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I. Introduction 

Many outstanding questions in evolutionary biology depend on the mutational effects that govern 

the complex relationship between genotype and phenotype. For example, why are most 

inactivating mutations have little phenotypic effects? And how do multiple mutations interact with 

each other to produce a novel phenotype? Resolving such issues requires an understanding of how 

genotypes map onto phenotypes. While genotype-phenotype maps have long been investigated at 

the level of individual proteins (Dean and Thornton 2007), analyses of larger gene networks lag 

behind. Developing quantitative frameworks to interrogate mutational effects in large cellular 

networks would be important for at least two fundamental reasons. First, such a framework would 

provide mechanistic insights into complex evolutionary phenomena, from the emergence of 

evolutionary novelties that hinge on multiple mutations to the evolution of minimized genomes. 

Second, it would transform evolutionary biology into a more predictive discipline by allowing 

specific predictions on the outcome of evolution. A predictive framework would give us a clue 

which genes are likely to be lost, to mutate, or change expression during evolution. Beyond 

catalyzing basic research, such a framework would also have practical relevance. Among others, 

it would allow forecasting evolutionary changes in pathogenic microbes (Sommer, et al. 2017) and 

inform the engineering of novel biosynthetic pathways (Johannes and Zhao 2006; Notebaart, et al. 

2018).   

 

Recent advances in systems biology provide an unprecedented opportunity to build computational 

models that map from mutations and environmental changes to phenotypes. These computational 

approaches rely on mathematical models of specific molecular systems and come in different 

flavors. These models range from detailed kinetic models of smaller metabolic systems (Teusink, 
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et al. 1998) and regulatory circuits (Chen, et al. 2004) to constraint-based models of genome-scale 

metabolic networks (Price, et al. 2004). Constraint-based metabolic models are especially 

appealing for studying the relationship between genotypes and phenotypes in large networks and 

have already provided valuable insights into the evolution of metabolic gene contents and 

phenotypes of microbial species (Feist and Palsson 2008). These models start from high-quality 

metabolic network reconstructions (Price, et al. 2004). These reconstructions are typically built 

through integrating genome annotation data, information from enzyme databases, such as  KEGG 

(Kanehisa and Goto 2000) and BRENDA (Schomburg, et al. 2002)) and the primary literature and 

involve extensive manual curation. The network of biochemical reactions is then converted into a 

mathematical representation and analyzed using constrained-based methods (Box 1). In particular, 

a widely used method termed flux balance analysis (FBA) calculates the optimal flow of 

metabolites through the network as a function of available nutrients in the environment. These 

predictions have been extensively tested and showed high agreement with empirical data 

(Edwards, et al. 2001; Snitkin, et al. 2008; Oberhardt, et al. 2009).  

 

Constraint-based models have important conceptual advantages over both small-scale biochemical 

models and graph-theoretical approaches that make them especially well-suited to interrogate the 

genotype-phenotype map. First, they can be applied on a genomic scale. As these models require 

only few empirical parameters beyond the structure of the metabolic network, they can capture the 

behavior of large metabolic systems that encompass all enzyme encoding genes of an organisms, 

that is, hundreds to few thousands of genes. As a consequence, these models allow comparison 

with results of high-throughput omics data and also allow incorporation of multiple modalities of 

omics data (Yizhak, et al. 2010; Lloyd, et al. 2018). Second, unlike graph-theoretical approaches, 
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constraint-based models are based on sound biochemical principles and can compute functional 

states of the network while explicitly taking into account the nutrient environment (Box 1). 

However, I wish to emphasize that the constraint-based analyses framework also suffers from 

several important limitations owing to the lack of enzyme kinetic information. For example, 

investigating the phenotypic effect of minor changes in enzyme activity, as opposed to complete 

loss or gain of enzymes, and predicting metabolite concentrations remain a formidable challenge.   

 

This thesis focuses on four major research topics, each of which employs genome-scale metabolic 

networks to address a long-standing issue in evolutionary genetics. First, how do mutations 

modulate each other’s phenotypic effects, that is, how do genetic interactions arise at the 

mechanistic level? And how accurately can we computationally predict which gene pairs show a 

genetic interaction based on a detailed knowledge of the metabolic network? Second, can we 

predict the gene content of endosymbiotic bacteria that have highly reduced genomes? That is, can 

we predict which genes are lost and which are kept during millions of years of reductive genome 

evolution? Third, can we computationally predict the outcome and genetic basis of adaptation to 

new environments? More specifically, how does the ability to utilize new nutrients arise from 

existing low-level enzymatic side activities? Finally, how do evolutionary novelties arise that 

demand the simultaneous acquisition of multiple mutations?  
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Box 1. Constraint-based analysis of metabolic networks 

 

Figure reproduced from (Papp, et al. 2011). 

 

The functional properties of genome-scale metabolic networks are generally studied using constraint-based 

methods (Price, et al. 2004). Such methods apply physicochemical and biological constraints to define the 

range of achievable functional states (flux states) of the network, without relying on enzyme kinetic 

information. There are two fundamental types of constraints: (i) balance constraints, such as the conservation 

of mass, that is, at steady-state there is no accumulation or depletion of internal metabolites, and (ii) capacity 

constraints, that is, bounds that constrain the values of individual fluxes. For example, the rates of 

irreversible reactions must have a minimum value of zero. The nutrient environment is set up by allowing 

certain metabolites to enter the system through applying capacity constraints. Together, the applied 

constraints limit the allowable functional states of the network and define a solution space, which is typically 

a polytope in a high-dimensional space (step 1 in the figure). A widely used strategy, termed flux balance 

analysis (FBA), can then be employed to identify steady state flux states of the network that maximize a 

particular network function (step 2). This optimization step is generally achieved using linear programming 

and serve three main purposes (Price, et al. 2004): (i) exploration of the biochemical potential of the network, 

such as the maximum yield of producing metabolites; (ii) identification of likely physiological states based 

on the assumption that microbial cells have evolved towards maximum growth efficiency. This is done by 

representing growth as a pseudo-reaction in which all biomass compounds required for growth are drained 

from the network; (iii) rational design of networks that improve the production of desired compounds. 

 

 

 

 

dc_1908_21

Powered by TCPDF (www.tcpdf.org)



7 
 

II. Genetic interactions in metabolic networks 

Key papers: (Szappanos, et al. 2011), (Harrison, et al. 2007) (see Appendix) 

 

The phenotypic effect of a mutation often depends on the presence of other mutations in the 

genome, a phenomenon termed genetic interaction or epistatic interaction. Genetic interactions are 

the key to understand the functional relationships between genes, the extent to which organisms 

tolerate deleterious mutations, as well as the underpinnings of complex genetic diseases. In the 

past decade, high-throughput studies have generated comprehensive maps of genetic interactions 

between genes in several organisms, including budding yeast (Saccharomyces cerevisiae) 

(Costanzo, et al. 2010; Costanzo, et al. 2016), E. coli (Babu, et al. 2014) and human cell lines 

(Horlbeck, et al. 2018). These works focused on loss-of-function mutations and revealed two main 

forms of genetic interactions: (i) negative genetic interactions (synthetic sick or lethal / 

aggravating) when two mutations enhance each other’s harmful effects, potentially indicating 

functional compensation between them, and (ii) positive genetic interactions (antagonistic / 

diminishing) when a mutation has a smaller than expected deleterious effect in the presence of 

another deleterious mutation. However, despite the rapid accumulation of experimental data on 

genetic interactions, several questions remain open about the organization and mechanistic 

underpinnings of epistasis. In the past years, I contributed to three outstanding issues (Harrison, et 

al. 2007; Szappanos, et al. 2011): 

1) The first high-throughput genetic interaction screens in yeast provided the first glimpse 

into the overall organizational principles of genetic interaction networks (Costanzo, et al. 

2010). A major finding of these studies was that the vast majority of genes show few 

genetic interactions, while a small number of ‘hub’ genes are highly connected in the 
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genetic interaction network. Note that this pattern is consistent with those in other 

biological networks (such as protein-protein interaction networks), yet the underlying 

mechanisms might be entirely different (Barabasi and Oltvai 2004). Importantly, hub genes 

in genetic interaction network tend to display severe fitness defect when deleted and are 

highly pleiotropic (i.e. affect multiple cellular processes)(Costanzo, et al. 2010), but the 

underlying mechanisms has remained unknown. 

2)  Genetic interactions between genes are highly specific, with only ~3% of tested gene pairs 

showing an experimentally detectable interaction (Costanzo, et al. 2010). Is it possible to 

computationally predict which specific gene pair would show a genetic interaction based 

on our knowledge of the biochemical circuits in which they participate? This would be 

useful not only to accurately predict genetic interactions on a large scale, but also to 

understand the links between genetic and molecular interaction networks. Crucially, 

reconciling discrepancies between empiricial and predicted genetic interactions would 

allow us to refine the metabolic model and generate new biological hypotheses. 

3) Several lines of evidences indicate that genetic interactions themselves might often be 

environment dependent (You and Yin 2002; Remold and Lenski 2004; Bandyopadhyay, et 

al. 2011). However, we poorly understand the mechanisms of this phenomenon and how it 

contributes to the apparent phenotypic silence of many gene deletions.    

 

Addressing these issues requires computational systems biology models, which allow studying 

how these genetic phenomena emerge from the molecular interactions of hundreds of proteins. 

Genome-scale flux balance analysis models of cellular metabolism allow researchers to calculate 

the phenotypic effect of gene deletions and provides mechanistic insights into why most genes 
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appear to be phenotypically silent (Papp, et al. 2004). Therefore, to tackle the above questions, we 

applied an integrated systems biology approach by constructing a large-scale empirical genetic 

interaction map of yeast metabolism and integrating the data with a genome-scale metabolic 

network model.  Our analyses yielded four major insights, discussed in turn below (Harrison, et 

al. 2007; Szappanos, et al. 2011). 

 

 

Organization principles of genetic interaction networks 

First, the computational model successfully captured the high genetic interaction connectivity, for 

both positive and negative interactions, of genes that have a large contribution to fitness (Figure 

1). Importantly, the genome-scale model incorporates information only on the stoichiometry of 

biochemical reactions and growth requirements of the cell without explicitly accounting for gene 

regulation and enzyme kinetic details. Therefore, this result suggests that genetic interaction hubs 

emerge from the structure of metabolic networks. Modelling also offered a mechanistic 

explanation for the existence of hubs in the genetic interaction network. Hubs are driven by 

pleiotropic enzymes that participate in multiple biological processes by contributing to the 

biosynthesis of multiple key biomass precursors. As a result, the phenotypic impact of their loss 

can potentially be shaped by several other enzymes in the network, yielding numerous epistatic 

interactions. Clearly, further empirical works on enzyme pleiotropy are needed to test how well 

this hypothesis explains experimentally observed genetic interaction hubs.  
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Figure 1. Genes with large fitness contribution show many genetic interactions in the computational 

model. Predicted single mutant fitness correlates well with both the number of predicted negative and 

positive genetic interactions (Spearman’s rho=-0.59, P<10-3 and rho=-0.47, P=0.005, respectively). Only 

genes with nonzero predicted fitness defects are shown. Variables are rank transformed. Figure 

reproduced from (Szappanos, et al. 2011). 

 

 

Computational prediction of individual genetic interactions 

Second, by comparing genetic interaction data with a genome-scale model of metabolism, we 

provided the first large-scale assessment of our ability to predict individual genetic interactions 

using genome-scale metabolic models. Analysis of high-confidence experimental data across 

~67,500 metabolic gene pairs uncovered a strong enrichment of in vivo interactions among 

computationally predicted ones (100-fold and 60-fold enrichment for negative and positive genetic 

interactions, respectively, corresponding to precision values of 0.5 and 0.11, respectively; see 

Figure 2). Thus, gene pairs that show a strong epistasis in the model are highly likely to also show 

an interaction in the experiment. This is rather remarkable as the modelling framework is simple 

and does not rely on detailed enzyme kinetic or regulatory information. However, the metabolic 
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model fails to capture the majority of in vivo detected genetic interactions (97% and 89% of the 

negative and positive interactions, respectively; see Figure 2). Overall, it appears that this low 

success rate comes from overestimating the fitness of double mutants, possibly because many in 

vivo observed genetic interactions arise from regulatory effects that are not captured by the 

structure of the metabolic network. We anticipate that more sophisticated models that take into 

account allosteric regulations and account for widespread regulatory / signaling interactions with 

non-metabolic genes (Mulleder, et al. 2016) will be needed to more accurately capture the 

metabolic behavior of mutant cells.  

 

 

 

Figure 2. Accuracy of predicting genetic interactions using a genome-scale metabolic network model in 

yeast. We visualized prediction accuracy by plotting precision (fraction of predicted interactions that can 

be verified by experimental data) against recall (fraction of experimentally observed interactions that are 

successfully identified by the model) at different predicted genetic interaction score cutoffs. In addition, 

figure insets show ROC curves. Analysis is based on 325 in vivo negative and 116 in vivo positive 

interactions among 67,517 gene pairs for which high-confidence experimental data was available.  Figure 

reproduced from (Szappanos, et al. 2011). 
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Automated refinement of the metabolic model based on genetic interaction data 

Can we make use of the discrepancies between empirical data and model predictions to refine the 

metabolic model itself? In principle, the large number of experimentally observed genetic 

interactions offers a rich source of information to modify the model in a data-driven way. To this 

end, we developed a machine learning method that automatically suggests modifications to the 

model that improve its ability to predict negative genetic interactions (Figure 3A). Allowed 

modifications included changes in reaction reversibility, removing reactions and modifying the set 

of biomass compounds deemed essential for growth. The method employs a genetic algorithm to 

minimize false predictions in a two-stage process (Figure 3A). Importantly, we minimized model 

false predictions globally (i.e. not on a mutant by mutant basis) and using experimental growth 

data on both single and double mutants. Overall, the method proposed several modifications that 

together improved the fit of the model to the data (i.e. 100–267% increase in recall and 44–59% 

increase in precision; see Figure 3B). Among the suggested modifications, we found the removal 

of the de novo NAD biosynthesis pathway starting from aspartate. This pathway is present in E. 

coli (Flachmann, et al. 1988), but was probably erroneously included in the yeast network. Indeed, 

a follow-up experiment confirmed that removing this pathway specifically allows the correct 

prediction of nicotinic acid auxotrophy of mutants affecting the kynurenine pathway. We 

anticipate that similar machine learning methods have the potential to facilitate the development 

of more accurate metabolic network models for metabolic engineering and systems biology and 

will also contribute to the growing field of automated scientific discovery (King, et al. 2009). 
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Figure 3. Automated refinement of the metabolic model. (A) Workflow of the refinement algorithm. 

Because evaluating each model is computationally intensive (i.e. a large number of gene deletions should 

be simulated for each individual model), we employed a two-step procedure to make use of all available 

phenotypic data while maintaining computational feasibility. In the first step, we searched for models by 

evaluating a model on only those gene pairs that display either in vivo interaction or in silico interaction 

according to the original model. Because genetic interactions are very rare both in vivo and in silico, most 

gene pairs examined in this study show no interaction and omitting them significantly speeds up the 

exploration of the hypothesis space. In the second step, we defined a new, very restricted hypothesis space 

based on the most successful models from the first step, but searched for models that improve overall 

prediction accuracy as assessed by a comprehensive evaluation of each model in the population. (B) Impact 

of model refinement on prediction accuracy using 8 independent runs of the algorithm. Figure shows the 

congruency of the modified (blue to green) and original (red) models to the empirical genetic interaction 

data by both precision recall and partial ROC curves (inset). Dashed lines represent prediction accuracy 

expected by chance. Note that while the same dataset was used for both model refinement and evaluation 

in this plot, a cross-validation procedure confirmed significant model improvement (Szappanos, et al. 

2011). Figure reproduced from (Szappanos, et al. 2011). 
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Environmental-dependence of genetic interactions 

Finally, by computationally analyzing how genetic interactions change across dozens of nutrient 

conditions, we found that genetic interactions often depend on the prevailing environments. The 

study focused on synthetic lethal interactions, which is an extreme form of negative genetic 

interactions where the double gene deletant shows a no-growth phenotype that is not displayed be 

either single deletion mutant. In particular, out of 98 gene pairs that show synthetic lethality in at 

least one condition, only ~15% display this interaction under all nutrient conditions (Harrison, et 

al. 2007). Our work offered two scenarios for such environmental dependency, both of which was 

experimentally confirmed (Figure 4): (i) one or both genes of the synthetically interacting pairs 

become essential upon environmental change, or (ii) the double mutant becomes viable in a 

different environment. The first scenario has important implications for our understanding of 

genetic redundancy. Synthetic lethal interactions are often thought to indicate functional 

redundancy between gene pairs, e.g. through alternative pathways or gene duplicates (Hartman, et 

al. 2001). Crucially, our work shows that many genes involved in synthetic interactions in one 

environment become essential in another environment, indicating that their redundancy is more 

apparent than real. More generally, the robustness of metabolic networks against genetic 

perturbations is likely to be a by-product of adaptation to survive in a large variety of nutrient 

conditions.   
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Figure 4. Conceptual model to explain the environment-dependency of synthetic lethal interactions. An 

essential metabolic intermediate (yellow circle) can be synthesized via three independent pathways. 

Enzyme encoding genes A and B are in synthetic lethal interaction in Environment I, where precursor 

nutrients of both pathways are present in the environment. However, the presence of gene B is unable to 

compensate inactivation of gene A in Environment II, and the double mutant ab is rescued by a third 

pathway in Environment III. Figure reproduced from (Harrison, et al. 2007). 
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III. Predicting genome reduction 

Key paper: (Pál, et al. 2006) (see Appendix) 

Further related papers: (Fehér, et al. 2007), (Yizhak, et al. 2011)  

 

One of the central questions in the post genomic era is understanding which organisms have which 

genes. Typically, such inferences are drawn a posteriori, that is having discovered that an organism 

has a given gene we then construct hypothesizes about its ecology or biology. For example, we 

infer that because mice have abundant olfactory receptors they need to detect many chemicals in 

their natural environment. But is it possible to do the inverse and hence have an a priori and 

predictive theory for a genome?  That is, can we take an organism’s ecology and predict which 

genes it should have with any accuracy? At first sight this seems an almost impossible task due to 

the large diversity of genes and gene combinations that may perform similar functions. However, 

it might be possible to predict changes in gene content during reductive evolution of genomes, that 

is, when genes are lost on a massive scale, as seen in endosymbotic bacteria. In such situations, 

knowing the initial genomic composition, relevant selection pressures and functional constraints 

may allow us to predict the outcome of evolution.  

 

Computational prediction of genome reduction 

As first attempt to probe the feasibility of predicting long-term genomic evolution, we asked 

whether, given the genome of E. coli, we can predict the metabolism of Buchnera, an intracellular 

symbiont with a heavily reduced genome, that was derived from E. coli (Figure 5).  Buchnera have 
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evolved from its free-living ancestors approximately 200 million years ago and lost 75% of their 

genes, reaching nearly minimal gene sets (~600 genes) needed to sustain life. We used a genome-

scale model of E. coli metabolism, and setup the model to mimic the lifestyle of the endosymbiont 

based on available physiological evidence. Specifically, Buchnera consume glucose and glutamate 

while supply their aphid hosts with essential amino acids and riboflavin that are in shortage in the 

hosts’ diets. Using a series of flux balance analysis simulations, we considered sequentially the 

fate of randomly selected gene deletions and asked, given the ecology of Buchnera, whether these 

would be effectively neutral or not. Repeatedly simulating successive gene loss events until no 

further genes could be deleted without impairing in silico growth, we obtained a set of minimal 

networks (Figure 5). Remarkably, comparison of the gene complements of these in silico minimal 

networks with three then available B. aphidicola genomes revealed that gene presence / absence 

can be predicted with high accuracy (area under the ROC curve =0.794 – 0.802, depending on the 

endosymbiont genome). Thus, 200 million years of reductive genome evolution is surprisingly 

well predictable based on knowledge of the organism’s distant ancestor and its current lifestyle. 

Moreover, in a follow-up work, we reconstructed the intermediate steps of genome reduction in 

the Buchnera lineage and demonstrated that not only the outcome, but also the order of gene loss 

events are predictable (Yizhak, et al. 2011).  
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Figure 5. A genome-scale metabolic modelling approach to predict genome reduction in endosymbiotic 

bacteria. The computational approach uses the genome-scale metabolic model of present day E. coli as a 

proxy for the free-living ancestor of the endosymbiont B. aphidicola and mimicks the lifestyle of the present 

day endosymbiont to predict the impact of individual gene loss events along an evolutionary trajectory. 

During the evolutionary simulations, minimal metabolic networks were generated by repeatedly 

simulating gene loss events (red cross) until no further genes could be removed without impairing in silico 

growth. The computationally predicted minimal networks showed high overlap with the metabolic gene 

contents of real Buchnera (lower panel). Figure reproduced from (Papp, et al. 2011). 

 

Chance and necessity in the evolution of minimal networks 

Even closely related Buchnera strains vary in their gene complements. In principle, such variation 

in reductive genome evolution may reflect both differences in selective forces (ecology) and 

chance events, yielding differences in the order of gene deletions and hence a choice between 
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alternative cellular pathways. The stochastic nature of the deletions in our simulations introduces 

an historical accident component that ends up predicting that such variety should exist.  Comparing 

the minimal networks from repeated simulations, we indeed found support for partially different 

evolutionary outcomes that arise from chance events. Simulated minimal reaction sets differ, on 

average, by 12% of their reactions. This variability represents phenotypically nearly equivalent 

alternative gene loss trajectories owing to the presence of parallel metabolic pathways in the 

ancestral bacterium. For example, E. coli can convert acetate to acetyl-CoA through two parallel 

pathways (Kumari, et al. 1995). In line with this, we found that the simulated minimal networks 

always contain only one of the two pathways and Buchnera strains have also retained only one of 

them. 

 

Remarkably, these analyses successfully predicted core genes that all Buchnera genomes should 

share as well as genes that should be present in some, but not all, Buchnera genomes due to 

historical chance events (Figure 6). This is an important result because it shows that variation 

between taxa in metabolic capabilities need not simply reflect ecological differences, as typically 

presumed, but may just be historical contingency. We expect that the role of chance events will be 

more prominent when horizontal gene transfer plays an important role in the evolution of 

metabolic gene contents.  
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Figure 6. Chance and necessity in genome reduction trajectories. Repeated evolutionary simulations 
predicted core genes that should be present in all minimal metabolic networks and genes that should be 
present in some but not all networks. Indeed, genes in the former group are much more likely to be retained 
in the genome of B. aphidicola Bp. Error bars indicate 95% confidence intervals. Chi-square test: n=874, 
Chi-square=222.6, d.f.=4, P<10-46. Figure reproduced from (ref). 

 

Implications for synthesizing minimal genomes 

These results also have implications for the synthesis of minimal genomes in the laboratory. An 

important strategy to identify the set of genes essential for cellular life is to inactivate genes 

individually (Fehér, et al. 2007). However, due the presence of parallel pathways and functional 

compensation between different genes, the set of essential genes of any organism must be only a 

subset of the minimal genome as non-essential gene can easily become essential in some genomic 

contexts. Our simulations quantify this discrepancy. Specifically, we found that the list of essential 

genes in a free-living bacterium underestimates the minimal gene set by 45% in the metabolic 

network. Indeed, more recent practical computational tools to prioritize genomic regions for 

removal integrate genome-scale metabolic modelling with gene essentiality data (Wang and 

Maranas 2018). 
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IV. Underground metabolism and the predictability of adaptive evolution 

Key paper: (Notebaart, et al. 2014) (see Appendix) 

Further related papers: (Notebaart, et al. 2018), (Guzman, et al. 2019) 

 

Understanding how new molecular pathways emerge during adaptation is one of the central issues 

in evolutionary and systems biology. In the most well-understood networks, small-molecule 

metabolism, the prevailing paradigm is that evolution capitalizes on the weak side activities of pre-

existing enzymes (Jensen 1976). This paradigm rests on several key empirical observations. First, 

most enzymes are catalytically promiscuous, that is they have limited substrate specificities and 

show measurable, albeit weak, catalytic activity for alternative substrates (Khersonsky and Tawfik 

2010). These so-called underground enzyme activities appear to be widespread (Kuznetsova, et al. 

2006; Huang, et al. 2012). Second, underground activities can be enhanced by few mutational steps 

and hence serve as starting points for new enzyme functions in directed evolution experiments in 

the lab (Aharoni, et al. 2005). Weak ancestral activities towards non-preferred substrates have also 

been demonstrated to contribute to the functional diversification of enzyme families in the wild 

(Huang, et al. 2012). Third, comparative genomic studies have established that new metabolic 

pathways are typically patched together from homologs of other enzymes that function in different 

parts of the network (Rison, et al. 2002; Schmidt, et al. 2003). 

 

While much has been learned about the biochemical mechanisms of these activities in a few well-

studied enzymes, the extent to which underground reactions provide novelties in the context of the 

entire cellular system remains completely unexplored. This gap of knowledge is far from trivial as 
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many underground reactions, while providing a new catalytic function, might be isolated from the 

rest of the network, might only contribute to new pathways that are functionally redundant with 

existing ones, or might even be harmful. 

 

Reconstructing the underground metabolic network of E. coli 

To address the above gap, we applied a systems-level approach that provides insights into the 

architecture of underground metabolism and also enables the prediction of the role of underground 

activities in adaptation to nutrient conditions (Notebaart, et al. 2014). In brief, we focused on 

Escherichia coli, which is the most comprehensively characterized organism in terms of enzymatic 

activities. For instance, enzyme databases, such as BRENDA (Scheer, et al. 2011) contains 

hundreds of publications on non-native side activities of enzymes that are not included in the 

canonical metabolic network reconstruction (i.e. native network). Based on such databases and 

literature survey, we therefore built an in silico underground metabolic network reconstruction of 

Escherichia coli and integrated it with the native genome-scale metabolic model of this organism 

(Feist, et al. 2007) (Figure 7). Overall, we included 262 underground reactions and 277 metabolites 

that are not present in the native network. Two lines of evidence indicate that these reactions occur 

at very low rates and are physiologically irrelevant in the wild-type cell: (i) The measured catalytic 

activities of these reactions are ~200-fold lower than the native activities of the same enzymes, 

and (ii) metabolites introduced into the network via underground reactions are rarely observed 

experimentally. The resulting reconstruction is the first comprehensive computational model of 

the underground metabolism of any organism. 
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Figure 7. Workflow of the reconstruction process. Grey and red lines indicate native and underground 

reactions, respectively. 

