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I. INTRODUCTORY THOUGHTS ABOUT MOLECULAR QUANTUM THEORY

Application of quantum mechanics to atoms and molecules is as old as quantum mechanics itself. The characteristic
‘energy resolution’ of a typical wet-lab chemical experiment (e.g., experiments of the great Emil Fischer) has been
determined by the value of kT , the Boltzmann constant times the room temperature, to be ca. 0.03 eV or 0.001 Eh = 1mEh
for activation barriers or conformational energy differences, etc. This also means that for any prediction to be useful
for traditional chemical transformations, the relevant molecular energy difference must be accurate within ca. 1 mEh.

This requirement naturally led quantum theorists during the 1920s, immediately a�er the new theory has turned
out to be useful to explain atomic spectra, to start adapting it to molecular systems. A plausible assumption was
the separability of the quantum mechanical motion of the electrons and atomic nuclei. Nowadays, this separation
is connected to the great pioneer of quantum mechanics, Max Born and his doctoral student, Robert Oppenheimer [1],
although the idea of this separability was ‘in the air’ already during the years of the ‘old quantum theory’.
Another very natural ‘decision’ was to ‘immediately’ start using Schrödinger’s [2] (Born’s, Jordan’s, and Heisenberg’s

[3–5]) non-relativistic quantum mechanics to describe molecules as many-particle quantum systems, in fact, as
many-electron quantum systems, in the fixed Coulomb field of the atomic nuclei. It is very well understandable that
the pioneers did not consider for this purpose Dirac’s (Lorentz covariant) at-the-time new one-electron equation [6, 7],
which was problematic to generalize to many-electron systems [8–10]. Furthermore, the Dirac equation had only a
‘minor’ energetic effect in comparison with the energy resolution of chemical-molecular experiments available at that
time.

Non-relativistic & Born–Oppenheimer approximations

Electronic structure theory Nuclear motion theory

Figure 1. Present-day quantum chemistry with the two major fields: electronic structure theory and nuclear motion theory that are
defined by the two fundamental approximations. The potential energy surface computed by electronic structure theory provides the
‘effective’ interaction for the motion of the atomic nuclei.

Based on these foundations (Figure 1), quantum chemistry has taken off, to conquer almost all experimental
laboratories around the world within a hundred years. This 100 years was spent with hard work in theoretical and
computational chemistry laboratories to systematically develop (or sometimes just to accidentally find) theoretical,
algorithmic, and computational methodologies and to write computer programs for later use by millions of educated
practitioners. Initially, the chemist community had reservations about the new computational tool, it was not a simple
plug-and-play formula, but required heavy mathematics and computer algebra, or at least use of digital computers,
understood in detail only by the expert. By the beginning of the 21st century, ordinary citizens, including the chemists
themselves, have got used to ‘black-box’ gadgets in every-day life, and the lab-PC equipped with one of the modern
quantum chemistry packages happened to be just another ‘gadget’, which was found to be useful in every-day research.
Although the non-relativistic and the Born–Oppenheimer (BO) approximations define two major fields for quantum

chemistry (Fig. 1), electronic structure theory and quantum nuclear motion theory, it was primarily the electronic
energy that was essential to have meaningful energetic predictions in relation with (organic) chemistry experiments. In
addition, local minima of the electronic energy with respect to the nuclear configurations made it possible to compute
and picture the (classical) structure of molecules, which, in spite of, having problematic origins in quantum theory
[11–13], was wonderfully in agreement with the chemist’s mental picture of molecules invented by organic chemistry
much before quantum mechanics [14].

In the meanwhile, molecular experiments also developed, and the molecular world became ‘visible’ in great more
detail. It is widely appreciated that the nuclei also move, and their motion must be described also by quantum
mechanics. At the same time, the simplest quantum harmonic oscillator model about a local minimum had remained
sufficient for a long time. The first (correct) quantum harmonic oscillator calculation, which later served as a simplest
model also for molecular vibrations, is due to Born and Jordan in 1925 [4], one year before Schrödinger’s partial
differential equation [2].

Modern molecular experiments do see ‘effects’ which can be understood only by rigorous solution of the nuclei’s
Schrödinger equation with an accurate potential energy surface (PES). For molecular interactions, experimental
spectroscopy in conjunction with quantum nuclear motion theory has become a stringent tool to test the interaction
representation of dimers and larger clusters. Molecular quantum dynamical databases, collecting the rovibrational
energy differences and corresponding transition moments, are required and used by other branches of science, most
importantly, by astrophysics, atmospheric modelling, and strong-field laser science. All these directions require the
development of so-called exact quantum dynamics methodologies (quantum nuclear motion theory) both in terms of
(a) completeness, i.e., by extending the energetic coverage of the database; as well as in terms of (b) molecular system
size and complexity, which makes it necessary to improve the ‘scaling’ of the computational cost with the number of
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vibrational degrees of freedom. The theoretical background and recent developments realized in my group in these
directions are reviewed in Chapter II.
Furthermore, there is a third, (c) dimension of computational molecular spectroscopy: the accuracy of predictions. A

computed molecular spectrum, but most importantly the line positions are directly comparable with the experimental
data. If the computed result agrees with the experimental result, within the uncertainty of both, and over a reasonably
wide range of energies and systems, then, we can say that the molecular theory most likely covers all relevant physical
processes (and can be used for predictions where experiment may not be feasible).
For understanding, interpreting an experimental molecular spectrum, a good albeit non-perfect agreement may

be sufficient, unless the spectral density of the experiment is very high. Obviously, the accuracy of the PES is a
limiting factor for the accuracy of quantum-nuclear motion computations, but assuming that the PES representation is
sufficiently good, the two fundamental approximations, BO and non-relativistic, remain that will ultimately limit the
accuracy of the computations in comparison with high-resolution spectroscopy experiments.
With recent developments of precision spectroscopy techniques and manipulation of atomic and molecular quantum

states, extraordinarily precise spectral information is becoming available for a range of calculable systems. Calculable
means that, the system is so small, that the underlying equations can be solved, evaluated to an almost ‘arbitrary’
numerical precision. Hence, the accuracy of the computation is determined by the fundamental equations and relations
used to describe atoms and molecules and our ability to use them. Hence, the increasing amount of very high-quality
experimental data challenges us to revise the fundamental theory of molecular ma�er, by abandoning the two
approximations that had been central to quantum chemistry over the past hundred years.
Development of a (non-relativistic) pre-Born–Oppenheimer theory does not have major fundamental difficulties,

although there are a few theoretically interesting aspects [11–13, 15], and the main challenge lies with converging
the solutions of the known equations to the necessary numerical precision [15–20]. On the contrary, going beyond
the non-relativistic approximation, with the aim of helping precision spectroscopy and creating a useful and versatile
methodological and computational framework, has been truly challenging. I have been thinking about this direction
over the past decade (12 years), for many years without any visible research output. In the meanwhile, I have learned
how to pinpoint the known perturbative relativistic and leading-order QED correction values with a precision necessary
for spectroscopy. It has only been during the past 3-4 years that a promising research direction to pursue practical
relativistic QED developments for atoms and molecules has started to emerge.
I have reviewed my pre-Born–Oppenheimer research a few years ago [13], so it is not presented in a great detail

in this thesis. Instead, Chapter III is fully devoted to recent progress and my near-future plans in relation with the
development of a computational (BO or pre-BO) relativistic QED framework for atoms and molecules in relation with
precision spectroscopy, and ultimately, for testing and further developing the fundamental theory of molecular ma�er.

II. EXACT QUANTUM DYNAMICS DEVELOPMENTS FOR FLOPPY MOLECULAR SYSTEMS AND COMPLEXES

Molecular rotation, vibration, internal rotation, isomerization, tunneling, intermolecular dynamics of weakly and
strongly interacting systems, intra-to-inter-molecular energy transfer, hindered rotation and hindered translation
over surfaces are important types of molecular motions. Their fundamentally correct and detailed description can
be obtained by solving the nuclear Schrödinger equation on a potential energy surface. Many of the chemically
interesting processes involve quantum nuclear motions which are ‘delocalized’ over multiple potential energy wells.
These ‘large-amplitude’ motions in addition to the high dimensionality of the vibrational problem represent challenges
to the current (ro)vibrational methodology. A review of the quantum nuclear motion methodology is provided, current
bo�lenecks of solving the nuclear Schrödinger equation are identified, and solution strategies are reviewed based
on Ref. 21. Technical details, computational results, and analysis of these results in terms of limiting models and
spectroscopically relevant concepts are highlighted for selected numerical examples.

A. Introduction

Molecules are never at rest, they constantly vibrate and rotate, and most interesting molecular phenomena involve
nuclear motions extending over multiple potential energy wells. These multi-well motions are called large-amplitude
motions that is in contrast to small-amplitude motions that correspond to small nuclear displacements localized to the
bo�om of a single potential energy well. Although atomic nuclei are ‘heavy’ particles and several types of molecular
motion exhibit (semi-)classical features, the fundamentally correct theoretical description of molecules in motion [22]
is based on quantum mechanics [23].

The basic quantum mechanical models of the most common types of nuclear motion, i.e., rotation and
small-amplitude vibration, are the rigid rotor and the harmonic oscillator approximations that are almost as old
as quantum mechanics [4] and they are taught in established chapters of the undergraduate curriculum [24]. The
equilibrium rotational constants and harmonic frequencies are built-in features in most quantum chemical program
packages and are o�en computed to obtain theoretical guidance in relation with experimentally recorded spectra.
Perturbative corrections [25] to these equilibrium quantities can be computed in electronic structure packages, but the
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simplest approach has limitations. As to the corrections of the harmonic frequencies, if there are several zeroth-order
vibrational states close in energy, which is a common situation in polyatomic molecules, ‘resonance effects’ introduce
erroneous shi�s in the perturbative correction. Furthermore, the quantum harmonic oscillator approximation is
qualitatively wrong for large-amplitudemotions that are common and important types ofmotions inmolecular systems.

A straightforward solution to the beyond-harmonic-oscillator-problem accounting for large-amplitude motions,
anharmonicities, mode coupling, etc., which is free of resonances, is offered by variational-type approaches. A direct
variational solution of the rovibrational Schrödinger equation provides the direct or numerically ‘exact’ solution
corresponding to a given potential energy surface (PES). Hence, the common name, ‘exact quantum dynamics’ is used to
distinguish this approach from other techniques trying to ‘simulate’ quantum ‘effects’ by extending classicalmechanical
simulation of the nuclear motion. �antum effect simulations by (imaginary-time) path-integral techniques have a
favorable scaling property with the system size, but—apart from very special exceptions—they can have large errors on
the vibrational band origins.

On the contrary, exact quantum dynamics methods can be used to systematically approach the numerically exact
solutions of the nuclear Schrödinger equation. The severe shortcoming of the exact quantum approach is connected
with an unfavorable, exponential scaling of the computational cost with the vibrational dimensionality.

This chapter starts with a general theoretical framework for the (ro)vibrational methodology, the Hamiltonian and
curvilinear coordinates (Secs. II B 1 and II B 2), basis functions and matrix representation (Secs. II B 3) and lists some
common algorithmic elements. This introduction leads us to identify the main bo�lenecks (Sec. II B 4), and to review
possible strategies to eliminate or at least a�enuate the computational cost increasing rapidly with the dimensionality
(Secs. II B 5 and II B 6). The review is continued with analysis tools and spectroscopic limiting models for the computed
rovibrational states (Sec. II C), simulation of (ro)vibrational infrared and Raman spectra (Sec. II D). To respect the
length limitations and to avoid unnecessary repetition of already documented material (cited in the reference list),
computational results from our own recent work are showcased during the course of the presentation of the theoretical
and algorithmic background.

B. Theoretical framework for quantum nuclear motion theory

1. Nuclear Schrödinger equation and coordinate transformation

The time-independent Schrödinger equation is considered for the motion of the atomic nuclei on a potential energy
surface (PES, V ),

(T̂ + V )Ψ = EΨ . (1)

The direct solution of this differential (eigenvalue) equation can provide all stationary states of the system. The T̂
nuclear kinetic energy operator for N nuclei (in Hartree atomic units) is

T̂ = −
N
∑

i=1

1

2mi

[

P̂2
iX + P̂2

iY + P̂2
iZ

]

, (2)

where P̂iα = −i∂/∂Riα are the nuclear momenta conjugate to the Riα, α = X ,Y ,Z laboratory-frame (LF) Cartesian
coordinates.

For an isolated system, the PES is invariant to the molecule’s translation (and rotation), so it is convenient to
separate the overall translation from the internal motion by defining ri translationally invariant, body-fixed Cartesian
coordinates [26],

Ri = O(Ω)ri + RCM , i = 1,… ,N , (3)

where translational invariance means that ri is a function of the laboratory coordinates which remain invariant to an
overall translation of the system,

ri = fi(R) = fi(R
′) with R′

j = Rj + d, ∀d ∈ R
3 . (4)

The overall translation of the system is described by the center of mass coordinates of the nuclei,

RCM =

N
∑

i=1

mi

m12…N

Ri with m12…N =

N
∑

i=1

mi , (5)
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Figure 2. Examples for internal coordinates: (a) full 9D model for the formic acid monomer [29]; (b) intermolecular-plus-torsional,
8D model for the formic acid dimer [30]; (c) full 12D model of the CH4·F

− complex using the q1, … , q9 normal coordinates for the
methane fragment and (R, θ,φ) spherical polar coordinates for the relative ion-methane motion [31–34].

and the center of the body-fixed frame can be fixed at the origin,

N
∑

i=1

miri = 0 (6)

with the mi masses associated to the nuclei. In Eq. (3), O(Ω) with Ω = (ω1,ω2,ω3) describes the 3-dimensional rotation
which connects the orientation of the body-fixed (BF) frame [27] and the laboratory frame.

The commonly used normal coordinates (coordinates underlying the harmonic oscillator approximation) are defined
as the linear combination of the ri Eckart’s [28] body-fixed Cartesian coordinates with respect to a reference structure
fixed at a PES minimum, and minimize the kinetic and potential couplings at the reference structure (Sec. II B 7) [24].

For an efficient description of quantum nuclear motion beyond small-amplitude vibrations about a local minimum,
non-linear functions of ri are commonly defined,

qk = gk (r) , k = 1,… , 3N − 6 (7)

to efficiently describe the (extended) internal motion. gk (r) is typically a function of scalar products of the ri body-fixed
Cartesian coordinates (hence independent of the frame definition), distance- and angle-type variables (Fig. 2). It has
been shown that beyond four-particle systems, 3N − 6 distance- and angle-type variables are not sufficient to uniquely
characterize all molecular structures [35]. So, beyond N = 4, torsion-like coordinates (including some vector-type
product of ri’s) must be also included to uniquely characterize the internal structure with 3N − 6 variables.

The variable change

(X1,Y1,Z1,X2,Y2,Z2, … ,X3N ,Y3N ,Z3N ) ⇒
(ξ1, … , ξ3N ) = (q1, q2, … , q3N−6,ω1,ω2,ω3,XCM,YCM,ZCM) (8)

corresponds to a curvilinear coordinate ‘transformation’, which can be characterized by the Jacobi matrix. The Jacobi
matrix collects derivatives of the ‘old’ coordinates with respect to the ‘new’ ones, Jik = ∂Ri/∂ξk . For a vibrational degree
of freedom, ξk = qk (k = 1,… , 3N − 6), the Jacobian elements can be wri�en as

Jik =
∂Ri

∂ξk
=
∂[Ori + RCM]

∂qk
= O

∂ri
∂qk

= O tik , (9)

where we defined the ‘vibrational t-vector’ as

tik =
∂ri
∂qk

, k = 1, 2, … , 3N − 6 . (10)

For a rotational degree of freedom, ξ3N−6+a = ωa, which is a rotation angle about the a = 1(x), 2(y), 3(z) axis of the
body-fixed frame, we can write

Ji,3N−6+a =
∂Ri

∂ξ3N−6+a

=
∂[O(Ω)ri + RCM]

∂ωa

=
∂O(ω1,ω2,ω3)

∂ωa

ri = O[ea × ri] = O ti,3N−6+a , (11)
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where the ‘rotational t-vector’ was defined as

ti,3N−6+a = ea × ri , a = 1(x), 2(y), 3(z) , (12)

and ea is the unit vector pointing along the (positive direction of the) coordinate axis, (ea)n = δan (n = 1, 2, 3).

To obtain Eq. (11), we used the following relation regarding the derivative of an abstract three-dimensional rotational
operation, wri�en in the Euler–Rodrigues’ form, with respect to the rotation angle ω about the axis pointing in the
direction of the unit vector k = (kx , ky , kz ) with |k| = 1:

∂

∂ω(k)
O =

∂

∂ω
[I + K sinω + K(1− cosω)] = K cosω + K2 sinω , (13)

where I is the three-dimensional unit matrix and K is the ‘cross product matrix’, Kri = k× ri ,

K =





0 −kz ky
kz 0 −kx
−ky kx 0



 . (14)

Then, by using the K3 = −K identity, we can write

OK = [I + K sinω + K(1− cosω)]K

= K + K2 sinω + K3(1− cosω)

= K cosω + K2 sinω , (15)

and hence, the relation, used in Eq. (11), is obtained as

∂

∂ω(k)
Ori = OKri = O(k× ri) . (16)

Finally, for a translational-type degree of freedom in the laboratory frame, ξ3N−3+α = RCM,α, α = 1(X ), 2(Y ), 3(Z ), we
can write

Ji,3N−3+α =
∂Ri

∂ξ3N−3+α
=
∂[O(ω1,ω2,ω3)ri + RCM]

∂RCM,α
= eα . (17)

Having the Jacobi-matrix elements at hand, Eqs. (9), (11), and (17), we can calculate the mass-weighted metric tensor
elements,

gkl =

N
∑

i=1

mi

∂RT
i

∂ξk

∂Ri

∂ξl
, (18)

where the introduction of the mass weights corresponds to mass-scaled Cartesian coordinates, R̃i =
√
miRi .

For the rotation-vibration block of g, k, l = 1, 2, … , 3N − 3, is

gkl =

N
∑

i=1

mi

∂RT
i

∂ξk

∂Ri

∂ξl

=

N
∑

i=1

mit
T
ikO

TOtil

=

N
∑

i=1

mit
T
iktil , (19)

where orthogonality of the rotation matrix,OTO = I, allowed us to express the rovibrational gkl elements solely in terms
of body-fixed quantities, i.e., using the vibrational and rotational t-vectors, Eqs. (10) and (12), respectively. Regarding
the translation-vibration and translation-rotation blocks, we use the fact that the translational Jacobi matrix elements
are coordinate independent (constant), and we fixed the origin of the body-fixed frame at the nuclear center of mass,

               dc_1955_21



Edit Mátyus: From molecular spectroscopy to molecular physics (2022) 9

3N − 6 (vib) 3 (rot)

3N − 3 (rovib)

3
N

−
6
(v
ib
)

3
(r
o
t)

3
N

−
3
(r
ov
ib
)

gv
1,1 gv

1,2 • • • gv
1,D gvr

1,x gvr
1,y gvr

1,x

gv
1,2 gv

2,2 • • • • • • •

• • • • • • • • •

• • • • • • • • •

• • • • • • • • •

gv
1,D • • • • gvD,D • • •

grv
1,x • • • • • grx,x grx,y grx,z

grv
1,y • • • • • gry,x gry,y gry,z

grv
1,z • • • • • grz,x grz,y grz,z

3 (trans)

3
(t
ra
n
s)

• • • • • • • • •

• • • • • • • • •

• • • • • • • • •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

gtX,X
• •

• gtY,Y •

• • gtZ,Z

3N

3N

Figure 3. Mass-weighted metric tensor: vibrational (v), rotational (r), rovibrational (rv, vr), and translational (t) blocks of ggg. The dots
stand for ‘0’ entries, i.e., the kinetic coupling is exactly zero between the rovibrational and the translational degrees of freedom.

Eq. (6), α = 1(X ), 2(Y ), 3(Z ) and l = 1, 2, … , 3N − 3,

g3N−3+α,l =

N
∑

i=1

mi

∂RT
i

∂ξ3N−3+α

∂Ri

∂ξl

=

N
∑

i=1

mie
T
α

∂Ori

∂ξl

= eTα
∂

∂ξl
O

N
∑

i=1

miri = 0 . (20)

The translational matrix elements are

g3N−3+α,3N−3+β =

N
∑

i=1

mie
T
αeβ = m12…Nδαβ . (21)

The resulting structure of the mass-weighted metric tensor, g, is highlighted in Fig. 3.

Next, let us define the 3N-dimensional gradient operator, (gradR̃)iα = ∂iα = ∂/∂R̃iα, and write the nuclear
Schrödinger equation, Eq. (1), as

2(V − E)Ψ = divR̃gradR̃Ψ = divξgradξΨ , (22)

which is understood with the normalization of Ψ is wri�en as

1 =

∫

Ψ
∗
Ψ dR̃ =

∫

Ψ
∗
Ψ g̃1/2 dξ . (23)

In the second equation, due to the coordinate change, the determinant of the Jacobi matrix, det J, appears, which equals
the square root of the determinant of the metric tensor, det J = g̃1/2 with g̃ = detg. We can say in short that the ‘volume
element’ corresponding to integration in the new coordinates is

dV ′ = g̃1/2 dξ1dξ2 …dξ3N . (24)

In curvilinear coordinates, the divergence of an F vector field is wri�en (using Einstein’s summation convention and
the covariant and contravariant labelling) as

divξF = g̃−1/2∂k g̃
1/2F k , (25)
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and the gradient of a φ scalar field is

gradξφ = ∂kφ = gkl∂lφ , (26)

where gkl is the contravariant metric tensor, which is the inverse of the (covariant) metric tensor, Eq. (18). As a result,
we can write the ‘divgrad’ operator in curvilinear coordinates as

divξgradξΨ = g̃−1/2∂k g̃
1/2gkl∂lΨ , (27)

and the integrals are calculated ‘with’ the dV ′ volume element, Eq. (24). A more symmetric form of the differential
operator appears, if we ‘merge’ (the square root of) the Jacobi determinant in the wave function, so that we can use the
simple normalization condition

1 =

∫

ψ∗ψ dξ1 … dξ3N . (28)

This implies that Ψ = g̃−1/4ψ, and we obtain the Schrödinger equation for ψ as

2(V − E)Ψ = g̃−1/2∂k g̃
1/2gkl∂lΨ (29)

2(V − E)g̃−1/4ψ = g̃−1/2∂k g̃
1/2gkl∂l g̃

−1/4ψ (30)

2(V − E)ψ = g̃−1/4∂k g̃
1/2gkl∂l g̃

−1/4ψ , (31)

which can be rearranged to

[

−1

2
g̃−1/4∂k g̃

1/2gkl∂l g̃
−1/4 + V

]

ψ = Eψ (32)

or wri�en in the more traditional form,

[

1

2

3N
∑

k=1

3N
∑

l=1

g̃−1/4p̂k g̃
1/2Gkl p̂l g̃

−1/4 + V

]

ψ = Eψ (33)

with the p̂k = −i∂/∂ξk ‘generalized momenta’ and the ‘big’ G matrix

G = g−1 . (34)

In the physical chemistry literature, the Eq. (33) form of the kinetic energy operator is commonly referred to as
the ‘Podolsky form’ [36]. In 1928, Boris Podolsky drew Paul Dirac’s a�ention to the correct form of the Laplace
(‘divgrad’) operator in curvilinear coordinates (that had been known in mathematics for decades). Podolsky’s choice
for the normalization of the wave function resulted in a symmetric form of the operator, which is convenient for
variational-type applications of the Schrödinger equation in curvilinear coordinates.

It is important to note that the curvilinear form of the operator can be expressed with the metric tensor, and it is
not necessary to use the Jacobian matrix. Eqs. (19), (20), and (21) (see also Fig. 3) show that the metric tensor can be
calculated from body-fixed quantities, i.e., rotational and vibrational t-vectors and the constant masses associated to
the nuclei, and it depends neither on the rotation angles, nor the translational coordinates. The metric tensor can be
wri�en as a function of the vibrational coordinates and of the body-fixed frame definition (ea vectors).

Due to the block-diagonal structure of g in terms of the rovibrational and the translational coordinates (Fig. 3) and
since g̃ does not depend on the translational coordinates, the kinetic energy operator is the sum of a rovibrational and
a translational part,

[

1

2

3N−3
∑

k=1

3N−3
∑

l=1

g̃−1/4p̂k g̃
1/2Gkl p̂l g̃

−1/4 +
1

2m12…N

P2
CM + V

]

ψ = Eψ (35)

with PCM,α = −i∂/∂RCM,α. The complete Eq. (35) must be used to describe molecules in interaction with solid materials
or their motion in cages [37, 38].

At the same time, for an isolated molecular system, V is independent of the translational degrees of freedom, and
then, it is convenient to subtract the center-of-mass kinetic energy, P2

CM/(2m12…N ) from the operator and separate the
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continuum spectrum of free translation. Thereby, we obtain the rovibrational Hamiltonian for an isolated molecule as

Ĥrv,P =
1

2

D+3
∑

k=1

D+3
∑

l=1

g̃−1/4p̂k g̃
1/2Gkl p̂l g̃

−1/4 (36)

=
1

2

D
∑

k=1

D
∑

l=1

g̃−1/4p̂kGkl g̃
1/2p̂l g̃

−1/4

+
1

2

D
∑

k=1

3
∑

a=1

(p̂kGk,D+a + Gk,D+ap̂k )Ĵa

+
1

2

3
∑

a=1

GD+a,D+a Ĵ
2
a

+
1

2

3
∑

a=1

3
∑

b>a

GD+a,D+b[Ĵa, Ĵb]+ + V , (37)

where D = 3N − 6 applies. Eq. (37) was obtained from Eq. (36) by exploiting the fact that g̃ does not depend on the
rotational coordinates [39]. Furthermore, we used that the derivative with respect to the ath rotational angle, is the
body-fixed angular momentum component, Ĵa = −i∂/∂ωa. [Ĵa, Ĵb]+ labels the anti-commutator of Ĵa and Ĵb [40]. We also
note that the body-fixed angular momentum operators satisfy the (anomalous) commutation relations, expressed with
the ǫabc Levi-Civita symbol,

[Ĵa, Ĵb] = −iǫabc Ĵc , a, b, c = 1(x), 2(y), 3(z) (38)

The ĤP Podolsky form of the rovibrational Hamiltonian was found to be advantageous in some computer
implementation [41], because it was possible to arrive at a stable numerical code using only first-order coordinate
derivatives (vibrational t-vectors computed by finite differences). Efficient use of the Podolsky form assumes that the
truncated resolution of identity in the finite vibrational basis provides an accurate matrix representation (Mx) for the
operator identity Mx(p̂2k ) ≈ Mx(p̂k ) ·Mx(p̂k ) for the vibrational derivative operators (k = 1,… ,D).

If this approximation is inaccurate in the vibrational basis, then, it is be�er to use the ‘fully-rearranged’ form of
the Hamiltonian [31, 32, 42, 43], which is obtained from the vibrational Podolsky form by mathematically equivalent
manipulations,

Ĥv = −1

2

D
∑

k=1

D
∑

l=1

Gkl

∂

∂qk

∂

∂ql
− 1

2

D
∑

l=1

Bl

∂

∂ql
+ U + V , (39)

where

Bl =

D
∑

k=1

∂

∂qk
Gkl , (40)

and the potential-like term [41, 43],

U =
1

32

D
∑

k=1

D
∑

l=1

[

Gkl

g̃2
∂g̃

∂qk

∂g̃

∂ql
+ 4

∂

∂qk

(

Gkl

g̃

∂g̃

∂ql

)]

(41)

are functions of the vibrational coordinates only (similarly to Gkl and V ).

Evaluation of Bl and U assumes the evaluation of higher-order coordinate derivatives (vibrational coordinate
derivatives of the t-vectors, up to third order, i.e., ∂3ri/∂qk∂ql∂qm). In this case, evaluation of the derivatives by finite
differences requires the use of increased precision arithmetic (quadruple precision in Fortran) [41], alternatively analytic
derivatives, e.g., for Z -matrix coordinates [43], or automated differentiation [44] can be used.

The idea of developing a general and unifying approach to the rovibrational kinetic energy operator has an at least
half-a-century history, and we only cite here some of the prominent examples [42, 43, 45–48]. During the rest of this
work, developments will be reviewed in relation with the numerical kinetic energy operator approach of Ref. 41 and its
applications within the GENIUSH (GENeral Internal-coordinate USer-defined Hamiltonians) program [41, 49–51].
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2. Geometrical constraints and reduced-dimensionality models

The number of vibrational degrees of freedom increase linearly with the number of atoms in the system and result
in a rapid scale-up of the computational cost of variational applications (Secs. II B 3–II B 5). To a�enuate this growth, it
is possible to introduce constraints on the motion of the nuclei.
Geometrical constraints, e.g., fixing certain bond lengths or angles, can be implemented in the outlined formalism

by ‘deleting’ the corresponding rows and columns of the g matrix corresponding to the constrained coordinate [41].
Zeroing rows and columns in the G matrix does not correspond to imposing a rigorous geometrical constraint, but
it corresponds to fixing the ‘generalized’ momenta corresponding to the selected coordinate. Although ‘zeroing’ in
the G matrix (within some specific computational setup) may result in a be�er numerical approximation to the
full-dimensional result, the numerical values depend on the coordinate representation used for the constrained fragment,
which is conceptually problematic.[41]

The (ro)vibrational Hamiltonians corresponding to rigorous geometrical constraints take the same from as in Eqs. (36),
(37) and (39), butD < 3N−6 and it labels the number of the active vibrational degrees of freedom. The g̃ andG functions
in the Hamiltonian are obtained by (a) constructing the full g ∈ R

(3N−3)×(3N−3) matrix (the block-diagonal translational
block can be inverted separately, if needed); (b) deleting the last Dfixed rows and columns of the full g corresponding to
the constrained degrees of freedom; (c) the remaining D-dimensional ‘reduced’ g matrix is used to calculate g̃ and to
obtain G by inversion.
Experience shows these reduced dimensionality-models (with fixed geometrical parameters) can be useful in weakly

interacting systems [31, 32, 51–54], but they can introduce large errors within bound molecules [29]. It remains a
question to be explored whether the error of (a qualitatively meaningful) reduced-dimensionality model is introduced
due to the lack of ‘quantum coherence’ of the discarded modes with the active degrees of freedom or it is rather a
structural effect due to the dissection of a certain D-dimensional cut of the full-dimensional PES corresponding to
some fixed coordinate values.
All in all, ideally we can aim for an systematically improvable (series of) approximate solution(s) of the nuclear

Schrödinger equation by including all vibrational degrees of freedom as dynamical variable.

3. A variational rovibrational approach: basis set and integration grid for the matrix representation of the Hamiltonian

In bound-state quantum mechanics, a common and powerful approach for solving the wave equation, a differential
equation with no known analytic solution, is provided by the variational method. This method can be straightforwardly
applied to the rovibrational problem, since the rovibrational Hamiltonian is bounded from below. According to Walther
Ritz’ [55] linear variational procedure from 1909, the variationally best linear combination coefficients of a fixed
(orthonormal) basis set are obtained by diagonalization of the matrix-eigenvalue problem

Hcn = Encn , (42)

which provides the best approximation to the exact wave function over the space spanned by the ΦI basis functions,

ψn =

N
(rv)
b
∑

I=1

cn,IΦI (43)

and En approaches the nth exact eigenvalue from above.
These rigorous variational properties apply if the Hamiltonian matrix is constructed exactly, which assumes

evaluation of integrals for the Hamiltonian with the pre-defined basis functions

HIJ = 〈ΦI|ĤΦJ〉 . (44)

In all applications reviewed in this work, the 〈ΦI|ΦJ〉 = δIJ orthonormality applies.
The ΦI multi-dimensional basis functions are o�en defined as

ΦI = Φ
(JM)
iKτ (q1, … , qD ,Ω) = Φi(q1, … , qk )Θ

(JM)
Kτ (Ω) , (45)

where Θ
(JM)
Kτ (Ω) and Φi(q1, … , qk ) label rotational and vibrational basis functions, respectively. The choice of the

rotational and vibrational basis functions is motivated by analytically solvable quantum mechanical models, and most
importantly, those of the rigid rotor and the harmonic oscillator approximations [24, 56].
a. Rotational basis functions and matrix elements Basis functions for the rotational part are obtained from

eigenfunctions of the symmetric top problem, |JK̄M〉 (K̄ = −J, … , J) [56]. The J = 0, 1, … and M = −J, … , J quantum
numbers correspond to the total rotational angular momentum and its laboratory-frame projection, which are exact
quantum numbers for isolated molecules. For every JM pair, the 2J + 1 symmetric top eigenfunctions corresponding to
different K̄ = −J, … , J values span the rotational subspace.
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For a variational-like computation, the matrix representation of the Hamiltonian, Eq. (37), must be constructed over
the basis set. Matrix elements including the Ĵa angularmomentum operators and the |JK̄M〉 rigid-rotor functions are [40,
49, 56]

〈JK̄M|Ĵx |J(K̄ ± 1)M〉 = 1

2

√

J(J + 1)− K̄ (K̄ ± 1) (46)

〈JK̄M|Ĵy |J(K̄ ± 1)M〉 = ∓ i

2

√

J(J + 1)− K̄ (K̄ ± 1) (47)

〈JK̄M|Ĵz |JK̄M〉 = K̄ . (48)

To avoid complex-valued Hamiltonian matrix elements, instead of |JK̄M〉, their linear combination, the so-called called
Wang-functions [57] are used, K = |K̄ | = 0,… , J,

Θ
(JM)
Kτ =



















1√
2

[

|JK̄M〉 + |J − K̄M〉
]

, for even K̄ , τ = 0
i√
2

[

|JK̄M〉 − |J − K̄M〉
]

, for even K̄ , τ = 1
1√
2

[

|JK̄M〉 − |J − K̄M〉
]

, for odd K̄ , τ = 0
i√
2

[

|JK̄M〉 + |J − K̄M〉
]

, for odd K̄ , τ = 1

(49)

b. Vibrational basis functions and matrix elements A common and straightforward choice for a multi-dimensional
vibrational basis function is a product form,

Φi(q1, … , qD) =

D
∏

k=1

ϕ(k)
ik
(qk ) , (50)

where the ϕ(k)
ik

(ik = 1, … ,Nbk) functions are 1-dimensional (1D) functions of the vibrational coordinates forming
an orthonormal basis set, e.g., Hermite functions, obtained from the analytic solution of the harmonic oscillator
eigenproblem [24, 56].

As to the matrix representation of the Hamiltonian, the matrix representation for the p̂k differential operator is
known in analytic form for all commonly used 1D basis function types. At the same time, the potential energy is, in
general, a complicated (3N − 6)-dimensional function, and its matrix elements can be computed only by numerical
integration, unless some special form is assumed for the function representing the potential energy (Sec. II B 6). For
special coordinate choices, the curvilinear kinetic energy operator can be wri�en in a closed analytic form, which can
be integrated by analytic expressions for the vibrational basis. But, if we aim for a ‘black-box-type’ vibrational procedure,
we consider Gkl , g̃, Bl , and U as general, vibrational-coordinate dependent functions, similar to the V potential energy,
which is integrated by numerical techniques. Furthermore, the coordinates which are most convenient for fi�ing
the potential, most commonly, interatomic distances, do not represent a good choice for doing the rovibrational
computation.

A 1D numerical integral,

∫ b

a

w(q)F (q) dq =

k
∑

i=1

wi F (qi) (51)

can be most efficiently calculated by some Gaussian quadrature. If an appropriate Gaussian quadrature rule (wi

weights and the qi points) exists for the a and b boundaries and the w weight function, then, the numerical result
is exact if F is at most a (2k − 1)-order polynomial of q, and 2k − 1 is called the (1D) accuracy of the Gaussian
quadrature [58]. A straightforward generalization of 1D quadratures to multi-dimensional integration relies on forming
a multi-dimensional, direct-product quadrature of the 1D rules,

∫ b1

a1

…

∫ bD

aD

w1(q1) …wD(qD)F (q1, … , qD) dq1 …dqD

≈
k
q
1
∑

i1=1

…

k
q
D
∑

iD=1

w1,i1 …wD,iD F (q1,i1 , … , qD,iD ) (52)

with the wk,ik weights and qk,ik points (k = 1,… ,D) corresponding to the 1D quadrature rule of the kth degree of
freedom. We note, that in some cases (for periodic coordinates), we do not use orthogonal polynomial functions, but
sine and cosine functions. Integrals of periodic functions can be very efficiently integrated by a trapezoidal (equidistant)
quadrature that converges exponentially fast with respect to the number of grid points.

In the vibrational methodology, a finite basis and finite grid representation used to construct the Hamiltonian
matrix is called the finite basis representation (FBR). Since we assume a general V function representing the PES, the
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Figure 4. Singular behaviour of a G matrix element, ‘G46’, for the example of the CH4·H2O dimer along the cosβ coordinate.The
definition of the intermolecular coordinates, (R, θ,φ,α,β, γ), is also shown. The cot-DVR points [64] (green) have a higher density
than Legendre DVR (red) near the singularities, cosβ = −1 and +1.

integration is in general non-exact, but the exact value of the integrals for the basis set can be approached (arbitrarily
close) by increasing the number of quadrature points.

For the special case of an equal number of basis functions and quadrature points for the kth degree of freedom
(Nbk = k

q
k ), it is possible to define a similarity transform of the finite basis with the prescription that the transformed

basis functions diagonalize the qk coordinate operator matrix. This choice results in the discrete variable representation
(DVR) of the basis, and the eigenvalues of the coordinate operator provide us with the DVR grid points [59–61]. This
representation became popular in the vibrational community in conjunction with the approximation

(qn
k )ij ≈ (qk ·… · qk )ij = qnk,iδij , (53)

which relies on multiple (n − 1) insertion of the truncated resolution of identity (in the finite basis), and allows us
to approximate any function of the coordinates by a diagonal matrix. For a finite grid (and basis), this is certainly an
approximation, which spoils the rigorous variational property (and convergence of the eigenvalues from ‘above’) of
the computations. In practice, beyond a certain minimal number of grid points, the eigenvalues properly converge to
their ‘numerically’ exact value upon a systematic increase of the number of grid points (equal to the number of basis
functions). Eq. (53) allows to straightforwardly include any complicated function of the coordinates in a ‘black-box’
fashion. Complicated functions of the coordinates, e.g., V , Gkl , g̃, Bl , U (Sec. II B 1), are ubiquitous in the vibrational
theory. These general coordinate-dependent functions do not need to be explicitly represented with polynomials of
the coordinates, but it is assumed that they are smooth functions of the coordinates and their change with the
coordinates is characterized by not too high-order polynomials (the maximal polynomial order is not too high), and
hence, the numerically exact results can be systematically approached by increasing the number of quadrature points.
This is generally the case for the V PES corresponding to an isolated electronic state over the dynamically relevant
coordinate range. Certain terms in the kinetic energy operator (Gkl , ...) may become singular over the dynamically
relevant coordinate range, which commonly happens in floppy molecular systems (singularity of some elements of the
G matrix is highlighted for the example of the methane-water dimer in Fig. 4). In practice, this singular behaviour can
be determined (either from the analytic formulation of the kinetic energy or) by numerically ‘measuring’ the behaviour
upon the change of the coordinates [31]. Most o�en an appropriate (Gaussian-)quadrature can be found, in which the
weight function, Eq. (51), corresponds to this singular behaviour. Ref. 31 presents an example, when this is not the case,
and the DVR-FBR approach used. Another option would be to deal with singularities using special functions of multiple
coordinates. Most importantly, singularities due to spherical motion can be treated by using spherical harmonics [62]
or Wigner D-functions [63], but this alternative would mean losing a product basis set (of one-particle basis functions),
which allows a general implementation.

The size of the direct-product basis and the direct-product grid grows exponentially with the number of active
vibrational degrees of freedom. The corresponding computational cost can be mitigated by efficient algorithmic and
implementation techniques, most importantly by (a) evaluating nested sums, e.g., Eq. (52), sequentially [63, 65–70]; (b)
using an iterative (Lanczos) eigensolver [71, 72], which requires onlymultiplication of a trial vector with theHamiltonian
matrix without storage or even explicit construction of the full matrix [41, 72, 73]. Nevertheless, even in themost efficient
implementation, a few vectors of the total size of the basis (and the grid) must be stored, which grows exponentially
with the vibrational dimensionality. The matrix-vector multiplication can be parallelized with the OpenMP protocol (as
it is described in Ref. 73, for example).

During the course of the Lanczos eigensolver iterations, one eigenpair is converged a�er the other. The computational
effort, which is determined by the number of matrix-vector products is determined by the number of required
eigenvalues, which means that, in practice, up to a few hundred (a thousand) states can be efficiently computed. The
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Figure 5. Complexity of the vibrational problem. In general, the PES is a multi-dimensional function.

Figure 6. Illustration of a possible strategy to attenuate the double-exponential scale-up of the vibrational problem: system-adapted
curvilinear coordinates, basis pruning, and grid pruning.

smallest (or largest) eigenvalues of the Hamiltonian matrix can be efficiently computed. To compute a spectral window
(from an arbitrarily chosen range of the entire spectrum), there is currently no known methodology that would be
more efficient than computing all states up to the desired range [73]. A truly efficient computation of solely a spectral
window is still an open problem.
An efficient implementation and available computing power typically allows us to use this simple, ‘direct’(-product)

methodology up to 6–10 fully coupled vibrational degrees of freedom [30, 50–53, 74].
To be able to solve the vibrational Schrödinger equation beyond this system size (or for challenging floppy systems

up to a higher energy range already with up to ca. 10 degrees of freedom), it is necessary to develop vibrational
methodologies which a�enuate the rapid increase of the computational cost with the dimensionality.

4. Computational bo�leneck of the variational vibrational methodology

While the electronic structure problem scales exponentially with respect to the basis size, the general vibrational
problem suffers from a double exponential scale-up: the computational effort grows exponentially fast with the
dimensionality with respect to the basis set size and also with respect to the integration grid size (Fig. 5).

This double exponential scale-up is due to the fact that the potential energy surface (PES) is in general a multi (3N−6)
dimensional function, for which the matrix representation must be constructed by means of numerical integration
(hence, the exponentially growing integration grid).
Over the past decade, there have been important developments in the quantum nuclear motion methodology that

make it possible to a�enuate the exponential scaling of the vibrational problem in a systematic manner. In the following
subsection (Sec. II B 5), we present a strategy that we used and developed during the past few years, and it is followed
by a short overview of other possible strategies in Sec. II B 6.

5. A possible strategy for efficient vibrational computations: Smolyak quadrature and pruning

A possible strategy to a�enuate the rapidly increasing computational cost of solving the vibrational Schrödinger
equation relies on a systematically improvable reduction of both the basis set size and the integration grid size.
The foundations of this direction were laid down by Avila and Carrington about a decade ago [75–77]. More recently,

we have ‘embedded’ this approach, originally used for semi-rigid systems, in computations involving both floppy and
semi-rigid parts [29, 31–33].
The strategy is highlighted in Fig. 6. An initial pre-requisite for practical usefulness of this approach is to find good

curvilinear coordinates, which make the kinetic and potential coupling small.
a. Towards optimal internal coordinates To be able to efficiently truncate the product basis set, Eq. (50), we need

good coordinates. For good coordinates, both the kinetic and the potential energy coupling is small. For semi-rigid
molecules, like methane, CH4, and ethene, C2H4, a reasonably good coordinate representation is immediately provided
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Figure 7. Optimized coordinates ensure small coupling (light blue).

by the commonly used rectilinear coordinates. By construction (vide infra) both the kinetic and the potential coupling
is zero at the equilibrium structure, and since the vibrations are of small amplitude, the coupling remains small over
the dynamically relevant coordinate range. Hence efficient basis pruning is possible, and grid pruning was introduced
for these systems used as examples in Refs. 75–77.

At the same time, finding optimal coordinates for floppy systems is non-trivial. Fortunately, a very broad and
chemically important class of floppy molecular systems have just a few large-amplitude motions (LAMs) and
many small-amplitude motions (SAMs), examples include, NH3, methanol, CH3OH [78], ethane, CH3CH3, ethanol,
CH3CH2OH, or glycine, NH2CH2COOH. For these types of systems, a simple strategy is to accept that a small
number of vibrational degrees of freedom, i.e., the LAMs, are strongly coupled (among themselves and with the
small-amplitude ones), and hence basis and grid truncation is inefficient. At the same time, the remaining coordinates
are small-amplitude motions for which good coordinates can be constructed (Fig. 7). For doing this, we need to abandon
the equilibrium structure as reference, and use instead a reference path (surface, volume, hyper-volume. . . ) which
depends on the LAMs. With respect to this (multi-dimensional) reference ‘path’, we can define linear combination
of the small-amplitude coordinates, which minimize both the kinetic and the potential energy coupling among the
small-amplitude modes. These ‘good’ small-amplitude coordinates are constructed similarly to the (curvilinear) normal
coordinates.[25, 79, 80]
Papušek and co-workers pioneered this direction of research starting from the 1970s with first applications for the

ammonia molecule described by one large-amplitude and many (5) small-amplitude degrees of freedom [25, 81]. For
the case of using rectilinear normal coordinates for representing the small-amplitude vibrations and a one-dimensional
path, the ‘so-called’ reaction-path Hamiltonian [82] has been formulated and used in many applications [82, 83],
whereas for two large-amplitude degrees of freedom, the reaction-surface Hamiltonian [84] has been formulated, but
never used in computations to the best of our knowledge.
Anharmonicities of one-dimensional bond-stretching and bending-type motions are be�er represented by the

curvilinear bond stretching- and bending-type coordinates, than by rectilinear ‘analogues’ [29], and this motivates
the definition of curvilinear normal (c-normal) coordinates, Q. Although the analytic kinetic energy operator is not
immediately available for these coordinates, the kinetic energy coefficients can be straightforwardly computed over a
grid using ideas of Sec. II B 1.

So, let us consider some physically motivated ‘primitive’ internal coordinates, ρi (bond distances, angles, etc.), to
describe the small-amplitude vibrations. Then, the curvilinear normal coordinates, Qk , are defined with respect to the
reference structure, ρ(0), obtained as the minimum of the PES for a selected value of the LAM coordinates, τ ,

ρ(τ ) = ρ(0)(τ ) + L(τ )Q , (54)

where the linear combination coefficient matrix, L, solves the L−1GFL = Λ equation with normalization LTG
−1L = I,

and thereby minimize the coupling both in the potential and in the kinetic energy near the ρ(0) reference structure [25].
G(ρ(0), τ ) is the small-amplitude block of the ‘big’Gmatrix, Eq. (34), corresponding to the reference structure for (ρ(0), τ ),
and (F )ij = ∂

2V/∂ρi∂ρj|(ρ(0) ,τ ) is the force-constant matrix at the same structure.
Whether it is necessary to determine L(τ ) for ‘every’ τ (in practice, carried out over a grid and interpolated or fi�ed

to have a functional representation) [29] or some (τ independent) averaged L̄ is sufficient for the relevant τ range of
the dynamics, depends on the system and energy range, and, in principle, should be always checked (numerically).
The more common rectilinear normal coordinates [24], Q̄i could be obtained as

r = r(0) + lQ , (55)

where l = T(0)L, and (T(0))ik = t
(0)
ik collects the vibrational t-vectors, Eq. (10), corresponding to the semi-rigid degrees of

freedom at structure (ρ(0), τ ).
For practical computations with c-normal coordinates, it is necessary to pay a�ention to the domain of the various

coordinates. The primitive internal coordinates are typically angle- and distance-type coordinates, and they are
calculated as linear combination of the c-normal coordinates, defined on the entire real axis, Qk ∈ R. ‘Mapping
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functions’ were used in Ref. 29 to ensure that the calculated coordinate values are in the mathematically correct range.

b. Basis pruning If good coordinates are found, which ensure that the coupling of the different degrees of
freedom is small (off-diagonal Hamiltonian matrix elements less than ca. 30 % of the corresponding diagonal elements),
then, some product basis functions are not required in order to converge the lowest energy levels and they can be
discarded [85, 86], assuming that reasonably good one-dimensional basis functions can be found. We note that for
basis (and grid) pruning, we use FBR, since (unfortunately), there is no known efficient way to prune a DVR, in which
the basis and grid representations are inherently coupled.

Discarding basis functions from a direct-product basis means that instead of writing the vibrational ansatz as

Ψi(q1, … , qD) =

nmax
1
∑

n1=1

…

nmax
D
∑

nD=1

ci,n1 ,…,nD

D
∏

k=1

ϕnk (qk ) , (56)

we choose an f (n1, … , nD) function of the basis function ‘excitation’ indices to define basis combinations of
one-dimensional basis functions, which are important,

Ψi(q1, … , qD) =
∑

f (n1 ,…,nD )≤b

ci,n1 ,…,nD

D
∏

k=1

ϕnk (qk ) , (57)

and discard the rest without loosing from the accuracy of the results. The simplest possible pruning function is the sum
of the basis excitation indices,

f (nq1 , …, nqD ) =

D
∑

i=1

nqi = nq1 + … + nqD . (58)

This function can be improved by weighting ‘down’ the contribution from the nqi excitation ‘quanta’ of the
lowest-energy (D − 1)th and Dth) vibrations, e.g.,

f (nq1 , …, nqD ) = nq1 + … +
1

2
nqD−1

+
1

3
nqD . (59)

For an a priori assessment of the importance of a basis function, the following considerations can be made. Regarding
the (un)importance of an |n′〉 basis state (n′ collects the basis indexes) in a wave function dominated by the |n〉 basis
state, the largeness (smallness) of the ratio,

〈n|Ĥ|n′〉
E
(0)
n − E

(0)
n′

≈ 0 (60)

can be indicative. The ratio is small, i.e., the |n′〉 basis function can be neglected, either if (a) the coupling through the
Hamiltonian matrix (nominator) is small, or (b) the zeroth-order energy difference (denominator) is large. The order of
magnitude of the Hamiltonian matrix element can be estimated by considering the Taylor expansion of the potential
and the kinetic energy wri�en in good coordinates. Pruning is almost a separate field within theoretical spectroscopy,
since there are infinitelymany possible choices (andmany possible physicallymotivated arguments). For example, there
are pruning choices that are effective only to compute fundamental vibrations and other pruning choices are useful to
compute thousands of states [87–89].

c. Grid pruning Reducing the basis size allows us to tackle part of the problem (Figs. 5, 6), the exponential scale-up
of the overall variational procedure can be a�enuated only if the integration grid is also pruned. A general approach
to the variational grid-size problem is provided by the non-product Smolyak quadrature grid approach first introduced
by Avila and Carrington [75] in vibrational computations, and, since then, it has been used to efficiently describe the
semi-rigid skeleton of a variety of systems [29, 31, 32, 76–78, 90].

In an abstract manner, we can write the direct-product quadrature rule as

Q̂(D, kmax
1 , … , kmax

D ) =

kmax
1
∑

i1=1

…

kmax
D
∑

iD=1

Q̂
iq1
q1 ⊗ · · · ⊗ Q̂

iqD
qD , (61)

to generate the sum in Eq. (52). This direct-product quadrature could be used to integrate all matrix elements of the full,
direct-product basis, Eq. (56), but it is ‘too good’ to integrate the matrix elements of a pruned basis. It is also important
to note that the basis pruning, Eq. (57), has some structure, determined by the f (n1, … , nD) function, and typically, the
products of multiple high-order polynomials are discarded. So, in the pruned basis, it is sufficient to integrate functions
including high-order polynomials for only one (or a few) degrees of freedom at a time. The products of the highest-order
polynomials for multiple (all) degrees of freedom are discarded in the pruned basis, and thus, the corresponding part
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of the grid, which would be necessary to integrate these high-order polynomial products can also be discarded.
A systematic formulation and implementation of this idea was provided by Avila and Carrington [75] by using a

non-product Smolyak quadrature, which can be defined as a linear combination of direct-product quadratures rules as

Q̂(D,H) =
∑

σσσsss (i)≤H

Ciq1 ,…,iqD
Q̂

iq1
q1 ⊗ · · · ⊗ Q̂

iqD
qD ,

iχ = 1, 2, 3, 4, … and χ = 1,… ,D, (62)

where H is a grid-pruning parameter and σσσsss(i) is the grid-pruning function, for which the simplest form is

σσσsss(i) = s(q1)(iq1 ) + … + s(qD )(iqD ) ≤ H. (63)

With this non-product grid, the number of points kept for the accurate integration of the potential and kinetic integrals
is (much) smaller than the direct product grid that wewould need to evaluate the same integrals with the same accuracy.
There are three factors that can be tuned to modify and improve the accuracy of the Smolyak integration grid, namely:
(a) The grid pruning functions, s(qk )(ik ), which must be monotonic increasing functions, i.e., s(qk )(ik ) ≥ s(qk )(ik − 1). (b)
The grid-pruning parameter, H. The larger H, the be�er the convergence, but the grid is larger. (c) The underlying grid
sizes of the nested quadrature rules. For a nested quadrature, all points of the jth quadrature rule are within the (j+1)th
quadrature rule. These quadratures do not have a Gaussian accuracy. For harmonic basis functions, we use a sequence
of quadrature rules explained by Heiss andWinschel [91]. Nested quadratures are necessary to have a structure for the
Smolyak grid, and thereby, to be able to calculate the Hamiltonian matrix-vector product in a sequential way.

So, we can write a multi-dimensional integral of an F (x1, … , xD) multivariate function as

∫

· · ·
∫

F (x1, … , xD) dx1 …dxD ≈

kmax
1
∑

k1=1

…

kmax
D
∑

kD=1

W Smol(k1, … , kD)F (x
k1
1 , … , xkDD ) , (64)

where W Smol(k1, … , kD) is the Smolyak weight for every (k1, … , kD) point. The Smolyak grid structure appears in the
summation indexes kmax

c as follows: k1 depends onH, kmax
2 depends onH and kmax

1 , kmax
3 depends onH, kmax

1 and kmax
2 , etc.

Due to this special structure, the matrix-vector products can be computed using sequential summations [31–33, 75, 77].
The implementation details of the matrix-vector multiplication in relation with a pruned Smolyak integration was
described in Refs. [31, 75, 77].

Finally, we note that Lauvergnat and co-workers use a somewhat different grid-pruning approach [78, 90, 92].

6. Other possible strategies for efficient vibrational computations

a. Other efficient variational strategies Instead of pruning the multi-dimensional direct product basis, it is possible
to reduce the number of multi-dimensional basis functions by ensuring that the number of one-particle basis functions
remains very small, which is possible by using optimized 1D basis functions in the direct-product expansion. This
idea is realized in the multi-configurational time-dependent Hartree approach (MCTDH) [93], which ensures that
the 1D basis functions are optimal by using time-dependent basis functions. Alternatively, one can build a compact
multi-dimensional basis set by using contracted basis functions obtained from solving the (reduced-dimensionality)
subsystems’ Schrödinger equation [94–100].
Similarly to the basis-size problem, there are different strategies to tackle the grid-size problem of multi-dimensional

numerical integration, including: (a) a Sum-Of-Products (SOP) expansion [101–103] of the Hamiltonian, which allows
to construct the multi-dimensional integrals from 1D integrals; and (b) a truncated n-mode expansion [86, 104–106] of
the Hamiltonian, which replaces the D-dimensional integrals with a combination of maximum n-dimensional integrals
(nllD).

Aiming for a precise representation of the PES, the number of terms in a sum-of-products expansion may grow
rapidly, and the overall computational cost increases significantly. Regarding the n-mode expansion, the variational
computations can be made very efficient up to 3-4-modes, but (going beyond) 4-mode coupling has been found to be
important for spectroscopic precision [107]. Furthermore, the multi-mode expansion of the PES is carried out about
a single reference structure (typically the equilibrium structure). For floppy systems this expansion is not efficient,
but the more general high-dimensional model representation (HDMR),[108] which has been successfully used for PES
development,[109, 110] can be used, in principle. The n-mode expansion about a single equilibrium structure can be
considered as a special case of HDMR (‘cut-HDMR’).

b. A non-variational approach A fundamentally different and promising direction is about fully abandoning the
variational approach and aiming to solve the eigenvalue equation as a differential equation using numerical (finite
element) methods. This approach, called ‘collocation’, has been introduced and pursued by Carrington and co-workers

               dc_1955_21



Edit Mátyus: From molecular spectroscopy to molecular physics (2022) 19

Figure 8. Vibrational parent assignment for a semi-rigid vs. floppy system.

for solving the vibrational Schrödinger equation over the past decade [111–117]. A great advantage of collocation is that
it does not require the computation of any integrals, so the computational burden (and unfavorable scale-up with the
vibrational dimensionality) of the evaluation of multi-dimensional integrals is completely avoided. It can be efficiently
used if a very good basis set is available. Its current technical ‘difficulty’ is connected with an efficient computation of
many eigenvectors for a (generalized) non-symmetric (real) matrix eigenvalue problem.

c. Prospects for quantum hardware As to further possible strategies, we mention the popular direction of
considering alternative hardware, i.e., use of future quantum computers for quantum dynamics [118]. For these types
of applications, it is convenient to construct the second-quantized form of the vibrational Hamiltonian following
Christiansen [118, 119]. For a QC implementation, it appears to be the most advantageous if we have a very sparse
matrix over the multi-dimensional basis constructed from one-dimensional basis functions, for which the entries can
be ‘assembled’ from lower-dimensional objects. The multi-dimensional (product) basis size does not enter the problem,
only the sum of the number of the one-dimensional basis functions (instead of their product, which builds up the
exponential growth of the ‘classical’ computational effort). If these conditions are realized, then, we may speculate that
a DVR representation will be advantageous (which we abandoned due the exponential scale-up of the matrix size over
the one-particle basis and grid). Furthermore, if a sufficiently accurate d < 3N − 6 dimensional HDMR representation
can be found for the system, then it is possible to cut the exponential growth of the storage (memory) requirement. So,
based on this speculation, a DVR-HDMR(d), where d is ideally not (much) larger than 4, may turn out to be an efficient
representation of the vibrational problem on a quantum computer.

7. Efficient rotational-vibrational computations

Let us assume that all vibrational states have been computed for the dynamically relevant energy range. If
the rovibrational coupling is small, then the rovibrational states with rotational quantum number J can be well
approximated with a linear combination of products of the vibrational eigenfunction and the rigid rotor functions,

Ψ
(JM)
i =

Nvib
∑

n=1

J
∑

K=0

∑

τ=0,1

c
(JM,i)
i,nKτψ

v
nΘ

(JM)
Kτ , (65)

and precise variational results can be obtained by diagonalizing a (small) rovibrational Hamiltonian matrix constructed
over the JM rotational basis (consisting of 2J + 1 basis functions) and the vibrational eigenstates up to the energetically
relevant region.

The rovibrational coupling can be made small for semi-rigid systems by using the Eckart frame as a body-fixed
frame, i.e., by choosing the ri coordinates (molecular orientation) so that they satisfy, in addition to the center of mass
condition, Eq. (6), also the rotational (Eckart) condition [28],

N
∑

i=1

mici × ri = 0 , (66)

where ci is some reference structure, typically the relevant equilibrium structure on the PES. Fulfillment of these
conditions ensures that the rovibrational coupling remains small near ci , which is sufficient for an efficient rovibrational
computation of not too high rotational and vibrational excitation of semi-rigid systems (see, for example, Ref. 120), for
which the dynamically relevant coordinate range remains in the proximity of the equilibrium structure.

Let us choose the ccci Cartesian reference configuration and solve the orientational Eckart condition at Cartesian
structures which belong to the δδδ(±k)

i Cartesian displacements bymaking small changes in the qk±ε internal coordinates
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Figure 9. Assignment of vibrational excitation based on counting the nodes of the wave function for the example of the formic acid
dimer. Reproduced from Ref. 30 with permission from the PCCP Owner Societies.

about the reference structure, ccci . So, we solve the Eckart condition at rrr (±k)
i = ccci ± δδδk :

N
∑

i=1

miccci × rrr
(+k)
i = 0 (67)

N
∑

i=1

miccci × rrr
(−k)
i = 0 . (68)

Then, the rovibrational block of the g matrix reads as

gD+a,k =

N
∑

i=1

mi[eeea × rrr i] ·
∂rrr i
∂qk

= eeea ·
N
∑

i=1

mi

[

rrr i ×
∂rrr i
∂qk

]

= lim
ε→0

eeea ·
N
∑

i=1

mi

[

rrr i ×
rrr
(+k)
i + rrr

(−k)
i − 2rrr i

ε

]

= lim
ε→0

1

ε

(

eeea ·
N
∑

i=1

mirrr i × rrr
(+k)
i + eeea ·

N
∑

i=1

mirrr i × rrr
(−k)
i

)

, (69)

which shows the known result that the Eckart condition ensures that the rovibrational coupling vanishes at the reference
point with ri = ci . Unfortunately, it is impossible to make the rovibrational coupling vanish over an extended part
(beyond finite many points) of the configuration space [27]. Nevertheless, it may be possible to reduce the rovibrational
coupling by numerical methods.
In order to make the rovibrational coupling small, GGGrv (= (GGGvr)T must be small, where the ‘rv’ and ‘vr’ blocks are

understood similarly to the blocks of g in Fig. 3. GGGrv depends on the choice of the ri body-fixed Cartesian coordinates,
and in principle, the coupling can be modified by defining an optimal shape-dependent body-fixed frame by rotating
the system from some initial orientation, r(0)i , by a 3D rotation, described by a rotation matrix C and parameterized by
three angles, which depend on the q shape coordinates, ααα(q) = (α(q),β(q), γ(q)):

rrr i = CCC[α(q)]rrr
(0)
i . (70)

C. Assignment of the rovibrational states

Variational (ro)vibrational computations provide list of energies and corresponding wave functions (stationary states)
that can be used to simulate spectral pa�erns (Sec. II D 1) or time-dependent phenomena [121, 122]. It is nevertheless
a relevant aim to characterize the computed (hundreds or thousands of) stationary states.
A simple characterization of a state is possible by visual inspection of (1D and 2D cuts of) its wave function and

counting the nodes (nodal surfaces), which carry information about the vibrational excitation along the relevant
degrees of freedom. As an example, we show 2D cuts of the formic acid dimer vibrational states corresponding to the
fundamental vibration and overtones of the twisting mode (Fig. 9) [30]. Node counting is (a) least model independent
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Figure 10. Assignment of Kτ labels of the rotational functions to the intermolecular-rotational states of (CH4)2 computed with
GENIUSH using the 6D intermolecular coordinates (similar to methane-water in Fig. 4) and the PES of Ref. 124.

way of characterizing a wave function.

Further assignment options include ‘measuring’ the similarity of the variational wave function with simple models
(of rotation and vibration). In the most common representation, a rovibrational wave function can be considered as a
linear combination of rigid-rotor or Wang functions and the lowest Nvib vibrational eigenfunctions used as a vibrational
basis, Eq. (65).

1. Vibrational parent analysis

If there is a single, dominantΨv
n vibrational state in the expansion, Eq. (65), then we may say that it is the ‘vibrational

parent’, from which we can ‘derive’ the rovibrational state by ‘rotational excitation’. As a measure for this property, the
rigid-rotor decomposition (RRD) [123] scheme was defined, which amounts to computing the overlap between themth
rovibrational wave function Ψ (J>0)

m , with the product of a vibrational wave function and a rigid-rotor function,

SnKτ ,m = 〈ψv
nΘ

(JM)
Kτ |Ψ (J>0)

m 〉 . (71)

Figure 8 exemplifies that the low-energy states shown in the figure for the (semi-rigid) water molecule have clear,
dominant RRD coefficients, whereas the floppy methane-argon dimer (from a 3D computation [54]) strong mixing is
visible already in the low-energy range. We note that the RRD coefficients depend on the body-fixed frame, which is a
computational ‘parameter’ (Sec. II B 7).

2. Rotational parent analysis

Similarly to the vibrational parent assignment, we can ask whether there is any dominant Θ (JM)
Kτ Wang function in

the Eq. (65) expansion of a rovibrational state. This question may be relevant even if there is no dominant vibrational
parent, which is o�en the case for floppy systems.

As a measure of the importance of Θ (JM)
Kτ in the rovibrational wave function, we have integrated the product of the

vibrational ‘sub-blocks’ (corresponding to different Wang functions) of the rovibrational wave function with respect to
the q vibrational coordinates,

κ̃(JM)
Kτ = 〈ψ(JM)

Kτ |ψ(JM)
Kτ 〉q . (72)

To have a measure only for the K label, we can sum for the τ = 0, 1 contributions

κ(JM)
K =

∑

τ=0,1

κ̃(JM)
Kτ . (73)

Due to the normalization of the rovibrational wave function
∑J

K=0 κ
(JM)
K = 1.

Figure 10 shows for the example of the lowest-energy states of the (CH4)2 dimer, for which the equilibrium structure
on the used PES [124] is a symmetric top. The Kτ labels can be unambiguously assigned up to J = 1(2), but beyond
J > 2 this is not always possible due to the strong rovibrational coupling.
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6D intermolecular states, |ΨJ=0
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Figure 11. Coupled-rotor decomposition coefficients computed for the J = 0 states of the (CH4)2 dimer.

3. Coupled-rotor decomposition

For the analysis of rovibrational states of floppymolecular dimers, it is useful to assign subsystems’ angular momenta
to the dimer state according to the coupling of the angular momenta of monomer A, (jA), monomer B, (jA), and the
effective diatom, Λ to a dimer state with JM angular momentum quantum numbers corresponding to the overall
rotation, J, and its projection to a space-fixed axis, JZ , (Fig. 11a)

[[jAkAτA , j
B
kBτB]j ,Λ]JM . (74)

Since during the computations performed with GENIUSH [51–54] (with DVR), we did not use monomer rotational basis
functions, we computed the overlap, called coupled rotor decomposition (CRD) [53], of the intermolecular rovibrational
state, Ψ (JM)

m,k and the coupled rotor (CR) function with a fixed monomer distance and without the PES (Fig. 11a),

CRD(J)
nm =

NR
∑

r=1

∣

∣

∣

∣

∣

J
∑

k=−J

NΩ
∑

o=1

Ψ̃
(J)
m,k (ρr ,ωo) · ϕ̃(J)

n,k (ωo)

∣

∣

∣

∣

∣

2

, (75)

where Ψ̄ (J)
m is the mth rovibrational state and ϕ̄(J)

n is the nth CR function in the DVR representation used in the cited
references.
The CRD overlaps were used to assign the rovibrational states to irreducible representations of the molecular

symmetry (MS) group, by using the formal symmetry properties of the CR functions [53, 54].

D. Simulating rovibrational infrared and Raman spectra

We can consider interaction of (non-relativistic) molecular ma�er with external electromagnetic fields, not accounted
for in the description, by using the rovibrational eigenstates as a basis. To account for the effect of ‘external
fields’, weak-field spectroscopies, strong-field interactions, or for corrections ‘within the system’ beyond the Coulomb
interactions, i.e., hyperfine [125, 126], we have implemented the evaluation of the transition moments connecting the
rovibrational statesΨ rv

J′M′l′ andΨ
rv
J′M′l′ , for a T

(LF)
A general tensorial property of rankΩ , where A collects the LF Cartesian

indexes, according to [127]

〈

Ψ
(J′M′)
i′

∣

∣

∣ T
(LF)
A

∣

∣

∣Ψ
(JM)
i

〉

=

Ω
∑

ω=0

M(J′M′ ,JM)
Aω K(J′i′ ,Ji)

ω (76)

with

M(J′M′ ,JM)
Aω = (−1)M

′
√

(2J′ + 1)(2J + 1)

×
ω
∑

σ=−ω

[U(Ω)]−1
A,ωσ

(

J ω J′

M σ −M′

)

(77)
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and

K(J′i′ ,Ji)
ω =

∑

n,K ,τ
n′ ,K ′ ,τ ′

[c
(J′ ,i′)
n′K ′τ ′]

∗c(J,i)nKτ

∑

±K ′ ,±K

[d
(τ ′)
K ′ ]∗d (τ )

K

× (−1)K
′

ω
∑

σ=−ω

∑

a

(

J ω J′

K σ −K ′

)

U(Ω)
ωσ,a 〈ψv

n′ | T (BF)
a |ψv

n〉 ,

(78)

where c(J,i)nKτ are the linear combination coefficients of Eq. (65) and d (τ )
K correspond to theWang combination coefficients,

Eq. (49). The vibrational integrals 〈ψv
n′ | T (BF)

a |ψv
n〉 are computed in the body-fixed (BF) frame using (the DVR or FBR)

vibrational wave functions ψv
n and the T (BF)

a ‘property’ hypersurface available from ab initio electronic structure theory
(in a fi�ed or interpolated functional form). The Kω coefficients correspond to the rank-Ω tensor in the body-fixed
frame and the corresponding rovibrational wave functions, so they can be evaluated separately and stored for every ω
value.

This implementation has been reported and was tested for the example of electric dipole transitions (for Ω = 1) of
the methane-water complex [51] in comparison with the transition moments reported by Wang and Carrington [63].

In what follows, the expressions are summarized for rovibrational infrared (Ω = 1) and Raman (Ω = 2) experiments.

1. Infrared transition moments

Intensities of infrared spectroscopy experiments can be simulated by using the electric dipole moment, which is an
Ω = 1 rank property, including the U(1)

ωσ,α matrix elements [51, 127]. The working formula for dipole moment transitions
is obtained a�er some manipulation from the general expressions, Eqs. (76)–(78), [127, 128]

R1 = gns
∑

M,M′

∑

A=X ,Y ,Z

|
〈

Ψ
rv
J′M′i′

∣

∣ T
(LF)
A

∣

∣Ψ
rv
JMi

〉

|2

= gns(2J
′ + 1)(2J + 1)

×
∣

∣

∣

∣

∣

∑

n,K ,τ
n′ ,K ′ ,τ ′

[c
(J′ ,i′)
n′K ′τ ′]

∗c(J,i)nKτ

∑

±K ′ ,±K

[d
(τ ′)
K ′ ]∗d (τ )

K

× (−1)K
′

1
∑

σ=−1

∑

α

(

J 1 J′

K σ −K ′

)

U(1)
ωσ,α 〈ψv

n′ |µ(BF)
α |ψv

n〉
∣

∣

∣

∣

∣

2

.

2. Raman transition moments

Another important technique in rovibrational spectroscopy is Raman sca�ering. For computing Raman intensities,
the relevant property is the rank Ω = 2 polarizability matrix, α. It is convenient to distinguish to types of transition
moments, the isotropic (independent of the molecular orientation) with ω = 0 and the anisotropic with ω = 2
components. By using the general expressions in Eqs. (76)–(78), the isotropic (ω = 0) component can be wri�en as
[129]

R0 = δJJ′gns(2J
′ + 1)(2J + 1)

×
∣

∣

∣

∣

∣

∑

n,K ,τ
n′ ,K ′ ,τ ′

[c
(J′ ,i′)
n′K ′τ ′]

∗c(J,i)nKτ

∑

±K ′ ,±K

[d
(τ ′)
K ′ ]∗d (τ )

K

× (−1)K
′
∑

ab

(

J 0 J′

K 0 −K ′

)

U
(2)
00,ab 〈ψv

n′ |α(BF)
ab |ψv

n〉
∣

∣

∣

∣

∣

2

,

(79)

where the 3J-symbol vanishes unless J = J′, leading to the selection rule ∆J = 0 for the isotropic transition moments,
incorporated in the equations with the Kroneker delta, δJJ′ . For the anisotropic contribution (ω = 2), the working
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equation is

R2 = gns(2J
′ + 1)(2J + 1)

×
∣

∣

∣

∣

∣

∑

n,K ,τ
n′ ,K ′ ,τ ′

[c
(J′ ,i′)
n′K ′τ ′]

∗c(J,i)nKτ

∑

±K ′ ,±K

[d
(τ ′)
K ′ ]∗d (τ )

K

× (−1)K
′

2
∑

σ=−2

∑

ab

(

J 2 J′

K σ −K ′

)

U
(2)
2σ,ab 〈ψv

n′ |α(BF)
ab |ψv

n〉
∣

∣

∣

∣

∣

2

.

(80)

The non-zero matrix elements of U(2)
ωσ,αβ have been collected in Ref. 127. The non-vanishing value of 3J-symbols gives

the ∆J = 0, 1, 2 selection rules for the anisotropic component. The current procedure makes it possible to compute
polarizability transitionmoments connecting rovibrational states of floppy systems that are relevant for high-resolution
Raman sca�ering experiments.

E. Summary and conclusions

We have reviewed the theoretical and methodological (ro)vibrational framework developed by ourselves or in close
collaboration with colleagues over the past decade. The reviewed methodology is implemented in GENIUSH program,
which was used to carry out the highlighted computations.
The focus of this chapter was on (ro)vibrational spectroscopy of isolated floppy molecules and complexes, presenting

the numerically exact solution of the (ro)vibrational Schrödinger equation on a potential energy surface, analysis of the
computedwave function, assignment of the computed stationary states, and evaluating electric dipole and polarizability
transition moments for simulating (weak-field) high-resolution infrared and Raman spectra of (semi-rigid or) floppy
molecular systems and complexes. The methodology can be straightforwardly extended to compute molecules in cages
and at surfaces.
An important methodological challenge, which is currently at the focus of our main efforts, is the increase of the

vibrational dimensionality of feasible computations. Exact quantum dynamics computations of molecular systems
with up to 20–30 fully coupled vibrational degrees of freedom, allowing for a few large-amplitude motions, which
carry lots of interesting chemistry, will be an important next milestone to reach in the next couple of years. We
aim to pursue these developments by developing general, N-atomic, D-dimensional approaches, i.e., pushing the
frontier of a black-box-type rovibrational research program. Thereby, as available computational power increases, in
parallel with the methodological developments, rovibrational computations of spectroscopic quality become possible
for higher-dimensional (> 12D) floppy molecular systems.

III. THE BETHE–SALPETER QED WAVE EQUATION FOR BOUND-STATE COMPUTATIONS OF ATOMS AND
MOLECULES

Interactions in atomic and molecular systems are dominated by electromagnetic forces and the theoretical framework
must be in the quantum regime. The physical theory for the combination of quantummechanics and electromagnetism,
quantum electrodynamics has been ‘established’ by the mid-twentieth century, primarily as a sca�ering theory. To
describe atoms and molecules, it is important to consider bound states. In the non-relativistic quantum mechanics
framework, bound states can be efficiently computed using robust and general methodologies with systematic
approximations developed for solving wave equations. With the sight of the development of a computational quantum
electrodynamics framework for atomic and molecular ma�er, the field theoretic Bethe–Salpeter wave equation
expressed in space-time coordinates, its exact equal-time variant and emergence of a relativistic wave equation
is reviewed. A computational framework, with initial applications and future challenges in relation with precision
spectroscopy, is also highlighted based on Ref. 130.

A. Introduction: a historical line-up

Dirac’s one-electron space-time equation was an ingenious departure from Schrödinger’s time-dependent wave
equation to have a Lorentz covariant description, but it was strange due to the introduction of hole theory that seemed
a bit artificial [6, 7]. In a recorded discussion from 1982, Dirac modestly admi�ed to Hund that for him, ‘it took a year,
perhaps two, to understand the role of the negative-energy states’ [131].
Breit a�empted a two-particle generalization of Dirac’s one-electron theory in a series of papers between

1928 and 1931 [8–10, 132], by adopting Darwin’s 1920 calculation of the classical electromagnetic interaction for
two moving charges [133] and the quantum mechanical velocity operator obtained with Dirac’s formalism [10].
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Already from the beginning, it was apparent that the Breit equation was not Lorentz covariant. Nevertheless, Breit
used this ‘quasi-relativistic’ equation in a perturbation theory approach imposing the Pauli approximation to the
four-(sixteen-)component wave function. Good agreement with experiment was obtained a�er discarding a term from
the result ‘by hand’ [9, 132]. This procedure was later explained based on Dirac’s hole theory by Brown and Ravenhall
[134].
The problem, called Brown–Ravenhall (BR) disease, related to the artificial coupling of the positive- and

negative-energy states of Dirac’s theory when naïvely applied to two-particle systems, survived also in the modern
literature and it is commonly used to explain the failure of the two-(many-)particle Breit equation. A recent numerical
study demonstrated that bound states of helium-like two-electron systems represented by the Breit equation have
(unphysical) finite lifetimes (of order α3Eh, where α is the fine-structure constant) [135, 136]. It has been also
discussed [137] that there was no BR dissolution problem for isolated two-particle systems, like positronium, when
modelled with the Breit equation, and it was numerically demonstrated by a finite-element computation [138] that the
energy levels of the two-particle Breit equation (with Coulomb interactions, no external fields) are ‘stable’. Nevertheless,
the two-particle Breit equation is still incorrect, or in other words, ‘correct only up to order α2Eh’ [136].
A consistent and Lorentz covariant many-particle theory was put forward by the development of quantum

electrodynamics (QED). As a natural continuation of Feynman’s two papers in 1949 on the reinterpretation of the
mathematical solutions of the Dirac equation [139] and the development of the space-time approach to quantum
electrodynamics [140], Salpeter and Bethe in 1951 published a Lorentz-covariant wave equation for two interacting
particles (with stating that generalization to more than two particles is straightforward) [141]. It is interesting to note
that the same equationwaswri�en at the end of a paper without explanation byNambu already in 1950 [142], and it was
formulated by Schwinger [143] and also by Gell-Mann and Low [144] during 1951. In 1952, Salpeter used this equation
for the hydrogen atom in combination with perturbation theory and an instantaneous interaction kernel. Probably, this
was the first formulation of the exact equal-time equation for two-particle systems [145]. Salpeter reported results for
the hydrogenic case (of one heavy and one light particle, M ≫ m) up to the α3(m/M)Eh order, and he stated that the
calculation can be generalized to any masses. In 1954, Fulton and Martin calculated the energy levels for an arbitrary
two-fermion system, such as positronium, up to α3Eh order [146].

In 1958, Sucher’s PhD thesis represented another important step forward using the formalism and extending
Salpeter’s work to a two-electron system in an external Coulomb field, for the example of the helium atom [147].
Sucher’s final α3Eh-order correction formulae were identical with those reported by Araki [148] a year earlier, but we
can build on the fundamental ideas explained in Sucher’s work for further developments.
In 1974, Douglas and Kroll [149] started their paper on the α4Eh-order corrections to the fine-structure spli�ing of

helium with a good review of Sucher’s work by extending the formalism with explicitly writing also the radiative terms
in the wave equation (Sucher only highlighted the steps at the end of his work).
Then, in 1989, Adkins elaborated this direction for positronium, still relying on a perturbative expansion with respect

to the non-relativistic reference for practical calculations [150]. During the 1990s, Zhang worked on higher-order
corrections to the fine-structure spli�ing (α5Eh) and energy levels (α4Eh) of helium.
Pachucki initiated a different approach starting from the late 1990s [151–155]. This approach is based on performing

a Foldy–Wouthuysen transformation [156] of the Dirac operator in the Langrangian density—thereby linking the
formalism to the non-relativistic theory from the outset, and then, collecting corrections to the poles of the equal-time
Green function [157] to the required α order. In 2006, Pachucki reported the complete α4Eh-order corrections to the
energy levels of singlet helium [158], thereby extending the 1974 work of Douglas and Kroll valid only for triplet states,
as well as work from Yelkhovsky [159] and computations from Korobov and Yelkhovsky [160] in 2001 for α4Eh-order
corrections of singlet helium. In 2016, the completeα4Eh-order corrections derived by Pachucki were used for the ground
electronic state of the H2 molecule with fixed protons [161].Most recently, the ‘Foldy–Wouthuysen–Pachucki’ approach
has been used to derive α5Eh-order contributions for triplet states of helium [162, 163].
In contrast to using a non-relativistic reference (as in all previous work), we aim for a relativistic QED approach,

in which some (well-defined, many-particle) relativistic wave equation is first solved to high precision and used as
a reference for computing ‘QED’ (retardation, pair, and radiative) corrections up to a required accuracy. Such an
approach appears to be feasible along the lines formally started by Bethe, Salpeter, Sucher, Douglas and Kroll. These
authors performed calculations by hand, so in the end, they had to rely on approximations based on the non-relativistic
formalism. Nowadays, we can use the power of modern computers to first numerically solve a many-particle relativistic
wave equation, and then, compute corrections to the relativistic energy. It is also necessary to add that there have been
several articles on understanding and solving the original, space-time Bethe–Salpeter (BS) equation [164–168].

For atomic and molecular computations, the exact equal-time form of the BS equation, as introduced by Salpeter
and Sucher [145, 147], appears to be more promising. In this approach, a two-particle relativistic Hamiltonian and
corresponding wave equation emerges, for which numerical strategies for solving wave equations, including the
variational method, can be used. During the 1980s, Sucher [137, 169, 170] published review articles about the (formal)
connection of the equal-time BS wave equation with the relativistic quantum chemistry framework and computational
methodologies, e.g., [171, 172]. In this context, it is necessary to mention the excellent book of Lindgren who further
developed these ideas for orbital-based many-body applications in chemistry [173].
We consider the renormalized, ‘mixed gauge’, two-particle Bethe–Salpeter equation as the starting point for a

theoretical framework of atoms and molecules and with relevance for spectroscopic applications. This theoretical
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framework is reviewed in the first part of the paper by relying on work by Sucher [147], Douglas and Kroll [149],
as well as Salpeter [145]. The second part of the chapter highlights our recent work [174–179], algorithmic details of a
computer implementation and numerical results for two spin-1/2 particles with and without a fixed, external Coulomb
field, i.e.,with relevance for relativistic Born–Oppenheimer (BO) as well as relativistic pre-Born–Oppenheimer (pre-BO)
computations. Although in the present review, we focus on the theory and a numerical procedure for two-particle
systems, we mention Sucher’s series of papers [137, 169, 170] from the 1980s implying a possible generalization and
Broyles’ work from 1987 [180] about presenting a line of thoughts connecting field theory and an N-particle no-pair
Dirac–Coulomb–Breit wave equation.
Regarding a relativistic QED approach, we also mention the quasi-potential method, which originates from Logunov,

Tavkhelidze, and Faustov working during the 1960-70s [181, 182], and the corresponding two-time (equal-time) Green
function idea developed by Shabaev [157]. Comparison of the Salpeter–Sucher approach with the quasi-potential
method is le� for future work.

B. The Bethe–Salpeter equation and the Salpeter–Sucher exact equal-time approach

1. Introductory ideas and propagators

The Dirac equation for a particle of mass m1 and x1 = (r1, t1) space-time coordinates is

[

i
∂

∂t1
− H

(0)
1

]

ϕ(1)
n (x1) = 0 (81)

with the free-particle Hamiltonian

H
(0)
1 = −iα1∇1 + β1m1 (82)

and the α1 and β1 Dirac matrices. Feynman pointed out in 1949 [139] that instead of working with the Hamiltonian
equation, it is o�en more convenient to use the corresponding Green function or propagator

[

i
∂

∂t1
− H

(0)
1

]

G
(0)
1 (x1, x

′
1) = iβ1δ(x1 − x ′1) . (83)

For a Dirac particle in an external scalar field, Φ1

[

i
∂

∂t1
− H1

]

G1(x1, x
′
1) = iβ1δ(x1 − x ′1) (84)

with

H1 = H
(0)
1 + z1eΦ1 = H

(0)
1 + U1 , (85)

z1 ∈ Z and e standing for the charge number of the active particle and the elementary charge, respectively. Simple
calculation [139] shows that the G1 propagator can be obtained from the G

(0)
1 free-particle propagator through the

integral equation (corresponding to subsequent interaction events of the particle with the external field) as

G1(x1, x
′
1) = G

(0)
1 (x1, x

′
1)− i

∫

G
(0)
1 (x1, y1)β1U1(y1)G1(y1, x

′
1) dy1 . (86)

According to Feynman’s combination of the electronic and positronic theory in a consistent manner [139], the
propagator is expressed with the eigenvalues and eigenfunctions of the Dirac Hamiltonian as the sum over
positive-energy (electronic) states moving forward in time, and the negative sum over negative-energy (positronic)
states moving backward in time. Feynman defined the free-particle propagator this way corresponding to Eq. (83). The
arguments can be taken over for a particle in an external field, Eq. (84), which is known as the ‘Furry picture’ [183], and
the propagator is

G1(x1, x
′
1) =















∑

E
(1)
n >0

φ(1)n (r1)φ̄
(1)
n (r′1)e

−iE (1)
n (t1−t′1 ) , t1 > t ′1

− ∑

E
(1)
n <0

φ(1)n (r1)φ̄
(1)
n (r′1)e

−iE (1)
n (t1−t′1 ) , t1 < t ′1

, (87)

where φ̄(1)n = φ(1)∗n β1 is the Dirac adjoint. The G
(0)
1 (x1, x

′
1) free-particle propagator is recovered for eigenvalues and

eigenfunctions of the Dirac equation with Φ1 = 0. Regarding the external field in the present work, only the scalar
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potential due to the Coulomb field of the fixed nuclei will be relevant, e.g., for helium-like systems with the nucleus
fixed at the origin and with Z nuclear charge number, the interaction energy is

U1(r1) = z1
Zα

|r1|
, (88)

where α = e2/(4π) is the fine-structure constant in natural units (~ = c = ǫ0 = 1).

To describe a two-particle system, we can consider the G(x1, x2; x
′
1, x

′
2) two-particle propagator or amplitude which

describes that particles 1 and 2 get from x ′1, x
′
2 to x1, x2 space-time points. For non-interacting particles, the two-particle

propagator is the simple product of the one-particle propagators, G1(x1, x
′
1)G2(x2, x

′
2). For interacting two-particle

systems Salpeter and Bethe [141], following Feynman [139, 140], devised an integral equation, called Bethe–Salpeter
(BS) equation,

G(x1, x2; x
′
1, x

′
2) = G1(x1, x

′
1)G2(x2, x

′
2)

− i

∫

dy1dy2dy
′
1dy

′
2 G1(x1, y1)G2(x2, y2)K (y1, y2; y

′
1, y

′
2)G(y

′
1, y

′
2; x

′
1, x

′
2) , (89)

where K is the interaction function. In particular, K must contain only the so-called ‘irreducible’ interactions, since the
corresponding consecutive, so called ‘reducible’, interactions are already included, ‘iterated’ to all orders by the integral
equation.

The simplest interaction function, K (1), corresponds to the single photon exchange (see also Sec. III B 3) with γµi =
βi(αi , 1)

K (1)(x1, x2; x
′
1, x

′
2) = αz1z2γ1µγ2νD

µν
F [(x1 − x2)

2]δ4(x1 − x ′1)δ
4(x2 − x ′2) , (90)

where Dµν
F is the photon propagator, which takes a simple, manifestly covariant form in Feynman gauge,

D
µν
F [(x1 − x2)

2] = −
∫

d4k

(2π)4
gµν

k2 + i∆
e−ik·(x1−x2) . (91)

To describe the inter-particle interaction in atoms and molecules, it is more convenient to use the Coulomb gauge, in
which the interaction is the sum of the Coulomb (C, the dominant part) and the transverse (T) contributions,

K (1)(x1, x2; x
′
1, x

′
2) = [K

(1)
C (x1, x2) + K

(1)
T (x1, x2)]δ(x1 − x ′1)δ(x2 − x ′2) (92)

with

K
(1)
C (x1, x2) = αz1z2β1β2

∫

d4k

(2π)4
4π

k2
e−ik(x1−x2) = β1β2

αz1z2
|r1 − r2|

δ(t1 − t2) (93)

K
(1)
T (x1, x2) = αz1z2β1β2

∫

d4k

(2π)4
4πα̃i

1α̃
i
2

ω2 − k2 + i∆
e−ik(x1−x2) , (94)

where

α̃i(k) =

(

δij − k ik j

k2

)

αj (95)

refers to the transverse components of α perpendicular to k. (In Eq. (93), we highlighted the well-known
coordinate-space form of the Coulomb interaction, the primarily important interaction term in quantum chemistry).

If radiative corrections are accounted for, the one-electron (one-particle) propagator is replaced by [141, 147, 149, 184]

G′
1 = G1 + G1Σ1G1 + G1Σ1G1Σ1G1 + … = G1 + G

′
1Σ1G1 , (96)

or equivalently,

(G′
1)
−1 = G−1

1 − Σ1 , (97)

where Σ1 is the sum of the one-electron self-energy contributions. Douglas and Kroll [149], following the last chapter
of Sucher’s work [147], formulated the two-electron equations by formally including all radiative corrections. This
formulation also relies on the work of Mathews and Salam [185] who explained that the Bethe–Salpeter equation can
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be renormalized with the replacement of G′
1, G

′
2, γ1µ, γ2µ, and the DF photon propagator by [147, 149]

G′
1
∗
= G1 + G1Σ

∗
1 G1 + … , (98)

Γ
∗
1µ = γ1µ + Λ∗

1µ , (99)

D∗
F = DF + DFΠ

∗DF + … . (100)

We note that Mathews and Salam mostly formulated their renormalization approach based on series expansion,
whereas Källen [186] and Lehmann [187] defined renormalization terms without the use of power series expansion
in the interaction constant. Karplus and Kroll [188] and Jauch and Rohrlich [189] carried out explicit calculations for
the Σ∗

1 , Π
∗, Λ∗

1µ renormalized electron self-energy, photon self-energy, and vertex correction operators to order α for
the case of no external potentials.

For renormalization, it is necessary to work in the Feynman gauge, Eq. (91). At the same time, binding of the particles
in atomic and molecular systems is dominated by the Coulomb interaction, Eq. (93), which can be identified by writing
the interaction operators in the Coulomb gauge.

According to Sucher’s arguments [147, 149] (following the field theoretical derivation of the BS equation by
Gell–Mann and Low [144]), it is valid to perform renormalization of the radiative terms in the Feynman gauge, and
then, use the resulting expressions for the interacting problem, wri�en in the Coulomb gauge. This special procedure
is known as the mixed-gauge representation.

2. Coordinate and Fourier transformation: the total and relative time and energy

Eq. (89) can be rewri�en for the wave function of a bound state (e.g., Ch. 6 of [190] or Ch. 12 of [191]), formally
including now also the radiative effects [149], as

ΨT(x1, x2) = −i

∫

dy1dy2dy
′
1dy

′
2 G

′
1(x1, y1)G

′
2(x2, y2)K (y1, y2; y

′
1, y

′
2)ΨT(y

′
1, y

′
2) , (101)

or in short,

ΨT = −iG′
1G

′
2KΨT , (102)

which, using Eq. (97), can be rearranged to (we note the missing imaginary unit in Ref. 149)

G−1
1 G2

−1
ΨT = −i

[

K + iG−1
1 Σ2 + iG2

−1
Σ1 − iΣ1Σ2

]

ΨT = −iK ′
ΨT , (103)

where the full ‘interaction’ kernel, containing also the radiative corrections, was defined as

K ′ = K + iG−1
1 Σ2 + iG2

−1
Σ1 − iΣ1Σ2 . (104)

From rearrangement of the operator form of Eq. (84), G−1
1 = −iβ1[i∂/∂t1 − H1] and using β1β1 = β2β2 = 1, we obtain

[

i
∂

∂t1
− H1

] [

i
∂

∂t2
− H2

]

Ψ = iβ1β2K
′
ΨT , (105)

which is a (space-time) wave equation which accounts for (non-radiative) interactions and radiative corrections on an
equal footing.

Since Eq. (105) includes the ‘own’ time for both particles, but the U external interaction (if any) is time independent
in our frame of reference, we can write the two-particle wave function as

ΨT(x1, x2) = e−iET
Ψ (r1, r2, t) , (106)

where the average (‘total’) time and relative time was introduced as

T =
1

2
(t1 + t2) and t = t1 − t2 . (107)

It is important to note that E is the total energy of the two-particle system and it corresponds to the T total time,
Eq. (106). Similarly to T and t , we define

T ′ =
1

2
(t ′1 + t

′
2) and t ′ = t ′1 − t ′2 . (108)
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Then, we obtain the following equation for the Ψ (r1, r2, t) space- and relative-time wave function,

[

E

2
+ i

∂

∂t
− H1

] [

E

2
− i

∂

∂t
− H2

]

Ψ (r1, r2, t)

= iβ1β2

∫

K ′
t (r1, r2, t ; r

′
1, r

′
2, t

′)Ψ (r′1, r
′
2, t

′) dr′1dr
′
2dt

′ (109)

with the interaction kernel depending only on the relative time variables,

K ′
t (r1, r2, t ; r

′
1, r

′
2, t

′) =

∫ +∞

−∞
K ′(x1, x2; x

′
1, x

′
2) e

iE(T−T ′) dT ′ , (110)

where it is exploited that the external field is time independent, i.e., K ′(x1, x2; x ′1, x
′
2) depends on T and T ′ only through

the T ′ − T difference, and T represents only a constant shi� for the T ′ integration variable.

Both Sucher [147] and Douglas and Kroll [149] continued the calculation in momentum space, and we follow this line
of thought. The r1, r2 space coordinates of the two particles and the t relative time are replaced with the p1,p2 momenta
and the ε relative energy. The relative-time and relative-energy wave functions are connected by the seven-dimensional
Fourier transformation,

Ψ (r1, r2, t) =
1

(2π)
7
2

∫

R7

ei(p1r1+p2r2−εt) ψ(p1,p2, ε) dp1dp2dε , (111)

while the interaction kernel in momentum space is defined as

K′(p1,p2, ε,p
′
1,p

′
2, ε

′) =

β1β2
(2π)6

∫

e−i[(p1r1+p2r2−εt)−(p′

1r
′

1+p
′

2r
′

2−ε′t′)]K ′
t (r1, r2, t , r

′
1, r

′
2, t

′) dr1dr2dtdr
′
1dr

′
2dt

′ , (112)

and it acts as an integral operator,

K′f (p1,p2, ε) =

∫

K′(p1,p2, ε,p
′
1,p

′
2, ε

′) f (p′
1,p

′
2, ε

′) dp′
1dp

′
2

dε′

−2πi
. (113)

Then, Eq. (109) can be rewri�en as

Fψ(p1,p2, ε) = K′ψ(p1,p2, ε) (114)

and

F = F1F2 (115)

with

F1 =
E

2
+ ε−H1(p1) (116)

F2 =
E

2
− ε−H2(p2) (117)

and their inverse define the one-particle propagators (for the E total and ε relative energy), which will be used in later
sections,

S1(p1) = F−1
1 =

[

E

2
+ ε−H1(p1)

]−1

(118)

S2(p2) = F−1
2 =

[

E

2
− ε−H2(p2)

]−1

(119)

with the four-vector variables p1 = (p1, ε) and p2 = (p2,−ε). H1 (and similarly H2) is the momentum-space form of the
one-particle Dirac Hamiltonian, Eq. (85). In this representation, the interaction operators are integral operators, as it
was indicated in Eq. (113) for K′. U1 (and U2) labels the external-field Coulomb operator. For the example of a single
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nucleus fixed at the origin, Eq. (88), [147, 149]

U1f (p1,p2, ε) = z1
Zα

2π2

∫

1

k2
f (p1 − k,p2, ε) dk (120)

U2f (p1,p2, ε) = z2
Zα

2π2

∫

1

k2
f (p1,p2 + k, ε) dk . (121)

3. Construction of the interaction kernels using energy-momentum translation operators, the instantaneous part of the interaction

According to Eq. (104), the full interaction kernel contains contributions both from ‘inter-particle’ interactions and
from radiative contributions,

K′ = KI +Krad . (122)

In what follows, we focus on the construction of the KI inter-particle kernel, which is obtained as the sum of K(j)
I

operators corresponding to irreducible ‘diagrams’ [141, 147].
Action of the interaction kernel for a single-photon exchange (wri�en in the Coulomb gauge), Eqs. (92)–(94), on

some f (p1,p2, ε) two-particle function depending also on the ε relative energy can be wri�en in the momentum-space
representation as

KCf (p1,p2, ε) = z1z2
α

2π2

∫

1

k2
f (p1 − k,p2 + k, ε− ω) dk

dω

−2πi
(123)

KTf (p1,p2, ε) = z1z2
α

2π2

∫

α̃i
1α̃

i
2

ω2 − k2 + i∆
f (p1 − k,p2 + k, ε− ω) dk

dω

−2πi
. (124)

Amore compact operator form ofKC andKT is obtained by using k = (k,ω)momentum-energy translation operators.
The one-particle translation operators are

η1(k)f (p1,p2, ε) = f (p1 − k,p2, ε) (125)

η2(−k)f (p1,p2, ε) = f (p1,p2 + k, ε) , (126)

the two-particle translation operator is,

η(k)f (p1,p2, ε) = f (p1 − k,p2 + k, ε− ω) , (127)

and for later convenience, we also define the notation

η(k) = η(k,ω) = η1(k)η2(−k)ηε(ω) . (128)

Then, the Coulomb and transverse parts of the one-photon exchange, Eqs. (123) and (124), can be wri�en as

KCf (p1,p2, ε) =

∫

κCη(k,ω)f (p1,p2, ε) dk
dω

−2πi
(129)

with

κC(k,ω) = z1z2
α

2π2

1

k2
(130)

and

KTf (p1,p2, ε) =

∫

κTη(k,ω)f (p1,p2, ε) dk
dω

−2πi
(131)

with

κT(k,ω) = z1z2
α

2π2

α̃i
1α̃

i
2

ω2 − k2 + i∆
. (132)

It is interesting to note that the Coulomb interaction carries only a trivial shi� in the relative-energy dependence,
and this corresponds to saying that the Coulomb interaction acts through momentum transfer and the interaction is
instantaneous. At the same time, the transverse part has a non-trivial relative-energy dependence, and this is related to
the finite propagation speed of the overall interaction (retardation). At the same time, the retardation contribution to
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the transverse part is small and it is convenient to separate the instantaneous part, which is called the Breit interaction,

KBf (p1,p2, ε) =

∫

κBη(k,ω)f (p1,p2, ε) dk
dω

−2πi
(133)

with

κB(k,ω) = z1z2
α

2π2

α̃i
1α̃

i
2

−k2
. (134)

The remainder, i.e., difference of the transverse and the Breit interactions, is the retarded part, which we label as

Kτ = KT −KB , (135)

while the instantaneous contributions (Coulomb–Breit) can be handled ‘together’,

KCB = KC +KB . (136)

To write down the mathematical expression for more complicated K(j)
I interactions including multiple (Coulomb

and/or transverse) photons (e.g., Fig. 12), Sucher derived and summarized the following simple rules.
First,

(a) label each interaction line with four vectors, k, k′, k′′, etc. with assigning each line a specific sense (convenient to
choose the same for all lines), e.g., from 2 to 1;

(b) label the final parts of the world lines of the fermions 1 and 2 with p1 = (p1, ε) and p2 = (p2,−ε);

(c) label all remaining electron lines with conserving the four-momentum.

Second, for a fully labelled diagram, K(j)
I can be formulated by writing

1. α̃i
1 or α̃

i
2 for a transverse interaction vertex;

2. a factor S1(p1−k) for an intermediate electron line labelled with p1−k on the path of 1 and a factor S2(p2 +k′) for
an intermediate electron line labelled with p2 + k

′ on the path of 2; while writing down the factors, it is necessary
to preserve the order of events along a world line, i.e., factors for ‘later’ events along a world line stand to the le�
of factors corresponding to ‘earlier’ events;

3. to the right of these expressions a factor κC(k) for a Coulomb interaction line labelled with k = (k,ω) and a factor
κT(k

′) for a transverse interaction line with k′ = (k′,ω′);

4. in addition to each κC and κT, an η(k)/(−2πi) factor appears, if the interaction is from 2 to 1 (or, an η(−k)/(−2πi)
factor, if the interaction is from 1 to 2).

It is also useful to note that the effect of the η(k) = η(k,ω) four-momentum translation on the one-particle
propagators, Eqs. (118)–(119), is

η(k)S1(p1)η(−k) = S1(p1 − k) =

[

E

2
+ ε− ω −H1(p1 − k)

]−1

(137)

η(k)S2(p2)η(−k) = S2(p2 + k) =

[

E

2
− ε + ω −H2(p2 + k)

]−1

, (138)

where the k-translation of the one-particle Hamiltonians gives

H1(p1 − k) = η1(k)H1(p1)η1(−k) = α1(p1 − k) + β1m + U1 (139)

H2(p2 + k) = η2(−k)H2(p2)η2(k) = α2(p2 + k) + β2m + U2 . (140)

Sucher calculated corrections to the energy up to order α3Eh, Douglas and Kroll calculated the fine-structure spli�ing
up to order α4Eh, and they have included the following interactions,

KI = KC +KT +KC×C +KT×C +KT×T +KT×C2 . (141)

It is necessary to compile ‘by hand’ only the irreducible interactions, and all reducible diagrams are automatically
included in the solution of the BS equation [141].
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1

p1

p′1 := p1 − k

p′′1 := p1 − k − k′

2

p2

p2 + k
′ =: px2

p2 + k
′ + k =: p′′2

k′

k

KC×C

1

p1

p′1 := p1 − k

p′′1 := p1 − k − k′

2

p2

p2 + k
′ =: px2

p2 + k
′ + k =: p′′2

k′

k

KT×C,1

1

p1

p′1 := p1 − k

p′′1 := p1 − k − k′

2

p2

p2 + k
′ =: px2

p2 + k
′ + k =: p′′2

k′

k

KT×C,2

Figure 12. Example interaction diagrams including four-momentum labels

4. A practical wave equation: the exact equal-times Bethe–Salpeter equation and emergence of the no-pair Dirac–Coulomb(–Breit)
Hamiltonian

Let’s exploit the fact that, in atoms and molecules, the dominant part of the interaction is instantaneous (Coulomb
or Coulomb–Breit), so, it is convenient to write the kernel as the sum of a Ki instantaneous part and the ‘rest’,

KI = Ki +K∆ . (142)

The instantaneous part, Ki, induces only a trivial shi� for the ε relative energy, and hence the effect of the relative
energy can be integrated out

Kiψ(p1,p2, ε) =

∫ ∫

κi(k)ψ(p1 − k,p2 + k, ε− ω) dk
dω

−2πi

=
1

−2πi

∫

κi(k)Φ(p1 − k,p2 + k) dk

=
1

−2πi
IiΦ(p1,p2) , (143)

where Ii is only a momentum shi� integral operator,

IiΦ(p1,p2) =

∫

κi(k)Φ(p1 − k,p2 + k) dk (144)

with

κi(k) =

{

z1z2
α
2π2

1
k2 , for the Coulomb interaction, i = C

z1z2
α
2π2

1
k2 (1− α̃i

1α̃
i
2) , for the Coulomb–Breit interaction, i = CB .

(145)

In Eq. (143), it is also important to note the emergence of the equal-time wave function,

Φ(p1,p2) =

∫ ∞

−∞
ψ(p1,p2, ε) dε . (146)

Next, we rearrange Eq. (114) and separate the instantaneous part of the interaction as

(F −K∆)ψ(p1,p2, ε) = Kiψ(p1,p2, ε)

ψ(p1,p2, ε) = (F −K∆)
−1Kiψ(p1,p2, ε) . (147)
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By integrating both sides with respect to the relative energy and using Eqs. (143) and (146), we obtain

∫

dε ψ =

∫

dε (F −K∆)
−1Kiψ

Φ =

∫

dε

−2πi
(F −K∆)

−1IiΦ

Φ =

∫

dε

−2πi
F−1IiΦ +

∫

dε

−2πi
F−1K∆(F −K∆)

−1IiΦ , (148)

where the operator identity was used in the last step,

(A− B)−1 = A−1 + A−1B(A− B)−1 . (149)

Next, we define the one-particle positive- and negative-energy projection operators for particles i = 1 and 2 by

Li± =
1

2

[

1±Hi(pi)E−1
i (pi)

]

, (150)

which is, at this point, contains a purely formal definition for the one-particle Hamiltonian absolute value operator,

Ei(pi) = |Hi(pi)| , (151)

which also means that

Ei(pi)φ
(i)
n (pi) = |E (i)

n |φ(i)n (pi) . (152)

In short, we can also write

HiLi± = ±EiLi± . (153)

If there is no external field, e.g., pre-BO description of two spin-1/2 particles, then, Li± reduces to the free-particle
projector [192]

Li±(pi) = Li±(pi) =
1

2

[

1± αipi + βimi
√

p2i +m
2
i

]

(for Ui = 0) , (154)

since for Ui = 0, Hi = H(0)
i = αipi + βimi and the eigenvalues of the Hamiltonian absolute value operator are |E (i)

p | =
+
√

p2i +m
2
i .

Using the E1 and E2 notation, we can write the F−1
1 and F−1

2 propagators in F−1 as

S1 = F−1
1 =

[

E

2
+ ε−H1

]−1

=
L1+

E
2
+ ε− E1 + iδ

+
L1−

E
2
+ ε + E1 − iδ

, (155)

and similarly,

S2 = F−1
2 =

[

E

2
− ε−H2

]−1

=
L2+

E
2
− ε− E2 + iδ

+
L2−

E
2
− ε + E2 − iδ

, (156)

according to Feynman’s prescription [139] of adding a complex number with a small negative imaginary value to the
mass and the limit is taken from the positive side for a consistent electron-positron theory (here, the energy replaces
Feynman’s mass and δ > 0 with δ → 0+).

The first term in Eq. (148) contains a relative-energy integral, but Ii and Φ are independent of ε, so we only need to
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calculate
∫

dε

−2πi
F−1 =

∫

dε

−2πi
F−1

2 F−1
1

=

∫

dε

−2πi

(

L2+

E
2
− ε− E2 + iδ

+
L2−

E
2
− ε + E2 − iδ

)

(

L1+

E
2
+ ε− E1 + iδ

+
L1−

E
2
+ ε + E1 − iδ

)

=

∫

dε

−2πi

1
E
2
− ε− E2 + iδ

1
E
2
+ ε− E1 + iδ

L++

+

∫

dε

−2πi

1
E
2
− ε− E2 + iδ

1
E
2
+ ε + E1 − iδ

L−+

+

∫

dε

−2πi

1
E
2
− ε + E2 + iδ

1
E
2
+ ε− E1 − iδ

L+−

+

∫

dε

−2πi

1
E
2
− ε + E2 − iδ

1
E
2
+ ε + E1 − iδ

L−− (157)

with the two-particle projectors, Lσσ′ = L1σL2σ′ (σ,σ′ = + or −).

To evaluate these ε integrals, we use Cauchy’s residue theorem,
∮

γ

f (z)dz = sgn(γ) 2πi
∑

k∈poles

Res(f , ak ) , (158)

where the summation goes through the poles of f within the domain surrounded by the simple closed curve γ. We can choose the positive γ contour
(Oγ counterclockwise, sgnγ = +1), but identical results are obtained from using the negative γ′ contour (Oγ′ clockwise, sgnγ′ = −1). Since this is
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an important step of the calculation, we proceed term by term with the evaluation of Eq. (157).

lim
δ→0+

L++

∫
dε

−2πi

−1

ε− E
2
+ E2 − iδ

︸ ︷︷ ︸

ε= E
2
−E2+iδ in Oγ

1

ε + E
2
− E1 + iδ

︸ ︷︷ ︸

ε=− E
2
+E1−iδ in O

γ′

=







for Oγ : limδ→0+ L++
2πi
−2πi

−1
E
2
−E2+iδ+

E
2
−E1+iδ

for Oγ′ : limδ→0+ L++
−2πi
−2πi

−1

− E
2
+E1−iδ− E

2
+E2−iδ

= L++

1

E − E1 − E2

= L++(E −H1 −H2)
−1 (159)

lim
δ→0+

L+−

∫
dε

−2πi

−1

ε− E
2
− E2 − iδ

︸ ︷︷ ︸

ε= E
2
+E2+iδ in Oγ

1

ε + E
2
− E1 − iδ

︸ ︷︷ ︸

ε=− E
2
+E1+iδ in Oγ

=







for Oγ : lim
δ→0+

L+−
2πi
−2πi

[

− 1
E
2
+E2+iδ+

E
2
−E1−iδ

+ −1

− E
2
+E1+iδ−

E
2
−E2−iδ

]

= 0

for Oγ′ : 0

= 0 (160)

lim
δ→0+

L−+

∫
dε

−2πi

−1

ε− E
2
+ E2 − iδ

︸ ︷︷ ︸

ε= E
2
−E2+iδ in Oγ

1

ε + E
2
+ E1 − iδ

︸ ︷︷ ︸

ε=− E
2
−E1+iδ in Oγ

=






for Oγ : lim
δ→0+

L−+
2πi
−2πi

[

− 1
E
2
−E2+iδ+

E
2
+E1−iδ

+ −1

− E
2
−E1+iδ−

E
2
+E2−iδ

]

= 0

for Oγ′ : 0

= 0 (161)

lim
δ→0+

L−−

∫
dε

−2πi

−1

ε− E
2
− E2 + iδ

︸ ︷︷ ︸

ε= E
2
+E2−iδ in O

γ′

1

ε + E
2
+ E1 − iδ

︸ ︷︷ ︸

ε=− E
2
−E1+iδ in Oγ

=






for Oγ : lim
δ→0+

L−−
2πi
−2πi

−1

− E
2
−E1+iδ−

E
2
−E2+iδ

= −L−−
1

E+E1+E2

for Oγ′ : lim
δ→0+

L−−
2πi
−2πi

(−1)2 1
E
2
+E2−iδ+ E

2
+E1−iδ

= −L−−
1

E+E1+E2

= −L−−

1

E + E1 + E2

= −L−−(E −H1 −H2)
−1 (162)

The result of this short calculation can be summarized as operator identities [147, 149]

∫

dε

−2πi

1

ε− A + iδ

1

ε + B− iδ
=

1

A + B
(163)

∫

dε

−2πi

1

ε− A + iδ

1

ε + B + iδ
= 0 , (164)

where the second identity holds in general, the first is valid only for commuting A and B operators. All in all, we obtain

∫

dε

−2πi
F−1 = (E −H1 −H2)

−1(L++ − L−−) = D−1(L++ − L−−) , (165)

where the short notation is introduced,

D = E −H1 −H2 . (166)

Using this result, we can re-write Eq. (148),

Φ = (E −H1 −H2)
−1(L++ − L−−)IiΦ +

∫

dε

−2πi
F−1K∆(F −K∆)

−1IiΦ

EΦ = [H1 +H2 + (L++ − L−−)Ii]Φ +D
∫

dε

−2πi
F−1K∆(F −K∆)

−1IiΦ , (167)

and finally obtain, the exact, equal-time Bethe–Salpeter (eBS) equation
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EΦ = (H1 +H2 + L++IiL++ +H∆)Φ (168)

with

H∆ = L++Ii(1− L++)− L−−Ii +D
∫

dε

−2πi
F−1K∆(F −K∆)

−1Ii . (169)

Eq. (168) is the central equation to our work. It is obtained by equivalent mathematical manipulations from the original
space-time Bethe–Salpeter equation, Eq. (89), it is a homogeneous, linear equation for the equal-time wave function,
Φ, which depends only on the momenta (or coordinates) of the two fermions. At the same time, the exact equal-time
equation is a non-linear eigenvalue equation for the E energy, since the H∆ term also depends on E (through F ). We
can arrive at a useful initial description of atoms and molecules, by first neglectingH∆, and starting with the solution
of the positive-energy projected or no-pair Dirac–Coulomb(–Breit) equation,

EΦ = (H1 +H2 + L++IiL++)Φ . (170)

It is important to note that in the present derivation [145, 147, 149], the projector is defined according to Eqs. (150) and
(154), and it is connected to the emergence of the no-pair two-particle Dirac Hamiltonian, Eqs. (157)–(166). Variants
of the no-pair DC(B) equation are commonly used in relativistic quantum chemistry. Sucher [137, 170] analyzed the
connection to relativistic quantum chemistry methodologies, in which the Dirac–Hartree–Fock projector is a popular
(and natural) choice, and came to the conclusion that the use of that projector is also valid, but then, during the
evaluation of the H∆ corrections, one has to correct for the difference (which may be complicated).

During our work, we stick to the original definition, Eq. (150) for two particles in an external field and Eq. (154) for
an isolated two-fermion system. Corresponding numerical results (for helium- and for positronium-like systems) are
reviewed in Sec. III E.

During the present calculation, which follows closely the work by Salpeter [145], Sucher [147], and Douglas and
Kroll [149], it was critical to retain the relative energy between the particles. Integration for the relative energy resulted
in the emergence of the no-pair, two-electron Dirac Hamiltonian with instantaneous (Coulomb or Coulomb–Breit)
interactions. Emergence of the two-particle Hamiltonian naturally occurs for a certain choice of the projector. At
the moment, we understand H∆ in Eq. (169) as some ‘quasi potential’ for a DC(B) interacting reference. The DC(B)
reference, i.e., numerical solution of Eq. (170), already contains all reducible interaction diagrams of the instantaneous
kernel [141], i.e., the full Coulomb(–Breit) ladder.

5. Phenomenology: why and when the equal-time equation is useful?

In atoms and molecules, the interaction of electrons and atomic nuclei (considered now as point-like,
quasi-elementary particles) are dominated by electromagnetic forces. To capture most of the binding energy in these
systems, it is convenient to work in the Coulomb gauge, since the instantaneous Coulomb interaction dominates the
binding. Subtle magnetic effects can be accounted for by including also the instantaneous Breit interaction in the
treatment.

We can define an equal-time equation, a simple, linearHΨ = EΨ-type wave equation, by retaining the instantaneous
part (Coulomb or Coulomb–Breit) of the interaction mediated by (subsequent exchanges of) a single photon (at
a time) and the positive-energy solutions of ma�er. The remaining part of the exact equal-time equation can be
obtained by integrating through the relative energy (relative time) of the interacting particles (in addition to a simple
energy-independent correction term for double-pair instantaneous corrections in the first two terms of Eq. (169)).

The exact equal-time equation form is useful, if the correction obtained from the relative-energy integral is small. In
atoms and molecules, it can be anticipated that it is small, because the electromagnetic interaction is relatively weak.
During the ‘infinitely’ long lifetime of bound systems, infinitely many photon exchanges occur, but these exchanges
are mostly consecutive, there are not ‘many photons’ present at the same time. The binding of atoms and molecules
is dominated by a single photon exchange at a time, and during the lifetime of the system, there is an infinite ladder
of single-photon exchanges, the Coulomb ladder or the Coulomb–Breit ladder with non-crossing steps. The effect of
crossing photons can be identified under a high-energy resolution, and as a small effect it can potentially be accounted
for as a (low-order) perturbative correction to the interaction ladder.

If the interaction was much stronger (α was larger), there were more interaction-mediating particles present at the
same time, crossed diagrams would be more important, and the equal-time separation and the no-pair approximation
would be less useful.
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C. Prospects regardingH∆

The equal-time two-particle wave equation with instantaneous interactions could be formulated at the price of the
appearance of a complicated potential energy-like term, which contains an integral with respect to the relative energy
of the particles, and which can be considered as some effective potential due to the full-fledged description of the
photon field for an interacting two-particle reference (no-pair DC or DCB).

Sucher [147] formulated low-order perturbative corrections to the no-pair DC(B) energy using Brillouin–Wigner
perturbation theory (BWPT). The advantage of the BWPT energy formula is that it remains formally unchanged for an
energy-dependent perturbation (here H∆(E)),

E − Ei = 〈Φi|H∆(1− ΓH∆)
−1

Φi〉
= 〈Φi|H∆Φi〉 + 〈Φi|H∆ΓH∆Φi〉 + 〈Φi|H∆ΓH∆ΓH∆Φi〉 + … , (171)

where the no-pair Hamiltonian is

Hi = H1 +H2 + L++IiL++ (172)

and Γ (E ,Φi) stands for the (reduced) resolvent

Γ (E ;Φi) =
∑

n

|Φi,n〉〈Φi,n|
E − En

− |Φi〉〈Φi|
E − Ei

= (E −Hi)
−1(1− |Φi〉〈Φi|) . (173)

The Φi,n functions are eigenfunctions of the Hi no-pair Hamiltonian with instantaneous (i) interactions.

