parti{ > M + 1). This can be shown by partitioning the matrices involvethim
least-squares design, as outlined in Appendix A.6.

If the FIR part is sufficiently long, the decaying sinusoidsresponding to the denominators
1/(1+ aypz™t + askz~') have already a low level for these samptes- M + 1, which is
counteracted by the LS design by increasing the initial #omés of these sinusoids, and thus
the numerator coefficients of the second-order filters. tarre this will mean a large signal at
the beginning of the response, overlapping the FIR partaade seen in Fig. 9.2 left column
(b). Actually, the FIR coefficients arise as the differentthe target response and the response
of the 1IR sections for the first/ + 1 samples (see Eq. (A.29) in the Appendix), thus, besides
setting the initial sample values, another role of the FIBfiicients is to cancel the response of
the lIR part in the firstV/ + 1 samples. This is shown in Fig. 9.2 left column (b) and (c)gher
also note the different amplitude scale compared to (a).

Once understood, this numerical problem can be solved implsiway: the parallel IR
part must be delayed so that there is no overlap between Eharid IR parts:

bro 4 D12 .
v e B B A (9.1)

H(z) = Z*(M+1)
(2) 14+ ap127t + ag 2272 —

K
k=1

The first M + 1 samples of the impulse response are now determined solelyebthe M/ th
order FIR part, and the rest of the impulse response by thpdlR
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Figure 9.1: Fixed-pole parallel filter implementations aiming to modepiano soundboard response
with the original, non-delayed parallel filter (a) and théagled form (b). The filters contain 50 second-
order IIR sections and a 200 tap FIR path. Thick gray linegdafrequency response, thick line: filter
response, dashed line: frequency response of the FIR partlines: the individual responses of the
second-order sections.

9.1.2 Conversion from the original form to the delayed form

The parameters of the delayed filter structure can be olt&iom the original parallel structure
of Eq. (6.2) with an\/th order FIR part as follows: the fird/ 4+ 1 samples of the filter impulse
responsé:(n) are computed, and these samples are directly used as thd Rexaéfficients:

fm = h(m) form = [0,1,... M]. (9.2)

For the parallel 1IR sections, the denominators remain #imesand the numerators are set
in such a way that the decaying exponentials of the delayexd fave the same amplitude and
phase at sample = 0 as at sample = M + 1 with the original sections. First the second-order
sections are decomposed to a pair of complex first-order i€t dito obtain the complex form
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Figure 9.2: Time-domain responses of the parallel filter shown in Fifj. ®.eft column: the original,
non-delayed form, right column: delayed form. In both cohsm(a) target impulse response (thin line)
and filter impulse response (thick line), (b) the respongbasecond-order sections, and (c) the response
of the 200th order FIR part.

of EQ. (6.1). Then the modified residugsare obtained as

& = cip)" (9.3)

7 )

and finally the first-order filters are combined to form secondker sections having real coeffi-
cients.

9.1.3 Design in the delayed form

Itis also possible to design the parallel filter in the detbfggm of Eq. (9.1) directly, instead of
converting from the original form. In this case, we chooseRIR coefficientsf,, equal to the
first M + 1 samples of the target impulse respohge: ):

fm = hi(m) for k =1[0,1,... M|, (9.4)

where)M is the order of the FIR part.
Then, the remaining part of the target will be used as a spatin

ho(n) = hy(n+ M +1) (9.5)
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for designing a FIR-less parallel filter. Thus, the modelmagtrix M will contain only the
responses corresponding to the second-order sectionsy loumit pulses.

Besides avoiding the conversion, this has an added benefgaéasing the computational
complexity of the design, since now the normal equationsneseé M/ + 1 fewer parameters.
In addition, the design problem becomes numerically beweditioned, since in the original
design the sam@/ + 1 samples are determined both by the FIR and the IIR parts hwhicow
avoided.

Note that when the delayed parallel filter is designed basealfoequency response speci-
fication, we cannot take advantage of the fact that the FIicmats are the same as the early
part of the impulse response. In this case all free paras@#R and numerator coefficients)
have to be computed by the LS solution, similarly to Sec.26.Zhe only difference is that the
frequency responses of the second-order sections in thpeeney-domain modeling matrixt
used in Sec. 6.2.2 are multiplied by M+ = ¢=79»(M+1) jn gaccordance with Eq. (9.1).

This is also the case for direct equalizer design, where theéefmg matrixM., must be
modified so that the responses corresponding to secondmads are delayed by/ + 1 sam-
ples. For time-domain design, this simply means shiftinggrdthe corresponding columns of
M., by M + 1 samples and inserting zeros for the fitgt+ 1 elements, while for frequency-
domain design this achieved by a multiplication witf+1) = ¢=79n(M+1),

9.1.4 Delayed parallel filter example

To show that the delayed form of the parallel filter elimirsatiee dynamic range problem of
Fig. 9.1 (a), a delayed parallel filter is designed based ers#ime target response and same
pole positions as for Fig. 9.1 (a). The filter is designeddiyein the delayed form in the
time-domain, as discussed in Sec. 9.1.3. It can be seen.i® Higb) that now the gains of the
individual sections (dotted lines) and the FIR part (dadheg) are in the same range as that of
the total transfer function: the highest peak of a seconigosection is now only 2 dB larger
than the peak of the overall response. The same responsdisaleg/ed in the time-domain in
Fig. 9.2 right column, showing how the delayed IIR (b) and FRparts are combined to form
the total impulse response (a). The filter impulse respohtareed by the this modified design
(Figs. 9.1 (b) and 9.2 (a) right column) is the same as thdtebtiginal parallel filter (Figs. 9.1
(a) and 9.2 (a) left column) up to numerical precision, arelsame would also be true if the
delayed parallel filter was obtained from the original plaidllter by conversion according to
Sec. 9.1.2. However, now the need for downscaling and theislghamic range reduction is
avoided.

9.2 Obtaining parallel filters from direct form IIR filters

So far we have used the parallel second-order IIR structueefixed-pole design context for
gaining control over the frequency resolution of the desi§ymmore traditional and thus more
widespread use of the parallel second-order structuraisdd as an alternative implementation
form for IIR filters designed in direct form, as already mengd in the introduction of Chap. 6.
This is because a theoretically stable IIR filter might beeamstable when implemented with
finite coefficient precision due to coefficient rounding. Tieblem becomes pronounced when
the filter has high order and/or has poles near the unit ciréle a remedy, IIR filters are
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often implemented as a series or parallel combination gfi¢ally, second-order) subfilters
[Oppenheim et al. 1999; Rabiner and Gold 1975; Chen 1996].

Traditionally, the series connection of second-orderrilteas been more common. How-
ever, nowadays the parallel implementation is gaining naoemore interest since it provides
several advantages compared to series biquads: it has tpaetization noise [Chen 1996],
and even more importantly, it leads to a significant speedupaodern multi-core processors
that can take advantage of the fully parallel filter struetiielloch et al. 2014].

While alternative methods are available for direct-togtlat conversion [Price et al. 1996;
Krukowski et al. 1996], by far the most common way of convegtfilters to parallel form is
based on partial fraction expansion [Oppenheim et al. 19B88}e the first step is converting
the rational transfer function to the residue form

_ ™ T2 T Nden
H(z™" = e 9.6
=) 1—pizt - 1 —pozt et 1 — pNdenz ™V (9-6)
wherer,, are the residues corresponding to the ppleandNg., is the order of the numerator.
The usual way of determining, is the Heaviside cover-up method, which can be formulated
mathematically as
rn= (1= 2"'p)H(2)] 9.7)

Note that (9.6) and (9.7) is general only if pojgsare distinct. In the case of pole multiplicity,
higher order terms also appear [Smith 2007].

The partial fraction expansion requires that the transfection H (z) is strictly proper, that
is, the order of the denominator is larger than the order efmtbmerator ¥ge,, > Npum). If
this is not the case, polynomial long division is performedesult in a FIR parf'(z~!) and a
strictly proper IIR partB’(z~!)/A(z!) as

2=pn

B(z"") _ B
AN T A

H(z"") = + fo+ fiz o fuY (9.8)
whereM = N, — Naen IS the order of the FIR part. Then the partial fraction expamss
applied to the strictly propeB’(z~')/A(z~!). The last step of the conversion is combining the
complex-conjugate pairs to second-order sections haealgcoefficients:

L
bo; + by 27t .
H(z)=Y" ] L > ™ (9.9)

9.2.1 Partial fraction expansion examples

| have demonstrated in [Bank and Smith 2014; Bank 2018a]dbatto the overlapping FIR
and IR parts exactly the same dynamic range problem arsdgbé partial fraction expansion
as with the fixed-pole design shown in Sec. 9.1.1. This carfleeuwrse explained by the fact
that the filter structure is the same in both cases.

