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Preface

The main purpose of this thesis is to summarize my research contributions for the fulfillment
of the requirements of the Doctoral Degree of the Hungarian Academy of Sciences. This is re-
flected by the writing style where I try to be as clear as possible which are my own contributions
and how they are related to prior research. In addition, my main results are listed in the form of
scientific statements at the end of the chapters outlining myown contributions.

My secondary goal with this work is to provide a coherent viewon the various filter design
techniques that I have developed with the hope that it can be useful for the broad signal process-
ing community. Hence the choice of English language, and thetextbook-like presentation with
introductory chapters. Compared to the conference or journal papers where my results have
been originally published, this format allows a more thorough description of the techniques, the
inclusion of additional proofs, and finally sharing my thoughts on how these methods relate to
each other and to the ones proposed in the literature.

My Ph.D. research has been mostly dealt with the physics-based synthesis of the piano. That
topic has also required the development of some specific filter design techniques. However, I
have turned my attention to general filter design only after the completion of my Ph.D. thesis.
In year 2007, with the help of an EU Marie Curie grant, I have spent a year in the Acoustics
Laboratory of Helsinki University of Technology (now AaltoUniversity), where, while still
working on sound synthesis topics, I have got acquainted with the work of Matti Karjalainen
and Tuomas Paatero using Kautz structures for audio filter design. At that time the Kautz filter
was the most efficient approach for designing IIR filters witha flexible resolution. In partic-
ular, it allowed the design of filters with logarithmic frequency resolution desirable for audio
applications, which has been unrealizable with earlier techniques. Fascinated with the favorable
properties of the Kautz filter, but discontented by its relatively complicated structure, an idea
came to my mind to substitute the Kautz structure with that ofordinary parallel second-order
filters, while keeping the fixed-pole design methodology. Thus, the fixed-pole parallel filter was
born, allowing the same design accuracy as with the Kautz filter but using a filter structure that
requires less arithmetic operations, fully parallelizable, and much easier to understand. With
this moment I actually started my new research line of developing filter and equalizer design
algorithms for audio applications. My goal was to reach better filter approximation compared to
earlier methods, and to do so by keeping the relative simplicity of the approaches. I believe that
keeping the algorithms simple is a key to make them easy to implement and thus most useful
both for the academic community and the industry.

Both due to the required page limit of the thesis and to keep the work as coherent as possible,
only my most significant results related to fixed-pole parallel filter design are included in this
work and in the list of scientific statements. Most of the papers connected to these statements
were published with my sole authorship. With the few publications where I had a coauthor I
include only that part of the results which is clearly my own contribution. As for my other
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research not included in the list of scientific contributions, but still belonging to the audio filter
design field, I will provide a short summary in Sec. 10.1. (My less related contributions, even
if they were done after my Ph.D. thesis, will not be outlined here, and the reader is referred to
the list of my publications.)

In the following, I give the outline of this thesis. To start with the motivation of my re-
search, Chapter 1 gives the reasons for designing filters with logarithmic frequency resolution
and demonstrates that this is not possible by using traditional FIR and IIR design techniques.
The idea of logarithmic frequency resolution is strongly related to fractional-octave smoothing,
a long-time tradition in the audio field for displaying frequency responses, therefore this topic
cannot be omitted from our discussion (Chapter 3). Prior techniques aiming at logarithmic fre-
quency resolution filter design will be discussed in Chapters 4 and 5. I start outlining my own
contributions in Chapter 6 by introducing the fixed-pole design of parallel second-order filters,
giving the basic design techniques, demonstrating its equivalent approximation to Kautz filters
and discussing its relation to transfer function smoothing. The choice of pole positions of the
parallel filter has a decisive role, therefore Chapter 7 presents the pole positioning methods I
have developed. It also includes a comparison to earlier techniques showing that with the pro-
posed methodology improved performance can be achieved forthe same filter order. Chapter 8
extends some of the design ideas to the multichannel case with the application to passive ad-
mittance modeling and to the equalization of MIMO systems. Finally, Chapter 9 introduces
the idea of the delayed parallel filter with improved numerical properties compared to the tradi-
tional parallel form and proposes an alternative method forconverting direct form IIR filters to
parallel structures. Chapter 10 concludes my work by brieflyoutlining my other contributions
related to filter design and discusses the significance and applications of the methods presented
in this thesis.

At this point I would also like to express my gratitude to everyone who have helped along
the way of reaching these results. To my coauthors, most of whom had become good friends,
Federico Fontana, Julius Smith, late Matti Karjalainen, Stefano Zambon, and Vesa Välimäki,
to name a few. I am also thankful to the colleagues at BME MIT, especially to my former
Ph.D. supervisor, László Sujbert for highly useful comments about this manuscript, and to
the head of the department, Tamás Dabóczi for his support andfor periodically asking how
I am progressing. Finally, I am most grateful to my family forcreating the atmosphere and
circumstances to become a researcher. I dedicate this thesis to my mother and to my late father,
who had planted the seeds of curiosity and critical thinkingalready in my early childhood.
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Chapter 1

Introduction

Modeling or equalizing a given transfer function is one of the most often used applications of
digital filters in the field of audio. The most typical exampleis to correct the non-ideal frequency
response of loudspeakers, ranging from speakers in mobile devices, computer speakers, car
audio, to large-scale public address systems. Often the transfer function of the room is also
equalized together with the loudspeaker, this is termed loudspeaker–room equalization. Other
applications include the modeling of the same systems for simulation purposes, the modeling
and equalization of headphones, the modeling of head related transfer functions for 3D audio,
and the modeling of instrument body responses for physics-based sound synthesis, to name a
few. For all of these applications a digital filter has to be designed that achieves the best sound
quality at a given computational cost.

As in audio the final judge of quality is the human ear, it seemslogical to take into account
some of the properties of the auditory system during filter design. One such property that
is used since the early times of audio is the logarithmic-like frequency resolution of hearing.
Audio transfer functions are almost always displayed in a logarithmic frequency scale and they
are often smoothed to some fractional octave resolution (see Chap. 3 for details). This long
tradition is also justified by the study of Olive [2004a,b] demonstrating that the evenness of
the log-scale smoothed magnitude response has a strong correlation with the subjective quality
values of loudspeakers obtained by listening tests.

Also, graphic equalizers used to manually tune the responseof an audio system have bands
with center frequencies evenly distributed in the logarithmic scale. As a connection to music,
it is interesting to note that the frequency distribution ofthe musical scale used in the western
tradition (chromatic scale) is exactly logarithmic. When designing a digital filter for audio pur-
poses it seems logical to design the filter so that the error isdistributed evenly in the logarithmic
scale, and indeed, this is the approach most often taken in the literature when designing filters
for audio applications.

Note that various auditory frequency scales exist, like theBark, mel, or ERB [Smith and
Abel 1999; Zwicker and Fastl 1990] scale (which are actuallyall quite close to the logarithmic
scale) that are sometimes used for audio applications. Since in audio the logarithmic scale is far
the most commonly used, therefore the examples of this thesis will use the logarithmic scale.
Using one type of frequency scale only has the benefit that thefigures of the thesis will be
comparable to each other. Nevertheless, since the new methods proposed here do not rely on
the assumption of a logarithmic scale, they can be used with other type of perceptual frequency
scales (or with any kind of user-defined frequency scale) if needed. In particular, the examples
in Appendix A.4 will demonstrate the complete freedom in controlling the frequency resolution

1
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2 Chapter 1. Introduction

by using the proposed techniques.

1.1 Limitations of general purpose filter design techniques

We must note that the termfilter designis often used in a strict sense for designing low-pass,
high-pass, band-pass or band-reject filters with a certain passband ripple and stopband attenua-
tion [Parks and Burrus 1987; Oppenheim et al. 1999]. On the contrary, this work uses the term
filter designas a general method for approximating an arbitrary impulse response or frequency
response.

Modeling or equalizing a transfer function by an FIR or IIR filter is a common task in other
fields of digital signal processing as well. Therefore, a wide range of filter design techniques
exist that at first glance seem to be also appropriate for audio applications. However, these
general filter design methods have an important property which makes them less than optimal
for audio. Namely, they have linear frequency resolution, meaning that the error of the filter is
distributed evenly in the linear frequency scale. Linear frequency resolution is inherent in FIR
filters, since their frequency response is given as the DFT oftheir impulse response, leading to
a transfer function vector with linearly spaced frequency bins. Thus, the frequency resolution
∆f is directly determined by the length of the filterN and the sampling frequencyfs, given as
the resolution of the DFT:∆f = fs/N .

Also, many IIR filter design algorithms (e.g., Prony [Parks and Burrus 1987], Steiglitz-
McBride [Steiglitz and McBride 1965]) minimize the error between the target impulse response
and the filter response in the mean squared sense, which, due to Parseval’s theorem, is equivalent
to minimizing the mean squared error between the target and filter frequency response in a
linear frequency scale. Some frequency-domain IIR filter design methods allow the use of a
weighting function (e.g., the frequency-domain Steiglitz-McBride algorithm [Jackson 2008] or
theinvfreqz function in MATLAB), or their target frequency scale can be made logarithmic
instead of linear. So in theory it should be feasible to achieve a logarithmic frequency resolution
by these methods. However, the logarithmic scale is so distorted compared to the linear one that
this is not working in practice [Waters and Sandler 1993].

The following examples will demonstrate the difficulties ofachieving logarithmic frequency
resolution with general IIR filter deign methods. The example case is modeling a loudspeaker–
room response. In Fig. 1.1 a 100th order IIR filter is designedby the frequency-domain Steiglitz-
McBride algorithm [Jackson 2008]. The target is a minimum-phase loudspeaker–room re-
sponse, and the target points are linearly distributed in frequency: 10000 points from 0 Hz
to half of the sample ratefs/2 = 22050 Hz. Note that the sample ratefs = 44100 Hz is the
one most commonly used in audio, and this sample rate will be used for all the examples of this
work, unless otherwise noted. Due to the linear distribution of target frequency points, we ex-
pect that the error will be linearly distributed in frequency. This is indeed visible in Fig. 1.1 (a)
where the filter response (thick solid line) follows the target (dashed line) by the same accuracy
for all frequencies, which is also indicated by the fact thatthe frequencies of the filter poles
are evenly distributed in the linear frequency scale (see the crosses in Fig. 1.1). When we plot
the same curves in a logarithmic scale in Fig. 1.1 (b), we see adifferent picture and the lack of
modeling ability at low frequencies is immediately apparent.
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Figure 1.1: 100th order IIR filter design by the frequency-domain Steiglitz-McBride algorithm. The
minimum-phase loudspeaker–room response is displayed by dashed line, and the modeled response by
a thick solid line. The target frequency points are linearlyspaced. The same responses are plotted in (a)
linear and in (b) logarithmic frequency scale. The crosses indicate the pole frequencies of the filter.

The next step is to apply frequency weighting. In the exampleof Fig. 1.2 a weighting of
Wt(f) = 1/f 2 is used, otherwise the design is the same as for Fig. 1.1. (Note thatWt(f)
is limited atf = 20 Hz to avoid the very large weights at the otherwise irrelevant infrasonic
frequencies.) It can be seen in Fig. 1.2 (b) that the fit gets only slightly improved at low fre-
quencies, which is quite surprising since the lowest frequencies get106 times larger weight in
the error compared to the highest ones.

As a next trial, the filter design is based on a target responsewhose frequency points are
logarithmically spaced. This will inherently mean that theerror is minimized along the loga-
rithmic scale. In Fig. 1.3 the target (dashed line) was resampled to a logarithmic scale with 100
bins per octave from 20 Hz tofs/2 = 22050 Hz, giving 1011 specification points. This is also
visible when comparing the dashed lines of Fig. 1.3 to Figs. 1.1 and 1.2. No weighting is used,
since the resampling of the frequency grid already assures that the error is minimized in the
logarithmic scale. Strangely enough, the low-frequency modeling accuracy visible in Fig. 1.3
(b) is again practically the same as for the first design of Fig. 1.1 (b), so no improvements are
found.

From the examples it appears that while in theory both the weighted design and the design
based on a logarithmically spaced specification should result in a filter with logarithmic fre-
quency resolution, this is not happening in practice. The examples used only the frequency-
domain Steiglitz-McBride algorithm [Jackson 2008], but the same is happening with other
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Figure 1.2: 100th order IIR filter design by the frequency-domain Steiglitz-McBride algorithm. The
minimum-phase loudspeaker–room response is displayed by dashed line, and the modeled response by a
thick solid line. The target frequency points are linearly spaced, and a1/f2 type weighting is used. The
same responses are plotted in (a) linear and in (b) logarithmic frequency scale. The crosses indicate the
pole frequencies of the filter.

methods, likeinvfreqz in MATLAB. This complies with the findings of [Waters and San-
dler 1993] who have found that traditional IIR design techniques using weighted least squares
minimization fail to converge when the target frequency points are logarithmically spaced.

The reasons for this are most probably of numerical nature. Logarithmic frequency resolu-
tion would require a very high pole density at low frequencies with poles near the unit circle,
and this cannot be implemented by direct form IIR filters evenat double precision. (This can
be easily tested by converting the logarithmic frequency resolution filters discussed later in this
work to a direct form filter: the resulting filter is almost always unstable and its frequency re-
sponse is very different from the original due to numerical errors.) Traditional IIR filter design
algorithms estimate the parameters of a direct form IIR filter, they thus cannot give such a set
of coefficients which would lead to the desired high pole density at low frequencies, since such
a set of coefficients do not exist in the space of available numbers due to finite precision.

1.2 Specialized filter structures for achieving non-uniform fre-
quency resolution

By recognizing these limitations, specialized IIR filter design techniques have been developed
that allow a more flexible distribution of modeling detail asa function of frequency. It is interest-
ing to note that all of these methods use special filter structures instead of the direct (rational)
form used for general purpose IIR filters and the filters are designed directly in these special
forms.

This work, after introducing warped [Härmä et al. 2000] and Kautz [Paatero and Karjalainen
2003] filters, will focus on fixed-pole parallel filters, a methodology allowing the design of IIR
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Figure 1.3: 100th order IIR filter design by the frequency-domain Steiglitz-McBride algorithm. The
minimum-phase loudspeaker–room response is displayed by dashed line, and the modeled response by a
thick solid line. The difference from Fig. 1.1 is that targetfrequency points are logarithmically spaced.
The same responses are plotted in (a) linear and in (b) logarithmic frequency scale. The crosses indicate
the pole frequencies of the filter.

filters at arbitrary frequency resolution profiles, while still leading to a simple filter structure
with low computational complexity.

It has to be mentioned that another way to address the problemof logarithmic frequency res-
olution comes from manually tuned graphic or parametric equalizers that exist from the early
times of audio. Automatic techniques have been developed that iteratively tune the parameters
(center frequency, Q-factor, gain) of such equalizers by a nonlinear optimization process (see,
e.g., [Ramos and López 2006; Behrends et al. 2011; Vairetti et al. 2018]). This approach is ad-
vantageous when there is a need to manually fine-tune the filter response by listening, since the
parameters of the equalization filters are perceptually meaningful and well understood by sound
engineers. Also, interpolation between different filter settings is relatively easily achieved. A
drawback that the special form of the filter sections limits the degrees of freedom (3 parameters
instead of 4 for a general second-order section) and thus results in lower accuracy for the same
filter order (see [Bank and Ramos 2011] Fig. 3 for a comparisonexample). In addition, these
techniques allow magnitude equalization only, while warped, Kautz or parallel filters are also
able to model or equalize the phase behavior if desired. Finally, for the above parametric equal-
izer approach a more complex optimization process is necessary, as opposed to the relatively
simple parameter estimation techniques required for warped, Kautz, or parallel filters. It can be
thus said that while aiming at a similar goal, the automatic tuning of parametric equalizers is a
different line of research and therefore it will not be further discussed here. For an overview,
the reader is referred to [Vairetti et al. 2018].
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Chapter 2

Basic concepts and methods

Here a quick summary of the basic concepts used in this thesisis provided, which will hopefully
also help in understanding the notations used in the following chapters.

2.1 Approximating a target response by a digital filter

Modeling a system by a digital filter requires that the filter response is close to the system
response. In the time domain this means that the error between the target impulse response
ht(n) and the filter impulse responseh(n) is minimal

||h(n)− ht(n)|| → min (2.1)

for the sample range[0, 1, . . . , N − 1], where||x(n)|| is some kind of error norm.
In the frequency domain, the error between the target frequency responseHt(ϑn) and the

filter frequency responseH(ϑn) is minimized

||H(ϑn)−Ht(ϑn)|| → min (2.2)

for a finite set of angular frequencies[ϑ1, ϑ2, . . . , ϑN ]. The angular frequencies are related to
the analog frequenciesfn as

ϑn = 2π
fn

fs

, (2.3)

wherefs is the sampling frequency.
Note that the target frequency points do not have to be evenlydistributed. By the proper

distribution of the frequency pointsϑn we can control the modeling detail: those regions which
have more target points will have a larger weight in the totalerror, thus, they will force the
optimization procedure to obtain a better fit in that region.In audio usually a logarithmically
spacedϑn is employed and this should in theory lead to an even distribution of errors in the
logarithmic frequency scale. However, as we have seen in Chap. 1, this alone is not enough to
achieve a logarithmic frequency resolution.

As for the norms||x(n)|| used in Eqs. (2.1) and Eq. (2.2), usually theLp norm is applied
which is defined as

||x(n)||p =

(

N−1
∑

n=0

|x(n)|p
)

1
p

, (2.4)

6
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2.2. Equalizing a system response 7

where thep = ∞ (minimax) andp = 2 (least squares or LS) are the most typical choices. For
classic lowpass, highbass, bandpass, or bandreject filters, usually theL∞ norm is utilized (e.g.,
by the Chebyshev I, II and elliptic IIR filters or by the Parks-McClellan algorithm for FIR filters
[Parks and Burrus 1987]), while for designing filters with anarbitrary target response, theL2

norm is the usual choice. Complying with this common practice, this work also employs the
L2 norm in the proposed algorithms. The rationale for this choice is described in the Appendix
A.1 in more detail. It must be noted however that the majorityof the proposed algorithms can
be modified for applying other norms, most simply by introducing an iterative weighting into
the LS design as described in [Vargas and Burrus 2001; Kobayashi and Imai 1990].

2.2 Equalizing a system response

Besides modeling, a common task in signal processing is to design a filter that equalizes a
given system. This means that when the equalizer is connected in series with the system, then
the total response should be close to the target. Connectingin series means, for example, for
loudspeaker–room equalization that the digital signal (music) is first filtered by the equalizer
filter, and then converted to the analog domain, amplified andfed to the loudspeaker. In con-
trast, equalizing the response of a microphone would mean that the filter comes afterwards: the
digitized signal of the microphone is filtered by the equalizer. Since in this thesis we assume
that the systems are linear and time-invariant (in other words, we model or equalize only the
linear aspects), the sequence of the system and the equalizer does not matter, and the two cases
can be handled jointly.

2.2.1 Direct equalizer design

In the time domain, the impulse response of the equalized systemh(n) is the convolution of the
system impulse responsehs(n) and the equalizer responseheq(n), that is,h(n) = hs(n)∗heq(n),
and this has to be close to the target impulse responseht(n). Mathematically, this is expressed
as

||h(n)− ht(n)|| = ||[hs(n) ∗ heq(n)]− ht(n)|| → min. (2.5)

In the frequency domain, the frequency response of the equalized systemH(ϑn) is the product
of the system frequency responseHs(ϑn) and the equalizer frequency responseHeq(ϑn), that
is, H(ϑn) = Hs(ϑn)Heq(ϑn), and this has to be close to the target frequency responseHt(ϑn).
Mathematically, this is expressed as

e = ||H(ϑn)−Ht(ϑn)|| = ||Hs(ϑn)Heq(ϑn)−Ht(ϑn)|| → min. (2.6)

This procedure is termeddirect equalizer design, since we design the equalizer directly. Note
also that this is similar to a system identification problem where the task is to estimate the
parameters of a digital filter so that at its input we have the system response and at the output
we obtain the target response. Thus, we might also call the methodequalizer design based on
system identification.
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8 Chapter 2. Basic concepts and methods

2.2.2 Filter design based on the inverted system response

Another common choice for designing an equalizer is to definea new targetH ′
t(ϑn) as the ratio

of the target response and system response

H ′
t(ϑn) =

Ht(ϑn)

Hs(ϑn)
(2.7)

and then use the optimization form developed for filter design Eq. (2.2). Since this involves the
inverse of the system response1/Hs(ϑn), it will be termedinversion-based equalizer design.

Note this procedure can also be done in the time domain whereh′
t(n) is computed by decon-

volving the target impulse responseht(n) with the system responsehs(n). Deconvolution can
be either done by a least squares optimization [Mourjopoulos et al. 1982] or in the frequency
domain ash′

t(n) = IFFT{Ht(ϑn)/Hs(ϑn)}. Then the equalizer is designed by Eq. (2.1) for the
new target.

The advantage of the inversion-based equalizer design is that the simpler filter design forms
Eqs. (2.1) and (2.2) can be used. Indeed, some filter algorithms are only available in the filter
design form, and have no system identification option. For example, whilestmcb in MATLAB
can estimate a system between input and output,prony andinvfreqz cannot. In the latter
case, we can only use the inversion-based approach.

However, it should be clear that the direct and inversion-based methods are not equivalent,
since they minimize different errors. Writing the error in theL2 sense for the inversion-based
equalizer gives

e =
N
∑

n=1

∣

∣

∣

∣

Heq(ϑn)− Ht(ϑn)

Hs(ϑn)

∣

∣

∣

∣

2

=
N
∑

n=1

1

|Hs(ϑn)|2 |Hs(ϑn)Heq(ϑn)−Ht(ϑn)|2, (2.8)

which is the same as the direct-equalzier design of Eq. (2.6)with the additional weighting term
1/|Hs(ϑn)|2. This means that whereverHs(ϑn) is small, the optimization will try to equalize it
more accurately compared to other target points. It is especially problematic ifHs(ϑn) is close
to zero at some frequencies, because this will mean very large weights at those points. This of
course can also be seen from Eq. (2.7) showing that wheneverHs(ϑn) is close to zero, the new
targetH ′

t(ϑn) will be close to infinity.
Therefore, whenever possible, the direct equalizer designapproach should be used. If this

cannot be done, then some kind of preprocessing or regularization has to be applied before
computing Eq. (2.7) that removes the dips of the system response. This may include limiting or
smoothing the system response, or both (see, e.g. [Pedersenand Thomsen 2007]). In addition,
a weighting with|Hs(ϑn)|2 can be used to counteract the1/|Hs(ϑn)|2 weighting inherent in
Eq. (2.8), whenever the filter design algorithm offers this option.

2.3 Solving linear-in-parameter problems by the least squares
(LS) method

Many filter design methods are based on solving a linear-in-parameter problem, where the trans-
fer function or impulse response is a linear function of the filter coefficients. FIR filter design
is linear in parameters both in the time- and frequency domain, and so is IIR filter design in
equation error setting [Parks and Burrus 1987]. The impulseresponses and transfer functions
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2.3. Solving linear-in-parameter problems by the least squares (LS) method 9

of Kautz filters (Chap. 5) and fixed-pole parallel filters (Chap. 6) are also linear in their free
parameters.

For all of these cases, the outputh (a column vector) is a linear combination of the basis
functionsmk with weightspk, written as

h =
K
∑

k=1

pkmk = Mp, (2.9)

whereM is the modeling matrix, whose columns contain the vectors ofthe basis functionsmk,
andp is a column vector composed of the weightspk. Thepk parameters should be set in such
a way that the linear combination of the basis functionsh is the closest to the target vectorht,
that is,||h− ht|| is minimal. When theL2 norm is used, the solution can be found in one step
in closed form, as opposed to more complicated (usually iterative) methods required for other
norms.

Minimizing the error between the output vectorh and the target vectorht in the mean
squared sense can be written as

eLS =
N
∑

n=1

|hn − ht,n|2 = (h− ht)
H(h− ht) =

(Mp− ht)
H(Mp− ht) = pHMHMp− 2pHMHht + hH

t ht, (2.10)

wherexH is the conjugate transpose ofx. The absolute value sign, and thus the conjugation
is needed because this way the equations are also valid for complex vectors. Since Eq. (2.10)
is quadratic inp, it has a unique minimum, which can be found by taking the derivative of
Eq. (2.10) with respect top, and setting it to zero [Schnell 1998; Parks and Burrus 1987]:

∂eLS

∂p
= 2MHMp− 2MHht = 0. (2.11)

This means that we need to solve the following system of linear equations (the so called “normal
equations”) forp:

(MHM)p = (MHht), (2.12)

where(MHM) is aK ×K full rank (invertible) square matrix, assuming that theK modeling
signalsmk are independent. Both(MHht) andp are lengthK column vectors.

Thus, the optimal set of parameterspopt is given as

popt = M+ht, (2.13a)

M+ = (MHM)−1MH , (2.13b)

whereM+ is the Moore-Penrose pseudoinverse.
While Eq. (2.13) is useful for problems with a modest (few hundred) number of parameters,

there are faster and numerically more robust alternatives to solve least-squares problems: this
includes solving the normal equations Eq. (2.12) via Cholesky factorization or obtaining the
solution by the QR decomposition of matrixM [Golub and Loan 2013].
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10 Chapter 2. Basic concepts and methods

2.3.1 Weighted least squares design

It is also possible to add a specific weight to certain elements ofh when we sum the errors as

eWLS =

N
∑

n=1

Wn|hn − ht,n|2 = (h− ht)
HW(h− ht), (2.14)

whereWn is the weight for then-th element of the output vectorh, andW is the weight-
ing matrix havingWn in its diagonal and zeros elsewhere. The minimum is obtainedby the
weighted-least-squares (WLS) solution [Schnell 1998; Parks and Burrus 1987]:

popt = (MHWM)−1MHWht. (2.15)

Note however that it is impractical to computepopt as in Eq. (2.15), because it involves the
multiplication with an almost empty matrixW. By substitutingW = W′W′ into Eq. (2.15)
whereW′ is a diagonal matrix containing

√
Wn, it is easy to see that we simply have to multiply

then-th element ofht and then-th row of M by
√

Wn before using Eq. (2.13) to obtain the
same solution as with Eq. (2.15), but with less computations.

2.4 Minimum-phase filter design and equalization

IIR filters can be both minimum-phase and non-minimumphase,depending on the location of
their zeros. Practical experience shows that minimum-phase systems can be modeled easier
by IIR filters (i.e., with a lower filter order for the same magnitude accuracy) than their non-
minimumphase counterparts. Let us take a look into this issue in the following.

For that we first note that if the order of the IIR filter was the same as that of the system to
be modeled, there would be no complications in approximating non-minimumphase responses.
However, in audio we are usually modeling or equalizing high-order systems by lower order
filters, so the situation is different.

Minimum-phase systems have many important properties: if they have a rational transfer
function, then their zeros also lie within the unit circle (thus, their inverse is stable), their phase
response is linked to the logarithm of their magnitude response by the Hilbert transform [Op-
penheim and Schafer 1975], and the energy in their impulse response is most concentrated to the
beginning part of the response (minimum energy-delay property [Oppenheim et al. 1999]). This
last property translates to the fact that their impulse response has the most decaying character
for a given magnitude response.

For all of the perceptually motivated filter design techniques discussed in this work (warped,
Kautz, and parallel filters) the net transfer function is proper (has the same numerator and
denominator order). Causal IIR filters with a proper transfer function compose their impulse
response as a sum of decaying exponentials as coming from partial fraction expansion; thus,
they are most suited to model decaying impulse responses. This means that minimum-phase
responses are easy targets for all of these methods due to their minimum energy-delay property.

Slightly non-minimumphase targets are usually also well modeled by IIR filters, but highly
non-minimumphase responses, such as a room impulse responses with multiple reflections, or
far-field instrument body responses where the main peak of the response comes after a few
hundred samples, cannot be easily followed by the decaying response of IIR filters.

The equalization of non-minimumphase transfer functions by IIR filters is even more prob-
lematic than modeling them, since their zeros outside the unit circle would require unstable
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2.4. Minimum-phase filter design and equalization 11

poles in the equalizer for perfect equalization. One solution to this problem is to use a forward-
backward filtering scheme and implement the acausal part of the IIR filter in the backward
filtering block [Powel and Chau 1991; Maeng and Lee 1995; Kurosu et al. 2003]. However,
this requires a complicated block-based processing and depending on the implementation, it
can lead to harmonic distortion due to the variable-length truncation of the backward filter re-
sponse. Thus, instead of the backward IIR filter it is both simpler and safer to use an additional
FIR path in the filter for the early (acausal) part of the impulse response [Paatero and Karjalainen
2006; Karjalainen and Paatero 2007; Bank 2007] (using an FIRfilter for the rising part of the
response will be demonstrated for the parallel filter in Sec.9.1). Note that in both cases the filter
must be of course causal, actually the delayed version of thetheoretically acausal filter. This
additional delay might be problematic in some applicationssuch as live sound reinforcement,
and the rising part of the equalizer response can also cause audible artifacts termedpre-echoor
pre-ringing[Karjalainen et al. 2005; Cecchi et al. 2018].

A straightforward choice to avoid these complications is toconvert the system response to
minimum-phase before filter or equalizer design [Karjalainen et al. 2005; Cecchi et al. 2018].
While using a minimum-phase target might seem to be a limitation at first glance, it is a common
choice in audio signal processing. A physical motivation for minimum-phase filter design is that
many systems in audio (microphones and one-way loudspeakers, the modal range of room fre-
quency responses, analog parametric and graphic equalizers) have a minimum-phase response
anyway. Another motivation is coming from perceptual principles: while there is evidence that
the phase response of electroacoustic systems can be heard on certain special program material
(see, e.g., [Liski et al. 2018]), it is generally accepted that the magnitude response has much
larger importance in the observed quality of audio systems.Since minimum-phase responses
are easier modeled or equalized by IIR filters, this means that by giving up the perceptually less
important phase accuracy, lower filter orders are sufficientfor the same precision in magnitude
modeling or equalization. This explains why using a minimum-phase target is so common in
the audio field.

Complying with this usual procedure, most of the design examples of this work apply a
minimum-phase target specification. To make this clear to the reader, this will be always men-
tioned in the captions of the corresponding figures. Nevertheless, it is worth emphasizing that
IIR filters can of course be used for modeling or equalizationof non-minimumphase responses
if required (see, e.g., Fig. 7.1 for non-minimumphase warped and parallel filters), albeit with
less efficiency, that is, typically requiring higher filter order compared to their minimum-phase
version.1

1As an intermediate case betweenminimum-phase and non-minimumphase filter design, I have developed
a general method (usable with any filter design technique, not only by fixed-pole parallel filters) that aims at
achieving magnitude and phase accuracy in those frequency regions where this is possible, and prioritizes the
magnitude over the phase whenever this cannot be done. Sincefor this thesis I have decided to include only those
results that are closely related to fixed-pole parallel filter design, the detailed description ofmagnitude-priority
filter designis not given here. However, a quick summary and my related publications are listed in Sec 10.1.2.
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Chapter 3

Fractional-octave smoothing

The quasi-logarithmic frequency resolution of human hearing is also reflected in how transfer
functions are displayed in the audio field. From the earliesttimes, a logarithmic frequency scale
is used, and often the magnitude response is smoothed at a fractional-octave (e.g., third octave)
resolution. The motivation behind fractional-octave smoothing is that the original transfer func-
tion is too detailed for evaluation: the effects of small variations in practice cannot be heard,
and the raggedness of the response might actually prevent usfrom observing the more important
global shape of the response. In other words, the smoothed version of the transfer function gives
a better estimate of the perceived timbre. While smoothing stems from analog signal analyzers,
typically all current digital audio spectrum analyzers offer this option.

3.1 Magnitude- or power-smoothing

Traditionally, smoothing has only been applied for the magnitude response of audio systems.
In the time of analog signal analyzers, a smoothed transfer function was either obtained with
exciting the system with pink noise and measuring the outputvoltage of bandpass filters (e.g.,
having aQ value corresponding to a third-octave resolution), or withheterodyne spectrum
analyzers theY signal of the cathode ray tube representing the magnitude value was low-pass
filtered. The same procedure was applied with plotters when the write speed in theY direction
was decreased by lowpass filtering.

In digital analyzers, the starting point is usually a spectrum computed via FFT, thus, a spec-
trum in linear frequency scale. The smoothed transfer function is then computed by averaging
the squared magnitude response values around the frequencyof interest. Averaging the magni-
tude itself is also an option, though less often used, and thetermmagnitude smoothingusually
actually refers to power smoothing in the literature. Sincewe are aiming at a fractional-octave
(constantQ) resolution, the width of the averaging window will be linearly proportional to
frequency [Lipschitz et al. 1985]. This is equivalent to convolving the transfer function (actu-
ally, the discrete transfer function vector) with a window function whose size increases with
frequency. In the simplest case, simple averaging is applied, corresponding to a rectangular
window, but weighted averaging can also be used. For example, a Hann window is a straight-
forward choice to weight the elements.

Smoothing is not only useful for displaying transfer functions, but also for a preprocess-
ing step before filter design, as often applied in loudspeaker and room response equalization
(see, e.g., [Ramos and López 2006; Craven and Gerzon 1992; Pedersen and Thomsen 2007]).

12
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3.2. Complex smoothing 13

Smoothing in equalizer design is motivated by two reasons. First, the systems to be equalized
are typically of very high order (e.g., due to the high modal density in room responses), and cor-
rection of all this detail would lead to very high order filters. As the final judge in sound quality
is the human ear, it is more efficient to equalize only those aspects that lead to an audible er-
ror, and for that the smoothed response is a much better starting point. Besides efficiency and
perceptual aspects, there is also a physical reason for applying logarithmic or logarithmic-like
frequency resolution in equalizer design. Namely, an audiosystem often has multiple outputs,
like multiple listening positions in a room, and the equalizer should maintain or improve the
sound quality at all positions. Transfer functions measured at different points in space have
more similarity at low frequencies than at high frequencies, due to the different wavelengths of
sound. Therefore, an overly precise correction computed from one measurement point would
actually worsen the response at other positions, especially at high frequencies [Craven and Ger-
zon 1992; Karjalainen et al. 2005; Cecchi et al. 2018]. This means that as frequency increases,
it is more and more true that only the macro properties of the transfer function should be equal-
ized, and equalization based on fractional octave smoothedresponses does exactly this.