A useful relation for the quasi-Green function is obtained as follows. Using the 1 = L++ + L+− + L−+ + L−− completeness relation, we can write

(E −Hi)
−1(1− |Φi〉〈Φi|)

= (E −Hi)
−1(L++ − |Φi〉〈Φi|) + (E −Hi)

−1(L+− + L−+ + L−−)

= (E −Hi)
−1(L++ − |Φi〉〈Φi|) + (E −H1 −H2 − L++IiL++)

−1(L+− + L−+ + L−−)

= (E −Hi)
−1(L++ − |Φi〉〈Φi|) + (E −H1 −H2)

−1(L+− + L−+ + L−−)

= (E −Hi)
−1(L++ − |Φi〉〈Φi|) +D−1(L+− + L−+ + L−−) . (174)

Thus, the quasi-Green function can be wri�en as

Γ (E ;Φi) = (E −Hi)
−1(L++ − |Φi〉〈Φi|) +D−1(1− L++) . (175)

Aiming for a given order result, simplifications are possible. In Sucher’s α3Eh calculation [147], it was sufficient
to consider only the first two terms in the expansion of Eq. (171), furthermore, the exact energy could be approximated
by E ≈ Ei, i.e.,H∆(E) ≈ H∆(Ei) and Γ (E ,Φi) ≈ Γ (Ei,Φi). These approximations essentially led to first- and second-order
Rayleigh–Schrödinger-type correction formulae.

For the inclusion ofH∆ in numerical computations, it is convenient to write it as the sum of two terms,

H∆ = Hδ +Hε . (176)

Hδ is algebraically straightforward, and corresponds to (non-crossing) pair corrections,

Hδ = L++Ii(1− L++)− L−−Ii . (177)

The technically more involved part includes an integral for the ε relative energy and carries retardation and
crossed-photon contributions (e.g., KC×C, KT×C,1 and KT×C,2 in Fig. 12),

Hε = D
∫

dε

−2πi
F−1K∆(F −K∆)

−1Ii . (178)
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For numerical computations, the inverse can be expanded as

Hε = D
∫

dε

−2πi
F−1K∆(F −K∆)

−1Ii

=

∫

dε

−2πi
DF−1K∆F−1(1−K∆F−1)−1Ii

=

∫

dε

−2πi
DF−1K∆F−1

[

1 +K∆F−1 +K∆F−1K∆F−1 + …
]

Ii

=

∫

dε

−2πi

[

DF−1K∆F−1 +DF−1K∆F−1K∆F−1 +DK∆F−1K∆F−1 + …
]

Ii . (179)

We can start by considering the first term of the expansion,

H(1)
ε = D

[∫

dε

−2πi
F−1K∆F−1

]

Ii , (180)

where the ε integral is within the square brackets, since it is surrounded by equal-time quantities (without any
relative-energy dependence, cf. Eqs. (168) and (169)). Eq. (180) can be considered as the next-order term to the known
relation, Eq. (165),

∫

dε

−2πi
F−1 = D−1(L++ − L−−) . (181)

A useful identity for the inverse of the product of the one-particle propagators:

F−1 = F−1
1 F−1

2

= (F−1
1 + F−1

2 )(F1 + F2)
−1

= (F−1
1 + F−1

2 )D−1 = D−1(F−1
1 + F−1

2 ) (182)

= (S1 + S2)D
−1 = D−1(S1 + S2) . (183)

Then, using Eq. (182), we can write

H(1)
ε = D

[∫

dε

−2πi
F−1K∆F−1

]

Ii

= D
[∫

dε

−2πi
D−1(F−1

1 + F−1
2 )K∆(F−1

1 + F−1
2 )

]

D−1Ii

=

[∫

dε

−2πi
(F−1

1 + F−1
2 )K∆(F−1

1 + F−1
2 )

]

D−1Ii

=

[∫

dε

−2πi
(S1 + S2)K∆(S1 + S2)

]

D−1Ii , (184)

where in the last step, we used the short notation for the one-electron propagators, Eqs. (155)–(156). It is convenient to
consider the propagators as the sum of electronic and positronic contributions, S1 = S1+ + S1− and S2 = S2+ + S2−. Even
for complicated K∆ kernels with multiple photon exchanges, remembering the sign of the imaginary component of
the ε pole (positive for S1−, S2+ and negative for S1+, S2−) is useful for the identification of non-vanishing contributions.
Furthermore, depending on the actual K∆ interaction, one can make arguments (following Sucher [147] and Douglas
& Kroll [149]) about the relative importance of the contribution from the electronic and positronic subspaces.

A useful relation regarding D−1
i IiΦi:

If Ei and Φi is the eigenvalue and eigenfunction of the no-pair Hamiltonian, Eq. (170), then

(H1 +H2 + L++IiL++)Φi = EiΦi

L++IiL++Φi = (Ei −H1 −H2)Φi

(Ei −H1 −H2)
−1L++IiL++Φi = Φi

D−1
i L++IiL++Φi = Φi

D−1
i L++IiΦi = Φi , (185)

where the last step can be made, sinceΦi ∈ Span(L++). This relation with theD ≈ Di = Ei−H1−H2 approximation is used during the calculations.
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To proceed, we can first consider a first-order perturbative correction to the no-pair eigenfunction (of Eq. (170)),

〈Φi|H(1)
ε Φi〉 = 〈Φi|D

[∫

dε

−2πi
F−1K∆F−1

]

IiΦi〉

= 〈Φi|
[∫

dε

−2πi
(F−1

1 + F−1
2 )K∆(F−1

1 + F−1
2 )

]

D−1IiΦi〉

= 〈Φi|
[∫

dε

−2πi
(S1 + S2)K∆(S1 + S2)

]

D−1(L++ + L+− + L−+ + L−−)IiΦi〉

≈ 〈Φi|
[∫

dε

−2πi
(S1 + S2)K∆(S1 + S2)

]

D−1
i L++IiΦi〉

= 〈Φi|
[∫

dε

−2πi
(S1 + S2)K∆(S1 + S2)

]

Φi〉

= 〈Φi|
[∫

dε

−2πi
L++(S1 + S2)K∆(S1 + S2)L++

]

Φi〉

= 〈Φi|
[∫

dε

−2πi
(S1+ + S2+)K∆(S1+ + S2+)

]

Φi〉 , (186)

where we used the approximation D−1 ≈ D−1
i = (Ei − H1 − H2)

−1, and retained only the positive-energy space
contribution between D−1 and Ii, furthermore, we inserted the relationship of Eq. (185), and exploited the fact that Φi

is the solution of the no-pair equation.

a. Transverse and retardation correction If we consider the solution of the no-pair DC equation, Φi = ΦC and
approximate the total energy in the correction with the no-pair DC energy, E ≈ EC, then we can proceed for K∆ = KT

(Fig. 12) by using the fact that the ε integral for the ‘homogeneous’ terms (1 + 1+ and 2 + 2+) gives zero contributions
(the ε-poles are either both in the positive or in the negative imaginary half plane), and only the mixed (1 + 2+ and
2 + 1+) terms have a non-vanishing contribution,

∆ET++ = 〈ΦC|

[∫
dε

−2πi
(S1+ + S2+)KT(S1+ + S2+)

]

ΦC〉

= 〈ΦC|

[∫
dε

−2πi
{S1+KTS2+ + S2+KTS1+}

]

ΦC〉

= 〈ΦC|

∫
dε

−2πi

{

L1+

EC
2
+ ε− E1 + iδ

KT
L2+

EC
2
− ε− E2 + iδ

+
L2+

EC
2
− ε− E2 + iδ

KT
L1+

EC
2
+ ε− E1 + iδ

}

ΦC〉 . (187)

Furthermore, L1+ and L2+ can be suppressed next to the ΦC no-pair wave function (and we assume z1z2 = +1 for
simplicity),

∆E
(12)
T++ = 〈ΦC|

∫
dε

−2πi

L1+

EC
2
+ ε− E1 + iδ

KT
−L2+

− EC
2
+ ε + E2 − iδ

ΦC〉

=
α

2π2

∫

dk

∫
dω

−2πi
〈ΦC|

∫
dε

−2πi

1

ε +
EC
2
− E1 + iδ

α̃i
1α̃

i
2

ω2 − k2 + i∆
η(k,ω)

−1

ε− EC
2
+ E2 − iδ

ΦC〉

=
α

2π2

∫

dk

∫
dω

−2πi
〈ΦC|η2(−k)α̃i

2

1

ω2 − k2 + i∆

[ ∫ dε

−2πi

1

ε +
EC
2
− E1 + iδ

︸ ︷︷ ︸

ε=−
EC
2
+E1−iδ

−1

ε− ω − EC
2
+ E2 − iδ

]

α̃i
1η1(k)ΦC〉

=
α

2π2

∫

dk

∫
dω

−2πi
〈ΦC|

2πi

−2πi
η2(−k)α̃i

2

1

ω2 − k2 + i∆

−1

− EC
2
+ E1 − ω − E

2
+ E2

α̃i
1η1(k)ΦC〉

= −
α

2π2

∫

dk

∫
dω

−2πi
〈ΦC|η2(−k)α̃i

2

1

ω2 − k2 + i∆

1

EC − E1 − E2 + ω
α̃i
1η1(k)ΦC〉 . (188)

Then, we proceed along the counter-clockwise integration contour for calculating the ω integral in Eq. (188), and find
one pole at ω = −k(+i∆) with k = |k|, and thus, obtain,

∆E
(12)
T++ = − α

2π2

∫

dk
2πi

−2πi
〈ΦC|η2(−k)α̃i

2

1

2k

1

EC − E1 − E2 − k
α̃i
1η1(k)ΦC〉

=
α

2π2

∫

dk
1

2k
〈ΦC|η2(−k)α̃i

2

1

EC −H0 − k
α̃i
1η1(k)ΦC〉 , (189)

where H0 = H1 + H2 is the non-interacting two-particle Hamiltonian. A similar calculation can be carried out for
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exchanged 1 and 2, and thus, the full, positive-energy transverse correction to the no-pair DC wave function is

∆ET++ =
α

2π2

∫

dk
1

2k
〈ΦC|

{

α̃i
2η2(−k)

1

EC −H0 − k
η1(k)α̃

i
1

+α̃i
1η1(k)

1

EC −H0 − k
η2(−k)α̃i

2

}

ΦC〉 , (190)

which reproduces Sucher’s result, Eq. (5.26) of Ref. [147].
With further manipulation, Sucher obtained the Coulomb ladder correction to T++ resulting in the appearance of the

interacting no-pair DC Hamiltonian in the resolvent,

∆ET(C)++ =
α

2π2

∫

dk
1

2k
〈φC|

{

α̃i
2η2(−k)

1

EC −HC − k
η1(k)α̃

i
1 + (1 ↔ 2)

}

φC〉 . (191)

The important part of this correction is due to the retardation of the interaction, which can be obtained by separating
the instantaneous part according to (p. 75 of Ref. [147])

1

EC −HC − k
= − 1

k
+
1

k

EC −HC

EC −HC − k
, (192)

where the first term gives rise to the Breit operator (cf., Eq. (133)–(134)),

B = − α

2π2

∫

dk
1

k2
α̃i
1α̃

i
2η1(k)η2(−k) (193)

and the second term gives the perturbative retardation correction,

∆Eret =
α

2π2

∫

dk
1

2k2
〈ΦC|α̃i

1η1(k)
EC −HC

EC −HC − k
α̃i
2η2(−k)ΦC〉 + (1 ↔ 2) . (194)

In 1958, Sucher did not have access to the numerical solution of the no-pair DC equation, so he introduced a series
of approximations (including the Pauli approximation) to have final expressions for the non-relativistic wave function.
Nowadays, computer power allows us to compute and converge to ‘high precision’ the numerical solution of the no-pair
eigenvalue equation (Sec. III D), so it is a challenge to develop algorithms and computational procedures using an
accurate relativistic wave function for the evaluation of perturbative corrections of H∆.

For future research, it will be a task to find practical expressions and procedures for the evaluation of the correction
terms. Since the correction terms are wri�en in an operator form (without making assumptions about using some
special, e.g., one-particle, basis representation), it remains a technical and computational task to evaluate the integrals
for a basis representation allowing high-precision numerical results (Secs. III D and III E). For general, many-(two-)
particle basis functions it may turn out to be convenient to group certain terms together (e.g., retardation and self
energy), which would otherwise be evaluated separately (i.e., in computations with one-particle basis functions).

b. Initial thoughts about crossed photon corrections KC×C is the simplest crossed-photon correction (Fig. 12). Using
Sucher’s rules (Sec. III B 3), we can formulate the correction integral to first-order perturbation theory (and using the
E ≈ Ei approximation),

∆EC×C = 〈Φi|
[∫

dε

−2πi
(S1+ + S2+)KC×C(S1+ + S2+)

]

Φi〉

=

∫

Φ
†
C(p1,p2)

∫

dε

−2πi

dω

−2πi

dω′

−2πi
[S1+(p1) + S2+(p2)]

S1(p1 − k)S2(p2 + k
′)κC(k)κC(k

′)η(k)η(k′)

[S1+(p1) + S2+(p2)]ΦC(p1,p2) dk dk′ dp1 dp2 , (195)

which can be simplified by repeated use of the residue theorem [147]. Direct evaluation (or possible approximation)
of the remaining integrals is a future task for precise no-pair wave functions computed by numerical solution of the
no-pair wave equation (Secs. III D–III E).

D. Numerical solution of the no-pair Dirac–Coulomb–Breit eigenvalue equation

This section provides a brief overview of the practical aspects for solving the no-pair Dirac–Coulomb or
Dirac–Coulomb–Breit equation with explicitly correlated trial functions [174–177]. Explicitly correlated, i.e.,
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two-particle, basis functions make it possible in practice to converge the energy to a precision where comparison of
the sixteen-component results with precise and accurate perturbative computations (non-relativistic QED) established
in relation with precision spectroscopy is interesting and has been unexplored until recently. For the sake of this
comparison, we focus on atoms and molecules of light elements, but in principle, the theoretical and algorithmic
framework presented in this work is not limited to low Z systems (unlike finite-order nrQED).
Starting from this section, we replace the natural units (~ = c = ǫ0 = 1), used in the previous section and common

in molecular physics, with Hartree atomic units (~ = e = 1/(4πǫ0) = me = 1), convenient for quantum chemistry
computations. We also note that it is not assumed that the mass of the spin-1/2 particles equals the electron mass, and
so, we continue to explicitly write out the particle mass.
Furthermore, the practical solution of the no-pair wave equation, Eq. (170), is carried out in coordinate space, instead

of using the momentum-space representation, which was useful for writing down the interactions (Sec. III B 3) and
working with the propagators (Secs. III B 4).

a. No-pair Hamiltonian In the coordinate-space representation, the no-pair Dirac–Coulomb–Breit (DCB)
Hamiltonian, Eq. (170), is

H[16] = L[16]
++

(

H
[4]
1 ⊠ I[4] + I[4] ⊠ H

[4]
2 + VI[16] + B[16]

)

L[16]
++ , (196)

where we wrote the projectors around the entire operator, not only around the interaction, so, we can deal with only
the positive-energy block, which was decoupled from the Brown–Ravenhall (+− and −+) and negative-energy (−−) blocks
already in Eq. (170).

H
[4]
i (i = 1, 2) is the single-particle Dirac Hamiltonian of Eq. (85) shi�ed by the mic

2 rest energy,

H
[4]
i = c(α[4] · pi) + (β

[4] − I[4])mic
2 + UiI

[4] , (197)

and the Ui external potential is due to the nuclei with QA = ZA electric charge, fixed at position RA,

Ui =

Nnuc
∑

A=1

ziZA

|ri − RA|
, (198)

and zi refers to the electric charge of ith active particle.
The third term of H[16] stands for the Coulomb interaction of the particles (with r12 = |r1 − r2|)

VI[16] =
z1z2

r12
I[16] , (199)

while the last term represents the instantaneous Breit interaction in coordinate representation, cf. Eq. (133)–(134) and
(193):

B[16] = −z1z2

2r12

[

α[4]
⊠α[4] +

1

r212
(α[4] · r12)⊠ (α[4] · r12)

]

. (200)

The symbol ⊠ stands for a block-wise direct product (also called Tracy–Singh product [193–196]), which allows
us to retain in the many-particle quantities the block structure of the one-particle Dirac matrix expressed with the
σi (i = 1, 2, 3) Pauli matrices,

α[4]
i =

(

0[2] σ[2]
i

σ[2]
i 0[2]

)

and β[4] =

(

I[2] 0[2]

0[2] −I[2]

)

. (201)

Furthermore, we explicitly indicate the (k × k) dimensionality of the matrices by the [k] superscript. For the numerical
implementation, we write the Hamiltonian with the σi Pauli matrices,

H(1, 2) =

L[16]
++







V1[4] + U1[4] cσ
[4]
2 · p2 cσ

[4]
1 · p1 B[4]

cσ
[4]
2 · p2 V1[4] + (U − 2m2c

2)1[4] B[4] cσ
[4]
1 · p1

cσ
[4]
1 · p1 B[4] V1[4] + (U − 2m1c

2)1[4] cσ
[4]
2 · p2

B[4] cσ
[4]
1 · p1 cσ

[4]
2 · p2 V1[4] + (U − 2m12c

2)1[4]






L[16]

++
, (202)

where neglecting the B Breit term (zeroing the anti-diagonal blocks) defines the no-pair Dirac–Coulomb (DC)
Hamiltonian, H[16]

DC .
Regarding the L[16]

++ projector, it is important to remember that the two-particle Dirac operator with instantaneous
(Coulomb or Coulomb–Breit) interactions emerges from the Bethe–Salpeter equation with theL[16]

++ operator projecting
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onto the positive-energy states of the non-interacting problem (Sec. III B 4). In this context, a two-particle operator
without this projector appears to be an ad hoc construct without simple connection to quantum electrodynamics.

b. Kinetic balance condition and its implementation as a metric The no-pair Hamiltonian, Eq. (196), is bounded from
below, and thus, development of (precise) variational procedures to solve its eigenvalue equation is highly relevant for
practical application of the theory. To define a good basis set, it is important to ensure a faithful matrix representation
of the p2

i = pi ·pi identity [197]. During our work, fulfillment of this relation is ensured by using the so-called ‘restricted
kinetic balance’ condition, relying on the (σ[2] · a)(σ[2] · b) = (a · b)I[2] + i(a× b)σ[2] property of the Pauli matrices,

X
[4]
i =

[

I[2] 0[2]

0[2]
(σ[2]·pi )
2mic

]

. (203)

The simple generalization of this one-particle balance to the two-particle case is

X
[16]
12 = X

[4]
1 ⊠ X

[4]
2 =













I[4] 0[4] 0[4] 0[4]

0[4]
(σ

[4]
2 ·p2)

2m2c
0[4] 0[4]

0[4] 0[4]
(σ

[4]
1 ·p1)

2m1c
0[4]

0[4] 0[4] 0[4]
(σ

[4]
1 ·p1)(σ

[4]
2 ·p2)

4m1m2c2













, (204)

where σ[4]
1 = σ[2] ⊗ I[2] and σ[4]

2 = I[2] ⊗ σ[2] and ⊗ denotes the usual Kronecker product.
We have implemented the kinetic balance condition in an operator form, i.e., as a ‘metric’, [174–177, 196, 198]

H
[16]
KB = X

[16]†
12 H[16]X

[16]
12 and I

[16]
KB = X

[16]†
12 X

[16]
12 , (205)

and detailed operator expressions can be found in Refs. [174–177].

c. Spatial and spinor basis Finding the spectrum of H[16] (in the X -KB metric) numerically requires a finite set
of basis functions, which we first define as the product of a (two-particle) spatial function and an elementary spinor
(vector),

|χ(16)
iq 〉 = ϕi|e(16)q 〉 . (206)

Regarding the spatial part, two-particle functions can be efficiently represented in the floating explicitly correlated
Gaussian (ECG) basis [13, 196, 199],

ϕi(r1, r2) = exp
[

−(r− si)
T(A

[2]
i ⊗ I[3])(r− si)

]

, i = 1,…,Nb , (207)

where r = (r1, r2)
T ∈ R

6. The si ∈ R
6 shi� vector and the positive-definite A[2]

i matrix elements are parameters of each
ECG to be determined via variational optimization (vide infra). The main advantage of working with ECGs lies in the
fact that ECG matrix elements of various operators can be calculated analytically.
Regarding the spinor part, 42 = 16 elementary spinors can be constructed, they are of the form

|e(16)q 〉 = |λ(1)〉 ⊗ |λ(2)〉 ⊗ |σm(1)〉 ⊗ |σm(2)〉 , q = 1,… , 16 , (208)

with λ = l, s (corresponding to the large and small components) and m = ±1/2 (corresponding to the spin projection,
sz ),

|l〉 =
[

1
0

]

, |s〉 =
[

0
1

]

and |σ+ 1
2
〉 =
[

1
0

]

, |σ− 1
2
〉 =
[

0
1

]

. (209)

In Eq. (208), the ‘(1)’ and ‘(2)’ symbols are shown to highlight the particle index, which is defined by the position of the
vector in the Kronecker product.
Instead of the elementary spin representation, we can use a spinor basis which is adapted to the two-particle spin

eigenstates (S = 0,MS = 0 singlet and S = 1,MS = 0, +1,−1 triplet), i.e.,

|χ(16)
iq 〉 = ϕi|ẽ(16)q 〉 (210)

with

|ẽ(16)q 〉 = |λ(1)〉 ⊗ |λ(2)〉 ⊗ |ΣS,MS
(1, 2)〉 , q = 1,… , 16 , (211)
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and

|Σ0,0〉 =
1√
2







0
1
−1
0






, |Σ1,0〉 =

1√
2







0
1
1
0






, |Σ1,+1〉 =







1
0
0
0






, |Σ1,−1〉 =







0
0
0
1






. (212)

Spin-adapted functions are useful both from an interpretational and also from a practical point of view, as they make a
direct connection with non-relativistic results. This direct connection to non-relativistic computations can be exploited
for systems in which relativistic effects are small and the non-relativistic basis parameterization provides a good starting
point for relativistic computations [174–178].

d. Symmetry-adaptation of the basis For identical spin-1/2 fermions, anti-symmetrized basis functions must be
used,

|ψ(16)
iq 〉 = A[16]|χ(16)

iq 〉 , (213)

where the A[16] anti-symmetrizer acts both on the coordinate and spinor space [174, 175],

A[16] =
1

2

[

I[16] − (P [4] ⊗ P [4])P12

]

=
1

2









I[4] − P [4]P12 0[4] 0[4] 0[4]

0[4] I[4] −P [4]P12 0[4]

0[4] −P [4]P12 I[4] 0[4]

0[4] 0[4] 0[4] I[4] − P [4]P12









, (214)

where P12 exchanges coordinate space labels and

P [4] =







1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1






(215)

acts on the spinor components. In particular, (P [4]P12)(σ
[4]
1 · p1) = P [4](σ

[4]
1 · p2)P12 = (σ

[4]
2 · p2)(P

[4]P12). In two-particle
computations with different spin-1/2 particles, the anti-symmetrization step is, of course, omi�ed [179].
Furthermore, if the system in consideration possesses additional spatial symmetries carried by elements of point

group G, then, it is useful to adapt the basis functions also to these symmetries. A P
[16]
G operation projecting onto an

irreducible representation ofG can be realized by accounting for both the spatial and spin part of the problem [175, 178].

e. A variational procedure We approximate eigenfunctions of H[16] in the {|ψ(16)
iq 〉} basis by the linear combination,

|Ψ〉 =
Nb
∑

i=1

16
∑

q=1

ciq|ψ(16)
iq 〉 , (216)

which results in the generalized eigenvalue equation,

Hc = ESc , (217)

where the Hamiltonian and the overlap matrix elements are calculated as

(H)jp,iq = 〈ψ(16)
jp |H[16]

KB |ψ(16)
iq 〉 and (S)jp,iq = 〈ψ(16)

jp |I[16]KB |ψ(16)
iq 〉 . (218)

This is a linear variational problem for the ciq coefficients and a non-linear variational problem for the basis function

parameters, {A[2]
i , si}. The coefficients are found by solving Eq. (217) with a given set of parameters, and the parameters

can be refined byminimization of the energy for a selected eigenstate. This optimization procedure, alongwith (analytic)
evaluation of ECG integrals has been implemented in the QUANTEN program package [13, 19, 174–177, 200–204].

For calculating the matrix elements of Eq. (218), the positive-energy projection of the Hamiltonian must be carried
out. The matrix representation of the L[16]

++ projector is constructed by using the positive-energy eigenstates of the
non-interacting two-particle Hamiltonian, H[4]

1 ⊠ I[4] + I[4] ⊠ H
[4]
2 , represented as a matrix over the actual basis space

[174–177, 179]. Selection of the ‘positive-energy’ two-electron states can be realized approximately by ‘cu�ing’ the
non-interacting spectrum based on some energetic condition [174, 175], or more precisely, by rotating the spectrum to
the complex plane via complex rescaling of the electron coordinates. This complex rotation (CR) allows us to distinguish
three different ‘branches’ of the non-interacting two-electron system (positive-, Brown–Ravenhall, and negative-energy
states), in principle, for any finite rotation angle [205]. In practice, an optimal range for the angle can be found by some
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numerical experimentation (considering the finite precision arithmetic and the finite basis set size). For the low-Z end
of the helium isoelectronic series, the cu�ing and the CR approaches resulted in practically identical energies, with a
relative difference (much) less than one parts-per-billion (ppb) [174, 175].

f. Perturbative inclusion of B[16] Since the energetic contribution of the Breit to Coulomb interaction is small, the
B[16] term of the DCB Hamiltonian can be treated as a perturbation to the DC problem, which corresponds to the
H[16] = H

[16]
DC + L[16]

++ B[16]L[16]
++ partitioning. The Rayleigh–Schrödinger-type perturbative corrections to the DC energy

(up to first or second order) [176, 177] are evaluated as

E++
DC〈B〉,n = E++

DC, n + 〈Ψn|B[16]
KB |Ψn〉 , (219)

and

P (2)
n {B} = E++

DC, n + 〈Ψn|B[16]
KB |Ψn〉 −

∑

k 6=n

|〈Ψk |B[16]
KB |Ψn〉|2

E++
DC, k − E++

DC, n

, (220)

where {|Ψn〉} and E++
DC, n are eigenfunctions and eigenvalues of the no-pair DC Hamiltonian, and B

[16]
KB = X

[16]†
12 B[16]X

[16]
12 .

Brown–Ravenhall states do not require any further caution in the perturbative calculations either, since the Ψn

zeroth-order states are within the positive-energy (++) space.
For low nuclear charge numbers (low Z ), the (second-order) perturbative and variational inclusion of the Breit

interaction resulted in very small energy differences (on the order of a few ppb relative difference) [176, 177], which
means that the one- and two-Breit photon exchange dominates the ‘magnetic part’ of the interaction. For higher values
of the nuclear charge, the difference between the two approaches is anticipated to be larger (to be explored in later
work), as higher-order perturbative corrections become more important. These effects are automatically included in
the variational solution, which, a�er all, can be thought of as the infinite-order summation of ladder diagrams.
On the other hand, it is interesting to note that higher-order corrections due to the ‘Coulomb ladder’ are significant

already beyond Z = 1 [175] (Sec. III E 1), which indicates the relevance of the development of a variational relativistic
procedure.

g. Extension to a pre-Born–Oppenheimer relativistic framework We have originally formulated and implemented
the equations for two-electron systems with fixed external charges, i.e., for Born–Oppenheimer-like relativistic
computations [174–177]. Most recently, it became possible to generalize these ideas to two-particle systems
without external charges, i.e., pre-Born–Oppenheimer-like [15, 16, 19, 20] relativistic computations, by using a
center-of-momentum frame, by considering the operators and definition of the projector according to Sec. III B 4,
which result in the emergence of a sixteen-component no-pair DC(B) Hamiltonian for the relative (internal) motion.
The formalism, implementation details, and numerical results, tested with respect to available perturbative corrections
according to Sec. III E, are reported in Ref. [179].

E. An overview of numerical results

Before our work, a few ‘high-precision’ Dirac–Coulomb computations have been reported in the literature for
helium-like ions [135, 196, 205, 206], but the different computational procedures (with slightly different technical and
theoretical details) delivered (slightly) different numerical results. Direct (and useful) comparison of these results with
high-precision atomic experiments was not possible due to other, important missing (e.g., radiative and nuclear recoil)
corrections.
At the same time, many questions and concerns appeared in the literature regarding the Dirac–Coulomb(–Breit)

‘model’ taken as a ‘starting point’ and its use in a variational-type approach [135, 136, 205, 207–209], the role and the
correct form of the kinetic balance condition [196, 208, 209], the ‘choice’ of a good projector for correlated computations
[205, 206, 210]. There had been even more controversy (and fewer solid data or formal result) regarding the inclusion
of the Breit interaction in a variational treatment. Most of the observations have their own right in their own context,
but the literature was very fragmented and the proper origins for a Dirac–Coulomb-based variational-type procedure
with potential utility for precision spectroscopy had been obscure. At the same time, it is important to add that
(various) Dirac–Coulomb(–Breit) Hamiltonian-based computational procedures have already been successfully used
for compounds of heavier elements in relativistic quantum chemistry and in relation with (lower) chemical energy
resolution, e.g., [171, 172].
We have in mind (high) precision spectroscopy experiments for ‘calculable’ systems, calculable to an in principle

‘arbitrary’ precision, if the fundamental equations are known. So, we have had anticipated that a precise solution of
some (appropriate) variant of a DC(B)-type wave equation is an important step, but it is at most halfway to the solution
of the full problem, i.e., for delivering values for direct comparison with precision spectroscopy experiments. For this
reason, it was of utmost importance to find good anchors for our work to established results and to the (more) complete
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theory, i.e., relativistic quantum electrodynamics.
The primary and essential ‘anchor’ for our work was, of course, the connection to the field theoretic Bethe–Salpeter

equation that was reviewed in Sec. III B. This formal connection clearly defines the form of the operator, the projector,
and the (wave) equation which we solve, as well as, in principle, all correction terms due to retardation, pair, and
radiative effects.
In addition to this formal ‘benchmark’, it was necessary to establish numerical benchmarks to be able to check

‘intermediate’ numerical results. Extensive testing of numerical results became possible by finding connections to
(part of) the already established perturbative relativistic and QED approach based on a non-relativistic reference. This
perturbative route, sometimes called non-relativistic QED (nrQED), is currently the state of the art for compounds of
light elements, which are ‘calculable’ systems to an almost ‘arbitrary precision’, and has been extensively tested in
relation with precision spectroscopy experiments [211–217]. The fundamental limitation of nrQED is connected with
the finite-order of the available corrections in α (including also Zα), which limits the overall accuracy of the results,
and this limitation provided the motivation for the present research program.

1. Variational vs. perturbation theory: perturbative benchmark for the no-pair energies through α scaling

Using a computer implementation of the algorithmic details summarized in Sec. III D, we computed the no-pair
DC and DCB energies for a series of two-electron atomic and molecular systems with fixed nuclei [174–177], as well
as for two-particle positronium-like systems without external charges [179]. Are these numerical results correct? Do
they (with the corresponding wave functions) represent a solid intermediate step for further potential computation of
increasingly accurate relativistic QED energies for these systems? Direct comparison with experiment, due to missing
corrections carried byH∆ (and the nuclear motion for the BO-type computations), is not relevant at the current stage.
Numerical results of (more) ‘complete’ nrQED computations have been extensively tested with respect to experiments,
and apart from known (and conjectured) limitations of the nrQED framework, these results provide us current numerical
benchmarks.
At the same time, comparison of our variational no-pair Dirac–Coulomb(–Breit) energies with nrQED is not

immediately obvious. In nrQED, the total (electronic) energy is wri�en as the sum of the non-relativistic (nr) energy
and correction terms for increasing orders of the α fine-structure constant,

E = Enr + α
2ε2 + α

3ε3 + α
4ε4 + α

5ε5 + … . (221)

The ε2 correction has been known as the Breit–Pauli Hamiltonian expectation value basically since Breit’s work during
1928–1931 [8–10, 132], the complete ε3 correction was first reported by Araki [148] in 1957 and Sucher [147] in 1958,
the ε4 correction to triplet states of helium was derived by Douglas and Kroll [149] in 1974 and also for singlet states
by Yelkhovsky [159] (and computations with Korobov [160]) in 2001 and by Pachucki [158] in 2006. There are currently
ongoing efforts [162, 163] for the computation of the ε5 correction to triplet states of helium-like systems. Furthermore,
for comparison with experiment, the effect of the nuclear motion is also accounted for in addition to Eq. (221). A recent
review provides an overview of the current status for positronium-like systems [218].
At the same time, a precise variational solution of the no-pair DCB equation provides us with the no-pair or

positive-energy projected energy to all orders of α (all orders of Zα), for which the following α series can be formally
wri�en as

E++ = Enr + α
2ε2 + α

3ε++3 + α4ε++4 + α5ε++5 + … . (222)

In Eqs. (221) and (222), we underlined the quantities that are primarily computed.
In a variational computation, we obtain E++ to a certain numerical precision, and we want to check these

computations, for testing the (correctness of the result of a complex) implementation and computational (work) and for
gaining more insight and understanding to the numbers. We do not directly have access to the formal α expansion of
the no-pair energy (right-hand side of Eq. (222)), but by computing E++(α) for a series of slightly varied α values, we
can fit an α-polynomial to the result [175, 176]. Coefficients of this fi�ed polynomial deliver us values for ε2, ε++3 , ε++4 , …
resulting from (a series of) variational computations, and these values can be directly compared (tested) with respect
to the relevant (part of the) nrQED corrections (right-hand side of Eq. (221)).
The second-order term in Eq. (222), ε2, is the same as in Eq. (221). Beyond second order, the ε++n term contains only part

of the εn ‘complete’ nth order nrQED contribution. Sucher calculated perturbative corrections to the non-relativistic
energy [147] (in this sense, similar in spirit to nrQED), but fortunately, he reported also the no-(and single- and
double-)pair part of the contributions. So, we could easily use his no-pair corrections and compare with our α3-order
coefficient from variational results of helium-like ions (and two-electron molecules) [175–177]. Similar α3Eh-order
results are available for hydrogen- and positronium-like two-particle systems from Fulton and Martin [146].
All implementation details and extensive comparison with the perturbative results have been reported in Refs. [174–

177], and in the more recent papers, Ref. [178] regarding triplet contributions, and in Ref. [179] about a Dirac relativistic
pre-Born–Oppenheimer framework for two-particle systems without external charges.
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In a nutshell, an excellent agreement of the no-pair (BO and pre-BO) variational results [174–179] is observed through
the α scaling procedure for a series of systems, which represents an important milestone for the development of a
computational relativistic QED framework for future use in relation with precision spectroscopy.

F. Summary of the current status and outlook to future work

With relevance for testing and development of the fundamental theory of atomic and molecular ma�er, a relativistic
quantum electrodynamics framework for two-spin-1/2 fermion systems (with or without external fixed nuclei) has been
reviewed starting from the field theoretic Bethe–Salpeter (BS) equation. By exploiting the fact that the dominant part of
the interaction (Coulomb or Coulomb–Breit) is instantaneous, it is convenient to re-write the original BS equation to an
exact equal-time form, which contains the no-pair Dirac–Coulomb(–Breit) Hamiltonian and a correction term, which
carries retardation, pair, and radiative corrections. Since this correction term is anticipated to be small, a perturbative
treatment has been considered. Initial ideas have been reviewed for such a perturbative treatment assuming that a
highly precise approximation to the DC(B) wave function, solution of the no-pair equation including the instantaneous
Coulomb(–Breit) interaction ladder, is available.
For computing highly precise approximations to the no-pair DC(B) energy and wave function, implementation

details have been reviewed for an explicitly correlated, variational, no-pair DC(B) computational procedure with the
Born–Oppenheimer approximation as well as for extension to a pre-Born–Oppenheimer relativistic framework. The
computed variational no-pair energies are tested through their α fine-structure constant dependence with respect to
the relevant parts of the order-by-order computed non-relativistic QED (nrQED) corrections.
Regarding future work, it is important to realize and implement the evaluation of perturbative corrections for the

retardation, pair, and radiative corrections using the variational no-pair DC(B) wave functions already computed for a
series of two-particle systems.
Further important work will include generalization of the theoretical framework to N-particle systems (including

electron, positron, muon, and spin-1/2 nuclei), i.e., which appears to be feasible through the following steps: (a)
starting from an N-particle Bethe–Salpeter wave equation; (b) identification of the relevant irreducible interaction
kernels; (c) exploitation of the instantaneous character of the dominant part of the interaction; (d) emergence of the
N-particle no-pair DCB wave equation for the non-interacting projectors plus a correction term including integral(s)
for the relative energy; (e) solution of the no-pair DCB wave equation to high precision using explicitly correlated
basis functions and a variational procedure; (f) accounting for the retardation, pair, and radiative corrections by
perturbation theory; (g) testing the intermediate results with respect to the relevant terms (if known) from nrQED;
(+♦) accounting for the motion of the nuclei (for systems with spin-1/2-nuclei, e.g., H+

2 , H2 or H+
3 ), by using a

many-particle pre-Born–Oppenheimer no-pair DCB approach through generalization of Ref. [179]. At the moment, this
endeavour appears to define an extensive research program. The present work reviewed a promising starting point based
on the fundamental theory (QED) and outlined necessary practical steps. Various technical and conceptual difficulties
can be foreseen.
Nevertheless, the success of many-particle Dirac–Coulomb(–Breit) methodologies in relativistic quantum chemistry

targeting a much lower, i.e., chemical energy resolution, as well as the limitations due to finite-order nrQED expressions
suggest that the development of a computational relativistic QED framework, targeting the spectroscopic energy
resolution for testing and further developing the fundamental theory of atomic and molecular ma�er, is relevant.

IV. IN LIEU OF A SUMMARY: QUO VADIS THEORETICAL MOLECULAR PHYSICS AND SPECTROSCOPY?

This is not the end, but a new beginning. So, I list goals and questions in relation with the presented material to be met
and answered in the (near) future. I can see molecular physics and spectroscopy living its renaissance and anticipate
major progress in the future along the following directions.
a. Floppy molecular motions are the most chemically interesting, but the scaffold also ma�ers Floppy systems are

chemically interesting, but the floppy part is most o�en connected to a large, semi-rigid part. This semi-rigid part is not
completely rigid, complete freezing would mean a crude approximation. So, it will be important to develop quantum
dynamical ‘embedding’ methods in the future.

b. For quantum nuclear motion theory, the real challenge is the great variety of experimental applications A�er all,
quantum nuclear motion theory provides the link between the electronic quantities (almost correct), with experimental
observables (the nuclei also move!). And there is a great variety of experiments that can probe molecular motion or
use information (databases) from molecular quantum dynamics. The main challenge is to develop quantum dynamics
methods that can meet all experimental requirements, in terms of energy resolution, complexity of the system,
energetic-dynamical range of the experiment, etc. In any case, the present-day quantum chemistry set-up provides us
with an extremely powerful modeling framework (ingeniously relying on powerful error cancellation) that we can use to
explore the structure and dynamics of molecular systems to a great detail, help to explain and understand experimental
observations, and produce data for use by other branches of science and technology.
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c. Will quantum computers help solving the quantum nuclear motion problem? Wewill see. If we need to solve a fully
coupled 3N − 6 dimensional problem, the answer is most likely: ‘no’. If sum of lower-mode surfaces provide a faithful
representation, by some powerful and automated implementation of high-dimensional model representation, then the
answer is ‘maybe’. According to some researchers, the entire electron-nucleus (pre-Born–Oppenheimer) problem should
be considered on a quantum computer, since the non-relativistic molecular Hamiltonian is guaranteed to be sum of at
most two-body terms. Furthermore, without introducing the BO approximation, we are freed from the trouble of having
to fit, and then, integrate a multi-dimensional hypersurface. So, this is an appealing direction, but probably a very long
way to go.

d. Testing physics with atoms and molecules We can aim for more than just modelling or reproducing or explaining
experimental results. Precision spectroscopy and molecular quantum theory can, hand in hand, test and improve. To
pursue this direction, we – theorists – are responsible for developing molecular quantum theory. The current challenge
is to abandon the two approximations underlying present-day quantum chemistry. I foresee the development of a
computational (BO or pre-BO) relativistic QED framework. It must be a proper theory with equations that remain
valid over the entire periodic system (and not just a numerical recipe to compute correction terms for special systems).
We have just scratched the surface (Ch. III), it is still some way to go and not without difficulties, but there will be
some fruits and flowers at almost every step. Ultimately, it will bridge precision spectroscopy and relativistic quantum
chemistry. And then? Well, in the one hand, we will have the best possible description of molecular ma�er, which can
then be reliably used to study molecular systems under extreme environments, e.g., ultra-strong laser fields. Or even
more interestingly, to study atoms and molecules in gravitational fields (of our Earth or in the outer space, maybe near
a black hole) and think about relativistic QED and gravity...

Finally, I cite Theodor Hänsch [219]

‘Precision measurements have always appealed to me as one of the most beautiful aspects of physics. With be�er
measuring tools, one can look where no one has looked before. More than once, seemingly minute differences
between measurement and theory have led to major advances in fundamental knowledge. The birth of modern
science itself is intimately linked to the art of accurate measurements.’
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A B S T R A C T

Vibrational states of the formic acid molecule are converged using the GENIUSH–Smolyak approach and the
potential energy surface taken from Tew and Mizukami (2016). The quantum nuclear motion is described by
using the cis-trans torsional coordinate and eight curvilinear normal coordinates defined with respect to an
instantaneous reference configuration changing as a function of the torsional degree of freedom. Harmonic
oscillator basis functions are used for the curvilinear normal coordinates, a Fourier basis for the torsional
coordinate, and a simple basis pruning condition is combined with a Smolyak integration grid. Trans, cis, and
delocalized vibrational states are reported up to and slightly beyond the isomerization barrier.

1. Introduction

This paper is dedicated to the memory of J. K. G. Watson, the
father of the Watson Hamiltonian, a compact, analytic formulation of
the rovibrational kinetic energy operator in normal coordinates. In this
paper, we also use normal coordinates, but we adapt these coordinates
to the cis-trans isomerization of the formic acid molecule. There is
no known analytic formulation for the corresponding kinetic energy
operator available, and we use computer power to construct the kinetic
energy coefficients where they are needed.

Over the past decade, we have observed a rapid and fundamen-
tally important development of exact quantum dynamics techniques to
solve the (ro)vibrational problem. Development is observed in several
directions: (a) coordinate representation and the kinetic energy oper-
ator [1–7]; (b) contraction techniques [8–12]; (c) grid pruning tech-
niques [13–18]; (d) collocation [19–21]; (e) accurate potential energy
representations for high-dimensional systems [22–24]; (f) highly paral-
lel computation of ten thousands or millions of vibrational states [25–
27].

Regarding the formic acid molecule, there are two full-dimensional,
high-level ab initio potential energy surfaces (PESs) [28,29] that have
been used in sophisticated (variational or perturbative) vibrational
computations. Tew and Mizukami used their PES in a variational vibra-
tional computation with a five-mode representation and the internal-
coordinate path Hamiltonian (ICPH) approach [28]. Richter and Car-
bonnière used a similar PES [29], computed vibrational energies using
a valence-coordinate representation of the kinetic energy operator and
the multi-configuration time-dependent Hartree approach, and they
reported significant deviations from Ref. [28] for the vibrational states
of the cis potential energy well. Last year, Nejad and Sibert used both

∗ Corresponding author.
E-mail addresses: Gustavo_Avila@telefonica.net (G. Avila), edit.matyus@ttk.elte.hu (E. Mátyus).

PESs and sixth-order canonical Van Vleck perturbation theory (CVPT)
in curvilinear normal coordinates localized in one of the potential
energy wells (trans or cis) of the molecule [30].

In the present work, we focus on the vibrational methodology and
define an efficient setup that can be used to converge (better than
5 cm−1) all vibrational states of the formic acid molecule up to and
possibly beyond the isomerization barrier (Fig. 1). During the course of
the development of a benchmark-quality variational vibrational setup,
we use the Tew–Mizukami PES [28] (henceforth labeled as TM16-PES).
It is left for future work, when well-converged vibrational energies can
be ‘routinely’ computed for the relevant energy range of this system, to
decide which PES representation performs better in comparison with
experiment (gas-phase overtone and combination bands). Vibrational
band origins are available from experimental infrared and Raman
observations, a review and an extensive list of references can be found
in the introduction of Ref. [30].

The present work is organized as follows. Section 2 reports the de-
velopment of a torsional-curvilinear normal coordinate representation.
Section 3 describes the construction of the corresponding kinetic en-
ergy operator coefficients using the numerical kinetic energy operator
approach as it is implemented in the GENIUSH computer program [2].
Section 4 defines the harmonic oscillator basis functions for the curvi-
linear normal coordinates, the Fourier basis and torsional functions for
the torsional degree of freedom, and discusses basis pruning strategies.
Section 5 describes the Smolyak non-product grid technique that is
used to compute multi-dimensional integrals. In Section 6, vibrational
energies are presented and discussed in relation with earlier computa-
tions [28,30], and further necessary development and computational
work is outlined.

https://doi.org/10.1016/j.jms.2022.111617
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Fig. 1. 1-dimensional cut of the TM16-PES [28] along the torsional angle (𝜏) that describes the conversion between the trans and the cis conformers of the formic acid molecule.

Fig. 2. Visualization of the internal coordinates, Eq. (1), for the example of the trans-formic acid molecule in its equilibrium structure. The equilibrium values of the distances,
in Å and the angles, in degree, corresponding to the cis (c) and the trans (t) conformers on the TM16-PES are shown in brackets.

2. Vibrational coordinates

2.1. Internal coordinates

The body-fixed Cartesian coordinates of HCOOH are defined in
terms of the 𝑟𝑖 ∈ [0,∞) distances, the 𝜃𝑖 ∈ [0, 𝜋] angles, the 𝜑 ∈ [−𝜋, 𝜋)

out-of-plane bending, and the 𝜏 ∈ [0, 2𝜋) torsional angle according to
the following expressions:

𝒓C1 = 𝟎 , 𝒓O2
=

⎛⎜⎜⎝

0

0

𝑟1

⎞⎟⎟⎠
, 𝒓O1

=

⎛⎜⎜⎝

0

𝑟2 cos (𝜃1 − 𝜋∕2)

−𝑟2 sin (𝜃1 − 𝜋∕2)

⎞
⎟⎟⎠
,

𝒓H1
=

⎛⎜⎜⎝

𝑟3 cos (𝜃2 − 𝜋∕2) sin𝜑

−𝑟3 cos (𝜃2 − 𝜋∕2) cos𝜑

−𝑟3 sin (𝜃2 − 𝜋∕2)

⎞⎟⎟⎠
,

𝒓H2
= 𝒓O2

+

⎛⎜⎜⎝

𝑟4 cos (𝜃3 − 𝜋∕2) sin 𝜏

𝑟4 cos (𝜃3 − 𝜋∕2) cos 𝜏

𝑟4 sin (𝜃3 − 𝜋∕2)

⎞⎟⎟⎠
.

(1)

The coordinate definition and the corresponding 𝑍-matrix including
the equilibrium values at the trans and the cis minima of the TM16-
PES are summarized in Fig. 2. For later use, a compact notation of the
coordinates is introduced as

𝝃 = (𝜉1,… , 𝜉9) = (𝑟1, 𝑟2, 𝑟3, 𝑟4, 𝜃1, 𝜃2, 𝜃3, 𝜑, 𝜏). (2)

2.2. Rectilinear normal coordinates

The body-fixed Cartesian coordinates and displacements with re-
spect to the 𝑐𝑖𝛼 reference (equilibrium) geometry of an 𝑁-atomic
molecule can be written in terms of the 𝑄𝑘 ∈ R normal coordinates
as

𝑟𝑖𝛼 = 𝑐𝑖𝛼 + 𝑑𝑖𝛼 with

𝑑𝑖𝛼 =
1

𝑚
1∕2

𝑖

�̄�∑
𝑘=1

𝑙𝑖𝛼,𝑘𝑄𝑘 , 𝑖 = 1,… , 𝑁, and 𝛼 = 𝑥, 𝑦, 𝑧 . (3)

The 𝑙𝑖𝛼,𝑘 coefficients are the elements of the eigenvectors of the 𝑮𝑭

matrix [31] evaluated at the reference (equilibrium) structure. In this
work, the normal coordinate calculation has been performed at both
minima (trans and cis) of HCOOH, hence, there are two parameter
sets. The 𝑭 Hessian matrix has been computed by finite differences of
the PES at both (trans and cis) equilibrium structures with respect to
the displacements along the 3𝑁 Cartesian coordinates. The numerical
derivatives and related mathematical manipulations were evaluated
using the Wolfram Mathematica symbolic algebra program [32].

HCOOH is an 𝑁 = 5-atomic molecule and its total number of
vibrational degrees of freedom is 3𝑁−6 = 9. We used Eq. (3) with �̄� = 9

(Fig. 3), but we also used it with �̄� = 8 while the 𝜏 torsional degree of
freedom was excluded from the harmonic analysis that is necessary to
have a good description for the cis-trans isomerization.
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Fig. 3. Visualization of the normal modes corresponding to the global minimum (trans)
of HCOOH. The harmonic frequencies, in cm−1, are shown in brackets.

2.3. Curvilinear normal coordinates

Instead of using rectilinear displacement coordinates, 𝑑𝑖𝛼 , a better
vibrational representation can be obtained [33], if we use (curvilin-
ear) internal coordinates (Fig. 2), for which curvilinear displacement
(c–displacement) coordinates can be defined with respect to some
reference (equilibrium, eq) value as

𝛥𝜉𝑖 = 𝜉𝑖 − 𝜉
(eq)
𝑖

. (4)

We define linear combinations of these curvilinear displacement coor-
dinates, and we call them curvilinear (c–normal) normal coordinates,

 = 
−1(𝜟𝝃) (5)

such that the kinetic and potential energy coupling (near the reference
structure) is reduced. Hence, similarly to the rectilinear normal coor-
dinates, the linear combination coefficients can be obtained using the
𝑮𝑭 method:


−1𝑮𝑭 = 𝜦 (6)

and the eigenvectors, in , of the 𝑮𝑭 matrix provide us the linear
combination coefficients of the c–normal coordinates. 𝑭 is the Hessian
matrix of the PES

𝐹𝑖𝑗 =

(
𝜕2𝑉

𝜕𝜉𝑖𝜕𝜉𝑗

)

eq
(7)

computed with respect to the 𝜉𝑖 curvilinear coordinates at the equilib-
rium (eq) structure. The matrix 𝑮 is obtained as

𝑮 = 𝑩𝑴−1𝑩𝑇 , (8)

where 𝑴 is a 3𝑁 × 3𝑁 diagonal matrix containing the masses, 𝑚𝑎 (𝑎 =

1,… , 𝑁), of the atomic nuclei

𝑴−1 =

⎛
⎜⎜⎜⎜⎜⎝

1∕𝑚1 0

1∕𝑚1

1∕𝑚1

⋱

0 1∕𝑚𝑁

⎞
⎟⎟⎟⎟⎟⎠

(9)

and 𝑩 is a �̄� × 3𝑁 matrix that contains the derivatives of the internal
coordinates with respect to the rectilinear displacements (𝜕𝜉𝑖∕𝜕𝑑𝑗𝛼)eq
(𝑖 = 1,… , �̄�, 𝑗 = 1,… , 𝑁 , 𝛼 = 𝑥, 𝑦, 𝑧) and satisfy the following relation:

⎛⎜⎜⎜⎜⎝

𝜉1
𝜉2
⋮

𝜉�̄�

⎞⎟⎟⎟⎟⎠
= 𝑩

⎛⎜⎜⎜⎜⎜⎝

𝑑1𝑥
𝑑1𝑦
𝑑1𝑧
⋮

𝑑𝑁𝑧

⎞⎟⎟⎟⎟⎟⎠

. (10)

To have a good description of the cis-trans torsional motion, we
exclude the 𝜏 torsional degree of freedom from the 𝑮𝑭 calculation
and the 𝑐-normal coordinates are defined for the remaining �̄� = 8

(displacement) internal coordinates that exhibit small(er) amplitude
motions.

For a given value of the 𝑘 c–normal coordinates, the value of the 𝜉𝑖
internal coordinates can be calculated using the eigenvectors in  and
the 𝜉(eq)

𝑖
equilibrium values:

𝜉𝑖 = 𝜉
(eq)
𝑖

+

�̄�∑
𝑘=1

(eq)
𝑖,𝑘

𝑘 , 𝑘 = 1,… , �̄�(= 8) (11)

Since HCOOH has two equilibrium configurations, we have two
parameter sets: {𝝃(c),(c)} and {𝝃(t),(t)} (the parameters are deposited
as Supplementary data).

2.4. Relaxed curvilinear normal coordinates along the torsional motion

Since we are interested in the overall vibrational dynamics of
HCOOH, we cannot restrict the description to the cis or the trans well.
Hence, we repeated the c–normal mode computation (with �̄� = 8

degrees of freedom) along the large-amplitude motion at several points
(vide infra) over the entire range of 𝜏 ∈ [0, 2𝜋). During this computation,
we relaxed the molecular structure along 𝜏 by minimizing the potential
energy (Fig. 4). The relaxed values of the internal coordinates that
correspond to the minimal potential energy as a function of 𝜏 are
shown in Fig. 5. These relaxed internal coordinate structures are
considered as the ‘equilibrium structure’, 𝝃(eq)(𝜏), for the 8-dimensional
c–normal-mode computation that is repeated for several 𝜏 values.

In practice, the c–normal coordinates are computed (similarly to
Section 2.3) at 24 equally distributed values of 𝜏 = 𝑡𝑛 with 𝑡𝑛 =

(𝑛 − 1)360o∕24,

𝜉𝑖(𝜏) = 𝜉
(eq)
𝑖

(𝜏) +

8∑
𝑗=1

̃𝑖,𝑗 (𝜏)̃𝑗 , 𝑖 = 1,… , 8 . (12)

Using the value of the coefficients at the 𝑡𝑛 (𝑛 = 1,… , 24) points, we
interpolate ̃𝑖,𝑗 (𝜏) by solving a system of linear equations,

̃𝑖,𝑗 (𝑡𝑛) =
24∑
𝑘=1

𝑐
𝑖𝑗

𝑘
𝑓𝑘(𝑡𝑛) , 𝑛 = 1,… , 24. (13)

For the 𝑓𝑘 functions, we have considered the following functions of the
Fourier basis

1, cos(𝜏), sin(𝜏), cos(2𝜏), sin(2𝜏),… , cos(12𝜏) . (14)

All coordinates can be expanded using only cosine functions of 𝜏, except
for the 𝜑 out-of-plane bending (that is also a torsion-like, but small-
amplitude vibration). 𝜑 is an odd function of 𝜏 (Fig. 5), and hence sine
basis functions are used for its interpolation.

As a result, we have relaxed equilibrium internal coordinates,
𝝃(eq)(𝜏) and relaxed c-normal (rc–normal) mode ̃𝑖,𝑗 (𝜏) coefficients as
a function of 𝜏 (Figs. 5 and 6). The rc–normal coordinates incorporate
in the coordinate definition the optimal structural changes along the
𝜏 large-amplitude motion, while the kinetic and potential energy cou-
pling is minimized among the small amplitude (normal) coordinates.
This construct is expected to provide an almost ideal coordinate repre-
sentation for this system. Results of convergence tests are reported in
Section 6.
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Fig. 4. 1-dimensional cut of the PES along the 𝜏 torsional coordinate with (a) the non-torsional coordinates fixed at their equilibrium value at the global minimum (red); (b)
relaxed non-torsional coordinates minimizing the potential energy (blue).

Fig. 5. Minimized equilibrium values for the internal coordinates as a function of the 𝜏 torsional angle. The relaxed bond length and bond angle functions are symmetric with
respect to 𝜏 = 180◦ (blue). The relaxed out-of-plane bending angle, 𝜑, is anti-symmetric with respect to 𝜏 = 180◦ (red).

3. Quantum Hamiltonian

The (ro)vibrational kinetic energy operator (KEO) corresponding
to the torsional-relaxed-curvilinear-normal coordinate representation
𝒒 = (̃, 𝜏) is constructed using the numerical KEO approach as im-
plemented in the GENIUSH computer program [2]. The core of the
program is based on the evaluation of the mass-weighted metric tensor
at coordinate points:

𝑔𝑘𝑙 =

𝑁∑
𝑖=1

𝑚𝑖𝐭
T
𝑖𝑘
𝐭𝑖𝑙; 𝑘, 𝑙 = 1, 2,… , 3𝑁 − 3 , (15)

where the so-called vibrational and rotational t-vectors are

𝐭𝑖𝑘 =
𝜕𝐫𝑖

𝜕𝑞𝑘
; 𝑘 = 1, 2,… , 3𝑁 − 6 (16)

𝐭𝑖,3𝑁−6+𝑎 = 𝐞𝑎 × 𝐫𝑖; 𝑎 = 1(𝑥), 2(𝑦), 3(𝑧) , (17)

respectively. For the computation of the t-vectors, and using them
to construct the 𝒈 ∈ R

(3𝑁−3)×(3𝑁−3) matrix, it is necessary to know
the body-fixed Cartesian coordinates 𝒓𝑖 (𝑖 = 1,… , 𝑁) as a function
of the generalized vibrational coordinates 𝑞𝑘 (𝑘 = 1,… , 3𝑁 − 6).
We expect that an efficient representation can be obtained with the
relaxed-curvilinear-normal coordinate plus torsion choice (Section 2)

𝑞𝑖 = ̃𝑖 , 𝑖 = 1,… , 8

𝑞3𝑁−6 = 𝜏 . (18)

The corresponding 𝒓𝑖 vs. 𝑞𝑘 relations can be obtained from Eqs. (1) and
(12). This coordinate choice results in an arrow-like structure of the
𝑮 matrix (Fig. 7), i.e., the coupling of the 𝜏 large-amplitude motion
and the ̃ small-amplitude coordinates is not necessarily small (can be
large), but the coupling among the small-amplitude ̃ coordinates is
small for all 𝜏 values.

The derivatives of the 𝒓𝑖 Cartesian coordinates with respect the 𝑞𝑘
generalized internal coordinates are obtained by using the two-sided
finite difference formula. The 𝑮 ∈ R

(3𝑁−3)×(3𝑁−3) matrix is obtained by
inversion of 𝒈 ∈ R

(3𝑁−3)×(3𝑁−3):

𝑮 = 𝒈−1 . (19)

In most applications of GENIUSH [2–4,34–38], the discrete variable
representation [39] was used, and in that representation the Podolsky
(P) form of the general vibrational KEO

�̂�v,P =
1

2

𝐷∑
𝑘=1

𝐷∑
𝑙=1

�̃�−1∕4�̂�𝑘𝐺𝑘𝑙 �̃�
1∕2�̂�𝑙 �̃�

−1∕4 with �̃� = det 𝒈 (20)

is an advantageous choice, because it requires only first-order coordi-
nate derivatives.

In this work, we use a finite basis representation of the Hamiltonian
(Sections 4 and 5), and for this purpose the ‘fully rearranged’ form [16,
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Fig. 6. Curvilinear normal coordinate coefficients, Eq. (12), as a function of the 𝜏 torsional angle.

17,40] is more convenient

�̂�v = −
1

2

3𝑁−6∑
𝑖=1

3𝑁−6∑
𝑗=1

𝐺𝑖𝑗
𝜕

𝜕𝑞𝑖

𝜕

𝜕𝑞𝑗
−

1

2

3𝑁−6∑
𝑖=1

𝐵𝑖
𝜕

𝜕𝑞𝑖
+ 𝑈 + 𝑉 (21)

where 𝐺𝑖𝑗 , 𝐵𝑖, 𝑈 , and 𝑉 are functions of the vibrational coordinates,

𝐵𝑖 =

3𝑁−6∑
𝑘=1

𝜕

𝜕𝑞𝑘
𝐺𝑘𝑖 (22)
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Fig. 7. Visualization of the 𝑮 matrix, Eqs. (15) and (19), for a (any) grid point from
the dynamically relevant range. The eight rc–normal modes are weakly coupled among
each other (light blue), but their weak coupling with the large amplitude motion (𝜏)
is not assumed (dark green). The relaxation of the reference structure and the 𝑮𝑭

diagonalization along 𝜏 ensures that the coupling among the rc–normal coordinates
remains small (light blue) for any value of 𝜏 (see also Figs. 5 and 6).

and the pseudo-potential term is

𝑈 =
1

32

3𝑁−6∑
𝑘𝑙=1

[
𝐺𝑘𝑙

�̃�2

𝜕�̃�

𝜕𝜉𝑘

𝜕�̃�

𝜕𝜉𝑙
+ 4

𝜕

𝜕𝜉𝑘

(
𝐺𝑘𝑙

�̃�

𝜕�̃�

𝜕𝜉𝑙

)]
. (23)

4. Basis functions and truncation of the direct-product basis

We start expanding the wave function over a direct product of basis
functions of the selected coordinates

𝛹𝑖(𝑞1,… , 𝑞8, 𝜏) =

𝑏∑
𝑛𝑞1

=0

…

𝑏∑
𝑛𝑞8

=0

𝑁max
𝜏∑
𝑛𝜏=0

𝐶 𝑖
𝑛𝑞1

,…,𝑛𝑞8
,𝑛𝜏

8∏
𝑖=1

𝜓 (𝑖)
𝑛𝑞𝑖

(𝑞𝑖)𝜓
(𝜏)
𝑛𝜏

(𝜏) . (24)

In this work, we use harmonic oscillator basis functions, for the (di-
mensionless) 𝑞1,… , 𝑞8 rc–normal coordinates,

𝜓𝑛(𝑞) = 𝐴𝑛𝐻𝑛(𝑞) e
−𝑞2∕2 with 𝑞 ∈ (−∞,+∞) , (25)

where𝐻𝑛(𝑞) is the 𝑛th-order Hermite polynomial and 𝐴𝑛 is a normaliza-
tion constant. Section 5.1 provides further important technical details
regarding the range of the different coordinate choices. Regarding the
𝜏 torsional coordinate, we use a Fourier basis including the following
functions,

1, cos(𝜏), sin(𝜏),… , cos(𝑛𝜏𝜏), sin(𝑛𝜏𝜏) , 𝜏 ∈ [0, 2𝜋) (26)

to solve the 1-dimensional (1D) torsional Schrödinger equation,

�̂� = 𝐺𝜏𝜏
𝜕2

𝜕𝜏2
+
𝜕𝐺𝜏𝜏

𝜕𝜏

𝜕

𝜕𝜏
+ 𝑉𝜏 , (27)

where the pseudo-potential term, Eq. (23), is neglected. As a result,
we obtain torsional functions that can be identified as trans, cis, or
delocalized torsional functions explained and discussed in detail in
Section 6. We use this 1D torsional basis set to solve the 9D vibrational
problem of formic acid.

An accurate product basis set representation for the lowest vibra-
tional levels of HCOOH requires values of 𝑁max

𝜏
> 30 and 𝑏 ≥ 8. The

number of functions in a direct product basis with 𝑁max
𝜏

= 30 and
𝑏 = 8 is 98 ⋅ 31 ≈ 1.3 ⋅ 109 that is too large for practical computations,
and still not sufficient for good convergence. Since the couplings of the
eight (relaxed) curvilinear normal coordinates was made small over the
entire range of 𝜏 (Section 2), we may expect that the basis set can be
efficiently pruned according to

𝛹𝑖 =

𝑁max
𝜏∑
𝑛𝜏=0

∑
𝑓 (𝑛𝑞1

,…,𝑛𝑞8
)≤𝑏
𝐶 𝑖
𝑛𝑞1

,…,𝑛𝑞8
,𝑛𝜏

8∏
𝑖=1

𝜓 (𝑖)
𝑛𝑞𝑖

(𝑞𝑖)𝜓
(𝜏)
𝑛𝜏

(𝜏) (28)

with 𝑓 (𝑛𝑞1 ,… , 𝑛𝑞8 ) = 𝑛𝑞1 +…+ 𝑛𝑞8 , (29)

where certain basis functions have been discarded from the direct prod-
uct. Eq. (29) gives the simplest possible pruning function. Poirier and
co-workers [25–27] have studied more elaborate pruning conditions
targeting very highly excited states.

Since the 𝜓𝑛𝑞1
(𝑞1) ⋅ … ⋅ 𝜓𝑛𝑞8

(𝑞8) product function provides a good
representation for the small-amplitude (non-𝜏) dynamics, we can dis-
card basis functions based on simple physical arguments. For an a priori
assessment about the importance of a basis function |𝒏′⟩ (𝒏′ collects the
basis indexes) in a wave function dominated by the |𝒏⟩ basis state, the
smallness of the ratio of the Hamiltonian matrix element with respect
to the difference of the zeroth-order energies,

⟨𝑛1,… , 𝑛8, 𝑛𝜏 |�̂�|𝑛′
1
,… , 𝑛′

8
, 𝑛′
𝜏
⟩

𝐸
(0)
𝑛1 ,…,𝑛8 ,𝑛𝜏

− 𝐸
(0)

𝑛′
1
,…,𝑛′

8
,𝑛′𝜏

≈ 0 (30)

can provide a good indication about the unimportance of |𝒏′⟩ for the
variational result. The ratio is small, if (a) the Hamiltonian matrix
element is small, and/or (b) the zeroth-order energy difference is large.
The order of magnitude of the Hamiltonian matrix element can be
estimated by considering the fast convergence of the Taylor expansion
of the potential and the kinetic energy in rc–normal coordinates.

If the zeroth-order energy for a multi-dimensional basis function is
very large, then the contribution of the function to the lowest-energy
wave functions is negligible. For example, in order to compute the
ground vibrational wave function, the 8D basis functions

𝟎 = (0, 0, 0, 0, 0, 0, 0, 0) and

11, 21, 31, 41, 51, 61, 71, 81 (31)

are necessary, since ⟨𝟎, 𝑛𝜏 |�̂�|𝑛′
𝑞1
,… , 𝑛′

𝑞8
, 𝑛′
𝜏
⟩ is not small. In Eq. (31), we

have introduced a short notation, we list only the degrees of freedom
for which the basis function index (‘vibrational quantum number’) is
larger than 0, e.g., 31 = (0, 0, 1, 0, 0, 0, 0, 0).

Furthermore, less important, but still significant contribution to the
ground vibrational state may be expected from the following 8D basis
functions:

12, 22, 32, 42, 52, 62, 72, 82,

1121, 1131, 1141, 1151, 1161, 1171, 1181,

2131, 2141, 2151, 2161, 2171, 2181,

3141, 3151, 3161, 3171, 3181,

4151, 4161, 4171, 4181,

5161, 5171, 5181,

6171, 6181,

7181 , (32)

where we note that the functions with 81 contribution can be discarded
for the present system (HCOOH) due to symmetry reasons. At the same
time, the basis function 1121314151617181 gives a negligible contribution
to the lowest-energy states in comparison with the basis functions listed
in Eqs. (31) and (32), since both the Hamiltonian matrix elements are
expected to be small and the zeroth-order energy differences are large.

These kinds of arguments do not apply for discarding torsional
functions, since the coupling of the 𝜏 coordinate and the curvilinear
normal modes (the Hamiltonian matrix element) may be large and
the zeroth-order torsional energies are small, i.e., both (a)–(b) pruning
‘criteria’ below Eq. (30) fail. Therefore, we retain all torsional basis
functions in the basis set.

All in all, using the simplest pruning function in Eq. (29), the direct-
product basis, Eq. (24), including 1.3 ⋅ 109 functions can be reduced to
4 ⋅ 105 functions, while the lowest (few hundred) vibrational states can
be computed accurately.
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For future work, we consider more elaborate pruning conditions.
Based solely on the harmonic frequencies, the following condition could
be formulated,

0 ≤ 2𝑛𝑞1 + 2𝑛𝑞2 +
3

2
𝑛𝑞3 + 𝑛𝑞4 + 𝑛𝑞5 + 𝑛𝑞6 +

1

2
𝑛𝑞7 + 𝑛𝑞8 ≤ 𝑏 . (33)

This condition accounts only for the denominator of Eq. (30). Since the
higher-frequency harmonic oscillator modes correspond to the stretch-
ing degrees of freedom, the coupling through the Hamiltonian matrix
element, numerator of Eq. (30), may be large. A ‘safe’ improvement of
Eq. (29), reads as

0 ≤ 𝑛𝑞1 + 𝑛𝑞2 + 𝑛𝑞3 + 𝑛𝑞4 + 𝑛𝑞5 + 𝑛𝑞6 +
1

2
𝑛𝑞7 + 𝑛𝑞8 ≤ 𝑏 (34)

that corresponds to increasing the number of basis functions for the
lowest-frequency (totally symmetric) harmonic mode (O–C–O bend-
ing). We plan to use Eq. (34) in future work (see also Section 6).

5. Multi-dimensional integration

5.1. Coordinate ranges for curvilinear normal coordinates

Since we use harmonic oscillator basis functions, Eq. (25), it will
be appropriate to use a set of (nested) Hermite quadratures to evaluate
integrals for the matrix elements. Before doing that we need to address
the question of the coordinate range for rc–normal coordinates.

The range of the harmonic oscillator functions and also of the
Hermite quadrature is (−∞,∞), whereas the range of the internal
coordinates is more restricted: [0,∞) for a stretching and [0, 𝜋] for a
bending. At the same time, if we calculate the value of the curvilinear
coordinates, 𝜉𝑖, using the values of rc–normal coordinates, ̃𝑘 (at grid
points) according to Eq. (12), it can happen that we obtain a value
that is outside the coordinate range (e.g., negative value for a distance).
Fortunately, this does not happen for grid points near the origin, but at
the edges of the multi-dimensional grid, there are points that return
internal coordinate values outside their range. For rectilinear nor-
mal coordinates, this does not happen, since the body-fixed Cartesian
coordinates are also defined over (−∞,+∞).

To handle the problematic points of the rc–normal coordinate grid,
we define mapping functions which ensure that the result is in the good
range:


[
𝜉
(eq)
𝑖

+

𝐷∑
𝑘=1

̃𝑖𝑘̃𝑘
]
∈ Range(𝜉𝑖) . (35)

Furthermore, we expect that a good mapping function behaves as a
linear (an almost trivial) mapping within the good range, but it ensures
that at the ‘edges’ of the multi-dimensional grid meaningful values are
returned.

For a sigmoid-like mapping function, 𝑥 ↦ arctan(𝑥) and 𝑥 ↦ tanh(𝑥)
are the most common examples. Unfortunately, outside the [−0.5, 0.5]

interval, these functions significantly deviate from 𝑥 ↦ 𝑥, and we would
like to find a function that is close to 𝑥 ↦ 𝑥 over almost the entire
coordinate range, but ensures that the ‘edges’ also have meaningful
values. For these reasons, we decided to use

 (𝑥) =
𝑥

(1 + |𝑥|𝑘)1∕𝑘 (36)

with 𝑘 = 8. The procedure is simple. For a quadrature point 𝜏𝑘𝜏 and
𝑞
𝑘1
1
,… , 𝑞

𝑘8
8
, the internal coordinates of the reference structure and the

corresponding displacements are calculated. Their sum provides the
‘raw’ internal coordinate value that is mapped to the final value of the
coordinate within the correct range. The following parameterization is
used for the stretching (𝑟𝑖), bending (𝜃𝑖), and out-of-plane bending (oop,
𝜑) types of coordinates (Fig. 8)

stre(𝑥) = 𝑥 − 3.5

(1 + |(𝑥 − 3.5) ⋅ 0.34|8)1∕8 + 3.5, (37)

Fig. 8. Functions used for the stretching, bending, and out-of-plane bending coor-
dinates to map the (−∞,+∞) range of the curvilinear normal coordinates to the
mathematically appropriate and dynamically relevant range of HCOOH.

bend(𝑥) = 𝑥 − 𝜋∕2

(1 + |(𝑥 − 𝜋∕2) ⋅ 2∕𝜋|8)1∕8 +
𝜋

2
, (38)

and

oop(𝑥) = 𝑥

(1 + |(𝑥) ⋅ 2∕𝜋|8)1∕8 , (39)

respectively. These functions ensure that the ‘final’ value for the stretch-
ing coordinates is within the [0.56, 6.44] bohr interval, which is the
relevant dynamical range for all stretches in HCOOH, the value of
the bending coordinate is within [0, 𝜋], and the out-of-plane bending
is within [−𝜋∕2, 𝜋∕2]. Although 𝜑 is a torsion-like coordinate and is
defined on [−𝜋, 𝜋), it is a small(er) amplitude vibration of formic acid,
and the relevant dynamical range is within [−𝜋∕2, 𝜋∕2].

Regarding Eq. (36), we decided to use 𝑘 = 8 because it appears to
be a good compromise between a faithful mapping (of the good range)
and numerical integrability of the matrix elements with a reasonable
number of points. Nevertheless, we have checked values up to 𝑘 = 14

using a pruned basis set with 𝑏 = 8 (Section 4), and we obtained the
vibrational energies within 0.03 cm−1 from the 𝑘 = 8 values (using the
same basis) up to 3000 cm−1 beyond the zero-point energy.

5.2. Smolyak quadrature

We use the Smolyak approach [6,13–15,18,41] to construct efficient
non-product grids for the pruned basis set, Eqs. (28)–(29), that can
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Fig. 9. Assessment of the convergence of the vibrational band origin obtained with a 𝑏 = 9 pruned basis set, Eqs. (28)–(29), using relaxed curvilinear (rc-) normal coordinates for
the non-torsional degrees of freedom. The vibrational energies are compared with smaller (𝑏 = 8) and larger (𝑏 = 10) basis-set results. The zero-point energy with 𝑏 = 8, 9, and 10
is �̃�0 = 7350.84, 7350.82, and 7350.81 cm−1, respectively.

Fig. 10. Difference between the vibrational energies obtained using rectilinear, �̃�rect, and relaxed curvilinear (rc-), �̃�, normal coordinates for the non-torsional degrees of freedom.
In both cases the pruned basis set corresponds to the 𝑏 = 8 parameter, Eqs. (28)–(29). The corresponding ZPVEs are �̃�0 = 7350.84 cm−1 and �̃�rect,0 = 7350.91 cm−1.

be used to evaluate the multi-dimensional integrals appearing in the
kinetic energy coefficients, Eq. (21), and in the PES. The Smolyak
quadrature for nine dimensions is defined as

𝑄(9,𝐻) =
∑

𝝈𝒔(𝑖)≤𝐻
⊗

9∏
𝜒=1

𝛥�̂�
𝑖𝑞𝜒
𝜒 , 𝑖𝜒 = 1, 2, 3, 4,… , 𝜒 = 1,… , 9

with 𝝈𝒔(𝑖) = 𝑠𝜏 (𝑖𝜏 ) + 𝑠
𝑞1 (𝑖𝑞1 ) +… + 𝑠𝑞8 (𝑖𝑞8 ) , (40)

where 𝐻 is a grid-pruning parameter, 𝝈𝒔(𝑖) is a grid-pruning function,
and the incremental operator is defined as

𝛥�̂�
𝑖𝜒
𝜒 = �̂�

𝑖𝜒
𝜒 − �̂�

𝑖𝜒−1

𝜒 (41)

with �̂�0
𝜒
= 0 and the 1D quadrature rules,

�̂�
𝑖𝜒
𝜒 𝑓 (𝑞𝜒 ) =

𝑚𝑖𝜒∑
𝑚=1

𝑤
𝑖𝜒
𝜒,𝑚𝑓 (𝑞

𝑖𝜒
𝜒,𝑚) , 𝑖𝜒 = 1, 2, 3, 4,… (42)

Equivalently, we can also write the Smolyak quadrature as a lin-
ear combination of product quadratures with different 1-dimensional
accuracies as

𝑄(9,𝐻) =
∑

𝝈𝒔(𝑖)≤𝐻
𝐶𝒊

(
⊗

9∏
𝜒=1

�̂�
𝑖𝜒
𝜒

)
, 𝑖𝜒 = 1, 2, 3, 4,… , 𝜒 = 1,… , 9, (43)

with 𝝈𝒔(𝑖) = 𝑠𝜏 (𝑖𝜏 ) + 𝑠
𝑞1 (𝑖𝑞1 ) +… + 𝑠𝑞8 (𝑖𝑞8 ). (44)

𝑄(9,𝐻) has a smaller number of points, than the direct product grid,

�̂�
𝑖max
𝑞1
𝑞1

⊗… ⊗ �̂�
𝑖max
𝑞8
𝑞8

⊗ �̂�
𝑖max
𝜏
𝜏 , and its accuracy depends on three factors,

(a) the form of the 𝑠𝜒 (𝑖𝜒 ) grid pruning functions, for which 𝑠𝜒 (𝑖𝜒 ) ≥
𝑠𝜒 (𝑖𝜒 − 1) must hold; (b) the grid-pruning parameter 𝐻 ; and (c) the
number of the 𝑚𝑖𝜒 grid points, for which 𝑚𝑖𝜒 ≥ 𝑚𝑖𝜒−1 must hold.

For constructing the Smolyak grid in the present work, we define
the 𝑠𝜒 (𝑖𝜒 ) functions as follows:

𝜒 = 𝜏 ∶ 𝑠𝜒 (𝑖𝜒 ) = 10 (45)
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Fig. 11. Visualization of the trans- (blue), the cis- (yellow), and the lowest-energy delocalized (green) 1D torsional functions that were obtained by solving the 1D torsional
Schrödinger equation, Eq. (27). The symmetry properties of the functions with respect to reflection to the plane defined by the equilibrium structures (𝜏 = 0o and 180◦ in the
figure) are collected in Table 1.

𝜒 = 𝑞1,… , 𝑞8 ∶ 𝑠𝜒 (𝑖𝜒 ) = 10𝑖𝜒 , 𝑖𝜒 = 1, 2, 3,… (46)

The value of 𝐻 , which sets an upper limit on the sum of the 𝑠

function values, is chosen according to this definition. The sequences
of quadrature rules �̂�

𝑖𝜒
𝜒 are chosen as

𝜒 = 𝜏 ∶ �̂�
𝑖𝜏
𝜏 = �̂�

trap
𝑀max
𝜏

, 𝑖𝜏 = 1, 2, 3,…

𝜒 = 𝑞1,… , 𝑞8 ∶ �̂�
𝑖𝜒
𝜒 = �̂�Her

𝑚𝑖𝜒
, 𝑖𝜒 = 1, 2, 3,…

with

𝑚𝑖𝜒 = 1, 3, 3, 7, 9, 9, 9, 9, 17, 19, 19, 19, 31, 33, 41, 41,… (47)

where �̂�trap
𝑀max
𝜏

is a trapezoidal quadrature rule of 𝑀max
𝜏

points and a

maximum degree of 𝑑𝜏 = 2𝑀max
𝜏

− 1, while �̂�Her
𝑚𝑖𝜒

are nested quadrature

rules for Hermite polynomials with a maximum degree of 𝑑𝑖𝜒 = 1, 5,

5, 7, 15, 15, 15, 15, 17, 29, 29, 29, 31, 33, 61, 61,… corresponding

to 𝑖𝜒 = 1, 2, 3,… [42] Nesting means that all quadrature points of the
quadrature rule �̂�𝑗 appear in the higher-order quadrature rule, �̂�𝑗+1.

Using this construct with 𝑀𝜏 = 11 trapezoidal points and 𝐻 = 150,

we can integrate exactly all overlap matrix elements for the pruned

basis set with 0 ≤ 𝑛𝜏 ≤ 4 and 0 ≤ 𝑛𝑞1 + … + 𝑛𝑞8 ≤ 8 conditions. For
𝐻 = 170, the Smolyak grid includes 1 230 251 ≈ 1.2 ⋅ 106 points. The
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Table 1
Plane reflection symmetry (𝐶𝑠 point group) with respect to the equi-
librium structures of the one-dimensional basis functions used in the
computations (Section 4). The first 22 1-dimensional (1D) torsional
functions (𝑐, 𝑡, 𝑑) are plotted in Fig. 11. (𝑛 = 0, 1, 2,… , 𝑚 = 1, 2,…).

A′ A′′

1𝑛, 2𝑛, 3𝑛, 4𝑛, 5𝑛, 6𝑛, 7𝑛 –
80, 82, . . . , 82𝑛 81, 83, . . . , 82𝑛+1
𝑡0, 𝑡2, 𝑡4, 𝑡6 𝑡1, 𝑡3, 𝑡5, 𝑡7
𝑐0, 𝑐2, 𝑐4, 𝑐6 𝑐1, 𝑐3, 𝑐5
𝑑0, 𝑑3, 𝑑4, . . . , 𝑑4𝑚−1, 𝑑4𝑚 𝑑1, 𝑑2, 𝑑5, 𝑑6, . . . , 𝑑4𝑚−3, 𝑑4𝑚−2

smallest 9D direct-product Gauss grid that integrates correctly the same
overlap matrix would have 11 ⋅ 98 ≈ 4.7 ⋅ 108 points.

The Smolyak algorithm using nested sequences of quadrature rules
allows us to use a non-product grid that has a structure, i.e., a multi-
dimensional integral of a function 𝐹 (𝑥1,… , 𝑥9) can be written as

∫ 𝐹 (𝑥1,… , 𝑥9) d𝑥1 …d𝑥9 ≈
𝑘max
1∑
𝑘1=1

…

𝑘max
12∑
𝑘9=1

𝑊 smol(𝑘1,… , 𝑘9)𝐹 (𝑥
𝑘1
1
,… , 𝑥

𝑘9
9
) ,

(48)

where𝑊 Smolyak(𝑘1,… , 𝑘9) is the multi-dimensional Smolyak weight and
the points are sorted according to the sequence of quadrature rules. The
structure appears in the 𝑘max

𝑐
indexes. 𝑘1 depends on 𝐻 , 𝑘2 depends

on 𝐻 and 𝑘1, etc. and thus, matrix–vector products can be computed
by sequential summation [13,15–17,40,43–45]. Eigenvalues and eigen-
vectors are computed using a Lanczos iterative eigensolver that requires
only the multiplication of the Hamiltonian matrix with a vector. Imple-
mentation details regarding the matrix–vector multiplication has been
described in Refs. [13,15,16].

6. Numerical results

We have computed the vibrational energies using the basis set
and pruning condition defined in Eqs. (28) and (29). The number
of torsional basis functions was 55 and we used 79 grid points for
this degree of freedom. Regarding the 8-dimensional (8D) rc–normal
coordinate part of the problem, three basis set sizes were used with the
𝑏 = 8, 9, and 10 basis pruning parameter and with the 𝐻 = 190, 200,
and 210 grid pruning parameter, respectively. As a result, the 9D basis
sets with 𝑏 = 8, 9, and 10 included 707 850, 1 337 050, and 2 406 690

basis functions, respectively. The size of the corresponding non-product
Smolyak quadrature grid was 42 223 623, 72 656 063 and 132 043 839.

The value of 𝐻 was selected to be able to exactly integrate the
Hamiltonian matrix elements up to 5th order (in a hypothetical Taylor
expansion) with the highest-excited basis functions in the pruned basis
set. Of course, we have checked the effect of using a larger 𝐻 value.
For 𝐻 = 200 (instead of 𝐻 = 190) with 𝑏 = 8, the eigenvalues up to
5000 cm−1, beyond the zero-point vibrational energy (ZPVE), changed
at most by 0.001 cm−1. Based on these observations, we think that
the procedure is almost perfectly variational, which corresponds to an
exact integration and provides rigorous energy upper bounds. Further
computations with the more elaborate pruning condition in Eq. (34),
with larger basis and grid sizes are in progress and will allow us to
have access to well-converged vibrational energies beyond 2000 cm−1

above the ZPVE.
Convergence properties have been tested with respect to the basis

set size (Fig. 9) and the coordinate representation (Fig. 10). Fig. 9 shows
that the vibrational energies with 𝑏 = 9 are converged better than
1 cm−1 up to ca. 2500 cm−1, and within ca. 2 cm−1 up to 3500 cm−1

beyond the ZPVE.
Fig. 10 highlights the efficiency of the rc–normal coordinates (Sec-

tion 2) in comparison with the rectilinear normal coordinates (for the
non-torsional degrees of freedom). For the 𝑏 = 8 basis, the rectilinear

normal coordinate vibrational energies differ (are less accurate) by
8–10 cm−1 from the rc–normal coordinate results.

We have also tested the coordinate definition of Lauvergnat and
Nauts who computed the vibrational states of the methanol molecule
in full dimensionality (12D) [6]. They did not relax and interpolate the
normal coordinate coefficients along the large-amplitude coordinate,
but they calculated the average of the (curvilinear) normal coordinate
coefficients at the two local minima, hence we may call their coordi-
nates averaged, curvilinear (ac-) normal coordinates. For HCOOH, we
have performed computations both with ac– and rc–normal coordinates
with the 𝑏 = 8 basis set. We have found that (for the present system) the
relaxed curvilinear (rc-) normal coordinates slightly outperform simple
averaging (ac–normal coordinates), but the difference is typically less
than 0.5 cm−1 in the higher energy range. Hence, the ac–normal
coordinates appear to be an excellent choice and they are technically
much simpler to construct than the rc–normal coordinates used in
the present work. Nevertheless, if there are multiple minima, stronger
coupling of the large-amplitude motion with the ‘rest’ of the molecule,
or more than one large-amplitude motions, then we can anticipate that
the relaxation-interpolation approach used in the present work is, in
principle, more efficient.

6.1. Torsional assignment

Since the computation is not localized to one of the wells of the
PES (Fig. 11), it is a relevant question to ask whether a given state can
be assigned to the trans or the cis conformer. The torsional assignment
of the 9D wave functions was performed based on the contribution of
the 1D torsional basis functions (Fig. 11). Unless the torsional energy is
very high, the torsional functions are localized in the trans or in the cis
well, i.e., they have a well-defined number of nodes beyond the ground
state in ‘their’ well. The 1D torsional functions are eigenfunctions of
the Schrödinger equation with the 1D torsional Hamiltonian, Eq. (27).
There are eight 1D trans torsional functions (𝑡0, 𝑡1,… , 𝑡7) and there
are seven 1D cis torsional functions (𝑐0, 𝑐1,… , 𝑐6). Beyond these states,
the torsional functions have nodes in both wells and we call them
delocalized functions. Each torsional function has a well-defined parity
with respect to reflection to the plane of the equilibrium structures
(Table 1). The torsional assignment of a 9D vibrational state was
performed based on the assignment of the dominant torsional function.
The plane reflection symmetry of the 9D vibrational wave function
can be determined by the symmetry of the torsional functions and the
symmetry of the out-of-plane vibrational mode (Table 1).

Regarding the trans states computed with the GENIUSH-Smolyak
approach (𝑏 = 9 and 10), we observe an overall good agreement with
the internal-coordinate path Hamiltonian (ICPH) [28] and a very good
agreement with the 6th-order canonical van Vleck perturbation theory
(CVPT) [30] results (Fig. 12). The present variational computations
systematically improve upon the CVPT results by 5–10(–25) cm−1 up
to 4000 cm−1 beyond the ZPVE. The good agreement of the trans
vibrational energies (and assignments) with CVPT is interesting, since
the CVPT computation was based on a single-well description and the
cis zero-point vibration is only 1418 cm−1 higher than the trans ZPVE,
but it can be explained by the relatively high cis-trans isomerization
barrier (Fig. 11).

The current (almost perfectly variational) computation improves the
CVPT results by 1–5 cm−1 in the range up to ca. 2500 cm−1, and by ca.
5–15 cm−1 in the 2500–4000 cm−1 range. We can spot one important
outlier from this favorable comparison at around 3808 cm−1 (Fig. 12).
For this state the GENIUSH-Smolyak (𝑏 = 9) energy is by 25 cm−1

higher than the CVPT energy, and by comparing the 𝑏 = 9 and 10

energies, it is unlikely that some further enlargement of the basis set
(𝑏 = 11, 12) reduces this deviation to a value below 5 cm−1. This state
is unambiguously assigned to 76𝑡0 in both computation, which is the
6th excitation of the lowest-energy, totally symmetric harmonic mode
(𝜈7). By considering the currently used pruning condition, Eq. (29),
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Table 2
Trans-HCOOH: vibrational excitation energies, �̃� in cm−1, computed with the GENIUSH-Smolyak approach in comparison with the sixth-order canonical van Vleck
perturbation theory (CVPT) [30] and the internal-coordinate reaction-path Hamiltonian (ICPH) [28] results. (The footnotes are below Table 3.)

#a Assign.b �̃� (𝛿10 , 𝛿8)
c CVPT ICPH #a Assign.b �̃� (𝛿10 , 𝛿8)

c CVPT ICPH

1 ZPV-𝑡0 7351 (0, 0) [n.a.] 7354 71 6271𝑡0 2827 (1, 2) 2826 2825
2 71𝑡0 627 (0, 0) 627 627 72 62𝑡1 2833 (0, 1) 2836 2829
3 𝑡1 639 (0, 0) 640 638 73 7181𝑡2 2882 (0, 1) 2885 2890
4 81𝑡0 1034 (0, 0) 1035 1034 74 3161𝑡0 2886 (0, 0) 2884 2886
5 61𝑡0 1108 (0, 0) 1108 1108 75 61𝑡3 2893 (0, 1) 2894 2902
6 𝑡2 1220 (0, 0) 1221 1222 76 7381𝑡0 2920 (1, 3) 2919 2925
7 72𝑡0 1255 (0, 0) 1256 1256 77 [71𝑡4, 6171𝑡2] 2926 (0, 1) 2934 2952
8 71𝑡1 1268 (0, 0) 1269 1268 79 7281𝑡1 2934 (1, 2) 2934 2940
9 51𝑡0 1304 (0, 0) 1305 1305 80 21𝑡0 2938 (0, 0) 2940 2938
10 41𝑡0 1379 (0, 0) 1380 1379 81 [71𝑡4, 6171𝑡2] 2961 (0, 1) 2964 3066
12 7181𝑡0 1661 (0, 0) 1661 1661 82 517181𝑡0 2963 (0, 1) 2965 2965
13 81𝑡1 1673 (0, 0) 1675 1672 83 5181𝑡1 2980 (0, 1) 2983 2981
14 6171𝑡0 1732 (0, 0) 1732 1733 84 6173𝑡0 2987 (1, 4) 2986 2996
15 61𝑡1 1739 (0, 0) 1741 1739 85 6172𝑡1 2995 (1, 2) 2996 3004
16 31𝑡0 1783 (0, 0) 1783 1783 86 31𝑡2 3001 (0, 0) 3002 3003
17 𝑡3 1790 (0, 0) 1793 1795 88 3172𝑡0 3024 (0, 1) 3025 3027
18 71𝑡2 1848 (0, 0) 1850 1855 89 [516171𝑡0] 3028 (0, 1) 3030 3033
19 73𝑡0 1885 (0, 1) 1886 1890 91 [5161𝑡1] 3034 (0, 2) 3038 3036
20 72𝑡1 1898 (0, 0) 1900 1903 92 3171𝑡1 3038 (0, 1) 3040 3041
22 5171𝑡0 1930 (0, 0) 1932 1933 93 417181𝑡0 3043 (0, 1) 3044 3046
23 51𝑡1 1948 (0, 0) 1950 1947 94 [71𝑡1, 72𝑡3] 3055 (0, 1) 3057 [3109]
24 4171𝑡0 2006 (0, 0) 2006 2006 95 4181𝑡1 3059 (0, 1) 3061 3058
25 41𝑡1 2022 (0, 0) 2024 2021 96 [51𝑡3] 3077 (0, 1) 3080 3084
26 82𝑡0 2063 (0, 0) 2066 2063 97 3151𝑡0 3086 (0, 0) 3087 3087
28 6181𝑡0 2139 (0, 0) 2139 2139 98 83𝑡0 3089 (1, 2) 3094 3090
29 62𝑡0 2205 (0, 0) 2204 2205 100 416171𝑡0 3103 (0, 1) 3103 3105
30 81𝑡2 2254 (0, 0) 2257 2257 101 [73𝑡2] 3109 (1, 3) 3112 [3144]
31 7281𝑡0 2289 (0, 1) 2290 2290 102 4161𝑡1 3115 (0, 1) 3117 3115
32 [𝑡4, 61𝑡2, 51𝑡2] 2298 (0, 0) 2305 2312 103 [5271𝑡0] 3129 (0, 1) 3135 [3159]
33 7181𝑡1 2303 (0, 0) 2304 2302 105 75𝑡0 3154 (4, 7) 3149
34 [𝑡4, 61𝑡2] 2336 (0, 0) 2338 2358 106 3141𝑡0 3160 (0, 6) 3160 3161
35 5181𝑡0 2337 (0, 0) 2338 2338 107 74𝑡1 3165 (2, 3) 3164
36 6172𝑡0 2358 (0, 1) 2359 2361 109 41𝑡3 3166 (0, 2) 3171
37 6171𝑡1 2366 (0, 0) 2368 2369 110 6182𝑡0 3166 (0, 3) 3166
39 [5161𝑡0] 2401 (0, 0) 2405 2406 111 5173𝑡0 3189 (1, 3) 3192
40 3171𝑡0 2404 (0, 0) 2402 2402 112 5172𝑡1 3204 (1, 2) 3209
41 [31𝑡1, 4181𝑡0] 2414 (0, 0) 2418 2420 114 4171𝑡2 3223 (0, 1) 3226
42 4181𝑡0 2417 (0, 0) 2416 2415 115 [5271𝑡0, 5171𝑡2] 3229 (2, 1) 3235
43 31𝑡1 2426 (0, 0) 2427 2420 117 6281𝑡0 3234 (1, 2) 3232
49 74𝑡0 2517 (1, 3) 2517 119 [52𝑡1] 3247 (0, 1) 3255
50 73𝑡1 2530 (0, 1) 2531 [2543] 120 4173𝑡0 3263 (1, 3) 3264
51 5172𝑡0 2558 (0, 1) 2561 2568 121 𝑡6 3267 (0, 1) 3295
53 5171𝑡1 2575 (0, 0) 2579 2579 122 4172𝑡1 3280 (0, 2) 3283
54 41𝑡2 2597 (0, 0) 2598 2600 123 82𝑡2 3285 (1, 2) 3290
55 [52𝑡0, 51𝑡2] 2604 (0, 0) 2608 2608 124 63𝑡0 3291 (1, 3) 3289 3292
56 4172𝑡0 2633 (0, 1) 2634 2636 126 [415171𝑡0] 3301 (0, 1) 3305
57 4171𝑡1 2650 (0, 0) 2653 2652 127 [4151𝑡1] 3318 (0, 1) 3322
59 4151𝑡0 2676 (0, 0) 2678 2678 128 7282𝑡0 3320 (2, 3) 3320 3321
60 7182𝑡0 2690 (0, 1) 2692 2690 130 7182𝑡1 3331 (1, 3) 3335
61 82𝑡1 2703 (0, 1) 2707 2702 131 [81𝑡4, 7182𝑡1, 82𝑡2] 3337 (1, 2) 3340
63 42𝑡0 2746 (0, 0) 2747 2746 132 5182𝑡0 3365 (1, 2) 3368
64 617181𝑡0 2764 (0, 1) 2763 2764 133 [81𝑡4, 6181𝑡2] 3370 (1, 2) 3374
65 6181𝑡1 2772 (0, 1) 2773 2771 134 4271𝑡0 3372 (0, 1) 3373
66 𝑡5 2804 (0, 0) 2818 135 [61𝑡4] 3383 (1, 2) 3386
69 3181𝑡0 2810 (0, 0) 2810 2810 136 617281𝑡0 3391 (2, 2) 3389
70 81𝑡3 2826 (0, 1) 2830 2834 138 42𝑡1 3393 (0, 3) 3396

and the 𝑏 = 8, 9, 10 (11, 12) values of the pruning parameters (that
are computationally feasible), we think that for this state our result
is in an error and CVPT makes a (probably) good prediction. We can
improve the GENIUSH-Smolyak results, without significantly increasing
the computational cost, by using the more elaborate pruning condition
in Eq. (34). The Eq. (34) pruning simply allows to double the number
of basis functions for the totally symmetric, lowest-frequency mode,
while keeping the size of the multi-dimensional basis within reasonable
limits. Further work in this direction is in progress and will be reported
in the future.

Regarding the cis states, the computed fundamentals agree well
from all computations (GENIUSH-Smolyak, ICPH, and CVPT). We note
that the highest energy 𝑐1 vibration is not (yet) available from the
GENIUSH-Smolyak computations (this work), nor from ICPH Ref. [28].

Although CVPT results are available for all cis fundamental vibra-
tions [30], combination and overtone bands have not been reported.

Fig. 13 shows the comparison for cis states up to two excitations
(based on the wave function assignments, Tables 4–5) of the GENIUSH-
Smolyak (𝑏 = 9, 10) and the ICPH [28] results. Similarly to the trans
energies, there is an overall good agreement, but several ICPH energies
are too high (by 10–40 cm−1).

Beyond 3700 cm−1 (above the trans-ZPVE), we can see mixed cis-
trans states, in which torsional functions corresponding to the trans and
other functions corresponding to the cis well are entangled (Tables 4–
5). Several cis-trans entangled states come in pairs corresponding to
+ and − combinations of cis and trans basis functions. The corre-
sponding ‘tunneling’ splittings, which we currently compute to be <
1 − 5(−10) cm−1, are smaller or on the borderline with respect to the
convergence uncertainty of the 𝑏 = 9 basis in the relevant energy range
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Table 3
Trans-HCOOH. (Table 2 continued, CVPT [30], ICPH [28].)

#a Assign.b �̃� (𝛿10 , 𝛿8)
c CVPT ICPH #a Assign.b �̃� (𝛿10 , 𝛿8)

c CVPT ICPH

140 617181𝑡1 3400 (1, 3) 3399 198 [41𝑡4] 3705 (0, 1) 3712
141 [71𝑡5] 3430 (1, 1) 3448 199 315171𝑡0 3706 (0, 1) 3708
142 317181𝑡0 3430 (0, 1) 3431 200 [5171𝑡3, 71𝑡5] 3706 (1, 2) 3707
143 [61𝑡4, 62𝑡2] 3433 (1, 2) 3433 201 415181𝑡0 3711 (1, 2) 3713
144 [516181𝑡0] 3434 (1, 2) 3434 202 7183𝑡0 3717 (2, 5) 3719
145 3181𝑡1 3445 (0, 1) 3447 204 416172𝑡0 3730 (2, 1) 3729
146 4182𝑡0 3451 (1, 2) 3452 205 83𝑡1 3730 (2, 4) 3735
147 6272𝑡0 3453 (2, 4) 3450 206 3151𝑡1 3730 (0, 5) 3732
149 [6271𝑡1] 3458 (1, 2) 3461 207 416171𝑡1 3743 (1, 2) 3745
150 [7181𝑡3] 3458 (1, 3) 3461 208 [74𝑡2] 3745 (4, 10) 3744
154 [5162𝑡0] 3490 (1, 2) 3491 213 [415161𝑡0] 3764 (1, 2) 3770
155 316171𝑡0 3504 (0, 1) 3503 214 [53𝑡0] 3777 (1, 2) 3785
156 [3161𝑡1, 7281𝑡2] 3511 (1, 2) 3514 215 314171𝑡0 3781 (0, 1) 3781
157 [416181𝑡0] 3512 (1, 3) 3511 216 4281𝑡0 3784 (0, 2) 3785
158 [416181𝑡0] 3515 (1, 2) 3514 217 [4171𝑡3] 3792 (2, 1) 3797
159 [3161𝑡1, 6171𝑡3] 3522 (1, 2) 3514 218 617182𝑡0 3793 (2, 6) 3790
161 [5281𝑡0] 3536 (1, 2) 3539 219 6182𝑡1 3801 (9, 5) 3801
162 32𝑡0 3546 (0, 0) 3545 3547 220 75𝑡1 3805 (6, 2) 3797
163 7481𝑡0 3556 (4, 5) 3550 221 3141𝑡1 3805 (6, 11) 3807
164 [72𝑡4] 3557 (1, 9) 3564 222 76𝑡0 3808 (3, 14) 3783
165 [4162𝑡0] 3563 (1, 3) 225 [5174𝑡0] 3825 (5, 10) 3825
166 2171𝑡0 3566 (1, 3) 3568 3566 227 3182𝑡0 3833 (1, 4) 3835 3833
167 7381𝑡1 3567 (1, 2) 3565 229 4261𝑡0 3835 (1, 8) 3835 3836
168 31𝑡3 3568 (0, 4) 3570 230 [5173𝑡1] 3837 (2, 9) 3841
169 4162𝑡0 3571 (1, 2) 3565 234 627181𝑡0 3858 (3, 5) 3854
170 11𝑡0 3576 (0, 0) 3576 3575 235 [82𝑡3] 3859 (2, 5) 3864
171 21𝑡1 3578 (0, 0) 3581 3579 237 [6281𝑡1] 3865 (2, 4) 3854
173 [6172𝑡2, 72𝑡4] 3588 (1, 3) 3592 239 [5271𝑡1] 3873 (1, 3) 3884
174 517281𝑡0 3592 (2, 4) 3593 240 [61𝑡5] 3882 (1, 3) 3890
178 [517181𝑡1] 3607 (1, 4) 3611 247 4174𝑡0 3898 (1, 8) 3895
179 [51𝑡4, 5261𝑡0] 3612 (1, 2) 3615 249 316181𝑡0 3911 (1, 2) 3909
180 6174𝑡0 3622 (6, 4) 3615 250 4173𝑡1 3913 (2, 5) 3914
181 3171𝑡2 3625 (0, 9) 3626 251 [7182𝑡2, 517182𝑡0] 3914 (3, 4) 3916
182 6173𝑡1 3627 (3, 9) 3625 254 [63𝑡1] 3918 (2, 6) 3919
183 [4181𝑡2] 3634 (1, 3) 3636 255 [6181𝑡3] 3928 (2, 4) 3929
184 [415181𝑡0] 3635 (1, 5) 3638 256 [415172𝑡0] 3930 (1, 4) 3934
185 3173𝑡0 3649 (1, 4) 3649 257 [415171𝑡1] 3944 (1, 2) 3951
186 [516172𝑡0] 3656 (2, 5) 3656 258 2181𝑡0 3952 (3, 1) 3954 3952
187 [516171𝑡1, 6171𝑡3] 3659 (1, 3) 260 7382𝑡0 3955 (3, 3) 3949
189 3172𝑡1 3664 (1, 2) 3664 262 [42𝑡2, 4251𝑡0] 3959 (0, 7) 3965
190 [41𝑡4] 3672 (1, 1) 3670 263 [7282𝑡1] 3962 (3, 7) 3963
191 417281𝑡0 3672 (1, 4) 3672 264 [4152𝑡0, 42𝑡2] 3965 (1, 6) 3977
192 𝑡7 3679 (1, 2) 265 [7282𝑡1] 3969 (3, 8) 3963
194 [73𝑡3] 3687 (1, 3) 3688 266 3162𝑡0 3978 (1, 2) 3975 3978
195 417181𝑡1 3688 (1, 3) 3690 268 [62𝑡3] 3985 (2, 4) 3984
196 [5161𝑡2] 3693 (1, 2) 3698 269 517182𝑡0 3993 (3, 6) 3994

a #: Number of the state in the full vibrational energy list including cis, trans, and delocalized states.
b Excitation number for the rc–normal modes, 1𝑛 , 2𝑛 , 3𝑛 , 4𝑛 , 5𝑛 , 6𝑛 , 7𝑛 , 8𝑛 (𝑛 = 0, 1,…), zero excitation is not shown. For the 9th degree of freedom, the type of
torsional function (Fig. 11) and the excitation number is indicated, 𝑡𝑛∕𝑐𝑛∕𝑑𝑛 with 𝑛 ≥ 0. ‘[. . . ]’ labels the largest contribution(s) from strongly mixed states. The
symmetry behavior with respect to plane reflection can be derived from the properties of the 1D basis functions according to Table 1 by multiplication of the
characters.
c (𝛿10 , 𝛿8) = (�̃�𝑏=9 − �̃�𝑏=10 , �̃�𝑏=8 − �̃�𝑏=9) is shown for assessment of the convergence. The reported �̃� values and the assignment correspond to the 𝑏 = 9 basis set.

(indicated by (𝛿10, 𝛿8) in the tables), and we plan to determine these
splittings more precisely in future work.

Beyond 3900 cm−1 (above the trans-ZPVE), non-negligible contri-
bution from delocalized torsional states (Fig. 11) can be observed.
Table 6 shows the lowest-energy vibrational states with a significant
delocalized contribution (see also Tables 4–5). These states have an
energy close to the cis-trans isomerization barrier height (Fig. 11) and
in this range the cis-trans-delocalized functions strongly mix and for
their good description a variational procedure appears to be necessary.
Further, better converged results will be reported in future work.

7. Summary, conclusion, and outlook

Variational vibrational excitation energies have been reported for
the formic acid molecule up to ca. 4700 cm−1, which is slightly beyond
the top of the cis-trans isomerization barrier, using system-adapted
curvilinear coordinates in the GENIUSH-Smolyak approach developed
in the present work and a high-level ab initio potential energy surface
(PES) taken from Ref. [28].

The results confirm (within 1–5 cm−1) up to 2500 cm−1, and im-
prove (by 5–10 cm−1) between 2500 and 4000 cm−1 the 6th-order
canonical van Vleck perturbation theory (CVPT) energies [30] that
were obtained from a computation localized on the trans PES well.
Both the cis and trans energies computed with the GENIUSH-Smolyak
approach are in an overall good agreement, but improve (by 10–
40 cm−1) upon the internal-coordinate path Hamiltonian (ICPH) results
that similarly to the present work account for both the cis and trans
wells of the PES. There exists another potential energy surface and
multi-configuration time-dependent Hartree (MCTDH) computations
have been reported using that PES [29,46]. Direct comparison with
those results have not been reported in this work, because our current
focus was on the development of a computational procedure that can
be used to provide benchmark quality vibrational energies up to and
possibly beyond the isomerization barrier of the formic acid molecule.
We think that we have almost achieved this goal, further necessary
work with larger basis sets and an improved basis pruning condition
is in progress and results will be reported in future work.
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Table 4
Cis-HCOOH (including contributions from trans and delocalized states): vibrational energies, �̃� in cm−1 referenced to the trans-ZPVE, computed with the
GENIUSH-Smolyak approach in comparison with the internal-coordinate reaction-path Hamiltonian (ICPH) results [28]. (The footnotes are below Table 5.)

#a Assign.b �̃� (𝛿10 , 𝛿8)
c ICPH #a Assign.b �̃� (𝛿10 , 𝛿8)

c ICPH

11 ZPV-𝑐0 1418 (0, 0) 1412 245 [𝑐 − 𝑡 mixed] 3897 (3, 2)
21 𝑐1 1908 (0, 0) 1904 246 [𝑐 + 𝑡 mixed] 3898 (1, 4)
27 71𝑐0 2076 (0, 0) 2080 248 [51𝑐3, 61𝑐3] 3902 (2, 10) [3915]
38 𝑐2 2372 (0, 0) 2400 252 [𝑐6 − 𝑡 mixed, 𝑑0] 3914 (2, 5)
44 81𝑐0 2439 (0, 1) 2450 253 [𝑐6 + 𝑡 mixed, 𝑑0] 3916 (2, 7)
48 51𝑐0 2514 (0, 0) 2514 259 82𝑐1 3953 (2, 4)
52 71𝑐1 2568 (0, 1) 2577 261 4171𝑐1 3956 (2, 4)
58 61𝑐0 2665 (0, 1) 2667 267 [73𝑐0, 6172𝑐0] 3980 (2, 8)
62 72𝑐0 2733 (1, 1) 2759 276 [5181𝑐1, 6181𝑐1] 4027 (3, 5)
67 41𝑐0 2807 (0, 0) 2806 277 [61𝑐3 + 3181𝑡2] 4029 (3, 7)
68 𝑐3 2809 (1, 1) 278 [61𝑐3 − 3181𝑡2] 4029 (2, 7)
78 81𝑐1 2931 (1, 2) 2937 281 [𝑑2, 𝑐, 𝑡 mixed] 4036 (2, 7)
87 51𝑐1 3005 (1, 1) 3009† 283 4161𝑐0 4049 (1, 2) 4061
90 71𝑐2 3034 (1, 1) 286 74𝑐0 4054 (2, 8)
99 7181𝑐0 3098 (1, 1) 3133 299 [5161𝑐1, 52𝑐1] 4096 (2, 9)
104 61𝑐1 3149 (1, 3) 3159† 306 7182𝑐0 4116 (2, 7)
108 [5171𝑐0, 6171𝑐0] 3166 (1, 2) 3179 312 [5171𝑐2, 6171𝑐2] 4135 (2, 3)
113 𝑐4 3215 (1, 1) 314 72𝑐3 4142 (4, 6)
116 72𝑐1 3229 (0, 2) 321 42𝑐0 4166 (0, 2) 4170
118 31𝑐0 3239 (0, 0) 3235 324 [6181𝑐1, 5181𝑐1] 4178 (1, 3)
125 41𝑐1 3296 (0, 1) 3299 327 [517181𝑐0, 617181𝑐0] 4187 (3, 5)
129 [6171𝑐0] 3321 (1, 3) 328 31𝑐2 4189 (2, 4)
137 73𝑐0 3391 (1, 4) 329 [𝑐, 𝑡 mixed] 4189 (1, 4)
139 81𝑐2 3398 (1, 4) 332 41𝑐3 4192 (2, 5)
148 82𝑐0 3455 (1, 4) 3486 349 [62𝑐1, 52𝑐1] 4243 (5, 11)
151 4171𝑐0 3465 (0, 1) 3475 350 [71𝑐5, 81𝑐4] 4247 (2, 7)
152 51𝑐2 3467 (1, 3) 3638 352 [516171𝑐0, 5271𝑐0] 4250 (1, 7)
153 71𝑐3 3473 (1, 4) 353 3181𝑐0 4254 (1, 3) 4274
160 5181𝑐0 3531 (1, 2) 3536 355 [7281𝑐1 − 4161𝑡3] 4259 (4, 4)
172 𝑐5 3582 (2, 2) 3570∗,† 356 [7281𝑐1 + 4161𝑡3] 4259 (4, 9)
175 7181𝑐1 3594 (3, 3) 357 [71𝑐5, 81𝑐4] 4260 (3, 8)
176 [5161𝑐0, 52𝑐0] 3601 (1, 3) 3595† 362 [6171𝑐2, 72𝑐2] 4273 (10, 10)
177 [61𝑐2, 51𝑐2] 3605 (2, 6) 3638 369 21𝑐0 4291 (1, 10) 4292
188 [5171𝑐1, 7181𝑐1] 3661 (2, 3) 372 [𝑐, 𝑡 mixed] 4299 (1, 8)
193 6181𝑐0 3686 (2, 3) 3715† 374 [51𝑐4, 61𝑐4] 4303 (2, 13)
197 72𝑐2 3698 (4, 4) 380 [5172𝑐1, 6172𝑐2] 4320 (3, 9)
203 31𝑐1 3727 (0, 1) 3733 383 [𝑐, 𝑡 mixed] 4325 (2, 7)
209 [62𝑐0, 52𝑐0] 3753 (2, 4) 3761∗,† 384 4181𝑐1 4325 (2, 7)
210 41𝑐2 − [𝑡 mixed] 3757 (2, 2) 387 [3151𝑐0, 3161𝑐0] 4330 (1, 4) 4322
211 41𝑐2 + [𝑡 mixed] 3757 (1, 4) 391 [617181𝑐0, 7281𝑐0] 4346 (4, 10)
212 7281𝑐0 3758 (1, 6) 398 73𝑐2 4366 (5, 12)
223 6171𝑐1 3811 (5, 14) 399 [𝑑3, 𝑐, 𝑡 mixed] 4371 (5, 9)
224 [5172𝑐0, 6172𝑐0] 3820 (2, 15) 404 [62𝑐1, 5161𝑐1] 4378 (2, 7)
226 [𝑐, 𝑡 mixed] 3833 (2, 4) 405 3171𝑐1 4382 (2, 6)
228 4181𝑐0 3833 (1, 4) 3854 407 [3171𝑐1, 4151𝑐1] 4388 (5, 3)
231 [81𝑐3, 81𝑡5] 3842 (2, 12) 416 [6271𝑐0, 5172𝑐0] 4408 (5, 10)
232 [𝑐 + 𝑡 mixed] 3850 (1, 7) 419 [𝑐 − 𝑡 mixed] 4420 (4, 5)
233 [𝑐 − 𝑡 mixed] 3854 (1, 4) 420 [𝑐 + 𝑡 mixed] 4420 (3, 9)
236 [𝑐, 𝑡 mixed] 3860 (2, 5) 421 4171𝑐2 4421 (4, 10)
238 [𝑐, 𝑡 mixed] 3873 (1, 2) 422 7381𝑐0 4423 (5, 10)
241 71𝑐4 3883 (2, 6) 424 82𝑐2 4427 (–, 9)
242 [3171𝑐0, 4151𝑐0] 3890 (2, 2) 437 83𝑐0 4467 (–, 8)
243 73𝑐1 3891 (3, 4) 441 [73𝑐1, 6172𝑐1] 4477 (–, 12)
244 [3171𝑐0, 62𝑐0] 3892 (2, 7) 3908 444 [5272𝑐0, 6173𝑐0, 5173𝑐0] 4479 (–, 15)

Already in the present paper, cis-trans entangled states, correspond-
ing ‘tunneling’ splittings, and the (cis or trans) localized to delocalized
transition taking place near the top barrier were shortly discussed.
Benchmark quality computed data (limited by the quality of the PES)
on these interesting features will become available soon with the out-
lined theoretical, computational progress. We are not aware of detailed
experimental data of these phenomena in HCOOH, and we look forward
to developments from the experimental side.
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Appendix A. Supplementary data

Normal coordinate coefficients and computed vibrational states.
Supplementary material related to this article can be found online

at https://doi.org/10.1016/j.jms.2022.111617.
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Table 5
Cis-HCOOH (including contributions from trans and delocalized states). (Table 4 continued, ICPH [28].)

#a Assign.b �̃� (𝛿10 , 𝛿8)
c ICPH #a Assign.b �̃� (𝛿10 , 𝛿8)

c ICPH

446 [3161𝑐0] 4483 (–, 16) 4496 492 [71𝑐6, 𝑐, 𝑑, 𝑡 mixed] 4583 (–, 8)
447 [𝑐 + 𝑡 mixed] 4485 (–, 14) 496 [41𝑐4 + 316271𝑡0] 4596 (–, 7)
448 [𝑐 − 𝑡 mixed] 4490 (–, 12) 497 [41𝑐4 − 316271𝑡0] 4597 (–, 7)
452 417181𝑐0 4493 (–, 17) 498 41𝑐4 4598 (–, 7)
453 [5181𝑐2, 6181𝑐2] 4495 (–, 17) 508 4172𝑐1 4618 (–, 9)
454 [𝑐, 𝑡 mixed] 4496 (–, 19) 509 [5281𝑐0, 516181𝑐0] 4619 (–, 8)
456 [𝑐, 𝑡 mixed] 4506 (–, 15) 510 7182𝑐1 4620 (–, 15)
459 [7181𝑐3 + 51𝑡6] 4514 (–, 12) 511 3141𝑐0 4622 (–, 15) 4626
460 [7181𝑐3 − 51𝑡6] 4518 (–, 10) 512 31𝑐3 4622 (–, 14)
465 [𝑐, 𝑡 mixed] 4529 (–, 8) 515 [81𝑐5 − 41𝑡6] 4629 (–, 18)
467 [4161𝑐1] 4534 (–, 8) 517 [81𝑐5 + 41𝑡6] 4637 (–, 12)
470 [3172𝑐0] 4543 (–, 11) 520 [6181𝑐2] 4643 (–, 10)
472 5182𝑐0 4546 (–, 10) 524 [74𝑐0, 6173𝑐0, 516172𝑐0] 4646 (–, 11)
476 [3172𝑐0 − 6372𝑡0] 4550 (–, 15) 527 42𝑐1 4654 (–, 7) 4672
477 [3172𝑐0 + 6372𝑡0] 4550 (–, 16) 535 [51𝑐5] 4671 (–, 7)
479 [72𝑐4] 4553 (–, 17) 542 [53𝑐0, 5261𝑐0] 4684 (–, 17)
480 [72𝑐4] 4553 (–, 16) 544 [517181𝑐1, 617181𝑐2] 4689 (–, 15)
481 [5161𝑐2] 4557 (–, 16) 547 [𝑐, 𝑡 mixed] 4697 (–, 14)
484 74𝑐1 4564 (–, 16) 549 [𝑐, 𝑡 mixed] 4702 (–, 12)
485 [51671𝑐3, 6171𝑐3] 4565 (–, 16) 550 [𝑐, 𝑡 mixed] 4702 (–, 12)

a, b, c see footnotes to Table 3.
†: Revised assignment based on the Supplementary Material of Ref. [28].
∗: Tentative comparison.