In Fig. 9.3 (a) a direct-form IIR filter is designed by the §tez-McBride method [Steiglitz
and McBride 1965] to model a measured anechoic loudspeakponse. This is shown in
Fig. 9.3 (a) by a thick gray line, and then converted to a pelraét of second-order sections
plus a FIR part by the usual polynomial division partial frac expansion [Oppenheim et al.
1999]. The orders of the numerator and the denominator arefly with the short notation:
(20/20). This results in 10 second-order sections plus ataahgain section in parallel. The
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Figure 9.3: Parallel implementation of a (20/20) transfer function) tfaditional parallel form, (b)
delayed parallel form, and parallel implementation of aZR% transfer function: (c) traditional parallel
form, (d) delayed parallel form. The thick gray line shows tiriginal transfer function and the thick
black dashed line displays the net response of the paraljgdementation. The thin lines display the
magnitude responses of the second-order sections, andttied tine shows the magnitude response of
the FIR path (constant gain in the case of the (20/20) trafigfetion).

thick black dashed line shows the net transfer functionylapping the direct-form transfer
function (thick gray line) perfectly. The dotted line diagé the transfer function of the FIR
part F'(z~'), which is now a constant gain, while the thin lines corresptmthe magnitude
responses of the individual second-order sections.

It can be seen in Fig. 9.3 (a) that some of the individual fierrfsinctions (in this case, the
constant gain part displayed by dotted line and one secahel-eransfer function displayed
by a thin line) are significantly larger than the net tran$berction. Figure 9.3 (a) shows only
magnitude responses, therefore it cannot be seen thattth@s@per curves have almost oppo-
site phase, and the required net response is a result of &se glancellation of these individual
responses. This demonstrates that even one sample ovétlap IR and IIR parts (that is,
the constant gain path that arises when converting propesfer functions having the same
numerator and denominator orders) can cause dynamic ramiggtions.

The problem becomes even more pronounced if the order ofuheerator/V,,,, is larger
than that of the denominatdy,.,, since in that case more samples overlap. This is illugtrate
in Fig. 9.3 (c) for numerator and denominator orders of 25 2Mdespectively (25/20). It can
be seen in Fig. 9.3 (c) that now the fifth-order FIR part (dibtiee) is around 70 dB larger
than the net transfer function, decreasing the signakiseratio by 70 dB due to the required
downscaling. There is a thin line very close to the dotteé linat again corresponds to a
second-order transfer function with almost opposite plcasepared to the parallel FIR part.

9.2.2 The delayed parallel form

As we have seen Sec. 9.1.4, the dynamic range problem cami@etely eliminated if we do
not allow any overlap of the FIR and IIR parts by using the gethparallel form of Eq. (9.1).
The parameters of the delayed form can be obtained from thdtseof the partial fraction
expansion using the conversion presented in Sec. 9.1.2.
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However, it is also possible to use a different form of paftection expansion which gives
the parameters of the delayed parallel form directly [Ban& 8mith 2014; Bank 2018a]. In
[Smith 2007] an alternative partial fraction expansionmoethas been presented, where the FIR
part F'(z~!) and the strictly proper numerat®¥ (> ') are computed by performing polynomial
long division over the reversed numerator coefficients it reversed order denominator.
(Note that at that time it was not yet known that this altakgatvariant has more favorable
numerical properties and this was first demonstrated inBaxd Smith 2014].)

The alternative long division results in

H(zY) = z_(MH)M + fo+ fiz o+ fue M (9.10)
A(z71)
Finally, the transfer functiom’(> ') /A(z~!) is expanded to partial fractions by the Heaviside
cover up method as in Eq. (9.7) and combined to second-oed#ines to obtain the delayed
parallel form as

K bio + b1zt M
= (M+1) k,0 k,1 Fo_—m
H(z) =z D e s ) DE E (9.11)
k=1 ’ ) =0

Figure 9.3 (b) shows the same (20/20) transfer function &gn9.3 (a), but now the IIR part
is delayed by one sample so that there is no time-domainajvevith the constant gain part.
Now the individual transfer functions are only around 5 digéa than the net transfer function,
which is 15 dB smaller compared to that of the traditionabfiat form of Fig. 9.3 (a).

Even more pronounced is the difference for the (25/20) tearisnction of Fig. 9.3 (c): with
the delayed form displayed in Fig. 9.3 (d), the need for dmatisg by 70 dB is completely
eliminated, leading to a drastic improvement in signahtase ratio.

9.2.3 Obtaining the parallel form by a least-squares fit

For moderate filter orders<(100), obtaining the parallel form of IIR filters by partial frach
expansion is the most practical option. However, for hiditter orders the conversion can lead
to numerical errors, as | have demonstrated in [Bank 2018a].

This is displayed in Fig. 9.4 (a), where thick gray line shaav200th order IIR filter
(200/200) designed by the Steiglitz-McBride method [Stegand McBride 1965] to model
a measured room response. The black dashed line is the nstetrdunction of a delayed
parallel filter obtained by the procedure outlined in Se2.&.that is, performing polynomial
long division on the reversed numerator polynomial and tetial fraction expansion. It can
be seen that the magnitude response of the converted fikksrrtit match that of the original,
which is due to numerical errors. This is most probably dudaéofact that partial fraction ex-
pansion involves finding the roots of a polynomial, and raudifig is known to be numerically
sensitive.

To allow the conversion of high order IIR filters, | have dey@d a least squares method
[Bank 2018a]. This procedure gives the parameters of theyddlparallel form directly and is
robust even for very largeN > 1000) filter orders. The method is inspired by the fixed-pole
design of parallel filters. First the roots of denominatgr ") are found that are used to form
the denominator polynomials of the second-order sectibifis™*). Next, the numerators of
the sections are obtained via a least squares fit such thalifftaeence between the impulse
responses of the original and parallel structures is mirechi



dc_1787 20

9.2. Obtaining parallel filters from direct form IIR filters

19

Magnitude [dB]

Magnitude [dB]

0 x x
7 TV
—20 —_ M;!JJ ‘-‘d,‘xld'"}“i‘w‘ g
— = o
N ,e"«iivi’iWS"«:ilmw“‘“ | l M
_10 vl |
_GOL = =

10° 10 10
Frequency [Hz]

Figure 9.4: Delayed parallel implementation of a (200/200) transferction: conversion done (a) by
partial fraction expansion and (b) by a least squares fit.tAick gray line is the original transfer function
and the black dashed line is the net transfer function of thayegd parallel form. The thin lines show
the responses of the individual second-order sectionstenddtted line displays the transfer function of

the constant gain.

While the procedure is also applicable to the traditionah-delayed parallel form, it will be
illustrated for the numerically better performing delayedsion. The procedure is outlined for
the case of no pole multiplicity. In the case of repeatedgyae¥ms of higher than second-order
must also be included, similarly to the case of partial foacexpansion.

The steps of the conversion are the following:

1. Compute the roots, of the denominatord(z~1), flip the unstable polef,| > 1 in-
side the unit circle by replacing them witlyp,,, find the complex-conjugate pairs and
recombine the denominators of the second-order sectigis').

2. Compute the impulse responisg) of the filter H(z71) =

1=0...1.

B(z71)/A(z"1) for samples

3. FOrNpum > Nyen, the coefficients of the FIR part equal to the fiigt= N, — Noen + 1
samples of the filter impulse response, thafis= h(k) fork =0... M.
For Nyum < Ngen, there is no FIR part.

4. Compute the impulse responsesi) of the numerators/A4;(z7!) = 1/(1 + aj127" +
a;22~%). either analytically by the inverse z-transform, or by siyrfipunning” the filters
by using the recursion

ml(z) = —CLlel(Z' — 1) — CLLle(i - 2) + 5(2),

whered (i) is the discrete-time unit pulse.