 

The architecture of underground metabolism 

Introducing novel biochemical reactions through enzyme side activities into to the native network 

may create cross-wiring between existing metabolites, introduce dead-ends or result in isolated 

reactions that are not connected to the rest of the network (Figure 8). Analysis of our underground 

network reconstruction suggests that a large fraction (45%) of these reactions can be fully wired 

into the native network, while only a minority is completely isolated from the rest of metabolism 

(Figure 8). But can the fully connected underground reactions potentially contribute to the 
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formation of key biomass precursors and hence be useful for the cell? To test this, we decomposed 

the network into biochemically relevant pathways, so called elementary flux modes (EFMs) that 

can maintain steady-state flux from nutrient uptake to biomass production, and analyzed the 

properties of such pathways. Taking a large sampling of EFMs shows that all underground 

reactions that can be fully wired into the network can carry flux from glucose to biomass precursors 

and at similar efficiencies (i.e. yield) as the native reactions of corresponding enzymes. Together, 

these analyses showed that a substantial proportion of underground reactions can form new 

pathways with high potential biological relevance.  

 

 

Figure 8. Connectedness of underground reactions in the native network. The connectedness of each 

underground reaction was assessed individually, hence some unconnected or partially connected 

metabolites might become fully connected in the presence of other underground reactions. Nodes denote 

metabolites (blue and red correspond to native and novel metabolites, respectively) and edges denote 

biochemical reactions (gray and red correspond to native and underground, respectively). Figure 

reproduced from (Notebaart, et al. 2014). 
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Characterizing the evolutionary potential of underground metabolism 

How frequently do underground enzyme activities serve as raw materials for evolutionary 

adaptation to new environments? To address this, we conducted an integrated in silico and an in 

vivo survey to characterize the evolutionary potential of E. coli to adapt to hundreds of novel 

nutrient conditions. First, we computationally predicted the impact of adding underground 

reactions to the native network on maximum growth across a variety of environments. Because we 

were interested in the potential to evolve towards new nutrients, we assumed that all underground 

reactions can be utilized (i.e. there are no enzyme kinetic or regulatory constraints). We simulated 

growth using FBA in ~2700 nutrient conditions that encompass the full range of carbon, nitrogen, 

sulfur and phosphorous sources that can be transported to the network. The analysis revealed 

dozens of cases where underground reactions allow or improve growth in previously 

uncharacterized growth environments when their activity is increased (Figure 9). Specifically, 

underground reactions enabled growth in 19 new conditions and improved growth in 31 

conditions. To put these figures into context, we note that the native network shows growth in 645 

environments. Thus, increasing the total reaction content of the E. coli network by ~11% expanded 

its range of utilizable carbon sources by ~3%. Most of the growth improvements were conferred 

by single underground reactions (shown in Figure 8), with only a minority requiring multiple 

reactions simultaneously (see (Notebaart, et al. 2014)). Overall, we estimate that ~15% of the 

underground reactions that can be fully wired into the network confer an advantage when added 

individually, while an additional 5% are beneficial in combination with other side activities (Figure 

9).  
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Figure 9. In silico growth improvements conferred by underground reactions. Heatmap showing the 

computationally predicted growth advantages conferred by adding single underground activities to the 

native network across different nutrient conditions (upper panel). Only aerobic carbon sources are shown 

here. Bright green squares indicate utilization of a nutrient on which the native network does not grow. 

Lower panel depicts the estimated adaptive potential of underground reactions. Upper panel reproduced 

from (Notebaart, et al. 2014). 
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Second, we experimentally estimated the potential of underground activities in adaptation to new 

nutrient sources. We carried out a genome-wide gene overexpression screen in E. coli and 

measured growth under 194 carbon sources (Patrick, et al. 2007; Kim, et al. 2010). Overall, we 

identified 17 genes that improved growth upon overexpression in at least one of 17 specific carbon 

sources. Out of the 17 genes, 11 encoded enzymes and 9 of these had known underground 

activities. Notably, 6 of these enzymes conferred growth on a carbon source where the wild-type 

was unable to growth. Our screen offers an estimate of the in vivo evolutionary potential of 

individual underground reactions: strong overexpression of single genes expands the range of 

utilizable nutrients by 6% (from 85 to 90 of the tested nutrient conditions). Note that this must be 

an underestimate as our experimental assay is unable to detect evolutionary novelties that require 

the simultaneous amplification of multiple underground activities or those that provide only a 

small fitness benefit. Together, these analyses strongly support the notion that evolution can 

capitalize on underground reactions both to enhance growth in existing environments and to 

exploit completely new nutrient sources. 

 

Predicting the genetic basis of adaptation to novel environments 

Is it possible to predict which enzyme confers a growth benefit in which new environment through 

amplifying its side activity? In other words, can we predict the genetic basis of evolutionary 

adaptation to new environments? Comparison of the computational predictions with the genome-

wide overexpression experiment showed a remarkable agreement (Figure 10).  Specifically, the 

computational model successfully predicted 44% of the carbon sources on which amplification of 
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an enzyme conferred or improved growth, an overlap that is statistically highly significant (P<10-

13). For instance, the metabolic network model predicted that amplification of the side activity of 

YihS enables growth on D-lyxose. In line with this prediction, wild-type E. coli is unable to grow 

on D-lyxose, but becomes capable of utilizing it when the gene encoding YihS is overexpressed. 

Notably, this is a highly specific prediction as none of the other ~4000 overexpressed proteins 

conferred growth on this carbon source. These results demonstrate that it is possible to predict the 

genetic basis of evolution towards new nutrient environments based on a detailed knowledge of 

an organism’s underground metabolism.  

 

Toward predicting evolution through spontaneous mutations 

The above analyses employ gene overexpression experiments to validate the computational 

predictions. As such, they leave it unclear whether the underlying genetics of adaptation can be 

also predicted in a population of bacteria that evolve through spontaneous mutations. 

Overexpression experiments might be poor representation of real evolutionary processes for at 

least two reasons: (i) strong artificial overexpression might induce phenotypes that are not readily 

accessible through single mutations arising spontaneously and (ii) the same phenotype might be 

reached by mutations in several distinct genes, making it challenging to predict which of these 

genes are actually mutated during evolution. We addressed these issues in a more recent work in 

collaboration with Adam Feist’s lab by conducting a series of automated laboratory evolution 

experiments to adapt E. coli to novel carbon sources (Guzman, et al. 2019). By focusing on 5 non-

native carbon sources that are predicted to be reachable through specific underground reactions, 

we showed that E. coli repeatedly acquired the ability to utilize them. More strikingly, in 4 out of 

5 carbon sources, the genes underlying the phenotypic innovations were accurately predicted by 
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computational model simulations incorporating underground reactions. Eventually, this work 

demonstrates that computational systems biology models can be employed to predict the trajectory 

and outcome of adaptive evolution under certain circumstances. 

 

More broadly, as our work offers a system-level framework to predict evolution based on the 

knowledge of ‘underground’ phenotypic potentials, we anticipate that it will have far-reaching 

potential for various application areas from bioengineering to medical genetics. Specifically, the 

role of gain-of-function enzyme mutations in tumor evolution is becoming increasingly recognized 

(e.g. (Dang, et al. 2009)) and our work provides a new framework to systematically study the 

phenotypic potential of such mutations.  
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Figure 10. Prediction of growth advantages conferred by amplified underground activities. List of nine 

enzymes that enable (++) or improve (+) growth on specific carbon sources when overexpressed 

experimentally. All of these enzymes have known or presumed side activities (underground reactions 

supported by indirect evidence are denoted by asterisks). Forty-four percent of the experimentally 

confirmed phenotypes were also predicted by the computational model (●). Lower panel depicts a 

schematic map of central carbon metabolism with underground reactions (red arrows) that confer a 

growth advantage on specific carbon sources (highlighted in yellow) when overexpressed.  
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V. Simple paths to complex adaptations 

Key publication: (Szappanos, et al. 2016) (see Appendix) 

Further related paper: (Pal and Papp 2017) 

 

Explaining the origin of evolutionary novelties remains a central challenge in evolutionary 

biology. Traits that require the simultaneous emergence of multiple mutations, none of which 

seemingly confer a benefit individually, pose an especially daunting challenge for evolutionists. 

Such traits are often referred to as complex adaptations and might be difficult to evolve, not 

because of physical or chemical constraints, but because of the dynamics of how mutations spread 

in the population. Darwin himself was well aware of this challenge: “if it could be demonstrated 

that any complex organ existed, which could not possibly have been formed by numerous, 

successive, slight modifications, my theory would absolutely break down” (Darwin 1859). 

 

Proponents of intelligent design generally refer to the pseudoscientific theory of irreducible 

complexity, claiming that such complex traits cannot be explained by Darwinian evolution: they 

are considered too complex to evolve from simpler predecessors through natural selection acting 

upon a series of advantageous naturally occurring mutations. However, complex adaptations are 

omnipresent at all levels of biological organization. For example, they frequently occur in 

molecular systems, including the establishment of disulfide bonds in protein molecules, the origin 

of multi-step metabolic pathways and regulatory – DNA interactions (Hiba! A hivatkozási forrás 

nem található.1). Overall, the widespread occurrence of complex adaptations indicate that they 

can readily evolve in nature. Thus, a theory is needed that accounts for their rapid evolution.  
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Figure 11. Major forms and examples of complex adaptations in molecular traits. The origin of a new 

disulfide bond (S-S) from two nearby sulfhydryl groups (−SH) within the same protein represents an 

example of intramolecular complex adaptation. The evolutionary establishment of new transcription 

factor – DNA binding site interactions, metabolic pathways involving multiple steps and multi-subunit 

protein complexes can be considered as intermolecular complex adaptations demanding specific 

mutations in multiple genes. Note that two mutations (a → A and b → B) have to occur simultaneously to 

confer a fitness benefit (adaptation) in all these traits. Yellow, orange and red circles represent the 

substrate, intermediate metabolite and end product, respectively, of a schematic metabolic pathway. 

Figure reproduced from (Pal and Papp 2017). 

 

 

One influential theoretical model for complex adaptations invokes the accumulation of neutral 

mutations which prepare the ground for later beneficial mutations that eventually lead to 
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innovations (Wagner 2008). A related population genetic theory argues that large populations 

harbor a reservoir of non-adaptive mutations in which a second mutation can be beneficial and go 

to fixation (Weissman, et al. 2009; Lynch and Abegg 2010). However, these processes are 

expected to be very slow compared to those where the intermediate steps are facilitated by adaptive 

bypasses (see below for one such bypass). Furthermore, these model lacks direct empirical support 

in molecular networks.   

 

The varying environment scenario of complex adaptations 

Here I discuss a conceptually simple model to resolve the paradox of complex adaptation. This 

scenario is closely related to the notion of pre-adaptation and purely relies on the successive 

accumulation of beneficial mutations. In brief, temporally varying environmental conditions select 

for single adaptive mutations that, as a by-product, serve as stepping stones towards the 

establishment of more complex phenotypes. Thus, complex adaptations can be accelerated in 

dynamically changing environments. The core of this idea has been proposed by Horowitz in his 

seminal paper on the early origin of metabolic pathways (Horowitz 1945) and is conceptually 

related to in silico studies of the evolution of RNA molecules and genetic circuits in varying 

environments (Kashtan, et al. 2007).  

 

Specifically, we asked how novel nutrient utilization phenotypes (traits) can be established in a 

bacterial metabolic network by adding new enzymatic reactions to it. We hypothesized that 

varying environments promote the piecewise assembly of enzymatic reactions into novel multi-

step pathways in an organism that already harbors a complex metabolic network. This 
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phenomenon is expected to arise if some single enzyme acquisitions confer a fitness advantage in 

some other specific environments in addition to contributing to the multi-step pathway. The 

acquisition of such enzymes act as molecular ‘springboards’ to facilitate further adaptive 

evolution. 

 

Testing the varying environment scenario – a computational approach 

To test this scenario, we first studied in silico the expansion of the E. coli metabolic network to 

utilize novel nutrients. It has been established that bacterial metabolic networks expand typically 

by horizontally acquiring new enzymatic and transporter genes involved in the utilization of 

nutrient sources (Pál, et al. 2005). Therefore, we examined how biochemical reactions that are 

absent in E. coli but present in other organisms (the ‘universal reaction set’) confer a benefit in a 

large panel of environments when added to the E. coli network. Our dataset comprised more than 

2,500 reactions not present in E. coli and ~1,700 possible nutrient sources. Flux balance analysis 

showed that expanding the E. coli network enabled growth in 321 of these novel nutrient 

environments. Importantly, acquiring the capacity to grow in a new environment typically 

demanded the addition of only one to three new enzymatic or transport reactions to the native E. 

coli network (Figure 12). Thus, most metabolic novelties can be reached by few mutational steps.  

 

Our computational analyses revealed that new complex pathways can evolve via the successive 

acquisition of single biochemical reactions that each confer a benefit under specific environmental 

conditions. For example, there are 118 environments that require the simultaneous acquisition of 

two reactions and 8.5% of them can be accessed through an adaptive intermediate step (i.e. one 
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reaction confers a benefit in another environment). This is well illustrated by the ability to grow 

on chorismate, which can be reached through purely adaptive walks by first acquiring L-

phenylalanine utilization (Figure 13).  

 

 

Figure 12. Metabolic novelties are only few mutational steps afar from the E. coli network. The plot shows 

the distribution of the number of minimum extra reactions needed for growth in 321 novel nutrient 

conditions. 
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Figure 13. Example of a two-step pathway that becomes accessible for evolution through purely adaptive 

enzyme acquisitions. Chorismate and L-phenylalanine are carbon sources that cannot be utilized by E. coli 

K-12. Wheras chorismate utilization requires the joint acquisition of two reaction steps, one of these steps 

(catalysed by phenylalanine ammonia lyase) also enables the utilization of L-phenylalanine when acquired 

individually. Reproduced from (Szappanos, et al. 2016). 

 

Second, the varying environment scenario predicts that gain of new metabolic genes should occur 

in a defined order. In particular, if two enzymes are jointly required to support growth in a novel 

environment, and one enzyme confers a benefit on its own in another environment, then the latter 

enzyme should be gained earlier. We tested this by reconstructing the evolutionary history of gene 

gain events in 943 bacteria using phylogenetic methods. In line with the expectation, we found 

dc_1908_21

Powered by TCPDF (www.tcpdf.org)



37 
 

that two-step pathways tend to be established the same order as predicted by the computational 

analysis. 

 

Experimental test of the varying environment scenario 

Last, we carried out a laboratory evolution study to adapt E. coli to two novel carbon sources and 

showed that evolving the ability to grow on one of them facilitated subsequent adaptation to the 

other. Specifically, we focused on two related carbon sources, ethylene glycol and propylene 

glycol, on which wild-type E. coli is unable to grow. We found that adaptation of an E. coli strain 

background with an elevated mutation rate occurred readily to propylene glycol, but not to ethylene 

glycol. Remarkably, a genotype that first adapted to propylene glycol showed at least ~100-fold 

increased frequency to adapt to ethylene glycol, indicating that the first adaptation served as a 

stepping stone to the second one. Further analysis showed that upregulation of the fucO gene alone 

confers growth on propylene glycol and increases the rate of adaptation to ethylene glycol. 

Notably, ethylene glycol utilization was achieved by amplification of the gene of the AldA 

enzyme, which acts in the same pathway as FucO (Figure 14). Indeed, we found that simultaneous 

overexpression of both fucO and aldA enabled growth on ethylene glycol, a phenotype that was 

not conferred by either fucO or aldA overexpression alone. 

 

Taken together, the above results demonstrate that complex metabolic adaptations can evolve 

through adaptive intermediate mutations by stepwise expansion of nutrient utilization capabilities. 

This conclusion represents an important conceptual advance as there is no need to invoke the slow 

process of accumulating neutral intermediate mutations. 
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Figure 14. Gaining the ability to utilize propylene glycol enhances adaptation to ethylene glycol utilization.  

Pathway map of propylene glycol (PG) and ethylene glycol (EG) utilization. In the first step, FucO catalyses 

the oxidation of PG and EG to glycolaldehyde and L-lactaldehyde, respectively. In the second step, AldA 

oxidizes the products of FucO to hydroxycarboxylic acids which are channeled into the central carbon 

metabolism. We note that the affinity of AldA for L-lactaldehyde is higher than for glycolaldehyde, 

potentially explaining why growth on EG demands the amplification of aldA. 

 

 

Implications of the varying environment scenario 

Our work has important ramifications for those studying the design principles of complex 

molecular pathways as well as for those aiming to create industrially useful microbes. First, our 

results suggest that deciphering the adaptive value of molecular pathways might often require 

studying their operation under multiple environmental conditions. Second, we anticipate that 
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evolutionary engineering of microbes to obtain desired phenotypes could be facilitated by 

temporally varying the traits under selection.  
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VI. Summary of key results 

This thesis is based on a series of publications that utilize computational systems biology 

modelling of metabolic networks to address several outstanding issues in evolutionary genetics. 

We reached the following major results, as published in the highlighted papers: 

 

1) We probed the limits of predicting genetic interactions using genome-scale metabolic networks 

and showed that genetic interaction hubs are highly predictable, but individual genetic 

interactions are often missed by these computational models. Building on these discrepancies, 

we developed a machine learning method that refines the metabolic network model based on 

large-scale genetic interaction data. 

 

Szappanos, B., Kovács, K., Szamecz, B., Honti, F., Costanzo, M., Baryshnikova, A., Gelius-Dietrich, 

G., Lercher, M.J., Jelasity, M., Myers, C.L., Andrews, B.J., Boone, C., Oliver, S.G., Pál, C., Papp, B. 

(2011) An integrated approach to characterize genetic interaction networks in yeast metabolism. Nature 

Genetics 43: 656 

 

2) We showed that synthetic lethal genetic interactions often depend on the prevailing 

environments. Importantly, this is often caused by one or both genes of the synthetically 

interacting pairs becoming essential upon environmental change, indicating that the two genes 

are only partly redundant.  

 

*Harrison, R., *Papp, B., Pál, C., Oliver, S.G., Delneri, D. (2007) Plasticity of genetic interactions in 

metabolic networks of yeast. Proc Natl Acad Sci U S A. 104: 2307-12. 
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3) By simulating the repeated loss of non-essential genes in a genome-scale metabolic model of 

E. coli, we showed that it is possible to predict the highly reduced gene content of closely 

related endosymbiotic bacteria that diverged ~200 million years ago. 

 

*Pál, C., *Papp, B., Lercher, M.J., Csermely, P., Oliver, S.G. and Hurst, L.D. (2006) Chance and 

necessity in the evolution of minimal metabolic networks. Nature 440: 667-70. 

 

4) We reconstructed a comprehensive network of known enzyme side activities (i.e. underground 

reactions) in E. coli, which is the first such reconstruction in any organism. By combining 

computational simulations and a high-throughput experimental survey across hundreds of 

nutrient environments, we predicted and confirmed new environments where enhanced activity 

of underground reactions confer growth. Our results demonstrate that the genetic basis of 

evolutionary adaptations via underground metabolism is computationally predictable. 

 

Notebaart, R.A.*, Szappanos, B., Kintses, B., Pál, F., Györkei, A., Bogos, B., Lázár, V., Spohn, R., 

Csörgő, B., Wagner, A., Ruppin, E., Pál, C.*, Papp, B.* (2014) Network-level architecture and the 

evolutionary potential of underground metabolism. Proc Natl Acad Sci U S A. 111: 11762-11767. 

 

5) We proposed a new model to resolve the paradox of complex adaptations, i.e. new traits that 

require the simultaneous emergence of multiple mutations, none of which seemingly confer a 

benefit individually. By studying the evolution of new nutrient utilization capabilities in 

metabolic networks, we showed that phenotypes accessible through the addition of a single 

reaction serve as stepping stones towards the later establishment of complex metabolic 
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phenotypes in another environment. Thus, temporally varying environmental conditions 

enable the step-by-step expansion of nutrient utilization capacities without the need to invoke 

non-adaptive processes. 

 

Szappanos, B., Fritzemeier, J.C., Csörgő, B., Lázár, V., Lu, X., Fekete, G., Bálint, B., Herczeg, R., 

Nagy, I., Notebaart, R.A., Lercher, M.J., Pál, C.*, Papp, B.* (2016) Adaptive evolution of complex 

innovations through stepwise metabolic niche expansion. Nat Commun. 7:11607 

 

 

Note that the highlighted papers are included in the Appendix at the end of the thesis.  
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VII. Outlook: genome-scale modelling meets machine learning 

Genome-scale metabolic models have proven successful in addressing research questions that can 

be formulated as a mapping from gene presence - absence to growth phenotypes. However, the 

basic constraint-based modelling framework has at least two major limitations that prevents its 

more extensive use in the field of evolutionary genetics. First, it remains a formidable challenge 

to investigate the phenotypic impact of genetic variants beyond the resolution of gene presence – 

absence (e.g. most nucleotide-level variants) or those that alter non-enzymatic genes (e.g. in 

regulatory genes). Second, they assume optimal behavior for the wild-type network and therefore 

no mutations can increase fitness without expanding the network itself. Clearly, as genetic variants 

that do not completely abolish enzyme functions are abound, these limitations must be overcome 

to better represent evolutionary processes.  

 

One possible way to overcome these limitations is to integrate the constraint-based metabolic 

model with additional layers of mechanistic models to capture (i) quantitative details of enzyme 

kinetics, at least in some parts of the network (Fleming, et al. 2010; Cotten and Reed 2013), (ii) 

gene expression and gene regulatory circuits (Shlomi, et al. 2007; O'Brien, et al. 2013), and (iii) 

enzyme structures (Mih, et al. 2016). In theory, such efforts may eventually lead to whole-cell 

models that can predict the phenotypic impact of single nucleotide variants in most protein coding 

genes. However, building whole-cell models demand a more comprehensive knowledge of 

biochemical mechanisms and are highly prone to overfitting due to their sheer complexity 

(Oberhardt and Ruppin 2013). An alternative strategy is to infer genotype – phenotype associations 

using machine learning of large datasets and use genome-scale metabolic models as tools to 

provide a mechanistic structure to these inferences (i.e. white-box machine learning) (Yang, et al. 
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2019). In chapter 2, I have already presented such a machine learning approach that generates 

biological hypotheses from large-scale genetic interaction data and simultaneously improves the 

metabolic model (Szappanos, et al. 2011). Below, I briefly discuss the prospect of integrating 

biochemical network modelling with machine learning to build interpretable models that better 

capture genetic variants that occur in natural populations.   

 

The advent of population genomics yielded thousands of fully sequenced genomes of individuals 

from the same species. Genetic variation that exist in natural populations has the potential to 

illuminate the genetic basis of phenotypic traits using association studies, such as GWAS 

(Visscher, et al. 2017). A recent method combines mechanistic and machine learning genotype – 

phenotype models in an innovative way to identify the genetic basis of antimicrobial phenotypes 

from sequence data (Kavvas, et al. 2020). The method makes use of the fact that antimicrobial 

resistance phenotypes to certain drugs are causally linked to metabolic alterations. In brief, the 

method represents the allelic variants of each bacterial strain as a set of allele-specific flux 

constraints (i.e. upper / lower flux bounds) and optimally separates drug resistant and sensitive 

strains in the flux space using a variant of flux balance analysis. Thus, the framework is a machine 

learning classifier that infers allele-specific flux effects underlying resistance. As such it also 

provides causal biochemical network explanation of the classification. The method classifies 

resistant and sensitive Mycobacterium tuberculosis strains with high accuracy and recapitulates 

known resistance mechanisms. Similar approaches, including methods that integrate various types 

of omics data (Culley, et al. 2020), hold great promise towards building genome-scale models that 

predict the phenotypic effects of natural variants.  
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Recent large-scale genetic analyses of yeast have enabled the 
systematic screening of pairwise genetic interactions and provided 
valuable insights into the functional organization of a eukaryotic cell1 
as well as genetic networks underlying specific biological processes2,3. 
Despite the rapid growth in quantitative data on genetic interactions, 
we still have only a limited understanding of the molecular mecha-
nisms through which one mutation modifies the phenotypic effect 
of another. Furthermore, although the general properties of genetic 
interaction networks have been explored phenomenologically1,4, we 
often lack a mechanistic understanding of these patterns. For example, 
a recent large-scale study reported that single mutants with severe fit-
ness defects tend to have numerous genetic interactions1, a phenom-
enon that still awaits explanation. Finally, the systematic generation 
of biological hypotheses from the welter of phenotypic data produced 
by interaction screens remains a major challenge. By examining how 
cellular phenotypes arise from the operation of molecular networks, 
systems biology offers great promise for meeting these challenges.

Metabolism is one of the best characterized cellular subsystems and 
is especially suited for system-level studies of the genotype-phenotype 
relationship and, hence, genetic interactions. This is because first, 
high-quality metabolic network reconstructions are available that 
specify the chemical reactions catalyzed by hundreds of enzymes and 
cover the molecular function for a substantial fraction of the genome 

(for example, 15% in yeast)5. Second, these reconstructions can be 
converted into computational models to calculate the phenotype of 
both wild-type and mutant cells using constraint-based analysis tools6 
such as flux balance analysis (FBA). This imposes mass balance and 
capacity constraints to define the space of feasible steady-state flux 
distributions of the network and then identifies optimal network states 
that maximize biomass yield, a proxy for growth. Despite its simpli
city and low data requirements, this modeling framework has shown 
great predictive power and has been successfully applied to various 
research problems7, including predicting the viability of single-gene 
deletants8 and model-driven analysis of high-throughput data8–10. 
Although some properties of genetic interaction networks have also 
been addressed using FBA, these earlier studies were exclusively11,12 
or mainly13,14 theoretical because of the lack of large-scale genetic 
interaction data for metabolic genes.

To bridge the gap between theory and experiment, we have 
systematically measured genetic interactions between pairs of 
metabolic genes in yeast and combined these data with a detailed 
metabolic network reconstruction. Quantitative measurement of the 
fitness of single and double mutants has enabled us to detect both 
negative (aggravating) and positive (alleviating) interactions (that is, 
the double mutant has a lower or higher fitness, respectively, than 
would be expected from the product of the single-mutant fitnesses). 

An integrated approach to characterize genetic 
interaction networks in yeast metabolism
Balázs Szappanos1,10, Károly Kovács1,10, Béla Szamecz1, Frantisek Honti1,2, Michael Costanzo3,4,  
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Our integrated approach had three major goals. First, we investigated 
the distribution of genetic interactions within and across functional 
modules as defined by classical annotation groups and network-based 
mathematical methods. Second, we performed constraint-based 
analysis of the network to simulate mutational effects and predict 
interactions in silico. We then employed our in vivo interaction data 
to test the model’s ability to capture the general properties of genetic 
interaction networks and to assess the validity of its specific predic-
tions. Third, we automated the reconciliation of empirical interaction 
data with model predictions and used discrepancies to update the 
metabolic network and direct biological discovery.