Table 6
Delocalized-HCOOH: selected vibrationally excited states computed with the GENIUSH-Smolyak approach (𝑏 = 9) with
significant contribution from delocalized torsional basis functions, 𝑑0 , 𝑑1 , 𝑑2 , and 𝑑3. The vibrational energy, �̃� in cm−1, is
referenced to the trans-ZPVE.

#a Dominant basis-state contributionsb �̃� (𝛿10 , 𝛿8)
c

252 −0.56 6371𝑡0 +0.32 6471𝑡0 ⋯ + 0.20 𝑐6 +0.15 𝑑0 3914 (2, 5)
253 +0.44 𝑐6 +0.37 𝑑0 −0.33 71𝑡6 3916 (2, 7)
281 −0.36 𝑑1 +0.32 51𝑡5 4036 (2, 7)
284 +0.34 6271𝑡2 +0.32 𝑑0 −0.30 6171𝑡4 4053 (5, 4)
287 +0.41 𝑑0 +0.33 71𝑡6 +0.31 51617181𝑡0 4060 (2, 5)
303 +0.41 𝑑1 +0.30 315181𝑡0 +0.27 5261𝑡1 −0.25 61𝑡3 4112 (2, 4)
309 +0.47 𝑑1 −0.27 5162𝑡1 −0.27 5261𝑡1 4125 (2, 4)
376 −0.33 53𝑡1 +0.30 𝑑2 +0.30 5161𝑡3 4311 (2, 10)
389 +0.42 41517181𝑡0 +0.25 417181𝑡2 +0.21 𝑑2 4340 (2, 6)
399 +0.55 𝑑3 +0.22 3141𝑡2 +0.21 61𝑡6 4371 (4, 9)

a, b, c see footnotes to Table 3.

Fig. 12. Comparison of trans-HCOOH vibrational energies, �̃� referenced to the zero-point energy, computed with the GENIUSH-Smolyak approach using the 𝑏 = 9 and 10 basis
sets, Eqs. (28) and (29), and the 6th-order canonical van Vleck perturbation theory (CVPT) [30] and the internal-coordinate path Hamiltonian (ICPH) [28] results. The states
from the different computations were compared based on the assignment of their wave function (Tables 2–3). The zero-point energies are �̃�ZPV = 7351 cm−1 (𝑏 = 9 and 10) and
�̃�ICPH,ZPV = 7354 cm−1.
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Fig. 13. Comparison of the cis-HCOOH vibrational energies, �̃� referenced to the zero-point energy, computed with the GENIUSH-Smolyak approach using the 𝑏 = 9 and 10 basis
sets, Eqs. (28) and (29), and the internal-coordinate path Hamiltonian (ICPH) [28] results. The states from the different computations were compared based on the assignment of
their wave function (Tables 4 and 5). The (trans-)zero-point energies are �̃�ZPV = 7351 cm−1 (𝑏 = 9 and 10) and �̃�ICPH,ZPV = 7354 cm−1.
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Fingerprint region of the formic acid dimer:
variational vibrational computations in
curvilinear coordinates†

Alberto Martı́n Santa Darı́a, Gustavo Avila and Edit Mátyus *

Curvilinear kinetic energy models are developed for variational nuclear motion computations including

the inter- and the low-frequency intra-molecular degrees of freedom of the formic acid dimer. The

coupling of the inter- and intra-molecular modes is studied by solving the vibrational Schrödinger

equation for a series of vibrational models, from two up to ten active vibrational degrees of freedom by

selecting various combinations of active modes and constrained coordinate values. Vibrational states,

nodal assignment, and infrared vibrational intensity information is computed using the full-dimensional

potential energy surface (PES) and electric dipole moment surface developed by Qu and Bowman [Phys.

Chem. Chem. Phys., 2016, 18, 24835; J. Chem. Phys., 2018, 148, 241713]. Good results are obtained for

several fundamental and combination bands in comparison with jet-cooled vibrational spectroscopy

experiments, but the description of the n8 and n9 fundamental vibrations, which are close in energy and

have the same symmetry, appears to be problematic. For further progress in comparison with experiment,

the potential energy surface, and in particular, its multi-dimensional couplings representation, requires

further improvement.

I. Introduction

In a recent article, Nejad and Suhm reviewed the spectroscopy of
the formic acid dimer (FAD)1 with a focus on the intermolecular
vibrational range. The formic acid is the simplest carboxylic acid
and its dimer is a prototype for a cyclically arranged pair of
hydrogen bonds. The formic acid dimer has been studied in
spectroscopy experiments for decades, but the rotational and
temperature effects made the detection of the precise vibrational
band positions challenging.1

Coupling infrared and Raman spectrometers to jet-cooled
helium beams seeded with a small amount of molecules in the
gas phase made it possible to gain precise information on the
vibrational dynamics of molecular complexes and clusters.2–5 In
particular, all intermolecular vibrational fundamentals and several
overtone and combination bands of FAD6–10 have been assigned
over the past 16 years with an experimental uncertainty on the order
of 1 cm�1. The amount and the quality of the experimental data call
for detailed and high-level quantum dynamics computations.1

A detailed quantum dynamics computation relies on advanced
methodology from three areas of theoretical chemistry: (a) electronic

structure methodology that provides good approximate solutions to
the electronic Schrödinger equation at a series of nuclear config-
urations over the coordinate range relevant for the nuclear
motion; (b) high-dimensional fitting or interpolation methods
that build a potential energy surface (function) from the electronic
energies available at points; and (c) rovibrational methodology
that provides solution to the (ro)vibrational Schrödinger equation.
A full-dimensional ab initio potential energy surface for the formic
acid dimer is already available in the literature (parts a & b)
developed by Qu and Bowman (QB16-PES),11 and this allows us to
focus on the solution of the vibrational Schrödinger equation.

Regarding the QB16-PES, it was obtained as a least-squares
fit of a permutationally invariant potential energy function for
the 10-atomic formic acid dimer to 13475 CCCD(T)-F12a/haTZ
electronic energies. Qu and Bowman used a maximum of fourth
order polynomials in the fitting and they report an 11 cm�1

‘energy-weighted’ root-mean-squared deviation and an absolute
error of about 14 cm�1 for their points below 4400 cm�1. The
globalminimum structure of the PES hasC2h point-group symmetry
and the corresponding harmonic frequencies are in reasonable
agreement with earlier theoretical and experimental work.

Qu and Bowman12 performed full (24)-dimensional vibra-
tional configuration interaction (VCI) computations with the
MULTIMODE computer program using the normal-coordinate
representation of the kinetic energy operator (KEO) and a 4-mode-
representation of QB16-PES. They write about the low-frequency
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vibrational energies (below 1000 cm�1) obtained in the VCI
computations that the energies are ‘slightly’ up-shifted most likely
due to the use of rectilinear normal coordinates, which are usually
not well suited for describing floppy degrees of freedom, and
possible deficiencies in the fitted PES. Otherwise, they estimate
the VCI energies to be converged within about 10 cm�1.12

In the present work, we focus on the low-frequency range and
study the role of the coordinate choice for this specific system. Is
it necessary to use curvilinear coordinates to describe well the
fingerprint range or normal coordinates are also appropriate?

In the next section (Section II), we define curvilinear internal
coordinate vibrational models for FAD with focusing on the
intermolecular dynamics. Then (Section III), the computed
vibrational states are analysed and compared with the experi-
mental data. Section IV is about an assessment of the kinetic and
the potential energy representations using internal and normal
coordinates. The article ends (Section V) with a summary of the
results, conclusions, and outlook for possible future work.

II. Theoretical and
computational details

In the present work, the quantum dynamical computations
were carried out using the GENIUSH13,14 computer program.
The general rovibrational Hamiltonian implemented15–20 in
this program is

Ĥ ¼
1

2

X

D

k¼1

X

D

l¼1

~g�1=4p̂kGkl~g
1=2p̂l~g

�1=4

þ
1

2

X

D

k¼1

X

3

a¼1

~g�1=4p̂kGk;Dþa~g
1=4 þ ~g1=4Gk;Dþap̂k~g

�1=4
� �

Ĵa

þ
1

2

X

3

a¼1

GDþa;DþaĴa
2

þ
1

2

X

3

a¼1

X

3

b4 a

GDþa;Dþb Ĵa; Ĵb

� �

þ
þV̂

(1)

where Ĵa (a = 1(x), 2(y), 3(z)) are the body-fixed total angular
momentum operators and p̂k = �iq/qqk with the qk (k = 1, 2,. . ., D)
internal coordinates. The Gkl = (g�1)kl coefficients and g̃ = det(g)
are determined from the g matrix, defined as follows,

gkl ¼
X

N

i¼1

mit
T
iktil; k; l ¼ 1; 2; . . . ;Dþ 3 (2)

where

tik ¼
@ri
@qk

; k; l ¼ 1; 2; . . . ;D (3)

ti,D+a = ea � ri; a = 1(x), 2(y), 3(z) (4)

and ri are the body-fixed Cartesian coordinates for the i-th atom
and ea represent the body-fixed unit vectors.

D r 3N � 6 is the number of the active vibrational dimen-
sions in the system. If D o 3N � 6, then this definition of the
kinetic energy operator (KEO) corresponds to imposing rigorous
geometrical constraints for the fixed part of the system, and the
results depend only on the constrained geometry, but they are
independent on the actual coordinate representation of the
constrained moiety.13 This procedure is sometimes referred to
as ‘reduction in the g matrix’ that can be contrasted with ‘the
reduction in the G matrix’ (that is also common and) for which
the results would depend on the actual coordinate representa-
tion of the constrained fragments.

Regarding the present system, the formic acid dimer has
N = 10 atoms and 3N � 6 = 24 vibrational degrees of freedom.
A fully coupled, variational computation is currently out of
reach for such a high number of degrees of freedom, except for
a highly efficient normal-coordinate based representation that
have been performed for FAD11,21–23 and other systems of
similar size.24,25 Solution methods for high-dimensional semi-
rigid systems are in a far more advanced stage than methods
for solving systems with (more than 1–2) floppy degrees of
freedom. Several floppy degrees of freedom in a system are
typically strongly coupled and in this case one has to rely on a
direct product representation for which the computational cost
scales exponentially with the number of the degrees of freedom.
Efficient computational schemes (grid and basis reduction,
contraction) exploit the weak coupling of modes or groups of
modes. There are successful efforts in the community26 for
solving high(er)-dimensional systems with several floppy modes.
In a series of recent work,27–29 we developed and used a
computational scheme in which the floppy part is fully coupled
and we exploit efficient grid and basis truncation schemes for
the semi-rigid part. As a result, the cost of the computation
scales exponentially with the number of floppy and polynomially
with the number of semi-rigid degrees of freedom.

This work is about an exploratory, first application of the
curvilinear methodology for FAD, a series of reduced-dimensional
curvilinear internal coordinate models are defined and we solve the
corresponding vibrational Schrödinger equation. For a specific
coordinate choice, the GENIUSH program automatically computes
the KEO coefficients over a grid, and uses thematrix representation
of the Hamiltonian (eqn (1)) constructed with discrete variable
representation (DVR)30 for the active vibrational degrees of freedom.
The lowest-energy eigenvalues and corresponding eigenvectors
are computed using an iterative Lanczos algorithm.31,32

A. Curvilinear internal coordinates and body-fixed frame

The GENIUSH program uses the t-vector representation to construct
the g, and then the Gmatrices appearing in the KEO, eqn (2)–(4).
To compute the vibrational t-vectors, eqn (3), it is necessary to define
the Cartesian coordinates in the body-fixed frame, ri, with respect to
the internal coordinates, qk. Based on this definition (added to the
program as a subroutine), the coordinate derivatives, the KEO
coefficients, and the Hamiltonian matrix terms are constructed in
an automated fashion. Any coordinates can be set to be constrained,
to a fixed value provided by the user, or active, for which an
appropriate coordinate range and DVR must be defined.
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First, we define the monomer structures using a Z-matrix-
type notation. These coordinates belong to the intramolecular
modes that are set as active or fixed simultaneously in both
monomers to respect the compositional symmetry of the system.
Next, we define the coordinates that describe the relative posi-
tion and orientation of the two monomers similarly to ref. 33–35.

The monomer coordinate definition is summarized in Fig. 1.
The coordinate axes and the molecular plane are attached to the
OCO fragment in both monomers and the following algorithm is
implemented to define the KEO:

(1) To define the intra-monomer coordinates, the Cartesian
coordinates of both monomers are defined as a function of the
interatomic distances, rij, angles, Wijk, and torsion angles, tijkl
according to the following expressions (see also Fig. 1):

~r
ðIÞ
C1
¼ 0; ~r

ðIÞ
O2
¼

0

0

�r12

0

B

B

B

@

1

C

C

C

A

; ~r
ðIÞ
O3
¼

0

r13 sin pþW213ð Þ

r13 cos pþW213ð Þ

0

B

B

B

@

1

C

C

C

A

;

~r
ðIÞ
H4
¼

r14 sin p�W214ð Þsint4123

r14 sin p�W214ð Þcost4123

r14 cos p�W214ð Þ

0

B

B

B

@

1

C

C

C

A

; ~r
ðIÞ
H5
¼

r25 sinW125 sint5214

r25 sinW125 cost5214

r25 cosW125

0

B

B

B

@

1

C

C

C

A

(5)

where I = A, B labels the monomers.
(2) Shift to the monomer center of mass (CM) for each

monomer:

r
ðIÞ
j : ¼ ~r

ðIÞ
j � r

ðIÞ
CM; j ¼ 1; . . . ; 5 (6)

Up to this point, both monomers have identical positions.
(3) To define the inter-molecular coordinates, we rotate both

monomers from their original orientation using the rotation
matricesO

1
ð0; y;fÞ andO

2
ða; b; gÞ parameterized with five Euler

angles, (y,f,a,b,g), and we shift monomer B by R in the positive
direction along the z axis (Fig. 2):

r
ðAÞ
j : ¼ O1ð0; y;fÞr

ðAÞ
j ; r

ðBÞ
j : ¼ O2ða; b; gÞr

ðBÞ
j þ

0

0

R

0

B

B

B

@

1

C

C

C

A

R 2 ½0;1Þ; y; b 2 ½0; p�; f; a; g 2 ½0; 2pÞ

(7)

4. Shift to the dimer center of mass:

�r
ðIÞ
j : ¼ r

ðIÞ
j � r

ðABÞ
CM (8)

5. (optional) Change of the body fixed frame of the dimer:
the overall dimer can be rotated to a new body-fixed frame, for
example, to the Eckart frame.

The curvilinear nature of the coordinates results in singularities
in the KEO. We have defined the coordinates so that the singula-
rities (most importantly, at cosy = �1 and cosb = �1) of the KEO
are possibly far from the equilibrium structure and the dynami-
cally important coordinate range. For example, it would be a more
natural choice to align the C–H bond of both monomers along the
z axis, but then the equilibrium structure of the dimer would
correspond to y = 0 (cosy = 1) where the KEO has a singularity. For
this reason, we align the CQO bond in both monomers along the
z axis (Fig. 1 and 2) and perform the O

1
ð0; y;fÞ and O

2
ða; b; gÞ

rotation from this initial orientation. As a result the values of the
angles at the global minimum (Table 1) are far from the singula-
rities of the KEO.

Throughout this work, we used the atomic masses m(H) =
1.007825mu, m(D) = 2.014000mu, m(C) = 12mu, and m(O) =
15.994915mu.

36

B. Vibrational models and matrix representation

For a start, the constrained coordinates were fixed at their
equilibrium value of the dimer’s global minimum. Regarding
the active coordinates, their initial range was determined from
inspection of 1-dimensional cuts of the QB16-PES (Fig. 3).
Based on these 1D cuts, we may expect that the fingerprint

Fig. 1 Internal coordinate definition of the formic acid monomer. The
same internal coordinate definition is used for both monomers, I = A and B,
within the dimer. For the global minimum of the dimer, the values of the
monomer coordinates, in Å for the distances and in degree for the angles,
are shown in brackets.

Fig. 2 Definition of the intermolecular coordinates, (R,y,f,a,b,g), shown
for the equilibrium geometry of the dimer.
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region can be well described. For every coordinate, we performed
a 1D vibrational computation using the 1D (unrelaxed) potential
energy cut over a broad, physically meaningful interval (high-
lighted in orange in the figure) that is not affected by an
unphysical behavior of the PES. For this 1D model, we employed
a large number of a discrete variable representation (DVR)
points30 scaled to the selected interval. These computations were
used to define potential-optimized DVRs (PO-DVR).37,38

This construction (and the semi-rigid properties of the
system) allowed us to retain only a small fraction of grid points
for the multi-dimensional vibrational computations. Table 1

summarizes the coordinate parameters (minimum value and
interval), the DVR grid type and the number of points, as well as
the number of PO-DVR points that were found to be sufficient
to converge the multi-dimensional variational computations
presented in this work within 0.01 cm�1. This convergence
threshold is orders of magnitude better than the fitting error
reported for the PES, but we used this threshold to make sure
that all states appearing in our energy list are true (converged)
states corresponding to the vibrational model.

The reported computations were not very expensive, even
the largest one finished within 1–2 days using 24 cores. At the
same time, the largest computations required a large amount of
memory (B1 TB), since we used a simple direct product repre-
sentation and all eigenvectors for the reported states were
generated simultaneously in memory. For higher-dimensional
computations, we plan to exploit the Smolyak scheme39–41

recently implemented in GENIUSH27,28 (and perhaps start
further developments).

III. Analysis of the computed
vibrational states

By inspecting the harmonic frequencies of FAD (listed in the
ESI†), we may think that the inter- and intra-molecular dynamics

Fig. 3 1-Dimensional cuts of the QB16-PES along the intermolecular coordinates. The intervals used in the 1-dimensional DVR computations are highlighted
in orange and the PO-DVR points used in the multi-dimensional vibrational computations are located within the intervals surrounded by the red lines.

Table 1 Coordinate intervals and representations

Coordinate Equilibrium value

DVR PO-DVR

Type # Interval #

R [Å] 3.007879 Laguerre 300 [2.0,4.5] 7
cos y �0.333027 Legendre 101 [10,150] 9
f [1] 270 Fourier 101 [200,350] 9
a [1] 180 Fourier 101 [90,270] 11
cosb 0.333027 Legendre 101 [30,170] 9
g [1] 90 Fourier 101 [10,160] 9

tA,B5214(HOCO) [1] 180 Fourier 101 [120,250] 9
WA,B213(OCO) [1] 126.145 Fourier 101 [90,160] 9
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are not perfectly separated. Based on the energetic ordering,
it may be necessary to include at least the OCO bending, W(A,B)213 ,
and/or the HOCO torsional modes, t(A,B)5214, to have a correct
description of the intermolecular dynamics.

For this reason, we present (Table 3) the lowest-energy
vibrational energies computed with GENIUSH using the
6DðIÞ intermolecular, the 8DðIbÞ intermolecular-bending,
the 8DðI tÞintermolecular–torsional, and the 10DðI tbÞ inter-
molecular-bending-torsional models and the full QB16-PES. For
exploratory reasons, we have constructed other reduced dimen-
sionality models as well, e.g., by including the anharmonic O–H
stretching modes, but they did not seem to qualitatively change
the intermolecular vibrational energy pattern (we note that the
O–H tunneling effects may be accounted for using the same
methodology, but it is left for future work). We have also studied
the effect of the precise value of the constrained structure by
using the equilibrium, req, or vibrationally averaged, hri0, para-
meters (Table 2). Since we observed only minor shifts
(a few cm�1), we continue the discussion for the results obtained
with using req values for the constraints.

Adding the HOCO torsional modes to the active degrees of
freedom appears to be qualitatively important in the present
case. At the same time, the OCO bending modes have only a
small effect on the energy pattern. We do not provide a detailed
assignment for all 6D, 8D, and 10D vibrational computations,

but we list (Table 3) the computed vibrational energies together
with the infrared intensities,

A ~nf  ~n0ð Þ= km mol�1
� �

¼ 2:506562213 ~nf � ~n0ð Þ=cm�1
� �

X

a¼x;y;z

cfh jma c0j ij j2=Debye2
h i

(9)

to facilitate comparison of the various computed and experi-
mental vibrational band origins (VBOs). For the VBOs observed
by Raman spectroscopy, we obtain zero infrared intensity
(numerically near zero) due to the spatial symmetry of the
system. In the jet-cooled experiments, we may assume that
initially only the vibrational ground state is populated, so we
compute only the transition intensity for excitation to the final
state (‘f’) only from the ground state (‘0’). The ma (a = x,y,z)
electric dipole moment was evaluated using the QB18-DMS22

and the body-fixed frame defined in Section IIA.
For the 8DðI tÞ vibrational model, we provide a detailed

assignment in Table 4 for the computed vibrational states below
350 cm�1 (the first 18 vibrational states above the zero-point
vibration). The computed vibrational states were assigned based
on their nodal structure. Example wave function plots are shown
in Fig. 4, in which a clean nodal structure can be observed for the
case of the fundamental, the first, the second, and the third
overtone of the n16 intermolecular twist vibration. Further wave
function plots used for the assignment are deposited in the ESI.†

We see a less clear nodal pattern for the case of the close-lying
states with 191 and 208 cm�1 vibrational energies, nodal features
along the R intermolecular stretching appear in both states. The
latter state appears to have a more pronounced stretching
character, although making a decision between the in-plane
bending (n9) and intermolecular stretching (n8) would be ambig-
uous based on these results. The two modes belong to the same,
Ag, irreducible representation (irrep) of the C2h point group,

Table 3 Vibrational energies, in cm�1, and vibrational transition intensities, in km mol�1, with respect to the zero-point vibration computed with
GENIUSH using internal coordinate KEOs and the QB16-PES11 and QB18-DMS.22 The intensity values are shown in the parentheses and only values larger
than 0.05 km mol�1 are shown, otherwise a ‘0’ entry is printed

# 6DðIÞ ½I� 8DðIbÞ I&WA;B
213

h i

8DðItÞ I&tA;B
4213

h i

10DðItbÞ I&tA;B
4123&W

A;B
213

h i

1 76 (3.2) 75 (5.7) 70 (2.3) 70 (2.3)
2 152 (0) 151 (0.1) 141 (0) 140 (0)
3 194 (0) 192 (0) 162 (7.6) 161 (16.6)
4 211 (0) 208 (0) 191 (0) 189 (0)
5 227 (0) 226 (0) 208 (0) 205 (0)
6 232 (0.2) 230 (1.0) 211 (0) 210 (0)
7 258 (33.0) 256 (32.9) 233 (0) 231 (0.1)
8 271 (0) 268 (0.1) 239 (0) 238 (0)
9 286 (0) 283 (0) 253 (50.3) 252 (31.9)
10 302 (0) 300 (0) 262 (0.1) 259 (0.2)
11 308 (0) 306 (0) 277 (0) 274 (0)
12 333 (0) 330 (0) 280 (0) 278 (0)
13 344 (0) 341 (0) 303 (0) 301 (0)
14 348 (0) 345 (0) 310 (0.6) 308 (0.8)
15 361 (0) 357 (0) 323 (0) 321 (0)
16 376 (0) 373 (0) 325 (0) 323 (0)
17 384 (0) 381 (0) 332 (0) 329 (0)
18 386 (0) 381 (0) 347 (0) 343 (0)

Table 2 Monomer structural parameters: req, equilibrium value at the
global minimum (GM) and hri(2D)0 averaged structural parameter for the
ground-state wave function of the 2D model in FAD

r(A,B)25 (O–H)a

[Å]
r(A,B)13 (CQO)
[Å]

r(A,B)12 (C–O)
[Å]

W(A,B)213 (OCO)
[1]

req (GM) 0.99274 1.21745 1.31156 126.14500
hri(2D)0 1.01790 1.22136 1.31625 126.18119

a Restricted to the anharmonic well, not accounting for tunneling.
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and thus their mixing is allowed (and a mixing effect has been
observed already in lower-level electronic structure computations1).
In comparison with the experimental results, we observe a
strong and most likely erroneous blueshift. The erroneous
behavior is indicated by the strong, positive ‘anharmonicity
correction’ (deviation of the variational energy from the
harmonic oscillator energy) that indicates a problem in the
theoretical description.

We can identify all experimentally observed fundamental
vibrations, overtone, and combination bands in this range,
except for the 319 cm�1 peak tentatively assigned to the 2n9
(Ag) band in ref. 9. This VBO may be missing from our energy

list shown up to 347 cm�1 due to the erroneous blueshift of
the n9 fundamental vibration in the computations. Of course,
the computed energy list contains a few more combination
and overtone bands that have not been observed in experi-
ment yet.

So, apart from the erroneous n9/n8 system, the 8DðI tÞ

computational results appear to be in a reasonable, although
not spectacularly good, agreement with experiment.

Switching on the OCO bending modes, resulting in the
10DðI tbÞ model, does not change much the computed results.
On the contrary, by freezing both the bending and the torsional
degrees of freedom at their equilibrium values, resulting in the

Fig. 4 Example wave function plots (all quantities shown in atomic units) obtained in the 8DðI tÞ computations with GENIUSH and the QB16-PES.

Table 4 Assignment and comparison with literature data of the vibrational states obtained with the 8DðI tÞ vibrational model in GENIUSH and the QB16
PES11 and QB18 DMS22

# ~n8DðI tÞ cm�1
� �

A8DðI tÞ km mol�1
� �

Assignment ~n8DðI tÞ � ~nHO
a [cm�1] ~nexpt � ~n8DðI tÞ cm�1

� �

~nexpt [cm
�1]

1 70 (2.3) n16 (Au, twist) 0 �1 69.27

2 141 (0.0) 2n16 �2 1399

3 162 (7.6) n15 (Au, oop bend) �5 6 168.57

4 191 (0) n9/n8 (Ag, ip bend/stre) 21(!) �30 1619

5 208 (0) n8/n9 (Ag, stre/ip bend) �1 �14 1949

6 211 (0) 3n16
7 233 (0) n15 + n16

8 239 (0) n12 (Bg, oop lib) �15 3 2429

9 253 (50.3) n24 (Bu, ip lib) �22 11 2641,5

10 262 (0.1) n9 + n16
11 277 (0) n8 + n16

12 280 (0) 4n16
13 303 (0) n15 + 2n16
14 310 (0.6) n12 +n16 1 31110

15 323 (0) n24 + n16

16 325 (0) 2n15 11 3369

17 332 (0) n9 + 2n16
18 347 (0) n8 + 2n16
a The lowest harmonic frequencies, ~nHO corresponding to the QB16-PES are listed in column A of Table 5.

Phys. Chem. Chem. Phys. This journal is the Owner Societies 2021

Paper PCCP

P
u
b
li

sh
ed

 o
n
 2

4
 F

eb
ru

ar
y
 2

0
2
1
. 
D

o
w

n
lo

ad
ed

 b
y
 U

n
iv

er
si

d
ad

 d
e 

S
al

am
an

ca
 o

n
 3

/1
2
/2

0
2
1
 8

:2
9
:4

5
 A

M
. 

View Article Online

               dc_1955_21

https://doi.org/10.1039/d0cp06289h


6DðIÞ model, we obtain a qualitatively different energy pattern
and the problematic blue-shifts appear to be even more pro-
nounced (Table 3). We find this result surprising, we would
have expected that already the 6DðIÞ intermolecular model is
qualitatively correct and it can be further improved by adding
the low-frequency intramolecular modes. To better understand
the origin of this behavior, we performed a couple of test
calculations using different KEOs that are reported and analyzed
in Section IV.

In summary, 8DðItÞ appears to be the simplest vibrational
model for which we get meaningful results with the present QB16
PES, but the results are far from perfect. For this reason we
constrained the discussion to the first 18 states of the parent
isotopologue obtained with this single model. The vibrational
energies obtained for the symmetrically substituted isotopologues
with the 8DðI tÞ KEO and the QB16-PES are listed in Table 6 of the
Appendix without further analysis. Later on, more states can be
computed and analysed using the 8D, 10D (or perhaps even
12D) vibrational models and the most appropriate values for
the constrained geometrical parameters can be determined,
but we think that it is important first to clarify the origin of the
erroneous blueshifts observed for some of the fundamental
vibrations.

IV. Assessment of the KEO and the PES
representations

In order to understand better the erroneous results obtained
with curvilinear KEOs and the QB16-PES, we performed a
number of test computations (Table 5).

First of all, we computed the normal coordinates and har-
monic frequencies corresponding to the global minimum struc-
ture of the QB16-PES (the normal coordinate parameters are
deposited as ESI†). The harmonic frequencies are listed in the A
column of Table 5. Next, we have implemented the harmonic
potential energy model (HO) in the GENIUSH program, and
it can be evaluated with any types of internal coordinates and
grid representations. This offers a simple, alternative PES
representation to the full QB16-PES that is used in our DVR
computations.

Regarding the KEO, we have implemented the (rectilinear)
normal coordinates of the QB16-PES as active coordinates in
GENIUSH. The vibrational energies obtained for the 6D normal
coordinate KEO, in which the six lowest-energy normal modes are
active and all other normal coordinates fixed at the ‘0’ value, are
shown in columns B and C. The ‘B’ column can be reproduced
from combinations of the harmonic frequencies listed in
column A. Column C contains a converged 6D normal coordinate
computation on the full QB16-PES. It is interesting to note that
these energies are close to the 24-dimensional normal coordinate
VCI computations (converged to B10 cm�1) of ref. 12 using a
4-mode representation of the QB16-PES. It is also necessary to
note that the ‘C’ column is quite different from the ‘E’ and ‘F’
columns which correspond to 6D curvilinear KEOs and the full
QB16-PES. This deviation may indicate (a) the deficiency of the

rectilinear normal coordinates to describe floppy degrees of free-
dom; and/or (b) an erratic behavior of the PES that is manifested
differently for the different grid representations.

Regarding the 6D curvilinear KEOs (columns D, E, and F),
the results obtained with the HO-model PES (column D) are
close and slightly redshifted compared to the fully harmonic
normal coordinate results (columns A and B), and the erro-
neous blueshift of the n9/n8 fundamentals is missing. This
provides an additional check for our curvilinear KEO definition
and suggests that the unphysical deviation of the 6D–8D–10D
energies (Section III) from the experimental values may origi-
nate from an unphysical behavior of the PES representation in
the coupling of these modes.

Finally, we mention that an, in principle, numerically effi-
cient representation of the intermolecular dynamics of FAD,
described as a single-well system, is provided by curvilinear
normal coordinates. Curvilinear normal coordinates are
obtained as the linear combination of the internal coordinates
defined in Section IIA that diagonalize the GF matrix (the
coordinate definition and the linear combination coefficients
are provided in the ESI†).

All in all, for further progress, it is necessary to have an
improved PES. For the fingerprint region an improvement of

Table 5 Assessment of the PES and the kinetic energy representations:
vibrational energies, in cm�1, measured from the zero-point vibrational
energy (ZPVE)

KEO: HOa Q(6D)b x(6D)c Q
(6D)d Q(24D)e Q(24D)e

PES: HO HO Full HO Full Full 4MR 4MR

Label f A B C D E F VSCF12 VCI12

ZPVE 573 638 562 682 682 n.a. n.a.
n16 70 70 110 68 76 76 103 96
2n16 140 175 136 152 152 171 178
n9 167 167 203 163 194 194 204 209
n15 170 170 230 166 211 211 250 213
n8 209 209 269 203 227 227 277 273
3n16 211 275 209 232 232 303 286
n16 + n9 237 288 231 258 258
n16 + n15 241 313 234 271 271
n12 254 254 320 239 286 286
n24 275 275 353 270 302 302

279 358 275 308 308
281 378 277 333 333
308 387 297 344 344
311 390 301 348 348

a Harmonic oscillator model approximation corresponding to the QB16-
PES. b 6D computation with GENIUSH using the QB16-PES normal coor-
dinates in the KEO with a harmonic oscillator model PES (HO) or with the
full QB16-PES (full). The VBOs are converged within 0.01 cm�1 with
(15,15,13,13,13,13) unscaled Hermite-DVR points. c 6D computation with
GENIUSH using the curvilinear internal coordinates defined in Section IIA
in the KEO with a harmonic oscillator model PES (HO) or with the full
QB16-PES (full). The energies are converged with (11,11,11,11,11,11)
PO-DVR points defined in Table 1. d 6D computation with GENIUSH
using curvilinear normal coordinates defined in the KEO with the
full QB16-PES. The VBOs are converged within 0.01 cm�1 using
(15,15,15,15,15,15) number of unscaled Hermite-DVR points. e 24D
normal coordinate computation with a 4-mode representation of the
QB16–PES, ref. 12. f Assignment corresponding to columns A and B. For
the other columns, analysis of the wave function would be necessary for
the assignment.
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the intermode coupling PES representation appears to be
particularly important.

V. Conclusion and outlook

Variational vibrational computations are reported for the fin-
gerprint region of the formic acid dimer (FAD) using curvilinear
kinetic energy operator representations and the QB16-PES.
Besides the intermolecular coordinates, the lowest-frequency
monomer vibrations have been included resulting in a series of
vibrational models with 6, 8, and 10 active dimensions, while
keeping all other degrees of freedom in the system rigid.

This work was initiated by a conjecture (also mentioned by
Qu and Bowman in ref. 11, 21 and 23) that perhaps normal
coordinates are not well suited and one should rather use
curvilinear coordinates to describe the fingerprint region of
FAD. We hoped that by using curvilinear coordinates, it
becomes possible to resolve discrepancy of earlier theory (with
normal coordinates) and experiment. During our vibrational
study we obtained good results for several fundamental
and combination bands in comparison with jet-cooled
vibrational spectroscopy experiment, but noticed that there
was a problem with the n8 and n9 fundamental vibrations.
These vibrations have always been difficult to describe
accurately (already on the harmonic level as it was pointed
out by Nejad and Suhm1), because they are close in energy and
have the same symmetry. These fundamental vibrations are
obtained from our variational computations with an erroneous
blueshift and the series of computations with different
vibrational models developed in this work suggest that for
further progress in comparison with experiments, improve-
ment of the PES is necessary.

Relying on the increasing computational resources, further
development in the computational methodology, and assuming
that an improved potential energy surface will become available
soon, we can foresee a curvilinear treatment with more than 10
fully-coupled degrees of freedom, or studying the tunneling
dynamics in the fingerprint range in the vibrational or rovibra-
tional spectrum. An interesting alternative future direction will
be the computation of tunnelling splitting effects in the mono-
mer stretching spectrum42,43 that was computationally studied
using an extension of the reaction surface Hamiltonian44,45 and
also with 7-dimensional curvilinear vibrational models by
Luckhaus.46,47 Further progress in that direction also requires
an improved PES representation up to a beyond the monomer
stretching range.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

We thank Joel Bowman and Chen Qu for sending to us their
formic acid dimer PES and DMS. We thank the financial
support of the Swiss National Science Foundation (PROMYS
Grant, No. IZ11Z0_166525).

References

1 A. Nejad and M. A. Suhm, Concerted Pair Motion Due to
Double Hydrogen Bonding: The Formic Acid Dimer Case,
J. Indian Inst. Sci., 2020, 100, 1.
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ABSTRACT

The present work intends to join and respond to the excellent and thoroughly documented rovibrational study of X. G. Wang and T.
Carrington, Jr. [J. Chem. Phys. 154, 124112 (2021)] that used an approach tailored for floppy dimers with an analytic dimer Hamiltonian
and a non-product basis set including Wigner D functions. It is shown in the present work that the GENIUSH black-box-type rovibrational
method can approach the performance of the tailor-made computation for the example of the floppy methane–water dimer. Rovibrational
transition energies and intensities are obtained in the black-box-type computation with a twice as large basis set and in excellent numerical
agreement in comparison with the more efficient tailor-made approach.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0054512

I. INTRODUCTION

Electronic structure theory has general program packages that
work for n electrons, where n is defined by the user together with the
configuration of the clamped nuclei.

Will computational (ro)vibrational spectroscopy methodol-
ogy reach this level of automatization? Does it need to reach
this and why? One may argue that careful gas-phase spec-
troscopy measurements conducted in order to explore the struc-
ture and internal dynamics of molecular systems typically assume
months or even years of systematic experimental work (devel-
opment of sample preparation, source and detector architec-
tures, uncertainty estimation, error control, etc.). It is not a typi-
cally high-throughput field studying one molecule after the other
at an extraordinary pace. At the same time, the experiments
may produce large sets of precise data that provide a highly
detailed characterization of the quantum dynamical features of the
system.

Regarding computational molecular rovibrational spec-
troscopy, it is a natural aim for a mathematically formulated theory
to have an approach, an algorithm, and a computer program that is

generally applicable, limited “only” by the available computational
resources. For solving the rovibrational Schrödinger equation, it
should be a general N-particle approach, where N is the number
of atomic nuclei (although for the moment only finite many
N possible values are computationally feasible). In this field, it
is another necessary condition to allow the user to specify the
internal coordinates and the body-fixed frame best suited for the
computations.

Development of Ref. 1, following earlier work in the field,2–6

was led by this idea in spite of the fact that there were already
excellent approaches available specifically designed for special types
of molecular systems (with a given number of nuclei and specific
coordinates); the list includes, for example, Refs. 7–15. The numer-
ical advantage of an N-particle method was not at all obvious over
the performance of the tailor-made approaches. For semi-rigid sys-
tems, the Eckart–Watson Hamiltonian16 was available as a general
N-particle Hamiltonian, for which efficient solution techniques have
been developed using basis pruning.17,18 If basis pruning can be effi-
ciently realized, then grid pruning techniques, developed in Refs. 19
and 20, can be employed to milden the curse of dimensionality.
Most recently, basis and grid pruning techniques have been used to
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describe efficiently the semi-rigid part of floppy complexes in full
dimensionality.21–23

Floppy molecular systems with multiple large-amplitude
motions were and are still an open challenge for the field, so it
was natural to ask the following questions about a novel black-box-
type approach: (1) Can the black-box-type rovibrational approach
tackle floppy systems? (2) Can we come close in efficiency to
tailor-made approaches for floppy systems? Although singular
regions can be explored numerically, there are difficulties con-
nected to the selection and use of good basis functions and inte-
gration grids without an analytic knowledge of the kinetic energy
operator (KEO) and its matrix elements.21 (3) Is it possible to
continue using the simpler direct product basis and grid repre-
sentations for a start, which can be pruned perhaps at a next
stage of the development (or is it necessary to group the coor-
dinates in a certain fashion and use specifically coupled basis
functions)?

In the present work, we will show for the example of the
methane–water (MW) dimer that the answer to all three questions,
(1)–(3), is “yes.”

We use the methane–water dimer as an example system
because Wang and Carrington24 recently reported and carefully
documented their work using a tailor-made dimer Hamiltonian,
Wigner D basis functions, and the symmetry adapted Lanc-
zos eigensolver for computing rovibrational transitions of this
dimer. They have carefully compared their computational results
with earlier black-box-type rovibrational computations carried out
for this system25–27 and pointed out that even the excessively
large direct-product basis and grid provided insufficiently con-
verged rovibrational energies,25–27 with inaccuracies on the order
of 0.05–1.5 cm−1. Since the publication of the first applications
of the GENIUSH program for molecular dimers, we have gath-
ered more experience in treating floppy complexes, and using
this development and experience, we wish to complement this
comparison.

The methane–water dimer is also a chemically and spec-
troscopically important example. It is the simplest model for
water–hydrocarbon interactions, and there are high-resolution far-
infrared28 and microwave spectroscopic data29 available for the sys-
tem, while the analysis of the congested spectrum was difficult and
only partially possible by effective Hamiltonians.

In this work, we will show that using an order of magni-
tude smaller but better basis and grid representation than in earlier
work,25–27 we can converge the rovibrational energies to 10−3 cm−1

with a basis and grid that is “only” twice as large as the coupled basis
used by Wang and Carrington.24

The tailor-made approach remains to be more efficient, but
not by orders of magnitude. The efficiency of the GENIUSH com-
putation can be further enhanced by exploiting part of the rich
symmetry features30 of this particular complex. We think that the
level of convergence achieved in this work is much beyond the
range of the typical approximations underlying the current com-
putational rovibrational spectroscopy framework (quality of the
potential energy surface, Born–Oppenheimer, and non-relativistic
approximations).

Finally, we may ask whether we can expect any fundamen-
tal or numerical advantage from developing general rovibrational
approaches, apart from fulfilling a mathematical “necessity.”

First of all, wemay aim for automatically defining internal coor-
dinates that are optimal or near optimal for a particular computation
(system and energy range).

Furthermore, for a floppy molecular system, a fundamen-
tal and numerically important open problem is finding the opti-
mal body-fixed frame or at least a body-fixed frame that is good
enough or better than another one. For small-amplitude vibra-
tions, the Eckart frame is known to be an excellent choice in
minimizing the rotational and vibrational problem for low-energy
rovibrational states, and thus, it allows us to use the J = 0 vibra-
tional eigenfunctions as a basis for J > 0 computation31 in the
same energy range. For higher excited semi-rigid systems and espe-
cially for floppy systems, we do not have any practical approach
for finding a good or at least a “better” frame and it may be the
numerical KEO approach used also in the GENIUSH program that
will allow us to optimize the molecular frame “on-the-fly” over a
grid.32

Having this perspective in mind, after a short theoretical intro-
duction (Sec. II), we report rovibrational energies (Secs. III and
IV), transitions, and line strengths (Secs. V–VII) for the example
of methane–water obtained with the numerical KEO approach of
GENIUSH and using the potential energy surface (PES) developed
by Akin-Ojo and Szalewicz (AOSz05 PES).33

II. THEORETICAL DESCRIPTION
AND COMPUTATIONAL DETAILS

The quantum dynamical computations were carried out by
using the GENIUSH1,34 computer program. This program pack-
age has been used already to study a number of semi-rigid and
floppy molecular systems,21–23,25–27,30,35–40 so here we only shortly
summarize the theoretical background. The general rovibrational
Hamiltonian,2–6,41

Ĥ =
1
2

D

∑
k=1

D

∑
l=1

g̃−1/4p̂kGklg̃
1/2

p̂lg̃
−1/4

+
1
2

D

∑
k=1

3

∑
a=1
(g̃−1/4p̂kGk,D+ag̃

1/4 + g̃1/4Gk,D+ap̂kg̃
−1/4)Ĵa

+
1
2

3

∑
a=1

GD+a,D+a Ĵ
2
a +

1
2

3

∑
a=1

3

∑
b>a

GD+a,D+b[Ĵa, Ĵb]+ + V̂ , (1)

FIG. 1. Definition of the intermolecular coordinates (R, θ,ϕ,α, β, γ) of the
CH4–H2O dimer.
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is implemented in the GENIUSH program. In Eq. (1),
Ĵa [a = 1(x), 2(y), 3(z)] are the body-fixed total angular momentum
operators and p̂k = −i∂/∂qk with the qk(k = 1, 2, . . . ,D) internal
coordinates. The Gkl = (g−1)kl coefficients and g̃ = det(g) are
determined from the rovibrational g ∈ R(D+3)×(D+3) matrix, defined
as follows:

gkl =
N

∑
i=1

mit
T
iktil, k, l = 1, 2, . . . ,D + 3, (2)

with

tik =
∂ri

∂qk
, k, l = 1, 2, . . . ,D, (3)

ti,D+a = ea × ri, a = 1(x), 2(y), 3(z), (4)

where ri are the body-fixed Cartesian coordinates for the ith atom
and ea represent the body-fixed unit vectors.

In the CH4–H2O dimer, the intermolecular degrees of free-
dom (D = 6, Fig. 1) are defined with the following internal coor-
dinates: the R ∈ [0,∞) distance between the centers of mass
of the monomers; two angles, cos θ ∈ [−1, 1] and ϕ ∈ [0, 2π), to
describe the orientation of H2O; and three angles, α ∈ [0, 2π),
cos β ∈ [−1, 1], and γ ∈ [0, 2π), to describe the orientation of CH4.
The monomer structures are fixed at the effective vibrational
structures used for the development of the PES in Ref. 33 and

FIG. 2. Selected elements of the G matrix shown along the singular coordinates, cos β and cos θ (while all other coordinates are fixed). The Legendre and cot-DVR grid
points (17 of each) are plotted on the x axis of each inset. Both sets of points approach the ±1 singular points, but the cot-DVR points have a higher density near the
singularities.
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in earlier rovibrational computations.24,25 For completeness, we
repeat here the values of the constrained (bond length, angle)
values, which are [r(O–H) = 0.971 625 7 Å,α(H–O–H) = 104.69○]
and [r(C–H) = 1.099 122 Å, cos α(H–C–H) = −1/3○] for the water
and the methane fragments, respectively. We used the same atomic
masses as in Refs. 24 and 25: m(H) = 1.007 825mu, m(C) = 12mu,
and m(O) = 15.994 915mu. Since we use the same PES, con-
strained coordinates, and nuclear (atomic) mass values as Ref. 24
(and also Ref. 25), the direct comparison of the results is
possible.

In the present work, the matrix representation of the Hamilto-
nian is constructed using a direct product discrete variable represen-
tation (DVR)42 for the vibrational degrees of freedom. For our curvi-
linear coordinate representation (Fig. 1), the KEO has singularities
at cos θ = ±1 and cos β = ±1. Plain Legendre DVR can be used for
these coordinates, but the convergence of the (ro)vibrational ener-
gies is slow and an excessive number of grid points is needed even
for a moderate level of convergence.25,27,38 The representation is fun-
damentally correct since we have repulsive singularities in the KEO
(Fig. 2), but it is computationally inefficient. (We note that while
in Fig. 2 both positive and negative singular values can be seen, the
integrals are always positive.) This behavior was correctly pointed
out byWang and Carrington in Ref. 24. The direct product basis and
grid with Legendre DVR used in the GENIUSH computations,25,27,38

which was 20 times larger than the coupled basis representation
with Wigner D functions of Wang and Carrigton,24 were sufficient
to converge the rovibrational states in the ZPV splitting range only
with a convergence error as large as 0.44 cm−1 and an erroneous
split for some of the degenerate levels. At the same time, we note
that this split did not hinder the unambiguous molecular symmetry
group assignment of the GENIUSH results using the coupled-rotor
decomposition scheme.26

This convergence problem was intriguing for a full (12)-
dimensional computation of the methane–argon complex studied
by two of us.21 In order to make the 12D computation feasible,
the more efficient cot-DVR developed by Schiffel and Manthe43

was used for the singular coordinate (which was the second Euler
angle in that system). The cot-DVR was developed by Schiffel and
Manthe43 to have a more efficient representation of the quantum
mechanical motion along the singular coordinate (we note that the

TABLE I. Coordinate intervals and representations used in the GENIUSH rovibra-
tional computations.

DVR

Coord. GMa Type Interval No. points

R(Å) 3.464 PO-Laguerreb (2.5,6.0) 15
θ○ 116.190 Cot-DVRc [0, 180) 17
ϕ○ 90.000 Fourier [0, 360) 15
α○ 297.460 Fourier [0, 360) 9
β○ 113.050 Cot-DVRc [0, 180) 17
γ○ 293.010 Fourier [0, 360) 23
aInternal coordinate values for the global minimum (GM) structure of the AOSz05
PES.33
bPotential-optimized DVR using 300 points.
cThe cot-DVR was constructed with two sine functions.

singularity is present only for K ≠ 0 in the ∣J,K⟩ basis representation
of Ref. 43). The first practical application for a “multi”-dimensional
molecule of cot-DVR was reported by Wang and Carrington.44

The cot-DVR procedure uses a polynomial series of cosine, and
optionally also sine, functions to build a DVR. In the present work,
we obtained the best results when two sine functions were also
included. The “final” computational parameters are summarized
in Table I.

III. ENERGY LEVELS AND CONVERGENCE TESTS

First, the convergence of the results has been tested with
respect to the number of grid points for every coordinate using
a series of reduced-dimensional (D < 6) and full-dimensional
(D = 6) computations. Table II highlights the 10−3 cm−1 conver-
gence of the first 20 vibrational states for the selected grid parameters
(Table I).

In Table II, we can observe a small 10−3 cm−1 artificial split of
some of the triply degenerate levels, which is due to the fact that
the underlying grid and basis do not respect the full symmetry of
the dimer; hence, certain symmetry features are converged numer-
ically by enlargement of the grid. At the same time, at this level of
convergence, we felt important to check three additional compu-
tational parameters that are listed in the following paragraphs and
summarized in Table III.

TABLE II. Convergence test of the vibrational (J = 0) energy levels, in cm−1, refer-
enced to the zero-point vibrational energy in the methane–water dimer computed with
the GENIUSH program and the AOSz05 PES.33

J0.n ν̃ a δ(−2)b δ(+2)c

Nb: 1.4 ⋅ 107 5.6 ⋅ 106 5.9 ⋅ 107

1 206.810 0.001 0
2 4.764 0.001 0
3 4.764 0.001 0
4 4.765 −0.001 0.001
5 6.992 0.002 0
6 11.250 0.002 0
7 11.251 0.003 0.001
8 11.251 0 0
9 29.033 −0.001 0
10 29.034 −0.001 0.001
11 29.034 −0.001 0
12 32.636 0.003 0
13 32.637 0 0
14 32.637 0 0
15 32.711 0.002 0
16 32.712 0.001 0.001
17 32.712 0.001 0
18 34.410 0 0
19 35.920 0 0
20 35.920 0 0
aObtained with the (15, 17, 15, 9, 17, 23) grid documented in Table II.
bδ(−2) = ν̃ − ν̃(−2) , where ν̃(−2) was obtained with the same type of grid as in (a), but
with fewer points (13, 15, 13, 9, 15, 21).
cδ(+2) = ν̃ − ν̃(+2) , where ν̃(+2) was obtained with the same type of grid as in (a), but
with more points (17, 19, 17, 11, 19, 25).
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TABLE III. Testing the computational setup in GENIUSH for the first twenty vibrational
(J = 0) energy levels, in cm−1, of MW and using the AOSz05 PES. The first energy
value corresponds to the zero-point vibrational energy (ZPVE), and the other values
are relative to the ZPVE.

J0.n ν̃0 NumStepa PESsymb CompAlgc

1 206.810 21 4 × 10−6 1 × 10−8 1 × 10−5

2 4.763 83 4 × 10−6 3 × 10−7 7 × 10−6

3 4.764 00 4 × 10−6 3 × 10−7 8 × 10−6

4 4.764 64 1 × 10−5 3 × 10−8 9 × 10−6

5 6.991 93 3 × 10−7 2 × 10−8 5 × 10−6

6 11.250 42 4 × 10−6 3 × 10−7 1 × 10−5

7 11.250 51 4 × 10−6 4 × 10−7 1 × 10−5

8 11.251 22 1 × 10−5 1 × 10−8 4 × 10−6

9 29.033 43 2 × 10−6 6 × 10−8 2 × 10−6

10 29.033 61 2 × 10−6 5 × 10−8 6 × 10−6

11 29.033 61 2 × 10−6 7 × 10−8 6 × 10−6

12 32.636 02 4 × 10−6 3 × 10−8 2 × 10−5

13 32.637 12 3 × 10−6 2 × 10−7 1 × 10−5

14 32.637 14 3 × 10−6 1 × 10−7 9 × 10−6

15 32.710 92 4 × 10−6 2 × 10−8 2 × 10−5

16 32.712 10 4 × 10−6 2 × 10−7 8 × 10−6

17 32.712 30 4 × 10−6 2 × 10−7 8 × 10−6

18 34.410 43 4 × 10−6 6 × 10−8 1 × 10−6

19 35.919 68 2 × 10−6 2 × 10−8 1 × 10−5

20 35.919 72 2 × 10−6 2 × 10−8 1 × 10−5

a ν̃ − ν̃NumStep , where ν̃NumStep was obtained by changing the step size of the numerical
finite difference calculation of the vibrational t-vectors in GENIUSH from ζ = 10−5 a.u.
(ν̃0) to ζ = 10−6 a.u. (using quadruple precision in Fortran).
b ν̃ − ν̃PESsym , where ν̃PESsym was obtained by averaging for every PES points the effect of
the identity and the (123) and (132) methane permutations.
c ν̃ − ν̃CompAlg , where ν̃CompAlg was obtained by generating the Gmatrix elements using a
WolframMathematica implementation with 20 digits precision over the entire grid and
performing the vibrational calculations with GENIUSH using these KEO coefficients.

A. Testing the finite difference calculation
of the vibrational t-vectors

We have tested the accuracy of the vibrational t-vectors, the
tik vectors in Eq. (3), which are the derivatives of the body-fixed
Cartesian coordinates with respect to the internal coordinates and
are calculated in GENIUSH using finite differences. We have stud-
ied the effect of the ζ step size in the two-sided difference formula (it
was possible to meaningfully use this formula with the current step
sizes also near the boundaries for the grid types listed in Table II).
The default value for the step size is ζ = 10−5 a.u.,1 which we use in
our original study, but we have performed computations also with
ζ = 10−6 a.u. The “NumStep” column of Table III shows that the
effect of this change for the lowest twenty vibrational states is less
than 10−5 cm−1.

B. PES symmetrization

Wang and Carrington24 pointed out that there is a small imper-
fection in the AOSz05 PES33 with respect to the (123) and (132)
permutations of the methane protons, and for this reason, they used
a symmetrized version of the PES by averaging over the rotated

geometries (perfect numerical symmetry was critical for them for
using the symmetry-adapted Lanczos eigensolver). The “PESsym”
column of Table III shows that the effect of this operation is less
than 3 × 10−7 cm−1 for the present results.

C. Generation of the G matrix over the grid points
by increased precision computer algebra

To check the numerical KEO procedure for this example, we
generated theGmatrix values over the entire grid using theWolfram
Mathematica symbolic algebra program45 using analytic derivatives
and with 20 digits precision. Note that we use quadruple preci-
sion in the Fortran implementation of GENIUSH for the finite
difference calculation of the vibrational t-vectors, but only double
precision for the inversion of the g matrix. Near the singularities,
we have to deal with small (large) values, and for this reason, we
had decided to check the calculation procedure. The “CompAlg”
column of Table III shows that using an increased precision Math-
ematica calculation to generate all KEO coefficients has an effect
smaller than 10−5 cm−1 on the first twenty vibrational states of
methane–water.

IV. COMPARISON WITH WIGNER D BASIS FUNCTION
COMPUTATIONS

The dimer Hamiltonian7 used by Wang and Carrington in
Ref. 24 corresponds to a different coordinate choice than ours. It
relies on using two full sets of Euler angles (six angles) to describe
the monomers’ rotation with respect to the dimer fixed frame, and
two additional angles are used to describe the rotational motion. We
also define the monomers’ orientation with two sets of Euler angles,
but we set the first Euler angle of H2O to zero, and thus, we can use
three angles to describe the rotation of the body-fixed frame (Secs. II
and V, see also Fig. 3). The separation of the centers of mass of the
monomers is described with the R distance in both studies. For this
angular representation, the KEO can be written in terms of angular
momentum operators and the kinetic energy matrix elements can
be calculated analytically using Wigner’s D functions.7 The Wigner
D functions are non-direct product functions, and they efficiently
account for the singularities in the KEO. Wang and Carrington24

combined this method with the Symmetry Adapted Lanczos (SAL)

FIG. 3. Schematic representation of the dipole moment in the molecule-fixed frame
of the CH4–H2O dimer.
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TABLE IV. Comparison of a representative set of rovibrational energies referenced to the zero-point energy, in cm−1, obtained
with non-product (NP) and direct-product (DP) basis computations for the methane–water dimer. (The full list is provided in
the SOM.)

Label ν̃NP24 ν̃′DP
25 ν̃DP (this work)

Nb:
a Sym.b 3.0 ⋅ 106 6.0 ⋅ 107 1.4 ⋅ 107 ν̃NP − ν̃DP

J0.1 A+1 206.810 206.801 206.810 0.000
J0.2 4.765 4.763 4.764 0.001
J0.3 F+2 4.765 4.764 4.764 0.001
J0.4 4.765 4.764 4.765 0.000
J0.5 A−2 6.993 6.934 6.992 0.001
J0.18 A+1 34.413 34.405 34.410 0.003
J0.19 E+ 35.920 35.880 35.920 0.000
J0.20 35.920 35.880 35.920 0.000
J0.21 E− 36.404 36.397 36.404 0.000
J0.22 36.404 36.397 36.405 0.000
J0.23 36.414 36.317 36.412 0.002
J0.24 F+1 36.414 36.317 36.413 0.001
J0.25 36.414 36.322 36.414 0.000
J0.36 A+1 48.706 48.685 48.686 0.020
J0.66 A−2 66.597 66.156 66.598 0.001
J1.1 A+2 0.289 0.289 0.289 0.000
J1.2 5.047 5.044 5.045 0.001
J1.3 F+1 5.047 5.044 5.046 0.001
J1.4 5.047 5.045 5.046 0.001
J1.5 A−1 7.282 7.219 7.281 0.001
J1.38 30.687 30.474 30.687 0.001
J1.39 F+1 30.687 30.474 30.687 0.001
J1.40 30.687 30.588 30.687 0.001
J1.41 30.688 30.588 30.687 0.001
J1.42 F+2 30.688 30.633 30.687 0.001
J1.43 30.688 30.633 30.687 0.001
J1.86 A+2 48.981 48.946 48.961 0.021

aNumber of basis functions that equals the number of grid points for the DP computations.
bSymmetry labels corresponding to the character table ofWang and Carrington24 instead of the table originally proposed by Dore
et al.28 used in Refs. 25 and 26.

algorithm to obtain symmetry labels and tomake their computations
more efficient.

Table IV presents the comparison of three approaches: (a) the
analytic dimer Hamiltonian and non-direct product Wigner D basis
functions of Wang and Carrington,24 (b) GENIUSH with a numeri-
cal KEO and the “smaller” direct-product grid using Legendre poly-
nomials for the singular cos θ and cos β coordinates of Ref. 25, and
(c) the present GENIUSH computations with a numerical KEO and
a direct-product grid in which the Legendre DVR is replaced with
cot-DVR for the singular coordinates.

By replacing the Legendre DVRs with cot-DVRs, we can reduce
the number of basis functions from 60 × 106 (of the “large” basis
and grid25) to 13.4 × 106, while the convergence error is reduced
from ∼ 1 cm−1 to 10−3 cm−1. Our “optimal” basis with 13.4 × 106

functions is ca. twice as large as the Wigner D basis of Wang and
Carrington24 (we note that their 2.97 × 106 basis size is for a single
parity, while our basis size contains both parity components). Our
smaller basis set in Table II includes 6 × 106 functions, but it has a
somewhat larger convergence error of ±3 ⋅ 10−3 cm−1.

We also note that we observe a 0.02 cm−1 deviation between
our “optimal” basis results (Table IV) and the results of Wang and
Carrington24 for the 36th vibrational state that can be assigned as
the stretching fundamental. This convergence error reappears also
for J = 1 (J1.86 in Table IV) that corresponds to the rotational exci-
tation of the stretching fundamental vibration. We have checked the
convergence of this state also by using tridiagonalMorse functions.46

Since we have carefully checked the convergence (and other compu-
tational parameters) in the present work, we think that this small

TABLE V. U
(Ω)
ωσ,α matrix elements for Ω = 1.

(ω, σ) α: x y z

(1, −1) 1√
2

−
i√
2

0
(1, 0) 0 0 1
(1, 1) −

1√
2

−
i√
2

0
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TABLE VI. (E)1 and (E)2 bands of the CH4–H2O. All transitions are reported in cm−1 except where it is otherwise stated. (J, n)′ and (J, n) label the rovibrational state in our
energy lists provided in the SOM, (this w): (this work). Δν = E

′ − E. S0 is the line strength, Eq. (5), without the spin statistical weight factor.25

(J,n)′ ← (J,n) Δν̃obs (MHz)28 Δν̃obs E′ (this w) E (this w) Δν̃ (this w) Δν̃24 S0 (this w) S024

Expt.:28 Table III, (E)1, Σ← Π band

0, 21–22← 1, 23–24 532 812.0 17.7727 36.4045 19.3909 17.0136 17.0099 0.155 0.154
1, 53–54← 1, 23–24 541 359.5 18.0578 36.6889 19.3909 17.2980 17.2946 0.232 0.230
2, 75–76← 1, 23–24 558 451.2 18.6279 37.2577 19.3909 17.8668 17.8638 0.074 0.073
1, 53–54← 2, 23–24 524 254.1 17.4872 36.6889 19.9581 16.7309 16.7270 0.232 0.230
2, 75–76← 2, 23–24 541 344.3 18.0573 37.2577 19.9581 17.2996 17.2962 0.393 0.391

Expt.:28 Table III, (E)2, Δ← Π band

2, 80–81← 2, 23–24 542 744.8 18.1040 37.5721 19.9581 17.6140 17.6100 0.263 0.262
2, 80–81← 1, 23–24 559 850.8 18.6746 37.5721 19.3909 18.1812 18.1800 0.484 0.482

TABLE VII. (A/F)1 and (A/F)3 bands of CH4–H2O. See also the caption of Table VI.

(J,n)′ ← (J,n) Δν̃obs (MHz)28 Δν̃obs E′ (this w) E (this w) Δν̃ (this w) Δν̃24 S0 (this w) S024

Expt. (Ref. 28): Table IV, (A/F)1, Σ← Π band

0, 12–14← 1, 20–22 538 189.8 17.9521 32.6368 14.6152 18.0215 18.0194 0.167 0.166
1, 47–49← 1, 20–22 546 831.5 18.2403 33.0018 14.6152 18.3866 18.3839 0.231 0.230
2, 60–62← 1, 20–22 564 291.7 18.8227 33.5026 14.6152 18.8874 18.8858 0.080 0.080
1, 47–49← 2, 17–19 529 495.8 17.6621 33.0018 15.1903 17.8115 17.8083 0.234 0.232
2, 60–62← 2, 17–19 546 715.2 18.2365 33.5026 15.1903 18.3123 18.3102 0.420 0.417

Predicted in Ref. 24: (A/F)1b, Δ← Π band

0, 15–17← 1, 17–19 – – 32.7118 14.6124 18.0994 18.0960 0.155 0.154
1, 44–46← 1, 17–19 – – 32.9254 14.6124 18.3130 18.3106 0.249 0.248
2, 63–65← 1, 17–19 – – 33.5818 14.6124 18.9693 18.9667 0.076 0.076
1, 44–46← 2, 20–22 – – 32.9254 15.1975 17.7279 17.7254 0.251 0.250
2, 63–65← 2, 20–22 – – 33.5818 15.1975 18.3843 18.3815 0.387 0.384

Expt. (Ref. 28): Table IV, (A/F)3a, Δ← Π band

2, 66–71a ← 2, 17–19 564 637.3 18.8343 34.1923 15.1903 19.0020 18.9991 0.217 0.215
2, 66–71a ← 1, 20–22 581 971.4 19.4125 34.1923 14.6152 19.5770 19.5747 0.392 0.389

Expt. (Ref. 28): Table IV, (A/F)3b, Δ← Π band

2, 66–71a ← 2, 20–22 564 437.7 18.8276 34.1925 15.1975 18.9950 18.9919 0.218 0.217
2, 66–71a ← 1, 17–19 582 013.5 19.4139 34.1925 14.6124 19.5801 19.5771 0.391 0.388

Predicted in Ref. 24: (A/F)3Xa, Δ← Π band

2, 54–59a ← 2, 17–19 – – 32.8319 15.1903 17.6416 17.6405 0.040 0.040
2, 54–59a ← 1, 20–22 – – 32.8319 14.6152 18.2167 18.2161 0.075 0.075

Predicted in Ref. 24: (A/F)3Xb, Δ← Π band

2, 54–59a ← 2, 20–22 – – 32.8331 15.1975 17.6357 17.6333 0.042 0.042b

2, 54–59a ← 1, 17–19 – – 32.8331 14.6124 18.2207 18.2185 0.074 0.074b

aOnly three of the six upper states, which are very close in energy (and for this reason, listed together in our tables), give contribution to the S0 line strength.
bThese two values are interchanged in Ref. 24.
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TABLE VIII. (A/F)2 band of CH4–H2O. See also the caption of Table VI.

(J,n)′ ← (J,n) Δν̃obs (MHz)28 Δν̃obs E′ (this w) E (this w) Δν̃ (this w) Δν̃24 S0 (this w) S024

Expt. (Ref. 28): Table V, (A/F)2, Π← Σ band

1, 35–37← 0, 6–8 562 445.5 18.7612 29.7641 11.2507 18.5134 18.5106 0.319 0.317
1, 32–34← 1, 12–14 553 888.4 18.4757 29.7619 11.5324 18.2294 18.2265 0.480 0.477
1, 35–37← 2, 12–14 536 931.0 17.9101 29.7641 12.0959 17.6682 17.6648 0.161 0.160
2, 45–47← 1, 12–14 571 055.5 19.0484 30.3357 11.5324 18.8033 18.8009 0.477 0.475
2, 42–44← 2, 12–14 553 883.6 18.4756 30.3291 12.0959 18.2332 18.2303 0.799 0.794

difference in the energy list would probably disappear if Wang and
Carrington24 used a slightly larger basis set and grid along the R
intermolecular stretching coordinate.

In our computations (DVR), the number of grid points equals
the number of basis functions that is 13.4 × 106 for our “optimal”
basis. Wang and Carrington used a basis set that includes ca. 3 × 106

functions for one parity component (+1 or −1). The size of their
integration grid includes ca. 91 × 106 points (which can be calcu-
lated from the values given in Ref. 24). By exploiting parity, Wang
and Carrington reduced the grid size to ca. half of this value (slightly
different values correspond to the two parity components). The
size of the grid determines the cost of one matrix-vector multi-
plication during the Lanczos iteration. It is necessary to note that
cot-DVR contains quadrature points very close to the singularities
(Fig. 2), and for this reason, ourHamiltonianmatrix has a very broad
spectral range that considerably increases the number of Lanczos
iterations.

All in all, the agreement of the two independent compu-
tations is remarkable, given the different coordinate representa-
tions, the entirely different KEOs and basis sets used to build the
Hamiltonian matrix. We have not exploited molecular symmetry

to make the computations for this particular system more effi-
cient, but the symmetry-adapted Lanczos algorithm could also be
used in a GENIUSH computation.30 The tailor-made, non-product
Wigner D basis function computation remains to be the most effi-
cient approach, but the numerical performance of the GENIUSH
program (using the cot-DVR of Schiffel and Manthe for the sin-
gular bending coordinates) becomes comparable to the specialized
approach.

V. EVALUATION OF THE LINE STRENGTHS

Wang and Carrington24 also reported the line strength values
for the rovibrational transitions using a simple but excellent model
for the dimer’s dipole moment. They set the dipole moment for
the rigid water molecule to 1 (in arbitrary or “normalized, relative”
units); since the rigid methane fragment is a polar, it does not con-
tribute to this quantity. Using this dipole moment representation,
they have computed the line strength for the rovibrational transi-
tions and predicted that the global minimum to the secondary min-
imum transition should be well visible in the far-infrared spectrum.
The transition moment or line strength is defined by47

TABLE IX. (A/F)4 band of CH4–H2O. See also the caption of Table VI.

(J,n)′ ← (J,n) Δν̃obs (MHz)28 Δν̃obs E′ (this w) E (this w) Δν̃ (this w) Δν̃24 S0 (this w) S024

Expt. (Ref. 28): Table VI, (A/F)4, Π← Σ band

1, 26← 0, 5 574 574.9 19.1658 26.3646 6.9919 19.3727 19.3705 0.313 0.311
1, 25← 1, 5 565 794.7 18.8729 26.3621 7.2805 19.0816 19.0792 0.473 0.471
1, 26← 2, 5 548 506.7 18.2962 26.3646 7.8576 18.5070 18.5043 0.160 0.158
2, 34← 1, 5 583 344.0 19.4583 26.9463 7.2805 19.6657 19.6638 0.467 0.464
2, 33← 2, 5 565 694.1 18.8695 26.9386 7.8576 19.0810 19.0787 0.787 0.783

Predicted in Ref. 24: (A/F)4X , Π← Σ band

1, 69← 0, 5 – – 43.0625 6.9919 36.0706 36.0682 0.046 0.046
1, 70← 1, 5 – – 43.0660 7.2805 35.7855 35.7829 0.071 0.071
1, 69← 2, 5 – – 43.0625 7.8576 35.2049 35.2020 0.024 0.024
2, 101← 1, 5 – – 43.6042 7.2805 36.3236 36.3213 0.068 0.068
2, 102← 2, 5 – – 43.6147 7.8576 35.7571 35.7544 0.118 0.118
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TABLE X. (E)3, (E)4, and (E)5 bands of CH4–H2O. See also the caption of Table VI.

(J,n)′ ← (J,n) Δν̃obs (MHz)28 Δν̃obs E′ (this w) E (this w) Δν̃ (this w) Δν̃24 S0 (this w) S024

Expt. (Ref. 28): Table VII, (E)3, Σ← Π band

0, 19–20← 1, 15–16 732 385.1 24.4297 35.9197 13.1087 22.8110 22.8098 0.093 0.092
1, 51–52← 1, 15–16 740 778.1 24.7097 36.1856 13.1087 23.0769 23.0757 0.141 0.140
1, 51–52← 2, 15–16 723 657.8 24.1386 36.1856 13.6782 23.0769 22.5057 0.136 0.135
2, 73–74← 1, 15–16 757 561.5 25.2695 36.7175 13.1087 23.6088 23.6078 0.048 0.048
2, 73–74← 2, 15–16 740 443.2 24.6985 36.7175 13.6782 23.0393 23.0378 0.232 0.231

Expt. (Ref. 28): Table VII, (E)4, Σ← Π band

2, 88–89← 2, 15–16 821 483.9 27.4018 38.6481 13.6782 24.9700 24.9680 0.212 0.212
2, 88–89← 1, 15–16 838 603.8 27.9728 38.6481 13.1087 25.5395 25.5380 0.396 0.394

Expt. (Ref. 28): Table VII, (E)4
′, Σ← Π band

2, 90–91← 2, 15–16 821 483.9 27.4018 39.5975 13.6782 25.9193 25.9171 0.005 0.005
2, 90–91← 1, 15–16 838 603.8 27.9728 39.5975 13.1087 26.4888 26.4871 0.001 0.001

1, 58–59
∗ ← 2, 15–16 – – 39.0170 13.6782 25.3388 25.3362a 0.001 0.001

1, 58–59
∗ ← 1, 15–16 – – 39.0170 13.1087 25.9083 25.9062a 0.001 0.001

Expt. (Ref. 28): Table VII, (E)5, Σ← Π band

0, 34–35← 1, 15–16 – – 48.0961 13.1087 34.9874 34.9863 0.088 0.087
1, 84–85← 1, 15–16 1057 943.1 35.2892 48.3769 13.1087 35.2682 35.2673 0.132 0.132
2, 116–117← 1, 15–16 1074 920.4 35.8555 48.9384 13.1087 35.8297 35.8292 0.044 0.044
2, 116–117← 2, 15–16 1057 801.7 35.2845 48.9384 13.6782 35.2602 35.2592 0.221 0.219

aWe believe that there were some typos in Table XVIII of Ref. 24. The corrected values and labels are given here in comparison with the values computed in this work.

TABLE XI. (A/F)5 band of CH4–H2O. See also the caption of Table VI.

(J,n)′ ← (J,n) Δν̃obs (MHz)28 Δν̃obs E′ (this w) E (this w) Δν̃ (this w) Δν̃24 S0 (this w) S024

Expt. (Ref. 28): Table VIII, (A/F)5, Π← Σ band

1, 38–40← 0, 2–4 852 462.1 28.4351 30.6867 4.7642 25.9225 25.9223 0.256 0.255
1, 41–43← 1, 2–4 844 268.9 28.1618 30.6873 5.0455 25.6417 25.6413 0.368 0.368
1, 38–40← 2, 2–4 827 031.4 27.5868 30.6867 5.6083 25.0784 25.0774 0.114 0.113
2, 48–50← 1, 2–4 860 602.5 28.7066 31.2548 5.0455 26.2093 26.2092 0.399 0.397
2, 51–53← 2, 2–4 844 500.0 28.1695 31.2568 5.6083 25.6485 25.6479 0.615 0.612

Predicted in Ref. 24: (A/F)5X , Π← Σ band

1, 60–62← 0, 2–4 – – 40.4210 4.7642 35.6569 35.6572 0.105 0.105
1, 63–64← 1, 2–4 – – 40.4225 5.0455 35.3769 35.3770 0.164 0.164
1, 60–62← 2, 2–4 – – 40.4210 5.6083 34.8127 34.8123 0.060 0.060
2, 92–94← 1, 2–4 – – 40.9716 5.0455 35.9261 35.9267 0.150 0.150
2, 95–97← 2, 2–4 – – 40.9761 5.6083 35.3678 35.3678 0.273 0.271
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S(J′l′ → Jl) = gns∑
m,m′

∑
A=X,Y ,Z

∣ ⟨Ψ(rv)
J′m′ l′
∣μA∣Ψ(rv)Jml

⟩∣ 2, (5)

where gns is the nuclear spin statistical weight factor and μA
(A = X,Y ,Z) are the components of the molecular dipole moment
in the laboratory-fixed frame. The gns values have been calculated
in Ref. 25. We note that Ref. 24 reported the “bare” values of the
integrals (without the gns factor), which will be labeled S0 = S/gns in
Tables VI–XIV.

The rovibrational wave functions of the isolated molecule
Hamiltonian, Eq. (1), are represented in the GENIUSH
program34 as

∣Ψ(rv)
Jml
⟩ = Nb

∑
v=1
∑
k,τ

c
(Jl)
v,k,τ ∣v⟩∣J, k,m, τ⟩, (6)

expressed with the ∣v⟩ vibrational wave function and the Wang-type

symmetric top functions ∣J, k,m, τ⟩ = d(τ)+k ∣J, k,m⟩ + d(τ)−k ∣J,−k,m⟩.

Following the work of Owens and Yachmenev, we evaluate
the rovibrational integrals for Ω-order tensorial properties in the
laboratory-fixed frame (LF)48 as

⟨Ψ(rv)
J′m′ l′
∣T(LF)A ∣Ψ(rv)

Jml
⟩ = Ω

∑
ω=0

M
(J′m′ ,Jm)
Aω K

(J′ l′ ,Jl)
ω , (7)

with

M
(J′m′ ,Jm)
Aω = (−1)m′√(2J′ + 1)(2J + 1)

×

ω

∑
σ=−ω
[U(Ω)]−1A,ωσ( J ω J

′

m σ −m
′) (8)

and

TABLE XII. (A/F)6 and (A/F)7 bands of CH4–H2O. See also the caption of Table VI.

(J,n)′ ← (J,n) Δν̃obs (MHz)28 Δν̃obs E′ (this w) E (this w) Δν̃ (this w) Δν̃24 S0 (this w) S024

Expt. (Ref. 28): Table IX, (A/F)6, Σ← Π band

0, 23–25← 1, 6–8 – – 36.4131 7.9119 28.5012 28.5020 0.181 0.180
1, 55–57← 1, 9–11 906 722.4 30.2450 36.6984 7.9158 28.7826 28.7837 0.276 0.275
1, 55–57← 2, 6–8 889 393.8 29.6670 36.6984 8.4916 28.2069 28.2075 0.265 0.264
2, 77–79← 1, 6–8 924 003.8 30.8214 37.2689 7.9119 29.3570 29.3583 0.103 0.103
2, 77–79← 2, 9–11 906 302.4 30.2310 37.2689 8.5026 28.7663 28.7672 0.446 0.444

Predicted in Ref. 24: (A/F)6X , Σ← Π band

0, 9–11← 1, 9–11 – – 29.0335 7.9158 21.1177 21.118 0.080 0.080
1, 27–29← 1, 6–8 – – 29.3049 7.9119 21.3930 21.3563 0.117 0.117
1, 27–29← 2, 9–11 – – 29.3049 8.5026 20.8023 20.8022 0.123 0.122
2, 37–39← 1, 9–11 – – 29.8476 7.9158 21.9318 21.9325 0.038 0.037
2, 37–39← 2, 6–8 – – 29.8476 8.4916 21.3560 21.3563 0.194 0.193

Predicted in Ref. 24: (A/F)6Y , Σ← Π band

0, 26–28← 1, 9–11 – – 41.1844 7.9158 33.2686 33.2700 0.101 0.100
1, 66–68← 1, 6–8 – – 41.4639 7.9119 33.5520 33.5535a 0.157 0.156
1, 66–68← 2, 9–11 – – 41.4639 8.5026 32.9613 32.9624 0.147 0.147
2, 98–100← 1, 9–11 – – 42.0229 7.9158 34.1071 34.1092 0.055 0.055
2, 98–100← 2, 6–8 – – 42.229 8.4916 33.5313 33.5330 0.262 0.261

Expt. (Ref. 28): Table IX, (A/F)7a, Σ← Π band

2, 82–87b ← 2, 6–8 912 803.3 30.4478 37.6439 8.4916 29.1523 29.1532 0.299 0.297
2, 82–87b ← 1, 9–11 930 130.4 31.0258 37.6439 7.9158 29.7281 29.7294 0.536 0.533

Expt. (Ref. 28): Table IX, (A/F)7b, Σ← Π band

2, 82–87b ← 2, 9–11 912 529.1 30.4387 37.6447 8.5026 29.1421 29.1421 0.309 0.307
2, 82–87b ← 1, 6–8 930 230.6 31.0292 37.6447 7.9119 29.7328 29.7332 0.530 0.527

aA typo in Table XX of Ref. 24 is corrected based on the E′ and E′′ level energies given in the paper and checked against the results of this work.
bSee footnote a to Table VII.
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K
(J′ l′ ,Jl)
ω = ∑

v,k,τ
v
′ ,k′ ,τ′

[c(J′ l′)
v
′k′τ′
]∗c(Jl)

vkτ ∑
±k′ ,±k

[d(τ′)
k′
]∗d(τ)

k

× (−1)k′ ω

∑
σ=−ω
∑
α

(J ω J
′

k σ −k
′)

×U
(Ω)
ωσ,α⟨v′∣T(BF)α ∣v⟩. (9)

The electric dipole moment is a rank-1 tensor (a vector) with Ω = 1,
and the corresponding U matrix values are summarized in Table V.
For higher-order tensor operators, this matrix can be calculated
from lower rank tensors using the following expression:

U
(Ω)
ωσ,A =

ω1

∑
σ1=−ω1

ω2

∑
σ2=−ω2

⟨ω1σ1ω2σ2∣ωσ⟩U(Ω1)
ω1σ1 ,B

U
(Ω2)
ω2σ2 ,C

, (10)

where Ω = Ω1 +Ω2, A = B⊗ C, and ⟨ω1σ1ω2σ2∣ωσ⟩ is the
Clebsch–Gordan coefficient.

Regarding the transition dipoles of methane–water, we have

first computed the vibrational matrix elements ⟨v′∣μ(BF)α ∣v⟩ using the
H2O dipole approximation of Ref. 24, i.e., only the water monomer
contributes to the dipole moment of the dimer (Fig. 3). It is shown
in Fig. 3 that in our representation this dipole vector points along
the Z axis of the H2O monomer frame, and in the dimer’s frame, its
rotation is described with the θ and ϕ angles (although the value of
ϕ is irrelevant in this special case). Hence, it was straightforward to
implement this (presumably excellent) approximation for the body-

(dimer-)fixed dipole moment μ(BF)α , calculate its value at a grid point
in the body-fixed (dimer’s) frame, and then integrate it for pairs of
vibrational eigenvectors.

VI. FAR-INFRARED SPECTRUM

The rovibrational transitions computed in this work are
compared in Tables VI–XIII with the transitions computed by
Wang and Carrington24 and with the transitions observed exper-
imentally in the far-infrared range by Dore et al.28 In addition
to the 13 experimentally observed vibration–rotation–tunnelling
bands reported by Dore et al: (E)1, (E)2, (A/F)1, (A/F)2,(A/F)3, and (A/F)4 for ortho-H2O, (E)3, (E)4, (E)5, (A/F)5,(A/F)6, (A/F)7, and (A/F)8 for para-H2O; Wang and Carring-
ton predicted eight additional bands24 (and of course computa-
tions can predict more): (A/F)1b, (A/F)3X , (A/F)4X , (A/F)5X ,(A/F)6X , (A/F)6Y , (A/F)8X , and (A/F)8Y . Tables VI–XIII show
that the two computations are in an excellent agreement. Regard-
ing the theory–experiment comparison, we reiterate the early
observation,25 according to which the discrepancies are larger
for the transitions including the para-H2O than the ortho-H2O
species.

VII. MICROWAVE SPECTRUM

Similarly to the far-infrared high-resolution spectroscopy
experiments, a comparison can be made (Table XIV) with
microwave observations by Suenram et al.29 In the microwave spec-
trum, there were four Σ and six Π bands observed at ∼ 1 K rota-
tional temperature in the supersonic expansion. There is an excel-
lent agreement with the experimental and also with the computed
transitions by Wang and Carrington.24

TABLE XIII. (A/F)8 band of CH4–H2O. See also the caption of Table VI.

(J,n)′ ← (J,n) Δν̃obs (MHz)28 Δν̃obs E′ (this w) E (this w) Δν̃ (this w) Δν̃24 S0 (this w) S024

Expt. (Ref. 28): Table X, (A/F)8, Π← Σ band

1, 30← 0, 1 927 673.3 30.9439 29.5588 0.0000 29.5588 29.5596 0.374 0.372
1, 31← 1, 1 919 166.0 30.6601 29.5646 0.2891 29.2755 29.2762 0.554 0.551
1, 30← 2, 1 901 595.6 30.0740 29.5588 0.8673 28.6915 28.6918 0.179 0.178
2, 40← 1, 1 936 059.3 31.2236 30.1269 0.2891 29.8377 29.5596 0.569 0.566
2, 41← 2, 1 919 232.4 30.6623 30.1444 0.8673 29.2771 29.2777 0.922 0.918

Predicted in Ref. 24: (A/F)8X , Π← Σ band

0, 18← 1, 1 – – 34.4104 0.2891 34.1213 34.1234 0.048 0.048
1, 50← 0, 1 – – 34.6785 0.0000 34.6785 34.6811 0.046 0.046
1, 50← 2, 1 – – 34.6785 0.8673 34.3894 33.8133 0.097 0.096
2, 72← 1, 1 – – 35.2146 0.2891 34.9254 34.9283 0.091 0.090

Predicted in Ref. 24: (A/F)8Y , Π← Σ band

0, 36← 1, 1 – – 48.6856 0.2891 48.3965 48.4168 0.029 0.029
1, 86← 0, 1 – – 48.9607 0.0000 48.9607 48.9812 0.027 0.027
1, 86← 2, 1 – – 48.9607 0.8673 48.0934 48.1134 0.061 0.061
2, 118← 1, 1 – – 49.5105 0.2891 49.2214 49.2419 0.052 0.052
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TABLE XIV. Rotation–vibration–tunneling transitions of CH4–H2O observed in microwave spectroscopy experiments.29 See also the caption of Table VI.

(J,n)′ ← (J,n) Δν̃obs (MHz)28 Δν̃obs E′ (this w) E (this w) Δν̃ (this w) Δν̃24 S0 (this w) S024

A+, Σ band:

1, 1← 0, 1 8 692.96 0.2900 0.2891 0.0000 0.2891 0.2893 0.040 0.040
2, 1← 1, 1 17 383.05 0.5798 0.8673 0.2891 0.5781 0.5785 0.079 0.079

F−, Σ band:

1, 12–14← 0, 6–8 8 504.65 0.2837 11.5324 11.2507 0.2817 0.2819 0.029 0.029
2, 12–14← 1, 12–14 17 007.87 0.567 12.0959 11.5324 0.5634 0.5639 0.059 0.059

F+, Σ band:

1, 2–4← 0, 2–4 8 476.93 0.2828 5.0455 4.7642 0.2814 0.2816 0.055 0.055
2, 2–4← 1, 2–4 16 953.03 0.5655 5.6083 5.0455 0.5628 0.5632 0.109 0.109

A−, Σ band:

1, 5← 0, 5 8 690.39 0.2899 7.2805 6.9919 0.2886 0.2888 0.024 0.024
2, 5← 1, 5 17 378.14 0.5797 7.8576 7.2805 0.5771 0.5774 0.048 0.048

E+, Π band:

2, 15–16← 1, 15–16 17 120.06 0.5711 13.6782 13.1087 0.5695 0.5700 0.099 0.099

E−, Π band:

2, 23–24← 1, 23–24 17 105.28 0.5706 19.9581 19.3909 0.5671 0.5676 0.052 0.052

F+, Π band:

2, 6–8← 1, 6–8 17 421.68 0.5811 8.4916 7.9119 0.5797 0.5800 0.072 0.071
2, 9–11← 1, 9–11 17 607.72 0.5873 8.5026 7.9158 0.5868 0.5873 0.072 0.071

F−, Π band:

2, 17–19← 1, 17–19 17 396.81 0.5803 15.1903 14.6124 0.5779 0.5780 0.040 0.040
2, 20–22← 1, 20–22 17 516.82 0.5843 15.1975 14.6152 0.5823 0.5828 0.040 0.040

VIII. SUMMARY, CONCLUSIONS, AND OUTLOOK

The black-box-type rovibrational method implemented in the
GENIUSH program package has been extensively tested with respect
to the sophisticated dimer Hamiltonian approach that has been tai-
lored for describing the intermolecular dynamics of floppy dimers
by Wang and Carrington.24

GENIUSH uses a numerical kinetic energy operator approach,
user-defined coordinates and body-fixed frame, and direct product
basis and grid. The dimer approach of Wang and Carrington uses
an analytic kinetic energy operator (non-direct product) coupled
basis functions including Wigner’s D functions, and analytic kinetic
energy operator matrix elements.

We show for the example of the rovibrational states and transi-
tions of the methane–water dimer that the performance of the black-
box-type approach is on the same order of magnitude as that of the
tailor-made approach, the latter being more efficient. In our direct-
product approach, it is important to use the cot-DVR developed by
Schiffel and Manthe43 (see also Ref. 44) for the singular “bending”

coordinates. Then, we can converge the energy levels on the order
of 10−3 cm−1 with a basis set only twice as large as the non-product
dimer basis of Wang and Carrington.24 (For the full assessment of
the computational efficiency, we need to add that their integration
grid is larger than ours, but the spectral range of our Hamiltonian
is larger resulting in a slower convergence of the Lanczos iteration.)
The well-converged data allowed us to notice a small convergence
error of 0.02 cm−1 in the intermolecular stretching fundamental
vibration energy of Ref. 24.

To compute rovibrational transitions for J = 0, 1, and 2 rota-
tional quantum numbers, we use a basis set that is ca. twice
as large as the non-product dimer basis of Wang and Carring-
ton, and we evaluate rovibrational transition energies and line
strengths. Our transition energies are in an agreement of 10−3 cm−1

often just a few 10−4 cm−1 of the energies reported by Wang
and Carrington. These deviations are far beyond the theoret-
ical uncertainty of the current rovibrational theoretical frame-
work based on the non-relativistic and the Born–Oppenheimer
approximations.
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Further progress that we would be happy to witness in the
forthcoming years is related to the computation of extensive line
lists for floppy systems. An extensive line list that can be useful for
simulating molecular interactions48 or providing datasets49 to other
disciplines includes rotational excitations up to J = 20 and beyond.
If we have to solve the full rovibrational problem (from scratch) for
every J, then a factor of 2–3–5 in the vibrational basis can be an
important advantage (of the tailor-made method). A more efficient
approach would be, however, if we had a method for finding a good
body-fixed frame that allows one to efficiently use the vibrational
eigenstates (solutions of the J = 0 problem) in the energy range rel-
evant for the dynamics. It may be the numerical KEO approach
(also implemented in GENIUSH) that will finally make it possible
to optimize the body-fixed frame even for floppy systems.32

SUPPLEMENTARY MATERIAL

See the supplementary material for the full list of computed
rovibrational energies.
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Exact quantum dynamics background
of dispersion interactions: case study for
CH4�Ar in full (12) dimensions†

Gustavo Avila, *a Dóra Papp, *b Gábor Czakó *b and Edit Mátyus *a

A full-dimensional ab initio potential energy surface of spectroscopic quality is developed for the van-der-

Waals complex of a methane molecule and an argon atom. Variational vibrational states are computed on

this surface including all twelve (12) vibrational degrees of freedom of the methane–argon complex using

the GENIUSH computer program and the Smolyak sparse grid method. The full-dimensional computations

make it possible to study the fine details of the interaction and distortion effects and to make a direct

assessment of the reduced-dimensionality models often used in the quantum dynamics study of weakly-

bound complexes. A 12-dimensional (12D) vibrational computation including only a single harmonic

oscillator basis function (9D) to describe the methane fragment (for which we use the ground-state

effective structure as the reference structure) has a 0.40 cm�1 root-mean-square error (rms) with respect

to the converged 12D bound-state excitation energies, which is less than half of the rms of the 3D model

set up with the hri0 methane structure. Allowing 10 basis functions for the methane fragment in a 12D

computation performs much better than the 3D models by reducing the rms of the bound state

vibrational energies to 0.07 cm�1. The full-dimensional potential energy surface correctly describes the

dissociation of the system, which together with further development of the variational (ro)vibrational

methodology opens a route to the study of the role of dispersion forces in the excited methane vibrations

and the energy transfer from the intra- to the intermolecular vibrational modes.

I. Introduction

Molecular interactions play an important role in chemistry,
biology, and materials science. Through the many-body construc-
tion idea1 of the potential energy surface (PES) of bulk-phase
systems the study of molecular interactions is translated to the
study of molecular dimers, trimers, and perhaps larger (but still
small) clusters.2–10 Small molecular clusters can be studied
in great detail and precision by high-resolution spectroscopic
and quantum chemistry and quantum dynamics techniques.
A good, ‘first’ description of the quantum dynamical features of

molecular complexes is provided by the rigid-monomer approxi-
mation,11–14 which allows considerable savings both on the PES
development and on the quantum dynamics side. To account for
monomer-flexibility effects through the PES representation, the
application of effective potential energy cuts (for each monomer
vibrational state) provides an improved representation over the
rigid-monomer approach while retaining the small number of
active vibrational degrees of freedom.15

At the same time, monomer flexibility ‘effects’ are, of course,
non-negligible,16,17 especially for (a) strongly interacting frag-
ments (with strong monomer distortions);18–20 (b) higher vibra-
tional excitations; (c) monomer vibrational excitations that may
correspond to predissociative states of the complex;21,22 or
(d) for symmetry reasons (i.e., degenerate monomer excitations
may show a non-trivial coupling with the intermolecular
modes). A full account of monomer flexibility in complexes of
polyatomic molecules represents a considerable challenge for
the current (ro)vibrational methodologies due to the large
number of vibrational degrees of freedom and the typically
multi-well character of the potential energy landscape.

A generally applicable, ‘black-box-type’ description of mole-
cular systems with multiple-large amplitude motions is truly
challenging, due to (a) the high-dimensionality of the problem,
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(b) singularities in the kinetic energy operator in the dynami-
cally important region of the coordinate space, (c) a common
lack of good zeroth-order models, (d) large basis sets and
integration grids being necessary to converge the results, and
thus (e) the necessity to attenuate the curse of dimensionality.
For semi-rigid molecules there have been efficient methods
developed in the past23 and further major progress has been
achieved over the last decade.24–32 If there is only a single large-
amplitude degree of freedom in the system, the reaction-path-
Hamiltonian33 and similar approaches have been successfully
used together with semi-rigid techniques.34,35 There exist efficient,
tailor-made approaches developed for particular systems, e.g.,
for molecular complexes.4,36 But a general and efficient
solution method for systems with multiple large-amplitude
motions remains an open problem. For this reason molecular
systems with multiple-large amplitude motions represent a
current frontier of research in quantum dynamics. The present
work contributes to this direction. The family of molecular
complexes offers a wide selection of systems with a varying
number of large- and small amplitude motions, varying coupling
strengths, singularity patterns, etc., and in this way, their study
drives methodological development.

In the present work we focus on the floppy, van-der-Waals
complex of a methane molecule and an argon atom (with twelve
vibrational degrees of freedom), ultimately aiming to reach the
predissociative states which belong to the vibrational excitation
of the methane fragment, within a full-dimensional vibrational
treatment. Due to the weak interactions governing the internal
dynamics of the CH4�Ar complex, powerful approximations
have been introduced in reduced-dimensionality computations,
including some methane vibrations, to interpret the high-
resolution predissociative spectrum of the complex.11,37–39 In
spite of this earlier experimental and quantum dynamics work
(accounting for some methane flexibility) there is not any full-
dimensional (12D) potential energy surface available for this
system. Hence, the first part of this article is about the develop-
ment of an ab initio, near-spectroscopic quality, full-dimensional
PES for CH4�Ar. The second part reports the first application of
this PES in vibrational computations including all 12 vibrational
degrees of freedom using the GENIUSH–Smolyak procedure
developed by two of us in ref. 40. Note that in ref. 40, a (3D + 9D)
PES was used (only including kinetic couplings in the Hamiltonian)
in order to be able to test the developed vibrational methodology.
In addition to the development and the first applications of a
full-dimensional PES for CH4�Ar, we also take the opportunity
to test the rigid-monomer (here 3D) approximation(s), widely
used in the study of molecular complexes, with respect to the
full-dimensional results.

II. PES development
A. Computational details

1. Benchmark dissociation energies. The geometries of the
global (GM) and secondary minima (SM) of the CH4�Ar complex
are optimized using the explicitly-correlated coupled cluster

singles, doubles, and perturbative triples electronic structure
method, CCSD(T)-F12b,41 with the aug-cc-pVQZ correlation-
consistent basis set,42 followed by harmonic frequency compu-
tations at the same level of theory. The resulting equilibrium
structures have C3v point-group symmetry forming three (GM)
and one (SM) ‘H-bond(s)’—or, more precisely, ‘H contacts’,
which modulate the dispersion interaction between Ar and
CH4. To obtain benchmark dissociation energies (De) for the
GM and SM complexes single-point energy computations are
performed at the CCSD(T)-F12b/aug-cc-pVQZ geometries:
CCSD(T)-F12b/aug-cc-pV5Z, CCSD(T)43 and CCSDT(Q)44 with
the aug-cc-pVDZ basis set to obtain post-(T) contributions,
and both all-electron (AE) and frozen-core (FC) CCSD(T)-F12b/
cc-pCVQZ-F1245 to determine core-correlation corrections. The
FC approach correlates the valence electrons only, whereas in
the AE computations the following electrons are also corre-
lated: 1s2 for C and 2s22p6 for Ar. All the ab initio computations
are carried out with the Molpro program package,46 except the
CCSD(T) and CCSDT(Q) computations, which are performed
using the MRCC program47 interfaced to Molpro. The final
benchmark De values are obtained as

De(CCSD(T)-F12b/aug-cc-pV5Z) + d[CCSDT(Q)] + Dcore, (1)

where

d[CCSDT(Q)] = De(CCSDT(Q)/aug-cc-pVDZ)

� De(CCSD(T)/aug-cc-pVDZ) (2)

and

Dcore = De(AE-CCSD(T)-F12b/cc-pCVQZ-F12)

� De(FC-CCSD(T)-F12b/cc-pCVQZ-F12). (3)

2. Full-dimensional PES development. A full-dimensional
analytic ab initio PES, named FullD-2019 PES, is developed
based on 15 995 energy points computed at the CCSD(T)-F12b/
aug-cc-pVTZ level of theory at geometries covering the configu-
ration space relevant for the interaction between methane and
argon. Note that previous test computations by one of us showed
that the standard augmented and F12 correlation-consistent basis
sets provide similar accuracy for PES development.48 The geome-
tries used for the PES development are generated by isotropically
positioning the Ar atom around the methane unit while atoms of
the equilibrium CCSD(T)-F12b/aug-cc-pVTZ methane structure are
also randomly displaced. The C–Ar distance is varied between 4 and
20 bohr, and the atoms of methane are displaced in Cartesian
coordinates within an interval of [0, 0.95] bohr. The PES is
represented by a polynomial expansion in Morse-like variables of
the ri, j internuclear distances, yi, j = exp(�ri, j/a) with a = 2.0 bohr,
and using a compact polynomial basis that is explicitly invariant
under permutation of like atoms.49,50 The highest total polynomial
order applied is 7. The total number of fitting coefficients is 9355.
A weighted least-squares fit is performed on the energy points,
where a certain energy E relative to the global minimum has a
weight of (E0/(E0 + E)) � (E1/(E1 + E)) with E0 = 0.05 hartree and
E1 = 0.5 hartree.
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B. Results and discussion

1. Benchmark dissociation energies. In Table 1, we present
the benchmark dissociation energies corresponding to the global
and secondary minimum geometries of the CH4�Ar complex and
compare them to the dissociation energies determined on the
newly developed analytic FullD-2019 PES. The correction terms
listed in Table 1 allow for estimating the accuracy of the
benchmark dissociation energies. The extremely fast basis set
convergence of the explicitly-correlated CCSD(T)-F12b method,
which is manifested in the D5Z corrections of only 0.5 cm�1,
ensures that the CCSD(T)-F12b/aug-cc-pV5Z energy is basis-set-
converged within about 0.1–0.2 cm�1. The correlation of core
electrons increases the dissociation energies by around 1.5 cm�1,
and has an estimated uncertainty of 1 cm�1. The d[CCSDT(Q)]

correlation contributions are also positive values of around 2 cm�1

with a similar estimated uncertainty of 1 cm�1. (The uncertainty
estimates consider basis set effects and post-(Q) contributions.)
Relativistic effects, not taken into account in this work, are
supposed to have a smaller contribution than core correlation.
Taken together, the uncertainty of the final benchmark dissociation
energies is estimated to be �2 cm�1. The benchmark De values,
as shown in Table 1, are well reproduced on the new PES with
0.3 cm�1 and 2.6 cm�1 differences in the case of the global and the
secondary minima, respectively. In the case of the global minimum
the above agreement is even better than expected due to cancella-
tion of errors as it can be seen from the data of Table 1.

2. Accuracy of the analytic PES. The newly developed full-
dimensional analytic PES of the CH4�Ar complex, FullD-2019
PES, features extremely low root mean square (rms) fitting
deviations, listed in Table 2, with the rms values being lower
than 1 cm�1 up to 55 000 cm�1 relative to the global minimum of
the PES. In accord with these low rms values the one-dimensional
energy curves obtained on the PES during the separation of the Ar
atom from methane along the C3 axes of the global and secondary
minimum geometries, see Fig. 1, show excellent agreement with the
ab initio energies. As also seen in Fig. 1, the asymptotic behavior of
the weakly-bound CH4�Ar system is also well described by the PES.
The asymptotic limits are reached at around 15 bohr from both
minima. It is worth emphasizing that the fitted PES reproduces the
long-range asymptotic behavior of the high-level ab initio data with-
out using any switching function based on the traditional 1/R6

dispersion model. Fig. 2 shows that the structural parameters
obtained at the minima of the PES agree well with the benchmark
CCSD(T)-F12b/aug-cc-pVQZ values. The C–Ar distances are repro-
duced on the FullD-2019 PES with a difference of 0.003 bohr and
0.029 bohr for the global and the secondary minima, respectively,
whereas the C–H bond lengths and the H–C–H angles are practically
the same as in the benchmark geometry. Note that the geometry of
CH4 is just slightly perturbed in the minima relative to the free
CH4 structure; the deformation energy at the global minimum is
only 0.05 cm�1. The outstanding accuracy of the FullD-2019 PES is

Table 1 Benchmark dissociation energies (De) in cm�1 corresponding to
the global (GM) and secondary minimum (SM) structures of the CH4�Ar
complex obtained from eqn (1) at CCSD(T)-F12b/aug-cc-pVQZ geometries
compared to those obtained on the FullD-2019 PES developed in this study

AVTZa AVQZb D5Z
c Dcore

d D[CCSDT(Q)]e Final f PESg

GM 154.38 149.06 +0.47 +1.40 +1.90 152.83 153.13
SM 103.46 96.79 �0.52 +1.22 +2.03 99.52 102.16

a De(CCSD(T)-F12b/aug-cc-pVTZ).
b De(CCSD(T)-F12b/aug-cc-pVQZ).

c De(CCSD(T)-
F12b/aug-cc-pV5Z) � De(CCSD(T)-F12b/aug-cc-pVQZ).

d De(AE-CCSD(T)-
F12b/cc-pCVQZ-F12) � De(FC-CCSD(T)-F12b/cc-pCVQZ-F12).

e De(CCSDT(Q)/
aug-cc-pVDZ) � De(CCSD(T)/aug-cc-pVDZ).

f De(CCSD(T)-F12b/aug-cc-pV5Z) +
Dcore + d[CCSDT(Q)].

g Energy on the PES when the Ar atomwas 57 bohr from
the equilibrium structure of methane (the interaction energy is less than
0.001 cm�1) relative to the corresponding minimum energy of the PES.

Table 2 Number of points and root mean square (rms) deviations of the
fitting in the chemically interesting energy ranges of the FullD-2019 PES
relative to its global minimum

Erel range/cm
�1 Number of points rms/cm�1

0–11 000 11 727 0.66
11 000–22 000 1073 0.90
22 000–55 000 1582 0.95

Fig. 1 Potential energy curves along the C3 axes of the global (left panel) and secondary (right panel) minimum structures scanning the C–Ar distance of
the CH4�Ar complex (the CH4 unit is fixed at its CCSD(T)-F12b/aug-cc-pVTZ equilibrium geometry), and showing a comparison between the direct
ab initio values and cuts of the FullD-2019 PES. The insets show the potential well regions and the corresponding equilibrium geometries.
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also strengthened by the dissociation energies corresponding to
the global and secondary minima, reproducing the benchmark
values within 3 cm�1 (Table 1). The C–H separation is also
scanned on the PES and, as Fig. 3 shows, the FullD-2019 PES
describes the C–H stretching motion well up to 30000 cm�1

relative to the global minimum. Furthermore, the potential scans
(Fig. 1 and 3) show that the PES function is smooth without any
artificial oscillations, proving that the large number of fitting
parameters does not cause any overfitting problem.

C. Asymptotic behavior of the PES and comparison with

limiting models

The FullD-2019 PES was fitted to ab initio points using a
permutationally invariant polynomial expansion ofMorse variables,

yi, j = exp(�ri, j/a) (with a = 2 bohr), which are exponential functions
of distances for all atom–atom pairs.49 In the present work, we have
included in the fit polynomials of yi, j up to degree 7. The advantage
of using Morse variables over regular distances is that they ensure
non-divergent dissociation asymptotes for large ri, j values. At the
same time, one might ask whether the exponentially fast decay of
the Morse coordinates allows us to have a correct description of the
intermediate range energetics, which, for the present system, is
dominated by London dispersion forces, commonly described by a
potential energy model, which has not an exponential but a 1/R6-
type limiting behavior.

The low rms values (Table 2) indicate that the fitting func-
tion used for the FullD-2019 PES had sufficient flexibility to
reproduce excellently the ab initio energies, which, of course,
automatically capture all ‘interaction effects’. To gain more
insight into the short, intermediate, and long-range behavior of
the system along the dissociation coordinate, we compare 1D
cuts in Fig. 4: the FullD-2019 PES, the Morse potential energy
curve, and the best fit of the �s/R6 model (with s as a constant,
fitted parameter) over the R A [7.5, 15.5] bohr intermediate
range.

The Morse potential, c0y
0
R + c1y

1
R + c2y

2
R, is a second-order

polynomial of the yR Morse variable (defined between the
carbon and the argon atoms), and it reproduces excellently
the PES valley but it decays too fast to the asymptotic limit
(Fig. 4). To reproduce well the asymptotic fall, it is necessary
to use a higher than second-order polynomial of the Morse
variable, and we found that a polynomial including monomials
up to the 7th-order, i.e., up to y7R, in the fitting function of the
FullD-2019 PES provides an appropriate and automated way to
have an excellent overall (short-, intermediate-, and long-range)
description of the system.

It is worth pointing out that the difference in the
intermediate-range behavior of the Morse (a too fast fall) and

Fig. 2 Geometric parameters of the global (top) and the secondary (bot-
tom) minimum structures of the CH4�Ar complex obtained at the CCSD(T)-
F12b/aug-cc-pVQZ level of theory (red) and on the FullD-2019 PES (black).
Bond lengths are given in bohr and bond angles are given in degrees.

Fig. 3 Potential energy curve along one C–H bond of the CCSD(T)-F12b/
aug-cc-pVTZ global minimum geometry while the collinear H atom is
separated comparing the direct ab initio values and the FullD-2019 PES.

Fig. 4 Long-range interactions: potential energy representations of
CH4�Ar along the dissociation coordinate showing the 1D cut of the FullD-
2019 PES; �s/R6 fit (s = 2.59741 � 107 bohr6 cm�1) to the ab initio points in
the [7.5, 15.5] bohr range; Morse fit (153.928 cm�1{1 � exp[�0.85(R/bohr �
6.95)]}2 � 153.928 cm�1); and the CCSD(T)-F12b/aug-cc-pVTZ ab initio data.
The RMS values correspond to the data in the [7.5, 15.5] bohr interval. The RMS
values of the FullD-2019 PES are 0.53 and 0.07 cm�1 in the [7.5, 95] and [20, 95]
bohr range, respectively, whereas the corresponding RMS deviations for the
�s/R6 fits are 1.96 and 0.004 cm�1.

Paper PCCP

               dc_1955_21



2796 | Phys. Chem. Chem. Phys., 2020, 22, 2792--2802 This journal is©the Owner Societies 2020

the PES fit (a fall similar to the 1/R6 dispersion model) is
manifested also in the vibrational structure (Fig. 5). The
FullD-2019 PES supports an additional bound vibrational state
and the highest energy wave function has a significant ampli-
tude over a much broader range than the highest energy wave
function corresponding to the Morse fit. The significant con-
tribution of higher-order polynomials to the PES representation
in the long-range asymptotics is observed also in relation to
using Morse tridiagonal basis functions (Section IIIB) to solve
the vibrational problem: while the low-energy vibrational states
can be converged with a small basis set, the highest-energy
bound state requires an excessive number of such functions,
indicating that there is an important deviation from the too
rapidly decaying Morse character.

III. Variational vibrational states

Using the newly developed FullD-2019 PES, the bound vibra-
tional states of the methane–argon complex have been com-
puted using the GENIUSH–Smolyak approach.40 This extension
of the GENIUSH program51,52 makes it possible to discard basis
functions as well as points from the direct product basis
and grid, using the Smolyak method,24,25 thereby attenuating
the exponential growth of the computational cost with the
vibrational dimensionality. This development makes it possible
to solve high-dimensional vibrational problems, for which or
for, at least, parts of which a good zeroth-order representation
can be constructed.

In the case of the CH4�Ar complex, a good zeroth-order
approximation is obtained for the methane fragment by using
normal coordinates (q1, q2,. . ., q9) and harmonic oscillator basis
functions. The relative motion of the fragments is described
by spherical polar coordinates, (R, cos y, f) similarly to
ref. 40.

The GENIUSH program requires the definition of the inter-
nal coordinates (and the body-fixed, BF, frame) by specifying
the Cartesian coordinates in the BF frame with respect to the
internal coordinates. The program uses this information to
construct the kinetic energy operator (KEO) terms in an

automated fashion.51 The usual Cartesian coordinate expres-
sion of the (generalized) normal coordinates, qj A (�N,N), is

ria ¼ crefia þ
X

9

j¼1

lia; jqj ; (4)

with i = 1(H), 2(H), 3(H), 4(H), 5(C) and a = 1(x), 2(y), 3(z). The
lia, j linear combination coefficients and the crefia reference
structure can be chosen by convenience (as a special case,
they can be obtained from the harmonic analysis of the PES at
the equilibrium structure). In the present work, we chose
crefia to reproduce not the equilibrium structure (which could
be one of theminima of CH4�Ar or the isolated CH4minimum), but
to reproduce the tetrahedral methane structure for which the C–H
distance corresponds to the effective structure of the methane
zero-point vibration with r := reff = 2.067337961 bohr,40

ðcref
1
ÞT ¼ r

ffiffiffi

3
p ð1; 1; 1Þ

ðcref
2
ÞT ¼ r

ffiffiffi

3
p ð1;�1;�1Þ

ðcref
3
ÞT ¼ r

ffiffiffi

3
p ð�1;�1; 1Þ

ðcref
4
ÞT ¼ r

ffiffiffi

3
p ð�1; 1;�1Þ

ðcref
5
ÞT ¼ ð0; 0; 0Þ:

(5)

This choice accounts for anharmonicity effects on the struc-
ture of the methane fragment already in the coordinate defini-
tion. (Note that here we used an effective structure determined in
previous work40 which reproduces the B0 value corresponding to
the methane PES of ref. 53.) Using an effective methane structure
corresponding to the ground-state vibration instead of the
equilibrium structure for the reference structure of the general-
ized normal coordinates slightly speeds up the convergence of
the vibrational energies with respect to the methane basis. In the
‘complete basis’ limit, the precise reference structure becomes
irrelevant, of course.

The Cartesian coordinates of the argon atom are defined
with respect to the carbon atom placed at the origin, using the

Fig. 5 Vibrational states along the dissociation coordinate (1D model) using (a) the Morse fit, and (b) the 1D cut of the FullD-2019 PES of Fig. 4.
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spherical polar coordinates, RA [0,N) bohr, cos yA [�1,1], and
f A [0,2p),

r6x ¼ R sin y cosf

r6y ¼ R sin y sinf

r6z ¼ R cos y:

(6)

In the last step of the coordinate definition, the ria Cartesian
structure, eqn (4)–(6), is shifted to the center of mass of the
methane–argon complex. Throughout this work, atomic masses
are used, m(H) = 1.00782503223 u, m(C) = 12 u, and m(Ar) =
39.9623831237 u.54

In the forthcoming subsections, we first test cuts of the
FullD-2019 PES in lower-dimensional vibrational computa-
tions. We report the results of 9D computations carried out
for the methane fragment (with the argon atom fixed at a large
distance), and observations from 1D (R) and 2D (cosy,f) radial and
angular model computations are summarized. The experience
gathered from these tests is combined to determine the optimal
parameters for the 12D computation, which is presented in the last
subsection. It is important to emphasize that in the final computa-
tions we include all 12 vibrational degrees of freedom in the
variational vibrational treatment, but we chose the coordinates,
in particular, the reference structure of the generalized normal
coordinate definition, so that they provide an excellent description
for the bound atom–molecule vibrations, which are dominated by
the methane zero-point state.

A. Isolated methane vibrations

The energy levels of the methane molecule were computed on
the FullD-2019 PES with the argon atom fixed at a 30 bohr
distance from the center of mass of the CH4 fragment. The
atom–molecule interaction is (almost) negligible (less than
0.05 cm�1) at this separation. For the variational computations,
we started out from a direct-product basis set of harmonic
oscillator functions, fn1

(q1). . .fn9
(q9) (ni = 0, 1,. . ., i = 1,. . .9), which

was pruned according to the simple condition n1 + . . . + n9r b. An
integration grid (much) smaller than the naı̈ve direct-product grid
was defined using the Smolyak scheme.24,25 In short, the grid
points were chosen to integrate exactly the identity matrix and also
polynomials of up to a maximum total degree of 5 with the basis
functions included in the pruned basis set.40 The pruning para-
meter, the size of the basis, and the size of the Smolyak grid are
listed in Table 3. The convergence rate with respect to the basis and
grid size and benchmark results for the vibrational energies of CH4

are shown in Table 4.
Using the b = 10 basis-pruning parameter, the energies are

converged within 0.01 cm�1 up to (and including) the pentad of
CH4. The 9690.62 cm

�1 zero-point vibrational energy (ZPVE) on the
FullD-2019 PES is in good agreement with the 9691.56 cm�1 value
corresponding to the T8 force field of Schwenke and Partridge.55

The root-mean-square (rms) deviation of the converged vibrational
excitation energies with respect to their counterparts deduced from
experiments56 is 2.88 cm�1, which is excellent given that this is a
purely ab initio PES, which was developed not specifically for an

isolated methane molecule but for the methane–argon complex.
Note that these ‘isolatedmethane’ energies were obtained using the
FullD-2019 PES with the argon atom fixed at a large distance from
the methane molecule.

Assessment of smaller basis sets (smaller b values) is impor-
tant for planning the 12D computations. The bound states of
the CH4�Ar complex are dominated by the zero-point state of
methane, hence b = 3 should be an excellent compromise for
computing the intermolecular (atom–molecule) states accurately.
The computation of predissociative states corresponding to excited
vibrational states of methane will require at least b = 6–7, which
assumes further development of the vibrational methodology.

B. Intermolecular radial representation

There are several possibilities to describe the vibrational motion

along the methane–argon distance. One can use LðaÞ
n generalized

Laguerre basis functions (with a = 2)21,57 or a Morse tridiagonal
basis set. The Laguerre basis set may be a better choice for
computing predissociative states, whereas the Morse tridiagonal
basis set offers a more compact alternative for bound states. In the
present work, we used the Morse tridiagonal basis set parameter-
ized with the D = 150 cm�1, a = 0.65, and g = 0.00033
values,18,40,58–60 which gave a good Morse fit to the cut of the
FullD-2019 PES at the equilibrium (global minimum) structure of
all other coordinates. Since CH4�Ar is an isotropic complex, this
radial basis is expected to perform well over the entire range of the
angular coordinates. The convergence tests suggest that 13 Morse
functions with 15 quadrature points for R allow us to converge the
3D(R, cosy, f) and 12D bound-state energies within 0.01 cm�1.

C. Intermolecular angular representation

For the cos y coordinate, we use sin-cot-DVR (DVR, discrete
variable representation) basis functions and points,61 while

Table 3 Basis set and integration grid parameters used to describe the
methane fragment

ba Hb Nbas
c NSmol

d

0 11e 1 163e

1 12e 10 871e

2 13 55 3481
3 14 220 11 833
4 15 715 35 929
5 16 2002 97 561
6 17 5005 241 201
7 18 11 440 556 707
8 19 24 310 1 202 691
9 20 48 620 2 440 227
10 21 92 378 4 718 595

a Basis pruning condition, n1 + . . . + n9 r b. b Grid pruning condition,
i1 + . . . + i9 r H (for details, see for example ref. 40 and references
therein). We chose H = D � 1 + b + 3 (here D = 9) to integrate exactly not
only the overlap but also polynomials of a maximum degree of 5 with all
basis functions included in the pruned basis set. c The number of basis
functions in the pruned basis set is Nbas = (b + 9)!/(b!9!). d The number
of points in the Smolyak grid corresponding to the selected H value.
e When using the FullD-2019 PES with b = 0 (b = 1), we observed that
H = 11 (H = 12) is not sufficient to recover the correct degeneracy of the
methane vibrations (especially the E states were affected). So, in
the end, we used H = 12 (H = 13) and NSmol = 871 (NSmol = 3481) for
b = 0 (b = 1).
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Fourier basis functions are used for the f angle. Test computa-
tions suggest that 23 sin-cot-DVR functions for cos y and 21
Fourier functions with 24 quadrature points for f will be
sufficient to converge the 3D(R, cos y, f) and 12D vibrational
excitation energies better than 0.01 cm�1.