Figure 3.1 solid lines display a loudspeaker room response and its smoothed versions up
to third-octave smoothing. Smoothing at1/βth-octave resolution was done by weighting the
squared magnitudes by a Hann window having the full width of2/β-octave (i.e., its half width,
or, the distance of its 0.5 points is1/βth-octave). This complies with the results of analog
third-octave analyzers, where the half-power points of thebandpass filters have a third-octave
distance. It can be seen that with increased smoothing the small details of the magnitude re-
sponse disappear and the macro properties become more prominent. Note that the amount of
smoothing required depends on the application, and also on the available filtering resources.
That is, if we know that we will model or equalize the responsewith a low-order filter, it is
advisable to smooth the response more strongly so that the filter will be forced to concentrate
on the overall response, rather than modeling some sharp peaks and dips that are perceptually
less relevant.

3.2 Complex smoothing

A drawback of traditional magnitude or power smoothing is that it only considers the magni-
tude response, thus, the phase information and the corresponding time structure of the impulse
response is lost. This is acceptable for visualization, andalso for magnitude-only loudspeaker
or room response equalization, when usually a minimum-phase specification is computed based
on the smoothed magnitude.

However, in digital processing, it is also possible to smooth the complex transfer function
so that the phase information and the time structure of the impulse response can also be re-
constructed [Hatziantoniou and Mourjopoulos 2000]. This has the important benefit that this
way the time-domain aspects (and thus, the phase response) of the measured system can also be
modeled or equalized.

Complex smoothing is very similar to power smoothing, but now the complex transfer func-
tion (and not the squared magnitude) is convolved with a realsmoothing functionW (f). This
is basically the same as smoothing the real and imaginary parts of the transfer function sepa-
rately. The interesting property of such a processing is that it is equivalent to multiplying the
impulse response by a time-domain window functionw(t) where the length of the window is
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Figure 3.1: Fractional-octave smoothing: (a) original loudspeaker–room response, and the responses
smoothed to (b) 24th-octave, (c) 12th-octave, (d) 6th-octave, and (e) 3rd-octave resolution. The solid
lines show the power-smoothed curves, while the dashed lines display the magnitude of the complex-
smoothed responses. The curves are offset for clarity.

frequency dependent [Hatziantoniou and Mourjopoulos 2000]. Note that such equivalence can-
not be made for power smoothing due to the nonlinear operation of squaring the magnitude.
Frequency-dependent signal windowing, the time-domain equivalent of complex smoothing,
has also been proposed in [Karjalainen and Paatero 2001].

Smoothing functionsW (f) with a Hann window shape having the width of 50, 100, and
200 Hz are displayed in Fig. 3.2 (a). By taking the inverse Fourier transform ofW (f), the cor-
responding time-domain window functionsw(t) are obtained. These are displayed in Fig. 3.2
(b). It can be seen that when the width of the frequency-domain smoothing function depends on
frequency, the operation corresponds to multiplying the impulse response by a window func-
tion whose length is frequency dependent. Note that in complex smoothing, the smoothing
functionW (f) is chosen to be a real (zero phase) function [Hatziantoniou and Mourjopoulos
2000], which leads to a corresponding time window that is symmetric aroundt = 0, that is,
w(−t) = w(t). Since we are interested in smoothing causal responses (h(t) = 0 for t < 0),
it is sufficient to multiply the impulse responseh(t) with the right half of the window function
when the frequency-dependent windowing operation is performed.

For obtaining a logarithmic frequency resolution, wider smoothing functions have to be used
at high frequencies compared to the low ones. This means thatthe original impulse response
is windowed to shorter length at high frequencies compared to the low ones. Naturally, not
only fixed fractional-octave (logarithmic), but arbitrarysmoothing resolution can be applied,
including those corresponding to Bark or ERB scales [Hatziantoniou and Mourjopoulos 2000].
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Figure 3.2: Complex smoothing and frequency-dependent windowing: (a)smoothing windowsW (f)
with a Hann shape, having the width of 50 Hz (solid line), 100 Hz (dashed line), and 200 Hz (dash-
dotted line). (b) The corresponding time-domain window functionsw(t) computed by the inverse Fourier
transform ofW (f) are displayed by the same line types.

Figure 3.1 dashed-lines display the magnitudes of the complex-smoothed transfer functions.
The smoothing was done by weighting the complex transfer function values by a Hann window
having the full width of2/β-octave (i.e., its half width, or, the distance of its 0.5 points is1/βth-
octave). The power-smoothed responses are displayed in Fig. 3.1 by solid lines. It can be seen
that for mild values of smoothing, the two curves are mostly in line, while for heavier smooth-
ing the complex-smoothed transfer functions (dashed lines) are below the power-smoothed ones
(solid lines). This is because power smoothing retains all the energy of the original transfer func-
tion, since it averages the power spectrum. On the other hand, complex-smoothing is equivalent
to frequency-dependent windowing of the impulse response,and heavier smoothing leads to
shorter windows, thus, more energy loss. This is actually anadvantage in room equalization:
this way the position-dependent high-frequency reflections of the room are eliminated from the
system response, thus, they are not equalized, which helps the equalizer to provide an improve-
ment in a larger area of the room [Mourjopoulos and Hatziantoniou 2004].

3.3 Equivalent complex smoothing

Nevertheless, if we wish to avoid the “energy loss” of complex smoothing seen in Fig. 3.1
and discussed above, Hatziantoniou and Mourjopoulos [2000] proposes an alternative solu-
tion where the magnitude response is corrected so that it matches the power-smoothed re-
sponse. This is calledequivalent complex smoothing, which basically means computing both
the complex-smoothed and power-smoothed responses, and combining them in such a way that
the magnitude is taken from power smoothing, and the phase from complex smoothing. A sim-
ilar idea is proposed by [Panzer and Ferekidis 2004] where the magnitude and phase responses
are smoothed separately.
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Chapter 4

Warped filters

The earliest perceptually motivated design technique is based on frequency warping. The idea
can be traced back to the paper of Constantinides [1970] which proposes the substitution of
unit delays in digital filters with allpass filters in order tochange the filter type. Such a trans-
formation can be lowpass–lowpass (change in cutoff frequency), lowpass–highpass, lowpass–
bandpass, lowpass–band-reject, similarly to the spectraltransformations used in the design of
analog filters.

The first application of the allpass transform as a means of obtaining nonlinear frequency
resolution was proposed by Oppenheim et al. [1971], where a non-uniform DFT was obtained
by passing the input signal through an allpass chain and using the outputs of the stages as the
input of an ordinary FFT operation. Strube [1980] has applied frequency warping for approxi-
mating the frequency resolution of the human auditory system in linear predictive coding.

The use of frequency warping as a means of approximating logarithmic frequency resolution
for IIR filters was proposed in [Smith 1983; Waters and Sandler 1993], and the most extensive
overview on the subject was presented in [Härmä et al. 2000].

4.1 The effect of warping

The basic idea of warped filters is that the unit delayz−1 of traditional FIR or IIR filters is
replaced by an allpass filter

z−1 ← D(z) =
z−1 − λ

1− λz−1
. (4.1)

The transformation of the frequency axis is related to the phase response of the first-order all-
pass. The substitution results in the frequency mapping

ϑ̃ = ν(ϑ) = arctan
(1− λ2) sin(ϑ)

(1 + λ2) cos(ϑ)− 2λ
, (4.2)

whereϑ is the original and̃ϑ is the warped angular frequency in radians [Härmä et al. 2000].
This transformation is displayed for variousλ values in Fig. 4.1.

Accordingly, a filter originally having the transfer function of H(ϑ) will have the transfer
function ofH(ν(ϑ)) after substituting its delay elements by the first order allpass of Eq. (4.1).
For increasing the resolution at low frequencies, which is required for achieving a logarithmic
scale, positiveλ values are used. It can be seen in Fig. 4.1 that in this case theregion around

16
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Figure 4.1: The frequency mapping functionν(ϑ) of Eq. (4.2) for various warping parameters.

zero frequency will span a much larger frequency region in the warped domain, which means
increased resolution.

The change of the frequency resolution is related to the slope of the mapping function in
Fig. 4.1, that is, the derivative of Eq. (4.2). The higher theslope, the larger is the increase in
frequency resolution. Accordingly, if a FIR or IIR filter hasa local resolution∆f(f), then its
warped variant will have the resolution∆f̃(f)

∆f̃(f) =
1 + λ2 − 2λ cos(ϑ)

1− λ2
∆f, (4.3)

whereϑ = 2πf/fs, with fs being the sampling frequency [Ramos et al. 2009]. For FIR filters,
∆f = fs/N , whereN is the filter order. For IIR filters such an exact number cannotbe
computed, nevertheless, Eq. (4.3) still shows how the resolution is mapped when the IIR filter
is implemented using allpasses instead of unit delays.

The relative resolution is shown in Fig. 4.2 (a) for variousλ values, and the dotted line
λ = 0 corresponds to no warping. The plot was computed using Eq. (4.3) with ∆f = 1, and
the sampling frequency wasfs = 44.1 kHz. It can be seen in Fig. 4.2 (a) that the warped
implementations withλ > 0 increase the resolution (decrease∆f̃ ) at low frequencies, at the
expense of lower resolution (larger∆f̃ ) at high frequencies. This tradeoff is understandable
since the degrees of freedom in the filter are unchanged, thus, an improvement at a specific
frequency band will lead to poorer performance at another band.

In audio applications we usually try to approximate logarithmic frequency resolution, there-
fore it makes sense to plot the same curves divided by frequency, given by

∆f̃(f)

f
=

1 + λ2 − 2λ cos(ϑ)

(1− λ2)

∆f

f
. (4.4)

In Fig. 4.2 (b)∆f̃(f)/f is plotted for∆f = 1. Again, the dotted line withλ = 0 shows what
happens with an ordinary (not warped) FIR or IIR filter, and a logarithmic frequency resolution
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Figure 4.2: The change of frequency resolution due to warping: (a)∆f̃ according to Eq. (4.3) for various

warping parameters, and (b) “logarithmic resolution”∆f̃/f computed by Eq. (4.4) The resolution prior
to warping is∆f = 1 in both figures. Smaller values correspond to a higher resolution.

would correspond to a horizontal line in the figure. It can be seen that while none of theλ
values achieve fully logarithmic resolution (none of the curves are horizontal lines), there are
some frequency bands for eachλ where this is relatively well achieved. Moreover, the warped
curves (solid lines) span a significantly smaller vertical range compared to no warping (dotted
line), meaning that we are closer to the desired distribution of frequency resolution.

The relation of warping to psychoacoustic scales (ERB, Bark, Greenwood) is discussed in
[Härmä et al. 2000]. In addition, Smith and Abel [1999] has given an analytical expression for
λ as a function of sampling rate to match the Bark scale. However, similarly to the logarithmic
scale, an exact match is not possible due to the limited degrees of freedom (a single warping
parameter).

The warping effect is demonstrated in Fig. 4.3, where (a) displays the original frequency
response of an arbitrary FIR filter having random coefficients, while (b) and (c) display the
filter response when the unit delays are exchanged for first-order allpass filters withλ = 0.5
andλ = 0.75, respectively. It can be seen in (a) that the original FIR filter has even (linear)
resolution, that is, the detail is evenly distributed in thelinear frequency scale. However, when
frequency warping is applied, the transfer function gradually shifts towards lower frequencies
with increasingλ, meaning that the level of detail is higher at low frequencies compared to high
frequencies.

4.2 Filter design

The basic idea of warped filter design is that the filter specification in the time- or frequency-
domain is predistorted with the inverse of the warping effect of the filter. Then any traditional
filter design technique can be used to design an FIR or IIR filter, and finally when the filter is
implemented by using first-order allpass elements, the filter response gets to the right place. A
very appealing property of warped filters is that the embedded filter design step is the same as
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Figure 4.3: The frequency response of an 100th order FIR filter with random coefficients (a), and the
same filter having its unit delays replaced by allpass filtersof the form Eq. (4.1) with (b)λ = 0.5 and (c)
λ = 0.75.

for ordinary FIR or IIR filters.

4.2.1 Frequency-domain design

Let us define the inverse mappingν−1(ϑ̃) so thatϑ = ν−1(ν(ϑ)). If the mapping function was
computed by usingλ in Eq. (4.2), then the inverse mapping can be obtained by using−λ in the
same function Eq. (4.2) [Härmä et al. 2000].

The steps of filter design are the following:

1. Prewarping of the target frequency response.The filter specification is transformed by
the inverse mapping functionν−1(ϑ̃). Mathematically, this mapping is described by

H̃t(ϑ̃n) = Ht(ν
−1(ϑ̃n)). (4.5)

In practice this can be done by some suitable interpolation,where we have direct con-
trol over the density of the target frequency points in the warped domain. A simpler
alternative solution is to move the original specification pointsHt(ϑn) to the frequencies
ϑ̃n = ν(ϑn), but leaving their magnitude and phase values unchanged.

2. Frequency-domain filter design.An FIR or IIR filter is designed based on the pre-warped
targetH̃t(ϑ̃) by any of the available filter design methods, just as with ordinary FIR or
IIR filters. This leads to the filter̃H(ϑ̃).

3. Filter implementation. This is actually not part of the design process, but when the warped
filter is implemented by substituting the unit delays of the FIR or IIR filter designed in
Step 2 by the first-order allpass filters, the frequency-scale of the filter will be mapped
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20 Chapter 4. Warped filters

back to match that of the original specification. Thus, the transfer function is automati-
cally shifted fromH̃(ϑ̃) to H̃(ϑ) so that

H(ϑ) = H̃(ν(ϑ)). (4.6)

4.2.2 Time-domain design

The steps of the design are the following:

1. Prewarping of the target impulse response.In the time domain, the design of warped fil-
ters starts with warping the target impulse responseht(n) by the use of an allpass chain
with −λ [Härmä et al. 2000].

2. Time-domain filter design. Warped FIR (WFIR) filters can be simply obtained by truncat-
ing or windowing the warped target responseh̃t(n) just as what would be done when
modeling an infinite impulse response with a finite length filter. Similarly, warped IIR
filters are designed by traditional filter design algorithms(e.g., LPC, Prony, Steiglitz-
McBride) using this warped̃ht(n).

3. Filter implementation. When the filter designed in step 2 is implemented with first-order
allpasses in place of the unit delays, its impulse response is automatically mapped back
to be in accordance with the original (unwarped) target impulse response.

4.3 Filter design examples

Figure 4.4 shows various warped filter designs based on the same loudspeaker–room response
where the standard IIR filter design methods failed to provide logarithmic frequency resolution
in Chap. 1. The first three curves (a)–(c) correspond to warped FIR filters with variousλ values
designed by truncating the warped impulse response. It can be seen that increasingλ shifts the
region with detailed modeling in accordance with the resolution curves of Fig. 4.2 (b). It can
also be seen that none of theλ values provide even distribution of the modeling accuracy in the
logarithmic scale.

Figure 4.4 (d)–(f) displays warped IIR filters designs usingthe Steiglitz-McBride method
[Steiglitz and McBride 1965] with the sameλ values as for the WFIR filters. Here again in-
creasingλ shifts the region of accurate modeling to low frequencies. Compared to the WFIR
examples, the WIIR filters provide a better fit since they can redistribute the modeling detail by
their poles. Coming from this, the region of accurate modeling is wider than for WFIR filters.
However, there is still no suchλ value where the accuracy is evenly distributed in the full audio
bandwidth.

4.4 Implementation

4.4.1 Implementation with special filter structures

The WFIR filters have a similar structure as FIR filters, but the unit delays are replaced by the
allpass filterD(z). That is, the WFIR filter is an allpass chain, where the signals between the
first-order allpass blocks are tapped and weighted by the FIRcoefficientsbk. On the contrary
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Figure 4.4: Modeling a minimum-phase loudspeaker–room response with (a)–(c) 32nd order warped
FIR filters and (d)–(f) 32nd order warped IIR filters using various warping parametersλ = 0.5, 0.8, 0.95.
The target response is displayed by thin lines, while the filter responses are shown by thick lines. The
curves are offset for clarity.

to WFIR filters, the implementation of WIIR filters is less straightforward. This is because for
WIIR filters the replacement of unit delays byD(z) leads to delay-free loops, and the filter
structure has to be modified for practical implementation [Johnson 1979; Steiglitz 1980; Ahuja
and Roy 1980; Karjalainen et al. 1997]. Because of the specialized filter structures, WFIR and
WIIR filters typically require 2–4 times higher computational time compared to normal FIR and
IIR filters of the same order [Härmä et al. 2000].

4.4.2 Dewarping to direct-form filters

Instead of implementing warped filters directly, it is also possible to simply substitute the first-
order allpass transfer function Eq. (4.1) into the transferfunction of the FIR or IIR filter, which
will result in an IIR filter with the same order for the numerator and the denominator [Johnson
1979; Smith 1983; Härmä et al. 2000]. The disadvantage of dewarping the filter to a direct-form
realization is that it can be done only up to filter orders around 20 due to numerical problems
coming from pole clustering at low frequencies [Härmä et al.2000].

4.4.3 Dewarping to cascade or parallel sections

Another, numerically better behaving option is to dewarp the filter to a cascade or parallel
second-order structure. The idea is first break up the transfer function of the warped filter to
series or parallel second-order sections, and then dewarp the sections separately [Ahuja and Roy
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22 Chapter 4. Warped filters

1980]. Finally, the filter is implemented in this series or parallel form.
While [Ahuja and Roy 1980] presents the formulas of dewarping a second-order section, in

[Tyril et al. 2001] the problem is addressed by first finding the polesp̃k and zerosm̃k of the
warped IIR filter, then dewarping them by the expression

pk =
p̃k + λ

1 + λp̃k
, mk =

m̃k + λ

1 + λm̃k
. (4.7)

Finally, the filter is implemented as a series of second-order sections, computed from the de-
warped (linear frequency-scale) polespk and zerosmk [Tyril et al. 2001].

Dewarping to second-order sections is a very effective way of implementing warped filters
since it can be used with high filter orders (while dewarping to direct form cannot). For the
series second-order case, the number of multiplications remains the same as for traditional IIR
filters of the same order, requiring 4 multiplications per second-order section. This leads to 4
multiplications per second-order section. On the contrary, when the warped filter is dewarped
to parallel second-order sections, there is an increase in the number of multiplications. This is
because the decomposition of the warped filter to parallel second-order sections leads to sections
whose numerator order is 1, and denominator order is 2 (4 multiplications per section). When
this section is dewarped, the numerator order also becomes 2(a zero is placed atλ), requiring 5
multiplications per section, as opposed to 4 for the series case.

4.5 Extensions of basic warping techniques

We have seen in Fig. 4.2 (b) that there is no singleλ value which would result in a constant
resolution in the logarithmic scale. On the contrary, eachλ focuses the resolution around a
certain frequency region. Therefore, a straightforward development of the warped filter concept
is to use different warping parameters for the different frequency regions.

4.5.1 Combination with linear filters

A special case of multi-band warping is when one of the bands is a normal FIR or IIR filter
(that is, for that bandλ = 0). This is motivated by the fact that straightforward FIR andIIR
filters can be implemented more efficiently compared to theirwarped counterparts. Since the
resolution of normal FIR and IIR filters is linear, they are best suited for modeling or equal-
ization of the high-frequency region of the transfer function. Such a combined warped and
linear equalizer was presented in [Wang et al. 2000a]. The frequency band is split to two by a
crossover network, which includes a lowpass and a highpass filter. The high-frequency part of
the signal is processed by an FIR filter, while the low-frequency part by a warped FIR filter. A
similar approach is presented in [Ramos et al. 2009] with theimportant difference that the FIR
and warped FIR filters are in cascade, eliminating the need for a crossover network.

4.5.2 Multiple warped filters

The first paper using multiple warped filters is [Wang et al. 2000b], which proposes the use of a
three-band equalizer, where differentλ values are chosen in the three branches to maximize the
warping effect for each warped FIR filter. In addition, the middle band incorporates decimation
and interpolation so that the processing is done at a reducedsample rate to maximize efficiency.
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4.6. Final remarks on the various warping techniques 23

The three bands are separated by a crossover network composed of a low-pass, band-pass and a
high-pass filter.

I have developed a multi-band warping technique for computing the pole positions of the
fixed-pole parallel filter [Bank and Ramos 2011], and the firstpart of the method can be directly
used as a warped IIR filter design. In this method the transferfunction is split to two bands, and
two warped IIR filters are designed with suchλ values that lead to maximal modeling resolution
in the center of their corresponding bands. Then the two WIIRfilters are combined (connected
in series). The details of this procedure will be outlined inSec. 7.3.3.

4.5.3 Custom warping

So far we have been using the frequency warping function Eq. (4.2), which gives a limited
freedom due to a single parameterλ. Improved results were obtained by combining multiple
warped filters with differentλ values. However, a question arises if it is possible to use a loga-
rithmic frequency mapping prior to filter design, since thatwould result in an even distribution
of approximation errors in the logarithmic scale, and thus,to a truly logarithmic frequency res-
olution. One solution to the problem is to design a parallel set of all-pass filters of increasing
order, based on the phase response of the logarithmic mapping [Härmä and Paatero 2001]. How-
ever, a disadvantage of the method is its very heavy computational load making it impractical
for real-time applications. I have developed a more efficient approach that does not increase the
filter order. The basic idea of [Bank 2011c] is that the warpedfilter designed based on the loga-
rithmically mapped specification is implemented by pole-zero dewarping, and not by the usual
allpass substitution. Since the filter is implemented in theparallel second-order form, it can
also be considered as a pole positioning technique for fixed-pole parallel filters. Accordingly,
the details will be presented in Sec. 7.3.4.

4.6 Final remarks on the various warping techniques

Warped FIR filters represent the simplest method for obtaining filters with logarithmic-like
frequency resolution. They can be designed in the time-domain by truncating or windowing
the pre-warped target impulse response, similarly how one would model an infinite impulse
response system by a finite impulse response filter. The implementation of warped FIR filters is
also straightforward: the unit delays of the FIR filter are replaced by first-order allpass filters.

Warped IIR filters result in more accurate models for the samefilter order compared to
WFIR filters. However, the implementation of WIIR filters is more complicated: to avoid the
problem of delay-free loops, a modified filter structure has to be used with recomputed filter
coefficients. Alternatively, the WIIR filter can be dewarpedto series or parallel second-order
sections, leading to a more efficient implementation with a simpler filter structure requiring less
additions and multiplications.

Normal WIIR filters already provide a reasonable modeling ifnot the entire audio band-
width is used (for example, imagine modeling or equalizing asmall computer speaker having
the bandwidth of [200 Hz, 15 kHz]). If the full audio range hasto be modeled or equalized,
then multi-band or custom warping techniques can be used to improve accuracy. However,
as we shall see, there are even more flexible methodologies for obtaining filters with arbitrary
frequency resolution: these are the Kautz and parallel filters discussed in the next chapters.
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Chapter 5

Kautz filters

We have seen in Chap. 4 that warped filters (especially WIIR filters) provide a much better ap-
proximation to logarithmic frequency resolution comparedto straightforward IIR filters shown
in Chap. 1. However, when the full audio band from 20 Hz to 20 kHz has to be modeled or
equalized, a singleλ parameter is insufficient, as either the high-, or the low frequencies will
lack modeling detail (see Fig. 4.4). This can be improved using multipleλ values, as it was
outlined in Sec. 4.5.

As a generalization, the question arises if it would be possible to construct the WFIR and
WIIR filters in such a way that all the allpasses have different λ values. This question has been
investigated by Tyril et al. [2001], who has proposed the useof WizFIR (warped individual z
FIR) filters. No systematic procedure has been given for choosing the differentλ parameters
for the various sections, rather, they were set by trial and error. The authors have found that
the performance is slightly improved compared to normal WFIR filters. However, this comes at
a price of more complicated parameter estimation, since nowthe procedure of prewarping and
the use of traditional filter design techniques as shown in Sec. 4.2 is unfeasible. This is because
no common mapping function exists. Instead, the parametersof the WizFIR filter have been
obtained with a least squares fit where the basis functions are the impulse responses computed
at the various stages of the allpass chain. Tyril et al. [2001] have concluded that for the same
computational complexity, WizFIR filters are outperformedby WIIR filters. Thus, the use of
WizFIR filters is not encouraged. The authors have also addedthat the use of individualλ-s in
WIIR filters is doubtful since WIIR filters can have differentpoles anyway.

A mathematically better founded alternative to WizFIR filters is the use of Kautz filters,
which are indeed very similar to a warped FIR filter structurewith differentλ values, with an
additional feature of orthonormal basis functions [Paatero and Karjalainen 2003]. Before seeing
how Kautz filters can be used to achieve logarithmic frequency resolution, we first review the
history of the method.

5.1 Laguerre and Kautz models

Traditionally, Laguerre and Kautz models were proposed forsystem identification. These mod-
els reconstruct the system response as a linear combinationof orthonormal basis functions. In
those times orthonormal functions were essential since that way the parameters of the models
are obtained by a scalar product, which could be computed even on the earliest computers.

In the case of Laguerre models [Oliveira e Silva 1995], the orthonormalization procedure is

24
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5.1. Laguerre and Kautz models 25

started from identical first-order lowpass transfer functions1/(1− pz−1) with a pole atp. This
gives the following set of orthonormal functions:

Lk(z) =

√

1− p2

1− pz−1

(

z−1 − p

1− pz−1

)k−1

, (5.1)

for k = 1, 2, . . .K.
The term in the parenthesis corresponds to an allpass filter:indeed, Laguerre models lead to

the same filter structure as warped FIR filters, and the only difference is the normalization term
√

1− p2/(1− pz−1), which is simply a lowpass filter at the input of the allpass backbone.
A straightforward generalization of Laguerre filters is when the orthonormalization process

is started from first-order lowpasses having different poles (note that the polespk can also be
complex). For continuous-time systems the concept was introduced by Kautz [1954], while
the corresponding discrete-time orthonormal sequences were first presented by Broome [1965].
The orthonormal polynomials take the following form [Paatero and Karjalainen 2003]:

Gk(z) =

√
1− pkpk

1− pkz−1

k−1
∏

j=1

z−1 − pj

1− pjz−1
, (5.2)

for k = 1, . . .K, wherepk is the complex conjugate ofpk. (Note that in [Paatero and Kar-
jalainen 2003] the indexing starts fromk = 0.) Again, the filter can be implemented as a tapped
allpass backbone, but now the poles of the filter are different. Therefore, the first-order lowpass
normalization terms

√
1− pkpk/(1 − pkz

−1) have to be implemented separately after the tap-
ping points of the backbone. Note that this is similar to the WizFIR filter of [Tyril et al. 2001]
with the added first-order lowpasses at the tap outputs.

Equation (5.2) results in complex sequences (impulse responses) for complex poles. Also,
such a model would result in a filter with complex coefficients. However, usually we are inter-
ested in modeling real impulse responses, and the use of filters with real coefficients. For such
systems complex poles always appear in complex conjugate pairs pi andpi and the complex
pole pairs can be combined to form second-order sections. For a pole pairpi andpi we obtain
a pair of real valued basis functionsG+

i (z) andG−
i (z) as follows [Broome 1965; Paatero and

Karjalainen 2003]:

Ai(z) =
1

(1− p1z−1)(1− p1z
−1)

i
∏

j=2

(z−1 − pj−1)(z
−1 − pj−1)

(1− pjz−1)(1− pjz
−1)

(5.3a)

G+
i (z) = C+

i (1 + z−1)Ai(z) (5.3b)

G−
i (z) = −C−

i (1− z−1)Ai(z), (5.3c)

for i = 1, 2, . . . I. In Eq. (5.3)C+
i andC−

i are normalization constants computed from the pole
setpi [Broome 1965; Paatero and Karjalainen 2003]. Note that since

Ai(z) = Ai−1(z)
(z−1 − pi−1)(z

−1 − pi−1)

(1− piz−1)(1− piz
−1)

, (5.4)

thus, eachAi(z) can be implemented by filtering the previous termAi−1(z) with a second-order
filter, meaning that theAi(z) part can be implemented as a backbone composed of second-
order stages. Then the signal is tapped between the sectionsand filtered by the first-order
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Figure 5.1: The structure of the Kautz filter with real coefficients.

numerator termsC+
i (1 + z−1) and−C−

i (1 − z−1) to obtain the outputsG+
i (z) and G−

i (z)
[Broome 1965]. The total filter response is the linear combination of these outputs with weights
wk. The block diagram of the Kautz structure in its efficient real form is displayed in Fig. 5.1,
whereai,1 = −2Re{pi}, ai,2 = |pi|2, bi,1 = w2i−1C

+
i , andbi,2 = −w2iC

−
i .

Both for Laguerre and Kautz models the impulse response of a systemht(n) is modeled as
a linear combination of basis functionsxk(n), which are obtained as the inverse–z transform of
Lk(z) for Laguerre andG+

i (z) andG−
i (z) for Kautz filters:

h(n) =
K
∑

k=1

wkxk(n), (5.5)

wherewk are the weights. The goal is to estimatewk such that the model responseh(n) is
closest to the targetht(n). Since thexk(n) sequences are orthonormal, the optimal solution in
the mean-squared sense is given by the scalar product

wk =
N
∑

n=0

ht(n)xk(n), (5.6)

requiring much less computations compared to solving the usual LS equations required for
non-orthogonal basis functions. This complexity can be decreased even more by noting that
the scalar product of Eq. (5.6) is equivalent to convolving the time-reversed targetht(−n) with
xk(n) and taking the output forn = 0 [Broome 1965; Paatero and Karjalainen 2003]. Convolu-
tion with xk(n) is actually done by filteringht(−n) with the same recursive Laguerre or Kautz
filter structure which is used for modeling, andwk are simply obtained by reading the outputs
at timen = 0. This property leads to very low computational complexity for weight estimation.

Nowadays solving a linear least squares problem is considered as one of the simplest op-
timization problems, thus, the orthonormality of Laguerreand Kautz basis functions has lost
some of its attractiveness. However, for some cases such as adaptive filtering orthonormality is
still highly beneficial since it leads to faster convergence[Salama and Cousseau 1998].

5.2 Kautz filters for audio applications

The use of Kautz filters as a means of controlling the frequency resolution of filter design was
proposed by Paatero and Karjalainen [2003]: they note the equivalence of warped FIR filters and
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5.2. Kautz filters for audio applications 27

Laguerre models, and show that for Kautz filters with individual poles the frequency resolution
can be directly controlled by the pole values.

For obtaining a logarithmic resolution, the poles should beset according to the following
formulas [Paatero and Karjalainen 2003; Karjalainen and Paatero 2007]:

ϑk =
2πfk

fs
(5.7)

pk = Rϑk/πe±jϑk , (5.8)

whereϑk are the pole frequencies in radians determined by the logarithmic frequency seriesfk

and the sampling frequencyfs. The pole magnitudes form an exponentially damping sequence
approximating a constantQ resolution. The pole magnitude at the Nyquist rate is set by the
damping parameterR. As a rule of thumb,R should be set so that the magnitude responses
of the neighboring taps cross at their−3 dB point, but it is said that the precise value of the
damping parameter is not critical [Karjalainen and Paatero2007].

Another way of finding the poles suggested in [Paatero and Karjalainen 2003] is by the
Brandenstein-Unbehauen method [Brandenstein and Unbehauen 1998], which is an iterative
least-squares optimization technique similar to the Steiglitz-McBride algorithm [Steiglitz and
McBride 1965]. It is suggested that for audio applications,a warped version of the Brandenstein-
Unbehauen technique should be used, where the algorithm is run on the warped impulse re-
sponse, and then the poles are dewarped by Eq. (4.7) [Paateroand Karjalainen 2003]. The
practical performance is similar to warped filters, with theadded flexibility of complete control
over the frequency resolution of the design.

Recently a new pole positioning technique have been presented in [Vairetti et al. 2015,
2016, 2017] for the application of sparse approximation of highly reverberant room impulse
responses. Instead of aiming at modeling all the details of the room impulse, the proposed
technique tries to fit the most prominent resonances by iteratively testing a set of candidate pole
positions and adding the one to the final pole set that decreases the approximation error the most.
The examples demonstrate that the method provides a stable approximation of room impulse
responses with high filter orders (N > 1000). However, the pole frequencies and damping
factors cannot be estimated as accurately as with the Brandenstein-Unbehauen technique since
they are chosen from a predefined pole set [Vairetti et al. 2017]. Therefore, for general filter or
equalizer design tasks where we are not aiming at a sparse approximation of very high order
systems, the Brandenstein-Unbehauen method [Brandenstein and Unbehauen 1998; Paatero and
Karjalainen 2003] can be still considered as the state of theart for finding the poles of the Kautz
filter.

The mathematical equivalence of Kautz and parallel filters will be shown in Sec. 6.4, mean-
ing that Kautz and parallel filters provide the same approximation for a given pole set. There-
fore, no design examples are presented here and the reader isreferred to the parallel filter exam-
ples in Chap. 6. Note that coming from this equivalence, all the pole positioning methods I have
developed for parallel filters (see Chap. 7) can be used for Kautz filters as well, with improved
results compared to the above Brandenstein-Unbehauen method.

We may conclude that Kautz filters provide an attractive way for constructing logarithmic
frequency resolution filters. However, the combined cascade-parallel nature of the Kautz fil-
ter visible in Fig. 5.1 requires more computation compared to filters implemented in direct or
cascade form. For a practical DSP implementation every second-order section of the Kautz
filter requires 6 multiply-and-accumulate (MAC) operations and 2 additions (ADD), while a
direct-from or cascade IIR filter needs only 4 MAC instructions per second-order section.
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Chapter 6

Fixed-pole parallel filters

It has been discussed in Chap. 5 that Kautz filters provide more flexibility in the distribution
of frequency resolution compared to warped filters, becausethe resolution is controlled by the
entire pole set and not only by the single parameterλ. However, a drawback of Kautz filters
that they require a complicated series-parallel filter structure leading to higher computational
complexity compared to normal IIR filters of the same order. When working in the Acoustics
Laboratory in the Helsinki University of Technology in 2007, the question came to my mind
whether it is possible to find such a filter structure that retains the modeling flexibility of Kautz
filters, while enables more efficient implementation. Sincethe Kautz basis functions were gen-
erated by orthonomalizing a set of damped exponentials, it seemed logical to test whether the
control of frequency resolution remains the same even with this non-orthogonal set of basis
functions. The answer was yes, and the idea of fixed-pole parallel filters was born where the
poles of the sections are predetermined and the numerator coefficients are estimated by a least-
squares procedure [Bank 2007], as will be shown in Sec. 6.2. Later I have also developed the
mathematical equivalence of the Kautz and parallel designsin terms of the resulting transfer
function [Bank 2013a], which will be outlined in Sec. 6.4. Similarly to Kautz filters, for com-
plex conjugate pole pairs the complex basis functions can becombined, thus the filter structure
reduces to a parallel set of second-order filters. The advantage compared to Kautz filters is that
the required number of multiplications is reduced from 6 to 4per section, while the number of
additions is reduced from 8 to 4. The simpler filter structurepredicts an even larger increase in
efficiency in practical implementations compared to what comes from the number of arithmetic
operations, especially in the view of parallel computing architectures gaining more and more
popularity.