(9.12)
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\ Filter order \ Error with PFE conv.\ Error with LS conv.\

(50/50) 2.36 x 10-10 dB 3.86 x 10~ dB
(100/100) 7.97 x 10~* dB 5.52 x 10~% dB
(200/200) 2.84 dB 6.78 x 1072 dB
(500/500) 4.45 dB 7.02 x 107 dB

(1000/1000) NaN 1.70 x 10~ " dB
(4000/4000) NaN 9.17 x 10~ dB
(8000/8000) NaN 8.09 x 10~° dB

Table 9.1: Mean absolute dB errors of transfer functions convertedatalfel form by partial fraction
expansion and by the proposed least squares method.

5. Find the numerator coefficien&go, EM by a least squares fit such that the resulting im-
pulse response

h(i) = bromy(i) + bami(i — 1) (9.13)

is closest to the impulse response of the original fil{g) starting from samplé= M +1
(for Nyum < N4en, Starting from samplé = 0).

Since (9.13) is linear in its free parametézf@, 7)571, it can be written in a matrix form
h = Mp, (9.14)

whereM contains the impulse responseg(i) and their delayed versions,;(i — 1) in
its columns, angb is a column vector composed of the correspondmgandl}lvo values.
Now the resulting impulse response vedioshould be the closest possible to the target
h vector containing the samplég:) from: = M + 1 in the least squares sense. This
Is again a standard linear least squares problem (outlim&ecs. 2.3 and 6.2.1), with a
closed-form solution

p=M"M)"'M"h. (9.15)

Figure 9.4 (b) shows the net transfer function of the delggedllel form when the conver-
sion is done by the above least-squares fit. As can be seentheavenversion is much more
accurate compared to the one obtained by using partiaidraeikpansion shown in Fig. 9.4
(a). As for the size of the least-squares problem, the ingn@sponse fit was made fbre= 400
samples. In general, itis a good practice to chaosech a way that it contains all the important
parts of the impulse response, so thél for i > I is negligible.

Table 9.1 lists the mean absolute dB errors computed bettireeariginal and converted
transfer functions in the range of 20 Hz and 22.05 kHz forousifilter orders, including the
(200/200) example of Fig. 9.4. The significantly better aacy of the LS procedure is apparent
starting from order 100. For the orders of 1000, 4000, and3880me of the extracted polgs
are outside the unit circle, thus, the PFE based method teaas unstable filter. On the other
hand, the proposed procedure still produces accurateisesacte it starts with stabilizing the
poles by flipping them inside the unit circle in Step 1.

The reason for the significantly better performance contpreartial fraction expansion is
that the numerical errors in finding the poles are compeddatehe numerators of the second-
order sections: the least-squares fit will give the bestiptessnpulse response match for the
given (slightly inaccurate) denominators.
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It is also worth noting that an apparent disadvantage oféhstisquares method proposed
here over the traditional partial fraction expansion ig thaequires significantly more arith-
metic operations. However, the dominant source of comjoumalt time in direct-to-parallel
conversion is finding the roots of(z~!), and compared to that the computational time differ-
ence of the two methods becomes negligible.

In some situations the transfer function we are converting parallel form is given as a
series of second-order sections, or, equivalently, ingel® form. Examples include classic
low-pass, band-pass, etc. filters such as Butterworth, ety etc. [Oppenheim et al. 1999].
(Thebut t er ,cheby1, etc. commands in MATLAB/Octave can give the pole-zeroioaisof
the filters making the implementation possible for such &tagder/low cutoff frequency filters
where the direct form implementation is unfeasible due tmerical reasons.) Other examples
can be series graphic or parametric equalizers [Valima#tiReiss 2016] and equalizer filters
iteratively designed directly in the series form [Ramos &dgez 2006] or obtained from a
warped IIR design [Tyril et al. 2001].

| have demonstrated in [Bank 2018a] that the above leastegu@ethod can also be used to
convert from series second-order sections or pole-zero forthe parallel form. It is important
that the target impulse responkg) is computed by running the series version of the filter,
and we are not converting the series or pole-zero form tactdftem. Also, in this case the
numerically problematic root finding is avoided, since eitithe poles, or the second-order
denominators are already known.

9.3 Scientific contributions

Statement 4: | have demonstrated that the delayed parallel ltier, where the IIR part is
delayed so that there is no overlap with the FIR part resultsm better numerical properties
compared to the traditional parallel form. The results are goplicable both for the fixed-
pole design of parallel filters and for parallel second-orde filters obtained from direct
form IIR filters (rational transfer functions) by expansion. For the latter, | have also
developed a numerically more robust conversion method.

4.1: | have demonstrated that parallel filters with a FIR pathltésa dynamic range limitation

due to the need of downscaling of the input signal becaudeeaiterlapping FIR and IIR parts,
both in the case of fixed-pole design and when obtained byap&dction expansion. | have
shown that this can be avoided by delaying the IIR part. Besmltlining the design of the
delayed parallel filter, | have also given the formulas faneating the traditional (non-delayed)
parallel form to the delayed form.

4.2: | have developed a method for converting direct form IR fdteo parallel second-order
form based on a least-squares design that is numericatlrlethaving than the partial fraction
expansion method and thus allows the conversion of very didbr IIR filters (V > 1000),
which was previously not possible using the common pantgdtfon expansion technique.

The results have been published in one journal paper [BatiB&(and in one conference
paper [Bank and Smith 201%4]

1This publication was written together with Prof. Julius 8miProf. Smith has been writing the part about
partial fraction expansion and has helped me in the geneealapation of the manuscript. The new scientific
results of the paper related to the scientific statementseadnad outlined in this Chapter are my own contributions.
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Conclusion

Besides showing my main research contributions, this waskdiso aimed to give an overview
of filter design methods that are targeted towards audiaegipans. All these methods are able
to design filters with nonlinear frequency resolution, atsb & common property is that they
all use special filter structures instead of the traditiahadct-form IIR or FIR filters.

Warped FIR and IIR filters (Chap. 4) arise by substitutinguhi delays of normal FIR and
lIR filters by a first order allpass, leading to a frequency piag (warping) which is tweaked by
the choice of the allpass poldHarmaé et al. 2000]. An advantageous property of warpeddilte
is that they can be designed by common FIR and IIR design igabs, the only difference is
that the target response have to be prewarped before fikegrde

Kautz filters (Chap. 5) can be seen as the generalization nfeslaFIR filters where the
allpasses can have different poles [Paatero and Karjal&083]. Due to the orthonormal-
ity of Kautz basis functions, time-domain design is muchg@ified, however, this results in a
relatively complicated filter structure. Fixed-pole p&Hiilters (Chap. 6) have a simpler struc-
ture composed of parallel second-order sections, whilgigeathe same filtering accuracy as
Kautz filters. This comes at the price of giving up the orthomality of the basis functions,
but this is nowadays not a real drawback since a linear ksres design can be performed
fast in today’s computers and microprocessors. Also, ttieaormality of Kautz functions can
be utilized only in time-domain filter design, while for fneency-domain design and in direct
equalizer design a least squares approach should be ustn fikautz filters as well. Ortho-
normality can be still useful in adaptive filtering [Salamada@Cousseau 1998], but for general
filtering or equalization tasks the fixed-pole parallel filkemore advantageous due to the fact
that it only requires 50 % arithmetic operations on DSPs @rexgbto Kautz filters.

The equivalence of the net transfer functions for Kautz aardlfel filters (Sec. 6.4) implies
that the pole positioning strategies developed for one efmtlcan also be used for the other.
From these, the simplest approach is to set the poles angalithe required resolution: for
example, a logarithmic set of pole frequencies will resublt logarithmic frequency resolution,
and the transfer function of the filter will resemble to thactional-octave smoothed version
of the target frequency response (Sec. 6.5). The fit can beowad at a given filter order by
the use of more complex pole positioning strategies baseathgie-band, dual-band or custom
warped IIR filter design, or by automatically placing thegmbaccording to the ripple density
of the smoothed transfer function (Chap. 7).

The reader might wonder which method should be used amongtlais possibilities. Of
course there is no single answer. However, | believe thabd gtarting point is the design of
parallel filters with predetermined (e.g., logarithmic)eeet, which already achieves signifi-
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cantly better performance compared to traditional FIR dRdflter design approaches, while
still being very simple both in its concept and implememtati The design accuracy can be
improved even more by the use of more sophisticated poleipoisig techniques using multi-

band or custom warped design. This of course leads to a soatemdre complicated design

procedure, therefore, it can be considered as a next stejalia filter or equalizer design.