D. Full-dimensional (12D) vibrational states and comparison

with 3D models

All vibrational bound states of the CH4�Ar complex on the newly
developed FullD-2019 PES are listed in Table 5. The intermole-
cular basis set corresponding to the (R, cos y, f) coordinates is
sufficiently large to converge all vibrational excitation energies
better than 0.01 cm�1. In order to find the smallest necessary
intramolecular methane basis set (characterized with the b

basis-pruning parameter), we have carried out 12D computa-
tions with an increasing basis set size on the methane fragment
corresponding to the b = 0, 1, 2, and 3 value. Concerning the
ZPVE, we think that the b = 3 12D result is ca. 1–2 cm�1 larger
(our approach is nearly variational) than the exact result,
similarly to the b = 3 ZPVE value of isolated methane
(Table 4). Concerning the intermolecular vibrational excitation
energies, we could efficiently rely on the cancellation of error in
the relative vibrational energies, and thus a rather small
methane basis set was sufficient to achieve the 0.01 cm�1

convergence goal for the excitation energies.
It is interesting to consider the convergence of the excitation

energies with respect to b. The 12D computation with b = 0,
which corresponds to a single(!) basis function on the methane
fragment, has an rms error of 0.40 cm�1. This rms value is ca. half
of the rms error of a well-converged 3D computation imposing
rigorous geometrical constraints with an hri0 methane structure
(vide infra). A 12D computation with b = 1, which includes 10 basis
functions for the methane fragment, has an rms of 0.07 cm�1.
Finally, our 0.01 cm�1 convergence goal is achieved for the b = 2
and b = 3 pruning parameter values.

Concerning the computational cost, the b = 0 and b = 1
computations took 10 and 20 hours (using 20 processor cores)
and required 6 and 8 GB of memory, respectively. The 12D

b = 3 (b = 2) computations took 42 (13) days on 50 (20) cores and
required 80 (30) GB of memory. As it was indicated already in
the footnote to Table 3, we had to use a larger grid size for
b = 0 and 1 than we had originally anticipated, which slightly
increased the cost of the computation. Furthermore, the condi-
tion number of the Hamiltonian matrix in the current representa-
tion is very large (due to the application of sin-cot-DVR basis
functions, there are grid points which are very close to the
singularities of the KEO), which implies an increased number of
Lanczos iteration steps. We anticipate reduction of the computa-
tional cost with further development.

Table 5 also shows the result of 3D, rigid-monomer compu-
tations, in which only the R, cosy, and f degrees of freedom were
treated as active coordinates. The ‘3D(hri0)’ column corresponds to
reduced-dimensionality results in which rigorous geometrical con-
straints were imposed on the methane’s structure (referred to as
‘the reduction in the Lagrangian’ or ‘reduction in the g matrix’ in
ref. 51 and constructed automatically in GENIUSH). The methane
was fixed at a regular tetrahedral structure with hrC–Hi0, which we
calculated as the expectation value of the C–H distance using the
isolated methane’s ground-state wave function on the present
PES. The vibrational excitation energies of this 3D model have a
relatively large, 0.93 cm�1, rms with respect to the converged 12D
result. Furthermore, this 3D model (erroneously) predicts an
additional, triply degenerate, bound state below the dissociation
asymptote, which can be explained by the slightly different B0
value corresponding to this model.

In the ‘3D(hBi0)’ column, we report the bound vibrational
energies obtained with an ‘adjusted’ 3D model. While using the
hrC–Hi0 value for defining the 3D cut of the PES, we adjusted the
C–H distance in the KEO to reproduce the hBi0 effective rotational
constant of this PES in 2D coupled-rotor computations.13,57 This
model reproduces the correct number of bound states and has a
smaller, 0.32 cm�1, rms than the 3D model with the rigorous
geometrical constraints.

In relation to these 3D models, we conclude that a 12D
computation performed with a single 9D basis function for
methane (b = 0) is on a par with the 3D(hBi0) model. If we allow

Table 4 Convergence of the zero-point and vibrational excitation energies, in cm�1, up to and including the pentad of CH4 with respect to the (pruned)
basis set size using the GENIUSH–Smolyak approach40 and the FullD-2019 PES with an argon–methane distance fixed at R = 30 bohr. The benchmark
energies corresponding to this PES are given in the ~n(b = 10) column

Ga Labelb D0
c D1

c D2
c D3

c D4
c D5

c D6
c D7

c D8
c D9

c
~n(b = 10)c dd ~nexp

e

A1 0000 43.79 42.42 40.06 1.79 0.60 0.52 0.04 0.01 0.01 0.00 9690.62 — —
F2 0001 — 9.61 7.68 41.19 2.14 0.27 0.54 0.06 0.01 0.01 1310.60 0.16 1310.76
E 0100 — 5.76 5.55 39.20 1.76 0.18 0.50 0.04 0.01 0.01 1531.47 1.86 1533.33
A1 0002 — — 37.74 56.88 43.69 4.60 1.24 0.64 0.11 0.02 2586.02 1.02 2587.04
F2 0002 — — 29.71 54.22 45.63 3.86 1.12 0.66 0.10 0.02 2613.61 0.65 2614.26
E 0002 — — 19.70 51.49 45.00 3.13 0.94 0.62 0.08 0.01 2623.93 0.69 2624.62
F2 0101 — — 23.55 51.84 40.55 3.20 0.97 0.56 0.07 0.01 2828.08 2.24 2830.32
F1 0101 — — 17.14 49.64 43.22 2.87 0.87 0.59 0.07 0.01 2844.38 1.70 2846.08
A1 1000 — 89.70 34.44 66.84 10.68 1.63 1.38 0.27 0.05 0.02 2912.36 4.12 2916.48
F2 0010 — 107.24 38.27 69.89 11.81 1.76 1.50 0.29 0.05 0.03 3014.47 5.02 3019.49
A1 0200 — — 15.09 49.17 41.73 2.73 0.82 0.56 0.06 0.01 3059.25 4.40 3063.65
E 0200 — — 13.75 47.58 41.39 2.48 0.78 0.55 0.06 0.01 3061.06 4.08 3065.14
rms 2.88

a Label of the irreducible representation of the Td point group of methane. b ‘n1n2n3n4’ normal mode label. c Deviation from the ~n(b = 10)
benchmark value, Dk = ~n(b = k) � ~n(b = 10). d d = ~nexp � ~n(b = 10). e Vibrational energies deduced from experiments are taken from ref. 56.
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only 10 functions for the methane fragment (b = 1) in the 12D
computation, the 12D result clearly outperforms the 3D excitation
energies, without increasing the computational cost dramatically.

In order to rationalize these numerical observations, we may
distinguish between ‘static’ and ‘dynamical’ contributions from
the methane’s vibrations to the atom–molecule energy levels.
The static contribution is due to the fact that the isolated
molecule’s effective (average) structure, due to anharmonicity
of methane’s vibrations, is different from the equilibrium
structure. In 3D computations, this effect is accounted for by
fixing the methane’s structure at an effective structure instead
of the equilibrium structure. In 12D computations, we have
‘built in’ this static effect in the coordinate definition (using
generalized normal coordinates) in order to speed up conver-
gence with respect to the methane’s basis size.

The dynamical contribution is due to the coupling of the
methane’s vibrations with the intermolecular dynamics. This
dynamical coupling, which is often small but non-negligible,
requires a full-dimensional treatment. In the case of the methane–
argon complex, we observe that using only the ground and all singly
excited (9D) harmonic oscillator functions captures almost all
dynamical effects, but well-converged excitation energies assume at
least 220 (9D) harmonic oscillator functions, corresponding to the
n1 + n2 + . . . + n9r 3 pruning condition, for the methane fragment.

From a numerical point of view, it is necessary to mention that
the 12D and 3D results are close, within 1–2 cm�1, to the vibrational
states reported in ref. 11 (Table 4) on a 3D PES developed using
symmetry-adapted perturbation theory and an effective (ro)vibra-
tional Hamiltonian some 20 years ago. The present work reports a
fully ab initio quantum dynamics study of the system in full
dimensionality and its further extension to predissociative states
may reveal larger deviations from the effectively designed approach
of ref. 11 and 37. There are also experimental results in the
predissociative range,38,39 which will make the comparison more
interesting. Furthermore, the methodology recently developed and
used in the present work is not designed specifically for very weakly
interacting atom–molecule complexes, but it can be used for a
greater variety of molecular systems and it fits in a series of recent
efforts made for systematic development of general ‘black-box-type’
(ro)vibrational quasi-variational methods, applicable to molecular
complexes or any other molecular systems, of high vibrational
dimensionality and with multiple large-amplitude motions.

IV. Summary and conclusions

The present work reports the development of a full-dimensional,
near-spectroscopic quality ab initio potential energy surface for

Table 5 All bound-state vibrational energies, ~n in cm�1, of CH4�Ar, computed with the GENIUSH–Smolyak approach40 and the FullD-2019 PES
developed in the present work

#

Assignmenta 12Db 3D(hri0)c 3D(hBi0)d

j nR G D0 D1 D2 ~n(b = 3) ~n3D de ~n3D de

0 f 0 0 A1 66.10 40.67 38.32 9754.40 54.30 — 54.38 —
1–3 1 0 F2 0.21 0.03 0.00 8.68 8.65 0.04 8.87 �0.19
4 0 1 A1 0.10 0.01 0.00 29.88 29.80 0.07 29.89 �0.01
5–7 2 0 F2 0.29 0.01 �0.01 31.63 30.84 0.79 31.29 0.35
8–9 2 0 E 0.40 0.05 0.01 32.34 31.65 0.69 32.21 0.13
10–12 1 1 F2 0.21 0.02 0.01 45.76 45.27 0.49 45.63 0.13
13 0 2 A1 0.06 0.00 0.01 54.79 54.54 0.26 54.66 0.14
14–16 2 1 F2 0.50 0.05 0.00 56.80 55.92 0.88 56.58 0.22
17–18 2 1 E 0.39 0.05 0.02 65.64 64.92 0.72 65.49 0.14
19–21 3 0 F2 0.80 0.08 �0.01 66.08 64.52 1.56 65.72 0.36
22–24 1 2 F1 0.33 0.03 0.01 67.86 66.86 1.00 67.45 0.41
25 0 3 A1 0.30 0.02 0.00 72.62 71.19 1.42 72.02 0.60
26 3 0 A1 0.31 0.02 0.01 75.23 74.63 0.60 74.97 0.26
27–29 2 2 F2 0.29 0.02 0.00 77.73 76.46 1.28 77.11 0.63
30–32 1 3 F2 0.32 0.03 0.01 82.25 81.71 0.54 82.17 0.08
33 0 4 A1 �0.12 �0.01 0.02 87.53 87.06 0.47 87.18 0.35
34–36 1 4 F2 0.23 0.03 0.02 91.42 90.57 0.84 91.07 0.35
37–38 2 4 E 0.34 0.04 0.02 91.61 90.80 0.81 91.38 0.23
39 0 5 A1 �0.42 �0.26 0.03 95.44 94.75 0.69 95.02 0.42
40–42 3 3 F2 0.97 0.10 0.00 95.69 94.07 1.61 95.42 0.26
43 0 6 A1 �0.09 0.03 0.03 99.11 98.21 0.90 98.72 0.39
44–46 — — — — 99.32 — — —

rmsg 0.40 0.07 0.01 0.93 0.32

a Characterization of the computed states using the 3D wave functions of the 3D(hBi0) column. j: angular momentum quantum number of the
methane fragment and the relative diatom in the [ j, j ]00 dominant coupled-rotor (CR) function;57 nR: vibrational excitation along R; G: irrep label of
the Td(M) molecular symmetry group of the complex based on the CR assignment and irrep decomposition.57 b Dk = ~n(b = k) � ~n(b = 3), where b is
the pruning parameter of the methane basis, the intermolecular radial and angular representations are defined in the text, and is sufficient for
converging the figures shown in the table. c 3D computation using rigorous geometrical constraints with a regular tetrahedral methane structure
with hrC–Hi0 = 2.093624127 bohr (used both in the KEO and in the PES). d 3D computation using an ‘adjusted’ rfit(C–H) = 2.072988169 bohr C–H
distance in the KEO, which in a 2D coupled-rotor computation13,57 reproduces the hBi0 = 5.212508664 cm�1 effective rotational constant
corresponding to this PES. To define the 3D cut of the PES, we used hrC–Hi0. e d = ~n(b = 3) � ~n3D.

f Zero-point vibration of the complex. The
vibrational excitation energies, #: 1, 2, 3,. . ., are given with respect to this value. g Root-mean-square deviation from the ~n(b = 3) (12D) result.
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the van-der-Waals complex of the methane molecule and an
argon atom. The PES development is accompanied by the
computation of all vibrational bound states of this complex
including all (12) vibrational degrees of freedom in a near-
variational treatment using the GENIUSH program and the
Smolyak algorithm. The vibrational excitation energies obtained
within a 12D treatment were used to assess traditional 3D (rigid-
monomer) approaches. With further development of the quantum
dynamics methodology, full-dimensional computations will
become more widespread and applicable to floppy molecules or
molecular complexes over a broad energy range.
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and M. Hochlaf, et al., Complex rovibrational dynamics of
the Ar�NO+ complex, Phys. Chem. Chem. Phys., 2017, 19,
8152–8160.

22 P. M. Felker and Z. Bacic, Weakly bound molecular dimers:
Intramolecular vibrational fundamentals, overtones, and
tunneling splittings from full-dimensional quantum calcu-
lations using compact contracted bases of intramolecular

PCCP Paper

               dc_1955_21



This journal is©the Owner Societies 2020 Phys. Chem. Chem. Phys., 2020, 22, 2792--2802 | 2801

and low-energy rigid-monomer intermolecular eigenstates,
J. Chem. Phys., 2019, 151, 024305.

23 J. M. Bowman, S. Carter and X. Huang, MULTIMODE: A
code to calculate rovibrational energies of polyatomic mole-
cules, Int. Rev. Phys. Chem., 2003, 22(3), 533–549.

24 G. Avila and T. Carrington Jr., Nonproduct quadrature grids
for solving the vibrational Schrödinger equation, J. Chem.

Phys., 2009, 131(17), 174103.
25 G. Avila and T. Carrington Jr., Using nonproduct quadrature

grids to solve the vibrational Schrödinger equation in 12D,
J. Chem. Phys., 2011, 134(5), 054126.

26 G. Avila and T. Carrington Jr., Using a pruned basis, a non-
product quadrature grid, and the exact Watson normal-
coordinate kinetic energy operator to solve the vibrational
Schrödinger equation for C2H4, J. Chem. Phys., 2011,
134(6), 064101.

27 A. Leclerc and T. Carrington, Calculating vibrational spectra
with sum of product basis functions without storing full-
dimensional vectors or matrices, J. Chem. Phys., 2014,
140(17), 174111.

28 P. S. Thomas and T. Carrington, An intertwined method for
making low-rank, sum-of-product basis functions that
makes it possible to compute vibrational spectra of mole-
cules with more than 10 atoms, J. Chem. Phys., 2017,
146(20), 204110.

29 T. Halverson and B. Poirier, One million quantum states of
benzene, J. Phys. Chem. A, 2015, 119(50), 12417–12433.

30 J. Brown and T. Carrington, Using an expanding nondirect
product harmonic basis with an iterative eigensolver to
compute vibrational energy levels with as many as seven
atoms, J. Chem. Phys., 2016, 145(14), 144104.

31 N. K. Madsen, I. H. Godtliebsen, S. A. Losilla and O. Christiansen,
Tensor-decomposed vibrational coupled-cluster theory: Enabling
large-scale, highly accurate vibrational-structure calculations,
J. Chem. Phys., 2018, 148, 024103.

32 A. Baiardi and M. Reiher, Large-scale quantum-dynamics
with matrix product states, J. Chem. Theory Comput., 2019,
15, 3481.

33 W. H. Miller, N. C. Handy and J. E. Adams, Reaction path
Hamiltonian for polyatomic molecules, J. Chem. Phys., 1980,
72, 99.

34 J. M. Bowman, X. Huang, N. C. Handy and S. Carter,
Vibrational levels of methanol calculated by the reaction path
version of MULTIMODE, using an ab initio, full-dimensional
potential, J. Phys. Chem. A, 2007, 111, 7317.

35 D. Lauvergnat and A. Nauts, Quantum dynamics with sparse
grids: A combination of Smolyak scheme and cubature.
Application to methanol in full dimensionality, Spectrochim.

Acta, Part A, 2014, 119, 18–25.
36 C. Leforestier, Philos. Trans. R. Soc., A, 2012, 370, 2675.
37 T. G. A. Heijmen, T. Korona, R. Moszynski, P. E. S. Wormer

and A. van der Avoird, Ab initio potential-energy surface and
rotationally inelastic integral cross sections of the Ar-CH4

complex, J. Chem. Phys., 1997, 107, 902.
38 R. E. Miller, T. G. A. Heijmen, P. E. S. Wormer, A. van der

Avoird and R. Moszynski, The rotational and vibrational

dynamics of argon-methane. II. Experiment and compari-
son with theory, J. Chem. Phys., 1999, 110, 5651.

39 M. Wangler, D. A. Roth, I. Pak, G. Winnewisser, P. E. S.
Wormer and A. van der Avoird, The high-resolution spec-
trum of the Ar-CH4 complex in the 7 mm region: measure-
ment and ab initio calculation, J. Mol. Spectrosc., 2003,
222(1), 109.
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ABSTRACT

The complex of a methane molecule and a fluoride anion represents a 12-dimensional (12D), four-well vibrational problem with multiple
large-amplitude motions, which has challenged the quantum dynamics community for years. The present work reports vibrational band
origins and tunneling splittings obtained in a full-dimensional variational vibrational computation using the GENIUSH program and the
Smolyak quadrature scheme. The converged 12D vibrational band origins and tunneling splittings confirm complementary aspects of the
earlier full- and reduced-dimensionality studies: (1) the tunneling splittings are smaller than 0.02 cm−1; (2) a single-well treatment is not
sufficient (except perhaps the zero-point vibration) due to a significant anharmonicity over the wells; and thus, (3) a full-dimensional treat-
ment appears to be necessary. The present computations extend to a higher energy range than earlier work, show that the tunneling splittings
increase upon vibrational excitation of the complex, and indicate non-negligible “heavy-atom” tunneling.

https://doi.org/10.1063/1.5124532., s

I. INTRODUCTION

The CH4⋅F− complex has been a subject of experimental inter-
est over the past decades. Its infrared spectrum has been recorded
and studied in the methane’s stretching region,1–5 and it has been
used as a precursor in anion photoelectron spectroscopy to probe
the transition state region of the F+CH4 reaction.6,7 This experi-
mental activity motivated the computational (ro)vibrational quan-
tum dynamics study of the complex.8–10 This complex also serves
as a good prototype for molecular interactions with relatively large
monomer distortions and strong binding.

CH4⋅F− has turned out to be challenging for the current
(ro)vibrational methodologies due to its high vibrational dimension-
ality and multiwell, highly anisotropic potential energy landscape.
The vibrational states from Refs. 8–10, using the MULTIMODE,11

the MCTDH,12,13 and the GENIUSH14,15 quantum dynamics pro-
gram packages, respectively, show several (tens of) wavenumbers’
(dis)agreement. In the present work, we aim to resolve this contro-
versy.

There is currently a single, full-dimensional potential energy
surface (PES) available for the complex developed by Czakó, Braams,
and Bowman in 2008,8 which we will refer to as “CBB08 PES.”
The CBB08 PES was obtained by fitting permutationally invariant
(up to 6th-order) polynomials to 6547 (plus 3000) electronic energy
points of the interaction (plus fragment) region computed at the
frozen-core CCSD(T)/aug-cc-pVTZ level of the ab initio theory. The
root-mean-square deviation (RMSD) of the fitting, within the energy
range below 22 000 cm−1, was reported to be 42 cm−1, and in prac-
tice, the PES describes the intermolecular region well up tomoderate
ion-molecule separations.

The equilibrium structure of the complex has C3v point-group
(PG) symmetry with the fluoride binding to one of the apexes of
the methane tetrahedron. Since the F− anion can bind to any of
the four hydrogens of methane, there are four equivalent minima
on the PES, which are separated by “surmountable” barriers, and
thus, the molecular symmetry (MS) group is Td(M). The complex is
bound byDe = 2434 cm−1 on the CBB08 PES,8 which corresponds to
D0 = 2316 cm−1 including the zero-point vibrational energy (ZPVE)
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correction, and we have found the lowest barrier connecting the
equivalent wells to be V = 1104 cm−1 (vide infra). It is interest-
ing to compare these values with the similar parameters of proto-
typical systems of hydrogen bonding and tunneling. The prototype
of strong hydrogen bond, (HF)2, features a dissociation energy of
D0 ≈ 1050 cm−1,16 which is less than half of the binding energy of
CH4⋅F−. The prototype for (double-well) tunneling, malonaldehyde,
has a barrier of 1410 cm−1,17 which is ∼30% higher than the barrier
in CH4⋅F−, but of course, for estimating the tunneling splitting, one
has to consider the effective mass and also the shape (width) of the
barrier.

The strong interaction of the methane and the fluoride in
CH4⋅F− is accompanied by a relatively large distortion of the
methane fragment. For the interaction (int) region, Table 3 of Ref. 8
reported the equilibrium structure with an elongated C–H bond,
rinteq (C–Hb) = 1.112 Å, for the H, which binds (b) to the F−, while for
the other three hydrogens, rinteq (C–H) = 1.095 Å. The corresponding
distorted tetrahedral structure is characterized by the α(H–C–Hb)
= 110.46○ angle. In the CH4 + F− channel, the practically iso-
lated (isol) methane molecule is a regular tetrahedron with a C–H
equilibrium distance, risoleq (C–H) = 1.090 Å.

In the forthcoming sections, we briefly summarize the quan-
tum dynamics methodology used in this work (Sec. II), explain the
symmetry analysis and assignment of the vibrational states (Sec. III),
and report the vibrational energies obtained in the full- and reduced-
dimensionality treatments (Sec. IV). After assessment of the conver-
gence of the vibrational energies, a detailed comparison is provided
with the vibrational energies reported in earlier studies.8–10 The arti-
cle is concluded (Sec. V) with the computation of tunneling split-
tings for excited vibrations of the complex up to and slightly beyond
the energy range of the barrier separating the equivalent wells.

II. THEORETICAL AND COMPUTATIONAL DETAILS

The present work is among the first applications of the
GENIUSH–Smolyak algorithm and computer program.18 The
GENIUSH–Smolyak approach combines the nonproduct grid
(Smolyak) method of Ref. 19, which has been used for several high-
dimensional, semirigid molecules20,21 as well as molecules with a
single large-amplitude motion,22,23 and the numerical kinetic energy
operator (numerical KEO) approach of Ref. 14 implemented in
the GENIUSH program,14,15 which includes by now dozens of
vibrational-coordinate definitions for floppy systems.10,14,15,24–30

Concerning the coordinate definition for the fluoride-methane
complex, we used the (R, cos θ, ϕ) spherical polar coordinates to
describe the relative orientation of the methane fragment and the
fluoride ion, and the nine normal coordinates, q1, q2, . . ., q9, of
methane (the coordinate definition is provided in the supplementary
material) to describe its internal vibrations. In the full-dimensional
computations, we used the KEO given in Eq. (50) of Ref. 18, which
reads for the (ξ1, ξ2, ξ3, . . ., ξD) general coordinates with the special
ξ2 = c choice

T̂
v = −1

2

D

∑
j=1

∂

∂c
Gc,j

∂

∂ξj
−
1
2

D

∑
i=1,i≠2

D

∑
j=1

Gi,j
∂

∂ξi

∂

∂ξj
−
1
2

D

∑
i=1

Bi
∂

∂ξi
+U,

Bi = D

∑
k=1,k≠2

∂

∂ξk
Gk,i,

(1)

where g ∈ R(D+3)×(D+3) is the mass-weighted metric tensor, G = g−1,
g̃ = detg, the extrapotential term

U = 1
32

D

∑
k=1

D

∑
l=1

[Gkl

g̃2
∂g̃

∂ξk

∂g̃

∂ξl
+ 4

∂

∂ξk
(Gkl

g̃

∂g̃

∂ξl
)], (2)

and the volume element is dV = dξ1dc. . .dξD. In the full-
dimensional treatment of CH4⋅F−, D = 12 and the coordinates are
ξ1 =R, ξ2 = c = cos θ, ξ3 = ϕ, ξ3+i = qi (i= 1, 2, . . ., 9).We treat c = cos θ
differently from the other coordinates in Eq. (1) in order to avoid a
nonsymmetric finite basis representation (FBR) of the Hamiltonian
due to inaccurate integration caused by singular terms in the KEO.18

The Hamiltonian matrix was constructed using a finite basis repre-
sentation (FBR) for all coordinates except c, for which the sin-cot
discrete variable representation (DVR)31 was used as is explained in
Sec. IV E of Ref. 18. The reduced-dimensionality computations have
been carried out with the original GENIUSH program,14 using the
Podolsky form of the KEO (constructed in an automated way for the
imposed geometrical constraints), and the Hamiltonian matrix was
constructed using DVR.32 The lowest eigenvalues and eigenfunc-
tions of the Hamiltonian matrix were computed with an iterative
Lanczos eigensolver.

Concerning the full-dimensional computations, it is necessary
to reiterate some methodological details from Ref. 18 and to spec-
ify them for the case of the fluoride-methane complex. First of all,
full-dimensional [12-dimensional (12D)] computations were possi-
ble for this complex because we used normal coordinates for the
methane fragment together with harmonic oscillator basis functions,
which provide a good zeroth-order description. Hence, the 9D prod-
uct basis set of the methane fragment can be pruned,33 i.e., we can
discard high-energy basis functions. We used the simple

9

∑
i=1

nqi ≤ b (3)

pruning condition for the harmonic oscillator indexes, nqi . Since
several basis functions are discarded from the methane basis set
complying with this condition, it is possible to substantially reduce
also the number of quadrature points that are used to calculate the
overlap and low-order polynomial integrals with the retained basis
functions. Pruning the grid following this observation was first real-
ized by Avila and Carrington19,20 in vibrational computations using
the Smolyak algorithm.

Concerning the 3-dimensional ion-molecule “intermolecular”
part, described by the R, cos θ, and ϕ coordinates, we retained
the full direct-product basis and grid. For R, we used a Morse
tridiagonal basis set constructed similarly to Ref. 18 but using the
D0 = 1975.27 cm−1, α = 0.9, and γ = 18 parameter values, which
correspond to the 1D cut of the current PES (all other coordi-
nates fixed at their equilibrium value). The cos θ degree of freedom
was described with sin-cot-DVR basis functions and quadrature
points,31 while we used Fourier functions for the ϕ angle.

We used large basis sets and grids for the intermolecular
degrees of freedom, (R, cos θ, ϕ), both in the 3D and in the 12D
computations, which is necessary to ensure that the degeneracies
(some of them obtained numerically, only) and tunneling splittings
are well converged (vide infra). In order to converge the energies
with respect to the intramolecular (methane) part of the basis and
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TABLE I. Vibrational states, ν̃ in cm−1, of CH4⋅F
− up to 730 cm−1 above the zero-point vibrational energy (ZPVE), corresponding to the full-dimensional PES of Ref. 8. Vibrational energies computed in the

present work and values taken from the literature are shown together for comparison. The largest computed splitting for each vibrational manifold is given in parenthesis after the vibrational energy value. The most
accurate vibrational band origins (from this work) are in column “BC : (25, 4).”

12D GENIUSH–Smolyak 12D
(this work) MCTDH

12D 3D 3D GENIUSH

BA: (23,2)
b,c

BB: (23,3)
b,c

BC: (25,4)
b,c B3/B49

MULTIMODEa,8 GENIUSH10 (this work)

No. Γ(MS)d Γ(PG)e nR
f Labelg [3.9 ⋅ 105]b [1.6 ⋅ 106]b [5.6 ⋅ 106]b Gfit

c,h

0–3 A1⊕F2 AC3v
1 0 ZPVE 9845.6 (0.0) 9799.1 (0.0) 9791.6 (0.0) 9786.5 (0.5) 9794.7 461.0 (0.0) 378.8 (0.0)

4–7 A1⊕F2 AC3v
1 1 [vs] 193.2 (0.0) 193.4 (0.0) 193.6 (0.0) 194.4 (0.1) 201.1 182.5 (0.0) 194.5 (0.0)

8–15 E⊕F1⊕F2 EC3v 0 [vb] 266.3 (0.0) 268.3 (0.0) 267.6 (0.0) 271.7 (1.1) 299.9 284.5 (0.0) 267.7 (0.0)
16–19 A1⊕F2 AC3v

1 2 [2vs] 378.0 (0.0) 378.7 (0.0) 379.2 (0.0) 380.6 (0.1) 391 355.8 (0.0) 380.3 (0.0)
20–27 E⊕F1⊕F2 EC3v 1 [vs + vb] 452.7 (0.0) 454.8 (0.0) 454.3 (0.0) 460.2 (1.3) 458.8 (0.0) 455.2 (0.0)
28–31 A1⊕F2 AC3v

1 0 [2vb] 506.7 (0.0) 509.8 (0.0) 509.1 (0.0) 528.7 (0.4) 533.0 (0.1) 509.8 (0.0)
32–39 E⊕F1⊕F2 EC3v 0 [2vb] 523.5 (0.2)i 527.0 (0.2)i 526.0 (0.0) 545.7 (2.1) 555.3 (0.1) 525.6 (0.0)
40–43 A1⊕F2 AC3v

1 3 [3vs] 555.0 (0.0) 556.4 (0.0) 557.5 (0.0) 519.2 (0.0) 556.8 (0.0)
44–51 E⊕F1⊕F2 EC3v 2 [2vs + vb] 630.3 (0.0) 632.8 (0.0) 632.7 (0.0) 633.6 (0.0)
52–55 A1⊕F2 AC3v

1 1 [vs + 2vb] 685.7 (0.0) 689.0 (0.0) 688.5 (0.0) 690.2 (0.0)
56–63 E⊕F1⊕F2 EC3v 1 [vs + 2vb] 702.6 (0.2)i 706.2 (0.2)i 705.5 (0.0) 705.9 (0.0)
64–67 A1⊕F2 AC3v

1 4 [4vs] 724.2 (0.0) 726.6 (0.0) 728.5 (0.0) 722.9 (0.0)

RMSDj 2.4 0.8 0 11.7 20.3 23.5 1.9

aHigher energy vibrations, including the 12 fundamental vibrations, are reported in Ref. 8, but they are beyond the (energy) range of the present GENIUSH–Smolyak computations.
b(Nc , b): short label for indicating the basis set size. The Nc value gives the number of the sin-cot-DVR functions used for cos θ and b is the basis pruning parameter,∑9

i=1 nqi ≤ b. The R and ϕ degrees of freedom are
described by NR = 8 Morse tridiagonal and Nϕ = 39 Fourier basis functions, respectively. The overall basis set size, [NRNcNϕ(b + 9)!/b!/9!], is also shown.
cIn the vibrational computations, we used atomic masses,m(H) = 1.007 825 032 23 u,m(C) = 12 u, andm(F) = 18.998 403 162 73 u.35
dSymmetry assignment (irrep decomposition) in the Td(M) molecular symmetry group of the complex.
eSymmetry assignment (irrep) within the C3v point group of the equilibrium structure.
fDominant overlap of the wave function with the nRth state of a 1-dimensional vibrational model along the R degree of freedom (all other coordinates are fixed at their equilibrium value). nR = 0, 1, 2, . . . labels the states
of this 1D model in an increasing energy order.
gQualitative description based on the nodal structure, overlap with lower-dimensional models, and symmetry assignment. These labels are used to compare the vibrational energies computed in the present work with
earlier results.8–10
hReduced-dimensionality model with active (R, cos θ, ϕ) degrees of freedom fitted to reproduce the 12D GENIUSH-Smolyak BC result. The methane was treated as a regular tetrahedron, and we used rPES(C–H)
= 2.143 624 bohr in the PES (to reproduce well the stretches) and rKEO(C–H) = 2.518 620 bohr in the KEO, which was necessary to obtain good bending energies.
iThese splittings disappear upon increase of the intermolecular basis set.
jRoot-mean-square deviation of the vibrational excitation energies (ZPVE not included) listed in the table (without considering the splittings) from the 12D GENIUSH–SmolyakBC result.
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grid, we have carried out computations with increasing values of the
b parameter, b = 2, 3, and 4, in the basis pruning condition, Eq. (3),
and determined a Smolyak grid that integrates exactly the overlap
and fifth-order polynomials with all basis functions retained in the
pruned basis.

Table I reports the computed vibrational energies in compar-
ison with literature values. We estimate the vibrational excitation
energies from the largest 12D computation, in column BC, to be
converged within 1 cm−1, and the (apparently very small) tunneling
splittings are converged with an uncertainty lower than 0.05 cm−1.
Note that for b = 2 and 3, we used only 23 sin-cot-DVR basis func-
tions, BA and BB, respectively, which results in a 0.2–0.3 cm−1 (arti-
ficial) splitting for some higher excited states, but this splitting is
reduced to less than 0.05 cm−1 upon the increase of the basis set,
which is reported in column BC of the table (25 sin-cot-DVR basis
functions and b = 4 basis-pruning parameter).

Finally, we mention that we were able to put together a “fit-
ted” 3D model that reproduced the 12D GENIUSH–Smolyak vibra-
tional band origins with an RMSD of 1.9 cm−1 (“Gfit” in Table I).
“Gfit” was obtained by fine-tuning the regular tetrahedral methane
structure used in the KEO and in the PES. In this “fitting” proce-
dure, we obtained rPES(C–H) = 2.143 624 bohrs to define the PES cut
(which is slightly different from the value used in Ref. 10 and repro-
duces slightly better the 12D stretching excitations of the complex),
but we had to use a (much) larger value in the KEO, rKEO(C–H)
= 2.518 620 bohrs (which corresponds to a much smaller effec-
tive rotational constant for the methane) to have a good agree-
ment with the vibrational band origins especially for the bending
excitations.

Note that “3D(Gfit)” is merely a fitted model, which was
designed to reproduce the 12D GENIUSH–Smolyak vibrational
band origins and for which we deliberately used two adjustable
parameters, the C–H distance in the KEO and in the PES. It differs
in this two-parameter adjustment scheme from the “rigorous” 3D
reduced-dimensionality treatment (for which only a single structure
is selected) used in the first 3D computation of CH4⋅F− in Ref. 10.

III. SYMMETRY ANALYSIS AND ASSIGNMENT OF THE
VIBRATIONAL STATES

First of all, we assigned the computed states to irreducible rep-
resentations (irreps) of theMS group of the complex. Then, we iden-
tified single molecular vibrations classified according to the PG sym-
metry of the equilibrium structure as groups of states close in energy
(slightly) split due the interaction (spread) of the wave function over
the equivalent wells.

At the equilibrium structure of C3v PG symmetry, one of the
hydrogen atoms of the methane binds to the fluoride anion. Any of
the four hydrogen atoms of the methane can bind to the fluoride,
which gives rise to the four equivalent wells and these wells are con-
nected with “surmountable” barriers. Thereby, the MS group of the
complex is Td(M), for which the symmetry analysis of (the global
minimum of) CH4⋅Ar34 is almost verbatim adapted.

In order to assign irrep labels to the CH4⋅F− vibrational states
computed in the present work, we analyzed the wave function of the
3D fitted model computations (“3D Gfit” column in Table I) and the
labels were transferred to the 12D results based on the energy order-
ing (direct analysis of the 12D hybrid DVR-FBR computation would

have been prohibitively expensive). We assigned Td(M) molecu-
lar symmetry labels to the 3D wave functions by computing their
overlap with 2D coupled-rotor (CR) functions, labeled with [j, j]00
(j = 0, 1, . . .),28,34 where j is the angular momentum quantum num-
ber of the methane and the diatom (corresponding to the relative
motion of the center of mass of the methane and the fluoride), cou-
pled to a zero total angular momentum state. The characters and
the irrep decomposition of the ΓCR(j) representation spanned by the
[j, j]00 coupled-rotor functions in Td(M) are34

Γ
CR(0) = A1,

Γ
CR(1) = F2,

Γ
CR(2) = E⊕ F2,

Γ
CR(3) = A1 ⊕ F1 ⊕ F2,

Γ
CR(4) = A1 ⊕ E⊕ F1 ⊕ F2,

Γ
CR(5) = E⊕ F1 ⊕ F2,

Γ
CR(6) = A1 ⊕A2 ⊕ E⊕ F1 ⊕ 2F2, . . .

(4)

The (hindered) relative rotation of the molecule and the ion
over the four wells gives rise to tunneling splittings of the vibrations,
which can be classified by C3v point-group labels of the symmetry of
the local minima. (If there was no interaction between the wells, each
vibrational state would be 4-fold degenerate due to this feature.) The
MS group species within the tunneling manifold of the vibrational
modes classified by the PG symmetries (irreps) are34

Γ(AC3v
1 ) = A1 ⊕ F2,

Γ(AC3v
2 ) = A2 ⊕ F1,

Γ(EC3v) = E⊕ F1 ⊕ F2.

(5)

Note that we use the C3v superscript for the PG irreps, i.e., AC3v
1 , AC3v

2 ,
and EC3v , in order to distinguish them from the MS group irreps,
which are labeled with A1, A2, E, F1, and F2. The result of this anal-
ysis for the computed vibrational wave functions is summarized in
the “Γ(MS)” and “Γ(PG)” columns of Table I, respectively.

The fourth column, “nR,” of the table gives the index of the
wave function of the 1D model with active R (all other coordi-
nates fixed at their equilibrium value) for which the 3D wave func-
tion has the largest overlap. Hence, “nR” is an index for the exci-
tation along the ion-molecule separation, which we were able to
unambiguously assign for all states listed in the table (due to the
weak coupling of the radial and angular degrees of freedom in this
complex).

We also note that due to the small tunneling splittings, iden-
tification of the PG vibrations as a set of states of similar character
and close in energy comprising the appropriate MS group species,
Eq. (5), was also possible without ambiguities for all states listed in
the table. (This may be contrasted with the floppy CH4⋅Ar complex,
for which unambiguous assignment of the PG vibrations beyond the
zero-point state of the global minimumwas hardly possible.34) Once
the complete tunneling manifold was assigned and the PG symme-
try was found, we attached a qualitative description to the states
(listed in column “Label” in Table I) based on the nodal structure
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along the ion-molecule separation coordinate R, i.e., nth “stretching”
excitation, labeled with vs, 2vs, etc. Excitations different from pure
stretching excitation were termed “bending” in this qualitative
description and were labeled with vb, 2vb, etc., or combinations of
stretching and bending, vs + vb. Similar qualitative labels had been
provided in earlier studies,9,10 which we used to compare with our
full-dimensional vibrational energies.

IV. COMPUTED VIBRATIONAL STATES

The 12D vibrational energies computed in the present work are
reported in Table I (column “12D, GENIUSH–Smolyak”), and the
best results are listed in column “BC: (25, 4)” of the table. The level
of convergence and comparison with earlier work is addressed in the
following paragraphs.

We observe a monotonic decrease in the zero-point vibrational
energy (ZPVE) upon the increase in the b basis pruning parame-
ter, which indicates that the computations are almost variational
(the sin-cot-DVR basis and grid is large). Our best ZPVE value is
9791.6 cm−1. It is 5.1 cm−1 larger than the 12D MCTDH result,
which the authors of Ref. 9 claim to be a variational upper bound
to the exact ZPVE. The 12D MULTIMODE ZPVE8 is 3.1 cm−1

(8.2 cm−1) larger than the lowest value obtained by us (by Ref. 9
using MCTDH). The totally symmetric ZPV state (AC3v

1 ) is split by
the relative rotation of the methane and the fluoride to an A1 and
an F2 symmetry species, Eq. (5). The BC 12D computation (numer-
ically) reproduces the degeneracy of the F2 state within 0.001 cm−1

and predicts a tunneling splitting (much) smaller than 0.05 cm−1.
At the same time, the MCTDH result for the ZPV manifold

gives four states with energies differing by 0.1–0.9 cm−1 (up to
1.2–3.4 cm−1, depending on the basis set), which suggests that the
(intermolecular) basis or integration grid used in Ref. 9 was too
small. For higher excited states, the (artificial) splittings increase to
2 cm−1,9 whereas our computations, using a large intermolecular
basis set and grid, indicate that the tunneling splittings are smaller
than 0.05 cm−1, and we obtain the triple degeneracies converged
(numerically) better than 0.001 cm−1.

The small tunneling splittings obtained in the present work
are in agreement with the earlier, 3D computations including the
intermolecular (R, cos θ, ϕ) coordinates as active vibrational degrees
of freedom using the GENIUSH program.10 Although our results
confirm the small splittings obtained in the 3D computation of
Ref. 10, we observe larger deviations for the vibrational excitation
energies (band origins) from the 3D results of Ref. 10. The first 7
vibrational excitations have a 23.5 cm−1 root-mean-square deviation
(RMSD) from our best 12D energies, which suggests that monomer
(methane) flexibility effects are important.

A better agreement, with an 11.7 cm−1 RMSD, is observed
for the first 6 vibrational excitations in comparison with the 12D
MCTDH result,9 which accounts for the flexibility of the methane
fragment and the motion of the fluoride over the four wells, but it
is affected by incomplete convergence (manifested in the artificial
splittings).

The three lowest-energy vibrational fundamentals obtained
within a 12D but single-well treatment with MULTIMODE8 has a
(surprisingly) large, 20.3 cm−1 RMSD, which suggests that despite
the small tunneling splittings, a multiwell treatment is necessary for
which the normal-coordinate representation is inadequate. It should

be noted that the largest deviation, 32.3 cm−1, is observed for the
299.9 cm−1 vibration, and this is the state that had the worse con-
vergence properties in the MULTIMODE computation (Table 5 of
Ref. 8).

These observations suggest that although tunneling (and the
corresponding splittings of the vibrational bands) is almost negli-
gible up to 725 cm−1 above ZPVE under an energy resolution of
0.05 cm−1, there is a non-negligible anharmonicity due to the quan-
tum mechanical motion over the multiple wells. For these reasons,
a well converged, full-dimensional variational treatment, carried out
in the present work, appears to be necessary to capture all quantum
dynamical features of this strongly bound ion-molecule complex.

V. EXCITED-STATE TUNNELING MANIFOLDS

For the ZPV and the lower-energy vibrations, we obtained
tiny tunneling splittings (<0.05 cm−1, Sec. IV). The question arises
whether the energy splitting due to tunneling of the heavy fragments
(heavier than the hydrogen atom) becomes more significant upon
the vibrational excitation of the complex. The symmetry species in
the tunneling manifold are specified in Eq. (5), but of course, the
symmetry analysis by itself does not provide any information about
the level energies and the size of the splittings.

The height of the barrier, separating the energy wells, can be
indicative for the energy range above which we may expect larger
splittings. Reference 9 estimated the barrier height connecting the
equivalent wells to be ∼1270 cm−1, and we have pinpointed a lower
barrier height, Vbarrier = 1104 cm−1 at (θ, ϕ) = (90○, 45○) (see Fig. 2
of Ref. 10), R = 5.745 bohrs, and (q1, q2, . . ., q9) = (0, 0, 0, 0, −0.523,
0, 0, 0, −0.524). It is an interesting question what the “most appro-
priate” value for the barrier height is (which is not an experimental
observable) for comparison with our variational (fully anharmonic,
multiwell) vibrational energies. In the present work, we have not
attempted to include quantum nuclear corrections in the height and
will continue using the purely electronic value. So, we expect the
appearance of “sizeable” splittings at around ∼1100 cm−1 measured
from the PES minima, which is ∼700 cm−1 above the intermolecular
ZPVE (note that the different intermolecular models have somewhat
different ZPVEs). Furthermore, it is necessary to remember that the
methane’s bending vibration becomes important in the energy range
near the isolated methane’s value at 1311 cm−1 (above the ZPVE),
which is an obvious limitation for the applicability of the 3D models
and approaching this energy range will require a more efficient 12D
treatment.

In order to explore the tunneling splittings and their depen-
dence on the vibrational excitation, we have carried out extensive
3D and more limited (up to only lower vibrational excitations) 12D
computations with large, (near) saturated angular basis sets (vide
infra). The tunneling splittings obtained from the different com-
putations are visualized in Figs. 1 and 2, and the energy lists are
provided in the supplementary material.

We used the two types of 3D vibrational models to explore the
excited-state tunneling manifold. First, we have carried out com-
putations with the 3D reduced-dimensionality model used already
in Ref. 10, cited in Table I, which corresponds to imposing rigor-
ous geometrical constraints in the model through the Lagrangian in
GENIUSH.14 The fixed methane regular tetrahedral structure used
in this 3D(rig) model was r(C–H) = 1.104 Å,10 a value close to the
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FIG. 1. 12D vibrational energies mea-
sured from the zero-point vibration.
Vibrational levels with tunneling split-
tings, Δν̃, larger than 0.02 cm−1 are
highlighted in red. The position of the
vibrational band origins may have an
overall uncertainty as large as 3–4 cm−1,
but the tunneling splittings within a band
are converged better than 0.02 cm−1

(see Fig. 2).

isolated methane’s ⟨r(C–H)⟩0 value. Second, we have carried out
computations using the 3D(Gfit) model designed (“fitted”) to min-
imize the RMSD of the vibrational band origins with respect to the
12D GENIUSH–Smolyak results up to 730 cm−1 (Table I). In the
largest 3D computations, we used 31 PO-DVR functions36–38 for R

obtained from L
(α)
n generalized Laguerre basis functions (with α = 2

and n = 0, 1, . . ., 399) and grid points scaled to the R ∈ [2, 5] bohrs

interval; 61 sin-cot-DVR functions for the cos θ degree of freedom,
which was constructed by extending the cos(mθ) (m = 0, . . ., 58)
basis set with the sin(θ) and the sin(2θ) functions;18,31 and 121
Fourier (sine and cosine) functions for the ϕ degree of freedom. This
basis is highly saturated and represents a space comparable with the
set of the Ym

j (θ,ϕ) spherical harmonic functions with j = 0, . . .,
60 and m = −j, . . ., j. These computations (for both 3D models)

FIG. 2. Logarithm of the energy split-
ting, Δν̃ in cm−1, among the different
symmetry species of the tunneling mani-
fold, Eq. (5), shown with respect to the ν̃
energy of the vibrational state measured
from the zero-point vibrational energy
(ZPVE). The splittings from the rigorous
3D(rig) model, in green triangles, and the
fitted 3D(Gfit) model, in blue squares, are
converged with an uncertainty of 0.0001
cm−1. The 12D tunneling splittings, in
red circles, are converged better than
0.02 cm−1 (the splittings smaller than
this value may be affected by numerical
artifacts and are labeled with ∗ in the fig-
ure). The lowest electronic barrier on the
CBB08 PES, 1104 cm−1 above the min-
imum, measured from the intermolecular
ZPVE is indicated with the gray shaded
area (note that the intermolecular ZPVEs
are different for the different models).
The full list of the computed energies is
available in the supplementary material.
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reproduce the triple degeneracies, which are spatial symmetry fea-
tures not covered by the DVR grid but obtained numerically, within
0.0001 cm−1 for all computed states.

In the 12D computation of the excited state splittings, we used
a large angular representation (relative methane-ion rotation) to
tightly converge the splittings, but we had to keep the methane basis
small (due to the finite computational resources), which was suffi-
cient to capture methane’s flexibility effects on the splittings. So, we
chose b = 2 in the pruning condition of the methane basis (9D),
and we used 8 tridiagonal-Morse basis functions and 10 Gauss–
Laguerre–Morse points for R; a large basis and grid for the angular
motion including 31 sin-cot-DVR basis functions and points for
cos θ; and 45 Fourier basis functions and 48 trapezoidal points for ϕ.
So, this 12D basis set designed for the computation of the tunneling
splittings (and henceforth labeled with BT) included (2 + 9)!/2!/9!
× 8× 31× 45 = 613 800 functions, and the 12D Smolyak grid (H = 16,
D = 12 dimensions) contained 3481(for the CH4 monomer) × 10
× 31 × 48 = 51 797 280 points to calculate the integrals. The angular
part of BT is more than 40% larger than that of BC in Table I, which
provides the current benchmark for the vibrational band origins up
to 730 cm−1. Although the uncertainty of the vibrational band ori-
gins for BT is 3–4 cm−1 (due to the small b value), the 12D tunneling
splittings are converged with an uncertainty better than 0.02 cm−1

up to 856 cm−1, including 96 vibrational states.
The 12D computations show that the tunneling splittings

increase upon the vibrational excitation of the complex, and we find
several splittings larger the 0.02 cm−1 uncertainty threshold above∼680 cm−1 measured from the ZPVE (Fig. 1). It is interesting to note
that this value is comparable with the value of the electronic barrier
separating the equivalent wells, which is 1104 cm−1 from the PES
minimum and ∼700 cm−1 measured from the intermolecular ZPVE
(different models have different ZPVEs).

Figure 2 presents the 12D and the 3D splittings. The 3D(Gfit)
model, which reproduces the known 12D vibrational band origins
very well (Table I), predicts tunneling splittings orders of magnitude
smaller than the 12D computation (notice the logarithmic scale in
Fig. 2). At the same time, the 3D(rig)model (with rigorous geometri-
cal constraints) appears to get the splittings right (currently, we have
only a few points to compare), while it has a large error in predicting
the vibrational centers (Table I), which may hinder the comparison
of the 3D(rig) and 12D splittings at higher energies.

The differences between the different 3D treatments can be
rationalized in terms of the difference of the “effective” rotational
constant of methane in the computation (the small differences in
the PES cut does not affect these results). In the 3D treatments, a
“smaller” effective methane rotational constant appears to be nec-
essary to have good vibrational centers, 3D(Gfit), and a “larger”
methane rotational constant is necessary to have good tunneling
splittings, 3D(rig). Altogether, these observations suggest that in
order to have a correct overall description, it is necessary to explic-
itly account for the methane’s vibrations together with the relative
rotation of the methane and the fluoride ion.

VI. SUMMARY AND CONCLUSIONS

Full-dimensional (12D), near-variational, vibrational states are
reported for the strongly bound complex of the methane molecule
and the fluoride anion. This is the first application of the recently

developed GENIUSH–Smolyak algorithm and computer program18

with a fully coupled, high-dimensional potential energy surface.
Benchmark-quality vibrational band origins are computed with

energies and tunneling splittings converged better than 1 cm−1

and 0.05 cm−1, respectively. These computations confirm com-
plementary aspects of earlier studies,8–10 which relied on different
assumptions or approximations about the dynamics of this complex.
Regarding controversial aspects of earlier work, we can confirm that
tunneling splittings (up to 730 cm−1 above the zero-point energy)
are small,10 <0.05 cm−1, but due to the strong binding and significant
monomer distortions, a full-dimensional (12D) treatment is nec-
essary.8,9 Although the tunneling splittings are small, a single-well
(normal coordinate) description8 is not sufficient due to the signif-
icant anharmonicity of the multiwell potential energy landscape.9

Even so, it is necessary to use a large basis set (and grid) to properly
describe the relative, hindered rotation of the methane fragment and
the fluoride anion.10

We also show from 12D computations that the tunneling split-
tings increase with the vibrational excitation of the complex. Both
the 12D and approximate 3D rigid-monomer computations indicate
that sizeable tunneling splittings, >0.1 cm−1, appear near the “top
of the barrier,” which separates the equivalent wells. Interestingly,
a “fitted” 3D model, which gives excellent vibrational band origins,
predicts orders of magnitude smaller splittings than the 12D compu-
tation, while the rigorous, reduced-dimensionality 3D model gives
reasonable splittings but fails to reproduce the 12D vibrational band
energies.

With further progress of the quantum dynamics methodol-
ogy reported in the present work and a potential energy surface
with a broader coverage of the nuclear coordinates (especially, for
the ion-molecule separation), it will become possible to study the
effect of the methane vibrational excitation on the tunneling dynam-
ics and the intramolecular to intermolecular energy transfer under
predissociation.

SUPPLEMENTARY MATERIAL

Tunneling splittings and vibrational energies obtained from
12D and 3D computations and the definition of normal coordinates
of methane are provided in the supplementary material.

ACKNOWLEDGMENTS

Financial support of the Swiss National Science Founda-
tion through a PROMYS Grant (No. IZ11Z0_166525) is gratefully
acknowledged. We also thank NIIFI for providing us computer time
at the Miskolc node of the Hungarian Computing Infrastructure.
E.M. is thankful to ETH Zürich for supporting a stay as visiting
professor during 2019 and the Laboratory of Physical Chemistry for
their hospitality, where part of this work has been completed.

We wish to dedicate this article to Professor Attila Császár on
the occasion of his 60th birthday.

REFERENCES

1D. A. Wild, Z. M. Loh, and E. Bieske, Int. J. Mass. Spectrom. 220, 273 (2002).
2Z.M. Loh, R. L.Wilson, D. A.Wild, E. J. Bieske, andM. S. Gordon, Aust. J. Chem.
57, 1157 (2004).
3Z. M. Loh, L. Wilson, D. A. Wild, J. Bieske, J. M. Lisy, B. Njegic, and M. S.
Gordon, J. Phys. Chem. A 110, 13736 (2006).

J. Chem. Phys. 151, 154301 (2019); doi: 10.1063/1.5124532 151, 154301-7

               dc_1955_21



The Journal
of Chemical Physics

ARTICLE scitation.org/journal/jcp

4D. M. Neumark, J. Phys. Chem. A 112, 13287 (2008).
5T. I. Yacovitch, E. Garand, J. B. Kim, C. Hock, T. Theis, and D. M. Neumark,
Faraday Discuss. 157, 399 (2012).
6M. Cheng, Y. Feng, Y. Du, Q. Zhu, W. Zheng, G. Czakó, and J. M. Bowman,
J. Chem. Phys. 134, 191102 (2011).
7T. Westermann, J. B. Kim, M. L. Weichman, C. Hock, T. I. Yacovitch, J. Palma,
D. M. Neumark, and U. Manthe, Angew. Chem., Int. Ed. 53, 1122 (2014).
8G. Czakó, B. J. Braams, and J. M. Bowman, J. Phys. Chem. A 112, 7466 (2008).
9R. Wodraszka, J. Palma, and U. Manthe, J. Phys. Chem. A 116, 11249 (2012).
10C. Fábri, A. G. Császár, and G. Czakó, J. Phys. Chem. A 117, 6975 (2013).
11J. M. Bowman, S. Carter, and X. Huang, Int. Rev. Phys. Chem. 22, 533 (2003).
12H.-D. Meyer, F. Gatti, and G. A. Worth, MCTDH for Density Operator
(Wiley-Blackwell, 2009), Chap. 7, pp. 57–62, ISBN: 9783527627400.
13M. Beck, A. Jackle, G. Worth, and H.-D. Meyer, Phys. Rep. 324, 1 (2000).
14E. Mátyus, G. Czakó, and A. G. Császár, J. Chem. Phys. 130, 134112 (2009).
15C. Fábri, E. Mátyus, and A. G. Császár, J. Chem. Phys. 134, 074105 (2011).
16M. Quack and M. A. Suhm, J. Chem. Phys. 95, 28 (1991).
17W. Mizukami, S. Habershon, and D. P. Tew, J. Chem. Phys. 141, 144310
(2014).
18G. Avila and E. Mátyus, J. Chem. Phys. 150, 174107 (2019).
19G. Avila and J. T. Carrington, J. Chem. Phys. 131, 174103 (2009).
20G. Avila and J. T. Carrington, J. Chem. Phys. 134, 054126 (2011).
21G. Avila and J. T. Carrington, J. Chem. Phys. 135, 064101 (2011).
22D. Lauvergnat and A. Nauts, Spectrochim. Acta, Part A 119, 18 (2014).

23A. Nauts and D. Lauvergnat, Mol. Phys. 116, 3701 (2018).
24C. Fábri, E. Mátyus, and A. G. Császár, Spectrochim. Acta 119, 84 (2014).
25C. Fábri, J. Sarka, and A. G. Császár, J. Chem. Phys. 140, 051101 (2014).
26J. Sarka and A. G. Császár, J. Chem. Phys. 144, 154309 (2016).
27J. Sarka, A. G. Császár, S. C. Althorpe, D. J. Wales, and E. Mátyus, Phys. Chem.
Chem. Phys. 18, 22816 (2016).
28J. Sarka, A. G. Császár, and E. Mátyus, Phys. Chem. Chem. Phys. 19, 15335
(2017).
29C. Fábri, M. Quack, and A. G. Császár, J. Chem. Phys. 147, 134101 (2017).
30I. Simkó, T. Szidarovszky, and A. G. Császár, J. Chem. Theory Comput. 15, 4156
(2019).
31G. Schiffel and U. Manthe, Chem. Phys. 374, 118 (2010).
32J. C. Light and T. Carrington, Jr., Discrete-Variable Representations and Their
Utilization (John Wiley & Sons, Ltd., 2007), pp. 263–310.
33R. J. Whitehead and N. C. Handy, J. Mol. Spectrosc. 55, 356 (1975).
34D. Ferenc and E. Mátyus, Mol. Phys. 117, 1694 (2019).
35J. S. Coursey, D. J. Schwab, J. J. Tsai, and R. A. Dragoset, Atomic Weights and
Isotopic Compositions (Version 4.1) (National Institute of Standards and Technol-
ogy, Gaithersburg, MD, 2015), http://physics.nist.gov/Comp (last accessed May
12, 2018).
36H. Wei and T. Carrington, Jr., J. Chem. Phys. 97, 3029 (1992).
37J. Echave and D. C. Clary, Chem. Phys. Lett. 190, 225 (1992).
38V. Szalay, G. Czakó, A. Nagy, T. Furtenbacher, and A. G. Császár, J. Chem. Phys.
119, 10512 (2003).

J. Chem. Phys. 151, 154301 (2019); doi: 10.1063/1.5124532 151, 154301-8

               dc_1955_21



The Journal
of Chemical Physics

ARTICLE scitation.org/journal/jcp

Toward breaking the curse of dimensionality
in (ro)vibrational computations of molecular
systems with multiple large-amplitude motions

Cite as: J. Chem. Phys. 150, 174107 (2019); doi: 10.1063/1.5090846

Submitted: 30 January 2019 • Accepted: 5 April 2019 •

Published Online: 2 May 2019

Gustavo Avilaa) and Edit Mátyusb)

AFFILIATIONS

Institute of Chemistry, ELTE, Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest 1117, Hungary

a)Gustavo_Avila@telefonica.net
b)matyus@chem.elte.hu

ABSTRACT

Methodological progress is reported in the challenging direction of a black-box-type variational solution of the (ro)vibrational Schrödinger
equation applicable to floppy, polyatomic systems with multiple large-amplitude motions. This progress is achieved through the combination
of (i) the numerical kinetic-energy operator (KEO) approach of Mátyus et al. [J. Chem. Phys. 130, 134112 (2009)] and (ii) the Smolyak
nonproduct grid method of Avila and Carrington, Jr. [J. Chem. Phys. 131, 174103 (2009)]. The numerical representation of the KEOmakes it
possible to choose internal coordinates and a body-fixed frame best suited for the molecular system. The Smolyak scheme reduces the size of
the direct-product grid representation by orders of magnitude, while retaining some of the useful features of it. As a result, multidimensional
(ro)vibrational states are computed with system-adapted coordinates, a compact basis- and grid-representation, and an iterative eigensolver.
Details of the methodological developments and the first numerical applications are presented for the CH4⋅Ar complex treated in full (12D)
vibrational dimensionality.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5090846

I. INTRODUCTION

Molecular systems with many vibrational degrees of free-
dom, including multiple fluxional modes, have been challenging
for nuclear motion theory (also known as quantum dynamics) for
decades. These systems are difficult to handle because (1) they
require a curvilinear coordinate representation for which we might
not have an analytic kinetic energy operator (KEO) readily available;
(2) their wave functions are spread over multiple wells of the poten-
tial energy surface (PES); and (3) assume the evaluation of high-
dimensional (sometimes singular) integrals due to the multiple,
coupled (curvilinear) internal degrees of freedom.

There are important, high-dimensional molecular systems
with multiple, large-amplitude motions. For example, molecular
complexes belong to this class. Molecular complexes are proto-
types for molecular interactions, and they can be probed in high-
resolution spectroscopy experiments. Weakly bound complexes
have a shallow PES valley, so they exhibit only a few, low-energy
transitions between bound states, but they usually have a rich

predissociation spectrum which can be probed in overtone spec-
troscopy experiments.

The theory of molecular complexes has been restricted to
the explicit quantum mechanical description of the intermonomer
modes, while the monomers were held fixed, described with some
rigid, effective structure.1,2 An explicit consideration of monomer-
flexibility effects3,4 has come to the focus only in recent years.5–7

This is not surprising: adding the monomer degrees of freedom to
the quantum dynamics treatment rapidly increases the vibrational
dimensionality, while in molecular complexes, monomer flexibil-
ity effects are usually small, so they can be averaged upon a first
look at the system. At the same time, the flexibility of monomers,
through the kinetic and the potential energy couplings, plays a cen-
tral role in the energy transfer between the intermolecular and the
intramolecular degrees of freedom during the (ro)vibrational and
collision dynamics.

Motivation for the present work is provided by these ideas, but
we hope that the methodological developments described in this
article will become useful for solving the (ro)vibrational Schrödinger
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equation of (high-dimensional, floppy) molecular systems, in
general.

II. CURSE OF DIMENSIONALITY IN VIBRATIONAL
COMPUTATIONS

We focus in the present work on the variational solution of the
Schrödinger equation including the (ro)vibrational Hamiltonian of
D vibrational degrees of freedom, ξ = (ξ1, . . ., ξD),

ĤvibΨi(ξ1, . . . , ξD) = EiΨi(ξ1, . . . , ξD) , (1)

where the vibrational wave function is expanded as a linear combi-
nation of Nbas orthogonal basis functions

Ψi(ξ1, . . . , ξD) = Nbas

∑
n=0

Cinψn(ξ1, . . . , ξD), (2)

and the expansion coefficients Cin are obtained as the elements of the
eigenvectors of the Hamiltonian matrix. The Hamiltonian matrix
elements are computed with some appropriate (multidimensional)
integration scheme. If the basis set is well chosen in this finite basis
representation (FBR) scheme, the lowest eigenvalues of the Hamil-
tonian matrix converge to the exact energies by increasing Nbas. The
most common way to build the multidimensional basis functions is
to use a direct-product ansatz

ψn(ξ1, . . . , ξD) = D

∏
χ=1

ψ
(χ)
nχ (ξχ ) (3)

constructed from the ψ(χ)nχ (ξχ ) orthogonal basis functions.
A. Curse of dimensionality due
to the multidimensional vibrational basis

By adopting a direct-product basis set, the vibrational wave
functions are represented as a linear combination

Ψi(ξ1, . . . , ξD) =
Nmax
1

∑
n1=0

. . .

Nmax
D

∑
nD=0

Cin1 ,...,nD

D

∏
χ=1

ψ
(χ)
nχ (ξχ ) , (4)

in which the number of terms (multidimensional basis func-
tions) scales exponentially with the vibrational dimensionality,
Nbas = ∏D

χ=1(Nmax
χ + 1). For low-dimensional systems, this is not

a problem, but many challenging systems are high dimensional. Our
example system CH4⋅Ar has twelve vibrational degrees of freedom.
For a 12-dimensional (12D) problem, if we pick 10 basis functions
per coordinate (a reasonable starting point if the coordinates are
equally coupled), the number of product basis functions will be 1012.
In this representation, we would need to store a vector with 1012 ele-
ments to represent a single vibrational state, which would require
∼7.3 TB of memory in double precision arithmetics. For this rea-
son, beyond ∼9 vibrational dimensions, it is necessary to develop and
use methods which attenuate the curse of dimensionality in the basis
set.

There are different strategies for breaking the exponential
growth of the vibrational basis. The first option is to improve
the quality of the basis functions in order to decrease the num-
ber of functions per coordinate, at least for a subset of the coor-
dinates. The second option is to find a way to identify and dis-
card the basis functions from the direct-product basis set, which

have little effect on the accuracy of the computed eigenvalues.
The first alternative is efficiently realized by the multiconfiguration
time-dependent Hartree (MCTDH) method8,9 and the canonical
polyadic (CP) approach10–12 or in a contracted basis representation
obtained by solving reduced-dimensionality eigenproblems.13–15

The second alternative is achieved by finding physically moti-
vated restrictions on the basis set indices. These restrictions can
be as simple as the selection of an appropriate multipolyad,16,17

f (n1, . . ., nD) ≤ b, for which the wave function expansion reads
as

Ψi(ξ1, . . . , ξD) = ∑
f (n1 ,...,nD)≤b

Cin1 ,...,nD

D

∏
χ=1

ψ
(χ)
nχ (ξχ ). (5)

This basis-pruning strategy will be used later in this work. More
elaborate basis-pruning restrictions are used, for example, in the
MULTIMODE program.18,19

B. Curse of dimensionality due to multidimensional
integrals

Reducing the number of the multidimensional basis func-
tions solves only half of the problem. In (ro)vibrational computa-
tions, multidimensional integrals must be evaluated to construct the
Hamiltonian matrix.

There are two common ways to cope with the integral problem.
The first option is to expand the Hamiltonian in a Sum-of-Products
(SOP) form. For example, the potential energy in a SOP form is

V̂(ξ) = Mmax
1

∑
m1=0

. . .

Mmax
D

∑
mD=0

Am1 ,...,mD

D

∏
χ=1

V
(χ)
mχ
(ξχ ). (6)

Using the SOP form, multidimensional integrals are obtained as the
sum of products of 1-dimensional (1D) integrals

⟨ψ(χ)n′χ
∣ V(χ)mχ

∣ ψ(χ)nχ ⟩ = ∫ ψ
(χ)
n′χ
(ξχ ) V(χ)mχ

(ξχ )ψ(χ)nχ (ξχ ) dξχ
≈
Kquad

∑
kχ=1

wχ ,kχ ψ
(χ)
n′χ
(ξχ ,kχ )V(χ)mχ

(ξχ ,kχ )ψ(χ)nχ (ξχ ,kχ ),
(7)

which is evaluated with a 1D numerical quadrature using the wχ ,kχ
and ξχ ,kχ quadrature weights and points, respectively, defined for
the ξχ coordinate (in this work, we account for the Jacobian in the
wave function). The integrals converge to their exact value upon the
increase in the number of quadrature points, Kquad. The SOP form is
useful when a small number of terms are sufficient in Eq. (6) to rep-
resent the Hamiltonian. This form is usually employed in MCTDH
and in the CP method.8–12 There are methods which can find an
excellent “basis set” for the SOP representation of theHamiltonian.20

If the SOP representation, however, requires an excessive number
of function evaluations over a multidimensional grid of the vibra-
tional coordinates, the exponential scale-up with the dimension is
reintroduced. This feature is related to the fact that a SOP represen-
tation of the Hamiltonian can be as expensive as the representation
of the multidimensional wave function. In any case, an effective way
for attenuating this type of curse of dimensionality was proposed
in Ref. 20.

As an alternative to a sum-of-product representation of the
Hamiltonian, one can approximate it with a truncated multimode
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expansion of nth-order terms.12,18,19,21 For example, a five-mode
expansion of the potential energy is

V(ξ1, . . . , ξD) = D

∑
i=1
V i(ξi) + D

∑
i=1

D

∑
j=i

V i,j(ξi, ξj)

+
D

∑
i=1

D

∑
j=i

D

∑
k=j

V i,j,k(ξi, ξj, ξk)

+
D

∑
i=1

D

∑
j=i

D

∑
k=j

D

∑
l=k

V i,j,k,l(ξi, ξj, ξk, ξl)

+
D

∑
i=1

D

∑
j=i

D

∑
k=j

D

∑
l=k

D

∑
m=l

V i,j,k,l,m(ξi, ξj, ξk, ξl, ξm). (8)

This expansion is exact if n = D, but under certain circumstances
(also depending on the ξ1, . . ., ξD coordinates), it is very well
converged with n < D. Using this approximation, the integrals
are evaluated using a D = 1, 2, . . ., n dimensional direct-product
Gauss quadrature, and thereby, the curse of dimensionality is
attenuated.

If we want to use the Hamiltonian directly, without approxi-
mating or expanding it, we have to tackle the direct evaluation of
multidimensional integrals by the multidimensional quadrature. In
this case, the integral of the potential energy over amultidimensional
basis set is evaluated as

∫ . . .∫
D

∏
χ ′=1

ψ
(χ ′)

n′
χ ′
(ξχ ′)V(ξ1, . . . , ξD) D

∏
χ=1

ψ
(χ)
nχ (ξχ ) dξ1 . . .dξD

≈
Kquad

∑
K=1

wK

D

∏
χ ′=1

ψ
(χ ′)

n′
χ ′
(ξχ ′ ,kχ ′ )V(ξ1,k1 , . . . , ξD,kD)

D

∏
χ=1

ψ
(χ)
nχ (ξχ ,kχ ),

(9)

where wk is the multidimensional quadrature weight for the
ξχ ,kχ points; we used the condensed summation index K ↔
(k1, k2, . . ., kD). The integral approaches its exact value as the
Kquad number of points is increased. The most common mul-
tidimensional quadrature is the multidimensional direct-product
quadrature

∫ . . .∫ F(ξ1, . . . , ξD) dξ1 . . .dξD
≈
Kmax
1

∑
k1=1

. . .

Kmax
D

∑
kD=1

w1,k1 . . . wD,kDF(ξ1,k1 , . . . , ξD,kD), (10)

where wχ ,kχ and qχ ,kχ (χ = 1, . . . ,D) are the 1D quadrature weights
and points for the χ th coordinate, respectively. 1D quadrature rules
are most often Gauss (G) quadrature rules, which integrate exactly

∫ w(ξ)F(ξ) dξ =
KG
quad

∑
k=1

w
G
k F(ξGk ), for any F(ξ) =

2(KG
quad−1)

∑
n=0

Anξ
n,

(11)

and d = 2(KG
quad − 1) is called the (1D) accuracy of the Gauss

quadrature.
A multidimensional direct-product quadrature integration suf-

fers from a similar curse of dimensionality problem as a multi-
dimensional direct-product basis set: the number of quadrature

points, Kquad = ∏D
χ=1 K

max
χ , increases exponentially with the vibra-

tional dimensionality. To continue the 12D example from Sec. II A
in which we had 10 basis functions per coordinate, we choose 13
quadrature points per coordinate (a reasonable value) to evaluate
the integrals. Then, the number of points in a direct-product grid is
2.33 × 1013. Storage of this many double-precision numbers would
require 170 TB.

As it was explained earlier, the curse of dimensionality in the
basis set can be attenuated by identifying and discarding the prod-
uct basis functions, which are not necessary for the desired preci-
sion of the vibrational states. Then, we may think about attenuating
the curse of dimensionality in the quadrature grid by using grids
which have a nonproduct structure. In general terms, the applica-
tion of nonproduct quadrature grids can be justified if the integrand
I(ξ1, . . ., ξD) is smooth, i.e., it can be expanded with respect to a
pruned, product basis set,

I(ξ1, . . . , ξD) = ∑
f (n1 ,...,nD)≤b

In1 ,...,nD

D

∏
χ=1

Φ(χ)nχ (ξχ ). (12)

For smooth functions, it makes sense to distinguish between neces-
sary product basis functions

D

∏
χ=1

Φ(χ)nχ (ξχ ), with f (n1, . . . ,nD) ≤ b, (13)

and non-necessary product basis functions

D

∏
χ=1

Φ(χ)nχ (ξχ ), with f (n1, . . . ,nD) > b . (14)

The total number of necessary and non-necessary product basis
functions scales exponentially with the dimension, and this is the
reason why the total number of product quadrature grid points,
which integrate the overlap of all these functions exactly, also
scales exponentially with the dimension. If we need to integrate
accurately only the necessary product basis functions, the num-
ber of which does not grow exponentially with the dimension-
ality, it is possible to find a multidimensional quadrature, which
integrates exactly only the necessary basis functions and which
does not grow exponentially with the dimension. In such an
approach, the curse of dimensionality in the integration grid can be
attenuated, i.e.,

∫ . . .∫ F(ξ1, . . . , ξD) dξ1 . . .dξD ≈
Kquad

∑
m=1

wmF(ξ1,m1 , . . . , ξD,mD),
with Kquad ≪

D

∏
χ=1

Kmax
χ , (15)

during the course of the evaluation of the Hamiltonian terms
(without approximating by some expansion). Optimal nonproduct
quadratures exist for special cases; two of them are explained in the
following paragraphs.

1. An optimal, two-dimensional, nonproduct
quadrature

The most popular nonproduct quadrature grid is probably the
Lebedev quadrature designed to integrate spherical harmonics.22
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Lebedev grids are used in density functional theory,23 and they
have been used also in rovibrational computations.24 In particu-
lar, if we want to obtain the exact value of all integrals, related
to the overlap of the spherical harmonics functions, by numerical
integration

∫
π

0
dθ∫

2π

0
dφ Yl,m(θ,φ)Yl′ ,m′(θ,φ) sin(θ),

with l, l′ ≤ lmax and m,m′ ≤ lmax, (16)

we would need to use a total number of 2(lmax + 1)2 grid points
in the two-dimensional direct-product grid composed of Gauss–
Legendre quadrature points for the θ and Gauss–Chebyshev (first
kind) quadrature points for the� coordinate. Note that in the expan-
sion of the Y l ,m(θ, �)Y l ′ ,m′ (θ, �) sin(θ) integrand in terms of the
product-basis functions, one has to comply with the two restrictions
m ≤ l and m′ ≤ l′. By taking into account these two restrictions,
a (smaller) nonproduct quadrature grid, called the Lebedev grid,
can be constructed for the numerical integration which includes
only

NLeb ∼ 4
3
(lmax + 1)2 (17)

points, instead of the 2(lmax + 1)2 points of the 2D direct-product
grid. For example, for lmax = 5, there are a total number of 36 spher-
ical harmonics functions. To calculate exactly the overlap of these
functions, we would need 2(5 + 1)2 = 72 points in the 2D direct-
product grid, whereas it is sufficient to use 50 (∼4/3 ⋅ (5 + 1)2

= 48) Lebedev points.22 Note that there is not any general formula
for the Lebedev quadrature, but the weights and points are tabulated
for several two-dimensional maximum accuracy values.

2. An optimal, three-dimensional, nonproduct
quadrature

Our next example is about the calculation of the exact value of
the overlap integrals in a numerical integration scheme for products
of harmonic oscillator functions

∫
∞

−∞
∫
∞

−∞
∫
∞

−∞
Hl(q1)Hl′(q1)Hm(q2)Hm′(q2)Hn(q3)Hn′(q3)

× e−q21−q22−q23 dq1 dq2 dq3, (18)

with the restrictions l + n +m ≤ 4 and l′ + n′ +m′ ≤ 5, (19)

where Hn is the nth Hermite polynomial. The smallest, 3D Gauss–
Hermite direct-product grid, which recovers the exact value for
all these integrals, contains 53 = 125 points. By explicitly consid-
ering the restrictions in Eq. (19), we may realize that there are
only 56 different product functions in the integrand. The small-
est nonproduct grid (for a maximum multidimensional accuracy
of 9), which recovers the exact value of the integrals for the pos-
sible integrands, consists of only 77 points.25 We note that the
corresponding Smolyak grid consists of 93 points, which is less
than the direct-product grid but more than the optimal nonproduct
grid.

In spite of the fact that the optimal multidimensional, nonprod-
uct quadratures use the smallest number of points, they have some
handicaps. First, the construction of optimal, nonproduct quadra-
tures may be cumbersome. There are only a limited number of
cases for which the optimal multidimensional quadrature is tabu-
lated in the literature (in practice, limited to D = 2 or 3 for the
available cases):25 the points and weights are available only for cer-
tain types of polynomials and for limited values of a maximum
multidimensional accuracy. Second, optimal nonproduct quadra-
tures lack any structure, which is a serious disadvantage in rovi-
brational applications.24 If a nonproduct grid has some structure
(reminiscent of a direct-product grid), then it can be used to com-
pute sums over the 1D quadrature points sequentially, which is an
important algorithmic element in efficient variational vibrational
approaches.

3. The Smolyak scheme for nonproduct grids
with a structure

There is a simple way to construct nonproduct quadra-
ture grids, first proposed by the Russian mathematician Sergey
A. Smolyak. The Smolyak grid may be slightly larger than the
optimal nonproduct grid, but it retains some useful features of
direct-product grids. The Smolyak scheme was first adopted for
solving the (ro)vibrational Schrödinger equation by Avila and
Carrington in 200916,17 who exploited that the Smolyak grid is
built from a sequence of quadrature rules and its special struc-
ture makes it possible to compute the potential and kinetic
energy matrix-vector products by doing sums sequentially. It is
possible to combine the Smolyak algorithm with optimal non-
product grids of Stroud,25 i.e., nonproduct Smolyak quadra-
ture grids of high-dimensional systems can be constructed from
sequences of Stroud-kind nonproduct quadratures (if the desired
Stroud quadrature is available). Although the Stroud–Smolyak
grids have less structure, they require fewer points than Smolyak
quadratures built from 1D quadrature rules. This direction has
been pursued in (ro)vibrational computations by Lauvergnat since
2014.26

III. DEFINITION OF THE (RO)VIBRATIONAL
HAMILTONIAN IN GENIUSH

The GENIUSH protocol, as it was proposed in 2009,27 aimed
for the development of a universal and exact procedure for the
(near-)variational solution of the (ro)vibrational Schrödinger equa-
tion. Its central part is the numerical construction of the kinetic
energy terms over a grid—thereby, the burdensome derivation and
implementation of the kinetic energy operator for various molecu-
lar and coordinate choices were eliminated. The GENIUSH program
was developed using the discrete variable representation (DVR),28

and it suffered from the curse of dimensionality (Sec. II). The present
work aims for the elimination of this bottleneck, both with respect to
the basis and the grid representations, using the ideas first described
by Avila and Carrington in 2009.16

A. Numerical representation of the kinetic-energy
operator

The GENIUSH program determines the KEO coefficients
numerically, over a grid, from the user’s definition of the vibrational
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coordinates, ξi (i = 1, 2, . . .,D) (and the body-fixed frame definition,
which is relevant for rovibrational computations). Arbitrary coor-
dinates and frames can be defined by writing down the Cartesian
coordinates (in the body-fixed frame) in terms of the vibrational
coordinates, ξi (i = 1, 2, . . ., D). From this coordinate conversion
subroutine (written by the user if not yet available in the code),
the program numerically evaluates the mass-weightedmetric tensor,
g ∈ R

(D+3)×(D+3), from the vibrational and the rotational t vec-
tors over the coordinate grid. The vibrational t vectors are obtained
by two-sided finite differences for which a step size of 10−5–10−7

a.u. has been used. In principle, the numerical but exact differen-
tiation scheme of Yachmenev and Yurchenko29 (using chain rule
sequences and the derivatives of “all” possible elementary functions
and thereby extending Ref. 30) could also be used to eliminate the
numerical differentiation step.

The G matrix is calculated by inverting g, G = g−1 ∈
R
(D+3)×(D+3), over the grid points of the vibrational coordi-

nates. In this notation, the last three rows and columns of g
and G correspond to the rotational coordinates. The vibrational
kinetic-energy operator has usually been written in the Podolsky
form31

T̂v
Pod = −12

D

∑
i=1

D

∑
j=1
g̃−1/4

∂

∂ξi
Gi,jg̃

1/2 ∂

∂ξj
g̃−1/4 (20)

with g̃ = detg because it requires the calculation of only first coor-
dinate derivatives. The volume element for this Hamiltonian27,31,32

and for all its rearranged variants, Eqs. (21), (24), and (51) appear-
ing later in this article, is dV = ∏D

i=1 dξi. Reference 27 also used a
general but “rearranged” form of the (ro)vibrational Hamiltonian

T̂v
rearr = −12

D

∑
i=1

D

∑
j=1

∂

∂ξi
Gi,j

∂

∂ξj
+U, (21)

with U = 1
32

D

∑
kl=1

[Gkl

g̃2
∂g̃

∂ξk

∂g̃

∂ξl
+ 4

∂

∂ξk
(Gkl

g̃

∂g̃

∂ξl
)], (22)

= 1
32

D

∑
kl=1

[Gkl

G̃2

∂G̃

∂ξk

∂G̃

∂ξl
− 4 ∂

∂ξk
(Gkl

G̃

∂G̃

∂ξl
)], (23)

which can be further rearranged to

T̂v
frearr = −12

D

∑
i=1

D

∑
j=1
Gi,j

∂

∂ξi

∂

∂ξj
− 1
2

D

∑
j=1
Bj

∂

∂ξj
+U, (24)

with Bj =
D

∑
i=1

∂

∂ξi
Gi,j. (25)

This last form was used by Lauvergnat and Nauts in their numerical
KEO approach.30 Equations (21)–(25) require third-order deriva-
tives of the coordinates, which are obtained in GENIUSH by using
quadruple precision arithmetic to ensure numerical stability for the
finite differences. All functions appearing next to the differential
operators in Eqs. (20)–(25) have been available from the original
implementation,27 so we were able to change between different KEO
representations, which has turned out to be necessary for this work
(vide infra).

As a first step for implementing the Smolyak algorithm, we had
to replace the original DVR implementation with FBR because we

wanted to discard functions from the direct product using simple,
physical arguments, e.g., to restrict the basis to a certain (multi)
polyad [Eq. (5)].

It is important to notice that the application of the Podolsky
form [Eq. (20)] assumes the insertion of multiple (truncated) reso-
lutions of identities in the basis during the construction of the KEO
representation. In our earlier DVR applications, this did not cause
any problem, but since we are aiming for a compact FBR, an accu-
rate representation of the Podolsky form could be ensured only if
an auxiliary basis set was introduced to converge the completeness
relation

Î ≈
Naux

∑
n=0
∣ n⟩⟨n ∣ . (26)

For example, in a 3D FBR computation with a basis set

∣ n1,n2,n3⟩, 0 ≤ n1 ≤ Nmax
1 , 0 ≤ n2 ≤ Nmax

2 , 0 ≤ n3 ≤ Nmax
3 , (27)

the matrix-vector products

v
1 = g̃−1/4v0,

v
2 = Gi,jg̃

1/2 ∂

∂ξj
v
1 (28)

would have to be expanded with respect to a larger, basis

∣ n1,n2,n3⟩ :
0 ≤ n1 ≤ Nmax

1 +m, 0 ≤ n2 ≤ Nmax
2 +m, 0 ≤ n3 ≤ Nmax

3 +m, (29)

where m is determined by the coordinate-dependence of the g̃−1/4

andGi,jg̃
1/2 multidimensional functions. For the example of the H2O

molecule, m = 4 was found to be sufficient to compute the first fifty
vibrational states. So, in this 3D problem, the use of an auxiliary basis
set introduces only a modest increase in the computational cost. For
a 12D problem, however, an m = 4 choice would increase the basis
space by two orders of magnitude!

For this reason, we will use (the rearranged and) the fully rear-
ranged form of the KEO [Eqs. (21)–(24)] which did not require the
introduction of any additional (auxiliary) functions in an FBR com-
putation. Further details concerning thematrix representation of the
KEO, including a pragmatic “treatment” of the KEO singularities,
ubiquitous in floppy systems, will be explained in Sec. IV D.

1. Definition of the coordinates for the example
of CH4⋅Ar

The vibrational dynamics of the CH4⋅Ar complex was described
using the ξ1 = R ∈ [0, +∞), ξ2 = θ ∈ [0, π], ξ3 = � ∈ [0, 2π) spheri-
cal coordinates, and the nine dimensionless normal coordinates of
the isolated CH4 molecule, ξ3+i = qi ∈ (−∞, +∞) (i = 1, . . ., 9).
At the reference structure (necessary to define the normal coordi-
nates), methane was oriented in the most symmetric fashion in the
Cartesian space with the C atom at the origin (this orientation also
ensured that the KEO singularity is not at the equilibrium structure
of the complex)

H1 : c
eq
1 = (r, r, r),

H2 : c
eq
2 = (r,−r,−r),

H3 : c
eq
3 = (−r,−r, r),

H4 : c
eq
4 = (−r, r,−r),

(30)
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and r = reqCH = 2.052 410 803 bohrs was the equilibrium C–H dis-
tance corresponding to the PES of Ref. 33. The GENIUSH pro-
gram evaluates functions appearing in the KEO from a coordinate
conversion routine in which the instantaneous (body-fixed) Carte-
sian coordinates must be specified in terms of the internal coor-
dinates. The Cartesian positions of the carbon and the hydrogen
atoms were calculated from the q1, . . ., q9 normal coordinate values
as

�i = ceqi� +
9

∑
j=1
l�i ,jqj, (31)

where � = x, y, z and i = 1, 2, . . ., 5, and the Cartesian coordinates of
the Ar atom, �6 (� = x, y, z), were measured from the center of mass
of the methane moiety and were obtained as

x6 = R sin θ cosφ, y6 = R sin θ sinφ, z6 = R cos θ. (32)

In the last step of the calculation of the Cartesian coordinates,
the center of mass of the complex was shifted to the origin. The
orientation of the body-fixed frame corresponding to the coordi-
nates just described corresponds to the orientation of the frame
used to define methane’s normal coordinates. A more sophisti-
cated choice of the body-fixed frame can be useful to make rovi-
brational computations efficient. In the present work, however, we
focus on the computation of the vibrational states. We used the
atomic masses34 m(H) = 1.007 825 032 23 u, m(C) = 12 u, and
m(Ar) = 39.962 383 123 7 u throughout this work.

2. Potential energy surface

Due to the lack of any full-dimensional methane-argon poten-
tial energy surface, we used the sum of the 3D intermolecular
potential energy surface of Refs. 35 and 36 and the 9D methane
PES from Wang and Carrington.33 This setup allows us to study
the kinetic coupling of this weakly bound complex. Should a full-
dimensional PES become available, the computations can be adapted
to it.

IV. IMPLEMENTATION OF THE SMOLYAK SCHEME
IN GENIUSH

A. Pruning the basis functions

For the example of the CH4⋅Ar complex described with the
(R, θ, �, q1, . . ., q9) vibrational coordinates defined in Sec. III A 1, we
chose the following 1D basis functions: L(α) generalized Laguerre
basis functions (with α = 2) or tridiagonal Morse basis functions
for R; Legendre basis functions (and variants of them) or Jacobi
associated basis functions for θ; Fourier functions, composed of
cos(n��), sin(n��), for �; and harmonic oscillator functions for
the q1, . . ., q9 methane normal coordinates. As a result, the direct-
product expansion of the vibrational wave function can be written
as

Ψi(R, θ,φ, q1, . . . , q9) =
Nmax
R

∑
nR=0

Nmax
θ

∑
nθ=0

Nmax
φ

∑
nφ=0

b

∑
nq1=0

. . .
b

∑
nq9=0

CinR ,nθ ,nφ ,nq1 ,...,nq9

×ψ(R)nR (R)ψ(θ)nθ (θ)ψ(φ)nφ (φ)ψ(q1)nq1
(q1) . . .

×ψ(q9)nq9
(q9). (33)

This direct-product basis representation, for the typical values of
Nmax
R > 10, Nmax

θ > 20, Nmax
φ > 15, and b > 2, would include

>5.90 ⋅ 107 functions. To reduce the basis set size, we prune the basis
representation of the methane fragment

Ψi(R, θ,φ, q1, . . . , q9) =
Nmax
R

∑
nR=0

Nmax
θ

∑
nθ=0

Nmax
φ

∑
nφ=0

∑
nq1+⋯+nq9≤b

×CinR ,nθ ,nφ ,nq1 ,...,nq9ψ(R)nR (R)ψ(θ)nθ (θ)ψ(φ)nφ (φ)
×ψ(q1)nq1

(q1) . . .ψ(q9)nq9
(q9) (34)

by replacing the 0 and b lower and upper summation limits of each
normal coordinate with the basis-pruning condition

nq1 +⋯ + nq9 ≤ b (b ∈ N0), (35)

which we call “standard” pruning. This condition is a natural choice
for normal coordinates and harmonic oscillator basis functions,
which provide a good “zeroth-order” model. This standard pruning,
equivalent to choosing a big polyad of states, allows us to discard
basis functions for which the coupling between the intramolecu-
lar basis functions (through the full Hamiltonian) is small and for
which the zeroth-order energies are very different. The larger the
b value in Eq. (35), the more accurate (higher excited) vibrational
states of methane are obtained. (If we focused on the computa-
tion of highly excited methane states, it would be better to use
a more sophisticated pruning condition.) For the intermolecular
basis set ψR,nR(R)ψθ,nθ(θ)ψφ,nφ(φ), we do not introduce any prun-
ing because the selected functions are not close to any zeroth-order
approximate basis set for this system, so we cannot discard any of
the functions based on simple arguments. Nevertheless, standard
pruning of the methane part already reduces the basis set substan-
tially. The storage of one vector in the direct-product basis set with
10 basis functions per coordinate would require ∼8 TB of mem-
ory, while using standard pruning [Eq. (35)] reduces this value
to 0.39 GB.

B. Pruning the grid with the Smolyak scheme

The GENIUSH program computes the values of the Gi ,j, Bi,
and U multidimensional functions of the KEO at multidimensional
points of the vibrational coordinates. Since we do not use any inter-
polation procedure to fit Gi ,j, Bi, and V + U to special analytic func-
tions, a multidimensional quadrature grid is necessary to obtain the
integrals.

It is straightforward to design nonproduct quadrature grids for
the evaluation of the multidimensional integrals of the Hamiltonian
operator with the standard basis-pruning condition [Eq. (35)]. For
the example of the CH4⋅Ar complex (see Sec. III A 1 for the coor-
dinate definition and Sec. IV A for the basis set and the pruning
condition), the 12D Smolyak integration operator of order H16,17 is

Q̂(12,H) = ∑
σg(i)≤H

⊗
12

∏
χ

∆Q̂
iχ
χ

= ∑
σg(i)≤H

∆Q̂iR
R ⊗ ∆Q̂iθ

θ ⊗ ∆Q̂iφ
φ
⊗ ∆Q̂

iq1
q1 ⊗ . . .⊗ ∆Q̂

iq9
q9 ,

with iχ = 1, 2, 3, 4, . . . and χ = 1(R), 2(θ), . . . , 12(q9) ,
(36)
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and the general grid-pruning condition is

σg(i) ≤ H : gR(iR) + gθ(iθ) + gφ(iφ) + gq1(iq1) +⋯ + gq9(iq9) ≤ H.
(37)

The iχ th incremental operator is defined as

∆Q̂
iχ
χ = Q̂iχ

χ − Q̂iχ−1
χ (38)

with Q̂0
χ = 0. The action of the iχ th operator, Q̂

iχ
χ , on an f function is

its (numerical, quadrature) integral

Q̂
iχ
χ f (ξχ ) =

mχ (iχ )

∑
m=1

w
iχ
χ ,mf (ξiχχ ,m) (39)

corresponding to the w
iχ
χ ,m quadrature weights and q

iχ
χ ,m quadrature

points,m = 1, . . .,mχ (iχ ), within the iχ th grid.
We also note that Eq. (36) can be written as a linear combina-

tion of the 1D integration operators (instead of using the incremen-
tal operators) as

Q̂(12,H) = ∑
σg(i)≤H

Ci ⊗
12

∏
χ=1

Q̂
iχ
χ

= ∑
σg(i)≤H

CiR ,iθ ,iφ ,iq1 ,...,iq9 Q̂
iR
R ⊗ Q̂iθ

θ ⊗ Q̂iφ
φ
⊗ Q̂iq1

q1 ⊗ . . .⊗ Q̂iq9
q9 ,

with iχ = 1, 2, 3, 4, . . . and χ = 1(R), 2(θ), . . . , 12(q9),
(40)

which allows us to better understand the structure of the Smolyak
grid. The Smolyak quadrature grid is a linear combination of prod-
uct quadrature grids with different 1D accuracies, while it has

a smaller number of points than the product grid ⊗∏12
iχ=1 Q̂

imax
χ

χ

= Q̂
imax
R

R ⊗ Q̂
imax
θ

θ ⊗ Q̂
imax
φ

φ
⊗ Q̂

imax
q1
q1 ⊗ . . . ⊗ Q̂

imax
q9
q9 , where imax

χ

= H −∑χ ′≠χ g
χ ′(1) is determined by the smallest value of the prun-

ing function for the other coordinates [Eq. (42)]. If a product basis

function, f (R)nR (R)f (θ)nθ (θ)f (φ)nφ (φ)f (q1)nq1
(q1) . . . f (q9)nq9

(q9), can be inte-

grated exactly by the product quadrature grid Q̂iR
R ⊗Q̂iθ

θ ⊗Q̂iφ
φ
⊗Q̂iq1

q1 ⊗
⋯⊗ Q̂iq9

q9 , that product basis function is also exactly integrated by the
Smolyak quadrature grid Q̂(12,H) because it comprises this smaller
product grid.37

To ensure accurate integration, we have to tune three fac-
tors: (a) the pruning function, gχ (iχ ) (which must be a monotonic
increasing function); (b) the value of H (the larger, the better); and
(c) the number of grid points,mχ (iχ ), in the 1D grids determined by
the smallest possible Smolyak grid which integrates accurately the
Hamiltonian for a selected, pruned, multidimensional basis set.

For the case of CH4⋅Ar, the basis-set pruning condition was
(Sec. IV A)

0 ≤ nR ≤ Nmax
R ,

0 ≤ nθ ≤ Nmax
θ ,

0 ≤ nφ ≤ Nmax
φ ,

0 ≤ nq1 + nq2 + nq3 + nq4 + nq5 + nq6 + nq7 + nq8 + nq9 ≤ b,
(41)

i.e., the intermolecular basis was retained in its product form and
pruning was introduced for the methane fragment. The correspond-
ing nonproduct grid includes the intermolecular grid in its product

form, and a pruned intramolecular grid is implemented using the
following grid-pruning functions:

gχ (iχ ) = {1, for χ = R, θ,φ,
i, for χ = q1, . . . , q9 , i = 1, 2, 3, . . . (42)

The corresponding Q̂
iχ
χ integration operators are chosen as

Q̂
iχ
χ =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Q̂
Mmax

χ

χ , for χ = R, θ,φ,
Q̂
mχ (iχ )
χ , for χ = q1, . . . , q9,

withmχ (iχ ) = 1, 3, 3, 7, 9, 9, 9, 9, 17, 19, 19, 19, 31, 33, 41, 41, . . .
(43)

for iχ = 1, 2, 3, . . . , respectively.

This choice of the integration operators allowed us to use the 12D
Smolyak operator for the special case when the first three degrees of

freedom are described with a direct-product grid. Q̂
Mmax

R

R , Q̂
Mmax

θ

θ , and

Q̂
Mmax

φ

φ
label the integration operators corresponding to the spherical

degrees of freedom, and each of them is constructed with a Gauss
quadrature rule with Mmax

χ points and dχ = 2Mmax
χ − 1 maximum

accuracy.

The Q̂
mχ (iχ )
χ (χ = q1, . . . , q9) operators, corresponding to the

normal coordinates, are constructed using a nested Hermite quadra-
ture with a maximum degree of dχ (iχ ) ≥ 2iχ − 1, and dχ (iχ ) = 1, 5,
5, 7, 15, 15, 15, 15, 17, 29, 29, 29, 31, 33, 61, 61, . . . for the iχ = 1,
2, 3, . . . sequence of Eq. (43) (also note that the same quadrature
is used for each dimensionless normal coordinate). Nesting means

that all quadrature points of the quadrature rule Q̂j
χ also appear in

the quadrature rule Q̂j+1
χ . It is important that we need to have nested

grids to be able to use a Smolyak quadrature efficiently. For this rea-
son, we always use the smallest grid which is nested, e.g., for iχ = 2,
we use a three-point quadrature,mχ (2) = 3, in Eq. (43) because there
is not any nested, two-point Hermite quadrature. Nested Hermite
grids are listed in tables; see, for example, Ref. 38.

In this paragraph, we compare the orders of magnitudes for a
direct-product and for a Smolyak grid just defined for the example of
CH4⋅Ar. Let us assume that we have a direct-product basis set with
0 ≤ nR, nθ , n� ≤ 9 functions for the spherical degrees of freedom
and 0 ≤ nq1 . . . + nq9 ≤ b = 3 for methane’s degrees of freedom.
The smallest 12D product Gauss grid which gives correctly the over-
lap integrals for this basis set includes 103 ⋅ 49 = 2.62 ⋅ 108 points.
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To integrate the overlap for this basis set exactly, we need to choose
H = 15 for the 12D Smolyak grid, which includes 103 × 871
= 8.71 ⋅ 105 points, almost three orders of magnitude less than the
12D direct-product Gauss grid. Certainly, an even more significant
reduction in the grid size (in comparison with a direct-product grid)
can be achieved if a larger number of degrees of freedom is included
in the pruning.39

The smallest necessary value of H can be calculated from the
basis-pruning condition and the value of b as follows. To compute
exactly an overlap integral of 2b polynomial degree, it is necessary to
have a maximum degree of 2iχ − 1 ≥ 2b, i.e., iχ ≥ b + 1/2. Then, using
the grid-pruning condition [Eq. (43)] and the fact that iχ ≥ 1, we
must have H ≥ b + D, which makes H ≥ 3 + 12 = 15 for a 12D prob-
lem with b = 3. In the numerical applications, we choose an H value
slightly larger than this minimal necessary value: H = b + D + 2 was
usually found to be sufficient to converge the results for the example
computations (Sec. V).

It is important that the Smolyak algorithm uses nested
sequences of quadrature rules. Nesting ensures that the nonproduct
grid has a special structure. By exploiting this structure, a multidi-
mensional integral of a multivariable function, F(x1, . . ., xD), can be
rewritten as

∫ . . .∫ F(ξ1, . . . , ξD) dξ1 . . .dξD
=
Nmax

∑
N=1

WNF(ξ1,k1 , . . . , ξD,kD)

=
kmax
1

∑
k1=1

. . .

kmax
D

∑
kD=1

WS(k1, . . . , kD)F(ξ1,k1 , . . . , ξD,kD), (44)

where the structure of the Smolyak grid appears in the second
equation through the kmax

i upper summation indexes16,17: kmax
1

depends on H; kmax
2 depends on H and kmax

1 ; kmax
3 depends on H

and kmax
1 , kmax

2 , etc. It is important to notice that the multidimen-
sional integral [Eq. (44)] can be written in a sequential sum form
[the second equation in Eq. (44)] only for structured grids; oth-
erwise, only the first, computationally more demanding, form is
applicable.

C. An efficient matrix-vector product algorithm
for computing eigenvalues and eigenvectors
with an iterative eigensolver

We develop amethod to compute (ro)vibrational states of poly-
atomic molecules with multiple large-amplitude motions. Proba-
bly, the most common way to tackle (ro)vibrational problems is to
compute the Hamiltonian matrix elements in FBR and then diag-
onalize the Hamiltonian matrix following the pioneering work of
Whitehead and Handy.40 For polyatomic molecules and complexes,
the size of the basis set, even if we use a pruned, product basis,
may be larger than 100 000 (105), and a corresponding nonprod-
uct quadrature grid would consist of more than 10 000 000 (107)
points. Unless the Hamiltonian matrix is very sparse and the system
has a high permutation-inversion symmetry, the “traditional” route
of using a direct eigensolver is not feasible for time and memory
reasons.

Using iterative eigensolvers is a practical alternative,41,42 which
allows us to compute eigenvalues and eigenvectors without stor-
ing or even explicitly computing the Hamiltonian matrix elements.
The key algorithmic element in relation with iterative eigensolvers is
the efficient multiplication of an input vector with the Hamiltonian
matrix.

In this section, we develop an efficient matrix-vector prod-
uct algorithm in relation with the numerical KEO approach
(Sec. III) and the Smolyak scheme (Sec. IV B). The multiplica-
tion is made efficient by exploiting the structure of the pruned
basis set and the structure of the nonproduct Smolyak grid.
Multiplication with the potential energy matrix is carried out
as

v
out
N′1...D

=
kmax
1

∑
k1=1

T
(1)
n′1
(ξ1,k1) . . .

kmax
D

∑
kD=1

T
(D)
n′D
(ξD,kD)WS

K1...D
V(ξK1...D

)

× nmax
D

∑
nD=0

T
(D)
nD (ξD,kD) . . .

nmax
1

∑
n1=0

T
(1)
n1 (ξ1,k1)vinN1...D

(45)

with the condensed indexing of the basis labels, grid labels, and
multidimensional grid points

N1...D ↔ (n1,n2, . . . ,nD) , K1...D ↔ (k1, k2, . . . , kD) ,
ξK1...D

↔ (ξ1,k1 , ξ2,k2 , . . . , ξD,kD),
respectively. Tn(xk) is the value of the basis function with index
n at point xk, and WS collects the multidimensional quadra-
ture weights. In the Fortran implementation, we use two con-
densed indexes for the intermediate vectors, labeled with K1 . . . ∆

↔ (k1, . . ., k∆) “partial” grid and the corresponding N∆+1, . . . , D

↔ (n∆+1, . . ., nD) “partial” basis index. The operations are per-
formed in parallel using the OpenMP protocol. The nmax

χ and
kmax
χ values for each coordinate, i.e., the structure of the basis
and the grid, are determined from the basis and the grid pruning
conditions.

For our present numerical example, CH4⋅Ar, D = 12 and ξ =
(R, c, �, q1, . . ., q9) (henceforth, we use the short labeling c = cos
θ). According to the basis pruning condition [Eq. (41)], the upper
summation indexes for the basis labels are

nmax
χ i = Nmax

χ i , for i(χ i) = 1(R), 2(c), 3(φ),
nmax
q9−i = b − i−1∑

j=0
nq9−j , for i = 0, 1, . . . , 8. (46)

The grid pruning condition in Eq. (42) determines the structure of
the quadrature indexes according to

kmax
χ i = Kmax

χ i , for i(χ i) = 1(R), 2(θ), 3(φ),
kmax
qi = mqi(H − (12 − i) −∑i−1

j=1 S(kqj)) , for i = 1, 2, . . . , 9,
(47)

where S(k) is the index of the smallest quadrature rule in the nested
sequence of Hermite quadratures that contains k points. For the
Hermite sequence used in the present work, the S(k) values are
obtained from Eq. (43)
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S(1) = 1, S(2) = 2, S(3) = 2, S(4) = 4, S(5) = 4, S(6) = 4, S(7) = 4, S(8) = 5,
S(9) = 5, . . . , S(17) = 9, S(18) = 10, S(19) = 10, S(20) = 16, . . . , S(31) = 16,
S(32) = 17, S(33) = 17, S(34) = 18, S(35) = 18, S(36) = 19, S(37) = 19,
S(38) = 20, S(39) = 20, S(40) = 21, S(41) = 21.

(48)

If the FBR method is used for the intermolecular coordinates
R, c, or �, we use more grid points than basis functions
Kmax > Nmax in order to get exact integrals (typically, Kmax −
Nmax ≈ 5 was sufficient to achieve convergence). If the DVR
scheme is used (due to the reasons explained in Sec. IV D),
then we have the same number of points and functions, so
Kmax = Nmax + 1.

D. Singularity concerns and a hybrid DVR-FBR
solution

We have numerically identified that KEO we use to describe
the CH4⋅Ar complex has singularities along the θ spherical angle
(also related to �). These singularities appear at θ = 0 and θ = π
(c = cos θ = ±1), and they represent a considerable challenge for
a nonanalytic KEO representation, especially because two kinds of
singularities appear

1
1 − c2 and

1√
1 − c2 . (49)

This singular property can be discerned from numerical tests with
the numerical KEO coefficients and by calculating matrix elements
for the Gi,j∂

2/∂Ri∂Rj terms using an associated Jacobi basis set,

J
α,β
n (c), for example.

An obvious way to avoid these types of singular integrals
for analytic KEOs would be to use the 2D spherical harmon-
ics functions for θ and �. This option is the way to go for
tailor-made approaches, but it would destroy the simplicity and
generality of a universal (ro)vibrational approach we are devel-
oping, especially if there are several groups of spherical coordi-
nates (θi, �i) i = 1, 2, . . . in the system.24 In particular, the
application of spherical harmonics would require the development
of special matrix-vector product routines for each i = 1, 2, . . .
values.

Another possibility would be to use Jacobi associated func-
tions, Jα,βn (c), with α and β close to zero. We could follow this
alternative if an analytic KEO and analytic KEO integrals were
available.

Since we develop a universal method for numerical KEO
representations, we need to find a multidimensional quadra-
ture which allows us to evaluate all the different kinds of
integrals appearing in the KEO without knowing its exact, ana-
lytic form but knowing only the characteristic singular behav-
ior [Eq. (49)]. Let us use Jacobi associated functions with
α = β = 0.001 for c. Then, we have to find a quadrature
rule which integrates exactly the following types of integrals
simultaneously:

∫
1

−1
J
α,β
n′ (c) 1

1 − c2 Jα,βn (c) dc
∫

1

−1
J
α,β
n′ (c) 1√

1 − c2 J
α,β
n (c) dc

∫
1

−1
J
α,β
n′ (c)Jα,βn (c) dc

(50)

with 0 ≤ n, n′ ≤ N. Gauss-quadrature rules exist for each integral
in Eq. (50) separately, but there is not any single Gauss quadra-
ture that integrates exactly all three types of integrals, whereas
in the numerical KEO, it is not possible to separate different
terms of different singular behavior (which we know again from
numerical test calculations). Then, the next logical step is to find
a (non-Gauss) quadrature rule of M points that gives exactly all
the integrals in Eq. (50) at the same time. We determined such
a quadrature using a two-step procedure. First, we optimized the
quadrature points with a simplex algorithm and calculated the
quadrature weights by solving an overdetermined set of equations;
this set of points and weights was refined by optimizing both the
quadrature points and weights with the simplex algorithm. Unfor-
tunately, this (non-Gauss) quadrature includes a large number of
points (K ≫ N) (three times as many as a single Gauss-quadrature
rule) and some of the points come extremely close to the singu-
lar points at c = −1 and c = 1. Since GENIUSH calculates the Gi ,j

elements through finite differences, the finite step size will place
limitations on increasing the number of quadrature points. Due to
the large number of points and their accumulation near the singu-
lar values, we cannot accept this special quadrature as a practical
solution for the problem, but we will use this (non-Gauss) quadra-
ture rule to check the practical ideas we explain in the following
paragraphs.

Since we do not have analytic integral expressions and it is not
possible to find any compact (Gauss) numerical integration scheme
which ensures exact integration, let us consider approximate inte-
grals (which become accurate at the limit of a large number of
points). First of all, nonexact integration, due to the singularities,
manifests itself in a nonsymmetric matrix representation of the KEO
in Eq. (24). Then, instead of aiming for exact integrals (with a com-
pact grid), let us aim for a symmetric matrix representation at the
first place. Construction of a symmetric matrix representation is
straightforward by using Legendre-DVR (or the variants of it dis-
cussed below) and the inherently more symmetric general KEO in
Eq. (21) for c = cos(θ). We will ensure a symmetric representation
in the same way as in the original DVR-based GENIUSH imple-
mentation27 (see also Ref. 43 concerning the Legendre polynomials)
and in its applications to floppy systems,44–49 which did not suffer
from the present singularity problems but which did suffer from the
curse of dimensionality. So, we handle the singular coordinate c as

J. Chem. Phys. 150, 174107 (2019); doi: 10.1063/1.5090846 150, 174107-9

Published under license by AIP Publishing

               dc_1955_21



The Journal
of Chemical Physics

ARTICLE scitation.org/journal/jcp

wewould do it in GENIUSH-DVR; for the rest of the coordinates, we
use FBR.

So, instead of using the fully rearranged KEO [Eq. (24)] for
which we obtain a nonsymmetric matrix representation due to
inexact integration (the off diagonal elements with different basis
indexes of c fail to be equal unless they are exactly integrated),
we rewrite the KEO for the c coordinate into the more symmetric
form

T̂v = −1
2

12

∑
j=1

∂

∂c
Gc,j

∂

∂ξj
− 1
2

12

∑
i=1≠2

12

∑
j=1
Gi,j

∂

∂ξi

∂

∂ξj
− 1
2

12

∑
i=1
Bi

∂

∂ξi
+U,

Bi =
12

∑
k=1,≠2

∂

∂ξk
Gk,i. (51)

Using this KEO and a hybrid DVR(c)-FBR representation, the
Hamiltonian matrix is real, symmetric by construction, and the
matrix elements for functions with the same c index are the same
as the ones we get using the fully rearranged KEO [Eq. (24)].
We have carried out an additional test for this hybrid DVR-FBR
approach. First, we performed a fully FBR computation with the
fully rearranged KEO [Eq. (24)] using a Jacobi associated basis set
for c with α = 0.01, β = 0.01 and a (non-Gauss) quadrature devel-
oped to calculate accurately the integrals of Eq. (50). This non-
Gauss quadrature included a very large number of points for c, so
we could afford only a small basis and grid for the other degrees
of freedom. We repeated the computation using the same, small
basis set for the non-c coordinates and DVR with the symmet-
ric KEO [Eq. (51)] for c. The two computations resulted in the
same eigenvalues, which provides a numerical test for our practi-
cal DVR-FBR approach (of course, the eigenvalues obtained in this
way were different from the converged values due to the small-
ness of the non-c basis set). So, in this sense, using DVR(c)-FBR
and the KEO in Eq. (51) has the correct “limiting” (convergence)
behavior, while it ensures a symmetric matrix representation by
construction.

E. Matrix-vector products in the hybrid DVR-FBR

The matrix-vector products in the hybrid DVR-FBR are car-
ried out similarly to Eq. (45). In what follows, we list the nec-
essary changes in comparison with the fully FBR PES multiplica-
tion [Eq. (45)] to accommodate the hybrid FBR-DVR represen-
tation for the KEO of Eq. (51). We also note that in the hybrid
DVR-FBR scheme, the WS

K1...D
Smolyak weights were obtained

using a quadrature rule for the c coordinate with weights equal to
one.

1. The matrix-vector product for the potential (and the U pseu-
dopotential) term is carried out as in Eq. (45), but for the c
coordinate, we make the following replacements:

T
(c)
n′c
(ξc,kc)→ δn′c ,kc−1 and T

(c)
nc (ξc,kc)→ δnc ,kc−1. (52)

2. The matrix-vector product for the ∂
∂cGc,c

∂
∂c term is calculated

as in Eq. (45), but for the c coordinate, we make the following
replacements:

V(ξK1...D
)→ Gc,c(ξK1...D

) ,
T
(c)
n′c
(ξc,kc)→ −Mkc−1,n′c

, and T
(c)
nc (ξc,kc)→Mkc−1,nc

(53)

with

Mn′c ,nc = ∫
1

−1
Θn′c
(c) d

dc
Θnc(c) dc, (54)

whereΘnc(c) is the ncth (cot-, sincot-)Legendre-DVR function
with Kmax

c = Nmax
c + 1 quadrature points (vide infra).

3. The matrix-vector product for the ∂
∂cGc,R

∂
∂R

term, where R

is not the c coordinate, is calculated as in Eq. (45) with the
following replacements:

V(ξK1...D
)→ Gc,R(ξK1...D

) ,
T
(c)
n′c
(ξc,kc)→ −Mkc−1,n′c

and T
(c)
nc (ξc,kc)→ δnc ,kc−1,

T
(R)
nR (ξR,kR)→ d

dR
T
(R)
nR (R)∣

R=ξR,kR

.

(55)

4. The matrix-vector product for the ∂
∂R

GR,c
∂
∂c term, where R

is not the c coordinate, is calculated as in Eq. (45) with the
following replacements:

V(ξK1...D
)→ GR,c(ξK1...D

) ,
T
(c)
n′c
(ξc,kc)→ δn′c ,kc−1 and T

(c)
nc (ξc,kc)→Mkc−1,nc ,

T
(R)
n′
R

(ξR,kR)→ d

dR
T
(R)
n′
R

(R)∣
R=ξR,kR

.

(56)

5. The matrix-vector product for the GR,R
∂2

∂R2 term, where R

is not the c coordinate, is calculated as in Eq. (45) with the
following replacements:

V(ξK1...D
)→ GR,R(ξK1...D

),
T
(c)
n′c
(ξc,kc)→ δn′c ,kc−1 and T

(c)
nc (ξc,kc)→ δnc ,kc−1,

T
(R)
nR (ξR,kR)→ d2

dR2 T
(R)
nR (R)∣

R=ξR,kR

.

(57)

6. The matrix-vector product for the BR
∂
∂R

term, whereR is not
the c coordinate, is calculated as in Eq. (45) with the following
changes:

V(ξK1...D
)→ BR(ξK1...D

),
T
(c)
n′c
(ξc,kc)→ δn′c ,kc−1 and T

(c)
nc (ξc,kc)→ δnc ,kc−1,

T
(R)
nR (ξR,kR)→ d

dR
T
(R)
nR (R)∣

R=ξR,kR

.

(58)

7. The matrix-vector product for the GRs ,Rt

∂2

∂R2 term, where Rs

andRt are not the c coordinate, is calculated as in Eq. (45) with
the replacements

V(ξK1...D
)→ GRs ,Rt(ξK1...D

),
T
(c)
n′c
(ξc,kc)→ δn′c ,kc−1 and T

(c)
nc (ξc,kc)→ δnc ,kc−1,

T
(Rs)
nRs
(ξRs ,kRs )→ d

dRs
T
(Rs)
nRs
(R)∣

Rs=ξRs ,kRs

and T
(Rt)
nRt
(ξRt ,kRt

)→ d

dRt
T
(Rt)
nRt
(R)∣

Rt=ξRt ,kRt

.

(59)
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F. Analysis and improvements for the intermolecular
representation

To test the convergence properties and to determine the opti-
mal basis set and grid sizes for our example system, CH4⋅Ar,
we performed reduced-dimensionality computations. Intermolec-
ular (3D) computations were performed with a fixed methane
structure corresponding to the effective rotational constant
Bv=0 = 5.246 981 98 cm−1 (and an effective C–H distance of⟨R(CH)⟩v=0 = 1.107 117 44 bohrs) obtained with the ground-state
vibrational wave function of CH4 with pruning condition b = 8 (see
Sec. IV G) and using the isolated methane’s PES.33

1. Intermolecular angular representation: Legendre,
cot-Legendre, and sincot-Legendre DVRs

Since regions near the singularities [Eq. (49)] are dynamically
relevant for the CH4⋅Ar complex, using Legendre DVR for the coor-
dinate c = cos θ is an inefficient choice: more than 120 points are
needed to converge all vibrational bound states of CH4⋅Ar (3D)
within 0.01 cm−1.

In 2010, Schiffel and Manthe50 proposed more efficient alter-
natives to Legendre DVR to be used for the type of singulari-
ties we have to tackle. First of all, the quadrature is improved by
selecting the quadrature points, different from the Legendre points,
as the inverse cotangent of the eigenvalues (wi) of the following
matrix:

Pn,m = ∫
1

−1
Ln(c) c

1 − c2 Lm(c) dc, n,m = 0, . . . ,Nmax
c − 1,

�i = arccot(wi), i = 1, . . . ,Nmax
c ,

(60)

where Ln(c) is the nth normalized Legendre function. These integrals
are calculated exactly using the Gauss–Chebyshev quadrature with a
sufficiently large number of points. Using the eigenvectors, A, of P,
the cot-Legendre DVR basis functions are defined as

Θn(c) = Nc−1

∑
m=0

Am,nLm(c), n = 0, . . . ,Nmax
c − 1, (61)

and the first derivative matrix, M, for the cot-Legendre DVR func-
tions is

Mn′ ,n = ∫
1

−1
Θn′(c) d

dc
Θn(c) dc . (62)

In our test calculations, it was sufficient to use 50 cot-Legendre
DVR points to converge all bound states of CH4⋅Ar in 3D (within
0.01 cm−1) (see also Table I).