RESULTS
Constructing a genetic interaction map of yeast metabolism
We selected genes for our genetic interaction map based on an updated 
reconstruction of the S. cerevisiae metabolic network, which consists 
of 1,412 reactions and accounts for 904 genes10. Genetic interaction 
data has been generated by large-scale synthetic genetic array (SGA) 
technology15. First, we performed new screens to construct a map 
that covers all major metabolic subsystems, except for transfer RNA 
aminoacylation. The screens involved construction of high-density 
arrays of double mutants by crossing 613 query mutants, including 
78 hypomorphic alleles of essential genes, against an array of 470 null 
mutants, producing double mutants for 184,624 unique gene pairs. 
The fitness of single and double mutants was assessed quantitatively 
by measuring colony size16. We calculated interaction scores (ε) based 
on the deviation of the double-mutant fitness (f12) from the product 
of the corresponding single-mutant fitnesses (ε = f12 – f1·f2)17. Second, 
we supplemented our measurements with data from our recent large-
scale genetic interaction screen1, which employed the same experi-
mental procedure as the present study but represented genes in all 
functional categories, including metabolism.

Overall, our combined dataset covers more than 80% of metabolic 
network genes, including 82 essential genes, and provides interaction 
scores for 215,907 pairs, 57% of which have been independently 
screened more than once. Applying a previously defined confidence 

threshold that proved informative in functional analyses1, we detected 
3,572 negative and 1,901 positive interactions (Online Methods). We 
focused on interactions between null mutations of non-essential genes 
(176,821 pairs) because of their better coverage and easier interpreta-
tion; data on essential genes has only been used for specific analyses. 
Additionally, we also defined a high-confidence interaction set based 
on the reproducibility of replicate experiments and used it when very 
low false-positive rates were required.

Genetic interactions are frequent between functional modules
We took advantage of our quantitative genetic interaction map 
to empirically test earlier predictions about the distribution of 
interactions within and between metabolic functional modules. 
Specifically, a computational study based on FBA suggested that i, 
genetic interactions are enriched within metabolic annotation groups, 
and ii, interactions between different functional groups tend to be 
either exclusively negative or exclusively positive, a property termed 
‘monochromaticity’11.

First, we report a modest, but significant, enrichment of both 
negative (1.6-fold, P < 10−3) and positive (2.5-fold, P < 10−15) inter
actions within classically defined functional modules. For example,  
lipid metabolism is especially enriched in genetic interactions, 
with sterol metabolism and fatty acid biosynthesis being primarily 
enriched in positive interactions, and both forms of interactions 
are overrepresented in sphingolipid metabolism (Fig. 1). Notably, 
the enrichments remain after controlling for potential confound-
ing variables, such as paralogy18, physical interaction3 or single-
mutant fitness1 (Online Methods), and become more pronounced 
when using the high-confidence interaction set (3.8-fold and 8.7-
fold enrichment of negative and positive interactions, respectively). 
However, as Figure 1 shows, the majority of genetic interactions occur 
between genes assigned to different metabolic functions (93% of nega-
tive and 90% of positive, or 86% and 73%, respectively, when using 
high-confidence interactions). The fact that even strongly enriched 
functional groups, such as fatty acid biosynthesis, have numerous 
interactions with other groups indicates widespread pleiotropy across 

metabolic subsystems.
Next, we asked whether interactions 

between different functional groups tend to 
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Figure 1  Distribution and monochromaticity 
of genetic interactions between functional 
groups. The radii of the circles represent 
the fraction of screened gene pairs that 
show genetic interaction within and between 
functional annotation groups (for example, 
sterol metabolism has the highest prevalence of 
interactions with a value of 0.225). Enrichment 
of genetic interactions within functional groups 
is visually apparent and corresponds to the 
larger circles on the diagonal. The colors of 
the circles reflect the monochromatic score 
defined as the normalized ratio of positive 
to all interacting pairs (Online Methods). 
Functional groups displaying only positive 
genetic interactions between each other have 
a monochromatic score of +1 (green), whereas 
those interacting purely negatively have a score 
of −1 (red). The background ratio of positive to 
all interactions (0.348) corresponds to a score 
of 0 (gray). Only the top 20 functional groups 
with the largest number of screened gene pairs 
and those genes assigned to only one functional 
group are included in the plot.
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be either exclusively negative or positive. In agreement with theoretical 
predictions11, we found a statistically significant excess of monochro-
maticity among pairs of functional groups in the real data compared 
to randomized interaction maps (P < 10−4). For example, whereas 
sterol metabolism displays almost purely negative interactions with 
tyrosine, tryptophan and phenylalanine metabolism, it predominantly 
interacts positively with fatty acid biosynthesis (Fig. 1). Nevertheless, 
monochromaticity in our genetic interaction map is modest: only 
~24−34% more monochromatic pairs were found than expected by 
chance, a conclusion that remained qualitatively the same when using 
high-confidence interactions (Supplementary Table 1).

As an alternative to functional groups defined based on classical 
biochemical pathways, unbiased mathematical methods have been 
developed to measure functional relatedness based on coherent usage 
of reactions in the metabolic network6,19. In particular, flux coupling20 
provides a biochemically sound definition of functional relatedness 
and has strong physiological and evolutionary relevance21–23. To fur-
ther investigate the distribution of genetic interactions within and 
between functional modules, we identified flux-coupled gene pairs 
computationally (that is, pairs of reactions where the activity of one 
reaction implies the activity of the other, either reciprocally or in one 
direction; Online Methods). In agreement with results obtained using 
annotation groups, although we find that both negative (twofold) and 
positive (2.7-fold) interactions are enriched in flux-coupled pairs (P < 
10−6 and P < 10−8, respectively), the overwhelming majority (> 97%) 
of both forms of interactions occur between uncoupled genes, even 
when only high-confidence interactions are investigated (> 93%).

In conclusion, both definitions of functional relatedness reveal that 
most genetic interactions connect across distinct functional modules, 
extending an earlier estimate that synthetic lethal interactions are 3.5 
times more likely to span pairs of protein-protein interaction path-
ways than to occur within such pathways24. Furthermore, our finding 
that both negative and positive interactions tend to occur between 
metabolic modules is consistent with recent observations that both 
forms of interactions primarily connect genes belonging to different 
protein complexes1,16.

A systems model explains genetic interaction connectivity
To further explore the organizational principles of the genetic inter-
action network, we next investigated its degree distribution using a 

computational model of metabolism. A prominent attribute of genetic 
interaction networks, also shared by other biological networks25, is 
that the majority of genes show few interactions, and a minority of 
‘hub’ genes are highly connected1,4. Furthermore, a recent study 
uncovered a strong correlation between the number of genetic inter-
actions a gene shows and the fitness defect associated with its deletion 
(dispensability)1, a pattern also confirmed by our empirical metabolic 
interaction map (Supplementary Fig. 1). Nevertheless, the tendency 
of ‘sick’ single mutants to engage in an especially high number of both 
negative and positive interactions remains unexplained. Intuitively, 
one expects that a strongly deleterious single mutation can mask a 
large number of mildly deleterious mutations in other genes and, 
hence, show numerous positive interactions. However, a similar logic 
would imply a paucity of negative interactions for sick mutants (mean-
ing a sick deletant is less likely to be made worse by other mutations), 
an expectation that is inconsistent with observations1.

To probe whether a simple structural model of metabolism is able 
to capture the above properties of genetic interaction networks, we 
computed in silico interaction degrees and single-mutant fitness using 
FBA. Similar to the empirical data, in silico genetic interaction degree 
is also unevenly distributed, with only ~12% of genes accounting for 
the majority (~85%) of interactions. Most remarkably, the model pre-
dicted a strong negative correlation between single-mutant fitness and 
genetic interaction degree for both positive and negative interactions, 
confirming the trend observed in the experimentally derived genetic 
interaction network (Spearman’s ρ = −0.89 and ρ = −0.66, respectively). 
Notably, these trends remained when genes without any in silico fitness 
contribution were excluded from the analysis (ρ = −0.59, P < 10−3 for 
positive interactions and ρ = −0.47, P = 0.005 for negative interactions; 
Fig. 2a), showing that the associations are not simply caused by the 
presence of silent reactions in the metabolic model.

Having established its ability to capture the high genetic inter
action connectivity of sick mutants, we asked the metabolic model 
to provide mechanistic explanations. One reason why a gene might 
have numerous genetic interactions is that it contributes to multiple 
biological processes (that is, it is highly pleiotropic), and hence, the 
phenotypic effect of its deletion may be modulated by a large number 
of other genes, each of them negatively or positively affecting a dif-
ferent aspect of its functionality. Indeed, it has been reported that 
genetic interaction hubs often display multifunctionality1. If highly 
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pleiotropic genes also have (on average) a large fitness contribution, 
then we would expect a negative correlation between single-mutant 
fitness and interaction degree. Although pleiotropy is difficult to 
define empirically, the FBA framework offers a rigorous approach to 
compute pleiotropy and test this idea. To do this, we determined the 
number of key metabolites (so called biomass components, including 
amino acids, nucleotides, and so on) whose maximal production is 
affected by the absence of each gene (Online Methods)26. In accord-
ance with our hypothesis, we found a strong association between the 
number of biosynthetic processes to which a gene contributes and 
the predicted fitness of its deletant (ρ = −0.83, P < 10−9 on raw data 
for genes with a nonzero deletion effect; see also Fig. 2b). Moreover, 
pleiotropy correlates with both in silico and in vivo genetic interaction 
degrees (negative degree: ρ = 0.55 and ρ = 0.24; positive degree:  
ρ = 0.62 and ρ = 0.25, respectively; P < 10−8 in all cases). Given the 
close association between computationally derived single-mutant 
fitness and pleiotropy, we next performed partial correlation ana
lyses to disentangle the effects of these factors on in silico interaction 
degrees. Our multivariate analyses revealed that, although positive 
interaction degree is determined by single-mutant fitness (a finding 
consistent with the idea that severe mutations can mask numerous 
milder mutations), negative interaction degree is driven by pleiotropy 
(Supplementary Table 2).

Taken together, these computational results suggest that the struc-
ture of the metabolic network dictates both the fitness contribution 
(and hence positive interaction degree) and the functional pleiotropy 
(and hence negative interaction degree) of genes. Future empirical 
studies of pleiotropy will help to clarify whether these mechanisms 
also adequately explain in vivo genetic interaction degrees.

No prevalent positive interactions in essential genes
A recent FBA study suggested that non-lethal mutations in essential 
metabolic genes have strikingly different interaction patterns com-
pared to null mutations of non-essential genes14. Specifically, it was 
predicted that essential metabolic genes frequently show positive 
interactions with other metabolic genes regardless of their function 
or the latter’s essentiality, strongly skewing the ratio of positive to 
negative interactions. Although a small-scale empirical analysis was 
consistent with this prediction14, it remained to be seen whether it 
was supported by large-scale experiments. Accordingly, we mapped 
genetic interactions between hypomorphic alleles2 of a set of essen-
tial genes and null mutants of non-essential genes, screening 39,086 
pairs. If positive interactions were indeed highly abundant between 
gene pairs involving an essential reaction, then we should observe a 
strong bias toward positive interactions for essential genes. Although 
we found that essential genes have an increased number of positive 
interactions, they also show more negative interactions, and therefore 
their ratio of positive to negative interactions is virtually identical to 
those of non-essential genes (Wilcoxon test P = 0.89; Fig. 2c). In sum, 
we failed to find empirical evidence for the predicted high prevalence 
of positive genetic interactions for essential metabolic genes. Given 
that the only experimental study reporting abundant positive inter
actions investigated only a handful of non-metabolic essential genes14, 
we speculate that the discrepancy between the small-scale study14 and 
our results could partly be because of sampling bias in the former.

Fine-scale evaluation of predicted genetic interactions
Our comprehensive genetic interaction map provides an unprec-
edented opportunity to assess the FBA framework’s ability to predict 
individual interactions. To rigorously estimate the fraction of true 
predicted interactions (precision) and the fraction of experimentally 

observed interactions that are captured by the model (recall or true-
positive rate), we selected a set of high-confidence empirical inter
actions between non-essential genes (Online Methods) and excluded 
genes that are associated with poorly characterized network parts 
(blocked reactions20). This resulted in 325 negative and 116 positive 
interactions among 67,517 non-essential gene pairs. We found that 
experimentally identified interactions are highly overrepresented 
among predicted strong interactions, with up to 100-fold and 60-fold 
enrichment for negative and positive interactions, respectively (with 
precision values of 50% and 11%, respectively; Fig. 3). Although 
this confirms that the highest predicted interaction scores have high 
physiological relevance13, we find that only a minority of empirical 
interactions are captured by the model at the same cutoff points 
(the recall values were 2.8% and 12.9% for negative and positive 
interactions, respectively), a conclusion that remained unchanged 
when an alternative algorithm27, an alternative interaction score11 
or a less compartmentalized metabolic model28 was employed to 
compute interactions (Supplementary Figs. 2a–c). Notably, only a 
minority of gene pairs that show negative (7.6%) or positive (3%) 
interactions in vivo display nonzero interaction scores of the opposite 
sign in silico, indicating that the low recall of the model stems from 
missed genetic interactions, not from misclassification of the two 
forms of interactions.

Why are so many genetic interactions missed by the model? First, 
as single-mutant fitness predictions are far from perfect8,10, one might 
expect that interaction between two non-essential genes could be 
missed simply because one or the other gene is essential in the model. 
Indeed, ~24% of negative and ~22% of positive interactions are missed 
because of misprediction of single-mutant viability. Although the 
true-positive rate of genetic interaction predictions slightly improves 
when genes falsely predicted to be essential are excluded, the majority 
of empirical interactions are still not captured by the model. In par-
ticular, FBA predicts strong negative interaction scores for only 3.7% 
of in vivo negative interactions, indicating that it overpredicts double-
mutant fitness in the majority of these gene pairs. Second, weak  
in vivo genetic interactions might be inherently less reproducible by 
the metabolic model. Although this idea is supported by an improved 
true-positive rate for strong in vivo interactions (~17% for ε ≤ −0.5 
and 25% for ε ≥ 0.15), we conclude that even the strongest interactions 
are frequently missed by the model. Third, FBA predicts optimal 
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metabolic behavior without incorporating regulatory mechanisms. 
Consequently, reactions that are downregulated in vivo could never-
theless compensate deletions in other parts of the network in silico, 
and therefore the model likely underestimates mutational effects. To 
address this possibility, we used published quantitative transcriptome 
data29 to identify non-expressed metabolic genes and constrained 
the corresponding reaction activities to zero in the simulations30. 
Imposing transcriptional constraints did not noticeably improve 
predictions (Supplementary Fig. 2d), suggesting that detailed infor-
mation on other layers of regulation31 (for example, metabolic regula-
tion32), data on toxic intermediates and more sophisticated modeling 
frameworks (for example, regulatory FBA33) are needed to probe the 
performance limits of genome-scale models. Finally, aside from the 
limitations of FBA, some false predictions likely indicate incomplete 
knowledge or annotation errors in the metabolic network.

Numerous statistical methods have been proposed to predict 
genetic interactions by combining heterogeneous sources of genomic 
and functional data (for example, sequence homology, physical inter-
action, co-expression and so on)34,35. These statistical approaches 
serve complementary roles to FBA. Whereas biochemical modeling 
has the advantage of easy interpretability and offers direct mechanistic 
insights, statistical models may illuminate the amount of informa-
tion available in large-scale datasets to predict genetic interactions. 
Thus, we asked whether such methods may substantially improve our 
knowledge of genetic interactions in the metabolic network.

To assess the performance of statistical modeling, we first compiled 
a dataset of gene-pair characteristics (following earlier studies34,35 
and based on metabolic network features but omitting any informa-
tion on genetic interactions; Supplementary Note) and used data-
mining methods (random forest36 and logistic regression) to classify 
genetic interactions based on these features. Although an increased 
fraction of in vivo interactions could be retrieved, ~70% of negative 
and ~75% of positive interactions were still predicted with very low 
(<10%) precision (Supplementary Fig. 3). Thus, we conclude that 
the majority of genetic interactions are not well understood either in 
terms of biochemical processes or statistical associations. Notably, 
incorporating FBA-derived fitness and genetic interaction scores 
into statistical models boosts the precision of negative interaction 

predictions (Supplementary Fig. 3), indicating that biochemical 
modeling provides unique information that is not captured by purely 
statistical data integration.

Automated model refinement using genetic interaction data
To reconcile discrepancies between empirical and computational 
genetic interaction maps, we developed a machine-learning method 
that automatically generates hypotheses to explain in vivo compensation 
(negative interaction) between genes. In contrast with a previously 
proposed approach37 that reconciled experimental and computational 
growth data mutant by mutant, we sought to minimize model mispre-
dictions globally (that is, using all available data) by using a two-stage 
genetic algorithm (Fig. 4a and Supplementary Note). The following 
types of changes to the model were allowed37: i, modifying reaction 
reversibility, ii, removing reactions and iii, altering the list of biomass 
compounds required for growth (Supplementary Note).

Our automated method suggested several modifications 
(Supplementary Table 3) that, together, considerably improved the 
fit of the model to our genetic interaction map (100–267% increase 
in recall and 44–59% increase in precision; Fig. 4b). Notably, cross-
validation confirmed that our method also significantly (P < 0.002) 
improves the model’s ability to predict genetic interactions that were 
not used in model refinement (with recall increased by ~87% on aver-
age; Supplementary Note).

As an example of a modification suggested by our method, it showed 
that omitting glycogen from the set of essential biomass components 
corrects two falsely predicted genetic interactions. This is congruent 
with glycogen’s role as a reserve carbohydrate, which becomes impor-
tant in nutrient-depleted or stress conditions38. Remarkably, our algo-
rithm also revealed that removal of only one or two reactions from the 
network corrects the prediction of four negative interactions between 
alternative NAD biosynthesis pathways. In particular, the published 
network reconstruction10 contains three biosynthetic routes for NAD, 
and removing the two-step path from aspartate to quinolinate uncov-
ers pairwise compensation between the other two pathways (Fig. 5a). 
Notably, although de novo NAD synthesis from aspartate is present 
in Escherichia coli39, it has no genes annotated in the yeast network, 
and bioinformatics analyses failed to find yeast homologs of the E. coli 

Figure 4  Automated model refinement 
procedure. (a) Workflow of the two-stage  
model refinement method. In the first stage, 
a coarse-grained search is executed in which 
candidate models are evaluated only for those 
gene pairs that show interaction either in vivo 
or in silico according to the original model.  
In the second stage, the best models are 
refined in a restricted search space that is 
based on the results of the first stage but  
using all available data to evaluate the  
models. This two-stage approach made  
it feasible to explore a large space of  
candidate hypotheses while also making  
use of all available phenotypic data.  
(b) Results of eight independent runs of 
the model refinement algorithm. Fits of the 
modified (blue to green) and unmodified 
original (red) models to our empirical 
genetic interaction data are visualized by 
both precision recall and partial ROC curves 
(inset). Dashed lines represent the levels of 
discrimination expected by chance. Note that 
the same empirical dataset was used for both model refinement and model evaluation, meaning no unseen test data was used to generate these 
plots. For a cross-validation estimate of model improvement, see the main text and the Supplementary Note.

Genetic interaction data
on gene pairs that either
exhibit in vivo or in silico

interaction

Space of all allowed
model modifications

Find modifications that
improve prediction

accuracy

Comprehensive
phenotype data on single

and double mutants

Candidate
hypotheses

Step 1

Step 2

0.8
0.15

Negative interactions

Maximize overall
prediction accuracy

Hypothesized model
corrections with a net

beneficial effect

Deduce testable
predictions using the model

a b

0.6

0.4

P
re

ci
si

on

R
ec

al
l (

tr
ue

 p
os

iti
ve

 r
at

e)

Recall (true positive rate)

False positive rate0.2

0

0

0

0.10

0.05

0

0.2 0.4 0.6 0.8 1.0

0.
00

1
0.

00
2

0.
00

3
0.

00
4

0.
00

5

©
 2

01
1 

N
at

u
re

 A
m

er
ic

a,
 In

c.
  A

ll 
ri

g
h

ts
 r

es
er

ve
d

.
©

 2
01

1 
N

at
u

re
 A

m
er

ic
a,

 In
c.

  A
ll 

ri
g

h
ts

 r
es

er
ve

d
.

dc_1908_21

Powered by TCPDF (www.tcpdf.org)



Nature Genetics  VOLUME 43 | NUMBER 7 | JULY 2011	 661

A rt i c l e s

enzymes (Supplementary Note). To further investigate whether qui-
nolinate formation from aspartate might be wrongly included in the 
yeast reconstruction, we interrogated the metabolic model to deduce 
specific predictions for experimental testing. We found that only the 
refined model predicts the essentiality of genes in the kynurenine 
pathway (BNA1, BNA2, BNA4 and BNA5) when nicotinic acid is 
absent from the medium. Next, we tested these predictions experi-
mentally and confirmed that deletants of all four genes were nicotinic 
acid auxotrophs (Fig. 5b). Together, these results strongly suggest that 
the aspartate to NAD pathway is not present in yeast40.

Our automated procedure identified additional erroneous pre-
dictions between NAD pathway genes and suggested further modi-
fications (Supplementary Table 3), prompting us to thoroughly 
revise NAD biosynthesis in the published reconstruction. Based on 
inspection of interaction data, single-mutant phenotypes and litera-
ture information, we propose a number of changes including modi-
fications of gene-reaction associations and reaction reversibilities 
(Supplementary Fig. 4). The revised model is not only consistent 
with literature data but also improves both interaction (12 correc-
tions) and gene essentiality (1 correction) predictions.

DISCUSSION
A system-level understanding of genetic interactions requires the 
integration of experimental and theoretical approaches. To progress 

toward this goal, we experimentally mapped interactions in yeast 
metabolism and systematically compared empirical data with pre-
dictions from a biochemical model. Our approach provides the first 
glimpse of genetic interactions in small-molecule metabolism and 
establishes the performance limits of a genome-scale metabolic 
model. We show that a simple structural model of metabolism cap-
tures several organizational properties of genetic interaction networks 
and suggests mechanistic hypotheses.

Notably, the computational model sheds new light on the rela-
tionship between the severity of mutational effects and genetic inter
actions. The FBA model not only captures the previously unexplained 
relationship between fitness effect and genetic interaction degree but 
also suggests a new mechanistic link between negative interaction 
degree and functional pleiotropy; the effect of mutations in pleio-
tropic genes may be modulated by mutations in a large number of 
other genes, each of them compensating a different aspect of the first 
gene’s functionality.

Although we reported a coarse-grained consistency between model 
predictions and experiments, evaluation of individual interaction 
predictions revealed abundant discrepancies. In particular, FBA fails 
to capture the majority of experimentally determined genetic inter
actions, an attribute shared with statistical models built with data 
integration. Furthermore, interaction patterns of hypomorphic alleles 
of essential genes are grossly mispredicted, resulting in a discrepancy 
between our empirical data and a previous theoretical expectation 
about the high prevalence of positive interactions14.

We can draw several conclusions from these inconsistencies. First, 
the quality and completeness of the metabolic reconstruction should 
be improved. Second, although null mutations can easily be repre-
sented in the FBA framework, simulation of hypomorphic alleles is 
inherently problematic as it hinges on assumptions about the relation-
ship of enzyme activity to flux41. Third, the fact that a large number 
of in vivo instances of genetic interactions are not explained by the 
structure of the metabolic network suggests that regulation at both the 
gene expression and metabolite-enzyme levels should be taken into 
account in future attempts to realistically model metabolic behavior 
in genetically perturbed cells42.

Most importantly, the comprehensive interaction map can be used 
to refine the metabolic model. Indeed, reconciling discrepancies 
between predicted and observed phenotypes is of central importance 
in developing systems biology models43,44. We showed the feasibility 
of an automated method to refine the metabolic model. We anticipate 
that similar approaches, coupled with high-throughput experimen-
tation, have the potential to close the iterative cycles of generating 
and testing new hypotheses, leading to at least partial automation of 
biological discoveries45,46.

URLs. Interaction data and modified metabolic reconstruction are 
available at http://www.utoronto.ca/boonelab/data/szappanos/; GLPK 
(GNU Linear Programming Kit); http://www.gnu.org/software/glpk/; 
CPLEX Optimizer, http://www-01.ibm.com/software/websphere/ilog/.

Methods
Methods and any associated references are available in the online  
version of the paper at http://www.nature.com/naturegenetics/.

Note: Supplementary information is available on the Nature Genetics website.
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Figure 5  Automated model refinement suggests modifications in NAD 
biosynthesis. (a) Biosynthetic routes to nicotinate mononucleotide in the 
yeast metabolic network reconstruction. Genes involved in the de novo 
pathway from tryptophan show negative genetic interactions with the 
nicotinic acid transporter gene in vivo but not in silico because of the 
presence of a two-step biosynthetic route from aspartate to quinolinate 
in the reconstruction (ASPOcm, aspartate oxidase; QULNS, quinolinate 
synthase). (b) Experimental verification of suggested model modifications. 
Deletion of genes for kynurenine pathway enzymes causes nicotinic acid 
auxotrophy. We spotted strains deleted for the genes of the kynurenine 
pathway (bna1∆, bna2∆, bna4∆ and bna5∆) along with wild type (WT) in 
four serial dilutions on solid SC medium lacking histidine, arginine and 
lysine and incubated at 30 °C for 48 h in the presence and absence of 
nicotinic acid as indicated. To prevent diffusion of any substances that 
would complement nicotinic acid auxotrophy, the strains were grown 
separately from each other in a 24-well plate. Repeating the experiment 
using liquid media confirmed the nicotinic acid auxotrophy of the 
mutants (data not shown). Yeast strains used in the auxotrophy study are 
derivatives of the BY4741 yeast deletion collection47,48.

©
 2

01
1 

N
at

u
re

 A
m

er
ic

a,
 In

c.
  A

ll 
ri

g
h

ts
 r

es
er

ve
d

.
©

 2
01

1 
N

at
u

re
 A

m
er

ic
a,

 In
c.