The idea of implementing IIR filters in the form of parallel second-order sections is of course
not new, and have been used traditionally because its betterquantization noise performance
compared to direct-form filters, similarly to series biquads [Rabiner and Gold 1975; Oppenheim
et al. 1999; Chen 1996]. The parameters of the second-order sections are determined from the
direct form IIR filters, by, e.g., the partial fraction expansion or a similar algorithm [Rabiner
and Gold 1975; Oppenheim et al. 1999; Price et al. 1996].

The novelty of the methodology I have developed lies in the fact that instead of convert-
ing from a direct-form IIR filter, the parallel second-orderfilter-bank is designed directly, and
that by the suitable choice of the pole frequencies, we gain direct control over the frequency
resolution of the design.

Similarly to Kautz filters, the poles are set according to thedesired frequency resolution.
This leads to a linear-in-parameter model for the zeros of the second-order sections. Since

28
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6.1. Filter structure 29

we have given up the orthonormality of the basis functions, the scalar product of Eq. (5.6)
cannot be used for parameter estimation. This added computational complexity for filter design
compared to Kautz filters is not anymore a problem with current computers. Actually, linear
least squares problems are considered as the simplest optimization problems since they have a
closed-form solution, as we have seen in Sec. 2.3. Thus, the increased design complexity is far
outweighed by the simpler filter structure leading to significant computational savings during
real-time filtering.

6.1 Filter structure

Every transfer function of the formH(z) = B(z)/A(z) can be rewritten in the form of partial
fractions:

H(z) =
P
∑

i=1

ci
1

1− piz−1
+

M
∑

m=0

fmz−m, (6.1)

wherepi are the poles, either real valued or forming conjugate pairs, if the system has a real
impulse response. The second sum in Eq. (6.1) is the FIR filterpart of orderM . If the orders of
A(z) andB(z) are the same, the FIR part reduces to a constant coefficientf0, while for transfer
functions having more poles than zeros, the FIR part vanishes completely. Note that in the case
of pole multiplicity, terms of higher order also appear in Eq. (6.1) [Smith 2007].

Now let us assume that we are trying to fit the IIR filterH(z) to a target responseHt(z)
so that the poles of the filter are predefined. In this case Eq. (6.1) becomes linear in its free
parametersci andfm, thus, they can be estimated by a linear least squares fit to match the
required response, as proposed in [Bank 2007].

The resulting filter can be implemented directly as in Eq. (6.1), forming parallel first-order
complex filters. However, it is more practical to combine thecomplex pole pairs to a common
denominator resulting in a parallel set of second-order sections with real valued coefficients.
Those fractions of Eq. (6.1) that have real poles can be combined with other real poles to form
second-order IIR filters, yielding a canonical structure. Thus, the transfer function becomes

H(z) =

K
∑

k=1

bk,0 + bk,1z
−1

1 + ak,1z−1 + ak,2z−2
+

M
∑

m=0

fmz−m, (6.2)

whereK is the number of second-order sections. The filter structureis depicted in Fig. 6.1. In
the case of multiple poles, higher order sections would alsobe required. However, as the pole
set is given by the designer, pole multiplicity can be avoided, and therefore will not be discussed
further.

For most modeling or equalization tasks, there is no need forthe FIR part. On the other
hand, for non-decaying responses where the peak of the target response is not in the beginning,
using the FIR path for the early, rising part of the response improves modeling accuracy for a
given computational complexity [Bank 2007]. (See also the discussion in Sec. 2.4).

For determining the parameters, one option is to estimateci andfm in Eq. (6.1) and then
combine the complex conjugate pairs, as shown in [Bank 2007]. However, since the second-
order form is still linear in its free parameters,bk,0, bk,1, andfm, the filter can be designed in
this form directly [Bank 2008]. This path will be taken in thefollowing.
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Figure 6.1: Structure of the parallel second-order filter.

6.2 Filter design

Again, let us assume that the pole set of the filter is known (various methods for choosing the
poles will be outlined later in Chap. 7). In this case the parallel filter weights (numerator parts)
bk,0, bk,1 and the FIR coefficientsfm can be obtained either from a target impulse responseht(n)
[Bank 2008] or from a target frequency responseHt(ϑn) [Bank 2011b]. Both of these will be
presented here, together with a discussion of their differences.

6.2.1 Time-domain design

The impulse response of the parallel filter is given by

h(n) =

K
∑

k=1

bk,0uk(n) + bk,1uk(n− 1) +

M
∑

m=0

fmδ(n−m), (6.3)

whereuk(n) is the inverse z-transform of the transfer function1/(1+ak,1z
−1 +ak,2z

−2), which
is an exponentially decaying sinusoidal function, andδ(n) is the discrete-time unit impulse.

Naturally, Eq. (6.3) is linear in parameters, similarly to its z-transform counterpart Eq. (6.2).
Writing Eq. (6.3) in matrix form yields

h = Mp, (6.4)

wherep = [b1,0, b1,1, . . . bK,0, bK,1, f0 . . . fM ]T is a column vector composed of the free para-
meters. The columns of the modeling signal matrixM contain the modeling signals, which are
uk(n) and their delayed counterpartsuk(n− 1), and for the FIR part, the unit impulseδ(n) and
its delayed versions up toδ(n −M). Finally, h = [h(0) . . . h(N)]T is a column vector com-
posed of the resulting impulse response. Now the question ishow to obtainp if the modeling
signal matrixM and the target impulse responseh are known. The problem reduces to finding
the optimal parameterspopt such thath = Mpopt is closest to the target responseht. If the
error function is evaluated in the mean squares sense,

eLS =
N
∑

n=1

|h(n)− ht(n)|2 = (h− ht)
H(h− ht), (6.5)
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the optimum is found by the least-squares (LS) equations, asalready outlined in Sec. 2.3:

popt = M+ht, (6.6a)

M+ = (MHM)−1MH , (6.6b)

whereM+ is the Moore-Penrose pseudoinverse, andMH is the conjugate transpose ofM. Note
that usually we are interested in modeling real impulse responses, and in this case the conjugate
transpose is equivalent to a simple transposition.

If the pole set and thus the modeling matrixM is fixed, the pseudo-inverseM+ can be pre-
computed and stored, so the parameter estimation reduces toa matrix multiplication according
to Eq. (6.6a). This is especially useful for designing multiple sets of filters with the same fre-
quency resolution (e.g., for modeling MIMO systems with common poles, see Sec. 8.1.1), since
in this case Eq. (6.6b) has to be computed only once. Another application when this becomes
handy is when the target response of the filter may be varied inreal-time while the required
frequency resolution is fixed, as in the case of a graphic equalizer where the user can change
the target curve by sliders. Actually this property makes the graphic equalizer design method
proposed in [Bank et al. 2017] highly efficient.

A minimum-phase loudspeaker–room response modeling example is shown for a 32nd or-
der parallel filter (16 second-order sections) in Fig. 6.2 thick line. The pole positions are set
according to a logarithmic frequency scale as will be discussed later in Sec. 7.2. The thin line
displays the target response, the thick line the filter response, and the separate transfer functions
of the second-order sections are also visualized by dashed lines. It can be seen that the par-
allel filter approximates the given response as a combination of bell-shaped transfer functions,
similarly to a graphic equalizer. However, here not only thegains, but also the phases of the
different “bands” are free parameters. The effect of this isespecially noticeable around the dips
of the filter response: since there the basis functions have alarge magnitude, these dips must
be produced by cancellations of the basis functions, meaning that they have opposing phase at
the dip frequency. Also note that the transfer function (thick line) follows the local average of
the target (thin line), that is, the filter design performs some kind of smoothing. The theoretical
reasons for this will be discussed in Sec. 6.5.

6.2.2 Frequency-domain design

Substitutingz−1 = e−jϑn into Eq. (6.2) for a finite set ofϑn angular frequencies yields

H(ϑn) =

K
∑

k=1

bk,0 + bk,1e
−jϑn

1 + ak,1e−jϑn + ak,2e−j2ϑn
+

M
∑

m=0

fme−jmϑn, (6.7)

which is again written in a matrix form

h = Mp, (6.8)

wherep = [b1,0, b1,1, . . . bK,0, bK,1, f0 . . . fM ]T is a column vector composed of the free parame-
ters. The columns of the modeling matrixM contain the transfer functions of the second-order
sections1/(1 + ak,1e

−jϑn + ak,2e
−j2ϑn) and their delayed versionse−jϑn/(1 + ak,1e

−jϑn +
ak,2e

−j2ϑn) for theϑn angular frequencies. The last columns ofM are the transfer functions of
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Figure 6.2: 32nd order parallel filter design with logarithmic pole positioning: the minimum-phase target
response (thin solid line), the magnitude response of the parallel filter (thick solid line) and magnitude
responses of the second-order sections (dashed lines). Thecrosses indicate the pole frequencies.

the FIR parte−jmϑn for m = [0 . . .M ]. Finally, h = [H(ϑ1) . . .H(ϑN)]T is a column vector
composed of the resulting frequency response.

Now the task is to find the optimal parameterspopt such thath = Mpopt is closest to the
target frequency responseht = [H(ϑ1)t . . .Ht(ϑN)]T . If the error is evaluated in the mean
squares sense

eLS =
N
∑

n=1

|H(ϑn)−Ht(ϑn)|2 = (h− ht)
H(h− ht), (6.9)

the minimum of Eq. (6.9) is found by the least-squares (LS) solution, similarly to the time-
domain case:

popt = M+ht, (6.10a)

M+ = (MHM)−1MH , (6.10b)

whereM+ is the Moore-Penrose pseudoinverse, andMH is the conjugate transpose ofM.
Similarly to the time-domain design,M+ can be precomputed if the pole set is fixed.

Note that Eq. (6.10) assumes a filter specificationHt(ϑn) given for the full frequency range
ϑn ∈ [−π, π]. Thus, the design can be used for obtaining filters with complex coefficients, since
the frequency specification is not constrained to be conjugate-symmetric. However, in most of
the cases we are interested in filters with real coefficients:in this case we have to ensure that
Ht(−ϑn) = Ht(ϑn), whereHt is the complex conjugate ofHt (an alternative approach using a
one-sided specification is outlined in [Bank 2011c; Rämö et al. 2014]).

A clear benefit of designing the fixed-pole parallel filter in the frequency-domain is that this
allows adding different weights to the different frequencypoints. In this case, the error becomes

eWLS =
N
∑

n=1

W (ϑn)|H(ϑn)−H(ϑn)t|2 = (h− ht)
HW(h− ht), (6.11)
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6.2. Filter design 33

whereW (ϑn) is the weight for theϑn frequency, andW is the weighting matrix havingW (ϑn)
in its diagonal and zeros elsewhere. The minimum is obtainedby the weighted-least-squares
(WLS) solution (see Sec. 2.3.1):

popt = (MHWM)−1MHWht. (6.12)

6.2.3 Magnitude-only design

In some applications only the magnitude of the target frequency response is specified, and the
phase of the filter can be arbitrary. In this case the magnitude error

emagn =

N
∑

n=1

(|H(ϑn)| − |Ht(ϑn)|)2, (6.13)

should be minimized instead of the complex transfer function error of Eq. (6.9). This is a
much more complicated problem since Eq. (6.13) is a nonlinear function of the filter weights
bk,0, bk,1, fm as opposed to the previous cases. To overcome this difficulty, I have proposed an
iterative least squares technique in [Bank 2011c] inspiredby the method of [Jackson 2008].
The method is based on the fact that minimizing the complex transfer function error of Eq. (6.9)
corresponds to magnitude error minimization if the phase ofthe specificationϕ{Ht(ϑn)} equals
with the phase of the filterϕ{H(ϑn)}, since in this case we have

eLS = |H(ϑn)−Ht(ϑn)|2 =
∣

∣|H(ϑn)|ejϕ{H(ϑn)} − |Ht(ϑn)|ejϕ{H(ϑn)}
∣

∣

2
=

∣

∣ejϕ{H(ϑn)} (|H(ϑn)| − |Ht(ϑn)|)
∣

∣

2
= (|H(ϑn)| − |Ht(ϑn)|)2 = emagn. (6.14)

The condition ofϕ{Ht(ϑn)} = ϕ{H(ϑn)} is assured by an iterative procedure, where the
phase of the specification is adjusted to match the phase of the filter obtained in the previous
iteration by settingϕ{Ht,i(ϑn)} = ϕ{Hi−1(ϑn)}, while its magnitude is kept unchanged. Then,
a new filterHi(ϑn) is designed based on this updated specification until convergence is reached.
Jackson [2008] uses the above idea for his frequency-domainSteiglitz-McBride algorithm and
starts the iteration with a zero-phase targetHt(ϑn). However, I suggest to use a minimum-
phase target specificationHt,0(ϑn) since that can be followed by IIR filters much more easily
(see Sec. 2.4). The target phase of the first iterationϕ{Ht,1(ϑn)} is thus obtained from the mag-
nitude specification|Ht(ϑn)| based on the Hilbert-transform relation of magnitude and phase of
minimum-phase transfer functions [Oppenheim et al. 1999].This makes the convergence of the
procedure significantly faster compared to using zero initial phase, requiring five-ten iterations
in practice [Bank 2011c].

6.2.4 Comparison of time- and frequency-domain filter design

The time-domain and frequency-domain versions of parallel-filter design provide the same re-
sult if theϑn frequencies are distributed evenly according to a linear frequency scale and the
grid is dense enough. This is due to Parseval’s theorem: if the energy of the estimation error is
minimal in the time-domain, so it is in the frequency-domain.

However, if theϑn frequencies are given at a logarithmic frequency scale, different results
could be expected, because now the error is minimized over a logarithmic frequency grid as
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opposed to the linear-grid equivalent of the time-domain design. It is actually quite surpris-
ing to see that the differences of the two designs are practically negligible if the time-domain
specification is long enough (lasts until the target impulseresponse has faded out completely).
The reasons can be understood by looking at the elementary transfer functions (dashed lines)
in Fig. 6.2: they are localized in frequency so that only the target points having their frequen-
cies close to the peak of the basis functions will contributeto the weights of the corresponding
second-order sections. Even if the linear frequency grid corresponding to the time domain de-
sign means an overly dense specification at high frequencieswhen plotted in the logarithmic
frequency scale, the high-frequency target points have almost no effect on the low-frequency
basis functions since the basis functions die out relatively fast as a function of frequency, as can
be seen in Fig. 6.2.

This is displayed in Fig. 6.3 for the same loudspeaker–room response target as for Fig. 6.2.
It can be seen that if the time-domain LS fit is performed for a long enough target response
(N = 130000 in this case), the time-domain design (b) provides practically the same fit as the
frequency-domain design using 1000 logarithmically spaced target points (a), with the excep-
tion of some inaccuracies below 40 Hz. On the other hand, if the target impulse response is
truncated (N = 2000 in this example), it can lead to unacceptable fitting errors as shown in
(c), thick dashed line. The low frequency boost of Fig. 6.3 (c) actually comes from the fact that
the error is minimized in Eq. (6.5) only up to sampleN and forn > N h(n) has actually a
“don’t care” region. In some cases having a good fit for the samples0 ≥ n ≥ N can lead to
extremely large response in the latter partn > N since there is actually no penalty in the error
function for such behavior. For the time-domain design thiscan be avoided by using the entire
target impulse response until full decay, or, if that is not available, zero-padding the target to
force the LS design to make the filter response decay fast. Of course this means a much larger
target vector, and thus much longer design time. For room responses, the frequency-domain
method requires 100 times fewer specification points and thus around two orders of magnitude
smaller design time compared to the time-domain design for the same accuracy. Therefore, for
such long impulse responses as that of a room response, it is advised to convert them to the
frequency domain by the help of an FFT and then resample it to logarithmic frequency scale
so that frequency-domain design variant can be used. On the other hand, for shorter impulse
responses, such as the anechoic response of loudspeakers typically lasting a few thousand sam-
ples, the advantage of the frequency-domain method vanishes.

6.3 Direct equalizer design

Equalizing a system (such as a loudspeaker) by the parallel filter can be done by inverting
the system response as described in Sec. 2.2.2 and designingthe parallel filter as outlined in
the previous section. In the frequency-domain this can be done by dividing the desired target
responseHt(ϑn) (e.g., a bandpass response) by the system responseHs(ϑn) and designing a
parallel filter for thisHt(ϑn)/Hs(ϑn) specification according to Sec. 6.2. However, the narrow
dips ofHs(ϑn) result in sharp peaks inHt(ϑn)/Hs(ϑn) because of the division, biasing the filter
design. While the problems of division can be reduced by regularization, a more appropriate
way of designing an equalizer is to minimize the time- or frequency-domain error between the
final, equalized response and the target response, as discussed in Sec. 2.2.1. This is similar to
a system identification problem with output error minimization: the input of the parallel filter
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Figure 6.3: 62nd order parallel filter design with logarithmic pole positioning: (a) frequency-domain
design with a logarithmic frequency scale specification having 1000 target frequency points, (b) time-
domain design with a target impulse response length of 130000 samples, and (c) time-domain design with
a target impulse truncated to 2000 samples. The curves are offset for clarity. Thin lines: minimum-phase
target response, thick lines: filter responses. The crossesindicate the pole frequencies.

is the system response and we should estimate the filter parameters such that its output best
matches the target response.

6.3.1 Time-domain equalizer design

Designing an equalizer requires that the resulting responseh(n), which is the convolution of the
equalizer responseheq(n) and the system responsehs(n), is close to the target responseht(n)
(which can be a unit impulse, for example). In our case, this means that the input of the parallel
filter is the system responsehs(n) and its outputh(n) should match the target responseht(n).
The output of the parallel filter is computed as

h(n) = heq(n) ∗ hs(n) =
K
∑

k=1

bk,0uk(n) ∗ hs(n) + bk,1uk(n− 1) ∗ hs(n)+

M
∑

m=0

fmδ(n−m) ∗ hs(n) =

K
∑

k=1

bk,0sk(n) + bk,1sk(n− 1) +
M
∑

m=0

fmhs(n−m), (6.15)

where∗ denotes convolution. The signalsk(n) = uk(n) ∗ hs(n) is the system responsehs(n)
filtered by1/(1 + ak,1z

−1 + ak,2z
−2). It can be seen that Eq. (6.15) has the same structure as

Eq. (6.3). Therefore, the parametersbk,0, bk,1, andfm can be estimated in the same way as
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36 Chapter 6. Fixed-pole parallel filters

presented in the previous section. Similarly, writing thisin a matrix form yields

h = Meqp, (6.16)

where the columns of the new signal modeling matrixMeq containsk(n), sk(n−1), and finally
the system responsehs(n) and its delayed versions up tohs(n−M). The samples of the target
impulse response are forming the column vectorht. The optimal set of parameters is again
obtained by

popt = (MH
eqMeq)

−1MH
eqht. (6.17)

6.3.2 Frequency-domain equalizer design

Since the input of the parallel filter is the system responseHs(ϑn), we should estimate the filter
parameters such that its output, which is the product of the system response and the frequency
response of the parallel equalizerH(ϑn) = Hs(ϑn)Heq(ϑn), best matches the target response
Ht(ϑn).

Accordingly, the equalized response is given by

H(z) = Heq(z)Hs(z) =

K
∑

k=1

bk,0 + bk,1z
−1

1 + ak,1z−1 + ak,2z−2
Hs(z) +

M
∑

m=0

fmz−mHs(z). (6.18)

Writing this in a matrix form for a finite set ofϑn angular frequencies withz−1 = e−jϑn again
yields

h = Meqp, (6.19)

wherep = [b1,0, b1,1, . . . bK,0, bK,1, f0 . . . fM ]T is a column vector composed of the free parame-
ters of the parallel equalizer. The columns of the equalizermodeling matrixMeq are obtained
from the modeling matrixM constructed in Sec. 6.2.2 by multiplying them with the system
frequency responseHs(ϑn). For example, instead of1/(1 + ak,1e

−jϑn + ak,2e
−j2ϑn) we simply

haveHs(ϑn)/(1+ak,1e
−jϑn +ak,2e

−j2ϑn). Finally,h = [H(ϑ1) . . . H(ϑN)]T is a column vector
composed of the resulting final frequency response. Since Eq. (6.19) has the same structure
as Eq. (6.8), the optimal set of parameters are obtained in the same way as in Sec. 6.2.2 by
Eq. (6.10).

Naturally, frequency weighting can also be used as described in Sec. 6.2.2, and the discus-
sion about the advantages of the frequency-domain method over the time-domain one given in
Sec. 6.2.4 is valid for equalizer design as well.

6.4 Relation of Kautz and parallel filters

6.4.1 The equivalence of approximation properties

Figure 6.4 (a) and (b) show a Kautz and parallel filter design using the same pole set having
31 pole pairs distributed uniformly in the logarithmic scale (both the Kautz and the parallel
filter weights have been estimated in the time-domain). As can be seen, the same filter response
arises for both filters. This is explained by the fact that theKautz basis functions are the or-
thonormalized versions of decaying complex exponentials,which are the basis functions of the
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Figure 6.4: Modeling a loudspeaker–room response with a 62nd order Kautz filter (a) and a 62nd order
parallel filter (b) having the same set of poles (three poles per octave from 20 Hz to 20 kHz). The pole
frequencies are indicated by crosses in the bottom of the figure. The thin lines show the minimum-phase
target response, while the thick lines the filter response. In (c) the thin line is the sixth-octave smoothed
version of the target (thin line).

parallel filter. I have developed a formal proof for the equivalence of the two structures [Bank
2013a]. The derivation is based on the partial fraction expansion of the complex Kautz basis
functions Eq. (5.2):

Gk(z) =

√
1− pkpk

1− pkz−1

k−1
∏

j=1

z−1 − pj

1− pjz−1
=
√

1− pkpk

k
∏

j=1

1

1− pjz−1

k−1
∏

j=1

(z−1 − pj), (6.20)

which arekth order filters (k = 1, 2, . . .K). In the case of no pole multiplicity, which is easily
satisfied when the pole set is predetermined, Eq. (6.20) can be written in a partial fraction form

Gk(z) =

k
∑

i=1

ck,i
1

1− piz−1
, (6.21)

where thek coefficientsck,i are found by the usual procedure of partial fraction expansion
[Rabiner and Gold 1975] with the Heaviside cover-up method:

ck,i = (1− piz
−1)Gk(z)|z=pi

=
√

1− pkpk

k
∏

j=1,j 6=i

1

1− pj/pi

k−1
∏

j=1

(1/pi − pj), (6.22)

which finally results in

ck,i =
√

1− pkpk

k
∏

j=1,j 6=i

1

pi − pj

k−1
∏

j=1

(1− pjpi). (6.23)

By noting that the partial fraction form of Eq. (6.21) is the same as the complex form of the
parallel filter Eq. (6.1) without the FIR part (M = 0), it is clear that the Kautz basis functions
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38 Chapter 6. Fixed-pole parallel filters

can be reconstructed by the parallel filter exactly. As the Kautz filter response is the linear com-
bination of the Kautz basis functionsGk(z), it is straightforward to convert a Kautz filter into
a parallel filter. If the parameters of the Kautz filter are given in a vectorw = [w1, . . . , wK ]T ,
the parameter vector of the parallel filterp = [c1, . . . , cK ]T can be obtained by the matrix
multiplication

p = Kw, (6.24)

where the conversion matrixK is given as

Ki,k =
√

1− pkpk

k
∏

j=1,j 6=i

1

pi − pj

k−1
∏

j=1

(1− pjpi) for i ≤ k,

Ki,k = 0 for i > k. (6.25)

The matrixK is triangular, and such matrices are nonsingular if none of the diagonal elements
are zero. This is satisfied since|pi| < 1 for all the poles (we assume that the Kautz filter is
asymptotically stable). As a result, the inverse matrixK−1 can be computed that can be used to
convert the parallel filter parameters to Kautz parameters (w = K−1p).

Basically, this proves that the basis functions of the parallel and Kautz filters span the same
approximation space, and converting between the two filtersis merely a change of basis. There-
fore, approximating a target response using any error norm (e.g., theL2 norm in least-squares
design) will lead to exactly the same filter response in both cases for a given pole setpk. This
is shown for the LS design in the Appendix A.2 with some further discussion on the conditions
of this equivalence.

While we have related the complex forms of the Kautz and parallel filters, since the real
forms Eqs. (5.3) and (6.2) are mathematically equivalent tothe complex ones, the results are
valid for the more practical real forms as well. This means that pole positioning techniques
developed for the parallel filter can also be used for the Kautz filter and vice versa. Also, the
smoothing properties derived for the parallel filter in Sec.6.5 will be valid for the Kautz filter
as well.

Besides its theoretical importance, the relation between the two filter structures allows a
computationally more efficient design of the parallel filter. Namely, first a Kautz filter is de-
signed by the scalar product of Eq. (5.6), then the parameters are converted by Eqs. (6.24) and
(6.25). While this seems to be conceptually more complicated, the number of required arith-
metic operations is reduced compared to the LS design of Eq. (6.6), so it is a useful alternative
for high (> 100) filter orders. Unfortunately, in the case of direct equalizer design of Sec. 6.3
this cannot be done, since for that case the scalar product ofEq. (5.6) cannot be used and also
the Kautz filter has to be designed by a LS equation [Karjalainen and Paatero 2007]. Also note
that when the parallel filter is designed in the frequency-domain as in Sec. 6.2.2, the benefit
of the conversion-based design is reduced, since the frequency-domain design is already more
efficient compared to the time-domain one due to the smaller number of required specification
points as discussed in Sec. 6.2.4.

6.4.2 Computational complexity

It can be deduced from Fig. 5.1 that the Kautz backbone requires 4 MAC (multiply and accu-
mulate) operations per second-order section, similarly toseries biquads (except the first section
that needs 2 MAC). Then the(1 + z−1) and(1 − z−1) terms need 2 additions (ADD), while
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6.5. Connections to complex smoothing 39

the weightsbi,1, bi,2 and the corresponding output summing require 2 MAC operations. For
the parallel filter every second-order section requires 4 MAC operations, including the output
summing (see Fig. 6.1). For DSPs where the MAC and ADD instructions take one operation
cycle, this means that using the parallel filter structure instead of the Kautz filter reduces the
number of arithmetic operations to the half (from 8 to 4). Note that additional operations are
also required (reading from the memory to the registers and vice versa), but these can usually be
performed in parallel with the arithmetic operations, depending on the processor architecture.

On general purpose processors where MAC instructions are not available, each second-order
section for the parallel filter requires 4 additions and 4 multiplications, while for the Kautz filter
we need 8 additions and 6 multiplications.1

Coming from the fact that the fixed-pole parallel filter has a fully parallel structure, even
more significant computational savings can be achieved on parallel architectures such as graphic
processing units (GPUs) [Belloch et al. 2014] compared to the series backbone of the Kautz
filter that cannot be implemented in parallel.

6.5 Connections to complex smoothing

Figure 6.4 (c) thick line shows the sixth-octave complex smoothed version of the thin line, which
is a measured loudspeaker–room response. By observing the results of parallel and Kautz filters
with a logarithmic pole distribution in Fig. 6.4 (a) and (b),it is apparent that the effect of filter
design is similar to that of fractional-octave complex-smoothing of transfer functions. This can
be intuitively understood by looking at Fig. 6.2 showing that the total transfer function of the
parallel filter (thick line) is a combination of smooth basisfunctions (dashed lines). I have
systematically analyzed this smoothing behavior in [Bank 2010, 2013a] that will be given in the
following. While only the case of the parallel filter is discussed here, since it results in exactly
the same filter response as the Kautz filter (as it was proven inSec. 6.4), the observations are
valid for the Kautz filter as well.

6.5.1 Uniform pole distribution

We start our analysis with the simplest case, where theK poles of the parallel filter are dis-
tributed uniformly on a circle of radiusR < 1. Then the complex form of the parallel filter
becomes

H(z) =
K
∑

k=1

ck

1− pkz−1
=

K
∑

k=1

ck

1− Rej2πk/Kz−1
, (6.26)

which, after cross-multiplying all the denominator terms,takes the form

H(z) =

K
∏

k=1

1

1−Rej2πk/Kz−1
×

K
∑

k=1

ck

K
∏

i=1,i6=k

(1− Rej2πk/Kz−1), (6.27)

where the first part of the product equals1/(1− z−KRK), and the second is a(K − 1)th order
polynomial of z−1. Therefore, the transfer function of the parallel filter with uniform pole

1Note that in [Bank 2008] I have erroneously underestimated the computational complexity of the Kautz filter
by assuming 6 additions per second-order section instead of8. Therefore the computational benefits of the parallel
filter are actually larger than I have stated in [Bank 2008] and in my subsequent publications.
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distribution is actually equivalent to a feedback comb filter and a(K − 1)th order FIR filter in
series:

H(z) =
1

1− z−KRK

K−1
∑

k=0

fkz
−k, (6.28)

where the FIR coefficientsfk arise as the linear combinations of the parallel filter weights ck

according to the second term of the product in Eq. (6.27). Thefeedback comb filter repeats
the FIR response with an attenuation ofRK in each round, therefore the firstK samples of the
impulse response of the parallel filter are thush(n) = fn, the secondK samples areh(n+K) =
RKfn, the thirdK samples areh(n + 2K) = R2Kfn for n = [0 . . .K − 1], and so on.

For practical pole setsRK ≪ 1, therefore, the impulse responseh(n) for n ≥ K may be
neglected, and thus the transfer function can be approximated by the FIR part only:

H(z−1) ≈
K−1
∑

k=0

fkz
−k. (6.29)

When designing the parallel filter according to Eq. (6.6), the mean-squared error between the
target impulse responseht(n) and the filter responseh(n) is minimized. This error is minimal
if the parallel filter coefficientsck are set in a way that the equivalent FIR coefficientsfk are
equal to the firstK samples of the target impulse responsefk = ht(k). As a result, the filter
impulse responseh(n) is the truncated version of the target responseht(n), which is equivalent
to multiplying the target response by a rectangular windoww(n) of lengthK:

h(n) = w(n)ht(n), (6.30)

where

w(n) = 1 for 0 ≤ n ≤ K − 1,

w(n) = 0 elsewhere. (6.31)

Note that this window is defined only for positive timesn ≥ 0 (it is a half window), in
contrast to the symmetric windows used in complex smoothing(see Chap. 3). Since for causal
impulse responsesh(n) = 0 for n < 0 anyway, we may think of symmetrically extending the
window w(n) to negative times by settingw(−n) = w(n), without influencing the product
h(n) = ht(n)w(n). This has the advantage that now the results will be directlycomparable
with those of complex smoothing.

Accordingly, designing a parallel filter with a uniform poledistribution is equivalent to
multiplying the target impulse response by a symmetric rectangular window of total length
2K − 1. In the frequency domain, this corresponds to convolving the target transfer function
Ht(ϑ) with a sinc-like (periodic sinc) function:

H(ϑ) = Ht(ϑ) ∗ sin
(

2K−1
2

ϑ
)

sin
(

1
2
ϑ
) (6.32)

which is clearly a form of transfer function smoothing. Actually, it corresponds to “filtering”
the transfer function with an ideal lowpass filter, eliminating all those components that have
a periodicity smaller than4π/(2K − 1) ≈ 2π/K. Since the smoothed transfer function has
become band-limited, if it is sampled at a periodicity ofπ/K, all the information is still re-
tained, thus, we can say that it has aπ/K resolution, which actually equals the half of the pole
frequency distance∆θ/2.
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6.5. Connections to complex smoothing 41

Next we relate the behavior of the design with complex smoothing discussed in Chap. 3.
The central lobe of the periodic sinc function in Eq. (6.32) has a somewhat similar shape to that
of a Hann window most often used in transfer function smoothing. The width of the main lobe
is 4π/(2K−1) ≈ 2π/K that actually equals to the pole distance∆θ. Therefore, the smoothing
behavior will be comparable to smoothing the transfer function with a Hann window whose
width equals the pole distance∆θ. According to Chap. 3, smoothing with a∆θ wide Hann
window corresponds to∆θ/2 frequency resolution.

6.5.2 Stepwise uniform pole distribution

Next, let us consider a more interesting case where the pole density is different in the various
regions of the frequency range. Since I was not able to derivethe smoothing function in a closed
form as in Sec. 6.5.1, I have suggested an alternative approach [Bank 2013a] described in the
following.

Since the parameters of the parallel filter are determined bya linear LS design, the superpo-
sition principle holds. This means that if we compose the target responseht(n) as a weighted
sum of some test functions, the filter responseh(n) will be equal to the weighted sum of filter
responses designed for the test functions separately. Since we would like to gain some insight
to the frequency-dependent nature of smoothing, a natural choice for such a test function is the
basis function of the Fourier transforme−jϑ0n, whereϑ0 is the angular frequency of the complex
exponential. In the frequency domain, this is equivalent toδ(ϑ − ϑ0), which is a Dirac delta
function at positionϑ0. Accordingly, in the frequency domain, we are computing the“impulse
response” of the smoothing operation, that is, we obtain thesmoothing function directly.

We can assume that if the overlap of the basis functions of theparallel filter is not too large,
our test functione−jϑ0n will be approximated by parallel sections whose center frequencies
are near toϑ0, while the contribution of the other sections will be negligible. Therefore, we
expect that the width of the smoothing function in the frequency domain, and the length of the
corresponding window function in the time domain will only depend on thelocal pole density
nearϑ0. From Sec. 6.5.1 we expect that if the distance of the poles is∆θ in some frequency
region, that region will be smoothed corresponding to∆θ/2 resolution.