Schiffel and Manthe50 continued and proposed further
improvements by extending the basis set. They have noticed
that some eigenfunctions of the KEO in spherical coordinates
have a sin(θ) “component” close to the singularities, so they
extended the Legendre basis set with sine functions. Their new
basis set included Ln(c), n = 0, . . . ,Nmax

c − s, and sin(θ), . . .,
sin(sθ), where s = 2 was sufficient (and stable without any over-
completeness problems, which would occur for larger s values)
in most applications. A corresponding DVR basis set, called

“sincot-Legendre (SCL) DVR basis,” is obtained in the following
procedure:

1. Orthogonal basis functions are created from the set {Ln(x),(n = 0, . . . ,Nmax
c − 2), sin θ, sin 2θ} by diagonalizing the cor-

responding overlap matrix Ssin−cos. The orthogonal basis func-
tions, Lsin-cosn (c), are calculated using the eigenvectors of the
overlap matrix.

2. A Psin−cos matrix is introduced with the elements

Psin-cosn,m = ∫
1

−1
Lsin-cosn (c) c

1 − c2 Lsin-cosm (c) dc,
n,m = 0, . . . ,Nmax

c .
(63)

The DVR points are the inverse cotangent of the wi eigenval-
ues of Psin−cos. The sincot-Legendre DVR basis functions are
obtained from the eigenvectors of the Psin−cos matrix, collected
in Asin−cos, as

Θ
sin-cos
n (c) = Nmax

c

∑
m=0

Asin-cos
m,n Lsin-cosm (c), n = 0, . . . ,Nmax

c . (64)

3. The first derivative matrix,Msin−cos, for sincot-Legendre DVR
is

Msin-cos
n′ ,n = ∫

1

−1
Θ

sin-cos
n′ (c) d

dc
Θ

sin-cos
n (c) dc. (65)

The integrals for the Ssin−cos, Psin−cos, and Msin−cos matri-
ces can be calculated analytically using elementary properties of
trigonometric functions, and they were tabulated in Ref. 50.

We used the sincot-Legendre DVR points and the correspond-
ing first derivative matrix elements (as an alternative to Legendre
DVR) in the matrix-vector multiplication procedure described in
Sec. IV D. Our 3D test computations show that it is sufficient to
use 21 sincot-Legendre DVR points for coordinate c to converge
all the bound states within 0.01 cm−1 for CH4⋅Ar, which is a sig-
nificant reduction compared to the original Legendre DVR which
required more than 120 points. The performance of a few differ-
ent representations for the c coordinate is compared in Table I.
In all computations, we used the L

α
n generalized Laguerre poly-

nomials (with α = 2) for R, scaled to the [2.64, 30] Å interval,
and Fourier functions for �. The number of points used for the
R, cos θ, and � degrees of freedom in the three test sets of the
table is

● A3D: (Kmax
R ,Kmax

c ,Kmax
φ ) = (81, 101(L), 101) using Legendre

(L) DVR for c● B3D: (Kmax
R ,Kmax

c ,Kmax
φ ) = (61, 21(SCL), 17) using sincot-

Legendre (SCL) DVR for c● C3D: (Kmax
R ,Kmax

c ,Kmax
φ ) = (61, 31(SCL), 31) using sincot-

Legendre (SCL) DVR for c.

It is important to observe in Table I that the vibrational states
are not perfectly converged even with a very large number (more
than 100) of Legendre DVR points. On the contrary, almost perfect
results are obtained with less than 30 sincot-Legendre DVR points.
Another important observation (relevant for the 12D applications in
Sec. V) is that we can use fewer Fourier basis functions for � than
(sincot-Legendre) functions for θ to converge the 3D vibrational
energies.
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TABLE I. Convergence tests for the bound-state vibrational energies of CH4⋅Ar (3D) using spherical coordinates, (R, cos θ, �). The vibrational energies, ν̃ in cm−1 and
referenced to the ZPVE, were computed with GENIUSH-DVR and the PES of Refs. 35 and 36. The vibrational states are labeled with the (approximate) j methane angular
momentum quantum number, the nR radial excitation index, and the Γ Td(M) irrep label. The R and � degrees of freedom are described using generalized Laguerre basis

functions (Lα=2
n ) scaled to [2.64, 30] Å and Fourier functions defined over the [0, 2π) interval, respectively. Legendre or sincot-Legendre DVR is used for cos θ. The number

of basis functions and grid points is given for each set as (Kmax
R ,Kmax

c ,Kmax
φ
). The test sets i = A3D, B3D, and C3D are compared with the “final”, benchmark values of F3D,

∆ν̃ i = ν̃ i − ν̃F3D .

cos θ: Legendre-DVR cos θ: sincot-Legendre

A3D : (111,111,31) B3D : (111,21,17) C3D : (111,31,31) F3D : (151,31,31)

n j nR Γ ν̃A3D ∆ν̃A3D ν̃B3D ∆ν̃B3D ν̃C3D ∆ν̃C3D ν̃F3D

ZPVE 0 0 A1 51.200 0.000 51.200 0.000 51.200 0.000 51.200
1 1 0 F2 9.107 −0.002 9.109 0.000 9.109 0.000 9.109
2 1 0 F2 9.107 −0.002 9.109 0.000 9.109 0.000 9.109
3 1 0 F2 9.109 0.000 9.109 0.000 9.109 0.000 9.109
4 0 1 A1 29.188 0.000 29.188 0.000 29.188 0.000 29.188
5 2 0 F2 31.384 −0.004 31.388 0.000 31.388 0.000 31.388
6 2 0 F2 31.384 −0.004 31.388 0.000 31.388 0.000 31.388
7 2 0 F2 31.388 0.000 31.388 0.000 31.388 0.000 31.388
8 2 0 E 31.942 0.000 31.942 0.000 31.942 0.000 31.942
9 2 0 E 31.942 0.000 31.942 0.000 31.942 0.000 31.942
10 1 1 F2 44.570 −0.004 44.573 0.000 44.573 0.000 44.573
11 1 1 F2 44.570 −0.004 44.573 0.000 44.573 0.000 44.573
12 1 1 F2 44.573 0.000 44.573 0.000 44.573 0.000 44.573
13 0 2 A1 53.036 0.000 53.036 0.000 53.036 0.000 53.036
14 2 1 F2 56.228 −0.004 56.232 0.000 56.232 0.000 56.232
15 2 1 F2 56.228 −0.004 56.232 0.000 56.232 0.000 56.232
16 2 1 F2 56.232 0.000 56.232 0.000 56.232 0.000 56.232
17 2 1 E 64.046 0.000 64.046 0.000 64.046 0.000 64.046
18 2 1 E 64.046 0.000 64.046 0.000 64.046 0.000 64.046
19 3 0 F2 65.825 −0.013 65.837 0.000 65.837 0.000 65.837
20 3 0 F2 65.825 −0.013 65.837 0.000 65.837 0.000 65.837
21 3 0 F2 65.837 0.000 65.837 0.000 65.837 0.000 65.837
22 1 2 F1 66.066 −0.004 66.070 0.000 66.070 0.000 66.070
23 1 2 F1 66.066 −0.004 66.070 0.000 66.070 0.000 66.070
24 1 2 F1 66.070 0.000 66.070 0.000 66.070 0.000 66.070
25 0 3 A1 70.313 0.000 70.313 0.000 70.313 0.000 70.313
26 3 0 A1 73.497 0.000 73.497 0.000 73.497 0.000 73.497
27 2 2 F2 75.340 −0.007 75.347 0.000 75.347 0.000 75.347
28 2 2 F2 75.340 −0.007 75.347 0.000 75.347 0.000 75.347
29 2 2 F2 75.347 0.000 75.347 0.000 75.347 0.000 75.347
30 1 3 F2 80.280 −0.003 80.283 0.000 80.283 0.000 80.283
31 1 3 F2 80.280 −0.003 80.283 0.000 80.283 0.000 80.283
32 1 3 F2 80.283 0.000 80.283 0.000 80.283 0.000 80.283
33 0 4 A1 83.085 0.000 83.085 0.000 83.085 0.000 83.085
34 1 4 F2 88.186 −0.003 88.189 0.000 88.189 0.000 88.189
35 1 4 F2 88.186 −0.003 88.189 0.000 88.189 0.000 88.189
36 1 4 F2 88.189 0.000 88.189 0.000 88.189 0.000 88.189
37 2 4 E 88.826 0.000 88.826 0.000 88.826 0.000 88.826
38 2 4 E 88.826 0.000 88.826 0.000 88.826 0.000 88.826
39 0 5 A1 89.427 0.000 89.427 0.000 89.427 0.000 89.427
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2. Intermolecular radial representation: Laguerre
and Morse-tridiagonal basis sets

If we choose the L
(α)
n generalized Laguerre basis functions

(with α = 2) for the R radial coordinate, we have to use a large num-
ber, more than 30, of basis functions to converge the vibrational
bound states. Since in the present work we focus on the computation
of bound states, it is better to use tridiagonal Morse basis set.51–53

The parameters of the Morse function were determined according
to the equations in Ref. 51 with D = 143.49 cm−1, α = 0.65, and γ
= 0.00033. These parameters were adjusted to obtain 13 functions
that recover the exact vibrational energies for the bound states of the
radial Hamiltonian

ĤR = − 1
2µCH4 ,Ar

∂2

∂R2
+ V(R, θeq,φeq), (66)

where µCH4 ,Ar is the reduced mass of methane and argon and
θeq and �

eq are the equilibrium values of the 3D PES. Since
the CH4⋅Ar complex is a very isotropic system, the parameters
and the radial basis set determined in this way should be use-
ful over the entire range of the θ ∈ [0, π] and � ∈ [0, 2π)
coordinates.

G. Analysis of the intramolecular representation:
Vibrational states of CH4

The vibrational basis set used to describe the intramolecu-
lar vibrational dynamics, i.e., vibrations of the methane molecule,
was constructed from the harmonic oscillator basis set with the
standard pruning condition, ∑9

k=1 nqk ≤ b in Eq. (41), and the
Smolyak quadrature with ∑9

k=1 g
qk(iqk) ≤ H in Eq. (42). Table II

TABLE II. Deviation of the vibrational energies, cm−1, of the CH4 molecule obtained with GENIUSH-Smolyak with a pruned basis and grid, from the tightly converged results
of Refs. 33, with increasing the b and H values in the basis and the grid pruning conditions, Eqs. (41) and (42), respectively. In general, H = b + D + 2 ≥ b + D was found to be
sufficient to converge the results (note that D = 9 for isolated methane). The corresponding number of Smolyak points, NSmol, is also shown.

n Deviation from Ref. 33

b: 2 3 4 5 6 7 8

H9D: 13 14 15 16 17 18 19 Reference 33

NSmol: 3481 11 833 35 929 97 561 241 201 556 707 1 202 691

ZPV 41.18 2.51 0.66 0.57 0.07 0.02 0.02 9 651.29

1 47.81 44.46 3.03 0.81 0.65 0.09 0.03 10 961.76

2 47.81 44.45 3.03 0.81 0.65 0.09 0.03 10 961.76

3 47.82 44.45 3.03 0.81 0.65 0.09 0.03 10 961.76

4 45.91 42.46 2.97 0.75 0.61 0.08 0.03 11 184.76

5 45.93 42.47 2.97 0.75 0.61 0.08 0.03 11 184.76

6 81.12 57.35 46.15 4.79 1.23 0.74 0.14 12 238.29

7 75.65 55.48 48.12 4.18 1.14 0.77 0.13 12 265.12

8 75.73 55.48 48.11 4.17 1.14 0.77 0.13 12 265.13

9 76.42 55.48 48.11 4.17 1.13 0.77 0.13 12 265.13

10 65.82 53.24 47.43 3.49 1.00 0.72 0.11 12 275.73

11 65.85 53.24 47.43 3.49 1.00 0.72 0.11 12 275.74

12 78.12 53.43 43.26 3.87 1.03 0.66 0.11 12 481.49

13 78.77 53.48 43.26 3.88 1.03 0.66 0.11 12 481.49

14 78.77 53.48 43.27 3.87 1.03 0.66 0.11 12 481.49

15 72.37 51.38 45.63 3.57 0.93 0.69 0.10 12 497.25

16 72.37 51.38 45.65 3.56 0.94 0.69 0.10 12 497.25

17 73.08 51.44 45.65 3.57 0.94 0.69 0.10 12 497.26

18 83.68 72.76 15.82 2.88 1.76 0.47 0.12 12 568.47

19 86.04 74.55 16.18 2.89 1.79 0.48 0.12 12 670.73

20 86.07 74.56 16.18 2.89 1.79 0.48 0.12 12 670.73

21 86.07 74.56 16.18 2.89 1.79 0.48 0.12 12 670.73
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shows the convergence of the lowest vibrational states by increasing
b and H.

As to the 12D computation of CH4⋅Ar, the bound states corre-
spond to the zero-point vibrational state (ZPV) of CH4; we focused
on the lowest-energy states of CH4. Of course, more accurate results
for the isolated methane molecule can be obtained by increasing
the size of the Smolyak grid, which is perfectly feasible for a 9D
computation.

In a minimalistic setup (to be transferred for the 12D com-
putations), we chose a representation which allowed us to con-
verge the fundamental vibrational energies within 1 cm−1. In this
representation, the 9D Smolyak grid includes more than 100 000
points, which is approximately an order of magnitude larger than
what is necessary for a meaningful representation of the zero-point
vibration.

V. FULL-DIMENSIONAL (12D) RESULTS
FOR METHANE-ARGON

All bound-state vibrational energies were computed for the
CH4⋅Ar complex in full (12D) vibrational dimensionality (Table IV).
The basis and the grid representations are selected based on
the convergence tests carried out for the intermolecular and
intramolecular representations (Secs. IV F and IV G). Concern-
ing the intermolecular representation, it is composed of Morse-
tridiagonal basis functions with Nmax

R = 12, sincot-Legendre-DVR
basis functions with Nmax

c = 20, and Fourier functions with
Nmax

φ = 17. The number of quadrature points was Kmax
R = 15,

Kmax
c = 21, and Kmax

φ = 20. As to the methane fragment, we
used four different intramolecular representations, with b = 0,
1, 2, and 3 values, which allowed us to check the convergence
of the ZPVE and the vibrational energies in the full-dimensional
treatment.

Table III gives an overview of the orders of magnitudes of the
basis and the grid representations employed in the final 12D com-
putations. The largest computation (set D in the table) includes 82
002 690 (8.20 ⋅ 107) quadrature points and 1 021 020 (1.02 ⋅ 106)
basis functions. The numerical KEO terms [Eq. (51)] and the PES
are stored as double precision reals (in Fortran) at every grid point,
which amounts to a (12 ⋅ 13/2 + 12 + 1) ⋅ 8.20 ⋅ 107 = 60 GB

memory usage. The dimensionality of the Lanczos vectors is deter-
mined by the number of basis functions, so one Lanczos vec-
tor occupies a negligible amount of 8 MB of memory. To mul-
tiply a trial vector with the Hamiltonian matrix took ∼230 s
on 51 processor cores, and we had to perform ∼10 000 matrix-
vector multiplications to obtain the 40 states reported in Table IV
using an in-house Lanczos implementation (it might be possi-
ble to reduce the number of matrix-vector products with a Lanc-
zos and a preconditioning algorithm optimized for the present
system).

Based on the isolated-methane test computations (Table II),
the error in the ZPVE for b = 2 and 3 is 41 and 2.5 cm−1, respec-
tively. The vibrational energies of the complex (referenced to the
ZPVE) change less than 0.01 cm−1 by increasing the b value from
2 to 3; hence, we may accept them as converged for b = 3. The
ZPVE of the complex is probably accurate within a few cm−1 with
b = 3 similarly to the case of the isolated methane (Table II). We
only note that a full 12D computation with b = 4 would also be

feasible with the current implementation, but it would only change
the ZPVE since the vibrational energies were converged already
with b = 3.

We also show the b = 0 results, which correspond to a sin-
gle harmonic oscillator function for methane (the product of the
zeroth harmonic oscillator basis functions for q1, . . ., q9). Since
the present model includes only kinetic coupling (the PES cou-
pling is also probably very small), the deviation of ν̃A (b = 0)
and ν̃A (b = 3) is due to the structural differences of methane:
the effective structure for the b = 0 ground-state harmonic oscil-
lator basis function is the equilibrium structure, whereas b > 0
accounts for structural distortions due to anharmonicity effects. This
change is related to the common wisdom in reduced-dimensionality
computations of weakly bound complexes that it is better to
use effective (vibrationally averaged) monomer structures than
equilibrium monomer structures.54 In agreement with this pre-
scription, the 3D computation (column F3D in Table III) per-
formed with an effective methane structure corresponding to the
(isolated) ground-state vibration very well reproduces the 12D
result (remember that only kinetic coupling is included in the
present computation due to the lack of a 12D fully coupled
PES).

TABLE III. Intramolecular (methane, “Met”) basis set and grid choices used in the 12D CH4⋅Ar vibrational computations with the basis and grid pruning con-
ditions nq1 + ⋯ + nq9 ≤ b and iq1 + ⋯ + iq9 ≤ H, respectively. H = b + D + 2 ≥ b + D was found to be sufficient to converge the results
(D = 12). The number of basis functions, N, and grid points, K, is also given for the methane (“Met,” “Smol”) for the intermolecular (“Inter”) and for the full (12D)
computations.

Intramolecular (CH4, 9D) Intermolecular (3D) CH4⋅Ar (12D)
Label b H NMet KSmol/10

3 NInter/10
3 KInter/10

3 N12D/10
5 K12D/10

7

A 0 14 1 0.163 4.28 6.30 0.0464 0.113

B 1 15 10 0.871 4.28 6.30 0.464 0.604

C 2 16 55 3.48 4.28 6.30 2.55 2.41

D 3 17 220 11.8 4.28 6.30 10.2 8.20
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TABLE IV. Vibrational bound-state energies, ν̃ in cm−1, referenced to the ZPVE of CH4⋅Ar computed in full (12D) vibrational dimensionality using the GENIUSH pro-
gram extended with the Smolyak algorithm in the present work. The potential energy was approximated with the sum of the molecule-atom interaction PES of Refs.
35 and 36 and the isolated methane PES of Ref. 33. The A, B, C, and D basis and grid representations defined in Table III correspond to an increasing b = 0, 1,
2, and 3 value in the methane basis functions’ pruning condition [Eq. (41)]. Convergence of the results can be estimated based on the deviation from computation
D, ∆ν̃ i = ν̃ i − ν̃D (see also Table II). For comparison, the benchmark 3D computation with a fixed, effective (v = 0) methane geometry (F3D) is also shown (taken
from Table I).

12D
3D

A (b = 0) B (b = 1) C (b = 2) D (b = 3)
(Table I)

Label ν̃A ∆ν̃A ν̃B ∆ν̃B ν̃C ∆ν̃C ν̃D ν̃F3D

ZPV 9695.262 132.242 9604.164 41.144 9600.706 37.686 9563.019 51.200
1 9.398 0.285 9.139 0.026 9.112 −0.002 9.113 9.109
2 9.398 0.285 9.139 0.026 9.112 −0.002 9.113 9.109
3 9.398 0.285 9.139 0.026 9.112 −0.002 9.113 9.109
4 29.275 0.086 29.197 0.008 29.189 −0.000 29.189 29.188
5 31.970 0.575 31.447 0.052 31.392 −0.003 31.395 31.388
6 31.970 0.575 31.447 0.052 31.392 −0.003 31.395 31.388
7 31.970 0.574 31.447 0.052 31.392 −0.003 31.395 31.388
8 32.687 0.736 32.016 0.066 31.946 −0.004 31.950 31.942
9 32.687 0.736 32.017 0.066 31.946 −0.004 31.950 31.942
10 45.042 0.463 44.620 0.041 44.576 −0.003 44.579 44.573
11 45.042 0.463 44.620 0.041 44.577 −0.003 44.579 44.573
12 45.042 0.463 44.620 0.041 44.577 −0.003 44.579 44.573
13 53.156 0.119 53.048 0.011 53.036 −0.001 53.037 53.036
14 57.039 0.799 56.313 0.073 56.236 −0.005 56.240 56.232
15 57.039 0.799 56.313 0.073 56.236 −0.005 56.240 56.232
16 57.039 0.799 56.313 0.073 56.236 −0.005 56.240 56.232
17 64.807 0.753 64.122 0.068 64.050 −0.004 64.055 64.046
18 64.807 0.753 64.122 0.068 64.050 −0.004 64.055 64.046
19 66.819 0.970 65.989 0.141 65.839 −0.009 65.848 65.837
20 66.819 0.971 65.989 0.141 65.839 −0.009 65.848 65.837
21 66.819 0.970 65.989 0.141 65.839 −0.009 65.848 65.837
22 67.414 1.337 66.143 0.066 66.072 −0.004 66.076 66.070
23 67.414 1.337 66.143 0.067 66.072 −0.004 66.076 66.070
24 67.414 1.337 66.143 0.067 66.072 −0.004 66.077 66.070
25 70.705 0.388 70.360 0.043 70.314 −0.003 70.317 70.313
26 74.623 1.118 73.597 0.092 73.499 −0.006 73.505 73.497
27 76.276 0.920 75.438 0.081 75.351 −0.005 75.356 75.347
28 76.276 0.920 75.438 0.081 75.351 −0.005 75.356 75.347
29 76.276 0.920 75.442 0.086 75.351 −0.005 75.356 75.347
30 80.808 0.517 80.338 0.047 80.287 −0.003 80.290 80.283
31 80.808 0.517 80.338 0.047 80.288 −0.003 80.291 80.283
32 80.808 0.517 80.337 0.047 80.288 −0.003 80.291 80.283
33 83.156 0.067 83.093 0.004 83.088 −0.000 83.088 83.085
34 88.844 0.647 88.255 0.057 88.194 −0.004 88.197 88.189
35 88.844 0.647 88.254 0.056 88.194 −0.004 88.198 88.189
36 88.844 0.647 88.254 0.056 88.194 −0.004 88.198 88.189
37 89.588 0.753 88.903 0.068 88.830 −0.004 88.835 88.826
38 89.588 0.753 88.902 0.067 88.830 −0.004 88.835 88.826
39 89.505 0.017 89.431 −0.057 89.488 0.000 89.488 89.427
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VI. SUMMARY, CONCLUSIONS, AND OUTLOOK

The numerical kinetic-energy operator (KEO) approach as
implemented in the GENIUSH program27 has been extended with
the Smolyak algorithm,16,17 which opens a promising route toward
variational (ro)vibrational computations for polyatomic systems
with multiple large-amplitude motions.

A direct, variational solution of the (ro)vibrational Schrödinger
equation of polyatomic systems (without imposing constraints
on the coordinates) is difficult due to the high vibrational
dimensionality, which generates an exponential growth in the
direct-product basis used to represent the wave functions and
an exponential growth in the direct-product grid necessary to
calculate integrals of multidimensional operator terms in the
Hamiltonian.

If coordinates well-suited for the motions in the system and
good zeroth-order basis functions can be found for each coordi-
nate, it is not necessary to use a direct-product basis, but a much
smaller, “pruned” basis can be defined, the size of which does not
scale exponentially with the number of vibrational degrees of free-
dom. If it is possible to prune a direct-product basis, it is also possible
to find a pruned product grid to calculate integrals. The Smolyak
scheme of Avila and Carrington16,17 makes it possible to define non-
product (Smolyak) grids, which are orders of magnitude smaller
than a direct-product grid but which retain some of the practical
features of a direct-product grid. Most importantly, Smolyak grids
can be efficiently used in computing matrix-vector products and
efficient matrix-vector products allow us to compute eigenvalues
and eigenfunctions with an iterative (Lanczos) eigensolver with-
out storing or even explicitly computing the Hamiltonian matrix
elements.

In the present work, the combination of these ideas with
the numerical KEO approach of GENIUSH was elaborated and
explained for all stages of the vibrational computation of the floppy
CH4⋅Ar complex treated in full vibrational dimensionality. Due to
the highly fluxional nature of this system, regions of the curvilin-
ear coordinate domains above which the KEO has singularities are
dynamically important.

In a fully finite basis representation (FBR) treatment of the
numerical KEO, the Hamiltonian matrix fails to be Hermitian due
to inaccurate integration of the singularities in general coordinates.
As a practical way to avoid these singularity problems in FBR, we
proposed to use (efficient) DVRs and an inherently symmetric form
of the general KEO for the singular coordinate(s), which ensures a
symmetric matrix representation by construction and correct limit-
ing (convergence) behavior at the same time. In practice, this hybrid
DVR-FBR treatment allows us to converge all bound vibrational
states of CH4⋅Ar.

In general, this hybrid DVR-FBR approach makes it possi-
ble to continue using (1) numerical KEOs and (2) general and
simple starting product basis sets and grids (both pruned accord-
ing to physically motivated restrictions) for systems with multi-
ple large-amplitude motions and ultimately to (further) develop
a universal, black-box-type (ro)vibrational procedure practical
for polyatomic systems. Extension of the algorithm for J > 0
rotational quantum number is straightforward; limitations might
be set by the memory requirements and the computational
time.

We can foresee future possible improvements of the present
procedure to (at least partially) eliminate the current bottlenecks in
terms of memory usage (storage of the numerical KEO terms over
the grid; see for example Ref. 55) and perhaps also in terms of the
computational cost. Furthermore, the present developments, in par-
ticular, the fact that the Smolyak grid is several orders of magnitude
smaller than the direct product grid, can be combined with the basis-
set contraction idea.7,13,56 With these or other developments, it will
become possible to directly access the predissociation spectral range
corresponding to the molecule’s fundamental (and lowest overtone)
vibrations in weakly or more strongly bound complexes of the size of
CH4⋅Ar, i.e., with D = 12 or perhaps beyond this value. In general, a
careful choice of the coordinate set, the basis, and the grid represen-
tation is required to make full use of the ideas combined, developed,
and described in the present work. We hope that these ideas will
find applications, beyond the realm of molecular complexes, among
high-dimensional molecular systems with multiple large-amplitude
motions.

SUPPLEMENTARY MATERIAL

The definition of the normal coordinates used for the methane
fragment is provided in the supplementary material.
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Rovibrational quantum dynamical computations
for deuterated isotopologues of the
methane–water dimer†

János Sarka, ab Attila G. Császár ab and Edit Mátyus *a

Rovibrational states of four dimers formed by the light and the heavy isotopologues of the methane and

water molecules are computed using a potential energy surface taken from the literature. The general

rovibrational energy-level pattern characteristic to all systems studied is analyzed employing two models

of a dimer: the rigidly rotating complex and the coupled system of two rigidly rotating monomers. The

rigid-rotor model highlights the presence of rovibrational sequences corresponding to formally negative

rotational excitation energies, which is explained in terms of the coupled-rotors picture.

I. Introduction

Weak molecular interactions are important in many areas of
chemistry because they make it possible to break and form
molecular assemblies, including macromolecules like proteins,
and are involved in the self-organization of materials. Weakly
bound systems exhibit several interesting and unusual spectro-
scopic features. High-resolution spectroscopic measurements,
when compared with the results of quantum dynamical com-
putations, provide a stringent test of the quality of potentials
modeling the interactions of the monomers in the complexes.
For quantum dynamical computations, weakly bound complexes
are of further interest because they are usually floppy, highly
delocalized systems, which challenge our traditional tools and
concepts of molecular structure and dynamics.

The methane–water dimer is a floppy, weakly bound complex.
It was subjected to microwave1 and high-resolution far-infrared2

spectroscopic experiments some twenty years ago. The elucida-
tion of the observed far-infrared transitions by means of quan-
tum dynamical computations had to wait until last year.3

The experimentally measured2 and the computed rovibrational
transitions up to J = 2,3 using an accurate ab initio intermolecular
potential energy surface (PES),4 are in excellent agreement,
yielding deviations on the order of a few cm�1. The rovibrational
computations reproduce fine details of and provide an assign-
ment to many experimental features. Most interestingly,
the experimentally observed reversed rovibrational sequences

(whereby within the usual molecular picture one would assign a
‘‘negative’’ rotational energy to a vibrational state, a character-
istic feature of certain floppy molecular systems5–11) were also
obtained in the computations.

Ref. 3 left the explanation of these reversed sequences to
further work suggesting that perhaps they could be better
understood in terms of a coupled-rotor model rather than
using the traditional picture of a rotating–vibrating molecule.
The purpose of the present study is to work out this idea. In fact,
we propose and describe a general algorithm to compute the
similarity (overlap) of eigenstates of two coupled rotors with the
full intermolecular wave function. This coupled-rotor decompo-
sitions (CRD) scheme is generally applicable to any system that
can be partitioned into two subsystems. Through the application
of the CRD scheme to all four possible combinations of the light
and deuterated monomers, CH4�H2O, CH4�D2O, CD4�H2O, and
CD4�D2O, we gain a general overview of the dynamical properties
of the methane–water dimer.

II. Computational details

The quantum dynamical computations of the present study
were carried out using the GENIUSH12,13 code, which was
reviewed in ref. 14 highlighting quantum chemical algorithms
and computer codes of the fourth age of quantum chemistry.
In GENIUSH, the matrix representation of the Hamiltonian is
constructed in the discrete variable representation (DVR)15 and
the kinetic energy operator is evaluated numerically during the
course of the computation for the selected internal coordinates
and body-fixed frame. An iterative Lanczos algorithm16 is used
to compute the required eigenvalues and eigenvectors. In
the present work, our in-house Lanczos implementation was

a Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A,

Budapest, H-1117, Hungary. E-mail: matyus@chem.elte.hu
bMTA-ELTE Complex Chemical Systems Research Group, P.O. Box 32,

H-1518 Budapest 112, Hungary

† Electronic supplementary information (ESI) available. See DOI: 10.1039/c7cp02061a

Received 31st March 2017,
Accepted 18th May 2017

DOI: 10.1039/c7cp02061a

rsc.li/pccp

PCCP

PAPER

               dc_1955_21

http://orcid.org/0000-0003-4269-0727
http://orcid.org/0000-0001-5640-191X
http://orcid.org/0000-0001-7298-1707
http://rsc.li/pccp


15336 | Phys. Chem. Chem. Phys., 2017, 19, 15335--15345 This journal is© the Owner Societies 2017

improved and optimized for the determination of a large number
of eigenstates. Over the years, a number of tools have been
developed supporting the analysis of the computed rovibrational
wave functions.6,17

Computations with the GENIUSH code feature a series of
floppy molecular systems.5,6,12,13,18–21 For example, molecular
systems with reversed rovibrational sequences (hence termed
‘‘astructural molecules’’) were studied in ref. 5 and 6. A mole-
cular complex with almost fully decoupled degrees of freedom
resulting in long-lived resonances was presented in ref. 21.
Furthermore, the flexibility of the code makes it possible to
model non-adiabatic effects in the rovibrational spectrum by
using different rotational and vibrational masses.22

Hereby we only shortly summarize the computational para-
meters and explain any difference compared to our earlier
work.3 In the present study we computed the lowest-energy
few dozens rovibrational eigenstates (150 states for J = 2) for the
four isotopologues of the methane–water dimer with J = 0, 1,
and 2 rotational angular momentum quantum numbers utiliz-
ing the QCHB15 PES.23,37

In the quantum dynamical computations of the dimer, the
methane and the water monomer structures are fixed and six
active internal coordinates describe the intermolecular dynamics.
According to a recent study on the variation of the monomer
structures due to non-covalent interactions,24 this appears to be
a fairly good approximation. The active internal coordinates,
(R, cos y, f, a, cosb, g), and the embedding are identical to those
of ref. 3, but in this work we use the vibrationally averaged, r0,
structures of the monomers, summarized in Table 1. These
values were made available for the H2O and D2O isotopologues
in ref. 25, whereas for CH4 and CD4 we computed them as part of
this study using the T8 force field.26 The atomic masses used
throughout this work are m(H) = 1.007825 u, m(D) = 2.014102 u,
m(C) = 12 u, and m(O) = 15.994915 u.

The same DVRs were used for the active degrees of freedom
as in ref. 3, which are listed in Table 2 for the sake of
completeness. The global minimum (GM) structure of the
QCHB15 PES is also given in Table 2. The corresponding
(A,B,C)/cm�1 rotational constants of the (near-symmetric top)
dimers used for the wave function analysis are (0.158421,
0.157281, 4.14248) for CH4�H2O, (0.149861, 0.147929, 3.56864)
for CH4�D2O, (0.138355, 0.137491, 2.28551) for CD4�H2O, and
(0.130425, 0.128981, 2.09921) for CD4�D2O.

For a short and unambiguous referencing of the various
isotopologues and their energy levels, we introduce the nota-
tion CH4�H2O (HH), CH4�D2O (HD), CD4�H2O (DH), and CD4�

D2O (DD). For the computed (ro)vibrational states of XY
(X, Y = H, D) with J = 0, 1, and 2 we shall use the labels
XY–J0.n, XY–J1.n, and XY–J2.n, respectively, where the integer n
enumerates all computed levels (including degeneracies) in an
increasing energy order.

III. Assignment of the computed
rovibrational states

The direct solution of the rovibrational Schrödinger equation
provides numerically correct (‘‘exact’’) energy levels and wave
functions, which carry detailed (‘‘all’’) information about the
system. They can be used to make a direct comparison with
experimentally observable transitions, to compute electric
dipole transition intensities, etc. Although the wave functions
carry ‘‘all’’ the information that can be learned about each
state, it is usually overly complicated to ‘‘read’’ them and we
may prefer to think about the states in terms of some well-
established but simpler model. These simpler general descrip-
tions include determination of the irreducible symmetry labels
of the states based on the underlying molecular symmetry (MS)
group, see, e.g., ref. 29; characterization of the nodal structure
(‘‘node counting’’), see, e.g., ref. 3, 6, and 21; computation of
expectation values of structural parameters, see, e.g., ref. 3; or
determination of the similarity (overlap) of the full wave func-
tion with wave functions of simple model systems as advocated,
e.g., in ref. 17. For this purpose, the harmonic oscillator model
of vibrational states and the rigid rotor (RR) model of rotational
states are the working horses of molecular spectroscopy.

Another limiting model, relevant to weakly bound dimers
including but not limited to the ones studied herein, is obtained
by means of the coupling of rotating (rigid) subsystems. In what
follows, we define an algorithm, which we call the coupled-rotor
decomposition (CRD) scheme, in order to compute the overlap
of the full wave function (which might be available only in some
grid representations, as is the case in a GENIUSH computation)
with the coupled-rotor functions.

A. The coupled-rotor decomposition

The development and use of the CRD scheme has been motivated
by the interesting energy-level structure of the methane–water

Table 1 Structural parameters and the corresponding rotational con-
stants of the methane and the water molecules in their ground vibrational
state (X = O or C and Y = H or D)

CH4 CD4 H2O D2O

hrXYi [Å] 1.11002 1.10446 0.97565 0.97077
haYXYi [1] 109.471 109.471 104.430 104.408
A [cm�1] 9.17136 4.80367
B [cm�1] 5.09073 2.57303 14.0667 7.11182
C [cm�1] 26.3538 14.8010

Table 2 Internal coordinates (Coord.), discrete variable representations
(DVR), number of grid points (N), and grid intervals used in GENIUSH to
compute the rovibrational states of the methane–water dimers

Coord. Min.a
Nuclear motion computations

DVR typeb N Grid interval

R [Å] 3.447 PO Laguerre 15 Scaled to [2.5,6.0]
y [1] 117.72 PO Legendre 14 Scaled to [1,179]
f [1] 90.00 Exponential 15 Unscaled on [0,360)
a [1] 297.65 Exponential 9 Unscaled on [0,360)
b [1] 112.80 PO Legendre 21 Scaled to [1,179]
g [1] 293.52 Exponential 21 Unscaled on [0,360)

a Equilibrium geometry in internal coordinates corresponding to the
global minimum (GM) of the QCHB15 PES.23 b PO: potential-optimized
DVR (optimization of the DVR points for a 1-dimensional model).27,28
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dimer but it is useful for the understanding of the internal
dynamics of other floppy systems that can be partitioned into
two subsystems.

In order to take a closer look at the model that we would like
to use to characterize the full system, we reiterate that it
consists of two rigid rotors fixed at a certain distance and the
rotors are coupled to some total angular momentum state
without being under the influence of any external potential.
To assign the wave functions of the full system to states of the
coupled, rotating monomers, we define the following three-step
numerical approach:

� Step (1): compute the rovibrational states of a 5-dimensional
model using the same coordinate and grid representation as for
the full model but with a fixed intermonomer separation, R,
and with V = 0, i.e., without the influence of the PES. In this step
the coupled-rotor (CR) eigenfunctions (and eigenvalues) are
obtained in exactly the same grid representation for the five
angles as in the full computation.

� Step (2): calculate the eigenenergies of the 5D CR system
with J total angular momentum using the expressions derived
for dimers in ref. 30 corresponding to some monomer rota-
tional states, ( jA,jB), and some coupling. The calculated CR
energies are associated with angular momentum labels of the
subsystems.

� Step (3): by matching the energies in Steps (1) and (2), the
CR eigenfunctions computed in Step (1) in the desired repre-
sentation are associated with the monomer rotational angular
momentum and coupling labels of Step (2).

For Step 2, we reiterate the relevant expressions of ref. 30 to
calculate the energy levels of an A–B coupled-rotor system with
J total angular momentum quantum number:

E(CR)( jA,jB,j,J) = E(RR)A ( jA) + E(RR)B ( jB) + Ec( j,J) (1)

where j is the internal angular momentum quantum number,
which results from the Clebsch–Gordan-type29 coupling of
the angular momenta of A and B, and it is thus restricted by
the | jA � jB|r jr | jA + jB| condition. E

(RR)
A ( jA) and E(RR)B ( jB) are

the rigid-rotor energies of the monomers. Ec( j, J) can be
obtained by diagonalizing the K A R

min( j, J)�min( j, J) coupling
matrix, the angular part of eqn (42) of ref. 30:

KO0
;O ¼

�h2

2mR2

h

dO0
;OðJðJ þ 1Þ þ jð j þ 1Þ � 2O2Þ:

þ dO0
;Oþ1C

þ
jOC

þ
JO þ dO0

;O�1C
�
jOC

�
JO

i

;

(2)

where C�
jk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jð j þ 1Þ � kðk� 1Þ
p

, O = �min( j, J),. . .,min( j, J),
and m�1 = mA

�1 + mB
�1 is the reduced mass of the effective

rotating diatom, which connects the centers of mass of the
monomers. mA and mB are the total masses of monomers A

and B, respectively, and di,j is the Kronecker delta function.
Note that since the Hamiltonian of ref. 30 does not contain any
mixed radial-angular differential operators, the expressions for
a fixed intermonomer distance, eqn (2), can be obtained from
eqn (42) of ref. 30 by simply retaining the angular part with
some fixed R value.

The eigenvalues of the K coupling matrix, i.e., the coupling
energies, disappear at infinite separation of A and B. In this
case the coupled-rotor energy, eqn (1), is determined com-
pletely by the sum of the rigid-rotor energies of the mono-
mers, which we call the free-rotor (FR) energy. It is of interest
to note that the eigenvalues of K can be obtained analyti-
cally. The analytic eigenvalues are provided for a few J and
j values in the ESI† and the corresponding numerical value of
the coupling energy is given for two intermonomer distances
for all the four isotopologues studied (Tables S17–S19,
ESI†). The CR energy, E(CR)( jA,jB,j,J) is the sum of the FR energy
(Tables S13–S16, ESI†) and the coupling energy (Tables S17–S19,
ESI†).

As a result of Steps (1)–(3), the coupled-rotor functions,
j(J)( jA,jB,j) (with explicit jA,jB,j, and J labels), are available in
the same grid representation for the angular degrees of free-
dom as the full rovibrational wave function. In the next sub-
section we define the overlap of j(J)( jA,jB,j) depending on five
angles and the full wave function,C(J), which depends on all six
intermonomer coordinates.

B. Numerical evaluation of the CRD overlaps

Since the 6-dimensional wave function is normalized to one, we
can write

1 = hC(J)
n |C

(J)
n iR,O (3)

¼
X

J

k¼�J

X

NR

r¼1

X

NO

o¼1

~C
ðJÞ
n;k rr;xoð Þ

�

�

�

�

�

�

2

; (4)

where ~C refers to the DVR representation of the wave function
with rr (r = 1,. . .,NR) grid points along the intermonomer
distance, R, and xo (o = 1,. . .,NO) grid points in the 5D angular
subgrid, O = (cos y, f, a, cos b, g). Next, the truncated resolution
of identity over some finite number of CR functions, M, is
introduced:

I
ðJ;5DÞ �

X

M

m¼1

jðJÞ
m

�

�

E

O
�
O

jðJÞ
m

D

�

�

; (5)

which is inserted into eqn (3) and (4):

1 = hC( J)
n |C( J)

n i (6)

�
X

M

m¼1

*

CðJÞ
n jðJÞ

m

�

�

E

O
�
O

D

jðJÞ
m CðJÞ

n

�

�

+

R;O

(7)

¼
X

M

m¼1

X

NR

r¼1

X

J

k¼�J

X

NO

o¼1

~C
ðJÞ
n;k rr;xoð Þ � ~j

ðJÞ
m;k xoð Þ

�

�

�

�

�

�

�

�

�

�

2

 !

: (8)

Then, we define the (n,m)th element of what we call the CRD
matrix for the J total rotational quantum number as

CRD
ðJÞ
nm ¼

X

NR

r¼1

X

J

k¼�J

X

NO

o¼1

~C
ðJÞ
n;k rr;xoð Þ � ~j

ðJÞ
m;k xoð Þ

�

�

�

�

�

�

�

�

�

�

2

; (9)

where C(J)
n is the nth state and j(J)

m is the mth CR function.
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There are a few important properties of the CRD matrix
which immediately follow from eqn (9):

(a) The sum of the elements in each row, i.e., the CRD
coefficients corresponding to some C( J)

n state, is 1 for infinitely
many CR functions (as the truncated resolution of identity in
eqn (5) becomes exact).

(b) The sum of the elements in each column can be larger
than 1, because the same CR state can have a dominant
contribution to several C( J)

n states. For the methane–water
dimer, the stretching excitations along the intermonomer
separation, enumerated using v = 0, 1, 2,. . ., can have similar
angular parts.

(c) The angular momentum coupling rules often allow,
depending on the angular momenta of the full system and
the subsystems, a large number of CR functions with the same
( jA,jB) monomer rotational excitations. The individual contribu-
tions of the CR functions might be modest but the full ( jA, jB)
block can have a substantial contribution to the C(J) state.
Therefore, the final assessment of the contribution (or dom-
inance of some monomer excitation) ( jA, jB) must be based on
the sum of the CRD coefficients corresponding to all ( jA, jB)
monomer states.

(d) If the CR functions are determined with monomers
infinitely far in space (in practice, fixed at some large R value),
then the CR energy is equal to the FR energy, i.e., the
simple sum of the RR energies (Tables S13–S16, ESI†). This
limit facilitates the assignment of the monomer rotational
states, ( jA,jB), but in this case the coupling and the quantum
number corresponding to the rotation of an effective diatom
connecting the centers of mass of the monomers cannot be
determined.

IV. Symmetry of the methane–water
coupled-rotor functions

While Section III applies to any system that can be partitioned
into two subsystems, the symmetry analysis of this section applies
only to the methane–water dimer. Nevertheless, a similar symme-
try analysis can be carried out for other dimers, as well.

In this section, the characters of the methane–water
CR representation are calculated and the representation is
decomposed into a direct sum of irreducible representations
(irrep decomposition) in the G48 group.

2,3 For convenience, the

symmetry properties of the methane and the water monomer
rotor functions are presented first within the Td(M) and the
C2v(M) groups, respectively, which is followed by the symmetry
analysis of the coupled-rotor functions of the dimer within the
G48 group. (For completeness, the character tables are repro-
duced in the ESI.†)

a. Methane monomer

Each element of a class has the same character, so we select one
operator from each class and determine its character. The
spatial rotation equivalent to the permutation–inversion operator
is first written in the angle-axis parameterization (Fig. S1, ESI of
ref. 3 visualizes the effect of the symmetry operations). Then, the
Euler angles, a, b, and c (using the z � x � z and the active
convention) are determined from the rotation matrix evaluated
with Rodriguez’ rotation formula in the angle-axis parameteriza-
tion. For the symmetry operations (one from each class of Td(M))
the (a, b, c) Euler angles are as follows: (123): (0, 0, 2p/3); (12)(34):
(p/3, p, 0); [(1234)]*: (p/6, p/2, �p/6); and [(34)]*: (0, p, 0).
Symmetric (as well as spherical) top rotational functions trans-
form under the action of a rotation operator as:31–33

R̂ða; b; cÞj jM

km ¼
X

jM

k0¼�jM

D
jM

kk0ða; b; cÞj jM

km; (10)

where Dj
km is the (k,m)th element of Wigner’s D matrix

corresponding to the jth irrep of the rotation group, and M
denotes the methane monomer of the dimer. Then, an operator
ô A Td(M), for which R̂(ao,bo,co) is the equivalent rotation, has
the following character:

w jM ¼
X

jM

k¼�jM

j
jM

kmjôjj
jM

km

D E

¼
X

jM

k¼�jM

D
jM

kk ao; bo; coð Þ

(11)

where we also took advantage of the fact that the rotational
functions are orthonormal.

Using these properties the characters of a representation

spanned by the j
jM

km; k ¼ �jM; . . . ; jM
� �

n o

functions are easily

determined. The general expressions and the numerical values
for jM = 0, 1,. . ., 5 are collected in Table 3 (and the table can be

Table 3 Characters and irrep decomposition of the rotational functions of methane in the Td(M) molecular symmetry group

jM

E (123) (14)(23) [(1423)]* [(23)]*

Irreps

1 8 3 6 6

2jM + 1

P

jM

m¼�jM
Dj

M�

m;m 0; 0;

2p

3

� �

P

jM

m¼�jM
DjM�

m;m

p

3
; p; 0

� 	

P

jM

m¼�jM
DjM�

m;m

p

6
;

p

2
;�

p

6

� 	

P

jM

m¼�jM
DjM�

m;mð0;p; 0Þ

0 1 1 1 1 1 A1
1 3 0 �1 1 �1 F1
2 5 �1 1 �1 1 E" F2
3 7 1 �1 �1 �1 A2" F1" F2
4 9 0 1 1 1 A1" E" F1" F2
5 11 �1 �1 1 �1 E" 2F1" F2

Paper PCCP

               dc_1955_21



This journal is© the Owner Societies 2017 Phys. Chem. Chem. Phys., 2017, 19, 15335--15345 | 15339

extended straightforwardly to higher jM values). The last col-
umn of Table 3 gives the irrep decomposition for the numerical
examples, which is in agreement with the irrep decomposition
of the methane rotational states in the T(M) group34,35 and
reproduces the results of ref. 36 for the Td(M) group.

b. Water monomer

Table 4 lists the general expressions29 for the characters of the
jWkakc rotational states of water (W) in the C2v(M) group.

c. Coupled-rotor ansatz

The coupled-rotor ansatz can be understood as coupling (a)

the symmetric top eigenfunctions of methane, j
jM

km; (b) the

asymmetric top eigenfunctions of water, f
jW

kakc ;m
, and (c) the

eigenfunctions of an effective diatomic rotor, YmL, which corre-
sponds to the rotation of the displacement vector connecting
the centers of mass of the monomers. We denote this coupling

scheme by jM; jWkakc

h i

j
;L


 �

JM

, which corresponds to the func-

tion:

CM
J jMk ; jWka ;kc

; j;L
� 	

¼
X

m2S1

hjm;LðM � mÞjJMicm
j Y

M�m
L

¼
X

m2S1

hjm;LðM � mÞjJMiYM�m
L

�
X

m2S2

jMm; jWðm�mÞjjm
� 

j
jM

kmf
jW

kakc ;m�m

with S1 ¼ m 2 N0:jmj 	 j and jM � mj 	 Lf g;

S2 ¼ m 2 N0:jmj 	 jM and jm�mj 	 jW
� �

;

k ¼ �jM; . . . ; jM:

(12)

The label j is for the internal angular momentum quantum
number resulting from the coupling of the methane and water
rotors.

An operator ÔA G48 can be written as the product of ôA Td(M),
methane permutation–inversion, p̂ A Ci = {E,E*} acting on the
effective diatom, and q̂ A C2v(M) water permutation–inversion
operators. The character of Ô = ôp̂q̂ is obtained as the trace
of the matrix representation of Ô over the ansatz defined

in eqn (12):

wðÔÞ ¼
X

jM

k¼�jM

CM

J jMk ; jWkakc ; j;L
� 	

ÔCM

J jMk ; jWkakc ; j;L
� 	�

�

�

D E

¼
X

jM

k¼�jM

X

m02S1
0

X

m02S2
0

X

m2S1

X

m2S2

hjm0;LðM�m0ÞjJMi jMm0
; jWðm0�m0ÞÞjjm0

� 

� hjm;LðM�mÞjJMi jMm; jWðm�mÞÞjjm
� 

� Y
M�m0

L jp̂jYM�m
L

D E

j
jM

km0 jôjj
jM

km

D E

f
jW

kakc ;m0�m0 jq̂jf
jW

kakc ;m�m

D E

¼
X

jM

k¼�jM

X

m02S1
0

X

m02S2
0

X

m2S1

X

m2S2

hjm0;LðM�m0ÞjJMi jMm0
; jWðm0�m0ÞÞjjm0

� 

� hjm;LðM�mÞjJMi jMm; jWðm�mÞÞjjm
� 

� ð�1ÞpLdm0mD
jM

kk ao;bo;coð Þdm0mG
jW

kakc
ðq̂Þdm0�m0

;m�m

¼
X

m2S1

X

m2S2

hjm;LðM�mÞjJMi2 jMm; jWðm�mÞÞjjm
� 

2

� ð�1ÞpL
X

jM

k¼�jM

D
jM

kk ao;bo;coð Þ

2

4

3

5w
jW

kakc
ðq̂Þ

¼ wLðp̂Þwj
M

ðôÞwj
W

kakc
ðq̂Þ

(13)

where wL(p̂) = (�1)pL is the character of the effective diatomic

rotation, with p = 1 for inversion and p = 0 otherwise. w j
M

(ô) and

w
jW

kakc
ðq̂Þ are the characters of the permutation–inversion opera-

tions of the methane and water molecules listed in Tables 3 and
4, respectively.

The symmetry rules (Table 5 and Tables S23–S26, ESI†)
derived in this section together with the numerically computed
CRD tables make it possible to carry out the symmetry assign-
ment of the variationally computed rovibrational states in an
automated fashion.

V. Numerical results and discussion
A. Rovibrational energy-level pattern of the methane–water

dimers

In this section, the computed rovibrational states with J = 0, 1
and 2 are presented for the four studied CX4�Y2O (X, Y = H, D)
dimers focusing on the zero-point vibrational splitting of
the global minimum, ZPV(GM). The computed energy levels
are provided in Tables S1–S12 of the ESI.† The energy-level
differences can be directly compared with high-resolution
spectroscopic measurements, when such measurements will
become available for the deuterated isotopologues (the electric

Table 4 Characters and irrep decomposition of the rotational functions
of water in the C2v(M) molecular symmetry group

E (ab) E* [(ab)]*

1 1 1 1

jWka ;kc
1 (�1)ka+kc (�1)kc (�1)ka
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dipole selection rules and the spin-statistical weights of HH are
discussed in detail in ref. 3).

The zero-point vibrational state, or any other vibrational
state symmetric with respect to the symmetry plane of the
equilibrium structure, is split into the following direct sum,
involving 24 states:3

GA0 = A+1" E+" F+1" 2F+2" A�2 " E�" 2F�1 " F�2 (14)

in the G48 molecular symmetry group. The + and � superscripts
refer to the symmetry and anti-symmetry of the spatial wave
function with respect to the exchange of the two protons
(deuterons) of H2O(D2O), in agreement with the labeling of ref. 2.

As to the vibrational states, an irrep label can be assigned to
the computed vibrational states by visual inspection of one- and
two-dimensional cuts of the wave function, as was done in ref. 3
(for multidimensional representations, the trace of the repre-
sentation matrix had to be taken). In the present work, the CRD
decomposition and the symmetry rules derived in the previous
section made it possible to carry out the symmetry assignment
in an almost automated fashion, which is particularly useful for
the assignment of the multi-dimensional irreps.

This automated assignment scheme facilitated the identifi-
cation of a mistake in our earlier assignment of the 1 and 2
subindices of the triply degenerate irreps of HH.3 According to
the corrected assignment of the ZPV(GM) splitting (J = 0), there
is an F+2 and an F�1 state in the lower part and there is an (F+1, F

+
2)

pair as well as an (F�1 , F
�
2 ) pair of states in the upper part of the

splitting with J = 0 (see Fig. 2–4).

To characterize the rovibrational states (Fig. 3 and 4), we
identified the parent vibrational state(s) of each rovibrational
state using the rigid-rotor decomposition (RRD) scheme.17

When the identification of a single parent vibrational state is
possible, the rovibrational state can be imagined as some
rotational excitation of the parent vibrational state.

The numerical values of the energy levels and the splittings
are very different for the four isotopologues studied, but the
overall rovibrational pattern and assignment is very similar
(recall that the four systems are described on the same PES
but have different monomer rotational constants): both the
vibrational and the rovibrational energy-level patterns are char-
acterized by a lower and an upper part split into further levels
(see Fig. 2–4). As expected, the energy values get smaller when
the monomers are replaced with their heavier (deuterated)
versions.

More interestingly, all studied methane–water dimers have
an unusual feature: there are rotational ‘‘excitations’’ which
lead to lower energies than the energy of the vibrational parent
state; thus, these rovibrational states appear as a rotational
excitation with a negative transition energy. These reversed
rovibrational sequences were present in the experimental data
reported for CH4�H2O

2 and were also reproduced in the com-
putations of ref. 3. Reversed rovibrational sequences have also
been identified computationally in other systems, for example,
in H5

+ (ref. 5) as well as in the CH5
+ molecular ion.7–9 These

reversed sequences observed in the computations for H5
+

were explained by a 2-dimensional torsional-rotational model.5

Table 5 Characters and irrep decomposition of the jM; jWka ;kc

h i

j
;L


 �

J

coupled-rotor functions which dominate the ZPV(GM) splitting manifold of

methane–water with J = 0 in the G48 group (see also Fig. 3 and 4)

G

E (123) (14)(23) [(1423)(ab)]* [(23)(ab)]* (ab) (123)(ab) (14)(23)(ab) [(1423)]* [(23)]*

Irreps1 8 3 6 6 1 8 3 6 6

[[0,000]0,0]0 1 1 1 1 1 1 1 1 1 1 A+
1

[[0,111]1,1]0 1 1 1 1 1 1 1 1 1 1 A+
1

[[1,000]1,1]0 3 0 �1 �1 1 3 0 �1 �1 1 F+2
[[1,111]0,0]0 3 0 �1 �1 1 3 0 �1 �1 1 F+2
[[1,111]1,1]0 3 0 �1 1 �1 3 0 �1 1 �1 F+1
[[1,111]2,2]0 3 0 �1 �1 1 3 0 �1 �1 1 F+2
[[2,000]2,2]0 5 �1 1 �1 1 5 �1 1 �1 1 E+

" F+2
[[2,111]1,1]0 5 �1 1 �1 1 5 �1 1 �1 1 E+

" F+2
[[2,111]2,2]0 5 �1 1 1 �1 5 �1 1 1 �1 E+

" F+1
[[2,111]3,3]0 5 �1 1 �1 1 5 �1 1 �1 1 E+

" F+2

[[0,101]1,1]0 1 1 1 �1 �1 �1 �1 �1 1 1 A�
2

[[0,110]1,1]0 1 1 1 1 1 �1 �1 �1 �1 �1 A�
1

[[1,101]0,0]0 3 0 �1 1 �1 �3 0 1 �1 1 F�1
[[1,101]1,1]0 3 0 �1 �1 1 �3 0 1 1 �1 F�2
[[1,101]2,2]0 3 0 �1 1 �1 �3 0 1 �1 1 F�1
[[1,110]0,0]0 3 0 �1 �1 1 �3 0 1 1 �1 F�2
[[1,110]1,1]0 3 0 �1 1 �1 �3 0 1 �1 1 F�1
[[1,110]2,2]0 3 0 �1 �1 1 �3 0 1 1 �1 F�2
[[2,101]1,1]0 5 �1 1 1 �1 �5 1 �1 �1 1 E�

" F�1
[[2,101]2,2]0 5 �1 1 �1 1 �5 1 �1 1 �1 E�

" F�2
[[2,101]3,3]0 5 �1 1 1 �1 �5 1 �1 �1 1 E�

" F�1
[[2,110]1,1]0 5 �1 1 �1 1 �5 1 �1 1 �1 E�

" F�2
[[2,110]2,2]0 5 �1 1 1 �1 �5 1 �1 �1 1 E�

" F�1
[[2,110]3,3]0 5 �1 1 �1 1 �5 1 �1 1 �1 E�

" F�2
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Furthermore, ref. 8, 10 and 11 explained this unusual behavior
by treating some large-amplitude motions (LAM) on the same
footing as the rotations by going beyond the SO(3) group for
these LAM-rotational degrees of freedom.

In the present work, we take a simple strategy to better
understand the origin of the splitting pattern and these formally
negative-energy rotational excitations: besides the rigid-rotor
model, which underlies the assignment and the observation of
these reversed sequences, we use the coupled-rotor system as
another meaningful model for weakly interacting dimers. The
computed coupled-rotor decomposition (CRD, introduced in
Section III) tables provide detailed information about the mono-
mers’ rotational states and their relative rotation within the
rotating dimer. In most of this work, we focus on the assignment

of monomer-rotor labels, jM; jWka;kc

h i

, because the monomer

excitations are about an order of magnitude more energetic than
the coupling (in particular, the water’s rotational constants are
much larger than the dimer’s rotational constants). For this
purpose, it is sufficient to use CRD tables computed with a large
intermonomer separation, the one used is R100 = 100 bohr. In
this case the CR energy is the simple sum of the monomer rotor
energies (Tables S13–S19, ESI†). To better understand the fine
details of the dimer’s internal dynamics, we also assigned j and
L for a few states using CR functions obtained with monomers
fixed at the complex’s equilibrium distance, R = Req = 6.5 bohr.
For this R value the j-splitting of the CR energies is small but
larger than the convergence of our variational results, so the
assignment of the j and L labels (Section IV) is possible. Fig. 1
presents an example of a complete CR assignment.

The results of the symmetry, RR and CR assignments of
the computed rovibrational states for all four isotopologues
are collected in Fig. 3 and 4 (detailed results are provided in
Tables S1–S12 of the ESI†). As a general and important conclu-
sion which becomes transparent from the CRD assignment, the
characteristic upper-lower separation of the rovibrational
ZPV(GM) manifold corresponds to the 111 ’ 000 and the
110’ 101 rotational excitation of the water monomer for states
of G+ and G� symmetry (para and ortho for HH and DH),
respectively. The sub-splittings of both the lower and the upper
parts are related to the rotational excitation of the methane
monomer with one and two quanta and to the excitation of the
relative rotation of the two monomers.

B. Reversed rovibrational sequences

The RRD assignment of the rovibrational states to their vibra-
tional parents highlighted that certain rotational excitations
have ‘‘negative’’ transition energies. These reversed rovibra-
tional sequences are observed for all four isotopologues and
they appear within the vibrational bands of certain vibrational
symmetries.

The CRD tables show that these negative rotational excita-
tion energies correspond to a J + 1 ’ J transition in which
the water molecule looses rotational energy—000 ’ 111 and
101 ’ 110 for G+ and G�, respectively—but due to a different
internal coupling of the methane and the water rotors, the total

Fig. 1 Coupled-rotor decomposition (CRD) table for CH4�H2O with J = 0:
overlap (eqn (9)) of the 24 lowest-energy vibrational states, which belong to the
ZPV(GM) splitting manifold, with the 92 lowest-energy coupled-rotor states.
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rotational quantum number increases. This observation is
certainly useful and provides an intuitive picture about this
phenomenon but it remains to be answered why the lower-
energy J = 0 state is ‘‘missing’’ (and is replaced by its higher-
energy analogue) in several vibrational bands (E+, F+1, F

+
2, E

�, F�1 ,
F�1 ). Is that coupling symmetry forbidden or does this pattern
result from a particular mixing of the CR states?

In the case of the F1
+-symmetry ZPV(GM) vibration (see

Fig. 3) the negative-energy rotational transition is dictated
by symmetry rules (Table 5, Tables S23 and S25, ESI†). The
[[1,111]1,1]0 and [[2,111]2,2]0 states are the lowest-energy CR
states of F+1 symmetry with J = 0. They correspond to rotationally
excited water, so they are more energetic and appear in the
‘‘upper’’ part of the splitting pattern. At the same time, the J = 1
and 2 rotational excitations of this vibrational state can have
contributions from CR states with water in its lowest rotational
state, 000, which lowers the energy of these rovibrational states
and makes them appear in the lower part of the splitting.
As a result of these symmetry properties, the rotational

excitation of the F+1 vibrational state shows up as a ‘‘negative-
energy’’ transition.

Unfortunately, the explanation of the reversed rovibrational
sequences corresponding to other vibrational states is less
straightforward when based on simple symmetry-related argu-
ments (Table 4 and Tables S23–S26, ESI†). For example, the E+

vibrational band has only a ‘‘higher-energy’’ vibrational state
but there are both ‘‘lower-energy’’, [2,000], and ‘‘higher-energy’’,
[2,111], CR functions of E+ symmetry with J = 0. In fact, we
observe in the numerically computed CRD tables that the lower-
energy [2,000] CR functions contribute to many states but they
do not dominate any of the states. Namely, the J = 0 E+ vibration
is assigned to the higher-energy [2,111] CR function with some
contribution also from [2,000]. The HH isotopologue, whose
assignment slightly differs from the other three isotopologues,
has about equal contributions from both [2,111] and [2,000].
Similar behavior is observed for the F+2, E

�, F�1 , and F�2 vibra-
tional bands of the ZPV(GM). The reversed energy ordering
results from a particular mixing of CR states with lower-energy

Fig. 2 Zero-point vibrational splitting energies, in cm�1, assigned to the global minimum of the four isotopologues studied. The splittings indicated with
double-headed arrows are color coded with blue and red referring to the methane and water monomers, respectively.

Paper PCCP

               dc_1955_21



This journal is© the Owner Societies 2017 Phys. Chem. Chem. Phys., 2017, 19, 15335--15345 | 15343

and higher-energy water rather than being due to strict sym-
metry rules. We also note that for the F+2 and F�1 states of the
ZPV(GM) there are both reversed and normal sequences.

In general, the computed CRD tables show that the higher-
energy rovibrational states are dominated by higher-energy CR
functions with the 111 and 110 higher-energy rotational states of
water in G+ and G�, respectively. At the same time, the lower-
energy states are dominated by lower-energy CR functions with the
000 and 101 rotational states of water in G+ and G�, respectively.

VI. Summary and outlook

The rovibrational states of four isotopologues of the methane–
water dimer have been computed using a six-dimensional
intermolecular vibrational model utilizing the GENIUSH
code12,13 and the QCHB15 potential energy surface.23 The
computed rovibrational states (with J = 0, 1, and 2 rotational
quantum numbers) were assigned to their parent vibrational
state(s) using the rigid-rotor decomposition (RRD) scheme.
This assignment highlighted in all four dimers, CH4�H2O,
CH4�D2O, CD4�H2O, and CD4�D2O, the existence of a reversed
rovibrational energy ordering, i.e., formally ‘‘negative’’ rotational
excitation energies.

In order to better understand the complex rovibrational
dynamics of this fluxional, weakly bound complex, we devel-
oped the coupled-rotor decomposition (CRD) scheme. The
CRD scheme is a general approach to determine the rotational
states of the monomers and their relative rotation within a
rotating dimer.

For the example of the methane–water dimer, the symmetry
properties of the coupled-rotor functions were derived employ-
ing the G48 molecular symmetry (MS) group. Together with the
numerically computed CRD tables this symmetry classification
opens the route to an automated symmetry assignment of the
rovibrational states of the dimer, a particularly useful approach
for higher excited, multiply degenerate states.

As to the interpretation of the higher-energy states of the
methane–water dimer, we can think of a number of challenging,
open questions. Is it possible to identify the zero-point splitting
manifold of the secondary minimum, ZPV(SM), similarly to the
ZPV(GM) studied in the present work? Is the full ZPV(SM) bound
or does it spread beyond the first dissociation threshold (which
is only D0(HH) = 152.030 cm�1 for CH4�H2O on the QCHB15
PES23). Furthermore, by thinking in terms of the coupled-rotors
picture, we may imagine energetic monomer rotational states
which bring the system above the dissociation energy. Since the
intermolecular angular degrees of freedom are only weakly

Fig. 3 Summary of the computed J = 0, 1, and 2 rovibrational states of the methane–water dimers with G+ symmetry. Levels shown with dashed lines in
the ZPV, E+ column (for all studied isotopologues) correspond to the (2,000) monomer rotor states of the ZPV rovibrational band but cannot be assigned
to a single, dominant vibrational state. The states labelled with * are characterized by a strong mixing of the (1,000), (2,000), (1,111), and (2,111) monomer
rotor states. The states labelled with † exhibit a strong mixing with the E

+ vibrational parent levels in the RRD.

PCCP Paper

               dc_1955_21



15344 | Phys. Chem. Chem. Phys., 2017, 19, 15335--15345 This journal is© the Owner Societies 2017

coupled to the intermonomer stretching (the dissociation coor-
dinate), we may expect long-lived quasi-bound states in which
the energy is stored in fast spinning monomers. These ques-
tions highlight the extremely rich internal-rotational dynamics
of this weakly bound dimer, which is worth further experi-
mental and computational investigation. Seemingly all the
theoretical tools are at hand to help understanding high-
resolution far-infrared spectra of these complexes.
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C. Léonard, Phys. Chem. Chem. Phys., 2016, 18, 17678.
21 D. Papp, J. Sarka, T. Szidarovszky, A. G. Császár, E. Mátyus,
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Rovibrational quantum nuclear motion computations, with J = 0, 1, and 2, are reported for the intermolecular

degrees of freedom of the methane–water dimer, where J is the quantum number describing the overall

rotation of the complex. The computations provide the first explanation of the far-infrared spectrum of

this complex published in J. Chem. Phys., 1994, 100, 863. All experimentally reported rovibrational

transitions, up to J = 2, can be assigned to transitions between the theoretically computed levels. The

deviation of the experimental and computed rovibrational transitions is 0.5 cm�1 for the ortho and 2 cm�1

for the para species with a variance of 0.005 cm�1. In addition to a lower systematic error, the overall

agreement of theory and experiment is also better for the ortho species (involving ortho-H2O). Most

importantly, for this species all levels of the 24-fold tunneling splitting manifold corresponding to the

zero-point vibration (ZPV) are involved in at least one experimentally reported transition. For the para

species there are a few energy levels in the computed ZPV manifold that are not involved in the reported

experimental transitions. Furthermore, computed energy levels are identified that correspond to the ZPV

tunneling splitting manifold of the secondary minimum structure of the dimer, which presumably appear

in rovibrational transitions in the same energy regime as the observed transitions, but have not been

experimentally reported.

1 Introduction

Amolecular-level representation ofmaterials by an ab initio potential
energy surface (PES) can be used to make reliable predictions
about bulk-phase properties, relevant from biological simulations
to technological applications. A universal PES, which can be used
from the monomers through the dimer, trimer, etc. to the bulk
phase, relies on an incremental n-body expansion, and usually
consists of only the monomer PESs, the dimer interaction energy,
and the trimer interaction energy contributions.1–7 Exact quantum
dynamical computations of clusters map this PES representa-
tion onto transitions between rotational and vibrational energy
levels—directly measurable quantities by spectroscopic techniques
to high precision. This spectroscopic validation, through the
direct comparison of the computed and measured rovibrational

transition energies of the dimer, trimer, and larger clusters,
provides a stringent test of this incremental representation of
materials.

Complexes of methane and water are important for gas storage,
including the naturally captured methane in marine and arctic
reservoirs,8 and transportation. The infrared spectrum of methane
clathrate hydrate has been reported in ref. 9 and might find
significant astrophysical applications. Recent local-monomer,
vibrational self-consistent field, and virtual-state configuration
interaction theory computations of CH4@(H2O)20

10 show good
agreement with the experimental Raman spectrum recorded in
the C–H stretch region.11,12 The methane–water dimer has been
studied at high resolution in the microwave13 and the far-infrared14

regions of the spectrum; however, a detailed theoretical quantum
dynamical characterization of this simplest complex has never been
carried out.

The quantum dynamical description of CH4�H2O is challenging
because all intermolecular degrees of freedom correspond to
highly delocalized motions, resulting from the fluxional and
loosely bound character of the complex. These ‘difficult’ fluxional
degrees of freedom play a central role in binding the water and
methane molecules. Hence, an exact quantum mechanical
description of (at least) the intermolecular degrees of freedom
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is necessary to validate the intermolecular potential energy surface
(PES). Such a validation is important for the construction of a
universal PES for the (CH4)n@(H2O)m systems.

In the present article, we describe the direct numerical
solution of the rovibrational Schrödinger equation for the dimer
with rigid monomers using the ab initio PES of ref. 15 (and also
report preliminary computations performed with the PES of ref. 6).
The computed rovibrational transitions are compared with far-
infrared (FIR) spectroscopic measurements.14 This comparison
allows us to directly test the accuracy of the PES representations
of the methane–water bimolecular interactions. Understanding
the transitions seen in the FIR measurements not only requires
the application of the best present-day quantum dynamics
techniques pushed to their technical limits, but also the develop-
ment of several tools for the detailed analysis of the results obtained.

In Section 2, we define the rovibrational Hamiltonian used
in this study and explain the details of the numerical solution
of the corresponding Schrödinger equation. Section 3.1 lists a
few relevant results about the PES of the dimer and Section 3.2
is a summary of the symmetry analysis, provided in full detail
in the ESI,† which is followed by the presentation and discussion
of the computed vibrational energy levels, rovibrational energy
levels, and rovibrational transitions in Sections 3.3, 3.4, and 3.5,
respectively. The article ends with Section 4, containing a
summary and the most important conclusions.

2 Numerical solution of the
rovibrational Schrödinger equation of
the intermolecular degrees of freedom

We have carried out a numerical study of the intermolecular degrees
of freedom of the methane–water dimer using the rovibrational
quantum dynamics computer program GENIUSH,16,17 and
related wave function analysis tools.18,19 The program and the
related methodology have been used before for a number of
floppy,16,17,20 fluxional,21 and astructural19,22 molecules and
complexes. In what follows, we summarize the theoretical
background and specify the computational parameters used
during the present study.

The methane–water complex includes N = 8 atomic nuclei
and we describe the intermolecular dynamics by considering
D = 6 active degrees of freedom (Fig. 1). The general rovibra-
tional Hamiltonian implemented in GENIUSH16,17 is

Ĥ ¼ 1

2

X
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X

D

l¼1

~g�1=4p̂kGkl~g
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(1)

where the operators p̂k =�iq/qqk (in atomic units) correspond to
the qk (k = 1, 2,. . .,D) internal coordinates and Ĵa (a = 1(x), 2( y),
3(z)) are the body-fixed angular momentum operators. The
coefficients, Gkl = (g(inter))kl

�1 and g̃ = det(g(inter)), are obtained
from the reduced-dimensional gmatrix (which depends also on
the structure of the constrained moieties)

g
ðinterÞ
kl ¼

X

N

i¼1

mit
T

iktil ; k; l ¼ 1; 2; . . . ;Dþ 3 (2)

with

tik ¼
@ri
@qk

; k ¼ 1; 2; . . . ;D (3)

ti,D+a = ea � ri, a = 1(x), 2( y), 3(z) (4)

evaluated for the body-fixed Cartesian coordinates, ri, and the unit
vectors, ea, of the body-fixed frame. The volume element corres-
ponding to the Hamiltonian, eqn (1), is dV = dq1dq2. . .dqDda1da2da3.
This intermolecular (reduced-dimensional) quantum Hamiltonian
rigorously accounts for the geometrical constraint of the monomer
structures for fixed reference geometries, since it is obtained from
the classical Lagrangian in which the time derivatives of the mono-
mer structural parameters are set to zero.16

The six active internal coordinates visualized in Fig. 1 are
defined as follows: the distance of the center-of-mass of the two
molecules, q1 = R A [0,N), angles of the spherical polar
coordinates r = (y,f) of H2O, q2 = cosy A [�1,1], q3 = f A [0,2p),
and the Euler angles for CH4, (a,b,g) with q4 = a A [0,2p),

Fig. 1 Internal coordinates (R,y,f,a,b,g) and the body-fixed frame (x, y, z)
employed in the rovibrational computations restricted to intermolecular
motions. X labels the center of mass of the water molecule.
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q5 = cosb A [�1,1], and q6 = g A [0,2p). The z axis of the right-
handed (x,y,z) body-fixed frame is attached to the centers of
mass of the two moieties and points from the water towards the
methane subunit. We used the same monomer structures
(effective ground-state vibrational structures) as in ref. 15, i.e.,
the fixed structure of the water molecule is defined by r(O–H) =
0.9716257 Å and a(H–O–H) = 104.691,23 slightly different from
the vibrationally averaged parameters two of us computed
before,24 hrOHi = 0.97565 Å and haHOHi = 104.431. The fixed
structure of the methane molecule is a regular tetrahedron,
cos a(H–C–H) = �1/3, with r(C–H) = 1.099122 Å.15,25 We used
m(H) = 1.007825 u, m(C) = 12 u, and m(O) = 15.994915 u masses
for the atomic nuclei, and the following conversion factors
among the different energy units:26 1Eh = 219474.63 cm�1 =
627.5095 kcal mol�1, and 1 MHz = 3.335641 � 10�5 cm�1 (the
PES of ref. 15 is available in kcal mol�1 units, we use atomic
units during the variational computation, and the experimental
results are available in MHz).

In the GENIUSH code the matrix representation of the
Hamiltonian is constructed using the discrete variable repre-
sentation (DVR) for the vibrational degrees of freedom along
with symmetrized Wang functions for the rotational degrees of
freedom. Table 1 summarizes the parameters of the computations.
With these parameters the energy levels (and degeneracies) could
be converged to within around 0.05 cm�1. The computed energy-
level lists for J = 0, 1, and 2 obtained with the AOSz05 PES15 (the
zero of the energy scale is shifted to the energy of the global
minimum) are included in the ESI.† In the article we refer to
these energy levels with the unambiguous labels J0.n, J1.n, and
J2.n for J = 0, 1, and 2, respectively, where n = 1, 2,. . . is an
integer that enumerates the energy levels based on their energy
order. Tighter convergence (withinB0.005 cm�1) of the degenerate
levels can be obtained by using unscaled Legendre DVR points for
the q5 = cosb degree of freedom; however, a 3–5 times larger grid
and about 10 times more CPU are required compared with the
computations specified in Table 1.

We have also tested the performance of the more recent PES
of ref. 6. The agreement of the vibrational energy levels computed
up to ca. 65 cm�1 with the two PESs6,15 is better than 1.5 cm�1 and
for several levels it is better than 0.2 cm�1. This is a very reassuring

result for the two PESs and the accuracy of the present rovibra-
tional computations. We now present and discuss in detail the
results obtained with the AOSz05 PES. (For comparison, the
vibrational ( J = 0) energy levels obtained with both PESs6,15 and
with both the scaled and the unscaled Legendre DVR grids are
included in the ESI†).

3 Discussion of the numerical results

This section presents the most relevant properties of the PES
(Section 3.1), a short summary of the symmetry analysis of the
dimer (Section 3.2), and a detailed discussion of the numerical
results of the quantum dynamical computations including the
computed vibrational energy levels (Section 3.3), the computed
rovibrational energy levels (Section 3.4), and a comparison of
the computed and experimental rovibrational transitions and
theoretical predictions for further possible experimental obser-
vations (Section 3.5).

3.1 Minima on the AOSz05 PES

The electronic ground-state PES of the methane–water dimer
supports two local minima (see Fig. 2 and Table 1), both of Cs

point group symmetry. The secondary minimum (SM) is 99 cm�1

higher in energy than the global minimum (GM) on the AOSz05
potential energy surface.15 (The minimum-energy pathway located
with OPTIM27,28 on this PES connecting the global and the
secondary minimum structures is shown in Fig. S3 of the ESI.†)
In the GM the water molecule is the proton donor, while in the SM
the water molecule behaves as an acceptor.

Table 1 Internal coordinates (Coord.), discrete variable representations
(DVR), number of grid points (N), and grid intervals employed during the
final variational computations carried out using the GENIUSH code

Coord. GMa SMa

Nuclear motion computations

DVR typeb N Grid interval

R [Å] 3.464 3.773 PO Laguerre DVR 15 Scaled to [2.5,6.0]
y [1] 116.19 22.15c PO Legendre DVR 14 Scaled to [1,179]
f [1] 90.00 0.00 Exponential DVR 15 Unscaled on [0,360)
a [1] 297.46 299.78 Exponential DVR 9 Unscaled on [0,360)
b [1] 113.05 70.17 PO Legendre DVR 21 Scaled to [1,179]
g [1] 293.01 240.66 Exponential DVR 21 Unscaled on [0,360)

a The values of the internal coordinates are provided for the global
minimum (GM) and for the secondary minimum (SM) structures of the
AOSz05 PES.15 b PO: potential-optimized DVR, i.e., subsequent optimi-
zation of the DVR points with a one-dimensional model. c The PES is
relatively flat along the y coordinate in the SM well.

Fig. 2 Equilibrium structures of the AOSz05 potential energy surface.15

The secondary minimum (SM) is 99 cm�1 higher in energy than the global
minimum (GM).
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3.2 Symmetry analysis

The feasible permutation-inversion operations of the dimer
belong to the G48 molecular symmetry (MS) group.14 A detailed
symmetry analysis, very similar to Dyke’s analysis for the water
dimer,29 as well as the character table of G48 are provided in the
ESI.† The GM (and also the SM) structure of the underlying
PES has Cs point group symmetry; thus, the dimer has only
24 (instead of 48) distinct, rotationally non-superimposable
structures. Therefore (see the ESI†) the zero-point vibration
(ZPV) with J = 0 (or any other totally symmetric state) splits into
24 levels, see eqn (S1) (ESI†), characterized by the following
symmetry species:

G(ZPV, J = 0) = A1
+
"E+" F1

+
" 2F2

+
"A2

�
" E�" 2F1

�
" F2

�.
(5)

The + and � superscripts of the irreps differentiate between the
symmetric and antisymmetric character of the wave function with
respect to the exchange of the two protons of the water molecule.
To obtain a total spin-spatial wave function that is antisymmetric
with respect to proton exchange, the (+) states have to be combined
with the para spin function, að1Þbð2Þ � bð1Það2Þ½ �

� ffiffiffi

2
p

, while the
(�) states have to be combined with one of the ortho spin functions,

að1Það2Þ; bð1Þbð2Þ; ½að1Þbð2Þ þ bð1Það2Þ�
� ffiffiffi

2
p� �

. Hence, we use (+)
and para or (�) and ortho interchangeably.

3.3 Vibrational energy levels

Vibrational energy levels computed using the GENIUSH code are
visualized at the left of Fig. 3. At the right of the figure we provide
the symmetry labels and a qualitative description of the levels up
to ca. 65 cm�1, based on the analysis of the wavefunctions.

The splitting manifold of the ZPV spans 36.4 cm�1 and
separates into a ‘lower’ and an ‘upper’ part. The levels can be
distinguished by the ‘ortho’ and ‘para’ spin states of the water
molecule. The upper-lower separation is Dul

o = 23.5 cm�1 for the
ortho and Dul

p = 29.8 cm�1 for the para species. (D is the
difference between the centers of the ‘upper’ and the ‘lower’
levels calculated as the degeneracy-weighted average of the
corresponding energies.) The large upper-lower separation
can be understood in terms of the extremely facile internal
rotation of the CH4 moiety around the O–H� � �H3C–H hydrogen
bond (Fig. 2), which is apparently slightly more hindered for
the ortho species. The three-fold symmetry of the methane
internal rotation,30 and the corresponding A " E irreducible
decomposition within the C3 symmetry group, explains the 1 : 2
ratio of the number of levels in the lower and upper parts of the
splitting pattern. The lower part covers a range of 11.2 cm�1

and includes the ‘para’ A1
+ and F1

+ and the ‘ortho’ A2
� and F2

�

species. The ortho–para separation of the degeneracy-weighted
average in this lower part is Dl

op = 6.5 cm�1. Interestingly, the
same ortho–para separation in the upper part of the ZPV
manifold is much smaller, only Du

op = 0.2 cm�1. In general,
the upper part is more congested and overlaps with a totally
symmetric level that does not fit in this ZPV manifold, since
eqn (5) tells us that the ZPV manifold accommodates only a
single totally symmetric state. The DVR plots of this ‘intruder’

state ( J0.18, 34.4 cm�1) are very similar to the plots of the
ground state, whereas the expectation values of some structural
parameters markedly differ from those of the ground state
(see Fig. 4). Based on these observations we assign this level,
as well as the J0.37–39 (50.5 cm�1), the J0.44–46 (54.0 cm�1),
and the J0.56–57 (63.4 cm�1) levels, to the zero-point vibrational
splitting manifold of the secondary minimum structure, Fig. 2b.
The SM has a very shallow potential energy well and accordingly
the computed splitting pattern is more diffuse, and we have not
attempted to identify all levels in the ZPV(SM).

As well as the ZPV manifolds of the global and the secondary
minimum structures, we obtained many more energy levels
beyond around 65 cm�1. Besides the ZPV(GM) and a few levels
from the ZPV(SM), we could unambiguously trace a few levels of
the splitting manifold of the intermolecular stretching funda-
mental by identifying a nodal plane along the R coordinate in
the DVR plots (selected examples are shown in the ESI†). The
stretching fundamental vibration is totally symmetric, similar
to the ZPV; therefore, the same symmetry species are present in
this splitting manifold as in the ZPV manifold, eqn (5). We
identified the ‘lower part’ of this stretching manifold, Stre.
A1

+ (48.7 cm�1, J0.36), Stre. F1
+ (53.3 cm�1, J0.40–42), Stre. A2

�

Fig. 3 Vibrational energy levels obtained using the GENIUSH code for the
intermolecular degrees of freedom (with rigid monomers). The computed
energy levels are shown at the left of the figure, and the symmetry species
and characterization are provided at the right, except for those levels
labeled with * (which are left unassigned for the present work). The global
minimum (GM) and secondary minimum (SM) structures are shown in
Fig. 2. ZPV labels the zero-point vibrational manifold and Stre. stands for
stretching fundamental of the intermolecular distance. Definition and
discussion of the Dl

op = 6.5 cm�1, Dul
o = 23.5 cm�1, and Dul

p = 29.8 cm�1

values are provided in the text.
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(53.9 cm�1, J0.43), and Stre. F2
� (66.1 cm�1, J0.63,65,66).

Indeed, Stre(GM) has a very similar structure to ZPV(GM) but
it is characterized by a larger ortho–para separation, Dl

op(Stre) =
10.9 cm�1, which might be explained by weaker interactions
(and hence ‘lower barriers’) than in the zero-point energy state.
The energy of the lowest-lying state of the stretching funda-
mental manifold is 48.7 cm�1, only 12 cm�1 higher than the
energy of the top level of the ZPV(GM) manifold. This is another
clear indication of the very weakly bound character of this
complex. There are levels that overlap or are even lower in
energy than the ‘lower’ part of the stretching manifold, but left
unassigned during the present work (and hence labeled with *
at the left of Fig. 3). Some of these levels could be associated
with the ZPV manifold of the secondary minimum and others
might belong to some intermolecular bending vibrations.
Beyond a certain energy range a conclusive separation of the
computed levels between the global minimum well and the

secondary minimum well is probably not possible, because
these minima have the same point group symmetry.

3.4 Rovibrational energy levels

The rotational constants corresponding to the GM structure,
Fig. 2, are A = 4.229 cm�1, B = 0.159 cm�1, and C = 0.158 cm�1,
which indicate an almost perfect prolate symmetric top character.
In addition, extremely strong rotational–vibrational mixing is
anticipated due to the weak interaction between the two moieties.

The computed rovibrational energy levels with J = 0, 1, and 2,
relevant to the experimental FIR observations,14 are collected in
Fig. 5 and 6 for the ortho and the para species, respectively. The
(ro)vibrational bands in this figure are arranged similarly to
Fig. 1 of the experimental paper.14 A detailed, quantitative
comparison of the computed and the experimental transitions
is provided in the next subsection.

The most peculiar feature of the rovibrational energy-level
manifold is the occasionally reversed ordering of the vibrational
and rovibrational levels, i.e., when a J = 1 rovibrational level is
lower in energy than its parent vibrational energy level (a parent
vibrational level is the dominant vibrational level provided by the
rigid rotor decomposition (RRD) analysis of the rovibrational
states18). This anomalous rovibrational ordering occurs within
the F2

+ (28.9 cm�1, J0.9–11; 36.3 cm�1, J0.21–23), E+ (35.7 cm�1,
J0.19–20), F1

� (32.6 cm�1, J0.12–14; 32.7 cm�1, J0.15–17), and E�

(36.4 cm�1, J0.24–25) bands of the ZPV(GM), and each of these
parent vibrational energy levels appear in the ‘upper’ part of the
ZPV(GM) splitting manifold. The reversed statement is also true:
all vibrational bands in the ‘upper’ part of the ZPV(GM) splitting
manifold feature anomalous negative rotational ‘excitation’
energies. This behavior can be understood using the coupled
rotors picture: by coupling the rotation of the (rigid) water
molecule, the rotation of the (rigid) methane molecule, and the
end-over-end rotation of the entire complex.14,31 The evaluation
of the overlap of the exact wave function with these coupled-rotor
model functions (for various subsystem angular momenta) is left
for future work, and will allow us to make a quantitative assign-
ment to this coupled multiple-rotors model (which is another
limiting model along with the common RR model). For the
present work, to qualitatively highlight the explained ideas, we
defined and constructed energy decomposition tables (see the
ESI†), which show the energy contribution of the different terms
(and hence different rotors) of the Hamiltonian to the variationally
computed (ro)vibrational energy of the complex.

3.5 Rovibrational transitions

In addition to the rovibrational energy levels with J = 0, 1, and 2,
Fig. 5 and 6 show the rovibrational transitions that could be
identified in the experimental transitions reported in ref. 14.
The transitions are labeled with 1,2,. . . in each band and the same
label is used in the corresponding Tables 2–9. There are also
experimental observations with higher J values, which could be
explored via further computations; however, the results computed
with J = 0, 1, and 2 already highlight the peculiar features (negative
rotational excitation energies) of the rovibrational level structure,
and also allow us to establish a firm, quantitative comparison

Fig. 4 Expectation values of structural parameters computed with the
vibrational wave functions. y is the tilt angle of H2O and R(C�Ha) measures
the distance between the carbon nucleus of CH4 and a hydrogen in H2O
(the exchange of the two hydrogens is feasible, and thus we obtain the
same expectation value for both). These structural parameters have very
different values in the equilibrium structures of the two minima (see Fig. 2),
and this difference also appears (less markedly) in the expectation values.
Vibrational levels that have been assigned to the secondary minimum,
based on these structural differences, are highlighted with a red circle.
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Fig. 6 Rovibrational energy levels, in cm�1, and observed14 and computed transitions of the CH4�(para-H2O) dimer with J = 0, 1, 2 (the numbers in italics
identify the lines of the corresponding tables). The label (n) next to each line indicates the number of degenerate or near degenerate energy levels with
the average energy given in the figure (rounded to the first decimal place). The levels labeled with * are assignable to the E+ 48.2 cm�1 (J0.34–35)
vibration. The dashed lines indicate strongly mixed states with small contributions from the ZPV species in which they are listed.

Fig. 5 Rovibrational energy levels, in cm�1, and observed14 and computed transitions of the CH4�(ortho-H2O) dimer with J = 0, 1, 2 (the numbers in
italics label the transitions documented in the corresponding tables). The label (n) next to each line indicates the number of degenerate or near
degenerate energy levels with the average energy given in the figure (rounded to the first decimal place). The dashed lines indicate strongly mixed states
with small contributions from the ZPV species in which they are listed.
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with the experimental results, see Tables 2–9. (The computed
rovibrational energy level list is provided in the ESI.†)

Evidently, the observed transitions take place within the
rovibrational ZPV(GM) manifold with only three exceptions

Table 2 Rovibrational transitions assigned to the E� 36.4 cm�1 (J0.24–25) level of the zero-point vibration

No. J0 ’ J00 Expt [MHz] Expt [cm�1] E( J0) [cm�1] Label ( J0)a E( J00) [cm�1] Label ( J00)a Calc. [cm�1] db [cm�1]

Expt. (ref. 14): Table III, E1, S’ P band
1 1’ 2 524254.1 17.5 36.6 J1.56–57 19.9 J2.23–24 16.8 0.7
2 0’ 1 532812.0 17.8 36.4 J0.24–25 19.3 J1.23–24 17.0 0.7
3 1’ 1 541359.5 18.1 36.6 J1.56–57 19.3 J1.23–24 17.3 0.7
4 2’ 2 541344.3 18.1 37.2 J2.78–79 19.9 J2.23–24 17.3 0.7
5 2’ 1 558451.2 18.6 37.2 J2.78–79 19.3 J1.23–24 17.9 0.7

Expt. (ref. 14): Table III, E2, D’ P band
6 2’ 2 542744.8 18.1 37.6 J2.86 19.9 J2.23–24 17.7 0.4
7 2’ 1 559850.8 18.7 37.6 J2.86 19.3 J1.23–24 18.2 0.4

a Jn.i–j identifies the levels in the energy-level list provided in the ESI. b d is the difference of the experimental and computed transitions. The mean
and the sample variance of the deviation in the E1 and E2 bands are (�d,sd) = (0.7,0.002) cm�1 and (0.4,0.003) cm�1, respectively.

Table 3 Rovibrational transitions assigned to the F1
� 32.6 cm�1 (J0.12–14) and 32.7 cm�1 (J0.15–17) levels of the zero-point vibration

No. J0 ’ J00 Expt [MHz] Expt [cm�1] E( J0) [cm�1] Label ( J0)a E( J00) [cm�1] Label ( J00)a Calc. [cm�1] db [cm�1]

Expt. (ref. 14): Table IV, (A/F)1, S’ P band
1 1’ 2 529495.8 17.7 32.9 J1.44–49 15.1 J2.17–22 17.8 �0.2
2 0’ 1 538189.8 18.0 32.7 J0.12–17 14.5 J1.17–22 18.1 �0.2
3 1’ 1 546831.5 18.2 32.9 J1.44–49 14.5 J1.17–22 18.4 �0.2
4 2’ 2 546715.2 18.2 33.5 J2.60–65 15.1 J2.17–22 18.4 �0.2
5 2’ 1 564291.7 18.8 33.5 J2.60–65 14.5 J1.17–22 19.0 �0.1

Expt. (ref. 14): Table IV, (A/F)3a, D’ P band
6 2’ 2 564637.3 18.8 34.2 J2.66–71 15.1 J2.17–22 19.1 �0.2
7 2’ 1 581971.4 19.4 34.2 J2.66–71 14.5 J1.17–22 19.6 �0.2

Expt. (ref. 14): Table IV, (A/F)3b, D’ P band
8 2’ 2 564437.7 18.8 34.2 J2.66–71 15.1 J2.17–22 19.1 �0.2
9 2’ 1 582013.5 19.4 34.2 J2.66–71 14.5 J1.17–22 19.6 �0.2

a Jn.i–j identifies the levels in the energy level list provided in the ESI. b d is the difference between the experimental and computed transitions. The
mean and the sample variance of the deviation in the (A/F)1, (A/F)3a, and (A/F)3b bands are (�d,sd) = (�0.2,0.002) cm�1, (�0.2,0.001) cm�1, and
(�0.2,0.005) cm�1, respectively.

Table 4 Rovibrational transitions assigned to the F2
� 11.2 cm�1 (J0.6–8) level of the zero-point vibration

No. J0 ’ J00 Expt [MHz] Expt [cm�1] E( J0) [cm�1] Label ( J0)a E( J00) [cm�1] Label ( J00)a Calc. [cm�1] db [cm�1]

Expt. (ref. 14): Table V, (A/F)2, P’ S band
1 1’ 2 536931.0 17.9 29.8 J1.32–37 12.0 J2.12–14 17.7 0.2
2 2’ 2 553883.6 18.5 30.3 J2.42–47 12.0 J2.12–14 18.3 0.2
3 1’ 1 553888.4 18.5 29.8 J1.32–37 11.5 J1.12–14 18.3 0.2
4 1’ 0 562445.5 18.8 29.8 J1.32–37 11.2 J0.6–8 18.6 0.2
5 2’ 1 571055.5 19.0 30.3 J2.42–47 11.5 J1.12–14 18.9 0.2

a Jn.i–j identifies the levels in the energy-level list provided in the ESI. b d is the difference of the experimental and computed transitions. The mean
and the sample variance of the deviation are (�d,sd) = (0.2,0.004) cm�1.

Table 5 Rovibrational transitions assigned to the A2
� 6.9 cm�1 (J0.5) level of the zero-point vibration

No. J0 ’ J00 Expt [MHz] Expt [cm�1] E( J0) [cm�1] Label ( J0)a E( J00) [cm�1] Label ( J00)a Calc. [cm�1] db [cm�1]

Expt. (ref. 14): Table VI, (A/F)4, P’ S band
1 1’ 2 548506.7 18.3 26.4 J1.25–26 7.8 J2.5 18.6 �0.3
2 2’ 2 565694.1 18.9 26.9 J2.33–34 7.8 J2.5 19.1 �0.3
3 1’ 1 565694.1 18.9 26.4 J1.25–26 7.2 J1.5 19.1 �0.3
4 1’ 0 574574.9 19.2 26.4 J1.25–26 6.9 J0.5 19.4 �0.3
5 2’ 1 583344.0 19.5 26.9 J2.33–34 7.2 J1.5 19.7 �0.3

a Jn.i–j identifies the levels in the energy-level list provided in the ESI. b d is the difference of the experimental and computed transitions. The mean
and the sample variance of the deviation are (�d,sd) = (�0.3,0.003) cm�1.
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starting from the ZPV E+ band (vide infra). Anomalous J0 =
0’ J00 = 1 (and J0 = 1’ J00 = 2) rovibrational transitions are seen
both in (the absorption) experiment and theory within the ZPV
E� (36.4 cm�1, J0.24–25) and the ZPV F1

� (32.6 cm�1, J0.12–14;
32.7 cm�1, J0.15–17) bands of the ‘ortho’ species and within
the ZPV E+(35.7 cm�1, J0.19–20) and the ZPV F2

+ (28.9 cm�1,
J0.9–11; 36.3 cm�1, J0.21–23) bands of the ‘para’ species.

The assignment of the vibrational bands andmost rovibrational
levels is unambiguous; however, due to the near symmetric prolate
character of the complex there are nearly degenerate levels, which
cannot be unambiguously assigned based on the computations.
This ambiguity could be eliminated if there was an exceedingly
accurate potential energy surface available, which could be used to
obtain a rovibrational energy level ordering resolved to better than

Table 6 Rovibrational transitions assigned to the E+ 35.7 cm�1 (J0.19–20) level of the zero-point vibration

No. J0 ’ J00 Expt [MHz] Expt [cm�1] E( J0) [cm�1] Label ( J0)a E( J00) [cm�1] Label ( J00)a Calc. [cm�1] db [cm�1]

Expt. (ref. 14): Table VII, E3, S’ P band
1 1’ 2 723657.8 24.1 36.0 J1.51–52 13.7 J2.15–16 22.3 1.8
2 2’ 2 740443.2 24.7 36.5 J2.73–74 13.7 J2.15–16 22.9 1.8
3 1’ 1 740778.1 24.7 36.0 J1.51–52 13.1 J1.15–16 22.9 1.8
4 0’ 1 732385.1 24.4 35.7 J0.19–20 13.1 J1.15–16 22.6 1.8
5 2’ 1 757561.5 25.3 36.5 J2.73–74 13.1 J1.15–16 23.4 1.8

Expt. (ref. 14): Table VII, E4, D’ P band
6 2’ 2 821483.9 27.4 38.5 J2.88–89 13.7 J2.15–16 24.8 2.6
7 2’ 1 838603.8 28.0 38.5 J2.88–89 13.1 J1.15–16 25.4 2.6
or:
6 2’ 2 821483.9 27.4 39.5 J2.90–91 13.7 J2.15–16 25.8 1.6
7 2’ 1 838603.8 28.0 39.5 J2.90–91 13.1 J1.15–16 26.4 1.6

Expt. (ref. 14): Table VII, E5, P’ P band
8c 2’ 2 1057801.7 35.3 48.8 J2.116–117 13.7 J2.15–16 35.1 0.2
9c 1’ 1 1057943.1 35.3 48.2 J1.84–85 13.1 J1.15–16 35.1 0.2
10c 2’ 1 1074920.4 35.9 48.8 J2.116–117 13.1 J1.15–16 35.7 0.2

a Jn.i–j identifies the levels in the energy-level list provided in the ESI. b d is the difference of the experimental and computed transitions. The mean
and the sample variance of the deviation in the E3, E4, and E5 bands are (�d,sd) = (1.8,0.02) cm�1, (1.6,0.002) cm�1, and (0.2,0.004) cm�1,
respectively. The set of 1–5 transitions has the largest irregularities among all bands studied with a variance as large as 0.02 cm�1. c The upper level
in these transitions is assignable to the E+ 48.2 cm�1 (J0.34–35) vibration.

Table 7 Rovibrational transitions assigned to the F1
+ 4.8 cm�1 (J0.2–3) level of the zero-point vibration

No. J0 ’ J00 Expt [MHz] Expt [cm�1] E( J0) [cm�1] Label ( J0)a E( J00) [cm�1] Label ( J00)a Calc. [cm�1] db [cm�1]

Expt. (ref. 14): Table VIII, (A/F)5, P’ S band
1 1’ 2 827031.4 27.6 30.6 J1.38–43 5.6 J2.2–4 25.0 2.6
2 1’ 1 844268.9 28.2 30.6 J1.38–43 5.0 J1.2–4 25.5 2.6
3 2’ 2 844500.0 28.2 31.1 J2.48–53 5.6 J2.2–4 25.5 2.6
4 1’ 0 852462.1 28.4 30.6 J1.38–43 4.8 J0.2–4 25.8 2.6
5 2’ 1 860602.5 28.7 31.1 J2.48–53 5.0 J1.2–4 26.1 2.6

a Jn.i–j identifies the levels in the energy level list provided in the ESI. b d is the difference of the experimental and computed transitions. The mean
and the sample variance of the deviation are (�d,sd) = (2.6,0.01) cm�1.

Table 8 Rovibrational transitions assigned to the F2
+ 28.9 cm�1 (J0.9–11) and 36.3 cm�1 (J0.21–23) levels of the zero-point vibration

No. J0 ’ J00 Expt [MHz] Expt [cm�1] E( J0) [cm�1] Label ( J0)a E( J00) [cm�1] Label ( J00)a Calc. [cm�1] db [cm�1]

Expt. (ref. 14): Table IX, (A/F)6, S’ P band
1 1’ 2 889393.8 29.7 36.6 J1.53–55 8.5 J2.6–11 28.1 1.6
2 2’ 2 906302.4 30.2 37.1 J2.75–77 8.5 J2.6–11 28.6 1.6
3 1’ 1 906722.4 30.2 36.6 J1.53–55 7.9 J1.6–11 28.7 1.6
4 2’ 1 924003.8 30.8 37.1 J2.75–77 7.9 J1.6–11 29.2 1.6

Expt. (ref. 14): Table IX, (A/F)7a, D’ P band
5 2’ 2 912803.3 30.4 37.5 J2.80–85 8.5 J2.6–11 29.0 1.4
6 2’ 1 930130.4 31.0 37.5 J2.80–85 7.9 J1.6–11 29.6 1.4

Expt. (ref. 14): Table IX, (A/F)7b, D’ P band
7 2’ 2 912529.1 30.4 37.5 J2.80–85 8.5 J2.6–11 29.0 1.4
8 2’ 1 930230.6 31.0 37.5 J2.80–85 7.9 J1.6–11 29.6 1.4

a Jn.i–j identifies the levels in the energy-level list provided in the ESI. b d is the difference of the experimental and computed transitions. The mean and the
sample variance of the deviation in the (A/F)6, (A/F)7a, and (A/F)7b, bands are (�d,sd) = (1.6,0.004) cm�1, (1.4,0.003) cm�1, and (1.4,0.005) cm�1, respectively.

Paper PCCP

               dc_1955_21



22824 | Phys. Chem. Chem. Phys., 2016, 18, 22816--22826 This journal is© the Owner Societies 2016

0.5 cm�1 (which is perhaps even beyond the accuracy of the
common Born–Oppenheimer32 and non-relativistic approxima-
tions33). In lieu of a fully resolved list, we assign a rovibrational
transition to a sub-manifold of upper and/or lower rovibra-
tional levels (see Fig. 5 and 6), without attempting to make a
definitive decision about these non-strictly-degenerate but very-
close-lying levels. In these cases, we computed the transition
energy as the difference between the centers (energy averages) of
the upper and lower sub-manifolds (Tables 2–9). Apart from these
very small effects, we can confirm that the rovibrational transitions
within a single band have a systematic error (experiment�theory)
with an exceedingly small variance, which is on the order of the
energy difference of the nearly degenerate levels.

Detailed comparison of the computed and measured rovi-
brational transitions within the eight experimentally studied
main bands (occasionally with a few sub-bands)14 is provided in
Tables 2–9. The mean and the variance of the deviation of
experiment and theory is around (2,0.01) cm�1 and (0.5,0.005) cm�1

for the para and for the ortho species, respectively. In general, the
agreement and the consistency (the mean and the variance of the
deviation) between experiment and theory is better for the ortho

species. A possible contributor to the cause of this difference is the
3 :1 ratio of the spin-statistical weights and of the corresponding
transition intensities.

The largest discrepancies between experiment and theory are
observed for the 1–5 rovibrational transitions of the E+ vibration
(Table 6). For the 6–7 transitions of this band (Table 6), we cannot
decide unambiguously between two possible upper states, with
energies 38.5 cm�1 and 39.5 cm�1. Comparing the systematic error
of the computed transitions with the error of the 1–5 transitions, it
seems more likely that the upper level of the 6–7 transitions is
the one with an energy of 38.5 cm�1. The systematic error of the
8–10 transitions (Table 6) is markedly different from the error of the
1–5 transitions. This deviation is explained by the fact that the
upper levels of the 8–10 transitions do not belong to the ZPV(GM)
splitting manifold, but they are the J = 1 and J = 2 rotational
excitations of the E+ 48.2 cm�1 (J0.34–35) vibration.

Most importantly, all experimentally reported transitions14

within the J = 0, 1, 2 manifold are identified in our variationally
computed dataset. For the ortho species (see Fig. 5), all levels
within the computed ZPV(GM) manifold (up to J = 2) are
involved in at least one experimentally reported transition.
For the para species (see Fig. 6), however, there are a few
computed levels within the ZPV(GM) manifold (up to J = 2)
that are not involved in any experimentally reported transitions

(there are no arrows starting from or pointing to these levels
indicated with a solid line in the figures). These theoretically
predicted levels of the ZPV(GM) rovibrational manifold are
listed in Table 10 and are awaiting experimental confirmation.

There are also energy levels labeled with a dashed line in Fig.
5 and 6. These levels have a strongly mixed RRD with some
minor contribution from the ZPV(GM) vibrational band in
which they are shown. We indicated these levels in the figures
because they could be observed in transitions under similar
conditions as in ref. 14. Furthermore, by counting all energy
levels and by including these strongly mixed ones, i.e., sum-
ming all (n) values shown next to the (solid or dashed) lines in
each rovibrational band, we obtain 2 J + 1 rovibrational levels in
total, except for the ZPV A1

+ (0.0 cm�1, J0.1) with J = 2. In that
case two additional rovibrational levels should appear with
rovibrational energies ( J = 2) larger than 54.9 cm�1, i.e., beyond
the first 150 energy levels which were computed.

Finally, transitions between the rovibrational levels of the
ZPV(GM), A1

+ (0.0 cm�1, J0.1), and the lowest-lying levels of the ZPV
manifold of the secondary minimum, ZPV(SM), A1

+ (34.4 cm�1,
J0.18), could be identified in the experimental spectra, because
these transitions lie within the same energy range as the transitions
reported in ref. 14. The predicted levels of the secondary minimum,

Table 9 Rovibrational transitions assigned to the A1
+ 0.0 cm�1 (J0.1) level of the zero-point vibration

No. J0 ’ J00 Expt [MHz] Expt [cm�1] E( J0) [cm�1] Label ( J0)a E( J00) [cm�1] Label ( J00)a Calc. [cm�1] db [cm�1]

Expt. (ref. 14): Table X, (A/F)8 P’ S band
1 1’ 2 901595.6 30.1 29.4 J1.30–31 0.9 J2.1 28.6 1.5
2 1’ 1 919166.0 30.7 29.4 J1.30–31 0.3 J1.1 29.1 1.5
3 2’ 2 919232.4 30.7 30.0 J2.40–41 0.9 J2.1 29.1 1.5
4 1’ 0 927673.3 30.9 29.4 J1.30–31 0.0 J0.1 29.4 1.5
5 2’ 1 936059.3 31.2 30.0 J2.40–41 0.3 J1.1 29.7 1.5

a Jn.i–j identifies the levels in the energy-level list provided in the ESI. b d is the difference of the experimental and computed transitions. The mean
and the sample variance of the deviation are (�d,sd) = (1.5,0.007) cm�1.

Table 10 Computed rovibrational energy levels assigned to the ZPV(GM)
manifold, which could be observed via rovibrational transitions within the
same energy range as the experiments of ref. 14 were performed (E0 is the
lowest vibrational energy)

Vibrational band J E�E0 [cm
�1] Label

E+ (35.7 cm�1, J0.19–20) 1 38.9 J1.58–59
2 39.5 J2.90–91

F1
+ (4.8 cm�1, J0.2–4) 2 40.9 J2.92–97

F2
+ (28.9 cm�1, J0.9–11) & F2

+

(36.3 cm�1, J0.21–23)
0 28.9 J0.9–11
0 36.3 J0.21–23
1 29.2 J1.27–29
2 29.8 J2.37–39

Table 11 Computed rovibrational energy levels of the ground-state
vibration of the secondary minimum, which could be observed via rovi-
brational transitions within the same energy range as the experiments of
ref. 14 were performed (E0 is the lowest vibrational energy)

Vibrational band J E�E0 [cm
�1] Label

A1
+ (34.4 cm�1, J0.18) 1 34.7 J1.50

1 59.3 J1.134–135
2 35.2 J2.72
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which could potentially be observed as upper levels in rovibrational
transitions, are listed in Table 11. Locating such transitions would
constitute the first experimental confirmation for the existence of a
secondary minimum in the methane–water complex, where the
methane molecule is the proton donor and the water molecule is
the proton acceptor.

4 Summary and conclusions

We have computed rovibrational energy levels for the methane–
water dimer corresponding to an accurate potential energy surface
developed by Akin-Ojo and Szalewicz15. The computations exploited
the capabilities of the fourth generation34 quantum chemical
code GENIUSH16,17. After a careful analysis of the computed
states, excellent, quantitative agreement is obtained between
the calculated and experimentally reported far-infrared14 tran-
sitions of this complex, which were previously left unassigned.
This excellent agreement suggests that the dimer interaction
potential energy surfaces available for CH4�H2O

6,15 can be used
with confidence and their combination with the three-body
methane–water–water7 (and the corresponding two- and three-
body water–water interaction surfaces3–5) opens up new avenues
for the study of larger clusters10 and bulk-phase properties of
methane–water mixtures.

Concerning the fine details of the rovibrational spectroscopy
of the methane–water dimer, all experimentally reported transi-
tions within the J = 0, 1, 2 rovibrational manifold are identified in
our computations. They are assigned to rovibrational energy levels
corresponding to the 24-member zero-point vibrational (ZPV)mani-
fold of the global minimum (GM) structure (in which the water
molecule is the proton donor and the methane molecule is the
acceptor). The exceptions are three transitions whose upper level
is higher in energy than the ZPV(GM)manifold. We identified a few
rovibrational levels in the computed ZPV(GM) rovibrational
splitting manifold, which lie in the same energy range, and thus
could potentially be observed under the same experimental
conditions, but were not reported in ref. 14.

We have also identified (ro)vibrational energy levels that
could only be assigned to the secondary minimum (SM) of the
complex, in which the methane molecule is the proton donor
and the water molecule is the acceptor. The lower part of the
24-member ZPV(SM) manifold overlaps the upper part of the
24-member ZPV(GM) set; hence, rovibrational transitions ending
in levels corresponding to the secondary minimum well might
be observed in the same energy range as the transitions reported
in ref. 14.

Anomalous, reversed rovibrational-energy level ordering,
i.e., negative rotational excitation energy, is observed both in
the experimental and in the computed transitions. This observation
provides additional confirmation of the excellent agreement
between theory and experiment, and, furthermore, indicates that
this extremely floppy, astructural19,22 complex exhibits rich internal
quantum dynamics, suggesting that further experimental and
theoretical work will be worth pursuing both from fundamental
and applied research perspectives.
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26 E. Cohen, T. Cvitaš, J. Frey, B. Holmström, K. Kuchitsu,

R. Marquardt, I. Mills, F. Pavese, M. Quack, J. Stohner,
H. Strauss, M. Takami and A. Thor, Quantities, Units and

Symbols in Physical Chemistry (the IUPAC Green Book – 3rd

edition), RSC Publishing, Cambridge, 2007.
27 D. J. Wales, OPTIM: A program for geometry optimisation and

pathway calculations, http://www-wales.ch.cam.ac.uk/soft
ware.html.

28 L. J. Munro and D. J. Wales, Phys. Rev. B: Condens. Matter

Mater. Phys., 1999, 59, 3969–3980.
29 T. R. Dyke, J. Chem. Phys., 1977, 66, 492.
30 V. Szalay, A. G. Császár and M. L. Senent, J. Chem. Phys.,

2002, 117, 6489.
31 Y. Ohshima and Y. Endo, J. Chem. Phys., 1990, 93, 6256.
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ABSTRACT

Variational and perturbative relativistic energies are computed and compared for two-electron atoms and molecules with low nuclear charge
numbers. In general, good agreement of the two approaches is observed. Remaining deviations can be attributed to higher-order relativistic,
also called non-radiative quantum electrodynamics (QED), corrections of the perturbative approach that are automatically included in the
variational solution of the no-pair Dirac–Coulomb–Breit (DCB) equation to all orders of the α fine-structure constant. The analysis of the
polynomial α dependence of the DCB energy makes it possible to determine the leading-order relativistic correction to the non-relativistic
energy to high precision without regularization. Contributions from the Breit–Pauli Hamiltonian, for which expectation values converge
slowly due the singular terms, are implicitly included in the variational procedure. The α dependence of the no-pair DCB energy shows that
the higher-order (α4Eh) non-radiative QED correction is 5% of the leading-order (α3Eh) non-radiative QED correction for Z = 2 (He), but it
is 40% already for Z = 4 (Be2+), which indicates that resummation provided by the variational procedure is important already for intermediate
nuclear charge numbers.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0105355

I. INTRODUCTION

The non-relativistic quantum electrodynamics (QED) frame-
work, which systematically includes all relativistic and quantum
electrodynamics (QED) corrections to the non-relativistic energy
with increasing powers of the α fine structure constant is the current
state of the art for small and light atomic and molecular systems.1–10

Higher precision or higher charge numbers assume the derivation
and evaluation of high-order perturbative corrections.

The current state of the art for two-electron systems in
the non-relativistic QED framework corresponds to α4Eh order
(in atomic units), which is equivalent tomα6 in natural units.3,11 The
α5Eh-order corrections have been evaluated for triplet states of the
helium atom9 aiming to resolve current discrepancy of theory and
experiment.12–16 The corresponding terms for singlet states have not
been completed, yet.

Although the non-relativistic plus relativistic and QED separa-
tion has been traditionally (for good reasons) pursued to produce
state-of-the-art theoretical values,8,15,17–23 it is possible to partition
the relativistic QED problem differently. The relativistic QED prob-
lem of atoms and molecules has two (three) “small” parameters, the

α fine structure constant, the Zα nuclear charge number multiple
of α (and the electron–nucleus mass ratio, which is not consid-
ered in the present work, since the nuclei are fixed). Although
α = 1/137.035 999 084 ≈ 0.007324 is indeed small, resummation of
the perturbation series for Zα would be ideal to cover larger nuclear
charge values.

As a starting point for two-electron systems, we consider the
Bethe–Salpeter25 equation, a relativistic QED wave equation. Fol-
lowing Salpeter’s calculation for positronium26 and Sucher’s calcu-
lation for the electronic problem of helium,27 this equation can be
rearranged to an exact equal-times form

(H +HΔ)Ψ(r1, r2) = EΨ(r1, r2), (1)

where r1, r2 ∈ R3 are the Cartesian coordinates of the two particles,
H is the positive-energy projected two-electron Hamiltonian with
instantaneous (Coulomb or Breit) interaction (I),

H = h1 + h2 +Λ++IΛ++, (2)

hi = cαipi + βmic
2 +U1[4] (i = 1, 2) labels the one-particle Dirac

Hamiltonians in the U external Coulomb field of fixed nuclei, and
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HΔ = Λ++I(1 −Λ++) −Λ−−I +Hε (3)

is a correction term with Hε, which contains an integral for the
relative energy27 of two particles, and it carries pair corrections
and retardation corrections. Radiative corrections can also be incor-
porated in Hε. During the derivation,26,27 starting out from the
interaction of elementary spin-1/2 particles, the two-particle (elec-
tron) positive-energy Dirac–Coulomb(–Breit) (DCB) Hamiltonian
emerges and Λ++ (Λ−−) projects onto the positive-(negative-)
energy states of two electrons moving in the external field without
electron–electron interactions.

Following Sucher,HΔ may be considered as perturbation to the
positive-energy projected (also called no-pair) Hamiltonian, H. So,
the present work is concerned with the numerical solution of the

HΨ = EΨ (4)

16-component wave equation for the instantaneous Coulomb (C)
and Coulomb–Breit (CB) interactions. The Breit interaction is either
included in the variational solution to obtain the no-pair (++)
Dirac–Coulomb–Breit (DCB) energy, E++DCB, or it is computed as a

first-order perturbation to the no-pair Dirac–Coulomb (DC) energy
(E++DC),

⟨B⟩DC = ⟨Ψ++DC∣B∣Ψ++DC⟩, (5)

and it is labeled E++DC⟨B⟩ = E++DC + ⟨B⟩DC.
In 1958, Sucher introduced the non-relativistic (Pauli) approx-

imation to the no-pair DC wave function to arrive at numerical
predictions. Using modern computers, we solve the DC and DCB
equations numerically to a precision, where comparison with the
perturbative treatment (up to the known orders) is interesting and,
so far, unexplored. This paper is the concluding part of a series
of papers28–30 which report the development of fundamental algo-
rithmic and implementation details of this program together with
the first numerical tests aiming at a parts-per-billion (1:109) relative
precision for the convergence of the variational energy, as well as
comparison with benchmark perturbative relativistic corrections.