Besides outlining the single-channel approaches, thik aiso extended some of the meth-
ods to the MIMO case (Chap. 8). The passive design variaowalthe design of positive semi-
definite admittance matrices that can be used to model nehsesponses in the full audio
frequency range while still guaranteeing the passivityhefinodel. A direct design approach
was also presented for the MIMO equalization case allowhegiesign of an IR MIMO equal-
izer in an equally simple way as the common FIR equalizersalowing the use of arbitrary
frequency resolution similarly to the single-channel patélter.

Finally, we have seen in Chap. 9 that when there is an FIR pathrallel with the second-
order sections, the individual transfer functions can berarger than the net transfer func-
tion. In practical implementations this leads to the losssefful bitdepth due to the downscaling
required to avoid overflow. The same problem arises botharfiked-pole design of parallel
filters and when the second-order sections are obtaineddraut-form filters by partial frac-
tion expansion. This limitation can be simply avoided by tise of the delayed parallel form
where there is no overlap between the FIR part and the respdrike second-order sections.
In addition, a numerically robust conversion technique alae presented that allows the direct
to parallel conversion of filters of with orders in the randelmusand which was not possible
previously.

10.1 Further results in the field of audio filter design

| have developed several additional methods in the field dicafilter design that are not in-
cluded in the list of my scientific statements, althoughrotieply the techniques presented in
the statements or otherwise closely related to the topibethesis. Some of them are a result
of collaboration with other researchers; this will be clganarked by using the article “we”
and can also be seen from the corresponding referencesringtather names than “Bank”.
Besides audio filter design, my other research field is soynthesis; these less related con-
tributions are not listed in the following, but the inter$treader is referred to the list of my
publications.

10.1.1 Implementation aspects of fixed-pole parallel filtex

Some of the publications are directly related to fixed-p@leapel filters: in [Bank and Horvath
2017a] we have compared the quantization noise performaihearped IIR and fixed-pole
parallel filters. For the warped IIR filter we have considdseth the special filter structure and
the more efficient series second-order implementatiorsélave been discussed in Sec. 4.4).
We have demonstrated with simulation examples that whées#ries second-order implemen-
tation of warped IIR filters has the same computational cexipl as that of fixed-pole parallel
filters, parallel filters have a significantly lower quantiaa noise.

To decrease the quantization noise of fixed-pole parallet$il in [Bank and Horvath 2017b]
we have proposed using a special warped structure for thé pnoslematic low-frequency
second-order sections. The warping paramgisrdifferent for each section and it is set so that
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it minimizes the quantization noise produced by that sectt@r choosing\ a simple analytical
formula was also given that approximates the numericaltinogd \ values very accurately.

In [Horvath and Bank 2019] we have systematically analyzbdradful set of second-order
sections in terms of numerical performance and computatioomplexity. Besides the usual
direct form and transposed structures, we have tested tllb&3®ader [Rader and Gold 1967],
the Kingsbury [Kingsbury 1972], the Chamberlin [Chambell®85; Smith |11 2019], the Zb6lzer
[Z6lzer 1994] and the above optimized warped IIR (WIIR) satorder structure [Bank and
Horvéath 2017b]. We have also proposed an extension to thenérdin state variable filter so
that it can be used as a general IIR filter. It had turned outekactly this filter has the best
performance in terms of quantization noise for the probletaw-frequency poles. Therefore,
we have proposed the use of the extended Chamberlin steuictuthe low frequency poles,
while staying with the more efficient direct form 1 (DF1) stture for the rest. In our test case
this has increasesed the signal-to-noise ratio by a qugtefeiant 40 dB at the price of 50%
increase in total computational cost.

Still related to the implementation of fixed-pole parallékfis, in [Belloch et al. 2014] we
have shown that the inherently parallel nature of the stinedranslates to a very high efficiency
in parallel architectures (such as Graphic Processingslroh the contrary to direct form or
series IIR filters. By using an Nvidia TeslaK20c GPU more ttlausand filter paths at a filter
order of 256 could be run in real-time. This can find its apgilan in the equalization of large
MIMO systems, e.g., in the full equalization of wave field #yasis [Fuster et al. 2005; Gauthier
and Berry 2007].

10.1.2 Magnitude-priority filter design

As discussed in Sec. 2.4, in audio an accurate magnitude Imgd® equalization is more
important than that of the phase, and this is often reflectethé choice of minimum-phase
filter design generally resulting in better magnitude aacyrfor the same filter order. However,
this also means giving up phase modeling all together. ImkB2012b, 2014] | have proposed
an alternative approach called “magnitude-priority fildesign” where the filter follows both
the magnitude and phase response in those frequency regnamns it can, while where this is
not possible, it gives priority to the magnitude. | have deped two variants, one updating the
phase of the target response, while the other updating tigeitnde response in each iteration.
The method is applicable to any filter design technique tloaksvin the time-domain or uses a
complex target response in the frequency-domain. WhilekB®12b] contains only fixed-pole
parallel filter design examples, in [Bank 2014] | have alsmdestrated the technique using a
windowed FIR filter design and a warped IIR design.

For rectangular rooms with symmetric loudspeaker arramgesn full room equalization
can be achieved at low frequencies by generating a plane thavpropagates along the room
[Santillian 2001; Santillian et al. 2007]. However, oftdr@troom is not rectangular, and/or a
symmetric loudspeaker setup cannot be assured, leadinddateaorated equalization perfor-
mance. | have addressed this problem in [Bank 2012a] witimihkichannel extension of the
above “magnitude-priority” approach where the magnityskecgication is kept constant in the
control points, while the phase is determined by an itegatptimization process starting from
the plane wave solution.
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10.1.3 Combined guasi-anechoic and in-room equalizationf toudspeak-
ers

Equalization of a loudspeaker response based on anechasuneenents is a relatively sim-
ple task and it can be used to improve both the time- and fre;yudomain response of the
loudspeaker. When this speaker is put in a room, such aniegu@h improves the direct
sound first reaching the listener. Equalizing the respohsizedoudspeaker based on in-room
measurements is much more problematic due to the fact tichtresponses are highly non-
minimumphase and position dependent (see also the disauissBec. 3.1). To address this
problem, in [Bank 2013b] | have proposed a combined approdmdre the loudspeaker is first
equalized based on the quasi-anechoic response obtaomdfwvindowed in-room measure-
ment and then by a room equalizer addressing the more prabtefow-frequency region of
room responses and correcting the errors of windowing. liistdtter part | have used an equal-
izer based on the fixed-pole parallel filter. Later we have aldended the approach to the case
of multipoint equalization in [Cecchi et al. 2014].

10.1.4 Highly accurate graphic equalizers using parallelecond-order fil-
ters

Graphic equalizers are important tools in audio that are us¢ only by sound engineers and
music producers but also by end users since they providdesmgans of modifying the loud-
ness of various frequency components. Traditional grapii@lizers are composed of a set of
second-order filters with logarithmically spaced centegérencies and fixed Q values, where
the gain of the sections is varied by the user. A difficulty ottbanalog and digital graphic
equalizer design is that due to the interaction of the neaghlg bands, the net response will be
different from what is actually set by the user. To overcome, in [Ramo et al. 2014] we have
proposed an alternative approach where a precise magmnéxgs curve is composed based on
the user settings with a suitable interpolation and a fixelé-parallel filter is designed using
this target response. With this approach a much more aeceg@ializer response was achieved
compared to earlier approaches. This came at a price ofasededesign complexity which
can be a limitation if we wish to follow the user changing thidess continuously. To elimi-
nate this drawback, we have developed an efficient desigantan [Bank et al. 2017] where
both the target magnitude and phase response are genesatdidear combination of elemen-
tary minimum-phase functions decreasing the design tirastidally. Another part of speed-up
comes from an alternate formulation of the weighted legaases problem that we have also
published in [Belloch et al. 2017]. Finally, we have conedrthe cascade form graphic equal-
izer of [Valim&ki and Liski 2017] to the delayed parallel foin [Liski et al. 2019], and also
provided an efficient method for converting any filter avialidein the cascade second-order form
to the numerically more advantageous delayed parallel.form

10.1.5 Modeling of nonlinear systems

So far we have assumed the linearity of the systems that aisdized or modeled. However,
in some cases the nonlinearity cannot be neglected: in tthie &ald such devices include tube
amplifiers, distortion circuits or speakers driven to tm&inlinear range as often done by guitar
players. In [Yeh et al. 2008] we have been modeling the nealifbehavior of a guitar cabinet
by using a static nonlinearity applied to the estimated $pecker displacement, followed by a
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linear filter implemented using fixed-pole parallel filteRscommon-pole single-input multiple-
output filter structure was used (outlined in Sec. 8.1.1)lttmainterpolation between various
microphone positions.