A practical example is presented in Figs. 6.5 and 6.6, displaying a parallel filter design with
30 poles (15 pole pairs) around the unit circle. The pole frequencies are chosen in such a way
that 20 poles are distributed evenly in the lower half of the frequency range|ϑ| ≤ π/2, while
10 poles are spread in the upper rangeπ/2 < |ϑ| ≤ π. The pole radius isR = 0.8 for all the
poles. The dotted vertical lines show the pole frequencies in Fig. 6.6.

In Fig. 6.5 the target impulse responsese−jϑ0n are displayed by dashed lines, and the result-
ing parallel filter responses by solid lines. Note that the target and filter responses are complex,
here only the real parts of the signals are shown, but the imaginary parts have a similar be-
havior. (In another interpretation, the figures show how theparallel filter approximates the
Re{e−jϑ0n} = cos(ϑ0n) function). Figure 6.5 (a) shows a case where the frequency ofthe
exponential test function is in the high pole density region, while in (c) the frequency is in the
low pole density region of the filter. As expected, the resulting impulse response (solid line) is
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Figure 6.5: Modeling a complex exponentiale−jϑ0n by a parallel filter having stepwise uniform pole
frequency set: (a)ϑ0 = 1/4π, (b) ϑ0 = 1/2π, and (c)ϑ0 = 3/4π. The dashed line is the target response
e−jϑ0n and the solid line is the resulting parallel filter impulse response. Only real parts of the signals
are shown.

“windowed” to a longer length in the first case compared to thesecond case. The theoretically
computed half window length2π/∆θ is 40 and 20 for (a) and (c), which is in a good agreement
with what can be observed in practice. Figure 6.5 (b) displays an intermediate case when the
frequency of the test signal is exactly at the boundary of thetwo pole density regions. This
results in a more mild windowing, where the window length is somewhere in between the (a)
and (c) cases.

The same phenomenon can also be observed in the frequency domain in Fig. 6.6, for the
same cases. The solid lines display the transfer functions of the resulting filters trying to ap-
proximate the test functione−jϑ0n, again with (a)ϑ0 = 1/4π, (b)ϑ0 = 1/2π, and (c)ϑ0 = 3/4π.
Note that the frequency responses were computed by first extending the parallel filter responses
to negative timesh(−n) = h(n), to comply with the symmetric windows used in complex
smoothing. Accordingly, the frequency responses displayed in Fig. 6.6 are real (zero phase)
functions and can be directly compared to the smoothing functions used in complex smoothing.
In Fig. 6.6 the dotted vertical lines show the pole frequencies of the parallel filter. It can be seen
in (a) and (c) that the width of the main lobe equals to the poledistance∆θ in that region, and
so is the periodicity. Locally, the smoothing function has asinc-like shape, similarly to the case
of the uniform pole distribution of Sec. 6.5.1. The dashed lines show the theoretical1/|ϑ− ϑ0|
envelopes of the sinc functions. Again, (b) is a borderline case where the envelope still follows
that of a regular sinc function, but the periodicity is different at the left and right sides, coming
from the different pole densities.

The results are in line with the expectation that the “width”of the frequency-domain smooth-
ing function (and the length of the corresponding time-domain window) depends only on the
local pole density around the frequency of interest. This phenomenon can be effectively utilized
for obtaining different resolution (variable amount of smoothing) in different frequency regions
by setting the pole density appropriately.
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Figure 6.6: Smoothing functions corresponding to the cases of Fig. 6.5 (a)-(c). The dotted vertical lines
display the pole frequencies of the parallel filter. The dashed lines show the1/|ϑ − ϑ0| envelopes of the
smoothing functions.

6.5.3 Logarithmic pole distribution

As a particularly important case for audio, let us consider the case of the logarithmic pole
frequency set. In the following example the parallel filter has three pole pairs in each octave,
having all together 31 pole pairs from 20 to 20480 Hz. The testfunction is again a complex
exponential, withϑ0 = 2πf0/fs, wheref0 = 1050 Hz is the frequency of the exponential, and
fs = 44.1 kHz is the sampling frequency. The time domain (real part) and frequency domain
responses are displayed in Fig. 6.7 (a) and (b), respectively. Note the linear frequency axis in
(b).

It can be seen in Fig. 6.7 (a) that now the target function is “windowed” quite mildly and
it has a low frequency tail. In the frequency domain (Fig. 6.7(b)) the density of the notches
of the sinc-like function (solid line) follow that of the pole distribution (dotted vertical lines).
However, the envelope of the smoothing function still showsthe1/ϑ behavior, corresponding
to the envelope of a regular sinc function.

Figure 6.8 solid line displays the same frequency response on a logarithmic frequency scale.
Now it is easy to notice that the periodicity of the window function is exactly logarithmic. It
is interesting that while the periodicity (sine part) is related to the logarithm of the frequency,
the envelope is related to linear frequency. Based on these observations, I have constructed a
“logsinc” function

S(ϑ) = C
sin(2πα log2(

ϑ
ϑ0

))

ϑ− ϑ0
, (6.33)

whereC is a positive constant, andα is the pole per octave density (in our case,α = 3).
This function is displayed by a dashed line in Fig. 6.8 to testif the underlying assumptions
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Figure 6.7: Modeling an exponential test functione−jϑ0n with a parallel filter having a logarithmically
distributed pole set: (a) the real parts of the target impulse response (dashed line) and the parallel filter
response (solid line), (b) the smoothing function of the parallel filter (solid line) and its1/|ϑ − ϑ0|
envelope. The vertical dotted lines display the pole frequencies.

were right. Indeed, the two curves match very precisely withsome differences only visible at
low frequencies. The match is similarly accurate also for otherϑ0 test frequencies, meaning that
Eq. (6.33) can be used to describe the smoothing behavior of the parallel filter with a logarithmic
pole set.

The most important consequence is that the periodicity of the sinc function and the width of
its central lobe again follow the pole distances. Since the pole distances linearly increase as a
function of frequency due to the logarithmic pole frequencyset, the behavior should be similar
to fractional octave smoothing.

For example, having third-octave pole distances is comparable to fractional octave smooth-
ing by a third-octave wide Hann window. This corresponds to 6th-octave resolution, as dis-
cussed in Chap. 3. The similarity of the filter design to that of fractional octave smoothing can
be observed in Fig. 6.4, where the solid lines in (a) and (b) show Kautz and parallel filter de-
signs having three poles per octave, while (c) displays the sixth-octave smoothed target. Some
difference is visible between the filter responses (a), (b) and the smoothed response (c), which
is due to the fact that the response has been smoothed by a Hannwindow in (c) while the in-
herent smoothing of the filter design (a), (b) corresponds tosmoothing by a sinc-like function.
Nevertheless, their behavior is close enough so that it can be concluded that a logarithmic pole
set with1/α octave pole distances is comparable to complex smoothing with 1/(2α) octave
resolution.

Naturally, further examples could be presented with, e.g.,stepwise logarithmic pole distri-
bution, or that of following the Bark or ERB scales [Smith andAbel 1999; Zwicker and Fastl
1990], but according to the above examples, we already have an intuition about the smoothing
behavior of the parallel filter.

As an important consequence, by the suitable choice of pole frequencies the frequency res-
olution of the design can be taken under control. This will beutilized when designing parallel
filters with a predetermined pole set in Sec. 7.2.
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Figure 6.8: The smoothing function of Fig. 6.7 (b) displayed in a logarithmic frequency axis (solid line).
The dashed line shows the approximating “logsinc” functionEq. (6.33). The vertical dotted lines display
the pole frequencies.

6.6 Scientific contributions

Statement 1: I have created a methodology for the fixed-pole design of parallel second-
order filters and demonstrated that the new method can be usedfor realizing filters with
a flexible allocation of frequency resolution similarly to Kautz filters, albeit with a signifi-
cantly reduced computational complexity.

1.1: I have developed filter design methods for fixed-pole parallel filters both in the time- and
frequency-domain: after choosing the poles, the numeratorcoefficients are computed by a least-
squares fit in both cases. In addition, I have proposed an iterative least-squares technique for
magnitude-only specifications, and I have also given a direct equalization design method both
in the time- and frequency-domain.

1.2: By using partial fraction expansion over the basis functions of the Kautz filter I have shown
that the Kautz and the fixed-pole parallel filters lead to the same approximation if their pole set
is identical, while the fixed-pole parallel filter requires the half amount of arithmetic operations
on DSPs. I have also given a method to convert the Kautz parameters to that of the parallel
filter.

1.3: I have shown that the fixed-pole design of second-order parallel filters leads to a filter
transfer function similar to complex smoothing the target response, where the frequency reso-
lution (amount of smoothing) is directly controlled by the pole density. A local pole frequency
distance∆θ(ϑ) atϑ frequency leads to∆θ(ϑ)/2 frequency resolution in terms of smoothing. A
logarithmic pole frequency set with1/α octave pole distances is thus comparable to complex
smoothing with1/(2α) octave resolution. Since the Kautz filter leads to the same approxima-
tion for the same pole set (see 1.2 above), the results are also applicable to the Kautz filter.

The results related to these contributions have been published in three journal papers [Bank
2008, 2011b, 2013a] and in one conference paper [Bank 2007].
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Chapter 7

Pole positioning

We have seen in Sec. 6.2 that the parallel filter weights are determined by a least-squares proce-
dure leading to a unique optimum for a given set of poles. Therefore, for a given filter order the
accuracy of the parallel filter design depends only on the choice of pole frequencies. The vari-
ous pole positioning techniques can be put into two main categories, depending on the relation
of the system and model order, or in other words, if we wish to model or equalize the system
precisely or only approximately. The approximate modelingapproach has two subcategories.
Let us take a look into these categories first before proceeding to the detailed description of the
pole positioning methods.

• 1. Accurate modeling: Pole positioning based on the system response

If we aim to model a system precisely, the order of the modeling filter is approximately the
same as that of the system. In this case the filter poles shouldcorrespond to system poles
for best accuracy, and the LS fit discussed in Sec. 6.2 will do its best to match the zeros of
the transfer function as well. This is in a way related to the field of system identification
since the parameters of the model have a direct connection tophysical reality. In this case
a straightforward approach is that an IIR filter is designed based on the target response,
and the poles of this IIR filter are found as the roots of its denominator. Then these poles
are used as the poles of the parallel filter. Here the accuracyis determined by how well the
original IIR filter design approximates the target response. This approach will be outlined
in Sec. 7.1.

• 2a. Approximate modeling: Predetermined pole set

On the other hand, in audio we often aim at modeling only the most important features of
the transfer function (the features that can actually be heard), which is better described by
the logarithmically smoothed version of the measured response (see Chap. 3). In this case
the model order is significantly smaller compared to the order of the system. A typical
example is the case of equalizing a loudspeaker–room response, whose order is in the
range of hundred-thousand or more (N > 100000), but even for a relatively low order
system (such as an anechoic loudspeaker response withN ≈ 100) we may decide to use
a lower order filter to fit the available computational resources. In this case the previous
idea based on IIR filter design will often not work because theIIR design algorithm may
pick and model a few resonant peaks while the others are not modeled (we have seen
this behavior for warped IIR design in Fig. 4.4). In other words, the model implements a
subset of the original system poles instead of modeling the general trend of the response.

46
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7.1. Pole positioning based on the system response 47

To avoid this, we can take advantage of the fact that the resolution of the design can be
directly controlled by the pole density, as seen in Sec. 6.5.Therefore, instead of using
poles that have some relation to the poles of the system, we use a predetermined (e.g.,
logarithmically distributed) set of poles based on the modeling resolution we wish to
achieve. Since in this case the poles of the filter, and thus the zeros of the filter are
unrelated to the original system, this is more like a nonparametric approach. This method
is outlined in Sec. 7.2.

• 2b. Approximate modeling: Pole positioning based on the smoothed response

While using a predetermined (e.g., logarithmic) pole set works very well for modeling
higher order systems with low order filters, it is still possible to increase the filter design
accuracy at the price of increased design complexity. This is because some regions of
the system response may be smoother than others, and a strictly logarithmic frequency
resolution may waste some computational resources at thesealready smooth regions. For
example, a typical loudspeaker-room response has much larger ripples at low frequencies
compared to the high ones after smoothing (see Fig. 3.1 (d) and (e)). This can be taken
into account in a simple way by setting higher pole density for low frequencies manually;
however, this requires some user interaction. It would be more desirable to have such a
method that automatically recognizes which regions need higher resolution. The basic
idea is that the target response is smoothed to the required resolution (which again can
be different in the various frequency regions), and then this smoothed response is used to
determine the optimal pole set of the filter. The pole positions can be either determined
based on the raggedness of the smoothed transfer function asin Sec. 7.3.1, or by designing
a warped IIR filter based on the smoothed response as in Secs. 7.3.2, 7.3.3, and 7.3.4.
Here again the poles and the zeros of the filter will not have a direct connection with the
system poles and zeros.

7.1 Pole positioning based on the system response

When the goal is to model a given transfer function accurately, that is, the order of the filter
is in the same range as that of the system, it makes sense to usethe poles of the system for
the design. For estimating the poles I have proposed to use a warped IIR filter design in [Bank
2007], similarly to the case of Kautz filters, where the Brandenstein-Unbehaunen method was
used in the warped domain [Paatero and Karjalainen 2003].

As discussed in Chap. 4, for designing a warped IIR filter any IIR filter design or system
identification technique can be used: e.g., Prony [Parks andBurrus 1987], the method of Stei-
glitz and McBride [1965], balanced model reduction [Beliczynski et al. 1992], or the method
of Brandenstein and Unbehauen [1998]. The Steiglitz-McBride method with no iterations is
equivalent to the Prony method, and while its stability is not guaranteed, in practice the itera-
tions almost always improve over the results of the Prony method. It is stated in [Brandenstein
and Unbehauen 1998] that their method gives basically the same filter responses as that in [Be-
liczynski et al. 1992], albeit with much lower computational cost. I have made various tests
using the Brandenstein-Unbehaunen technique and found that it practically gives the same ap-
proximation error as the Steiglitz-McBride method. On the other hand, the Steiglitz-McBride
method can be used for estimating an IIR filter from a given input to a given output required for
designing equalizer filters, which is not available for the Brandenstein-Unbehaunen technique.
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Figure 7.1: Anechoic loudspeaker response (a), modeled by a 50th order warped IIR filter usingλ = 0.9
(b) and by a 100th order parallel filter based on the poles of the warped IIR filter (c). The curves are
offset for clarity.

Based on these observations and its availability in MATLAB (stmcb function), I have decided
to use the Steiglitz-McBride method for designing the underlying IIR filters used for pole po-
sitioning. However, the methods developed here are not relying on the actual IIR estimation
technique, and the embedded IIR filter design step can be arbitrary, including those techniques
that minimize a norm other thanL2.

In the example of Fig. 7.1, first a 100th order warped IIR filteris identified by the Steiglitz-
McBride method [Steiglitz and McBride 1965] based on the warped version of a loudspeaker
response (a). In this example, a warping parameterλ = 0.9 is used and the resulting filter
response is displayed in Fig. 7.1 (b). Then, the polesp̃k of the identified IIR filter are obtained,
and dewarped by Eq. (4.7). These dewarped poles are used for fixed-pole parallel filter design,
shown in Fig. 7.1 (c).

It can be seen in Fig. 7.1 that the warped IIR filter (b) followsthe target response (a) very
well on the logarithmic scale. However, it is also apparent that the small ripples of the transfer
function are not followed exactly above 3 kHz. While the practical need for such a detailed
modeling is questionable, the phenomenon still shows that the modeling detail is concentrated
to a specific region (approximately between 200 Hz and 3 kHz),and not spread completely
evenly on the logarithmic scale, as already discussed in Sec. 4.3. This shortcoming will be
addressed in the pole positioning methods of Secs. 7.3.3 and7.3.4.

Figure 7.1 also shows that the frequency response of the parallel filter (c) and that of the
warped IIR filter from where the poles originate (b) are practically identical. However, there is
a difference in filter implementation. Parallel filters are implemented as parallel second-order
sections, while for warped IIR filters there are different possibilities, as discussed in Sec. 4.4.
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7.2. Pole positioning using a predetermined pole set 49

Table 7.1: Pole densities, number of pole frequencies and filter ordersfor typical values of fractional-
octave resolutions using a predetermined pole set. The polefrequencies span 10 octaves from 20 Hz to
20480 Hz.

Fractional octave resolution 1 1/3 1/6 1/12 1/24

Pole frequencies per octave1/2 3/2 3 6 12

Total no. pole freqencies 6 16 31 61 121

Filter order 12 32 62 122 242

The most efficient possibility is to dewarp them to series second-order sections, but in that case
the warped implementation will have higher quantization noise than that of the parallel filter
as demonstrated in [Bank and Horváth 2017a] using floating point arithmetic. Another possi-
bility for implementing the warped IIR filter is to dewarp it to parallel second-order sections.
However, that leads to second-order numerators as discussed in Sec. 4.4.3, while when the par-
allel filter is designed using the WIIR poles, the numeratorsare of first order, leading to lower
computational complexity. To sum up, while both the parallel filter Fig. 7.1 (b) and the warped
IIR filter Fig. 7.1 (c) have the same frequency response, the parallel filter is more advantageous
from the implementation point of view in terms of computational complexity and quantization
noise.

7.2 Pole positioning using a predetermined pole set

As already discussed, for high-order systems, such as a loudspeaker–room response we usually
design a modeling filter or equalizer whose order is significantly lower than that of the system.

It has been observed for Kautz filters that a logarithmic poleset produces logarithmic fre-
quency resolution, and the equations for obtaining such a logarithmic pole set have been given
in [Paatero and Karjalainen 2003] (see Eqs. (5.7) and (5.8)), which can of course be used for
the parallel filter as well. However, no direct connection between the resolution of the design
and the number of poles have been given in [Paatero and Karjalainen 2003]. After finding the
relation between complex smoothing and the approximation properties of parallel filters, I have
given the connection of the pole density and filter resolution which allow an accurate control of
the modeling detail of the filter [Bank 2013a], already discussed in Sec. 6.5.

We have seen in Sec. 6.5 that a∆ϑ pole frequency distance corresponds to a smoothing with
∆/2 resolution. Turning this around, if the desired resolutionis ∆ϑ in some frequency region,
the pole frequency distances should be the double, that is,2∆ϑ in that region.

For logarithmic frequency resolution, if we wish to achievea result similar to1/β octave
smoothing, we need to have2/β octave pole frequency distances. In other words, this means
that we need to have a pole density ofβ/2 poles per octave. Table 7.1 displays the pole densi-
ties required to achieve the most typical fractional-octave resolutions used in transfer function
smoothing. It also lists the number of pole frequenciesK = 10(β/2) + 1 assuming a design
with the ten octaves of the full audio bandwidth, and the total filter order, which is2K in this
case.

The equations for obtaining a logarithmic pole set has been given in [Paatero and Kar-
jalainen 2003] (see Eqs. (5.7) and (5.8)) for the Kautz filterthat can also be used for parallel
filter design. However, the difficulty in their approach liesin manually setting the damping
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50 Chapter 7. Pole positioning

parameterR in Eq. (5.8); Paatero and Karjalainen [2003] suggest that itshould be tuned so that
the individual Kautz outputs cross at their -3 dB point. Someexamples are also presented by
using manually chosen pole frequencies for the Kautz filter in [Paatero and Karjalainen 2003],
but in that case tuning the damping factors of each pole manually creates a tedious task.

Therefore I have developed a more general set of pole equations which can determine the
pole radii for an arbitrary set of pole frequencies [Bank 2013a]. The pole radiiRk = |pk| are
computed based on the bandwidths∆θk as

Rk = e−
∆θk

2 . (7.1)

Accordingly, the polespk become

θk =
2πfk

fs

(7.2a)

pk = e−
∆θk

2 ejθk , (7.2b)

whereθk are the pole frequencies in radians given by the predetermined analog frequency series
fk and the sampling frequencyfs. For a filter having a real impulse response, the poles must
be in complex-conjugate pairs, therefore the pole set needsto be extended by the complex-
conjugate versionpk of the polespk.

The bandwidth of thekth second-order section∆θk is computed from the neighboring pole
frequencies

∆θk = θk+1−θk−1

2
for k = [2, .., K − 1]

∆θ1 = θ2 − θ1

∆θK = θK − θK−1. (7.3)

Equation (7.1) sets the pole radii|pk| in such a way that the transfer functions of the parallel
sections cross approximately at their -3 dB points. While the exact value of where the transfer
functions cross is not critical (anything in the range of -2 and -4 dB works perfectly) -3 dB is
a safe value assuring that there is sufficient overlap between the basis functions, and also com-
plies with the usual choice for defining filter bandwidths. Too small or no overlap means that
the target response cannot be approximated between the polefrequencies and this results in a
peaky filter frequency response. For a linear pole frequencyset in this case we are violating the
assumption ofRK ≪ 1 in Eq. (6.28), meaning that the comb filter part cannot be neglected,
indeed leading to a peaky response. Having a large overlap between the basis functions should
in theory cause no problems. However, in practice a too largeoverlap decreases the indepen-
dence of the basis functions, which spoils the condition number of the normal equations. This
can cause numerical errors in the parameter estimation.

The proof of Eq. (7.1) setting the pole radii corresponding to the -3 dB points of the basis
functions is presented in Appendix A.3.

In the example of Fig. 7.2, first a third-octave resolution design (a) and then a sixth-octave
resolution design (b) is presented, the target is a minimum-phase loudspeaker–room response.
The filter orders are 32 and 62, respectively. In (c) the pole frequencies correspond to sixth
octave resolution below 300 Hz and to a third-octave resolution above, resulting in 22 pole fre-
quencies, and thus a 44th order parallel filter. It can be seenin (c) that the results below 300
Hz are equivalent to the strictly logarithmic sixth-octavecase (b), and to the strictly logarith-
mic third-octave case above (a), showing that it is indeed possible to apply different frequency
resolutions in the different regions of the transfer functions with a smooth transition in between.
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Figure 7.2: Modeling a minimum-phase loudspeaker–room response by fixed-pole parallel filters having
a predetermined pole set: (a) third-octave resolution design by using 3/2 pole frequencies per octave
(filter order is 32), (b) sixth-octave resolution design by applying 3 poles per octave (filter order is 62).
In (c) the pole density is 3 poles per octave below 300 Hz and 3/2 poles per octave above (total filter
order is 44). Thin lines: target response, thick lines: filter responses. The pole frequencies are indicated
by crosses. The curves are offset for clarity.

Additional examples are displayed in Appendix A.4 including that of manually chosen pole
frequencies by the help of an interactive MATLAB script I have developed [Parallel filter home-
page 2021], and a synthetic target response in a linear frequency scale design. The examples
confirm the complete flexibility in controlling the frequency resolution of the design, not only
for the logarithmic case used in most of the examples of this work.

7.3 Pole positioning based on the smoothed system response

Similarly to the predetermined pole positioning, these methods are also related to modeling
or equalizing a system with a filter whose order is significantly lower compared to that of the
system. However, instead of directly controlling the resolution of the design, in the following
methods a different approach is taken: first the system response is smoothed to the desired
resolution via complex smoothing (see Chap. 3), and then thepoles are determined based on
this smoothed response. While this increases the complexity of filter design, it results in better
approximation for the same filter order compared to the predetermined pole positioning, as we
will see in the comparison later in Sec. 7.4.
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52 Chapter 7. Pole positioning

7.3.1 Ripple-density based pole positioning

While it is in principle possible to set the pole frequenciesbased on the properties of the system
response (e.g., insert more poles in the problematic or important frequency regions) as demon-
strated in Appendix A.4, this requires some expertise from the user. For some applications it
would be thus desirable to have such a pole positioning method that does this automatically for
a given filter order. This could be included in automatic measurement and equalization systems,
for example. To address this, I have developed a computationally efficient method that chooses
the pole frequencies based on the smoothed system response,without any prior knowledge on
the resolution of smoothing applied in the various regions [Bank 2013c].

The basic idea of the method is that in those regions where there are more ripples in the
transfer function, more poles are needed. The steps of the algorithm are explained by using
Fig. 7.3. The sixth-octave smoothed version of the loudspeaker–room response is shown in
Fig. 7.3 (a), given at logarithmically spaced frequency points. The first step of the algorithm
is computing the absolute differences of the adjacent frequency response points in dB scale.
The level of this function will be proportional to the raggedness of the transfer function, so
it is called ripple density. The result is displayed in Fig. 7.3 (b). The goal is now to divide
this ripple density function in as many equal areas as many poles we would like to use, and
the borders of these areas will be chosen as pole frequencies. This is done by integrating (in
practice cumulating) the density function giving the ripple distribution function. Then this is
scaled so that it goes from zero to the number of pole frequencies minus one, displayed in
Fig. 7.3 (c). Finally, whenever this distribution functionis integer (crosses a horizontal line in
Fig. 7.3 (c)) a pole frequency is obtained, displayed by crosses. The same pole frequencies are
also displayed in Fig. 7.3 (d), showing that indeed more poles are placed in those regions where
the target response (thin line) has larger variation. Once the pole frequencies are obtained, the
pole radii are determined by Eqs. (7.2) and (7.3) in the same way as with the predetermined
pole set. Figure 7.3 (d) thick line shows the frequency response of the parallel filter designed
using the pole set obtained from the ripple density function(the smoothed target is displayed by
a thin line). It can be seen that the method recognizes the problematic low-frequency region and
increases the frequency resolution by placing more poles inthat region. Naturally, the method
can also be applied in exactly the same way for obtaining arbitrary (non-logarithmic) frequency
resolution if the target response is smoothed according to the frequency resolution profile we
wish to achieve.

7.3.2 Pole positioning based on a warped IIR filter design

The next step in terms of design complexity is to determine the pole positions of the parallel
filter by estimating a warped IIR filter based on the smoothed system response [Bank 2013c].
The design procedure is similar to accurately modeling the system response by a warped IIR
filter as discussed in Sec. 7.1, with the difference that now the complex-smoothed version of the
system response is used as a target. Therefore, the details are omitted here, and the performance
of the method for smoothed responses will be presented when comparing the various techniques
in Sec. 7.4.
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Figure 7.3: Steps of ripple-density based pole positioning: (a) the sixth-octave smoothed magnitude
response, (b) the ripple density (the differences between the adjacent points of the smoothed response),
and (c) the ripple distribution (scaled cumulative sum of ripple density). In (c) horizontal lines show the
pole indices, and the pole frequencies are displayed by crosses. In (d) these pole frequencies are used
to design a parallel filter (thick line) to fit the minimum-phase smoothed target response (thin line). The
pole frequencies are marked by crosses. The filter order is 44, the same as in Fig. 7.2 (c).

7.3.3 Pole positioning based on multi-band warping

We have seen in Chap. 4 that a warped IIR filter design with a single λ parameter cannot
spread the frequency resolution evenly in the logarithmic scale, and that there is always a certain
frequency region where the resolution is maximal (∆f̃/f is minimal in Fig. 4.2 (b)). This means
that using the poles of such a warped filter cannot have a logarithmic resolution either.

To address this problem, I have developed a technique based on multi-band warping [Bank
and Ramos 2011]. In this method the transfer function is divided into separate frequency bands,
and different warping parameters are used in each band so that the warping effect is maximized
in each region. Then, separate warped IIR filters are designed for the different regions of the
smoothed response, their poles are dewarped, and finally thepole sets are united and used for
parallel filter design.

The first step of filter design is splitting the frequency region to separate bands and choosing
appropriateλ values for the bands. In its simplest form, two bands are usedwith a crossover
frequency offc = 500 Hz, which is approximately in the middle of the [20 Hz, 20 kHz]
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Figure 7.4: Dual-band warped IIR filter design based on a sixth-octave smoothed loudspeaker–room
response: (a) the minimum-phase specification of the low-frequency warped IIR filter (thin line) and
the filter response (thick line), (b) the minimum-phase specification of the high-frequency warped IIR
filter (thin line) and the filter response (thick line), and (c) the complete minimum-phase target response
(thin line) and the final filter response (thick line) of the parallel filter using the united pole set. The
pole frequencies of the filters are displayed by crosses. Thevertical dashed line indicates the crossover
frequencyfc = 500 Hz of the two warped IIR designs. The curves are offset for clarity.

audio band in a logarithmic scale. This is displayed in Fig. 7.4 for a sixth-octave smoothed
loudspeaker–room response. The low-frequency part of the specification is displayed by a thin
line in Fig. 7.4 (a), while the high-frequency part by a thin line in Fig. 7.4 (b). As can be seen in
Fig. 7.4, the out-of-band parts of the transfer functions are crossfaded to a constant gain. This
is done to assure that the warped IIR filters will not waste anyresources (poles) outside their
respective bands.

Next, two warped IIR filters are designed, one for the low-frequency and one for the high-
frequency target. Theλ values are chosen so that the warped filters have the maximal logarith-
mic resolution (minimal∆f/f ) in the middle of their respective bands by finding suchλ values
where the minimum of the logarithmic resolution curves Eq. (4.4) is atf =

√
20× 500 = 100

Hz for the low-frequency band andf =
√

500× 20000 = 3160 Hz for the high-frequency
band, givingλLF = 0.986 andλHF = 0.65, respectively. The corresponding resolution curves
are displayed in Fig. 7.5.

The warped filters are designed by the frequency-domain Steiglitz–McBride algorithm [Jack-
son 2008] based on the prewarped transfer functions. The frequency response of the low-
frequency warped IIR filter (filter order is 22) is displayed by thick solid line in Fig. 7.4 (a),
while the frequency response of the high-frequency warped IIR filter (filter order is 22) is shown
by thick solid line in Fig. 7.4 (b). The pole frequencies of the filters are displayed by crosses,
showing that indeed there are no poles outside the respective bands. Once the two warped IIR
filters are designed, their poles are dewarped using the correspondingλLF andλHF values in

dc_1787_20

Powered by TCPDF (www.tcpdf.org)



7.3. Pole positioning based on the smoothed system response 55

10
2

10
3

10
4

10
−4

10
−3

10
−2

10
−1

Frequency [Hz]

R
el

at
iv

e 
re

so
lu

tio
n/

F
re

q.

λ=0.985 λ=0.65

Figure 7.5: The logarithmic frequency resolution for the two bands of multi-band pole positioning:
Eq. (4.4) computed with∆f = 1 for λLF = 0.986 andλHF = 0.65.

Eq. (4.7) and the two pole sets are united, giving a total filter order of 44 (the same as for the
stepwise logarithmic case of Fig. 7.2 (c) and as for the ripple-density based pole positioning
Fig. 7.3). It can be seen in Fig. 7.4 (c) that the filter response (thick line) follows the smoothed
target (thin line) very accurately and the modeling detail is spread evenly in the logarithmic
scale.

7.3.4 Pole positioning based on custom warping

So far we have been using the allpass frequency mapping function Eq. (4.2), which gives a
limited freedom due to a single parameterλ. Improved results were obtained by combining
multiple warped filters with differentλ values, but this still does not result in exactly logarithmic
frequency resolution. I have developed a custom warping method that can be used with arbitrary
warping profiles, including logarithmic [Bank 2011c]. The basic idea is that a warped filter
designed based on the logarithmically mapped specificationis dewarped using the logarithmic
function, and not by the usual allpass substitution.

The method starts with defining a custom frequency mapping function that determines the
allocation of frequency resolution. Here a logarithmic frequency transformation is used, leading
to logarithmic frequency resolution, but it is emphasized that any other monotonic, smooth
function can be used to have a different kind of distributionof the frequency resolution. We need
to map the original angular frequenciesϑ ∈ [0, π] to the warped frequencies̃ϑ = ν(ϑ) ∈ [0, π]
by a continuously differentiable (C1) function. That is,ν(ϑ) and its first derivativeν ′(ϑ) =
dν(ϑ)/dϑ should be continuous, because these functions will be laterused for pole dewarping.
Since we would like to mapϑ = 0 to ϑ̃ = 0, the logarithmic curve ofν(ϑ) is exchanged for
a linear curve very low frequencies (ϑ < ϑc), as also suggested in [Härmä and Paatero 2001]
for their high-order allpass approximation. This basically means that the frequency resolution
is constant belowϑc, while logarithmic aboveϑc.
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Figure 7.6: Logarithmically warped target specification (sixth-octave smoothed minimum-phase
loudspeaker–room response, displayed by thin line) and a 44th order IIR filter designed byinvfreqz
in MATLAB (thick line). Note that the warped angular frequency is displayed in a linear scale.

Then, the filter specification is transformed by this mappingfunction so that the original
specification pointsHt(ϑn) are moved to the frequencies̃ϑn = ν(ϑn). Mathematically, this
mapping is described bỹHt(ϑ̃n) = Ht(ν

−1(ϑ̃n)). The target specification used for illustrating
the design steps is the usual loudspeaker–room response, which is smoothed to a sixth-octave
resolution. The logarithmically warped filter specification is displayed in Fig. 7.6 thin line.
Note that the warped angular frequency is plotted in a linearscale.

At this step an IIR filter is designed to the warped specification H̃t(ϑ̃) by any of the tradi-
tional filter design methods. Here theinvfreqz command of MATLAB is used to design a
44th order IIR filter. The resulting response is shown in Fig.7.6 thick line. The log-warped
specification is made minimum-phase prior to filter design: practical experience shows that this
helps to guarantee the stability of the designed IIR filter.

Then, the poles of this warped filter̃H(ϑ̃) are found and mapped back to the original fre-
quency scale. For complex poles, we first compute the pole frequencies̃θk = ϕ{p̃k} and radii
R̃k = |p̃k|. The pole frequencies are mapped so that the peaks of the filter get back to the
original peak frequencies of the target by using the inversemappingν−1(ϑ̃), leading to

θk = ν−1(θ̃k). (7.4)

We also need to map the pole radii in such a way that the bandwidths of the resonances of
the dewarped filter∆θk match the bandwidths of the peaks of the target response. If the map-
ping function can be considered linear atθ̃k in the range of∆θ̃k then the new bandwidth after
mapping will be proportional to the derivative of the mapping function atθ̃k pole frequency.
Accordingly, we apply the inverse mappingν−1(θ̃k), so the bandwidth will be

∆θ = ν−1′(θ̃k)∆θ̃k, (7.5)

whereν−1′(ϑ̃) is the derivative of the inverse mapping functionν−1(ϑ̃). Similarly to the case of
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Figure 7.7: Minimum-phase loudspeaker–room response modeling: original specification (thin line),
44th order series second-order filter after pole-zero dewarping (dashed line), and a 44th order paral-
lel second-order filter designed using the dewarped poles (thick solid line). The pole frequencies are
displayed by crosses.

predetermined pole positioning, we again use the approximation Eq. (7.1) for the pole radii:

R̃k = e−
∆θ̃k

2 ⇔ ln(R̃k) = −∆θ̃k

2
. (7.6)

For the dewarped radii we obtain:

Rk = e−
∆θk

2 = e−
∆θ̃k

2
ν−1′ (θ̃k) = eln(R̃k)ν−1′ (θ̃k) = R̃

ν−1′ (θ̃k)
k , (7.7)

that is, the pole radiĩRk of the warped filter need to be raised to the to the power ofν−1′(θ̃k)
to obtain the dewarped pole radiiRk. Finally we compose the pole from its angle and radii as
pk = Rke

jθk .
The equations can be summarized as follows:

θk = ν−1(θ̃k), (7.8a)

Rk = R̃
ν−1′ (θ̃k)
k , (7.8b)

pk = Rke
jθk. (7.8c)

For real poles we compute their frequencies (the -3dB point of their transfer functions) and
remap them byν−1(ϑ̃).