II. SIXTEEN-COMPONENT VARIATIONAL
METHODOLOGY

The explicit matrix form of the no-pair Dirac–Coulomb–Breit
Hamiltonian for two particles is

H(1, 2) = Λ++

⎛⎜⎜⎜⎜⎜⎜⎜⎝

V1[4] +U1[4] cσ
[4]
2 ⋅ p2 cσ

[4]
1 ⋅ p1 B

[4]

cσ
[4]
2 ⋅ p2 V1[4] + (U − 2m2c

2)1[4] B
[4]

cσ
[4]
1 ⋅ p1

cσ
[4]
1 ⋅ p1 B

[4]
V1[4] + (U − 2m1c

2)1[4] cσ
[4]
2 ⋅ p2

B
[4]

cσ
[4]
1 ⋅ p1 cσ

[4]
2 ⋅ p2 V1[4] + (U − 2m12c

2)1[4]

⎞⎟⎟⎟⎟⎟⎟⎟⎠
Λ++, (6)

with m12 = m1 +m2, pi = −i( ∂

∂rix
, ∂

∂riy
, ∂

∂riz
) (i = 1, 2), σ

[4]
1 = (σx

⊗ 1[2], σy ⊗ 1[2], σz ⊗ 1[2]) and σ
[4]
2 = (1[2] ⊗ σx, 1[2] ⊗ σy, 1[2]

⊗ σz), where σx, σy, and σz are the 2 × 2 Pauli matrices, and
U = ∑2

i=1 ∑
Nnuc
a=1 qiZa/∣ri − Ra∣ is the external Coulomb poten-

tial of the nuclei. We note that the operator in Eq. (6) already
contains a −2mic

2 shift (i = 1, 2) for computational convenience
and for a straightforward matching of the non-relativistic energy
scale.

Regarding the particle–particle interactions in Eq. (6), the
Coulomb potential,

V = q1q2

r12
, (7)

is along the diagonal, whereas the B[4] blocks, corresponding to the
Breit potential, can be found on the anti-diagonal of theHamiltonian
matrix,

B
[4] = G[4] − q1q2

2

3

∑
i=1

3

∑
j=1

σ
[4]
1i
σ
[4]
2j
{∇1i∇2j r12}. (8)

The first term of B[4] is called the Gaunt interaction, which reads as

G
[4] = −q1q2

r12
σ
[4]
1 ⋅ σ

[4]
2 = −q1q2r12

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0 −1 2 0

0 2 −1 0

0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (9)

The Λ++ projector is constructed using the electronic states
(also called positive-energy states, which is to be understood with-
out the −2mic

2 shift) of Eq. (6) by discarding the V and B
particle–particle interaction terms.

We solve the HΨ = EΨ wave equation with the no-
pair Dirac–Coulomb [Eq. (6) without the B block] and
Dirac–Coulomb–Breit operators using a variational-like pro-
cedure, a two-particle restricted kinetic balance condition (vide
infra), and explicitly correlated Gaussian basis functions.28–30

For a single particle, the (four-component) wave function can
be partitioned to large (l, first two) and small (s, last two) compo-
nents. A good basis representation is provided by the (restricted)
kinetic balance condition31,32

ψ
s = σ

[2]p

2mc
ψ
l, (10)
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connecting the basis function of the small and large compo-
nents. A block-wise direct product28,33–36 is commonly used for the
two(many)-particle problem, which is used also in Eq. (6). The
corresponding block structure of the two-particle wave function,
highlighting the large (l) and small (s) component blocks, is

Ψ(r1, r2) =
⎛⎜⎜⎜⎜⎜⎜⎜⎝

ψ
ll(r1, r2)

ψ
ls(r1, r2)

ψ
sl(r1, r2)

ψ
ss(r1, r2)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (11)

We have implemented28–30 the simplest two-particle generalization
of the restricted kinetic balance, Eq. (10), in the two-particle basis set
in the sense of a transformation or metric31

HKB = X†
HX,

(12)

X = diag⎛⎜⎝1
[4],
(σ[4]2 p2)
2m2c

,
(σ[4]1 p1)
2m1c

,
(σ[4]1 p1)(σ[4]2 p2)

4m1m2c2

⎞⎟⎠.

The transformed operators for the DC and the DCB problem are
given in Refs. 29 and 30, respectively.

The 16-component wave function is written as a linear-
combination of anti-symmetrized28 spinor functions

Ψ(r1, r2) = A
Nb

∑
i=1

16

∑
χ=1

ciχdχΘi(r1, r2;Ai, si), (13)

where the spatial part is represented by explicitly correlated
Gaussians functions (ECGs),

Θi(r1, r2;Ai, si) = exp[−(r − si)T(Ai ⊗ 1[3])(r − si)]. (14)

For low Z systems, it is convenient to work in the LS coupling
scheme. We optimized the ECG parameterization for the ground
(and first excited state) by minimization of the ground (and first
excited) totally symmetric, non-relativistic singlet energy. To be able
to generate (relatively) large basis sets and to achieve good (parts-
per-billion relative) convergence of not only the non-relativistic but
also the DC⟨B⟩ andDCB energies, the value of the energy functional,
which we minimized, was incremented by a “penalty” term37,38

that helped us to generate and optimize ECG basis functions that
are less linearly dependent (and thus, well represented in double
precision arithmetic). The same basis set was used to construct
the non-interacting problem [Eq. (6)] without V and B, and the
positive-energy projector. We used the cutting projection approach
and checked some of the results with the complex scaling (CCR)
projector.29 The triplet contributions are estimated to be small (in
perturbative relativistic computations, they appear at α4Eh order

3,11)
and will be reported for the present framework in the future.

All computations have been carried out with an implemen-
tation of the outlined algorithm (see also Refs. 28–30) in the
QUANTEN computer program, used in pre-Born–Oppenheimer,
non-adiabatic, and (regularized) perturbative relativistic
computations.18,19,21,39–41 Throughout this work, Hartree atomic
units are used and the speed of light is c = α−1a0Eh/h, with
α−1 = 137.035 999 084.24

III. COMPARISON OF THE PERTURBATIVE
AND VARIATIONAL ENERGIES

The Dirac–Coulomb–Breit energies, E++DC⟨B⟩ and E++DCB,
obtained from 16-component computations in this work are
compared with perturbation theory results precisely evaluated
with well-converged non-relativistic wave functions (taken from
benchmark literature values).

The aim of this comparison is threefold.

(a) First, it is a numerical check, whether the 16-component
approach can reproduce the established perturbative bench-
marks with a parts-per-billion (ppb) precision, which corre-
sponds to an energy resolution that is relevant for the current
experiment–theory comparison.

(b) Second, it is about understanding the variational results.
The 16-component variational computation includes a
“resummation” of the perturbation series in Zα for part
of the problem. Identification of the relevant higher-order
perturbative corrections provides an additional check for
the implementation and for a good understanding of the
developed variational relativistic methodology.

(c) Third, after completion of (a) and (b), we may estimate the
importance of missing orders of the perturbative approach,
since the 16-component computation provides all Zα orders
for the relevant part of the problem.

The present comparison provides a starting point for further
developments aiming at the inclusion of missing “effects”, in par-
ticular, contributions from the HΔ term in Eq. (3), including pair
correction, retardation, etc., as well as radiative corrections and
motion of the nuclei.

A. Perturbative energy expressions

The leading, α2Eh, order, often called “relativistic correction”
to the non-relativistic energy, is obtained by a perturbative
approach, either by the Foldy–Wouthuysen transformation42 or
by Sucher’s approach27 (in some steps reminiscent of the later
Douglas–Kroll transformation43) for the Dirac–Coulomb (DC) and
Dirac–Coulomb–Breit (DCB) Hamiltonians. The energy up to
second order in α (in atomic units) reads as

E
(2)
DCB = E(0)nr + α

2⟨Ψnr∣H(2)DCB∣Ψnr⟩ = E(0)nr + α
2⟨H(2)DC +H

(2)
B ⟩nr, (15)

where Ψnr is the non-relativistic wave function and the ⟨O⟩nr
= ⟨Ψnr∣O∣Ψnr⟩ short notation is introduced. Furthermore,

H
(2)
DC = −18

2

∑
i=1

(∇2
i )2 + π2

2

∑
i=1

Nnuc

∑
A=1

ZAδ(riA) − π
2

∑
i=1

2

∑
j>i

δ(rij), (16)

H
(2)
B = HOO + 2π

2

∑
i=1

2

∑
j>i

δ(rij), (17)

with

HOO = −
2

∑
i=1

2

∑
j>i

1

2rij

⎛
⎝pipj +

rij(rijpi)pj
r2ij

⎞
⎠. (18)

To obtain precise correction values, regularization
techniques41,44,45 have been used to pinpoint the value of the
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non-relativistic expectation value of the singular terms, δ(riA),
δ(rij), and (∇2

i )2.
Furthermore, we have noticed in earlier work29,30 that the “non-

radiative QED” corrections of the perturbative scheme are “visible”
at the current ppb convergence level already for Z = 1. For this
reason, we collect the relevant positive-energy corrections from
Sucher’s work27 in the following paragraphs. It is important to point
out that these terms contribute to the α3Eh-order perturbative cor-
rections, but provide only part of the full correction at this order,
which was first derived by Araki46 and Sucher.27

1. Leading-order non-radiative QED corrections

(α3Eh) to the no-pair energy

The two-Coulomb-photon exchange correction [p. 52,
Eq. (3.99)27] is

ε
++
CC = −(π2 +

5

3
)⟨δ(r12)⟩nr ≈ −3.237 ⟨δ(r12)⟩nr. (19)

The correction due to one (instantaneous) Breit photon exchange
with resummation for the Coulomb ladder [p. 80, Eq. (5.64)27] is

ε
++
CB = 4(π2 + 1)⟨δ(r12)⟩nr ≈ 10.283 ⟨δ(r12)⟩nr. (20)

We note that this correction corresponds to the unretarded (Breit)
part of the transverse photon exchange (Ref. 27 uses the Coulomb
gauge for this part), and the retardation correction to this term is
evaluated separately (not considered in this work).

Finally, the correction due to the exchange of two (retarded)
transverse photons according to Sucher [p. 93, Eq. (6.9b++)27] is

ε
++
TT = −π2 ⟨δ(r12)⟩nr ≈ −1.571 ⟨δ(r12)⟩nr. (21)

It is necessary to note that this term includes retardation effects,
whereas our computation, does not. For this reason, the compari-
son of this term with the results of the variational DCB computation
is only approximate and not fully quantitative.

In summary, the following α3Eh-order perturbative ener-
gies will be used for comparison with the DC⟨B⟩ and DCB
16-component computations,

E
(3)
DC⟨B⟩

= E(2)DCB + α
3(ε++CC + ε++CB )

= E(2)DCB + α
3(3π

2
+
7

3
)⟨δ(r12)⟩nr

≈ E(2)DCB + α
3 7.046 ⟨δ(r12)⟩nr, (22)

where we note that E(2)DCB = E(2)DC⟨B⟩
(α2Eh order), and

E
(3)
DCB ≈ E(2)DCB + α

3(ε++CC + ε++CB + ε++TT )
= E(2)DCB + α

3(π + 7

3
)⟨δ(r12)⟩nr

≈ E(2)DCB + α
3 5.475 ⟨δ(r12)⟩nr, (23)

where, in particular, the single Breit and two-transverse corrections
sum to

(ε++CB + ε++TT ) α3 = (4 + 3π

2
)⟨δ(r12)⟩nr α3 ≈ 8.712 ⟨δ(r12)⟩nr α3.

(24)

B. Sixteen-component, variational results

Table I shows the 16-component, no-pair DC⟨B⟩ and DCB
energies computed in this work and their comparison with the α2Eh-
and α3Eh-order perturbative results. The DC⟨B⟩ and DCB energies
reported in this table differ from our earlier work.28,30 [The entries
of the earlier reported tables for the Breit energies were in an error
due to a programming mistake during the construction of the 16-
component submatrices for pairs of ECG functions. It did not affect
the DC (singlet) energies,29 but affected the energies including the
Breit interaction.30]

According to Table I, the deviation of the variational results
from the α2Eh-order energies is on the order of a few 10 nEh

TABLE I. The no-pair DC energy with first-order perturbative Breit correction, E
++
DC⟨B⟩

in Eh, and the no-pair DCB energy, E
++
DCB

in Eh. The differences from the α2
Eh- and

α3
Eh- order perturbative energies, δ(2) and δ(3) in nEh, are also shown. Ground-state energies are reported, unless otherwise indicated. For up to Z = 2 systems, all digits are

significant, for Li+ (Be2+) the last one (two) digits are estimated to be uncertain.

E++DC⟨B⟩ δ
(2)
DC⟨B⟩

a δ
(3)
DC⟨B⟩

a E++DCB δ
(2)
DC⟨B⟩

a δ
(3)
DC⟨B⟩

a δ
(3)
DCB

a

H2
b − 1.174 486 622 45 1 −1.174 486 635 32 −14 −4

H+3
b −1.343 847 366 50 0 −1.343 847 381 35 −21 −4

HeH+b −2.978 807 919 261 −16 −2.978 808 003 177 −100 −38

H− −0.527 756 279 74 0 −0.527 756 281 5 −2 −1
He (2S)c −2.146 082 355 13 −11 −2.146 082 363 5 −19 −13
He (1S)c −2.903 828 032 279 −13 −2.903 828 121 190 −102 −37
Li+ −7.280 540 978 1300 −161 −7.280 541 443 835 −626 −301
Be2+ −13.657 788 729 3175 −995 −13.657 790 100 1804 −2366 −1436

aδ(n)x = E++x − E
(n)
x with n = 2, 3 and x stands for DC⟨B⟩ or DCB. The expressions for E(n)x are listed in Eqs. (15)–(23), and the reference non-relativistic energy and integral values

are collected in Table S13. We note that δ(2)
DC⟨B⟩

= δ(2)DCB .
bElectronic ground state for the nuclear–nuclear distance, Req = 1.4, 1.65, and 1.46 bohrs for H2 , H

+
3 , and HeH+ , respectively.

c1S and 2S are used for 1 and 21S0 , respectively.
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for Z = 1, whereas it is a few 100 nEh already for Z = 2. For a
better comparison, it is necessary to include the α3Eh-order (non-
radiative QED) corrections to the perturbative energy. The rele-
vant terms correspond to the two-Coulomb-photon, ε++CC [Eq. (19)],
the Coulomb–Breit-photon, ε++CB [Eq. (20)], and the Breit–Breit-
photon exchange corrections (for the positive-energy states). The
last correction can be approximated with the (more complete) two-
transverse photon exchange correction [Eq. (21)] (that is available
from Ref. 27).

It was shown in Ref. 29 that inclusion of the α3Eh-order,
positive-energy Coulomb-ladder correction, ε++CC , in the perturbative
energy closes the gap between the perturbative and variational ener-
gies for the lowest Z values. Most importantly, for the present work,
inclusion of ε++CC and ε++CB reduces the deviation for the no-pair DC⟨B⟩
energy from the perturbative value to near 0 nEh for Z = 1 and to
∼10 nEh for Z = 2.

Regarding the variational DCB energy, there is a non-negligible
remainder between the variational, E++DCB, and perturbative energies,

E
(3)
DCB [Eq. (23)], a few nEh for Z = 1 and a few tens of nEh for Z = 2.

This small, remaining deviation must be due to the fact that the 16-
component computation reported in this work (a) does not include
retardation, but (b) includes “effects” beyond α3Eh order.

First of all, E++DCB includes the exchange of two and more (unre-
tarded) Breit photons. To constrain the number of Breit photon
exchanges, instead of the variational DCB computation, we can con-
sider perturbative corrections due to the Breit interaction to the
16-component DC wave function. The first-order correction,

⟨B⟩DC,n = ⟨Ψ++DC,n∣X†
B(1, 2)X∣Ψ++DC,n⟩, (25)

corresponds to a single Breit-photon exchange (in addition to the
Coulomb ladder), while the first- and second-order perturbative
corrections,30

P
(2)
n {B} = ⟨B⟩DC,n +∑

i≠n

∣⟨Ψ++DC,i∣X†B(1, 2)X∣Ψ++DC,n⟩∣2
E++DC,i − E

++
DC,n

, (26)

account for the effect of one- and two- (non-crossing) Breit photons.

We have numerically observed that E++DC +P
(2)
n {B} reproduces

E++DCB within a few nEh (Tables S1–S8), which indicates that the
energy is dominated by at most two Breit-photon exchanges in all
systems studied in this work (up to Z = 4).

In Table I, a relatively good agreement can be observed with the
α3Eh-order perturbative energies for Z = 1 and 2, but we observe a
larger deviation between the 16-component and perturbative results
for Z = 3 and 4, which indicates that inclusion of higher-order
perturbative corrections would be necessary for a good (better)
agreement. The non-radiative, singlet part of the α4Eh correction
(after canceling divergences) has been reported for both He (1S)
and (2S) to be −11 nEh,3 which is in an excellent agreement with

the δ(3)
DC⟨B⟩

= −11 and −13 nEh values in Table I. It is necessary to

note that the comparison is only approximate, since the perturbative
value contains contributions also from other “effects”. We note that
α4Eh-order computations have been reported in Ref. 47 for Z = 3
and 4 (Li+ and Be2+) ground states, but we could not separate the
non-radiative QED part from the given data.

To disentangle the contribution of the different α orders, and
hence, to have a more direct comparison with the perturbative
results, we have studied the α dependence of E++DC⟨B⟩ and E++DCB.

IV. FINE-STRUCTURE CONSTANT DEPENDENCE
OF THE DIRAC–COULOMB–BREIT ENERGIES

The 16-component DC⟨B⟩ and DCB computations have been
repeated with slightly different values used for the α coupling con-
stant of the electromagnetic interaction (Figs. 1 and 2). A quartic
polynomial of α was fitted to the computed series of E++DC⟨B⟩(α)

FIG. 1. Dependence of the Breit correc-
tion to the no-pair DC energy, ⟨B⟩DC,
on the α coupling constant of the elec-
tromagnetic interaction. Hartree atomic
units are used and α0 labels 1/137.035
999 084.24 The data points, used for
fitting the polynomials, were computed
at the α = 1/(α0 + n), n = −50, . . . , 50

values. The ⟨H
(2)
B
⟩nr and ⟨δ(r12)⟩nr val-

ues used to prepare this figure were
calculated by “direct” integration (without
regularization, Table S14).
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FIG. 2. Dependence of the no-pair DCB
and DC energy difference on the α
coupling constant of the electromag-
netic interaction. Hartree atomic units
are used and α0 labels 1/137.035 999
084.24 The data points, used for fitting
the polynomials, were computed at the
α = 1/(α0 + n), n = −50, . . . , 50 val-

ues. The ⟨H
(2)
B
⟩nr and ⟨δ(r12)⟩nr values

used to prepare this figure were cal-
culated by “direct” integration (without
regularization, Table S14).

and E++DCB(α) energies. The fitted coefficients of the α polyno-
mial can be directly compared with the perturbative corrections
[Eqs. (15)–(23)], corresponding to the same order in α. We call
this approach the α-scaling procedure (to the analysis of the
16-component results).

A. Comparison of the α
3Eh contributions

For a start, we note that the “α-scaling” procedure was already
successfully used for E++DC(α) in Ref. 29 and resulted in two important
observations. First, the α3Eh-order term of the polynomial fitted to
the E++DC(α) points,

c3 α
3 = −3.26(1) ⟨δ(r12)⟩nr α3, (27)

is in an excellent agreement with Sucher’s positive-energy two-
Coulomb-photon correction, ε++CC [Eq. (19)].27

Regarding the Breit term, a similar α-scaling procedure resulted
in contradictory observations in Ref. 30. It has turned out very
recently that the contradictory observations were caused by a pro-
gramming error in the construction of the DC(B) matrix. After
noting and correcting this error, we have recomputed all reported
values. The (singlet) DC energies28,30 did not change, but the DC⟨B⟩
and DCB energies28,30 were affected. In the present work, we report
the recomputed values and enlarged the basis sets for some of the
systems, so it is possible now to achieve a (sub-)ppb-level of relative
precision for the variational energy, including the Breit interaction.

First of all, both the E++DC⟨B⟩(α) and E++DCB(α) data points (cor-
responding to a series of slightly different α values) can be fitted well

TABLE II. H− (1S): Convergence of the quartic α polynomial coefficients (only significant digits shown) obtained by fitting to 16-component energy computations (see also
Figs. 1 and 2 of this work and Fig. 3 of Ref. 29). Nb is the number of the ECG basis functions.

E++DC−α
2⟨H

(2)
DC ⟩nr

⟨δ(r12)⟩nr

⟨B⟩DC−α
2⟨H

(2)
B ⟩nr

⟨δ(r12)⟩nr

E++DCB−E
++
DC−α

2⟨H
(2)
B ⟩nr

⟨δ(r12)⟩nr

Fit: c2α
2 + c3α3 + c4α4 b2α

2 + b3α3 + b4α4 b̃2α
2 + b̃3α3 + b̃4α4

Nb c2 c3 c4 b2 b3 b4 b̃2 b̃3 b̃4

300 0.003 4 −0.9 −115 −0.009 4 3.25 264 −0.005 1 1.72 228
400 0.008 53 −3.32 −19.7 −0.014 79 9.891 7.0 −0.013 59 7.534 31.9
500 0.000 01 −3.262 −23.1 −0.008 15 10.050 5.7 −0.008 113 7.878 21.5
600 −0.000 03 −3.26 −23.2 −0.008 46 10.049 5.7 −0.008 106 7.877 21.5

Sucher27 a −3.237 10.283 8.712
Δ
b −0.02 −0.234 −0.835

aReference 27: c3,Su58 = −( π2 +
5
3 ) ≈ −3.237; b3,Su58 = 4( π2 + 1) ≈ 10.283; and b̃3,Su58 = 4 + 3π

2 ≈ 8.712.
b
Δ: deviation of the α3Eh-order coefficient of this work and of Sucher’s analytic expressions.27

J. Chem. Phys. 157, 094113 (2022); doi: 10.1063/5.0105355 157, 094113-6

Published under an exclusive license by AIP Publishing

               dc_1955_21



The Journal
of Chemical Physics

ARTICLE scitation.org/journal/jcp

with a quartic polynomial of α. For practical numerical reasons, we
did not fit a general, fourth-order polynomial directly to E++DC⟨B⟩(α),
but we subtracted a good approximate value for the “large” leading-

order (α2Eh) relativistic correction, i.e., ⟨B⟩DC − α2⟨H(2)B ⟩nr. We

emphasize that the second term, α2⟨H(2)B ⟩nr, is a simple quadratic

function of α, since the ⟨H(2)B ⟩nr non-relativistic Breit correction
is independent of α in atomic units. To bring the several systems
studied in this work to the same scale, we divided the difference
by ⟨δ(r12)⟩nr (Fig. 1). For the generation of the figure and the α

polynomials, we used the ⟨H(2)B ⟩nr and ⟨δ(r12)⟩nr values evaluated
“directly” (without regularization) in the (largest) spatial ECG basis
set used for the 16-component computations (Table S14).

From a computational point of view, it was the most difficult
to have a stable α fit for H− in double precision arithmetic (due to
the smallness of ⟨δ(r12)⟩nr), and for this reason, we show the con-
vergence of the fitted coefficients with respect to the basis set size in
Table II. For all other systems studied in this work, the fitting was
numerically more robust.

The α3Eh-order term in ⟨B⟩DC(α) (Fig. 1) is obtained from the
cubic term of the fit,

b3 ⟨δ(r12)⟩nr α3 = 10.1(2) ⟨δ(r12)⟩nr α3, (28)

which is in an excellent agreement with the perturbative correction
due to a single Breit photon in addition to the Coulomb ladder (for
the positive-energy states), ε++CB α3 [Eq. (20)]. As to E++DCB(α) (Fig. 2),
we obtain the α3Eh-order term as

b̃3 ⟨δ(r12)⟩nr α3 = 8.98(25) ⟨δ(r12)⟩nr α3. (29)

This value can be compared with the α3Eh-order positive-energy
correction of the one- and two-Breit photon exchanges (in addition
to the Coulomb ladder), ε++CB α3 + ε++BB α3. Instead of the exchange
of two Breit-photons, Sucher reported the exchange of two trans-
verse (retarded) photons [Eq. (21)] and (ε++CB + ε++TT ) α3 [Eq. (24)],
which is in a reasonable agreement with our numerical result for the
non-retarded value [Eq. (29)], but the deviation is non-negligible.

We note that the excellent agreement of the variational and cor-
responding perturbative energies is observed only for the no-pair
Hamiltonian, as defined in Secs. I and II with the projector of the
non-interacting electrons in the field of the fixed nuclei. Regard-
ing the “bare” (unprojected) DC(B) operators, or the positive-energy
projected DC(B) operator with different projectors (free-particle or
modified Z values), none of them resulted in a good numerical

agreement with the well-established perturbative expressions of the
“non-relativistic” QED operators.

After all, this numerical observation is not so surprising, if
we consider the emergence of the no-pair Dirac–Coulomb–Breit
operator (with unretarded electron–electron interaction) from the
Bethe–Salpeter QED wave equation following the calculation of
Salpeter26 and Sucher.27 In this context, a historical note about the
Breit equation48 (eigenvalue equation for DCB without positive-
energy projection, “bare” DCB) may also be relevant as it was
pointed out by Douglas and Kroll.43 When Breit used his equa-
tion in a perturbative procedure, he had to omit an “extra” term
to have good agreement with experiment. This erroneous term was
shown by Brown and Ravenhall49 to correspond to a contribu-
tion from negative-energy intermediate states, which, according to
Dirac’s hole theory, had to be discarded.

B. Leading-order, α2Eh, relativistic corrections
without regularization

The α2Eh-order term obtained from the DC computation with
an ECG spatial basis set (optimized for the non-relativistic energy
to a ppb relative precision) reproduced the regularized, perturbative
benchmark DC energy to a ppb precision.29 At the same time, the
error of the perturbative DC energy by direct integration in the ECG
basis was an order of magnitude larger.29,41

In the present work, we observe a similar improvement for
the α2Eh-order contribution obtained from the α polynomial fit
to the variational E++DC⟨B⟩ and E++DCB energies in comparison with
the perturbative DCB energy (expectation value of the Breit–Pauli
Hamiltonian).

This behavior is highlighted in Table III (see also Tables
S9–S12), in which the α2Eh energies obtained from the α-scaling
approach are compared with perturbative values obtained by direct
or regularized integration. The improvement can be explained by
the fact that the “singular” operators of the Breit–Pauli Hamiltonian
are implicitly included in the 16-component Dirac–Coulomb–Breit
operator, for which the eigenvalue equation is solved variationally,
i.e., the linear combination coefficients of the kinetically balanced
ECG basis set are relaxed in a variational manner. Thereby, the rel-
ativistic corrections are not a posteriori computed as expectation
values, but they are automatically included in the variational energy
computation.

To generate Figs. 1 and 2 and the fitted α polynomials, we used

the “own basis” value (direct evaluation) of ⟨δ(r12)⟩nr and ⟨H(2)B ⟩nr

TABLE III. Leading-order (α2
Eh) relativistic corrections from the variational procedure without regularization: α2

E
(2)
DCB

: leading-order DCB energy obtained by direct evaluation;

Oα2 [E++DC⟨B⟩
] and Oα2 [E++DCB

]: α2
Eh-order fitted terms to the DC⟨B⟩ and DCB energies. Deviations are listed, in nEh, from the regularized reference value, α2

E
(2)
DCB,rg

(Table

S13).

H− He (2S) He (1S) Li+ Be2+ H2 H+3 HeH+

α2E
(2)
DCB − α

2E
(2)
DCB,rg 1.7 21 −18 296 766 9.0 9.3 55

Oα2[E
++
DC⟨B⟩] − α

2E
(2)
DCB,rg 0.4 0.5 4.0 13 31 1.1 1.6 1.1

Oα2[E
++
DCB] − α

2E
(2)
DCB,rg 0.5 0.4 3.2 13 19 1.1 1.6 0.6
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TABLE IV. Relative importance of the α4
Eh- and α3

Eh- order contributions to the no-pair Dirac–Coulomb, Breit, and Dirac–Coulomb–Breit energies. The energy contribution is
to be understood as (a3α

3 + a4α
4)⟨δ(r12)⟩nr.

E++DC(α) ⟨B⟩DC(α)
Reference 29 Figure. 1 E++DC⟨B⟩(α) E++DCB(α)

a3 a4
a4α
a3

(%) a3 a4
a4α
a3

(%) a3 a4
a4α
a3

(%) a3 a4
a4α
a3

(%)

H2 −3.27 −6.59 1 10.04 2.6 0 6.77 −3.99 0 4.60 8.41 1
H+3 −3.27 −5.27 1 10.13 −2.6 0 6.86 −7.87 −1 4.67 4.73 1
HeH+ −3.27 −44.5 10 10.16 −1.3 0 6.89 −45.8 −5 4.73 −39.7 −6

H− −3.26 −23.6 5 10.05 5.7 0 6.79 −17.9 −2 4.62 −1.6 0
He (2S) −3.26 −470 105 10.13 1.2 0 6.87 −469 −50 4.71 −473 −73
He (1S) −3.27 −40.3 9 10.18 1.9 0 6.91 −38.4 −4 4.75 −35.3 −5
Li+ −3.26 −109 24 10.22 4.3 0 6.96 −105 −11 4.80 −112 −17
Be2+ −3.25 −241 54 10.22 11 1 6.97 −230 −24 4.80 −246 −37

(Table S14). Then, using the fitted coefficients and these two integral
values, we obtained the leading-order (α2Eh) relativistic correction
(Table III) “carried by” the 16-component DC(B) energy.

All in all, the α2Eh-order contribution to the DCB energy is an
order of magnitude more accurate than the perturbative correction
by direct integration in comparison with the benchmark, regularized
value.

C. Higher-order (α4Eh) relativistic corrections

The α4Eh-order contribution to the DC(B) energy increases
with an increasing Z value. Based on the α-scaling plots, we can
observe that the ratio of the α4Eh to α3Eh contribution is 5% and
10% for Z = 2 (ground state) for the DCB and the DC energy, respec-
tively, but this ratio is already 40% and 50% for Z = 4 (ground state).
Hence, “resummation” in Zα of the perturbative series appears to
be important for the total energies, E++DC, E

++
DC⟨B⟩, E

++
DCB (Table IV)

already for intermediate Z values.
Regarding the Breit term, the first-order Breit correction to the

Coulomb interaction has important contribution at orders α2Eh and
α3Eh, but the α

4Eh-order contribution to the no-pair energy remains
relatively small (for the systems studied in this work).

The only outlier from these observations is He (2S). The large
a4α/a3 ratio for the DC (and similarly for the DC⟨B⟩ and DCB)
energy can be understood by noting that the ⟨δ(r12)⟩nr factor
(Table S13), and thus, the third-order correction, is very small. The
third-order DC energy contribution [known to be proportional to
⟨δ(r12)⟩nr based on perturbation theory, Eq. (19)] is −11 and −135
Eh for He (2S) and (1S), respectively, whereas the fourth-order terms
are comparable, −12 Eh for both He (2S) and (1S).

V. SUMMARY AND CONCLUSION

Variational and perturbative relativistic energies are computed
and compared for two-electron atoms and molecules with low
nuclear charge numbers. In general, good agreement of the two
approaches is observed. Remaining deviations can be attributed to
higher-order relativistic, also called non-radiative quantum electro-
dynamics (QED), corrections of the perturbative approach that are
automatically included in the variational solution of the no-pair

Dirac–Coulomb–Breit (DCB) equation to all orders of the α fine-
structure constant. The analysis of the polynomial α dependence of
the DCB energy makes it possible to determine the leading-order
relativistic correction to the non-relativistic energy to high pre-
cision without regularization. Contributions from the Breit–Pauli
Hamiltonian, for which expectation values converge slowly due
the singular terms, are implicitly included in the variational pro-
cedure. The α dependence of the no-pair DCB energy shows that
the higher-order (α4Eh) non-radiative QED correction is 5% of the
leading-order (α3Eh) non-radiative QED correction for Z = 2 (He),
but it is 40% already for Z = 4 (Be2+), which indicates that resum-
mation provided by the variational procedure is important already
for intermediate nuclear charge numbers.

SUPPLEMENTARY MATERIAL

The supplementary material contains (1) convergence tables,
(2) leading-order corrections from α scaling, and (3) non-relativistic
energies and perturbative corrections.
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ABSTRACT

The Breit interaction is implemented in the no-pair variational Dirac–Coulomb (DC) framework using an explicitly correlated Gaussian
basis reported in the previous paper [P. Jeszenszki, D. Ferenc, and E. Mátyus, J. Chem. Phys. 156, 084111 (2022)]. Both a perturbative and
a fully variational inclusion of the Breit term are considered. The no-pair DC plus perturbative Breit and the no-pair DC–Breit energies are
compared with perturbation theory results including the Breit–Pauli Hamiltonian and leading-order non-radiative quantum electrodynamics
corrections for low Z values. Possible reasons for the observed deviations are discussed.
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I. INTRODUCTION

Relativistic effects play an essential role in the quantitative
understanding of high-resolution atomic and molecular spectra. For
atoms and molecules with a low Z nuclear charge number, the
non-relativistic wave function provides an adequate zeroth-order
approximation, and relativistic effects can be treated as perturba-
tion. The most common route for the theoretical determination
of energy levels of low-Z atoms and molecules is provided by the
non-relativistic quantum electrodynamics (nrQED) framework in
which the leading-order relativistic corrections are the well-known
Breit–Pauli Hamiltonian terms. The nrQED approach gives excel-
lent agreement with high-resolution spectroscopymeasurements for
several atomic and molecular systems.1–4 At the same time, the
derivation of the correction operators is tedious in which one has to
deal with (cancellation of) divergent terms at higher orders.4–6 For
larger nuclear charge numbers, this approach becomes unsuitable to
reach high theoretical accuracy.

An alternative approach is provided by the variational solu-
tion of the Dirac–Coulomb (DC) or Dirac–Coulomb–Breit (DCB)
equation, which also bears several difficulties. The main complica-
tion is caused by the coupling of the positive and negative energy
states by the electron–electron interaction known as continuum dis-
solution or the Brown–Ravenhall disease (BR).7 The solution to this
problemwas derived from quantum electrodynamics (QED). Sucher
proposed the projection of the Dirac operator to the positive energy

(E+) subspace of some non-interacting reference problem.8,9 This
approach, during which the electron–positron pair contribution is
eliminated from the Hamiltonian, is referred to as the “no-virtual-
pair” approximation, and it is commonly used in modern relativistic
quantum chemistry computations.

There are various options for choosing an (effective) one-
particle reference problem to define a positive-energy projector.
Mittleman argued for a Hartree–Fock (HF) based projector10 and
methods with a single reference determinant are widely used in
computations.11–13 Liu and co-workers pointed out that if the pro-
jector is defined with the orbitals of the HF computation, then the
positive-energy projected Hamiltonian (and the QED pair correc-
tions to it14) can be naturally written in a second-quantized form15,16

using the same orbitals as a basis. More recently, Almoukhalalati
et al. considered the choice of a “good” projector for computa-
tions including electron correlation.17 Li and co-workers18 noted
that combination of the orbital-based formalism and explicit cor-
relation (“F12 methods”) is non-trivial, and proposed a “dual basis”
approach.

Over the past two decades, methods using explicitly corre-
lated basis functions have been developed and used for solving
the DC equation of (helium-like) atoms.19–22 Explicitly correlated,
non-separable basis functions represent a departure from the single-
particle picture, and the construction of an E+ projection operator
is not immediately obvious in this framework. For atomic computa-
tions, Bylicki, Pestka, and Karwowski proposed to use the complex
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FIG. 1. The single-photon exchange diagram in the Coulomb gauge can be sepa-
rated into an instantaneous Coulomb and a retarded transverse photon exchange
contribution.

coordinate rotation (CCR) technique to separate the E+ subspace
of the non-interacting problem in the explicitly correlated basis
and employed this projection technique to compute the no-pair
Dirac–Coulomb energy for the ground state of helium-like ions
(atom) with Hylleraas-type basis functions.21,23,24

We have adapted this projector for solving the Dirac–Coulomb
and Dirac–Coulomb–Breit models using explicitly correlated Gaus-
sian (ECG) basis sets for atoms and also for molecules. A short
account of this work was first given in Ref. 25. The Dirac–Coulomb
implementation is reported in detail in Ref. 26 (henceforth, Paper I),
and the present work reports theoretical, algorithmic, and numerical
details regarding the implementation of the Breit term in the explic-
itly correlated DC framework of Paper I. No-pair energies computed
in this work are reported for the helium atom and for small and light
molecules converged to high precision and the results are compared
with energies computed in the nrQED framework.

Throughout this work, Hartree atomic units are used and the
speed of light is c = α−1a0Eh/h with α−1 = 137.035 999 084.27
A. The Breit interaction

The classical Lagrangian and Hamiltonian dynamics of moving
charges was studied by Darwin28 to order O(1/c2). Breit identified
the velocity operator as cα in relativistic quantum mechanics29 and

replaced the classical velocity in Darwin’s expression to arrive at
the quantum mechanical form for the interaction of two moving
charges.30 Amore consistent approach is provided by the derivation
of an effective potential fromQED scattering amplitudes.31 The tree-
level diagram in the Smatrix of an electron scattering process is the
one-photon exchange diagram (Fig. 1). The Smatrix is related to the
shift in the energy levels by the Gell-Mann–Low–Sucher formula32,33

that can be used to calculate the effect of the interaction with the
radiation field on the energy levels. The external field of the nuclei
can be taken into account exactly within the Furry picture.34

The Coulomb gauge, for which the vector potential has a
vanishing divergence, is a natural and convenient choice for describ-
ing the molecular domain, since, in addition to the instanta-
neous Coulomb potential, there are only transverse photons present
(Fig. 1). The photon propagator in the Coulomb gauge is

D
C
00(r12) = 1

4πr12
,

D
C
0i = DC

i0 = 0,
D

C
ij (r12,ω/c) = ∫ d3k

(2π)3
eik⋅r12

ω2/c2 − k2 + iε(δij −
kikj

k2
),

(1)

and the corresponding one-photon exchange interaction is (for
example, p. 72 of Ref. 35)

I
C(ω/c) = q1q2[ 1

r12
− α1 ⋅ α2 cos(ωr12/c)

r12

+ {(α1 ⋅∇1)(α2 ⋅∇2) cos(ωr12/c) − 1
ω2r12/c2 }], (2)

where ω is the frequency of the exchanged photon and the gradient
operators act only within the braces.Wemay expand Eq. (2) in terms
of ωr12/c (for example, p. 253 of Ref. 36),

1

q1q2
I
C(ω/c) = 1

r12
− α1 ⋅ α2

r12
[1 − 1

2
(ωr12

c
)2 + ⋅ ⋅ ⋅ ]

+ {(α1 ⋅∇1)(α2 ⋅∇2)[−1
2
(ωr12

c
)2 + 1

4!
(ωr12

c
)4 − ⋅ ⋅ ⋅ ] c2

ω2r12
}

= 1

r12
− α1 ⋅ α2( 1

r12
+O(c−2)) + {(α1 ⋅∇1)(α2 ⋅∇2)(−1

2
r12) +O(c−2)}

= 1

r12
− α1 ⋅ α2

r12
− 1

2
{(α1 ⋅∇1)(α2 ⋅∇2)r12} +O(c−2). (3)

If we neglect the O(c−2) terms, which is often called the zero-
frequency or non-retardation approximation, we obtain the sum of
the Coulomb and the Breit terms,

I
C(0) = q1q2

r12
+ B(1, 2), (4)

B(1, 2) = −q1q2[α1 ⋅ α2
r12

+ 1

2
{(α1 ⋅∇1)(α2 ⋅∇2)r12}]. (5)

If the differentiation is carried out (similarly to the earlier notation,
the differential operators act only within the braces), we obtain the
more common form for the Breit operator,

B(1, 2) = −q1q2
2
[α1 ⋅ α2

r12
+ (α1 ⋅ r12)(α2 ⋅ r12)

r312
]. (6)

It is interesting to note that both the Coulomb and Breit interac-
tions arise from the “zero-frequency approximation” of the exact
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one-photon exchange, and this feature suggests that they should be
treated on an equal footing, e.g., in a variational procedure.

There has been a long discussion in the literature about the
Breit term whether it can be included in a variational procedure
or a perturbative treatment should be preferred. It was argued by
Bethe and Salpeter in 195737 that the Breit interaction should only
be used in first-order perturbation theory, since the coupling with
negative-energy intermediate states would yield second- and higher-
order corrections that are too large. Later, Sucher in 19809 pointed
out that if the operators are defined with positive-energy projec-
tion, then the inclusion of the Breit interaction on the same footing
as the Coulomb interaction in a variational scheme is appropriate.
The discussion continues also in the numerical quantum chemistry
literature based on formal as well as practical considerations and
observations.38–42

In the first order of perturbation theory, the Breit interac-
tion corresponds to a single transverse photon exchange, meanwhile
at higher orders, it describes the consecutive exchange of several
transverse photons. If it is included in a variational computation,
it accounts for a sum (“ladder”) of all-, i.e., one-, two-, three-, etc.,
non-retarded transverse photon exchanges.

II. THE NO-PAIR DIRAC–COULOMB–BREIT EQUATION

In Paper I,26 we have described in detail a (quasi-)variational
procedure for the solution of the no-pair Dirac equation. The no-
pair Dirac operator for N spin-1/2 particles is

H = N∑
i=1

Λ+(h[4N]i + ui1[4N])Λ+ + N∑
i=1

N∑
j>i

Λ+vijΛ+, (7)

where h
[4N]
i = 1[4](1) ⊠ . . . ⊠ h[4]i (i) ⊠ . . . ⊠ 1[4](N) with h

[4]
i= cα[4] ⋅ p + β[4]mic

2 is the free, one-particle Dirac operator, ui= ∑Nnuc
a=1 qiQa/∣ri − Ra∣ is the Coulomb interaction energy with the

fixed, point-like nuclei, Λ+ is the E+-projection operator, and vij is
either the Coulomb or the Coulomb–Breit interaction. We use the
block-wise direct product, also called the Tracy–Singh product,18

for convenience.
The many-particle Coulomb and Breit operators have the

following form:

v
[4N]
ij = 1

rij
1[4

N] + 3∑
k=1

3∑
l=1

(bij)kl[1[4](1) ⊠ . . . ⊠ (α(i))k ⊠ . . .
⊠ (α( j))l ⊠ . . . ⊠ 1[4](N)], (8)

(bij)kl = −12
⎛
⎝
δkl
rij
+ (rij)k(rij)l

r3ij

⎞
⎠. (9)

The explicit matrix form of the no-pair Dirac–Coulomb–Breit
Hamiltonian for two particles is

H(1, 2) = Λ+
⎛⎜⎜⎜⎜⎜⎜⎜⎝

V1[4] +U1[4] cσ
[4]
2 ⋅ p2 cσ

[4]
1 ⋅ p1 B

cσ
[4]
2 ⋅ p2 V1[4] + (U − 2m2c

2)1[4] B cσ
[4]
1 ⋅ p1

cσ
[4]
1 ⋅ p1 B V1[4] + (U − 2m1c

2)1[4] cσ
[4]
2 ⋅ p2

B cσ
[4]
1 ⋅ p1 cσ

[4]
2 ⋅ p2 V1[4] + (U − 2m12c

2)1[4]

⎞⎟⎟⎟⎟⎟⎟⎟⎠
Λ+ (10)

with m12 = m1 +m2, pi = −i( ∂

∂rix
, ∂

∂riy
, ∂

∂riz
) (i = 1, 2), σ[4]1 = (σx ⊗

1[2], σy ⊗ 1[2], σz ⊗ 1[2]), σ
[4]
2 = (1[2] ⊗ σx, 1[2] ⊗ σy, 1[2] ⊗ σz),

where σx, σy, and σz are the 2 × 2 Pauli matrices, and
U = ∑n

i=1∑Nnuc
a=1 qiQa/∣ri − Ra∣ is the external Coulomb potential

of the nuclei. We note that a −2mic
2 shift is introduced for both

particles in the operator in Eq. (10) in comparison with Eq. (7),
which is a commonly used energy-scale shift and serves here
practical, computational purposes.

The Λ+ projection operator is constructed from the positive-
energy solutions of the reference problem, which is chosen to be the
external-field Dirac equation without electron–electron interaction,

N∑
i=1

(h[4N]i + ui1[4N])ϕk = ǫkϕk, Λ+ = ∑
k∈{E+}

∣ϕk⟩⟨ϕk∣. (11)

The projected Hamiltonian is bounded from below, and it has well-
defined bound states, free of the BR problem. Technical details

regarding the projection techniques are explained in Sec. III A and
in Paper I.26

In Eq. (10), the B blocks along the anti-diagonal of the matrix
represent the Breit potential,

B = G − q1q2

2

3∑
i=1

3∑
j=1

σ
[4]
1i
σ
[4]
2j
{∇1i∇2j r12}. (12)

The first term of B is called the Gaunt interaction, which reads for
two particles as

G = −q1q2
r12

σ
[4]
1 ⋅ σ[4]2 = −q1q2r12

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0 −1 2 0

0 2 −1 0

0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (13)
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The wave function is expanded over a set of sixteen-component (2N

forN particles) basis spinors (dχ)j = δχ j withNb explicitly correlated
Gaussian functions,

Ψ(r1, r2) =ANb∑
i=1

16∑
χ=1

ciχdχΘi(r1, r2;Ai, si), (14)

Θi(r1, r2;Ai, si) = exp[−(r − si)T(Ai ⊗ 1[3])(r − si)], (15)

where r = (r1, r2)T are the coordinates of the particles (elec-
trons), si ∈ R6 and Ai ∈ R2×2 are parameters of the basis func-
tions, and A is the anti-symmetrization operator providing the
proper permutational symmetry for the relativistic two-fermion
wave function.26

A. Kinetic balance

The large and small components of a relativistic four-
component basis function must satisfy the relation

ψ
s = σ

[2]p

2mc
ψ
l (16)

following from the kinetic balance condition as discussed in Refs.
43 and 44. We use here the simplest two-particle generalization of
the one-electron kinetic balance condition and implement the two-
electron kinetic balance condition in the sense of a transformation
or metric,43

HKB = X†
HX,

X = diag⎛⎜⎝1
[4],
(σ[4]2 p2)
2m2c

,
(σ[4]1 p1)
2m1c

,
(σ[4]1 p1)(σ[4]2 p2)

4m1m2c2

⎞⎟⎠.
(17)

The two-particle wave function, which corresponds to the block-
wise direct product form of the two-electron operators, has the
following structure:

Ψ(r1, r2) =
⎛⎜⎜⎜⎜⎜⎜⎜⎝

ψ
ll(r1, r2)

ψ
ls(r1, r2)

ψ
sl(r1, r2)

ψ
ss(r1, r2)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (18)

The transformed Hamiltonian in Eq. (17) is obtained by using the
relationship (σ[4] ⋅ p) (σ[4] ⋅ p) = p21[4] as

HKB =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

D1
p22
2m2

1[4]
p21
2m1

1[4] B1

p22
2m2

1[4] D2 B2
p21p

2
2

8c2m1m2
2

1[4]

p21
2m1

1[4] B3 D3
p21p

2
2

8c2m2
1m2

1[4]

B4
p22p

2
1

8c2m1m2
2

1[4]
p22p

2
1

8c2m2
1m2

1[4] D4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(19)

where the diagonal elements are

D1 = V1[4] +U1[4],

D2 = (σ
[4]
2 p2)(V1[4] +U1[4])(σ[4]2 p2)

4m2
2c

2
− p22
2m2

1[4],

D3 = (σ
[4]
1 p1)(V1[4] +U1[4])(σ[4]1 p1)

4m2
1c

2
− p21
2m1

1[4],

D4 = (σ
[4]
1 p1)(σ[4]2 p2)(V1[4] +U1[4])(σ[4]1 p1)(σ[4]2 p2)

16m2
1m

2
2c

4

− m12

8m2
1m

2
2c

2
p
2
1p

2
21
[4].

(20)

The anti-diagonal blocks, which carry the magnetic interactions,
take the following form in the transformed Hamiltonian,

B1 = B(σ[4]1 p1)(σ[4]2 p2)
4c2m1m2

,

B2 = (σ
[4]
2 p2)B(σ[4]1 p1)
4c2m1m2

,

B3 = (σ
[4]
1 p1)B(σ[4]2 p2)
4c2m1m2

,

B4 = (σ
[4]
2 p2)(σ[4]1 p1)B
4c2m1m2

.

(21)

The overlap matrix corresponding to the transformed Hamiltonian,
Eq. (17), is

SKB = X†
X = diag(1[4], p22

4c2m2
2

1[4],
p21

4c2m2
1

1[4],
p21p

2
2

16c4m2
1m

2
2

1[4]).
(22)

B. Complex-coordinate rotation for positive-energy
projection

The complex-coordinate rotation transformation (CCR), used
to define the positive energy projector (Sec. III B 1 of Paper I26),
scales the coordinates by a complex phase factor

xi → xie
iθ, (23)

∂

∂xi
→

∂

∂xi
e−iθ, (24)

1

rij
→

1

rij
e−iθ, (25)

and this transformation introduces only a simple complex scaling
factor, e−iθ,

B
CCR(θ) = Be−iθ, (26)

in front of the Breit operator and also in front of the Breit matrix
elements. In short, the Breit term is dilatation analytic under CCR.
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With this single modification in the calculation of the Breit matrix
elements, the CCR positive-energy projector for the Dirac–Coulomb
part of the problem is constructed and used as described in Paper I26

(Sec. III B 1).

C. Variational solution of the no-pair
Dirac–Coulomb–Breit equation

We compute variational, no-pair Dirac–Coulomb (DC) and
Dirac–Coulomb–Breit (DCB) energies and wave functions by
direct diagonalization of the matrix representation of the projected
Hamiltonian,

Λ
L
+HKBΛ

R
+ci = EiΛL

+SKBΛ
R
+ci, (27)

where HKB and SKB denote the matrix representation of the cor-
responding operators and ci and Ei label the expansion coefficient
vector and the energy eigenvalue, respectively. It is important to note
that the construction of the CCR projector (Secs. III A and III B
of Paper I26) assumes the solution of a non-Hermitian eigenvalue
problem, so we build Λ

L
+ and Λ

R
+ from the left- and right-handed

eigenvectors. For the cutting (or punching) projector (Secs. III B 2
and III B 3 of Paper I26), the non-interacting problem is Hermitian,
hence we may label Λ+ = ΛR

+, and then Λ
L
+ = Λ†

+
.

The Hamiltonian matrix is constructed either for the DC or
the DCB operator and provides the positive-energy projected or no-

pair DC or DCB energies, Eproj
DC or Eproj

DCB, respectively. The non-linear
parameters in Eq. (15) were optimized by minimizing the non-
relativistic energy. This construction is expected to perform well for
low-Z systems. We have carried out test computations for further
optimization of the non-linear parameters by minimization of the
no-pair DCB energy (for the He, H2, HeH+, and H+3 systems studied
in this paper), but no significant improvement was observed.

Further test computations were carried out for the H2 molecule
regarding the contribution of non-relativistic basis functions corre-
sponding to triplet spin states that can mix with the singlet ground
state functions (LS coupling scheme), but the contribution of the
triplet basis sector was negligible (<1 nEh in the energy). Further
details will be reported in future work. Regarding the helium atom,
the non-relativistic ground state was computed with choosing s = 0
in the basis functions, Eq. (15). In test computations, this basis set
was extended with s ≠ 0 functions, but their effect on the DC(B)
energy was found to be very small.

All computations were carried out using double precision arith-
metic (unless indicated otherwise) using the QUANTEN computer
program. QUANTEN is an in-house developed program written
using the Fortran90 programming language and contains several
analytic ECG integrals, for which recent applications have been
reported in Refs. 3 and 45–51.

D. Perturbative inclusion of the Breit interaction

We have considered not only the variational but also the
perturbative inclusion of the Breit interaction in the no-pair
Dirac–Coulomb framework. The Rayleigh–Schrödinger perturba-
tive corrections up to the first and second orders take the following
form:

⟨B⟩n = ⟨Ψproj
DC,n∣X†

B(1, 2)X∣Ψproj
DC,n⟩, (28)

P
(2)
n {B} = ⟨B⟩n +∑

i≠n

∣⟨Ψproj
DC,i∣X†B(1, 2)X∣Ψproj

DC,n⟩∣2
E
proj
DC,i − Eproj

DC,n

, (29)

where Ψ
(proj)
DC,n and E

(proj)
DC,n are the nth no-pair DC wave function

and energy. Since we calculate perturbative corrections for the no-
pair DC problem, Brown–Ravenhall or negative-energy states do not
enter the expressions.

Equations (28) and (29) are valid if a Hermitian positive-energy
projector (cutting, punching, or determinant projector of Paper I26)
is used to set up the no-pair DCmatrix. During the present work, the
reported perturbative results were computed with the cutting projec-
tor. The implementation was generalized also for the CCR projector
and the tested numerical results agree to all reported digits with the
cutting projector values.

The first and second-order perturbative corrections were eval-
uated for comparison with the no-pair DCB energy, and they (and
their good numerical agreement with the variational no-pair DCB
energy) are shown in the supplementary material.

III. NUMERICAL RESULTS AND DISCUSSION

A. Discussion of the projection techniques

Currently, the most rigorous positive-energy projection
approach for methods using explicitly correlated basis functions is
based on the complex-coordinate rotation (CCR) technique pro-
posed by Bylicki, Pestka, and Karwowski23 for the solution of the
Dirac–Coulomb problem of atoms. In Paper I,26 we have general-
ized this CCR projection approach to molecular computations with
the DC Hamiltonian. We adapt the molecular approach to the DCB
problem in the present work and report observations in the follow-
ing paragraphs. The DC(B) Hamiltonian is dilatation analytic for
atoms, but not for molecules with fixed nuclei.

We have considered two approaches for molecular compu-
tations. The first approach is a non-dilatation analytic (“nda”)
approach, which directly accounts for the non-dilatation analytic
property of the Hamiltonian due to the Coulomb interaction with
the external charges (nuclei).

The second possible approach for molecules relies on a naïve
dilatation use of the CCR technique as if the Hamiltonian was
dilatation analytic (“da”), i.e., the positions of the fixed nuclei are
complex scaled together with the active electronic degrees of free-
dom. According to Moiseyev,52 this dilatation analytic approach
is also appropriate, but for accurate results, a perturbative correc-
tion for the “back rotation” of the nuclear positions is necessary. In
Paper I,26 this perturbative correction was found to be small for the
imaginary part of the DC energy (that is 0 for a bound state) and
negligibly small for the real part of the DC energy for sufficiently
small CCR angles. Any θ CCR angle is appropriate for construct-
ing the projector that is sufficiently large for a clear identification of
the positive-energy branch of the non-interacting energies (Fig. 1 of
Paper I26), but not too large for the finite basis set, i.e., the finite basis
set error, which increases with θ, remains small. The advantage of
the “da-CCR” approach is that it does not require the evaluation of
complex-valued Coulomb integrals that contain the complex incom-
plete gamma function, which can be evaluated only with 12-digit
precision in our current implementation.
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For low-Z systems, studied in the present work, we have found
a simple energy cutting projection technique (“cutting”) also appro-
priate for a (sub-)parts-per-billion (ppb) computation of the DC
energy. The cutting approach is technically and numerically the
simplest one, and it was always performed as a first test computation.

An overview and comparison of the numerical performance of
the projection techniques for the no-pair DCB energy is provided in
Tables I and II for the example of the helium atom and the hydrogen
molecule.

Table I presents the angle dependence of the CCR-projected
DCB energies for the ground state of the helium atom and shows also
the result of the simple “cutting” projector. For all θ ∈ [10−8, 10−2],
the positive-energy non-interacting states could be separated, and
the finite basis error for this interval was sufficiently small, hence the
real parts of the DCB energy show a difference less than 1 in 109

(sub-ppb). The double precision arithmetic is sufficient for achiev-
ing ppb precision, but we have performed the computation using
quadruple precision to be able to see the details of the numerical
behavior of the different projection techniques.

Table II shows the numerical behavior of the different pro-
jection techniques for the example of the ground state of the H2

molecule. We observe a similar behavior for the nda-CCR and cut-
ting projectors to the da-CCR and cutting projectors for the helium
atom (Table I), respectively. Regarding the da-CCR projector, we
used it without the perturbative correction for the back rotation of
the nuclei, similarly to the DC problem in Paper I.26 For sufficiently
small CCR angles, the real part of the da-CCR energy is in an excel-
lent numerical agreement with the nda-CCR energy, since the real
part for the perturbative back rotation scales with ∼ θ2 (Paper I26).
At the same time, we see a substantial difference in the imaginary
part of the da-CCR and nda-CCR energies. This difference can be
understood by noticing that the perturbative back rotation for the
imaginary part scales with ∼θ.

TABLE I. Testing the positive-energy projection techniques for the Dirac–
Coulomb–Breit energy of the ground state of the helium atom. The CCR angle
dependence of the dilatation-analytic energy, E

da
DCB, is shown in comparison with the

energy cutting approach, E
cutting
DCB . Quadruple precision arithmetic and Nb = 300 ECG

functions were used. All energies are in Eh units.

proj = da(θ)
θ Re(Eproj

DCB) Im(Eproj
DCB)

0.000 000 01 −2.903 828 970 048 7.35 ⋅ 10−15
0.000 000 1 −2.903 828 970 048 7.35 ⋅ 10−14
0.000 001 −2.903 828 970 048 7.35 ⋅ 10−13
0.000 01 −2.903 828 970 048 7.35 ⋅ 10−12
0.000 1 −2.903 828 970 048 7.35 ⋅ 10−11
0.001 −2.903 828 970 048 7.35 ⋅ 10−10
0.01 −2.903 828 970 071 7.35 ⋅ 10−9
0.1 −2.903 828 971 461 7.47 ⋅ 10−8
0.2 −2.903 828 969 543 1.50 ⋅ 10−7
0.5 −2.903 829 132 724 2.56 ⋅ 10−8
proj = cutting
E
proj
DCB −2.903 828 970 048 0

TABLE II. Testing the positive-energy projection techniques for the Dirac–
Coulomb–Breit energy of the ground-state of the H2 molecule with fixed protons
(Rpp = 1.4 bohr). The dilatation analytic (Eda

DCB
), the non-dilatation analytic (Enda

DCB
),

and the energy cutting (E
cutting
DCB

) techniques are compared. Quadruple precision

arithmetic and Nb = 700 ECG functions were used. All energies are in Eh units.

Re(Eproj
DCB) Im(Eproj

DCB)
θ proj = nda(θ)
0.000 000 1 −1.174 486 710 978 5.55 ⋅ 10−14
0.000 001 −1.174 486 710 978 5.55 ⋅ 10−13
0.000 01 −1.174 486 710 982 5.55 ⋅ 10−12
0.000 1 −1.174 486 711 397 5.54 ⋅ 10−11
0.001 −1.174 486 753 444 4.63 ⋅ 10−10

proj = da(θ)
0.000 000 1 −1.174 486 710 978 7.14 ⋅ 10−8
0.000 001 −1.174 486 710 978 7.14 ⋅ 10−7
0.000 01 −1.174 486 710 979 7.14 ⋅ 10−6
0.000 1 −1.174 486 711 043 7.14 ⋅ 10−5
0.001 −1.174 486 717 484 7.14 ⋅ 10−4
proj = cutting
E
proj
DCB −1.174 486 710 978 0

All in all, the tested positive-energy projection techniques pro-
vide the (real part of the) bound-state energy for the example systems
(He and H2) with a sub-ppb difference.

B. Discussion of the numerical results

The energies computed with the inclusion of the Breit correc-
tion, Eq. (12), are summarized in Table III. The table collects the
results obtained with the largest basis sets for the helium atom and
for the ground electronic state of the H2, HeH+, and H+3 molecular
systems near their equilibrium geometry.

TABLE III. The no-pair DC energy with first-order perturbative Breit correction,

E
proj

DC
+ ⟨B⟩DC in Eh, and the no-pair DCB energy, E

proj

DCB
in Eh. The differences,

δ and δ′ in nEh, with respect to the non-relativistic energy with the leading-order

(α2) perturbative relativistic energy, E
(2)
DCB

, Eq. (30), are also shown. The estimated

convergence error appears in the last digit.

E
proj
DC + ⟨B⟩DC {δ}a E

proj
DCB {δ′}b

H2
c −1.174 486 665 {2} −1.174 486 721 {−54}

H+3
c −1.343 847 416 {0} −1.343 847 498 {−82}

HeH+c −2.978 808 200 {−20} −2.978 808 77 {−590}
He (1 1S0) −2.903 828 333 {−22} −2.903 829 02 {−710}
He (2 1S0) −2.146 082 379 {−11} −2.146 082 424 {−56}
aδ = E

proj
DC + ⟨B⟩DC − E

(2)
DCB .

bδ′ = E
proj
DCB − E

(2)
DCB .

cElectronic ground state for nuclear–nuclear distances Req = 1.4, 1.65, and 1.46 bohr for
H2 , H

+
3 , and HeH+ , respectively.
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Regarding the convergence details, we consider the no-pair DC

plus first-order perturbative Breit energy, Eproj
DC + ⟨B⟩DC, converged

better than 5–10 nEh for all systems studied. The no-pair DCB

energy, Eproj
DCB, converged much slower, our largest basis results are

probably converged only within 10 nEh for H2, H
+

3 , and He 21S0, but
only on the order of ∼100 nEh for He 11S0 and HeH+. In Table III,
one more digit is shown beyond the converged values and detailed
convergence tables are provided in the supplementary material. The
parameterization for all basis sets used in these computations was
obtained by minimization of the non-relativistic energy.

For small and light systems, the most accurate results (and
results in good agreement with the experiment) have been reported
using perturbative techniques. For this reason, Table III also shows
the deviation (δ and δ′) of the computed energies and the leading-
order perturbative relativistic energy, i.e., the sum of the non-
relativistic energy, Enr, and the expectation value of the Breit–Pauli
Hamiltonian (the α2 term) with the non-relativistic wave function,
Ψnr (see for example, Ref. 53),

E
(2)
DCB = Enr + α2⟨Ψnr∣H(2)DC +H(2)B ∣Ψnr⟩, (30)

with

H
(2)
DC = −18

N∑
i=1

(∇2
i )2 + π2

N∑
i=1

Nnuc∑
A=1

ZAδ(riA) − π N∑
i=1

N∑
j>i

δ(rij), (31)

H
(2)
B = HOO + 2π N∑

i=1

N∑
j>i

δ(rij), (32)

and

HOO = − N∑
i=1

N∑
j>i

1

2rij

⎛
⎝pipj +

rij(rijpi)pj
r2ij

⎞
⎠. (33)

We note that the speed of light in Secs. I and II can be written as
c = α−1a0Eh/h in Hartree atomic units. In the perturbative expres-

sions, Eqs. (30)–(33), theH(2)DC ,H
(2)
B , andHOO terms are understood

in this context to have units of Eh (hartree).

We can observe in Table III that the no-pair DCB energy

has a very large deviation (δ′), whereas the E
proj
DC + ⟨B⟩DC energy

has a smaller, but non-negligible, difference (δ) from the E
(2)
DCB

leading-order relativistic energy. The sign and the order of mag-
nitude of the deviation are not immediately obvious and motivate
further analysis. In Table III of Paper I,26 we observed that it is
necessary to go beyond the leading-order (α2) perturbative correc-
tion and include also the α3-order non-radiative QED term for the
two-Coulomb-photon exchange to have a good agreement with
the no-pair Dirac–Coulomb energy. For a better understanding of
the Breit results, let us consider the effect of the Breit correction,
instead of the full energy.

Table IV shows Breit correction values obtained from differ-
ent computations. (For the sake of further analysis, we have also
included the ground state of Li+ and Be2+ in the table.) First of all, we
observe that the bulk of the Breit contribution (first 1–2 significant
digits) agree in all computations.

A good agreement is observed even with the ⟨Bω⟩MCDF multi-
configurationDirac–Hartree–Fock value,56 in which Bω includes not
only the non-retarded Breit term (as in our work), but also accounts
for the frequency dependence of the interaction. Further digits are
not available from that computation, but the available information
provides us an independent check, assuming that the frequency
dependence (and the different projector) has only a small effect on
the systems studied. Apart from this set of values, all other values
listed in the table correspond to the unretarded Breit interaction,
Eq. (6). Regarding the uncertainty of the digits shown in the table,
the estimated convergence error appears in the last digit given for

E
proj
DCB − Eproj

DC and ⟨B⟩DC. All digits shown for the reference value of

α2⟨H(2)B ⟩nr are significant, i.e., converged for that quantity.
For ⟨B⟩P = ⟨ΨP∣B∣ΨP⟩, we show the relevant number of dig-

its of the numerical value obtained with the Pauli wave function
constructed from the non-relativistic wave function optimized in
this work. The Pauli wave function8 is an approximation to the
no-pair DC wave function, it can be constructed by using Eq. (17)
kinetic balance condition and by filling up the appropriate spin-
components with the (normalized) non-relativistic wave function in
all (ll, ls, sl, and ss) blocks. So, we have evaluated ⟨B⟩P by using the

TABLE IV. Comparison of the Breit correction, in μEh, obtained from different computations. The estimated convergence error
appears in the last digit. All values correspond to α = α0 = 137.035 999 084.27

H− He Li+ Be2+ H2 H+3 HeH+

E
proj
DCB − Eproj

DC 0.436 27.61 150.67 449.3 3.033 3.029 25.95
⟨B⟩DCa 0.448 28.298 156.354 464.60 3.089 3.111 26.436
⟨B⟩Pa,b 0.445 28.209 155.907 463.11 3.074 3.095 26.347

α2⟨H(2)B ⟩nra,b,25,45,54,55 0.443 5 28.174 9 155.786 1 462.747 1 3.065 5 3.087 7 26.313
⟨Bω⟩MCDF

a,c,56 0.4 28 (n.a.) 460 (n.a.) (n.a.) (n.a.)

a⟨O⟩X : the expectation value of the O operator with the X: projected Dirac–Coulomb (DC), Pauli (P), non-relativistic (nr), and
multi-configuration Dirac–Fock (MCDF) wave function.
b⟨B⟩P equals (by mathematically equivalent rearrangements) α2⟨H(2)B ⟩nr , so the same result is obtained, as if ⟨H(2)B ⟩nr was

“directly” evaluated in the same basis set as ⟨B⟩P . The reference values for ⟨H
(2)
B ⟩nr were obtained by techniques that account for

the cusp of the non-relativistic (nr) wave function and enhance the convergence of the expectation value of the singular operator

in H
(2)
B , Eq. (32).

cPerturbative corrections including the frequency-dependence of the Breit operator taken from Ref. 56. Equation (2) is the
relevant equation in this work that contains the sum of the Coulomb and the Bω frequency-dependent Breit interactions.
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non-relativistic wave function in this way in our sixteen-component
Breit implementation. Furthermore, it can be shown that ⟨ΨP∣B∣ΨP⟩
can be exactly rearranged to α2⟨H(2)B ⟩nr = α2⟨Ψnr∣H(2)B ∣Ψnr⟩ (nor-
malization of the Pauli wave function gives contribution only at

higher α orders).8 In our implementation, the ⟨B⟩P = α2⟨H(2)B ⟩nr
mathematical identity is fulfilled to machine precision, if the same
non-relativistic wave function is used in the two computations.
Although the same underlying ECG integral routines are used for
the evaluation of the two expressions, the two different computa-
tions assume the combination of different indices [compare Sec. II
on the one hand and Eqs. (32) and (33) on the other], so this was an
important check of our Breit implementation.

The ⟨B⟩P values reported in the table correspond to the ECG
basis that was obtained by minimization of the non-relativistic
energy and also used as a “spatial” basis in the no-pair DC and DCB
computations. As pointed out, these ⟨B⟩P values agree to machine

precision with the direct evaluation of α2⟨H(2)B ⟩nr in the same basis
(“own basis”). At the same time, these values are not converged with
respect to the basis set size due to the slowly convergent expecta-
tion value of the singular operator, δ(r12), which can be most easily
identified in Eq. (32), in a Gaussian basis not satisfying the cusp con-
dition.45 There are special “regularization” techniques45,57,58 that can
be used to improve the convergence of the expectation value for the
singular operator, δ(rij) [as well as for other singular operators in
H
(2)
DC in Eq. (31)].

The well-converged perturbative values are compiled from lit-

erature values in the α2⟨H(2)B ⟩nr line of Table IV. We also note that

the α2⟨H(2)B ⟩nr values for HeH+ and H+3 were taken from Refs. 25
and 45, respectively, and were computed with ECG functions and
the so-called integral transformation technique that enhances the
convergence by accounting for the missing cusp effects.45,58 Further
numerical details and quantities used to calculate the perturbative
corrections are provided in the supplementary material.

After this introduction, we are in a position to compare the

α2⟨H(2)B ⟩nr value, which is a quadratic function in α (⟨H(2)B ⟩nr in
Hartree atomic units, which we use in this work, is independent
of α), with the no-pair, sixteen-component results, Eproj

DCB − Eproj
DC and

⟨B⟩DC, that contain non-radiative QED contributions, i.e., contribu-
tions beyond α2. To quantify this dependence, we solved the no-pair
DC(B) equation for several α values in the interval α ∈ [0.7, 1.6]α0
with α0 = 1/137.035 999 084.27 For much smaller α values, the cor-
rections are too small for our numerical precision, and for much
larger α values, the spatial basis set taken from a non-relativistic
optimization procedure is insufficient.

Figure 2 shows the ⟨B⟩DC(α) − α2⟨H(2)B ⟩nr difference and the
b2α

2 + b3α3 + b4α4 polynomial fitted to the difference. In each fit,
there is a small b2α

2 “relativistic offset” that can be attributed to
imperfections in the convergence of the ⟨B⟩DC data. The data are
normalized with ⟨δ(r12)⟩nr that brings the values of all helium-like
ions (Z = 1, 2, 3, 4) and the three molecules (H2, HeH+, and H+3 ) to
the same scale in the figure. The b3 coefficients are similar in the dif-
ferent systems, but there is some system dependence that requires
further study and, in the first place, better converged ⟨B⟩DC data. All
in all, we may conclude that the leading-order non-radiative QED
contribution due to an (unretarded) Breit photon is approximately
described by

FIG. 2. Dependence of the Breit correction to the no-pair DC energy, ⟨B⟩DC, on the
value of the α coupling constant of the electromagnetic interaction. Hartree atomic
units are used and α0 labels 1/137.035 999 084.27 The data points, used for fitting
the polynomials, were computed at the α = 1/(α0 + n), n = −50, . . . , 50 values.

The ⟨H
(2)
B
⟩nr and the ⟨δ(r12)⟩nr values compiled from Refs. 25, 45, 54, and 55

are listed in Table IV and in the supplementary material.

⟨B⟩(3)DC ≈ 2.5α3⟨δ(r12)⟩nr. (34)

The ⟨δ(r12)⟩nr proportionality is in agreement with Sucher’s result
(Chap. V of Ref. 8), but Sucher’s coefficient for the positive-energy
contribution (for singlet states) is different, Eq. (5.64) of Ref. 8,

α
3
ε
++

CB,unret = 4(π2 + 1)α3⟨δ(r12)⟩nr ≈ 10.3α3⟨δ(r12)⟩nr. (35)

We do not have a conclusive explanation for this discrepancy. It
is interesting to note, however, that the single- and double-pair
contributions, Eqs. (5.21a)–(5.21b) of Ref. 8, to the (unretarded)
expression in Eq. (35) (for singlet states) sum to

α
3
εCB,unret = (4 − 2 ln 2)α3⟨δ(r12)⟩nr ≈ 3.40α3⟨δ(r12)⟩nr, (36)

and observe that Sucher approximates the intermediate states with
free-electron states, while they are one-electron states in the field
of the nuclei (without electron–electron interactions) in our com-
putations. Further work, including the pair corrections in our
computations, will help in clarifying these aspects.

The α4-order contribution is not expected to be well approxi-
mated with a constant multiple of ⟨δ(r12)⟩nr. Nevertheless, the b4α4
term is included in the fit (Fig. 2), and we can, indeed, observe a
significant variation of b4 over the different systems studied.

Based on these observation, we can address the good numerical

agreement of Eproj
DC + ⟨B⟩DC and E

(2)
DCB (Table III). The leading-order

non-radiative QED correction in E
proj
DC (Fig. 3 in Paper I26) and in

⟨B⟩DC have an opposite sign and a similar order of magnitude. The
sum of their contribution can be described to leading order in α as
(b3 + c3)α3 ≈ −α3⟨δ(r12)⟩ that corresponds for the physical α = α0
value to values on the order of (−1) to (−7) nEh for the hydrogenic
systems and −40 nEh for the Z = 2 systems. These values, together
with the convergence estimates—5 and 10 nEh for Z = 1 and Z = 2
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systems, respectively—and the observed remaining higher-order

contributions in E
proj
DC (Sec. IV C of Paper I26) provide some insight

into the numerical agreement of Eproj
DC + ⟨B⟩DC and E(2)DCB in Table III.

The α dependence of the no-pair Dirac–Coulomb–Breit energy
is much less understood. First of all, it is important to note that the
“bulk of the correction” is correct and it is in agreement with other
Breit correction results (Table IV). At the same time, we observe
a slow convergence of Eproj

DCB with the basis set size. Furthermore,

E
proj
DCB − Eproj

DC is “much” smaller than ⟨B⟩DC, and the absolute value
of the deviation is “large” in comparison with the typical deviations
of the perturbative theory and experiment. By adding more ECG
functions (that is currently limited by the double precision arith-

metic that we use), we may expect some further decrease in the Eproj
DCB

energy, i.e., increase in the absolute value of the deviation, due to
the (near-)variational property of the no-pair computations and the

already good convergence of the Eproj
DC energy.

It is interesting to note that the second-order
Rayleigh–Schrödinger perturbative Breit correction, Eqs. (28)
and (29), to the no-pair DC energy practically recovers the no-pair
DCB result (the numerical values are provided in the supplementary
material). This suggests that the deviation could be understood in
terms of a perturbative correction (from the positive energy space)
due to the exchange of two (unretarded) Breit photons. Sucher
estimated this value to be (for singlet states) − π2 α3⟨δ(rij)⟩nr in Eq.
(6.9b++) of Ref. 8. The sign of the deviation is in agreement with
our numerical result, but it is an order of magnitude (!) smaller
than the difference found in our computations. The comparison
is further complicated by the fact that Sucher approximates the
intermediate states with free-electron states. By collecting the pair
corrections corresponding to Sucher’s free-electron intermediate-
state approximation,8 we may observe the so-called Araki–Sucher
term and a ln α dependence. For the example of the helium atom,
we have studied the α dependence of the no-pair DCB and DC
energies (Fig. 3). Surprisingly, the fitting coefficients in ∑m

n=2t
′

nα
n

change significantly by increasing the maximal polynomial order
from m = 3–4. Inclusion of an α3 ln α term did not improve the
quality of the fit.

We have repeated all computations using only the Gaunt term,
Eq. (13), i.e., solved the no-pair Dirac–Coulomb–Gaunt equation
and observed a similar behavior (Fig. 4): (a) relatively slow conver-
gence with respect to the basis set size; (b) failure to find a stable fit
of∑m

n=2gnα
n polynomials form = 3–4.

Since the Dirac–Coulomb–Gaunt and Dirac–Coulomb–Breit
wave functions have different coalescence properties,18 it is unlikely
that the similar erratic behavior of the Dirac–Coulomb–Gaunt
(DCG) and DCB results (Figs. 3 and 4) is caused by the inexact
representation of the coalescence features by the ECG basis set.

For further progress along these lines, it will be necessary to (a)
improve the convergence of the no-pair DCB (and DCG) energies
by an order of magnitude, (b) compute pair-corrections to the no-
pair energies, and (c) test the kinetic balance condition to be able to
rule out any deviation caused by an unnoticed “prolapse.” We have
not noticed any major sign of prolapse during our no-pair DC com-
putations (Paper I26), but it cannot be entirely excluded since the
“restricted” kinetic balance, Eq. (16), is only an approximation to the
“atomic balance”59 that would ensure a rigorous variational property
for the computation of the non-interacting states used to define the

FIG. 3. Dependence of the no-pair Dirac–Coulomb–Breit (DCB) energy on the
value of the α coupling constant of the electromagnetic interaction for the example
of the ground state of the helium atom. Hartree atomic units are used and α0 labels
1/137.035 999 084.27 The α dependence of the no-pair Dirac–Coulomb energy,

E
proj

DC
, is shown in Fig. 3 of Paper I.26 The ⟨H

(2)
B
⟩nr and ⟨δ(r12)⟩nr values compiled

from Ref. 54 are listed in Table IV and in the supplementary material.

FIG. 4. Dependence of the no-pair Dirac–Coulomb–Gaunt (DCG) energy on the
value of the α coupling constant of the electromagnetic interaction for the example
of the ground state of the helium atom. Hartree atomic units are used and α0 labels
1/137.035 999 084.27 The α dependence of the no-pair Dirac–Coulomb energy,

E
proj

DC
, is shown in Fig. 3 of Paper I.26 The leading-order α2 perturbative value for

the Gaunt correction was obtained as ⟨G⟩P (using the Pauli approximation and our
sixteen-component Gaunt implementation). The ⟨δ(r12)⟩nr value was taken from
Ref. 54.

positive-energy projector. It would be prohibitively difficult to use
the atomic balance in this work, but we consider testing other types
of (approximate) kinetic balance conditions.22,60

IV. SUMMARY AND CONCLUSION

In summary, the implementation of the Breit interaction
operator has been reported in the explicitly correlated no-pair
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Dirac–Coulomb framework described in Paper I.26 Both the
variational and the perturbative inclusion of the Breit inter-
action were considered. Numerical results have been reported
for the helium atom and helium-like ions with small nuclear
charge numbers as well as for the ground electronic state of
the H2, HeH+, and H+3 molecular systems near their equilibrium
configuration.

The numerical results are compared with the leading-order,
O(α2), relativistic energies and the relevant, leading-order, O(α3),
non-radiative quantum electrodynamics corrections that are avail-
able from non-relativistic quantum electrodynamics derivations
in the literature. Further work is necessary to clarify the ori-
gin of the deviation of the variational and perturbative relativistic
treatments.

SUPPLEMENTARY MATERIAL

The supplementary material contains (a) matrix elements for
the Breit operator, (b) convergence tables, and (c) a collection of
expectation values for the evaluation of the perturbative formulas.
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ABSTRACT

The Dirac–Coulomb equation with positive-energy projection is solved using explicitly correlated Gaussian functions. The algorithm and
computational procedure aims for a parts-per-billion convergence of the energy to provide a starting point for further comparison and further
developments in relation with high-resolution atomic and molecular spectroscopy. Besides a detailed discussion of the implementation of the
fundamental spinor structure, permutation, and point-group symmetries, various options for the positive-energy projection procedure are
presented. The no-pair Dirac–Coulomb energy converged to a parts-per-billion precision is compared with perturbative results for atomic
and molecular systems with small nuclear charge numbers. Paper II [D. Ferenc, P. Jeszenszki, and E. Mátyus, J. Chem. Phys. 156, 084110
(2022).] describes the implementation of the Breit interaction in this framework.
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I. INTRODUCTION

For a quantitative description of the high-resolution spectro-
scopic measurements of atoms1,2 and molecules,3,4 calculations of
highly accurate energies are required corresponding to an at least
parts-per-billion (ppb) relative precision.5–7 To ensure the ppb level
of convergence for atomic and molecular energies, it is necessary to
use explicitly correlated basis functions.6,8–10 Although fast conver-
gence of the energy with respect to the basis set size is ensured, most
explicitly correlated functions are highly specialized to the particu-
lar system. The integral expressions for the matrix elements typically
depend on the number of electrons and nuclei, and new derivations
are required for every extra atom and molecule type.11–13

Variants of explicitly correlated Gaussian functions
(ECGs)8,14,15 have the advantage that they explicitly contain
the interparticle distances, while they preserve the general analytic
formulation for a variety of systems.15–17 In spite of these favorable
properties, the ECGs are smooth functions that fail to satisfy the
exact particle coalescence properties (cusps) of the non-relativistic
wave function18 and the cuspy or singular coalescence points corre-
sponding to relativistic model Hamiltonians for which the precise
properties depend on the particle interaction type.19,20 For certain
non-relativistic quantities, there exist convergence acceleration
techniques that account for the missing cusp effects,21,22 while for

variational relativistic treatments, careful convergence tests and
comparison with other specialized methods,23,24 which account for
the singular behavior, are relevant (see also Sec. IV A of this work
and Sec. III B of Paper II25).

Regarding the physical model, for systems with small Z nuclear
charge numbers, the non-relativistic quantum electrodynamics
(QED) (nrQED) approach is commonly used, which includes the
Zα expansion of the Dirac Hamiltonian5,26–28 and α is the fine-
structure constant. In the nrQED procedure, the relativistic correc-
tions appear in the perturbative terms without any direct account
for the interaction of electron correlation with relativistic and QED
effects at lowest order. There is another limiting range for which
a meaningful expansion can be carried out; the 1/Z expansion is a
common choice for high Z values relevant for heavy elements.29–32

The “intermediate” range with intermediate Z is a challenging range
for the theory because in this range both the correlation and the
relativistic (QED) effects are important.33,34

In the present work, we will consider an approach that aims
for a treatment of electron correlation and special relativity on the
“same footing” and at the same time targets tight convergence for
the computed energies. In this way, comparison with results of the
nrQED methodology, which can be considered well established for
the low-Z range, becomes relevant. In particular, an nrQED calcula-
tion is always restricted to a given order of the perturbation theory,
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and finding a good estimate for the contributions from higher orders
is often challenging.

The Dirac–Coulomb (DC) Hamiltonian is often cited as a start-
ing point to account for special relativity in a many-particle atomic
ormolecular system. In thismodel, the direct product of one-particle
Dirac operators and the Coulomb interaction between the parti-
cles is considered. Energies and wave functions for this seemingly
ad hoc construct may be obtained by diagonalization of the matrix
representation of the Dirac–Coulomb operator. Unfortunately, this
simple procedure is problematic: electronic states, which would
represent bound states, are “dissolved” in the positron–electron
continuum in the infinite basis limit. This problematic behavior
is called the “continuum dissolution” or “Brown–Ravenhall (BR)
disease.”35 The usual strategy to have access to these states relies
on a positive-energy projection of the operator,36,37 which elimi-
nates the positron–positron and positron–electron states. Although
the projected energies depend on the projector and, hence, on
the underlying non-interacting model,38–40 the final energies and
predicted spectroscopic quantities should be independent of these
technical details when all relevant QED terms are also accounted
for.37,41,42

Using a determinant expansion, several approximate33,43 and
ab initio34,44 QED computations have been carried out using the
Dirac–Coulomb(–Breit) model used as the zeroth-order Hamilto-
nian. At the same time, far fewer applications have been reported
with explicitly correlated basis functions, partly due to the diffi-
culty caused by the missing one-particle picture in this basis rep-
resentation. A one-particle basis provides a common and natural
starting point for the description of the interaction of elementary
particles,45–48 and it can be used to develop a second quantized
framework emphasized by Liu et al.49–52 At the same time, “explicit
correlation” is required to accurately describe particle correlation
that is important for spectroscopic applications.5,28,53 Liu et al. have
considered the explicit correlation as a perturbation in the F12
framework, which required a “dual-basis” generalization of their
positive-energy projection approach.20,49,54

Apart from our earlier report,55 the very first and, so far, sin-
gle implementation of positive-energy projection with an explicitly
correlated basis set was based on complex scaling of the particle
coordinates.24 The complex scaling of the non-interacting model
results in electronic states that are rotated to a branch in the
complex-energy plane that is separated from the electron–positron
and positron–positron states. In this way, the (non-interacting)
electronic states can be expressed in a non-separable basis,
and the corresponding positive-energy functions can be iden-
tified. Bylicki, Pestka, and Karwowski24 proposed and imple-
mented this complex-scaling approach with a (explicitly corre-
lated) Hylleraas basis set and used it to compute the ground-state
Dirac–Coulomb energy of the isoelectronic series of the helium
atom.

In the present work, we report the detailed theoretical back-
ground for the first extension of an explicitly correlated, positive-
energy projected approach to molecules.55 We report the theoretical
and algorithmic details for the computation of energies and eigen-
functions of the positive-energy projected or, as it is also called,
no-pair DC Hamiltonian. After introduction of the DC model, the
methodology is presented for the ECG framework with explanation
about the implementation of the permutational and point-group

symmetries. We discuss in detail the positive-energy projection
approach for which three alternatives are considered in detail.
This paper ends with the presentation and analysis of the numer-
ical results in comparison with perturbative relativistic and QED
energies for the example of low-Z atomic and molecular systems.

II. DIRAC–COULOMB HAMILTONIAN
AND DIRAC-SPINOR FOR TWO PARTICLES

A. Dirac–Coulomb Hamiltonian

To introduce notation, we first consider the eigenvalue equa-
tion for the Dirac Hamiltonian (written in Hartree atomic units) of
a single electron in interaction with Nnuc fixed nuclei described as
positive point charges,

h
[4]
D φ(4) = E φ(4), (1)

h
[4]
D = cα

[4]
p + β[4]mc

2 + 1[4]U, (2)

U = −
Nnuc

∑
I=1

ZI

∣r − RI ∣
. (3)

In the equations, r is the position of the electron, RI is the posi-
tion of the Ith nucleus, ZI is the charge of this nucleus, 1[n] is the
n-dimensional unit matrix, φ(4) is a four-component spinor, and

α
[4] = (α[4]1 ,α[4]2 ,α[4]3 ). Throughout this work, we use the super-

script “(n)” and “[n]” to label an n-dimensional vector and an
(n × n)-dimensional matrix, respectively. The Dirac matrices are
chosen according to the usual convention,

α
[4]
i =

⎛⎜⎝
0[2] σ

[2]
i

σ
[2]
i 0[2]

⎞⎟⎠, β[4] =
⎛⎜⎝
1[2] 0[2]

0[2] −1[2]

⎞⎟⎠ (4)

with the σ[2]i Pauli matrices,

σ
[2]
1 =

⎛⎜⎝
0 1

1 0

⎞⎟⎠, σ
[2]
2 =

⎛⎜⎝
0 −i

i 0

⎞⎟⎠, and σ
[2]
3 =

⎛⎜⎝
1 0

0 −1

⎞⎟⎠. (5)

The matrix 0[n] is the (n × n)-dimensional zero matrix. According
to the 2 × 2 block structure of the α[4] and β[4] matrices, Eq. (4), it is
convenient to express the φ(4) spinor with a φl(2) “large” and a φs(2)

“small” component as

φ(4)(r) =
⎡⎢⎢⎢⎢⎢⎣
φl(2)(r)
φs(2)(r)

⎤⎥⎥⎥⎥⎥⎦
. (6)

Both φl(2) and φs(2) have two components that can be characterized
according to the spin projection on the z axis (+1/2: ↑ and −1/2: ↓),
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φλ(2)(r) =
⎡⎢⎢⎢⎢⎢⎣
φλ↑(r)
φλ↓(r)

⎤⎥⎥⎥⎥⎥⎦
, λ = l or s. (7)

The (exact) relation of the large and the small components is
obtained from Eqs. (1)–(4),

φs(2)(r) = cσ[2]p

E −U +mc2
φl(2)(r). (8)

To compute low-lying positive-energy states that appear a bit
below mc2, this relation is commonly approximated by using E −U
+mc2 ≈ 2mc2,

φs(2)(r) ≈ σ
[2]p

2mc
φl(2)(r). (9)

It is important to note the symmetry relation (opposite parities)
between the large and the small components, which is discussed in
Ref. 56.

We use this, so-called “restricted,” kinetic balance
condition56–58 in the sense of a metric,

φ(4)(r) =
Nb

∑
i=1

4

∑
q=1

ciqϕ
(4)
iq (r), (10)

ϕ
(4)
iq (r) = B[4] 1(4)q Θi(r), (11)

B
[4] =

⎛⎜⎜⎝
1[2] 0[2]

0[2]
σ
[2]p

2mc

⎞⎟⎟⎠
, (12)

where ciq is a coefficient, Θi(r) is a spatial function, and 1(4)q is
a four-dimensional vector in which all elements are zero except

for the qth element that is one, (1(4)q )
i
= δqi. This relation has a

central importance for the construction of a good matrix repre-
sentation of the Hamiltonian in numerical computations; other-
wise, a “variational collapse” would occur caused by an inappro-
priate representation of the p momentum operator in the spinor
basis.57,59,60

We also note that the rigorous variational property of the phys-
ical ground state would be guaranteed in a strict mathematical sense
only by the “atomic balance,”61 which reads as

φs(2)(r) ≈ cσ[2]p

2mc2 −U
φl(2)(r). (13)

Unfortunately, application of the atomic balance would result (with
practical basis sets) in matrix elements that are difficult (impossible)
to integrate analytically, and already, the “restricted” kinetic balance,
Eq. (9), provides excellent results. Therefore, in the present work, we
will proceed with the “restricted” kinetic balance condition, Eq. (9),
and keep in mind the formal mathematical results.

For many-particle systems, several types of kinetic balance
conditions have been introduced, which have different advantages
depending on the aim of the computation.57,61–63 Shabaev et al.
defined the dual kinetic balance condition46,64 that implements

not only the large–small relation but also the small–large relation.
Pestka, Bylicki, and Karwowski24,65 mentioned an iterative pro-
cedure connecting the large and small subspaces. Simmen et al.
introduced a many-particle, so-called “relativistic” kinetic balance
condition63 by solving the two(many)-electron equations by using
the E −U +mc2 ≈ 2mc2 approximation.

In a many-electron (many-spin-1/2-fermion) system, the Dirac
operator for the ith particle is written in a direct-product form,

h
[4N]
i = 1[4](1) ⊠ ⋅⋅⋅ ⊠ h[4]D (i) ⊠ ⋅⋅⋅ ⊠ 1[4](N), (14)

where the particle index is given in parenthesis and N is the total
number of electrons. By assuming instantaneous Coulomb interac-
tions acting between the pairs of particles, we can write down the
eigenvalue equation,

H
[4N]
DC ∣Ψ(4

N)⟩ = E∣Ψ(4N)⟩, (15)

with the Dirac–Coulomb Hamiltonian,

H
[4N]
DC =

N

∑
i=1

h
[4N]
i + 1[4N]V, (16)

V =
N

∑
i=1

N

∑
i<j

1
∣ri − rj∣ . (17)

In the many-particle case, it remains to be convenient to think in
terms of the large–small block structure similarly to the one-electron
case. The many-particle spinor has in total 4N components that are
now considered in terms of 2N large–small components and 2N

spin configurations. The block-wise direct product, which allows
us to retain the large–small structure, was called the Tracy–Singh
product66 in Refs. 20 and 52 and was later also used in Refs. 55
and 63.

In this paper, we focus on two-electron systems for which the
block-wise spinor structure can be written as

∣Ψ(16)⟩ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∣ψl l(4)⟩
∣ψl s(4)⟩
∣ψs l(4)⟩
∣ψs s(4)⟩

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(18)

and

∣ψλ1λ2(4)⟩ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∣ψλ1λ2↑↑ ⟩
∣ψλ1λ2↑↓ ⟩
∣ψλ1λ2↓↑ ⟩
∣ψλ1λ2↓↓ ⟩

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (19)

where λ1 and λ2 can be “l” or “s.” The two-particle Dirac–Coulomb
Hamiltonian written in a corresponding block-structure is
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H
[16]
DC =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

(V +U)1[4] cσ
[4]
2 p2 cσ

[4]
1 p1 0[4]

cσ
[4]
2 p2 (V +U − 2m2c

2)1[4] 0[4] cσ
[4]
1 p1

cσ
[4]
1 p1 0[4] (V +U − 2m1c

2)1[4] cσ
[4]
2 p2

0[4] cσ
[4]
1 p1 cσ

[4]
2 p2 [V +U − 2(m1 +m2)c2]1[4]

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (20)

where similarly to Eq. (14), the σ[4]1 = σ
[2] ⊗ 1[2] notation is intro-

duced and σ
[4]
2 = 1

[2] ⊗ σ
[2] and the energy scale for the ith particle

is shifted bymic
2. We use during this work the relationship

σ
[4]
1 σ

[4]
2 = (σ[2] ⊗ 1[2])(1[2] ⊗ σ

[2]) = σ[2] ⊗ σ
[2]. (21)

The exact wave function is expanded in a spinor basis,

∣Ψ(16)⟩ = Nb

∑
i=1

16

∑
q=1

ciq∣Φ(16)iq ⟩, (22)

for which the kinetic-balance condition of Eq. (11) can be
generalized57,58 as

∣Φ(16)iq ⟩ = B[16] 1(16)q ∣Θi⟩, (23)

B
[16] =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1[4] 0[4] 0[4] 0[4]

0[4]
σ
[4]
2 p2
2m2c

0[4] 0[4]

0[4] 0[4]
σ
[4]
1 p1
2mc1

0[4]

0[4] 0[4] 0[4]
σ
[4]
1 p1σ

[4]
2 p2

4m1m2c2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (24)

Additionally, ∣Θi⟩ is a floating explicitly correlated Gaussian
function,

Θi(r) = exp[−(r − si)TAi(r − si)], (25)

where r ∈ R6 is the position vector of the two particles, si ∈ R6 is
the “shift” vector, and Ai = Ai ⊗ 1[3] with Ai ∈ R2×2 is a symmetric,
positive-definite parameter matrix.

Multiplying Eq. (15) from the left with ⟨Φ(16)jp ∣ and using

Eqs. (22) and (23), we obtain the matrix eigenvalue equation

Nb

∑
i=1

16

∑
q=1

⟨Φ(16)jp ∣H[16]DC ∣Φ(16)iq ⟩ciq = E
Nb

∑
i=1

16

∑
q=1

⟨Φ(16)jp ∣Φ(16)iq ⟩ciq. (26)

The explicit form for a matrix element is

⟨Φ(16)jp ∣H[16]DC ∣Φ(16)iq ⟩ = ⟨Θj∣1(16)p

T
B
[16]†

H
[16]
DC B

[16]1(16)q ∣Θi⟩

= 1(16)p

T

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⟨Θj∣W[4]ll ∣Θi⟩ 1
2m2
⟨Θj∣p22∣Θi⟩1[4] 1

2m1
⟨Θj∣p21∣Θi⟩1[4] 0[4]

1
2m2
⟨Θj∣p22∣Θi⟩1[4] ⟨Θj∣W[4]ls ∣Θi⟩ 0[4]

1
8m1m2

2c
2
⟨Θj∣p21p22∣Θi⟩1[4]

1
2m1
⟨Θi∣p21∣Θj⟩1[4] 0[4] ⟨Θj∣W[4]sl ∣Θi⟩ 1

8m2
1m2c2

⟨Θi∣p21p22∣Θj⟩1[4]
0[4]

1
8m1m2

2c
2
⟨Θi∣p21p22∣Θj⟩1[4] 1

8m2
1m2c2

⟨Θi∣p21p22∣Θj⟩1[4] ⟨Θj∣W[4]ss ∣Θi⟩

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1(16)q ,

(27)

⟨Φ(16)jp ∣Φ(16)iq ⟩ = ⟨Θj∣1(16)p

T
B
[16]†

B
[16]1(16)q ∣Θi⟩

= 1(16)p

T

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⟨Θi∣Θj⟩1[4] 0[4] 0[4] 0[4]

0[4]
1

4m2
2c

2
⟨Θi∣p22∣Θj⟩1[4] 0[4] 0[4]

0[4] 0[4]
1

4m2
1c

2
⟨Θi∣p21∣Θj⟩1[4] 0[4]

0[4] 0[4] 0[4]
1

16m2
1m

2
2c

4
⟨Θi∣p21p22∣Θj⟩1[4]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1(16)q , (28)
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W
[4]
ll = (V +U)1[4], (29)

W
[4]
ls =

1
4m2

2c
2

3

∑
i,j=1

p2i(V +U)p2jσ[4]2i σ
[4]
2j − 1

2m2
p
2
21
[4], (30)

W
[4]
sl =

1
4m2

1c
2

3

∑
i,j=1

p1i(V +U)p1jσ[4]1i σ
[4]
1j − 1

2m1
p
2
11
[4], (31)

W
[4]
ss =

1
16m2

1m
2
2c

4

3

∑
i,j,k,l=1

p1ip2j(V +U)p2kp1lσ[4]1i σ
[4]
1l σ

[4]
2j σ

[4]
2k

− (m1 +m2)
8m2

1m
2
2c

2
p
2
1p

2
21
[4], (32)

where the (σ[4]p)(σ[4]p) = p21[4] identity was used. In the equations,
⟨Θi∣W[4]∣Θj⟩ means that the integral is evaluated for every ele-

ment of the four-dimensional matrix. Subsection II B describes the
implementation of the permutational symmetry for (two) identical
spin-1/2 particles.

B. Implementation of the permutational symmetry

The Dirac–Coulomb Hamiltonian, similarly to its non-
relativistic counterpart, is invariant to the permutation of identical
particles. At the same time, it is necessary to consider the multi-
dimensional spinor structure when we calculate the effect of the
particle-permutation operator. For two particles and for the present
block structure, it is

P
[16]
12 = (Pls[4]

12 ⊗ P
↑↓[4]
12 )P12, (33)

where P12 exchanges the particle labels (as in the non-relativistic
theory), but due to the multi-dimensional spinor structure, we also

have P
ls[4]
12 , which operates on the large–small component space,

and P
↑↓[4]
12 , which acts on the ↑–↓ spin space, and both of them are

represented with the following matrix:

P
ls[4]
12 = P↑↓[4]12 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (34)

The permutation operator, Eq. (33), commutes with the
Dirac–Coulomb Hamiltonian,42,52

[H[16]DC ,P[16]12 ] = 0, (35)

and, thus, their common eigenfunctions can be identified as
bosonic (symmetric) or fermionic (antisymmetric) eigenstates.
Since we describe spin-1/2 fermions, it is convenient to work
with antisymmetrized basis functions for which we introduce
the antisymmetrization operator42 that reads for the two-particle
case as

A
[16] =

1
2
(1[16] −P[16]12 ). (36)

To define a variational procedure, we combine the antisym-
metrized wave function ansatz, the finite basis expansion in Eq. (22),
and the eigenvalue equation in Eq. (15). Then, by multiplying
the resulting operator eigenvalue equation with ⟨Φjp∣A[16]† using
Eq. (23), we obtain the matrix-eigenvalue equation

Nb

∑
i=1

16

∑
q=1

⟨Φ(16)jp ∣A[16]†HDCA
[16]∣Φ(16)iq ⟩ciq

= E
Nb

∑
i=1

16

∑
q=1

⟨Φ(16)jp ∣A[16]†A[16]∣Φ(16)i ⟩ciq. (37)

Since A[16]† =A[16], A[16] is idempotent, and both 1[16] and P
[16]
12

commute with the Hamiltonian operator, Eq. (37) can be simplified
to

Nb

∑
i=1

16

∑
q=1

⟨Φ(16)jp ∣HDCA
[16]∣Φ(16)iq ⟩ciq = E

Nb

∑
i=1

16

∑
q=1

⟨Φ(16)jp ∣A[16]∣Φ(16)i ⟩ciq.
(38)

The permutation operator, P12, acts only on the r spatial coordi-
nates inΘ(r) by exchanging the position of the particles. For a float-
ing ECG, the effect of a particle permutation operator P12 translates
to a transformation of the ECG parameterization, Eq. (25),9,15

P12Θ(r) = Θ(P−112 r)
= exp[(P−112 r − si)TAi(P−112 r − si)]

= exp

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛⎜⎜⎜⎝
r − P12si±

s
(12)
i

⎞⎟⎟⎟⎠

T

P
T
12AiP12´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
A
(12)
i

⎛⎜⎜⎜⎝
r − P12si±

s
(12)
i

⎞⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= exp[(r − s(12)i )TA(12)i (r − s(12)i )]. (39)

C. Implementation of the point-group symmetry

To have an efficient computational approach for molecules
with clamped nuclei, it was necessary to make use of the point-group
symmetry during the computations. Due to the spinor structure of
the Dirac equation, it is necessary to consider the spatial symmetry
operations over the spinor space. Each symmetry operation, S[16],
will be considered as a composition of a symmetry operator S acting
on the configuration space and an operator S[16] acting on the spin
part,42

S
[16] = S[16]S. (40)

In relativistic quantum mechanics, the notation of the spatial sym-
metry operators is often retained with a modified meaning that
includes both spin and spatial symmetry operations. In the present
work, we show both the spin and spatial contributions for clarity.
The spatial identity, rotation, and inversion symmetry operators for
a single particle are generalized with the following operations for the
spin-spatial space as42

E
[4] = 1[4]E, (41)
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C
[4]
na = 1

[2] ⊗ exp
⎡⎢⎢⎢⎣−i

σ
[2]
a π

n

⎤⎥⎥⎥⎦Cna, (42)

I
[4] = β[4]I, (43)

where a labels the spatial directions. Furthermore, symmetry oper-
ations can be generated using these three symmetry operations.
For example, the plane reflection can be obtained as an inversion
followed by a two-fold rotation,

T
[4]
ab
= C[4]2c I

[4], (44)

where a, b, and c label mutually orthogonal spatial directions. Using
Euler’s formula for the spin part,

exp
⎡⎢⎢⎢⎣−i

σ
[2]
a π

n

⎤⎥⎥⎥⎦ = 1
[2] cos

π

n
− iσ[2]a sin

π

n
, (45)

Eq. (44) can be further simplified to

T
[4]
ab
= −i(1[2] ⊗ σ[2]c C2c)(β[4]I). (46)

Since we solve the eigenvalue equation in the kinetic-balance
metric defined by Eq. (24), it is more convenient to introduce an

O
[4]
B

“modified” representation of the symmetry operators,

O
[4]
B
= (B[4])−1OB

[4]. (47)

It can be shown that both E
[4] and C

[4]
na commute with B

[4]; hence,

E
[4]
B
= E[4], (48)

C
[4]
B,na = C

[4]
na , (49)

but the inversion and reflection operators simplify to

IB

[4] = 1[4]I, (50)

T
[4]
B,ab = −i(1[2] ⊗ σ[2]c C2c)I. (51)

For two particles, we need to consider the block-wise (Tracy–Singh)
direct products,

E
[16]
B
= 1[16]E1E2, (52)

C
[16]
B,np =

⎛
⎝e−i

σ
[2]
p1

π

n ⊗ 1[2]
⎞
⎠ ⊠
⎛
⎝1[2] ⊗ e−i

σ
[2]
p2

π

n
⎞
⎠Cnp,1Cnp,2, (53)

I
[16]
B
= 1[16]I1I2, (54)

T
[16]
B,ab = −(σ[2]c1 ⊗ 1[2]) ⊠ (1[2] ⊗ σ[2]c2 )C2c,1 C2c,2 I1 I2, (55)

where the subscripts 1 and 2 stand for the particle indices.

A (floating) ECG, Eq. (25), is adapted to the ζ irreducible
representation of the point group G by using the projector

P
ζ[16]
G = ∑

O∈G

χζGO
O
[16], (56)

where χζGO
labels the character corresponding to theO[16] symmetry

operation. In relativistic quantum mechanics, the point groups have
to be extended to a double group for an odd number of particles. For
the case of two half-spin particles, the simpler, well-known single-
group character tables can be used.42,67

Due to theAi = Ai ⊗ I[3] direct-product (“spherical-like”) form
of the exponent matrix, the effect of the spatial symmetry operators
on the ECG function can be translated to the transformation of the
shift vectors (see, for example, Refs. 9 and 68),

OΘ(r) = O exp[(r − si)TAi(r − si)]

= exp

⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎛⎜⎜⎜⎝
r − Osi°

sOi

⎞⎟⎟⎟⎠

T

O
T
AiO´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
A

i

⎛⎜⎜⎜⎝
r − Osi°

sOi

⎞⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= exp[(r − sOi )TAi(r − sOi )], (57)

which allows for a straightforward evaluation of the effect of the
spatial symmetry operators.

In summary, the basis functions used in the computations are
obtained by projection of the ECGs with theA[16] antisymmetriza-

tion and the P
ζ[16]
G point-group symmetry projection operator,

which results in the following generalized eigenvalue equation:

Nb

∑
i=1

16

∑
p=1

⟨Φ(16)jq ∣H[16]DC P
ζ[16]
G A

[16]∣Φ(16)ip ⟩cip
= E

Nb

∑
i=1

16

∑
p=1

⟨Φ(16)jq ∣Pζ[16]G A
[16]∣Φ(16)ip ⟩cip. (58)

Substituting Eqs. (23), (36), and (56) into Eq. (58) and using

Eq. (47) and the fact that B[16] and (Pls[4]
12 ⊗ P

↑↓[4]
12 )P12 commute,

we obtain the final working equation as

Nb

∑
i=1

16

∑
p=1
∑
O∈G

χζGO
1(16)q

T

× [KO[16]
ji O

[16]
B
−K′O[16]ji (Pls[4]

12 ⊗ P
↑↓[4]
12 )O[16]

B
]1(16)p cip

= E
Nb

∑
i=1

16

∑
p=1
∑
O∈G

χζGO
1(16)q

T

× [SO[16]
ji O

[16]
B − S′O[16]ji (Pls[4]

12 ⊗ P
↑↓[4]
12 )O[16]

B
]1(16)p cip,

(59)

K
O[16]
ji,qp = ⟨Θj∣1(16)q

T
B
[16]†

H
[16]
DC B

[16]1(16)p O∣Θi⟩, (60)

K
′O[16]
ji,qp = ⟨Θj∣1(16)q

T
B
[16]†

H
[16]
DC B

[16]1(16)p OP12∣Θi⟩, (61)
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S
O[16]
ji,qp = ⟨Θj∣1(16)q

T
B
[16]†

B
[16]1(16)p O∣Θi⟩, (62)

S
′O[16]
ji,qp = ⟨Θj∣1(16)q

T
B
[16]†

B
[16]1(16)p OP12∣Θi⟩. (63)

We note that in Eq. (59), the dimensionality of the final matrix
eigenvalue equation to be solved is 16Nb × 16Nb since the lin-
ear combination coefficients are carried in cip ∈ C (i = 1, . . . ,Nb,
p = 1, . . . , 16). For special cases, the matrix representation can be
block diagonalized (a special case is described in the supplementary
material).

D. Implementation of the Dirac–Coulomb
matrix-eigenvalue equation

The working equation, Eq. (59), is implemented in the QUAN-
TEN computer program that is an in-house developed program
written using the Fortran90 programming language and contains
several analytic ECG integrals. For recent applications of QUAN-
TEN, see Refs. 7, 10, 22, and 69–73. According to Eqs. (39) and
(57), the permutation and point-group projection operations can
be translated to a parameter transformation of the ECG function
and do not require the calculation of (mathematically) new spatial
integrals. After construction of the matrices in Eqs. (60)–(63), the
point-group symmetry projection is carried out by multiplication
with the 16-dimensional (for two electrons) spinor part of the sym-
metry operator. The summation is performed over the symmetry
elements (O ∈ G) of the group according to Eq. (59).

Equation (59) contains both linear (cip, i = 1, . . . ,Nb,
p = 1, . . . , 16) and non-linear parameters (Ai, si, i = 1, . . . ,Nb) in the
basis functions, which can be variationally optimized to improve the
(projected or) no-pair relativistic energy [we note also at this point
that the currently used kinetic balance condition, Eq. (9), is only
an approximation to the mathematically rigorous “atomic” kinetic
balance condition, Eq. (8)74,75]. The optimal linear parameters
are obtained by solving the Hc = ESc-type generalized eigenvalue
equation.

To optimize the non-linear parameters, we minimize the
energy (obtained by diagonalization) of the selected (ground or
excited) physical state in the spectrum. In contrast to the non-
relativistic case, the physical ground-state energy is not the lowest-
energy state of the “bare” (unprojected) DC Hamiltonian; lower-
energy, often called “positronic” or “negative-energy,” states also
appear in the spectrum; hence, the electronic ground state is
described by one of the excited states of the eigenvalue equation.
Moreover, due to the Brown–Ravenhall disease,35,76 the electronic
ground state appears among the (finite-basis representation of the)
electron–positron continuum states. In finite-basis computations
and for small nuclear charge numbers, the electronic states are often
found to be well separated from the positronic states and only a
few positron–electron states “contaminate” the electronic spectrum.
In this case, selection of the electronic states is possible based on a
threshold energy that can be estimated by a value near (lower than)
the non-relativistic energy.We list the computed “bare” DC energies
in the supplementary material (Tables S1–S4), but we consider them
only as technical, computational details. The bare DC Hamiltonian
is projected and then diagonalized to obtain the physically relevant
results, e.g., the ground state energy as the lowest no-pair energy.

The optimization of the non-linear parameters by minimiza-
tion of the energy for the selected DC state is a central processing
unit (CPU)-intensive part in the current implementation. Neverthe-
less, we ran several refinement cycles of the optimization procedure,
but it hardly improved the DC energy in comparison with the DC
results obtained with the non-linear (basis) parameters optimized by
minimization of the corresponding non-relativistic energy (in low-Z
systems). At the same time, it is also worth noting that upon repeated
DC energy minimization cycles, the DC energy remained stable, and
no sign of a variational collapse or prolapse was observed during the
computations, which provides a numerical test (at least for the stud-
ied low-Z range) of the current procedure. For these reasons, wemay
say that the reported no-pair DC energies correspond to a basis set
optimized to the non-relativistic energy. If further digits in the low-
Z or better results for the higher-Z range are needed, then, the DC
optimizer will be further developed.

We have also checked the singlet–triplet mixing by optimiz-
ing parameters with relaxing the non-relativistic spatial symmetry
as well as by an explicit LS coupling of spatial functions optimized
within their non-relativistic symmetry block and included with the
appropriate spin function in the relativistic computation. The triplet
contributions were negligibly small for the ground states of the stud-
ied low-Z systems. Further details will be reported in the future
work.

III. POSITIVE-ENERGY PROJECTION

A. Theoretical aspects and general concepts
for the implementation

Due to the Brown–Ravenhall (BR) disease,35 the negative-
energy states of the DC Hamiltonian are eliminated using a projec-
tion technique.37 The fundamental idea of the procedure is based
on the solution of the eigenvalue equation of a Hamiltonian with-
out particle–particle (electron–electron) interactions. Without these
interactions, the negative- and positive-energy states of the differ-
ent electrons are not coupled. Therefore, in the non-interacting case,
the positive-energy states can be, in principle, selected and used to
construct the Λ+ projector as

Λ
+[16] = ∑

μ∈E+
∣Ψ(16)0,μ ⟩⟨Ψ̃(16)0,μ ∣. (64)

E+ is used to label the physically relevant, “positive-energy” space. In

general, ⟨Ψ̃(16)0,μ ∣ is the left eigenvector and ∣Ψ(16)0,μ ⟩ is the right eigen-
vector of the μth state without particle–particle interactions, and the
“0” subindex is used to emphasize that these are non-interacting
states. It is necessary to distinguish the left and the right eigenvec-
tors if the underlying non-interacting Hamiltonian is not Hermitian
(Sec. III B 1).

We solve the eigenvalue equation of the Dirac–Coulomb
Hamiltonian projected onto the positive-energy subspace,

H̄
[16]
DC = Λ

+[16]
H
[16]
DC Λ

+[16], (65)

where H̄[16]DC is the so-called “no-pair” Hamiltonian.37,42,77
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In order to determine the relativistic energies and wave func-
tions, the matrix representation of the “no-pair” Hamiltonian is
constructed over the positive-energy subspace,

H̄
[16]
DC,μν = ⟨Ψ̃(16)0,μ ∣Λ+[16]H[16]DC Λ

+[16]∣Ψ(16)0,ν ⟩ = ⟨Ψ̃(16)0,μ ∣H[16]DC ∣Ψ(16)0,ν ⟩.
(66)

After the second equation in Eq. (66), theΛ+[16] projectors have been
suppressed since the matrix representation is constructed over the
positive-energy eigenfunctions of the non-interacting Hamiltonian.
We also note thatΛ+[16] was definedwith these non-interacting (left-
and right-) eigenfunctions, Eq. (64), for which the (bi)orthogonal
property applies,

⟨Ψ̃(16)0,μ ∣Ψ(16)0,ν ⟩ = δμν1[16], (67)

where the left and right eigenvectors are understood to be nor-
malized to each other in order to simplify the expressions in
Eq. (66).

During the numerical computations, first, the non-interacting
problem is solved in the ECG basis. The (left and right) eigenvectors
are written as

∣Ψ(16)0,ν ⟩ =
Nb

∑
i=1

16

∑
p=1

c
0
ν,ipB

[16] 1(16)p ∣Θi⟩, (68)

⟨Ψ̃(16)0,μ ∣ =
Nb

∑
j=1

16

∑
p=1

c̃
0
μ,jp⟨Θj∣1(16)p

T
B
[16], (69)

and they are substituted into Eq. (66) to obtain the matrix
representation for the no-pair DC Hamiltonian,

H̄
[16]
DC,μν =

Nb

∑
i,j=1

16

∑
p,q=1

c̃
0
μ,jqc

0
ν,ip⟨Θj∣1(16)Tq B

(16)
H
[16]
DC B

(16)1(16)p ∣Θi⟩. (70)

The matrix element ⟨Θj∣1(16)Tq B
(16)

H
[16]
DC B

(16)1(16)p ∣Θi⟩ is calculated
analytically, and the permutation and spatial symmetries are con-
sidered according to Secs. II B and II C. The energy and the wave

function are obtained by diagonalization of the H̄
[16]
DC ∈ C

16Nb×16Nb

matrix.
In short, the algorithm for computing the no-pair DC energies

is as follows:

1. build and diagonalize H
[16]
DC without the particle–particle

interaction and using the ECG basis set,
2. select the E+-states,
3. build H̄

[16]
DC with particle–particle interaction in the

E+-subspace using Eq. (70), and

4. diagonalize H̄[16]DC .

B. Algorithms for the construction
of the positive-energy projector in an explicitly
correlated basis

1. Projection with the complex-scaling technique

In this section, we adopt the complex-scaling approach, as it
was originally proposed by Bylicki, Pestka, and Karwowski24 for

defining a positive-energy projector, and generalize it to molecules.
First of all, similarly to resonance computations,78–81 complex
scaling is employed for the particle coordinates,

ri → rie
iθ, (71)

where θ is a real parameter. For atoms,24 the terms of the
Dirac–Coulomb Hamiltonian are rescaled according to the follow-
ing relations:

σi
∂

∂xi
→ σi

∂

∂xi
e−iθ, (72)

1√
r2
→

e−iθ√
r2
, (73)

1√(ri − rj)2 →
e−iθ√(ri − rj)2 . (74)

For molecules, some further considerations are necessary. If
the nuclear coordinate is not at the origin, the electron–nucleus
interaction operator is not dilatation analytic, i.e.,

1√(ri − RI)2 →
e−iθ√(ri − RIe−iθ)2 , (75)

and complex integration is required to evaluate the matrix ele-
ments. Since the analytic integral expressions are known for θ = 0,
the expressions can be analytically continued for θ ≠ 0, similarly to
the non-relativistic computations reported in Refs. 80, 82, and 83.
Analytic continuation means in this case that the RI nuclear coor-
dinates are replaced with RIe

−iθ in the analytic integral expression.
To carry out these types of non-dilatation analytic computations, we
have generalized our original (real) ECG integral routines to com-
plex arithmetic to be able to use complex-valued nuclear position
vectors.

We have also tested an alternative (at a first sight naïve or
“wrong”) technique in which the nuclear coordinates are scaled
together with the electronic coordinates,

1√(ri − RI)2 →
e−iθ√(ri − RI)2 , (76)

which obviates the need of using complex arithmetic in the inte-
gral routines. However, is this a correct procedure? Well, Moiseyev
provides theoretical foundations for this approach80 within a per-
turbative framework. Since we have “incorrectly” rotated also the
fixed nuclear coordinates, we need to consider a (perturbative) series
expansion for the “back rotation” of the nuclear coordinates to the
real axis (where they should be since they are treated in this work as
fixed external charges),80

E(Re−iθ) = E(R) + (eiθ − 1)∑
I

RI
∂E(RI)
∂RA

+ ⋅ ⋅ ⋅ , (77)

≈ E(R) + iθ∑
I

RI
∂E(RI)
∂RA

− θ2∑
I

RI
∂E(I)
∂RA

+ ⋅ ⋅ ⋅ . (78)
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Thereby, we may use a dilatation analytic approach with Eq. (76),
but then, the resulting energy must be corrected, Eqs. (77) and (78),
by accounting for the necessary “back rotation” of the nuclei. At
this point, it is important to emphasize that we are interested in the
computation of bound states (so, not resonances!), and the complex
coordinate scaling is used only to select the positive-energy states
computed in an explicitly correlated (non-separable) basis. There-
fore, θ can take “any” (small) value that is already sufficiently large
to distinguish the positive-energy states from the Brown–Ravenhall
(electron–positron) states. In practical computations, θ is typically
of the order of ∼10−5, and the “perturbative” correction due to the
“back rotation” to the real energy is proportional to θ2 ∼ 10−10 that
gives a (typically) negligible contribution.