In black-box modeling Wiener and Hammerstein models arenconty used since they can
be indentified relatively easily compared to more complexiet® (e.g., Wiener—Hammerstein
or Volterra models). Polynomial Hammerstein models corepbeir response as a sum of
parallel branches each having a static nonlinearity (armotyial) and a linear filter in series.
In [Bank 2011a] | have proposed a highly efficient implem&ataof such models by the use
of multiple-input single-output parallel filters with conam poles (see Sec. 8.1.1) and applied
it to the nonlinear modeling of a loudspeaker. We have madextensive comparison of the
technique with a polynomial Hammerstein model using FIRfdtin [Romoli et al. 2014].
We have demonstrated that the proposed approach has acsigtiyffireduced computational
complexity for similar modeling performance compared ®¢ommon FIR approach.

10.1.6 Other related results

For testing the MIMO equalization approach using paraller shown in Sec. 8.3.3, | have
used the multichannel measurement of a spherical loudspdakring the measurements it had
turned out that the results are highly sensitive to the mrsitg of the loudspeaker that cannot
be controlled as accurately as desired due to physical reomist To overcome this, we have
proposed a calibration technique in [Zotter and Bank 2064a{ estimates the positioning and
rotation errors solely by using the measured responsesppigs a suitable compensation to
the results, thus, removes the effects of geometric inactes in the measurement.

In [Ramos et al. 2017] we have applied a special form of thalfghisecond-order structure
to the modeling of head-related transfer functions (HRTE®ming from the special structure,
the parameters were estimated using an iterative optimmizatheme instead of the usual least-
squares design. The benefit of the approach compared to tleeay@arallel filter is that by
this way HRTFs can be accurately interpolated for thoseemnghere measurements are not
available.

10.2 Significance and applications

Here | give a brief summary of the significance and applicetiof the results included in the
set of my scientific statements and discussed in this thesistail.

10.2.1 Fixed-pole design of parallel filters

As | see it, the fixed-pole design of parallel filters is a veficeent methodology to design IIR
filters at arbitrary (non-uniform) frequency resolutiohydich logarithmic scale has been used
throughout this thesis since that is the one most often usaddio applications. Compared to
the quasi-logarithmic frequency resolution filter desigetinods proposed previously (warped
and Kautz filters), the efficiency of the approach comes frammfactors. First, by the choice
of a simpler filter structure, the computational complexstyeduced for the same filter order.
Second, when used with the pole positioning methods | haweldiged, the parallel filter results
in lower approximation or equalization error compared tdi@aapproaches for the same filter
order. | find it important to emphasize that this improvedcadficy is not coming at the price of
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a highly complicated structure or design method: on theraoytthe filter structure is actually
simplified and the design still uses the least-squares neatn common in the literature.

Besides introducing the basic technique, by showing theosinieg properties, equivalence
to Kautz filters, and developing pole positioning methodavéhdeveloped a complete toolset
that can be used for a wide range of applications.

Most applications that | have developed myself or with otlesearchers are related to the
equalization of loudspeaker—room responses [Bank 2008,l2@Bank and Ramos 2011; Bank
2011c, 2013a,b,c; Ramos and Bank 2013] and to the modelirgualization of anechoic
loudspeaker responses [Yeh et al. 2008; Bank 2013c]. Rgc&@maris et al. [2021] have
applied the fixed pole parallel filter design to the equalarabf mobile earphones.

Another field with several application examples that | hageedoped is sound synthesis.
This includes the modeling of the radiation response of tla@@soundboard [Bank 2007;
Bank et al. 2010], modeling the one-dimensional admittari@guitar bridge [Bank and Kar-
jalainen 2008], simulation of the sustain pedal effect fag piano [Zambon et al. 2008], and
the parametric resynthesis of piano sounds for listenisig {@ank and Lehtonen 2010].

Graphic equalizers are important tools in music produciothin consumer audio: recently
we have been applying the fixed-pole design of parallel §lterobtain a highly accurate but
still efficient third-octave graphic equalizer [Ramo6 et 2014; Bank et al. 2017], as already
mentioned in Sec. 10.1.4

| have applied the MIMO extension of parallel filters to thedualbng of the 2D admit-
tance matrix of a guitar bridge for sound synthesis [Bank ldagalainen 2010] as discussed
in Sec. 8.2, and the same filter structure with an improvedrpater estimation algorithm has
been applied to the modeling of the violin, viola, and cefidMaestre et al. 2013, 2017]. In
[Maestre et al. 2021] the warped common-pole estimatidmiiegcie of Sec. 8.2.4 has been used
to parameterize a state space radiation model.

| have also applied the multichannel design of parallelrBite the computationally efficient
modeling of nonlinear loudspeaker behavior [Bank 2011an8loet al. 2014] mentioned in
Sec. 10.1.5 and to the common-pole modeling of piano sowardlresponse first proposed in
[Bank 2007; Bank et al. 2010], and further developed by Zam{B013]; Gabrielli et al. [2015].
The direct equalizer design for MIMO systems was used tolespune velocity responses of a
20 channel spherical loudspeaker array in [Bank 2018bJhaws in Sec. 8.3.3.

Coming from both the simplicity and efficiency of the apprioaparallel filters have also
found industrial applications. Where | have also taken pars the soundboard modeling in
the Physis piano of the Viscount corporation [Bank et al. @@ambon et al. 2016]. Since
companies rarely publish the methods they are using, | pnkstw from informal discussions
at conferences or by email inquiries that my methods have bsed in some products. Appli-
cations that are already developed and working include yiti@oR script for room equalization
using fixed-pole parallel filters [Green 2012] and dual-basadping used to calibrate a loud-
speaker response in the Audio Precision APx500 measuraystem [Kite 2013]. From email
inquiries it turned out that Antelope audio was interestedsing parallel filters for the mod-
eling of microphone transfer functions and guitar loudgpeaesponses, although | have no
information if they have finally came out with a product usthg techniques | have developed
[Levin 2014].

Instead of listing possible further applications, it carsbéely said that the methods | have
developed can be used for various audio applications véegtefely. This is because most
audio related filter or equalizer design or tasks benefit fusing logarithmic frequency res-
olution, and | believe that the fixed-pole parallel filter id@sis the most efficient logarithmic
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frequency resolution methodology at present date.

Since | have been working in the field of audio signal processhe applications | can
mostly think of are related to audio. Nevertheless, the moiform frequency resolution achiev-
able by parallel filters could most likely be used also in offedds. For example, in frequency-
domain system identification the measured frequency respgroften available in logarithmic
frequency scale [Pintelon et al. 1994], where some of thénou=t | have developed could pos-
sibly be also applied. However, this is left for future resba

10.2.2 Converting IIR filters to parallel form

While the fixed-pole design of parallel filters have been tyed with the requirements of
audio signal processing in mind, my results about convgrtiimect form or series second-
order filters to the parallel form are useful for the broachaigorocessing community. For
the conversion the partial fraction expansion using thevisede cover-up method is the most
commonly used and actually this is the only one covered iniB@ textbooks | am aware
of. Therefore | believe that showing that this common metbad lead to dynamic range
limitations in practical implementations and providing@uwion to the problem is my most
widely applicable result. In addition, the proposed LS rodtlallows the direct to parallel
conversion of very high/{ > 1000) order transfer functions that was not possible previously

| have applied the technique to loudspeaker response mggplano soundboard modeling
and implementing a Butterworth high-pass in the paralleinfcn [Bank 2018a]. We are also
using the delayed parallel form in a recent graphic equalissign [Liski et al. 2019]. In
[Kereliuk et al. 2018] the delayed parallel form is used tadelaoom impulse responses, and
in [Schlecht and Habets 2019; Schlecht 2020] for the contjoutaf the residues of a feedback
delay network (FDN). In addition, the FDN toolbox [Schle@@20] applies the proposed LS
method for partial fraction expansion.

