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Notations
Generally used notations

R the set of real numbers
Z the set of integer numbers
C the set of complex numbers
Rn n-dimensional Euclidean space
Rn

+ n-dimensional positive orthant
Rn

+ n-dimensional nonnegative orthant
z complex number
j complex imaginary unit, j =

√
−1

∠z phase angle of the complex number z
|z| magnitude of the complex number z
W matrix
v vector
vj jth element of a vector v
Wij or Wi,j (i, j)th element of a matrix W (indexing order: row, column)
W i,· ith row of a matrix W
W ·,j jth column of a matrix W
ẋ or dx

dt
time derivative of x

J cost function of an optimization problem
θ general notation for a parameter, or a vector of parameters
x(t) value of the continuous-time quantity x at time t
x[k] value of the discrete-time quantity x at the kth sampling instance,

i.e. x[k] = x(k τ) where τ is the sampling time

Notations for energy systems

v voltage
i current
R resistance of a resistor
C capacitance of a capacitor
∠v phase angle ϕ of the sinusoidal voltage v = v̂ sin(ω t+ ϕ)
|v| magnitude v̂ of the sinusoidal voltage v = v̂ sin(ω t+ ϕ)
v complex phase vector v = |v| ej∠v representing the

sinusoidal voltage v = |v| sin(ω t+ ∠v)
vabc three-phase sinusoidal voltage vabc = [va, vb, vc]

T

iabc three-phase sinusoidal current iabc = [ia, ib, ic]
T

vRMS RMS value of the voltage v, vRMS =
√

1
T

∫ T

t=0
|v(t)|2dt

v[k] kth upper harmonic component of the voltage v
P active power
Q reactive power
εu voltage unbalance factor
T temperature
K heat transfer coefficient
C heat capacity (only used in Section 3.1)
S switch
Q capacity of a battery (only used in Section 3.2)
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Notations for quasi-polynomial and Lotka-Volterra systems

x state variable of a dynamical system
y output variable of a dynamical system
u input variable of a dynamical system
x∗ equilibrium point of a dynamical system
A n×m coefficient matrix of the QP system
B m× n exponent matrix of the QP system
M m×m coefficient matrix of the LV system (M = BA)
V Lyapunov function
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Chapter 1

Introduction

If you optimize everything,
you will always be unhappy.

/Donald E. Knuth/

The daily life of modern mankind is strongly influenced by technology, which has un-
dergone strong and rapid development in the recent decades. A significant part of
the consumer goods are powered by electricity, for which a proper power supply is
essential, be it the battery or the mains. Nowadays, the extent of the power transmis-
sion network can affect several continents, and its operation is a complex engineering
challenge.

On the other hand, due to the rapid change in technology, the technological en-
vironment become more and more complex. Without the use of models, and model
based methods the development (in some cases even the operation) of our everyday
devices seems to be a highly complicated task. As the model based methods are get-
ting more and more sophisticated the models itself are getting more and more complex
and nonlinear in nature.

Optimization is a very important engineering tool that has been at the service of
humanity since the antiquity. Its development to its present form started in the 19th

century and boosted in the 20th century. Nowadays, optimization is present in every
aspects of engineering as humanity constantly tries to find a bigger, a better, a faster,
a cheaper, etc. solution to the problems raised by himself.

The aim of this thesis is to present optimization-based tools for different problems
arising in the field of electrical energy.

1.1 Background and motivation
Partially because of the reduction of fossil energy sources due to the unfolding climate
crisis, partially because of the nuclear disaster at Fukushima, the European Union
has changed its electrical energy production strategy in the recent decade. Many
nuclear power plants have stopped production. These changes greatly altered the
structure of energy production throughout Europe. A significant portion of this lost
power production is planned to be met by cleanly produced renewable energy sources,
primarily wind and solar power facilities. The rapid increase in the number of small,
domestic power plants (in the range of 1 kVA-5 kVA), was apparent. However, the
high fluctuation in power input from these energy sources makes this system difficult
to integrate into larger and existing electrical grids [8]. Despite the many challenges,
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1. Introduction

renewable energy sources are being integrated into the development of smart grids in
Europe [88].

In recent decades, several countries have changed their laws regulating power sup-
ply to allow for grid-tie inverter systems to provide spare power to local low voltage
electrical grids. This power is utilized locally, decreasing electrical power loss due to
transmission. In addition, grid-tie inverters are suitable for conditioning power lines,
correcting accurate voltage forms, and repairing reactive power in the mains. This
decreases losses further, given that nonlinear distortion in the mains induces losses
in both the phase and the neutral conductor. This additional functionality does not
require expensive changes to existing technology. Only the control methods and regu-
lators need to be modified in order to allow for line conditioning. The cost of changing
the controlling processor and control software in this system is negligible when com-
pared to the cost of changing equipment.

An important element of a sustainable lifestyle on Earth is the management of en-
ergy consumed and produced by the household sector. With the spread of renewable
energy sources, one of the biggest technical challenges today is the efficient planning
and management of energy production and usage. To meet the challenges of sustain-
able energy consumption, numerous developments are taking place under the banner
of smart grid technologies. In contrast to the limited availability of permanent energy
sources and energy production capacity, together with rapidly growing and dynami-
cally changing energy consumption, electricity providers and electricity network op-
erators as well as electrical appliances offer smarter and smarter solutions for various
economic, technical and environmental purposes which easily facilitates the develop-
ment of smart grid technologies and solutions on both of the consumer’s and service
provider’s side. An important factor influencing this development is the electricity
market, which is constantly expanding and the amount of energy sold through it is
increasing.

Lithium-ion batteries are popular energy sources of the everyday life because of
their high energy density, low self-discharge and light weight. Portable electronic de-
vices (mobile phones, laptops), home electronics, electronic tools and electric vehicles
(EVs) all run on some type of lithium-ion battery. In applications like electrical vehi-
cles, batteries are connected in parallel and series in order to meet the power needs.
The optimal performance and safe operation of the set of battery cells are managed
by the battery management system (BMS). Another essential role of the BMS is the
state of charge (SOC) and state of health (SOH) estimation. The former quantity
informs the driver on the remaining charge of the battery bank (i.e. the remaining
mileage that can be traveled with the electrical vehicle), while the latter shows the
remaining number of charges/discharges. Just like any other battery, the performance
of the lithium-ion battery is not constant but slowly degrades during the operation and
strongly depends on the environmental temperature. The battery health conditions
cannot be measured directly therefore it should be estimated based on measurable
quantities.

Quasi-polynomial (QP) and Lotka-Volterra models have proved to be one of the
candidates for generally applicable canonical forms of nonlinear system models since
the majority of smooth nonlinear systems occurring in practice can be transformed
into these forms.

Although Lotka-Volterra (LV) models were originally used for describing the dy-
namical behavior of a few species living in the same habitat [69], it is also used in
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1.2. Aims of the work

several topics connected to electrical energy. The article [66] proposes a plan of a
smart energy station, and uses the Lotka-Volterra model to analyze the interaction
mechanism between energy business and information business. The results show that
there is a mutually beneficial symbiosis relationship between them similar to that in
the population ecosystem. The authors of [105] have used Lotka-Volterra model to ex-
plore the feasibility of replacing fossil fuels with nuclear energy in the United States.
By applying the Lyapunov functions to conduct equilibrium analysis, they have ver-
ified that the consumption of fossil fuels will ultimately be ten-fold the consumption
of nuclear energy in the long term.

1.2 Aims of the work
Based on the above short introduction and motivation, the aims of the performed work
presented in this thesis can be summarized as:

1. Model based optimization based approaches for energy systems The
aim is to develop control methods for the cost optimal operation of a class of
electrical home appliances in a day-ahead market environment. The field of
model predictive control theory is used to find a cost optimal operation schedule
of continuously operating electrical home appliances.
The temperature-dependent parameters of lithium-ion batteries will be estimated
using a parameter estimation method based on the minimization of the predic-
tion error, at different temperatures. The point estimates of the parameters
determined at different temperatures will then be used to find a temperature
characteristics fitted on the estimated parameters.

2. Model-free optimization based methods for electrical energy systems
With the growing popularity of distributed electricity generation, injecting cur-
rent (mostly from renewable sources) into the electrical grid is getting widespread.
The related research aim is to find an optimal way of current injection (single
phase) to the grid so that the total harmonic distortion decrease. There sup-
posed to be no information available from the grid that is why a model-free
compensation method has to be developed.
In a three-phase network, voltage unbalance is an important indicator of power
quality. The above problem of optimal current injection to the grid is formulated
and solved for the three phase network case where the optimality criterion is a
measure of voltage unbalance.

3. Optimization based analysis and control of general smooth nonlin-
ear systems based on their QP and LV representation. The so-called
quasi-polynomial system class will be used for this purpose. QP systems has a
very advantageous property, namely, the structure of their Lyapunov function is
known. Using this fact will facilitate the global stability analysis of general en-
ergy systems since it is only necessary to find suitable parameters of a Lyapunov
function of a given form in order to prove global asymptotic stability.
As a next step, the QP system class will be used for synthesizing controllers
which ensure the global stability of the closed loop system with respect to the
given Lyapunov function family. Using the fact, that with a suitable feedback
the closed loop system still belongs to the class of QP systems, the same type of
Lyapunov function can be used.

3
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1. Introduction

1.3 Structure of the thesis
The structure of the thesis is the following. The basic notions and results previously
known from literature and necessary to follow the forthcoming chapters are summa-
rized in Chapter 2. Chapters 3-6 contain the contributions of the author. Chapter 3
presents model-based scheduling and parameter estimation methods formulated as
optimization problems. Chapter 4 deals with power quality improvement in electrical
networks in the lack of a system model. New results in the optimization-based global
stability analysis and state feedback controller design for a wide class of nonlinear
systems are shown in Chapter 5. A literature review presenting the state of the art
and the most important publications of the corresponding research topic can be found
at the beginning of Chapters 3-5. Finally, Chapter 6 summarizes the most important
new scientific contributions of the thesis. The operation of presented methods and
algorithms will be illustrated by simulation experiments, some of which can be found
in the Appendix.

4
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Chapter 2

Preliminaries

2.1 Electrical energy systems
As the number of grid-tie inverter systems providing spare power to local low voltage
electrical grids is constantly growing, so does their potential for conditioning power
lines, correcting accurate voltage forms, and repairing reactive power in the mains.
Another field undergoing a fundamental change during this process of turning residen-
tial consumers to prosumers is the electricity market, which is constantly expanding
and the amount of energy sold through it is increasing.

2.1.1 Power quality of electrical networks
Power quality is described by the European standard EN-50160, which defines, and
describes the main characteristics of the voltage at the network users supply termi-
nals (or point of connection) in public networks [21]. The most important factors
are frequency, supply voltage variations, rapid voltage change, flicker, unbalance and
harmonics. The framework of the present thesis does not allow for a detailed discus-
sion (see Chapter 4 for a detailed literature review), therefore only total harmonic
distortion and voltage unbalance will be examined below.

In a domestic network, three-phase electric power systems have at least three con-
ductors carrying alternating voltages that are offset in time by one-third of the period.
A three-phase system may be arranged in delta or star. A star system allows the
use of two different voltages from all three phases, such as a 230/400V system which
provides 230V between the neutral (center hub) and any one of the phases, and 400V
across any two phases displayed on Figure 2.1.

The three phase voltages va, vb and vc can be expressed as sinusoidal functions of
time (2.1).

vi(t) = v̂i sin(ω t+ ϕi), i ∈ {a, b, c} (2.1)

where v̂i = v̂ is the voltage peak (v̂ = 325V) and ϕa = 0◦, ϕb = 240◦ and ϕc = 120◦,
respectively.

Sinusoidal networks can be conveniently represented by phase vectors (or phasors)
where the signals of (2.1) are described as complex vectors (2.2) depicted in Figure
2.2.

vi = v̂i e
jϕi (2.2)

There are an increasing number of single phase electronic devices being used
today with low power consumption and simple switching power supplies (e.g., mo-
bile phone chargers, notebooks, networking products, small variable frequency motor

5
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Figure 2.1: Phase voltages of a three-phase sinusoidal voltage source.
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Figure 2.2: The phase vector diagram of a three-phase sinusoidal voltage. The voltage
phasors va, vb and vc form a regular triangle.
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2.1. Electrical energy systems

drives, consumer-grade telecommunication devices). These equipments are character-
ized by a performance capacitive input stage with a high nonlinear load as shown in
Figure 2.3.

ic

Cvs Rloadvc v

Figure 2.3: A model of a capacitive input stage causing the distortion of low con-
sumption equipment with simple switching power supplies: a bridge rectifier with a
smoothing capacitor C. A resistive load Rload is connected to the network.

Figure 2.4 depicts the time-domain shape of the periodic power and current signals
of the capacitive input stage model (Figure 2.3), where the ideal sinusoidal voltage
waveform vs is distorted by the capacitive input stage model and results in the distorted
voltage vc. Figure 2.5 shows the frequency domain description of the above signals and
indicates that there is a significant 3rd and 5th harmonic components in the current ic.
It is generally recognized that the reactive power of this nonlinear distorted voltage
shape is difficult to regulate with traditional shunt capacitors (compensators). Higher-
order harmonic components also have many undesirable effects on a power grid [128],
causing, for example, faulty operation of the network and higher energy transportation
losses and large neutral line current in three-phase networks.

Current harmonics are caused by nonlinear loads. When a nonlinear load, such as
a bridge rectifier of Figure 2.3 is connected to the system, its current that is usually
not sinusoidal. The Fourier series transformation allows the complex waveform to be
decomposed into a series of simple sinusoids that begin at the fundamental frequency
of the energy system and occur at integer multiples of the fundamental frequency.

Total harmonic distortion, or THD is a common measurement of the level of har-
monic distortion present in power systems. The total harmonic distortion is defined
as (2.3), [18]:

THD =

√√√√
∑∞

k=2(v
[k]
RMS)

2

(v
[1]
RMS)

2
(2.3)

where v
[1]
RMS is equal to the RMS value of the fundamental voltage and v

[k]
RMS is the

RMS value of the kth harmonic voltage. In applications with a capacitive input stage,
THD> 0 holds. Note, that THD can also be defined for currents.

This type of distortion occurs in every mains plug in every home. This distortion,
the nonlinear reactive power and the THD will probably increase in the near future
due to the growing rate of simple switching-type power sources in household appliances
as well as the rising number of CCFL bulbs and LED lamps.
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360 365 370 375 380 385 390 395 400
−20

0

20

t [ms]

v
[V

]
vs vc v

360 365 370 375 380 385 390 395 400
−20

0

20

t [ms]

v
[V

]

vs vc v

360 365 370 375 380 385 390 395 400

−1
0

1

t [ms]

i c
[A

]

Figure 2.4: The distortion of the capacitive input stage model. The source voltage
vs is sinusoidal, while the voltage vc measurable at the connection point is slightly
distorted (top). The plot at the bottom shows the distorted current ic flowing through
the connection point.
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Figure 2.5: The frequency domain behavior of the bridge rectifier. The voltage vs
is purely sinusoidal, the voltage vc has negligible upper harmonic components (top).
The current ic measurable a the connection point has significant 3rd (150Hz) and 5th
(250Hz) upper harmonic components (bottom).

2.1.2 Voltage unbalance in three-phase networks
In a symmetric three-phase power system, three conductors each carry an alternating
current of the same frequency and voltage amplitude relative to a common reference
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2.1. Electrical energy systems

but with a phase difference of one third of a cycle between each (see Figure 2.1).
The common reference is usually connected to ground and often to a current-carrying
conductor called the neutral. Due to the phase difference, the voltage on any conductor
reaches its peak at one third of a cycle after one of the other conductors and one third
of a cycle before the remaining conductor. This phase delay gives constant power
transfer to a balanced linear load.

In general symmetric three-phase systems described, are simply referred to as three-
phase systems because, although it is possible to design and implement asymmetric
three-phase power systems (i.e., with unequal voltages or phase shifts), they are not
used in practice because they lack the most important advantages compared to the
symmetric. In a three-phase system feeding a balanced and linear load, the sum of the
instantaneous currents of the three conductors is zero. In other words, the current in
each conductor is equal in magnitude to the sum of the currents in the other two, but
with the opposite sign. The return path for the current in any phase conductor is the
other two phase conductors.

Three-phase systems may also have a fourth wire, particularly in low-voltage dis-
tribution. This is the neutral wire. The neutral allows three separate single-phase
supplies to be provided at a constant voltage and is commonly used for supplying
groups of domestic properties which are each single-phase loads. The connections are
arranged so that, as far as possible in each group, equal power is drawn from each
phase. Further up the distribution system, the currents are usually well balanced.
Transformers may be wired in a way that they have a four-wire secondary but a
three-wire primary while allowing unbalanced loads and the associated secondary-side
neutral currents [111].

This is observed as a frequently cited power quality issue in low-voltage domestic
distribution networks and in systems that supply large single phase loads distributed
unevenly among the phases. Effects of voltage unbalance are complex, but can be
categorized as structural or functional. The former refers to the asymmetry in the
three-phase impedances of transmission lines, cables, transformers, etc. It occurs
because it is neither economical nor necessary to maintain distribution system with
perfectly symmetrical impedances. The latter refers to uneven distribution of power
consumption over the three phases. Although the term voltage unbalance is unam-
biguous, the root phenomenon may be various as well as the standard norms used to
measure unbalance. Figure 2.6 shows voltage unbalance in the phase vector notation.

The voltage unbalance factor (VUF, εu) was defined by the International Elec-
trotechnical Commission [86], [25]. From the theorem of symmetrical components
[30], voltage unbalance can be considered as a phenomenon that positive sequence
voltage (vp) is disturbed by negative (vn) and zero-sequence (v0) voltages:



v0
vp
vn


 = 1

3



1 1 1
1 a a2

1 a2 a


 ·



va
vb
vc


 , (2.4)

Where a = ej2π/3 is the Fortesque operator. Based on (2.4) the formula for voltage
unbalance factor can be expressed as (2.5).

εu =

∣∣∣∣
vn
vp

∣∣∣∣× 100 (2.5)

The three-phase voltages as well as the symmetrical components can be seen in Figure
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Figure 2.6: The phase vector diagram of an ideal and a real (unbalanced) three-phase
voltage. The voltage phasors va, vb and vc form a regular triangle. It can be seen that
unbalance can be present due to phase difference from the one hand and from over
(under) voltage on the other hand.

2.7 for two different unbalance cases.
This norm is currently in use world wide for voltage unbalance indication. The

main focus in on the negative sequence component vn, on which many studies attributes
importance of the cause of negative effects the voltage unbalance causes. An extension
of the VUF is the complex voltage unbalance factor (CVUF, εu) that is defined by the
ratio of the negative-sequence voltage phasor to the positive-sequence voltage phasor
studied in [113], and [85]. The CVUF is a complex quantity having the magnitude
and the angle. Although, CVUF has not yet been widely used by practicing engineers,
it has been proposed in some studies (e.g., [114], [97], [19]) due to its richness of
information on unbalance. The formula (2.6) of CVUF is similar to (2.6).

εu =
vn
vp

= kv · ejθv = kv∠θv, (2.6)

where kv is the magnitude and θv is the angle of εu.
The actual state of the art definition in use, VUF, is sensitive to the phase dif-

ference unbalance. Lastly CVUF considers also phase and magnitude of the voltage
unbalance, but the two units (kv, and θv) are hard to merge together as a singular op-
timization cost. To be able to employ CVUF as a successfully the weighting factor of
the ratio of negative and positive symmetrical component’s amplitude and phase shall
be considered, which is non-trivial, and situation dependent (different network failure
modes can be targeted with different weighting factors). Moreover, these definitions
ignore zero sequence components and harmonic distortion that are always present in
three-phase four-wire systems [9] hence, CVUF not in the scope of this thesis.

2.1.3 Electricity market
The energy needed for the operation of electrical appliances is taken from the electrical
grid. The amount of energy is measured by power meters and the service provider bills
the user for the price of the electrical energy consumed. If the unit price of the electrical
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Figure 2.7: A balanced (left) and an unbalanced (right) three-phase voltage in three
different views: phase voltages (top), symmetrical components as time functions (mid-
dle), and symmetrical components as phase vectors (bottom). The key role of the
negative sequence voltage vn in εu is apparent.

energy is the constant during the day, then the usage of the appliance for a unit of time
implies the same cost. In Hungary, there are two tariffs for the purchase of electricity
for residential consumers, the A1 tariff and the A2 tariff. In the case of the A1 tariff,
the price of energy is the same at any time of the day, while in the case of the A2
tariff, it is slightly more expensive during peak periods (during the day) and slightly
cheaper in the valley period (at night and on weekends). It is important to note that
there are other tariffs as well, however, the types of equipments that can be operated
from it is strictly specified by the service provider.

In northern European countries, it is possible to use a variable tariff package where
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the energy price is published one day in advance, taking into account the estimated
production and consumption, and the unit price varies from hour to hour [48]. When
the amount of energy consumed is expected to be close to the planned energy supplied
to the grid, the unit price is higher, and when the consumption is lower than the
planned energy fed to the grid by power plants (typically at night), this unit price is
lower. The changes in such a variable energy market (or day-ahead market, DAM) are
shown in Figure 2.8 using a full weekly data set [99].
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Figure 2.8: Electricity prices on a day-ahead market for a whole week. Source: [99]

It can be seen that the price of energy peaks in the morning and early evening.
Two major peak periods can be observed in Figure 2.8. The first is because of the
office jobs, shops, schools, which are open from morning to early afternoon. This is
followed by the price of energy, as consumption is higher. The second peak period is in
the early evening, when most consumers are already at home and using their electrical
appliances.

2.2 Asymptotic stability of nonlinear dynamical sys-
tems

Asymptotic stability is a key property of any dynamical system and is the primary
control aim of several compensation and control methods. Global stability analysis of
general nonlinear systems is difficult due to the difficulties in finding a proper Lyapunov
function for a general nonlinear system class.

2.2.1 Nonlinear dynamical systems
The quasi-polynomial and Lotka-Volterra system classes have a good representative
potential since the majority of smooth nonlinear systems occurring in practice can
be transformed into these forms, see Chapter 5 for a detailed literature review on
quasi-polynomial and Lotka-Volterra systems.

The general notion of system allows us to treat physical objects originating from
various fields of life: automotive systems, chemical processes, nuclear powerplants,
etc. System- and control theory (see [5] for a deeper insight) allows us to examine and
modify systems with mathematical tools.

12

               dc_2030_22



2.2. Asymptotic stability of nonlinear dynamical systems

General nonlinear autonomous ordinary differential equation (ODE)

ẋ(t) = f(x(t)), x(t0) = x0 (2.7)

in what follows, f is supposed to be a smooth, i.e. continuously differentiable nonlinear
mapping.

In systems and control theory, the system is connected to its environment via its
inputs and outputs, that is why the nonlinear state space model (2.8)-(2.9) has a
greater practical importance.

ẋ(t) = f(x(t),u(t)), x(t0) = x0 (2.8)
y(t) = h(x(t),u(t)) (2.9)

where x(t) ∈ Rn, u(t) ∈ Rp and y(t) ∈ Rq, furthermore,

f : Rn × Rp → Rn, h : Rn × Rp → Rq

are smooth nonlinear mappings. A wide class of dynamical systems can be represented
by the following input-affine state space model [108]:

ẋ(t) = f(x(t)) +

p∑

i=1

gi(x(t))ui(t) x(t0) = x0, (2.10)

y(t) = h(x(t))

where
f : Rn → Rn, gi : Rn → Rn, i = 1, . . . , p, h : Rn → Rq

are nonlinear functions. What makes (2.10) attractive is the fact that although the
system is nonlinear in the states, it is linear in its inputs.

Lyapunov stability

Dynamical analysis of nonlinear systems needs advanced mathematical tools [108],
[49]. Global stability analysis of nonlinear systems of the general form (2.7) calls for
the searching of a suitable Lyapunov function V with the following properties:

• scalar valued function: V : Rn → R+

• positive: V (x(t)) > 0

• dissipative:
d

dt
V (x(t)) =

∂V

∂x

df(x)

dt
< 0

Although the form of the Lyapunov function is not known for a general nonlinear
system (2.10), for some special system class it is possible to achieve results.