  A
ll 

ri
g

h
ts

 r
es

er
ve

d
.

dc_1908_21

Powered by TCPDF (www.tcpdf.org)

http://www.utoronto.ca/boonelab/data/szappanos/
http://www.gnu.org/software/glpk/
http://www-01.ibm.com/software/websphere/ilog/
http://www.nature.com/naturegenetics/


662	 VOLUME 43 | NUMBER 7 | JULY 2011  Nature Genetics

(B.P.), European Research Council (202591), Wellcome Trust and Hungarian 
Scientific Research Fund (C.P.), FEBS Long-Term Fellowship (B. Szamecz), 
Biotechnology & Biological Sciences Research Council (Grant BB/C505140/1)  
and the UNICELLSYS Collaborative Project (No. 201142) of the European 
Commission (S.G.O.), the US National Institutes of Health (1R01HG005084-01A1)  
and a seed grant from the University of Minnesota Biomedical Informatics and 
Computational Biology program (C.L.M.), the Canadian Institutes of Health 
Research (MOP-102629) (C.B. and B.J.A.) and the US National Institutes of Health 
(1R01HG005853-01) (C.B., B.J.A. and C.L.M.).

AUTHOR CONTRIBUTIONS
M.C., C.L.M., B.J.A. and C.B. designed genetic interaction screens; A.B., M.C. and 
C.L.M. collected and analyzed raw data; B.P., C.P., M.J. and S.G.O. designed the 
computational study; B. Szappanos, K.K., F.H. and B.P. performed computational 
and statistical analyses; B. Szamecz performed auxotrophy experiments; G.G.-D. 
and M.J.L. developed software tools; and B.P., C.P., B. Szappanos, K.K., M.J. and 
S.G.O. wrote the paper.

COMPETING FINANCIAL INTERESTS
The authors declare no competing financial interests. 

Published online at http://www.nature.com/naturegenetics/.	  
Reprints and permissions information is available online at http://www.nature.com/
reprints/index.html.

1.	 Costanzo, M. et al. The genetic landscape of a cell. Science 327, 425–431 
(2010).

2.	 Schuldiner, M. et al. Exploration of the function and organization of the yeast early 
secretory pathway through an epistatic miniarray profile. Cell 123, 507–519 
(2005).

3.	 Collins, S.R. et al. Functional dissection of protein complexes involved in yeast 
chromosome biology using a genetic interaction map. Nature 446, 806–810 
(2007).

4.	 Tong, A.H. et al. Global mapping of the yeast genetic interaction network. Science 
303, 808–813 (2004).

5.	 Feist, A.M., Herrgard, M.J., Thiele, I., Reed, J.L. & Palsson, B.O. Reconstruction 
of biochemical networks in microorganisms. Nat. Rev. Microbiol. 7, 129–143 
(2009).

6.	 Price, N.D., Reed, J.L. & Palsson, B.O. Genome-scale models of microbial cells: 
evaluating the consequences of constraints. Nat. Rev. Microbiol. 2, 886–897 
(2004).

7.	 Oberhardt, M.A., Palsson, B.O. & Papin, J.A. Applications of genome-scale metabolic 
reconstructions. Mol. Syst. Biol. 5, 320 (2009).

8.	 Snitkin, E.S. et al. Model-driven analysis of experimentally determined growth 
phenotypes for 465 yeast gene deletion mutants under 16 different conditions. 
Genome Biol. 9, R140 (2008).

9.	 Shlomi, T., Cabili, M.N., Herrgard, M.J., Palsson, B.O. & Ruppin, E. Network-based 
prediction of human tissue-specific metabolism. Nat. Biotechnol. 26, 1003–1010 
(2008).

10.	Mo, M.L., Palsson, B.O. & Herrgard, M.J. Connecting extracellular metabolomic 
measurements to intracellular flux states in yeast. BMC Syst. Biol. 3, 37 (2009).

11.	Segrè, D., Deluna, A., Church, G.M. & Kishony, R. Modular epistasis in yeast 
metabolism. Nat. Genet. 37, 77–83 (2005).

12.	Deutscher, D., Meilijson, I., Kupiec, M. & Ruppin, E. Multiple knockout analysis 
of genetic robustness in the yeast metabolic network. Nat. Genet. 38, 993–998 
(2006).

13.	Harrison, R., Papp, B., Pal, C., Oliver, S.G. & Delneri, D. Plasticity of genetic 
interactions in metabolic networks of yeast. Proc. Natl. Acad. Sci. USA 104, 
2307–2312 (2007).

14.	He, X., Qian, W., Wang, Z., Li, Y. & Zhang, J. Prevalent positive epistasis in 
Escherichia coli and Saccharomyces cerevisiae metabolic networks. Nat. Genet. 42, 
272–276 (2010).

15.	Tong, A.H. et al. Systematic genetic analysis with ordered arrays of yeast deletion 
mutants. Science 294, 2364–2368 (2001).

16.	Baryshnikova, A. et al. Quantitative analysis of fitness and genetic interactions in 
yeast on a genome scale. Nat. Methods 7, 1017–1024 (2010).

17.	Mani, R., St Onge, R.P., Hartman, J.L.t., Giaever, G. & Roth, F.P. Defining genetic 
interaction. Proc. Natl. Acad. Sci. USA 105, 3461–3466 (2008).

18.	DeLuna, A. et al. Exposing the fitness contribution of duplicated genes. Nat. Genet. 
40, 676–681 (2008).

19.	Papin, J.A., Reed, J.L. & Palsson, B.O. Hierarchical thinking in network biology: 
the unbiased modularization of biochemical networks. Trends Biochem. Sci. 29, 
641–647 (2004).

20.	Burgard, A.P., Nikolaev, E.V., Schilling, C.H. & Maranas, C.D. Flux coupling analysis 
of genome-scale metabolic network reconstructions. Genome Res. 14, 301–312 
(2004).

21.	Pál, C., Papp, B. & Lercher, M.J. Adaptive evolution of bacterial metabolic networks 
by horizontal gene transfer. Nat. Genet. 37, 1372–1375 (2005).

22.	Bundy, J.G. et al. Evaluation of predicted network modules in yeast metabolism 
using NMR-based metabolite profiling. Genome Res. 17, 510–519 (2007).

23.	Notebaart, R.A., Teusink, B., Siezen, R.J. & Papp, B. Co-regulation of metabolic 
genes is better explained by flux coupling than by network distance. PLOS Comput. 
Biol. 4, e26 (2008).

24.	Kelley, R. & Ideker, T. Systematic interpretation of genetic interactions using protein 
networks. Nat. Biotechnol. 23, 561–566 (2005).

25.	Barabási, A.L. & Oltvai, Z.N. Network biology: understanding the cell’s functional 
organization. Nat. Rev. Genet. 5, 101–113 (2004).

26.	Shlomi, T. et al. Systematic condition-dependent annotation of metabolic genes. 
Genome Res. 17, 1626–1633 (2007).

27.	Segrè, D., Vitkup, D. & Church, G.M. Analysis of optimality in natural and perturbed 
metabolic networks. Proc. Natl. Acad. Sci. USA 99, 15112–15117 (2002).

28.	Kuepfer, L., Sauer, U. & Blank, L.M. Metabolic functions of duplicate genes in 
Saccharomyces cerevisiae. Genome Res. 15, 1421–1430 (2005).

29.	Nagalakshmi, U. et al. The transcriptional landscape of the yeast genome defined 
by RNA sequencing. Science 320, 1344–1349 (2008).

30.	Akesson, M., Forster, J. & Nielsen, J. Integration of gene expression data into 
genome-scale metabolic models. Metab. Eng. 6, 285–293 (2004).

31.	Daran-Lapujade, P. et al. The fluxes through glycolytic enzymes in Saccharomyces 
cerevisiae are predominantly regulated at posttranscriptional levels. Proc. Natl. 
Acad. Sci. USA 104, 15753–15758 (2007).

32.	Bouwman, J. et al. Metabolic regulation rather than de novo enzyme synthesis 
dominates the osmo-adaptation of yeast. Yeast 28, 43–53 (2011).

33.	Shlomi, T., Eisenberg, Y., Sharan, R. & Ruppin, E. A genome-scale computational 
study of the interplay between transcriptional regulation and metabolism. Mol. Syst. 
Biol. 3, 101 (2007).

34.	Wong, S.L. et al. Combining biological networks to predict genetic interactions. 
Proc. Natl. Acad. Sci. USA 101, 15682–15687 (2004).

35.	Ulitsky, I., Krogan, N.J. & Shamir, R. Towards accurate imputation of quantitative 
genetic interactions. Genome Biol. 10, R140 (2009).

36.	Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
37.	Kumar, V.S. & Maranas, C.D. GrowMatch: an automated method for reconciling  

in silico/in vivo growth predictions. PLOS Comput. Biol. 5, e1000308 (2009).
38.	François, J. & Parrou, J.L. Reserve carbohydrates metabolism in the yeast 

Saccharomyces cerevisiae. FEMS Microbiol. Rev. 25, 125–145 (2001).
39.	Flachmann, R. et al. Molecular biology of pyridine nucleotide biosynthesis in 

Escherichia coli. Cloning and characterization of quinolinate synthesis genes nadA 
and nadB. Eur. J. Biochem. 175, 221–228 (1988).

40.	Panozzo, C. et al. Aerobic and anaerobic NAD+ metabolism in Saccharomyces 
cerevisiae. FEBS Lett. 517, 97–102 (2002).

41.	Kacser, H. & Burns, J.A. The control of flux. Symp. Soc. Exp. Biol. 27, 65–104 
(1973).

42.	Heinemann, M. & Sauer, U. Systems biology of microbial metabolism. Curr. Opin. 
Microbiol. 13, 337–343 (2010).

43.	Ideker, T., Galitski, T. & Hood, L. A new approach to decoding life: systems biology. 
Annu. Rev. Genomics Hum. Genet. 2, 343–372 (2001).

44.	Kell, D.B. & Oliver, S.G. Here is the evidence, now what is the hypothesis? The 
complementary roles of inductive and hypothesis-driven science in the post-genomic 
era. Bioessays 26, 99–105 (2004).

45.	Covert, M.W., Knight, E.M., Reed, J.L., Herrgard, M.J. & Palsson, B.O. Integrating 
high-throughput and computational data elucidates bacterial networks. Nature 429, 
92–96 (2004).

46.	King, R.D. et al. The automation of science. Science 324, 85–89 (2009).
47.	Winzeler, E.A. et al. Functional characterization of the S. cerevisiae genome by 

gene deletion and parallel analysis. Science 285, 901–906 (1999).
48.	Giaever, G. et al. Functional profiling of the Saccharomyces cerevisiae genome. 

Nature 418, 387–391 (2002).

A rt i c l e s
©

 2
01

1 
N

at
u

re
 A

m
er

ic
a,

 In
c.

  A
ll 

ri
g

h
ts

 r
es

er
ve

d
.

©
 2

01
1 

N
at

u
re

 A
m

er
ic

a,
 In

c.
  A

ll 
ri

g
h

ts
 r

es
er

ve
d

.
dc_1908_21

Powered by TCPDF (www.tcpdf.org)



Nature Geneticsdoi:10.1038/ng.846

ONLINE METHODS
Experimental mapping of genetic interactions. We used SGA methodology, 
an automated form of genetic analysis, to construct high-density arrays of 
double mutants (for details, see refs. 4,15.). Quantitative assessment of genetic 
interactions requires measurements of single- and double-mutant fitness and 
an estimate of the double-mutant fitness that would be expected based on 
the single-mutant phenotypes. Mutant fitnesses were derived from colony 
sizes after correcting systematic experimental biases (including positional 
effects, spatial effects, nutrient competition and screen batch effects)16. Single-
mutant fitness was estimated using a set of control SGA screens, in which 
the queries carried a mutation in a neutral genomic locus1. Double-mutant 
fitness was estimated by employing the regular SGA protocol. We used the 
obtained single- (fi and fj) and double-mutant fitnesses (fij) to derive genetic 
interaction measures as ε = fij– fi·fj. A statistical confidence measure (P value) 
was assigned to each interaction based on a combination of the observed vari-
ation of each double mutant across four experimental replicates and estimates 
of the background log-normal error distributions for the corresponding query 
and array mutants1,16.

To explore the general properties of the metabolic genetic interaction map, 
we applied a previously suggested1 confidence threshold of |ε| > 0.08 and  
P < 0.05 to define significantly interacting gene pairs. This threshold has been 
previously shown1 to yield a good balance between coverage and precision and 
defines genetic interactions that cover at least ~35% of negative and ~18% of 
positive interactions deposited in BioGrid49 with estimated precisions of ~63% 
and ~59%, respectively. In the case of replicate screens (for example, both AB 
and BA pairs were screened), we applied the following procedure: if replicate 
screens showed opposite interaction signs and at least one of them was signi
ficant, both pairs were removed; and if they showed the same interaction sign 
(both positive or both negative), the interaction with the lowest P value was 
retained and both pairs were reported with that interaction. Comparison of 
interactions from screens performed in the present study with those from a 
full-genome study1 showed a good correlation (r = 0.76) between interaction 
scores that were identified as significant by both studies. The high cross-study 
correlation allowed us to merge interaction data from the present study with 
interaction data on metabolic gene pairs from the genome-scale screens1.

Additionally, we also defined a smaller high-confidence dataset in which 
all gene pairs were independently screened at least twice to minimize false 
interactions. Here, two genes were considered as interacting if at least one 
screen showed |ε| > 0.08 and P < 0.05 and another screen shows P < 0.05 with 
the same interaction sign, whereas non-interacting pairs are defined as those 
not showing |ε| > 0.08 and P < 0.05 in any of the screens. Any other gene pairs 
were removed from the high-confidence set. This resulted in 529 negative and 
194 positive interactions between 122,875 gene pairs.

Interaction data can be downloaded from our website (see URLs).

Analysis of the effect of functional relatedness, paralogy and protein-
protein interactions on genetic interactions. We used logistic regression 
analysis to test the association between genetic interaction and various cate-
gorical and continuous features (for example, paralogy, co-functionality, single 
mutant fitness, and so on). Functional annotation groups were as defined in 
the published metabolic reconstruction10, and information on physical inter-
actions between proteins was extracted from the BioGrid 2.0.58 database49. 
Paralog gene pairs were identified by performing all-against-all BLASTP 
similarity searches50 of yeast open reading frames. We defined two genes as 
paralogs if i, the BLAST score had an expected value E < 10−8, ii, alignment 
length exceeded 100 residues, iii, sequence similarity was > 30% and iv, they 
were not parts of transposons.

Monochromaticity analysis. To examine the monochromaticity of genetic 
interactions between pairs of functional annotation groups, we defined a mono
chromatic score (MC) as follows. Let prij denote the ratio of positive to all 
genetic interactions between group i and j, and let bpr denote the background 
ratio of positive to all interactions:

if MCpr bpr pr bpr bprij ij ij> = − −, ( )/( )1

if MCpr bprij ij= =, 0

if MCpr bpr pr bpr bprij ij ij< = −, ( )/

A pair of groups showing purely positive (or purely negative) genetic interac-
tions between each other has an MC score equal to +1 (or −1), whereas those 
reflecting the background ratio (bpr) have MC scores of 0. We computed MC 
scores based on those genes that are assigned to one functional group only.  
A pair of functional groups was considered monochromatic if |MCij| > 0.5.

To assess the significance of monochromaticity, we compared the 
monochromatic score of the experimentally determined genetic interaction 
network to those of 10,000 interaction maps that were constructed by rand-
omizing the sign of each genetic interaction while keeping constant the total 
number of negative and positive interactions and conserving the annotation 
groups (see ref. 11). We restricted our analysis to those functional group 
pairs that showed at least two or three interactions between each other 
(Supplementary Table 1).

Computing the impact of mutations and genetic interactions by flux bal-
ance analysis. The recently reconstructed metabolic network (iMM904)10 
of S. cerevisiae was employed to simulate gene deletions. The reconstruction 
included 904 genes and 1,412 reactions and gave information on the stoichi-
ometry and direction of biochemical reactions, their assignment to subcel-
lular compartments and their associations to protein coding genes (including 
information on isoenzymes and enzyme complexes). Details of flux balance 
analysis (FBA) have been described elsewhere6. The simulated growth medium 
was set up to mimic the one used in the experiments (see the Supplementary 
Note for more details). CAN1, LYP1, URA3, LEU2 and MET17 were removed 
from the iMM904 reconstruction to mimic the strain background used in 
the experiments.

We employed linear programming to identify the maximum biomass yield 
of the wild-type network. The impact of gene deletions (null mutations) were 
calculated by constraining the corresponding reaction fluxes to zero and using 
either FBA or a linearized version of MOMA27 to compute biomass yields of 
the mutant networks. Mutant fitness was defined as the biomass yield relative 
to wild type, and interaction between two mutations was calculated as fol-
lows: ε = f12 – f1·f2 (where f1, f2 and f12 refer to the single and double mutant 
fitnesses, respectively). To compute the effect of a partial (non-null) mutation 
in a gene, we constrained the flux of its corresponding reaction to ≤50% of 
its wild-type level14.

All calculations were carried out in the custom software package Sybil 
(G.G.-D. and M.J.L., unpublished data), developed in the R statistical envi-
ronment51 and using solvers GLPK and CPLEX (see URLs).

Exploring the general properties of the FBA-derived genetic interaction 
map. To generate an in silico genetic interaction map based on FBA, we com-
puted interaction scores between all non-essential metabolic gene pairs and 
considered two genes as interacting if they had a predicted |ε| > 10−4 (using 
a more stringent cutoff did not qualitatively affect our results). To investigate 
the relationship between in silico single-deletion fitness and other computed 
network properties (in silico genetic interaction degree and pleiotropy), we 
focused only on those genes i, whose reactions are not blocked (meaning 
they can attain a flux in some steady states of the network) and ii, whose 
removal affect the reaction content of the network (they do not have isoen-
zymes), thereby excluding genes that cannot have any single deletion effect in 
the model. Furthermore, some sets of genes would always produce identical 
phenotypes in the model simulations and cannot be treated as independent 
data points in statistical analyses (for example, genes encoding flux coupled 
reactions or subunits of the same protein complex). To avoid such a bias in our 
analysis, we represented each correlated gene set with one randomly chosen 
gene. These filtering procedures resulted in 193 genes.

Computing system-level functional pleiotropy. We used the metabolic model 
to derive a measure of functional pleiotropy for each metabolic gene. The 
model specifies a list of 54 metabolites that are essential for biomass formation 
and therefore for in silico growth (for example, amino acids, carbohydrates, 
fatty acids, and so on). We computed the maximum production yield of each 
biomass compound in the wild-type network by maximizing the flux through 
a pseudo reaction representing its secretion26. Next, we deleted each gene and 
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examined whether the knockout showed a reduction in the maximum produc-
tion of a given compound (a flux reduction of ≥10−4 was considered signifi-
cant). Finally, for each gene, we counted the number of biomass compounds 
whose maximal production is affected by its deletion. This number reflects the 
network-level multifunctionality, and hence, the pleiotropy of a gene.

Identifying flux coupled genes in the network. Coupled genes were identified 
by applying the flux coupling finder algorithm20 on the metabolic network. 
We distinguished between coupled and uncoupled relationships between reac-
tion pairs: i, coupled (fully and directionally coupled) meant that activity of 
one reaction fixed the activity of the other and vice versa, or activity of one 

reaction implies the activity of the other, but not the reverse; and ii, uncoupled: 
activity of one reaction does not imply the activity of the other and vice versa, 
indicating that the reactions are not required to operate together. Coupling 
relationships were calculated without assuming a fixed biomass composition 
to avoid coupling of a large set of fluxes to the biomass reaction20.

49.	Breitkreutz, B.J. et al. The BioGRID Interaction Database: 2008 update. Nucleic 
Acids Res. 36, D637–D640 (2008).

50.	Altschul, S.F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein 
database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

51.	R Development Core Team. R: A Language and Environment for Statistical 
Computing. (R Foundation for Statistical Computing, Vienna, Austria, 2007).
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Why are most genes dispensable? The impact of gene deletions may
depend on the environment (plasticity), the presence of compensa-
tory mechanisms (mutational robustness), or both. Here, we analyze
the interaction between these two forces by exploring the condition-
dependence of synthetic genetic interactions that define redundant
functions and alternative pathways. We performed systems-level flux
balance analysis of the yeast (Saccharomyces cerevisiae) metabolic
network to identify genetic interactions and then tested the model’s
predictions with in vivo gene-deletion studies. We found that the
majority of synthetic genetic interactions are restricted to certain
environmental conditions, partly because of the lack of compensation
under some (but not all) nutrient conditions. Moreover, the phylo-
genetic cooccurrence of synthetically interacting pairs is not signifi-
cantly different from random expectation. These findings suggest
that these gene pairs have at least partially independent functions,
and, hence, compensation is only a byproduct of their evolutionary
history. Experimental analyses that used multiple gene deletion
strains not only confirmed predictions of the model but also showed
that investigation of false predictions may both improve functional
annotation within the model and also lead to the discovery of
higher-order genetic interactions. Our work supports the view that
functional redundancy may be more apparent than real, and it offers
a unified framework for the evolution of environmental adaptation
and mutational robustness.

epistasis � genetic robustness � Saccharomyces cerevisiae �
environmental dependence � flux balance analysis

One of the most striking discoveries of molecular genetics is
that a large fraction of the protein-coding genes have

negligible effects on growth rates under standard laboratory
conditions. Recent systematic single-gene-deletion studies sug-
gest that nearly 80% of yeast genes appear not to be essential for
growth (1). Comparable large-scale experiments in free-living
bacteria, worm, and mouse showed that the fraction of essential
genes is generally low, typically in the range of 6–19% (2, 3).

Although much investigated, the causes and evolution of gene
dispensability remain controversial (4–7). The high fraction of
dispensable genes might reflect the capacity of organisms to
compensate for null mutations by using either redundant gene
duplicates or alternative metabolic pathways (mutational robust-
ness) (4). Others have suggested that many of the seemingly
dispensable genes have important fitness contributions only
under special environmental conditions (environmental adap-
tation) (5). However, the potential links between adaptation to
new environmental conditions and robustness against harmful
mutations have remained largely unexplored. It may well be that
these theories on gene dispensability are not mutually exclusive.
Differences in the availability of external nutrients and/or intra-
cellular metabolites across environmental conditions can have a
large effect on the number of active metabolic pathways that can
produce a given key cellular component (Fig. 1). Hence, the
capacity to compensate null mutations may vary substantially
between different nutritional environments. One clear predic-
tion of this idea is that the impact of both single- and double-gene
deletions should change across environmental conditions.

Several lines of evidence are compatible with this idea. First,
data compiled from available large-scale phenotypic screens in
yeast [see supporting information (SI) Table 2] suggest that at
least 20% of the �5,000 apparently nonessential genes in
Saccharomyces cerevisiae make a large contribution to fitness
under at least 1 of the 31 investigated conditions. Moreover, most
of these conditionally essential genes make a contribution in only
one or a few environments (Fig. 2), suggesting that conditional
growth defects for numerous other gene deletions remain to be
discovered. Second, a gene-deletion phenotype frequently does
not reflect simply the absence of a given gene but also the
response of the cell to its absence. Such responses may involve
the redistribution of enzymatic fluxes in the network and
up-regulation of previously inactive genes (8, 9). Third, mu-
tagenesis studies on Escherichia coli and viruses have shown a
joint influence of environmental plasticity and epistatic genetic
interactions on the effect of deleterious mutations (10, 11).

Using a combination of computational f lux-balance analysis
(FBA) and in vivo gene-deletion experiments, we have explored
the link between epistatic genetic interactions and plasticity.
FBA provides a rigorous computational framework for studying
the impact of gene deletions (12). Based on steady-state assump-
tions and optimality criteria, this constraint-based method has
been successfully applied for calculating the phenotypic behavior
of the metabolic network (13) and the viability of single-gene-
deletion strains in yeast (14). We restricted our attention to the
most extreme form of genetic interaction [synthetic lethality
(SL)], where a double deletant shows a no-growth phenotype
that is not exhibited by either single deletant. The computational
analyses suggest a strong dependence of genetic interactions on
the prevailing environmental conditions, and this finding is
supported by the experimental data presented below and by
evidence from the literature.

Our study supports the view (15, 16) that mutational robust-
ness is not a directly selected trait, but rather a byproduct of the
evolution of biological networks toward survival under a wide
range of environmental conditions (environmental robustness).

Results
FBA Reveals a High Frequency of Condition-Dependent Genetic Inter-
actions. We have extended previous studies (17) by applying FBA
to a genome-scale metabolic network model of yeast (S. cerevi-
siae) to calculate genetic interactions. The previously recon-
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structed metabolic network (18) consists of 672 genes and 745
unique biochemical reactions and incorporates external nutri-
ents and the corresponding transport processes. The impacts of
all possible single- and double-gene deletions were calculated for
53 nutritional environments, including various carbon sources
(see SI Materials and Methods). The analysis identified 98 gene
pairs that were predicted to be involved in a SL relationship
under at least one of the conditions investigated (SI Tables 3 and
4). Only 14.3% of these SL relationships were displayed under
all nutrient conditions investigated, and 50% of them are re-
stricted to only one or two nutritional environments (Fig. 3).

The condition-specificity of interactions does not appear to be
randomly distributed in the metabolic network. SL interactions
between gene pairs annotated to different metabolic subsystems

are present in a significantly smaller number of environments
than those that are annotated to the same subsystem (Mann–
Whitney U test, P � 0.02; because enzymes catalyzing the same
reaction, by definition, have the same functional annotation,
they were excluded from this analysis). Moreover, more than half
(56.3 � 2.7%) of all genetic interactions remain undetected when
only a single environment is investigated. These results not only
provide a link between compensation of null mutations and the
environment but also suggest that systematic genetic interaction
screens (which are generally restricted to a single condition) may
miss many of the extant interactions.

Experimental Tests on the Reliability of the Model. The predictions
of the in silico model were tested by in vivo double-gene-deletion
experiments (17 cases, Table 1, Materials and Methods) and by
extracting published experimental data from the literature (32
cases; see SI Materials and Methods). This procedure enabled us
to validate �60% of the total number of genetic interactions that
we predicted to be present on either minimal or rich media
(SI Table 5). Double deletants were constructed by sporulating
and dissecting heterozygous diploids from crosses between two
single-gene haploid deletants (see SI Materials and Methods).
Next, we assessed the viability of double deletants by inspecting
growth on plates. In 12 of the 17 cases investigated, we observed
a clear synthetic sick or lethal (SSL) phenotype under the
predicted growth condition (Table 1). The model also accurately
captures changes in the presence of synthetic genetic interactions
between media (see below). However, in five cases, the double
mutant formed colonies qualitatively indistinguishable from the
single-gene deletants.

These apparently false predictions may indicate that the model
has only limited resolution. It may be, for example, that FBA
accurately predicts the direction, but not the strength, of genetic
interaction between genes. To explore whether weak genetic
interactions, which are undetectable by a simple plate-growth
assay, could be responsible for some of these false predictions,
we measured the growth rates of all viable double deletants, and
those of the corresponding single deletants, using an established
protocol (19) (see Materials and Methods). In two of the five
investigated cases, we found evidence for weak (but statistically
significant) negative epistasis between the predicted gene pairs
(Table 1).