As for industrial applications, | am aware from an email imguhat the world’s largest
pro-audio company, Music Tribe Inc., has been testing myhotefor converting series form
transfer function to parallel form with very satisfying véts [Christensen 2018]. Implementing
lIR filters in the parallel form rather than in series is gagimore and more popularity due
to the availability of processors capable of parallel pssagg (such as GPU-s), thus, | expect
more and more actual applications to come.

10.2.3 MATLAB/Octave code related to the presented algoritms

MATLAB/Octave codes for designing parallel filters both hettime- and frequency-domain
can be downloaded fromt t p: / / www. mi t . bre. hu/ ~bank/ parfilt. The page also
includes scripts for direct equalizer design. Perhaps th& mteresting files are
parfiltdenp. mandpar f eqdeno. mthat are interactive applications where the parallel
filter is designed in real-time according to the poles posgd by the user.

As for the delayed parallel filter, the scripts are downlddeldrom
http://ww. m t. bnme. hu/ ~bank/ par conv. These include both the fixed-pole design
of the parallel filter and the codes required to convert difeon IIR filters to the parallel form.
Besides the alternative partial fraction expansion varidgr2del par f . mthe code for the
numerically more robust LS conversion is also provité@del parf | s. m
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Appendix

A.1 Error norms

In filter design, when computing the distance of the target tae filter response, usually the
L, norm is used which is defined as

D

o), = (2 |:c<n>\p> | (A1)

Except forp = oo, minimizing ||z||, is equivalent to minimizing itpth power, which means
that the outer functio)'/? can be dropped:

N-1
e =Y e, (A.2)
n=0

leading to a simpler problem [Vargas and Burrus 2001]. Tgpatoises ofp includep = 1
for minimizing the mean absolute errgr,= oo for minimax (or Chebyshev) minimization
where the maximum of the error is minimized, gmne= 2 for least squares (LS) filter design.
From these thé., norm has a great advantage that it leads to a particularlglsioptimization
problem for linear-in-parameter models (see Sec. 2.3).

For designing linear-phase FIR filters both the (least squares) ant,, norms (Parks—
McClellan or Remez algorithm) are used [Oppenheim et al91Parks and Burrus 1987]. For
FIR filters with an arbitrary phase specification (complagéd response), the,, norm leads
to a nonlinear optimization problem due to minimizing thexmaal values of absolute vales,
while the L, norm still results in a simple closed-form solution [Parksl 8urrus 1987]. Note
that the combined use @f, (least squares) antd,, norms is also possible in the form of peak-
constrained least-squares (PCLS) design. Such a problerbecaither solved by the simple,
but slow iteratively weighted LS algorithm, or by the moramguex, but faster generalized
exchange algorithm proposed in [Adams and Sullivan 1998].

For IIR filter design, as far as classic lowpass, highpassdbass, bandreject filters are
concerned, the most common method is to convert an analagtype to the digital domain.
Chebyshev I, Chebyshev II, and elliptic filters all minimthe& maximum error in their pass-
band, stopband, or both, thus, they are optimal infihesense [Parks and Burrus 1987; Op-
penheim et al. 1999]. However, for designing IR filters watfbitrary specifications, the min-
imization of theL., becomes much more complicated and therefore the matheihatetter
tractableL, norm is used by most algorithms. In generh), norms withp # 2 would re-
quire gradient descent methods, but they can also be impleohdy L, minimization when
the weights are iteratively updated in a weighted leastrsgudesign (WLS). Examples of such

112
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lIR filter design methods includg, minimization for arbitrary [Vargas and Burrus 2001] and
minimizing the log-magnitude error in least-squares orimax sense [Kobayashi and Imai
1990].

For designing low-pass, high-pass, etc. filters, genettadly... norm is the preferred choice
since it guarantees an upper bound on the error both in tisbaad and in the stopband [Parks
and Burrus 1987]. However, as far as audio applications@mnearned, this preference cannot
be justified since an infinitely narrow frequency region vehdre approximation has a large
error leads to the same large error in the minimax ) sense, but its effect is most probably
inaudible. This is because what we hear is connected to gaitbmically-smoothed transfer
function (see the discussion in Chap. 1 and 3), and such ateimgceliminates the narrow
peaks by averaging. For a peak or valley to be audible, itlsHmiboth wide and large enough,
so the audibility is better related to the area of the irragty rather than its amplitude. This
means that norms with < oo are better choices for audio.

As for the literature, there is not too much discussion ontwira of norm would be ideal
for audio filter design. There are some arguments both foimiang the L, mean-squared
[Vairetti et al. 2018] and mean log-magnitude errors [Raara$LOpez 2006], but no systematic
studies or psychoacoustic tests exist on the subject. Tlyeconclusion that can be taken by
analyzing the related literature is thiat minimization is by far the most common choice in the
field of audio filter design. This was probably also motivatgdhe simplicity and efficiency of
least-squares method in the early days of filter designt miteasonable to expect that if the
norm was unsuitable for audio, it would not be so widespreguiesent day. (On the contrary,
the unsuitability of minimizing the error in the linear sedbr audio led to the prevalent use of
the error computed on the logarithmic frequency scale).

In line with this common practice, throughout this work lesguares {,) optimization will
be used, but it must be noted that the proposed algorithimd beuwstraightforwardly modified
for applying other norms. This could be most simply done bp@i8VLS techniques along the
lines of [Vargas and Burrus 2001; Kobayashi and Imai 199@\wever, this extension is out of
the scope of the present work.

Taking a broader view, there are some auditory models thiabtasses the audibility of
differences between transfer functions: in [Olive 2004bjwtiple regression model about the
preference rating of loudspeakers is created based oniligtéests, while in [Lavandier et al.
2008] the perceptual similarities of loudspeakers werateel to acoustic measurements. In
theory such auditory models could be used in the (definitehlinear) optimization process for
finding the coefficients of a filter or equalizer: this can beraaresting topic for future reseach.

A.2 Equivalent LS approximation using Kautz and parallel
filters

It has been shown in 6.4 that the Kautz basis functions arknar combinations of the basis
functions of the parallel filter and that the parallel filtearametergp are obtained from the
Kautz weightsw by a multiplication with the triangular matrik. While already from this it
should be clear that the two methods will result in the saner fiesponse, it is still instructive
to develop the equations for the least-squares case uspdrttel filter design.

According to Egs. (6.4) and (6.6), the impulse responseefiked-pole parallel filter is

h = Mp = MM*h, = M(M?M) 'M"h,, (A.3)
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whereh; is the target impulse respondd, is the modeling matrix containing the basis functions
of the parallel filter in its columns, anal contains the optimal set of parallel filter parameters.
We can write the same for Kautz filters

h=Gw = GG h, = G(G#G)"'G'h,, (A.4)

whereh is the impulse response of the Kautz filt€t,is the modeling matrix containing the
basis functions of the Kautz filter in its columns, awdcontains the optimal set of Kautz
parameters. The Kautz basis functions are the linear catibims of the basis functions of the
parallel filter:

G = MK. (A.5)
Substituting Eg. (A.5) into Eq. (A.4) gives
h = MK(KMYMK)'K?M"h, =

= MKK '(M?M) Y K" 'K"M7h, =
= M(M”"M) 'M”h,, (A.6)

which is the same as Eq. (A.3), showing that the impulse resg®of the parallel and Kautz
filtersh andh are indeed the same when using the same pole setl the same target response
h;.

The complete equivalence is valid when the Kautz filter isgie=d by fitting the linear com-
binations of the Kautz signals to the target response by afitlaS in Eq. (A.4). However, by
taking advantage of the orthogonality of the Kautz resps@sé = G !, the Kautz parameters
are usually computed by the scalar product of Eq. (5.6),ithat

w = Gh,. (A.7)

Since the orthonormality of the Kautz responses holds anlytfe entire (infinitely long) basis
functions, these two forms of Kautz design (LS and scaladyet) are equivalent only iz is
long enough so that all Kautz responses have decayed toigibeglalue. This usually holds
since it is in general a good practice to specify a target isgresponse that is at least as long
as the effective length of the Kautz basis functions.