For these reasons (and in full agreement with the a pos-
teriori analysis of our computational results, Sec. IV), we have

considered only the zeroth-order term in Eq. (77) and the θ → 0
limit.

If we wanted to compute a resonance state, we cannot
consider, in general, the small θ limit since a specific finite θ
value corresponds to the stabilization of the (complex) resonance
energy,80 and in that case, (higher-order) correction terms of
the series expansion, (77), would be necessary to obtain good
results. Therefore, for resonance computations, the non-dilatation-
analytic route, Eq. (75), appears to be the more practical choice
although the dilation-analytic approach is also acceptable, in
principle.

Using Eqs. (27)–(32), the complex-scaled matrix element for
two electrons can be written in the following form (we note that the
kinetic balance, Eq. (24), is related to the basis set, and so, it is not
included in the complex scaling):

⟨Φ′(16)jp ∣H[16]DC,θ∣Φ(16)i ⟩
= 1(16)p

T⟨Θj∣B[16]†H[16]DC,θB
[16]∣Θi⟩d(16)i

= 1(16)p

T

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⟨Θj∣W[4]
ll,θ ∣Θi⟩ e−iθ

2m2
⟨Θj∣p22∣Θi⟩1[4] e−iθ

2m1
⟨Θj∣p21∣Θi⟩1[4] 0[4]

e−iθ

2m2
⟨Θj∣p22∣Θi⟩1[4] ⟨Θj∣W[4]

ls,θ ∣Θi⟩ 0[4]
e−iθ

8m1m2
2c

2
⟨Θj∣p21p22∣Θi⟩1[4]

e−iθ

2m1
⟨Θi∣p21∣Θj⟩1[4] 0[4] ⟨Θj∣W[4]

sl,θ ∣Θi⟩ e−iθ

8m2
1m2c2

⟨Θi∣p21p22∣Θj⟩1[4]
0[4]

e−iθ

8m1m2
2c

2
⟨Θi∣p21p22∣Θj⟩1[4] e−iθ

8m2
1m2c2

⟨Θi∣p21p22∣Θj⟩1[4] ⟨Θj∣W[4]
ss,θ∣Θi⟩

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

d
(16)
i , (79)

W
[4]
ll,θ = (e−iθV +Uθ)1[4], (80)

W
[4]
ls,θ =

1
4m2

2c
2

3

∑
i,j=1

p2i(e−iθV +Uθ)p2jσ[4]2i σ
[4]
2j − 1

2m2
p
2
21
[4], (81)

W
[4]
sl,θ =

1
4m2

1c
2

3

∑
i,j=1

p1i(e−iθV +Uθ)p1jσ[4]1i σ
[4]
1j − 1

2m1
p
2
11
[4], (82)

W
[4]
ss,θ =

1
16m2

1m
2
2c

4

3

∑
i,j,k,l=1

p1ip2j(e−iθV +Uθ)p2kp1lσ[4]1i σ
[4]
1l σ

[4]
2j σ

[4]
2k

− (m1 +m2)
8m2

1m
2
2c

2
p
2
1p

2
21
[4]. (83)

If Uθ is treated as a non-dilation analytic operator, it is transformed
according to Eq. (75). If it is used in a dilation analytic procedure,
then, Uθ = e

−iθU, Eq. (76). We also note that Eqs. (79)–(83) recover
Eqs. (27)–(32) for θ = 0.

In what follows, we explain in detail how the complex coor-
dinate rotation affects the non-interacting DC spectrum. Figure 1
highlights an essential feature of the complex-scaled DC energies
that makes it possible to unambiguously identify and select the
positive-energy states. Figure 1(a) visualizes the energies of the

unbound states for a single particle (either free or in interaction with

a fixed, positive point charge with a charge number, Z <
√

3
2α

61). In
the single-electron spectrum, the “positronic” (negative-energy) and
“electronic” (positive-energy) parts can be clearly identified since
they are separated by a finite energy gap. If we apply the com-
plex coordinate scaling, Eq. (71), the unbound positron and electron
states rotate about different energy “centers” in the complex plane,84

and they are visualized by the dashed (blue and red) curves in the
figure.

If we use a non-separable (explicitly correlated) basis, we also
need to consider the behavior of two non-interacting particles
[Fig. 1(b)]. In such a basis, we can compute only the two-electron
states (of the non-interacting system). The non-interacting, two-
electron energy is the sum of the one-electron energies, but the
one-electron energies are not obtained explicitly in the computa-
tion. Due to the presence of the continuum both in the positronic
and in the electronic parts, the two-electron energy spectrum covers
the entire real axis [green, solid line in Fig. 1(b)]. Then, we con-
sider the effect of the complex scaling. For “any” finite θ angle, three
branches appear in the complex plane, depending on the sign of
the one-particle contributions to the (non-interacting) two-particle
energy. According to the different branches in the complex energy
plane, the electron–electron (positive-energy), electron–positron
[also called Brown–Ravenhall (BR)], and positron–positron states
can be identified.23,24
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FIG. 1. Visualization of the complex-scaling technique to select the positive-energy
states of the non-interacting two-electron system: (a) unbound single-particle ener-
gies for θ = 0 (solid) and for some finite θ > 0 (dashed) values and (b) unbound
non-interacting two-particle energies for the same angles. The red, green, and blue
colors indicate the electron–electron, electron–positron (or Brown–Ravenhall), and
positron–positron states, respectively.

In the next step, the Hamiltonian matrix for the system with
interactions is constructed for the θ value for which the positive-
energy states had been identified and the positive-energy projection
can be carried out. In the last step, the “no-pair” energies are
obtained by diagonalization of the projected matrix.

Identification of the positive-energy states was automated using
the linear relationship24 that can be derived based on the behavior of
the one- and two-electron energies in the complex plane upon the
complex scaling of the coordinate,

f [Re(E)] = − tan θ Re(E) +mc
2. (84)

The intercept is set to be halfway between the centers of the
positron–electron and electron–electron branches, while the slope
is parallel with the asymptotic, large Re(E), behavior of the complex
eigenvalues.84 During the selection procedure, state μ is identified
as a positive-energy state if the Im(Eμ) > f [Re(Eμ)] condition is
satisfied.

The projected energy was examined for different θ values. In
general, it was found to be insensitive to the precise value of the θ
rotation angle until θ remained small. For large θ values, finite basis
set effects become important. For very small θ, distinction of the
three branches becomes problematic in the finite (double or quadru-
ple) precision arithmetic. At the same time, the results were sensitive
to the number of states included in the projector. Therefore , in prac-
tice, the selection was carried out according to the linear f [Re(E)]

relationwith the additional constraint to keep the number of positive
energy states fixed for every angle.

If we assume that the number of the one-particle positronic and
electronic states is equal, the number of the electron–electron states
can be fixed to the quarter of the total number of states, 4Nb. We
note that in practical computations, the selection of a few points
was not entirely unambiguous based on the f [Re(E)] linear rela-
tion, and this additional “constraint” implemented in the automated
procedure was necessary to have consistent results.

In the algorithm, we first sorted the states according to the dis-
tance of their (complex) energy from the f [Re(E)] line, and then,
we kept the first 4Nb states in this list to define the positive-energy
space.

2. Projection with “cutting” in the energy

For small nuclear charges, the relativistic “effects” are “small”
in comparison with the non-relativistic energy. In this case, the
positive-, the BR, and the negative-energy regions of the spectrum
are well separated in a non-interacting, finite basis computation.
In this case, the positive-energy space can be selected, in practice,
from the non-interacting, two-electron computation by retaining
the non-interacting states with (real) energies (without any com-
plex scaling) that are larger than an estimated energy threshold. We
will refer to this projection technique as “cutting” (in the energy
spectrum).

The deficiency of this simple approach becomes apparent
if the nuclear charge and/or the number of basis functions is
increased. Then, there are electron–positron states that contami-
nate the electron–electron part of the space, and the corresponding
BR states may appear as the lowest state of the (imperfectly) pro-
jected Hamiltonian. At the same time, we note that this simple
“cutting” projector worked remarkably well for most of the low-Z
systems studied in this paper and in Paper II.25 The cutting pro-
jector has the advantage that it uses only real integral routines,
and due to the hermiticity of the problem, the energy (and the
underlying basis set) can be optimized variationally (until contami-
nant states appear). We used the “cutting” projector for exploratory
computations, and we have checked the final results using the,
in principle, rigorous complex coordinate rotation (CCR) projec-
tion procedure (that confirmed all significant digits of the cut-
ting projection for the studied low-Z systems in this work and in
Refs. 25 and 55).

3. Projection with “punching” in the energy list

Since the excellent results can be obtained with very small
CCR angles (Tables I and II), we have experimented with discard-
ing the states in the θ → 0 limit (followed numerically) for every
state labeled a BR state in the CCR projection procedure. In prac-
tice, we have discarded all states that have an energy less than an
energy threshold, and we “punched out” all higher-energy states
from the positive-energy list that corresponded to a state identi-
fied as a BR state in the CCR procedure. This “punching” projector
ideally combines the good features of cutting (hermiticity) and
CCR (rigorous identification of the BR states). Its numerical perfor-
mance and any disadvantages can be explored for higher-Z systems
(where the simple “cutting” projector fails), which is left for future
work.
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TABLE I. Testing the positive-energy projection techniques for the Dirac–Coulomb
energy of the ground state of the helium atom: comparison of the dilatation analytic

(Eda
DC
) and the energy cutting (Ecutting

DC
) techniques. Nb = 300 ECG basis functions

are used with double-precision arithmetic. All energy values are in Eh.

proj = da(θ)
θ Re(Eproj

DC ) Im(Eproj
DC )

0.000 000 01 −2.903 856 630 628 1.47 ⋅ 10−17
0.000 000 1 −2.903 856 630 628 1.47 ⋅ 10−16
0.000 001 −2.903 856 630 628 1.47 ⋅ 10−15
0.000 01 −2.903 856 630 628 1.47 ⋅ 10−14
0.000 1 −2.903 856 630 628 1.47 ⋅ 10−13
0.001 −2.903 856 630 628 1.46 ⋅ 10−12
0.01 −2.903 856 630 656 1.61 ⋅ 10−11
0.1 −2.903 856 632 538 1.29 ⋅ 10−9
0.2 −2.903 856 632 442 2.62 ⋅ 10−9
0.5 −2.903 856 823 509 −3.57 ⋅ 10−7
Proj = cutting: −2.903 856 630 628 0

4. An attempt to perform projection based on a
determinant expansion

In Subsection III B 1–3, the positive-energy states were selected
directly from the solution of the non-interacting Hamiltonian
using ECG basis functions. At the same time, a non-separable,
explicitly correlated basis set is not an ideal choice for describ-
ing the non-interacting system that is not correlated. States of the
non-interacting system are more naturally represented by anti-
symmetrized products of one-particle functions, i.e., determinants,
in which apart from the permutational anti-symmetrization there is
no correlation between the electrons. Of course, using determinants

for describing interacting electrons leads to a less accurate repre-
sentation in comparison with an explicitly correlated basis. For this
reason, it appears to be necessary to use two different basis sets, one
for describing the interacting and another set for describing the non-
interacting states. We outline some early attempts to combine the
two worlds, but without reporting any numerical results, because we
think that some further considerations will be necessary for an effi-
cient approach. The accuracy of this route is currently limited by the
size of the determinant space.49,54

Along this route, first, the single-electron Dirac Hamiltonian
(corresponding to a fixed nuclear geometry) is solved using a floating
Gaussian basis. Then, only those functions are retained for which
the one-particle energy belongs to the purely electronic (positive-
energy) states,

∣φ+(4)i ⟩ =
nb

∑
j=1

4

∑
p=1

djip+B
[4]

S
[4]
B

1(4)p ∣χj⟩, (85)

where ∣χj⟩ is the floating Gaussian function, nb is the number of

the one-particle basis functions, B[4] is a metric tensor correspond-

ing to the kinetic balance condition, Eq. (12), and S
[4]
B

ensures
the one-particle spatial symmetry, Eqs. (47)–(51). The two-particle
determinant is constructed using the Tracy–Singh product as

∣ΦD+(16)
ij ⟩ =A[16](∣φ+(4)i ⟩ ⊠ ∣φ+(4)j ⟩ ). (86)

Substituting Eq. (85) into Eq. (86), we can obtain the determinant
(D) expansion in the Gaussian spinor basis,

∣ΦD+(16)
ij ⟩ =

nb

∑
k,l=1

16

∑
p=1

dkl,ijp+A
[16]

B
[16]

S
[16]
B

1(16)p ∣Xkl⟩, (87)

where the following notation was introduced:

∣Xkl⟩ = ∣χk⟩∣χl⟩, (88)

TABLE II. Testing the positive-energy projection techniques for the Dirac–Coulomb energy of the H2 molecule with fixed
protons (Rpp = 1.4 bohrs): comparison of the dilatation analytic (Eda

DC
), non-dilatation analytic (Enda

DC
), and energy cut-

ting (Ecutting

DC
) techniques. Nb = 700 ECG basis functions are used with quadruple-precision arithmetic. All energy values

are in Eh.

proj = nda(θ) proj = da(θ)
θ Re(Eproj

DC ) Im(Eproj
DC ) Re(Eproj

DC ) Im(Eproj
DC )

0.000 000 000 1 −1.174 489 753 666 4.86 ⋅ 10−17 −1.174 489 753 666 7.14 ⋅ 10−11
0.000 000 001 −1.174 489 753 666 4.86 ⋅ 10−16 −1.174 489 753 666 7.14 ⋅ 10−10
0.000 000 01 −1.174 489 753 666 4.86 ⋅ 10−15 −1.174 489 753 666 7.14 ⋅ 10−9
0.000 000 1 −1.174 489 753 666 4.86 ⋅ 10−14 −1.174 489 753 666 7.14 ⋅ 10−8
0.000 001 −1.174 489 753 666 4.86 ⋅ 10−13 −1.174 489 753 666 7.14 ⋅ 10−7
0.000 01 −1.174 489 753 670 4.86 ⋅ 10−12 −1.174 489 753 667 7.14 ⋅ 10−6
0.000 1 −1.174 489 754 085 4.86 ⋅ 10−11 −1.174 489 753 731 7.14 ⋅ 10−5
0.001 −1.174 489 796 132 3.93 ⋅ 10−11 −1.174 489 760 167 7.14 ⋅ 10−4
0.002 −1.174 489 935 051 3.80 ⋅ 10−10 −1.174 489 779 671 1.43 ⋅ 10−3
0.003 −1.174 489 319 219 −2.21 ⋅ 10−8 −1.174 489 812 176 2.14 ⋅ 10−3
proj = cutting: −1.174 489 753 666 0
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dkl,ijr+ =
4

∑
p,q=1

dkip+dljq+1
(16)
r

T[1(4)p ⊠ 1(4)q ]. (89)

Multiplying Eq. (87) with an ECG, Eq. (23), from the left, we obtain

⟨Φ(16)qp ∣ΦD+(16)
ij ⟩ =

nb

∑
k,l=1

16

∑
q=1

dkl,ijq+1
(16)
p

T

× ⟨Θq∣B[16]B[16]A[16]S[16]B
∣Xkl⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
S̃
[16]
q,kl

1(16)q . (90)

Then, we expand ∣ΦD+(16)
ij ⟩ in terms of the ECGs and multiply the

expansion from the left with an ECG function, Eq. (23), and obtain
an alternative expression for Eq. (90),

⟨Φ(16)qp ∣ΦD+(16)
ij ⟩ =

nb

∑
k=1

16

∑
q=1

cij,kq1
(16)
p

T

× ⟨Θq∣B[16]B[16]A[16]S[16]B
∣Θk⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
S
[16]
q,k

1(16)q . (91)

Since the right-hand sides of Eqs. (90) and (91) are equal, we obtain
the expansion coefficients as

cij,mr =
Nb

∑
p=1

nb

∑
k,l=1

16

∑
q=1

dkl,ijq+1
(16)
r

T(S[16])−1
mp
S̄
[16]
p,kl 1

(16)
q . (92)

Using these coefficients, we can define the positive-energy space for
the ECG basis while maintaining a Hermitian formulation and at the
same time, in principle, accounting for explicit correlation necessary
for the ppb convergence for the energy of the interacting system.
Equation (91) is critical in this approach that is exact only in the
complete basis limit. Moreover, the spaces expanded by the deter-
minants and the ECGs are not the same. Calculating the rest of the
space by including the negative-energy solutions in the ECG basis,
we have found that it has a non-zero overlap with the positive-energy
space. At the same time, this overlap disappears in the complete basis
limit. Apparently, there is no unique way to treat this overlapping
space. For exploratory computations (not reported in this work), we
have used Eq. (92), where the full overlapping space is a part of the
positive-energy space.

IV. NUMERICAL RESULTS

A. Dirac–Coulomb energy for the helium atom

1. Computational details

The relativistic ground state of helium is dominated by
1Se-type functions (where “e” is for even parity) that were generated
by minimizing the non-relativistic ground-state energy. We used
ECG functions, Eq. (25), with s = 0 to represent the spherical sym-
metry of the Se-type functions. For the largest basis set sizes,
Nb = 300 and 400, the non-relativistic ground-state energy was con-
verged within 1 nEh of the reference value.85 The computations with
these functions were made efficient by making use of the symmetry
of the spatial (s = 0) and the singlet spin functions (further details
are provided in the supplementary material). We have performed
repeated refinement cycles of the basis function parameterization

by minimization of the projected DC energy. Although these refine-
ment cycles improved the projected DC energy for small basis sets,
for larger basis set sizes (Nb > 200), the change was a fraction of a
nEh.

Regarding the contribution of 3Pe-type functions, we have
generated additional s ≠ 0 basis functions selected based on the min-
imization condition of the no-pair DC energy. The contributions of
these functions were less than the current 1 nEh convergence goal.
Further details regarding the triplet contributions will be reported
in future work.

In all computations, we used the speed of light as c = α−1a0Eh/h
with α−1 = 137.035 999 084.86

2. Comparison of the energy cutting and the CCR
projector

During our work, we have noticed (in agreement with
Karwowski et al.23,87,88) that for small Z values, the positive-, the BR-,
and the negative-energy non-interacting states are well separated.
Hence, the simple “cutting” projector can be expected to work well.

Table I shows the comparison of the projected DC energies
obtained with the cutting and the dilatation analytic (da) CCR pro-
jector for several rotation angles. Regarding the CCR projector, it is
important to note that the no-pair DCHamiltonian is bounded from
below (see also the more detailed and precise discussion in Sec. III),
and thus, we can aim to compute bound states. Hence, the complex
coordinate rotation is used only to be able to distinguish the differ-
ent non-interacting “branches.” Any rotation angle is appropriate
(and gives the “same” numerical value for the bound-state energy)
that is large enough—therefore, we can separate the non-interacting
branches and at the same time that is not too large—therefore,
the finite basis set error remains small. For the present example
(Table I), “small” means θ ≤ 0.01. For the different “small” θ values,
the imaginary part of the energy oscillates around 0 (and by using
quadruple precision in the computations, we get numerical values
closer to 0). In all computations, the cutting projector could be
unambiguously defined. The result of the energy-cutting procedure
agrees to 10–11 digits with the da-CCR energy (θ ≤ 0.01).

Of course, all results should be understood with respect to the
no-pair Hamiltonian that is defined by the selected non-interacting
states. Throughout this work, the non-interacting reference system
is the one-electron problem in the field of the fixed nucleus (nuclei).
We have tested the use of other reference systems. The discussion is
left for future work to be considered in relation with the QED (pair-)
corrections, e.g., which reference system minimizes the corrections
or which one offers themost practical option for the implementation
of the corrections.

3. Comparison with literature data

The no-pair DC energy obtained in this work for the helium
ground state is −2.903 856 631 Eh, and it is considered to be con-
verged of the order of 1 nEh (see also the supplementary mate-
rial). The no-pair DC energy (corresponding to the same non-
interacting model) reported by Bylicki, Pestka, and Karwowski24

is −2.903 856 87 Eh. If all digits are significant for helium in
Ref. 24, then, the following considerations can be made regarding
the deviation from our no-pair DC energy.

On the one hand, Karwowski et al. considered the exact rela-
tivistic coalescence condition,19,20 which is not accounted for in the
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ECG basis set used in this work. They report the effect of the singu-
larity of the exact DC wave function at the coalescence point to be
relevant for the tenth significant digit for the Z > 10 range of heli-
umlike ions (the “effect” of the coalescence condition was reported
only for this Z range in the paper).89

On the other hand, they used an iterative kinetic balance condi-
tion that is different from the restricted balance used in the present
work. Furthermore, they represented the large–large, large–small,
and small–small subspaces by separate basis sets and checked the
quality of the representation for the non-relativistic limit by solving
the Lévy–Leblond equation.65

In our work, the construction of the large–small model spaces
and the kinetic balance condition ensured an exact fulfillment of
the non-relativistic limit although our kinetic balance condition can
be considered as an approximation to the two-particle “relativistic”
kinetic balance condition of Ref. 63 that is expected to provide a
better representation of the negative-energy states than our bal-
ance. The effect of this difference for a positive-energy projected, i.e.,
no-pair computation remains to be explored in future work.

Furthermore, in a strict mathematical sense, neither the
restricted, nor the relativistic,63 nor the iterative88 kinetic balance
conditions are complete, and only the use of the atomic balance
would ensure a rigorous variational property in a strict mathematical
sense.61 This also means that for the projected (no-pair) energies of
this work (also Ref. 55) and of Ref. 24, the positive-energy projectors
constructed from the “quasi-variational” non-interacting computa-
tions may, in principle, contain a very small amount of negative-
energy contamination (due to the approximate kinetic balances),
resulting in slightly different “quasi-variational” energy values. It
is necessary to note, however, that we have never experienced any
sign of a variational collapse in our no-pair computations (that
would be a clear indication of a negative-energy pollution). At the
same time, “prolapse” may occur that would be difficult to notice;
nevertheless, it might be responsible for the small deviation of the
projected energy of this work and of Ref. 24. To better explore these
aspects, we plan to test both the dual balance46 as well as the relativis-
tic kinetic balance63 techniques in future work. The implementation
of the iterative kinetic balance approach of Karwowski et al. does
not appear immediately straightforward for us. The application of
the rigorous atomic balance does not seem to be feasible neither, in
spite of a demonstration of its numerical applicability for a simple
system.74

Comparison of our no-pair DC energies with respect to precise
energy values from the nrQED theory is provided in Sec. IV C.

B. Dirac–Coulomb energy for the H2 molecule

1. Computational details

The no-pair DC ground state is dominated by the 1
Σ
+
g spin-

spatial functions, and the contribution of triplet 3
Πg and

3
Σ
−
g -type

functions is estimated to be smaller than the current 1 nEh conver-
gence goal. Further details will be reported in future work. To carry
out the computations with the dominant singlet Σ+g -type functions,
we have fixed the s shift vectors of the ECGs on the interprotonic
axis. In this case, the Hamiltonian matrix can be block diagonalized
during the computation. The convergence of the energy with respect
to the number of basis functions is shown in the supplementary
material.

2. Comparison of the energy cutting, dilatation
analytic CCR, and non-dilatation analytic CCR
projectors

The energies obtained from the non-dilatation analytic and
dilatation analytic complex-scaling approaches are compared in
Table II. We note that it was necessary to use quadruple precision
to observe the smooth behavior at the sub-nEh scale as it is shown
in the table. The non-dilatation analytic energies of H2 (for various,
small θ angles) have a (numerically) zero imaginary part since they
correspond to bound states. This behavior is similar to the dilatation
analytic computation of the helium atom. At the same time, we have
carried out dilatation analytic computations also for the H2 molecule
that can be rigorously interpreted with a perturbative “back” rota-
tion (Sec. III B 1). It is interesting to note that the real parts of the
energy of the non-dilatation analytic and dilatation analytic cases
agree to 13 significant digits, but the imaginary parts are different.
The imaginary part of the dilatation analytic energy is proportional
to the θ rotation angle, and we would get the correct zero value if
we employed the perturbative correction for the “back rotation,”
Eq. (78).We note that this perturbative correction for the real part of
the energy is proportional to θ2 that is very small for small θ values.
In this example, it was sufficient to use a θ value as small as 10−10 for
the distinction of the positive-energy non-interacting branch from
the BR and the negative-energy non-interacting states.

Both the dilatation analytic and the non-dilatation analytic
energies agree better than a ppb precision with the energy obtained
by the energy “cutting” approach. During the computations, we
have observed some numerical sensitivity of the non-dilatation-
analytic approach with respect to the θ rotation angle. This increased
numerical uncertainty probably originates from the higher numer-
ical uncertainty of the complex-valued Coulomb-type integrals. In
our current implementation, the complex incomplete gamma func-
tion used in the complex Coulomb integrals can be evaluated only
with 12 digit precision.

C. Comparison of the variational no-pair
Dirac–Coulomb energy with perturbative results

For the low-Z range of atomic and molecular physics, the most
precise computations including relativistic and QED corrections
have been obtained by perturbative methods. For this reason, we
compare the variational no-pair DC energy computed in this work
with the perturbative values. It was observed in Ref. 55 that the vari-
ational and leading-order perturbative energies differ substantially

already for the lowest Z systems (see also Eproj
DC vs E(2)DC in Table III).

To better understand the origin of this difference, we con-
sider the various physical contributions in the leading-order (non-
radiative) QED corrections, O(α3), of the perturbative scheme first
derived by Araki92 and Sucher.36 Sucher36 reported the contribut-
ing terms in detail, and the no-pair correction for the exchange
of two Coulomb photons can be identified in his calculation that
is present in the current variational treatment. Of course, the
variational no-pair computation contains not only two-photon
exchanges but also the full “Coulomb ladder” with the com-
plete Dirac kinetic energy operator. Nevertheless, we may expect
that the two-photon exchange is the most important, “leading-
order” correction to the leading-order perturbative relativistic
energy.
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TABLE III. Comparison of the variational no-pair DC energies, E
proj

DC
in Eh, computed in this work and the perturbative energies,

E
(2)
DC

and E
(3)
DC

in Eh, including the α2-order Foldy–Wouthuysen DC correction, εFW
DC

,42 and the α3-order no-pair two-photon

Coulomb correction, ε++
CC

,36 for the example of the ground and the first excited states of the helium atom and for the ground

state of the H2 molecule (Rpp = 1.4 bohrs) and the H+
3

molecular ion (Rpp = 1.65 bohrs). The deviation, δ = E
proj

DC
− E
(n)
DC

(n = 2 and 3), is shown in braces as {δ/nEh}. The no-pair energies, E
proj

DC
, are converged of the order of 2 nEh; further work

with quadruple precision arithmetic will be necessary to confirm and improve upon this value.

He (1 1S0) He (2 1S0)
E
proj
DC −2.903 856 631 −2.146 084 791

E
(2)
DC = Enr + α2εFWDC a −2.903 856 486 {−145} −2.146 084 769 {−22}

E
(3)
DC = Enr + α2εFWDC + α3ε++CCa −2.903 856 620 {−11} −2.146 084 780 {−11}
α4εnon-rad

b {−10.4} {−11.2}
H2 H+3

E
proj
DC −1.174 489 754 −1.343 850 527

E
(2)
DC = Enr + α2εFWDC a −1.174 489 733 {−21} −1.343 850 503 {−24}

E
(3)
DC = Enr + α2εFWDC + α3ε++CCa −1.174 489 754 {0} −1.343 850 525 {−1}
α4εnon-rad

b {−0.2} {n.a.}
aWe used εFWDC = −

1
8∑

N
i=1⟨∇

4
i ⟩ +

π
2∑

N
i=1∑

Nnuc

A=1ZA⟨δ(riA)⟩ − π∑N
i=1∑

N
j>i⟨δ(rij)⟩42 and ε++CC = −(

π
2 +

5
3 )⟨δ(rij)⟩.

36 The
expectation values used to calculate the correction terms were taken from Refs. 5, 22, 85, and 90.
bThe full non-radiative correction of order α4 for He (1 1S0 and 2 1S0) and H2 (ground state, Rpp = 1.4 bohrs) was taken from
Refs. 91 and 5, respectively. (It is not evaluated for H+3 yet.)

In Table III, we compare the no-pair variational and perturba-
tive results for the singlet ground and first excited state of the helium
atom and for the ground electronic state of the H2 and H+3 molec-
ular systems near their equilibrium configuration. For H2 and H+3 ,
the inclusion of the O(α3) two-photon correction reduces the −21
and −24 nEh deviation of the variational and perturbative energies
to 0 and −1 nEh, respectively. Inclusion of the same correction in the
perturbative energy of the 1 1S0 and 2 1S0 states of the helium atom
reduces the −145 and −22 nEh deviations to −11 nEh in both cases.

This remaining, still non-negligible difference of the variational
and the perturbative DC energies indicate the importance of the
perturbative corrections beyond the O(α3) level. For the ground
and the first excited singlet states of helium91 and for the ground
state of the H2 molecule,5 the full O(α4) perturbative correction
is also available. For this work, the non-radiative part of the cor-
rection is relevant that can be clearly identified in Refs. 5 and 91.
Further analysis of the non-radiative perturbative corrections that
would allow for a direct comparison of the perturbative terms with
our present no-pair energies is not available in Refs. 5 and 91. Never-
theless, we show the full non-radiative part of the O(α4) correction
in Table III that allows for a “rough” (probably appropriate in terms
of an “order-of-magnitude”) comparison with the remaining differ-
ence of the no-pair variational DC energy and the corresponding
O(α3) perturbative value. The good numerical agreement of the

E
proj
DC − E(3)DC difference with α4εnon-rad in Table III is fortuitous, and

further developments are necessary for a direct comparison. Fur-
thermore, we think that the variational energies (Eproj

DC reported in
the table) are converged of the order of 1 nEh for H2, for H

+
3 , and

for the 2 1S0 state of helium and of the order of 2 nEh for the helium
ground state (1 1S0).

Figure 2 shows the comparison of the perturbative and no-pair
variational DC energies for two-electron ions (atom), obtained in
this work and in Refs. 24 and 93, over the Z = 1, . . . , 26 range of the
nuclear charge number.

FIG. 2. Comparison of the variational no-pair DC energy with perturbative energies

for two-electron ions (atom) with respect to the Z nuclear charge number. The E
proj

DC
energy computed in this work (with a non-relativistically optimized singlet basis
set) was used as the reference and literature data are taken from Refs. 24 (Hy-
CI) and 93 [multiconfiguration Dirac–Fock (MCDF)]. The perturbative corrections
are calculated according to Ref. 36 using expectation values for the operators
compiled from Ref. 85 (up to Z = 4) or computed in the present work (Z > 4)
(The data used to prepare this figure is provided in the supplementary material).
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Inclusion of the O(α3)-order correction in the perturbative
energy reduces the deviation for the lowest Z values. Nevertheless,
the variational-perturbative deviation rapidly increases and indi-
cates the importance of the non-radiative “QED corrections” in the
nrQED scheme beyond the O(α3) leading order already in the low
Z range.

The no-pair DC energy can be computed for different α val-
ues that allows us to numerically determine its α dependence and,
thereby, the “leading” and “higher-order” non-radiative QED cor-
rections for the Coulomb interaction and positive-energy states.
We have computed E

proj
DC (α) for 101 different α values distributed

over the α ∈ [0.7, 1.6]α0 interval, where α0 = 1/137.035 999 084 is the
CODATA18 recommended value.86 It was possible to fit (Fig. 3) the
∑m

n=2cmα
m polynomials to the data points with m = 3 and 4. The c2

and c3 coefficients remained stable upon the inclusion of the c4α
4

term in the fitted function. It is interesting to note that c4 > c3 for all
systems studied. For the physically relevant α0 value, the c4α

4 fourth-
order term is smaller than the c3α

3 third-order contribution. As Z
increases, the relative importance of the higher-order term increases:
the fourth-order contribution is only 10% of the third-order term
for helium, whereas it is already 50% for Be2+. The fitted functions
shown in Fig. 3 are “normalized” with ⟨δ(r12)⟩nr that brings the
different systems (helium-isoelectronic ions, H2, H

+
3 , and HeH+) to

the same scale in the figure. The third-order contribution is found
to be

c3α
3 = −3.26(1) ⟨δ(r12)⟩nr α3 (93)

in excellent agreement with Sucher’s formal result, which can be
found in Eq. (3.99) on p. 52 of Ref. 36,

ε++CCα
3 = −(π

2
+ 5
3
) ⟨δ(r12)⟩nr α3 ≈ −3.24 ⟨δ(r12)⟩nr α3. (94)

FIG. 3. Dependence of the no-pair DC energy, E
proj

DC
, on the value of the α coupling

constant of the electromagnetic interaction. We use Hartree atomic units and α0

labels 1/137.035 999 084.86 The data points, used for fitting the polynomials, were
computed at the α = 1/(α0 + n), n = −50, . . . , 50, values. The α2 leading-order

relativistic DC energy values, E
(2)

DC
, are compiled from Refs. 22, 55, 85, and 94

(and the contributions are collected in the supplementary material of Paper II).25

V. SUMMARY AND CONCLUSION

Theoretical and algorithmic details are reported for an explic-
itly correlated, no-pair Dirac–Coulomb framework. Options for
positive-energy projection techniques are considered in detail. The
computed variational no-pair Dirac–Coulomb energies are com-
pared with the corresponding energy values of the non-relativistic
quantum electrodynamics framework for low Z systems, and it is
found that higher-order non-radiative QED corrections become
increasingly important for an agreement better than 1 : 109 beyond
Z = 1. Extension of the present framework with the Breit interaction
is reported in Paper II.25

SUPPLEMENTARY MATERIAL

The supplementary material contains (a) special matrix ele-
ments for spherically symmetric and singlet basis functions, (b)
convergence of the computed energies, and (c) data for Fig. 2.
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28V. Patkóš, V. A. Yerokhin, and K. Pachucki, Phys. Rev. A 103, 012803 (2021).
29P. J. Mohr, Phys. Rev. A 32, 1949 (1985).
30V. M. Shabaev, Phys. Rep. 356, 119 (2002).
31A. V. Volotka, D. A. Glazov, V. M. Shabaev, I. I. Tupitsyn, and G. Plunien, Phys.
Rev. Lett. 112, 253004 (2014).
32V. A. Yerokhin, K. Pachucki, M. Puchalski, Z. Harman, and C. H. Keitel, Phys.
Rev. A 95, 062511 (2017).
33P. Indelicato, J. P. Santos, S. Boucard, and J.-P. Desclaux, Eur. Phys. J. D 45, 155
(2007).
34A. V. Malyshev, A. V. Volotka, D. A. Glazov, I. I. Tupitsyn, V. M. Shabaev, and
G. Plunien, Phys. Rev. A 90, 062517 (2014).
35G. E. Brown and D. G. Ravenhall, Proc. R. Soc. London, Ser. A 208, 552 (1951).
36J. Sucher, “Energy levels of the two-electron atom to order α3 Rydberg,” Ph.D.
thesis, Columbia University, 1958.
37J. Sucher, Phys. Rev. A 22, 348 (1980).
38J.-L. Heully, I. Lindgren, E. Lindroth, and A.-M. Mårtensson-Pendrill, Phys.
Rev. A 33, 4426 (1986).
39M. H. Mittleman, Phys. Rev. A 24, 1167 (1981).
40A. Almoukhalalati, S. Knecht, H. J. A. Jensen, K. G. Dyall, and T. Saue, J. Chem.
Phys. 145, 074104 (2016).
41J. Sucher, in Relativistic Effects in Atoms, Molecules, and Solids, NATO
Advanced Science Institutes Series, edited by G. L. Malli (Springer, Boston, 1983),
pp. 1–53.
42K. G. Dyall and K. Fægri, Introduction to Relativistic Quantum Chemistry
(Oxford University Press, New York, 2007).
43V. M. Shabaev, I. I. Tupitsyn, and V. A. Yerokhin, Comput. Phys. Commun.
189, 175 (2015).
44A. V. Volotka, M. Bilal, R. Beerwerth, X. Ma, T. Stöhlker, and S. Fritzsche, Phys.
Rev. A 100, 010502 (2019).
45L. N. Labzokskii, Sov. Phys. JETP 32, 94 (1971).
46V.M. Shabaev, I. I. Tupitsyn, V. A. Yerokhin, G. Plunien, and G. Soff, Phys. Rev.
Lett. 93, 130405 (2004).
47I. Lindgren, Relativistic Many-Body Theory, Springer Series on Atomic, Optical,
and Plasma Physics Vol. 63 (Springer, New York, 2011).
48P. Indelicato and P. J. Mohr, in Handbook of Relativistic Quantum Chemistry,
edited by W. Liu (Springer, Berlin, Heidelberg, 2017), pp. 131–241.

49W. Liu, Phys. Chem. Chem. Phys. 14, 35 (2012).
50W. Liu and I. Lindgren, J. Chem. Phys. 139, 014108 (2013).
51W. Liu, Phys. Rep. 537, 59 (2014).
52S. Shao, Z. Li, and W. Liu, in Handbook of Relativistic Quantum Chemistry,
edited by W. Liu (Springer, Berlin, Heidelberg, 2017), pp. 481–496.
53W. Cencek and W. Kutzelnigg, J. Chem. Phys. 105, 5878 (1996).
54W. Liu, S. Shao, and Z. Li, in Handbook of Relativistic Quantum Chemistry,
edited by W. Liu (Springer, Berlin, Heidelberg, 2017), pp. 531–545.
55P. Jeszenszki, D. Ferenc, and E. Mátyus, J. Chem. Phys. 154, 224110 (2021).
56W. Liu, Mol. Phys. 108, 1679 (2010).
57W. Kutzelnigg, Int. J. Quantum Chem. 25, 107 (1984).
58K. G. Dyall, J. Chem. Phys. 100, 2118 (1994).
59W. H. E. Schwarz and E. Wechsel-Trakowski, Chem. Phys. Lett. 85, 94 (1982).
60W. Kutzelnigg, J. Chem. Phys. 126, 201103 (2007).
61M. Lewin and É. Séré, Proc. London Math. Soc. 100, 864 (2010).
62W. Kutzelnigg, Chem. Phys. 395, 16 (2012).
63B. Simmen, E. Mátyus, andM. Reiher, J. Phys. B: At., Mol. Opt. Phys. 48, 245004
(2015).
64Q. Sun, W. Liu, and W. Kutzelnigg, Theor. Chem. Acc. 129, 423 (2011).
65G. Pestka and J. Karwowski, in Explicitly Correlated Wave Functions in Chem-
istry and Physics, edited by W. N. Lipscomb, J. Maruani, S. Wilson, and J.
Rychlewski (Springer, Dordrecht, The Netherlands, 2003), Vol. 13, pp. 331–346.
66D. S. Tracy and R. P. Singh, Stat. Neerlandica 26, 143 (1972).
67T. Saue and H. J. A. Jensen, J. Chem. Phys. 111, 6211 (1999).
68E. Mátyus, Mol. Phys. 117, 590 (2019).
69E. Mátyus, J. Chem. Phys. 149, 194111 (2018).
70E. Mátyus, J. Chem. Phys. 149, 194112 (2018).
71D. Ferenc and E. Mátyus, Phys. Rev. A 100, 020501 (2019).
72E. Mátyus and P. Cassam-Chenaï, J. Chem. Phys. 154, 024114 (2021).
73R. T. Ireland, P. Jeszenszki, E. Mátyus, R. Martinazzo, M. Ronto, and E. Pollak,
ACS Phys. Chem. Au 2, 23 (2021).
74J. Dolbeault, M. J. Esteban, and E. Séré, J. Funct. Anal. 174, 208 (2000).
75M. J. Esteban, M. Lewin, and E. Séré, Bull. Am. Math. Soc. 45, 535 (2008).
76J. Karwowski, inHandbook of Relativistic Quantum Chemistry, edited byW. Liu
(Springer, Berlin, Heidelberg, 2017), pp. 1–47.
77M. Reiher and A. Wolf, Relativistic Quantum Chemistry: The Fundamental
Theory of Molecular Science, 2nd ed. (Wiley VCH, Weinheim, 2015).
78E. Balslev and J. M. Combes, Commun. Math. Phys. 22, 280 (1971).
79B. Simon, Ann. Math. 97, 247 (1973).
80N. Moiseyev, Non-Hermitian Quantum Mechanics (Cambridge University
Press, Cambridge, 2011).
81T.-C. Jagau, K. B. Bravaya, and A. I. Krylov, Annu. Rev. Phys. Chem. 68, 525
(2017).
82N. Moiseyev and C. Corcoran, Phys. Rev. A 20, 814 (1979).
83C. W. McCurdy, Phys. Rev. A 21, 464 (1980).
84P. Šeba, Lett. Math. Phys. 16, 51 (1988).
85G. Drake, in Springer Handbook of Atomic, Molecular, and Optical Physics,
edited by G. Drake (Springer, New York, 2006), pp. 199–219.
86E. Tiesinga, P. J. Mohr, D. B. Newell, and B. N. Taylor, Rev. Mod. Phys. 93,
025010 (2021).
87G. Pestka and J. Karwowski, Collect. Czech. Chem. Commun. 68, 275 (2003).
88G. Pestka, M. Bylicki, and J. Karwowski, J. Phys. B: At., Mol. Opt. Phys. 39, 2979
(2006).
89G. Pestka, M. Bylicki, and J. Karwowski, J. Math. Chem. 50, 510 (2012).
90G. W. Drake, Can. J. Phys. 66, 586 (1988).
91K. Pachucki, Phys. Rev. A 74, 022512 (2006).
92H. Araki, Prog. Theor. Phys. 17, 619 (1957).
93F. A. Parpia and I. P. Grant, J. Phys. B 23, 211 (1990).
94M. Puchalski, J. Komasa, and K. Pachucki, Phys. Rev. A 95, 052506 (2017).

J. Chem. Phys. 156, 084111 (2022); doi: 10.1063/5.0075096 156, 084111-16

Published under an exclusive license by AIP Publishing

               dc_1955_21



F U L L P A P E R

On the inclusion of cusp effects in expectation values

with explicitly correlated Gaussians

Péter Jeszenszki1 | Robbie T. Ireland1,2 | Dávid Ferenc1 | Edit Mátyus1

1Institute of Chemistry, ELTE, Eötvös Loránd

University, Budapest, Hungary

2School of Chemistry, University of Glasgow,

Glasgow, UK

Correspondence

Edit Mátyus, Institute of Chemistry, ELTE,

Eötvös Loránd University, Pázmány Péter

sétány 1/A, Budapest H-1117, Hungary.

Email: edit.matyus@ttk.elte.hu

Funding information

Erasmus+ Traineeship; H2020 European

Research Council, Grant/Award Number:

851421

Abstract

This paper elaborates the integral transformation technique and uses it for the case

of the non-relativistic kinetic and Coulomb potential energy operators, as well as for

the relativistic mass-velocity and Darwin terms. The techniques are tested for the

ground electronic state of the helium atom and perturbative relativistic energies are

reported for the ground electronic state of the Hþ
3 molecular ion near its equilibrium

structure.
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explicitly correlated Gaussian, Hþ
3 , relativistic correction

1 | INTRODUCTION

We wish to dedicate this paper to István Mayer's memory. Two of us attended his undergraduate special course (called “speci” among the stu-

dents) at ELTE that he held until ca. 2010. During our everyday work, we still frequently point to simple calculations and theorems that we have

learned from him and from his book [1]. As students, and later, as young researchers, we got to know him as an infinitely patient and supportive

person toward the youths and their small things in research. His every reasoning and calculation was simple, because he made them simple and

made every small step clear. In this spirit, we work out in detail the theoretical background for a nice technique proposed by Pachucki et al. that

makes it possible to correct for the effects of the missing cusp of Gaussian basis functions during the evaluation of the “singular” integrals in the

Breit–Pauli Hamiltonian [2]. We imagine presenting this work on a research seminar: we can almost see István Mayer sitting and smiling in the

first row of the auditorium and he has several comments and questions. We wonder: what are they?

Pachucki et al. [2] proposed the integral transformation technique to enhance the convergence of the expectation values of terms of the

Breit–Pauli Hamiltonian that were known to be difficult to evaluate precisely in the commonly used explicitly correlated Gaussian (ECG) basis

sets [3–6].

Θi rð Þ¼ exp � r�sið ÞTAi r� sið Þ
h i

, ð1Þ

where r ∈ ℝ
3n is the position vector of the particles, while si ∈ R

3n and Ai ¼ Ai � 1 3½ � with Ai ∈ R
n�n are parameters of the basis function. The

parametrization is selected by minimization of the non-relativistic energy. The advantage of the ECG basis set is that it is an n-particle basis, for

which analytic matrix elements can be derived for almost all physically relevant operators. At the same time, it is also well-known that the Gauss-

ian functions fail to reproduce the analytic properties of the exact non-relativistic wave function at the particle–particle coalescence points (cusps)

and in the asymptotic range for large particle–particle separations. The integral transformation technique offers a possibility to correct for the

missing cusp effects.
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We start the present work by writing out the theoretical background of Pachucki et al. [2] in detail. During this work, we have

noticed that the ideas used for the “integral transform” (IT) evaluation of the perturbative relativistic corrections may be more generally

applicable. In a nutshell, instead of directly evaluating the expectation value of some physical quantity with the approximate wave

function

Ô
D E

¼
ð
dr1…drN Ψ r1,…,rNð Þ�Ô Ψ r1,…,rNð Þ, ð2Þ

it becomes possible to incorporate the effects of the cusp of the exact wave function. An appropriate transformation is defined by introducing I
Ô
with

variable ξ, and the integral is calculated in two parts,

《Ô》¼
ðξΛ

0

dξ I
Ô
ξð Þþ

ð
∞

ξΛ

dξ eI
Ô
ξð Þ, ð3Þ

where we introduced the 《》 notation to emphasize the difference from the standard expectation value labeled with hi. In the short-range part,

0≤ ξ≤ ξΛ, the cusp has a negligible effect and it can be accurately computed with an ECG basis. For the long-range part, ξΛ < ξ<∞, the exact cusp

condition can be incorporated in the asymptotic tail of the transformed function (eI
Ô
ξð Þ) by considering the analytic behavior of the wave function

near the coalescence points.

In Sections 2 and 3, we work out the theoretical background and the analytic form of the long-range integrand for two types of ITs. Sec-

tion 4 is about the implementation, technical details and observations. Numerical results are presented for the relativistic calculations in Sec-

tion 5, for the non-relativistic calculations in Section 6, and the paper ends with a summary and conclusions (Section 7).

2 | IT FOR THE COULOMB INTERACTION AND THE DIRAC DELTA OF THE COORDINATE

In this section, we will consider the inclusion of the cusp effect for spatial integrals of operators that can be related to the inverse

of the particle-particle distance, 1=r. So, let us first consider the interaction between an electron and a nucleus, which is fixed at the

origin. In the matrix-element calculations, the relationship below is commonly used during the evaluation of the Coulomb integrals with Gaussian

orbitals [7, 8].

1

ri
¼ 2ffiffiffi

π
p
ð
∞

0

dt e�r2
i
t2 , ð4Þ

where the index i indicates the index of the electron. This relation can be understood as an IT (we call it t-transform) generation of 1=ri. Further-

more, by using

�4πδ rið Þ¼Δri

1

ri
, ð5Þ

we can write, following Pachucki et al. [2],

δ rið Þ¼� 1

2π3=2

ð
∞

0

dt 2t2 3�2t2r2i
� �

e�r2
i
t2 : ð6Þ

So, both operators can be generated by a t-integral

F rið Þ¼
ð
∞

0

dt f ri ,tð Þ e�r2
i
t2 , ð7Þ

where

for F rið Þ¼1=ri : f ri,tð Þ¼2=
ffiffiffi
π

p
, ð8Þ
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and

for F rið Þ¼ δ rið Þ : f ri ,tð Þ¼�π�
3
2t2 3�2t2r2i
� �

: ð9Þ

Then, by generalizing Pachucki et al.'s work for δ rð Þ [2], we re-write the expectation value for F rið Þ as

ΨjF rið ÞjΨh i¼
ð
dr1…drN Ψ r1,…,rNð Þ�F rið Þ Ψ r1,…,rNð Þ

¼
ð
dr1…drN

ð
∞

0

dtf ri,tð Þ e�r2
i
t2

� �
Ψ r1,…,rNð Þj j2

¼
ð
∞

0

dt

ð
dr1…drNf ri,tð Þ e�r2

i
t2
Ψ r1,…,rNð Þj j2

¼ 1

N

ð
∞

0

dt

ð
drif ri,tð Þ e�r2

i
t2ρ rið Þ ð10Þ

where ρ rið Þ is the one-electron density function,

ρ rið Þ¼N

ð YN

j≠ i
j¼1

drj

0
B@

1
CAjΨ r1,…,rNð Þj2 : ð11Þ

Next, we define the IT function for F rið Þ as

IF rið Þ tð Þ¼ 1

N

ð
drif ri ,tð Þ e�r2

i
t2ρ rið Þ, ð12Þ

which can be substituted back into Equation (10),

ΨjF rið ÞjΨh i¼
ð
∞

0

dtIF rið Þ tð Þ: ð13Þ

The integral IF rið Þ tð Þ can be written in an analytic form for “any” polynomial f ri,tð Þ of ri and t. In particular,

for F rið Þ¼1=ri : I1=ri tð Þ¼
2ffiffiffi
π

p
N

ð
drie

�r2
i
t2ρ rið Þ ð14Þ

and

for F rið Þ¼ δ rið Þ : I δ rið Þ tð Þ¼� 1

π
3
2N

ð
drit

2 3�2t2r2i
� �

e�r2
i
t2ρ rið Þ: ð15Þ

At first sight, it may seem strange that we introduce these complicated integral expressions, Equations (12)–(15). This is especially true for the

integral of Dirac delta that could be immediately obtained from the density at the origin. But, it is difficult to calculate the density at this point,

due to the cusp of the wave function. In numerical computations, ρ rið Þ is expanded in terms of a finite number of basis functions. The commonly

used Gaussian functions are smooth everywhere and they miss the correct description of the cusp [5, 8, 9].

The integral transformation in Equation (12) widens out the effect of the density to a finite interval due to the term e�r2
i
t2 (for finite t values), and

over this finite interval, the density can be represented accurately with smooth functions. The original integral value is obtained by integration for

t ∈ 0,þ∞½ Þ. For larger t values, the Gaussian in Equation (12) becomes narrower and makes the short-range contribution (cusp) more important to IF rið Þ tð Þ.
In the following paragraphs, it will be shown that for large t values, the analytic form of the integrand can be deduced from analytic properties

of the density near the cusp. To be able to incorporate these analytic results, the full integral is evaluated as the sum of a short-range, t ∈ 0,tΛ½ �,
and a long-range, t ∈ tΛ,∞½ Þ, part (Equation 3):

1

ri

� �� �
¼
ð tΛ

0

I1=ri tð Þdtþ
ð
∞

tΛ

eI1=ri tð Þdt: ð16Þ

The short-range part is evaluated by direct integration over the finite interval t ∈ 0,tΛ½ � (Appendix A). To calculate the long-range part includ-

ing the cusp effects, the following considerations are necessary.
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2.1 | Derivation of the long-range part from the cusp condition

According to Kato's cusp condition [1, 8, 10], the following relations hold for the exact non-relativistic wave function (in Hartree atomic units) for

the electron-nucleus and for the electron–electron coalescence points, respectively,

lim
riA!0

∂Ψ

∂riA

� �

ϑ,φ

¼�ZAΨ riA ¼0ð Þ and lim
rij!0

∂Ψ

∂rij

� �

ϑ,φ

¼ 1

2
Ψ rij ¼0
� �

, ð17Þ

where hiϑ,φ indicates averaging for the spherical angles, ZA is the nuclear charge number, riA is the distance between electron i and nucleus A, and

rij is the distance between electrons i and j. These conditions are valid only if the wave function does not have a node at the coalescence point,

otherwise, higher derivatives must be considered for a good description of the wave function in this regime [11, 12]. The coalescence condition

can be further elaborated by considering the effect of higher derivatives of the wave function [13, 14], which can be also affected by three-

particle coalescence conditions [15, 16]. In this paper, we use the simplest, original conditions of Equation (17) that give the following rela-

tions [17]:

lim
riA!0

∂ ρh iϑ,φ
∂riA

¼�2ZAρ 0ð Þ and lim
rij!0

∂ ηh iϑ,φ
∂rij

¼ η 0ð Þ , ð18Þ

where ρ is the one-electron density, Equation (11), and η labels the pair correlation function [18],

η rð Þ¼N N�1ð Þ
ð YN

k¼2

drk

 !
jΨ r2þ r,r2,r3,r4,…,rNð Þj2: ð19Þ

that can also be understood also as a quantity proportional to the pseudo-particle density corresponding to the relative motion for a pair of elec-

trons [5].

Then, we may consider the expansion of the spherically averaged density and pair correlation function by the coalescence point taken as the

origin (0):

ρh iϑ,ϕ rð Þ¼ ρ 0ð Þ�2ZAρ 0ð Þrþ
Xm

j¼2

Bjr
jþO rmþ1

� �
, ð20Þ

ηh iϑ,ϕ rð Þ¼ η 0ð Þþη 0ð Þrþ
Xm

j¼2

Bjr
jþO rmþ1

� �
: ð21Þ

To obtain the asymptotic form of IF rið Þ, labeled with eIF rið Þ (where tilde refers to the fact that it is valid for the asymptotic range), we insert the den-

sity expansion, Equation (20), in the definition of the IT function, Equation (12) and integrate out the angular coordinates. We explicitly show the

calculation for eIF rið Þ (and it can be carried out analogously for eI
F rijð Þ using Equation (21))

for t> tΛ :

eIF rið Þ tð Þ¼ 1

N

ð2π

0

dϕ

ð1

�1

d cosϑð Þ
ð
∞

0

dri r
2
i f ri ,tð Þ e�r2

i
t2ρ rið Þ

¼ 1

N

ð
∞

0

dri r
2
i f ri ,tð Þ e�r2

i
t24π ρh iϑ,ϕ rið Þ

¼4π

N

ð
∞

0

dri r
2
i f ri,tð Þ e�r2

i
t2 ρ 0ð Þ�2ZAρ 0ð Þriþ

Xm

j¼2

Bjr
j
i
þO rmþ1

i

� �
" #

,

ð22Þ

where for practical reasons, we truncate the expansion after some (“appropriate”) m value. The one-dimensional integral for ri can be evaluated

by analytic or numerical integration. For F rið Þ¼1=ri with f ri,tð Þ¼2π�1=2 in Equation (4), we obtain the asymptotic form as

for t> tΛ : eI1=ri tð Þ¼
1

t3N
2πρ 0ð Þ�8

ffiffiffi
π

p
ZAρ 0ð Þ1

t
þ
Xm

j¼2

B
1=ri½ �
j

1

tj

 !
, ð23Þ
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while for F rið Þ¼ δ rið Þ, f ri,tð Þ¼�t2 3�2t2r2i
� �

π�3=2 in Equation (6), we have

for t> tΛ : eI δ rið Þ tð Þ¼ 1

t2N

4ZAρ 0ð Þffiffiffi
π

p � 2ffiffiffi
π

p
Xm

j¼2

B
δ rið Þ½ �
j

1

tj�1

 !
: ð24Þ

It is interesting to note that the asymptotic tail of the Coulomb interaction, Equation (23), decays faster than that of the Dirac delta, Equa-

tion (24), leading to a faster convergence in a finite basis representation. Using Equations (23) and (24), the integral from tΛ to ∞ is obtained in an

analytic form as

ð
∞

tΛ

eI1=ri tð Þ dt ¼ 1

t2
Λ
N

πρ 0ð Þ�8

3

ffiffiffi
π

p
ZAρ 0ð Þ 1

tΛ
þ
Xm

j¼2

B
1=ri½ �
j

jþ2

1

t
j
Λ

 !
, ð25Þ

ð
∞

tΛ

eI δ rið Þ tð Þ dt ¼ 1

tΛN

4ZAρ 0ð Þffiffiffi
π

p � 2ffiffiffi
π

p
Xm

j¼2

B
δ rið Þ½ �
j

j

1

t
j�1
Λ

 !
: ð26Þ

Although both expressions contain the particle density at the coalescence point, ρ 0ð Þ=N¼ Ψjδ rið ÞjΨh i, that is, inaccurately represented in

a(n explicitly correlated) Gaussian basis, we can obtain its precise value by using:

1

N
ρ 0ð Þ¼《δ rið Þ》 ¼

ð tΛ

0

I δ rið Þ tð Þ dtþ
ð
∞

tΛ

eI δ rið Þ tð Þ dt ð27Þ

in an iterative procedure. First, the short-range integral (first term in the right-hand side of Equation (27)) is calculated by a one-dimensional quad-

rature (since this integrand is too complicated for an analytic evaluation), while the Bj parameters in the long-range part are obtained by fitting the

asymptotic part, Equation (24), to data points. The data set for the fit corresponds to “intermediate”-range t values (for practical details, see Sec-

tions 5, 6, and Appendix D). Then, using ρ 0ð Þ, obtained directly from numerical integration, the eI δ rið Þ tð Þ asymptotic function can be evaluated. In

the last step, we calculate the integrals in Equation (27) that results in an improved value for ρ 0ð Þ and an improved eI δ rið Þ tð Þ asymptotic form. The

iteration converges in a few cycles as it was noted already in Pachucki et al. [2]. Once we have the precise value for ρ 0ð Þ, we can have a good rep-

resentation for the asymptotic tail of the Coulomb interaction, eI1=ri tð Þ in Equation (23). Then, the integral value for the Coulomb interaction

including also the cusp effect can be obtained as:

1

ri

� �� �
¼
ð tΛ

0

I1=ri tð Þ dtþ
ð
∞

tΛ

eI1=ri tð Þ dt: ð28Þ

For computing 《δ rij
� �

》 and 《1=rij》 a similar approach is used, but it is necessary to substitute ρ 0ð Þ, ZA , and N with η 0ð Þ, �1=2, and

N N�1ð Þ, respectively in Equations (23)–(26). The final working equations are

for t> tΛ :

eI1=rij tð Þ¼
1

t3N N�1ð Þ
2πη 0ð Þþ4

ffiffiffi
π

p
η 0ð Þ1

t
þ
Xm

k¼2

B
1=rij½ �
k

1

tk

 !
, ð29Þ

eI
δ rijð Þ tð Þ¼� 1

t2N N�1ð Þ
2η 0ð Þffiffiffi

π
p þ 2ffiffiffi

π
p
Xm

k¼2

B
δ rijð Þ½ �
k

1

tk�1

 !
, ð30Þ

and

ð
∞

tΛ

eI1=rij tð Þ dt¼
1

t2
Λ
N N�1ð Þ

πη 0ð Þþ4

3

ffiffiffi
π

p
η 0ð Þ 1

tΛ
þ
Xm

k¼2

B
1=rij½ �
k

kþ2

1

tk
Λ

0
@

1
A , ð31Þ

ð
∞

tΛ

eI
δ rijð Þ tð Þ dt ¼ 1

tΛN N�1ð Þ �2η 0ð Þffiffiffi
π

p � 2ffiffiffi
π

p
Xm

k¼2

B
δ rijð Þ½ �
k

k

1

tk�1
Λ

0
@

1
A , ð32Þ
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with

1

N N�1ð Þη 0ð Þ¼《δ rij
� �

》, ð33Þ

where the precise value of 《δ rij
� �

》 is obtained in an iterative procedure, similarly to 《δ riAð Þ》.

3 | FOURIER TRANSFORM FOR THE KINETIC ENERGY AND THE MASS-VELOCITY TERMS

To calculate integrals of momentum operators, it is convenient to switch to momentum space. The Fourier transform of an ECG preserves the

mathematical form of the function, and we need to consider only the changes in the parameterization. So, the Fourier transform of the basis func-

tion in Equation (1) is [2].

Θi pð Þ¼ Aj j�3
2 exp � p�sið ÞTAi p�sið ÞþCi

h i
, ð34Þ

with si ¼�2isiAi, Ai ¼ 1
4
A�1

i , and Ci ¼�sTi Aisi. For the expectation value of the non-relativistic kinetic (k¼2) and of the mass-velocity (k¼4) oper-

ators, we have to evaluate

Ψjpk1jΨ
	 


¼
ð
dp1…dpn pk1 jΨ p1…pnð Þj2

¼ 1

N

ð
dp1 pk1 ρ p1ð Þ , ð35Þ

where ρ p1ð Þ is the momentum density function. The angular part of the integral can be evaluated according to Equation (A14),

Ψjpk1jΨ
	 


¼4π

N

ð
∞

0

dp pkþ2 ρh iϑ,φ pð Þ¼
ð
∞

0

dp Ipk pð Þ, ð36Þ

where ρh iϑ,φ pð Þ labels the spherically averaged momentum density. The explicit integrals for k¼2 (p2) are evaluated in Equations (A15) and (A16),

and the calculation can be, in principle, carried out similarly for k¼4, but we used quadrature integration, because it was fast and sufficiently

accurate (Section 5). It is interesting to note that the momentum density is spherically symmetric (second step in Equation (36)), even if si≠0.

This observation is connected with the properties of the Fourier transform of the ECG, Equation (34), in which any coordinate-space shift vector

appears as purely imaginary vector.

Similarly to the t-transform (Section 2), the cusp dominating the small-scale behavior in coordinate space is important for the long-range part

in the inverse (now momentum) space. To be able to exploit the different characteristics for the two ranges (short and long), the integral is evalu-

ated in two parts,

《Ψjpk1jΨ》¼
ðpΛ

0

dp Ipk pð Þþ
ð
∞

pΛ

dp eIpk pð Þ, ð37Þ

where the short-range part corresponds to the first term and is calculated from the ECG representation by direct integration up to some appropri-

ate pΛ threshold. The long-range part (second term) is determined by the cusp effects, and its analytic properties can be derived for the asymp-

totic tail. We will label this analytic asymptotic expression by eIpk pð Þ that is derived in the forthcoming subsection.

3.1 | The asymptotic tail of the momentum density

To show the connection of the short-range behavior in coordinate space dominated by the particle–particle coalescence point(s) and the long-

range behavior in momentum space, we need to consider a common theorem from numerical analysis [19] which connects the smoothness of a

function, f xð Þ, with the asymptotic behavior after Fourier transformation, ef kð Þ¼
Ð
f xð Þeikxdx. The smoothness of f xð Þ is defined by the number of

continuous derivatives. If f xð Þ is infinitely differentiable, f xð Þ ∈ C∞, or in other words f xð Þ is smooth, then ef kð Þ decays exponentially fast at large k
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values. If the nth derivative corresponds to a Dirac delta function, then the first n�2 derivatives are continuous, f xð Þ ∈ Cn�2, andef kð Þ decays poly-
nomially with 1=kn (Appendix B).

We use this theorem, following Kimball [18], to determine the analytic form for the asymptotic tail of the momentum density function, ρ pð Þ

ρ pð Þ¼ 1

8π3

ð
eip r�r0ð Þ

Γ r0,rð Þ dr dr0 ð38Þ

with the one-particle density matrix,

Γ r0,rð Þ¼N

ð
Ψ

� r0,r2,…,rNð ÞΨ r,r2,…,rNð Þ
YN

i¼2

dri : ð39Þ

By substituting Equation (39) into (38) and by exchanging the order of integration, we arrive at an alternative expression for the momentum

density,

ρ pð Þ¼N

ð
eΨ�

p,r2,…,rNð ÞeΨ p,r2,… ,rNð Þ
YN

i¼2

dri, ð40Þ

eΨ p,r2 ,… ,rNð Þ¼ 1ffiffiffiffiffiffiffiffi
8π3

p
ð
e�ipr

Ψ r,r2,…,rNð Þ dr: ð41Þ

To describe the asymptotic tail in momentum space, it is sufficient to consider those regions of the wave function for which the singularity

occurs for higher-order derivatives (Appendix B). These regions are the points at the position of the nuclei and at the electron–electron coales-

cence points, where the exact wave function cusps.

Let us focus on a cusp at nucleus A located at RA. Then, we consider the integral form of the cusp condition [11, 20],

for ri ≈RA : Ψ r1,r2 ,… ,ri ,…,rNð Þ≈ 1� ZAþ fA ϑi ,φið Þ½ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ri�RAð Þ2

q� �
Φi r1,r2,… ,ri,… ,rNð Þ , ð42Þ

where ZA is the nuclear charge number, fA ϑi ,φið Þ is an angular term, and Φ r1,…rNð Þ is a continuous function at least up to its second derivative

according to ri at RA for every particle i. The fA ϑi ,φið Þ term accounts for the angular dependence (i.e., not generally spherically symmetric) of the

wave function around the cusp. A more specific form for fA ϑi ,φið Þ can be obtained, if we consider the expansion of the one-electron contribution

of the wave function around the cusp using the eigenfunctions of the hydrogen atom [1, 11, 20]. As the leading-order contribution of the radial

part is related to rℓ, where ℓ is the angular momentum quantum number, we can neglect all ℓ≥2 angular terms for the small r. So, to describe the

non-spherical angular dependence, it is sufficient to consider the linear combinations of the first-order spherical harmonics (Y1m ϑ,φð Þ,
m¼�1,0,1). It is shown in Appendix C that the angular dependence does not have an effect on the large-momentum tail (that corresponds to the

short r range) [1, 11, 20].

In order to examine the non-smoothness of the cusp, let us consider r4
i Ψ (i.e., commonly understood as r4

i Ψ¼ =i �=ið Þ2Ψ):

r4
i Ψ¼� r4

i ZA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ri�RAð Þ2

q� �
Φiþϕi , ð43Þ

where ϕi collects remainder terms that are smooth with respect to ri near RA. (The effect from cusps due to the other particles can be accounted

for by summing up the contributions.) If r4
i acts on the cusp, a Dirac delta singularity appears,

�ZAr4
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ri�RAð Þ2

q
¼ �ZAr2

i

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ri�RAð Þ2

q ¼ 8πZAδ ri�RAð Þ: ð44Þ

For the fourth derivative, the integral in Equation (41) can be evaluated using the properties of Dirac delta in Equation (44), and thus, we

obtain the leading-order contribution for large momentum,

for j pi j > pΛ : eΨ r1 ,…,pi,…,rNð Þ¼2
ffiffiffi
2

p
ZAffiffiffi

π
p

p4i
Ψ r1,r2,…,RA,…,rNð Þe�ipiRA þO p�6

i

� �
: ð45Þ
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This short calculation demonstrates that it is indeed the cusp that determines the large-momentum behavior. In Equation (45) (valid for

large p), the next leading order comes with p�6
i . Although the p�5

i term can be neglected in the asymptotic tail, further odd powers of 1=pi are

retained to account for (possible) higher-order singularities in the wave function [13–15].

To generalize the calculation to several nuclei and electrons, we consider the following Ansatz which includes the effect of all the cusps of

the exact wave function of the many-particle system,

Ψ r1,r2,…,ri,…,rNð Þ¼
XN

i¼1

1�
XNnucl

A¼1

ZAþ fA ϑi,φið Þ½ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ri�RAð Þ2

q(

þ
XN

j≠ i

1

2
þg ϑij,φij

� �� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ri� rj
� �2

q )
Φi r1 ,r2,…,ri ,…,rNð Þ,

ð46Þ

where g ϑij,φij

� �
takes into account the angular dependence of the short-range electron–electron correlation, similarly to the fA ϑi ,φið Þ term for the

electron-nucleus cusp [11, 20]. The calculation of the large-momentum effect of the electron–electron coalescence can be carried out in a similar

manner to the electron-nucleus case, Equations (42)–(45), after a coordinate transformation to the center-of-mass and relative motion coordi-

nates including the rij displacement vector. The same arguments apply for the electron–electron cusp as for the electron-nucleus case, with the

only difference that the ZA nuclear charge number is replaced with Zee ¼�1=2. Then, the asymptotic tail in momentum space for a many-elec-

tron-many-nucleus system is obtained as

for jpi j > pΛ : Ψ r1 ,…,pi,…,rNð Þ¼
ffiffiffi
2

p
ffiffiffi
π

p
p4
i

2
XNnucl

A¼1

ZAΨ r1,r2,…,RA,…,rNð Þe�ipiRA

"

�
XN

j≠ i

Ψ r1,r2 ,…,rj,…,rN
� �

e�ipirj

#
þO p�6

i

� �
:

ð47Þ

To obtain the asymptotic tail for the momentum density, we substitute Equation (47) into (40),

for jp j > pΛ :

ρ pð Þ¼ 2

πp8
4
XNnucl

A¼1

Z2
Aρ RAð Þþ4

XNnucl

A¼1

XNnucl

B≠ A

ZAZBcos p RA�RBð Þ½ �Γ RA,RBÞð
"

�2 N�1ð Þ
XNnucl

A¼1

ZA

ð
eip r2�RAð Þ

Ψ
* RA ,r2,…,rNð ÞΨ r2,r2,…,rNÞ

YN

i¼2

driþcc:

 !
þη 0ð Þ�þO p�10

� �
,

 
ð48Þ

where “+cc.” means complex conjugation of the first term in the parenthesis. The interesting result that the pair correlation function appears in

the momentum distribution was first noticed in References [18, 21]. Moreover, it was also found that it leads to a fifth-order cusp in the off-

diagonal density matrix in the jellium model [22]. This fifth-order cusp has been derived recently for general atoms and molecules without using

the known results from the momentum distribution [23], hence, the asymptotic tail in Equation (48) can be obtained (as an alternative route to

the present one) by Fourier-transforming the cusp condition of the off-diagonal density matrix (Equation (20) in Cioslowski [23]).

Furthermore, it can be shown by partial integration that the integral term in Equation (48) is proportional to 1=p4 for high momentum values,

and thus, its contribution to the momentum density can be neglected, since it gives contribution only to the 1=p12 term.

Next, we can average the momentum density over the momentum orientations, that is, integrate out the angular dependence of the p vector

and divide by 4π, that reads for the second term in the square bracket of Equation (48) as

1

4π

ð2π

0

dφ

ð1

�1

d cosϑð Þcos p RA�RBð Þ½ � ¼1

2

ð1

�1

dccos pRABcð Þ¼ 1

pRAB

sin pRABð Þ, ð49Þ

and thereby, we obtain the spherically averaged momentum density,
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for p> pΛ : ρh iϑ,φ pð Þ¼ 1

4π

ð2π

0

dφ

ð1

�1

d cosϑð Þρ pð Þ

¼ 2

πp8
4
XNnucl

A¼1

Z2
Aρ RAð Þþ4

XNnucl

A¼1

XNnucl

B≠ A

ZAZB

sin pRABð Þ
pRAB

Γ RA ,RBð Þþη 0ð Þ
" #

þO p�10
� �

:

ð50Þ

3.2 | Asymptotic tail of Ipk pð Þ and its contribution to 《Ψjpk1jΨ》

Using the derived large-momentum, asymptotic tail of the momentum density, Equation (50), we can calculate its contribution to the asymptotic

tail of Ipk pð Þ, Equations (36) and (37),

for p> pΛ :

eIpk pð Þ¼4π

N
pkþ2 ρh iϑ,φ pð Þ

¼ 8

p6�kN

�
4
XNnucl

A¼1

Z2
Aρ RAð Þþ4

XNnucl

A¼1

XNnucl

B≠ A

ZAZB

sin pRABð Þ
pRAB

Γ RA,RBð Þþη 0ð Þ
�
þ
Xm

j¼1

Aj

p7�kþj
þO p�8þk�m

� �
,

ð51Þ

where the Aj coefficients are determined by fitting and m is chosen to fix the number of additional terms considered in the expansion. In our cal-

culations the typical value for m was between 4 and 7.

Using these expressions, the contribution from the large-momentum tail to 《Ψjpk1jΨ》 in Equation (37), can be calculated. In this paper, we

focus on the k¼2 and k¼4 cases, for which the final expression is

ð
∞

pΛ

dp eIpk pð Þ¼ 8

5�kð Þp5�k
Λ

N
4
XNnucl

A¼1

Z2
Aρ RAð Þþη 0ð Þ

" #

þ32

N

XNnucl

A¼1

XNnucl

B¼1

ZAZBΓ RA ,RBð ÞGk pΛ,RABð Þ

þ
Xm

j¼0

Aj

6�kþ jð Þp6�kþj
Λ

N
þO p�7þk�m

Λ

� �
,

ð52Þ

with

G2 pΛ,Rð Þ¼ cos RpΛð Þ
2pΛ

þ sin RpΛð Þ
2p2

Λ
R

�R π�2Si RpΛð Þ½ �
4

for k¼2, ð53Þ

G4 pΛ,Rð Þ¼R2p2
Λ
�2

24p3
Λ

cos RpΛð Þ�R2p2
Λ
�6

24Rp4
Λ

sin RpΛð Þþ R3 π�2Si RpΛð Þ½ �
48

for k¼4 , ð54Þ

where Si xð Þ is the sine integral function [24].

In the numerical calculations, ρ RAð Þ and η 0ð Þ are determined by using the method described in Section 2,

ρ RAð Þ¼
XN

i¼1

Ψ δ ri�RAð Þj jΨh i, ð55Þ

η 0ð Þ¼
XN

i¼1

XN

j> i

Ψ δ ri� rj
� � Ψ

	 

: ð56Þ

The quantity Γ RA,RBð Þ is an element of the density matrix, for which the cusp condition is also known [25, 26], but it is handled as a fitting

parameter in the present work.
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4 | COMPUTATIONAL DETAILS

The integral transformed functions I
p̂
2 , I

p̂
4 , I1=riA , I1=rij , I δ riAð Þ, and I

δ rijð Þ are shown in Figures 1 and 2 for the example of the ground electronic

state of the helium atom (He) and the trihydrogen cation (Hþ
3 ) with protons (p) clamped at an equilateral triangular configuration with Rpp ¼

1:65 bohr.

Up to a certain ξΛ value (ξΛ ¼ pΛ for momentum operators, and ξΛ ¼ tΛ for Coulombic operators), we calculate the short-range integral analyt-

ically for I
p̂
2 , I1=riA , I1=rij , and by quadrature for I

p̂
4 , I δ riAð Þ, and I

δ rijð Þ (for more details see Appendix A). For the long-range part, it is necessary to

determine the accurate value of ρ 0ð Þ and η 0ð Þ, which is calculated by an iterative procedure using Equations (24), (27), (32), and (33). Then, the

long-range part is obtained by fitting the asymptotic tail to data points using Equations (23), (29), and (51) that is followed by the analytic integra-

tion of the asymptotic tail, Equations (25), (31), and (52), using the fitted parameters.

It is critical to choose an optimal ξΛ value and a good interval for the data used for the fitting of the long-range analytic expression. We have

selected these parameters based on the inspection of the integrand evaluated with the approximate wave function (Figures 1 and 2). Close to the

origin, the asymptotic expansion fails, but the ECG basis describes well the non-analytic correlation effects in this range. The parameter ξΛ must

be large enough to ensure that the function IF rið Þ ξΛð Þ can be approximated accurately with the asymptotic expansion. At the same time, it must

be small enough to eliminate the major numerical uncertainties from the finite basis expansion. For the spherically symmetric ground state of the

helium atom (Figure 1), I ξð Þ is simple, it decreases monotonically to zero after an initial peak. The asymptotic part can be “easily” identified and

fitted to the asymptotic series. The Hþ
3 molecular ion (Figure 2) is a more “complex” system, with more complicated correlation effects, and thus,

we need to choose a larger ξΛ value to reach the asymptotic regime (which also implies the use of a larger basis set). Further details about the

accuracy of the matrix elements depending on the selection of the ξΛ value can be found in Section 6.

According to Sections 2.1 and 3.1, the long-range part of the function I ξð Þ decays polynomially due to the cusp in the exact wave

function that is approximated in the computations. At the same time, we may observe in Figure 3 that the approximate Ipk pð Þ k¼2,4ð Þ
function, corresponding to a finite ECG basis set, has artificial oscillations in momentum space and some non-negligible deviations in t-space. If

the full integral is computed by direct integration, the oscillations approximately cancel in the integral, and this explains the practical

observation that accurate results can be obtained even with ECGs that fail to satisfy analytic properties of the exact wave function. We aim to

obtain more accurate integral values by replacing the oscillatory asymptotic tail with the mathematically correct decaying form corresponding to

the cusp.

F IGURE 1 Integral transform (IT) function profile for various operators, I
p̂
2 , I1=riA , I1=rij , I p̂

4 , I δ riAð Þ, and I
δ rijð Þ for the example of the ground

electronic state of the helium atom
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In practice, the numerical accuracy of the computations is affected by the grids used for the numerical integration (if analytic integration is

not possible over the finite, short-range interval) and for the fitting procedure. Our computational strategies are explained in the following sec-

tions for the physical operators considered in this work.

5 | PERTURBATIVE RELATIVISTIC CORRECTION FOR Hþ
3 AT EQUILIBRIUM

For the spectroscopic characterization of compounds of light elements, the leading-order relativistic correction has been traditionally calculated

as the expectation value of the Breit–Pauli Hamiltonian with the non-relativistic wave function. The Breit–Pauli Hamiltonian is the leading-order

Foldy–Wouthuysen perturbation theory (FWPT) term of the Dirac–Coulomb–Breit Hamiltonian [27–29]. The singular operators that are difficult

to evaluate in a Gaussian basis appear already for the leading-order FWPT of the Dirac–Coulomb (DC) operator that reads for the two electrons

of Hþ
3 with fixed protons (N¼2 and Nnucl ¼3) as

Ĥ
FW ¼ ĤnonrelþΔĤ

FW ð57Þ

c2ΔĤ
FW

DC ¼�1

8

XN

i¼1

r4
i

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
mass-velocity

þπ

2

XN

i¼1

XNnucl

A¼1

ZAδ riAð Þ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Darwin I

�π
XN

i¼1

XN

j> i

δ rij
� �

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Darwin II

, ð58Þ

c2ΔĤ
FW

DCB ¼ c2ΔĤ
FW

DCþ2π
XN

i¼1

XN

j> i

δ rij
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
spin-spin

�
XN

i¼1

XN

j> i

1

2rij
pipjþ

rij rijpi

� �
pj

r2ij

 !

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
orbit-orbit

¼�1

8

XN

i¼1

r4
i þ

π

2

XN

i¼1

XNnucl

A¼1

ZAδ riAð Þþπ
XN

i¼1

XN

j> i

δ rij
� �

�
XN

i¼1

XN

j> i

1

2rij
pipjþ

rij rijpi

� �
pj

r2ij

 !
,

ð59Þ

F IGURE 2 Integral transform (IT) function profile for various operators, I
p̂
2 , I1=riA , I1=rij , I p̂

4 , I δ riAð Þ, and I
δ rijð Þ for the example of the ground

electronic state of the Hþ
3 with protons (p) clamped at an equilateral triangular configuration with Rpp ¼1:65 bohr
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for singlet states. Ĥnonrel is the non-relativistic Hamiltonian and ΔĤ
FW

DC and ΔĤ
FW

DCB correspond to the leading-order correction to the non-

relativistic energy of the Foldy–Wouthuysen (FW) transformed DC and Dirac–Coulomb–Breit (DCB) Hamiltonians.

We have calculated the expectation value of the mass-velocity and the Darwin terms with the non-relativistic wave function both by direct

integration and by the IT technique. IT technique for the example of the simplest polyatomic molecule, Hþ
3 near its equilibrium structure (Table 1).

In Table 1, we also show the (non-singular) orbit-orbit term (last term in Equation (59)) by direct integration.

Regarding the computational parameters, the ξΛ ¼100 bohr�1 threshold value was appropriate also in this system, similarly to the He and H2

computations reported in Pachucki et al. [2]. The short-range integrals were calculated by quadrature. For the Dirac-delta terms, the numerical

integration was carried out over three subintervals, 0,1½ � bohr�1, 1,10½ � bohr�1, and 10,100½ � bohr�1, using 25, 35, and 35 Gauss–Legendre quad-

rature points. For the mass-velocity term, we have checked the convergence of the integral value over the 10,100½ � bohr�1 interval using 50, 70,

and 100 number of points. The value of the integrand at each grid point is obtained by direct evaluation of the finite basis ECG integral (Appendix

A). This setup was sufficient for a parts-per-billion (ppb) convergence of the short-range integral value.

For fitting the long-range part of the integrand, we have considered the p>60 bohr�1 tail that is beyond the range dominated by non-trivial

correlation effects (Figure 2). We have carried out the fitting of the asymptotic tail by including additional grid points from the [100, 390] bohr�1

interval with 10 bohr�1 spacing. In each fit, six parameters were included, and the squared sum of residuals was on the order of 10�20 (a.u.) for

δ rij
� �

and δ riAð Þ and 10�10 (a.u.) for the p41þp42 term. Table 1 collects the terms appearing in the relativistic corrections obtained with direct inte-

gration and by the IT technique that reduces the relative error of the expectation value by �2 orders of magnitude.

In Table 2, the leading-order FW–DC and FW–DCB energy is compared with the no-pair variational energy of the corresponding (DC and

DCB) operators [31]. In the perturbative DC energy, we observe an error cancelation for the singular terms, hence, the direct and the IT FW–DC

energies differ only on the order of 1 nEh. For the FW–DCB energy, due to the spin–spin contribution, Equation (59), there is a 15 nEh deviation

between the direct and the IT results. For comparison, we also show the variational DC(B) energies [31] that are not affected by the slow

(A) (B)

(C) (D)

F IGURE 3 Relative difference in the asymptotic tail of the numerically calculated functions Ip2 pð Þ, Ip4 tð Þ, I1=riA tð Þ, I1=rij tð Þ, and the analytic

leading-order expressions of the asymptotic tail, eI0

pk pð Þ¼N�1p�2�k128πρ 0ð Þ, eI0

1=riA
tð Þ¼N�1t�3 2πρ 0ð Þ�16

ffiffiffi
π

p
ρ 0ð Þt�1

� �
, and eI0

1=rij
tð Þ¼

N N�1ð Þ½ ��1
t�32 πη 0ð Þþ2

ffiffiffi
π

p
η 0ð Þt�1

� �
for the example of the ground state of the helium atom with an increasing number of explicitly correlated

Gaussian (ECG) basis functions (Nb)
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convergence problem of the singular operators. A detailed comparison of the variational and the perturbative FW energies will be provided in

future work.

6 | AN ATTEMPT TO IMPROVE THE NON-RELATIVISTIC ENERGY WITH THE INTEGRAL

TRANSFORMATION TECHNIQUE

According to Sections 2 and 3, the integral transformation technique can be used also for the expectation values of the non-relativistic operators,

p̂
2

D E
, 1=riAh i, and 1=rij

	 

. Although these expectation values converge (much) faster than the expectation value of the singular operators appe-

aring in the relativistic corrections, pinpointing their precise value would be useful to have an (even) better estimate of the complete basis limit. In

this section, we report observations of some exploratory work for the p̂
2

D E
operator for the ground state of the helium atom.

Thanks to the simplicity of the I
p̂
2 , I1=̂riA , and I1=̂rij integrands, the short-range integrals can be obtained in an analytic form (Appendix A).

To fit the eI
Ô
ξð Þ asymptotic part, an equidistant grid was used. The start of the fitting interval was determined based on inspection of the inte-

grand functions (Figure 1). On the one hand, we wanted to choose a large ξ value to avoid fitting to non-trivial correlation features. On the other

hand, we wanted to choose a small ξ value to reduce the finite basis error of the ECG basis set. A short summary about the calculation of the nec-

essary ρ 0ð Þ and η 0ð Þ values is provided in Appendix D. Figure 3 shows the relative difference of I
Ô
ξð Þ represented by the finite basis expansion

and by the analytically known leading-order asymptotic part, eI0

pk pð Þ¼N�1p�2�k128πρ 0ð Þ, eI0

1=riA
tð Þ¼N�1t�3 2πρ 0ð Þ�16

ffiffiffi
π

p
ρ 0ð Þt�1

� �
,

and eI0

1=rij
tð Þ¼ N N�1ð Þ½ ��1

t�32 πη 0ð Þþ2
ffiffiffi
π

p
η 0ð Þt�1

� �
.

For larger (but not too large, i.e., for which the finite basis representation can be trusted) ξ values, the relative difference is determined by the

contributions beyond the analytic, leading-order terms. The deviation from zero in the asymptotic limit indicates numerical errors, which originate

from the finite basis-set approximation.

For the Coulomb terms, eI1=rij and
eI1=riA (Figure 3C,D), this numerical error is monotonic and has non-negligible values beyond some t value,

but by increasing the basis set size, this critical t threshold is shifted toward larger values.

TABLE 1 Expectation value of operator terms in the leading-order Foldy–Wouthuysen perturbative relativistic operators (in atomic units)

computed by direct integration (“direct”) and by the integral transformation technique (“IT”) for the ground electronic state of Hþ
3 with protons (p)

clamped at an equilateral triangular configuration with Rpp ¼1:65 bohr

Nb

r4
1þr4

2

	 
 P2
i¼1

P3
A¼1ZA δ ri�RAð Þh i δ r1� r2ð Þh i

Orbit-orbit termDirect IT Direct IT Direct IT

150 15.428820 15.467265 1.086786273 1.089641891 0.018430054 0.018340790 �0.057219009

200 15.446739 15.467346 1.088110465 1.089651086 0.018407593 0.018336611 �0.057218310

300 15.455982 15.467351 1.088821792 1.089654339 0.018368291 0.018335079 �0.057217628

400 15.456244 15.467368 1.088836952 1.089654512 0.018360864 0.018334828 �0.057217548

500 15.456360 15.467395 1.088843368 1.089654577 0.018358011 0.018334777 �0.057217524

600 15.456386 15.467395 1.088845002 1.089654597 0.018357565 0.018334773 �0.057217520

Note: The basis set size corresponds to the use of D3h point-group symmetry in the computations.

TABLE 2 Non-relativistic, perturbative (EFWDC and EFWDCB) and no-pair variational (EnpVDC and E
npV
DCB) relativistic electronic energies, in Eh, for the

ground electronic state of Hþ
3 with protons (p) clamped at an equilateral triangular configuration with Rpp ¼1:65 bohr (see also caption to Table 1)

Nb Enonrel EFWDC Directð Þa EFWDC ITð Þa E
npV
DC [31] EFWDCB Directð Þb EFWDCB ITð Þb E

npV
DCB [31]

150 �1.343835557 �1.343850435 �1.343850437 �1.343850149 �1.343847315 �1.343847347 �1.343847343

200 �1.343835606 �1.343850488 �1.343850485 �1.343850507 �1.343847376 �1.343847396 �1.343847404

300 �1.343835623 �1.343850501 �1.343850501 �1.343850524 �1.343847402 �1.343847413 �1.343847462

400 �1.343835624 �1.343850502 �1.343850502 �1.343850526 �1.343847405 �1.343847415 �1.343847484

500 �1.343835625 �1.343850502 �1.343850503 �1.343850527 �1.343847406 �1.343847416 �1.343847496

600 �1.343835625 �1.343850502 �1.343850503 �1.343850527 �1.343847406 �1.343847416 �1.343847498

Note: We used the speed of light c¼ α�1a0Eh=ℏ with α�1 ¼137:035999084 [30].

aExpectation value of Ĥ
FW

DC , Equations (57) and (58), with the non-relativistic wave function.

bExpectation value of Ĥ
FW

DCB , Equations (57) and (59), with the non-relativistic wave function.
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Regarding the p̂
k
operators (Figure 3A,B), the Fourier transformation results in oscillations that can be observed for the finite-basis represen-

tation of I
p̂
k over the large momentum range. The oscillation amplitude decreases upon increasing the basis set size. Figure 4 shows the compari-

son of the direct and the IT integration procedures for p̂
2
and p̂

4
. The computational details for p̂

4
can be found in the Section 4. Regarding p̂

2
,

the fit is performed over the 10,90½ � bohr�1 interval using 1600 equidistant points. Depending on the number of the fitting parameters the

squared sum of the residuals varied between 10�11 and 10�17 (a.u.).

The effect of the choice of the pΛ threshold value, which separates the short- and the long-range intervals, and the number of the fitted

parameters in the long-range part is shown in Figure 4. For both p̂
2
and p̂

4
, the larger the number of the fitted parameters, the better results are

observed, especially for smaller pΛ values. By increasing pΛ, all curves are close, since the high-order inverse momentum terms have a numerically

negligible contribution in this regime. For pΛ !∞, the contribution from the integral transformation goes to zero, and the direct integration result

is recovered. It is also necessary to note that although we achieve a better relative accuracy for 《p̂
2
》 than for 《p̂

4
》, the improvement of

《p̂
2
》 (IT) over p̂

2
D E

(“direct”) is modest. This observation can be contrasted with the two orders of magnitude improvement of 《p̂
2
》 (IT) over

p̂
4

D E
(“direct”) that appears to be a robust feature with respect to the choice of pΛ and the fitting details. For p̂

2
, the “optimal” interval for pΛ and

the fitting details should be very carefully chosen to observe any improvement.

7 | SUMMARY AND CONCLUSION

ECGs are often used in atomic and molecular computations, since they incorporate particle-particle correlation and they have analytic integrals

for most physically relevant operators. In spite of their advantages, they also have some drawbacks. They fail to describe correctly the particle

coalescence points and the asymptotic tail of the exact non-relativistic wave function of Coulomb-interacting point-like particles. This paper was

devoted to the study of a possible correction scheme for coalescence properties during computations with Gaussian-type functions.

For this purpose, we have presented the detailed theoretical background of the IT technique originally proposed by Pachucki et al. [2] to

enhance the convergence of singular operators appearing in perturbative relativistic corrections. The core idea of the IT technique is to rewrite

expectation values of physical quantities with an approximate wave function into a form, for which the cusp effect—characteristic for short ranges

in coordinate space—appears in the asymptotic tail of the integrand in an “inverse space” (ξ). For momentum-type operators, this transformation

is the Fourier transformation and the inverse space is momentum space (ξ¼ p). For Coulomb-type operators this is a “t-transformation” (for which

we are not aware of any common name), and for which the variable in the inverse space was labeled with ξ¼ t. Expectation values that contain

the cusp effects are obtained by computing the integral as the sum of a short-, 0≤ ξ< ξΛ, and a long-range, ξΛ ≤ ξ<∞, part. The short-range part is

calculated by direct integration with the approximate wave function expressed with ECGs.

We explained in this paper that the effect of the singular derivative of the wave function at the coalescence points, where the exact wave function

cusps, appears in the asymptotic tail of the integrand in the inverse space. Using this connection and the analytic cusp conditions, we derived the ana-

lytic form of the long-range tail of the integrands for the p2i , 1=rij, 1/riA-type operators and our derivation reproduced the asymptotic expressions for

p4i , δ riAð Þ, and δ rij
� �

of Pachucki et al. [2]. It is interesting to note that, in the inverse space, the asymptotic tail of the non-relativistic operators (p2

and 1=r) decay faster (�1=p4 and �1=t3), than the tail of the more “singular” operators, p̂
4
and δ̂ rð Þ, �1=p2 and �1=t2, respectively.

(A) (B)

F IGURE 4 Relative error of 《p̂
2
》 and ef pð Þ¼ 1ffiffiffiffi

2π
p

Ð∞

�∞

dxf xð Þe�ipx : for helium, for various pΛ thresholds and m terms in fitting function

Equation (52). The result “direct” was obtained by direct integration with explicitly correlated Gaussians (ECGs). The reference values are

p̂
2

D E
ref

¼2:903 724 377 034 119 5 bohr�2 [32] (using the virial theorem T̂i¼�E
	

), and p̂
4iref ¼108:176 134 4 8ð Þ

	
bohr�4 [2]
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Exploratory results were reported for the expectation values of the non-relativistic energy operators, for which, in principle, it should be pos-

sible to improve upon the non-relativistic energy with the inclusion of the cusp “effect.” The practical realization of this idea appears to be limited,

for the moment, by particular details of the fitting procedure of the asymptotic tail.

We also use the IT technique in this work to compute perturbative relativistic corrections for the ground state of Hþ
3 near its equilibrium struc-

ture. We observe error cancelation among the singular terms in the perturbative Dirac–Coulomb energy, but for the perturbative Dirac–Cou-

lomb–Breit energy the IT technique results in a 15 nEh improvement over the direct result. These perturbative relativistic energies pinpointed

with the IT technique can be used for a detailed comparison in relation with the variational relativistic result of Jeszenszki et al. [31] that will be

reported in future work.

Finally, we would like to mention that the p̂
4
- and δ(r)-type singular operators appear not only in the perturbative relativistic theory but also

in lower-bound theory due to the presence of the Ĥ
2
operator [5, 33, 34]. This fact contributes to the observation that the energy lower bounds

typically converge slower to the exact energy [5, 34], than the energy upper bound. It would be interesting to use (generalize) the IT technique to

the Ĥ
2
expectation value and variance computations, which may speed up the convergence of the best energy lower bounds [35] and that would

open the route to the computation of rigorous theoretical error bars for numerically computed non-relativistic energies.
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ENDNOTE

1 A discontinuous function cannot be differentiated in a rigorous way. However, the differentiation can be generalized using the so-called weak derivative

[40], which can be calculated for these functions. This leads to the expected Dirac delta function as the weak derivative of the Heaviside step function.
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APPENDIX A

NECESSARY GAUSSIAN INTEGRALS FOR THE SHORT-RANGE PART

The approximate wave function is written as a linear combination of antisymmetrized products of χ spin and Θ ECGs functions,

Ψ¼
XNb

I¼1

cIÂ χIΘIf g ðA1Þ

with the Â¼ Npermð Þ�1
2
PNperm

p¼1 εpP̂p antisymmetrization operator over the Nperm possible permutations with εp parity. Expectation values of a (per-

mutationally invariant) Ô operator can be calculated as

ΨjÔjΨ
D E

¼
XNb

I¼1

XNb

J¼1

XNperm

p¼1

c�I cJεIJp ΘIjÔjΘJp

D E
ðA2Þ

where εIJp contains the parity of the permutation and the spin integrals, and we need to calculate matrix elements of Ô with the ECG functions ΘI

and ΘJp. Particle permutation leaves the mathematical form of the ECG unchanged, and assumes transformation of the A and s parameter arrays

(for further details, see, e.g., Mátyus and Reiher [36]).

During the IT procedure, the short-range part of the expectation values is computed by direct integration with the basis functions. For the

short-range calculations, the following integrals were used.

Coulomb integral over the short-range interval

Using the following notations:
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ei ¼Aisi, ðA3Þ

eij ¼ eiþej , ðA4Þ

ηij ¼ sTi AisiþsTj Ajsj, ðA5Þ

Aij ¼AiþAj, ðA6Þ

γij ¼ eTijA
�1
ij eij�ηij, ðA7Þ

J12ð Þkl ¼ δ1kδ1lþδ2kδ2l�δ1kδ2l�δ2kδ1l , k, l¼1,…,N ðA8Þ

βij ¼ eTijA
�1
ij J12A

�1
ij eij, ðA9Þ

aij ¼Tr J12A
�1
ij

� �
, ðA10Þ

Sij ¼ exp γij
� � π

3N
2

Aij

 3=2
, ðA11Þ

the Coulomb integral for a finite range can be given explicitly as,

Θi

1

r12

� �

Λ


Θj

� �
¼ 2ffiffiffi

π
p
ð
Λ

0

dt Θi e
�r2

12
t2


Θj

D E

¼ 2ffiffiffi
π

p Sij

ð
Λ

0

dt 1þ t2aij
� ��3=2

e
� βij t

2

1þt2aij

¼ Sijffiffiffiffiffiffiffi
πβij

p
ð Λ

2βij

1þΛ2aij

0

dz z�
1
2e�z ¼ Sijffiffiffiffiffi

βij
p

Λ
2βij

1þΛ
2aij

 !1
2

2
4

3
5:

ðA12Þ

We note that the t dependence of the short-range δ rð Þ was integrated by Gauss–Legendre quadrature.

Momentum integrals

In this subsection, we draft the integration of the angular degrees of freedom for the momentum density, which is used in the second step of

Equation (36),

ð
dp1 pk1 ρ p1ð Þ¼4π

ð
∞

0

dp pkþ2 ρh iθ,ϕ pð Þ: ðA13Þ

TABLE A1 Convergence of the density and the pair correlation functions, in bohr�3, at the coalescence point for the ground-electronic state

of the helium atom computed with the IT technique

Nb ρ 0ð Þ η 0ð Þ

100 3.620845647 0.106366877

200 3.620857171 0.106350118

400 3.620858545 0.106348521

Ref. [32] 3.620858636 98(6) 0.106345371 2(2)

Note: Nb is the number of the basis functions. tΛ ¼100 bohr�1.

Abbreviation: IT, integral transform.

JESZENSZKI ET AL. 17 of 21

               dc_1955_21



To work out this step, we write down the integral for two basis functions in Fourier space that is proportional with (where a ∈ ℝ
þ, d ∈ ℝ

3,

and d¼jd j are constant coefficients containing the exponent matrices and shift vectors of the basis functions)

ð
dp1 pk1 exp �ap21þ idTp1

� �
¼
ð2π

0

dϕ

ð
∞

0

dp p2þk

ðπ

0

dθ sin θ exp �ap2þ ijdjp cos θ
� �

¼2π

ð
∞

0

dpp
kþ2

ð1

�1

dz exp �ap2þ idpz
� �

¼4π

d

ð
∞

0

dppkþ1sin dpð Þe�ap2 :

ðA14Þ

We note that id is purely imaginary for any configuration-space shift vectors, s ∈ ℝ
3N, due to Equation (34). The short-range part of the inte-

gral in Equation (A14) can be calculated analytically which we show for k¼2:

p2
	 


Λ
¼4π

d

ð
Λ

0

dp p3e�ap2sin dpð Þ¼4π

d
∂a∂d

ð
Λ

0

dp e�ap2cos dpð Þ

¼4π

2d
∂a∂d

ð
Λ

0

dp e�ap2þidpþe�ap2�idp
h i

¼ π3=2

d
ffiffiffi
a

p ∂a∂de
�d2

4a erf
ffiffiffi
a

p
Λþ id

2
ffiffiffi
a

p
� �

þerf
ffiffiffi
a

p
Λ� id

2
ffiffiffi
a

p
� �� �

¼ 1

8a7=2d
d 6a�d2
� �

π
3
2e�

d2

4a erf
ffiffiffi
a

p
Λþ id

2
ffiffiffi
a

p
� �

þerf
ffiffiffi
a

p
Λ� id

2
ffiffiffi
a

p
� �� ��

�4π
ffiffiffi
a

p
e�aΛ2

2adΛcos dΛð Þþ 4aþ4a2Λ2�d
2

� �
sin dΛð Þ

h io
:

ðA15Þ

If the ECGs are centered at the origin of the coordinate system, we need to consider the d!0 limit of the general expression:

lim
d!0

p2
	 


Λ
¼3π3=2

2a5=2
erf

ffiffiffi
a

p
Λ

� �
�πΛ

a2
3þ2aΛ2
� �

e�aΛ2

: ðA16Þ

APPENDIX B

CONNECTION BETWEEN WAVE FUNCTION DERIVATIVES IN REAL SPACE AND THE DECAY RATE OF THE ASYMPTOTIC TAIL IN

MOMENTUM SPACE

Let us consider an L2 integrable function, f xð Þ, which decays to zero for x!	∞. Moreover, its (k�1)th derivative is discontinuous at x0, and its

kth derivative at this point is related to the Dirac delta function1

d
k
f xð Þ
dxk

� δ x�x0ð ÞA xð Þ, ðB1Þ

where A xð Þ is a continuous regular function, which describes the kth derivative everywhere else. Next, let us consider the Fourier transform of

f xð Þ and its momentum-space properties,

ef pð Þ¼ 1ffiffiffiffiffiffi
2π

p
ð∞

�∞

dxf xð Þe�ipx : ðB2Þ

Using partial integration, f pð Þ can be expressed with the integral of the derivative of f xð Þ,

ef pð Þ¼� 1ffiffiffiffiffiffi
2π

p
ip

f xð Þe�ipx
� �∞

�∞|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
0

þ 1ffiffiffiffiffiffi
2π

p
ip

ð∞

�∞

dx
df xð Þ
dx

e�ipx , ðB3Þ

where the first term in the right hand is zero, since our original condition was lim
x!	∞

f xð Þ¼0. The partial integration can be repeated k times,
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ef pð Þ¼ 1ffiffiffiffiffiffi
2π

p
ð∞

�∞

dxf xð Þe�ipx ¼ 1ffiffiffiffiffiffi
2π

p �i

p

� �k ð∞

�∞

dx
d
k
f xð Þ
dxk

e�ipx ¼ 1ffiffiffiffiffiffi
2π

p �i

p

� �k

e�ipx0A x0ð Þ , ðB4Þ

where Equation (B1) is used and we assumed that the Dirac delta predominantly determines the integral expression above. Since e�ipx0 is bounded,

e�ipx0
 ¼1 , ðB5Þ

in the limit of large p values, f pð Þ decays polynomially,

p> pΛ : f pð Þ� 1

pk
: ðB6Þ

APPENDIX C

FOURIER TRANSFORMATION OF rf ϑ,φð Þ
In this appendix, we consider the effect of the function f ϑ,φð Þ in Equation (42) on the integrand values. The function f ϑ,φð Þ can be written as a lin-

ear combination of Y1m spherical symmetric functions. In what follows we show that the Fourier transform of rf ϑ,φð Þ is local, moreover, its contri-

bution is zero in the asymptotic tail of the kinetic and mass-velocity term integrands. So, we consider

h pð Þ¼ 1ffiffiffiffiffiffiffiffi
8π3

p
ð
dreiprrY1m ϑ,φð Þ: ðC1Þ

In order to perform the Fourier transformation let us expand the plane wave in terms of spherical harmonics [37],

eipr ¼4π
X∞

ℓ¼0

Xℓ

m¼�ℓ

iℓjℓ prð ÞY�
lm

p

p

� �
Y lm

r

r

� �
, ðC2Þ

where jℓ xð Þ is the spherical Bessel function [38]. Substituting Equation (C2) into (C1) and using the orthogonality relation between the spherical

harmonics, the angular integral can be evaluated, and we obtain

h pð Þ¼ iffiffiffiffiffiffi
2π

p Y�
lm

p

p

� �ð
dr r3j1 prð Þ: ðC3Þ

Using the identity,

∂

∂p
j0 prð Þ¼�rj1 prð Þ , ðC4Þ

which can be checked by substituting the explicit expressions for the spherical Bessel functions [38]. We can rewrite the integral in

Equation (C3) as

h pð Þ¼� iffiffiffiffiffiffi
2π

p Y�
lm

p

p

� �
∂

∂p

ð
dr r2j0 prð Þ: ðC5Þ

Then, we can recognize one of the identities of the Dirac delta function [39], δ pð Þ¼ 2p2

π

Ð
dr r2j0 prð Þ,

h pð Þ¼�
ffiffiffi
2

p
i

π3=2
Y�
lm

p

p

� �
∂

∂p

δ pð Þ
p2

, ðC6Þ

and the differentiation can be performed by using the identity δ xð Þ¼�xδ0 xð Þ for the derivative of the Dirac delta,
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h pð Þ¼3
ffiffiffi
2

p
i

π3=2
δ pð Þ
p3

Y�
lm

p

p

� �
: ðC7Þ

The appearance of δ pð Þ ensures that the resulting function is localized near the origin (small p values), and thus, it does not contribute to the

large-p asymptotic tail.

APPENDIX D

DETERMINATION OF THE ρ 0ð Þ AND η 0ð Þ VALUES FOR THE GROUND STATE OF THE He ATOM

In order to determine accurate values for δ riAð Þ¼N�1ρ 0ð Þ and δ rij
� �

¼ N N�1ð Þ½ ��1
η 0ð Þ, the expectation values of δ riAð Þ and δ rij

� �
are obtained in

an iterative procedure (Section 2). The grid points used in the fitting are selected according to Section 6. For δ riAð Þ and δ rij
� �

, the fitting intervals

start at 5 bohr�1, and at 1 bohr�1, respectively, which are sufficient to avoid complicated correlation effects at low t values (see also Figure 1).

(A) (B)

F IGURE D1 Relative difference in the asymptotic tail of the numerically calculated functions, I δ riAð Þ tð Þ and I
δ rijð Þ tð Þ, and the analytic-leading

order expressions of the asymptotic tail, eI0

δ riAð Þ tð Þ¼8ρ 0ð Þ= ffiffiffi
π

p
t2

� �
and eI0

δ rijð Þ tð Þ¼�2η 0ð Þ= ffiffiffi
π

p
t2

� �
for the example of the ground state of the

helium atom with an increasing number of explicitly correlated Gaussian (ECG) basis functions (Nb)

(A) (B)

F IGURE D2 Relative error of 《δ riAð Þ》 and 《δ rij
� �

》 for various tΛ threshold values and m terms in the fitting, Equation (24), using

400 explicitly correlated Gaussians (ECGs). The result “direct” was obtained by numerical integration over the entire t range. The reference values

are δ riAð Þh ir ¼3:620858637 7 3ð Þ bohr�1 and δ rij
� �	 


r
¼0:106345370636 2ð Þ bohr�1 [2]
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For the asymptotic range, the relative deviation of the integrands from the leading-order analytic terms is shown in Figure D1. The function I δ riAð Þ

appears to be robust with respect to the number of basis functions, while I
δ rijð Þ is more sensitive to the basis set.

After inspection of these figures, we set tΛ ¼100 bohr�1 for the upper end of the interval used for the fitting, and the beginning of the long-

range integral. The ρ 0ð Þ and η 0ð Þ values obtained in this computational setup with seven fitting parameters are collected in Table A1.

Figure D2 shows the relative error of 《δ riAð Þ》 and《δ rij
� �

》 in comparison with data available from Pachucki et al. [2]
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ABSTRACT

The question of classicality is addressed in relation with the shape of the nuclear skeleton of molecular systems. As the most natural envi-
ronment, the electrons of the molecule are considered as continuously monitoring agents for the nuclei. For this picture, an elementary
formalism of decoherence theory is developed and numerical results are presented for few-particle systems. The numerical examples suggest
that the electron–nucleus Coulomb interaction is sufficient for inducing a blurred shape with strong quantum coherences in compounds of
the lightest elements, H2, D2, T2, and HeH+.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0036568., s

I. INTRODUCTION

Wewould like to better understand the status of the permanent
chemical observables by starting from a fully quantum mechanical
description of a molecule, i.e., by including both the electrons and
the atomic nuclei in the quantum treatment. The present work is
concernedwith the recognition of elements of the classical molecular
shape. A fundamental difficulty is associated with the fact that the
classical shape (unless spherically symmetric) breaks the rotational
symmetry of the molecular wave function of an isolated molecule.1

There exist quick shortcuts to this problem. First (case I), pieces
of information regarding the molecular shape (and structure) can be
obtained by fitting an effective model Hamiltonian to the isolated
molecule’s rotational spectrum.2 Second (case II), in many chem-
ical experiments, the molecules are in some environment, and the
isolated-system symmetries are no longer relevant.

Nevertheless, we remain interested in the original theoreti-
cal problem, which had become famous as the molecular structure
conundrum:3–9 We consider an isolatedmolecule and aim to explore
the furthermost point regarding the molecular shape (and structure)
without considering any kind of environment (as in case II) or mak-
ing any a priori assumption on the hierarchical separation in the

spatio-temporal behavior of the internal dynamics to build model
Hamiltonians (as in case I).

However, we have mentioned that the classical molecular shape
breaks a fundamental symmetry of the isolated quantum system.
Hence, how can we expect to see the emergence of a symmetry
breaking feature without actually breaking the symmetry?

The core of this work rests on understanding what is quan-
tum, what is classical, and how they are connected. We borrow
tools from decoherence theory10,11 and use them for the molecular
problem. Interference is one of the key concepts for understanding
quantum behavior. If interference vanishes, then the quantum sys-
tem has classical-like features. In practical terms, we have to consider
the system’s reduced density matrix (RDM). If its off-diagonal ele-
ments (interference terms) are suppressed in some representation,
then the RDM is formally identical with that of a classical mixture
(Fig. 1). Based on this mathematical equivalence, we may say that
a quantum system resembles a classical statistical ensemble. Science
philosophers12,13 as well as pioneers in decoherence theory10 have
noticed that the suppression of interference between selected states
is not a sufficient condition to fully reduce the quantumworld to one
amenable to a classical treatment. It is a necessary one. In the present
work, we will follow this common and fruitful interpretation of the

J. Chem. Phys. 154, 024114 (2021); doi: 10.1063/5.0036568 154, 024114-1
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FIG. 1. Illustration of a rotationally symmetric object with (a) strong rotational inter-
ference and (b) vanishing rotational interference. If the interference vanishes (b),
the quantum system resembles a collection of (rotated) classical objects.

quantum-classical relation that is based on the suppression of the
interference terms.

Pursuing decoherence ideas for the molecular problem is not
new and has always started with the definition of an environment
model. Pfeifer14,15 considered the vacuum state of the electromag-
netic field as a general environment to model the localization of
enantiomers. This model was later debated for several reasons.
Woolley argued16 that Pfeifer’s non-gauge invariant representation
and linear approximation in the field operators resulted in an arti-
ficial localization. It was also shown that the proposed mechanism
fails for non-zero temperature.17 Zeh argued (p. 387 of Ref. 10) that a
non-trivial dressing (on its own) does not guarantee transformation
from a superposition to an ensemble.

Independently, Claverie and Jona-Lasinio18,19 used external
random noise to simulate localization in a double-well problem
to model molecular chirality. Joos and Zeh studied simple scatter-
ing models,20 and Hornberger and co-workers simulated the sta-
bilization of chiral molecules upon collisions.21–23 More recently,
the change of the environment model parameters was studied on
the localization of mesoscopic quantum objects.24 A systematic and
accurate calculation of the decoherence times for molecular pro-
cesses in interaction with a series of environment models is very
interesting and may turn out to be useful for designing better
quantum computers (with molecular qubits).

For solving the molecular structure problem, one would like to
find the most general possible environment model for a molecule.
When we think about the structure of a molecule, we rarely have to
specify the corresponding environment. Most probably, this desire
led Pfeifer in 198014 to pick the electromagnetic vacuum state as an
environment.

In the present work, instead of setting out to design the most
general environment for a molecule, we will take a closer look at
the molecular wave function. We have said that we did not want
to introduce any a priori dynamical assumptions in the molecular
quantum treatment. However, when we have the full molecular wave
function at hand, we can, of course, exploit the different proper-
ties of the particles during the course of an a posteriori analysis of
the wave function. Hence, in the present work, we study the spa-
tial coherence or decoherence of the nuclear skeleton induced by the
continuous monitoring effect of the electron cloud. This informa-
tion is encoded in the molecular wave function, and we will write
down the formalism that makes this “visible.”

The present study of spatial (de)coherence within the molecule
adds a missing bit to our earlier understanding25–30 that followed
a path proposed by Claverie and Diner.5 According to them, ele-
ments of the molecular structure can be recognized as nuclear
configurations for which the particle density is large. Large val-
ues of the particle density certainly indicate configurations that are
the most probable, but it does not tell us whether an assembly
of particles have the classical-like features that we know about in
chemistry.

In Sec. II, we work out the basic decoherence formalism
for spatial localization of nuclei in the molecule. Section III
makes the formalism specific for the molecular shape, and Sec. IV
presents the numerical results computed from molecular wave
functions.

II. MOLECULAR DECOHERENCE THEORY

When a property of a quantum system is measured, the needle
of an idealized measuring device points to one of the possible out-
come values. In an ideal quantum mechanical description of mea-
surement, the (macroscopic) experimental setup should be included
in a quantum treatment.6,31 The quantum states corresponding to
the positions of the measuring needle were termed “pointer states”
by Zurek,32 and their apparent classical behavior is ensured by the
decoherence effect of the measuring environment.

Nowadays, the concept of pointer states is used in a more
abstract sense without associating an actual experimental setup with
them. In the pointer basis representation, the off-diagonal elements
of the reduced density matrix, which represent quantum coherence
between the states of the system associated with the environment
pointer states, are suppressed.

In general, we do not know a priori the pointer states of a quan-
tum system in a given environment. For each microscopic environ-
ment model, one has to find the proper pointer states that will point
to the classical-like (environmentally stabilized) states of the quan-
tum system.22,32 Localization of macroscopic objects in space (e.g.,
translational localization) is studied in a so-called “direct represen-
tation” using a set of Dirac delta distributions over the configuration
space.

By molecular shape (and internal structure), we understand the
localization of the nuclei in the three-dimensional space. Hence, our
“measuring needles” are functions located in the three-dimensional
space (“position basis”). Hence, we will be concernedwith the “direct
representation” of the density matrix.

Let |Ψ⟩ be a normalized molecular wave function. The associ-
ated (pure-state) density operator is denoted by ρ̂ = ∣Ψ⟩⟨Ψ∣. Let us
multiply ρ̂ from both the left and the right with the resolution of
identity written in the position basis of the electrons and the nuclei,
χr and χR, respectively. Hence, the molecular (pure-state) density
operator is written as

ρ̂ = ∣Ψ⟩⟨Ψ∣

= Î ⋅ ∣Ψ⟩⟨Ψ∣ ⋅ Î
= ∫ dr dR ∣χrχR⟩⟨χrχR∣ ⋅ ∣Ψ⟩⟨Ψ∣ ⋅∫ dr′ dR′ ∣χr′χR′ ⟩⟨χr′χR′ ∣

= ∫ dr dR dr′ dR′ ∣χrχR⟩⟨χr′χR′ ∣ Ψ(r,R)Ψ
∗(r′,R′). (1)
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Since we are interested in the nuclear structure, we integrate out
the electronic degrees of freedom and obtain the nuclear reduced
density matrix,

ρ̂nuc =Trel [ρ̂]
=∫ dr′′ ⟨χr′′ ∣Ψ⟩⟨Ψ∣χr′′ ⟩
=∫ dr′′ ⟨χr′′ ∣[∫ dr dR dr′ dR′ ∣χrχR⟩⟨χr′χR′ ∣
× Ψ(r,R)Ψ∗(r′,R′)]χr′′ ⟩
=∫ dR dR′ ∣χR⟩⟨χR′ ∣ ∫ dr′′ Ψ(r′′,R)Ψ∗(r′′,R′), (2)

where the element of the reduced density matrix in the position
representation is denoted as

ρnuc(R,R′) = ⟨χR∣ρ̂nuc∣χR′ ⟩ = ∫ dr′′ Ψ(r′′,R)Ψ∗(r′′,R′). (3)

It is worth making explicit the diagonal and off-diagonal contribu-
tions to ρ̂nuc,

ρ̂nuc =∫ dR ∣χR⟩⟨χR∣ ρnuc(R,R)
+ ∫ dR dR′ ∣χR⟩⟨χR′ ∣ [1 − δ(R − R′)] ρnuc(R,R′), (4)

where the second term describes the interference between the
nuclear structures at R and R′. If the ρnuc(R, R

′) off-diagonal ele-
ments are small, then

ρ̂nuc ≈ ∫ dR ∣χR⟩⟨χR∣ ρnuc(R,R), (5)

which is mathematically equivalent with the density matrix of a clas-
sical mixture of localized structures at R (a mixed state). According
to decoherence theory and based on this mathematical equivalence,
we may say that the quantum system has classical features corre-
sponding to the χR basis representation that becomes a good pointer
basis if ρnuc(R, R

′) = 0. In this case, the χR basis representation is a
pointer basis for the nuclei, and the classical properties associated
with a given χR function are dynamically stable.

We have selected χR as a basis set over the nuclear configura-
tion space (or more precisely, for practical purposes, a dense mesh
of Dirac delta distributions over nuclear configurations) because we
would like to study the molecular structure and check whether the
interference terms are suppressed between nuclear configurations. It
is necessary to study whether and under which circumstances ρnuc(R,
R′) ≈ 0 (R ≠ R′), i.e., the nuclear structure will be dynamically stable
as a classical property.