While we will use only the poles of the warped filter, it is interesting to stop for a moment
and take a look of the response that arises when both the polesand zeros are dewarped and
paired based on Eq. (7.8) to form a filter composed of a series of second-order sections. The
resulting response is displayed in Fig. 7.7 dashed line, together with the specification (thin solid
line) in the original frequency scale. (Note the logarithmic frequency axis in Fig. 7.7 as opposed
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to the linear one in Fig. 7.6.) It can be seen that the resulting filter response (dashed line) is tilted
compared to the specification (thin solid line). This comes from the inaccuracies of pole-zero
remapping: one reason is that in deriving Eq. (7.5) we were assuming relatively narrow pole
bandwidths so it is inaccurate for highly damped poles. Additionally, when a pole is dewarped
in normal warped filters, a zero arises atλ, while when a zero is dewarped, a pole arises at
λ. Sinceλ is constant in traditional warped filters, these additionalpoles and zeros cancel out.
However, in our case every dewarping corresponds to a different equivalentλ value, and the
effects of these not-implemented poles and zeros accumulate and bias the response.

However, we are not intending to implement the filter as a cascade structure, but only use
the dewarped poles for fixed-pole parallel filter design. Theresult is displayed in Fig. 7.7 thick
line. It can be seen that now the filter response matches the target specification quite precisely
because the LS optimization of the zeros of the transfer function compensates the inaccuracies
of pole dewarping.

7.4 Pole positioning comparison

Here the various pole positioning methods presented in thischapter will be compared on three
different loudspeaker equalization applications (one in-room and two anechoic measurements).
In the detailed explanation of the methods a modeling example was used since it made explain-
ing the techniques easier. Nevertheless, they can all be used for equalizer design as well. In
equalizer design the goal is to estimate a filter which, when applied to the system response,
equalizes the transfer function so that it matches the target response (see Sec. 2.2). Since the
target is usually a flat response within the corner frequencies of the loudspeaker, displaying the
equalized transfer functions will give us a clearer pictureon the distribution of the approxima-
tion error, something much harder to see in the modeling case.

7.4.1 Loudspeaker–room response equalization

Figure 7.8 (a) thick line shows the sixth-octave smoothed version of a loudspeaker–room re-
sponse. The target frequency response we wish to achieve by equalization is a forth-order high-
pass response with a corner frequency of 30 Hz, displayed by athin line. In all the following
examples the same target curve is used, and the parallel filter is designed by the frequency-
domain direct equalizer design method presented in Sec. 6.3.2. However, they will differ in
how the poles are obtained.

Figure 7.8 (b) shows the equalization using a predeterminedpole set with stepwise logarith-
mic pole positioning. The total number of pole pairs is 20, that is, the filter has 20 second-order
sections (the filter order is 40). The method gives an acceptable performance since the ripples
of the equalized transfer function are within±1 dB around the target response. There are only
a few sharp dips at 80 Hz and 250 Hz that are not equalized: for some applications, such as in
room response correction this is actually an advantage since these sharp dips are usually position
dependent, and it is generally accepted that they should notbe equalized [Craven and Gerzon
1992; Cecchi et al. 2018]. This is because that would requirea sharp peak in an equalizer,
which, at other positions in the room where the dip is not counteracting it, actually produces a
disturbing ringing sound. Failing to equalize these dips iscoming from the “automatic” smooth-
ing behavior of the parallel filter with a predetermined poleset demonstrated in Sec. 6.5. Since
the modeling resolution is fixed, the equalizer cannot counteract anything narrower than the
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Figure 7.8: Comparison of different pole positioning techniques for minimum-phase loudspeaker–room
response equalization. The sixth-octave smoothed room response is displayed in (a). The pole posi-
tioning techniques used are (b) predetermined pole set, pole positioning based on (c) ripple density, (d)
standard warped IIR filter design, (e) multi-band warping, and (f) custom warping. The target response
is shown by thin lines. The pole frequencies are displayed bycrosses. The number of pole-pairs (or,
second-order sections) is 20 in all cases, giving a total filter order 40. The curves are offset for clarity.

desired resolution. Note that for the rest of the pole positioning methods proposed here if we
wish to avoid the equalization of sharp dips, they need to be removed from the system response
manually or by an appropriate automatic limiting process [Craven and Gerzon 1992; Pedersen
and Thomsen 2007]. Also note that now the parallel filter was designed using the sixth-octave
smoothed response for making the comparison with other polepositioning approaches more
coherent. However, for cost-effective applications the predetermined pole set has an additional
advantage besides its simplicity that it does not require the smoothing of the measured transfer
function as it performs smoothing “automatically” based onits pole density.

The equalization using a ripple-density based pole set (Sec. 7.3.1) is shown in Fig. 7.8 (c),
leading to a similar performance to the predetermined pole set in this case, but now without
the need for deciding in which regions the density of the poles should be larger. An important
difference is that now the narrow dips of the response are also equalized by placing more poles
in that region (see Fig. 7.8 (c) around 80 Hz). As already discussed, equalizing the sharp dips
of loudspeaker–room responses is not recommended, and thiscan be avoided by removing such
dips from the system response in a preprocessing step as suggested in [Craven and Gerzon 1992;
Pedersen and Thomsen 2007]. Nevertheless, if we consider the method as a general equalization
technique, it is actually an advantage that we may counteract the sharp dips if we wish so.

In the example of Fig. 7.8 (d), a 40th order IIR filter is identified by the frequency-domain
Steiglitz-McBride method [Jackson 2008] based on the warped version of the smoothed system
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Table 7.2: Errors of equalization examples presented in Figs. 7.8, 7.9, and 7.10. The order of the methods
correspond to those in the figures: no equalizaztion (a), predetermined pole set (b), ripple-density based
pole positioning (c), poles obtained from a warped IIR design (d), from a dual-band warped design (e),
and via custom warping (f). The smallest errors are marked with bold.

Room eq. Fig. 7.8 No EQ (a) Predet. (b) Ripple d. (c) Warping (d) Dual-bd. (e) Custom wp. (f)
Mean squared error 0.482 0.122 0.116 0.059 0.043 0.040
Mean abs. dB error 2.506 dB 0.691 dB 0.646 dB 0.324 dB 0.238 dB 0.215 dB

Loudsp. eq. Fig. 7.9 No EQ (a) Predet. (b) Ripple d. (c) Warping (d) Dual-bd. (e) Custom wp. (f)
Mean squared error 0.322 0.052 0.054 0.038 0.022 0.027
Mean abs. dB error 1.033 dB 0.291 dB 0.304 dB 0.211 dB 0.125 dB 0.147 dB

Loudsp. eq. Fig. 7.10 No EQ (a) Predet. (b) Ripple d. (c) Warping (d) Dual-bd. (e) Custom wp. (f)
Mean squared error 0.419 0.087 0.054 0.028 0.028 0.023
Mean abs. dB error 1.993 dB 0.489 dB 0.301 dB 0.156 dB 0.159 dB 0.132 dB

response as the input and the warped version of the target as the output. In this example, a
warping parameterλ = 0.95 is used since thatλ resulted in the smallest error. It can be seen
in Fig. 7.8 (d) that the warping-based pole positioning provides more accurate equalization
compared to the first two methods, and its only shortcoming that the accuracy is concentrated
in the middle frequency range.

In Fig. 7.8 (e) dual-band warping is applied. The split frequency is 500 Hz. Similarly to
Sec. 7.3.3,λLF = 0.986 andλHF = 0.65 are used. The filter orders are 20 in both the low and
high bands, giving a total filter order of 40. Figure 7.8 (e) shows that the frequency resolution
is now spread much more evenly on the logarithmic scale and thus an excellent equalization
performance is achieved for the same filter order as with the previous methods. The only larger
ripples that can be seen are in the transition region of the two bands (around 500 Hz), the rest
of the ripples are within±0.5 dB of the target, which can be considered negligible. The price to
pay compared to the simple warping of Sec. 7.1 is the additional task of separating the response
to different regions and the need of designing multiple filters. However, the total order of filters
remains the same, so the computational complexity of the design is not increased significantly.
A small shortcoming is that the user has to manually balance between the number of poles used
in the two frequency bands.

The equalization using poles obtained by custom warping is displayed in Fig. 7.8 (f). The
cutoff frequency where the linear mapping is changed to logarithmic is set to 50 Hz. The
performance is very similar to the multi-band warping case,the only difference is that the
ripples are smaller at 500 Hz. The computational complexityof the design is similar to the
other two warped designs. A benefit compared to the multi-band warping is that only the total
filter order has to be given by the user, and not the orders in the different bands as for multi-band
warping.

The equalization errors for the five different pole positioning methods can be compared in
Table 7.2. The rows with “Mean squared error” are computed asthe square root of the mean
squared difference of the equalized and the target frequency responses, thus, they show the error
of the complex transfer function. This kind of error measureis useful since it also shows that
the phase is correctly approximated (not shown in the figures), and it is directly related to the
error minimized during filter design. The averaging is done between the corner frequencies of
the target response (30 Hz and 20 kHz in this case), and over a logarithmic frequency grid with
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100 points per octave resolution.
To show a different kind of error sometimes also used in the audio field, the second rows

display the “Mean abs. dB error”: here the magnitudes of the equalized and target responses are
computed in dB, and their absolute differences are averagedon a logarithmic frequency grid, as
suggested in [Ramos and López 2006]. This kind of error is more related to what we actually
see in Fig. 7.8 since that is in dB scale as well.

It can be seen in Table 7.2 that the two kinds of errors are strongly correlated: if a certain
method is better than an other with respect to “Mean squared error” it is also better in “Mean
abs. dB error”. For the loudspeaker–room response equalization example of Fig. 7.8, the dual-
band warping (e) and custom-warping (f) has the lowest errors in both measures, the latter
performing slightly better.

7.4.2 Loudspeaker equalization

Here additional equalization examples are presented to give a broader view on the behavior of
the different methods. First the anechoic response of the same two-way floorstanding loud-
speaker is equalized which was used in a room in the previous example. Now the measured
anechoic frequency response is smoothed to 12th-octave resolution. This is shown in Fig. 7.9
(a) thick line. The target response is a forth-order highpass with a cutoff frequency of 50 Hz.

For the predetermined pole set, while 12th-octave resolution would require higher pole den-
sity to perfectly equalize the response (six pole pairs per octave actually leads to 51 pole pairs),
we use 20 pole pairs between 50 Hz and 20 kHz, since for the moresophisticated methods
this filter order is sufficient to obtain practically perfectequalization, as we shall see later. The
results are acceptable, the ripples are within±1 dB, as can be seen in Fig. 7.9 (b). The ripple-
density based pole positioning leads to similar results as shown in Fig. 7.9 (c).

For this exampleλ = 0.85 gives the best results for warping-based pole positioning,shown
in Fig. 7.9 (d). Similarly to Fig. 7.8 (d), the accuracy is concentrated to the middle range, while
the band edges are less accurately equalized. This is again overcome by the multi-band (Fig. 7.9
(e)) and custom warping (Fig. 7.9 (f)). The better performance of these two methods manifests
also in their smaller error values in Table 7.2.

The next example is a two-way bookshelf speaker having some distinct spikes in its fre-
quency response. The response is smoothed to 12th-octave resolution prior to equalizer design,
displayed in Fig. 7.10 (a). The target is the series connection of a forth-order highpass with a
cutoff frequency of 70 Hz and a second-order lowpass with a corner frequency of 18 kHz.

First, a predetermined pole set is used with 20 pole pairs logarithmically distributed between
70 Hz and 20 kHz. The equalizer has a poor performance as seen in Fig. 7.10 (b), because the
pole density is too low in the problematic regions. On the other hand, the ripple-density based
pole positioning can show its power: equalization improvessignificantly, since now the poles
are concentrated in the ragged parts of the frequency response (see Fig. 7.10 (c)).

In this caseλ = 0.8 is used for warping-based pole positioning in Fig. 7.10 (d).On the
contrary to the previous examples, even simple warping can provide almost perfect equalization
(with the exception of a small discrepancy around 5 kHz). This is because the design bandwidth
is smaller (note in Fig. 7.10 (a) that the response has ripples only above 400 Hz), thus, we do
not face with the problems we had at the band edges for Fig. 7.8(d) and Fig. 7.9 (d).

Since we are not using the full audio band, for the multiband warping of Fig. 7.10 (e) a
crossover frequency of of 2 kHz and lambdas ofλLF = 0.8 andλHF = 0.3 are used. Note
however that this does not decrease the error of the equalization (see Tab. 7.2). For the custom
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Figure 7.9: Comparison of different pole positioning techniques for a minimum-phase loudspeaker
response equalization. The 12th-octave smoothed anechoicloudspeaker response of a two-way loud-
speaker floorstanding is displayed in (a). The pole positioning techniques used are (b) predetermined
pole set, pole positioning based on (c) ripple density, (d) standard warped IIR filter design, (e) multi-
band warping, and (f) custom warping. The target response isshown by thin lines. The pole frequencies
are displayed by crosses. The number of pole-pairs (or, second-order sections) is 20 in all cases, giving
a total filter order 40.

warping method, the best results are obtained whenϑc is set so that the resolution changes from
constant to logarithmic at 1 kHz. While custom warping (f) has the lowest equalization error
according to Tab. 7.2, the relatively minor improvement over the results of single-band warping
might not actually worth the additional design complexity.

7.5 Discussion of pole positioning techniques

After the discussion of the pole positioning strategies forparallel filter design and seeing a
couple of examples, some conclusions can be drawn about the benefits of the various methods.

Predetermined pole set:This is the simplest method, which works relatively well formod-
eling or equalizing high-order systems (such as loudspeaker–room response) with a lower order
filter, since in this case there are so many peaks and valleys in the original response that waviness
of smoothed response is determined by the smoothing itself.However, when the raggedness is
unevenly distributed in the response, such as in Fig. 7.10 (a), a logarithmic pole positioning
is not adequate, and regions with different pole density should be selected manually, which is
sometimes not practical, e.g., in the case of an automatic equalizer system. Note however that
in certain design applications the possibility of manual intervention can be beneficial, e.g., an
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Figure 7.10: Comparison of different pole positioning techniques for minimum-phase loudspeaker re-
sponse equalization. The 12th-octave smoothed anechoic response of a bookshelf loudspeaker is dis-
played in (a). The pole positioning techniques used are (b) predetermined pole set, pole positioning
based on (c) ripple density, (d) standard warped IIR filter design, (e) multi-band warping, and (f) custom
warping. The target response is shown by thin lines. The polefrequencies are displayed by crosses. The
number of pole-pairs (or, second-order sections) is 20 in all cases, giving a total filter order 40.

expert user can manually fine-tune the frequency resolutionby moving around the poles and
listening to the result (the interactive demoparfeqdemo downloadable from [Parallel filter
homepage 2021] allows the manual positioning of the poles and designs the equalizer imme-
diately). Bedsides its simplicity, an additional advantage of the predetermined pole set is the
automatic smoothing behavior: there is actually no need fortransfer function smoothing prior
to equalizer design, so the equalizer can be obtained from the measured response directly.

Ripple-density based pole positioning:This method, while simple enough, works robustly
in all cases since it allocates the frequency resolution in accordance with the raggedness of the
response. It shows its main benefits compared to the predetermined pole set when the response
has some specific problematic regions, as in Fig. 7.10 (c).

Warping-based pole positioning:Since this method is based on a warped IIR filter design,
it is able to actually take into account both the frequenciesandQ factors of the peaks and
valleys of the smoothed response. When the system is not using the full audio bandwidth
(such as in small bookshelf or multimedia speakers, see Fig.7.10 (d)) it provides almost perfect
equalization. Systems having full audio bandwidth will suffer from low- and high-frequency
inaccuracies when using this pole positioning method (see Figs. 7.8 (d) and 7.9 (d)).

Pole positioning using multi-band warping: This method overcomes the bandwidth limi-
tation of straightforward warping, thus, it can be used for the full audio bandwidth from 20 Hz
to 20 kHz with excellent results. The only slight shortcoming is that the user has to balance
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Figure 7.11: Comparison of different filter design methods for loudspeaker–room response equaliza-
tion. The smoothed room response is displayed in (a). The response equalized by an 1000th-order FIR
filter (b), a 40th-order standard IIR filter (c), a 40th-orderparallel filter with stepwise logarithmic pole
frequencies (d), a 40th-order warped IIR filter usingλ = 0.95 (e), and a 40th-order parallel with poles
obtained by custom warping (f). The target response is shownby thin lines. The pole frequencies are
displayed by crosses.

between the filter orders of the two frequency bands by trial and error.
Pole positioning using custom warping:This method provides excellent equalization in

the full audio frequency range similarly to multi-band warping. A benefit over multi-band
warping is that only the total filter order has to be specified by the user.

7.6 Comparison with previous filter design methods

While we have discussed in Chap. 1 that standard FIR and IIR filter design techniques are not
well suited to filter- or equalizer design on a logarithmic frequency scale, it is instructive to see
how they actually perform on the same loudspeaker-room equalization example as of Fig. 7.8.

The first example is frequency-domain least squares equalization by a 1000th-order FIR
filter, shown in Fig. 7.11 (b): it can be seen that even such a long FIR filter cannot provide
enough resolution at low frequencies to equalize the response below 200 Hz. Next, a 40th-order
IIR filter is designed by the frequency-domain Steiglitz-McBride method [Jackson 2008] where
the specification is given on a logarithmic frequency grid sothat the error should be minimized
on the logarithmic scale. However, as can be seen in Fig. 7.11(c), the equalization is unusable
below 300 Hz, which is also expected from the pole frequencies of the filter, shown by crosses.

On the contrary, a fixed-pole parallel filter requiring the same computational resources pro-
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Table 7.3: Errors of equalization examples presented in Fig. 7.11. Themarking of the methods corre-
spond to those in the figure: 1000th-order FIR filter (b), 40th-order IIR filter (c), 40th-order parallel filter
with predetermined poles (d), 40th-order warped IIR design(e), 40th-order parallel filter with custom
warping (f).

Room eq. Fig. 7.11 FIR 1000 (b) IIR (c) par. log. (d) warped IIR (e) par. custom wp. (f)

Mean squared error 0.154 0.288 0.122 0.059 0.040

Mean abs. dB error 0.990 dB 1.725 dB 0.691 dB 0.324 dB 0.215 dB

vides a significantly better performance even with a predetermined set of poles, as shown in
Fig. 7.11 (d). It follows that compared to straightforward FIR or IIR filter design techniques,
even the simplest form of parallel filter design (logarithmically positioned poles) provides a
drastically improved performance when the accuracy is evaluated on a logarithmic frequency
scale. The equalization error is also displayed in Table 7.3.

Let us also compare the fixed-pole parallel filter to logarithmic frequency resolution fil-
ter design methods that were the state of the art at the time ofthe publication of my results.
Fig. 7.11 (e) shows a 40th-order warped IIR equalization example designed with a warping pa-
rameterλ = 0.95. The response of a Kautz filter with warping-based pole positioning would
be also the same, so it serves as a good comparison with Kautz filters as well. When using
these poles, parallel filters result in the same response as Fig. 7.11 (e), but with lower compu-
tational complexity compared to both warped and Kautz filters and a completely parallel filter
structure. This means that at this point parallel filter design is already more efficient in terms of
accuracy/complexity ratio.

This efficiency is improved even more by the more sophisticated pole positioning methods
I have developed. For example, Fig. 7.11 (f) demonstrates that by using custom warping a
significantly improved equalization is achieved compared to the previous state of the art for the
same filter order.

In the audio signal processing field filter design algorithmsare usually compared based on
real-world (measured) system responses as was done in Fig. 7.11. However, publications about
general filter design techniques often use synthetic example cases. The reader is invited to take
a look at such an example in Appendix A.5 where the filters are designed based on a target
which looks like a square wave in the logarithmic frequency scale. While this kind of a target
is very different from that of a loudspeaker–room response,the same conclusions can be drawn
from the results. This is also true for the other synthetic and real-world examples that I have
tested, confirming the superiority of the proposed methods compared to earlier techniques.

It also worth mentioning that Maestre et al. [2016] have further developed the pole position-
ing method based on warped IIR design by using an iterative procedure where the poles obtained
from a single-band warped IIR design using the Prony or the Steiglitz-McBride technique are
post-optimized with a gradient descent algorithm. Compared to the warped Steiglitz-McBride
technique of Sec. 7.1, the improvement is relatively minor,as can be seen in Fig. 4 of [Maestre
et al. 2016]. In my opinion, such an improvement might not worth the additional complexity of
a complicated optimization algorithm. Nevertheless, for aiming at the best possible modeling
accuracy, initializing the post-optimization technique of Maestre et al. [2016] with the poles
obtained using multi-band or custom warping methods proposed in Secs. 7.3.3 and 7.3.4 could
be a promising topic for future research.
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7.7 Scientific contributions

Statement 2: I have developed new pole positioning methods that can be used not only for
the fixed-pole design of parallel filters, but also for Kautz filter design, and lead to more
accurate approximation compared to earlier methods developed for Kautz filters. As a
result, the proposed methodology leads to better filter approximation on the logarithmic
scale compared to earlier techniques (traditional IIR, warped and Kautz filters) for the
same filter order.

2.1: As an efficient alternative to manual pole positioning, I have developed a technique based
on the “ripple density” of the target response. The method sets the pole frequencies according to
the ripples of the target, and thus results in more poles and better resolution in the problematic
regions of the transfer function. I have also given the formulas for the pole radii that can be
used to compute the complex poles from an arbitrary set of pole frequencies.

2.2: I have developed a dual-band warping-based pole positioning method where the warped
IIR filters are designed with differentλ values for the lower and upper bands. This results in
a frequency resolution closer to logarithmic, which manifests in a smaller approximation error
computed on the logarithmic scale compared to straightforward, single-band warping.

2.3: I have developed a “custom warping” method where the warped IIR filter is designed using
an arbitrary (smooth and monotonic) frequency mapping, as opposed to the allpass transform
of traditional warped filters. The poles obtained by such a design are used as the poles of the
parallel filter, and the method – when a logarithmic mapping is used – results in a smaller
approximation error on the logarithmic scale compared to single-band warping.

The results have been published in two journal papers [Bank 2013a] and [Bank and Ramos
2011]1 and in two conference papers [Bank 2011c, 2013c].

1While the paper was published together with Prof. German Ramos, the technique was developed by myself.
Prof. Ramos has helped in the comparison with his earlier technique [Ramos and López 2006] and in the prepara-
tion of the manuscript.
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Chapter 8

MIMO extensions to the fixed-pole design
of parallel filters

After developing single-channel algorithms, a natural choice of my research direction was to
provide their multichannel extensions. Multiple-input multiple-output (MIMO) filtering is used
in various fields of signal processing. In audio the most straightforward example is modeling
or equalizing a room having multiple listeners and multipleloudspeakers. Modern car audio
systems are also designed in such a way that all passengers have optimal listening experience,
and do so by applying a large number (typically between 10 and20) of loudspeakers. As a two-
by-two example, binaural crosstalk cancellation aims at independently controlling the signals
reaching the left and right ears of the listener by the use of two loudspeakers. The directivity
of loudspeakers containing multiple speaker elements can be also controlled by a MIMO filter,
and the same is true for microphone arrays. In sound synthesis, both the direction-dependent
radiation pattern of a musical instrument and the mechanical admittance of its various parts can
be described by MIMO filters.

The relatively trivial extensions of the single channel case will be outlined in Sec. 8.1 that
will also show how the computational complexity can be decreased by using a common pole
set, a choice often made in modeling acoustic systems.

In Sec. 8.2 the idea of parallel filters will be applied to admittance matrix modeling: besides
being a MIMO problem, here the passivity of the transfer function must also be guaranteed
since we aim to model a passive physical system. When such an admittance model is coupled
to other structures (such as other parts of a musical instrument model), failing to guarantee
passivity may actually lead to the spurious generation of energy and to the instability of the
complete model. Besides an efficient passive design formulation, the estimation of common
poles using a warped common-denominator all-pole model will also be presented that can be
used for other applications where a common pole set can be motivated by physical or perceptual
considerations. At the time of the publication of the results [Bank and Karjalainen 2008, 2010],
this was the first technique that allowed the design of admittance filters for the full audio fre-
quency range while guaranteeing passivity. Later my technique has been further developed by
Maestre et al. [2015, 2017] that provide improved modeling accuracy at the price of applying a
more complicated optimization procedure.

Finally, Sec. 8.3 provides the extension of the direct equalizer design approach of Sec. 6.3
to the MIMO case. While MIMO parallel filter design is trivialin the sense that the elements
of the filter matrix can be estimated in the same way as for the single channel case, this is not
true for equalizer design. Therefore I have developed a matrix formulation for the equalization
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68 Chapter 8. MIMO extensions to the fixed-pole design of parallel filters

case, which shows that by taking advantage of fixed poles, thedesign of an IIR equalizer can
be equally simple as that of the commonly used FIR equalizer and a closed-form solution can
be obtained when the problem is formulated in the least-squares sense. The importance of
the results lies in the fact that for MIMO equalization almost always FIR filters have been
employed in the literature probably due to the fact that extending IIR filter design techniques to
the MIMO case is non-trivial and the implementation of iterative methods can be problematic
for the high number of parameters that needs to be optimized for MIMO IIR filters. However,
these difficulties are now removed since the numerators of parallel filters can be estimated by
a linear LS fit similarly as for FIR filters, so the methods developed for MIMO FIR equalizer
design can be easily adapted to the parallel filter case.

8.1 MIMO parallel filters

Let the input of the MIMO filter be a column vectorx(z) = [x1(z), . . . , xI(z)]T containing
all the entries corresponding to theI input channels, and the output a column vectory(z) =
[y1(z), . . . , yO(z)]T with the entries corresponding to theO output channels. Thus, the MIMO
filtering can be written as

y(z) = H(z)x(z), (8.1)

with the transfer functionH(z) containing the elementsHo,i(z). When the separate elements
are independent parallel filters, the transfer function becomes

Ho,i(z) =
K(o,i)
∑

k=1

b
(o,i)
k,0 + b

(o,i)
k,1 z−1

1 + a
(o,i)
k,1 z−1 + a

(o,i)
k,2 z−2

+
M (o,i)
∑

m=0

f (o,i)
m z−m, (8.2)

wherei is the index of the input channel ando is the index of the output channel of the MIMO
filter. The design of such a MIMO parallel filter is done by estimating separate SISO parallel
filters for each element of the target matrixHt(z), thus, it does not lead to any additional
complications compared to the single channel case outlinedin Sec. 6.2.

8.1.1 Common-pole parallel filters

In comparison to the general form Eq. (8.2), significant computational savings can be achieved
when the pole set (and thus the filter order) is the same acrossthe entries ofH(z), since this
allows sharing the denominator parts across the different channels.

Common-denominator IIR filters are often used for modeling acoustic transfer functions
[Haneda and Kaneda 1994; Liu and Hsieh 1988]. This is motivated by the fact that for a sin-
gle physical system that has multiple input and output points (like multiple loudspeakers and
microphones in a room, or multiple force inputs of a mechanical system) the poles of all trans-
fer functions are the same by theory since they correspond tothe vibrating modes of the same
system.

In addition to the physical reasons, often we would like to model or equalize the elements
of the transfer function matrix with the same frequency resolution, again leading to the same
pole set when the predetermined pole positioning of Sec. 7.2is used.

One option is to use the same pole set, and thus the same denominators for all the outputs
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8.1. MIMO parallel filters 69

Multiplications
General case 4OIK
Common denominators for a specific input 2(O + 1)IK
Common denominators for a specific output 2O(I + 1)K

Table 8.1: Number of multiplications and additions required for a MIMOparallel filter havingI inputs,
O outputs, andK second-order sections in each element of the filter matrix.

coming from a specific input channeli, leading to

Ho,i(z) =
K(i)
∑

k=1

b
(o,i)
k,0 + b

(o,i)
k,1 z−1

1 + a
(i)
k,1z

−1 + a
(i)
k,2z

−2
+

M (i)
∑

m=0

f (o,i)
m z−m. (8.3)

This leads to the reduction of required numerical operations because now it is possible to filter
a particular inputi with the denominator parts1/(1 + a

(i)
k,1z

−1 + a
(i)
k,2z

−2) of the K sections
only once, and use this common set of filtered signals as the inputs of the numerator parts
b
(o,i)
k,0 + b

(o,i)
k,1 z−1 that are different for the various outputs. A special case ofthis formulation is

the single-input multiple-output case, where only one set of denominator parts are needed.
Another option is to use the same pole set, and thus the same denominators for all the inputs

going to a specific output channelo, leading to

Ho,i(z) =

K(o)
∑

k=1

b
(o,i)
k,0 + b

(o,i)
k,1 z−1

1 + a
(o)
k,1z

−1 + a
(o)
k,2z

−2
+

M (o)
∑

m=0

f (o,i)
m z−m. (8.4)

In this case the computational complexity is reduced compared to the general form of (8.2)
because now it is possible to first compute the numerator parts b

(o,i)
k,0 + b

(o,i)
k,1 z−1 of the second-

order filters, sum those that correspond to the same output channelo, and then filter with the
common denominators1/(1 + a

(o)
k,1z

−1 + a
(o)
k,2z

−2). A special case is the multiple-input single-
output scenario, where only one set of denominators are implemented.

Of course it is also possible to use the same pole set for all the elements ofH(z), however,
this provides no computational advantage over the two casesoutlined so far. The number of
multiplications required by running a MIMO parallel filter havingK second-order sections,I
inputs,O outputs are shown in Table 8.1, without the optional FIR part(for the FIR part no
savings can be achieved). It can be seen that if either the number of input- or output channels
is significantly larger than 1, the computational complexity can be reduced roughly to the half
compared to the general case by using the shared denominatorapproach.

All the pole positioning techniques presented in Chap. 7 canbe extended for finding common-
poles in a straightforward manner. As for the predeterminedpole set of Sec. 7.2, no changes
are necessary: we simply prescribe the same resolution, thus, the same pole frequencies for
all the transfer function paths, and this will result in the same pole set. For pole positioning
based on ripple density described in Sec. 7.3.1, the ripple densities computed for the individual
transfer functions are simply averaged before numerical integration and segmentation. The rest
of the techniques discussed in Chap. 7 are all based on a (typically warped) IIR filter design and
using the poles of the IIR filter. A common-pole extension to these techniques includes finding
a common-denominator IIR filter based on the set of impulse responses or transfer functions.
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70 Chapter 8. MIMO extensions to the fixed-pole design of parallel filters

Common-denominator IIR models are often used in acoustics [Haneda and Kaneda 1994; Liu
and Hsieh 1988], and the related technique for estimating common poles will be outlined in
Sec. 8.2.4 for the case of passive admittance matrix modeling.

8.2 Passive admittance matrix modeling using fixed-pole par-
allel filters

In physics-based sound synthesis, the sound of an instrument is generated by modeling the in-
strument behavior rather than modeling the sound itself. Therefore the model blocks correspond
to the main parts of the instrument (for an overview, see [Välimäki et al. 2006]). Depending on
the modeling paradigm, these models can be parameterized invarious ways.

For example, it is possible to parameterize parts of the instrument model by a measured
mechanical or acoustical immittance (impedance or admittance). As an example, the effect of
an immittance (e.g., the instrument bridge) connected to a string is that it changes the modal
frequencies and decay times of the string compared to a rigidtermination, and provides coupling
between the horizontal, vertical, and longitudinal polarizations of the string. Note that the
application used here is a mechanical admittance, but the treatment is equally applicable to
other passive (e.g., acoustical, electrical) systems and to impedances instead of admittances.

The starting point of such a parameterization is a mechanical admittance measurement of
the given part of the instrument (e.g., the bridge). Naturally, all parts of acoustical instruments
are passive, that is, they can only dissipate energy that is introduced by the player. Therefore,
instead of straightforward filter design that may result in non-passive filters due to measurement
or approximation errors, we need such a design technique where the passivity of the result is
guaranteed. In [Smith 2010], passive admittance filters areconstructed by manually tuning the
modal frequencies and decay times of second-order resonators to produce a function similar to
the guitar admittance, and a similarly simplified guitar bridge model is presented in [Evangelista
and Raspaud 2009] by connecting the passive admittance to a scattering junction. In [Lambourg
and Chaigne 1993], the 2D mechanical admittance of a guitar bridge up to 3 kHz is modeled by
a set of mass-spring-damper elements (second-order resonators), and the matrix pencil method
is used for parameter estimation. In the frequency-domain guitar model of [Woodhouse 2004], a
standard modal analysis technique (circle fitting) is used up to 1.4 kHz, and above that a random
number generator is applied to produce a statistically similar modal behavior as in the measured
response.

Accordingly, at the time of my research, no methods existed that could fit a discrete-time
passive admittance filter to measurement data in the full audio frequency range. To overcome
this limitation, in [Bank and Karjalainen 2008] I have proposed an admittance filter design
method using a modification of the fixed-pole design of parallel second-order filters where
the admittance transfer function is constructed as a weighted sum of passive (positive real)
second-order transfer functions. In [Bank and Karjalainen2010] I have extended the method
to the modeling of admittance matrices, and this multidimensional case will be presented in the
following.