2.2.2 Quasi-polynomial and Lotka-Volterra systems
The elementary notions in the field of quasi-polynomial (QP) and Lotka-Volterra (LV)
systems are introduced in this chapter. In order to emphasize the similarity of QP and
LV systems, QP systems are also called generalized Lotka-Volterra (GLV) systems.
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QP models Quasi-polynomial models are systems of ODEs of the following form

ẋi = xi

(
λi +

m∑

j=1

Aij

n∏

k=1

x
Bjk

k

)
, i = 1, . . . , n. (2.11)

where x ∈ int(Rn
+), A ∈ Rn×m, B ∈ Rm×n, λi ∈ R, i = 1, . . . , n. Furthermore,

λ = [λ1 . . . λn]
T . The above model belongs to the class of nonlinear systems (2.7).

Let us denote the equilibrium point of interest of (2.11) as x∗ = [x∗
1 x∗

2 . . . x∗
n]

T . It
can be assumed without the loss of generality that rank(B) = n and m ≥ n (see [44]).

Lotka-Volterra models The above family of models is split into classes of equiv-
alence [43] according to the values of the products M = BA and N = Bλ. The
Lotka-Volterra form known from the field of population biology [69], [109], gives the
representative elements of these classes of equivalence. If rank(B) = n, then the set
of ODEs in (2.11) can be embedded into the following m-dimensional set of equations,
the so called Lotka-Volterra model:

żj = zj

(
Nj +

m∑

i=1

Mjizi

)
, j = 1, . . . ,m (2.12)

where
M = BA, N = Bλ,

and each zj represents a so called quasi-monomial :

zj =
n∏

k=1

x
Bjk

k , j = 1, . . . ,m. (2.13)

Input-affine QP system models An input-affine nonlinear system model (2.10)
is in QP-form if all of the functions f , gi and h are in QP-form. The general form of
the state equation of an input-affine QP system model with p-inputs is:

ẋi = xi

(
λ0i +

m∑

j=1

A0ij

n∏

k=1

x
Bjk

k

)
+

(2.14)

+

p∑

l=1

xi

(
λli +

m∑

j=1

Alij

n∏

k=1

x
Bjk

k

)
ul

where
i = 1, . . . , n, A0,Al ∈ Rn×m, B ∈ Rm×n,

λ0,λl ∈ Rn, l = 1, . . . , p.

The corresponding input-affine Lotka-Volterra model is in the form

żj = zj

(
N0j +

m∑

k=1

M0jkzk

)
+

p∑

l=1

zj

(
Nlj +

m∑

k=1

Mljkzk

)
ul (2.15)

where

j = 1, . . . ,m, M 0,M l ∈ Rm×m, N 0,N l ∈ Rm, l = 1, . . . , p,
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2.2. Asymptotic stability of nonlinear dynamical systems

and the parameters can be obtained from the input-affine QP system’s ones in the
following way

M 0 = BA0

N 0 = BL0

M l = BAl

N l = Bλl
l = 1, . . . , p.

(2.16)

2.2.3 Embedding general smooth nonlinear systems into QP
and LV forms

A wide class of nonlinear autonomous systems with smooth nonlinearities can be em-
bedded into QP-form [42] if they satisfy two requirements.

1. The set of nonlinear ODEs should be in the form:

ẋs =
∑

is1,...,isn,js

ais1...isnjsx
is1
1 . . . xisn

n f(x)js , (2.17)

xs(t0) = x0
s, s = 1, . . . , n

where f(x) is some scalar valued function, which is not reducible to quasi-
monomial form containing terms in the form of

n∏

k=1

x
Γjk

k , j = 1, . . . ,m

with Γ being a real matrix.

2. Furthermore, the partial derivatives of the model (2.17) have to fulfill:

∂f

∂xs

=
∑

es1,..,esn,es

bes1..esnesx
es1
1 . . . xesn

n f(x)es

The embedding is performed by introducing a new auxiliary variable

η = f q

n∏

s=1

xps
s , q ̸= 0. (2.18)

Then, instead of the non-quasi-polynomial nonlinearity f the original set of equations
(2.17) can be expressed in the QP-form (2.19).

ẋs =

(
xs

∑

is1,...,isn,js

(
ais1...isnjsη

js/q

n∏

k=1

x
isk−δsk−jspk/q
k

))
, s = 1, . . . , n (2.19)

where δsk = 1 if s = k and 0 otherwise. In addition, a new quasi-polynomial ODE
appears for the new variable η:

η̇ = η




n∑

s=1


psx

−1
s ẋs +

∑

isα,js
esα,es

aisα,jsbesα,esqη
(es+js−1)/q×

×
n∏

k=1

x
isk+esk+(1−es−js)pk/q
k

))
, α = 1, . . . , n. (2.20)
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It is important to observe that the embedding is not unique, because the parameters
ps and q in (2.18) can be chosen in many different ways: the simplest is to choose
(ps = 0, s = 1, ..., n; q = 1).

If the initial values of the newly introduced variables are set according to (2.18)
then the dynamics of the embedded system is equivalent to the original non-QP system
described in (2.17). Since the embedded QP system includes the original differential
variables xi, i = 1, . . . , n, it is clear that the stability of the embedded system (2.19)-
(2.20) implies the stability of the original system (2.17).

It is important to note that QP models originate from embedding have some un-
usual dynamic properties because their trajectories range only a lower dimensional
manifold of the QP state space. Thus they can be regarded as "hidden" differential-
algebraic (DAE) system models with rank deficient A parameter matrices [87].

An example for embedding a smooth nonlinear dynamical system can be found in
SectionA.4 of the Appendix.

2.3 Applied optimization tools
In this section some of the mathematical tools applied throughout the thesis are de-
scribed. The general problem statement of optimization is given in (2.21), where J
denotes the cost function, or objective function to be optimized (maximized or mini-
mized), x is the optimization variable that has to be selected such that J is optimal.

min
x

J(x, θ) (2.21)

Note, that the cost function may also depend on some parameters θ.
Problems of the form (2.21) can be solved using several different tools, depending

on further assumptions on J and x. The detailed discussion of this topic is out of the
scope of this thesis [45].

An extension of the optimization problem (2.21) is the so-called constrained opti-
mization problem which can be expressed in the form (2.22) below.

min
x

J(x, θ)

s.t.: c(x) = 0
d(x) > 0

(2.22)

where the problem is to be solved in the presence of constraining equations for x. In
the optimization problems arising in the thesis there are no equality constraints at all,
while the inequality constraints are regarded to be linear or affine (i.e. d(x) is linear,
or affine). The cost function J is quadratic in the simplest cases. In some other cases
appearing in the thesis, the cost function cannot used in closed form, and can only be
evaluated at given points x of the optimization space.

2.3.1 Model predictive control
Model predictive control (MPC) is an efficient and popular method for solving mul-
tivariate optimal control problems in energy-related control and scheduling applica-
tions ([71]). This method of management is widely recognized in both industrial and
academic sectors due to its vast theoretical background and ability to simultaneously
handle multivariate regulatory problems [89]. However, the model predictive approach
requires a reliable dynamic model of the controlled dynamic system.
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Model predictive control is a special form of control where the appropriate input is
selected based on an optimization involving the model of the system and the possible
future inputs [14]. It is originated from the field of process control but can be used,
for example, to control speed or torque for different drives, or even in robotics. Model
predictive control consists of the following main elements:

• a predictive system model,

• a cost function describing the control aim

• obtaining the control law.

Thus, in the case of model predictive control, it is important to know the system
model, which defines a connection between the input and the output. Based on these,
an algorithm can be used to calculate the behavior of the system and determine an
input signal sequence to set the desired output. The prediction of the behavior of
the system in time, the prediction of the operation is called the horizon (H). This
operation is depicted in Figure 2.9.

t− 2 τs t− τs t+ τs t+ 2 τs
. . .

t+H

u(t+ k)

u(t)

Reference

ŷ(t+ k)

y(t)

t

u(t), y(t), ŷ(t)

Figure 2.9: Important signals in model predictive control

Signals u(t) and y(t) are the inputs and the outputs applied and measured at the
system in the past. Reference is the trajectory that has to be followed by the output
ŷ(t + k) in the future. This is ensured by the optimization structure of Figure 2.10
where the optimizer has to solve a constrained optimization problem between each
discrete time instant in order to fint the optimal future inputs û(t+ k) within a finite
horizon H. At the next discrete time instant, only the first future input û(t+ 1) will
be applied on the system and the optimization starts over.

2.3.2 Asynchronous parallel pattern search
In this section, the applied optimization structure, namely the APPS algorithm shall
be discussed in detail. They commonality in this work, is that all of them are designed
to search for the optimal control input for a current governing system, should it be
voltage unbalance reduction with no applicable network model (due the actors un-
predictability), or reaching the fastest reference value with explicit predictive control
with the converter’s equation’s considered. The APPS can rather be described as a
linear search program, distributed in a multi-dimensional plane, where there is only a
black box model available [60]. These variants of pattern search can solve nonlinear
unconstrained problems of the form of (2.23),
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Optimizer

Model
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Reference
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Cost
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Figure 2.10: Block scheme of model predictive control

min
x∈Rn

J(x), (2.23)

where J : Rn −→ R. We assume that the evaluation of J is computationally expensive,
hence the interest in using either distributed or parallel computing environments to
solve the problem. It needs to be concentrated on the parallelization of the search
strategy, rather than on the evaluation of J , though the techniques discussed here can
be adapted to handle problems for which the computation of J also can be distributed.
Additionally is assumed that the gradient ∇J is unavailable. For such problems,
pattern search methods are one possible solution technique since they neither require
nor explicitly estimate derivatives.

Note, that an extension of the APPS method [59] is also capable of solving the
constrained optimization problem (2.24) which is a version of the general constrained
optimization problem (2.22).

min
x∈Rn

J(x)

s.t.: xLB ≤ x ≤ xUB,

(2.24)

where xLB and xUB are the vector of lower and upper bounds on the optimization
variable x.

In the present thesis the optimization problems solved by APPS will be in the form
(2.23), however, they can be easily be reformulated to be in the form (2.24).

Parallel pattern search Lets adopt an infinite sequence of iterations ρ = 0, 1, 2, . . . ,
with the last iteration noted as ρ − 1 and initialization at 0. It is assumed that the
process knows the best point so far as xρ−1, where J(xρ−1) is the global minima of
J . Associated with xρ−1 there is a step-length control parameter namely ∆ρ−1. Each
i ∈ P , where P = {1, . . . , p} process ends iteration at ρ − 1 by constructing it’s trial
point and initiating an evaluation of J(xρ−1

i + ∆ρ−1
i di), where D = {d1, . . . ,dp} is
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the finite set of directions applied by each individual process. The simultaneous start
of the function evaluations at the trial points on each of the p processes signals the
start of iteration ρ. When all of the participating processes are finished with their
evaluation of J , they communicate these values to each other and determine the new
values of xρ, and ∆ρ. If there exists an i ∈ P , such that J(xρ−1

i +∆ρ−1
i di) < J(xρ−1),

then ρ ∈ S, where S denotes the successful iterations.

Adding asynchronicity With said above, the general strategy for asynchronous
parallel pattern search, from the perspective of a single process i ∈ P is outlined in
Algorithm 1

Algorithm 1 Asynchronous Parallel Pattern Search algorithm
1: loop
2: Evaluate J(xbest

i +∆best
i di)

3: if J(xbest
i +∆best

i di) < J(xbest
i ) then

4: broadcast result to all other processes
5: end if
6: Update local values xbest

i and ∆best
i based on the current local information

7: end loop

The price paid is that each process has its own notion of the best known point seen
so far, as well as its own value for ∆i. Any success on one process is communicated
to all other processes participating in the search, but the successful process carries on
from its new best point without waiting for a response from the other processes. By
adding a few mild conditions, the global convergence of the search can be still ensured
[60]. The indexing based on discrete time instance, where the set Q = {1, 2, . . . , q}
denote the index of steps. Thus xi(q) s used for the best point known to process i at
time step q, and similarly, ∆i(q). So if process i starts a function evaluation at time
step q, the trial point at which the function evaluation will be made at xi(q)+∆i(q)di.
Further worth mention, that time steps are assumed to be of fine enough resolution
so that at most one function evaluation finishes per process per time step.

Lets define two sets that satisfy Q = Si ∪Ui, , and Si = Ii ∪Ei, where Si is the set
of all time successful steps on process i, Ii is the set if internal successes, Ei is the set
of external successes, and Ui consists the unsuccessful steps respectfully. An internal
success, where the process finds itself the minima, the external success is where the
process is updated externally by the minima. Further Ci ∈ Ui is defined as the set of
time steps where ∆t

i is reduced. All the above cases (Ui\Ci) no action is performed.
The updating functions allow us to give the following general definitions for xq

i and
∆q

i . For every q ∈ Q, q > 0, the best point for the ith process defined to be:

xq
i =

{
x
τi(q)
ωi(q)

+∆
τi(q)
ωi(q)

dωi(q), if q ∈ Si
xq−1
i , otherwise

(2.25)

with the initialisation x0
i = x0, where ωi(q) is the generating process index for the

update time at step q on process i, and τi(q) is the time index for initialization of the
function evaluation, that produced the update at time q on process i. For every q the
step length control parameter ∆q

i defined to be:
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∆q
i =





λ
νi(q)
ωi(q)

∆
τi(q)
ωi(q)

, if q ∈ Si
θqi∆

τi(q)
ωi(q)

, if q ∈ Ci
∆q−1

i , otherwise
(2.26)

with the initialization ∆0
i = ∆0, where νi(q) is time index for the completion of

the function evaluation that produced the update at time step q on process i, and θqi
and λq

i are chosen. With the following pattern followed, the local minima of f shall
eventually be reached in an undetermined number of steps.

2.3.3 Linear and bilinear matrix inequalities
In what follows, linear- and bilinear matrix inequalities are defined as special tools
applied by system- and control theory [10].

Linear matrix inequality

A (non-strict) linear matrix inequality (LMI) is an inequality of the form

F (x) = F 0 +
m∑

i=1

xiF i ≤ 0, (2.27)

where x ∈ Rm is the variable and F i ∈ Rn×n, i = 0, . . . ,m are given symmetric
matrices. The inequality symbol in (2.27) stands for the negative semi-definiteness of
F (x). If the equality is not allowed, then the LMI is termed strict.

One of the most important properties of LMIs is the fact, that they form a convex
constraint on the variables, i.e. the set F = {x | F (x) ≤ 0} is convex and thus
many different kinds of convex constraints can be expressed in this way [10], [92].
It is important to note that a particular point from the convex solution set F can
be selected using additional criteria (e.g. different kinds of objective functions) [10].
Standard LMI optimization problems are e.g. linear function minimization, generalized
eigenvalue problem, etc.

Various problems in system- and control theory can be written up as a set of linear
matrix inequalities. For example, the Lyapunov equation connected to the global
stability of LTI systems. But they also appear in the context of linear parameter-
varying (LPV) systems, or within µ-analysis there are also LMIs solved.

There are several software tools available for solving linear matrix inequalities.
The most widespread ones are in the Matlab Robust Control Toolbox [31]. In spite
of its great popularity it has problems when a non-strict LMI is to be solved. On
the other hand, Scilab (an open source platform for numerical computation, see
http://www.scilab.org) performs far much better for the non-strict case. The algo-
rithm of [57] is also able to handle the rank deficiency of matrices F i in (2.27). A
good survey on the available solvers can be found in [107].

Bilinear matrix inequality

A bilinear matrix inequality (BMI) is a diagonal block composed of q matrix inequal-
ities of the following form

Gi
0 +

p∑

k=1

xkG
i
k +

p∑

k=1

p∑

j=1

xkxjK
i
kj ≤ 0, i = 1, . . . , q (2.28)

20

               dc_2030_22

http://www.scilab.org


2.3. Applied optimization tools

where x ∈ Rp is the decision variable to be determined and Gi
k, k = 0, . . . , p, i =

1, . . . , q and Ki
kj, k, j = 1, . . . , p, i = 1, . . . , q are symmetric, quadratic matrices.

The main properties of BMIs are that they are non-convex in x (which makes their
solution numerically much more complicated than that of linear matrix inequalities),
and their solution is NP-hard [107], so the size of the tractable problems is limited.
However, there exist practically applicable and effective algorithms for BMI solution
[57], [106], or [16]. In Matlab environment the TomLab/PENBMI solver [58] can be
used effectively to solve bilinear matrix inequalities. Similarly to the LMIs, additional
criteria can be used to select a preferred solution point of a feasible BMI from its
solution set.

BMIs are mostly applied in the field of robust control, many problems can be
formulated in the form (2.28).
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Chapter 3

Modeling, identification and optimal
operation of energy systems

Model based methods enable one to introduce a priori knowledge available about the
system in hand. Model based control also allows the use of optimal control methods.
Model based predictive control originated from the slow chemical industrial processes
is nowadays very popular for energy applications because of the advent of fast and
cheap computational units. Model based methods, on the other hand need a suitable
model precisely tuned to render the actual system behavior. Parameter estimation
methods play an important role in the use of any model based methods. Certain
energy system classes operate under different temperatures which makes its even more
difficult to develop simple (i.e. computationally effective) yet precise models.

The approaches of the provider’s side include optimized pricing methods [51] to
balance the energy grid in response to changes in supply (eg due to the changing
availability of renewable energy sources) and to meet changing energy consumption.
As a result of optimized pricing in the daily electricity market [99], the electricity prices
may vary hour by hour [48]. The authors of the article [101] analysed the impact of
microgrids and their potential contribution to the regulation of the demand and supply
of electricity in the hourly electricity market by responding to price-based demand
and concluded that both network efficiency and resilience improved. The work [54]
proposed a new framework for decentralized energy coordination and production that
can be used to schedule energy transport and flow. These tasks can be examined from
both energy consumption and energy production sides, and a suitable smart solution
to the defined problem can be found, and then a complex energy management can
be implemented by combining the two results. The authors of [102] propose an open
electric energy network that is open to the main entities with respect to the small
scale transactions and they also propose an ecological model to simulate the market
power of the investor owned utilities and the independent power producers based on
a Lotka-Volterra competition model.

From the consumer’s perspective, most people look for the cheapest solution by
using their appliance (e.g. washing machine, dishwasher) at a low energy price, how-
ever, there are simple electrical appliances (e.g. refrigerators, freezers, electric water
heaters) that operate all day. With such equipment, it is typically not possible to
operate only with cheap electricity, as it can take up to several hours for the optimal
energy price to appear.

Therefore, the cost-optimized operation of a composite system consisting of ser-
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vice providers, consumers, and the electrical grid offers a wide range of operating,
scheduling, and regulatory options. On the consumer’s side, certain electrical ap-
pliances can be operated at a reduced operating cost by switching them on and off
on a scheduled basis, taking the dynamically changing electricity prices and equip-
ment operating limitations into account. In the simplest case, this problem results
in an optimal scheduling task, which can be found in several literatures. The article
[95] presents an office building with an optimal daily micro-network-based scheduling
method depending on weather conditions. The [79] literature is about optimal residen-
tial building consumption control method and cost estimation. Household appliances
may be subject to optimal operation or scheduling, for example, [24]. The article [7]
offers a possible solution to minimize the cost of energy used in olive oil production
with variable energy prices. An important element of these solutions is the already
mentioned day-ahead market (DAM), where electricity prices vary up to hourly as a
result of optimized pricing.

Thermal modeling and the analysis of lithium-ion batteries under different temper-
atures has been addressed by several authors. The thermal modeling of batteries as
well as the modeling without temperature dependency can be classified based on the
scientific background (e.g. equivalent circuit models, electrochemical models). The
review [72] gives a thorough analysis not only to the different electrochemical models
but also to the parameter identification methods.

In such applications where the computational complexity (i.e. time) is crucial e.g.
in a BMS, equivalent circuit models are widely used [83]. The authors of [118] address
the study of open circuit voltage-state of charge (OCV-SOC) characterization under
the influence of different temperatures. The results show that the OCV-SOC charac-
teristics curve highly depends on the temperature. An online estimation method for
model parameters and SOC is proposed in [27], for applications in EVs under various
temperatures. Their model is based on the RC circuit equivalent of the investigated
battery. In [74], a design of experiment approach is used for the development of the
electro-thermal model of electric vehicle batteries. The basis of their work is also an
equivalent circuit model of the battery. The authors of [15] investigated the influence
of thermal effect on the performance of their dual Kalman filter based (state- and
parameter estimation) method.

Another class of battery models is the electrochemical models where the chemical
reactions and mechanisms taking place in the battery serves as a basis for the mod-
eling equations. An electro-thermal model is developed and validated experimentally
in the work [116], where electronic conduction, heat transfer, energy balance and elec-
trochemical mechanisms are included in the model. A computationally more efficient
electrochemical lithium-ion battery model is proposed in [4]. The Simplified Single
Particle Model is compared with more complicated electrochemical models as well as
experimental data. The work [46] gives a systematic approach for the development of
thermal electrochemical models of large lithium-ion batteries for EV applications. The
work [2] addresses the problem of non-uniformity of heat generation and electrochem-
ical reaction increase with the discharge rate in an electroclemical-thermal coupled
lithium-ion battery model.

Pure thermal models are also present in the literature, the authors of [29] developed
a lumped parameter thermal model of the widely used LiFePO4 lithium-ion battery.
Using thermal measurements and the model they determined the heat transfer coeffi-
cient and the heat capacity of the examined battery.
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3. Modeling, identification and optimal operation of energy systems

Due to the above mentioned thermal effects taking place in lithium-ion batter-
ies, the previously mentioned roles of BMSs are usually extended with thermal man-
agement. The mosty frequently used thermal management solutions of lithium-ion
batteries (used either in HEVs or in EVs) are reviewed in paper [112].

Temperature dependence of the key battery parameters and variables motivated
the authors of [117] to develop a two stage battery capacity estimation method. In the
first stage, battery core temperature is being estimated afterwards, SOC and capacity
is being estimated by a sliding mode observer.

3.1 Energy-efficient scheduling of household refriger-
ators

In the modern power grid the day-ahead market serves as the marketplace for trading
power. The service provider gives the electricity price, i.e. the price for electrical en-
ergy, for the next 24 hours (see Section 2.1.3). In the case of this type of market, it is
worth considering when some equipment will operate, as, there can be large differences
(almost double) in the price of energy within a day. This is true not only for intermit-
tently operated appliances (washing machine, electric stove, dishwasher) but also for
continuously operating appliances such as electric boilers or refrigerators and freezers.
With the right schedule, one can save money by continuing to operate the equipment
at a cheaper energy price. This means that it produces warmer-than-usual water in
the case of a water heater and cools the food better in the case of a refrigerator, so that
the appliance only has to be switched on again later at a higher energy price. With
such a schedule, the equipment typically consumes more energy, but from a consumer
perspective, the cost is not determined by the moment of consumption and the cur-
rent energy price. On the other hand, if the price of energy is mainly determined by
the production and availability of renewable energy sources, then higher consumption
also means greener energy consumption. The problem at hand, i.e. to minimize the
operating cost suggests the use of model predictive control theory. Moreover, since
the control law is the switching sequence of the freezers binary input, the problem to
be solved is a constrained optimal scheduling problem [51].

3.1.1 Modeling
In the simplest case, a refrigerator can be regarded as a container that is cooled by
a cooling liquid circuit driven by an electrical motor. The schematic structure of the
main elements of this simple refrigerator is shown in Figure 3.1.

The containment is characterized by its air temperature Ta. It is heated by the
outer environment through the door of the refrigerator, and cooled by the wall with
temperature Tw . A liquid cooling system with liquid temperature Tc provides cooling
when the cooling binary switch S is on (S = 1), while there is no cooling of the wall
when it is switched off (S = 0). The side wall is also heated by the outer environment.

The variables and parameters1 of the refrigerator model are collected in Table 3.1.