Fig. 1. Model to explain conditional synthetic lethality. A key metabolite
(yellow circle) can be synthesized via three independent pathways. Metabolic
genes A and B show synthetic lethality in Environment I, where starting
nutrients of both pathways are present in the medium. However, B is unable
to compensate deletion of A in Environment II, and the double mutant is
rescued by the third pathway in Environment III.

Fig. 2. Distribution of environmental specificity of single-gene deletion
phenotypes. Gene deletions showing conditional growth phenotypes were
compiled from published large-scale screens (see SI Table 2). Of 4,823 genes
not essential for growth on YPD, 963 exhibited lethality or a strong growth
defect under at least 1 of the 31 conditions investigated.

Fig. 3. Distribution of environmental specificity of predicted synthetic lethal
interactions. The histogram shows the distribution of the number of simulated
environments where each of the 98 gene pairs exhibits synthetic lethality (only
gene pairs interacting in at least 1 of the 53 conditions investigated are
included).

2308 � www.pnas.org�cgi�doi�10.1073�pnas.0607153104 Harrison et al.
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Although only a limited number of interactions were tested
experimentally, the results suggest that FBA can reliably detect
genetic interactions in the metabolic network of yeast. Future
large-scale experimental screens are required to get a precise
estimate of the fraction of false-positive and false-negative
predictions. As a preliminary to such a larger study, we aug-
mented our experimental results with literature data available on
single- and double-deletant strains (see SI Materials and Meth-
ods). Overall, we were able to test 49 predicted interactions (SI
Table 5) and estimate that �49% (24 of 49) of them were correct
and that, in 53% of the cases, at least the sign of epistasis was
consistent with the predictions. In a similar vein, FBA can
identify �24% of a curated list (20) of previously described SL
interactions between metabolic genes. Both values are at least
two orders of magnitude higher than expected by chance (P �
10�287, see SI Materials and Methods).

Gene Duplicates Can Explain Many of the False Predictions. Lack of
an observable growth defect in three of the experimentally ob-
served cases could be due to the presence of gene duplicates with
redundant functions that are not represented in the current met-
abolic reconstruction. We investigated this possibility by determin-
ing whether one or the other member of the gene pairs investigated
had a gene duplicate that might provide compensation for one
missing function in the double deletant. One member of the gene
pair had a paralog in all three cases. Construction of triple-deletion
strains (SI Materials and Methods) revealed strong negative epistasis
in all three cases (SI Fig. 5).

For example, CHO2 and CPT1 are erroneously predicted to
show a synthetic genetic interaction on rich medium. We hy-
pothesized that this interaction might be masked by EPT1, a
duplicate of CPT1. The two encoded proteins show 56% amino
acid sequence similarity to each other and have different primary
catalytic activities. However, some studies suggest that although
Cpt1p accounts for 95% of phosphatidylcholine synthesis in vivo,
the remaining 5% is likely to be catalyzed by Ept1p (21).
Remarkably, deletion of all three genes simultaneously resulted

in a much stronger growth defect than observed for any of the
pair-wise deletions (SI Fig. 5).

In addition, our data suggest that interaction between OPI3
and PCT1 is masked by MUQ1, a distant paralog of PCT1 (the
products of the two genes share 36% amino acid sequence
similarity). The triple opi3�/pct1�/muq1� has a more severe
phenotype than either double mutant (SI Fig. 5). Although Pct1p
and Muq1p catalyze related reactions, they are generally be-
lieved to have different substrate specificities. Further biochem-
ical studies will be needed to confirm whether Muq1p has the
catalytic activity necessary to mitigate the effect of the pct1�/
opi3� double deletion.

Detailed investigation of the false predictions can thus be used
to generate novel biochemical hypotheses and refine the in silico
model. Moreover, these results suggest that even duplicates with
low sequence similarities and partly altered functions can com-
pensate null mutations in each other. The importance of appro-
priate modeling of paralogs/gene duplicates is further under-
scored by inspection of false-negative predictions (i.e., true
pair-wise interactions not predicted by the model). Many of these
previously reported interacting gene pairs are predicted to
participate in higher-order genetic interactions because of the
presence of a gene duplicate with overlapping functions (i.e., an
isoenzyme) (see SI Table 6). For example, TDH2 and TDH3
show synthetic lethality in vivo (22); however, our simulations
show that tdh2� tdh3� double mutant is compensated by TDH1,
a gene encoding an additional glyceraldehyde-3-phosphate de-
hydrogenase isoenzyme in the model. Lack of in vivo compen-
satory capacity of Tdh1p might be explained by its relatively low
expression level compared with Tdh2p and Tdh3p (23). Thus, in
addition to correctly assigning reactions to paralogous genes,
incorporation of regulatory constraints (12) and information on
maximum enzyme capacities would also be needed to more
accurately model the behavior of isoenzymes. Transcriptional
reprogramming upon gene deletion (8) may also have an influ-
ence on predicting deletant phenotypes.

Two Explanations for the Condition-Specificity of Genetic Interac-
tions. We found empirical evidence of condition-specific epista-
sis for 14 validated SSL gene pairs, of which 11 were correctly
predicted (SI Table 7), suggesting that our modeling framework
is able to capture variation in the incidence of genetic interac-
tions across a range of environmental conditions. There could be
at least two explanations for the condition-dependence of these
genetic interactions (see Fig. 1). First, members of the synthet-
ically interacting gene pairs make important individual contri-
butions to growth under different nutritional conditions. Alter-
natively, the double-deletant strain becomes viable under
different conditions. There is experimental evidence for both
explanations (Fig. 4, SI Table 7).

CHO2 and PCT1 are genes that encode two enzymes that each
catalyze a step in two different pathways responsible for phos-
phatidylcholine synthesis (the phosphatidylethanolamine meth-
ylation pathway and the Kennedy pathway, respectively; see Fig.
4A). In agreement with our first explanation of condition-
dependence, we find that these two genes can compensate null
mutations in each other under nutrient-rich [yeast–peptone–
dextrose (YPD)] conditions, but the cho2� deletant shows slow
growth on glucose minimal medium (Fig. 4B). This indicates
that, in the absence of exogenous choline, the Kennedy pathway
(and hence PCT1), on its own, cannot support net phosphati-
dylcholine synthesis.

The second explanation for condition-dependence can be
exemplified by the SAM1/SAM2 duplicate gene pair, which
encodes two distinct forms of S-adenosylmethionine (AdoMet)
synthetase. Although differentially regulated (24), the two genes
can compensate null mutations in one another, and the double
mutants are inviable under nutrient-rich (YPD) conditions (see

Table 1. Validation of in silico predictions by constructing
double-mutant strains

Gene 1 Gene 2 Environment
Prediction

success
Measured
epistasis

ASN1 ASN2 SD � SL
CHO2 PCT1 YPD � SS, �0.372*
CKI1 CHO2 YPD � �0.089*
CPT1 CHO2 YPD � 0.020
ECM31 FEN2 YPD � SL
ECM31 FEN2 SD � SL
OPI3 PCT1 YPD � 0.012
OPI3 CPT1 YPD � 0.004
OPI3 CKI1 YPD � �0.067*
RPE1 ZWF1 YPD � SL
RPE1 ZWF1 SD � SL
SAM2 SAM1 YPD � SL
SAM2 SAM1 SD � SL
SPE1 FEN2 SD � SL
SPE2 FEN2 SD � SL
URA8 URA7 YPD � SL
URA8 URA7 SD � SL

A set of SL interactions predicted for nutrient-rich (YPD) and/or glucose
minimal (SD) media were validated by measuring the epistasis between pairs
of gene deletions (see Materials and Methods). Lack of growth of a double
mutant is denoted by “SL” and synthetic sickness by “SSA.” A prediction was
considered successful if the double mutant had a visually apparent growth
defect compared with single mutants in a plate growth assay (i.e. strong
negative epistasis, SSL). *, P � 10�5.
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Table 1). However, addition of AdoMet (the enzymatic product
of Sam1p/Sam2p) into the medium yields viable double mutants
(Fig. 4C).

Frequent Plasticity of Genetic Interactions Among Nonmetabolic
Genes. Having established the widespread occurrence of envi-
ronment dependency of synthetic genetic interactions for met-
abolic genes, we asked whether condition dependency could be
a general property of SSL interactions. First, we compiled a list
of publicly available SSL interactions (25) discovered by a global
genetic-interaction mapping approach (26) using a chemically
defined glucose medium (those strains showing growth defects
on minimal medium were excluded to ensure that the investi-
gated interactions were not between unconditionally slow grow-
ing mutants, see Materials and Methods). Next, we collected
viability data from published screens for single-gene-deletion
phenotypes performed under 31 growth conditions (SI Table 2).
In 57.4% of the investigated 2,666 SSL gene pairs, there is
evidence that one or both members of the pairs make an essential

contribution to growth under at least one of the 31 conditions
investigated. This figure is likely to be an underestimate for two
reasons: First, only a limited number of environments have been
studied experimentally so far. Second, this estimate ignores cases
where the double-deletant strain becomes viable under some
other environmental condition. Moreover, there is some further
support for a link between the extent of compensatory mecha-
nisms and environmental specificity: genes for which evidence
exists for conditional phenotypes have significantly more SL
interactions than the rest of yeast’s genes (Mann–Whitney U test,
P � 0.002; see SI Fig. 6).

Random Phylogenetic Cooccurence of SSL Pairs. Comparative
genomics studies indicate that members of functional modules
(i.e., genes that contribute jointly to a given cellular function)
evolve nonindependently and show a similar phylogenetic dis-
tribution across species. For example, genes encoding members
of protein complexes or metabolic modules are frequently
gained and lost together during evolutionary history (27, 28).
Indeed, we could confirm that gene pairs encoding subunits of
the same literature-curated protein complexes (29) have higher
phylogenetic cooccurrence than random gene pairs. We calcu-
lated a score (30) for the cooccurrence of these gene pairs across
16 eukaryotic genomes and used randomization pro-
tocols to get an estimate of statistical significance (see
SI Materials and Methods). As expected, the score for subunits of
protein complexes is significantly higher than expected by chance
(P � 10�5, n � 7,186 pairs). Next, we asked if a similar result
holds for experimentally determined SSL gene pairs. Using the
same protocol as above, we found a strikingly different result. In
contrast to members of protein complexes, gene pairs showing
synthetic genetic interactions show no evidence for shared
evolutionary history across species (P � 0.107, n � 1,850 pairs).
Moreover, this finding cannot be explained by the likelihood of
a low frequency of retention of redundant duplicates in all
genomes; our result remains unchanged when all gene pairs
showing even low sequence similarity to one another are
excluded from the analysis (P � 0.113, n � 1,780 pairs, see SI
Materials and Methods).

Discussion
Systematic screens on SL genetic interactions in yeast (25) and
worm (31) are providing invaluable insights into the organisms’
compensatory capacity. However, because of the enormous
number of possible gene combinations, a complete mapping of
SL interactions is still some way off. For this and other reasons,
there is a need to find systems-biology models that are able to
provide efficient and reliable tools for predicting (higher-order)
genetic interactions. FBA offers a rigorous theoretical frame-
work for studying the impact of multiple gene deletions on yeast
metabolism. It also has a major advantage over other suggested
computational approaches (32, 33) in that it can investigate
epistasis under various environments.

Previous theoretical studies relied exclusively on the biochem-
ical consistency of FBA to calculate epistasis (17, 34, 35). This
study attempts to experimentally validate synthetic genetic in-
teractions predicted by a genome-scale metabolic model. Al-
though the accuracy of FBA at predicting genetic interactions is
comparable with previous approaches (32, 33), the method is far
from perfect. Our work suggests that many of the apparently
false predictions are not due to major conceptual problems with
FBA but, rather, are due to incomplete annotation and incorrect
modeling of isozymes. First, a duplicate of a given enzyme-
encoding gene could be present in the genome, which, although
not annotated as an isozyme and diverged in both its amino acid
sequence and biological function, could retain the ability to
compensate for the absence of the other gene. Second, redun-
dancy of certain isozymes annotated in the model might be more

Fig. 4. Examples of environment-specific synthetic genetic interactions. (A)
Alternative routes to phosphatidylcholine biosynthesis in yeast. Cho2p, phos-
phatidylethanolamine methyltransferase; Opi3p, phospholipid methyltrans-
ferase; Cki1p, choline kinase; Pct1p, cholinephosphate cytidylyltransferase;
Cpt1p, sn-1,2-diacylglycerol cholinephosphotransferase; PS, phosphatidylser-
ine; PE, phosphatidylethanolamine; PME, phosphatidyl-N-methylethano-
lamine; PDME, phosphatidyl-N-dimethylethanolamine; CHO, choline; PCHO,
choline phosphate; CDPCHO, CDP-choline; PC, phosphatidylcholine. (B) One
member of the SSL pair makes an important individual contribution to growth
under a different condition. CHO2 and PCT1 can compensate null mutations
in one another under nutrient-rich (YPD) conditions, but the cho2� mutant is
slow growing on minimal medium. (C) The double deletant becomes viable
under a different condition. The SAM1/SAM2 duplicate gene pair, which
encodes two distinct forms of S-adenosylmethionine (AdoMet) synthetase,
can compensate null mutations in one another, and the double mutants are
inviable under nutrient-rich (YPD) conditions. However, addition of AdoMet
to the medium yields viable double mutants.
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apparent than real because of incomplete compensatory capac-
ity or regulatory differences between the gene copies (36). Thus,
annotation of new enzymatic functions and incorporation of
information on enzyme capacities and gene regulation (12)
should lead to a refined model with more predictive power. Our
study confirms the view that model building in systems biology
is an iterative process (37) that proceeds by testing the predic-
tions of the model against experimental data and then by using
any discrepancies to revise and improve the model.

We used FBA to study the interplay between mutational
robustness and the environment. Synthetic genetic interactions
provide good examples of mutational robustness: members of
these pairs are likely to be independent genes participating in
alternative metabolic pathways or redundant gene duplicates. By
integrating computational data with in vivo studies on double-
gene deletants, we could show that synthetic genetic interactions
are frequently restricted to particular environmental conditions,
partly because genes involved in SL interactions under one
condition frequently make an essential contribution to growth in
another environment. The idea that compensating gene pairs
bear distinct functional roles and are not redundant under all
conditions is further supported by the observation that their
phylogenetic cooccurrence is not different from those of func-
tionally unrelated random gene pairs.

What could be the selective forces behind the evolutionary
emergence of condition-specific compensation mechanisms? In
principle, there are at least two possible routes. First, novel
compensatory pathways might evolve to enhance robustness
against spontaneously arising deleterious mutations and may
later provide raw material for adaptation to new environments
(38). Alternatively, adaptation toward new nutritional condi-
tions may drive the evolution of novel metabolic pathways and,
as a correlated response, some of these new pathways may also
enhance the organism’s ability to withstand harmful mutations
under certain conditions. For example, we speculate that the
ancestor of the choline transporter gene (HNM1) might have
evolved to enable the cell to use exogenous choline and, as a side
effect, provides robustness against null mutations in genes of the
phosphatidylethanolamine methylation pathway when choline is
present in the medium.

Several lines of theoretical reasoning and observation are
consistent with the view that mutational robustness is a byprod-
uct of other evolved properties of metabolic networks. First, the
presence of compensating metabolic gene duplicates can be
explained by gene dosage effects (5), differential regulation (39),
or the capacity to filter nonheritable noise (40), without the need
to invoke direct selection to favor mutational resilience. In a
similar vein, computer simulations suggest that the evolution of
several structural properties of metabolic networks can be
explained by selection for enhanced growth rates (41). Second,
population-genetics models have clearly shown that the selection
pressure for enhanced mutational robustness is generally weak,
of the order of mutation rates (42). Similar objections were
raised to Fisher’s selectionist theory of dominance (43). In
contrast, evolution of environmental robustness is unproblem-
atic from a population genetics point of view (42, 44), and
mutational robustness might simply arise as a correlated re-
sponse to selection for environmental robustness (15, 16). The
finding that the extent of epistatic interactions is not indepen-
dent of environmental specificity (SI Fig. 6 and ref. 10) provides
evidence for a correlation between mutational and environmen-
tal robustness. Finally, the scenario of direct selection for
mutational robustness would leave unexplained our observation
that different genes can be compensated in different environ-
ments. Therefore, based on the above arguments, we conclude
that mutational robustness of metabolic networks is unlikely to
be a directly selected trait. Rather, it is a side effect of adaptation
to survive in a large variety of nutrient conditions.

Materials and Methods
Analysis of Genetic Interactions in the Metabolic Network of Yeast.
We examined a recently updated (iLL672) metabolic network of
S. cerevisiae, which contains 672 genes and 745 unique biochem-
ical reactions including transport processes (18). The reconstruc-
tion also provides information on the association of genes with
different metabolic subsystems (e.g., purine metabolism, phos-
pholipid biosynthesis, etc.). One dubious reaction, correspond-
ing to choline biosynthesis, was removed from the reconstruction
because yeasts are unable to synthesize choline de novo (45).
FBA of the metabolic network was used to calculate the impact
of gene deletions on maximum biomass production rate (a proxy
for fitness). Details of the FBA protocol have been described in
ref. 12. SL interactions were identified by simulating all possible
single- and double-gene deletions and screening for gene pairs
where the single deletions had a �10% fitness effect, but the
double mutant was unable to produce biomass (the use of
different cut-offs led to very similar results). All deletion sim-
ulations were carried out in the ura3� leu2� his3� met17� lys2�
genetic background to most closely mimic the strains used in the
in vivo studies (see SI Materials and Methods).

To explore the condition dependency of SL interactions, we
defined a large set of nutrient environments. First, we tested all
external nutrients for their ability to support aerobic growth in
minimal medium. This resulted in 50 minimal media containing
different principal carbon sources, including glucose. Addition-
ally, we defined a medium mimicking YPD, a medium where all
possible external nutrients were allowed for uptake, and a
minimal vitamin medium [lacking pantothenate because yeast is
capable of de novo pantothenate biosynthesis (46)], resulting in
53 environmental conditions (for details see SI Materials and
Methods and SI Table 8). All simulated growth media were
supplemented with uracil, leucine, histidine, methionine, and
lysine to complement the nutritional markers and also with
vitamins (with or without pantothenate, see above) to further
mimic the experimental conditions.

Experimental Procedures. The simulations identified 59 gene pairs
showing SL on either nutrient-rich (YPD) or glucose minimal
[synthetic defined (SD)] medium. Published data (1, 18) on
single-deletion phenotypes for these two conditions enabled us,
in a comprehensive manner, to identify gene pairs for which the
viability of single deletants was correctly predicted.

To carry out in vivo validation, we considered initially those
gene pairs that have, at most, one paralog that is not annotated
as an isozyme in the model. This choice enabled us to test
higher-order genetic interactions by constructing triple-deletion
strains in cases where the double mutant was viable (see below).
Because, by using this criterion, all isozymes were excluded from
validation, we additionally incorporated three randomly selected
isozyme pairs in our experimental set. Moreover, among the
group of gene pairs containing several paralogs, we decided to
test gene pairs involved in pantothenate and polyamine biosyn-
thesis for which we had the highest number of predicted SL
interactions but no literature support available. Finally, some of
the selected gene pairs could not be verified because one or the
other mutant strain was missing from the deletion collection or
contained a second-site mutation (18). This selection procedure
left us with a set of 13 gene pairs to validate in vivo. These pairs
corresponded to 17 cases of synthetic lethality: 6 on YPD, 3 on
glucose minimal medium (SD), and 4 on both media.

We constructed the predicted double mutants by crossing
haploid yeast strains containing single-gene deletions in the
BY4742 and BY4741 backgrounds following standard protocols
(see SI Materials and Methods).

In cases where we failed to detect any growth defect by visual
inspection of plates (no overt synthetic sick or lethal phenotype), we
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performed accurate measurements of maximum growth rates of
single and double mutants to estimate epistasis. Optical densities
were measured by a Bioscreen C analyzer (Thermic Labsystems,
Oy, Finland), and maximum growth rates were calculated by using
an established protocol (19). Five cultures were grown for each
strain in both YPD and SD. Maximum growth rates were averaged
over the five replicates and divided by the wild-type value to yield
a relative growth rate for each strain. Because additivity of the
growth rates is equivalent to multiplicity of nonlogarithmic mea-
sures of fitness (47), we defined epistasis (�) as the degree of
departure from additivity of the relative growth rates (�), thus � �
�AB � �ab � �Ab � �aB.

See SI Materials and Methods for details on the construction
of triple-gene deletants.

Analysis of Global Genetic Interaction and Mutant Phenotype Data
Sets. We compiled a list of publicly available SSL interactions (25),
discovered by the synthetic genetic array approach (26), on SD
medium complemented with amino acids. Single-gene deletion
strains that exhibit a pronounced growth defect (�80% of wild-type
growth rate) on SD medium (48) were excluded from further
analyses to ensure that the interactions were not between uncon-

ditionally slow growing mutants. This resulted in a list of 2,666
synthetic genetic interactions (1,230 of them being SL). Information
on environment-specific phenotypes of single-gene deletions in
nonessential genes was collected from published large-scale phe-
notypic screens (see SI Table 2). Our list of 31 experimental
conditions included various nutrient and stress conditions, sporu-
lation, and stationary phase, but excluded drug treatments. Only the
strongest growth defects and phenotypes were considered as evi-
dence for conditional fitness contributions.
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17. Segrè D, Deluna A, Church GM, Kishony R (2005) Nat Genet 37:77–83.
18. Kuepfer L, Sauer U, Blank LM (2005) Genome Res 15:1421–1430.
19. Warringer J, Blomberg A (2003) Yeast 20:53–67.
20. Reguly T, Breitkreutz A, Boucher L, Breitkreutz BJ, Hon GC, Myers CL,

Parsons A, Friesen H, Oughtred R, Tong A, et al. (2006) J Biol 5:11.
21. McMaster CR, Bell RM (1994) J Biol Chem 269:28010–28016.
22. McAlister L, Holland MJ (1985) J Biol Chem 260:15013–15018.
23. McAlister L, Holland MJ (1985) J Biol Chem 260:15019–15027.
24. Thomas D, Rothstein R, Rosenberg N, Surdin-Kerjan Y (1988) Mol Cell Biol

8:5132–5139.
25. Tong AH, Lesage G, Bader GD, Ding H, Xu H, Xin X, Young J, Berriz GF,

Brost RL, Chang M, et al. (2004) Science 303:808–813.

26. Tong AH, Evangelista M, Parsons AB, Xu H, Bader GD, Page N, Robinson
M, Raghibizadeh S, Hogue CW, Bussey H, et al. (2001) Science 294:2364–2368.

27. Pál C, Papp B, Lercher MJ (2005) Nat Genet 37:1372–1375.
28. Campillos M, von Mering C, Jensen LJ, Bork P (2006) Genome Res 16:374–

382.
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Chance and necessity in the evolution of minimal
metabolic networks
Csaba Pál1,2*, Balázs Papp3*, Martin J. Lercher1,4, Péter Csermely5, Stephen G. Oliver3 & Laurence D. Hurst4

It is possible to infer aspects of an organism’s lifestyle from its gene
content1. Can the reverse also be done? Here we consider this issue
by modelling evolution of the reduced genomes of endosymbiotic
bacteria. The diversity of gene content in these bacteria may reflect
both variation in selective forces and contingency-dependent loss
of alternative pathways. Using an in silico representation of the
metabolic network of Escherichia coli, we examine the role of
contingency by repeatedly simulating the successive loss of genes
while controlling for the environment. The minimal networks
that result are variable in both gene content and number.
Partially different metabolisms can thus evolve owing to con-
tingency alone. The simulation outcomes do preserve a core
metabolism, however, which is over-represented in strict intra-
cellular bacteria. Moreover, differences between minimal net-
works based on lifestyle are predictable: by simulating their
respective environmental conditions, we can model evolution of
the gene content in Buchnera aphidicola and Wigglesworthia
glossinidia with over 80% accuracy. We conclude that, at least for
the particular cases considered here, gene content of an organism
can be predicted with knowledge of its distant ancestors and its
current lifestyle.
Naturally evolved, nearly minimal gene sets in closely related

intracellular symbionts contain substantial differences2. The diversity
of these evolved minimal gene sets may be the product of three
fundamental processes: differences in initial genetic makeup; vari-
ation in selective forces within host cells; and differences in the order
of gene deletions, resulting in a choice between alternative cellular
pathways2. By modelling the reductive evolution of a detailed
metabolic network, we first explore the evolutionary significance of
the last of these alternatives.
Using the metabolic network of Escherichia coli K12 (ref. 3) as our

model system has several advantages. First, the best evidence for the
presence of alternative pathways within and across species comes
from studies of metabolic networks4. Second, flux balance analysis
provides a rigorous modelling framework for studying the impact of
gene deletions4,5; themethod relies on optimizing the steady-state use
of the metabolic network to produce biomass components. Third,
not only is the metabolic network of E. coli K12 one of the best
studied cellular subsystems, but this organism is also a close relative
of several endosymbiotic organisms6, including Buchnera aphidicola
andWigglesworthia glossinidia. Cellular domestication has resulted in
the elimination of 70–75% of the ancestral genome in these latter
organisms7.
The previously reconstructedmetabolic network of E. coli3 consists

of 904 genes and 931 unique biochemical reactions, and incorporates
external nutrients and the corresponding transport processes. The
composition of a ‘minimal reaction set’ has been previously shown to

depend strongly on the given environmental conditions8. Gradual
evolution towards minimal genomes and the role of chance in this
process, however, have remained unexplored. The smallest sets of
genes that are compatible with cellular life will relate to the most
favourable conditions, in whichmost nutrients are available from the
environment. This situation is approximated by organisms with a
strict intracellular lifestyle, where the host provides most of their
nutrients2. Accordingly, we first characterized the simulated evolu-
tion of the network under nutrient-rich conditions (Supplementary
Tables 1–3).
To explore systematically the combinatorial set of minimal meta-

bolic reaction sets, we elaborated a simple algorithm for simulating
gradual loss of metabolic enzymes. We remove a randomly chosen
gene from the network and calculate the impact of this deletion on
the production rate of biomass components (a proxy for fitness). If
this rate is nearly unaffected, the deletion is assumed to be viable and
the enzyme is considered to be permanently lost; otherwise, the gene
is restored to the network. This procedure is repeated until no further
enzymes can be deleted; that is, all remaining genes are essential for
survival of the cell. This simulationwas repeated 500 times, with each
run providing an independent evolutionary outcome.
The resulting networks share on average 77% of their reactions,

whereas only 25% would be shared by randomly deleting the same
number of genes (Fig. 1a). This suggests that both selective con-
straints and historical contingencies influence the reductive evolu-
tion of metabolic networks. Owing to alternative metabolic pathways
in the original E. coli network, numerous functionally equivalent
minimal networks are possible, even under identical selective con-
ditions. For the same reason, only 55% of the reactions are recover-
able by single-gene deletion studies (Fig. 1b). The number of genes in
the minimal networks is also variable (Fig. 1b), suggesting that there
are differences in the number of enzymatic steps between alternative
pathways. Deletions at the early stages of genome reduction may
affect large genomic regions rather than single genes9. However,
additional simulations showed that, although allowing such block
deletions reduces the number of independent gene-loss events, it has
no effect on the size and average similarity of the networks evolved
(Supplementary Methods and Supplementary Table 4).
To compare our predictions against real evolutionary outcomes,

we divided the E. coli enzymes into two mutually exclusive groups:
enzymes ubiquitously present in the simulated minimal reaction sets
(group A), and enzymes absent in some or all of the simulated sets
(group B). If our analysis can approximate reductive evolution in
other bacteria, we expect systematic differences in the relative
frequencies of these enzymes between species with different lifestyles.
As expected, the fraction of enzymes with ubiquitous presence in
the simulated minimal reaction sets (group A) is especially high in
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intracellular parasites and endosymbionts as compared with free-
living microbes (Fig. 1c).
To investigate further how accurately the model describes reduc-

tive evolution in nature, we focused our simulations on three fully
sequenced genomes of B. aphidicola strains10–12 and W. glossinidia13.
These are close relatives of E. coli with an evolved intracellular

endosymbiotic lifestyle. Gene acquisitionmust have been a negligible
factor in the evolution of these lineages (Supplementary Methods),
providing a unique opportunity to study reductive evolution. Setting
boundary conditions that mimic the relevant nutrient conditions
and selective forces (Supplementary Tables 2 and 3), we performed
simulations as described above.
Detailed physiological studies have shown that Buchnera supply

their aphid hosts with riboflavin14 and essential amino acids15 that are
lacking in their hosts’ diets. To quantify the agreement between our
predictions and the observed reductive evolution in Buchnera, while
considering gene-content variation in simulated minimal genomes,
we used a combined measure of sensitivity and specificity16. For each
possible cutoff (that is, theminimal fraction of simulated genomes in
which a gene must be present to predict its presence in Buchnera),
Fig. 2a shows the fraction of true-positive predictions (sensitivity)
plotted against the fraction of false-positive predictions (1–specificity).
The area under the resulting curve gives a cutoff-independent
measure of predictive accuracy16. For each of the Buchnera strains,
the accuracy of the model is ,80% as compared with the 50%
expected by chance (Fig. 2a). The above results remain valid when
genes putatively transferred horizontally into E. coli since its split

Figure 1 | General properties of evolved minimal networks. a, Distribution
of the fraction of shared metabolic reactions between all possible pairs
among 500 simulated minimal networks. Only reactions with annotated
enzyme-encoding genes are shown. The resulting networks share 77 ^ 4.4%
(mean ^ s.d.) of their reactions. The 500 networks were generated with
random reaction content and the same distribution reaction numbers as the
simulants. The average similarity across networks is 25 ^ 2.7%.
b, Distribution of the number of contributing genes in simulated minimal
networks. Minimal reaction networks contain, on average, 245 ^ 6.48
reactions (mean ^ s.d.); however, only 134 of these genes (,55%) have a
predicted fitness effect in the full original E. coli network (arrow).
c, Distribution of genes consistently present in minimal networks in
organisms with different lifestyles (Supplementary Table 11). Putative
orthologues of E. coli enzymes were identified in 140 bacterial species.
Shown is the fraction of these that are retained in all simulated minimal
networks, summarized across species for each of four different lifestyles
(values are the mean ^ 2 s.e.m.). Analysis of variance: n ¼ 140, F ¼ 62.9,
d.f. ¼ 3, P , 1026.