8.2.1 Passivity and positive realness

A system is passive if it cannot produce energy, and for passive systems, immittances are posi-
tive real (PR) [Anderson and Vongpanitlerd 1973]. For rational functions ofs that do not have
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8.2. Passive admittance matrix modeling using fixed-pole parallel filters 71

a pole on the closed right-half plane (that is, for asymptotically stable systems), the transfer
function matrixH(s) is PR if and only if

Re {H(jω)} =
1

2

(

H(jω) + H(jω)
)

≥ 0 (8.5)

for all realω [Anderson and Vongpanitlerd 1973]. HereA means complex conjugate ofA, and
A ≥ 0 means thatA is positive semidefinite.

The PR condition for a digital transfer functionH(z) = H(e−jϑ) in a rational form with
poles in the open unit disk (asymptotically stable systems)is similar to that for the continuous
case [Jury 1974]:

Re
{

H(e−jϑ)
}

=
1

2

(

H(e−jϑ) + H(e−jϑ)
)

≥ 0. (8.6)

That is, it is enough to check positive realness on the unit circle, by looking at the frequency
response.

8.2.2 Modal framework

First, let us define the admittance matrixY:

v(ω) = Y(ω)f(ω) (8.7)

wheref = [F1, . . . , FI ]
T is a column vector composed of the forces exciting the structure at

positions1, . . . , K, andv = [v1, . . . , vI ]
T is a column vector composed of the velocities of the

points1, . . . , K.
In modal analysis, the general assumption is that the structure can be described as a set

of masses that are connected by linear springs and linear dampers [Ewins 1992]. Then, the
vibration of the structure can be decomposed to a sum ofK normal modes with different modal
frequenciesωk, decay ratesσk and modal shapesΦk. It is a common assumption in modal
analysis that the damping is viscous and it is distributed proportionally to the mass and stiffness
elements, referred as proportional damping in the literature. In this case the modal shapesΦk

are real and the mechanical admittance (mobility) matrix ofthe system can be written as

Y(ω) =

K
∑

k=1

ΦT
k Φk

jω

mk(ω2
k − ω2 + 2jσkωkω)

, (8.8)

wheremk is the effective mass of modek, andΦT
k Φk is a rank 1 sizeI square matrix which

is positive semidefinite, since the elements ofΦk are real numbers [Marshall 1984]. The scalar
transfer functions in Eq. (8.8) are PR because their phase span from−π/2 to π/2. Thus, the
real part ofY will be positive semidefinite for allω frequencies, sinceY is a linear combination
of positive real semidefinite matricesΦT

k Φk with positive real weights.
A straightforward approach for modeling a given (measured)admittance is to use standard

modal analysis tools [Ewins 1992] to fit a modal model of Eq. (8.8) to the measured data, and
implement a discretized version of Eq. (8.8). However, there are two related problems which
prevent us from doing so. First, standard modal analysis techniques work only in such regions
of the transfer function where the modal overlap is low (modes are well separated). Therefore,
accurate modal parameters could be obtained for the low frequency region of instrument bridges
only. In addition, in the case of sound synthesis applications, the model order is significantly
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72 Chapter 8. MIMO extensions to the fixed-pole design of parallel filters

smaller compared to the order of the system, which means thatthe assumptions used to derive
Eq. (8.8) are no longer true. For example, the poles of the model do not necessarily correspond
to the poles of the system, and the “modal shapes” of the modelshould approximate the gross
behavior of all the system modes having modal frequencies near to the corresponding pole
frequency of the model.

8.2.3 The passive admittance model

Motivated by the fact that the admittance can be described asa parallel set of analog second-
order transfer functions Eq. (8.8), I have developed a passive variant for parallel filter design for
the one dimensional [Bank and Karjalainen 2008] and multidimensional [Bank and Karjalainen
2010] cases. Here only the more general, multidimensional case will be outlined. The key idea
is a modification to the modal model of Eq. (8.8) by interchanging theΦT

k Φk rank 1 matrices
with general (full rank) symmetricYk matrices, giving more degrees of freedom in modeling.
This actually corresponds to allowing maximumI modal shapes for each pole-pair of the model
instead of a single mode. As a result, the admittance is modeled as

Y(z) =
K
∑

k=1

YkHk(z) (8.9a)

Hk(z) =
1− z−2

(1− pkz−1)(1− pkz
−1)

, (8.9b)

whereHk(z) are the bilinearly transformed discrete-time versions of the second-order functions
of Eq. (8.8). If a positive real functionH(s) is converted to a discrete-time functionH(z) by the
bilinear transform, it remains positive real [Smith 1983].Therefore,Hk(z) are PR. A sufficient
condition for the admittance modelY(z) to be PR is that all theYk matrices are positive
semidefinite, because in this case we have

Re{Y(z)} = Re{
K
∑

k=1

YkHk(z)} =

K
∑

k=1

YkRe{Hk(z)} ≥ 0, (8.10)

since the linear combination of positive semidefinite matricesYk with nonnegative scalar weights
Re{Hk(z)} is also positive semidefinite.

Let us now take a look how the parameters of the admittance model Eq. (8.9) are obtained
from a measured admittance matrixYm(z).

8.2.4 Finding a common set of poles

The measured admittanceYm(z) containsK2 transfer functions, of whichK(K + 1)/2 are
independent, due to symmetry. The task is to find a common-denominator model that best de-
scribes all theK(K + 1)/2 transfer functions, since the poles are the same for each transfer
function in the model of Eq. (8.9). This can be done by variouscommon-denominator algo-
rithms used in modal analysis [Ewins 1992; Woodhouse 2004].Here we will fit a discrete-time
all-pole model, similarly as it was done for acoustic transfer functions in [Haneda and Kaneda
1994]. The all-pole design problem is essentially the same as equation error IIR filter design
(Prony’s method) [Parks and Burrus 1987] without the numerator coefficients. As a notation, let
us defineY[n] as the element-wise inversez transform ofY(z), which is actually the impulse
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8.2. Passive admittance matrix modeling using fixed-pole parallel filters 73

response of the admittance matrix. Accordingly,Ym[n] is the measured admittance impulse
response. Then, the output error for theYm,i,j[n] element of the matrixYm[n] can be written in
the mean-squared sense as

Ei,j =

N
∑

n=0

(

Ym,i,j[n] +

L
∑

l=1

alYm,i,j[n− l]

)2

, (8.11)

whereL is the order of the denominator, andN is the length of the measured admittance impulse
responseYm,i,j[n]. Since the problem is linear in its free parametersal, the error is quadratic in
al, thus, the solution is given in a closed form (see Sec. 2.3).

If the estimation was done independently for all thei, j elements of the impulse response
matrix, we would obtain differental parameters in each case. Since we want to force the
denominator coefficientsal to be the same for all thei, j elements in Eq. (8.11), the task is to
minimize all errors jointly such that the total error

e =
K
∑

i=1

i
∑

j=1

Ei,j (8.12)

is minimal [Haneda and Kaneda 1994]. This is essentially thesame linear least-squares prob-
lem, but it has a larger dimensionality.

As in audio applications filter design should have better accuracy at low frequencies com-
pared to the high ones, the above common-denominator model is estimated in the warped do-
main, similarly to the pole positioning based on warped IIR filters for the single channel case
(see Sec. 7.1). For that, all the measured impulse responsesare frequency warped with para-
meterλ, and the common-denominator all-pole model is estimated based on this warped data.
Then, the roots̃pk of the common denominator are found and “dewarped” by Eq. (4.7). The
dewarped polespk are then used for constructing the second-order functionsHr(z) according
to Eq. (8.9b).

Note that the other pole positioning methods discussed in Chap. 7, such as multi-band or
custom warping, can also be used instead of the straightforward warping discussed above with
minor modifications to the algorithms.

8.2.5 Weight matrix estimation

The final step is to estimate the weight matricesYk, which is a linear-in-parameter problem
with the positive-semidefiniteness constraintsYk ≥ 0.

The time-domain error for one matrix element in the mean-squared sense is

E ′
i,j =

N
∑

n=0

(

Y k
i,jhk[n]− Ym,i,j[n]

)2
(8.13)

whereY k
i,j is thei, j element ofYk (thus, the superscriptk is not a power but an index), and

hk[n] is the inversez transform ofHk(z).
The optimal set of parametersYk are obtained by solving

e′ =
I
∑

i=1

i
∑

j=1

E ′
i,j → min (8.14a)

subject to Yk ≥ 0. (8.14b)

dc_1787_20

Powered by TCPDF (www.tcpdf.org)



74 Chapter 8. MIMO extensions to the fixed-pole design of parallel filters

Instead of solving Eq. (8.14) by constrained optimization techniques, I have proposed a
simple and computationally efficient solution to the problem [Bank and Karjalainen 2010]. The
first step of the method involves finding thẽYk matrices without the constraint of Eq. (8.14b).
Since now the elements of̃Yk become independent, the total error is minimal if allE ′

i,j are
minimal. Thus, the problem reduces to minimizing Eq. (8.13)for all E ′

i,j independently, which
are separate linear least-squares problems with a closed-form solution.

As a second step, the resulting̃Yk matrices are “converted” to positive semidefinite matri-
ces. This last step involves finding the nearest positive semidefinite matrix toỸk. The solution
to the problem becomes relatively simple if the distance between the original̃Yk and the pos-
itive semidefiniteYk matrices is evaluated in terms of the Frobenius norm. Formally, this can
be written as the optimization problem

||Yk − Ỹk||F =

√

∑

i,j

(Y k
i,j − Ỹ k

i,j)
2 → min (8.15a)

subject to Yk ≥ 0. (8.15b)

It turns out that the optimalYk is obtained by computing the spectral decomposition ofỸk, dis-
carding the negative eigenvalues and their eigenvectors, and reconstructing the matrix from the
remaining positive eigenvalues and corresponding eigenvectors to obtainYk [Higham 1988].

While the above two-step solution is suboptimal compared tosolving the two lines of
Eq. (8.14) jointly, we will see in the example of Sec. 8.2.6 that it provides reasonable accu-
racy without the need of complicated parameter estimation.

8.2.6 Design example

The example is a two-dimensional admittance modeling of an acoustic guitar bridge (Gibson,
from 1960’s) near the lowest (E) string. The bridge was excited by the wire breaking technique
[Woodhouse 2004; Bank and Karjalainen 2010] and the movement of the bridge was measured
by a miniature accelerometer. The bridge was excited with the wire breaking in the direction
perpendicular (y direction) and parallel to the body (z direction). The acceleration was also
measured in these two directions. This gave a 2 by 2 admittance impulse response matrix

Ym[n] =

[

Ym,yy[n] Ym,yz[n]
Ym,zy[n] Ym,zz[n]

]

(8.16)

where the “m” subscript indicates that these are measured values, which are then approximated
by the admittance model impulse responseY[n]. Note that in theoryYm,yz[n] = Ym,zy[n], but
there are always some differences due to measurement errors. However, for model fitting, a
symmetricYm[n] matrix is assumed (see Sec. 8.2.3). This is most easily satisfied either by
averaging the two responses, or by using only one of them (e.g., the less noisy one).

The parameters of the admittance model were estimated in thetime-domain by the parameter
estimation procedure outlined in Secs. 8.2.4 and 8.2.5. Theresults of the parameter estimation
for an admittance model having 100 second-order filters (K = 100) are shown in Fig. 8.2.6. The
thin black lines in Fig. 8.2.6 show the measured responses, while the thick gray lines display
the parallel filter responses based onỸk, before they are converted to the passive versionsỸk

according to Sec. 8.2.5, following the measured response quite accurately. When the passivity
constraints are enforced, the filter responses still followthe structure of the admittance, but be-
come shifted (thick black line vs. gray line). Note that thiswould not happen if the original̃Yk
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Figure 8.1: Modeling a measured guitar bridge admittance by the proposed passive admittance model
with 100 second-order filters for the (a)yy, (b) yz, and (c)zz elements of the admittance matrix. Thin
line: measured, thick gray line: non-passive, thick black line: passive parallel filter responses.

responses were passive: since they follow the measurement reasonably well, it can be assumed
that the measurement results themselves correspond to a non-passive admittance. This is most
probably due to the fact that the wire-breaking provides only approximately constant excitation
force as a function of frequency.

As already noted, based on my ideas, an improved parameter estimation method have been
later proposed by Maestre et al. [2015, 2017]. Their technique uses the same filter struc-
ture composed of positive semidefinite matrices and passivesecond-order transfer functions
(Eq. (8.9)). However, instead of common-pole filter design,in [Maestre et al. 2015] the poles
are obtained by sequential quadratic programming, while in[Maestre et al. 2017] by a peak se-
lection algorithm. Finally, theYk matrices are obtained by semidefinite programming enforcing
passivity. The comparison in [Maestre et al. 2017] demonstrates that a significant improvement
is obtained in modeling accuracy compared to the simpler technique presented here and first
published in [Bank and Karjalainen 2010], at the cost of a more complex optimization process.

8.3 MIMO equalization using fixed-pole parallel filters

Equalizing a MIMO transfer function is a common task in audioor acoustic signal processing.
The process is often called multichannel inversion or deconvolution, and it basically means de-
signing a set of digital filters given by the matrixH(z) which modifies the transfer function
matrix of the systemS(z) such that the resulting transfer function is close to the target response
matrixQt(z). Crosstalk cancellation is mathematically the same problem. The practical differ-
ence as opposed to general equalization is that instead of a full target matrixQt(z) only certain
transfer function paths of the target response (typically the diagonal elements ofQt(z)) are
nonzero.

The filter matrixH(z) can be applied both before and after the acoustic system: when

dc_1787_20

Powered by TCPDF (www.tcpdf.org)



76 Chapter 8. MIMO extensions to the fixed-pole design of parallel filters

the signals are filtered before they are sent to the loudspeakers, the equalized transfer function
becomesQ(z) = S(z)H(z) (this is shown in Fig. 8.2), while when they are filtered afterbeing
picked up by the microphones, it isQ(z) = H(z)S(z).

Figure 8.2: The block diagram of MIMO equalization.

Applications of such processing in the audio field include the equalization of room transfer
functions [Miyoshi and Kaneda 1988; Sarris et al. 2004; Santillian et al. 2007; Brännmark and
Ahlén 2015; Cecchi et al. 2018], crosstalk cancellation forsingle [Huang et al. 2007; Mertins
et al. 2021] and multiple [Huang et al. 2008; Hollebon et al. 2021] listeners, wave-field synthe-
sis with room compensation applied [Gauthier and Berry 2007; Fuster et al. 2005], directivity
control of loudspeaker arrays [Zotter et al. 2008; Zotter 2009] and microphone array process-
ing [Benesty et al. 2007]. The implementation of personal sound zones also requires MIMO
filtering [Betlehem et al. 2015; Vindrola et al. 2019, 2020; Ebri et al. 2020].

The FIR equalization filters can be designed in the time-domain [Miyoshi and Kaneda 1988;
Sarris et al. 2004; Santillian et al. 2007; Huang et al. 2007,2008; Kirkeby and Nelson 1999] by
solving a least-squares problem for approximating the required impulse responses of the transfer
function paths. A more efficient alternative (often termed frequency-domain deconvolution) is
inverting the transfer function matrix for all frequenciesseparately, and then computing the
equalization filter impulse responses via IFFT [Kirkeby et al. 1998]. This reduces the design
time significantly, but results in a sub-optimal solution since the various frequencies are treated
independently. As a result, the time-domain least-squaresapproach requires lower order filters
for the same accuracy [Kirkeby and Nelson 1999; Fuster et al.2005].

Interestingly, the elements of the equalization filter matrix H(z) are almost always FIR fil-
ters. The most probable reason for using FIR filters is that inthis case the problem is linear in
parameters, allowing a simple mathematical formulation, as opposed to a general IIR filter de-
sign case. The only example I am aware of when not FIR filters are used is two-channel crosstalk
cancellation using warped FIR filters [Kirkeby et al. 1999; Jeong et al. 2005]. Warped FIR fil-
ters are designed similarly to normal FIR filters once all theimpulse responses are warped, but
they act as IIR filters when being implemented (see Chap. 4). It is shown in [Jeong et al. 2005]
that compared to a straightforward FIR equalizer, frequency warping leads to better channel
separation in the important low frequency region.

We know from single-channel IIR filter design that IIR filtersallow modeling or equalizing
physical systems at lower filter order for the same accuracy compared to FIR filters, and this is
especially true for audio applications where the inherently linear frequency resolution of FIR
filters does not match the logarithmic frequency resolutionof hearing. Therefore, the aim of
my research at this point was to generalize the fixed-pole design of parallel filters to the MIMO
equalization case [Bank 2018b].
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8.3. MIMO equalization using fixed-pole parallel filters 77

8.3.1 Two-step equalizer design

The most straightforward way of designing a MIMO equalizer using parallel filters is a two-
step procedure. First, an equalizer filter matrixHFIR(z) is estimated in the FIR form either
in the frequency domain [Kirkeby et al. 1998; Vindrola et al.2019] or in the time-domain
[Miyoshi and Kaneda 1988; Sarris et al. 2004; Santillian et al. 2007; Huang et al. 2007, 2008;
Kirkeby and Nelson 1999] by the readily available methods. Second, for each element ofH(z)
a single-channel parallel filter is designed, which consists in finding the suitable poles by one
of the methods of Chap. 7, then estimating the filter numerators by an LS fit as described in
Secs. 6.2. However, this is mathematically not optimal, since the error is minimized in two
separate steps: first, an intermediate FIR equalizer is designed that minimizes the error between
the target response and equalized system response matrices, and next separate parallel filters
are estimated where the errors between the impulse responses of the FIR and parallel filters are
minimized.

8.3.2 Direct equalizer design

To improve the performance compared to the above two-step process, I have proposed a direct
equalizer design procedure in [Bank 2018b] that is the generalization of the single-channel case
described in Sec. 6.3. The poles of the parallel filters are determined by one of the methods
presented in Chap. 7 based on the FIR filter matrixHFIR(z), similarly to the two-step case of
Sec. 8.3.1. The difference lies in the fact that here the numerators of the second-order sections
are not estimated based on the intermediate FIR equalizerHFIR(z), but obtained in a single
step, where the error between the target response matrix andthe equalized system response is
minimized.

In the MIMO equalization problem we have a system with the matrix transfer functionS(z)
which gives the output signal vector

y(z) = S(z)x(z) (8.17)

as a response to the input column vectorx(z).
The response is equalized by filtering the input signalsx(z) with a MIMO filter H(z) prior

to sending them to the system, giving the equalized output

yeq(z) = S(z)H(z)x(z) = Q(z)x(z), (8.18)

whereQ(z) is the transfer function matrix of the equalized MIMO system(see Fig. 8.2). Note
that in the alternative configuration, the MIMO filter is applied to the output of the system,
giving basically the same equations with interchanged order of the matrices.

In equalizer design our goal is to optimize the parameters ofthe filterH(z) such that the
resulting equalized transfer functionQ(z) = S(z)H(z) is the closest to the targetQt(z). The
problem can be separated into independent SIMO subproblemsby splittingQ(z) andH(z) to
their columns asQ(z) = [q1(z) . . .qI(z)] andH(z) = [h1(z) . . .hI(z)], and thus

Q(z) = S(z)H(z) ⇒ qi(z) = S(z)hi(z) (8.19)

for all i = [1 . . . I]. This basically corresponds to obtaining the equalized transfer functions
from a specific inputi to all outputs, given in vectorqi(z). Now this should be close to theith
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78 Chapter 8. MIMO extensions to the fixed-pole design of parallel filters

column ofQt(z) given asqt,i(z), which actually specifies the desired transfer functions toall
outputs if only inputi is excited.

For the sake of clarity but without the loss of generality we write the equalization problem
(8.19) for a system having two inputs and two outputs. For a specific inputi (8.19) becomes:

q1,i(z) = S1,1(z)h1,i(z) + S1,2(z)h2,i(z), (8.20a)

q2,i(z) = S2,1(z)h1,i(z) + S2,2(z)h2,i(z). (8.20b)

Writing this in the time-domain yields

q1,i(n) = s1,1(n) ∗ h1,i(n) + s1,2(n) ∗ h2,i(n), (8.21a)

q2,i(n) = s2,1(n) ∗ h1,i(z) + s2,2(n) ∗ h2,i(n), (8.21b)

where∗ denotes convolution.
The impulse responsesh1,i(n) andh2,i(n) of the equalizer filters can be written as a lin-

ear combination of the same basis functions as for the singlechannel case, that is, the decay-
ing responses of second-order denominators, and the delayed impulses of the FIR part (see
Sec. 6.2.1). To simplify the notations, here we will call allmodeling signalsmk(n), which
means thatm1(n) = u1(n), m2(n) = u1(n− 1) representing the decaying response of the first
denominator and its delayed version, thenm3(n) = u2(n), m4(n) = u2(n − 1), and so on. In
general,m2k−1(n) = uk(n) andm2k(n) = uk(n − 1), for k = 1 . . .K. Finally, the lastmk

signals contain the delayed unit pulses corresponding to the optional FIR path. Since the poles
of the filters can be different, two different sets of basis functions are needed:mk(n)(1,i) for
h1,i(n) andmk(n)(2,i) for h2,i(n).

Thus, the equalized impulse response of the first output channel becomes

q1,i(n) =
R
∑

k=1

r
(1,i)
k mk(n)(1,i) ∗ s1,1(n) +

R
∑

k=1

r
(2,i)
k mk(n)(2,i) ∗ s1,2(n), (8.22)

and for the second output channel it is

q2,i(n) =

R
∑

k=1

r
(1,i)
k mk(n)(1,i) ∗ s2,1(n) +

R
∑

k=1

r
(2,i)
k mk(n)(2,i) ∗ s2,2(n), (8.23)

wherer
(1,i)
k contain the filter weights (numerator coefficients and the parallel FIR coefficients)

of the first filterh1,i(n) andr
(2,i)
k contain the filter weights of the second filterh2,i(n).

Now we need to jointly optimizer(1,i)
k andr

(2,i)
k such thatq1,i(n) andq2,i(n) will be close to

the targetsqt,1,i(n) andqt,2,i(n), respectively. For this, we write Eqs. (8.22) and (8.23) in ajoint
matrix form

[

q1,i

q2,i

]

=

[

M1,i ∗ s1,1 M2,i ∗ s1,2

M1,i ∗ s2,1 M2,i ∗ s2,2

] [

r1,i

r2,i

]

, (8.24)

whereqo,i contains the impulse response of the equalized system from input i to outputo,
so,i contains the system impulse response from inputi to outputo, Mo,i are the same type
of modeling matrices as for the single-channel case (see Sec. 6.2.1) for the filterHo,i(z), and
finally ro,i contain the free parameters of the parallel filters. Writing(8.24) in a compact form
by composing a single matrix and two column vectors yields

qc = Mcrc, (8.25)
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8.3. MIMO equalization using fixed-pole parallel filters 79

which should be close to

qt,c =

[

qt,1,i

qt,2,i

]

(8.26)

in the mean square sense, whereqt,1,i is the target impulse response from inputi to the first
output, andqt,2,i is the target impulse response from inputi to the second output.

The solution can be again given in a closed form:

rc,opt = M+
c qt,c, (8.27a)

M+
eq = (MT

c Mc)
−1MT

c . (8.27b)

While Eq. (8.27) is appealing due to its compact form, it is important to note that computing the
pseudoinverse for large matrices, such as the ones which usually occur in MIMO parallel filter
design is numerically problematic. As already noted in Sec.2.3, numerically robust methods for
solving large least-squares problems include the Choleskydecomposition or QR factorization
[Golub and Loan 2013]. In MATLAB the later is implemented by themldivide function.

8.3.3 Design examples

As an illustrative example for the IIR MIMO equalizer, here amultichannel crosstalk cancella-
tion application is presented. Crosstalk cancellation is particularly well suited to compare the
effectiveness of MIMO equalization techniques due to its simple target function: the specifica-
tion is constant response in a few transfer function paths, and zero in all the others. This allows
the easy inspection of the equalization performance.

The plant to be equalized is a spherical loudspeaker array having 20 speaker elements.
Spherical loudspeaker arrays allow the separate excitation of each speaker element, and thus
a sound source with controlled directivity (beamforming) can be constructed. Such speakers
have been used in acoustic measurements [Warusfel et al. 1997; Zotter and Höldrich 2007; Neal
and Vigeant 2020], local sound control (noise cancellation) [Rafaely 2009], and in contempo-
rary music performances [Zotter et al. 2017].

The desired directivity of spherical speaker is usually given in terms of spherical harmonics.
A decoder matrix transforms the spherical harmonic signalsinto loudspeaker signals. Accord-
ingly, directivity control requires the individual control of each loudspeaker element. Therefore
a crosstalk canceller must be applied before the loudspeaker signals are actually sent to the
speaker elements [Zotter 2009; Zotter et al. 2017]. The crosstalk canceller is usually imple-
mented as an FIR filter, in the examples below we will investigate the possibilities of applying
fixed-pole IIR filters instead.

The transfer functions of the speaker elements have been measured by exciting the speakers
separately with logarithmic sweep signals and measuring the velocity of each loudspeaker cap
using a laser-vibrometer [Zotter 2009]. Since meaningful beamforming can be achieved by
such a large array only up to a few kHz due to spatial aliasing,the sampling rate was limited
to fs = 11.025 kHz. The measured responses are windowed to 2048 taps where the impulse
responses have already died out. This gave a20 × 20 transfer function matrix, ideally having
nonzero elements only in its diagonal. However, since the speaker elements share the same air
volume in the enclosure, there is a significant crosstalk between the channels. This is displayed
in Fig. 8.3 (a), showing the first column of the transfer function matrixS(z), corresponding to
the case when loudspeaker No. 1 is excited and all speakers are measured. It can be seen in
Fig. 8.3 (a) that neither the transfer function of the diagonal entry is flat (gray thick line), nor
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80 Chapter 8. MIMO extensions to the fixed-pole design of parallel filters

the off-diagonal entries are zero (thin lines). Other inputchannels have a similar (though not
completely identical) behavior, since all the 20 loudspeakers are of the same type, but slightly
different due to manufacturing tolerances.
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Figure 8.3: Velocity responses of a 20 channel spherical loudspeaker array when only speaker No. 1 is
excited: (a) original, equalized by (b) a single-channel 256 tap FIR filter, (c) by a 256 tap MIMO FIR
filter designed by the fast deconvolution method of [Kirkebyet al. 1998], and (d) by a 256 tap MIMO
FIR filter designed in the time domain by a least squares fit [Kirkeby and Nelson 1999; Huang et al.
2007]. Gray thick line: diagonal element, thin line: crosstalk products.

The first approach to equalization is designing a single-channel 256 tap FIR filter that flat-
tens the frequency response of the diagonal: the effect is shown in Fig. 8.3 (b) using a band-pass
target response with the corner frequencies of 100 Hz and 4 kHz. Naturally, a filter applied to
input channel 1 only will not change the relative values of the responses; therefore the relative
crosstalk remains unaffected, whose worst case is around -20 dB at 1 kHz.

Next, different MIMO equalizers are designed that feed all the 20 loudspeaker channels.
Here we will only display the first SIMO subproblem aiming at producing a band-pass response
for speaker 1 (the corner frequencies are 100 Hz and 4 kHz), while minimal (ideally, zero)
velocity output for speakers 2–20. Thus, only the first column of the equalized response matrix
Q(z) will be shown. The other input channels have an almost identical behavior due to the
symmetry of the loudspeaker arrangement.

The first example is the case of frequency-domain deconvolution [Kirkeby et al. 1998]. The
full length (2048 taps) impulse responses obtained from deconvolution (termedlong Kirkeby
inversehere) are windowed to 256 taps and applied as a MIMO FIR equalizer. (Note that “256
tap” means 256 tap FIR filters in each element of the filter matrix.) The results are shown in
Fig. 8.3 (c). It can be seen in Fig. 8.3 (c) that a 256 tap impulse response reduces the maximal
crosstalk from -20 dB to -40 dB compared to Fig. 8.3 (d). However, a peak in the crosstalk
terms at 300 Hz arises in Fig. 8.3 (c): this corresponds to theproblematic area having sharp
notches around 300 Hz in the original transfer function (seeFig. 8.3 (a)). For eliminating this,
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8.3. MIMO equalization using fixed-pole parallel filters 81

a longer impulse response, and thus finer frequency resolution would be needed in that region.
The time-domain FIR LS design [Kirkeby and Nelson 1999; Huang et al. 2007] leads to

a slightly better performance for the same filter length due to the fact that now the filter is
optimized for the available 256 taps, and not obtained by windowing a long optimal filter, as
for the frequency-domain deconvolution case. This is shownin Fig. 8.3 (d), and the difference
is mostly visible at low frequencies compared to Fig. 8.3 (c).
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Figure 8.4: Velocity responses of the loudspeaker array equalized (a) by a 128th order MIMO parallel
filter obtained by the two-step design and (b) by a 128th orderMIMO parallel filter obtained by the
direct-design approach. The same examples with lower filterorder: the response equalized by (c) a 64th
order MIMO parallel filter obtained by the two-step design and (d) by a 64th order MIMO parallel filter
obtained by the direct-design approach. Gray thick line: diagonal element, thin line: crosstalk products.

Finally, two parallel filter designs are presented. Figure 8.4 (a) shows an example where
each filter path contains a 128th order IIR filter (64 second-order IIR sections and no parallel
FIR path) which needs the same amount of multiplication and addition operations as the 256
tap FIR filter. The first filter is obtained as described in Sec.8.3.1, that is, separate fixed-pole
parallel filters are designed based on thelong Kirkeby inverse. The poles are obtained by a
warped IIR design withλ = 0.6, as described in Sec. 7.1. As can be seen in Fig. 8.4 (a), the
performance is significantly improved around the problematic region near 300 Hz compared to
the FIR equalizers of Fig. 8.3 (c) and (d). On the other hand, the crosstalk at low frequencies is
increased.

Next, a 128th order MIMO parallel filter is obtained by the direct design method proposed
in Sec. 8.3.2. The poles of the filter are obtained from thelong Kirkeby inversevia a warped
IIR deign with a warping parameterλ = 0.6 similarly to the previous example. However, the
numerator coefficients are estimated by the LS procedure proposed in Sec. 8.3.2. According to
Fig. 8.4 (b) the channel separation is improved significantly compared to the FIR equalizer case
of Fig. 8.3 (d): while for the FIR case the largest crosstalk is -40 dB in the operating range of
the loudspeaker, this is reduced to -60 dB with the parallel filter by using the same amount of
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82 Chapter 8. MIMO extensions to the fixed-pole design of parallel filters

arithmetic operations.
Fig. 8.4 (c) and (d) shows a different type of comparison: nowthe order of the parallel filter

is 64, meaning that the number of required arithmetic operations is the half compared to the
FIR examples. On the other hand, the parallel equalizer obtained by the direct design method
(Fig. 8.4 (d)) still outperforms the FIR equalizers of Fig. 8.3 (c) and (d), since the maximal
crosstalk is -50 dB instead of -40 dB of the FIR equalizers. The direct design of Fig. 8.4 (d) leads
to a significantly improved low-frequency performance compared to the two-step procedure of
Fig. 8.4 (c), similarly to the previous example.

To sum up, this section has generalized the fixed-pole designof parallel second-order filters
for the equalization of MIMO systems. By taking advantage offixed poles, the design of an
IIR equalizer is equally simple as that of the commonly used FIR equalizer and a closed-form
solution can be obtained when the problem is formulated in the least-squares sense. The signif-
icance of this result is that in many MIMO equalization applications parallel filters can be used
instead of FIR filters without major modifications to the methods and algorithms, with higher
flexibility in frequency resolution that can lead to better equalization performance for the same
number of arithmetic operations.

8.4 Scientific statements

Statement 3: I have given the multichannel extension of the fixed-pole parallel filter and
shown that significant computational savings can be achieved with a common pole set. I
have given the extension of single-channel design techniques for passive admittance matrix
modeling and MIMO equalizer design.

3.1: I have developed a filter structure and a corresponding design method that can be used for
modeling MIMO passive systems in the full audio frequency range. The key idea is to con-
struct the filter matrix as a linear combination of frequency-independent positive semidefinite
matrices and single-channel positive real second-order filters. The poles are chosen based on
warped common-pole all-pole modeling, and the positive semidefinite matrices are found by an
unconstrained LS design and then finding the closest positive semidefinite matrix.

3.2: I have extended the direct equalizer design method for the equalization of MIMO sys-
tems and showed that the problem remains linear in its parameters also for the MIMO case.
This means that the least squares method commonly used for designing FIR MIMO equalizers
remains applicable for the parallel filter, with the added flexibility of the arbitrary frequency
resolution achievable by fixed-pole parallel filters.

The related results have been published in one journal paper[Bank 2018b] and in one con-
ference paper [Bank and Karjalainen 2010]1.

1The publication has been written together with late Prof. Matti Karjalainen. I have developed the filter design
algorithm presented in this thesis, while his contributionwas about converting the admittance filters to reflection
filters so that they can be directly connected to digital waveguide string models. His part of the work has not been
included in this thesis, nor in the above list of scientific statements.
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Chapter 9

The delayed parallel filter

The original parallel filter structure of Fig. 6.1 stems fromthe form used in partial fraction
expansion Eq. (6.1), where the FIR part is in parallel with the IIR part. However, later I have
discovered that in the case of a long FIR part a dynamic range problem arises which can cause
numerical issues when the filter is implemented in a DSP: the magnitude response of the FIR
part and the second-order sections are often significantly larger than that of the resulting filter,
requiring the downscaling of the input signal or the numerator coefficients to avoid overflow,
which leads to a loss of useful bitdepth [Bank and Smith 2014]. I have realized that this is
because of the time-domain overlap of the FIR and IIR parts, and I have proposed a solution to
the problem by using a delayed parallel structure where IIR response starts after the FIR part
[Bank and Smith 2014]. This will be presented in Sec. 9.1.

Perhaps even more importantly, I have demonstrated that exactly the same problem arises
when direct form IIR filters are converted to parallel second-order sections by the usual proce-
dure of partial fraction expansion. As a solution, I suggested to use the delayed parallel form for
implementation in [Bank and Smith 2014; Bank 2018a]. In addition, I have demonstrated that
the usual partial fraction expansion can be numerically problematic for high (N > 100) filter
orders, and proposed a more robust least-squares direct-to-parallel conversion method [Bank
2018a]. These results will be presented in Sec. 9.2.