The engineering model The simplest possible dynamical model that describes
the dynamics of the above described refrigerator can be constructed from the energy

1The notation for heat capacity and electrical capacitance is the same in the thesis (C), how-
ever, their use is unambiguous, heat capacity is only appearing in Section 3.1 moreover, electrical
capacitance is not appearing in this section.
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Figure 3.1: The schematic structure of the refrigerator.

Table 3.1: Model variables and parameters

meaning symbol classification unit
containment air temperature Ta state variable ◦C
wall temperature Tw state variable ◦C
binary switch status S scheduling variable −
environment temperature Te parameter ◦C
cooling liquid temperature Tc parameter ◦C
minimal inner air temperature Ta,min parameter ◦C
maximal inner air temperature Ta,max parameter ◦C
minimal wall temperature Tw,min parameter ◦C
maximal wall temperature Tw,max parameter ◦C
air-wall heat transfer coeff. Kw parameter kW

◦C
air-env. heat transfer coeff. Ko parameter kW

◦C
wall-env. heat transfer coeff. Kx parameter kW

◦C
wall-cool. liq. heat transfer coeff. Kc parameter kW

◦C
heat capacity of the containment Ca parameter kJ

◦C
heat capacity of wall Cw parameter kJ

◦C

balances for the containment air and that of the wall in the following form (see [38])

Ca
dTa(t)

dt
= Kw(Tw(t)− Ta(t)) +Ko(Te − Ta(t)) (3.1)

Cw
dTw(t)

dt
= Kw(Ta(t)− Tw(t)) +Kx(Te − Tw(t)) + S(t) ·Kc(Tc − Tw(t)) (3.2)

with the variables and parameters collected in Table 3.1.
The first terms in the right-hand sides of the equations correspond to the heat

transfer between the containment air and the wall, the second transfer terms corre-
spond to the transfer between the outer environment and the containment air or the
wall, respectively, and the last term in the second equation describes the effect of the
cooling liquid. The parameters of the model are assumed to be constant.
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3. Modeling, identification and optimal operation of energy systems

Piecewise affine model Let us define two operating modes of the freezer: the
cooling and the reheating modes. In both cases the state space model is in the following
piecewise affine time-invariant model form [20]:

ẋ(t) = AS x(t) +BS (3.3)
y(t) = x(t) (3.4)

where the state variables of the dynamic model are

x(t) =

[
Ta(t)
Tw(t)

]
(3.5)

where the scheduling variable S(t) is the position of the switch at time t, which deter-
mines the actual operating mode of the system. The system output y is supposed to
be the state vector, i.e. all states are measured. The value of the coefficient matrices
AS and BS differ according to the to operation modes of the refrigerator, i.e. the On
mode (when the cooling is taking place) and the Off mode (when the cooling is off).

On mode The first operating mode is when the switch is closed (S = 1), i.e. the
refrigerator is cooling. Then the parameter matrices and vectors are

A1 =

[
−Kw+Ko

Ca

Kw

Ca

Kw

Cw
−(Kw

Cw
+ Kc

Cw
+ Kx

Cw
)

]
, B1 =

[
KoTe

Ca

KxTe+Tc Kc

Cw

]
. (3.6)

Off mode The second operating mode is when the switch is open (S = 0), i.e. the
refrigerator is reheated to the environmental temperature. Then the parameter
matrices and vectors are as follows:

A0 =

[
−Kw+Ko

Ca

Kw

Ca

Kw

Cw
−(Kw

Cw
+ Kx

Cw
)

]
, B0 =

[
KoTe

Ca

KxTe

Cw

]
(3.7)

The applied dynamical model (3.3) seems to omit the input signal at first sight. Note,
that the binary input S appearing in the engineering model (3.1)-(3.2) plays the role of
the operation mode switch in the applied model (3.3). More details on the engineering
model together with a parameter set relevant to a household refrigerator can be found
in [123].

3.1.2 Problem statement
Control aim

In order to be able to select the correct solution method for the problem, it is important
to specify the control aims. From the consumer point of view, the most obvious
aim of controlling an electrical equipment may be to minimize the already mentioned
operating cost, i.e. the electricity bill. Thus, the primary goal is to minimize operating
costs by scheduling the operation of the equipment, taking into account the following:

• The operating cost is the price of electricity consumed during the day.

• The price of energy varies from hour to hour, constant between two changes.

• The price of energy is known 24 hours in advance.
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3.1. Energy-efficient scheduling of household refrigerators

• The equipment must operate within the operating limits.

• The thermal impact of the equipment on the environment is negligible.

• The control input S is a binary signal, i.e. S ∈ {0; 1}.

Model predictive scheduling of freezers

The control aim, i.e. to minimize the operating cost suggests the use of model predictive
control theory for this problem. Moreover, since the control law is the switching
sequence of the refrigerators binary input, the problem to be solved is a constrained
optimal scheduling problem.

In order to be able to apply the tools of model predictive control theory, one
needs a suitable predictive model that describes the behavior of the controlled plant
(refrigerator). The cost function usually formed as a combination of quality and/or
economic expectations against the system, moreover, constraints are also introduced
to the system’s (state) variables which usually define some region of safety operation
for the system.

Predictive system model As a first step the continuous-time model (3.6-3.7) is
discretized with sampling time τ in order to get the discrete-time piecewise affine
(PWA) system model used in the sequel.

ΣS :

{
x[k + 1] = ΦS x[k] + ΓS

y[k] = x[k]
, S ∈ {0; 1} (3.8)

where x[k] stands for the value of the vector valued signal x at the time instant k τ ,
matrices ΦS = eAS τ and Γ = A−1

S (eAS τ −I)BS are the matrices of the state equation
discretized by sampling time τ .

Cost function The operating cost to be minimized (i.e. the price of the consumed
electrical energy) is the discrete sum (3.9).

J(p, S) =
N∑

k=1

p[k]S[k]h , (3.9)

where N is supposed to be the prediction horizon size. It is also supposed that the
price schedule of the next day are known at least H = N τ time (prediction time)
before midnight. It is important to note, that the price signal p has a sampling time
of one hour between its values, but this is not equal to the sampling time τ of the
dynamics (3.8), τ < 1 h in practice. In the cost function (3.9) above, p[k] denotes the
price signal resampled with τ .

Constraints The constraints (3.10) on the state variables describing the operating
limits of the system. In the case of a refrigerator, the most important one is the limits
defined for the state variable Ta as it describes the lower and upper bounds for the air
temperature of the interior.

xLB ≤ xk ≤ xUB , (3.10)

The freezer air and wall temperatures has to obey the following constraints (3.11).

xLB =

[
Ta,min

Tw,min

]
, xUB =

[
Ta,max

Tw,max .

]
(3.11)
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3. Modeling, identification and optimal operation of energy systems

Summarized, the optimal scheduling problem to be solved is to find a sequence
{S[k]}Nk=1 that minimizes the cost function (3.9) with respect to (3.8) and the con-
straints (3.10) defined for the states. In each iteration the optimization of the cost
(3.9) is performed over the fixed size prediction horizon H = N τ , and the first element
of the optimizing input sequence is applied to the real system.

3.1.3 Heuristic optimal scheduling algorithm
The integer (binary) variables in the optimization problem to be solved during the
model predictive scheduling formulated in Section 3.1.2 makes it difficult to solve the
problem using off-the-shelf tools [40]. An effective heuristic scheduling algorithm is
proposed in this section that can be used as the optimizer for the problem articulated
in the precious section.

The proposed algorithm is a version of branch and bound type optimization [80]
where the branch step introduces possible switching sequences and the bound step
decreases the size of the solution space based on the following three heuristic rules
[123]:

Rule 1: Any scheduling sequence that yields an x breaking the bounds (3.10) is not
allowed.

Rule 2: Among any two scheduling sequences the one yields a higher x at a higher
cost is not optimal.

Rule 3: Any scheduling sequence containing a cooling step that could have been
performed later for a lower energy price is not optimal.

The first two rules are easy to implement. The idea to apply Rule 3 is the pre-
liminary determination of price-equivalent cooling time tp[i] for all subsequent price
periods of the day. For the ith pricing time period (hour), it can be calculated as

tp[i] =

⌈
p[i+ 1]

p[i]
τ

⌉
, i = 1, . . . , 24 (3.12)

where p[i] is the price for the ith hour and ⌈.⌉ represents the ceiling function.
Using the price-equivalent cooling times (3.12), it is possible to determine the

reference states used in Rule 3 as follows. Off-line dynamical simulations of (3.8)
are performed from the initial state xUB for times tp[i], respectively. The final state
of the simulations are denoted by xr

i and can be used as the reference values of the
comparison: If the actual state x < xr[i] during the period tp[i] then switching the
cooling on yields a suboptimal sequence.

The pseudocode of the proposed optimal heuristic scheduling procedure Heuris-
ticScheduler() is given in Algorithm 2.

It is important to note, that the calculation of tp[i] and xr[i] can be calculated
off-line, once a day, preferably when the service provider gives the prices of the next
day.

Adaptive extension

An obvious step towards the improvement of the heuristic scheduler Algorithm 2 is to
take into account the changes of system parameters during normal operation of the
refrigerator (by putting goods in and out of the refrigerator changes the heat capacity
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3.1. Energy-efficient scheduling of household refrigerators

Algorithm 2 Heuristic scheduling algorithm
1: procedure Heuristic B&B
2: Input :
3: Σ← ΣS

4: x actual state
5: xLB,xUB bound
6: xr bound (Rule 3)
7: p electricity prices
8: nh ← horizon size N τ
9: Initialization:

10: J empty column vector
11: S,X empty matrices
12: for i = 0;i < nh;i++ do
13: branch:

14: S =




S

1
...
1

S

0
...
0




, X =

[
X

X

]
, J =

[
J

J

]

15: for k = 1 : rows(S) do
16: Xk,i+1 = Σ(Xk,i,Sk,i)
17: update Jk
18: bound (Rule 1):
19: if Xk,i+1 /∈ [xLB,xUB] then
20: delete row Xk,., Sk,. and Jk
21: end if
22: bound (Rule 3):
23: if Xk,i+1 < xr

k and Sk,i+1 = 1 then
24: delete row Xk,., Sk,. and Jk
25: end if
26: end for
27: bound (Rule 2):
28: for k, l = 1 : rows(S), k ̸= l do
29: if Xk,i+1 > Xl,i+1 and Jk > Jl then
30: delete row Xk,., Sk,., Jk
31: else
32: if Xl,i+1 > Xk,i+1 and Jl > Jk then
33: delete row X l,., Sl,., Jl
34: end if
35: end if
36: end for
37: end for
38: optimal solution:
39: minimalvalueofJ = Jkopt
40: Minimizing sequence Skopt,.

41: end procedure
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3. Modeling, identification and optimal operation of energy systems

Ca of the containment). It is easy to see based on the results of this section that having
a model different from the reality would result in a suboptimal scheduling sequence.

The key parameter behind the adaptivity is the heat capacity Ca of the interior air
since this compartment contains the goods. The actual heat capacity C̃a is supposed
to vary between a minimal value Camin

that corresponds to the empty freezer and a
maximal value (Camax). The change in the heat capacity can only be detected from
the available temperature measurements (Ta) taking place in the refrigerator. The
adaptivity of the model predictive scheduler is implemented as a parameter estimation
step in which an estimate Cest

a the actual value of the refrigerator interior heat capacity
is being determined based on the available temperature measurements. The sensitivity
of the proposed adaptive method depends on a predefined temperature difference limit
(∆T ). The heat capacity is re-estimated during an iteration when condition (3.13) is
true.

|Ta[k]− Tm
a [k]| > ∆T , (3.13)

where Ta[k] is the air temperature of the model (3.8) and Tm
a [k] denotes the measured

value of the air temperature at the kth time instant, respectively.
The pseudocode of the proposed adaptive scheduler is given in Algorithm 3, where

input parameter Σ denotes the PWA dynamics (3.8). The novel element is the on-
line parameter estimation performed in the beginning of the control loop. The online
estimation of the interior heat capacity is based on the previous temperature measure-
ments.

Algorithm 3 Adaptive heuristic scheduling algorithm
1: procedure AdaptiveScheduler(Σ, x, xLB, xUB, xr,xm, ∆T , p, N)
2: if |Xk,i+1 − xm| > ∆T then
3: Σ′ ←ParameterEstimation(Σ,xm) ▷ Calculating of Cest

a

4: end if
5: Skopt,. ←HeuristicScheduler(Σ′, x, xLB, xUB, xr, p, N) ▷ Algorithm 2
6: return Skopt,.

7: end procedure

Figure 3.2 illustrates the difference in schedule when the internal heat capacity is
twice that of an empty refrigerator. The actual heat capacity is denoted by C̃a. Blue
solid line denotes the case when the scheduler knows the actual heat capacity C̃a,
red dashed line denotes the case when the scheduler calculates with the nominal heat
capacity Ca.

Figure 3.2 illustrates that in the case when the heat capacity of the system is not
known by the scheduler, the algorithm will still control the refrigerator sstisfactorily.
This is because the dynamics of the system will be slower as the heat capacity increases,
i.e. temperatures will change more slowly. The resulting control will not be cost-
optimal, but the system will not exceed the defined temperature limits. The minimal
heat capacity Camin

is for an empty refrigerator, so the heuristic algorithm can be used
using the empty equipment system parameters.

Online estimation of Ca The online estimation of Ca (denoted by Parameter-
Estimation() in Algorithm 3) is performed at the beginning of a control cycle if the
difference between the model output temperature and the measured temperatures xm

is greater than the predefined ∆T value (see condition (3.13)). The estimation is ba-
sically a bisection method used for finding the root of the difference ∆Ta(Ca) (3.14)
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Figure 3.2: The effect of the information about actual heat capacity C̃a = 2Ca for the
heuristic scheduling for H = 2 hours.

with respect to the heat capacity parameter Ca (see [121] for details).

∆Ta(Ca) = Tm
a [k]− Ta[k;Ca] , (3.14)

where Ta[k;Ca] is the containment air temperature computed from the discretized
version of model (3.8). The root of (3.14) is denoted by Cest

a [k].
The search interval for the value of Cest

a [k] is an interval of length 10Camin
with one

of the end points being the previous guess for the interior heat capacity, i.e. Cest
a [k−1].

The other end point of the search interval is Cest
a [n − 1] ± 10Camin

depending on the
sign of the difference Ta[k]− Tm

a [k]. The number of necessary iterations of the above
bisection algorithm depends on the desired tolerance ε in the following form

NCa = log2

(
10Camin

εCamin

)
= log2

(
10

ε

)
. (3.15)

3.1.4 Simulation case study
The proposed optimal scheduling algorithm together with its adaptive extension has
been investigated using a dynamical simulation model built in Matlab Simulink en-
vironment. The details of the refrigerator, its modeling and parameter sensitivity
analysis and identification is presented in Appendix A.1. The sampling time for the
discrete time dynamics was τ = 300 s.

Model

The dynamical model was identified and the system matrices were determined from
the measured data of the temperatures, consumption and ambient temperature of a
refrigerator presented in [50]. Using these data sets, the system matrices were de-
termined using a parameter estimation procedure based on the minimization of the
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3. Modeling, identification and optimal operation of energy systems

prediction error (3.16). The constrained minimization of the prediction error function
was performed using the Nelder-Mead simplex algorithm [62].

J(θ) =

∫ tf

t0

wa

(
Ta(t)− T̂a(t; θ)

)2
+ ww

(
Tw(t)− T̂w(t; θ)

)2
dt, (3.16)

where wa and ww are weighting factors The numerical values of the discrete-time
piecewise affine state space model (3.8) for the two operating modes are listed in
(A.1)-(A.3) of Section A.1.

Heuristic model predictive scheduling

In the first simulation experiment, the operation of the basic version of the method
was investigated. The results areS illustrated in Figure 3.3, where it is apparent, that
the schedule calculated by the algorithm takes into account the operating constraints
(denoted by red dotted line). Moreover, it can be seen that before a price increase the
scheduler cools down the refrigerator in order to use the actual cheaper energy instead
of the more expensive electricity of the next pricing interval.
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Figure 3.3: Operation of the cost optimal model predictive scheduling algorithm during
the simulation experiment. The temperatures Ta and Tw and the hourly energy price
can be seen (top, middle, bottom).

The aim of the second set of simulation experiments were to investigate the effect
of prediction horizon size (H) on the performance of Algorithm 2. In order to make
it difficult for the model predictive scheduler to find the optimal solution, Wednesday,
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i.e. the day with the highest price variability (see Figure 2.8) has been chosen for the
experiments. The comparative simulation results are given in Figure 3.4, where the
times topt[k] spent with the solution of the optimization problem at the kth iteration are
depicted for the whole day. The results are in line with the engineering expectations i.e.
a larger prediction horizon tends to be computationally more demanding. It can easily
be seen in Figure 3.4 that H amount of time before the energy price is increasing the
optimization problem to be solved gets computationally more demanding. Of course,
the value of topt depend on the computational power of the applied computer or micro
controller unit. The implementation of the algorithm on an embedded unit is out of
the scope of this thesis.

0 4 8 12 16 20 24
0

1

2

t [h]

t o
p
t
[s

]

H=1 h H=2 h H=3 h H=4 h

0 4 8 12 16 20 24
3

4

5

·10−2

t [h]

p
[e

/k
W

h]

Figure 3.4: Top: The effect of prediction horizon H on the optimization time topt.
Bottom: Hourly changing energy price for the examined day (Wednesday). It is
apparent that H amount of time before the energy price is increasing the optimization
problem to be solved gets computationally more demanding.

Table 3.2 gives a more complete picture of the computational effect of the horizon
size. It is apparent that days with smaller price variance (e.g. Monday, see Figure
2.8) have a smaller total optimization time (i.e. complexity). It is important to note
that from the point of view of the complexity the number of price growth steps is
much more important than the degree of price growth. It can be seen that the overall
optimization time (i.e. complexity) of a day is in strong correlation with the number
of price growth steps.

Another aspect of horizon size has also been investigated, namely the effect of
horizon size on the daily price obtained by the model predictive scheduler. Table 3.3
shows the results of the experiment. The reference values obtained from the classical
hysteresis control can be seen in the last row of the table. It is easy to see, that

(i) the size of prediction horizon does not have a serious effect on the daily cost
obtained by the algorithm,
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Table 3.2: The effect of the prediction horizon size on the cumulative optimization
time (given in seconds) for a whole day of the week, i.e.

∑
k topt[k]. The number of

electricity price growth steps are shown in the last row.

H [h] Mon. Tu. Wed. Th. Fri. Sat. Sun.
1 7 10 7 7 8 8 7
2 30 47 35 32 36 36 26
4 130 327 168 153 180 187 113
8 427 2675 926 731 1051 914 642
12 1023 6900 1882 1381 1881 2377 1213
24 3507 26504 4743 4843 5099 6637 2540

Number of price increases
9 17 11 11 14 12 9

(ii) the proposed method outperforms the classical control method on each of the
examined days.

Table 3.3: The effect of the prediction horizon size on the daily operating cost [e/kWh].
As a reference, the daily values yielded by the classical hysteresis control (τ=60 s) of
the refrigerator are shown in the last row.

H [h] Mon. Tu. Wed. Th. Fri. Sat. Sun.
1 0.442 0.445 0.607 0.487 0.509 0.565 0.597
2 0.440 0.442 0.604 0.484 0.503 0.563 0.595
4 0.442 0.445 0.607 0.487 0.506 0.566 0.595
8 0.438 0.437 0.602 0.482 0.501 0.561 0.593
12 0.440 0.442 0.604 0.485 0.503 0.563 0.595
24 0.440 0.445 0.604 0.485 0.503 0.563 0.595

hysteresis (classical) control
0.464 0.464 0.638 0.510 0.531 0.594 0.627

Adaptive scheduling

Heat capacity is a crucial parameter of thermal systems since it has a serious effect on
the dynamics (e.g. time constant) of the system. It is expected that the more accurate
estimate Cest

a of the actual heat capacity C̃a enables the adaptive heuristic scheduler to
approach the optimal solution. The next set of simulation experiments were aimed to
highlight the differences between the non-adaptive and the adaptive model predictive
schedulers, i.e. between Algorithm 2 and Algorithm 3, respectively. Figure 3.5 gives
an overview on the effect of adaptivity on the results. During the experiments, the
system was exposed to the price pattern of Wednesday (Figure 2.8)

The results of the adaptive heuristic model-based scheduling algorithm described
above and its comparison with the simple heuristic algorithm are illustrated in Figure
3.5. The top two diagrams show the temperatures of the refrigerator and that of the
model, while the last one shows the actual and estimated heat capacities. During the
simulations, the unit of heat capacity can vary between the minimum, i.e. the heat
capacity of an empty refrigerator (Camin

) and the maximum heat capacity (20Camin
).
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Figure 3.5: The actual and calculated temperatures Ta for different schedulet parame-
ters. Top: non-adaptive heuristic MPC; Middle: adaptive MPC; Bottom: actual heat
capacity (C̃a), minimum heat capacity (Camin

) and the estimated heat capacity.

The first plot illustrates the timing of non-adaptive version of the algorithm and
its effect on the internal temperature of the refrigerator. In this case, the scheduler
uses the minimum heat capacity Camin

in the dynamics (3.8). It can be seen that
there are large changes in the calculated temperature values (dotted blue line), but
the temperature does not exceed the upper temperature limit. As a result of this
control, due to the varying heat capacity, the system temperature changes according
to the values represented by the red solid line. It is clear that due to the increase in
heat capacity, the ripple of the interior temperature decreases and its value is below
the allowable upper limit. As a result, the refrigerator operates within the prescribed
temperature limits, but the operating cost is higher than optimal due to the different
heat capacities.

The second plot shows the operation of adaptive model predictive scheduler. A
big difference from the previous one is that for a large Ca, the scheduler can keep the
temperature close to the upper limit, resulting in lower operating costs. There is a
minimal deviation in the schedule, but a larger deviation in the heat capacity estimate,
i.e. the value of the heat capacity used in the algorithm. This is because in the case
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of a difference of 0.1 ◦ C between 3 am and 5 am, the difference in heat capacity does
not cause such a difference in dynamics that it needs to be re-estimated.

3.1.5 Discussion
The results of the heuristic model-based predictive scheduling algorithm were com-
pared with several scheduling algorithms in the article [93] where it performed well in
cost optimization. Table 3.4 shows the comparative study of the operating cost savings
from this article based on the results of several scheduling algorithms. The column
OC (first) illustrates the performance of the proposed heuristic optimal scheduling
algorithm over the other algorithms from the literature. The meanings of the abbre-
viations

OC Optimal Control (the method presented in this thesis)

CC-N Conventional Control

HMPC Heuristic Model Predictive Controller

HMPC-EPS HMPC with Enhanced Power Shift

HMPC-N HMPC with Narrow temperature range

HMPC-W HMPC with Wide temperature range

Table 3.4: Operating cost savings based on different control algorithms [93]

Saving [%] OC CC-N HMPC HMPC-EPS HMPC-N HMPC-W

Monday 9.6 6.8 9.3 7.5 8.9 8.8

Tuesday 13.7 10.4 13.7 13.7 12.7 11.8

Wednesday 8.8 7.3 8.4 7.1 8.5 7.2

Thursday 7.9 6.4 7.5 5.8 7.3 5.8

Friday 8.9 8.7 8.7 7.7 8.4 5.4

Saturday 9.0 8.9 8.6 9.0 8.7 6.7

Sunday 9.1 9.0 7.1 6.9 8.5 6.0

whole week 9.7 8.1 9.3 8.4 9.1 7.7

Specialities of the problem and their use in choosing the parameters of the
algorithm There are two important special properties of the dynamic model of the
refrigerator (see in (3.1)-(3.2) in the continuous time, and consequently in (3.8) in the
discrete time case) that are utilized in developing the heuristic rules in the method
(both in the constant and the adaptive cases)

(i) the model input S is discrete valued, S(k) ∈ {0, 1},

(ii) the response of the model output variables Ta and Tw is strictly monotonous
for a (step) change in input: when the switch is on, then the temperatures are
decreasing, otherwise increasing.
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Figure A.1 shows that it is indeed the case. Furthermore, the dominant time constant
of the system can also be estimate roughly from the figure, that shows the dynamic
response under normal, non-optimized operating conditions.