Note that when designing the Kautz filter with Eq. (A.7) withaaget responsh; that is
shorter than the Kautz basis functions (s&ysample long), it is basically equivalent to zero
padding the targeh; to infinity and fitting the infinitely long Kautz responses. @ other
hand, the LS design of Eq. (A.4) will only take into accourd thist N samples of the target,
and the rest will be a “don’t care” region. The same resultstfe parallel filter when designed
with the LS method.

A.3 Pole radius for a pretedermined pole set

Using a predetermined (e.g., logarithmic) pole set is thpast choice for parallel filter design.
In this case the pole frequencies are set by the user, bubtbearlii have to be determined by
a suitable formula. As also suggested in [Paatero and kangh 2003] for the Kautz filter, we
will set them so that the transfer functions of the sectians< at their -3 dB point. Smaller
overlap (higher Q factor) would mean that there are “emp&ftpbetween the peaks of the
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individual sections, and larger overlap (lower Q factoryamethat the numerical conditioning
of the parameter estimation gets worse since more and motierse will have a meaningful
contribution for each target frequency point. | have fougdekperiments that the exact value
is not critical, but -3 dB is a reasonable choice.
Let us consider the frequency response of a complex firgrdi@ filter:
1 1 1

- - (A.8)

H) = l—pz=t  1—pei? 11— ReilWo=v)’

where the pole position = Re’? is defined by the radiug® and angled,. Equation (A.8)
is actually the basis function of the complex form of the fatdilter (see Eq. (6.1)), and in
the real form of the filter shown in Eq. (6.2) the second-omskstions are composed of two
such terms with complex conjugate poles. In the followingwik analyze the complex basis
function of Eq. (A.8) and assume that the response coming fre complex-conjugate pole
will have a no effect on the frequencies of the -3 dB pointdefpieak of interest.

The maximum gain of Eq. (A.8) i/(1 — R) atv = 9,, thus, at the -3 dB point we have

‘m - %ﬁ (A.9)
Taking the square and reciprocal gives
(1-R) (1—Re™) = 2(1-FR?) = (A.10)
1+ R —R(*+e7") = 242R*—4R, (A.11)
wherea = ¥, — . By using Euler’s formula we obtain
1+ R? + R(2cos(a) — 4) =0, (A.12)

which needs to be solved fdt for the givena distance of the pole frequency and the angular
frequency where we wish to have -3 dB magnitude response.
The solution is obtained as

R =2 —cos(a) — /(2 — cos(a))? — 1. (A.13)

While Eg. (A.13) is not overly complicated, | have been loakior a simpler formula, even
if it will be an approximation, since the filter design perfance will not be affected if we
slightly depart from the -3 dB value. This | have obtainechgghe Taylor-series approxima-
tionscos(z) ~ 1 — 2% andy/1+z ~ 1+ z/2.

With some algebraic manipulations we then obtain

a2 a2\ ? a2 ol
R~2—-1+—— (2—1+—) —l=l-a+——— (A.14)

2 2 2 8

This is very similar to the Taylor-series approximationtoé exponential function:

2 a3 0[4

«
] — - T A.15
e ot -t (A.15)

Thus, we may use the simpler formula

R=e“=¢e72 (A.16)
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Figure A.1: Accurate (solid line) and approximate (dashed line) padi ta obtain -3 dB atv = ¥ — ¢
frequency distance from the pole anglg(a), and the actual attenuation value at this frequency (b).

as an approximation to Eg. (A.13), wheid is the total frequency distance of the two -3 dB
points used in Eq. (7.1), whileis the distance of one -3 dB point from the peak of the response

The approximation is very accurate fer= Af/2 < 0.17, as can be seen in Fig. A.1 (a),
and reasonable up @ = Af/2 = /2. The actual attenuation compared to the peak of the
response is very close to 3 dB far< 0.17 and thusAé < 0.2, while it is a still acceptable
2.2 dB fora = 7/2 corresponding td\@ = , as displayed in Fig. A.1 (b). Since a pole distance
A6 < 0.27 is always fulfilled expect for very low pole densities (aad < = is fulfilled in
each case since that would only arise if one pole is at zeguémecy and the other is at half
the sample rate), Eq. (A.16), and thus Eq. (7.1) can be ceretidas a simple but sufficiently
accurate approximation.

A.4 Additional examples of using the predetermined pole set
for parallel filters

In Sec. 7.2 we have already seen that by applying a logartttipispaced pole frequency set,
a logarithmic frequency resolution filter design can be aadd and that by using different pole
densities in the different regions, the frequency resotutvill be also different. By the help

of Fig. A.2 we will take a look at some additional examples tlee same loudspeaker—room
response. The first case of Fig. A.2 (a) employs pole fregasna the low frequency-region

only, and indeed itis visible that the target response isateatin that region only. As a practical
application, in an equalizer design setting this would megnalizing the most problematic
low-frequency region of the response, while leaving othatpintact. Figure A.2 (b) uses a
denser set of pole frequencies in the middle-frequencyaasigowing again that the modeling
accuracy concentrated in a limited frequency range. Piglihb most interesting case is that
of Fig. A.2 (c) where the pole frequencies are set arbitrafihey were actually chosen by the
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Figure A.2: Modeling a minimum-phase loudspeaker—room response hy-finée parallel filters having

a predetermined pole set: (a) seven pole frequencies thgacally spaced from 20 Hz to 300 Hz (filter
order is 14), (b) nine pole frequencies logarithmically cgghfrom 250 Hz to 1500 Hz (filter order is
18). In (c) the 16 pole frequencies were selected manualthéyelp of thepar fi | t denmo MATLAB
script (total filter order is 32). The pole frequencies amdidated by crosses. The curves are offset for
clarity.

help of my interactive MATLAB scrippar fi | t deno where the poles can be positioned by
the click of a mouse and the resulting filter response candieisamediately. Thusitis possible

to manually finetune the approximation according to therdesi the user. The script can be
downloaded from [Parallel filter homepage 2021] and runk boMATLAB and Octave.

To show something different from logarithmic scale, thetressample will display a linear
frequency scale plot where the accuracy of modelling isragantrolled by the density of the
pole frequencies. The target response is a synthetic casee\lie magnitude response is the
sum of two sinusoids to obtain a target where detail is ptestewo levels. The phase response
is calculated by the Hilbert transform from the log. magdéyOppenheim and Schafer 1975]
so that we have a minimum-phase specification. It can be sefig.i A.3 (a) that with a low-
density pole set only the general trend of the responsedtirdrequency sinusoid) is modelled.
As expected, using a denser set of poles in a certain regibigim.3 (b) leads to modelling
the fine detail in that region only. Figure A.3 (c) shows a comat case where the fine detail
is approximated only in the angular frequency rang®.8f to 0.4, while neglected for the
rest of the frequencies. These examples attest the confpdedom in setting the frequency
resolution of the design when using fixed-pole parallelrsite
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Figure A.3: Modeling a minimum-phase synthetic target response by e parallel filters having
a predetermined pole set: (a) six pole frequencies linegrced from 0 tar angular frequencies, (b)
eleven pole frequencies linearly spaced fr@2w to 0.47, and (¢) the combination of the above two pole
sets. Note the linear frequency scale in radians as oppogbkéd togarithmic scale of other figures. The
pole frequencies are indicated by crosses. The curves faid tr clarity.

A.5 Further comparisons of various filter design techniques

While in the audio signal processing community it is morgcoery to provide the comparison
of various filter design approaches using real-world exasigls was done in Chap. 7, here
the various pole positioning techniques proposed for thallgh filter will be compared on a
synthetic target response. In addition, a comparison wekipus filter design techniques will
also be provided. We will see that the synthetic target nespavill provide some additional
insight on how the modeling detail of the various techniqgisedistributed as a function of
frequency.

The target magnitude response has linear segments thatyetwpen +4 and -4 dB at each
octave, assuring that the “detail” is distributed evenlthia logarithmic scale, as can be seen in
Figs. A.4 and A.5, thin line. The phase is computed by the bEtpe Hilbert transform so that
a minimum-phase response is obtained. The two figures shewathe filter design techniques
(filter responses displayed by thick lines), the only défese is that the filter order is double in
Fig. A.5 compared to Fig. A.4.

It can be seen in both figures that the FIR filters (a) obtairyagibdowing the targetimpulse
response are able to follow only the high frequency partefésponses, and this is significantly
improved by the IIR filters (b) designed using the SteighMtzBride method, but the mid- and
low frequencies are still poorly modeled.