9.1 The delayed parallel filter for fixed-pole design

Since causal IIR filters with a proper transfer function compose their impulse response as a sum
of decaying exponentials, they are most suited to model decaying impulse responses. Modeling
minimum-phase systems are thus optimal targets for IIR filter design, since in that case the
energy of the impulse response is concentrated to the beginning of the response, as already
discussed in Sec. 2.4. However, many systems have non-minimumphase behavior, and thus a
rising part in the beginning of their impulse response. In such cases it is more efficient to model
the first part up to the highest peak of the impulse response byan FIR filter, and the decaying
part with an IIR filter. Coming this observation, I have suggested the use of an FIR path in
parallel with the second-order sections in [Bank 2007], to remain compatible with the usual
parallel form obtained by partial fraction expansion. At that time I did not realize that this can
lead to numerical problems especially when the FIR part has ahigh order. However, later it had
turned out that this parallel FIR part can lead to a dynamic range limitation of the filter. This is
described in the following.

83
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84 Chapter 9. The delayed parallel filter

9.1.1 The dynamic range problem

Let us first look at an example that illustrates the problem. For this, a fixed-pole parallel filter
is designed to model a piano soundboard response with 50 second-order sections. The target
impulse response is highly nonminimum-phase, as can be seenin Fig. 9.2 (a), thin line (notice
that the peak of the response is at aroundn = 200 and not at aroundn = 0). Since the second-
order sections cannot efficiently model the rising part of the response, a 200th order parallel
FIR part is added, as I have suggested in [Bank 2007]. As can beseen in the Fig. 9.1 (a)
thick line and Fig. 9.2 left column (a) thick line, the filter follows the specification quite well.
However, when looking at the individual responses of the sections, we see a striking picture:
130 dB difference arises between the peaks of some second-order sections (thin lines) and the
peak of the final transfer function (thick line), as can be seen in Fig. 9.1 (a). In a fixed-point
implementation this would require the heavy downscaling ofthe input signal or the numerator
coefficients to avoid overflow in the sections, and this 130 dBdifference would thus actually
lead to the loss of 21 bits precision. In floating point, no downscaling is necessary since the
number format takes care of that automatically. However, the loss of useful bits is still the same
in that case.

I have given an explanation for this behavior in [Bank and Smith 2014], which will be
outlined here. According to Sec. 6.2.1, in time-domain design of parallel filters a linear least
squares (LS) fit is performed where the basis functions are delayed impulses for the FIR part
and exponentially decaying sinusoids (and their one-sample delayed versions) for the second-
order IIR sections. The weights are set by the LS design so that the filter impulse response
best approximates the target impulse response. Since anM th order FIR part gives complete
freedom for setting the firstM + 1 samples of the filter response, the LS design can set the FIR
coefficients in such a way that the firstM + 1 samples (n = [0..M ]) are matched perfectly.
This means that the numerators of the second-order sectionswill depend only on the samples
after the FIR part (n > M + 1). This can be shown by partitioning the matrices involved inthe
least-squares design, as outlined in Appendix A.6.

If the FIR part is sufficiently long, the decaying sinusoids corresponding to the denominators
1/(1 + a1,kz

−1 + a2,kz
−1) have already a low level for these samplesn > M + 1, which is

counteracted by the LS design by increasing the initial amplitudes of these sinusoids, and thus
the numerator coefficients of the second-order filters. In return, this will mean a large signal at
the beginning of the response, overlapping the FIR part, as can be seen in Fig. 9.2 left column
(b). Actually, the FIR coefficients arise as the difference of the target response and the response
of the IIR sections for the firstM + 1 samples (see Eq. (A.29) in the Appendix), thus, besides
setting the initial sample values, another role of the FIR coefficients is to cancel the response of
the IIR part in the firstM + 1 samples. This is shown in Fig. 9.2 left column (b) and (c); here
also note the different amplitude scale compared to (a).

Once understood, this numerical problem can be solved in a simple way: the parallel IIR
part must be delayed so that there is no overlap between the FIR and IIR parts:

H(z) = z−(M+1)
K
∑

k=1

b̃k,0 + b̃k,1z
−1

1 + ak,1z−1 + ak,2z−2
+

M
∑

m=0

f̃mz−m, (9.1)

The firstM + 1 samples of the impulse response are now determined solely bythe theM th
order FIR part, and the rest of the impulse response by the IIRpart.
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Figure 9.1: Fixed-pole parallel filter implementations aiming to modela piano soundboard response
with the original, non-delayed parallel filter (a) and the delayed form (b). The filters contain 50 second-
order IIR sections and a 200 tap FIR path. Thick gray line: target frequency response, thick line: filter
response, dashed line: frequency response of the FIR part, thin lines: the individual responses of the
second-order sections.

9.1.2 Conversion from the original form to the delayed form

The parameters of the delayed filter structure can be obtained from the original parallel structure
of Eq. (6.2) with anM th order FIR part as follows: the firstM +1 samples of the filter impulse
responseh(n) are computed, and these samples are directly used as the new FIR coefficients:

f̃m = h(m) for m = [0, 1, . . .M ]. (9.2)

For the parallel IIR sections, the denominators remain the same and the numerators are set
in such a way that the decaying exponentials of the delayed form have the same amplitude and
phase at samplen = 0 as at samplen = M +1 with the original sections. First the second-order
sections are decomposed to a pair of complex first-order IIR filters to obtain the complex form
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Figure 9.2: Time-domain responses of the parallel filter shown in Fig. 9.1. Left column: the original,
non-delayed form, right column: delayed form. In both columns: (a) target impulse response (thin line)
and filter impulse response (thick line), (b) the response ofthe second-order sections, and (c) the response
of the 200th order FIR part.

of Eq. (6.1). Then the modified residuesc̃i are obtained as

c̃i = cip
M+1
i , (9.3)

and finally the first-order filters are combined to form second-order sections having real coeffi-
cients.

9.1.3 Design in the delayed form

It is also possible to design the parallel filter in the delayed form of Eq. (9.1) directly, instead of
converting from the original form. In this case, we choose the FIR coefficients̃fm equal to the
first M + 1 samples of the target impulse responseht(n):

f̃m = ht(m) for k = [0, 1, . . .M ], (9.4)

whereM is the order of the FIR part.
Then, the remaining part of the target will be used as a specification

h̃t(n) = ht(n + M + 1) (9.5)
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9.2. Obtaining parallel filters from direct form IIR filters 87

for designing a FIR-less parallel filter. Thus, the modelingmatrix M̃ will contain only the
responses corresponding to the second-order sections, butno unit pulses.

Besides avoiding the conversion, this has an added benefit ofdecreasing the computational
complexity of the design, since now the normal equations estimateM + 1 fewer parameters.
In addition, the design problem becomes numerically betterconditioned, since in the original
design the sameM +1 samples are determined both by the FIR and the IIR parts, which is now
avoided.

Note that when the delayed parallel filter is designed based on a frequency response speci-
fication, we cannot take advantage of the fact that the FIR coefficients are the same as the early
part of the impulse response. In this case all free parameters (FIR and numerator coefficients)
have to be computed by the LS solution, similarly to Sec. 6.2.2. The only difference is that the
frequency responses of the second-order sections in the frequency-domain modeling matrixM
used in Sec. 6.2.2 are multiplied byz−(M+1) = e−jϑn(M+1) in accordance with Eq. (9.1).

This is also the case for direct equalizer design, where the modeling matrixMeq must be
modified so that the responses corresponding to second-order parts are delayed byM + 1 sam-
ples. For time-domain design, this simply means shifting down the corresponding columns of
Meq by M + 1 samples and inserting zeros for the firstM + 1 elements, while for frequency-
domain design this achieved by a multiplication withz−(M+1) = e−jϑn(M+1).

9.1.4 Delayed parallel filter example

To show that the delayed form of the parallel filter eliminates the dynamic range problem of
Fig. 9.1 (a), a delayed parallel filter is designed based on the same target response and same
pole positions as for Fig. 9.1 (a). The filter is designed directly in the delayed form in the
time-domain, as discussed in Sec. 9.1.3. It can be seen in Fig. 9.1 (b) that now the gains of the
individual sections (dotted lines) and the FIR part (dashedline) are in the same range as that of
the total transfer function: the highest peak of a second-order section is now only 2 dB larger
than the peak of the overall response. The same responses aredisplayed in the time-domain in
Fig. 9.2 right column, showing how the delayed IIR (b) and FIR(c) parts are combined to form
the total impulse response (a). The filter impulse response obtained by the this modified design
(Figs. 9.1 (b) and 9.2 (a) right column) is the same as that of the original parallel filter (Figs. 9.1
(a) and 9.2 (a) left column) up to numerical precision, and the same would also be true if the
delayed parallel filter was obtained from the original parallel filter by conversion according to
Sec. 9.1.2. However, now the need for downscaling and thus the dynamic range reduction is
avoided.

9.2 Obtaining parallel filters from direct form IIR filters

So far we have used the parallel second-order IIR structure in a fixed-pole design context for
gaining control over the frequency resolution of the design. A more traditional and thus more
widespread use of the parallel second-order structure is touse it as an alternative implementation
form for IIR filters designed in direct form, as already mentioned in the introduction of Chap. 6.
This is because a theoretically stable IIR filter might become unstable when implemented with
finite coefficient precision due to coefficient rounding. Theproblem becomes pronounced when
the filter has high order and/or has poles near the unit circle. As a remedy, IIR filters are
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88 Chapter 9. The delayed parallel filter

often implemented as a series or parallel combination of (typically, second-order) subfilters
[Oppenheim et al. 1999; Rabiner and Gold 1975; Chen 1996].

Traditionally, the series connection of second-order filters has been more common. How-
ever, nowadays the parallel implementation is gaining moreand more interest since it provides
several advantages compared to series biquads: it has lowerquantization noise [Chen 1996],
and even more importantly, it leads to a significant speedup in modern multi-core processors
that can take advantage of the fully parallel filter structure [Belloch et al. 2014].

While alternative methods are available for direct-to-parallel conversion [Price et al. 1996;
Krukowski et al. 1996], by far the most common way of converting filters to parallel form is
based on partial fraction expansion [Oppenheim et al. 1999]. Here the first step is converting
the rational transfer function to the residue form

H(z−1) =
r1

1− p1z−1
+

r2

1− p2z−1
+ . . . +

rNden

1− pNdenz−1
, (9.6)

wherern are the residues corresponding to the polespn, andNden is the order of the numerator.
The usual way of determiningrn is the Heaviside cover-up method, which can be formulated
mathematically as

rn = (1− z−1pn)H(z)
∣

∣

z=pn
. (9.7)

Note that (9.6) and (9.7) is general only if polespn are distinct. In the case of pole multiplicity,
higher order terms also appear [Smith 2007].

The partial fraction expansion requires that the transfer functionH(z) is strictly proper, that
is, the order of the denominator is larger than the order of the numerator (Nden > Nnum). If
this is not the case, polynomial long division is performed to result in a FIR partF (z−1) and a
strictly proper IIR partB′(z−1)/A(z−1) as

H(z−1) =
B(z−1)

A(z−1)
=

B′(z−1)

A(z−1)
+ f0 + f1z

−1 + . . . + fMz−M , (9.8)

whereM = Nnum − Nden is the order of the FIR part. Then the partial fraction expansion is
applied to the strictly properB′(z−1)/A(z−1). The last step of the conversion is combining the
complex-conjugate pairs to second-order sections having real coefficients:

H(z) =

L
∑

l=1

b0,l + b1,lz
−1

1 + a1,lz−1 + a2,lz−2
+

M
∑

m=0

fmz−m. (9.9)

9.2.1 Partial fraction expansion examples

I have demonstrated in [Bank and Smith 2014; Bank 2018a] thatdue to the overlapping FIR
and IIR parts exactly the same dynamic range problem arises for the partial fraction expansion
as with the fixed-pole design shown in Sec. 9.1.1. This can be of course explained by the fact
that the filter structure is the same in both cases.

In Fig. 9.3 (a) a direct-form IIR filter is designed by the Steiglitz-McBride method [Steiglitz
and McBride 1965] to model a measured anechoic loudspeaker response. This is shown in
Fig. 9.3 (a) by a thick gray line, and then converted to a parallel set of second-order sections
plus a FIR part by the usual polynomial division partial fraction expansion [Oppenheim et al.
1999]. The orders of the numerator and the denominator are both 20, with the short notation:
(20/20). This results in 10 second-order sections plus a constant gain section in parallel. The
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Figure 9.3: Parallel implementation of a (20/20) transfer function: (a) traditional parallel form, (b)
delayed parallel form, and parallel implementation of a (25/20) transfer function: (c) traditional parallel
form, (d) delayed parallel form. The thick gray line shows the original transfer function and the thick
black dashed line displays the net response of the parallel implementation. The thin lines display the
magnitude responses of the second-order sections, and the dotted line shows the magnitude response of
the FIR path (constant gain in the case of the (20/20) transfer function).

thick black dashed line shows the net transfer function, overlapping the direct-form transfer
function (thick gray line) perfectly. The dotted line displays the transfer function of the FIR
part F (z−1), which is now a constant gain, while the thin lines correspond to the magnitude
responses of the individual second-order sections.

It can be seen in Fig. 9.3 (a) that some of the individual transfer functions (in this case, the
constant gain part displayed by dotted line and one second-order transfer function displayed
by a thin line) are significantly larger than the net transferfunction. Figure 9.3 (a) shows only
magnitude responses, therefore it cannot be seen that thesetwo upper curves have almost oppo-
site phase, and the required net response is a result of the phase cancellation of these individual
responses. This demonstrates that even one sample overlap of the FIR and IIR parts (that is,
the constant gain path that arises when converting proper transfer functions having the same
numerator and denominator orders) can cause dynamic range limitations.

The problem becomes even more pronounced if the order of the numeratorNnum is larger
than that of the denominatorNden, since in that case more samples overlap. This is illustrated
in Fig. 9.3 (c) for numerator and denominator orders of 25 and20, respectively (25/20). It can
be seen in Fig. 9.3 (c) that now the fifth-order FIR part (dotted line) is around 70 dB larger
than the net transfer function, decreasing the signal-to-noise ratio by 70 dB due to the required
downscaling. There is a thin line very close to the dotted line that again corresponds to a
second-order transfer function with almost opposite phasecompared to the parallel FIR part.

9.2.2 The delayed parallel form

As we have seen Sec. 9.1.4, the dynamic range problem can be completely eliminated if we do
not allow any overlap of the FIR and IIR parts by using the delayed parallel form of Eq. (9.1).
The parameters of the delayed form can be obtained from the results of the partial fraction
expansion using the conversion presented in Sec. 9.1.2.
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90 Chapter 9. The delayed parallel filter

However, it is also possible to use a different form of partial fraction expansion which gives
the parameters of the delayed parallel form directly [Bank and Smith 2014; Bank 2018a]. In
[Smith 2007] an alternative partial fraction expansion method has been presented, where the FIR
partF̃ (z−1) and the strictly proper numerator̃B′(z−1) are computed by performing polynomial
long division over the reversed numerator coefficients withthe reversed order denominator.
(Note that at that time it was not yet known that this alternative variant has more favorable
numerical properties and this was first demonstrated in [Bank and Smith 2014].)

The alternative long division results in

H(z−1) = z−(M+1) B̃
′(z−1)

A(z−1)
+ f̃0 + f̃1z

−1 + . . . + f̃Mz−M . (9.10)

Finally, the transfer functioñB′(z−1)/A(z−1) is expanded to partial fractions by the Heaviside
cover up method as in Eq. (9.7) and combined to second-order sections to obtain the delayed
parallel form as

H(z) = z−(M+1)

K
∑

k=1

b̃k,0 + b̃k,1z
−1

1 + ak,1z−1 + ak,2z−2
+

M
∑

m=0

f̃mz−m. (9.11)

Figure 9.3 (b) shows the same (20/20) transfer function as inFig. 9.3 (a), but now the IIR part
is delayed by one sample so that there is no time-domain overlap with the constant gain part.
Now the individual transfer functions are only around 5 dB larger than the net transfer function,
which is 15 dB smaller compared to that of the traditional parallel form of Fig. 9.3 (a).

Even more pronounced is the difference for the (25/20) transfer function of Fig. 9.3 (c): with
the delayed form displayed in Fig. 9.3 (d), the need for downscaling by 70 dB is completely
eliminated, leading to a drastic improvement in signal-to-noise ratio.

9.2.3 Obtaining the parallel form by a least-squares fit

For moderate filter orders (< 100), obtaining the parallel form of IIR filters by partial fraction
expansion is the most practical option. However, for higherfilter orders the conversion can lead
to numerical errors, as I have demonstrated in [Bank 2018a].

This is displayed in Fig. 9.4 (a), where thick gray line showsa 200th order IIR filter
(200/200) designed by the Steiglitz-McBride method [Steiglitz and McBride 1965] to model
a measured room response. The black dashed line is the net transfer function of a delayed
parallel filter obtained by the procedure outlined in Sec. 9.2.2, that is, performing polynomial
long division on the reversed numerator polynomial and thenpartial fraction expansion. It can
be seen that the magnitude response of the converted filter does not match that of the original,
which is due to numerical errors. This is most probably due tothe fact that partial fraction ex-
pansion involves finding the roots of a polynomial, and root finding is known to be numerically
sensitive.

To allow the conversion of high order IIR filters, I have developed a least squares method
[Bank 2018a]. This procedure gives the parameters of the delayed parallel form directly and is
robust even for very large (N > 1000) filter orders. The method is inspired by the fixed-pole
design of parallel filters. First the roots of denominatorA(z−1) are found that are used to form
the denominator polynomials of the second-order sectionsAl(z

−1). Next, the numerators of
the sections are obtained via a least squares fit such that thedifference between the impulse
responses of the original and parallel structures is minimized.
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Figure 9.4: Delayed parallel implementation of a (200/200) transfer function: conversion done (a) by
partial fraction expansion and (b) by a least squares fit. Thethick gray line is the original transfer function
and the black dashed line is the net transfer function of the delayed parallel form. The thin lines show
the responses of the individual second-order sections and the dotted line displays the transfer function of
the constant gain.

While the procedure is also applicable to the traditional, non-delayed parallel form, it will be
illustrated for the numerically better performing delayedversion. The procedure is outlined for
the case of no pole multiplicity. In the case of repeated poles, terms of higher than second-order
must also be included, similarly to the case of partial fraction expansion.

The steps of the conversion are the following:

1. Compute the rootspn of the denominatorA(z−1), flip the unstable poles|pn| > 1 in-
side the unit circle by replacing them with1/pn, find the complex-conjugate pairs and
recombine the denominators of the second-order sectionsAl(z

−1).

2. Compute the impulse responseh(i) of the filterH(z−1) = B(z−1)/A(z−1) for samples
i = 0 . . . I.

3. ForNnum ≥ Nden, the coefficients of the FIR part equal to the firstM = Nnum−Nden +1
samples of the filter impulse response, that is,f̃k = h(k) for k = 0 . . .M .
ForNnum < Nden, there is no FIR part.

4. Compute the impulse responsesml(i) of the numerators1/Al(z
−1) = 1/(1 + al,1z

−1 +
al,2z

−2). either analytically by the inverse z-transform, or by simply “running” the filters
by using the recursion

ml(i) = −al,1ml(i− 1)− al,2ml(i− 2) + δ(i), (9.12)

whereδ(i) is the discrete-time unit pulse.
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92 Chapter 9. The delayed parallel filter

Filter order Error with PFE conv. Error with LS conv.

(50/50) 2.36 × 10−10 dB 3.86 × 10−10 dB
(100/100) 7.97 × 10−4 dB 5.52× 10−8 dB
(200/200) 2.84 dB 6.78× 10−8 dB
(500/500) 4.45 dB 7.02× 10−8 dB

(1000/1000) NaN 1.70× 10−7 dB
(4000/4000) NaN 9.17× 10−7 dB
(8000/8000) NaN 8.09× 10−5 dB

Table 9.1: Mean absolute dB errors of transfer functions converted to parallel form by partial fraction
expansion and by the proposed least squares method.

5. Find the numerator coefficientsb̃l,0, b̃l,1 by a least squares fit such that the resulting im-
pulse response

h̃(i) =

L
∑

l=1

b̃l,0ml(i) + b̃l,1ml(i− 1) (9.13)

is closest to the impulse response of the original filterh(i) starting from samplei = M+1
(for Nnum < Nden, starting from samplei = 0).

Since (9.13) is linear in its free parametersb̃l,0, b̃l,1, it can be written in a matrix form

h̃ = Mp̃, (9.14)

whereM contains the impulse responsesml(i) and their delayed versionsml(i − 1) in
its columns, and̃p is a column vector composed of the correspondingb̃l,0 andb̃l,0 values.
Now the resulting impulse response vectorh̃ should be the closest possible to the target
h vector containing the samplesh(i) from i = M + 1 in the least squares sense. This
is again a standard linear least squares problem (outlined in Secs. 2.3 and 6.2.1), with a
closed-form solution

p̃ = (MTM)−1MT h̃. (9.15)

Figure 9.4 (b) shows the net transfer function of the delayedparallel form when the conver-
sion is done by the above least-squares fit. As can be seen, nowthe conversion is much more
accurate compared to the one obtained by using partial fraction expansion shown in Fig. 9.4
(a). As for the size of the least-squares problem, the impulse response fit was made forI = 400
samples. In general, it is a good practice to chooseI such a way that it contains all the important
parts of the impulse response, so thath(i) for i > I is negligible.

Table 9.1 lists the mean absolute dB errors computed betweenthe original and converted
transfer functions in the range of 20 Hz and 22.05 kHz for various filter orders, including the
(200/200) example of Fig. 9.4. The significantly better accuracy of the LS procedure is apparent
starting from order 100. For the orders of 1000, 4000, and 8000, some of the extracted polespn

are outside the unit circle, thus, the PFE based method leadsto an unstable filter. On the other
hand, the proposed procedure still produces accurate results since it starts with stabilizing the
poles by flipping them inside the unit circle in Step 1.

The reason for the significantly better performance compared to partial fraction expansion is
that the numerical errors in finding the poles are compensated by the numerators of the second-
order sections: the least-squares fit will give the best possible impulse response match for the
given (slightly inaccurate) denominators.
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9.3. Scientific contributions 93

It is also worth noting that an apparent disadvantage of the least squares method proposed
here over the traditional partial fraction expansion is that it requires significantly more arith-
metic operations. However, the dominant source of computational time in direct-to-parallel
conversion is finding the roots ofA(z−1), and compared to that the computational time differ-
ence of the two methods becomes negligible.

In some situations the transfer function we are converting to a parallel form is given as a
series of second-order sections, or, equivalently, in pole-zero form. Examples include classic
low-pass, band-pass, etc. filters such as Butterworth, Chebyshev, etc. [Oppenheim et al. 1999].
(Thebutter,cheby1, etc. commands in MATLAB/Octave can give the pole-zero versions of
the filters making the implementation possible for such a high-order/low cutoff frequency filters
where the direct form implementation is unfeasible due to numerical reasons.) Other examples
can be series graphic or parametric equalizers [Välimäki and Reiss 2016] and equalizer filters
iteratively designed directly in the series form [Ramos andLópez 2006] or obtained from a
warped IIR design [Tyril et al. 2001].

I have demonstrated in [Bank 2018a] that the above least squares method can also be used to
convert from series second-order sections or pole-zero form to the parallel form. It is important
that the target impulse responseh(i) is computed by running the series version of the filter,
and we are not converting the series or pole-zero form to direct form. Also, in this case the
numerically problematic root finding is avoided, since either the poles, or the second-order
denominators are already known.

9.3 Scientific contributions

Statement 4: I have demonstrated that the delayed parallel filter, where the IIR part is
delayed so that there is no overlap with the FIR part results in better numerical properties
compared to the traditional parallel form. The results are applicable both for the fixed-
pole design of parallel filters and for parallel second-order filters obtained from direct
form IIR filters (rational transfer functions) by expansion . For the latter, I have also
developed a numerically more robust conversion method.

4.1: I have demonstrated that parallel filters with a FIR path result in a dynamic range limitation
due to the need of downscaling of the input signal because of the overlapping FIR and IIR parts,
both in the case of fixed-pole design and when obtained by partial fraction expansion. I have
shown that this can be avoided by delaying the IIR part. Besides outlining the design of the
delayed parallel filter, I have also given the formulas for converting the traditional (non-delayed)
parallel form to the delayed form.

4.2: I have developed a method for converting direct form IIR filters to parallel second-order
form based on a least-squares design that is numerically better behaving than the partial fraction
expansion method and thus allows the conversion of very highorder IIR filters (N > 1000),
which was previously not possible using the common partial fraction expansion technique.

The results have been published in one journal paper [Bank 2018a] and in one conference
paper [Bank and Smith 2014]1.

1This publication was written together with Prof. Julius Smith. Prof. Smith has been writing the part about
partial fraction expansion and has helped me in the general preparation of the manuscript. The new scientific
results of the paper related to the scientific statements above and outlined in this Chapter are my own contributions.

dc_1787_20

Powered by TCPDF (www.tcpdf.org)



Chapter 10

Conclusion

Besides showing my main research contributions, this work has also aimed to give an overview
of filter design methods that are targeted towards audio applications. All these methods are able
to design filters with nonlinear frequency resolution, and also a common property is that they
all use special filter structures instead of the traditionaldirect-form IIR or FIR filters.

Warped FIR and IIR filters (Chap. 4) arise by substituting theunit delays of normal FIR and
IIR filters by a first order allpass, leading to a frequency mapping (warping) which is tweaked by
the choice of the allpass poleλ [Härmä et al. 2000]. An advantageous property of warped filters
is that they can be designed by common FIR and IIR design techniques, the only difference is
that the target response have to be prewarped before filter design.

Kautz filters (Chap. 5) can be seen as the generalization of warped FIR filters where the
allpasses can have different poles [Paatero and Karjalainen 2003]. Due to the orthonormal-
ity of Kautz basis functions, time-domain design is much simplified, however, this results in a
relatively complicated filter structure. Fixed-pole parallel filters (Chap. 6) have a simpler struc-
ture composed of parallel second-order sections, while provide the same filtering accuracy as
Kautz filters. This comes at the price of giving up the orthonormality of the basis functions,
but this is nowadays not a real drawback since a linear least-squares design can be performed
fast in today’s computers and microprocessors. Also, the orthonormality of Kautz functions can
be utilized only in time-domain filter design, while for frequency-domain design and in direct
equalizer design a least squares approach should be used forthe Kautz filters as well. Ortho-
normality can be still useful in adaptive filtering [Salama and Cousseau 1998], but for general
filtering or equalization tasks the fixed-pole parallel filter is more advantageous due to the fact
that it only requires 50 % arithmetic operations on DSPs compared to Kautz filters.

The equivalence of the net transfer functions for Kautz and parallel filters (Sec. 6.4) implies
that the pole positioning strategies developed for one of them can also be used for the other.
From these, the simplest approach is to set the poles according to the required resolution: for
example, a logarithmic set of pole frequencies will result in a logarithmic frequency resolution,
and the transfer function of the filter will resemble to the fractional-octave smoothed version
of the target frequency response (Sec. 6.5). The fit can be improved at a given filter order by
the use of more complex pole positioning strategies based onsingle-band, dual-band or custom
warped IIR filter design, or by automatically placing the poles according to the ripple density
of the smoothed transfer function (Chap. 7).

The reader might wonder which method should be used among thevarious possibilities. Of
course there is no single answer. However, I believe that a good starting point is the design of
parallel filters with predetermined (e.g., logarithmic) pole set, which already achieves signifi-
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cantly better performance compared to traditional FIR and IIR filter design approaches, while
still being very simple both in its concept and implementation. The design accuracy can be
improved even more by the use of more sophisticated pole positioning techniques using multi-
band or custom warped design. This of course leads to a somewhat more complicated design
procedure, therefore, it can be considered as a next step in audio filter or equalizer design.

Besides outlining the single-channel approaches, this work also extended some of the meth-
ods to the MIMO case (Chap. 8). The passive design variant allows the design of positive semi-
definite admittance matrices that can be used to model measured responses in the full audio
frequency range while still guaranteeing the passivity of the model. A direct design approach
was also presented for the MIMO equalization case allowing the design of an IIR MIMO equal-
izer in an equally simple way as the common FIR equalizers, but allowing the use of arbitrary
frequency resolution similarly to the single-channel parallel filter.

Finally, we have seen in Chap. 9 that when there is an FIR path in parallel with the second-
order sections, the individual transfer functions can be much larger than the net transfer func-
tion. In practical implementations this leads to the loss ofuseful bitdepth due to the downscaling
required to avoid overflow. The same problem arises both in the fixed-pole design of parallel
filters and when the second-order sections are obtained fromdirect-form filters by partial frac-
tion expansion. This limitation can be simply avoided by theuse of the delayed parallel form
where there is no overlap between the FIR part and the response of the second-order sections.
In addition, a numerically robust conversion technique wasalso presented that allows the direct
to parallel conversion of filters of with orders in the range of thousand which was not possible
previously.

10.1 Further results in the field of audio filter design

I have developed several additional methods in the field of audio filter design that are not in-
cluded in the list of my scientific statements, although often apply the techniques presented in
the statements or otherwise closely related to the topic of the thesis. Some of them are a result
of collaboration with other researchers; this will be clearly marked by using the article “we”
and can also be seen from the corresponding references containing other names than “Bank”.
Besides audio filter design, my other research field is sound synthesis; these less related con-
tributions are not listed in the following, but the interested reader is referred to the list of my
publications.

10.1.1 Implementation aspects of fixed-pole parallel filters

Some of the publications are directly related to fixed-pole parallel filters: in [Bank and Horváth
2017a] we have compared the quantization noise performanceof warped IIR and fixed-pole
parallel filters. For the warped IIR filter we have consideredboth the special filter structure and
the more efficient series second-order implementation (these have been discussed in Sec. 4.4).
We have demonstrated with simulation examples that while the series second-order implemen-
tation of warped IIR filters has the same computational complexity as that of fixed-pole parallel
filters, parallel filters have a significantly lower quantization noise.

To decrease the quantization noise of fixed-pole parallel filters, in [Bank and Horváth 2017b]
we have proposed using a special warped structure for the most problematic low-frequency
second-order sections. The warping parameterλ is different for each section and it is set so that
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it minimizes the quantization noise produced by that section. For choosingλ a simple analytical
formula was also given that approximates the numerically optimal λ values very accurately.

In [Horváth and Bank 2019] we have systematically analyzed ahandful set of second-order
sections in terms of numerical performance and computational complexity. Besides the usual
direct form and transposed structures, we have tested the Gold & Rader [Rader and Gold 1967],
the Kingsbury [Kingsbury 1972], the Chamberlin [Chamberlin 1985; Smith III 2019], the Zölzer
[Zölzer 1994] and the above optimized warped IIR (WIIR) second-order structure [Bank and
Horváth 2017b]. We have also proposed an extension to the Chamberlin state variable filter so
that it can be used as a general IIR filter. It had turned out that exactly this filter has the best
performance in terms of quantization noise for the problematic low-frequency poles. Therefore,
we have proposed the use of the extended Chamberlin structure for the low frequency poles,
while staying with the more efficient direct form 1 (DF1) structure for the rest. In our test case
this has increasesed the signal-to-noise ratio by a quite significant 40 dB at the price of 50%
increase in total computational cost.

Still related to the implementation of fixed-pole parallel filters, in [Belloch et al. 2014] we
have shown that the inherently parallel nature of the structure translates to a very high efficiency
in parallel architectures (such as Graphic Processing Units), on the contrary to direct form or
series IIR filters. By using an Nvidia TeslaK20c GPU more thanthousand filter paths at a filter
order of 256 could be run in real-time. This can find its application in the equalization of large
MIMO systems, e.g., in the full equalization of wave field synthesis [Fuster et al. 2005; Gauthier
and Berry 2007].

10.1.2 Magnitude-priority filter design

As discussed in Sec. 2.4, in audio an accurate magnitude modeling or equalization is more
important than that of the phase, and this is often reflected by the choice of minimum-phase
filter design generally resulting in better magnitude accuracy for the same filter order. However,
this also means giving up phase modeling all together. In [Bank 2012b, 2014] I have proposed
an alternative approach called “magnitude-priority filterdesign” where the filter follows both
the magnitude and phase response in those frequency regionswhere it can, while where this is
not possible, it gives priority to the magnitude. I have developed two variants, one updating the
phase of the target response, while the other updating the magnitude response in each iteration.
The method is applicable to any filter design technique that works in the time-domain or uses a
complex target response in the frequency-domain. While [Bank 2012b] contains only fixed-pole
parallel filter design examples, in [Bank 2014] I have also demonstrated the technique using a
windowed FIR filter design and a warped IIR design.

For rectangular rooms with symmetric loudspeaker arrangements, full room equalization
can be achieved at low frequencies by generating a plane wavethat propagates along the room
[Santillian 2001; Santillian et al. 2007]. However, often the room is not rectangular, and/or a
symmetric loudspeaker setup cannot be assured, leading to adeteriorated equalization perfor-
mance. I have addressed this problem in [Bank 2012a] with themultichannel extension of the
above “magnitude-priority” approach where the magnitude specification is kept constant in the
control points, while the phase is determined by an iterative optimization process starting from
the plane wave solution.
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10.1.3 Combined quasi-anechoic and in-room equalization of loudspeak-
ers

Equalization of a loudspeaker response based on anechoic measurements is a relatively sim-
ple task and it can be used to improve both the time- and frequency-domain response of the
loudspeaker. When this speaker is put in a room, such an equalization improves the direct
sound first reaching the listener. Equalizing the response of the loudspeaker based on in-room
measurements is much more problematic due to the fact that such responses are highly non-
minimumphase and position dependent (see also the discussion in Sec. 3.1). To address this
problem, in [Bank 2013b] I have proposed a combined approachwhere the loudspeaker is first
equalized based on the quasi-anechoic response obtained from a windowed in-room measure-
ment and then by a room equalizer addressing the more problematic low-frequency region of
room responses and correcting the errors of windowing. For this latter part I have used an equal-
izer based on the fixed-pole parallel filter. Later we have also extended the approach to the case
of multipoint equalization in [Cecchi et al. 2014].