Besides of the use of measured data similar of Figure A.1 for parameter estimation
of another freezer, the data can be used for choosing the sampling rate and the error
tolerance limits of the temperature values in the algorithm accordingly.

The value of the prediction horizon should also be chosen considering the dynamic
response of the system to a step response: it should be long enough to cover the
majority of the change in this response.

Effect of energy price The simulation experiments performed in Section 3.1.4 show
that both versions of the proposed model predictive schedulers are able to decrease the
energy costs in a day-ahead market environment. However, they are useful only in the
case of a price growth period. The proposed model predictive scheduler is sensitive to
the rapid changes in the heat capacity, in such cases (primarily when Ca is falling) the
air temperature may overshoot.

Generalization The specialities discussed in the previous subsection 3.1.5 can be
used to find other possibilities for applying the proposed adaptive cost-optimal model
predictive scheduling method. These cases include the following items.

• Multiple independent equipments
When more than one freezer operate in a household, shop or plant that are
independent of each other but have the same dynamically changing electricity
price, then one can optimize their operation in parallel and independently of
each other to get an overall optimum in cost.

• Freezer chambers
Freezers in supermarkets or large industrial freezers are typically of distributed
parameter nature, or consist of freezer chambers. These chambers have their in-
dividual cooling motor that cools their back wall, but they are connected to their
neighboring chambers through their side walls. Therefore, these chambers are
not independent of each other but can be regarded as a multiple-input multiple-
output system with the cooling switches as inputs and chamber temperatures
as outputs. Here the monotonicity condition (ii) should be checked that do not
necessarily hold in this case. A simulation case study of an industrial freezer
is presented in Appendix A.1 where the proposed model predictive scheduler is
applied successfully on a different appliance.

• Heaters
Simple heaters or boilers equipped with a constant power heating device con-
trolled by a binary switch obey both conditions (i) and (ii), so the proposed
heuristic method can be applied. However, the monotonicity conditions holds in
another form: the response of the model output temperature variables is strictly
monotonous for a (step) change in input such that when the switch is on, then
the temperatures are increasing, otherwise decreasing.

37

               dc_2030_22



3. Modeling, identification and optimal operation of energy systems

3.2 Modeling and temperature dependent parameter
estimation of batteries

The operation of real batteries depends on the temperature therefore the model has to
be able to describe thermal effects too. It is also important that the obtained method
should be computationally effective to simplify its implementation e.g. in a BMS.

3.2.1 Temperature dependent battery model
From the potential modeling methodologies the equivalent electrical circuit type was
selected to create the basic battery model. The selected model is originally developed
in [103]. The model is also presented in [141] without the thermal effect.

The following assumptions were made for the battery model of [103] with temper-
ature dependency:

• The parameters are deduced from the discharge characteristics and assumed to
be the same for charging.

• The capacity of the battery does not change with the amplitude of the current.

• The self-discharge of the battery is not represented.

• The battery has no memory effect (i.e. no aging is assumed).

• The voltage and the current can be influenced.

• The capacity depends on the ambient temperature.

• The constant potential, the polarization coefficient, the polarization resistance
and the internal resistance depend on the internal (cell) temperature of the
battery.

The electrical circuit equivalent to the battery can be seen in Figure 3.6, where the
controlled voltage source plays the most important role since battery characteristics
are implemented by it. The applied model is a simplified version of the temperature

R i(t)

vocv(t) vb(t)

Figure 3.6: Equivalent electrical circuit model of the battery. Voltage vocv(t) of the
controlled voltage source is different in the case of charge and discharge.

dependent battery model presented in [104]. The input of the model is the battery
current i and the output is the battery voltage vb. The open circuit voltage vocv
is represented by a controlled voltage source which operates differently during the
charging and discharging operation of the battery. The model describes temperature
effects as well, i.e. some of the parameters depend on the ambient or cell temperature.
As a result, the temperature dependent state space model of the battery is obtained
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in the form of (3.17-3.19). The state equation is a simple second order linear time-
invariant dynamics (3.17)-(3.18)

dq(t)

dt
=

1

3600
i(t) (3.17)

dif (t)

dt
= − 1

τf
if (t) +

1

τf
i(t) (3.18)

vb(t, T ) = vocv(t, T, Te)−R(T )i(t) (3.19)

The state- and output variables have the following meaning:

• q is the extracted capacity of the battery, i.e. q(t) = 0, if the battery is fully
charged and q(t) = Q, if the battery is fully discharged.

• if is a low pass filtered current value. It is used for describing the slow voltage
dynamics. It is represented by a low-pass filter applied on the battery current i,
where τf is the time constant of the filter.[103]

• the output of the model is the battery voltage vb that is composed of the open
circuit voltage (vocv) and the voltage drop across the internal resistance (R i(t)).

The open circuit voltage changes with the operation mode of the battery2 (charge vs.
discharge)

Charge mode

vocv(t, T, Te) = E0(T )−K1(T )
Q(Te)

q(t) + 0.1Q(Te)
if (t)−

−K2(T )
Q(Te)

Q(Te)− q(t)
q(t) + A exp(−Bq(t))− Cq(t)(3.20)

Discharge mode

vocv(t, T, Te) = E0(T )−K1(T )
Q(Te)

Q(Te)− q(t)
if (t)−

−K2(T )
Q(Te)

Q(Te)− q(t)
q(t) + A exp(−Bq(t))− Cq(t)(3.21)

The state space model (3.17)-(3.19) together with the open circuit voltages for the two
operation modes (3.20) and (3.21) is ambiguous. In what follows, it will always be
specified which operation mode is used.

The variables as well as the parameters of the temperature dependent battery
model with their meaning and nominal values can be found in Table 3.5. Our examined
battery is a Samsung INR18650-20Q type battery with 2000 mAh nominal capacity
and 3.6 V nominal voltage. The nominal parameters of the battery were retrieved
from the battery datasheet and the Matlab Simulink model [77].

The temperature dependency of the parameters can be described with the following
equations:

2The notation for battery capacity and reactive power is the same in the thesis (Q), however, their
use is unambiguous, battery capacity is only appearing in Section 3.2
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• The change of polarization coefficient, polarization resistance and internal resis-
tance with the battery temperature T can be derived from the Arrhenius law:

K1(T ) = K1|Tref
exp

(
α1

(
1

T
− 1

Tref

))
(3.22)

K2(T ) = K2|Tref
exp

(
α2

(
1

T
− 1

Tref

))
(3.23)

R(T ) = R|Tref
exp

(
β

(
1

T
− 1

Tref

))
(3.24)

• The temperature dependency of the capacity and the constant potential can be
written in the following form:

Q(Te) = Q|Tref
+

∆Q

∆T
(Te − Tref ) (3.25)

E0(T ) = E0|Tref
+

∂E

∂T
(T − Tref ) (3.26)

Remark on the battery cell temperature
It is important to note, that the original model in [104] contains an additional energy
balance equation from which the battery cell temperature is obtained as a state variable.
In order to obtain a simple model for parameter estimation, the energy balance has
been omitted and considered the battery cell temperature T as an external variable
that does not change too much during a charge or discharge operation.

3.2.2 Parameter sensitivity analysis
As a preliminary step before parameter estimation, parameter sensitivity analysis of
the dynamical model (3.17-3.19) has been performed. Note, that if the model is not,
or poorly sensitive to any parameter, then estimating the corresponding parameter
from input-output measurements is difficult, or even impossible. Instead of applying
the classical methods of sensitivity analysis involving sensitivity equations the same
empirical method described in [143] has been used i.e. perturbing the parameter values
one by one with±10% with respect to their nominal value and evaluated the differences
of the nominal and the perturbed models outputs using the cost function

J(θ̃) =
1

N

N∑

k=1

1

2

(
vb([k; θ]− vb[k; θ̃]

)2
(3.27)

where θ stands for the nominal parameter vector, and θ̃ denotes the perturbed param-
eter vector.

The sensitivity analysis was repeated at 6 different temperatures: 0◦C, 10◦C, 20◦C,
30◦C, 40◦C and 50◦C, respectively. The battery was charged/discharged between
0−100% state of charge with a pseudo random binary sequence (PRBS) current input
(amplitude: charge {-0.5 A, -2 A} , discharge {-5 A, -2 A}, sample time: 160 s).
Both the charge and the discharge models were analysed. The nominal model was the
charge/discharge model at the nominal ambient temperature Tref = 25◦C.

The dynamical models were simulated in Matlab using the model equations(3.17-
3.19). At each temperatures the nominal parameters were perturbed one-by-one and
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Table 3.5: Variables and parameters of the general temperature dependent battery
model and the parameter values for the examined Samsung INR18650-20Q Li-ion
battery.

Name Type Meaning Unit Value
i input variable battery current A -
if state variable filtered current A -
q state variable extracted capacity Ah -
t independent variable time s -

vocv variable open circuit voltage V -
vb output variable battery voltage V -
T external variable battery cell temperature K -
Te external variable ambient temperature K -
Tref parameter nominal ambient temperature K 298.15
τf parameter time constant of the filter s 0.003
E0 parameter constant potential of the

electrodes
V -

E0|Tref
parameter constant potential of the

electrodes at nominal ambient
temperature

V 3.9388

∂E/∂T parameter reversible voltage temperature
coefficient

V/K 0.002

R parameter internal resistance Ω -
R|Tref

parameter internal resistance at nominal
ambient temperature

Ω 0.005

β parameter Arrhenius rate constant for
the internal resistance

K 3839.8

K1 parameter polarization constant V/Ah -
K1|Tref

parameter polarization constant at
nominal ambient temperature

V/Ah 0.0018

α1 parameter Arrhenius rate constant for
the polarization coefficient

K 8415.3

K2 parameter polarisation resistance Ω -
K2|Tref

parameter polarization resistance at
nominal ambient temperature

Ω 0.0018

α2 parameter Arrhenius rate constant for
the polarization resistance

K 8415.3

Q parameter battery capacity Ah -
Q|Tref

parameter battery capacity at nominal
ambient temperature

Ah 2.0

∆Q/∆T parameter maximum capacity
temperature coefficient

Ah/K 0.016

A parameter exponential voltage V 0.1589
B parameter exponential capacity (Ah)−1 15.0
C parameter nominal discharge curve slope V/Ah 0.2362

the value of the loss function was computed. The result of the sensitivity analysis
of the charge and the discharge model can be seen in Table 3.6 and Table 3.7. The
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Table 3.6: Values of the loss function in case of the parameter sensitivity analysis of
the charge model.

0◦C 10◦C 20◦C 30◦C 40◦C 50◦C

E0
-10% 0.1100 0.0710 0.0728 0.0837 0.0922 0.0999
+10% 0.1342 0.0939 0.0830 0.0721 0.0652 0.0592

K1
-10% 0.0437 0.0047 0.0003 0.0003 0.0011 0.0020
+10% 0.0455 0.0051 0.0004 0.0003 0.0011 0.0020

K2
-10% 0.0365 0.0041 0.0003 0.0003 0.0011 0.0020
+10% 0.0537 0.0059 0.0004 0.0003 0.0011 0.0020

Q
-10% 0.0376 0.0069 0.0028 0.0013 0.0005 0.0007
+10% 0.0562 0.0054 0.0016 0.0025 0.0039 0.0055

R
-10% 0.0446 0.0049 0.0003 0.0003 0.0011 0.0020
+10% 0.0446 0.0049 0.0004 0.0003 0.0011 0.0020

0 20 40

10−3

10−2

10−1

T [◦C]

J
s
(θ̃
)

E0 − 10%
E0 + 10%
K1 − 10%
K1 + 10%
K2 − 10%
K2 + 10%
Q− 10%
Q+ 10%
R− 10%
R + 10%

Figure 3.7: Results of the parameter sensitivity analysis of the charge model

graphical representation of the results are depicted in Figure 3.7 and Figure 3.8.
It can be seen that the discharge model is a bit more sensitive to the change of

the parameters as the magnitude of the error is greater in that case. Both the charge
and the discharge models have similar characteristics with respect to the parameter
sensitivity:

• The models are highly sensitive to the constant potential E0.

• The models are less sensitive to K1, K2 and Q.

• The rate of sensitivity is similar in case of K1, K2 and Q.

• The sensitivity of the models increases as the temperature decreases.

• At ambient temperatures greater than the nominal temperature, the effect of
changing the parameters is really small (except for E0), especially in case of the
discharge model.
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Table 3.7: Values of the loss function in case of the parameter sensitivity analysis of
the discharge model.

0◦C 10◦C 20◦C 30◦C 40◦C 50◦C

E0
-10% 0.3795 0.1374 0.0912 0.0687 0.0591 0.0517
+10% 0.1305 0.0581 0.0680 0.0886 0.1013 0.1119

K1
-10% 0.1641 0.0184 0.0018 0.0011 0.0026 0.0042
+10% 0.1913 0.0220 0.0022 0.0011 0.0026 0.0042

K2
-10% 0.1578 0.0182 0.0017 0.0011 0.0026 0.0042
+10% 0.1982 0.0223 0.0023 0.0010 0.0026 0.0042

Q
-10% 0.1362 0.0408 0.0020 0.0002 0.0023 0.0042
+10% 0.1852 0.0346 0.0004 0.0015 0.0027 0.0042

R
-10% 0.1769 0.0200 0.0200 0.0011 0.0026 0.0042
+10% 0.1780 0.0203 0.0020 0.0011 0.0026 0.0042

0 20 40
10−4

10−3
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T [◦C]

J
s
(θ̃
)

E0 − 10%
E0 + 10%
K1 − 10%
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R− 10%
R + 10%

Figure 3.8: Results of the parameter sensitivity analysis of the discharge model

• The change of the internal resistance R at different temperatures has no effect
on the models, as the errors related to the ±10% change are the same. In these
cases only the temperature affects the models.

Based on these sensitivity analysis results, the parameters E0, K1, K2 and Q will be
involved in parameter estimation, while R will be fixed to its nominal value.

3.2.3 Parameter estimation
Based on the modeling and analysis results of Sections 3.2.1 and 3.2.2 the parameter
estimation method will be performed using the simplified model (3.17)-(3.19) without
the temperature dependence of the parameters, i.e. point estimates will be deter-
mined based on measurement data obtained at different temperatures. The obtained
point estimates of the parameters at the different temperatures will then be used for
determining the thermal characteristics of the parameters.

Input signal The selection of the correct input signal is crucial in any parameter
estimation procedure as the sufficient excitation is the key to the successful parameter
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estimation. In the work [141], the optimal excitation has been presented for the
estimation of battery parameters important from the aging point of view. It was shown
using the Fisher information and the Cramér-Rao inequality, that pseudo-random
binary sequences are optimal for the estimation of such parameters. Although the aim
and the parameter set is different in this case, PRBS inputs are used. It is a widely
used signal in the field of parameter estimation [67] because it is easy to generate
and provides sufficient excitation. The PRBS has only two values in between the
signal changes randomly. The two parameters of the PRBS are the range (the upper
and lower level of the signal) and the frequency of the change that should be chosen
considering the system dynamics.

An other important factor of the parameter estimation method is the ambient
temperature which is chosen to be constant during an experiment.

The minimum and maximum battery temperatures of the experiments should be
chosen according to the recommended operating temperatures of the examined battery.
Then this range is evenly divided to get the list of ambient temperatures at which the
experiments should be carried out.

Method The proposed parameter estimation method consists of two steps. At first
the battery is charged or discharged at different constant ambient temperatures. At
each temperatures the parameters E0, K1, K2 and Q of the battery are estimated. In
the second step the temperature coefficients of these parameters are estimated.

Estimation of the battery parameters The first step is the estimation of the
battery parameters at different constant ambient temperatures to see how these pa-
rameters change with that temperature. The inputs of the parameter estimation are
the battery current and voltage at different temperatures during a full charge or dis-
charge process. The result of the estimation is a vector of battery parameters at
different temperatures.

It can be seen from (3.17-3.19) that the battery model has a nonlinear output
equation and four parameters to be estimated as the internal resistance R has bene
fixed to its nominal value. Therefore a suitable nonlinear parameter estimation method
should be chosen. In this work the nonlinear least-squares method is chosen. Nonlinear
parameter estimation problems are usually solved as nonlinear optimization problems
where a suitable prediction error functions of the model, the measurement data and the
parameters are minimized in the parameter space. In the present case the prediction
error function is the sum of squared deviation between the model and the measurement
data at every time instance (see (3.28) below)

J(θ) =
1

N

N∑

k=1

(v̂b[k]− vb[k; θ])
2 , (3.28)

where v̂b[k] = v̂b(k τ) is the measured value of the battery voltage at the kth sample,
vb[k; θ] is the output of the model at the same sampling instant with the parameter
vector θ = [E0, K1, K2, Q], and N is the total number of samples. It is important to
note, that the two operation modes have to be treated as separate parameter estima-
tions, i.e. one set of parameters are to be estimated from the charge measurements
and the charge model, and another one is from the discharge data and model.

As all of the parameters to be estimated have physical meaning, the range and
scale of the parameter values are usually known in advance. Therefore upper and
lower bounds for the parameters can be defined that is useful to limit the searching
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space of the optimization. As a result, a constrained nonlinear optimization problem
should be solved. From the potential algorithms the Trust Region Reflective algorithm
[13] is chosen in this work.

Estimation of the temperature dependency of the parameters The second
step of the parameter estimation method is the estimation of the reference values
and the temperature dependency coefficients of the parameters. The inputs of this
parameter estimation problem are the estimated parameters at different temperatures
from the previous step. It can be seen from the temperature dependent battery model,
that the battery parameters can be divided into two groups based on the type of their
temperature dependency:

• Parameters with linear temperature dependency: E0, Q.

• Parameters with nonlinear (exponential) temperature dependency: K1, K2.

Moreover it can be seen from (3.22-3.26) that some of the parameters (Q) depend on
the ambient temperature and others (E0, K1, K2) depend on the battery cell temper-
ature. The problem is that the cell temperature is usually cannot be measured. To
overcome this the following additional assumptions are made:

• The cell temperature does not change a lot during charge/discharge (maximum
±2◦C).

• The cell temperature is substituted by the average surface temperature during
charge/discharge.

• Initially the cell temperature and the ambient temperature are equal.

• The surface temperature of the battery is measured.

With the above assumptions the temperature coefficients of the parameters can be
estimated. The coefficients to be estimated are:

• E0|Tref
and ∂E/∂T for the temperature dependency of E0

• Q|Tref
and ∆Q/∆T for the temperature dependency of Q

• K1|Tref
and α1 for the temperature dependency of K1

• K2|Tref
and α2 for the temperature dependency of K2

The coefficients of E0(T ) and Q(Te) can be estimated with the simple linear least
squares method because equations (3.26) and (3.25) are linear.

The coefficients of K1(T ) and K2(T ) can also be estimated by the least squares
method by transforming the equations and their dependent variables.

3.2.4 Simulation study of battery parameter estimation
Simulation setup

The parameter estimation methods were implemented and tested by simulation experi-
ments in Matlab. To simulate the thermal dynamics of the battery during charge/discharge,
a more detailed was used to serve as the measurement data source for the parameter
estimation. This model contains additional energy balance equations that describe the
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temperature effects of the battery [91]. Moreover, the battery cell temperature can be
directly extracted from the model, which makes it suitable for parameter estimation
purposes.

The simulated battery was a Samsung INR18650Q-20Q battery with 2000 mAh
capacity. The nominal parameters of the battery can be seen in Table 3.5. The
operating temperatures of the battery from the datasheet are 0− 50◦C for charge and
−20−75◦C for discharge. Based on these values, the battery model was used between
0 − 50◦C. The charge and the discharge of the battery was simulated at 11 different
ambient temperature values with PRBS input signal between 1-99% state of charge.
The simulation setup in case of charge and discharge can be seen below.

Simulation setup for charge:

• PRBS input: Imin = −4A, Imax = −0.5A, Ts = 160s

• initial values: q(t0) = 0.99Q, if (t0) = 0, T = Te

• ambient temperatures: Te = 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50◦C

• stopping criterion: q(t) = 0;

Simulation setup for discharge:

• PRBS input: Imin = 0.5A, Imax = 4A, Ts = 160s

• initial values: q(t0) = 0.01Q, if (t0) = 0, T = Te

• ambient temperatures: Te = 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50◦C

• stopping criterion: q(t) = 0.99Q;

All the simulations were performed on a PC (Intel i5 CPU with 4GB RAM).

Estimated battery parameters The battery parameters at different temperatures
were estimated using the lsqnonlin function from Matlab Optimization Toolbox [76]
that implements a Trust Region Reflective algorithm.

The function to be minimize is the cost function (i.e. prediction error) (3.28)
and the parameters to be estimated are θ = [E0, Q,K1, K2]

T . The initial values of
the parameters were set to the nominal parameter values (see in Table 3.5). The
constraining inequalities (3.29) were defined for the optimization based parameter
estimation.

0 ≤ E0 ≤ 5
0 ≤ Q ≤ 3
0 ≤ K1 ≤ 0.1
0 ≤ K2 ≤ 0.1

(3.29)

The results of the parameter estimation can be seen in Table 3.8. The accuracy
of the parameter estimation can be characterized by the covariance matrix of the
estimation. In the presented results the elements of the covariance matrices are really
small (with orders between 10−8 and 10−12) in both charge and discharge cases. This
means that the parameter estimation is very accurate. Note, that the experimental
data were obtained from the simulation of the model equations of the extended model
with energy balance equation and not from real measurements, therefore no external
noise or modeling errors are included.
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Figure 3.9: Confidence regions (solid line) of the parameter estimation for parameters
E0, Q during charge/discharge at different temperatures. The parameter estimate is
represented by a ×. x axis range: 1 · 10−3, y axis range: 3.5 · 10−4.
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Table 3.8: Estimated battery parameters at different temperatures during charge and
discharge.

charge discharge
Te [◦C] E0 [V] Q [Ah] K1[V/Ah] K2[Ω] E0 [V] Q [Ah] K1[V/Ah] K2[Ω]

0 3.9175 1.6001 0.0169 0.0246 3.8877 1.6010 0.0239 0.0243
5 3.9154 1.6800 0.0099 0.0140 3.8980 1.6801 0.0138 0.0139
10 3.9190 1.7599 0.0059 0.0082 3.9083 1.7599 0.0081 0.0081
15 3.9259 1.8399 0.0036 0.0049 3.9185 1.8393 0.0048 0.0048
20 3.9343 1.9201 0.0023 0.0030 3.9286 1.9188 0.0029 0.0029
25 3.9436 2.0004 0.0015 0.0019 3.9388 1.9980 0.0018 0.0018
30 3.9532 2.0811 0.0010 0.0012 3.9490 2.0764 0.0011 0.0011
35 3.9631 2.1623 0.0007 0.0008 3.9591 2.1540 0.0007 0.0007
40 3.9651 2.1576 0.0012 0.0000 3.9693 2.2300 0.0004 0.0005
45 3.9783 2.1579 0.0008 0.0000 3.9795 2.3035 0.0003 0.0003
50 3.9893 2.1582 0.0007 0.0000 3.9884 2.1583 0.0000 0.0000

The results are also depicted in Figure 3.11 with black dots. It can be noticed in
the same figure that above 35 ◦C (T − Tref = 10) the battery reached its maximum
capacity during charge.

The confidence region of the estimated parameters can be approximated by the
1.05 ·J(θmin) contour line of the cost function (3.28). In order to analyse and illustrate
the confidence regions, the parameters are analysed in in pairs. We fixed two parame-
ters and computed the value of the cost function when changing the other two param-
eter values around their estimated value. The two parameters pairs were chosen as
E0, Q and K1, K2. Some examples of the confidence regions in case of charge/discharge
at different temperatures are illustrated on Figure 3.9 and Figure 3.10. The order of
magnitude on the x and y axes are the same in the plots of Figures 3.9 and Figures
3.10, respectively. Comparing the confidence regions at different temperatures and
operating modes the following conclusions can be drawn:

• In case of both charge discharge, the confidence of Q increases while E0 decreases
as the temperature rises (see Figure 3.9 ).