The warped FIR filters (c) designed by windowing the warpegktaresponse with = 0.9
are able to better distribute their modeling ability on tbgdrithmic scale, but the modeling is
confined to a limited frequency range. In addition, this teghe is unable to follow the sharp
transitions of the target response.

Curve (d) shows a fixed-pole parallel filter design with lathemic pole positioning. Now
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the distribution of the modeling detail is even in the loganic scale, since all frequency
regions are modeled with equal accuracy. It can also be $egtritte filter response is the
smoothed (or low-pass filtered) version of the target freqgueesponse, as anticipated from
Sec. 6.5. It can be seen that already this very simple apiprgizes significantly improved
results compared to traditional FIR, [IR and warped FIR fdteWhile not shown, the Kautz
filter with a logarithmic pole set gives exactly the same ffilesponse as in curve (d), albeit
with double amount of arithmetic operations due to its mamaglicated filter structure.

The magnitude response of a fixed-pole parallel filter usimgle-density based pole posi-
tioning is displayed by curve (e). For the lower filter ordeample of Fig. A.4 (e), the response
is the same as that with a strictly logarithmic pole set,sithe limited number of pole frequen-
cies does not allow concentrating them to the edges of thmnsg, but results in an almost
logarithmic pole frequency series shown by crosses in Fig.(8). On the contrary, at double
filter order displayed in Fig. A.5 (e) the ripple-density dsnethod improves the performance
compared to logarithmic pole positioning by assigning npaes to the transitions of the target
response. While it is hard to see in the figure, actually taesg¢wo distinct poles close to each
other at each edge.

The response of a fixed-pole parallel filter using warped HRedal pole positioning is shown
by curve (f). The pole set was obtained by designing a warpedilter with A = 0.9 based
on the target response, finding and dewarping the poles,ubieg them as the poles of the
parallel filter. The frequency response of the parallelrfiisepractically the same as that of
the warped IIR filter, and if the same poles are used for thezfiter, the response would
be again identical. Basically, this curve shows what has Ipessible using prior approaches.
It can be seen in Fig. A.4 (f) that a filter order of 24 is not sidiint to provide appropriate
modeling at low and high frequencies, and the modeling bist@ioncentrated in the middle
range of the response, similarly to warped FIR filters. Atlaedilter order shown in Fig. A.4
(f) the filter response becomes quite reasonable, with sossedf detail at very low and very
high frequencies.

Parallel filters obtained with dual-band warping and custeenping are shown by curves
(g) and (h). Itis especially apparent in Fig. A.4 (g) and {igttthe approximation error is more
evenly distributed in the logarithmic scale compared tosingle-band warping of Fig. A.4 (f).
The two methods provide a similar performance: for the loareler case of Fig. A.4, custom
warping (h) seems to provide a better behaving responsée \dri the higher order case of
Fig. A.5, dual-band warping (g) has a some benefit. In any,dasy both provide better
modeling accuracy compared to earlier approaches, theiraprent is especially apparent for
using lower order filters as in Fig. A.4. Turning this arouitdan also be stated that a similar
modeling accuracy on the logarithmic scale can now be aeHiatvreduced filter order, and the
computational complexity is decreased even further by ithelsr filter structure compared to
warped or Kautz filters.
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Figure A.4: Comparison of various filter design methods using a filteeoal 24 for the IIR filters (b)-
(h), and 48 for the FIR filter (a). The thin lines show the minimphase target response, while the solid
lines display the filter responses. The first three curvadaliqa) FIR, (b) IIR, and (c) warped FIR filters.
The next ones show parallel filters with (d) strictly loghanitic pole frequency series, poles obtained by
the (e) ripple-density method, (f) single-band warping,dgal-band warping, and (h) custom-warping.
The pole frequencies are marked by crosses, and the cueveffset for clarity.

A.6 Least-squares design for the non-delayed parallel filtre

According to Sec. 6.2.1, finding the parameters of the fixal@-parallel filter for a time-domain
target response involves finding the parameter vgegarch that the resulting impulse response

h = Mp (A.17)

is the closest to the target impulse respohsin the mean squared sense.

Let us first rewrite the modeling matrixI in such a way that its first part contains the
modeling signals for the IIR pail® (/N by P matrix whereN is the number of samples, and
P is the number of IIR weights) and the second part containgthé@eling signals for the FIR
partF (V by M + 1 matrix whereM + 1 is the length of the FIR path). This gives

M=[P F|. (A.18)

The FIR partF contains the delayed unit puls&s:. — m) for m = [0, ..., M], thus, it can be
partitioned to anV/ + 1 by M + 1 identity matrixE and anN — M — 1 by M + 1 zero matrix
0 as

E
F = {0} . (A.19)
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Figure A.5: Comparison of various filter design methods using a filteeof 48 for the IIR filters

(b)-(h), and 96 for the FIR filter (a). The thin lines show thmimum-phase target response, while the

solid lines display the filter responses. The first three esidisplay (a) FIR, (b) IIR, and (c) warped

FIR filters. The following ones show parallel filters with (gfyictly logarithmic pole frequency series,

poles obtained by the (e) ripple-density method, (f) sidzided warping, (g) dual-band warping, and (h)
custom-warping. The pole frequencies are marked by crpasdshe curves are offset for clarity.

We may make a similar partitioning to the IIR pa&twhere the first\/ + 1 samples of the
modeling signals are containedlh and the rest are iR,, giving

P,
P= lPJ . (A.20)

Thus, the entire modeling matrM is partitioned to four parts:

(A.21)

M= bl o)

P, O

We also partition the parameter vecipto the parameter vector of IR part (numerator coeffi-
cients)b and of the FIR parf as

p= m (A.22)

and the resulting impulse resporiseo the firstA/ 4+ 1 samples a®; and the followingV —
M — 1 samples ah, as

h = {hl} . (A.23)
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Finding the optimal parameter vectprin Eg. (A.17) in the least squares sense involves
computing the productsI” M andM™h, since we actually need to solve

M"Mp = M”h, (A.24)

for p. The matrices are:

PT PT P, E] PTP, + PIP, PT
T _ 1 2 1 _ 1+1 242 1
M M_[E OT} X [PQ o] = | P, E | (A.25)
and T T 7 rpT T T
P; P h Pih.; +P5h
T _ 1 2 t, 1| 1 41t,1 2 14,2
M'h; = [E 0} X [hm_ = | he, | (A.26)
Substituting these into Eq. (A.24) gives
PTP, + PIP, PT b|l  [P{hy; + Plhy,]
[ P, E| X el = | hes | (A.27)
The second “row” of Eq. (A.27) is
Pb+f =h;,, (A.28)
from which the FIR coefficientb are obtained as
f =h,y — P;b, (A.29)
wherePb actually contains the first/ + 1 samples of the IIR response. The first “row” of
Eq. (A.27)is
PIPb+ PiPyb +Pf =P{h,; +Plh,. (A.30)
By substituting Eq. (A.29) into Eq. (A.30), many terms cdraag and we obtain
PIPyb = Pl h,,, (A.31)
which is solved as
b = (PIPy) 'Plh,,. (A.32)

Equation (A.32) actually shows that the weights of the pelrdilter contained in vectod
depend only on that part of the target impulse response vagtwhich does not overlap with
the FIR part (this idy »), as anticipated in Sec. 9.1.1.

The FIR part is beneficial for modeling non-minimumphaseoeses (see Sec. 9.1 for a
practical example), and it is used for modeling the respbe$ere the main peak. That part of
the target response is containedhify. The decaying part after the main peak is thuhip.
Looking at Eq. (A.32), if there is a long FIR pat(is large), the basis functions of the IIR part
have already decayed to a small value at sample 1, thus the samples iR, will be small,
buth; , will be still significant since it is just after the main pedktioe target impulse response.
This leads to large coefficients ln On the contraryP; contains the first part of the IIR basis
functions that have not yet decayed to a small value, thesIR coefficientd = h,; — P1b
also need to be large in magnitude, typically much largen tthe target responde, ; itself
because of the large magnitude®fb. This explains why the IIR and FIR parts look like a
mirror image to each other in Fig. 9.2 (b) and (c), both mucpdathan the resulting impulse
response (a). This requires the downscaling of the inpuasi@r the numerator coefficients)
to avoid overflow in the FIR and IIR branches, reducing thélesdynamic range significantly.