10.1.4 Highly accurate graphic equalizers using parallel second-order fil-
ters

Graphic equalizers are important tools in audio that are used not only by sound engineers and
music producers but also by end users since they provide simple means of modifying the loud-
ness of various frequency components. Traditional graphicequalizers are composed of a set of
second-order filters with logarithmically spaced center frequencies and fixed Q values, where
the gain of the sections is varied by the user. A difficulty in both analog and digital graphic
equalizer design is that due to the interaction of the neighboring bands, the net response will be
different from what is actually set by the user. To overcome this, in [Rämö et al. 2014] we have
proposed an alternative approach where a precise magnitudetarget curve is composed based on
the user settings with a suitable interpolation and a fixed-pole parallel filter is designed using
this target response. With this approach a much more accurate equalizer response was achieved
compared to earlier approaches. This came at a price of increased design complexity which
can be a limitation if we wish to follow the user changing the sliders continuously. To elimi-
nate this drawback, we have developed an efficient design variant in [Bank et al. 2017] where
both the target magnitude and phase response are generated as a linear combination of elemen-
tary minimum-phase functions decreasing the design time drastically. Another part of speed-up
comes from an alternate formulation of the weighted least-squares problem that we have also
published in [Belloch et al. 2017]. Finally, we have converted the cascade form graphic equal-
izer of [Välimäki and Liski 2017] to the delayed parallel form in [Liski et al. 2019], and also
provided an efficient method for converting any filter available in the cascade second-order form
to the numerically more advantageous delayed parallel form.

10.1.5 Modeling of nonlinear systems

So far we have assumed the linearity of the systems that are equalized or modeled. However,
in some cases the nonlinearity cannot be neglected: in the audio field such devices include tube
amplifiers, distortion circuits or speakers driven to theirnonlinear range as often done by guitar
players. In [Yeh et al. 2008] we have been modeling the nonlinear behavior of a guitar cabinet
by using a static nonlinearity applied to the estimated loudspeaker displacement, followed by a
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linear filter implemented using fixed-pole parallel filters.A common-pole single-input multiple-
output filter structure was used (outlined in Sec. 8.1.1) to allow interpolation between various
microphone positions.

In black-box modeling Wiener and Hammerstein models are commonly used since they can
be indentified relatively easily compared to more complex models (e.g., Wiener–Hammerstein
or Volterra models). Polynomial Hammerstein models compose their response as a sum of
parallel branches each having a static nonlinearity (a polynomial) and a linear filter in series.
In [Bank 2011a] I have proposed a highly efficient implementation of such models by the use
of multiple-input single-output parallel filters with common poles (see Sec. 8.1.1) and applied
it to the nonlinear modeling of a loudspeaker. We have made anextensive comparison of the
technique with a polynomial Hammerstein model using FIR filters in [Romoli et al. 2014].
We have demonstrated that the proposed approach has a significantly reduced computational
complexity for similar modeling performance compared to the common FIR approach.

10.1.6 Other related results

For testing the MIMO equalization approach using parallel filters shown in Sec. 8.3.3, I have
used the multichannel measurement of a spherical loudspeaker. During the measurements it had
turned out that the results are highly sensitive to the positioning of the loudspeaker that cannot
be controlled as accurately as desired due to physical constraints. To overcome this, we have
proposed a calibration technique in [Zotter and Bank 2012] that estimates the positioning and
rotation errors solely by using the measured responses and applies a suitable compensation to
the results, thus, removes the effects of geometric inaccuracies in the measurement.

In [Ramos et al. 2017] we have applied a special form of the parallel second-order structure
to the modeling of head-related transfer functions (HRTFs). Coming from the special structure,
the parameters were estimated using an iterative optimization scheme instead of the usual least-
squares design. The benefit of the approach compared to the general parallel filter is that by
this way HRTFs can be accurately interpolated for those angles where measurements are not
available.

10.2 Significance and applications

Here I give a brief summary of the significance and applications of the results included in the
set of my scientific statements and discussed in this thesis in detail.

10.2.1 Fixed-pole design of parallel filters

As I see it, the fixed-pole design of parallel filters is a very efficient methodology to design IIR
filters at arbitrary (non-uniform) frequency resolution, of which logarithmic scale has been used
throughout this thesis since that is the one most often used in audio applications. Compared to
the quasi-logarithmic frequency resolution filter design methods proposed previously (warped
and Kautz filters), the efficiency of the approach comes from two factors. First, by the choice
of a simpler filter structure, the computational complexityis reduced for the same filter order.
Second, when used with the pole positioning methods I have developed, the parallel filter results
in lower approximation or equalization error compared to earlier approaches for the same filter
order. I find it important to emphasize that this improved efficiency is not coming at the price of
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a highly complicated structure or design method: on the contrary, the filter structure is actually
simplified and the design still uses the least-squares minimization common in the literature.

Besides introducing the basic technique, by showing the smoothing properties, equivalence
to Kautz filters, and developing pole positioning methods I have developed a complete toolset
that can be used for a wide range of applications.

Most applications that I have developed myself or with otherresearchers are related to the
equalization of loudspeaker–room responses [Bank 2008, 2011b; Bank and Ramos 2011; Bank
2011c, 2013a,b,c; Ramos and Bank 2013] and to the modeling orequalization of anechoic
loudspeaker responses [Yeh et al. 2008; Bank 2013c]. Recently, Kamaris et al. [2021] have
applied the fixed pole parallel filter design to the equalization of mobile earphones.

Another field with several application examples that I have developed is sound synthesis.
This includes the modeling of the radiation response of the piano soundboard [Bank 2007;
Bank et al. 2010], modeling the one-dimensional admittanceof a guitar bridge [Bank and Kar-
jalainen 2008], simulation of the sustain pedal effect for the piano [Zambon et al. 2008], and
the parametric resynthesis of piano sounds for listening tests [Bank and Lehtonen 2010].

Graphic equalizers are important tools in music productionand in consumer audio: recently
we have been applying the fixed-pole design of parallel filters to obtain a highly accurate but
still efficient third-octave graphic equalizer [Rämö et al.2014; Bank et al. 2017], as already
mentioned in Sec. 10.1.4

I have applied the MIMO extension of parallel filters to the modeling of the 2D admit-
tance matrix of a guitar bridge for sound synthesis [Bank andKarjalainen 2010] as discussed
in Sec. 8.2, and the same filter structure with an improved parameter estimation algorithm has
been applied to the modeling of the violin, viola, and cello in [Maestre et al. 2013, 2017]. In
[Maestre et al. 2021] the warped common-pole estimation technique of Sec. 8.2.4 has been used
to parameterize a state space radiation model.

I have also applied the multichannel design of parallel filters to the computationally efficient
modeling of nonlinear loudspeaker behavior [Bank 2011a; Romoli et al. 2014] mentioned in
Sec. 10.1.5 and to the common-pole modeling of piano soundboard response first proposed in
[Bank 2007; Bank et al. 2010], and further developed by Zambon [2013]; Gabrielli et al. [2015].
The direct equalizer design for MIMO systems was used to equalize the velocity responses of a
20 channel spherical loudspeaker array in [Bank 2018b], as shown in Sec. 8.3.3.

Coming from both the simplicity and efficiency of the approach, parallel filters have also
found industrial applications. Where I have also taken partof is the soundboard modeling in
the Physis piano of the Viscount corporation [Bank et al. 2010; Zambon et al. 2016]. Since
companies rarely publish the methods they are using, I mostly know from informal discussions
at conferences or by email inquiries that my methods have been used in some products. Appli-
cations that are already developed and working include the Python script for room equalization
using fixed-pole parallel filters [Green 2012] and dual-bandwarping used to calibrate a loud-
speaker response in the Audio Precision APx500 measurementsystem [Kite 2013]. From email
inquiries it turned out that Antelope audio was interested in using parallel filters for the mod-
eling of microphone transfer functions and guitar loudspeaker responses, although I have no
information if they have finally came out with a product usingthe techniques I have developed
[Levin 2014].

Instead of listing possible further applications, it can besafely said that the methods I have
developed can be used for various audio applications very effectively. This is because most
audio related filter or equalizer design or tasks benefit fromusing logarithmic frequency res-
olution, and I believe that the fixed-pole parallel filter design is the most efficient logarithmic
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frequency resolution methodology at present date.
Since I have been working in the field of audio signal processing the applications I can

mostly think of are related to audio. Nevertheless, the non-uniform frequency resolution achiev-
able by parallel filters could most likely be used also in other fields. For example, in frequency-
domain system identification the measured frequency response is often available in logarithmic
frequency scale [Pintelon et al. 1994], where some of the methods I have developed could pos-
sibly be also applied. However, this is left for future research.

10.2.2 Converting IIR filters to parallel form

While the fixed-pole design of parallel filters have been developed with the requirements of
audio signal processing in mind, my results about converting direct form or series second-
order filters to the parallel form are useful for the broad signal processing community. For
the conversion the partial fraction expansion using the Heaviside cover-up method is the most
commonly used and actually this is the only one covered in theDSP textbooks I am aware
of. Therefore I believe that showing that this common methodcan lead to dynamic range
limitations in practical implementations and providing a solution to the problem is my most
widely applicable result. In addition, the proposed LS method allows the direct to parallel
conversion of very high (N > 1000) order transfer functions that was not possible previously.

I have applied the technique to loudspeaker response modeling, piano soundboard modeling
and implementing a Butterworth high-pass in the parallel form in [Bank 2018a]. We are also
using the delayed parallel form in a recent graphic equalizer design [Liski et al. 2019]. In
[Kereliuk et al. 2018] the delayed parallel form is used to model room impulse responses, and
in [Schlecht and Habets 2019; Schlecht 2020] for the computation of the residues of a feedback
delay network (FDN). In addition, the FDN toolbox [Schlecht2020] applies the proposed LS
method for partial fraction expansion.

As for industrial applications, I am aware from an email inquiry that the world’s largest
pro-audio company, Music Tribe Inc., has been testing my method for converting series form
transfer function to parallel form with very satisfying results [Christensen 2018]. Implementing
IIR filters in the parallel form rather than in series is gaining more and more popularity due
to the availability of processors capable of parallel processing (such as GPU-s), thus, I expect
more and more actual applications to come.

10.2.3 MATLAB/Octave code related to the presented algorithms

MATLAB/Octave codes for designing parallel filters both in the time- and frequency-domain
can be downloaded fromhttp://www.mit.bme.hu/∼bank/parfilt. The page also
includes scripts for direct equalizer design. Perhaps the most interesting files are
parfiltdemo.m andparfeqdemo.m that are interactive applications where the parallel
filter is designed in real-time according to the poles positioned by the user.

As for the delayed parallel filter, the scripts are downloadable from
http://www.mit.bme.hu/∼bank/parconv. These include both the fixed-pole design
of the parallel filter and the codes required to convert direct-form IIR filters to the parallel form.
Besides the alternative partial fraction expansion variant tf2delparf.m the code for the
numerically more robust LS conversion is also providedtf2delparf_ls.m.
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Appendix

A.1 Error norms

In filter design, when computing the distance of the target and the filter response, usually the
Lp norm is used which is defined as

||x(n)||p =

(

N−1
∑

n=0

|x(n)|p
)

1
p

. (A.1)

Except forp = ∞, minimizing ||x||p is equivalent to minimizing itspth power, which means
that the outer function()1/p can be dropped:

||x(n)||pp =

N−1
∑

n=0

|x(n)|p, (A.2)

leading to a simpler problem [Vargas and Burrus 2001]. Typical choises ofp includep = 1
for minimizing the mean absolute error,p = ∞ for minimax (or Chebyshev) minimization
where the maximum of the error is minimized, andp = 2 for least squares (LS) filter design.
From these theL2 norm has a great advantage that it leads to a particularly simple optimization
problem for linear-in-parameter models (see Sec. 2.3).

For designing linear-phase FIR filters both theL2 (least squares) andL∞ norms (Parks–
McClellan or Remez algorithm) are used [Oppenheim et al. 1999; Parks and Burrus 1987]. For
FIR filters with an arbitrary phase specification (complex target response), theL∞ norm leads
to a nonlinear optimization problem due to minimizing the maximal values of absolute vales,
while theL2 norm still results in a simple closed-form solution [Parks and Burrus 1987]. Note
that the combined use ofL2 (least squares) andL∞ norms is also possible in the form of peak-
constrained least-squares (PCLS) design. Such a problem can be either solved by the simple,
but slow iteratively weighted LS algorithm, or by the more complex, but faster generalized
exchange algorithm proposed in [Adams and Sullivan 1998].

For IIR filter design, as far as classic lowpass, highpass, bandpass, bandreject filters are
concerned, the most common method is to convert an analog prototype to the digital domain.
Chebyshev I, Chebyshev II, and elliptic filters all minimizethe maximum error in their pass-
band, stopband, or both, thus, they are optimal in theL∞ sense [Parks and Burrus 1987; Op-
penheim et al. 1999]. However, for designing IIR filters witharbitrary specifications, the min-
imization of theL∞ becomes much more complicated and therefore the mathematically better
tractableL2 norm is used by most algorithms. In general,Lp norms withp 6= 2 would re-
quire gradient descent methods, but they can also be implemented byL2 minimization when
the weights are iteratively updated in a weighted least squares design (WLS). Examples of such
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A.2. Equivalent LS approximation using Kautz and parallel filters 113

IIR filter design methods includeLp minimization for arbitraryp [Vargas and Burrus 2001] and
minimizing the log-magnitude error in least-squares or minimax sense [Kobayashi and Imai
1990].

For designing low-pass, high-pass, etc. filters, generallytheL∞ norm is the preferred choice
since it guarantees an upper bound on the error both in the passband and in the stopband [Parks
and Burrus 1987]. However, as far as audio applications are concerned, this preference cannot
be justified since an infinitely narrow frequency region where the approximation has a large
error leads to the same large error in the minimax (L∞) sense, but its effect is most probably
inaudible. This is because what we hear is connected to the logarithmically-smoothed transfer
function (see the discussion in Chap. 1 and 3), and such a smoothing eliminates the narrow
peaks by averaging. For a peak or valley to be audible, it should be both wide and large enough,
so the audibility is better related to the area of the irregularity rather than its amplitude. This
means that norms withp <∞ are better choices for audio.

As for the literature, there is not too much discussion on what kind of norm would be ideal
for audio filter design. There are some arguments both for minimizing theL2 mean-squared
[Vairetti et al. 2018] and mean log-magnitude errors [Ramosand López 2006], but no systematic
studies or psychoacoustic tests exist on the subject. The only conclusion that can be taken by
analyzing the related literature is thatL2 minimization is by far the most common choice in the
field of audio filter design. This was probably also motivatedby the simplicity and efficiency of
least-squares method in the early days of filter design, but it is reasonable to expect that if theL2

norm was unsuitable for audio, it would not be so widespread at present day. (On the contrary,
the unsuitability of minimizing the error in the linear scale for audio led to the prevalent use of
the error computed on the logarithmic frequency scale).

In line with this common practice, throughout this work least squares (L2) optimization will
be used, but it must be noted that the proposed algorithms could be straightforwardly modified
for applying other norms. This could be most simply done by using WLS techniques along the
lines of [Vargas and Burrus 2001; Kobayashi and Imai 1990]. However, this extension is out of
the scope of the present work.

Taking a broader view, there are some auditory models that try to asses the audibility of
differences between transfer functions: in [Olive 2004b] amultiple regression model about the
preference rating of loudspeakers is created based on listening tests, while in [Lavandier et al.
2008] the perceptual similarities of loudspeakers were related to acoustic measurements. In
theory such auditory models could be used in the (definitely nonlinear) optimization process for
finding the coefficients of a filter or equalizer: this can be aninteresting topic for future reseach.

A.2 Equivalent LS approximation using Kautz and parallel
filters

It has been shown in 6.4 that the Kautz basis functions are thelinear combinations of the basis
functions of the parallel filter and that the parallel filter parametersp are obtained from the
Kautz weightsw by a multiplication with the triangular matrixK. While already from this it
should be clear that the two methods will result in the same filter response, it is still instructive
to develop the equations for the least-squares case used forparallel filter design.

According to Eqs. (6.4) and (6.6), the impulse response of the fixed-pole parallel filter is

h = Mp = MM+ht = M(MHM)−1MHht, (A.3)
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whereht is the target impulse response,M is the modeling matrix containing the basis functions
of the parallel filter in its columns, andp contains the optimal set of parallel filter parameters.

We can write the same for Kautz filters

h̃ = Gw = GG+ht = G(GHG)−1GHht, (A.4)

whereh̃ is the impulse response of the Kautz filter,G is the modeling matrix containing the
basis functions of the Kautz filter in its columns, andw contains the optimal set of Kautz
parameters. The Kautz basis functions are the linear combinations of the basis functions of the
parallel filter:

G = MK. (A.5)

Substituting Eq. (A.5) into Eq. (A.4) gives

h̃ = MK(KHMHMK)−1KHMHht =

= MKK−1(MHM)−1(KH)−1KHMHht =

= M(MHM)−1MHht, (A.6)

which is the same as Eq. (A.3), showing that the impulse responses of the parallel and Kautz
filtersh andh̃ are indeed the same when using the same pole setpi and the same target response
ht.

The complete equivalence is valid when the Kautz filter is designed by fitting the linear com-
binations of the Kautz signals to the target response by an LSfit as in Eq. (A.4). However, by
taking advantage of the orthogonality of the Kautz responsesGH = G−1, the Kautz parameters
are usually computed by the scalar product of Eq. (5.6), thatis,

w = GHht. (A.7)

Since the orthonormality of the Kautz responses holds only for the entire (infinitely long) basis
functions, these two forms of Kautz design (LS and scalar product) are equivalent only ifG is
long enough so that all Kautz responses have decayed to a negligible value. This usually holds
since it is in general a good practice to specify a target impulse response that is at least as long
as the effective length of the Kautz basis functions.

Note that when designing the Kautz filter with Eq. (A.7) with atarget responseht that is
shorter than the Kautz basis functions (say,N sample long), it is basically equivalent to zero
padding the targetht to infinity and fitting the infinitely long Kautz responses. Onthe other
hand, the LS design of Eq. (A.4) will only take into account the firstN samples of the target,
and the rest will be a “don’t care” region. The same results for the parallel filter when designed
with the LS method.

A.3 Pole radius for a pretedermined pole set

Using a predetermined (e.g., logarithmic) pole set is the simplest choice for parallel filter design.
In this case the pole frequencies are set by the user, but the pole radii have to be determined by
a suitable formula. As also suggested in [Paatero and Karjalainen 2003] for the Kautz filter, we
will set them so that the transfer functions of the sections cross at their -3 dB point. Smaller
overlap (higher Q factor) would mean that there are “empty” parts between the peaks of the
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individual sections, and larger overlap (lower Q factor) means that the numerical conditioning
of the parameter estimation gets worse since more and more sections will have a meaningful
contribution for each target frequency point. I have found by experiments that the exact value
is not critical, but -3 dB is a reasonable choice.

Let us consider the frequency response of a complex first-order IIR filter:

H(ϑ) =
1

1− pz−1
=

1

1− pe−jϑ
=

1

1− Rej(ϑ0−ϑ)
, (A.8)

where the pole positionp = Rejϑ0 is defined by the radiusR and angleϑ0. Equation (A.8)
is actually the basis function of the complex form of the parallel filter (see Eq. (6.1)), and in
the real form of the filter shown in Eq. (6.2) the second-ordersections are composed of two
such terms with complex conjugate poles. In the following wewill analyze the complex basis
function of Eq. (A.8) and assume that the response coming from the complex-conjugate pole
will have a no effect on the frequencies of the -3 dB points of the peak of interest.

The maximum gain of Eq. (A.8) is1/(1− R) atϑ = ϑ0, thus, at the -3 dB point we have
∣

∣

∣

∣

1

1− Rej(ϑ0−ϑ)

∣

∣

∣

∣

=
1√
2

1

1− R
. (A.9)

Taking the square and reciprocal gives
(

1− Rejα
) (

1− Re−jα
)

= 2(1−R2) = (A.10)

1 + R2 − R
(

ejα + e−jα
)

= 2 + 2R2 − 4R, (A.11)

whereα = ϑ0 − ϑ. By using Euler’s formula we obtain

1 + R2 + R(2 cos(α)− 4) = 0, (A.12)

which needs to be solved forR for the givenα distance of the pole frequency and the angular
frequency where we wish to have -3 dB magnitude response.

The solution is obtained as

R = 2− cos(α)−
√

(2− cos(α))2 − 1. (A.13)

While Eq. (A.13) is not overly complicated, I have been looking for a simpler formula, even
if it will be an approximation, since the filter design performance will not be affected if we
slightly depart from the -3 dB value. This I have obtained using the Taylor-series approxima-
tionscos(x) ≈ 1− x2 and

√
1 + x ≈ 1 + x/2.

With some algebraic manipulations we then obtain

R ≈ 2− 1 +
α2

2
−

√

(

2− 1 +
α2

2

)2

− 1 ≈ 1− α +
α2

2
− α3

8
. (A.14)

This is very similar to the Taylor-series approximation of the exponential function:

e−α ≈ 1− α +
α2

2
− α3

6
+

α4

24
+ . . . . (A.15)

Thus, we may use the simpler formula

R = e−α = e−
∆θ
2 (A.16)
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Figure A.1: Accurate (solid line) and approximate (dashed line) pole radii to obtain -3 dB atα = ϑ−ϑ0

frequency distance from the pole angleϑ0 (a), and the actual attenuation value at this frequency (b).

as an approximation to Eq. (A.13), where∆θ is the total frequency distance of the two -3 dB
points used in Eq. (7.1), whileα is the distance of one -3 dB point from the peak of the response.

The approximation is very accurate forα = ∆θ/2 < 0.1π, as can be seen in Fig. A.1 (a),
and reasonable up toα = ∆θ/2 = π/2. The actual attenuation compared to the peak of the
response is very close to 3 dB forα < 0.1π and thus∆θ < 0.2π, while it is a still acceptable
2.2 dB forα = π/2 corresponding to∆θ = π, as displayed in Fig. A.1 (b). Since a pole distance
∆θ < 0.2π is always fulfilled expect for very low pole densities (and∆θ < π is fulfilled in
each case since that would only arise if one pole is at zero frequency and the other is at half
the sample rate), Eq. (A.16), and thus Eq. (7.1) can be considered as a simple but sufficiently
accurate approximation.

A.4 Additional examples of using the predetermined pole set
for parallel filters

In Sec. 7.2 we have already seen that by applying a logarithmically spaced pole frequency set,
a logarithmic frequency resolution filter design can be achieved and that by using different pole
densities in the different regions, the frequency resolution will be also different. By the help
of Fig. A.2 we will take a look at some additional examples forthe same loudspeaker–room
response. The first case of Fig. A.2 (a) employs pole frequencies in the low frequency-region
only, and indeed it is visible that the target response is modeled in that region only. As a practical
application, in an equalizer design setting this would meanequalizing the most problematic
low-frequency region of the response, while leaving other parts intact. Figure A.2 (b) uses a
denser set of pole frequencies in the middle-frequency range, showing again that the modeling
accuracy concentrated in a limited frequency range. Probably the most interesting case is that
of Fig. A.2 (c) where the pole frequencies are set arbitrarily. They were actually chosen by the
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Figure A.2: Modeling a minimum-phase loudspeaker–room response by fixed-pole parallel filters having
a predetermined pole set: (a) seven pole frequencies logarithmically spaced from 20 Hz to 300 Hz (filter
order is 14), (b) nine pole frequencies logarithmically spaced from 250 Hz to 1500 Hz (filter order is
18). In (c) the 16 pole frequencies were selected manually bythe help of theparfiltdemoMATLAB
script (total filter order is 32). The pole frequencies are indicated by crosses. The curves are offset for
clarity.

help of my interactive MATLAB scriptparfiltdemo where the poles can be positioned by
the click of a mouse and the resulting filter response can be seen immediately. Thus it is possible
to manually finetune the approximation according to the desire of the user. The script can be
downloaded from [Parallel filter homepage 2021] and runs both in MATLAB and Octave.

To show something different from logarithmic scale, the next example will display a linear
frequency scale plot where the accuracy of modelling is again controlled by the density of the
pole frequencies. The target response is a synthetic case where the magnitude response is the
sum of two sinusoids to obtain a target where detail is present at two levels. The phase response
is calculated by the Hilbert transform from the log. magnitude [Oppenheim and Schafer 1975]
so that we have a minimum-phase specification. It can be seen in Fig. A.3 (a) that with a low-
density pole set only the general trend of the response (the low-frequency sinusoid) is modelled.
As expected, using a denser set of poles in a certain region inFig. A.3 (b) leads to modelling
the fine detail in that region only. Figure A.3 (c) shows a combined case where the fine detail
is approximated only in the angular frequency range of0.2π to 0.4π, while neglected for the
rest of the frequencies. These examples attest the completefreedom in setting the frequency
resolution of the design when using fixed-pole parallel filters.
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Figure A.3: Modeling a minimum-phase synthetic target response by fixed-pole parallel filters having
a predetermined pole set: (a) six pole frequencies linearlyspaced from 0 toπ angular frequencies, (b)
eleven pole frequencies linearly spaced from0.2π to 0.4π, and (c) the combination of the above two pole
sets. Note the linear frequency scale in radians as opposed to the logarithmic scale of other figures. The
pole frequencies are indicated by crosses. The curves are offset for clarity.

A.5 Further comparisons of various filter design techniques

While in the audio signal processing community it is more customary to provide the comparison
of various filter design approaches using real-world examples as was done in Chap. 7, here
the various pole positioning techniques proposed for the parallel filter will be compared on a
synthetic target response. In addition, a comparison with previous filter design techniques will
also be provided. We will see that the synthetic target response will provide some additional
insight on how the modeling detail of the various techniquesis distributed as a function of
frequency.

The target magnitude response has linear segments that jumpbetween +4 and -4 dB at each
octave, assuring that the “detail” is distributed evenly inthe logarithmic scale, as can be seen in
Figs. A.4 and A.5, thin line. The phase is computed by the helpof the Hilbert transform so that
a minimum-phase response is obtained. The two figures show the same filter design techniques
(filter responses displayed by thick lines), the only difference is that the filter order is double in
Fig. A.5 compared to Fig. A.4.

It can be seen in both figures that the FIR filters (a) obtained by windowing the target impulse
response are able to follow only the high frequency part of the responses, and this is significantly
improved by the IIR filters (b) designed using the Steiglitz-McBride method, but the mid- and
low frequencies are still poorly modeled.

The warped FIR filters (c) designed by windowing the warped target response withλ = 0.9
are able to better distribute their modeling ability on the logarithmic scale, but the modeling is
confined to a limited frequency range. In addition, this technique is unable to follow the sharp
transitions of the target response.

Curve (d) shows a fixed-pole parallel filter design with logarithmic pole positioning. Now
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the distribution of the modeling detail is even in the logarithmic scale, since all frequency
regions are modeled with equal accuracy. It can also be seen that the filter response is the
smoothed (or low-pass filtered) version of the target frequency response, as anticipated from
Sec. 6.5. It can be seen that already this very simple approach gives significantly improved
results compared to traditional FIR, IIR and warped FIR filters. While not shown, the Kautz
filter with a logarithmic pole set gives exactly the same filter response as in curve (d), albeit
with double amount of arithmetic operations due to its more complicated filter structure.

The magnitude response of a fixed-pole parallel filter using ripple-density based pole posi-
tioning is displayed by curve (e). For the lower filter order example of Fig. A.4 (e), the response
is the same as that with a strictly logarithmic pole set, since the limited number of pole frequen-
cies does not allow concentrating them to the edges of the response, but results in an almost
logarithmic pole frequency series shown by crosses in Fig. A.4 (e). On the contrary, at double
filter order displayed in Fig. A.5 (e) the ripple-density based method improves the performance
compared to logarithmic pole positioning by assigning morepoles to the transitions of the target
response. While it is hard to see in the figure, actually thereare two distinct poles close to each
other at each edge.

The response of a fixed-pole parallel filter using warped IIR based pole positioning is shown
by curve (f). The pole set was obtained by designing a warped IIR filter with λ = 0.9 based
on the target response, finding and dewarping the poles, thenusing them as the poles of the
parallel filter. The frequency response of the parallel filter is practically the same as that of
the warped IIR filter, and if the same poles are used for the Kautz filter, the response would
be again identical. Basically, this curve shows what has been possible using prior approaches.
It can be seen in Fig. A.4 (f) that a filter order of 24 is not sufficient to provide appropriate
modeling at low and high frequencies, and the modeling detail is concentrated in the middle
range of the response, similarly to warped FIR filters. At double filter order shown in Fig. A.4
(f) the filter response becomes quite reasonable, with some loss of detail at very low and very
high frequencies.

Parallel filters obtained with dual-band warping and customwarping are shown by curves
(g) and (h). It is especially apparent in Fig. A.4 (g) and (h) that the approximation error is more
evenly distributed in the logarithmic scale compared to thesingle-band warping of Fig. A.4 (f).
The two methods provide a similar performance: for the lowerorder case of Fig. A.4, custom
warping (h) seems to provide a better behaving response, while for the higher order case of
Fig. A.5, dual-band warping (g) has a some benefit. In any case, they both provide better
modeling accuracy compared to earlier approaches, the improvement is especially apparent for
using lower order filters as in Fig. A.4. Turning this around,it can also be stated that a similar
modeling accuracy on the logarithmic scale can now be achieved at reduced filter order, and the
computational complexity is decreased even further by the simpler filter structure compared to
warped or Kautz filters.
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Figure A.4: Comparison of various filter design methods using a filter order of 24 for the IIR filters (b)-
(h), and 48 for the FIR filter (a). The thin lines show the minimum-phase target response, while the solid
lines display the filter responses. The first three curves display (a) FIR, (b) IIR, and (c) warped FIR filters.
The next ones show parallel filters with (d) strictly logarithmic pole frequency series, poles obtained by
the (e) ripple-density method, (f) single-band warping, (g) dual-band warping, and (h) custom-warping.
The pole frequencies are marked by crosses, and the curves are offset for clarity.

A.6 Least-squares design for the non-delayed parallel filter

According to Sec. 6.2.1, finding the parameters of the fixed-pole parallel filter for a time-domain
target response involves finding the parameter vectorp such that the resulting impulse response

h = Mp (A.17)

is the closest to the target impulse responseht in the mean squared sense.
Let us first rewrite the modeling matrixM in such a way that its first part contains the

modeling signals for the IIR partP (N by P matrix whereN is the number of samples, and
P is the number of IIR weights) and the second part contains themodeling signals for the FIR
partF (N by M + 1 matrix whereM + 1 is the length of the FIR path). This gives

M =
[

P F
]

. (A.18)

The FIR partF contains the delayed unit pulsesδ(n −m) for m = [0, . . . , M ], thus, it can be
partitioned to anM + 1 by M + 1 identity matrixE and anN −M − 1 by M + 1 zero matrix
0 as

F =

[

E

0

]

. (A.19)
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Figure A.5: Comparison of various filter design methods using a filter order of 48 for the IIR filters
(b)-(h), and 96 for the FIR filter (a). The thin lines show the minimum-phase target response, while the
solid lines display the filter responses. The first three curves display (a) FIR, (b) IIR, and (c) warped
FIR filters. The following ones show parallel filters with (d)strictly logarithmic pole frequency series,
poles obtained by the (e) ripple-density method, (f) single-band warping, (g) dual-band warping, and (h)
custom-warping. The pole frequencies are marked by crosses, and the curves are offset for clarity.

We may make a similar partitioning to the IIR partP where the firstM + 1 samples of the
modeling signals are contained inP1 and the rest are inP2, giving

P =

[

P1

P2

]

. (A.20)

Thus, the entire modeling matrixM is partitioned to four parts:

M =

[

P1 E

P2 0

]

. (A.21)

We also partition the parameter vectorp to the parameter vector of IIR part (numerator coeffi-
cients)b and of the FIR partf as

p =

[

b

f

]

(A.22)

and the resulting impulse responseh to the firstM + 1 samples ash1 and the followingN −
M − 1 samples ash2 as

h =

[

h1

h2

]

. (A.23)
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Finding the optimal parameter vectorp in Eq. (A.17) in the least squares sense involves
computing the productsMT M andMTht, since we actually need to solve

MTMp = MT ht (A.24)

for p. The matrices are:

MT M =

[

PT
1 PT

2

E 0T

]

×
[

P1 E

P2 0

]

=

[

PT
1 P1 + PT

2 P2 PT
1

P1 E

]

, (A.25)

and

MTht =

[

PT
1 PT

2

E 0

]

×
[

ht,1

ht,2

]

=

[

PT
1 ht,1 + PT

2 ht,2

ht,1

]

. (A.26)

Substituting these into Eq. (A.24) gives
[

PT
1 P1 + PT

2 P2 PT
1

P1 E

]

×
[

b

f

]

=

[

PT
1 ht,1 + PT

2 ht,2

ht,1

]

. (A.27)

The second “row” of Eq. (A.27) is

P1b + f = ht,1, (A.28)

from which the FIR coefficientsb are obtained as

f = ht,1 −P1b, (A.29)

whereP1b actually contains the firstM + 1 samples of the IIR response. The first “row” of
Eq. (A.27) is

PT
1 P1b + PT

2 P2b + PT
1 f = PT

1 ht,1 + PT
2 ht,2. (A.30)

By substituting Eq. (A.29) into Eq. (A.30), many terms cancel out and we obtain

PT
2 P2b = PT

2 ht,2, (A.31)

which is solved as
b = (PT

2 P2)
−1PT

2 ht,2. (A.32)

Equation (A.32) actually shows that the weights of the parallel filter contained in vectord
depend only on that part of the target impulse response vector ht which does not overlap with
the FIR part (this isht,2), as anticipated in Sec. 9.1.1.

The FIR part is beneficial for modeling non-minimumphase responses (see Sec. 9.1 for a
practical example), and it is used for modeling the responsebefore the main peak. That part of
the target response is contained inht,1. The decaying part after the main peak is thus inht,2.
Looking at Eq. (A.32), if there is a long FIR part (M is large), the basis functions of the IIR part
have already decayed to a small value at sampleM + 1, thus the samples inP2 will be small,
butht,2 will be still significant since it is just after the main peak of the target impulse response.
This leads to large coefficients inb. On the contrary,P1 contains the first part of the IIR basis
functions that have not yet decayed to a small value, thus, the FIR coefficientsf = ht,1 − P1b

also need to be large in magnitude, typically much larger than the target responseht,1 itself
because of the large magnitude ofP1b. This explains why the IIR and FIR parts look like a
mirror image to each other in Fig. 9.2 (b) and (c), both much larger than the resulting impulse
response (a). This requires the downscaling of the input signal (or the numerator coefficients)
to avoid overflow in the FIR and IIR branches, reducing the usable dynamic range significantly.
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