• In case of charge, the confidence region of K1, K2 becomes smaller as the tem-
perature rises (see Figure 3.10).

• A linear relationship between K1 and K2 can be assumed in case of discharge
(see Figure 3.10).

Estimated temperature dependent parameters Having estimated the battery
parameters at different ambient temperatures, the temperature dependency of the
parameters was estimated with the help of the Matlab Curve Fitting Toolbox [75].
Each parameter has two coefficients that describe the temperature dependency: the
parameter value at the reference temperature and the a temperature coefficient. The
independent variables of the four different parameter estimation tasks are the following:

• T − Tref , in case of E0(T );
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• Te − Tref , in case of Q(Te);

• 1
T
− 1

Tref
in case of K1(T ) and K2(T ).

As it was mentioned in Section 3.2.3, the cell temperature T was substituted by the
average surface temperature of the battery. The dependent variables are the estimated
parameter values of the previous step that can be seen in Table 3.8.

The coefficients of the temperature dependency were estimated during both charge
and discharge. The results of the estimation can be seen in Tables 3.9 and Table 3.10.
The 95% confidence bounds shows the uncertainty of the estimated coefficients.

It can be seen that the estimated temperature dependency of E0 and Q is close
to the nominal nominal values in both charge and discharge cases. The estimation
of Q|Tref

and ∆Q/∆T is better in case of charge because the differences between the
nominal and estimated parameter are smaller. However the estimation of the other
parameters is better in case of discharge.

The fitted curves of the temperature dependency can be seen in Figure 3.11 with
blue solid line for the charge and red solid lines for the discharge cases, respectively.
The goodness of fit was characterized by the r2 value that is computed by:

r2 = 1−
∑

i(ŷi − yi)
2

∑
i(ŷi − ȳ)2

where ŷ is the measured data, y is the model predicted value, and ȳ is the mean of
the measured data. The results can be seen in Table 3.11.
It can be seen that the curve fitting is a bit more accurate in case of discharge, except
Q.

Table 3.9: Estimated parameters of the temperature dependency of the battery pa-
rameters during charge.

Parameter Nominal value Estimated value 95% confidence bounds Unit
E0|Tref

3.9388 3.943 (3.94, 3.946) V
∂E/∂T 2.0 · 10−3 1.518 · 10−3 (1.314 ·10−3, 1.723 ·10−3) V/K
Q|Tref

2.0 2.001 (2.0, 2.001) Ah
∆Q/∆T 1.6 · 10−2 1.605 · 10−2 (1.601 ·10−2, 1.610·10−2) Ah/K
K1|Tref

1.8 · 10−3 2.735 · 10−3 (1.866·10−3, 3.604·10−3) V/Ah
α1 8415 5989 (4684, 7294) K

K2|Tref
1.8 · 10−3 1.545 · 10−3 (1.866·10−3, 1.987·10−3) Ω

α2 8415 9785 (8706, 10860) K
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values are denoted by black dots, the fitted curves are denoted by solid lines (blue for
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Table 3.10: Estimated parameters of the temperature dependency of the battery pa-
rameters during discharge.

Parameter Nominal value Estimated value 95% confidence bounds Unit
E0|Tref

3.9388 3.939 (3.938, 3.939) V
∂E/∂T 2.0 · 10−3 2.025 · 10−3 (2.009·10−3, 2.041·10−3) V/K
Q|Tref

2.0 1.995 (1.993, 1.997) Ah
∆Q/∆T 1.6 · 10−2 1.568 · 10−2 (1.554·10−2, 1.581 ·10−2) Ah/K
K1|Tref

1.8 · 10−3 1.588 · 10−3 (1.418·10−3, 1.757·10−3) V/Ah
α1 8415 8908 (8528, 9289) K

K2|Tref
1.8 · 10−3 1.661 · 10−3 (1.542·10−3, 1.781·10−3) Ω

α2 8415 8793 (8538, 9048) K

Table 3.11: The measure of fit characterized by the r2 value.

E0 Q K1 K2

charge 0.9691 1 0.9656 0.9925
discharge 0.9999 0.9999 0.9995 0.9988

3.3 Summary
Model based methods have been proposed in this chapter for different electrical sys-
tems. Although the investigated system and the application area is different, the
common methodological background is the same: (i) the use of a mathematical model
of the system in hand (ii) and the optimization related nature of the problem.

In the first part of the chapter (Section 3.1) the cost-optimal operation of home
appliances has been aimed. The proposed method is applicable for continuously oper-
ating electrical equipments with similar dynamics. Taking into account the properties
of the dynamical system to be controlled (scheduled), a model predictive heuristic
scheduling algorithm was formulated. The results illustrate that the developed algo-
rithm has a reasonably fast runtime due to the proposed heuristic branch and bound
type optimizer, and can achieve lower operating costs. The proposed algorithm is able
to carry out cost-optimal operation schedule, even in an environment with variable
energy prices.

As a next step, the proposed model predictive scheduler has been extended with an
adaptivity feature that enables the re-estimation of certain parameters in the predictive
model of the method. The adaptive heuristic optimal scheduler has been investigated
in simulation experiments for the case of a refrigerator, where the varying heat capac-
ity of the controlled system was successfully followed by the proposed optimization
method.

Afterwards, in Section 3.2 the focus was shifted towards lithium-ion batteries and
their parameter estimation in the presence of temperature change.

A parameter estimation method has been proposed that is capable of identifying the
thermal behavior of lithium-ion batteries. The basis of the method is a nonlinear charge
and discharge model which describes the temperature dependency as a parametric
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function of temperature as an external variable.
The proposed parameter estimation method contains two steps. At first the cor-

responding parameters are estimated from measured data of charging/discharging at
different constant ambient temperatures. In the second step the temperature coeffi-
cients of these parameters are estimated.

The proposed parameter estimation method is verified by a set of simulation exper-
iments on an electro-thermal battery model capable of describing the thermal behavior
of the battery. The temperature dependent parameter characteristics obtained gen-
erated by the proposed method can be used as a computationally effective way of
determining the key battery parameters at a given temperature.

52

               dc_2030_22



Chapter 4

Model-free optimal operation of
complex energy systems

Although model based methods discussed in Chapter 3 are promising tools for the
optimal operation of energy systems, in some cases the properties of system to be
controlled disables the development of a computationally effective and precise model.
The expectation of optimal operation nonetheless exists for such systems. Electrical
networks with stochastically changing loads and generators are difficult to describe
with dynamical models. On the other hand, power quality problems such as total
harmonic distortion due to the increasing number of nonlinear capacitive loads, or
voltage unbalance problems due to the non-uniform distribution of prosumers on the
phases provide several optimization problems to be solved in a model free manner.

Single phase power injections to the grid are mainly generated by domestic pho-
tovoltaic and wind power plants. Several studies address power inputs to the energy
grid, see e.g., [17] for a recent survey. For off-grid, sometimes more complex solu-
tions integrating diesel generators, photovoltaic (PV) and wind generators. Such as
proposed, in [94], and [22], where presented the economical aspects of a PV system.
The economic results are strongly influenced by the annual average insolation value,
which encourages the areas most exposed to the sun and the southern areas. The
consumption of consumers is not critically important, but the design principle used
has as significant effect on the maximization of the performance of PV plants. In the
paper [52] it is worth noticing, that autonomous photovoltaic systems are strongly
responsible of their reactive energy requirements. To support photovoltaic systems
with sufficient battery banks one should be able to establish that their reactive energy
requirement share is fairly compensated by the corresponding energy yield. Addition-
ally, in [82] the author emphasizes that PV systems are increasingly being deployed in
all over the world, and this is the source of a wide range of power quality problems.
With a view on consistently measuring and assessing the power quality characteristics
of PV systems, they had presented an in-depth overview and discussion of this topic.
The possibility of power factor correction occurring in conjunction with power injection
has also been addressed [68],[32],[18], and the relationship between power injection and
nonlinear distortion reduction (harmonic control) has also been explored in [64] and
[65], where the authors use a DSP based current control technique to reduce distortion
with active power filters (APF) and compensate for an exact nonlinear load. Sensing
the nonlinear current time function and the ideal sinusoid current with a phase-locked
loop technique, they inject the exact deviation current into the grid with a significant
reduction in distortion.
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A numerical study was done by [84] on the distribution network faults and the
effects on unbalance factor and the matrix representation of network impedances with
the symmetrical component and phase component method. The study concluded,
that during fault voltages and currents are greatly affected by the system unbalance
and the fault impedance. The increase of the system unbalance causes an increase of
the during-fault voltages and currents variation. The increase of the fault impedance
reduces the fault current and therefore the effect of the system unbalance on during
fault voltages and current diminishes. For each system there is a characteristic value
of fault impedance that is related to the load impedances. Larger fault impedances
values produce fault currents similar to nominal load currents and therefore the effect
of these faults in terms of during-fault voltages and currents cannot be differentiate
from nominal operation conditions. Variation of power quality in non-faulty scenarios
leads to thermal transients in electrical machines. This problem can be especially
important in the case of low-power machines, because they have shorter time constants
than high-power ones. The rate of thermal responses of a machine also significantly
depends on the type of power quality disturbances. Voltage unbalance can cause
machine overheating within a mere few minutes. Furthermore, fluctuating unbalance
could cause an extraordinary rise in windings temperature and additional thermo-
mechanical stress. Consequently, voltage unbalance is found to be more harmful to
induction motors than the results from previous work [34]. Additionally beside the
heat factor, voltage unbalance can cause increased reactive power [90], various copper
loss [96] torque pulsation in electric motors [12]. The authors of [63] were discussing
the effects of unbalanced voltage on a three-phase induction motor, one has to consider
not only negative-sequence voltage but also the positive-sequence voltage. With the
same voltage unbalance factor, the status of voltage unbalance could be judged by the
magnitude of positive sequence voltage. Also the effect of voltage unbalance has been
studied on three-phase four-wire distribution networks for different control strategies
for three-phase inverter-connected distributed generation units on voltage unbalance
in distribution networks [78]. Here the negative-sequence component and the zero
sequence component were studied where unbalance conditions could lower stability
margin and increasing the power losses. On the other hand, the adaptive coordination
of distribution systems included distributed generation is also an emerging problem as
it was discussed by [6]. A small voltage unbalance might lead to a significant current
unbalance because of low negative sequence impedance as highlighted in [9].

Many authors present a different viewpoint of calculating unbalance on the network.
[73] showed to assess the harmonic distortion and the unbalance introduced by the
different loads connected to the same point of common coupling have been applied to
an experimental distribution network. By [55] the focus was to bring out the ambiguity
that crops up when a particular value of voltage unbalance is referred that exists in
the system. By making use of the complex nature of voltage unbalance, the voltage
combinations that lead to the calculation of complex voltage unbalance factor could
be narrowed down to a great extent. A fast and accurate algorithm for calculating
unbalance has been presented by [115]. The magnitudes of zero, positive, and negative
sequences are obtained through simple algebraic equations based on the geometric
figure, which is also called as 4 and 8 geometric partitions. Also a three-phase optimal
power flow calculation methodology has been presented by [3], that is suitable for
unbalanced power systems. The optimal algorithm uses the primal-dual interior point
method as an optimization tool in association with the three-phase current injection
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method in rectangular coordinates.

4.1 Renewable based total harmonic distortion com-
pensation

In case of residential prosumers the flow of electrical energy is bidirectional at the power
meter. They use electricity from the grid if it is necessary, but the excess energy is fed
back to the electrical network through an inverter. With the rise of electric vehicles,
high capacity energy storage may also be available in the household.

The general aim is to develop and investigate optimization-based methods for com-
plex electrical energy systems composed of renewable energy sources and batteries,
with the idea that these technologies can also perform power quality improvement in
the line without the need for current measurement (which is usually not available in
real-world situations). In such cases the time domain approach of the active power fil-
tering method [26], or [37] cannot be applied since the domestic power plant typically
connects to the electrical network after the power meter, so the current waveform can-
not be measured easily. The use of voltage waveform and its power quality indicators
allows the compensation and reduction of the consequences of the nonlinear distortion
present in the whole low-voltage transformer area, and not just the distortion present
in the current sensing connection point.

4.1.1 Problem statement
Based on the above, the aim is the formulation of power injection to the grid as a direct
optimization problem, where the output of the inverter is a general current waveform
iout(t) which minimizes a measure of power quality that is calculated from the voltage
measurements vnet(t) available at the network connection point.

It is expected that the solution of the optimal power injection problem is capable
of compensating the unwanted nonlinear distortion effects caused by capacitive bridge
rectifiers mentioned in Section 2.1.1.

Current
source
inverter

Unknown
electrical
network

Optimization
based

input design

Power
quality

indicator

iout(t)

vnet(t)

cost
function

current
waveform

Figure 4.1: High level structure of the compensation problem.

The direct optimization based structure of Figure 4.1 proposes a possible structure
for the solution of the above problem. The key elements of the structure are discussed
in the sequel.
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Current source inverter The current source inverter block of the figure implements
the current waveform determined by the Optimization based input design block
and feeds it into the grid as the current iout. This module also represents the
available electrical energy that can originate from different sources

• domestic solar power plant

• domestic energy storage equipment (battery bank, electric vehicle, etc.)

Electrical network The electrical grid is supposed to be one-phase, the only as-
sumption is that the voltage vnet(t) can be measured at the network connection
point. Since the network units (generators and loads) are continuously switching
on and off the network in an unobservable and uncontrollable manner, the model
structure as well as the model parameters of the network cannot be determined
using the tools of system identification. An important assumption that has to be
made with respect to the transient response of the network is that the effect of the
input decays by the time the next input is applied to the network. This cannot
be ensured in the general case since the network is unknown.

Power quality indicator This scalar quantity serves as the cost function JPQ of the
optimization problem. In principle, any power quality indicator can serve as the
cost function that can be calculated from vnet as JPQ(vnet).

Optimization based input design The optimizer is the key element of the problem
in hand, it solves the optimization problem (4.1) iteratively

min
iout

JPQ(vnet) (4.1)

where JPQ stands for the applied power quality norm as a cost function. A more
sophisticated input design method would also take into account the constraints
on the applicable current, which is naturally connected to the parameters of the
inverter, the power of the solar panel, battery state of charge, etc. The use of
such constraints are an interesting connection point to further research topics,
but they are out of the scope of the present thesis.

4.1.2 Detailed THD compensation structure
The grid-tie inverter circuit connecting the renewable photovoltaic energy source to the
main grid [68] used as the fundamental element of the method, is shown in Figure 4.2.
This model contains a simple booster stage with an Isolated Gate Bipolar Transistor
(IGBT) bridge connected to the grid with serial inductance. A more detailed version
of this inverter can be seen in FigureA.4 of the Appendix, where the battery charger
circuit is also presented.

The inverter is being driven by the switching sequence of switches S1 − S4 and
S2−S3. Another important element of Figure 4.2 is the intermediate circuit capacitor
which serves as a puffer between the current sources (e.g. solar panel, battery) and the
output. Although the power electrical details of the inverter model is a very interesting
problem, from the point of view of the optimization based compensation problem it is
regarded as the actuator implementing the current waveform.

In order to have a more detailed yet still conceptual structure for the problem
defined in Section 4.1.1, some additional elements are necessary for the system. The
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Figure 4.2: Grid-tie inverter model that connects the renewable photovoltaic energy
source to the main grid

structure of the system is given in Figure 4.3, where the basic assumption of unknown
electrical network is still valid, i.e. the only information available from the network is
the voltage vnet measurable at the connection point.

Battery
charger

Current
waveform
generator

Max.
power

controller

Solar
panel

Bridge
controller

Inter-
mediate
voltage

controller

Distortion
optimizer

Grid
synchronized

inverter

RMS
voltage

controller

Li-ion
battery

Nonlinear
electrical
network

−

vbat

+

S6,7

vim

−

setpoint
+

vRMS

−
setpoint

+

vnet

−

|i[1]|

∠i[1]

ich

iout

+

− S5

S1−4

ipv

vpv

ibat

i[3−9]

Figure 4.3: Block diagram showing the functional parts of the compensation structure
supplemented with a solar panel and a battery connecting to a nonlinear electrical
network.

The compensator system controlling the inverter is divided into seven main func-
tional parts as shown by the grayed boxes in Figure 4.3. Some general components
are only presented because they are needed for the normal operation of the network,
the novel element is the Distortion optimizer described below.

Maximum power controller This component is a general part of the control sys-
tem and is independent of the other control parts. Its only task is to operate
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the renewable power source (i.e., photovoltaic panel or wind generator) at the
optimal working point in any wind and solar condition to obtain the maximum
amount of electric power from the source. The output of the maximum power
controller is determined by the input current setpoint of the inverter. It has a
simple on/off switching nonlinear hysteresis controller for input current control
[64].

Charger controller This part of the control system is also independent of the other
control parts. It is responsible for controlling the switching element S6 in the
bulk converter (Figure 4.2) in order to adjust the convenient charging current
value of the battery. Like the maximum power controller, it also has a simple
on/off switching nonlinear hysteresis controller [64].

Intermediate voltage controller This component measures the intermediate cir-
cuit voltage vim and senses the difference between the measured value and the
setpoint value. The controller changes the fundamental harmonic magnitude of
the injected current using a simple proportional controller that is based on the
difference between the measured and setpoint values. Higher-order components
are not used by the upper harmonic controller given that they have no effect on
the intermediate voltage. This controller adjusts the effective power injection to
the grid in 20ms cycles.

RMS voltage controller This component controls the effective voltage value vRMS

at the connection point. This controller is needed because insufficient power
generation and overloads reduce voltage in the low-voltage line, while overpro-
duction increases the voltage in this line. It is a proportional-integral controller.
Its manipulated value is the charge or discharge current value of the battery.

Current waveform generator Based on the current harmonics magnitude and phase
values from the Distortion optimizer this block calculates the exact waveform to
be injected into the grid. This waveform is the setpoint of the bridge current
controller.

Bridge controller The bridge controller calculates the difference between the mea-
sured output current and the output current setpoint and switches the IGBT
bridge two half’s control signal (S1-S4, S2-S3) on and off. This latter function
is accomplished using a simple Schmitt trigger comparator with a simple on/off
switching hysteresis controller [64].

Distortion optimizer It is the main element of the detailed structure, corresponding
to the optimizer block appearing in the structure given in Figure 4.1. It calculates
the frequency domain behavior of the voltage is monitored at an assigned point
by measuring the the inverter’s output voltage vnet and calculating the magnitude
and phase of the 3rd, 5th, 7th and 9th harmonic components. Its outputs are the
base harmonic output current and the magnitudes and phases of the 3rd, 5th,
7th and 9th high order components. These current harmonic components are the
solution space of the optimization problem (4.1).

The above blocks influence each other directly in addition to some measurable voltages
and currents of the inverter (see Figure 4.3).
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4.1.3 Nonlinear distortion compensation as an optimization
problem

The Distortion optimizer calculates the necessary optimal amplitudes and phases of
the 3rd, 5th, 7th and 9th output current components. The optimization to be solved is
the minimization of the cost function (4.2)

JPQ(vnet) =
∑

i=3,5,7,9

|v[i]net|2 (4.2)

where |vi| are the amplitudes of the 3rd, 5th, 7th and 9th upper harmonic output voltage
components. This means, that zero values for the 3rd, 5th, 7th and 9th voltage harmonics
would be optimal in order to attain the sinusoidal voltage and current shape of a linear
power system.

The solution space of the optimization problem is the eight dimensional space
of the magnitudes and phases of the output currents 3rd, 5th, 7th and 9th harmonic
components. The output current is the waveform (4.3) below.

iout(t) = |i[1]| sin(ω1 t+ ∠i[1]) +
∑

k=3,5,7,9

|i[k]| sin(ωk t+ ∠i[k]) (4.3)

where i[1] denotes the base harmonic current with ω1 = 2 π f angular speed (f =
50Hz), and i[k] represents the kth higher order harmonic component of angular speed
ωk = k ω1.

It was found that changing the amplitudes and phases of any of the output current
components investigated in this thesis influenced all of the components of the connec-
tion point voltage. This can be attributed to the nonlinear nature of the network.

It is important to emphasize the use of odd higher-order components (up to the
9th), despite the fact that distortion is only present in the 3rd and 5th higher-order
components. This was done due to previous experience with a simpler method [127]
which showed that the compensation algorithm can push distortion towards higher-
order components that were originally not affected.

As the cost function (4.2) implicitly comprises the unknown electrical network,
there is no hope for using optimization methods applies the derivative of the cost
function (e.g. gradient method). In such cases derivative-free methods are used for
optimization. Asynchronous parallel pattern search (APPS) is one such method (see
Section 2.3.2). For the sake of simplicity, the unconstrained optimization problem is
solved, however, in a real life application, the problem should be formulated and solved
as a constrained optimization problem where the power and operation limits of the
input naturally defines the constraints.

An optimization cycle consists of eight steps in which each of the above parameters
is changed to conform with the direction of its parameter gradient. The parameters
of the upper harmonic controller then converge to a value in the eight dimensional
parameter spaces that correspond to the minimal cost function value.

Let us define the mapping (4.4) from the optimization variables (i.e. the mag-
nitudes and phases of the 3rd, 5th, 7th and 9th higher-order current components) to
the measured vnet voltage at the connection point. It means, that fnet represents the
current waveform generator, the inverter, and the nonlinear network in one mapping,
in order to simplify the notations of Algorithm 4.

vnet = fnet(i
[k]) (4.4)
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Of course, the actual functional form of fnet is unknown.

Algorithm 4 Optimization algorithm for nonlinear distortion compensation
1: procedure APPS-THD
2: i[k](0) = 0∠0, ∆k(0) = 0, dk(0) = 1
3: while JPQ(fnet(i

[k](q) + ∆k(q)dk(q))) ̸= 0 do
4: for k=3,5,7,9 do
5: dk(q) = 0.5(sign(N(q − 3)−N(q − 2)) + sign(N(q − 4)−N(q − 3)))
6: ∆k(q) = nkN(q − 1)∆k(q − 1) + ∆k(q − 2) +mkN(q − 1)
7: N(q) = JPQ(fnet(i

[k](q) + ∆k(q)dk(q)))

8: if JPQ(fnet(i
[k]
k (q) + ∆k(q)dk(q))) < JPQ(fnet(i

[k](q))) then
9: i[k](q + 1) = i[k](q) + ∆k(q)dk(q)

10: end if
11: end for
12: q++;
13: end while
14: end procedure

∆i the process step length i.e. the value of the current vector’s amplitude or
angle needs to be changed for a successful step, and di is the corresponding step’s
signed direction vector, which specifies the applied changes direction. The function
N represents the cost function (4.2) value as the network responses to the current
injection, and ni, and mi are scaling gains for the corresponding process. The algorithm
is initialised with i[k](0) = 0∠0, ∆k(0) = 0 for a smooth start, due to lack of prior
knowledge about the network.

The parameter is i[k] ∈ C, k = 3, 5, 7, 9, and the initial search pattern p ∈ D =
{d1, ...dn} is taken from a predefined finite set, and updated every iteration. In this
case, the error function values of N should be calculated for each pattern p in the set
D. As the competing directions are different, if there is not enough computing power
available for direction vector p, synchronization should not be maintained. This is the
so-called asynchronous case. In the case of the proposed compensator, an individual
p vector is defined for each output variable, and the optimization was performed in
each direction asynchronously and shifted in time. Most likely, the cost function has
a single local minimum as a symmetric amplitude and phase values. Approaching the
minimal value of norm, the method uses adaptive increments that are proportional to
the cost function value itself.

4.1.4 Simulation based performance and robustness analysis

In order to analyze the proposed optimization based compensator, a high fidelity sim-
ulation model has been developed that contains a dynamical model of the elements
of the system presented in Figure 4.3. The network is described with a simple model
with three different types of nonlinear capacitive loads representing several appliances
using the capacitive input stage introduced in Section 2.1.1. The dynamical simula-
tion network has been implemented in Matlab Simulink using the Simscape Electrical
blockset. The details of the simulator go beyond the scope of the thesis, but some
details are presented in Section A.2.2. The top level block diagram of the model can
be seen in FigureA.5.