Figure 2 | Comparison of reaction content of simulated and Buchnera
metabolic networks. a, Predictive accuracy for all possible cutoffs (receiver
operating characteristic curve)16. Bp: B. aphidicola, endosymbiont of
Baizongia pistaciae; Sg: B. aphidicola, endosymbiont of Schizaphis
graminum; Ap: B. aphidicola, endosymbiont of Acyrthosiphon pisum.
Overall accuracy (area under curve): Bp ¼ 0.802, Ap ¼ 0.794, Sg ¼ 0.800.
All results are highly significant, P , 10225 (see Supplementary
Information). b, Presence or absence of reactions inBuchnera aphidicola Bp,
averaged over genes within defined ranges of presence or absence in the
simulated minimal reaction sets. Error bars indicate 95% confidence
intervals. x2-test: n ¼ 874, x2 ¼ 222.6, d.f. ¼ 4, P , 10246. For results on
Wigglesworthia glossinidia, see Supplementary Fig. 2.
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from the Buchnera lineage are excluded from the analysis (Supplemen-
tary Methods and Supplementary Table 5). The model also accurately
predicts several non-obvious features of Buchnera genomes: for
example, the retention of particular reactions involved in oxidative
phosphorylation and in pyruvate metabolism (Supplementary
Table 6).
Consistent with the notion that genes vary widely in their

propensity to be lost during reductive evolution, we find a strong
correlation between the frequency of a reaction’s presence in the
simulated reduced networks and its retention in Buchnera (Fig. 2b).
Metabolic pathways differ widely in their variability across simulated
minimal sets (Supplementary Table 7). For example, it seems that
there is only one way of producing some key cellular (biomass)
components, including compounds for cell wall synthesis and some
essential amino acids. By contrast, reactions involved in pyruvate
metabolism, nucleotide salvage pathways or transport processes vary
in their retention across simulations. For example, there are two
distinct pathways by which E. coli can activate acetate to acetyl-
coenzyme A (ref. 17). These two pathways have been shown experi-
mentally to compensate for deletions in each other in E. coli17, at least
under some nutritional conditions. Consistent with this observation,
the simulated minimal reaction sets always contain only one of the
two pathways; accordingly, Buchnera strains have retained only one
of the two pathways (Supplementary Table 8).
The above analysis relied on detailed knowledge of the lifestyle of

Buchnera. Is it possible to predict gene content of an organism
with much less information on lifestyle? Wigglesworthia, another
endosymbiont and close relative of E. coli, is an obvious choice.
Wigglesworthia provides some cofactors and vitamins for its host, the
tsetse fly18. On the basis of the available physiological information19,
it is possible to model the evolution of the metabolic network of
this organism with nearly 76% accuracy for the reaction content
(Supplementary Fig. 2 and Table 3). It is likely that the available
experiments underestimate the number of cofactors produced by
the endosymbiont. We thus elaborated a systematic protocol to find
the most likely set of cofactors synthesized by Wigglesworthia
(Supplementary Methods). Based on the idea of greedy algorithms20,
the protocol iteratively adds biosynthetic components that must be
produced for the host and calculates the impact on the accuracy of
predicting the real reaction content ofWigglesworthia. In each round,
the cofactor resulting in the best prediction is kept and a new round
of simulations is started, adding again each of the remaining
compounds one at a time (Supplementary Methods). The method
substantially increases model accuracy up to 84% (Supplementary
Table 5). It also results in a series of non-trivial predictions on the
metabolic capability ofWigglesworthia. For example, it suggests that
this organism retained the ability to synthesize not only protohaem,
but also another related cofactor, haemO (SupplementaryMethods).
Under a given selection pressure, simulated minimal reactions sets

share 82% (Wigglesworthia) and 88% (Buchnera) of their reactions,
respectively. This value drops to 65% when minimal gene sets across
different models are compared. This suggests that variability in gene
content among species reflects both variation in selection pressures
and chance events in the evolutionary history of the endosymbionts
(Supplementary Table 9).
Each loss of a reaction reduces the space available for further

reductive evolution. This is most obvious for physiologically fully
coupled reactions (such as those in linear pathways), which can only
fulfil their metabolic function together21. As predicted, members of
pairs are either lost or retained together in the investigated endo-
symbionts in 74–84% of cases, whereas only ,50–55% would be
expected by chance (Supplementary Table 10).
Deviations between the model predictions and gene content of

endosymbionts might be due to incomplete biochemical knowledge
or inaccuracies in modelling the types and relative amounts of
nutrient conditions and biosynthetic components required by the
endosymbiont or the host cell. Finally, hosts and endosymbionts

interact in ways that are not completely understood, and biomass
production may be only a rough proxy for endosymbiont fitness.
These caveats aside, our approachmight be considered a step towards
a predictive theory of gene-content evolution. Complementary to
traditional approaches, in which lifestyle is inferred from genomic
data, it seems possible to take an organism’s ecology and to predict
which genes it should have by in silico network analysis. Moreover, we
find that evolutionary paths are contingent on prior gene deletion
events, resulting in networks that generally do not represent the most
economical solution in terms of the number of genes retained. Thus,
history and chance seem to have significant roles not only in
adaptive22 but also in reductive evolution of genomes.
These results also have implications for the search for a minimal

genome. By using comparative genomics23,24 and systematic gene
knock-out studies25–27, traditional analyses of minimal gene sets aim
to define a repertoire of genes that is necessary and sufficient to
support cellular life2. The theoretical foundations of the minimal
genome concept have remained, however, largely unexplored. We
have established that the catalogue of essential genes in free-living
species identified by single-gene deletion studies will underestimate
the minimal gene set for metabolic system by about 45% (Fig. 1b).
Such considerations, and the simulation techniques used to reach
these conclusions, should inform attempts by experimentalists to
constructminimal genomes by gradual evolution in the laboratory28,29.

METHODS
For full details on orthologue detection and statistical analyses, see Supplemen-
tary Methods.
Flux balance analysis of theE. colinetwork.A reconstructedmetabolic network
(iJR904 GSM/GPR)3 of E. coli K12 was used in this study. The model consists of
931 unique biochemical reactions (including transport processes) and 904 genes.
The metabolic reconstruction gives accurate information on the stoichiometry
and direction of enzymatic reactions, on the presence of isoenzymes, and on
enzymatic complexes. Details of flux balance analysis of the E. coli metabolic
network have been described elsewhere4,5. In brief, it involves two fundamental
steps: first, specification of mass balance constraints around intracellular
metabolites; and second, maximization of the production of biomass com-
ponents. The assumption of a steady state of metabolite concentrations specifies
a series of linear equations of individual reaction fluxes, which is written in the
form Sv ¼ 0, where S is the mn stoichiometric matrix (m being the number of
metabolites and n being the number of reactions) and v is the vector of
individual fluxes through the network. An individual element Sij gives the
contribution of the j-th reaction tometabolite i. A biomass reaction describes the
relative contribution of metabolites to the cellular biomass. Availability of
nutrients and directions of individual reactions were included as boundary
conditions (Supplementary Tables 1–3). Using the linear programming package
CPLEX 9.0.0, we identified the flux distribution that maximizes the rate of
biomass production.
Simulations on reductive evolution. Following previously elaborated proto-
cols5, we start by investigating the behaviour of the E. coli metabolic network
model under a given environmental condition (Supplementary Tables 1–3).
Next, we remove a randomly chosen enzyme from the network and calculate the
impact of this deletion on the production of biomass components (for a list, see
Supplementary Tables 1–3). Enzyme deletions were simulated by constraining
the flux of the corresponding reactions to zero and calculating the corresponding
knockout flux configuration by established protocols4,5. A gene was classified as
having no fitness effect if the biomass production rate of the knockout strain was
reduced by less than a given cutoff; different cutoffs led to very similar results
(Supplementary Table 5). Deletions of isoenzymes were considered to have no
impact on fitness as long as at least one member remained. By contrast, deletion
of any of the subunits of a protein complex was considered to result in zero flux
through the corresponding reactions. Reactions with no annotated encoding
genes were retained throughout the simulations. If the fitness effect of a
simulated gene deletion was below the cutoff, the deletion was assumed to be
viable and the enzyme was considered to be permanently lost. Otherwise, the
gene was restored to the network. The procedure was repeated until no further
enzymes could be deleted. This simulation was repeated 500 times; each run
provided an independent evolutionary outcome.

The simulations that mimic the evolution of the Buchnerametabolic network
relied on available biochemical evidence suggesting that glucose and glutamate
are the principal carbon sources fromwhich essential amino acids and riboflavin
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must be produced for the host (Supplementary Table 2). Besides amino acids,
mononucleotides and fatty acids, among others, the biomass components that
must be synthesized also include riboflavin. A previous study30 estimated the
population size of Buchnera as Ne < 102–103. Gene deletions are effectively
neutral and can thus spread through a population if jNe sj , 1, where s is the
selective effect of the gene deletion. Accordingly, the cutoff for the fitness effect of
simulated gene deletions was set to 1022. A less stringent cutoff (0.1) gave very
similar results (Supplementary Table 6). For details ofWigglesworthia uptake and
selective conditions, see Supplementary Table 3.
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A central unresolved issue in evolutionary biology is how meta-
bolic innovations emerge. Low-level enzymatic side activities are
frequent and can potentially be recruited for new biochemical
functions. However, the role of such underground reactions in
adaptation toward novel environments has remained largely
unknown and out of reach of computational predictions, not least
because these issues demand analyses at the level of the entire
metabolic network. Here, we provide a comprehensive computa-
tional model of the underground metabolism in Escherichia coli.
Most underground reactions are not isolated and 45% of them can
be fully wired into the existing network and form novel pathways
that produce key precursors for cell growth. This observation
allowed us to conduct an integrated genome-wide in silico and
experimental survey to characterize the evolutionary potential
of E. coli to adapt to hundreds of nutrient conditions. We revealed
that underground reactions allow growth in new environments
when their activity is increased. We estimate that at least ∼20%
of the underground reactions that can be connected to the exist-
ing network confer a fitness advantage under specific environ-
ments. Moreover, our results demonstrate that the genetic basis
of evolutionary adaptations via underground metabolism is com-
putationally predictable. The approach used here has potential for
various application areas from bioengineering to medical genetics.

enzyme promiscuity | evolutionary innovation | molecular evolution |
network evolution | phenotype microarray

How do new molecular pathways evolve? In the best-studied
molecular networks, small-molecule metabolism, the pre-

vailing paradigm is that new pathways are patched together from
preexisting enzymes borrowed from different parts of the net-
work (1–3). Central to this “patchwork” model of pathway evo-
lution is the notion that many enzymes have limited substrate
specificities and can catalyze, albeit at low rates, reactions other
than those for which they have evolved (also referred to as en-
zyme promiscuity) (4). These so-called underground (5) or side
activities are prevalent (6–8) and were shown to serve as starting
points for the evolution of novel functions both in directed
evolution experiments (9) and in the diversification of gene
families in the wild (7). However, how the underground catalytic
repertoire encoded in the genome can generate novelties within
the context of the existing metabolic network remains unknown.
Do underground reactions remain isolated, or can they poten-
tially be wired into the native network and allow the organism to
survive in novel environments? Furthermore, would it be possible
to computationally predict the genetic basis of phenotypic evolu-
tion based on a detailed knowledge of the organism’s underground
metabolism? Answering these questions requires both large-scale
data on underground enzyme activities and systems-level ap-
proaches to analyze metabolic capabilities. Although systematic
detection of underground activities by unbiased high-throughput
approaches is not feasible at present, the accumulated knowledge
of enzyme biochemistry in the well-studied prokaryote Escherichia
coli provides a valuable resource of such nonnative enzyme

activities (10). Thus, to explore the architecture of underground
metabolism and its evolutionary potential, we compiled a com-
prehensive set of experimentally reported side activities of E. coli
enzymes and integrated these reactions into a global metabolic
network reconstruction of the same organism (11). Analysis of this
extended network revealed that a substantial fraction of un-
derground reactions can be fully integrated into the existing me-
tabolism and participate in potential pathways that produce key
precursors for cell growth. Using metabolic modeling, we then
predicted specific environmental conditions under which such bi-
ologically relevant underground reactions confer a growth ad-
vantage, and hence deliver a phenotypic novelty. Our analyses
revealed that the set of known underground reactions has a sig-
nificant potential both to increase fitness in existing environments
and to exploit new nutrient sources. A genome-wide gene over-
expression screen across hundreds of carbon sources showed
a good agreement with the model’s predictions, which illustrates
that the genetic basis of phenotypic novelties can be predicted
based on the knowledge of underground metabolism.

Results
Reconstructing the Underground Metabolic Network of E. coli. To
reconstruct a global metabolic network of E. coli that also

Significance

Understanding how new metabolic pathways emerge is one of
the key issues in evolutionary and systems biology. The pre-
vailing paradigm is that evolution capitalizes on the weak side
activities of preexisting enzymes (i.e. underground reactions).
However, the extent to which underground reactions provide
novelties in the context of the entire cellular system has
remained unexplored. In this study, we present a comprehen-
sive computational model of the underground metabolism of
Escherichia coli. Together with a high-throughput experimental
survey across hundreds of nutrient environments we predicted
and confirmed new functional states of metabolism in which
underground reactions allow growth when their activity is in-
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incorporates underground reactions, we collected information
for each E. coli enzyme on catalytic activities that have been
detected in vitro and involve nonnative substrates (i.e., metab-
olites not considered as primary substrates of the enzyme) by
database and literature mining (Materials and Methods). Alto-
gether, we compiled 262 underground reactions and 277 novel
compounds not present in the native network (Fig. 1 A and B and
Dataset S1). Two analyses suggest that the assembled un-
derground reactions occur at very low rates in E. coli, and hence
they conceptually differ from enzyme multispecificity (12), where
several reactions are catalyzed with similar efficiency (4). First,
side reactions are catalyzed with significantly lower catalytic ef-
ficiency (kcat/Km) than native reactions of the same enzymes
(∼220-fold pairwise difference, P < 0.001, Fig. 1C and SI Ap-
pendix, Table S1). Second, by compiling data from the E. coli
Metabolome Database (13) (Materials and Methods), we found
that metabolites introduced into the network via underground
activities only are strongly underrepresented among empirically
observed metabolites (22% versus 81% for native metabolites, P <
10−15, Fig. 1D; other metabolomics datasets yielded similar results,
SI Appendix, Fig. S1). This suggests that these novel metabolites
are either absent or present at very low abundances in the cell,
hence remaining physiologically irrelevant. Because underground
reactions occur at very low rates, they are unlikely to have es-
sential roles in the wild-type background. Nevertheless, these side
activities could potentially be enhanced by adaptive mutations (4)
and thus provide raw material for network expansion.

Underground Reactions Can Often Be Wired into the Native Network.
In principle, novel biochemical reactions can introduce cross-

wirings, create dead-ends, or remain isolated from the rest of the
metabolic network (Fig. 2A). Our reconstruction suggests that
enzyme side activities most often create cross-wirings: Forty-five
percent of underground reactions can be fully connected to the
network (see Fig. 1B for examples), and only 22% of them are
completely isolated from native metabolism. What factors in-
fluence the network positions of cross-wiring underground
reactions? Side activities are most frequently caused by substrate
ambiguity (14), that is, when an enzyme catalyzes the same
transformation on multiple structurally related substrates. This
chemical constraint indeed yields nonrandom positioning at the
network level: Native and underground activities of the same
enzyme tend to participate in the same metabolic subsystem and
are separated by fewer reaction steps than expected by chance
(P < 10−4 and P = 0.0066, respectively, Fig. 2 B and C; also see SI
Appendix, Fig. S2). Importantly, this result is based on a subset of
the underground network that comes from a systematic substrate
specificity screen (6) and hence is not distorted by potential in-
vestigation bias (Materials and Methods).

Underground Reactions Potentially Contribute to Biologically Relevant
Pathways Akin to Native Ones. The observation that many un-
derground reactions can be wired into the native network raises
the question of their potential biological relevance. Do they have
pathway-level properties akin to native ones, and can they po-
tentially contribute to the formation of key precursors needed
for growth (biomass components)? We used elementary flux
mode (EFM) analysis (15) to investigate these questions. EFM
is a mathematical approach to decompose the network into
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biochemically relevant pathways that can operate in steady state
from nutrient uptake to biomass component production. A sam-
pling of such elementary paths showed that all underground
reactions that can be fully wired into the native network and can
carry flux in standard glucose medium also take part in at least one
biomass-forming pathway. The chemical yields and lengths of
pathways formed by native and underground reactions of the same
enzyme are comparable to each other in standard glucose medium
(Fig. 2 D and E). Taken together, a substantial fraction of the
known underground catalytic repertoire of E. coli can be seam-
lessly integrated into the existing network and participate in bi-
ologically potentially relevant pathways.
However, the fact that underground reactions occur at very

low rates suggests that they have not been exploited by evolution
so far. Why should this be so? This issue is relevant because
tradeoffs between novel and existing enzymatic functions are
generally weak (4, 9) and can be readily resolved by gene du-
plication (16). We consider two alternative hypotheses to resolve
this issue. First, underground reactions might interfere with
existing processes (17) and are therefore disfavored by selection.
Second, underground reactions might endow the cell with novel

capabilities, but only under specific environmental conditions
that the population has not regularly encountered during its
evolutionary history.

No Evidence for the Detrimental Nature of Underground Reactions.
To test whether underground reactions tend to introduce
harmful metabolites, we focused on metabolite toxicity, which
has been implicated in the interference between a novel pathway
and native metabolism (17). Toxicity of metabolites, as measured
by IC50 values (half maximum inhibitory concentration), were
predicted using a chemoinformatics tool trained on data mea-
suring the susceptibility of E. coli against a diverse set of
chemicals (18). Our analysis revealed no significant difference in
toxicity between novel compounds introduced by underground
reactions and native compounds associated with the same
enzymes (P = 0.81, Fig. 3A). Thus, metabolite-induced damage is
unlikely to pose a general limit on network expansion. A second
possibility is that activation of underground reactions would in-
cur a fitness cost by diverting metabolites from existing biomass-
producing pathways. To address this scenario, we applied the
EDGE algorithm (19), which identifies metabolic reactions that
decrease growth when enforced to be active (i.e., higher flux).
We found no support for this scenario: Underground reactions
are not more likely to decrease growth when enforced to be
active compared with native nonessential reactions of the same
enzymes (P = 0.22; Materials and Methods).

Predicting the Adaptive Potential of Underground Metabolism. To
test the impact of underground reactions on adaptation to spe-
cific environments we first systematically predicted growth phe-
notypes using flux balance analysis (FBA) (20) across a diverse
set of environments. FBA is a modeling approach for analyzing
metabolite flows from nutrient uptake toward production of
metabolites in large-scale metabolic networks without the need
for enzyme kinetic information. This modeling framework has
been shown to be successful in predicting the growth capacity of
wild-type E. coli across nutrient conditions and the viability of
single-gene disruptions (11). The set of 2,754 environments de-
fined here encompasses the complete range of carbon, nitrogen,
sulfur, and phosphorus sources that can be imported into the
network (Dataset S2) and thereby represents a comprehensive
sample of the external nutrient space. As a baseline, we report
that the native E. coli network shows in silico growth in 645 of
these environments (Dataset S2). Next, we predicted the nutrient
utilization profile for a metabolic network extended with all
cross-wiring underground reactions. We note that because FBA
seeks the most optimal flux distribution a larger network is ex-
pected to display slightly more optimal behavior under most
conditions (i.e., pathways with somewhat higher biomass pro-
duction can potentially be found in larger networks). To avoid
such artifacts, we only considered fitness gains that are of at least
5% (Materials and Methods). The exhaustive list of investigated
conditions enabled the identification of 19 otherwise non-
utilizable nutrients on which the underground network allowed
growth, hence introducing an innovation (21), and a further 31
environments where it provides a clear quantitative growth ad-
vantage (Dataset S2; see Fig. 3B for in silico fitness gains
detected in aerobic carbon sources). Remarkably, incorporating
the set of cross-wiring underground reactions into the native
metabolic network increased its reaction content by 10.8% (i.e.,
from 1,257 to 1,393 intracellular reactions capable of carrying
a flux) while concurrently expanding its scope of utilizable
nutrients by 2.9% (from 645 to 664), underscoring the innovative
potential of underground metabolism.
Next, we determined which underground reactions contribute

to these novelties (Materials and Methods). We found that ∼15%
of cross-wiring underground reactions confer an advantage when
added individually to the network (Fig. 3B), and a further 5% do
so in combination with other underground activities (Dataset
S2). Furthermore, ∼11% contributed to metabolic innovations
by increasing the scope of utilizable nutrients. In summary, these
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simulations suggest that an important fraction of the biochemi-
cally feasible evolutionary raw material in E. coli could poten-
tially contribute to adaptation to novel nutrient environments
with respect to growth.

Genome-Wide Experimental Screen Identifies Novel Phenotypes
Conferred by Underground Activities. To experimentally assess
the role of underground reactions in adaptation to nutrient
environments we performed an in vivo genome-wide screen to
identify genes that enable growth on a new carbon source when
strongly overexpressed. Our approach rests on the assumption
that amplification of a single underground activity can confer
a new phenotype under specific conditions. Indeed, strong gene
overexpression through the viral promoter and high-copy plas-
mid that we apply here (typically three to four orders of mag-
nitude increase in protein level; see SI Appendix) has been
previously used to identify underground activities that provide
metabolic suppression (22, 23). Following an established pro-
tocol (22, 24), a pooled collection of every E. coli ORF cloned
into an expression vector (25) was tested for the provision of
growth advantage in a large array of diverse carbon sources
(∼4,300 ORFs in 194 conditions; see SI Appendix, Fig. S3 for
a workflow). Following verification, we identified 17 ORFs
whose overexpression improved growth in at least one of 17
specific carbon sources (9% of the investigated conditions; Table
1, Dataset S3, and SI Appendix, Fig. S4). Importantly, more than

half of these novel growth phenotypes were conferred by en-
zyme-encoding genes with underground activities that are either
biochemically already described for the corresponding E. coli
enzyme or hypothesized based on reaction chemistry or evidence
from orthologous enzymes (Fig. 4A; for more details see Dataset
S4). Furthermore, six of these enzymes not only improved
growth but also produced a metabolic innovation in one of the
five carbon sources where wild-type E. coli was unable to grow
(Fig. 4A). We therefore estimate that amplifying single un-
derground enzyme activities expands the scope of utilizable
carbon sources by ∼6% in this species (from 85 to 90 of the
carbon sources experimentally tested here). This figure is ex-
pected to substantially underestimate the true evolutionary
potential of underground metabolism in nutrient adaptations
for at least four reasons. First, our screen captures only those
innovations that can be accessed by increasing the activity of
a single underground reaction. In principle, phenotypic novelties
might also rely on multistep pathways and hence would go un-
detected in our screen. Indeed, our in silico screen identified
three environments in which more than one underground re-
action is jointly needed to confer a fitness benefit (Dataset S2).
Second, underground activities with relatively modest beneficial
effects might remain undetected in our assay. For example, there
must be a lower threshold for fitness gains that is necessary for
a clone within the pool of overexpression strains to overgrow the
negative control. Third, overexpression is unlikely to cover the
full dynamic range within which mutations can increase the cat-
alytic efficiency of underground activities in nature. Finally, it is
also possible that an underground activity with a potential fitness
advantage remains silent because some of the required native
reactions are unavailable for regulatory reasons.