60

               dc_2030_22



4.1. Renewable based total harmonic distortion compensation

Performance of the method

In the first set of experiments, the overall operation and the performance of the method
has been investigated. In order to do this, a nonlinear capacitive load was connected
to the simulated network at t = 0. The value of the load parameters correspond to
that of Load1 in Table 4.1. It can be seen in Figure 4.4, where the cost function value

Table 4.1: Parameters of the capacitive loads applied during the simulation experi-
ments.

parameters Load1 Load2 Load3

Rload [Ω] 25 50 35
C [mF] 10 5 7

(4.2) jumps above 602 as the loads are changed on the network. In a three seconds,
the algorithm manages to decrease the cost function value below 10V2. In the bottom
plot of the same figure the total harmonic distortion is presented which shows a similar
decreasing behavior due to the distortion compensator.
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Figure 4.4: The load switching sequence during the simulation (top), the cost function
during the robustness experiment (middle) and the total harmonic distortion (bottom).

A more detailed view of the operation is available in Figure 4.4 where the top and
the middle plots show the output current iout upper harmonic component magnitudes
and phases changed according to Algorithm 4. The value of the cost function 4.2
can be seen in the bottom. It is easy to see, that the proposed direct optimization
based method successfully decreases the cost function value of the network in this
experiment.

It can also be seen in Figure 4.5 how the APPS algorithm steps are performed
one after another shifted in time. One whole cycle takes 0.8 s, the amplitudes and the
phases are optimized one after another for all injected current harmonics (four in this
case).
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Figure 4.5: Output current parameters and error function during the operation of the
optimization algorithm under robustness analysis. The current magnitudes and phases
of the 3rd, 5th, 7th and 9th upper harmonic components can be seen in the two subplots
(magnitudes in the top plot, phases in the middle plot).

Robustness against time-varying load conditions

Although the algorithm preformed well in the previous experiment, in a real life situa-
tion the loads and sources connected to the network are switching on and off according
to different schedules in a stochastically changing manner.

Table 4.2: Switching sequence of the nonlinear loads during the experiment.

time interval 0-10 s 10-20 s 20-30 s 30-40 s 40-50 s 40-50 s
Load1 OFF ON OFF OFF OFF OFF
Load2 OFF OFF OFF ON ON OFF
Load3 OFF OFF OFF OFF ON OFF

The model’s robustness against time-varying load conditions of the network was
tested in a simulation experiment in which different capacitive loads representing sev-
eral consumers are connected on and off the network according to the schedule in Table
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4.2. The load parameter values are listed in Table 4.1. Figure 4.6 shows the results
of the simulation. The schedule of the different loads can be seen on the top. The
middle and the bottom plots show the value of the cost function (4.2) and the THD,
respectively. It can be concluded, that the optimizer compensates the effect of the
different nonlinear loads successfully.
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Figure 4.6: The load switching sequence during the simulation (top), the cost function
during the robustness experiment (middle) and the total harmonic distortion (bottom).

Robustness against the parameters of the capacitive input stage

The robustness of the proposed compensation method is an important qualitative
property with respect to the parameters of the controlled system components (i.e., the
capacitive input stage and the loads). Because of the nonlinearity and hybrid nature of
the controlled electrical circuit model,the robustness of the proposed upper harmonic
controller had to be investigated in a series of simulation experiments.

The uncertainty related to the control problem statement can best be described by
applying parametric uncertainty bounds to the resistance Rload and the capacitance C
of the capacitive input stage, given that both are major sources of distortion:

DR,C = {(Rload, C)|5 ≤ Rload ≤ 1000 Ω, 1 ≤ C ≤ 40mF}

The above domain was defined by the distortion measurements obtained during the
building of the proposed electrical network, and the measurement records are shown
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Figure 4.7: Robustness domain: the control performance as a function of the param-
eters R and C. The blue contour line corresponds to the cost function value 0.2V2.

in Figure 4.7. The compensator’s performance was evaluated based on the overall
system stability and the satisfaction of several minimum performance requirements.
The control performance is given in terms of the cost function (4.2) that is related to
the energy of the higher-order harmonic components.

The domain of robustness is estimated by performing several dynamical simulations
of the network and the compensation method where the parameters of the network load
were chosen from a dense grid of the domain DR,C . The cost function values reached
by the optimization based compensation method over a predefined time interval form
the values of the discretized surface. The level sets of the cost function are depicted
in Figure 4.7, which shows that the domain of robustness (i.e., the domain where the
cost function is less than 0.2V2) almost covers the entire domain.

4.2 Renewable based network asymmetry compensa-
tion

Most of a household’s possible renewable sources and loads are unevenly distributed,
without mindful control over single phase power converters. Some of these could rep-
resent an unevenly high power consumption, or a locally significant energy source,
especially outside peak time zones of consumption. The situation is further compli-
cated by the stochastic on/off switching of the different types of loads. This cause
stochastic disturbing unbalance in the load currents which cases unbalanced load of
the low voltage transformer, and amplitude- and phase unbalance in the voltage phasor
trough the serial impedance of the low voltage transportation line wires and connecting
devices cables.

Due to the unregulated, and uneven load, or (with the emergence of affordable PV
stations) possible domestic power plant distribution, the voltage and current unbal-
ance present in the network causes additional power loss inside the medium voltage/low
voltage transformer and in the transportation line wires too. It also has undesired ef-
fects in certain three phase loads, mainly rotating machines where it causes torque
reduction and pulsating torque effect. Large scale unbalance can also activate auto-
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matic protection functions of electricity dispatch system causes power outage. These
negative effects lower the electric power quality and rises the cost of electrical en-
ergy and rises the carbon footprint of the everyday life, and also undesirable for the
customers and adds maintenance cost to the service provider.

4.2.1 Problem statement
The main idea behind the following results is to apply a direct optimization based
compensation method similar to that used in Section 4.1 to the voltage unbalance
phenomena present in three-phase electrical networks. For the control aim it is a
natural choice to minimize the voltage unbalance of the low voltage local transformer
area measured at the connection point of the inverter.

Figure 4.8 depicts the high-level structure of the compensation method.

Current
source
inverter

Unknown
electrical
network

Optimization
based

input design

Voltage
asymmetry
indicator

iabc

vabc

cost
function

current
amplitude
and phase

Figure 4.8: High level structure of the unbalance compensation problem

From the control-theoretic point of view, the main characteristics of the problem
are as follows.

• Current input to the network (three phase current phasor): iabc = [ia, ib, ic].
The current waveform is generated by a three-phase current source inverter, its
implementation details are out of the scope of the thesis.

• Measured voltage at the connection point (three phase voltage phasor): vabc =
[va, vb, vc].

• Aim: minimization of the voltage unbalance during the operation of the network.
This has to be measured by a suitable norm of voltage unbalance. One possible
candidate is VUF (2.5) presented in Section 2.1.2.

Based on the measured quantities, the dynamic behavior of the network cannot be
predicted and thus its dynamical model is supposed to be unknown. The only source
of information from the network is the voltage response given by the network for
the current input. Since the network actors (generators and loads) are continuously
switching on and off the network in an unobservable and uncontrollable manner, the
model structure as well as the model parameters of the network cannot be determined
using the tools of system identification. The above facts makes it difficult to use the
model based techniques of control theory.
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In the following, the main functional blocks of the problem statement depicted in
Figure 4.8 are detailed.

Electrical grid The electrical grid is supposed to be a three-phase grid, the only as-
sumption is that the three-phase voltage vabc can be measured at the connection
point. Since the network units (generators and loads) are continuously switching
on and off the network in an unobservable and uncontrollable manner, the model
structure as well as the model parameters of the network cannot be determined
using the tools of system identification. An important assumption that has to be
made with respect to the transient response of the network is that the effect of the
input decays by the time the next input is applied to the network. This cannot
be ensured in the general case since the network is unknown.

Unbalance indicator Any suitable norm of voltage unbalance can be used as an
unbalance indicator which is a mapping from the three-phase voltage phasor vabc

to R+.

Optimization based input design The optimization based input design is equiv-
alent to the solution of an optimization problem:

min
iabc

JU(vabc) (4.5)

where JU stands for the cost function of the optimization problem, i.e. the
applied unbalance indicator in this case. Of course, a more sophisticated input
design method would take into account the constraints on the applicable current.

Unfortunately, electrical network cannot be described by any deterministic dy-
namical model according to the assumptions above. Therefore, the optimization
methods based on the derivative of the cost function are not applicable. In such
cases, the applied optimization method has to be a derivative-free one as the
network model is not assumed to be known. A variety of optimization meth-
ods are available of this class, e.g. Nelder-Mead [81], Pattern search [47], [60],
Simulated annealing [56], Subgradient method [11].

Current source inverter The role of this power electric device is to produce the
current waveform according to the phasor iabc determined by the Optimization
based input design module, i.e. to play the role of the actuator in this problem.
It is important to note, that the inverter is supposed to be an asymmetric three-
phase inverter which is able to feed different sinusoidal phase currents to the
network. The structure and implementation may depend on the actual field of
application and is not in the scope of this thesis. However, a basic model of the
unit is presented in Figure A.6 of Section A.3.1.

4.2.2 A novel voltage asymmetry indicator
Section 2.1.2 discussed voltage unbalance of three-phase networks and introduced the
most widely used indicator of voltage unbalance (2.5). The problem with VUF is that
it does not take into account the zero sequence voltage component v0. Other unbalance
measures not discussed in the present thesis but most of them are neglecting the phase
differences of voltage vectors compared to the ideal voltage phasor.

Hence it can be stated that every difference between the ideal and the measured
voltage in both amplitude phase and sub-harmonics is caused by a form of voltage
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deviation from the ideal. The problem can also be investigated from a geometrical
point of view as it is depicted in Figure 4.9.
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Figure 4.9: The triangles spanned by the ideal and the real peak voltage phasors. The
extent of voltage deviation on the network can be measured by symmetric difference
of the two triangles.

The three-phase voltage system’s phasor diagram contains three phase-to-neutral
voltage vectors which can be regarded as the points of a triangle (similarly, the three
line-to-line vectors can play the role of the edges of the triangle). The two triangles A
and B (i.e. the ideal and the actual ones) always intersect except from very extreme
and physically meaningless cases. The area where triangle A and triangle B do not
cover each other (i.e. the symmetrical difference of them) can be used as a norm of
voltage quality. A indicates the triangle spanned by the ideal voltage vectors and B
is the triangle of real voltage vectors. Difference of the ideal and the real triangle’s
union and intersection defines the norm εG. Basically, the algorithm calculates the
symmetrical difference of the triangles, spanned by the three phase ideal and real
voltage vectors, respectively. This approach fulfills the definition of norm, see e.g [1].

εG(vabc) = area(A△ B)
= area(A\B) + area(B\A)
= area(A ∪ B)− area(A ∩ B)

(4.6)

In fact it is computationally more demanding compared to the previous methods, but
takes every deviation into consideration. A more detailed discussion of the norm (4.6)
relative to εu is given in [135] and [137].

4.2.3 Detailed voltage unbalance compensation structure
In order to illustrate the applicability of the direct optimization based compensator
structure as well as the proposed geometric norm as the cost function a conceptual
structure is proposed which is similar to the one used in Section 4.1.2. Because of the
simplified nature of the problem, there are some neglected features (e.g. subharmonics,
flicker) which might be interesting from the electrical engineering point of view in a
real world application, but these features are omitted in this thesis.

As already mentioned the input to the network are current signals iabc, which is
naturally constrained by the available energy of the household, stored in a battery
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pack or momentarily generated by the wind or solar generator unit. The response
of the system could be either the current or the voltage measured at the connection
point of the inverter unit, however, the general legal regulations only allow voltage
measurement for consumers.

The goal is to reduce voltage unbalance on the network utilizing the limited re-
sources of a residential solar panel. With this in mind, the device is connected to any
three phase four wire 400V connection point, and based on the measured network volt-
age vabc, it generates harmonic current waveforms, that results in unbalance reduction
based on the prescribed cost function (εu, or εG).
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Figure 4.10: Topology of the voltage unbalance compensator. The system also contains
a photovoltaic plant as a renewable energy source and a battery. The grayed units are
the main functional parts of the system.

The proposed structure can be observed in Figure4.10, which has a similar structure
as Figure 4.3 that was used for the distortion compensation before. Some general
components are only presented because they are needed for the normal operation of
the network, the novel element is the Unbalance optimizer described below.

Asymmetric inverter The current source inverter model applied here is the three-
phase asymmetric extension of the inverter model used in Section 4.1.2, Fig-
ure 4.2. The power electrical details of the inverter implementation is out of the
scope of this thesis. A possible implementation of the inverter in Figure A.6.

Maximum power controller It has the same role and properties as in Section 4.1.2.

Battery charger It has the same role and properties as in Section 4.1.2.

RMS voltage controller It has the same role and properties as in Section 4.1.2.
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Intermediate voltage controller It has the same role and properties as in Section
4.1.2.

Bridge controller It has the same role and properties as in Section 4.1.2, however,
its implementation is different because of the asymmetric three phase inverter
to be controlled.

Unbalance optimizer The unbalance optimizer is the fundamental element of the
proposed compensation structure , it corresponds to the Optimization based
input design block of the general structure of Figure 4.8. Its input is the three-
phase voltage waveform corresponding to the phasor vabc measured at the net-
work connection point. The output of the unit is a three-phase sinusoidal output
current waveform that has to be implemented by the Asymmetric inverter and
the Bridge controller. From the optimization point of view the optimization
space is the six dimensional space of magnitude and phase values of the output
current phases ia, ib and ic, respectively.

Nonlinear electrical network The network, the proposed voltage unbalance com-
pensator supposed to be connect, is a three phase four wire low voltage domestic
transformer area. For the sake of modeling and simulation simplicity, the trans-
former’s secondary circuit is assumed to be in star connection, where the neutral
wire is grounded, and modeled as ideal voltage sources connected to a three
phase function generator or a specific input waveform in case of measurements.
It is worth mentioning, that the transformer choice could convey some issues as
indicated by [110], and [98], but the transformer modeling is out of scope of this
thesis.

4.2.4 Voltage unbalance compensation as an optimization prob-
lem

The Unbalance optimizer block of Figure 4.10 determines the six waveform parame-
ters (|ia|, |ib|, |ic|,∠ia,∠ib,∠ic) of the three-phase sinusoidal current output iout of the
system implemented by the inverter.

ik(t) = |ik| sin(ω t+ ∠ik), k ∈ {a, b, c} (4.7)

The optimization problem is (4.8).

min
iabc

JU(vabc) = min
iabc

εG(vabc) (4.8)

Of course, any other unbalance norm (e.g. εu) can be selected as the cost function
of the problem. Since the cost function is implicitly contains the unknown network,
it is impossible to use classical optimization methods rely on the derivative of JU .
As it was mentioned in Section 4.2.1, there are several derivative-free optimization
methods available in the literature for solving problems like 4.5. For such problems,
pattern search methods are one possible solution technique since they neither require
nor explicitly estimate derivatives. In [135], the asynchronous parallel pattern search
(APPS) method is used for the solution of (4.8). The methodology and formulation
of the APPS method is described in more detail in Section 2.3.2.

The basis of the applied optimizer algorithm is Algorithm 4 used in Section 4.1.3
for THD compensation. The main difference is in the dimension of the search space
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of the method. While in the case of Algorithm 4, refining the method to additional
higher order voltage and current harmonics would increase the search space dimension
by two (magnitude and phase of the additional current harmonics) in the case of the
optimizer (Algorithm 5) used for the problem (4.8) works in a six dimensional search
space. Basically the general strategy for the APPS method, from a single process
perspective is given in Algorithm 5.

Similarly to Section 4.1.3 let us define the mapping (4.9) from the search space
of the optimization problem (i.e. the three-phase current magnitudes and phases
x = [|ia|, |ib|, |ic|,∠ia,∠ib,∠ic]T ∈ R6) to the measured voltage vabc at the network
connection point. In other words, fnet represents the inverter with the bridge controller
and also the unbalanced electrical network.

vabc = fnet(x) (4.9)

Of course, the actual form of the mapping (4.9) is unknown.

Algorithm 5 Optimization algorithm for voltage unbalance compensation
1: procedure APPS-VU
2: xj(0) = 0, ∆j(0) = 0, dj(0) = 1
3: while JU (fnet(xj(q) + ∆j(q)dj(q)) ̸= 0 do
4: for j=1:6 do
5: dj(q) = 0.5(sign(N(q − 3)−N(q − 2) + sign(N(q − 4)−N(q − 3))))
6: ∆j(q) = njN(q − 1)∆j(q − 1) + ∆j(q − 2) +mjN(q − 1)
7: N(q) = JU (fnet(xj(q) + ∆j(q)dj(q)))
8: if JU (fnet(xj(q) + ∆j(q)dj(q))) < JU (fnet(xj(q))) then
9: xj(q + 1) = xj(q) + ∆j(q)dj(q)

10: end if
11: end for
12: q++;
13: end while
14: end procedure

∆i the process step length i.e. the value of the current vector’s amplitude or
angle needs to be changed for a successful step, and di is the corresponding step’s
signed direction vector, which specifies the applied changes direction. Furthermore N
represents the chosen norm’s value as the network’s response to the current injection,
and ni, and mi are scaler gains for the corresponding process. The initial values of
xi(0) = 0, ∆i(0) = 0, due to lack of prior network knowledge and to avoid large initial
transients.

In the case of the proposed algorithm, an individual pattern vector (see Section
2.3.2) is defined for each output variable, and the optimization was performed in
each direction asynchronously and shifted in time. Approaching the minimal value of
norm, the controller uses adaptive increments that are proportional to the norm itself.
Because of the complex interactions between the components of the controller, only
one parameter is changed at a time, even if the values of the amplitude and phase
components in specific time slot changes. The algorithm moves along the six axes of
six separate time slots close to the local minimum of the error function, however the
first step of the six is trivial, since it can be locked to the first phase .

The advantage of this compensator structure that is not necessary to know the con-
trolled systems’ behavior, as the number and type of the other loads on the network is
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unknown [135]. There are however three disadvantages. First is the low speed of con-
trol, due to the several necessary iterations (depending on the circumstances) to find
the optimal directions in the parameter space, and the serial nature of interventions
and norm calculations. The second comes from the method itself since the optimizer
may stuck in local minima, and the third is that the sequential current injections may
increase THD of the network.

4.2.5 Simulation based analysis
Unfortunately, the method cannot be examined on a real network connected to the
grid, that is why a high fidelity simulation model had been developed for the exper-
imental study. In order to be able to investigate the proposed optimization based
unbalance reduction with the three phase inverter on a low voltage local grid, all the
elements of this complex electrical system (including the photovoltaic source, battery,
and other power electronic components) has been modeled in Matlab/Simulink envi-
ronment according to [135]. The top level structure of the Simulink model can be seen
in Figure A.7 in Section A.3. The domains of the signals expected are as follows:

• Controller output (three phase current phasor): iabc = [ia, ib, ic], the domain for
each phase is [0, 20] A amplitude and ±60◦ phase.

• Measured signal (three phase voltage phasor): vabc = [va, vb, vc], the domain for
each phase is [0, 326] V (peak) amplitude and ±60◦ phase.

It is important to note, that the following case study serves as a proof of concept
and a simulation based benchmark problem in order to be able to compare different
unbalance indicators as well as different optimization problems.

In order to investigate the operation of the proposed method as well as the sym-
metric difference based unbalance norm εG, several different simulation experiments
have been performed using the dynamical simulation model. The results of the first
experiment is presented in Figure 4.11, where the operation of the APPS-based op-
timizer can be seen. Note, that the fundamental concept behind Algorithm 5 and
Algorithm 4 is the same, as it can be seen in Figures 4.11 and Figure 4.5.

The aim of performance analysis is twofold. First of all, the proposed voltage
unbalance indicator has to be investigated in the control structure as the cost function
of the optimization based controller, and on the other hand, the control structure itself
has to be exposed against engineering expectations on a proof of concept level.

The results of the second set of experiments can be seen in the top of Figure 4.12
where εG has been used as the voltage unbalance indicator and the cost function for
the optimizer on an experimental network with fixed unbalanced load. The dashed
line represents the examined low voltage local network’s voltage unbalance norm (G)
without the proposed controller implemented in the inverter unit of the domestic
powerplant while the solid line represents the compensated network’s value. Note,
that the geometrical norm is a unit-less value, since it represents the ideal and the real
voltage phasor’s symmetric difference.

Measurements from a real unbalanced network

In order to expose the method to more realistic circumstances, the simulation model
was set up in such a way, that measurement data from a real network with voltage
unbalance The measurements took place at the campus building’s power electronics
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Figure 4.11: Operation of the optimal unbalance compensation. It can be observed
that each optimization sequence has it’s delayed time window in strict order of 0.1
second. In each step an upper and a lower directional test step is made with the
with of 0.02 second from which the algorithm can decide the size and direction of the
next step, based on Algorithm 5. As such 0.6 second is required for performing one
optimization cycle.

laboratory, where a common 400V connection point was investigated as the behaviour
of the network.

Afterwards, the measurement data has been used as the input of a micro-grid
segment of the Matlab/Simulink model in order to test the controller and inverters
structure’s performance in quasi-realistic circumstances. Figure 4.12 shows the simu-
lation results with respect to εG and εu. It can be seen, that the optimal compensation
that uses εG as cost function decreases VUF as well. The compensators performance
on the simulated microgrid’s network loss reduction can be observed by means of active
and reactive power loss in the bottom two plots of Figure 4.12. It can be concluded
that the reactive power loss cannot be decreased with the proposed structure and
method.

The measurement output is connected to a modeled three phase load and network
system, consisting of symmetrical loads and network segments between them. Further
artificial load unbalance is not necessary since the network’s unbalance is already
present. This structure enables to show that any point the inverter is connected,
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Figure 4.12: Unbalance compensation system performance with a half charged battery
and photovoltaic power source available on a measurement driven network. The opti-
mization based compensation starts at t = 1s. Top: The underlying unbalance norm
is the geometrical one (εG). Second: εu is also smoothed due to the compensation.
Third: The active power loss (Ploss) is actively decreasing due to the result of unbal-
ance compensation, Bottom: The reactive power loss (Qloss) cannot be decreased by
the unbalance compensation.

could restore power quality with a certain degree such unbalance compensation at this
case. The future plan is to set up multiple devices on different connection points.
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Performance comparison of different unbalance indicators

In this section the chosen unbalance indicators, εu, and εG will be compared in per-
formance solving the same optimization problem. The only difference between the
three compared simulations are the Algorithm 5’s cost function candidate (εu, or εG),
as they are compared to the uncompensated reference simulation experiment. The
environment consist of a notable voltage unbalance and an emphasized undervoltage,
so the difference of the two approaches would be observable.
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Figure 4.13: Voltage unbalance compensation when employing VUF or the geometric
norm as cost function. Together with the network’s active (Ploss) and reactive losses
Qloss in case of εu or εG as cost function. The controller starts at t = 1s.

It can be observed, that in Figure 4.13 the value of εu does not deviate much in
case of different cost function options. However, observing the trend of εG with the
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same circumstances, the values are showing a different trend with in case of the εu
based approach, the unbalance is slightly above the uncontrolled threshold, and with
εG a clear reduction is shown. This is due to the case of the initial large undervoltage,
which gets compensated, but with εu it is not recognised.

In terms of network power losses with the previous example observable in Figure
4.13. In case of the active power losses the simulation with εG as cost candidate
produces clear reduction, but with the εu a slight increase. However with all approaches
the reactive power slowly diverges form zero over time, which is a clear improvement
point for the future.

4.3 Summary
Two different power quality problems has been formulated as model-free optimization
problems. In both cases, a conceptual problem statement was given for the solution
without any deep power electronics details as the main focus of the present thesis is
the formulation of different energy related problems as optimization problems.

A compensator structure has been proposed in Section 4.1 enabling the integration
of small domestic powerplants that use renewable sources of energy supply to the low
voltage power grid with significant improvement of power quality by means of the total
harmonic distortion. The key element of the structure is an optimizer that minimizes
a cost function related to the total harmonic distortion in the higher order current
harmonics magnitude and phase solution space.

A direct optimization based compensation structure applicable for three-phase net-
work is proposed in Section 4.2 of the chapter. Due to the basic assumptions regarding
the network, the optimal input current phasor can be found by any derivative-free op-
timization method. The cost function for the proposed voltage unbalance optimizer
can be any scalar valued VU norm, however, the geometrical unbalance norm is ap-
plied as a cost function in the asymmetry reducing optimization based control utilizing
an asynchronous parallel pattern search (APPS) algorithm. Simulations, performed
in Matlab/Simulink environment show that the geometrical based indicator can serve
as a basis of further research. The optimization-based control algorithm injects the
available energy (as current waveform) in such a way, that the voltage unbalance
decreases.
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Chapter 5

Optimization based analysis and
control of smooth nonlinear systems
using quasi-polynomial and
Lotka-Volterra representation

Global asymptotic stability is a very strong property of all system classes. Although
global asymptotic stability is an easy to check property of linear time-invariant systems
the global stability analysis of general nonlinear systems is far from being trivial, and
results can be obtained only for special system classes.

On the other hand, electrical energy related dynamical systems are frequently
nonlinear in nature which makes it important to use general nonlinear descriptive
models such as the quasi-polynomial system class.

The fundamental works on LV systems was proposed by Lotka [69] and Volterra
[109] which put the LV form into a population biology framework.

From the 90′s there are several works about the representation of general nonlin-
ear systems having smooth nonlinearities by QP and LV models, e.g. [42], [43] [44].
[43] established the algebraic structure of the class of QP systems. They split into
equivalence classes and each class of equivalence is represented by a Lotka-Volterra
system.

The other branch of papers are engaged in the stability properties of Lotka-Volterra
and quasi-polynomial systems. Local stability analysis of them can be found in [23],
where the locally linearized system matrices can be determined directly from the QP
or LV system’s parameter matrices. Several works investigate the global stability
of Lotka-Volterra predator-prey models, especially with periodic solutions [100], [70].
However, there are also works on the global stability of quasi-polynomial systems [41],
[28]. The main weakness of them is that only small (3-4) dimensional LV systems can
be handled with these methods. An interesting numerical method for their stability
analysis is given in [33].

On the other hand, the utilization of Lotka-Volterra models for feedback control ap-
pears only in few papers [35], or [36], where the positive stabilizing control is proposed
only for a subset of LV systems.

Based on the fundamental concepts of QP and LV systems presented in Section
2.2, this chapter draws up own results that connects the global stability analysis of
quasi-polynomial systems with a class of optimization problems. Section 5.1.1 presents
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a method for global stability analysis.
Embedding the energy system into QP form (see Section 2.2.3), and applying state

feedback that preserves the QP-form of the closed loop system, its global stability
can be conveniently investigated by using linear matrix inequalities if the feedback
parameters are known and fixed. If the feedback parameters are not fixed, then an
optimization based feedback design problem is defined that globally stabilizes the
closed loop system, that is the subject of Section 5.2.1.

5.1 Optimization based global stability analysis of
smooth nonlinear systems

The dissipativity condition of a class of Lyapunov functions for Lotka-Volterra systems
can be reformulated so that Laypunov function based stability analysis methods can
be performed using widespread numerical solvers.

5.1.1 Global stability analysis as a linear matrix inequality
In what follows, x∗ will denote an element-wise positive equilibrium state of the quasi-
polynomial dynamics (2.11), i.e. x∗ ∈ int(Rn

+) Similarly z∗ ∈ int(Rm
+ ) is a positive

equilibrium point in the Lotka-Volterra system (2.12). What makes the Lotka-Volterra
system class for a good candidate for stability analysis [41] is the fact that there exists
a well known entropy-like Lyapunov function family for them ,[28], which is in the
form (5.1)

V (z) =
m∑

i=1

ci

(
zi − z∗i − z∗i ln

zi
z∗i

)
, (5.1)

ci > 0, i = 1 . . .m,

where z∗ = (z∗1 , . . . , z
∗
m)

T is the equilibrium point of the Lotka Volterra model (2.12).
It is examined and proved in [28] and [41] that the global stability of (2.12) with

Lyapunov function (5.1) implies the boundedness of solutions and global stability
of the original QP system (2.11). That is, the Lotka-Volterra model is dynamically
equivalent to the QP models for which the product M = BA is invariant. Practically,
the Lotka-Volterra variables are the quasi-monomials (2.13) of such QP systems, so
the Lyapunov function (5.1) can also be used in the quasi-polynomial coordinates.

The time derivative of the of the Lyapunov function (5.1) is:

V̇ (z) =
1

2
(z − z∗)(C M +MTC)(z − z∗) (5.2)

where C = diag(c1, . . . , cm) is a diagonal matrix of the Lyapunov function parameters
and M is the invariant matrix characterizing the LV form (2.12). The non-increasing
nature of the Lyapunov function (5.1) is equivalent to a feasibility problem over the
following set of linear matrix inequality (LMI) constraints:

C M +MTC ≤ 0
C > 0

(5.3)

where the unknown matrix is C, which is diagonal and contains the coefficients of
(5.1). (See Appendix 2.3.3 for the properties and solution methods of LMIs.)

The similarity of the stability conditions is apparent with that of continuous time
linear time-invariant systems. If a linear time-invariant system with state matrix A
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is asymptotically stable, there must be positive definite matrices P and Q such that
ATP +P A = −Q (the Lyapunov-equation). The linear system and A is diagonnally
stable if P is a diagonal matrix [53].

It is important to mention that the strict positivity constraint on ci can be some-
what relaxed in the following way [28]: if the equations of the model (2.11) are ordered
in such a way that the first n rows of B are linearly independent, then ci > 0 for
i = 1, . . . , n and cj = 0 for j = n+ 1, . . . ,m still guarantee global stability.

It is stressed that global stability is restricted to the positive orthant int(Rn
+) only

for QP and LV models, because it is their original domain (see the definition in (2.11)).
It is also important that the global stability of the equilibrium points of (2.11) with

Lyapunov function (5.1) does not depend on the value of the vector L as long as the
equilibrium points are in the positive orthant [28]. This fact will allow us to place
the equilibrium point of the closed loop system during the stabilizing controller design
(see Section 5.2).

The possibilities to find a Lyapunov function that proves the global asymptotic
stability of a QP system can be increased by using time-reparametrization [144].

The computationally effective method of global stability analysis for Lotka-Volterra
and QP systems can be used for the global stability analysis of general smooth non-
linear systems because of the descriptive nature of the QP model class. According to
Section 2.2.3, general nonlinear dynamical systems with smooth nonlinearities can be
embed into the ODE form (2.11). Of course the fact that the embedding introduced
hidden algebraic equations (see Section A.4 for an illustrative example) to the model
has to be taken into consideration.

5.2 Globally stabilizing feedback design
As a next step, the promising properties of the QP and LV system classes can be used
for stabilizing controller synthesis for general smooth nonlinear systems. In order to
control a QP (and consequently a LV) model a non autonomous version of the ODEs
(2.11) and (2.12) is needed. The input-affine extension (2.14)-(2.15) of the models
are used here and the fact is used that the class of quasi-polynomial systems is closed
under quasi-polynomial state feedback laws.

5.2.1 The controller design problem
The globally stabilizing QP state feedback design problem for QP systems can be
formulated as follows [132]. Consider arbitrary quasi-polynomial inputs in the form:

ul =
r∑

i=1

kil q̂i(x), l = 1 . . . , p (5.4)

where q̂i(x) = q̂i(x1, . . . , xn), i = 1, ..., r are arbitrary quasi-monomial functions of the
state variables of (2.14) and kil is the constant gain of the quasi-monomial function q̂i
in the l-th input ul. The closed loop (autonomous) system will also be a QP system
with matrices

Â = A0 +

p∑

l=1

r∑

i=1

kilAil, B̂, (5.5)

λ̂ = λ0 +

p∑

l=1

r∑

i=1

kilλil. (5.6)
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Note that the number of quasi-monomials in the closed-loop system (i.e. the dimension
of the matrices) together with the matrix B̂ may significantly change depending on
the choice of the feedback structure, i.e. on the quasi-monomial functions q̂i(x).

Furthermore, the closed loop Lotka-Volterra coefficient matrix M̂ can also be ex-
pressed in the form:

M̂ = B̂ Â = M 0 +

p∑

l=1

r∑

i=1

kilM il.

Then the global stability analysis LMI (5.3) of the closed loop system with unknown
feedback gains kil leads to the following bilinear matrix inequality (5.7) (see Section
2.3.3 for the general form (2.28) and solution methods for bilinear matrix inequalities).

M̂
T
C +C M̂ = MT

0 C +C M 0 +

p∑

l=1

r∑

i=1

kil
(
MT

il C +CM il

)
≤ 0. (5.7)

The variables of the BMI are the p × r kil feedback gain parameters and the cj, j =
1, ..,m parameters of the Lyapunov function (5.1). If the bilinear matrix inequality
(5.7) is feasible then there exists a globally stabilizing feedback with the selected
structure.

It is important to note, that the fact that a QP system is obtained by embedding
a general nonlinear system into QP form usually makes the solution of (5.7) more
difficult as the rank of matrix M is not full in such cases.

5.2.2 Numerical solution of the controller design problem
This section deals with the numerical aspects of the globally stabilizing controller
design problem.[133]

5.2.3 Numerical solution based on bilinear matrix inequalities
There are just few software tools available for solving general bilinear matrix inequal-
ities that is a computationally hard problem. In some rare fortunate cases with a
suitable change of variables quadratic matrix inequalities can be rewritten as linear
matrix inequalities (see e.g. [10]). Unfortunately, the structure of the matrix variable
of (5.7) does not fall into this fortunate problem class, so the previously mentioned
idea cannot be used.

Rewriting the above matrix inequality (5.7) in the form (2.28) one gets the following
expression which can be directly solved by [58] as a BMI feasibility problem:

m∑

j=1

cjM̄0j +
m∑

j=1

p∑

l=1

r∑

i=1

cjkilM̄(il)j ≤ 0

−c1 < 0 (5.8)
...

−cm < 0.

The two disjoint sets of BMI variables are the cj parameters of the Lyapunov function
(5.1) and the kil feedback parameters. The parameters of the problem M̄0j (M̄(il)j,
respectively) are the symmetric matrices obtained from M 0 (M il, respectively) by
adding the m×m matrix that contains only the j-th column of M 0 (M il, respectively)
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to its transpose:

M =




m11 · · · m1j · · · m1m
... . . . ... . . . ...

mm1 · · · mmj · · · mmm




↓

M̄ j =




0 · · · m1j · · · 0
...

...
...

m1j · · · 2mjj · · · mmj
...

...
...

0 · · · mmj · · · 0



.

Note that for low dimensions (i.e. for m < 3) there are practically feasible methods
for circumventing the BMI feasibility problem [53] but these cannot be extended to
the practically important higher dimensional case.

An iterative LMI approach to controller design problem Because of the NP-
hard nature of the general BMI solution problem, it is worthwhile to search for an
approximate but numerically efficient alternative way of solution. As shown below,
the special structure of the QP stabilizing feedback design BMI feasibility problem
allows the application of a computationally feasible method for its solution that solves
an LMI in each of its iterative approximation step. The already existing iterative LMI
(ILMI) algorithm of [16] used for static output feedback stabilization (see e.g. in [39])
will be used for this purpose.

In order to be able to use the ILMI algorithm, it is necessary to write up the QP
stabilizing feedback design problem as a static output feedback stabilization problem
for LTI systems. In what follows the globally stabilizing feedback design BMI (5.7) is
used in the form

(M 0 +ΘK)T C +C(M 0 +ΘK) < 0. (5.9)

where Θ and K are the matrices defined in (5.10) and (5.11), respectively.

Θ =




1st

︷ ︸︸ ︷
M 1, . . . ,M p, . . . ,

rth︷ ︸︸ ︷
M 1, . . . ,M p


 , (5.10)

K =




k11 Im×m
...

k1p Im×m
...

kr1 Im×m
...

krp Im×m




(5.11)

The above problem is equivalent to a LTI output feedback stabilization problem (5.12)
below.

(A+B F C)T P + P (A+B F C) < 0 (5.12)

Matrix M 0 corresponding to the state matrix A, Θ playing the role of the input
matrix B, and K serving as F C and P is the unknown matrix variable of the problem.
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It is apparent that the matrix parameters and variables have a special structure for
quasi-polynomial systems.

The ILMI algorithm does not aim at finding the complete feasible set of the BMI
(5.9) but computes an optimal solution point with minimal trace of C if the BMI is
feasible. The ILMI algorithm solves a linear objective function minimizing LMI and
a generalized eigenvalue problem in each step. The scheme of the algorithm adapted
for QP stabilizing state feedback design is given in Algorithm 6.

Algorithm 6 Iterative LMI algorithm for stabilizing state feedback designĹą
Require: Q > 0
1: Solve MT

0 C +CM0 −CΘΘTC +Q = 0 for C
2: i← 1
3: X1 ← C
4: loop
5: Minimize αi subject to the LMI constraints

[
MT

0 Ci + CiM0 −XiΘΘTCi − CiΘΘTXi +XiΘΘTXi − αiCi (ΘTCi +K)T

ΘTCi +K −I

]
< 0,

Ci = diag(ci1, . . . , cim) > 0

6: if α∗
i ≤ 0 then

7: return K ▷ K is a stabilizing gain
8: end if
9: αi ← α∗

i

10: Minimize trace(Ci) subject to the LMI constraints
[
MT

0 Ci + CiM0 −XiΘΘTCi − CiΘΘTXi +XiΘΘTXi − αiCi (ΘTCi +K)T

ΘTCi +K −I

]
< 0,

Ci = diag(ci1, . . . , cim) > 0

11: if ∥Xi −C∗
i ∥ < δ then

12: return false ▷ The system cannot be stabilized
13: else
14: i← i+ 1
15: Xi ← C∗

i

16: end if
17: end loop

It is important to note that for QP systems with rank deficient M 0 = BA some
additional techniques are needed because the algorithm fails for singular M 0 matrices.
One possible way is using singular perturbation on M 0:

M̃ 0 = M 0 − γ Im×m, γ > 0.

If this way (M̃ 0,Θ) become stabilizable then Algorithm 6 can be applied.
According to [16] the algorithm is convergent although sometimes it may not

achieve a solution because α not always converges to its minimum. The proper selec-
tion of initial Q affects the convergence of the algorithm, a suitable selection of Q that
guarantees the immediate convergence can be found in [16]. Based on the above, the
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algorithm is used as an off-the-shelf tool, that’s why no numerical analysis is presented
here.

It is important to emphasize here, that the computationally feasible ILMI algorithm
can be used to test the feasibility of the associated BMI, and then the final design
can be performed by a constrained optimization method using a suitable controller
performance criterion in the feasible case.

5.2.4 Equilibrium points
After solving the globally stabilizing feedback design BMI the resulting Lotka-Volterra
system has a globally asymptotically stable equilibrium point in the positive orthant.
This steady-state equilibrium point x∗ can be determined from the steady-state version
of the closed loop quasi-polynomial system (2.11)

0 = xi

(
λ̂i +

m∑

j=1

Âij

n∏

k=1

x
B̂jk

k

)
, i = 1, . . . , n. (5.13)

By excluding the non strictly positive equilibrium states one only has to deal with the
equation:

0 = λ̂i +
m∑

j=1

Âij

n∏

k=1

x
B̂jk

k , i = 1, . . . , n (5.14)

where the parameters λ̂i and Âij depend linearly on the feedback parameters according
to the equations (5.5) and (5.6).

However, with the BMI (5.7) it is not possible to prescribe the equilibria of the
closed loop system but only to globally stabilize it. So it is necessary to introduce
extra parameters to the feedback in order to be able to place the positive steady state
point anywhere in the positive orthant as needed. The feedback structure has to be
constructed in a way that the parameters that are used in the steady state point placing
problem appear in the vector λ̂ of the closed loop quasi-polynomial system. This way
the parameters of the equilibrium placing are separated from the stabilizing feedback
design BMI’s parameters. The feedback has the form

u = K(k,x) +D(δ,x) (5.15)

where K(k,x) is the feedback structure with the parameters for the BMI, and D(δ,x)
has the form so that the components of the parameter vector δ appear in the vector
λ of the closed loop QP system. It is important to note that the QP input (5.4) is
linear in both of the parameters k and δ.

One can further simplify the QP input structure (5.4) by using a linear term
Di(δi, xi) = δixi in the feedback (5.15) to take care of the placing of the steady-state
point, and the other term for stabilizing the closed loop system.

Fully actuated case In this case the QP system has at least one designated input
for each of the n state equations. The steady state point of these systems can be put
anywhere in the positive orthant.

0 = λi(δ) +
m∑

j=1

Aij

n∏

k=1

x
∗Bjk

k , i = 1, . . . , n (5.16)

where λi(δ) is a linear function of the δ parameters of the problem and x∗ = (x∗
1, . . . , x

∗
n)

T

is the desired equilibrium. That is, δ can be determined from a linear system of equa-
tions.
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Partially actuated case If the system has k < n different inputs, then there are
no general results for QP models. However, in the Lotka-Volterra case there is some
possibility of shifting some components of the equilibrium point. If the LV coefficient
matrix M can be transformed into an upper block triangular matrix by row and
column changes then it means that the first k coordinates of the equilibrium point can
be prescribed at will independently of the remaining n− k.

Note that if the system does not belong to the above two classes then it is not
possible to redesign its equilibrium point with the above technique.

Rank deficient (embedded) systems In case of systems that are not originally
in quasi-polynomial form (see Section 2.2.3 for embedding into QP-form) all the above
hold with some specialities. It is known that for such QP systems that their trajectories
range only a lower dimensional manifold of the QP state space and their parameter
matrix A is rank deficient. With this understanding one has to design the equilibrium
point of the system (if it is possible to design at all, see Section 5.2.4) into this lower
dimensional manifold.

Feedback design for a simple fermentation process This example presents a
fermentation process similar to the one presented in Section A.4 of the Appendix,
just the reaction kinetics (i.e. function µ(x2)) is different. This one is a monotonous
function of the substrate concentration x2, that results in a simpler nonlinearity. The
system is described by the non-QP input-affine state-space model

ẋ1 = µ(x2)x1 +
(XF−x1)F

V

ẋ2 = −µ(x2)x1

Y
+ (SF−x2)F

V

µ(x2) = µmax
x2

KS+x2
,

(5.17)

where the inlet substrate and biomass concentrations denoted by SF and XF , are the
manipulated inputs. The variables and parameters of the model together with their
units and parameter values are given in Table A.4. The parameter values are taken
from [61].

The system has a unique locally stable equilibrium point in the positive orthant:[
x̄1

x̄2

]
=

[
0.6500
0.4950

]
(5.18)

with steady-state inputs [
X̄F

S̄F

]
=

[
0.6141
4.3543

]
.

By introducing a new differential variable η = 1
KS+x2

one arrives at a third differential
equation

η̇ = − 1
(KS+x2)2

· dx2

dt
= −η2 ·

(
−µmax

Y
x1x2η +

(SF−x2)F
V

)
=

= η
(
µmax

Y
x1x2η

2 + F
V
x2η − SF

F
V
η
) (5.19)

that completes the ones for x1 and x2. Thus the original system (5.17) can be repre-
sented by the following three quasi-polynomial differential equations:

ẋ1 = x1 ·
(
−F

V
+ µmaxx2η +

F
V
x−1
1 XF

)

ẋ2 = x2 ·
(
−F

V
− µmax

Y
x1η +

F
V
x−1
2 SF

)

η̇ = η ·
(
F
V
x2η +

µmax

Y
x1x2η

2 − F
V
ηSF

)
.
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Using a wise choice of the feedback structure, the quasi-monomials of the closed loop
system may decrease. In our case the feedback structure is chosen to be

XF = k1x1x2η + δ1x1

SF = k2x1x2η + δ2x2.

The closed loop QP system is then

ẋ1 = x1 ·
(
−F

V
+
(
µmax + k1

F
V

)
x2η
)

ẋ2 = x2 ·
(
−F

V
+
(
−µmax

Y
+ k2

F
V

)
x1η
)

η̇ = η ·
(
F
V
x2η +

(
µmax

Y
− k2

F
V

)
x1x2η

2
)
.

Note, that for the globally stabilizing feedback design phase parameters δ1, and δ2
are set to zero, since they will be used for shifting the equilibrium of the closed loop
system to the original fermenter’s one. It is apparent that the closed loop system has
only 3 quasi-monomials: x2η, x1η, x1x2η

2.
The solution of the BMI problem gives the feedback gain parameters

k1 = −1.5355
k2 = 43.6516,

which makes the system globally asymptotically stable (in the positive orthant) with
the Lyapunov function (5.1) having parameters:

c1 = 0.0010, c2 = 0.0761, c3 = 0.0760.

The equilibrium (5.18) of the open loop fermenter can be reset by expressing δ1, and
δ2 from the steady-state equations. This gives δ1 = 1.7152, δ2 = −20.9293, so the
equilibrium point (5.18) of the fermentation process (5.17) is globally stabilized.

Partially actuated example in QP-form The system of this example is a simpler
variant of the fermentation process of Section A.4 with SF being the manipulable input:

ẋ1 = µmaxx1x2 − F
V
x1

ẋ2 = −µmax

Y
x1x2 +

F
V
(SF − x2).

(5.20)

The parameter values can be seen in Table 5.1. The quasi-polynomial form of the

Table 5.1: Variables and parameters of the fermenter model (5.20)

X biomass concentration [g
l
]

S substrate concentration [g
l
]

F inlet feed flow rate 2 [ l
h
]

V volume 1 [l]
SF substrate feed concentration [g

l
]

Y yield coefficient 1 -
µmax, kinetic parameter 1 [ 1

h
]
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model is:
ẋ1 = x1 (S − 2)
ẋ2 = x2

(
−x1 + 2x−1

2 SF − 2
)
.

(5.21)

For a fixed value of the substrate concentration S∗
F = 1, the system has an asymptot-

ically stable wash-out type equilibrium point



x∗
1

x∗
2

S∗
F


 =




0
1
1


 .

The feedback structure was chosen to be

SF = k1x
2
2 + δ1x2.

The closed loop system with the above structure is

ẋ1 = x1 (x2 − 2)
ẋ2 = x2 (−x1 + 2k2x2 + 2(δ1 − 1)) .

(5.22)

It is apparent, that the above QP model (5.22) is also the Lotka-Volterra model of the
system. The LV matrices of the system are the following ones:

M =

[
0 1
−1 2k1

]
, N =

[
−2

2(δ1 − 1)

]
.

It is noticeable that matrix M is not upper triangular, i.e. the equilibrium cannot be
manipulated partially based on the results of section 5.2.4. However, with a fortunate
choice of δ1 (e.g. δ1 = 2.5) one can modify the value of the (non wash-out type)
equilibrium of system (5.22). It is important to note, that in this case the equilibrium
will be positive, but one cannot decide its value. The other free parameter (k1) can
be used for stabilizing this equilibria. So k1 and the two parameters of the Lyapunov
function are given to the ILMI algorithm. It gives the following results:

k1 = −0.0013, C =

[
1.2822 0

0 1.2822

]
.

Figure 5.1. shows the feasibility region of the globally stabilizing BMI problem and
the solution given by the ILMI algorithm of section 5.2.3. The obtained feedback with
parameters k1 and δ1 globally stabilizes the system in the positive orthant. Indeed,
the closed loop system has a unique equilibrium state

[
x̄1

x̄2

]
=

[
2.9948
2.0000

]

in the positive orthant int(R2
+), for which the locally linearized system matrix has

eigenvalues with strictly negative real part, this way at least local stability can be
proved for the equilibrium.

Some further examples of quasi-polynomial state feedback design method are pre-
sented in Section A.5.
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Figure 5.1: BMI feasibility region for Example 5.2.4

5.3 Summary
A general optimization based framework has been proposed in this chapter that uses
the convenient properties of quasi-polynomial and Lotka-Volterra system classes.