Experimentally Determined Metabolic Novelties Show Good Agreement
with in Silico Predictions. Computational predictions and results of
the genome-wide survey showed a highly significant overlap (P <
10−13, SI Appendix, Table S2). In particular, modeling successfully
predicted 44% of the carbon sources that can be used by the
amplification of enzyme side activities (Fig. 4). For example,
D-lyxose occurs rarely in nature (26) and wild-type E. coli is unable
to degrade it. Our model predicts that establishing a pathway to use
this nutrient only requires a single metabolic reaction, the side
activity of mannose isomerase (YihS). Our experimental screen
confirms that only the overexpression of yihS, but not of other
genes, enables growth on D-lyxose. Novel metabolic phenotypes
missed by our model are related to catalytic functions that have not
been described in E. coli (Dataset S4), revealing that several un-
derground reactions are yet to be discovered. Finally, we note that
repeating the computational predictions using a reconstruction
based on a more recent version of the E. coli native network (27)
also yielded highly significant prediction accuracy (P < 10−7; see SI
Appendix, Table S3 for details).

Discussion
The specificity of enzymes is inherently limited and the catalytic
side activities stemming from this imperfection are thought to
provide the raw material for the evolution of novel enzymatic
functions (4). However, a hitherto uncharacterized portion of the
catalytic raw material might be isolated from the rest of the
metabolic network, produce harmful metabolites (17), or only
contribute to the formation of pathways that are redundant with
existing network parts (23). Because such underground activities
are unlikely to contribute directly to adaptive novelties at the
phenotypic level, they may never be realized by evolution. Our
study attempts to systematically assess the biological relevance
and evolutionary potential of underground reactions within the
context of the entire metabolic network. We report that known
underground reactions of E. coli can often be integrated into the
native metabolic network and contribute to pathways producing
precursors for cellular growth, with efficiencies comparable to
native ones. Furthermore, as opposed to a previous case study
(17), we found no evidence that underground reactions have
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a tendency to introduce harmful intermediates into the network
or divert resources from growth-supporting pathways.
We found strong computational and experimental support

for the notion that evolution can capitalize on underground
reactions both to enhance growth in existing environments and
to exploit completely novel nutrient sources. Furthermore, our in
silico results suggest that the known underground repertoire of
E. coli enzymes can substantially increase the range of utilizable
carbon sources available to this organism (i.e., an ∼11% increase
in network size expands the scope of available nutrients by ∼3%).

We speculate that the contribution of underground metabolism
to adaptation to new environments might be even more pro-
nounced in eukaryotes, where metabolic network expansion by
means of horizontal gene transfer has a less prevalent role com-
pared with bacteria (28).
Underground metabolism could be exploited for additional

functions beyond using novel nutrients for cellular growth. First,
because many underground reactions generate a cross-wiring
between existing network parts, these reactions might allow the
network to react rapidly to perturbations in metabolite or en-
zyme concentrations (29). Second, evolution of new pathways via
underground reactions may be important for the production of
novel secondary metabolites (30).
A central challenge of evolutionary systems biology is to pre-

dict the phenotypic effect of mutations and potential routes of
evolution (31, 32). Although important progress has been made
in predicting the fitness effect and epistatic interactions of del-
eterious mutations in large-scale metabolic networks (31), the
genetic basis of adaptive novelties has remained more elusive.
Our work demonstrates that, based on the knowledge of un-
derground metabolism, it is possible to predict both the range of
novel metabolic phenotypes available to an organism in one
mutational step and their genetic bases. Although our present
information on underground metabolism is far from being com-
plete, the overlap between in silico and in vivo identified geno-
type–phenotype pairs (Fig. 4A and SI Appendix, Table S2) suggests
that our underground network already covers a significant part of

Table 1. Experimental results of the genome-wide
overexpression screen

Putative mode of action
No. of carbon

sources

Native catalytic activity (pepQ, rihB) 2
Underground catalytic activity(bglB, dmlA, fumA,

fumB, lacZ, leuB, mhpF, rbsK, ybfF, yihS)
9

Regulator of metabolic operon (bglJ) 2
Stress response (sspA, ycgZ) 2
Unknown mechanism (frdD, ygeN) 2

Verified list of ORFs conferring a growth advantage in specific carbon
sources when overexpressed. ORFs are grouped according to the putative
mechanism of fitness gain. See Dataset S3 for more details.
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Fig. 4. Underground enzyme activities conferring growth advantage in new carbon sources. (A) List of enzymes with catalytic side activities that enable (++)
or improve (+) the utilization of specific carbon sources when amplified. Forty-four percent of the experimentally confirmed phenotypes were also predicted
in silico (●), and the rest were identified experimentally (○). (B) Growth experiments validating the five computationally predicted carbon source–enzyme
pairs presented in A. Red curves show the growth of cells overexpressing the predicted ORFs, and the blue one is the negative control (cells harboring the
empty plasmid). Each curve represents the average of three biologically independent replicates and their SE. We note that growth dynamics is variable
between carbon sources, akin to what is observed on native carbon sources (35). (C) Schematic view of central carbon metabolism (gray arrows) with un-
derground reactions (red arrows) that confer a growth advantage on specific carbon sources (yellow highlight) when amplified. Asterisks in A and C denote
cases where the carbon source is channeled into the native network via an underground reaction with indirect evidence. For details, see Dataset S4.
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the catalytic raw material available for short-term adaptation to
novel environments.
Finally, the ability to computationally predict novel pheno-

types based on knowledge of underground reactions also has
important practical implications. For instance, systematic screens
for enzyme side activities coupled with computational modeling
could be used to reveal new pathways for industrially relevant
compounds in new economically attractive growth environments.
In addition, similar approaches might increase our understanding
of the role of catalytic side activities and gain-of-function enzyme
mutations in tumor evolution (33).

Materials and Methods
We reconstructed the underground metabolism of E. coli K-12 MG1655
(hereby termed iRN1260u) by extending the genome-scale metabolic net-
work iAF1260 (11) with weak underground reactions from published ex-
perimental studies based on the BRENDA database (10) and literature
(Datasets S1 and S5). The reconstruction is available as a computational
SBML model (Dataset S6, also downloadable from http://group.szbk.u-szeged.
hu/sysbiol/papp-balazs-lab-resources.html). Reactions were considered as un-
derground reactions if they were listed in the BRENDA “substrate,” but
not in the “natural substrates” section. Each reaction was examined as
a whole for correct stoichiometry (i.e., mass and charge balance). To eval-
uate the correctness of the classification, we examined kinetic efficiency
by kcat and Km values and metabolomics datasets for the occurrence of
metabolites. Samples of elementary flux modes (i.e., minimal steady-state
pathways) containing a reaction of interest were obtained using a modified

algorithm of Kaleta et al. (34). We investigated the toxicity of both native
and underground metabolites using a quantitative structure–activity re-
lationship model developed to predict compound toxicity specifically in
E. coli (EcoliTox web server) (18). The algorithm predicts IC50 based on
molecule structure with high accuracy (R2 = 0.71). We applied FBA (20) to
predict the contribution of underground metabolism to the adaptation
to novel nutrient environments. Predictions were compared with results
from a high-throughput gene-overexpression screen using the ASKA li-
brary (25) across ∼200 carbon sources following the protocol of Soo et al.
(24) with modifications.

Detailed procedures of (i) the reconstruction and evaluation of the E. coli
underground network, (ii) calculation of network distance and shared sub-
systems between native and underground reactions, (iii) identification of
reactions capable of carrying a flux, (iv) elementary flux mode analysis, (v)
metabolite toxicity analysis, (vi) EDGE analysis, and (vii) in silico and exper-
imental surveys to identify novel phenotypes conferred by underground
reactions are described in SI Appendix.
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Balázs Bálint4, Róbert Herczeg4, István Nagy4,5, Richard A. Notebaart3,6, Martin J. Lercher2, Csaba Pál1

& Balázs Papp1

A central challenge in evolutionary biology concerns the mechanisms by which complex

metabolic innovations requiring multiple mutations arise. Here, we propose that metabolic

innovations accessible through the addition of a single reaction serve as stepping stones

towards the later establishment of complex metabolic features in another environment. We

demonstrate the feasibility of this hypothesis through three complementary analyses. First,

using genome-scale metabolic modelling, we show that complex metabolic innovations in

Escherichia coli can arise via changing nutrient conditions. Second, using phylogenetic

approaches, we demonstrate that the acquisition patterns of complex metabolic pathways

during the evolutionary history of bacterial genomes support the hypothesis. Third, we show

how adaptation of laboratory populations of E. coli to one carbon source facilitates the later

adaptation to another carbon source. Our work demonstrates how complex innovations can

evolve through series of adaptive steps without the need to invoke non-adaptive processes.
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E
volutionary novelties frequently depend on the fixation of
multiple, highly specific mutations, where intermediate
stages of evolution seemingly provide little or no benefit1.

Such complex adaptations are widespread in molecular networks
and include the origin of multimeric protein machineries,
establishment of interactions between transcription factors and
their binding sites, receptor–ligand interactions and multi-step
metabolic pathways2–4. According to the notion that evolutionary
adaptation proceeds by the sequential fixation of single beneficial
mutations5, complex adaptations are expected to occur only
sporadically. One theory suggests that many evolutionary
innovations, that is, qualitatively new adaptive traits, have
non-adaptive origins, where neutral mutations prepare the
ground for later beneficial mutations that lead to innovations6,7.
Evidence for this process comes from laboratory evolution of
RNA enzymes8, but its role in the establishment of complex
molecular pathways remains unclear. In the case of metabolic
networks, the theory proposes that ‘many additions of individual
reactions to a metabolic network will not change a metabolic
phenotype until a second added reaction connects the first
reaction to an already existing metabolic pathway’7. However, this
non-adaptive process is expected to be extremely slow, and
furthermore, there is no direct empirical support for this scenario
in bacteria, which are especially prolific in producing metabolic
innovations. Although free-living bacteria increase their genome
size through horizontal gene transfer and gene duplication,
their genomes remain compact, and non-functional sequences
appear to be rare compared with most eukaryotes9. Genes under
relaxed selection are rapidly inactivated and subsequently lost in
free-living bacteria, not least because there is a pervasive
mutational bias towards deletions of genomic segments9.
Consequently, genes encoding functionally completely intact
enzymes that provide no immediate fitness advantage are
generally unlikely to be maintained for long periods. Even
under a scenario where the neutral intermediate-step mutation is
not required to reach high population frequencies (that is,
‘stochastic tunnelling’10), evolution is expected to be slower than
traversing purely adaptive trajectories through natural selection.
Thus, understanding the evolution of complex innovations
remains a formidable challenge.

Previous population genetic models11 and computer
simulations of genetic circuits and RNA molecules12 offer a
potential solution to the problem of complex adaptations. These
works indicate that complex or temporally fluctuating conditions
can facilitate adaptation, partly by allowing populations to escape
fitness plateaus and reach new adaptive peaks. Similarly, a study
on digital organisms revealed that populations often evolve
complex features by building on simpler functions that had
evolved earlier13. However, the extent to which these abstract
considerations apply to specific cellular subsystems remained
unknown, partly due to the shortage of systems-level analysis
that would combine computational modelling and evolutionary
experiments.

In this work, we focus on bacterial metabolic networks to
examine how novel nutrient utilization phenotypes can be
acquired via the addition of new reactions to an organism’s
enzyme repertoire. While not all complexity at the level of
molecular systems are expected to provide a functional
advantage14,15, metabolic pathways utilizing novel nutrients
arguably qualify as adaptive traits. The problem of the
evolution of novel metabolic pathways has two complementary
aspects, relating to their origin and subsequent evolutionary
establishment across multiple species. Previous works were
largely concerned by how novel biochemical reactions arise first
during the course of evolution16,17. In this paper, we ask how
existing enzymatic reactions can assemble to form a novel

metabolic pathway in an organism that already harbours a
complex metabolic network. We extend and generalize an early
suggestion that varying nutrient environments play a prominent
role in the establishment of biosynthetic pathways16.

Specifically, we employ detailed simulations on a pan-genome
scale to demonstrate that complex metabolic innovations can
evolve via the successive acquisition of single biochemical
reactions that each confers a benefit to utilize specific nutrients.
Thus, temporal changes in nutrient availability or complex
environments (where multiple nutrients are available) can
facilitate adaptive evolution of metabolic pathways through the
step-by-step expansion of metabolic niches. Gene acquisition
patterns across bacterial genomes and de novo laboratory
evolution of nutrient utilizations in Escherichia coli (E. coli)
provide clear support for the hypothesis.

Results
Most metabolic innovations demand only a few novel reactions.
In this work, we systematically studied the expansion of metabolic
networks. We specifically asked whether metabolic innovations
can evolve in a purely Darwinian manner through series of
adaptive steps. Our starting point was the previously recon-
structed metabolic network of E. coli K-12, arguably the best
studied and most reliable reconstruction of a genome-scale
metabolic system, composed of 2,077 unique reactions, including
transport processes18. Previous studies showed that bacterial
networks expand largely by acquiring genes involved in the
transport and catalysis of external nutrients, driven by
adaptations to changing environments19. On the basis of these
observations, here we studied the potential selective advantages
conferred by the addition of new metabolic reactions to the
E. coli network. We compiled a data set of 2,566 known
enzymatic and 159 transport reactions across the three kingdoms
of life (‘universal reaction set’) absent from the E. coli model20

(see Methods). We next defined a comprehensive sample of
the external nutrient space, consisting of 1,776 environments
comprised of nutrient sources that can potentially be imported
into the network (Supplementary Data 1). We focused on
minimal media that differ from each other in a single carbon,
nitrogen, sulphur or phosphorus source, thereby maximizing the
variability between conditions while remaining computationally
feasible (Methods). We determined the phenotypic impact of
adding one or more reactions from the universal reaction set
to the E. coli network in each of these environments using
flux balance analysis (FBA)21. FBA identifies a steady-state
flux distribution that maximizes the production of biomass
(a weighted combination of major biosynthetic components)
from a given set of available nutrients. This framework
successfully predicts the growth capacity of wild-type E. coli
across nutrient conditions18, and it is biologically more realistic
than graph-theoretical approaches22.

Before the addition of novel reactions, the reconstructed E. coli
metabolic network was unable to grow (that is, the rate of
biomass production was zero) in 321 environments in which the
network expanded by the complete universal reaction set was able
to grow (Supplementary Data 1). Using a mixed integer linear
programming (MILP) algorithm, we determined the minimal
number of reactions from the universal reaction set that need to
be added to the E. coli network to support growth in these novel
environments. Strikingly, growth in additional environments
required the addition of only one to three enzymatic and
transport reactions in 74% of the cases (239 out of 321
environments; see Fig. 1). In 21.5% of the novel environments,
acquisition of only one reaction was sufficient for growth (69 out
of 321 environments, see Supplementary Data 2). These results
suggest that in the genotype space around the E. coli metabolic
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network, most metabolic innovations are only a few gene
acquisition steps away.

Complex innovations can arise via changing environments.
One can envisage a simple adaptationist hypothesis by which
complex metabolic innovations can arise. A metabolic phenotype
accessible through the addition of a single reaction may serve as
an exaptation23 from which metabolic phenotypes that demand
the acquisition of multiple reactions can be developed. A major
corollary of this hypothesis is that evolutionary adaptation to
temporally varying environmental conditions facilitates the
expansion of metabolic networks (see also ref. 16). In the
parlance of fitness landscapes, varying environments result in
dynamic landscapes with moving peaks which can be more easily
tracked by hill-climbing evolution (see Fig. 2a,b).

To test the feasibility of the stepwise network expansion
scenario, we focused on reaction pairs that are jointly required to
provide a fitness benefit in at least one environment (for a list of
the 538 such reaction pairs, see Supplementary Data 3). Next, we
added each of the corresponding reactions individually into the
network and asked whether their presence alone provides a
selective advantage across the set of 321 novel environments.
Consistent with the hypothesis, we found that in 40% of the 538
growth-promoting reaction pairs, one of the reactions enables
growth on its own in at least one environmental setting, which
therefore can serve as stepping stones along adaptive trajectories.
For example, while the ability to metabolize chorismate demands
the simultaneous acquisition of two reactions, one of them also
confers L-phenylalanine utilization when added individually to
the network (Fig. 2c). We note that many growth-promoting
reaction pairs are phenotypically equivalent (that is, confer
growth in the same environment) and share the same stepping-
stone reaction (Supplementary Data 3). As a result, in total 8.5%
of the 118 novel environments that require the simultaneous
addition of two reactions becomes accessible through purely
adaptive walks.

To more generally assess the potential for exaptation, we
examined for each novel environment if its growth-promoting
reactions are involved in adaptation to another (intermediate)
environment. To this end, for each environment, we enumerated
all possible minimal reaction sets that can support growth when
added to the E. coli network from the universal reaction set.
On average, 26% of the alternative minimal reaction sets required

for growth in a given environment are also entirely present in at
least one minimal growth-promoting reaction set of a second
environment. This finding indicates that some of the growth-
promoting reaction sets contribute to growth in multiple
environments as parts of larger reaction sets. These figures are
likely underestimates due to incomplete knowledge of available
enzymatic reactions (including promiscuous side activities in the
E. coli metabolic network24) and environmental conditions. We
conclude that traversing complex evolutionary trajectories can be
facilitated by exaptations when the environment varies.

Metabolic gene acquisition patterns support the hypothesis.
The model predicts that acquisition of new metabolic genes
during bacterial evolution should be contingent on the presence
of other genes providing specific adaptations to intermediate
environments. It has been established that a major source of
metabolic network expansion is horizontal gene transfer in
bacteria19,25. Genes recently acquired by E. coli through
horizontal gene transfer confer condition-specific advantages
and contribute to growth only in specific environments19. To test
whether acquisition of an enzyme pair that is potentially
accessible via adaptive steps occurs via a defined order, we used
genomic data from 943 bacteria to reconstruct gene-gain events
along the corresponding phylogeny using parsimony (Fig. 3a,
Methods). As expected under the hypothesis, enzymes that are
predicted to confer fitness benefits on their own and can hence
serve as stepping stones towards two-step adaptations in silico
tend to be gained on an earlier branch of the phylogenetic tree
than their partner enzyme (in 65% of cases, N¼ 33, as opposed to
50% expected by chance, P¼ 0.037, one-tailed one-sample
Wilcoxon signed-rank test, see Methods). We note that this
pattern holds for different parameter values of the gene-gain
reconstruction procedure (see Supplementary Table 1).

In contrast to such cases, growth-promoting enzyme pairs not
accessible gradually are the most likely candidates for co-gain via
horizontal gene transfer. In agreement with this expectation, such
enzyme pairs show a much higher co-gain fraction, that is,
number of co-gain relative to single gain events, compared with
random gene pairs and growth-promoting gene pairs predicted
to be accessible gradually through adaptive evolution via
environmental changes (Po0.001, randomization analysis and
P¼ 0.0038, one-sided Wilcoxon rank test, respectively, N¼ 21,
Fig. 3b, see Methods). Also consistent with the hypothesis,
growth-promoting enzyme pairs that are accessible gradually
through adaptive evolution via environmental changes, have very
low co-gain fractions that are indistinguishable from that of
random gene pairs (P¼ 0.64, randomization analysis, N¼ 40,
Fig. 3b, see Methods). These conclusions are robust to changes in
parameter values of the gene-gain reconstruction procedure (see
Supplementary Tables 2,3).

Experimental evolution of a complex metabolic innovation.
New metabolic pathways can evolve not only through the
acquisition of full-blown enzymes from other organisms but
also through the enhancement of weak side activities of
existing enzymes3,24. Thus, a further prediction of the hypothesis
is that evolutionary adaptation to a specific nutrient via
accumulating mutations in endogenous genes can influence the
accessibility of adaptive paths towards the utilization of other
nutrients. An early work26 suggests that acquiring the ability to
grow on ethylene glycol (EG, ethane-1, 2-diol) and propylene
glycol (PG, (S)-propane-1, 2-diol), two related carbon sources
unavailable for utilization by wild-type E. coli K12, might
depend on one another in a contingent manner. Specifically,
according to the anecdotal report, E. coli mutants able to grow
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on EG could be obtained from mutants that could grow on
propylene glycol26. Using these phenotypes as a test bed we
aimed at directly testing the stepwise metabolic niche expansion
scenario by examining (i) whether mutations that enable
growth on propylene glycol per se increase adaptation rates to
EG and (ii) whether the mutations conferring these two distinct

growth phenotypes exhibit epistasis on EG, as predicted by the
hypothesis.

First, we attempted to isolate mutants that can grow on EG
(EGþ ) or propylene glycol (PGþ ) from large populations of
bacteria (Supplementary Methods). No EGþ or PGþ cells were
isolated from B1011 cells with wild-type mutation rate (Table 1),
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Figure 2 | Evolution in varying environments is expected to facilitate the establishment of complex metabolic traits. (a, top) Hypothetical fitness

landscape over a two-dimensional genotype space. The red genotype is well-adapted, that is, it is located on the fitness peak of this starting fitness

landscape. A change to the target environment shifts the fitness peak, so that the red genotype is no longer of high fitness (bottom). Adaptation to the

shifted peak now cannot proceed purely through adaptive steps (that is, hill climbing); it requires the non-adaptive exploration of the neutral part of the

landscape, illustrated by the yellow dotted line. (b) Depicting the same situation, but with an intermediate environment in which the fitness peak is only

slightly shifted relative to the starting environment. The red genotype is located at the foot of the shifted fitness peak in this intermediate environment and

can thus progress through purely adaptive steps, culminating in the yellow high-fitness genotype. When the environment now changes to the same target

environment as in a, the blue genotype represents an exaptation, such that it can now progress towards the target fitness peak through purely adaptive

steps. While b only shows one intermediate environment, the same reasoning applies to more complex scenarios including dynamic landscapes with

moving peaks. (c) Example from simulated metabolic network expansions. E. coli K-12 is unable to utilize chorismate and L-phenylalanine as sole carbon

sources. Simulations show that while chorismate utilization demands the simultaneous addition of two reactions to the network, one of these reactions

(first step; catalysed by phenylalanine ammonia lyase) also confers L-phenylalanine utilization when added individually.
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demonstrating that these substrates demand the acquisition of
one or more very rare specific mutations. Next, we employed
an E. coli strain with an approximately 1,000-fold increased
mutation rate27. In this case, PGþ cells occurred at a low, but
detectable frequency of 1.5� 10� 9, but still no EGþ mutants

were found (Table 1). As discussed, the evolution of EG
utilization might be facilitated by prior adaptation to PG26.
This was indeed so: EG-utilizing cells were detected in PGþ
populations at a frequency of B3.8� 10� 9 (Table 1), indicating
an increase in adaptation rate of at least two orders of magnitude.
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Figure 3 | Evolutionary history of gene gains supports the dynamic environment model. (a) Schematic representation of the phylogenetic comparisons

to study the interdependence between gene-gain events. According to the dynamic environment model, if initial adaptation via a single gain of gene A

serves as a stepping-stone for complex adaptation via a gain of gene B, then acquisition of B is expected to occur more frequently with gene A being present

(contingent gain) compared with A being absent in the ancestral branch points of the bacterial tree (upper panel). Furthermore, enzyme pairs that confer a

growth benefit only when present together are expected to be more frequently co-gained along branches of the bacterial tree in comparison to a gain of

only one of the two (lower panel). Detailed description of the procedures is presented in Methods. (b) Phylogenetic co-gain measure (see Methods) of

jointly beneficial enzymes based on analysis of hundreds of bacterial genomes. Orthologs of enzyme pairs that are beneficial jointly but not accessible

gradually (‘beneficial without individual effect’, N¼ 21) tend to be co-gained on the same branch of the phylogenetic tree. This trend is statistically

significant when compared both with randomized pairs and to enzymes that are growth-promoting as a pair but are accessible gradually through adaptive

evolution via varying environments (‘beneficial with combined and individual effect’, N¼40), Po0.001 (randomization analysis) and P¼0.0038

(one-sided Wilcoxon rank test), respectively. In addition, such ‘accessible’ pairs are not more likely to be co-gained than expected by chance (P¼0.637).
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It has been reported that constitutive activation of fucO, a gene
encoding an enzyme involved in fucose and rhamnose catabo-
lism, is a prerequisite for growth in PG28. We therefore
hypothesized that fucO upregulation acts as a stepping-stone
mutation towards EG utilization. To test this scenario, we
overexpressed fucO from a strong constitute promoter in wild-
type background29. As expected, fucO overexpression conferred
the ability to utilize PG (Fig. 4a). Remarkably, employing a fucO
overexpressed PGþ strain yielded EG-utilizing cells at a
frequency of B2� 10� 8 (Table 1). As this strain retained a
wild-type mutation rate (Supplementary Fig. 1), this finding
shows that the ability to metabolize PG per se promotes

adaptation to EG. Whole-genome sequencing of an EG-utilizing
strain suggested thatB10-fold amplification of a genomic segment
encoding aldA might underlie EG utilization (Supplementary
Table 4). Indeed, simultaneous overexpression of both fucO and
aldA in wild-type background conferred the ability to grow on EG
(Fig. 4b) with a growth kinetics akin to the strain adapted to EG
(Supplementary Fig. 2). Furthermore, as neither fucO nor aldA
alone conferred growth on EG, this finding provides evidence that
the two overexpression mutations act epistatically, as predicted by
the stepwise metabolic niche expansion hypothesis.

How do these two enzymes, FucO and AldA, contribute to EG
utilization? FucO likely acts on EG in addition to its native

Table 1 | Adaptation frequencies of different strains to PG and EG.