It was shown in Section 5.1, that the negative definiteness condition of the Lya-
punov function of QP and LV systems is equivalent to a linear matrix inequality, thus
the stability analysis of QP systems (and general nonlinear process systems embedded
into QP form) is equivalent to the feasibility of a constrained optimization problem.
The linear matrix inequality is non-strict if the model has been obtained by embedding.

The global stability analysis has been extended to a wider class of QP systems
by embedding the parameters of the time-reparametrization transformation into the
global stability analysis, when one has to solve a bilinear matrix inequality feasibility
problem.

A globally stabilizing state feedback design problem was formulated in Section 5.2
using the global stability analysis results of Section 5.1.1. The problem has been solved
as a bilinear matrix inequality feasibility problem, having two groups of variables,
one for the parameters of the Lyapunov function and another for the feedback gains.
The proposed method does not utilize the objective function of the BMI optimization
problem (2.28), thus it is a possible point to introduce some performance or robustness
specifications.
If one is to solve just the BMI feasibility without additional criteria, the problem
has been reformulated so that an existent iterative LMI algorithm is suitable for its’
solution.
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5.3. Summary

The stabilizing state feedback may shift the closed loop system’s equilibrium points
into unwanted values that’s why the possibilities of designing an additional feedback
that (partially) sets back the original steady state were proposed. It was shown that
under certain conditions on the closed loop system’s Lotka-Volterra coefficient matrix
it is possible to design such a controller. It’s parameters were determined from a linear
set of equations. In most cases, however, it is only possible to redesign the steady state
for only a few number of state coordinates.

87

               dc_2030_22



Chapter 6

Conclusions

6.1 New scientific results
The new scientific contributions of the thesis are summarized in the following thesis
points. Thesis points 1, 2 and 3 are related to Chapters 3, 4 and 5 of the dissertation,
respectively. The corresponding publications are listed at the end of each thesis point.

1. Model-based methods for energy systems
I have developed model-based methods for the optimal operation and the pa-
rameter estimation of home appliances and batteries.

(a) I have formulated the cost optimal scheduling of a class of energy related
electrical home appliances as a model predictive optimal scheduling prob-
lem where the scheduling variable determines the binary operation mode of
the system, the cost function is the operation cost of the appliance in the
presence of hourly changing electricity price. I have presented a branch-
and-bound heuristic optimization algorithm to solve the above problem.
Afterwards, I have extended the heuristic model predictive scheduling al-
gorithm so that it is capable of adaptive operation, following the change in
the key parameter(s) of the underlying dynamics.

(b) I have proposed a prediction error minimization based parameter estimation
method that is capable of identifying the thermal behavior of lithium-ion
batteries. The basis of the method is a nonlinear charge and discharge
model which describes the temperature dependency as a parametric func-
tion of temperature as an independent variable. The proposed parameter
estimation method determines point estimates of the key battery parame-
ters at different temperatures, afterwards, by interpolating the parameter
values between the point estimates a thermal characteristics of the battery
parameters is obtained.

Related publications: [120], [142], [121], [123], [122], [141], [143].

2. Optimization based input design for the power grid
I have developed model-free direct optimization-based compensation methods
for electrical networks.

(a) I have proposed a direct optimization based compensator structure capa-
ble of decreasing the total harmonic distortion of one phase low voltage
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6.2. Utilization of the results and future work

electrical networks with unknown network model or topology. The cost
function of the optimization problem is constructed from the higher order
harmonics of the voltage measured at the connection point. The suggested
compensator structure reduces the harmonic distortion by a non-sinusoidal
current input to the grid where the injected current harmonics magnitudes
and phases serve as the optimization variable for the applied derivative-free
optimization method.

(b) I have shown that the symmetric difference between the ideal three-phase
voltage phasor and that of the three-phase voltage measured at the con-
nection point can serve as the cost function of a direct optimization-based
voltage unbalance compensation structure. Moreover, I have formulated
the problem of voltage unbalance compensation in the case of unknown
network model as an optimization problem. I have analyzed the perfor-
mance of the method by dynamical simulation based experiments using a
conceptual network and inverter model and concluded that the proposed
unbalance optimizer together with the proposed norm successfully decrease
voltage unbalance and perform better then the widely used voltage unbal-
ance factor.

Related publications: [125], [129], [124] [138], [126], [127] [140], [136], [135], [137].

3. Control of smooth nonlinear systems in quasi-polynomial and Lotka-
Volterra form
I have developed new optimization based computational methodfor the stabiliz-
ing feedback control of smooth nonlinear systems being in Lotka-Volterra repre-
sentation.

(a) I have formulated the global stability analysis of smooth nonlinear dynami-
cal systems being in quasi-polynomial representation as the feasibility prob-
lem of a linear matrix inequality.

(b) I have formulated the globally stabilizing controller design problem for
smooth nonlinear systems being in quasi-polynomial form. The control
law is a nonlinear state feedback such that the closed loop system is a
quasi-polynomial one. I have reformulated the problem as the feasibility of
a set of bilinear matrix inequalities. I have proposed an iterative LMI-based
solution method to solve globally stabilizing feedback design problem.

Related publications: [133], [144], [131], [132], [139].

6.2 Utilization of the results and future work
6.2.1 Model-based methods for energy systems
The proposed optimal heuristic model predictive scheduling method can be applied to
different household equipment with similar dynamics (water heater, air conditioner,
etc.). Multiple household equipments could be operated in parallel by an improved
version of the algorithm in order to avoid short consumption peaks when operating such
devices at the same time. The method can serve as a key component in the flexibility-
related operation of residential prosumers [119]. In such approaches, the prosumers
can give an estimated amount with they can increase or decrease their actual power
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consumption (or generation). This information can be used by the system operator
for scheduling purposes.

The proposed temperature dependent parameter estimation method together with
the thermo-electric battery model can serve as a basis for model-based optimal charge
control methods for lithium-ion batteries [130]. On the other hand determining the
state of health of the battery, and to estimate the temperature dependent state of
charge during its life cycle is of key importance in electric vehicle applications. This
is possible through a suitable experiment and estimation policy that gives estimates
the battery parameters based on high quality (in the system identification sense) mea-
surements.

6.2.2 Model-free optimal compensation of power grid
Both model-free optimization directions proposed in the thesis has a wide range of
potential improvements and further research directions. As the virtual powerplants are
getting more and more widespread, several residential prosumers having the potential
to improve power quality could work together, under the control of the system operator.
The parallel operation of several devices within the same local transformer area is also
an interesting question that will be investigated in the future.

The inclusion of constraints to the optimization problem is an obvious step of future
research which may also result in different, computationally more effective algorithms.

The symmetrical difference based unbalance measure will be further investigated
to find a computationally effective way of calculating it e.g. on the computational
complexity of an embedded system to reach the processing time constants of power
electronic devices.

6.2.3 Quasi-polynomial and Lotka-Volterra models
By formulating robustness and/or performance specifications as an objective function
it will be possible to prescribe the quality of the controller to be designed. The selection
of the feedback controller structure is also an important question since a wise choice
can decrease the size of the BMI to be solved. That’s why controller structure selection
based on graph theoretic methods is another direction of a possible future work. Note,
that there is a wide range of structural results for the class chemical reaction networks
which have a close connection to quasi-polynomial systems [145].

The controller design BMI with the built-in robustness specifications and the con-
troller structure design together would extend the controller design problem to a com-
plete methodology for the stabilizing control of smooth nonlinear systems given in QP
representation.

Passivity based control has been developed in [134] where the entropy-like Lya-
punov function of the Lotka-Volterra model serves as the storage function. Mixed
mechanical-thermodynamical systems (e.g. gas turbines) can also be embedded into
QP representation, and with a Lyapunov function (5.2) their global stability can be in-
vestigated. Note, that using a quadratic Lyapunov function, the region of their (local)
stability can be conveniently determined by solving LMIs.
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Appendix A

Appendix

A.1 Model based heuristic scheduling
A.1.1 Optimal scheduling
The numerical values of the discrete-time piecewise affine state space model (3.8) for
the two operating modes are listed in (A.1)-(A.3).

Φ1 =

[
0.9998 0.0001
0.0004 0.9977

]
, Φ0 =

[
0.9998 0.0001
0.0010 0.9988

]
(A.1)

Γ =

[
−0.0024
−0.045

]
, f =

[
0.0022
0.0028

]
(A.2)

x =

[
Ta

Tw

]
, u =

[
S
]

(A.3)

A.1.2 Case Study of a freezer
A simple case study is used to illustrate the use and the properties of the the proposed
cost-optimal scheduling method. A simple freezer (RIO S-68) for storing ice-cream in
a shop was used, the parameters of which were estimated using measured data. This
model was used to illustrate the operation and properties of the scheduling algorithms.

Freezer modeling and identification

The first step of the model predictive scheduling is to develop a reliable model of the
system, in our case a freezer, to be scheduled.

A relatively small freezer operating in a grocery shop is chosen for the case study,
that is used for storing ice cream. The containment volume of the freezer is approxi-
mately 0.3m3 with 9.5 kg ice cream stored in it during the experiments.

The temperature of the containment Ta and that of the wall Tw was measured
by Pt100 temperature sensors using 1 s sampling time. The freezer was operating
in an automatic temperature regulating mode keeping the -27 oC setpoint using a
conventional hysteresis type on/off controller. The actual status (on/off) of the switch
S was also recorded. The electric power of the cooling motor was 240W.

The measured data were collected for 48 hours using a personal computer.
The piecewise affine model described in subsection 3.1.1 was used for the parameter

estimation.
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Estimation method A quadratic loss function characterizing the measure of fit was
used in the following form:

V (θ) =

∫ tf

t0

wa(Ta − T̂a)
2 + ww(Tw − T̂w)

2 (A.4)

where T̂a and T̂w are the model-predicted values of the containment and the wall
temperatures, respectively, θ is the vector of model parameters, and wa = 3, ww = 1
are weighting factors.

The Matlab function fminsearch was used for minimizing the above loss function
with respect to the parameter values. A plausibility region was given to each parameter
based on physical insight that was taken into account during the optimization.

Estimation results Together with the estimated value of the parameters, the value
of the loss function (A.4) was also computed as a function of the possible parameter
values. The level set curves of the loss function were also investigated and evaluated
in order to gain information about the correlation of the estimated parameter values
and about sensitivities with respect to parameter variations.

The results indicated that the estimates of some parameter pairs, for example of
(Tc, Kc) are highly correlated, in this case physical insight was used to choose the
actual value of one of them. Using this regularization, the estimated values shown in
Table A.1 were obtained.

Table A.1: Estimated freezer parameter set

meaning symbol estimated value unit
cooling liquid temperature Tc -43.6 ◦C
air-wall heat transfer coeff. Kw 0.0241 kW

◦C

air-env. heat transfer coeff. Ko 0.0021 kW
◦C

wall-env. heat transfer coeff. Kx 0.0186 kW
◦C

wall-cool. liq. heat transfer coeff. Kc 0.173 kW
◦C

heat capacity of the containment Ca 40.1 kJ
◦C

heat capacity of wall Cw 71.4 kJ
◦C

The quality of the estimation is characterized by plotting the measured contain-
ment and wall temperatures against their model predicted values using the estimated
parameter values in the model. In Figure A.1 a good agreement of the measured and
model predicted temperatures are shown that indicates the good quality of the model
for model predictive scheduling purposes.

Sensitivity investigations

We investigated the sensitivity of the model predicted temperatures with respect to
the critical model parameter, the heat capacity of the containment Ca. This parameter
depends on the mass and specific heat of the containment content, that is the goods
stored in the freezer (in our case the ice cream). This parameter may change in time
depending on the load and consumption of the stored freezer content.

The sensitivity analysis shows that the estimated value of Ca is independent of
the other parameters (no high correlation is observed), and it influences critically the

92

               dc_2030_22



A.1. Model based heuristic scheduling

0 1 2
-28

-27

t [h]

T
a

[◦
C

]
Measured Predicted

0 1 2
−36
−34
−32
−30
−28
−26

t [h]

T
w

[◦
C

]

Measured Predicted

Figure A.1: The measured and model predicted temperatures
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Figure A.2: The level set curves of the loss function with Ko and Ca parameters

model response. Figure A.2 shows the level set curves of the loss function in the
parameter sub-space for the parameters Ko and Ca. A definite sharp minimum is
observed, that shows the strong influence of Ca on the loss.

The upper plot shows the interior air temperature (Ta) of the system controlled
by the non-adaptive MPC for Wednesday. The dashed line denotes the temperature
calculated by the MPC algorithm, the solid line corresponds to the actual interior
air temperature of the simulated freezer. The second plot is similar, but the dashed
line denotes the inner air temperature calculated by the adaptive MPC algorithm
(that iteratively re-estimates the heat capacity Ca). On the first two plots dotted line
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Figure A.3: Top: Operation of the non-adaptive MPC algorithm. Black dashed line
denotes the upper temperature limit; Middle: Operation of the adaptive MPC al-
gorithm; Bottom: Actual heat capacity of the system (solid), heat capacity at the
beginning of the simulation and being used by the non-adaptive algorithm (dashed)
and the estimated heat capacity used by the adaptive algorithm (dotted).

denotes the upper limit of the air temperature, Ta,max. The plot at the bottom shows
the actual value of the heat capacity Ca that changes due to the changing goods in the
freezer, the non-adaptive MPC is supposed to know the heat capacity at the initial
time (dashed) while the adaptive algorithm follows the actual value be re-estimating
the parameter Ca if the condition (3.13) is true.

It is easy to see, that due to the lack of correct information about the heat capacity,
the non-adaptive scheduler operates in a conservative way and (e.g. after 15:00) keeps
the temperature at a level lower than it is necessary. Moreover, when the non-adaptive
scheduler overestimates the heat capacity of the system and the price level increases
at the next hour (e.g. at 4:00 and 6:00), the system tends to overshoot, as it can be
seen on the upper plot. The middle plot shows the case of adaptive scheduling: due
to the estimated actual heat capacity Cest

a , the scheduler uses a more precise model of
the freezer and able to set a temperature nearer to the upper limit that yields a lower
cost of the operation (see Table A.2).
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The bottom plot shows a few situations when the adaptive MPC uses a higher
Cest

a value than the actual Cact
a of the freezer, e.g. at 7:00 am. In such cases the air

temperature violates the upper temperature limit for a short period, due to the fact,
that the scheduler overestimates the heat capacity (and thus the time constant) of the
system.

Table A.2: The daily operating costs [e/kWh] for H = 2 hours in the case of the
nonadaptive and the adaptive algorithms.

Algorithm Mon. Tu. Wed. Th. Fri. Sat. Sun.
Nonadaptive 0.440 0.442 0.604 0.484 0.503 0.563 0.595
Adaptive 0.430 0.430 0.589 0.474 0.491 0.550 0.580

A.2 Nonlinear distortion compensation
A.2.1 Inverter model
An extended version of the current source inverter model applied in Section 4.1.2 is
presented in Figure A.4, where the battery charge/discharge operation os controlled
by switches S6 and S7.

vpv

ipv

S5 vim

S1

S2

S3

S4

iout

vnet

ibat

vbat

S6

S7

Figure A.4: Grid-tie inverter model that connects the renewable photovoltaic energy
source to the main grid. The circuit also contains the battery charger and the lithium-
ion battery

A.2.2 Matlab based simulation model
The nonlinear distorted network model was developed in Matlab Simulink environ-
ment. The model contains the proposed compensator and controller elements, renew-
able soure and the typical elements of the nonlinear network presented in Section 4.1.2.

• mid-voltage transformer - voltage generator with serial inductance
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Figure A.5: Top level Matlab Simulink model of the system consisting of the power
source, nonlinear network with typical elements (loads), battery and the THD com-
pensator
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• wires - modeled with ohmic loss resistance

• linear ohmic loads - modeled with ohmic resistance

• linear inductive loads - modeled with serial resistance and inductance

• nonlinear loads - built from with capacitance and diodes with highly nonlinear
characteristics

• battery model

• grid synchronous inverter model

The top level Matlab Simulink model of the high fidelity simulation modelcan be
seen in Figure A.5.

A.3 Voltage unbalance compensation

A.3.1 Asymmetric inverter model

A simple asymmetric inverter circuit can be seen in Figure A.6. The basis of the
inverter is the single phase inverter (Figure 4.2) used in Section 4.1.2. In principle,
three such inverters are connected to the three phases and are connected to a common
ground.

A.3.2 Matlab based simulation model

The top level structure of the Matlab Simulink model of the three-phase network with
loads, rooftop solar panel, battery and the unbalanced network can be seen in Figure
A.7.
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Figure A.6: Grid-tie inverter model that connects the renewable photovoltaic energy
source to the main grid

A.4 Embedding general nonlinear systems into quasi-
polynomial form

A simple fermentation example illustrates the way of embedding non-QP system mod-
els into QP-form and the special properties of process system models in QP-form.
Consider a simple fermentation process with non-monotonous reaction kinetics that is
described by the non-QP input-affine state-space model

ẋ1 = µ(x2)x1 +
(XF − x1)F

V

ẋ2 = −µ(x2)x1

Y
+

(SF − x2)F

V
(A.5)

µ(x2) = µmax
x2

K2x2
2 + x2 +K1
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Figure A.7: Top-level structure of the simulation model used for unbalance compen-
sation.

where the state variables x1 and x2 are the biomass- and the substrate concentrations
respectively. The inlet substrate and biomass concentrations denoted by SF and XF ,
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are the manipulated inputs. The variables and parameters of the model together with
their units and parameter values are given in Table A.3. The parameter values are
taken from [61].

x1 biomass concentration [g
l
]

x2 substrate concentration [g
l
]

SF substrate feed concentration [g
l
]

XF biomass feed concentration [g
l
]

F inlet feed flow-rate 3.2089 [ l
h
]

V volume 4.0000 [l]
Y yield coefficient 0.5000 -
µmax, kinetic parameter 1.0000 [ 1

h
]

K1 kinetic parameter 0.0300 [g
l
]

K2 kinetic parameter 0.5000 [ l
g
]

Table A.3: Variables and parameters of the fermenter model with non-monotonous
kinetics (A.5)

4 4.5 5 5.5 6
0

0.2

0.4

0.6

0.8

1

x1 [g
l
]

x
2
[g l
]

equilibrium x∗ state trajectory state trajectory

Figure A.8: Some trajectories of the system (A.5). The different trajectories with
different colors denote the trajectories converging to different equilibrium states of the
system. (The blue trajectories converge to the wash-out equilibrium at (0, 10).)

By introducing a new differential variable η = 1
K2x2

2+x2+K1
one arrives at a third

differential equation

η̇ = − 2K2x2 + 1

(K2x2
2 + x2 +K1)2

· ẋ2 (A.6)

that completes the ones for x1 and x2. Thus the original system (A.5) can be repre-
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A.4. Embedding general nonlinear systems into quasi-polynomial form

sented by three differential equations in input-affine QP-form (2.14):

ẋ1 = x1

(
µmaxx2η −

F

V

)
+ x1

(
x−1
1

F

V

)
XF

ẋ2 = x2

(
−µmax

Y
x1η −

F

V

)
+ x2

(
x−1
2

F

V

)
SF (A.7)

η̇ = η

(
2µmaxK2

Y
x1x

2
2η

2 +
2K2F

V
x2
2η +

µmax

Y
x1x2η

2 +
F

V
x2η

)
+

+η

(
−2K2F

V
x2η −

F

V
η

)
SF

The system has a locally stable equilibrium point in the positive orthant:

x∗ =

[
x∗
1

x∗
2

]
=

[
4.8906
0.2187

]
(A.8)

with steady-state inputs [
X∗

F

S∗
F

]
=

[
0
10

]
. (A.9)

Note, that there is also a so-called wash-out equilibrium where biomass concentration
x1 is zero.

The system can be characterized by the following matrices of the input-affine QP
model (2.14):

A0 =




µmax 0 0 0 0 0 0 0
0 0 −µmax

Y
0 0 0 0 0

F
V

0 0 0 2µmaxK2

Y
2K2F
V

µmax

Y
0




A1 =




0 F
V

0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


 A2 =




0 0 0 0 0 0 0 0
0 0 0 F

V
0 0 0 0

−2K2F
V

0 0 0 0 0 0 −F
V




B =




0 1 1
−1 0 0
1 0 1
0 −1 0
1 2 2
0 2 1
1 1 2
0 0 1




λ0 =



−F

V

−F
V

0


 λ1 = λ2 =




0
0
0


 .

(A.10)
The eight quasi-monomials of the QP system model given by the matrices (A.10) are

x2η, x−1
1 , x1η, x−1

2 , x1x
2
2η

2, x2
2η, x1x2η

2, η.

The lower dimensional manifold and some trajectories of the system can be seen on
Figure A.9. (The inputs XF and SF are held constant.)

101

               dc_2030_22



A. Appendix

4

4.5

5

5.5

6

0
0.2

0.4
0.6

0.8
1

0

2

4

6

8

10

x1 [gl ] x2 [gl ]

η

manifold (η) equilibrium trajectory trajectory

Figure A.9: Some trajectories of the system (A.5) embedded into the QP model (A.7).
The different trajectories with different colors denote the trajectories converging to
different equilibrium states of the system. The surface corresponds to the lower di-
mensional manifold defined by the hidden algebraic variable η.

x1 biomass concentration [g
l
]

x2 substrate concentration [g
l
]

SF substrate feed concentration [g
l
]

XF biomass feed concentration [g
l
]

F inlet feed flow-rate 1.0000 [ l
h
]

V volume 97.8037 [l]
Y yield coefficient 0.0097 -
µmax, kinetic parameter 0.0010 [ 1

h
]

Ks kinetic parameter 0.5 [ l
g
]

Table A.4: Variables and parameters of the fermenter model (5.17)

A.5 Examples for stabilizing QP feedback design

In the following, some simple process system examples are proposed for the BMI based
stabilizing controller design problem discussed so far. The first two are simple con-
tinuously stirred tank reactor (CSTR) examples with second order chemical reactions
where the system model is naturally in a QP-form.
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A.5.1 Fully actuated process system example in QP-form
The second process system example is the same fermentation process examined in
section 5.2.4 but this time biomass is also fed to the reactor with manipulable inlet
concentration XF . The parameters of the system are the same as in the previous case.

ẋ1 = µmaxx1x2 +
F
V
(XF − x1)

ẋ2 = −µmax

Y
x1x2 +

F
V
(SF − x2)

(A.11)

The quasi-polynomial form of the model is:

ẋ1 = x1

(
x2 + 2x−1

1 XF − 2
)

ẋ2 = x2

(
−x1 + 2x−1

2 SF − 2
)
.

(A.12)

Note that (A.12) is also the Lotka-Volterra model of the system. The manipulable
inputs are XF and SF . For fixed values of the input concentrations X∗

F = 0 and
S∗
F = 1, the system has no equilibrium in the strictly positive orthant but has one

asymptotically stable wash-out equilibrium on the boundary



x∗
1

x∗
2

X∗
F

S∗
F


 =




0
1
0
1


 .

The feedback structure is chosen to be

XF = k1x
2
1 + δ1x1

SF = k2x
2
2 + δ2x2.

Parameters k1 and k2 are to stabilize the system, δ1 and δ2 will be used to shift the
equilibrium. The closed loop system is

ẋ1 = x1 (2(δ1 − 1) + x2 + 2k1x1)
ẋ2 = x2 (2(δ2 − 1)− x1 + 2k2x2)) .

The iterative BMI algorithm yielded the following parameters for the feedback and
the Lyapunov function:

k1 = −1.0004, k2 = −1.0004, C =

[
1.0004 0

0 1.0004

]
.

We would like to prescribe a strictly positive equilibrium instead of the original one.
Suppose that the desired equilibrium is at

[
x̃1

x̃2

]
=

[
0.5
0.5

]
.

Expressing the values of δ1 and δ2 from the state equations in which the desired
equilibrium point is substituted in yields

δ1 = 1.2502, δ2 = 1.7502.

Indeed, the closed loop system with the determined parameters k1, k2, δ1, δ2 has an
asymptotically stable equilibria in [x̃1, x̃2]

T .
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It is apparent that in this example with a higher degree of freedom it was possible
to shift the steady state point of the system.
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