Strain Frequency of cells growing on PG Frequency of cells growing on EG

MG1655 Up to 1.6� 10� 11 Up to 1.6� 10� 11

MG1655 mutD5 1.5� 10� 9 Up to 3.1� 10� 11

MG1655 mutD5 adapted to PG Grows on PG 3.8� 10�9

MG1655þ fucO overexpressed Grows on PG 2.1� 10�8

EG, ethylene glycol; PG, propylene glycol.
MG1655 is the reference wild-type strain, while MG1655 mutD5 refers to a strain with an approximately 1,000-fold increased mutation rate. Values are averages of three parallel replicates when PGþ or
EGþ cells were observed and upper estimates35 when no growing cells were obtained (see Supplementary Methods).
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Figure 4 | Utilization of propylene glycol increases adaptation rates towards growth on EG in the laboratory. (a) Growth curve measurements

demonstrating that overexpression of fucO (red) is sufficient for growth in propylene glycol. Wild-type MG1655 strain is depicted in grey. OD600

measurements of six independent replicates were taken every 60min. (b) Growth curve measurements demonstrating that joint overexpression of both

fucO and aldA is required for growth on EG (black). Neither fucO (red) nor aldA (blue) can achieve this when overexpressed individually. Wild-type MG1655

strain is depicted in grey. OD600 measurements of six independent replicates were taken every 240min. One replicate population with joint overexpression

of fucO and aldA failed to grow for unknown reason and is not shown. (c) Schematic pathway diagram representing the role of FucO and AldA enzymes in

the utilization of PG and EG. In the first step, FucO catalyses the oxidation of PG and EG to glycolaldehyde and L-lactaldehyde, respectively. We note that

the native activity of FucO operates in the reverse direction by reducing L-lactaldehyde to PG during the catabolism of L-fucose and L-rhamnose. In the next

step, AldA oxidizes the products of FucO to hydroxycarboxylic acids which can be wired into central carbon metabolism following further enzymatic

modifications. The affinity of AldA for L-lactaldehyde (PG utilization) is higher than for glycolaldehyde (EG utilization)30, potentially explaining why growth

on EG requires multiple copies of aldA.
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substrate to produce glycolaldehyde from EG26; AldA, an enzyme
with broad substrate specificity, further converts glycolaldehyde
to glycolate30 (Fig. 4c). Interestingly, in addition to their role in
EG metabolism, both enzymes are involved in PG utilization as
well, indicating that regulatory rewiring of the same enzyme
toolkit can produce multiple qualitatively different phenotypes.

Discussion
Explaining the origin of evolutionary innovations that require
the simultaneous acquisition of multiple mutations, none of
which seemingly confer a benefit individually, remains a central
challenge in evolutionary biology. On the basis of prior
theoretical considerations11,12,16, here we propose that
metabolic innovations accessible through the addition of a
single reaction serve as stepping stones towards the later
establishment of complex metabolic features in another
environment. We provided several lines of evidences in support
of the hypothesis by focusing on the most well-studied molecular
network, cellular metabolism, and by employing three
complementary approaches. First, we simulated the adaptation
of the E. coli metabolic network to novel environments. We
revealed that new complex pathways can evolve via the successive
acquisition of single biochemical reactions that allow the
utilization of specific nutrients. Second, by reconstructing the
evolutionary history of gene gains in bacteria, we demonstrated
that complex metabolic pathways are indeed often established in
a defined order as predicted. Finally, we conducted a laboratory
evolution study of E. coli adaptation to two novel carbon sources;
evolving the ability to utilize one nutrient remarkably facilitated
later adaptation to the other. Thus, complex metabolic traits can
emerge without the need to invoke neutral exploration of
genotype space, a view that is in sharp contrast to non-adaptive
scenarios of evolutionary innovation that rely on the
accumulation of neutral intermediate mutations6,7,31.

Taken together, our study demonstrates that complex
metabolic innovations can evolve by adaptive means through
the step-by-step expansion of nutrient utilization capacities. An
important prediction is that metabolic innovations should be
intertwined in nature: the ability to metabolize certain nutrients
should act as a stepping stone towards the utilization of other
nutrient sources32. A preliminary systems-level analysis based on
nutrient utilization of 168 E. coli strains33 suggests that it may
indeed be so (Supplementary Fig. 3). Experimental case studies on
the evolution of the catabolism of b-galactoside sugars34 and
citrate utilization35 are also consistent with the scenario, but it
remains to be seen how general these findings are. In addition, it
is important to note that functionally linked enzymes frequently
cluster in the bacterial genome or are encoded in the same operon
and tend to be acquired together during evolution19. Future
systematic works should study the extent to which simultaneous
uptake of multiple physiologically linked reactions by horizontal
gene transfer speeds up the evolution of metabolic networks.

We speculate that the major barrier to the dynamic environ-
ment model of complex adaptation may be the absence of
relevant series of environmental conditions. This restriction could
be lifted when multiple novel substrates are simultaneously
present in a single environment and evolution proceeds by
successively acquiring the capacity to utilize them. We emphasize
that other conceptually different mechanisms might also
contribute to the adaptive expansion of metabolic networks. For
example, stepping-stone reactions might evolve as repair
processes in an adaptive response to metabolite damage36, to
degrade toxic environmental chemicals3, or to produce novel
secondary metabolites37.

Our work has important ramifications for understanding
genetic interaction networks and the development of industrially

useful microbes. First, epistatic interactions between metabolic
genes of the same pathway should often be environment-specific:
our results suggest that in many cases, one of the genes should
provide fitness benefits independently of the other in at least one
environment. Large-scale mapping of genetic interactions across
a broad range of environmental conditions would provide
a direct way to test this prediction38. Second, we anticipate
that evolutionary engineering of microbes to obtain desired
phenotypes could be facilitated by temporally varying the traits
under selection39.

Finally, our study could have important implications beyond
the evolution of metabolism. Earlier studies claimed that varying
environments accelerate evolutionary adaptation in genetic
circuits and RNA molecules12. In computer science,
standard genetic algorithms have a tendency to quickly
converge to a local solution, and hence frequently fail to
identify more promising regions of the search space40.
Application of dynamically changing ‘environments’ offers a
natural strategy to maintain the diversity required to explore the
adaptive surface41.

Methods
Reconstruction of the universal reaction set. To study the potential adaptive
value of adding new reactions to the E. coli metabolic network, we compiled a data
set of metabolic reactions reported from species across the three kingdoms of life
(universal reaction set) and absent from E. coli. First, we mapped the metabolites of
the manually curated E. coli genome-scale metabolic model18 to the Model SEED
database20 (and http://blog.theseed.org/model_seed/), a comprehensive resource
for automatically generated genome-scale metabolic network reconstructions.
Because Model SEED does not contain the most recent version (iJO1366 (ref. 42))
of the E. coli network reconstruction, we used an earlier version (iAF1260 (ref. 18))
that is widely utilized and has been extensively tested43. As a second step, we added
all mass-balanced biochemical reactions from the Model SEED database to the
E. coli model. From this draft network, we removed duplicate reactions. Next, we
removed ‘perpetuum mobile’ cycles, that is, flux distributions capable of producing
energy without consuming any nutrients (see Supplementary Methods and
Supplementary Table 5). Finally, we removed unconditionally blocked reactions
(that is, those unable to carry a flux under any condition). The resulting curated
universal reaction network contains 4,949 metabolic reactions and 444 nutrient
uptake reactions, of which 2,566 and 159 are not present in the E. coli network,
respectively. The universal network is available as a computational Systems Biology
Markup Language (SBML) model (Supplementary Data 4).

For more details on the reconstruction of the universal reaction set, see
Supplementary Methods.

Defining novel in silico nutrient environments. We first defined a comprehensive
set of nutrient environments by starting from a glucose minimal medium for
E. coli. For each environment, we replaced the carbon (C), nitrogen (N), phosphate
(P) or sulfur (S) source by an alternative one. To obtain a list of environments that
is both representative of novel nutrient compounds and computationally tractable,
we focused on only those growth media that differed from glucose minimal
medium by one compound instead of enumerating all possible combinations of
C, N, P and S-sources, as in previous works24,31. Although this approach does not
take into account more complex conditions, it allowed us to focus on single C, N,
P and S-sources and to maximize the variability between conditions. See
Supplementary Data 1 for the list of resulting 1,776 conditions.

Next, we determined the viability of both the E. coli network and the universal
network across these conditions using FBA21. A network was deemed inviable in a
given environment if its maximum biomass production was zero. Before adding
novel reactions, the reconstructed E. coli metabolic network was unable to grow in
321 environments in which the network expanded by the universal reaction
set allowed growth (Supplementary Data 1). We considered these 321 conditions as
the set of available novel environments to which E. coli can possibly adapt by
adding reactions from other species.

Finding growth-promoting reaction sets in new environments. To calculate the
minimum number of active, non-coli reactions in a particular environment we
applied a MILP-based algorithm on the universal metabolic model similar to the
problem of finding the shortest elementary flux mode44. The basis of the MILP
problem was the steady-state assumption:

Sv ¼ 0

Where S is the stoichiometric matrix and v is the flux vector for all reactions.
The reactions of the model were handled differently depending on whether
they are part of the E. coli model or they can be added to the coli model
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during evolution. The flux constraints on the E. coli reactions were the same as
in FBA:

li � vi � ui

Next, for each environment in which the universal network was viable but the
wild-type E. coli network was not able to grow we set the nutrient uptake
constraints to mimic the environment (li of the exchange reactions). The lower
bound of the biomass production reaction was then constrained to 10� 4 as the
minimal growth requisite:

lbiomass ¼ 1e� 4

The reversible non-coli reactions of the universal network were decomposed into
two opposing irreversible reactions. This way the fluxes of the non-coli reactions
can only take positive values. Let N0 be the number of non-coli reactions. We
assigned a binary variable to each non-coli reaction, bi, which tells whether the
non-coli reaction r0 i (i¼ 1, y, N0) is active (bi¼ 1) or not (bi¼ 0). The following
equations ensure these rules:

v0i � e bi
u0i;max bi � v0i

Where v0 i is the flux and u0 i is the maximal possible flux of reaction r0 i, while e is
the minimal flux value (in our calculations e¼ 10� 8). Also to avoid having two
opposing reactions derived from the same reversible reaction being active
simultaneously we introduced the following constraint:

bi þ bj � 1; i; jð Þ 2 set of opposing reaction pairsf g

Finally, the objective of the MILP problem was to minimize the active non-coli
reactions:

minimize
X

bi; i 2 1; ::;N 0f g

The result of this minimization is the minimum number of non-coli reactions need
to be added to the coli model to allow growth in a particular environment.

Enumerating all possible minimal reaction sets in silico. The MILP optimiza-
tion model described above not only provide the minimal number of reactions that
support growth in new environments but also the list of the non-coli reactions
involved in this solution: one of the minimal reaction sets. However, multiple
equivalent minimal sets might exist for any given environment. To identify another
minimal reaction set we extended the MILP problem with a new constraint which
prevents the algorithm to find the same solution again:

X
Bibið Þ �

X
Bi � 1; i 2 1; ::;N 0f g

Where Bi is the binary solution of the first minimal reaction set, and Bi equals to
1 or 0 if reaction r0 i was active or inactive in the first solution, respectively. This
constraint is fulfilled only if the two solutions differ in at least one active reaction.
We can harvest more minimal reaction sets in an iterative way where after each
solution we add a new constraint and we run the algorithm again. Our algorithm
stopped when the new solution had more active reactions than the size of the
minimal reaction sets, that is, when we collected all minimal reaction sets. This
algorithm is based on the method of finding the k-shortest elementary flux
modes44.

Defining growth-promoting reaction pairs using modelling. To systematically
test the dynamic environment model, we investigated all possible two-step
adaptation scenarios. First, we inactivated all non-coli reactions in the universal
reaction network. Next, we activated two non-coli reactions at a time and applied
FBA to calculate the fitness of the model in each environment where the native
E. coli model cannot grow. By repeating this procedure we probed all possible
reaction pairs in the universal reaction set and identified those that provide growth
in at least one environmental condition (3,290,895 reaction pairs in total, 538 are
beneficial in at least one condition). As a next step, we determined if the identified
two-reaction adaptations can be accessed by the consecutive addition of single
beneficial reactions to the network, that is, whether at least one of the two reactions
provide a fitness benefit on its own in any of the environments. For this purpose,
we repeated the above procedure but instead of activating reaction pairs we
activated single reactions and evaluated their fitness effect across environments
using FBA. The list of 538 reaction pairs and corresponding environments can be
found in Supplementary Data 3.

Software and computation used in metabolic network analyses. All
simulations were implemented in GNU R (ref. 45) using the sybil package for
constraint-based modelling46. As optimizer for linear programming and MILP we
used ILOG CPLEX 12.5. The linear programming was done on a 64-bit Ubuntu
Linux system with an Intel Core-i7 quadcore processor. MILP problems were
solved on a Red Hat Enterprise Linux Server release 6.2 with 96 Intel Xeon central
processing units.

Phylogenetic analysis of gene-gain events. To investigate contingent gain and
co-gain in the evolutionary history of genes, we first generated the phylogenetic
presence and absence profile across the present-day species for each reaction by
mapping the profiles from gene to reaction level. Presence and absence profiles of
orthologous genes across 943 bacterial species were obtained from EggNOG v3.0
(ref. 47). Reactions catalysed by enzyme complexes consisting of multiple gene
products (‘AND’ relationships) are considered to be present in a species only when
all genes of the complex are present in the genome. Reactions catalysed by
isoenzymes (‘OR’ relationships) are considered to be present when at least one
isoenzyme is encoded in the genome.

Next, we inferred the most parsimonious ancestral presence/absence states of
each reaction by using a phylogenetic tree of the 943 eubacteria, retrieved from
STRING v9.05 (http://string905.embl.de/newstring_download/species.tree.v9.05.txt)
(ref. 48). Reaction presence and absence states across branch points along the
phylogenetic tree, that is, the ancestral states, are calculated by using the tree and
the present-day presence/absence state of the reaction. The ancestral state is
inferred by minimizing the number of gene-gain and loss events across the tree that
matches the present-day state. Such a maximum parsimony strategy is commonly
used as it allows for the analysis of gene histories on a genome-wide scale in a
computationally efficient manner, and has shown to be successful in explaining
patterns in genome content and evolution19,49,50. Calculations were carried out
using PAUP51 with a gain/loss penalty ratio of 2/1 (ref. 52) and a delayed transition
assumption (DELTRAN)49. We note that our results are robust against variations
in PAUP parameter values (see Supplementary Tables 1–3).

Contingent gain analysis. For each stepping-stone reaction pair A–B, A is defined
as the reaction that is beneficial in a given nutrient environment without B, while a
gain of B is only beneficial in another environment when A is already present. For
each A–B pair we calculated the phylogenetic contingent gain fraction (f), defined
as f¼ p1/(p1þ p2), where p1 is calculated by dividing the number of evolutionary
events where B is gained in the descendent (d) when A is already present in the
ancestor (a) (a10_d11) by the total number of all possible gain and loss scenarios
taking place in the descendant when A is present but B is absent in the ancestor
(a10_dXX, where X¼ 0 or 1), and p2 is calculated by dividing the number of
evolutionary events where B is gained in the descendant when A is absent in the
ancestor (a00_d01) by the total number of all possible gain and loss scenarios
taking place in the descendant when both A and B are absent in the ancestor
(a00_dXX, where X¼ 0 or 1). The observed distribution of fractions was then
compared with the null-hypothesis that a gain of B is independent of the presence
of A, that is, f¼ 0.5, using a one-tailed one-sample Wilcoxon signed-rank test.

Co-gain analysis. For the phylogenetic co-gain analysis we calculated for reaction
pairs the co-gain fraction, defined as f¼ n1/(n1þ n2), where n1 is the number of
evolutionary events where both reactions were absent in the ancestor (a) and both
were gained in the descendent (d) (a00_d11), and n2 is the number of evolutionary
events where both reactions were absent in the ancestor and only one was gained
in the descendent (a00_d10 or a00_d01). We compared the fractions (f) from
reaction pairs that are predicted to be beneficial for growth only when they are
simultaneously gained, referred to as ‘beneficial without individual effect’, with
the fractions from reaction pairs that are beneficial for growth in a specific
environment when co-gained, but at least one of the reactions is also beneficial on
its own in a different environment (beneficial with combined and individual effect)
(see Fig. 3b in main text). A one-sided Wilcoxon rank test was used. In addition,
we compared the fractions from ‘beneficial without individual effect’ reaction pairs
with the expected co-gain fraction by chance (randomization (without individual
effect)). To do that, we broke the pairing between reactions and shuffled the
reactions into new pairs, thereby generating a new list of gene pairs. This was
repeated 1,000 times. Then we determined for each of the 1,000 reaction pair list if
the mean co-gain fraction is higher than that of the ‘beneficial without individual
effect’ and summed these (n1). P-value was calculated as P¼ (n1þ 1)/1,001. The
randomization analysis was also carried out for reaction pairs that are beneficial for
growth in a specific environment when co-gained, but at least one of the reactions
is also beneficial on its own in a different environment (beneficial with combined
and individual effect versus randomization (combined and individual effect)).

Strains and plasmids and primers for laboratory adaptation. E. coli K-12
MG1655 was considered as the wild-type strain in our experiments. MG1655
mutD5 was constructed using a suicide plasmid-based genome engineering method
incorporating a C-4T mutation at position 236,110 on the genome (within the
dnaQ gene) resulting in a T15I mutation of the encoded enzyme described
previously27. Standard steps and plasmids (pST76-A, pSTKST) of this methodology
have been described53. Briefly, an approximately 800-bp-long targeting DNA
fragment carrying the desired point mutation in the middle was synthesized by
PCR, then cloned into a thermosensitive suicide plasmid (pST76-A). This plasmid
construct was then transformed into the cell, where it was able to integrate into the
chromosome by way of a single crossover between the mutant allele and the
corresponding chromosomal region. The desired co-integrates were selected by the
antibiotic resistance carried on the plasmid at a non-permissive temperature for
plasmid replication (42 �C). Next, the pSTKST helper plasmid was transformed,
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then induced within the cells, resulting in the expression of the I-SceI meganuclease
enzyme, which cleaves the chromosome at the 18 bp recognition site present on
the integrated plasmid. The resulting chromosomal gap is repaired by way of
RecA-mediated intramolecular recombination between the homologous segments
in the vicinity of the broken ends. The recombinational repair results in either a
reversion to the wild-type chromosome, or in a markerless allele replacement,
which can be distinguished by sequencing the given chromosomal region.
See Supplementary Table 6 for the primers used for the mutation construction.

For the overexpression of FucO, the pCA24N plasmid containing the fucO gene
was selected from the ASKA library29 and isolated from the host strain, then
electroporated into the MG1655 strain. Overexpression of the gene was achieved by
the addition of 50 mM IPTG.

For the simultaneous overexpression of fucO and aldA, the chloramphenicol
resistance cassette (CmR) of the pCA24N-aldA plasmid from the ASKA library
was exchanged to the kanamycin resistance marker (KmR), resulting in
pCA24N-aldA-Km. The pCA24N-aldA plasmid was first linearized by inverse PCR
amplification using the pCA24N_frame_1 and pCA24N_frame_2 primer pair
flanking the CmR cassette. The PCR product was treated with DpnI for 60min at
37 �C and purified using the DNA Clean & Concentrator-5 Kit (Zymo Research
#D4004). The KmR marker was PCR amplified from a pSTKST template using the
ASKA-Gibson_Kan_Fw and ASKA-Gibson_Kan_Rev primers. The PCR fragment
was then isolated from 1% agarose gel using the GeneJET Gel Extraction Kit
(Thermo Scientific #K0691). The resulting DNA fragments were assembled using
Gibson assembly cloning (Gibson Assembly Master Mix, New England Biolabs
#E2611), according to the manufacturer’s protocol, then electroporated into
electrocompetent E. coli DH10B cells. Correct assemblies were verified by colony
PCR using the ASKA-S2 and aldA-1 primer pair. Sequences of primers used in this
construction are listed in Supplementary Table 7.

Media used in laboratory adaptation. Minimal salts (MS) medium was used as
described previously34, supplemented either with 0.4% glycerol, 30mM (S)-propane-
1, 2-diol (propylene glycol, PG), or 30mM ethane-1, 2-diol (EG). Antibiotics were
employed in the following working concentrations: 50mgml� 1 ampicillin (Ap),
25mgml� 1 chloramphenicol (Cm) and 25mgml� 1 kanamycin (Km).

Adaptation of strains for growth on PG and EG. Three replicates of each indi-
vidual strain were started from single colonies grown on MSþ 0.4% glycerol agar
plates (with Cm added where the fucO overexpression plasmid was present) at 30 �C.
An MG1655 strain carrying the pCA24N-fucO plasmid was previously found to grow
at 30 �C in 2ml MS media supplemented with 30mM PG (with 25mgml� 1 Cm and
50mM IPTG added). This culture was subsequently plated onto MSþ 0.4% glycerol
(þCm) agar plates, from which the PGþ colonies, starters for selection for
EG-utilization, were isolated. We opted for glycerol as a base carbon source to avoid
catabolite repression (that is, the inhibition of utilization of various other carbon
sources) as in ref. 28. Starter cultures were then grown in 2ml MSþ 0.4% glycerol
(þCm where needed), from which 250ml was then transferred to 25ml fresh liquid
MS mediaþ 0.4% glycerol (and Cm where needed). Cultures were grown to
stationary phase at 30 �C, after which total cell count was determined by plating of
appropriate dilutions onto MSþ 0.4% glycerol agar plates. The remainder of the
cultures were then harvested and resuspended in 400ml MS media without carbon
source and finally plated in two halves onto MS agar plates supplemented with either
30mM PG or 30mM EG (with Cm and 50mM IPTG added where the fucO
overexpression plasmid was present). Plates were then incubated at 30 �C for 40 days
after which adapted colonies were counted and isolated. The plates were placed in
plastic bags for the duration of the incubation to prevent significant drying of the agar
media. Rates of adaptive mutations were calculated based on three replicate
experiments as follows. When adapted colonies were observed, we simply calculated
the average ratio of the number of adapted colonies per total cell number. In cases
where no growing colonies were obtained, we calculated an upper limit to the
adaptive mutation rate following the approach presented in ref. 35. Specifically, we
made use of the fact that the Poisson distribution has a 5% probability of yielding zero
events when the expected number of events is three. Thus, assuming no more than
three adaptive mutations among all the cells tested in the three replicate experiments
gives an upper bound on the adaptive mutation rate per cell per generation.

Growth curve measurements. Individual colonies of strains MG1655,
MG1655þ pCA24N-fucO, MG1655þ pCA24N-aldA-Km and MG1655þ
pCA24N-fucOþ pCA24N-aldA-Km were grown and isolated from MSþ 0.4%
glycerol plates carrying the desired antibiotic for the given plasmids. Starter cul-
tures from single colonies were grown in 5ml liquid MS media supplemented with
0.4% glycerol, as well as 50mM IPTG and 25 mgml� 1 Cm and/or 25mgml� 1 Km
in the case of plasmid-harbouring strains. Cultures were grown until saturation
after which 10ml MS media supplemented with 30mM of either PG or EG as well
as 50mM IPTG and 25mgml� 1 Cm and/or 25mgml� 1 Km where needed, were
inoculated with the overnight cultures at a 100� dilution. A total of 100ml of these
samples were then placed in six separate wells on a 96-well tissue culture plate (Jet
Biofil), and placed in a PowerWave XS2 (BioTek) microplate spectrophotometer
and grown at 30 �C. The edges of the plate were sealed with Breathe-Easy gas
permeable sealing membrane (Diversified Biotech) to prevent evaporation.

Mutation rate measurements. We estimated mutation frequencies of BW25113
(wild-type) and BW25113 overexpressing the FucO protein from the pCA24N_
fucO plasmid. Briefly, cells resistant to rifampicin (carrying mutations in rpoB
(ref. 54)) were selected and counted. After overnight growth at 37 �C, ten tubes of
1ml LB (þ 25mgml� 1 chloramphenicol in the case of pCA24N_fucO carrying
samples) were inoculated with approximately 104 cells each. FucO overexpression
was induced by adding 50mM IPTG after 2 h of growth, and cultures were grown to
early stationary phase, all at 37 �C. Appropriate dilutions were spread onto non-
selective LB agar plates and LB agar plates containing rifampicin (100 mgml� 1).
The samples were incubated at 37 �C and colony counts were performed after 24 or
48 h, respectively. Mutation rates were calculated with the Ma–Sandri–Sarkar
maximum-likelihood method55 using the FALCOR web tool56.

Ion Torrent library construction for whole-genome sequencing. Fragment
libraries were constructed from purified genomic DNA using NEBNext Fast
DNA Fragmentation & Library Prep Set for Ion Torrent (New England Biolabs)
according to manufacturer’s instructions. Briefly, genomic DNA was enzymatically
digested and the fragments were end-repaired. Ion Xpress Barcode Adaptors
(Life Technologies) were than ligated and the template fragments size-selected
using AmPure beads (Agencourt). Adaptor ligated fragments were then PCR
amplified, cleaned-up using AmPure beads, quality checked on D1000 ScreenTape
and Reagents using TapeStation instrument (Agilent) and finally quantitated using
Ion Library TaqMan Quantitation Kit (Life Technologies). The library templates
were prepared for sequencing using the Life Technologies Ion OneTouch protocols
and reagents. Briefly, library fragments were clonally amplified onto Ion Sphere
Particles (ISPs) through emulsion PCR and then enriched for template-positive
ISPs. More specifically, PGM emulsion PCR reactions utilized the Ion OneTouch
200 Template Kit (Life Technologies), and as specified in the accompanying
protocol, emulsions and amplification were generated using the Ion OneTouch
System (Life Technologies). Enrichment was completed by selectively binding the
ISPs containing amplified library fragments to streptavidin-coated magnetic beads,
removing empty ISPs through washing steps, and denaturing the library strands to
allow for collection of the template-positive ISPs. For all reactions, these steps were
accomplished using the Life Technologies ES module of the Ion OneTouch System.
Template-positive ISPs were deposited onto the Ion 318 chips (Life Technologies);
finally, sequencing was performed with the Ion PGM Sequencing Kit (Life
Technologies).

Ion PGM sequencing data processing and mutation calling. The PGM
sequencing data was processed using Ion Torrent Suite v4.2.1 in order to perform
signal processing and base calling. Read mapper module of Torrent Suite (tmap)
was used to align raw reads to the E. coli K12 MG1655 genome sequence
(U00096.3). Torrent Variant caller (tvc) module of Torrent Suite was subsequently
applied to detect single nucleotide mutations as well as small in/del variants.
Variant caller was programmed to run in high stringency mode requesting at least
12� read coverage and at least 66% mutation frequency. Only those variants were
taken into account that were supported by sequencing on both strands. BAM
alignment files were imported in CLC Genomics Workbench v7.5.1 (CLCBio)
and variant regions were manually inspected in all strains. Large genomic
rearrangements (deletions or amplifications with lengths above 10 kb) were
manually identified using CLC Genomics Workbench Tool.

Sequencing data of the ancestral and evolved strains are deposited in the NCBI
SRA database (accession numbers SRX1167076 and SRX1167031).
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