A. Born–Oppenheimer molecular wave function

It is interesting to note that all arguments are
applicable not only for the pre-Born–Oppenheimer molecular
wave function but also for the conventional Born–Oppenheimer
(BO) product of the electronic and nuclear wave functions,

Ψ
[BO](r, R) = Ψel(r, R)Ψnuc(R). In this case, an off-diagonal element

of the reduced density matrix is

ρ[BO]nuc (R,R′) = ⟨χR∣ρ̂nuc∣χR′ ⟩
= ∫ dr′′ Ψ∗el(r′′,R′)Ψ∗nuc(R′)Ψel(r′′,R)Ψnuc(R)
= [∫ dr′′ Ψ∗el(r′′,R′)Ψel(r′′,R)]Ψ∗nuc(R′)Ψnuc(R).

(6)

Thus, the interference amplitude between theR andR′ nuclear struc-
tures depends on the overlap of the BO electronic wave functions
corresponding to the R and R′ nuclear configurations.

B. All-particle molecular wave function

The molecular wave function can be represented as a lin-
ear combination of many-particle electron–nucleus basis functions,
most commonly using variants of an explicitly correlated Gaussian
basis set.1,33–35 Electrons and nuclei are handled in such a “pre-Born–
Oppenheimer” or “all-particle” treatment on an equal footing. The
nuclear reduced density matrix is obtained by direct evaluation of
the integral in Eq. (3). Due to the equivalent treatment of all parti-
cles, it is straightforward to calculate the reduced density matrices
corresponding to different kinds of partitioning of the molecule to a
subset of (a, b, c, . . .) particles as the “system” and the remaining (z,
y, x, . . .) particles as the “environment.” In the present work, we use
the electron–nucleus partitioning.

III. ORIENTATIONAL LOCALIZATION: THEORETICAL
FRAMEWORK

For a start, let us consider a diatomic molecule in its ground
rovibronic state with zero total angular momentum. This is a sta-
tionary state, and the wave function is spherically symmetric. The
one-particle nuclear density, ρ0,n(R, R), calculated from this wave
function shows that the nuclei (“n”) are within a shell around the
molecular center of mass, “0” (see Fig. 1 of Ref. 25 and Fig. 2 of
Ref. 26). The two-particle density, ρ0,nn′ (R, R), is strongly peaked
at 180○ for the included angle of the position vector of the two
nuclei, n and n′, measured from the center of mass, “0” (see Fig. 2 of
Ref. 26).

The one- and two-particle density functions describe well the
internal nuclear structure, but an additional question remains:1

Does the nuclear structure in the ground-state wave function
resemble a shell with strong quantum coherences among the posi-
tions [Fig. 2(a)] or a rotating dumbbell with a classical-like shape
[Fig. 2(b)]?

FIG. 2. Shell (a) or rotating dumbbell (b)? Reproduced with permission from
E. Mátyus, Mol. Phys. 117, 590 (2019). Copyright 2019 Author(s), licensed under
a Creative Commons Attribution 4.0 License.

J. Chem. Phys. 154, 024114 (2021); doi: 10.1063/5.0036568 154, 024114-3

Published under license by AIP Publishing

               dc_1955_21



The Journal
of Chemical Physics

ARTICLE scitation.org/journal/jcp

We ask this question within the stationary-state, isolated
molecule quantum treatment because we would like to know
whether this property is encoded in the molecular wave function
itself or it is induced by the environment. This question can bemath-
ematically studied using the arguments and formalism developed in
Sec. II.

Hence, we have to assess the orientational coherence or deco-
herence of the nuclei induced by the electrons. For this purpose,
we consider nuclear configurations, R and R′, that have the same
internal structure and are connected by spatial rotation, R′ = ÔαR.

To quantify the interference between rotated structures, we will
use the {ξ1, ξ2, . . .} basis set (Fig. 3) that consists of Dirac delta dis-
tributions over a dense mesh in the configuration space of rotated
nuclear structures rather than a general χR configuration basis dis-
tributed over the entire configuration space (Sec. II). Hence, our
measuring needles are ξα = χÔαR

(Fig. 3). Hence, in Eq. (4), we con-
sider the rotational degrees of freedom for a selected R nuclear struc-
ture (alternatively, the non-rotational part can be integrated out) and
write the nuclear reduced density matrix operator corresponding to
the rotated structures as

ρ̂
[rot]
nuc =∫ dα ∣ξα⟩⟨ξα∣ ρnuc(Rα,Rα)

+ ∫ dα dα′ ∣ξα⟩⟨ξα′ ∣ [1 − δ(α − α′)] ρnuc(Rα,Rα′), (7)

where dα collects the volume element for three Euler angles and the
integrals are understood with the appropriate integration bounds.
Rα = ÔαR is a short notation for the rotated structure.

If the off-diagonal elements of the nuclear reduced density
matrix for the rotated structures (R ≠ Rα),

ρnuc(R,Rα) = ∫ dr′′ Ψ(r′′,R)Ψ∗(r′′,Rα), (8)

are small with respect to the diagonal elements,

ρnuc(R,R) = ∫ dr′′ Ψ(r′′,R)Ψ∗(r′′,R), (9)

then

ρ̂
[rot]
nuc ≈ ∫ dα ∣ξα⟩⟨ξα∣ ρnuc(Rα,Rα), (10)

FIG. 3. Visual representation of the “orientational basis” that we use to measure
the emergence of the shape of the nuclear skeleton: Dirac delta distributions are
located at molecular structures connected by rotation (shown in 2D).

i.e., the interference of the rotated nuclear structures is negligible.
This nuclear reduced density matrix is mathematically identical with
that of a classical mixture of rotated nuclear structures. This case
corresponds to Fig. 1(b) in a diatomic molecule, the coherence of
the rotated structures vanishes, and we may observe the emergence
of a dumbbell-like shape of the nuclear skeleton. If the off-diagonal
elements are large with respect to the diagonal ones, then there
is a strong interference among the rotated nuclear structures and
we cannot observe any new feature emerging beyond (within) the
quantummechanical rotational symmetry. In this case, the shell-like
picture of Fig. 1(a) is appropriate. We note that both cases respect
the original rotational symmetry of the molecular wave function.
Either the classical-like or the quantum-like (as well as all inter-
mediate) cases may be encoded within the molecular wave func-
tion depending on the strength of the interparticle interactions. The
sole difference is in the suppression or existence of the coherence
between pairs of rotated structures within the spherically symmetric
molecular wave function.

When do the interference terms get small and the localiza-
tion of the nuclei by the electrons efficient? It happens if ρnuc(R,
Rα) [Eq. (8)] is small. It is easier to understand the meaning of this
condition within the Born–Oppenheimer approximation (when it is
qualitatively correct), Eq. (6),

ρ[BO]nuc (R, ÔαR)
= [∫ dr′′ Ψel(r′′,R)Ψ∗el(r′′, ÔαR)]Ψnuc(R)Ψ∗nuc(ÔαR). (11)

If the overlap of the BO electronic wave functions corresponding to

the rotated nuclear structures is small, then ρ[BO]nuc (R,R′) is also small.

IV. NUMERICAL STUDY OF ROTATIONAL
LOCALIZATION OF THE NUCLEI IN THE MOLECULAR
WAVE FUNCTION

We have computed the ground-state wave function for four-
particle systems, including the hydrogen molecule (H2), the positro-
niummolecule (Ps2), the muoniummolecule (μ2), and other H2-like
systems, as well as HeH+, to illustrate the ideas formulated in Secs. II
and III.

The molecular wave function was computed using an explic-
itly correlated Gaussian basis set and the QUANTEN computer
program.1 In the present work, we use a plain explicitly correlated
Gaussian (ECG) representation similarly to Refs. 25 and 26 and the
center-of-mass-centered translationally invariant coordinates1,26,35

to evaluate the diagonal and off-diagonal particle densities refer-
enced to the molecular center of mass. We have converged the stud-
ied structural density features for the ground state of these systems
with zero total angular momentum (N = 0), natural parity (p = +1),
and zero spin for the pair of electrons, protons, and positrons (Se =
0, Sp = 0). The corresponding energies were converged within ∼1%,
which was sufficient to obtain density plots converged within the
resolution of the figures.

To answer the question of Ref. 1 highlighted in Fig. 2, we have
calculated the off-diagonal elements of the nuclear reduced density
matrix in the rotational basis (Sec. III), ρ0,n(R, ÔϑR), where Ôϑ is the
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operator for the rotation. The rotation axis goes through the molec-
ular center of mass and ϑ parameterizes the rotation angle about this
axis. Figure 4 shows the effect of the relative mass and electric charge
on the orientational (de)coherence for a series of H2-type systems
including Ps2, μ2, and the deuterium and tritium isotopologs of H2

and hypothetical (bound) systems with an increased nuclear charge.
We may observe in Fig. 4 that Ps2 is qualitatively different from

the other “homonuclear” systems. Its diagonal “nuclear” (positron)
density, ρ0,n(R, R), has a maximum at the origin (R = 0 bohr).
Regarding the off-diagonal density, it shows a 360○ periodicity and
has a small local maximum at 180○(±i ⋅ 360○) and shallow local
minima at 139○ and 221○ with a 1% suppression compared to the
maximal (diagonal) value.

For μ2, H2, D2, and T2, the diagonal density functions differ,
but they all have a maximum (of different values for the different
systems) near |R| = 0.7 bohr. Within the resolution of the figure,
the off-diagonal density matrix elements normalized with the diag-
onal density value [shown in Fig. 4(a) for |R| = 0.7 bohr] cannot
be distinguished for the four systems that may be surprising at first
sight. We may understand this observation by remembering that the

suppression is induced by the electrons’ measuring effect that
depends on the electronic structure around the positive particle
[Eq. (11)] and this is very similar in the four systems (the BO
approximation is qualitatively correct). For this series of systems, the
off-diagonal density shows a 180○ periodicity and it is minimal at
90○(±i ⋅ 180○). Its minimum value is ∼5% smaller than its maximal
(diagonal) value.

Regarding the H2-like systems with an increased nuclear charge
[Fig. 4(b)], we observe a behavior similar to H2, but a stronger, up
to 8%, suppression at the 90○(±i ⋅ 180○) minima for Z = 1.65. This
observation is in agreement with the fact that the orientational de-
coherence of the nuclei is induced by the monitoring effect of the
electrons, and for an increased nuclear charge, this monitoring effect
is stronger due to the stronger interaction (we note that the H2-like
systems with Z ≥ 2 are unbound).

In summary, we may say that all H2 systems show dominant
orientational coherences. Ps2 is an almost perfect quantum ball with
an only 1% maximal suppression among the rotated structures. In
the H2-like systems, the 180○ periodicity and maximal suppres-
sion at 90○(±i ⋅ 180○) suggest a symmetric dumbbell shape (within

FIG. 4. Off-diagonal normalized den-
sity matrix elements connecting rotated
nuclear structures in H2-type systems.
The rotation axis for θ goes through the
molecular center of mass that is the ori-
gin of the coordinate system used in the
calculations. The diagonal density matrix
elements are also plotted. (a) Effect
of varying the mass of the positively
charged particles (“nuclei”), mi /me = 1,
206.768, 1836.15, 3670.48, and 5496.92
for Ps2, μ2, H2, D2, and T2, respectively.
(b) Effect of varying the electric charge of
the proton.
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FIG. 5. Off-diagonal normalized nuclear
density in HeH+ connecting rotated
nuclear structures. The diagonal nuclear
density is also shown.

the spherically symmetric molecular wave function), but due to the
small value of the suppression (5%), this dumbbell shape is blurred
by quantum coherences.

HeH+ is a heteronuclear diatomicmolecule with an asymmetric
dumbbell shape in the BO theory, while its rotational ground-state
molecular wave function is, of course, spherically symmetric. The
question arises whether this asymmetry can be recognized within
the spherically symmetric molecular wave function. Figure 5 shows
the diagonal and off-diagonal nuclear density functions. The off-
diagonal normalized density functions are plotted for |R| values that
correspond to the diagonal density maximum value for the proton
and the alpha particles. The off-diagonal density function is peri-
odic by 360○, and it has equivalent minima at ∼120○(±i ⋅ 360○) and
∼240○(±i ⋅ 360○) and small local maxima at 180○(±i ⋅ 360○) with an
overall 10% suppression for ϑ ∈ [100○, 300○] with respect to the
maximal (diagonal) density value.

Figure 6 summarizes the three qualitatively different behav-
iors observed in this work. Ps2 is an almost perfect quantum ball
with a maximal 1% suppression among rotated structures, and H2

has a symmetric dumbbell shape, while HeH+ has an asymmet-
ric dumbbell shape, but both dumbbells are blurred by quantum
coherence.

V. SUMMARY, CONCLUSION, AND OUTLOOK

TO FUTURE WORK

This work has been devoted to the study of the emer-
gence of the classical molecular shape of an isolated molecule
described by its ground-state rovibronic wave function. To
mathematically formulate this paradoxical problem, we have
studied the orientational decoherence of the nuclear skele-
ton under the continuous monitoring effect of the electrons
of the molecule, serving as the most natural environment for
the nuclei. Orientational (de)coherence is measured by the off-
diagonal nuclear reduced density matrix in the (direct) spatial
representation.

If the reduced density matrix elements connecting rotated
structures are small, then the nuclear reduced density matrix is
mathematically equivalent to the classical sum of rotated nuclear
structures, and thus, we may say that the nuclei behave as if they
formed a classical-like skeleton with a given shape that rotates in
space. We have formulated the corresponding equations and com-
puted the nuclear reduced density matrix elements over the nuclear
configuration space for a series of H2-type (homonuclear) systems
and for the heteronuclear HeH+ molecular ion.

FIG. 6. Orientational (de)coherence measured by the suppression of the off-diagonal nuclear density with respect to the diagonal elements, ρ0,n(R, ÔϑR)/ρ0,n(R,R). The
xy cut of the three-dimensional function (the width of the shells is arbitrarily chosen to visualize the change of the off-diagonal normalized density with the angle) is shown.
The upward (downward) vertical direction corresponds to zero rotation angle ϑ for the positron and the proton (α-particle).
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We observe a small, 10% maximal suppression of the off-
diagonal density connecting rotated nuclear structures (due to the
measuring effect of the electrons), and thus, we may say that H2

and HeH+ have a symmetric and asymmetric dumbbell-like shape,
respectively, which is blurred by strong quantum coherences. The
decoherence effect in Ps2 is almost negligible, and it is seen in this
analysis as an almost perfect quantum ball.

We consider molecular rotation and the study of the emer-
gence of the classical molecular shape (in the restricted sense of sup-
pression of interferences) as a prototypical example for the broader
problem of reconstruction of isomers, enantiomers, conformers,
and rotamers from the molecular wave function (including the
electrons and nuclei on an equal footing). Isomerism, handedness,
and related phenomena are linked to polyatomic molecules, while
already the smallest diatomic molecules have rotational degrees of
freedom and they are attached with the picture of a classical shape in
chemistry.

The present framework uses a spatial basis for the represen-
tation of the nuclear reduced density matrix that can naturally
be adapted for studying other space-localized features. Regarding
another challenging aspect of the molecular structure problem, the
study of the quantum mechanical indistinguishability vs the classi-
cal distinguishability of the identical atomic nuclei and implications
of the spin-statistics theorem36,37 will require perhaps a different
framework, but almost certainly a different representation for the
reduced density matrix.

The developed ideas will gain more practical significance
if computations without the Born–Oppenheimer approximation
become more widespread, which may happen within a new type
of quantum chemistry approach perhaps on the future hardware of
quantum computers.38

Regarding work for the near future, we can think about exten-
sion of the present work in the following directions. A next logical
step will be to recover the (two-dimensional) triangular shape of the
simplest polyatomic molecule, H+

3 , that has an equilateral triangu-
lar equilibrium structure in the Born–Oppenheimer theory. H+

3 is a
system of five spin-1/2 particles (with two electrons and three pro-
tons). For this reason, the rovibronic ground state of the five-particle
Hamiltonian is not allowed by the Pauli principle. The lowest energy
state that is Pauli-allowed has N = 1 rotational angular momen-
tum, and it is the lowest rotationally excited state of the vibrational
ground state. The lowest Pauli-allowed state with N = 0 rotational
angular momentum is the anti-symmetric stretching fundamental
vibration. Hence, the lowest energy N = 1 state appears to be a
good candidate for identifying a near equilateral triangular shape
(with small distortion due to rovibrational coupling) in the present
framework.

We have preliminary results for the ground state of H2D
+, for

which we do not have to deal with complications due to spin statis-
tics, and in its rovibronic ground state (N = 0), we observe a ca. max-
imal 10% suppression among rotated structures. We can observe
a planar structure in the off-diagonal density plots, but due to the
non-equivalent nuclear masses, the center of mass (the origin of our
computations) is not at the geometrical center of the near equilateral
triangular shape and this complicates the analysis of the results.

For going beyond planar shapes and possibly studying chiral
molecules, one can rely on the BO approximation [Eq. (6)] since
the suppression effect is determined by the electronic structure. If

the BO approximation is qualitatively correct for the system, then
the overlap of the rotated BO electronic wave functions should pro-
vide a good approximation for the suppression effect that one would
observe for the off-diagonal nuclear reduced density matrix in the
molecular wave function (if the computations were feasible).
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A B S T R A C T   

A benchmark-quality potential energy curve is reported for the H3 system in collinear nuclear configurations. The 
electronic Schrödinger equation is solved using explicitly correlated Gaussian (ECG) basis functions using an 
optimized fragment initialization technique that significantly reduces the computational cost. As a result, the 
computed energies improve upon recent orbital-based and ECG computations. Starting from a well-converged 
basis set, a potential energy curve with an estimated sub-parts-per-billion relative precision is generated for a 
series of nuclear configurations using an efficient ECG rescaling approach.   

1. Introduction 

This paper is dedicated to the memory of Professor Kuchitsu. The 
authors did not know Professor Kuchitsu in person, but have learned 
about his fundamental work on gas-electron diffraction [1] as part of 
their undergraduate studies, and later, used in their own research [2] 
molecular structural parameters taken from Kozu Kuchitsu’s work [3,4]. 
The present contribution to the Kuchitsu Special Issue is about a 
triatomic system, H2 + H, which, at some point and with further 
development, may become relevant to Professor Kuchitsu’s contribution 
to the photodissociation dynamics study of triatomics [5]. 

The simplest chemical reaction H2 + H → H  + H2—including its 
isotopologues—is possibly one of the most exhaustively studied chem-
ical processes [6]. Furthermore, the H3 system has qualitatively inter-
esting features: a shallow van-der-Waals minimum for collinear nuclear 
structures and a conical intersection for equilateral triangular configu-
rations. These features impose challenges when investigating the 
quantum dynamics of the system and require a high-level description of 
the electronic structure. The first potential energy surface (PES) for 
collinear H3 was obtained by Liu in 1973 [7]. Since then, several full- 
dimensional surfaces have been published [8–14] and refined [15–21] 
using increasingly accurate quantum chemical methods. More recently, 
a multireference configuration interaction (MRCI) PES was developed, 
using a hierarchy of correlation consistent basis sets followed by 
extrapolation to the complete basis set (CBS) limit [22] with an esti-
mated μEh level of precision. This complete configuration interaction 
(CCI) surface has been the most accurate full-dimensional PES of H3, and 
it was used to resolve long-standing discrepancy of experimental and 

theoretical thermal rate constants [23]. 
The first computation for this system using explicitly correlated 

Gaussian (ECG) basis functions was performed by Cafiero and Adamo-
wicz [24]. They determined the stationary points of the PES by the 
simultaneous minimization of the energy with respect to both the 
nonlinear parameters of the basis functions and the nuclear configura-
tion using analytic gradients. Nevertheless, using only 64 basis func-
tions, they obtained an energy, −1.673 467 Eh, which is above the 
dissociation threshold, E(H2)+ E(H) = −1.674 475 714 Eh. 

In later work, Pavanello, Tung, and Adamowicz carried out meth-
odological developments to improve the convergence of the ECG wave 
function and energy, and to reduce the computational cost for poly-
atomic, i.e., H+

3 and H3, systems. Their efforts resulted in the most pre-
cise non-relativistic energy for H3, so far, near the equilibrium structure 
[25]. 

The aim of the present letter is to explore and take the achievable 
precision further for H3, a simple prototype for poly-electronic and poly- 
atomic molecular systems, using explicitly correlated Gaussian 
functions. 

2. Method 

The Schrödinger equation (in atomic units) with Nnuc nuclei clamped 
at the R configuration and np electrons, 
Hψ(r; R) = E(R)ψ(r; R) (1)  
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is solved for the ground state of H3. The wave function is written as sum 
of antisymmetrized product of spatial and spin functions, 

ψ(r; R) = 𝒜
∑

Nb

n=1

cnϕn(r; An, sn)χ(ϑn). (3)  

In the following equations, the spin degree of freedom is explicitly 
shown if it is directly relevant to the equations. The spatial basis func-
tions, ϕn, are expressed with floating ECG functions, 
ϕn

(

r; An, sn

)

= exp
[

− (r − sn)T
An

(

r − sn

)]

, (4)  

where An = An ⊗ I3, An ∈ Rnp×np is the exponent matrix, ⊗I3 means 
direct product with the 3×3 unit matrix, and r, s ∈ R3np are the coordi-
nate vectors of the electrons and the Gaussian centers, respectively. 𝒜 is 
the anti-symmetrization operator, and A is parameterized in the A = LTL 

Cholesky-form, with an L lower-triangular matrix, to ensure positive 
definiteness of A and square integrability of the basis functions. The A1 
symmetry (in the C∞v point group) of the ground-state wave function is 
realized by constraining the Gaussian centers to the z axis. 

The χ(ϑn) three-particle spin function corresponding to the doublet 
multiplicity of the ground-state is obtained as a linear combination of 
the two possible couplings of the elementary, one-electron spin func-
tions σ(i)1

2,±1
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to a doublet state [26], 
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where the square brackets denote angular momentum coupling, using 
the Clebsch–Gordan coefficients 〈j1, mj1 , j2, mj2

⃒

⃒J, MJ〉. For example, 
coupling two spin-1/2 particles to a singlet function is labelled as 
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(6)  

Considering the normalization condition as well, the doublet three- 
electron spin functions can be parameterized by a single ϑn parameter as 
d1(ϑn) = sinϑn and d2(ϑn) = cosϑn, (7)  

and ϑn is optimized together with the nonlinear parameters of the basis 
set. Although the non-relativistic Hamiltonian, Eq. (2), is spin inde-
pendent, during the course of the variational solution of Eq. (1), opti-
mization of ϑn (and the linear combination coefficients of the two 
possible spin functions, Eq. (5)), provides an additional flexibility for the 
basis set. 

2.1. Optimized fragment initialization 

The starting basis function parameters are usually generated in a 
pseudo-random manner, retaining those functions from a trial set that 
provide the lowest energy expectation value. This generation procedure 
is followed by extensive refinement of the parameterization based on the 
variational principle [26]. By increasing the number of electrons, the 
dimensionality of the parameter space, and hence, the optimization cost 
increases. To keep the computational cost low, it is useful to consider 
that the interaction between the electrons of the hydrogen molecule and 
the electron of the hydrogen atom is weak in the van-der-Waals well or if 
the two ‘fragments’ are not too close, in general. If the interaction is not 
too strong, then a ψ I initial approximation for the wave function can be 
written as the product of the wave functions optimized for the ‘frag-
ments’ (atom and molecule for the present example): 
ψH3

I

(

r1, r2, r3

)

= ψH2
(

r1, r2

)

ψH
(

r3

)

=
∑

k,l

ckclϕ
H2

k

(

r1, r2

)

ϕH
l

(

r3

)

,
(8)  

which corresponds to an initial parameterization of the three-electron 
basis set with 

AI
kl =

(

A
H2

k 0

0 AH
l

)

, (9)  

and the 3-electron s vectors include the s vectors shifted according to the 
configuration of the ‘fragments’ in H3: 

sI
kl =

(

s
H2

k + R
H2

CM

sH
l + RH

)

, (10)  

where RH2
CM is the center of mass of the protons in H2. 

This procedure is reminiscent of the monomer contraction method 
that was first introduced in Ref. [27] for the helium dimer, although 
there are a few differences. First, we use the fragment (or monomer) 
basis set only to initialize the many(three)-electron basis, and we run 
repeated refinement cycles [28,29] using the Powell method [30] for 
this initial basis. Second, retaining the full direct-product basis opti-
mized for H2 and separately for H would be computationally very 
demanding, so instead, we truncate the direct-product basis according to 
the following strategy. 

The ground-state wave function of the H2 molecule was expanded 
over 1200 ECG functions, yielding −1.174475714 Eh for the ground 
state energy, which—compared to the most accurate value obtained by 
Pachucki −1.1744757142204434(5) Eh [31]—is converged to a frac-
tion of a nEh. The wave function of the hydrogen atom was represented 
with 10 optimized Gaussian functions, resulting in −0.499999332 Eh 

(in comparison with the exact value, −0.5 Eh) ground-state energy. 
Inclusion of all possible combinations of the H2 and H basis functions 
would result in a gigantic, 12 000-term expansion. Such a long expan-
sion would be prohibitively expensive to extensively optimize (refine), 
and it is unnecessary to have so many functions for reaching a 1 : 109 

(ppb) precision. To reduce the direct-product basis, it would be possible 
to perform competitive selection over the large basis space or to order 
(and then truncate) the basis functions based on their importance in 
lowering the energy [26]. In the present work, we used a very simple 
construct that does not require any computation: we have generated a 
set of 1200 functions by appending each H2 basis function from the 1200 
set with a single H function. Out of the 10 H functions, we have picked 
one based on the basis index, i.e., 
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The spin basis functions defined in Eq. (5), were initialized by coupling 
the two electrons initially localized on the H2 fragment to a singlet state, 
i.e., d1(ϑn) = 0 and d2(ϑn) = 1 corresponding to ϑn = 0 (n = 1, 2, …,

1200) in Eqs. (5)–(7). All non-linear parameters, including ϑn, of the 
initial basis set were excessively optimized in repeated refinement cycles 
(Fig. 1). The optimized fragment-based initialization of the basis set, 
described in this section, allowed saving several weeks (months) of 
computer time in comparison with Ref. [32] (see also Section 3). 

2.2. Gaussian-center scaling 

Independent variational optimization of the basis set at may points 
along the PEC (or over the PES) would make the computations very 
computationally intensive. Kołos and Wolniewicz [33] noted already in 
1964 that for a sufficiently large basis set, the Ak exponents are insen-
sitive to small displacements of the nuclear coordinates. In 1997, Cencek 
and Kutzelnigg proposed a scaling technique to generate a good initial 
ECG (re) parameterization for the electronic basis set of diatomics upon 
small nuclear displacements [34]. They noted that their approach can be 
generalized beyond diatomics. Pavanello and Adamowicz implemented 
rescaling the ECG centers (to have a good starting basis set) of H+

3 upon 
small nuclear displacements to generate a series of points to represent 
the 3D PES [32,35–37]. Upon a small ΔRa displacement of the co-
ordinates of the ath nucleus, 
Ra

′ = Ra +ΔRa, (12)  

the si ∈ R3 ECG centers corresponding to the ith electron were trans-
formed as 
si
′ = si +Δsi, (13)  

where Δsi is expressed as a function of the ΔRa nuclear displacement, 

Δsi =
1

Wi

∑

Nnuc

a=1

wia ΔRa (14)  

with Wi =∑Nnuca=1wia. The wia ‘weight’ is a function constructed based on 
simple arguments. It is chosen to be the distance of the si center and the 
ath nucleus, |si −Ra| and it is expected to have good limiting properties. 

First, it must vanish if the si center is very (infinitely) far from the dis-
placed nucleus, lim|si−Ra |→∞wia = 0. Second, the closer the si center to the 
Ra nucleus position, the ΔRia displacement has a larger contribution, i.e., 
larger wia weight, to the Δsi change. 

These conditions allow several possible choices for the weight 
function. For example, Coulomb-like weights were used in Ref. [32] 

wC
ia = 1

|si − Ra|
. (15)  

After some experimentation with different possible functions, and 
inspired by the picture that the weight function can be intuitively 
defined as if there was some attraction between the centers and the 
nuclear positions by a central field, a Yukawa-like weight function ap-
pears to be a good choice 

wY
ia = e−μ|si−Ra |

|si − Ra|
, (16)  

where the parameter μ ∈ R+ was set to unity in this work. For small 
nuclear displacements, a parameterization rescaled with Yukawa 
weights (with μ = 1) provided an energy lower than rescaling with 
Coulomb weights, Eq. (15). 

The rescaling technique with the Yukawa weight function was used 
to generate the PEC corresponding to the H atom approaching the H2 
molecule with a proton-proton distance fixed at RH2 = 1.4 bohr. The 
RH2⋯H distance of the hydrogen atom was measured from the center of 
mass of the H2 fragment. The starting value was RH2⋯H = 6.442 bohr, for 
which an initial basis set was generated using the optimized fragment 
initialization (Section 2.1) and and the representation was improved 
through several Powell refinement [30] cycles of the non-linear pa-
rameters (Fig. 1). Then, initial basis sets were generated by making small 
ΔRH2⋯H = ±0.1 bohr displacements, rescaling the centers according to 
Eq. (14) with Yukawa weights, Eq. (16), followed by 5 entire basis 
refinement cycles (that took 4 h) before the next step was taken along 
the series of the nuclear configurations (the positive and the negative 
displacement series were run in parallel). All computations have been 
carried out using the QUANTEN computer program [29,38–40]. 

The energies (Fig. 2) and and optimized basis set parameters are 
deposited in the Supplementary Material. 

3. Results and discussion 

We have carried out extensive single-point computations for the near- 
equilibrium geometry in the van-der-Waals well with R(0)

H2 = 1.4 bohr and 
R(0)

H2⋯H = 6.442 bohr first reported in Ref. [24]. This structure is close to 

Fig. 1. Convergence of the ground-state energy of H2⋯H during the course of 
the Powell refinement cycles (nPowell) of Nb = 1200 basis functions initialized 
using basis functions optimized for the fragments, Eq. (11). RH2 = 1.4 bohr and 
RH2⋯H = 6.442 bohr, E3000 = −1.674 561 687 Eh. (See also Table 1.) 

Fig. 2. Potential energy cut of the H3 system converged in the present work 
with an estimated sub-ppm precision. Along the curve, the geometry of the H2 
unit is fixed at RH2 = 1.4 bohr. The lowest-energy datapoint corresponds to 
Emin =−1.674 561 899 Eh and Rmin = 6.542 bohr. 
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the equilibrium geometry obtained with carefully conducted orbital-based 
computations [22] (Table 2). The energy of Ref. [24] computed with a 
small ECG basis is inaccurate, but later, large-scale computations were 
reported in Ref. [25]. 

At this geometry, the best energy obtained from the present work 
with 1200 ECGs (constructed by the initial fragment initialization, 
Section 2.1, followed by nPowell = 3000 Powell refinement cycles of the 
entire basis set) is −1.674561687 Eh (upper part of Table 1). Table 1 
also shows the computed energy values for smaller basis sets that allow 
assessment of the convergence and extrapolation to the complete basis 
set (CBS) limit [41]. 

Direct comparison with Ref. [25] requires further computation, because 
the extensively optimized energy reported in Ref. [25] appears to belong to 
a 6.442 bohr distance of the hydrogen atom not from the center of nuclear 
mass of the H2 unit, but from the closer proton of H2. We think that this 
nuclear structure was used in Ref. [25], because we obtain good agreement 
for the energies when we perform the computation at this geometry, shown 
in the lower part of Table 1, corresponding to R(0)

H2 = 1.40 bohr and RH2⋯H
′

= R(0)
H2⋯H +R(0)

H2 /2 = 6.442 bohr+0.700 bohr = 7.142 bohr. 
We also note that the best energy value of Ref. [25] computed in 6 

months (using 12 CPU cores) was reproduced in this work (corre-
sponding to the structure given in footnote b of Table 1) using the 
optimized fragment initialization technique (Section 2.1) followed by a 
few Powell refinement cycles in in 4 days. The computational benefit of 
the optimized fragment technique is significant in comparison with a 
computation [25] constructed from ‘scratch’ immediately for the three- 
particle problem. 

Then, we continued the extensive refinement of the basis parame-
terization based on the variational principle, and the best result after 3 
months computation (using 12 CPU cores) is reported in Table 1. The 
generation of the points along the PEC was started from this well- 
optimized parameterization by ΔRH2⋯H = ±0.1 bohr increments/dec-
rements (running in parallel) using the rescaling technique (Section 
2.1), followed by 5 Powell refinement cycles at every step (before the 
next step was taken). The entire PEC generation took took 13 days using 
12 CPU cores. 

Finally, it is relevant to compare the ECG energies with the best 
orbital-based results underlying the CCI PES. For this reason, we have 
used a single rescaling step from the starting optimized parameteriza-
tion (upper part of Table 1) to the R(0)

H2 = 1.4 bohr and R(0)
H2⋯H = 6.51205 

bohr structure, which was determined to be the global minimum 

structure at the MRCI/aug-cc-pV6Z level [22]. The parameter rescaling, 
with a negligible computational cost, was followed by 5 Powell refine-
ment cycles that took 4 h. Table 2 shows the energy values reported for 
the MRCI computations corresponding to the aug-cc-pVXZ (X  = D, T, Q, 
5, 6) and the ‘modified’ correlation consistent aug-mcc-pVXZ (X  = D, T, 
Q, 5, 6, 7) basis sets [22,19]. The ECG energy is already 74 μEh lower, 
than the best MRCI value corresponding to the largest (aug-mcc-pV7Z) 
basis set. Furthermore, we can confirm the estimated μEh precision of the 
CBS extrapolated energy from the mcc basis, whereas the extrapolated 
energy based on the regular correlation consistent basis is slightly lower 
than our current best estimate [22]. 

4. Summary, conclusion, and outlook 

In summary, we have computed a benchmark-quality one-dimen-
sional segment of the Born–Oppenheimer potential energy surface of the 
H3 system for a series of collinear nuclear configurations. The electronic 
energies are estimated to be converged on the sub-parts-per-million 
level. 

The depth of the van-der-Waals well was predicted to be 86(1)μEh at 
the RH2 = 1.4015 bohr and RH2⋯H = 6.51205 bohr geometry in MRCI 
computations underlying the currently most precise potential energy 
surface of H3 [22]. The variational computations reported in this work 
and using a (relatively small) explicitly correlated Gaussian basis set 
confirm this value and improve upon its precision by two orders of 
magnitude, 86.54(3)μEh. In order to achieve a similar precision for non- 
collinear nuclear structures, which have a lower order or no point-group 
symmetry, it will be necessary to use a larger basis set, which is certainly 
feasible. 

Regarding the broader context of this work, (non-) adiabatic 
perturbation theory [42–46] combined with leading-order relativistic 
and quantum electrodynamics (QED) corrections [47,48] are expected 
to provide a state-of-the-art theoretical description for this system. This 
framework has already been extensively used and tested for the lightest 
diatomic molecules [49,40]. For the ground-electronic state of the H2 
molecule, the effect of the non-adiabatic-relativistic coupling has also 
been evaluated and was found to be non-negligible [50]. In this direc-
tion, the computation of a precise representation of the electronic wave 
function is a necessary first step that was demonstrated in this work to be 
feasible. The adiabatic [51,52], non-adiabatic and (regularized) rela-
tivistic and QED corrections can be evaluated at a couple of points using 
currently existing procedures [46,53,40,54]. At the same time, for a 

Table 1 
Convergence of the non-relativistic, ground-state energy of H3 near the van-der- 
Waals equilibrium structure at RH2 = 1.4 bohr and RH2⋯H = 6.442 bohr taken 
from Ref. [24].  

Nb Ansatz nPowell E [Eh]

RH2 = 1.40 bohr, RH2⋯H = 6.442 bohr : a 

600 {

ψH2
10n+i⋅ψ

H
i
} 2000 −1.674 560 470 

800 {

ψH2
10n+i⋅ψ

H
i
} 2000 −1.674 561 379 

1000 {

ψH210n+i⋅ψ
Hi
} 2000 −1.674 561 583 

1200 {

ψH2
10n+i⋅ψ

H
i
} 3000 −1.674 561 687 

[Extrapolation to Nb→∞: − 1.674 561 75(3)]
RH2 = 1.40 bohr, RH2 ⋯H = 7.142 bohr : b 

1000 Ref. [25]c −1.674 547 421 00 
1200 {

ψH210n+i⋅ψ
Hi
} 3000 −1.674 547 750  

a RH2 = 1.4 bohr, RH2⋯H = 6.442 bohr, measured from the nuclear center of 
mass (NCM) of the H2 unit. 

b RH2 = 1.4 bohr, RH2⋯H = 7.142 bohr (measured from the NCM of the H2 
unit), and corresponds to a 6.442 bohr distance measured from the nearer proton 
in the H2 unit. 

c Geometry a is claimed in Ref. [25], but it appears to be b. The difference 
amounts to whether the distance of the hydrogen atom is measured from the 
NCM or the nearer proton. 

Table 2 
Comparison of energies of various ab initio computations. The equilibrium 
geometry, determined at the MRCI/aug-cc-pV6Z is RH2 = 1.4015 bohr and 
RH2⋯H = 6.51205 bohr [22].  

Source E [Eh] 
aug-cc-pVDZ a −1.664 339 
aug-cc-pVTZ a −1.672 540 
aug-cc-pVQZ a −1.673 902 
aug-cc-pV5Z a −1.674 332 
aug-cc-pV6Z a −1.674 445 
aug-mcc-pVTZa −1.672 553 
aug-mcc-pVQZa −1.673 917 
aug-mcc-pV5Za −1.674 298 
aug-mcc-pV6Za −1.674 430 
aug-mcc-pV7Za −1.674 488 
MBEcc(3,4 CBS)b −1.674 566 
MBEmcc(6,7 CBS)c −1.674 562 
Present work (Nb = 1200)d −1.674 562 264 

b, c Ref. [22]: extrapolated CBS energy corresponding to the aug-cc- 
pVXZ (X = 3,4) and aug-mcc-pVXZ (X = 6,7) basis sets, respectively. 

a Ref. [22]: MRCI energy. 
d Rescaled from the basis set optimized for the (R(0)

H2 ,R(0)
H2⋯H) structure 

in Table 1 followed by 1000 Powell refinement cycles.  
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complete description of a polyatomic system like H3, these corrections 
must be computed over hundreds or thousands of nuclear configura-
tions. This requires a fully automated evaluation and error control of all 
corrections, which may be especially challenging for the singular terms 
in the relativistic and QED expressions, and this requires further meth-
odological and algorithmic developments that is left for future work. 
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[28] E. Mátyus, M. Reiher, Molecular structure calculations: a unified quantum 
mechanical description of electrons and nuclei using explicitly correlated Gaussian 
functions and the global vector representation, J. Chem. Phys. 137 (2012) 024104, 
https://doi.org/10.1063/1.4731696. 
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ABSTRACT

A variational solution procedure is reported for the many-particle no-pair Dirac–Coulomb and Dirac–Coulomb–Breit Hamiltonians aiming
at a parts-per-billion (ppb) convergence of the atomic andmolecular energies, described within the fixed nuclei approximation. The procedure
is tested for nuclear charge numbers from Z = 1 (hydrogen) to 28 (iron). Already for the lowest Z values, a significant difference is observed
from leading-order Foldy–Woythusen perturbation theory, but the observed deviations are smaller than the estimated self-energy and vacuum
polarization corrections.
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I. INTRODUCTION

Precision spectroscopy experiments carried out for small
atomic1–3 and molecular4,5 systems have been proposed as low-
energy tests of the fundamental theory of matter.6 Atoms and
molecules are bound many-body quantum systems held together
by electromagnetic interactions usually complemented with some
model for the internal nuclear structure. Relativistic quantum elec-
trodynamics is a simple U(1) gauge theory with a Lagrangian den-
sity that, of course, obeys Lorentz invariance of special relativity that
is a standard textbook material.7

At the same time, the bound states of atoms and molecules
are conveniently obtained as eigenstates of some wave equation,
most commonly as stationary states of the Galilean invariant
Schrödinger equation. Sophisticated techniques have been devel-
oped for a numerically exact (14 digit) solution of the three-8 and
four-body Schrödinger equation.9 “Effects” due to special relativ-
ity and the quantized fermion and photon fields are accounted
for as perturbation following and considerably extending the pio-
neer perturbation theory work that was first summarized in a book
by Bethe and Salpeter in 1957.10 Further progress in this direc-
tion of research is nowadays called the non-relativistic quantum
electrodynamics (nrQED) approach,11–14 and it is successfully used
for light atoms and molecules in comparison with precision spec-
troscopy experiments. There are sophisticated methods developed
for the numerically stable evaluation of the increasingly complex

correction formulas13,15,16 of the nrQED series expanded in terms
of the α fine-structure constant.

A practical and fully Lorentz covariant wave equation for
many-spin-1/2 fermion systems is unknown, except for the two-
particle case for which the Bethe–Salpeter (BS) equation17 (see also
Ref. 18) offers a quantum-electrodynamics wave equation by also
properly accounting for the relative time of the particles. Beyond two
particles, the formulation of a practical (and fully Lorentz covariant)
QED wave equation remains to be a challenging problem.19 Follow-
ing these observations, the Galilean and Schrödinger wave equation
may appear to be a solid starting point for describing the molecular
regime combined with the nrQED perturbative scheme that can be
related to a perturbative calculation of level shifts from the poles of
QED Green’s function.20–22

At the same time, the Schrödinger wave equation is known to be
an inaccurate starting approximation for atoms andmolecules, espe-
cially for nuclei beyond the lowest Z nuclear charge numbers.23,24

Therefore, a “hybrid model” has been adopted in the quantum
chemistry practice by assuming equal times for the particles but
using Dirac’s kinetic energy operator for every electron and describ-
ing the electron–electron interaction within some (most commonly
the Coulomb) approximation,

H̃
bare = n∑

i=1

hi + n∑
i=1

ui + n∑
i=1

n∑
j>i

vij, (1)
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with hi = 1[4](1) ⊗ ⋅ ⋅ ⋅ ⊗ h
[4]
i (i)⊗ ⋅ ⋅ ⋅ ⊗ 1[4](n) and

h
[4]
i = cα[4] ⋅ p + β[4]mic

2, where αx, αy, αz , and β are the stan-
dard Dirac matrices. The corresponding wave equation is neither
fully Galilean nor Lorentz invariant, but it should serve as a better
starting point than the Schrödinger equation. In particular, it would
allow us to account for the relativistic “effects” on an equal footing
with electron correlation that is important for a good description of
the molecular regime. This ad hoc construction has mathematical
problems due to the non-positive definiteness of the operator.

Sucher proposed25–28 a no-pair many-particle Hamiltonian
based on relativistic QED that is reminiscent to the naïvely con-
structed Hamiltonian in Eq. (1) with the important difference that
it is projected with Λ+ to the positive energy states (E+) of a
non-interacting reference problem, H0 = ∑n

i=1(hi + ui),

H = N∑
i=1

Λ+(hi + ui)Λ+ + N∑
i=1

N∑
j>i

Λ+vijΛ+. (2)

Sucher explained25–28 that H0 can be either the kinetic energy
of the free spin-1/2 fermions or some other bound model with-
out fermion–fermion interactions following Furry’s work.29 This
no-pair operator, in some cases called the Brown–Ravenhall (BR)
operator,30 has well-defined mathematical properties, and most
importantly, it is bounded from below. The “no-pair” expression
refers to the fact that, due to the Λ+ projection, this Hamiltonian
does not account for pair creation of the spin-1/2 particles (e.g.,
electron–positron pairs) of the H0 non-interacting model, but it
operates with a fixed fermion number. This is a natural starting point
for describing chemical systems. Pair effects can be accounted for in
a next stage of the theoretical treatment.

The present work is about the development and application of
a practical variational procedure for solving the

HΨ = EΨ (3)

wave equation for atoms and also molecules on the order of parts-
per-billion (ppb) precision. This development is an important step
toward providing benchmark theoretical values for precision spec-
troscopy experiments and also an independent test for the nrQED
computations. In further work, we plan to account for the effect
of pair creation and for interaction with the photon modes that is
necessary for a direct comparison.

There is already, of course, important work in the litera-
ture about precise variational relativistic approaches for atoms.
Grant and co-workers developed the GRASP computer program
to treat atoms especially with high Z values31–33 starting out from
the Dirac–Hartree–Fock (Dirac HF) framework. Shabaev and co-
workers also reported several developments for atoms based on
the Dirac HF model as a starting reference. They developed the
QED model operator approach34–36 for computing self-energy cor-
rections, and their most recent applications include the results for
resonance states of medium Z helium-like ions,37 including the
exact one-photon exchange, pair creation, and self-energy correc-
tions. Benchmark results were reported by Bylicki, Pestka, and Kar-
wowski38 for two-electron atoms using the Dirac–Coulomb (DC)
operator, a Λ+ projector similar to ours, and an explicitly correlated
Hylleraas basis set.

Regarding the molecular regime, it is necessary to mention the
BERTHA39,40 and the DIRAC41 program packages that include the
implementation of hierarchical quantum chemistry methods start-
ing with the HF approximation and typically aiming for chemical
accuracy in the computational results. All atomic and molecular
programs listed were based (often implicitly) on the no-pair many-
particle Hamiltonians. Probably, the first mention of mean-field
projectors is due to Mittleman.42 It has been argued that mean-
field projectors should be favored over free-electron projectors for
electronic structure computations,43 and most recently, an optimal
choice beyond a mean-field description was discussed in Ref. 44.

II. THEORETICAL DEVELOPMENTS

For the present work, we restrict the discussion to two spin-1/2
fermions and the fixed nuclei (“Born–Oppenheimer”) approxima-
tion. The restriction on the number of particles can be lifted with-
out conceptual difficulties, and we can foresee applications (with
the ppb convergence criterion) to three to four particles. It should
also be possible to include spin-1/2 nuclei in the treatment on the
same footing as the electrons45–48 (first assuming point-like, struc-
tureless nuclei as if they were elementary spin-1/2 particles). In this
case, it appears to be a natural choice to use the finite basis rep-
resentation of the free-particle projector or to explore some other
possible non-interacting reference system specifically designed for
the pre-Born–Oppenheimer problem.

For the present description of atoms and molecules with
clamped nuclei, it is a natural choice for the definition of the
Λ+ projector to use the non-interacting two-electron model that
is bound by the external potential of the fixed nuclei (without
electron–electron interaction). In our implementation, we can work
with other non-interacting models to define the projector, includ-
ing the finite basis free-electron model or other external field one-
electron systems. It remains a question to be explored in future
work, which choice will be the most convenient one for further
numerical applications and, in particular, for the incorporation of
(electron–positron and photon) field interactions.

In this work, we build the Λ+ = ∑n∣φ(+)0,n ⟩⟨φ(+)0,n ∣ projector from
the φ(+)0,n eigenstates of the atomic or molecular Hamiltonian without
electron–electron interactions that have positive energy (E+) and do
not belong to the Brown–Ravenhall (BR) continuum (that is uncou-
pled from the physical E+ states in the absence of electron–electron
interactions).49–51 The physically relevant E+ states are separated, in
practice, from the BR states using the complex coordinate rotation
(CCR) technique following Ref. 38. The non-interacting computa-
tion is carried out with the same basis set as the interacting com-
putation because the aim is to select (construct) the E+ part of the
actual basis for the full (interacting) problem. In molecules, due to
the interaction potential of the electrons and nuclei, the Hamiltonian
is non-dilatation-analytic, but additional considerations allowed for
resonance computations by using the CCR technique.52–54 For the
present work, it is important to emphasize that the complex scal-
ing makes it possible to distinguish the positive energy states from
the BR and the negative-energy states that is based on the differ-
ent behavior of their energy in the complex plane upon the complex
rotation of the coordinate.

The no-pair Hamiltonian, including the fermion–fermion
interactions, reads as
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H(1, 2, . . . ,n)
= Λ+{ n∑

i=1

1[4](1) ⊠ . . . ⊠ ĥ[4]i (i) ⊠ . . . ⊠ 1[4](n) +
n∑
i=1

ui1
[4n]

+

n∑
i=1

n∑
j>i

[vij1[4n] + xij1[4](1) ⊠ . . . ⊠ α[4](i) ⊠ . . .
⊠ α

[4](j) ⊠ . . . ⊠ 1[4](n)]}Λ+, (4)

where we use the ⊠ “block-wise” direct product55 (named
Tracy–Singh product in Ref. 56 and also used later in Ref. 57) that
allows us to work with Pauli’s σ matrices and the “large” and “small”
component blocks of the Dirac spinors and vij and xij describe the
interaction (vide infra).

In particular, the Hamiltonian operator for two spin-1/2
fermions (for convenience, shifted bymic

2 for both i = 1 and 2) takes
the following matrix form:

H(1, 2) = Λ+
⎛⎜⎜⎜⎜⎝

V1[4] +U1[4] cσ
[4]
2 ⋅ p2 cσ

[4]
1 ⋅ p1 X[4]

cσ
[4]
2 ⋅ p2 V1[4] + (U − 2m2c

2)1[4] X[4] cσ
[4]
1 ⋅ p1

cσ
[4]
1 ⋅ p1 X[4] V1[4] + (U − 2m1c

2)1[4] cσ
[4]
2 ⋅ p2

X[4] cσ
[4]
1 ⋅ p1 cσ

[4]
2 ⋅ p2 V1[4] + (U − 2m12c

2)1[4]

⎞⎟⎟⎟⎟⎠
Λ+, (5)

with m12 = m1 +m2, pi = −i( ∂

∂rix
, ∂

∂riy
, ∂

∂riz
) (i = 1, 2), σ[4]1 = (σx ⊗

1[2], σy ⊗ 1[2], σz ⊗ 1[2]), and σ
[4]
2 = (1[2] ⊗ σx, 1

[2]
⊗ σy, 1

[2]
⊗ σz),

where σx, σy, and σz are the 2 × 2 Pauli matrices. Interactions with
the fixed external electric charges (clamped nuclei) are collected in
U = ∑n

i=1∑N
a=1qiQa/∣ri − Ra∣.

The electron–electron interaction appears in the 4 × 4 dimen-
sional V1[4] and X[4] blocks. Regarding the matrix representation of
the Hamiltonian in the non-interacting two-electron basis, the diag-
onal 16 × 16 dimensional blocks contain the one-photon exchange
terms in leading order, whereas the off-diagonal 16 × 16 blocks
(different “in” and “out” energies) assume photon emission or
absorption and hence correspond to a process involving at least
two photons. In the present work, we describe the electron–electron
interaction expressed in the Coulomb gauge and invoke the
zero-frequency approximation (ω ≈ 0) that gives rise to the
Coulomb–Breit (CB) interaction operator. Within this approxima-
tion, H(1, 2) is the no-pair Dirac–Coulomb–Breit (DCB) Hamilto-
nian that accounts for retardation to leading order, and

V1[4] = q1q2

r12
1[4] (6)

and

X
[4] = −q1q2

2

⎡⎢⎢⎢⎢⎢⎣
σ
[4]
1 σ

[4]
2

r12
+

(σ[4]1 ⋅ r12)(σ[4]2 ⋅ r12)
r312

⎤⎥⎥⎥⎥⎥⎦
. (7)

If X[4] is neglected (X[4] = 0[4]), we obtain the Dirac–Coulomb
(DC) approximation that corresponds to instantaneous interactions.
We note that since both the Coulomb and the Coulomb–Breit
approximations are independent of the frequency of the exchanged
photons, they can be defined without explicit reference to the under-

lying “non-interacting” φ
(+)
0 representation. Thus, the Λ+ projec-

tion amounts to simple matrix multiplication with the “bare” (CCR
scaled) Dirac Hamiltonian.

To build the matrix representation of the two-electron Hamil-
tonian, we consider the wave function as a linear combination of

16-dimensional spinor basis functions, Ψλ
i,Ϛ = Ψλ1 ,λ2

i,Ϛ1 ,Ϛ2
(r1, r2),

Ψ(r1, r2) = Nb∑
i=1

∑
λ={ll,ls,sl,ss}

∑
Ϛ={↑↑,↑↓,↓↑,↓↓}

ci,λ,ϚΨ
λ
i,Ϛ(r1, r2). (8)

For two identical spin-1/2 fermions, it is necessary to antisym-
metrize the spinor basis (now, collecting the λ1λ2 blocks and the Ϛ1Ϛ2
spin components into one vector) that reads as

Ψi(r1, r2) = {1[16] −Π[16]}Φi(r1, r2), (9)

where Π
[16] = P[4]ls ⊗ P

[4]
↑↓ P12 with the P

[4]
ls = P[4]↑↓= ((1, 0, 0, 0), (0, 0, 1, 0), (0, 1, 0, 0), (0, 0, 0, 1)) matrices and

P12 is the coordinate exchange operator. Furthermore, it is neces-
sary to ensure spatial symmetry relations between the large (l) and
the small (s) components in a finite basis representation of the Dirac
operator. To represent the (σ ⋅ p)(σ ⋅ p) = p2 identity in the finite
spinor basis, we use the simplest two-particle kinetic balance (KB)
condition57,58 of the large and small components,

⎛⎜⎜⎜⎝

ϕll

ϕls

ϕsl

ϕss

⎞⎟⎟⎟⎠
= K[16]B

⎛⎜⎜⎝
Θ

Θ

Θ

Θ

⎞⎟⎟⎠
with

K
[16]
B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1[4] 0[4] 0[4] 0[4]

0[4]
σ
[4]
2 ⋅ p2
2m2c

0[4] 0[4]

0[4] 0[4]
σ
[4]
1 ⋅ p1
2m1c

0[4]

0[4] 0[4] 0[4]
σ
[4]
1 ⋅ p1σ

[4]
2 ⋅ p2

4m1m2c2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(10)

that allows us to generate the λ1λ2 = (ll, ls, sl, ss) blocks from the
same four-dimensional Θ vector in which each element contains
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the same spatial function ϑ, ΘT = (ϑ, ϑ, ϑ, ϑ). For the ϑ spatial basis
functions, we use floating explicitly correlated Gaussians (ECGs)

ϑi = e−(r−si)T(Ai⊗1
[3])(r−si) (11)

that allow for an efficient description of the particle (electron) cor-
relation,59 and Ai ∈ R

n×n (symmetric, positive definite) and si ∈ R
3n

are parameters optimized by the minimization of the energy. The
ECG functions for non-diagonal exponent matrices automatically
include fermion correlation, and their integrals for the most impor-
tant operators can be written in a closed analytic form for a gen-
eral n (unlike for Hylleraas-type basis functions), and non-zero
shift vectors allow for efficient molecular applications (with sym-
metry projection). The current DC and DCB implementation is
for two electrons (fermions), but we can foresee applications to
three and four (maybe even five) particles with the current accuracy
goal.

After considering the antisymmetrization and kinetic balance
equations [Eqs. (9) and (10)], a 16 × 16 dimensional block of the
Hamiltonian and overlap matrices can be written as

⟨Φi∣O∣Φj⟩ = ⟨Θi∣K†

BOKB∣Θj⟩ − ⟨Θi∣K†

BΠOKB∣Θj⟩,O = H or I, (12)

for which we have calculated the analytic matrix elements with
ECGs, Eq. (11), and implemented the integral expressions in
QUANTEN.60 We obtain the ground state as the lowest-energy
(real) eigenvalue of the generalized eigenvalue problem:Hc = ESc as
an upper bound to the exact no-pair energy.

A good starting basis parameterization [Eq. (11)] for the sys-
tems studied in this work was obtained by the minimization of
the non-relativistic energy to a ppb precision for the largest basis
set sizes. For a non-relativistically optimized basis set, we can con-
tinue the optimization (minimization) for the no-pair DC energy,
but the current implementation is very computation intensive. We
intend to develop a more efficient DC optimization strategy in
future work that will be important for achieving ppb convergence
for high Z systems (Z ∼ 100). On the other hand, optimization
of the DC energy may be necessary to further converge digits in
the low Z range, but this would require a more efficient applica-
tion of increased precision arithmetics. The numerical uncertainty
of the values reported in this paper is determined by the dou-
ble precision (8-byte reals) arithmetics used in the optimization
procedure.

III. NUMERICAL RESULTS AND DISCUSSION

In what follows, we report ground (and one example for
excited) state energies obtained in the variational procedure imple-
mented in the QUANTEN computer program and using the no-
pair DC and DCB Hamiltonians. In all computations, we used
the CODATA18 value for the inverse fine-structure constant α−1= 137.035 999 084.61

Figure 1 shows the excellent agreement of the atomic no-pair
DC energies with Z = 1–26 nuclear charge numbers obtained in our
implementation with benchmark literature data: basis set extrapo-
lated multi-configuration Dirac–Fock (MCDF) energies computed
by Parpia and Grant32 and the DC energies of Bylicki, Pestka,

FIG. 1. Dirac–Coulomb energy of two-electron helium-like ions. Leading-order

perturbative relativistic energy, ǫ
(4)

DC
(for Z = 1–4 Ref. 64, and for 4 < Z ≤ 26

this work), extrapolated MCDF result32 and the no-pair, variational EDC energy
obtained in the present work. Eref is the no-pair variational DC energy in a large
Hylleraas basis.38

and Karwowski obtained with a large Hylleraas basis set.38 Using
300–400 ECGs, we observe an at least 8 digit agreement for Z = 1–26
with the work of Bylicki et al. The 30-year-old extrapolated DC
results (corresponding to an implicit HF projection) of Parpia and
Grant perform remarkably well over the entire range, but they have
larger error bounds than Ref. 38 or our work. Foldy–Woythusen per-
turbation theory (FWPT) shows a deviation from these results that
grows rapidly with Z. Parpia and Grant also reported the perturba-
tive correction due to the exact one-photon exchange to their MCDF
wave function (with large error bounds). A comparison of their work
with our no-pair DCB result and with the leading-order FWPTDCB

energy, ǫ(4)DCB (expectation value of the Breit–Pauli Hamiltonian), is
provided in the supplementary material.

Since no variational reference data (of similar precision) are
available for molecular systems, we will compare our results with
FWPT energies that are known to high precision. Table I summa-
rizes the numerical results for the ground-state electronic energy of
H2, HeH+, and H+3 with nuclei fixed close to the equilibrium struc-
ture (the convergence details are provided in the supplementary
material). Due to the surprisingly large deviation of the leading-
order FWPT energies [mα4, ǫ(4)] and our variational values, we have
also considered higher-order FWPT energies within the nrQED
framework [mα6, ǫ(6)]. Regarding the “poly-electronic” systems, the
involved computation of ǫ(6) has been carried out so far only for the
H2 molecule.16 For a better comparison, we also include the results
in the table for the ground and the first excited singlet states of the
He atom, the other “poly-electronic” system for which ǫ(6) energies
are available.13

Regarding the electronic ground state of the H2 and H
+
3 hydro-

genic compounds, our no-pair variational DC and DCB energy
is lower than the leading-order FWPT energy by 21–25 nEh and
54–92 nEh, respectively. For the ground state of the HeH+ molec-
ular ion and the He atom, our variational DC and DCB energies are

J. Chem. Phys. 154, 224110 (2021); doi: 10.1063/5.0051237 154, 224110-4

Published under an exclusive license by AIP Publishing

               dc_1955_21



The Journal
of Chemical Physics

ARTICLE scitation.org/journal/jcp

TABLE I. Dirac–Coulomb (DC) and Dirac–Coulomb–Breit (DCB) electronic energy, in Eh, obtained in the present no-pair vari-

ational framework. δ(4) and δ(6) are the difference, in nEh, of the no-pair variational energy and the leading and higher-order
Foldy–Woythusen perturbation theory result (compiled from Refs. 13, 16, 62, and 63 or computed in this work), respectively.
The nuclei are fixed near their equilibrium position at 1.4, 1.46, and 1.65 bohrs in H2, HeH+, and in the equilateral triangular
H+

3
, respectively.

EDC δ
(4)
DC EDCB δ

(4)
DCB δ

(6)
DCB

H2 −1.174 489 754 {−21} −1.174 486 721(20) {−54} {−52}
He (1 1S) −2.903 856 631 {−146} −2.903 829 024(100) {−713} {−660}
He (2 1S) −2.146 084 791(3) {−22} −2.146 082 424(3) {−56} {−10}
HeH+ −2.978 834 635 {−142} −2.978 808 818(40) {−638}
H+3 −1.343 850 527(1) {−25} −1.343 847 498(10) {−92}

lower by 142–146 and 638–713 nEh than the leading-order FWPT
energy. It is interesting to note that these deviations are one to two
orders of magnitude larger than the deviation of the exact and per-
turbative relativistic energy of the ground state, one-electron atomic
hydrogen (0.18 nEh) and hydrogen-like helium (11 nEh).12

Higher-order [mα6, ǫ(6)] FWPT results can be interpreted
within the nrQED framework.13,16 In themα6 expressions of nrQED,
it is possible to identify the higher (second) order FWPT correc-
tion corresponding to the DCB Hamiltonian. It turns out that this
correction contains divergent terms (due to the internal mathemat-
ical structure of the nrQED expansion). These divergent terms are
canceled with other divergent terms in the one- and two-photon
exchange (also approximated at the mα6 level and expanded with
respect to the non-relativistic reference state) in Refs. 13 and 16.
Therefore, in the present comparison, we include the higher-order
FWPT corrections for the DCB operator after the divergences are
canceled within the nrQED expansion. The resulting ǫ(6) energies
are a little bit closer to the variational DCB result than the ǫ(4) val-
ues, but the observed deviation remains large, −52 and −660 nEh

for the ground state of H2 and He, respectively. It is interesting
to note that for the excited 1s2s (2 1S) state of the helium atom,
the agreement of the variational and FWPT energies is much bet-
ter, and it significantly improves upon inclusion of higher-order PT
corrections, and the −56 nEh deviation of ǫ(4) reduces to −10 nEh

for ǫ(6).
All deviations are smaller than the one-loop self-energy (and

vacuum polarization) corrections known from nrQED,13,16,62,63 so
both routes have the potential to provide a useful, quantitative
description of experimental observations. We have seen one indi-
cation that the differences appear to depend not only on the Z
nuclear charge number but also on the electronic excitation in
the system. This connection is not so surprising, after all. From
the no-pair variational aspect, it is enough to remember that
the generalization of Dirac’s one-electron theory to poly-electron
systems is challenging exactly because of the electron–electron
interactions.

IV. SUMMARY, CONCLUSIONS, AND OUTLOOK

In summary, we have reported the development of an
explicitly correlated variational procedure for the no-pair
Dirac–Coulomb–Breit Hamiltonian. This procedure was used
for atoms and molecules with clamped nuclei, currently with two

but straightforwardly extendable for more than two electrons, using
explicitly correlated Gaussian functions and ultimately aiming
at a parts-per-billion convergence of the energy. The procedure
excellently reproduces literature data for two-electron atoms (ions)
and the Dirac–Coulomb model. Larger differences are already
observed with respect to Foldy–Woythusen perturbation theory
(FWPT, within the nrQED framework) for atoms and molecules
with low Z values. Our variational DCB energies for the ground
state of the H2, H

+
3 , and HeH+ molecules and the He atom are lower

by 54–92 nEh (for Z = 1) and by 638 nEh (for Z = 2) than the FWPT
energies. These deviations are one to two orders of magnitude larger
than the difference of the exact Dirac energy and the leading-order
perturbation theory result for the one-electron hydrogen-like atoms
(0.2 and 11 nEh for Z = 1 and 2, respectively). Higher-order (mα6)
corrections to the FWPT (nrQED) energies, currently available
for the H2 molecule and the He atom, reduce the deviation a little
bit but do not change the order of magnitude of the difference.
The only exception in our test set is the excited 1s2s 1S state of
the helium atom, for which the difference of the two approaches
reduces to “only” 10 nEh when the higher-order corrections are also
included in the FWPT energy (within the nrQED expansion).

At the same time, it is important to note that all listed devia-
tions between the variational and FWPT energies are larger than the
electron self-energy predicted within the nrQED approach; hence,
our next priority is the calculation of this quantity for the present no-
pair Dirac framework. Furthermore, the effect of electron–positron
pair creation (vacuum polarization) will be also accounted
for. We are working on the inclusion of the exact one-photon
exchange to have an improved description of the electron–electron
interaction beyond the zero-frequency approximation
(Coulomb–Breit).

We think that the developed all-order, variational relativistic
approach offers a broad perspective for further developments, and
we consider a possible inclusion of two- and multi-photon processes
(including absorption and emission), either perturbatively or by an
explicit account of the photon field in interaction with the fermionic
degrees of freedom.

SUPPLEMENTARY MATERIAL

See the supplementary material for the computed atomic
DC and DCB energies and convergence information on the data
reported in Table I.
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The rovibrational intervals of the 4Heþ
2

molecular ion in its X 2
Σ
þ
u ground electronic state are

computed by including the nonadiabatic, relativistic, and leading-order quantum-electrodynamics
corrections. Good agreement of theory and experiment is observed for the rotational excitation series
of the vibrational ground state and the fundamental vibration. The lowest-energy rotational interval is
computed to be 70.937 69ð10Þ cm−1 in agreement with the most recently reported experimental value,
70.937 589ð23Þð60Þsys cm

−1 [L. Semeria et al., Phys. Rev. Lett. 124, 213001 (2020)].

DOI: 10.1103/PhysRevLett.125.213001

Few-electron molecules serve as benchmark systems for
experimental and theoretical molecular physics and spec-
troscopy. Recent experimental and theoretical progress of
Hþ

2
, H2, and their isotopologues [1–3] is connected to

proposals to test fundamental interactions [4,5] and to
refine fundamental physical constants [6,7] using mole-
cular spectroscopy.
This Letter joins this direction and focuses on the five-

particle 4Heþ
2
molecular ion in its ground electronic state

(X 2
Σ
þ
u ). In addition to testing fundamental aspects, pre-

cision spectroscopy of 4Heþ
2
in combination with accurate

ab initio computations has been proposed as an alternative
way to determine the polarizability of the helium atom
[8,9]. Precise knowledge of this quantity is necessary for a
possible new definition of the pressure standard based on
counting the number density of a sample of helium gas.
There has been experimental progress in the precision
spectroscopy of 4Heþ

2
, including the measurement of the

spin-rotational fine structure [10] and the rotational and
rovibrational intervals [9,11–13].
This Letter is concerned with the rotational and rovibra-

tional intervals for which disagreement was observed
between the experimental results [9,11–13] and (lower-
level) theoretical work [14,15]. The experimental “data-
set” includes the rotational intervals for the vibrational
ground state ð0; NþÞ–ð0; 1ÞðNþ ¼ 3;…; 19Þ [12] and the
rovibrational intervals connecting the ground and the first
excited vibrational state ð1; NþÞ–ð0; 1ÞðNþ ¼ 1;…; 13Þ
[13] with experimental uncertainties of 0.0008 and
0.0012 cm−1, respectively. The lowest-energy rotational
interval is known more precisely to be 70.937 589ð23Þ �
0.000 060sys cm−1 [9].
The most precise theoretical results for molecules can be

obtained by including all electrons and nuclei in the
nonrelativistic quantum mechanical treatment [2,16–20].

All bound rovibrational and several resonance states of Hþ
2

treated as a three-particle system have been converged with
an uncertainty in their nonrelativistic energy better than
10−7 cm−1 [17], and a similar precision has been achieved
for selected states of H2 treated as a four-particle system
[21]. The fundamental vibration energy has been computed
for 3He4Heþ treated as a five-particle system [22], but the
convergence error of this energy appears to be at least 2
orders of magnitude larger than the uncertainty of the
currently available experimental value of the parent
isotopologue.
To ensure a direct comparison with the experimental

dataset, which includes high rotational angular momentum
quantum numbers up to Nþ ¼ 19 and a tight control of the
numerical (convergence) error, we start out from the Born–
Oppenheimer approximation and account for nonadiabatic
corrections by perturbation theory [23–27]. The experi-
mental dataset belongs to the ground (X 2

Σ
þ
u ) electronic

state that is well-separated from the electronically excited
states over the relevant nuclear configuration range, hence
we may expect nonadiabatic perturbation theory to per-
form well.
There is some evidence of the increasing importance of

the nonadiabatic effects with a rotational excitation of 4Heþ
2

[12,15], but the nonadiabatic nonrelativistic computation of
Ref. [15] was only partially able to account for the
discrepancy between theory and experiment for the rota-
tional series. Furthermore, the nonadiabatic corrections
(without relativistic and QED effects) increased the
deviation of theory and experiment for the fundamental
vibration energy [13,15] in comparison to the adiabatic
result [14].
This Letter reports a more complete theoretical treatment

for the rotational-vibrational intervals of 4Heþ
2

(X 2
Σ
þ
u Þ,

and we account for the nonadiabatic, relativistic and
leading-order QED corrections. The error balance of the
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computational procedure is analyzed and further contribu-
tions, neglected in this Letter, are discussed.
First, we solved the electronic Schrödinger equation for

n ¼ 3 electrons and N ¼ 2 fixed nuclei for the ϕ0 ground
electronic state (in Hartree atomic units)

Helϕ0ðr;RÞ ¼ Eel;0ðRÞϕ0ðr;RÞ with

Hel ¼ −

X

n

i¼1

1

2me

Δri
þ
X

n

i¼1

X

n

j>i

1

jri − rjj

−

X

n

i¼1

X

N

j¼1

Zj

jri − Rjj
ð1Þ

using floating explicitly correlated Gaussian basis func-
tions and the QUANTEN computer program [19,27].
The rovibrational Hamiltonian corresponding to the

ground electronic (“0”th) state and accounting for non-
adiabatic coupling up to the second-order terms in ε ¼
ðme=mnucÞ

ð1=2Þ is [23–27]

H
ð2Þ
0

¼
X

3N

i;j¼1

1

2
ð−iε∂Ri

Þðδij−ε
2MijÞð−iε∂Ri

ÞþEel;0þε2U0;

ð2Þ

where

U ¼
1

2

X

3N

i¼1

h∂Ri
ϕ0j∂Ri

ϕ0i ð3Þ

and

Mij ¼ 2h∂Rj
ϕ0jP

⊥
0
ðĤe − Eel;0Þ

−1P⊥
0
j∂Ri

ϕ0i;

P⊥
0
¼ 1 − jϕ0ihϕ0j ð4Þ

are the diagonal Born–Oppenheimer correction (DBOC)
and the mass-correction tensor, respectively.
Rotational-vibrational states of Heþ

2
are computed using

this Hamiltonian written in spherical polar coordinates,
ðρ; θ;ϕÞ, which leads to the solution of the radial equation
[15,27]

�

−
∂

∂ρ

1

mnuc

�

1−
Mρ

ρ

mnuc

�

∂

∂ρ

þ
NþðNþþ1Þ

ρ2
1

mnuc

�

1−
MΩ

Ω

mnuc

�

þUðρÞþEelðρÞ

�

χNþðρÞ

¼ENþχNþðρÞ: ð5Þ

Mρ
ρ and MΩ

Ω are the vibrational and rotational mass-
correction functions corresponding to the curvilinear rep-
resentation [27]. The equation is solved for each Nþ

rotational angular momentum quantum number using a
discrete variable representation [28].
We have computed the EelðρÞ potential energy curve

over the ρ ∈ ½0.992; 3.5� bohr interval of the internuclear
separation that is necessary to converge the rovibrational
states considered in this Letter. As a result, the electronic
energy at the equilibrium structure (ρeq ¼ 2.042 bohr) is
within the 0.2 μEh error bar of the complete basis set limit
estimate by Cencek et al. [29]. The newly computed part of
the potential energy curve (PEC) improves the earlier PEC
[14] by 0.012 cm−1 (59 nEh) at the equilibrium structure
and by 0.034 cm−1 (155 nEh) at ρ ¼ 3.5 bohr.
Table I collects the calculated change in the energy

intervals using the newly computed and the earlier curves.
As a (conservative) estimate for the remaining error due to
uncertainties of the PEC, we used the half of the observed
change. We think that the uncertainty of the rovibrational
intervals due to the uncertainty of the PEC is within a
few nEh.
The relativistic effects on the electronic motion are

accounted for by incrementing the Eel þ U adiabatic
potential energy curve with the expectation value of the
spin-independent part of the Breit–Pauli Hamiltonian,
including the mass-velocity term, the Darwin terms, and
the spin-spin coupling, as well as the orbit-orbit term [34]:

E
ð2Þ
rel ¼ α2hϕ0jH

ð2Þ
rel jϕ0i; ð6Þ

where

H
ð2Þ
rel ¼ −

1

8

X

n

i¼1

p4i þ
π

2

X

n

i¼1

X

N

a¼1

ZaδðriaÞ þ π
X

n

i¼1

X

n

j>i

δðrijÞ

−
1

2

X

n

i¼1

X

n

j>i

�

1

rij
pi · pj þ

1

r3ij
rijðrij · piÞ · pj

�

: ð7Þ

In order to assess the uncertainty of the computations
(Table I), we evaluated the expectation values “directly” for
the p4i and πδðrixÞ ¼

1

4
∇2

rix
ð1=rixÞðx ¼ j or aÞ operators

[31] and by using the integral-transformation technique
[30]. Since we have accurate electronic wave functions, we
expect that the two routes give very similar rovibrational
intervals. Still, the results obtained with the integral-trans-
formation techniques are expected to have a lower
uncertainty.
The spin-independent α3-order QED correction to the

adiabatic potential energy of a diatomic molecule is [34–36]

E
ð3Þ
rad¼α3

4

3

X

n

i¼1

�

ln
1

α2
−βelþ

19

30

�

hϕ0jZδðri1ÞþZδðri2Þjϕ0i

þα3
X

n

i¼1

X

n

j>i

��

14

3
lnαþ

164

15

�

hϕ0jδðrijÞjϕ0i−
14

3
Qel

�

;

ð8Þ
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where

βel ¼
hϕ0jJðH0 − E0Þ ln (2ðH0 − E0Þ=Eh)Jϕ0i

hϕ0j½J; ½H0; J��=2ϕ0i
ð9Þ

is the (nonrelativistic) Bethe logarithm, J ¼ −

P

n
i¼1

pi is the
electric current density. A precise evaluation of βel is a major
numerical task, and values can be obtained if the wave
function satisfies the electron-nucleus cusp condition
[37,38]. The Qel term [39,40],

Qel ¼ lim
ϵ→0

hϕ0j

�

Θðrij − ϵÞ

4πr3ij
þ ðln ϵþ γEÞδðrijÞ

�

ϕ0i; ð10Þ

has been evaluated for Heþ
2
using the integral transformation

technique [30] and the floating explicitly correlated
Gaussian basis representation.
Concerning the Bethe logarithm, we start with a few

numerical observations. Table II presents a compilation of
the Bethe logarithm values for the lightest atoms and ions
[41–45] to highlight the weak dependence of βel on the
number of electrons but its strong dependence on the
nuclear charge Z. A similar observation applies for
molecules described within the adiabatic approximation.
Table III shows the value of βelðρÞ in the ground electronic
state of the one-electron Hþ

2
molecular ion and the

two-electron H2 molecule for selected values of the ρ

internuclear distance. The βelðρÞ values of H
þ
2
and H2 differ

in the 4th and 5th significant digit.

These observations suggest that the Bethe logarithm of
Heþ

2
(X 2

Σ
þ
u ) can be well approximated with the Bethe

logarithm of the ground electronic state of He3þ
2
. The Bethe

logarithm for this one-electron two-center problem was
computed using the procedure of Ref. [38]. We estimate the
error introduced by the βel;Heþ

2

ðρÞ ≈ βel;He3þ
2

ðρÞ approxima-
tion, which we use in this Letter, to be less than 1% over the
relevant internuclear range ρ ∈ ½0.9; 3.5� bohr (Table I).
The effect of higher-order QED corrections is estimated

as in Refs. [33,46]:

E
ð4Þ
est ¼ α4π

�

427

96
− 2 ln 2

�

X

3

i¼1

X

2

a¼1

ZaδðriaÞ: ð11Þ

Table I collects the numerical uncertainty attributed to
the rovibrational intervals within the described computa-
tional procedure. The present theoretical framework rests

TABLE II. Dependence of the βel Bethe logarithm on the Z
nuclear charge and on the n number of electrons in the
ground state of atoms (ions). These data are compiled from
Refs. [41–45].

H He Li

βel [Eh] Z ¼ 1 Z ¼ 2 Z ¼ 3

n ¼ 1 2.984 128 4.370 422 5.181 353
n ¼ 2 � � � 4.370 160 5.179 849
n ¼ 3 � � � � � � 5.178 28

TABLE I. Error balance of the rotational and (ro)vibrational intervals, in cm−1, computed in this Letter. The numerical uncertainty of
the computed intervals is estimated based on the difference in the intervals obtained with two different datasets.

Rotational intervals (Ro)vibrational intervals

(0,3)–(0,1) RMSDrot (1,0)–(0,0) RMSDrv

Numerical uncertainty estimate for the computed terms (�σ):

PECa
−0.000 002 0.000 15 −0.003 28* 0.003 37*

DBOCa
−0.000 010 0.000 18 −0.000 16 0.000 19

Nadmb
−0.000 018 0.000 36 −0.000 13 0.000 24

Relativisticc −0.000 012 0.000 18 0.001 09 0.000 84
βel (�1%)d −0.000 032 0.000 22 0.000 12 0.000 63
�σ

e �0.000 073 �0.001 09 �0.003 14 �0.003 59
Estimate for neglected theoretical terms (Δest):

hQEDf
−0.000 008 −0.000 15 −0.000 13 −0.000 25

Nad&Relg −0.000 001 −0.000 02 −0.000 01 −0.000 03
Fsnh −0.000 001 −0.000 02 −0.000 02 −0.000 04
Δest −0.000 010 −0.000 19 −0.000 16 −0.000 31
aPEC (DBOC) curve from Ref. [14] and from this Letter.
bNonadiabatic mass computed in Ref. [15] and in this Letter.
cRelativistic corrections obtained with the integral transformation technique [30] and the “direct” method [31].
dEffect of a hypothetical �1% change in βel.
e
σ is obtained as the sum of the absolute value of the terms.
fThe effect of the neglected higher-order QED corrections is estimated with the dominant term of Eð4Þ, Eq. (11).
gEstimate for the coupling of the nonadiabatic and relativistic corrections (see also Ref. [32]).
hEstimate for the effect of the finite nuclear size [33].
*We use half of this value for the uncertainty estimate of the present results.
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on two small parameters, the square root of the electron-to-
nucleus mass ratio ε and the fine-structure constant α. The
electron-nucleus (nonadiabatic) coupling is accounted for
up to ε2 order and higher-order contributions are neglected.
Relativistic (α2) and leading-order QED (α3) corrections
have been included, and an estimate for the α4-order terms,
Eq. (11), was also computed. We estimate the uncertainty
of the rotational-vibrational intervals due to the missing
part of α4 and higher-order QED corrections by the (small)
effect of the α4 estimate (hQED in Table I). We have
neglected the nonadiabatic-relativistic (and QED) coupling
in this Letter that was found to be important in the H2

molecule [32]. An elaborate theoretical and computational
study of this coupling for the present system will require
further work, but we give an estimate for its magnitude
(“Nad&Rel” in Table I). The estimated effect of the finite

nuclear size is also shown in Table I. We used the CODATA18

recommendations for the physical constants and conversion
factors throughout the computations.
The computed rotational and (ro)vibrational intervals

and corrections are listed in Tables IV and V. Figure 1
visualizes the results and reveals a fine interplay of the
various corrections (The potential energy points and all
corrections computed and used in this Letter are deposited
in the Supplemental Material [47]).
The adiabatic description (“Ad”) with the “empirical

mass correction” using mrot ¼ mvib ¼ mα þ 1.5me [14]
reproduces the fundamental vibration energy almost per-
fectly, while its deviation from experiment increases with
increasing Nþ. By including the rigorous nonadiabatic
masses for the rotational and vibrational degrees of freedom
[15], the error is reduced for the rotational excitations, but

TABLE III. Comparison of the βelðρÞ Bethe logarithm for selected ρ internuclear distances of the one-electron Hþ
2
molecular ion [38]

and the two-electron H2 molecule [33] in the adiabatic approximation and in their ground electronic states.

ρ [bohr] 0.1 0.2 0.4 0.8 1.5 5.0

βelðρÞ (H
þ
2
) [Eh] [38] 3.763 208 3.525 245 3.284 256 3.100 639 3.023 053 2.995 328

βelðρÞ (H2) [Eh] [33] 3.765 3.526 3.279 3.093 31 3.013 96 2.985 34

TABLE IV. Rotational excitation energies of 4Heþ
2
(X 2

Σ
þ
u ) in the vibrational ground state. ν̃0: Born–Oppenheimer description with

nuclear masses. δν̃DBOC: The diagonal Born–Oppenheimer correction. δν̃mveff : Empirical mass mrot ¼ mvib ¼ mα þ 1.5me. δν̃Nad:
Rigorous nonadiabatic mass. δν̃Rel: Relativistic correction. δν̃QED: Leading-order QED correction. δν̃hQED: Estimate for higher-order
QED corrections. For the derivation of the error estimates to the computed energies, see Table I.

ν̃ð0; NþÞ − ν̃ð0; 1Þ [cm−1]

Nþ: 3 5 7 9

ν̃0 70.960 61 198.427 8 381.954 3 620.898 1
þδν̃DBOC −0.010 28 −0.028 7 −0.055 0 −0.089 1
þδν̃mveff −0.014 46 −0.040 4 −0.077 6 −0.125 8
þδν̃mvNad 0.000 45 0.001 3 0.002 6 0.004 4
þδν̃Rel 0.002 16 0.006 0 0.011 5 0.018 7
þδν̃QED −0.00078 −0.002 2 −0.004 2 −0.006 8
þδν̃hQED 0.000 01 0.000 0 0.000 0 −0.0001
ν̃calc 70.937 68(10) 198.363 8(13) 381.831 6(13) 620.699 4(13)
ν̃expt [9,12] 70.937 589ð23Þð60Þsys 198.364 7(8) 381.834 6(8) 620.702 1(9)
ν̃expt − ν̃calc −0.00010 0.000 9 0.003 0 0.002 7

ν̃ð0; NþÞ − ν̃ð0; 1Þ [cm−1]

Nþ: 11 13 15 17 19

ν̃0 914.426 5 1261.521 5 1660.986 0 2111.450 8 2611.382 6
þδν̃DBOC −0.130 4 −0.178 8 −0.233 6 −0.294 4 −0.360 5
þδν̃mveff −0.184 7 −0.253 8 −0.332 8 −0.420 9 −0.517 7
þδν̃mvNad 0.006 9 0.010 1 0.014 1 0.019 1 0.025 2
þδν̃Rel 0.027 3 0.037 3 0.048 6 0.061 1 0.074 5
þδν̃QED −0.010 0 −0.013 8 −0.018 1 −0.023 0 −0.028 3
þδν̃hQED −0.0001 −0.0001 −0.0002 −0.0002 −0.0003
ν̃calc 914.135 4(13) 1261.122 3(13) 1660.464 0(13) 2110.792 5(13) 2610.575 5(15)
ν̃expt [12] 914.136 7(8) 1261.124 2(8) 1660.462 7(9) 2110.793 2(9) 2610.574 4(9)
ν̃expt − ν̃calc 0.001 3 0.001 9 −0.001 3 0.000 7 −0.001 1

PHYSICAL REVIEW LETTERS 125, 213001 (2020)

213001-4

               dc_1955_21



the fundamental vibration energy shows a large deviation
from experiment. Adding the relativistic corrections to this
nonadiabatic model reduces the deviation by a factor of two
for the fundamental vibration, but it “overcorrects” the
rotational excitation energies. By including also the lead-
ing-order QED corrections in the theoretical treatment both
the fundamental vibration energy, the rotational and the
rovibrational excitation energies come in agreement with
experiment with root-mean-squared deviations (RMSDs)
of 0.001 7 and 0.0019 cm−1, respectively. The experimen-
tal uncertainties of the rotational and rovibrational series is
slightly smaller than these values [12,13]; they are 0.000 8
and 0.00012 cm−1, respectively. The lowest-energy rota-
tional interval, (0,3)–(0,1), has been recently measured
more precisely, 70.937 589ð23Þ � 0.000 06sys [9], and our
theoretical value for this interval is 70.937 69ð10Þ cm−1.
For the fundamental vibration, our computational result is
1628.380 9ð33Þ cm−1, which is in agreement with its value
derived from experiments, 1628.383 2ð12Þ cm−1 [13].
All the rovibrational intervals (Table V) are in agreement

with the experimental results within the given uncertainties,
although the computational results have almost 3 times
larger uncertainties than the experimental ones. We observe
some discrepancies for the rotational intervals with inter-
mediate Nþ values (especially, Nþ ¼ 7, 9 and 13). We note
that the pure rotational intervals have a smaller uncertainty

than the rovibrational ones, since they were much less
affected by the PEC improvement (Table I).
We finish the discussion with observations regarding the

interplay of the computed corrections (Tables IV and V).
First, we point out that δν̃mveff and δν̃mvNad together
account for the nonadiabatic mass effect. δν̃mveff is a
simple, intuitive, constant mass model (mrot ¼ mvib ¼
mα þ 1.5me), and δν̃mvNad labels the value, which corrects
this empirical model to arrive at the rigorous second-order
nonadiabatic result. It is interesting to observe, at least for
the present example, that δν̃mvNad has the same order of
magnitude but opposite sign as the leading-order QED
correction δν̃QED. The interplay of the corrections changes
for the different types of motions, i.e., the relativistic
correction has a different sign for the rotational and for
the vibrational excitation, whereas the QED contribution is
positive in both cases. This interplay of the higher-order
correction terms—which we explicitly compute in this
Letter—had resulted in cancellation of errors in the lower-
order calculations [14] and a seemingly good agreement
with the experimental result [13] for this interval.
Rotational and (ro)vibrational intervals have been reported

for the three-electron 4Heþ
2
(X 2

Σ
þ
u ) molecular ion on a newly

computed potential energy curve with nonadiabatic, relativ-
istic, and QED corrections. The computed rotational-vibra-
tional intervals are in good agreement with recent precision

TABLE V. Rovibrational excitation energies of 4Heþ
2
(X 2

Σ
þ
u ) between the vibrational ground and first excited state. See also the

caption to Table IV.

ν̃ðv; NþÞ00 − ν̃ðv; NþÞ0 [cm−1]

ðv; NþÞ00–ðv;NþÞ0: (1,0)–(0,0) (1,1)–(0,1) (1,3)–(0,1)

ν̃0 1628.560 0 1628.108 1 1696.808 9
δν̃DBOC −0.022 3 −0.022 2 −0.032 0
δν̃mveff −0.160 2 −0.160 1 −0.173 9
δν̃mvNad 0.025 8 0.025 7 0.025 9
δν̃Rel −0.010 2 −0.010 3 −0.008 3
δν̃QED −0.012 0 −0.012 0 −0.012 8
δν̃hQED −0.0001 −0.0001 −0.0001
ν̃calc ¼ ν̃0 þ

P

δν̃ 1628.380 9(33) 1627.929 1(39) 1696.607 7(39)
ν̃expt [13] 1628.383 2(12) 1627.931 8(12) 1696.609 6(12)
ν̃expt − ν̃calc 0.002 3 0.002 7 0.001 9

ν̃ðv; NþÞ00 − ν̃ðv; NþÞ0 [cm−1]

ðv; NþÞ00–ðv;NþÞ0: (1,7)–(0,1) (1,11)–(0,1) (1,13)–(0,1)

ν̃0 1997.857 8 2513.146 5 2848.931 6
δν̃DBOC −0.074 4 −0.145 9 −0.191 6
δν̃mveff −0.233 9 −0.335 7 −0.401 3
δν̃mvNad 0.026 9 0.029 3 0.031 2
δν̃Rel 0.000 2 0.014 3 0.023 3
δν̃QED −0.016 1 −0.021 6 −0.025 2
δν̃hQED −0.0002 −0.0002 −0.0003
ν̃calc ¼ ν̃0 þ

P

δν̃ 1997.560 4(39) 2512.686 7(39) 2848.367 8(39)
ν̃expt [13] 1997.563 3(12) 2512.687 1(12) 2848.369 0(12)
ν̃expt − ν̃calc 0.002 9 0.000 4 0.001 2
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spectroscopy measurements. Further developments, most
importantly, a detailed study of the relativistic-nonadiabatic
coupling and the extension of the potential energy curve with
parts-per-billion uncertainty over large internuclear distan-
ces, will challenge precision spectroscopy experiments and
contribute to the establishment of primary pressure
standards.
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ABSTRACT

In pre-Born–Oppenheimer (pre-BO) theory amolecule is considered as aquantumsystemas awhole,
including the electrons and the atomic nuclei on the same footing. This approach is fundamentally
different from the traditional quantum chemistry treatment, which relies on the separation of the
motion of the electrons and the atomic nuclei. A fully quantummechanical description ofmolecules
has a great promise for future developments and applications. Its most accurate versions may con-
tribute to the definition of new schemes for metrology and testing fundamental physical theories;
its approximate versions can provide an efficient theoretical description formolecule-positron inter-
actions and, in general, it would circumvent the tedious computation and fitting of potential energy
surfaces and non-adiabatic coupling vectors while it includes also the quantum nuclear motion also
often called ‘molecular quantum dynamics’. To achieve these goals, the review points out impor-
tant technical and fundamental open questions. Most interestingly, the reconciliation of pre-BO
theory with the classical chemistry knowledge touches upon fundamental problems related to the
measurement problem of quantummechanics.
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1. Quantum chemistry vs. quantummechanics
and chemistry?

We start this article with a historical overview of the

chemical theory of molecular structure and the origins

of quantum chemistry, which is followed bymethodolog-

ical details and applications of pre-Born–Oppenheimer

theory.

1.1. Historical background: chemical structure,

physical structure from organic chemistry

experiments

[T]he dominating story in chemistry of the 1860s, 1870s,
and 1880s was neither the periodic law, nor the search
for new elements, nor the early stages of the study of
atoms and molecules as physical entities. It was the mat-
uration, and demonstration of extraordinary scientific
and technological power, of the “theory of chemical
structure” . . .

CONTACT Edit Mátyus matyus@chem.elte.hu Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest, Hungary

Alan J. Rocke
Image and Reality: Kekulé, Kopp, and the Scientific

Imagination
(The University of Chicago Press, Chicago and London, 2010)

During the second half of the 19th century, the pio-

neering organic chemists generation—represented by

Williamson, Kekulé, Butlerov, Crum Brown, Frank-

land, and Wurtz—had explored an increasing number

of chemical transformations in their laboratory experi-

ments and worked towards the establishment of a logical

framework for their observations. The ‘first chemistry

conference’, held in Karlsruhe on 3 September 1860,

resulted in an internationally recognised definition of the

atomic masses. This agreement ensured that the same

molecular formula was then used for the same sub-

stance in all laboratories around the world, and thereby

opened the route to the successful development of the

theory of chemical structure. The development of the

© 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/
4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in
any way.

               dc_1955_21



MOLECULAR PHYSICS 591

chemical theory had been surrounded by heated debates

about what was reality and what was mere speculation.

Contemporary physics (gravitation, electromagnetism)

was not able to provide any satisfactory description for

molecules. To give a taste of this exciting period, we

reproduce a few extracts from Alan J. Rocke’s chemical

history book [1]:

• Friedrich August Kekulé [von Stradonitz] (1858):

‘rational formulas are reaction formulas, and can be

nothing more in the current state of science’.

• FriedrichAugust Kekulé [von Stradonitz] (1859): ‘[he]

rejected the possibility of determining the physical

arrangement of the constituent atoms in a molecule

from the study of chemical reactions, since chemi-

cal reactions necessarily alter the arrangements of the

atoms in the molecule’.

• Charles Adolphe Wurtz (1860): ‘[W]e do not have

any means of assuring ourselves in an absolute

manner of the arrangement, or even the real exis-

tence of the groups which appear in our rational

formulas . . .merely express parental ties’.

• Hermann Kolbe (1866): ‘Frankly, I consider all these

graphical representations . . . as dangerous, because

the imagination is thereby given too free rein’.

• Johannes Wislicenus (1869): ‘[it] must somehow be

explained by the different arrangements of their atoms

in space’.

• JacobusHenricus van’t Hoff (5 September 1874, 1875):

‘La chimie dans l’espace’

• Joseph Achille Le Bel (5 November 1874): physical

structure in the 3-dimensional space

1.2. Historical background: application of quantum

theory tomolecules

At the time when Erwin Schrödinger wrote down his

famous wave equation [2], the concept of the classi-

cal skeleton of the atomic nuclei arranged in the three-

dimensional spacewas already a central idea inmolecular

science derived from the organic chemists’ laboratory

experiments. The idea of a separate description of the

electrons and the atomic nuclei, i.e. the motion of the

atomic nuclei on a potential energy surface (PES), which

results form the solution of the electronic problem in

the field of fixed external nuclear charges, is usually con-

nected to the work of Born and Oppenheimer in 1927

[3] and perhaps the later references [4,5] are also cited.

At the same time, Sutcliffe and Woolley analyze in refer-

ence [6] René Marcelin’s doctoral dissertation published

in 1914 (the author died during World War I), which

appears to be the earliest work inwhich ideas reminiscent

of a potential energy surface can be found. Sutcliffe and

Woolley argue that the idea of clamping the atomic nuclei

in order to define an electronic problem was attempted

already within the framework of The Old Quantum The-

ory, and later these attempts were taken over (more suc-

cessfully) to Schrödinger’s theory for molecules. In any

case, what we usually mean by quantum chemistry gains

its equations from a combination of quantum mechanics

and the Born–Oppenheimer (BO) approximation (and

perhaps corrections to the BO approximation are also

included).

1.3. Quantum chemistry

The tremendous success of the usual practice might per-
haps be best regarded as a tribute to the insight and
ingenuity of the practitioners for inventing an effective
variant of quantum theory for chemistry.

B. T. Sutcliffe and R. G. Woolley, J. Chem. Phys. 137,
22A544 (2012) [7].

The well-known theory applicable to molecules has

grown out from the separation of the motion of the elec-

trons and the atomic nuclei. This separation defines two

major fields for quantum chemistry, electronic structure

theory and the corresponding electronic Hamiltonian (in

atomic units):

Ĥel = −

ne
∑

i=1

1

2
�ri +

ne
∑

i=1

ne
∑

j>i

1

|ri − rj|

−

ne
∑

i=1

nn
∑

n=1

Zn

|ri − Rn|
+

nn
∑

n=1

nn
∑

m>n

ZnZm

|Rn − Rm|
(1)

with the ri electronic and Rn nuclear positions and elec-

tric charges, Zn; and nuclear motion theory with the

Hamiltonian for the motion of the atomic nuclei (or

rovibrational Hamiltonian):

Ĥnuc = T̂(ρ) + V̂ , (2)

where T̂(ρ) is the rovibrational kinetic energy operator

and the potential energy, V̂ , which is called the poten-

tial energy surface and it is obtained from the eigenvalues

of Equation (1) computed at different positions of the

atomic nuclei.

Within this framework, a variety of molecular prop-

erties are derived from the eigenstates of the electronic

Hamiltonian, Equation (1), and an effective combina-

tion of the quantummechanics of electrons with classical

electronic properties of identifiable nuclei and quantum

mechanics for nuclear motions, Equation (2).

Several chemical concepts gain a theoretical back-

ground from this construct, most importantly the poten-

tial energy surface (PES) is defined. Its minimum struc-

ture (or structures if it has several local minima) defines
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the equilibrium structure, which is a purely mathemat-

ical construct resulting from the separability approx-

imation but it is usually identified with the classical

molecular structure. Then, the nuclei are re-quantised

to solve the Schrödinger equation of the atomic nuclei,

Equation (2), to calculate rovibrational states, resonances,

reaction rates, etc.

The electronic structure and quantum nuclear motion

theories have many similar features but each field have

its own peculiarities. Most importantly, the spatial sym-

metries are different: in electronic-structure theory the

point-group symmetry is defined by the fixed, classical

nuclear skeleton, whereas in nuclear-motion theory the

PES depends only on the relative positions of the nuclei

in agreement with the translational and rotational invari-

ance of an isolated molecule. Furthermore in electronic-

structure theory, themolecular translations and rotations

are separated off by fixing the atomic nuclei, and thus

the kinetic energy can be written in a very simple form

in Cartesian coordinates. In nuclear-motion theory, it

is convenient to define a frame fixed to the (non-rigid)

body to separate off the translation and to account for

the spatial orientation of this frame by three angles [8,

9]. Thereby, in a usual nuclear-motion theory treatment,

the coordinates are necessarily curvilinear. In spite of all

complications, it was possible to develop automated pro-

cedures [10–14], which allow us to efficiently compute

hundreds or thousands of rovibrational energy states for

small molecules using curvilinear coordinates appropri-

ately chosen for a molecular system [15–17].

1.4. Quantummechanics and chemistry?

The direct treatment of molecules as few-particle quan-

tum systems is much less explored. Nevertheless, we may

think about a molecule as a quantum system as a whole

without any a priori separation of the particles, which we

call pre-Born–Oppenheimer (pre-BO) molecular struc-

ture theory (it is also called non-Born–Oppenheimer

theory in the literature [18,19]).

The (np + 1)-particle time-independent Schrödinger

equation

Ĥ� = E� (3)

contains the non-relativistic Hamiltonian

Ĥ = T̂ + V̂ , (4)

which is the sum of the kinetic energy operator

T̂ = −

np+1
∑

i=1

1

2mi
�ri (5)

and the Coulomb potential energy operator

V̂ =

np+1
∑

i=1

np+1
∑

j>i

qiqj

|ri − rj|
, (6)

where atomic units are used and ri labels the laboratory-

fixed (LF) Cartesian coordinates of the ith particle. The

full molecular Hamiltonian has 2(np + 1) parameters,

the mass and the electric charge for each particle, mi

and qi (i = 1, 2, . . . , np + 1), respectively. In addition,

the physical solutions must satisfy the spin-statistics

theorem, thereby the spins si (i = 1, 2, . . . , np + 1) (the

fermionic or bosonic character) appear as additional

parameters. In total, there are 3(np + 1) parameters,

which define the molecular system. In addition, we may

specify the quantum numbers corresponding to the con-

served quantities of an isolated molecule: the total angu-

lar momentum, its projection to a space-fixed axis, the

parity, and the spin quantum numbers labelled with N,

Nz, p, Sa, MSa , Sb, MSb , . . . (for particle types a, b, etc.),

respectively.1

It is important to note that the full molecular Hamilto-

nian, Ĥ specified in Equations (4)–(6), has very different

mathematical properties from the electronic Hamilto-

nian, Ĥel in Equation (1). Although the potential energy

is the simple Coulomb interaction term both in Ĥ and

Ĥel, in Ĥ all electric charges belong to the quantum sys-

tem. While, for a neutral molecule Ĥel has an infinite

discrete spectrum and the continuous spectrum begins

at the first ionisation energy, the Ĥ molecular Hamilto-

nian does not have any discrete spectrum at all unless the

overall molecular translation is removed (see for example

Refs. [20–22]). In fact, Ĥ has the same spatial symme-

tries as Ĥnuc in nuclear-motion theory. If we separate off

the overall translation of the molecule, the translation-

ally invariant molecular Hamiltonian may or may not

have any discrete states, if it has, they end at the lowest

dissociation threshold, which is generally unknown (see

Section 2.7 and Figure 2).

One can introduce new coordinates in Ĥ, in order

to (a) separate off the overall translational motion,

and (b) to describe the internal dynamics more effi-

ciently. The choice of the coordinates (for the kinetic

Figure 1. Example translationally invariant coordinates: coordi-
nates of relative vectors within the many-particle system.
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Figure 2. The ladder structure of the pre-Born–Oppenheimer
(pre-BO) energy levels is visualised in the right. The left of
the figure shows the rovibrational states corresponding to their
respective potential energy surfaces in the Born–Oppenheimer
(BO) approximation. While in the BO picture, the rovibrational
states corresponding to the excited electronic state are bound
states, the corresponding rovibronic states in pre-BO theory
appear as resonances. [Reprintedwith permission from E. Mátyus,
J. Phys. Chem. A 117, 7195 (2013). Copyright 2013 American
Chemical Society.]

energy operator) is a question of convenience. We could

use some appropriate curvilinear system similarly to

nuclear-motion theory. The motivation however for

using laboratory-fixed Cartesian coordinates, similarly

as in electronic structure theory, is provided by the aim

to develop a generally applicable theoretical and com-

putational framework, similarly to the recent electron-

nuclear orbital theories [23–30], which have grown out

from electronic-structure theory by incorporating (some

of the) atomic nuclei in the quantum treatment. Further-

more, (laboratory-fixed) Cartesian coordinates will be

the preferred choice for a generalisation to the relativistic

regime.

Various direct and highly specialised techniques have

been proposed in the literature [31–34] for the solution

of themany-particle Schrödinger equation, Equation (4).

Our approach, a variational solution method using

explicitly correlated Gaussian basis functions (ECGs), is

detailed in Section 2. ECGs [35,36] have been success-

fully used in electronic-structure theory [37] and their

application for molecules and in general for few-particle

quantum systems has been pioneered by Adamowicz

and co-workers [18,19] and Suzuki and Varga [38].

An important year in the development of this field is

1993 when Kinghorn and Poshusta [39] and Kozlowski

and Adamowicz [40] published tightly converged ECG-

variational results for zero total angular momentum

states of the Ps2 = {e+, e+, e−, e−}, which can be thought
of as a ‘quasi molecule’. Later, analytic energy gradients

were derived and implemented [41] to speed up the ECG-

exponent optimisation, and this development resulted in

a highly efficient approach for the computation of ‘real’

diatomic molecules [42,43]. The computational proce-

dures developed by Adamowicz and co-workers have

been recently extended to N=1 and N=2 total angular

momentum quantum numbers (corresponding to natu-

ral parity) [44–47].

The diatomic formalism has been extended also to

triatomic molecules in Ref. [48]. Practical computations

have been carried out using another generally applicable

basis set, in which the ECGs can have complex-valued

parameters [49,50]. Computations with complex ECG

basis functions are presently considered as a promising,

practical generalisation towards polyatomic molecules.

Considerable effort has been devoted by Adamow-

icz and co-workers for the development and evalu-

ation of leading relativistic corrections, the Darwin

and mass-velocity terms, computed as expectation val-

ues with the non-Born–Oppenheimer wave functions.

The original implementation [51] in 2006 was followed

by several applications for ground and vibrationally

excited states of diatomic molecules [52–57]. The largest

diatomic molecule to date for which the ground-state

non-Born–Oppenheimer energy (as well as leading rel-

ativistic corrections) were computed is the BH molecule

including two nuclei and six electrons on the same foot-

ing in the quantum mechanical treatment [58].

Suzuki and Varga pioneered the development of flex-

ible basis sets and their applications with the stochastic

variational method for many-particle quantum systems

with various spatial symmetries and the elegant deriva-

tion of the corresponding integral expressions [59–61].

Their formalism was successfully used for the com-

putation of bound, resonance, and scattering states of

positronium and excitonic complexes [62–69] with var-

ious quantum numbers.

2. Variational solution of the electron-nuclear
Schrödinger equation with explicitly correlated
Gaussian functions

A general (np + 1)-particle variational approach, which

we call QUANTEN (QUANTum mechanical treatment

of Electrons and atomic Nuclei), was developed in

Refs. [20,70] for the solution of the time-independent

many-particle Schrödinger equation, Equation (3), to

obtain (absolute) molecular energies beyond spec-

troscopic accuracy2 corresponding to various non-

relativistic quantum numbers, N,Nz, p, Sa,MSa ,

Sb,MSb , . . .. Our aim was to avoid any a priori sepa-

ration of the different particles, and thus the compu-

tational method is applicable over the entire physically
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allowed range of the 3(np + 1) physical parameters: the

mi mass, the qi electric charge, and the si spin (bosonic or

fermionic character) of the particles (i = 1, . . . , np + 1).

Details of the variational procedure are reviewed in the

next subsections according to the following aspects:

(1) Coordinates: translationally invariant (TI) or

laboratory-fixed (LF) Cartesian coordinates

(2) Hamiltonian: TI and LF forms of the Hamilto-

nian

(3) Basis functions: ECGs with a polynomial pref-

actor and adapted to the spatial symmetries

(4) Matrix elements: analytic expressions with

quasi-normalisation and pre-computed quan-

tities using infinite-precision arithmetics

(5) Eigensolver: direct diagonalisation using LA-

PACK library routines, non-orthogonal basis

sets, numerical treatment of near-linear depen-

dencies

(5 + 1) Parameterisation of the basis functions: the

enlargement and refinement of the basis set

with one function at a time, fast eigenvalue esti-

mator, sampling-importance resampling, ran-

dom walk or Powell’s method for the refine-

ment of the basis functions

2.1. Coordinates

Translationally invariant (TI) and centre-of-mass (CM)

coordinates are obtained from the LF Cartesian coordi-

nates, r, by a linear transformation
(

x

RCM

)

= (U ⊗ I3)r ⇔ r = (U−1 ⊗ I3)

(

x

RCM

)

,

(7)

whereRCM labels the centre-of-mass coordinates and x is

invariant upon the overall translation of the system, if the

constant matrix, U ∈ R
(np+1)×(np+1), has the following

properties:

np+1
∑

j=1

Uij = 0, i = 1, . . . , np and

Unp+1,j = mj/mtot, j = 1, . . . , np + 1. (8)

(I3 denotes the 3 × 3 dimensional unit matrix). There are

infinitely many possible TI coordinate sets (examples are

shown in Figure 1), any two of them, x and y, are related

by a linear transformation:
(

y

RCM

)

= (VU−1 ⊗ I3)

(

x

RCM

)

⇔

(

x

RCM

)

= (UV−1 ⊗ I3)

(

y

RCM

)

(9)

with
(

y

RCM

)

= (V ⊗ I3)r ⇔ r = (V−1 ⊗ I3)

(

y

RCM

)

,

(10)

where V satisfies the same conditions as U in Equation

(8).

2.2. Hamiltonian

Translationally invariant energies and wave functions are

computed from a translationally invariant Hamiltonian

[20], which is obtained from writing the kinetic energy

operator in TI Cartesian coordinates, defined in Equa-

tions (7) and (8), and by subtracting the kinetic energy

operator of the centre of mass. An alternative approach

has been proposed in Refs. [22,71], which avoids any

transformation of the operators and eliminates the trans-

lational contamination from the matrix elements of the

(np + 1)-particle kinetic energy operator, Equation (5),

during the course of the integral evaluation.

2.3. Basis functions

Weapproximate an eigenfunction corresponding to some

spatial λ = (NMNp) and spin ς = (Sa,MSa , Sb,MSb , . . .)

quantum numbers as a linear combination of symmetry-

adapted basis functions

�[λ,ς] =

Nb
∑

I=1

cI�
[λ,ς]
I . (11)

The Ith basis function is a(n) (anti)symmetrised product

of spatial and spin functions for (fermions) bosons

�
[λ,ς]
I (r, σ) = Â{φ[λ]

I (r)χ
[ς]
I (σ )} (12)

where the (anti)symmetrisation operator is

Â = (Nperm)−1/2

Nperm
∑

p=1

εpP̂p, (13)

and Nperm is the total number of possible permutations

of the identical particles in the system and εp is −1 if

the permutation operator, P̂p, contains an odd number

of interchanges of identical fermions, otherwise εp is +1.

In order to define spatial basis functions, we first intro-

duce geminal (or pair) functions as

ϕ(r1, r2) = exp
(

− 1
2α12|r1 − r2|

2
)

(14)

= exp
(

− 1
2r

T(A ⊗ I3)r
)

, (15)
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with

r =

(

r1
r2

)

∈ R
6 and

A =

(

A11 A12

A21 A22

)

=

(

α12 −α12

−α12 α12

)

∈ R
2×2. (16)

The geminal functions are generalised to (np + 1)-

particle explicitly correlated Gaussian functions (ECGs)

as:

φ(r;A) =

np+1
∏

i=1

np+1
∏

j>i

exp

(

−
1

2
αij|ri − rj|

2

)

(17)

= exp

(

−
1

2
rT(A ⊗ I3)r

)

(18)

with

r =





r1
. . .

rnp+1



 ∈ R
3(np+1) (19)

and

Aij = −αij(1 − δij) +





np+1
∑

k=1,k�=i

αij



 δij

(i, j = 1, . . . , np + 1). (20)

The matrix form, Equations (15) and (18), makes it

apparent that the functions have a general mathemat-

ical form for (np + 1) particles. It has been observed

(see for example Ref. [20]) that in molecular applica-

tions with multiple heavy particles (nuclei), these basis

functions are inefficient when sub-spectroscopic accu-

racy is sought for. In a first attempt to describe atomic

nuclei more efficiently, we introduced ECGs with shifted

centres, so-called ‘floating ECGs’:

φ(r;A,R) = exp
(

− 1
2 (r − R)T(A ⊗ I3)(r − R)

)

,

(21)

whereR can be treated as a fixed or a variational parame-

ter and thereby, it should provide amore efficient descrip-

tion for the atomic nuclei displaced from the origin

(Section 3). It turned out however that the convergence

rate of amolecular computation becameworsewith float-

ing ECGs, Equation (21), thanwith origin-centred ECGs,

Equation (18). This behaviour is explained by the fact

that φ(r;A,R) with an arbitrary R �= 0 position vector

is an eigenfunction of neither the total angular momen-

tum operators, N̂2 and N̂z, nor the parity. In the case of

floating ECGs, the spatial symmetries of the eigenfunc-

tions are restored numerically during the course of the

variational optimisation, which results in a substantial

increase in the number of required basis functions.

In order to obtain very accurate numerical results

for a molecular system, it is necessary to describe dis-

placed atomic nuclei efficiently, and at the same time,

account for the spatial symmetries of the system. In

principle, it would be possible to project the floating

ECGs, Equation (21), onto the irreps of the O(3) group

(numerically). As an alternative, we use explicitly cor-

related Gaussians in conjunction with the global vector

representation (ECG-GVR) [38,59,60]:

φ[λ](r;A,u,K) =
1

BKN

∫

dê Y
MN
N (ê)

{

∂(2K+N)
a g(r;A, au ⊗ e)

}

a=0,|e|=1

(22)

= |v|2K+NY
MN
N (v̂) exp

(

−
1

2
rT(A ⊗ I3)r

)

, (23)

which corresponds to an analytic projection of a genera-

tor function

g(r;A, au ⊗ e) = exp
(

− 1
2r

T(A ⊗ I3)r + a(u ⊗ e)Tr
)

(24)

with a so-called global vector

v = (u ⊗ e)Tr =

np+1
∑

i=1

uiri. (25)

Further notation used in Equations (22)–(23): ∂
(2K+N)
a

= ∂(2K+N)/∂a(2K+N), Y
MN
N (ê) is the spherical harmonic

function of degree N and order MN , ê = (θ ,φ) collects

the polar angles characterising the orientation of the unit

vector e, and

BKN =
4π(2K + N)!(K + N + 1)2N+1

K!(2K + 2N + 2)!
(26)

with K and N ∈ N0. According to Ref. [60], the applica-

tion of Equation (23) in a variational procedure is equiv-

alent to using a basis set constructed by a hierarchical

coupling of the subsystems angular momenta to a total

angular momentum state with (N,MN). It is interesting

to re-write a floating ECG function into the following

form

exp
(

− 1
2 (r − R)T(A ⊗ I3)(r − R)

)

= exp
(

− 1
2R

T(A ⊗ I3)R
)

exp
(

− 1
2r

T(A ⊗ I3)r + R
T(A ⊗ I3)r

)

, (27)

which highlights its relation to the generator function

of ECG-GVR. Alternatively, an ECG-GVR function can
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be written in a form containing a polynomial prefac-

tor, Equation (23), which highlights its effectiveness in

describing vibrating molecular systems (at least for two

heavy particles).

In the numerical results presented later in this section,

we used ECG-GVR-type functions, φ[λ](r;A,u,K), as

spatial basis function and optimised all (non-linear)

parameters—the αij (A) exponents, the ui (u), global-

vector coefficients, and the K ∈ N0 integer exponent of

the polynomial prefactor—variationally. The transforma-

tion properties of these functions under TI coordinate

transformations are equivalent to a simple transforma-

tion of the parameter vectors (u in the global vector)

and matrices (A in the exponent). These transformation

properties are conveniently exploited during the course

of the analytic evaluation of the integrals (see for exam-

ple Ref. [20,21,70–73], as well as in an efficient param-

eterisation scheme of the basis functions [22]). Due to

the importance of these transformation relations (for the

separation of the translational motion, in integral eval-

uations, and for efficient computations), we summarise

them in the following equations:

|v|2K+NY
MN
N (v̂) exp

(

− 1
2r

T(A ⊗ I3)r
)

(28)

= |v|2K+NY
MN
N (v̂) exp

(

− 1
2x

T(A(x) ⊗ I3)x
)

(29)

= |v|2K+NY
MN
N (v̂) exp

(

− 1
2y

T(A(y) ⊗ I3)y
)

, (30)

where

A(x) = U−TAU−1 ⇔ A = UTA(x)U and

A(x) =

(

A(x) 0

0 cA

)

(31)

A(y) = V−TAV−1 ⇔ A = VTA(y)V and

A(y) =

(

A(y) 0

0 cA

)

(32)

and

A(y) = (UV−1)TA(x)UV−1 ⇔

A(x) = (VU−1)TA(y)VU−1. (33)

and the global-vector coefficients transform as

u = UTu(x) = VTu(y) and u(x) = (UV−1)Tu(y).

(34)

2.4. Evaluation of thematrix elements

Matrix elements of an Ô operator—e.g. identity, kinetic

or potential energy operators, Ô = Î, T̂ or V̂ , respec-

tively—with the (anti)symmetrised products of the spin

and spatial functions, Equations (22) and (23), are

obtained by evaluating analytic expressions. In what fol-

lows, we summarise the main steps of the derivation

of the analytic expressions and a few implementation

aspects (further details can be found in Refs. [20,38,61]):

O
[λ,ς]
IJ = 〈�

[λ,ς]
I |Ô|�

[λ,ς]
J 〉r,σ

= 〈Â{φ[λ]
I χ

[ς]
I }|Ô|Â{φ[λ]

J χ
[ς]
J }〉r,σ

=

Nperm
∑

p=1

εp〈φ
[λ]
I χ

[ς]
I |Ô|P̂p{φ

[λ]
J χ

[ς]
J }〉r,σ

=

Nperm
∑

p=1

εp〈φ
[λ]
I |Ô|P̂pφ

[λ]
J 〉r〈χ

[ς]
I |Ô|P̂pχ

[ς]
J 〉σ

=

Nperm
∑

p=1

c
[ς]
IJp

O
[λ]
IJp

(35)

with

c
[ς]
IJp

= εp〈χ
[ς]
I |Ô|P̂pχ

[ς]
J 〉σ and

O
[λ]
IJp

= 〈φ[λ]
I |Ô|φ[λ]

Jp
〉r, (36)

which are separate integrals of Ô with the spin and

the spatial functions, respectively. The c
[ς]
IJp

term can be

obtained by simple algebra (see for example Ref. [20]).

TheO
[λ]
IJp

term contains multidimensional integrals of the

spatial functions, Equation (22) and (23), for which ana-

lytic expressions are obtained by working out the formal

operations in three steps.

Step 1: evaluation of the integral with the generator

function:

IO,1(s, s
′) = 〈g(r;A, s)|Ô|g(r;A′, s′)〉r (37)

Step 2: expansion of the angular pre-factors:

IO,2(e, e
′)

= {∂2K+N
a ∂2K

′+N
a′ IO,1(au ⊗ e, a′u′ ⊗ e′)} a=a′=0

|e|=|e′|=1

(38)

Step 3: evaluation of the angular integrals:

O[λ] =
1

BKNBK′N
∫

dê

∫

dê′ (Y
MN
N (ê))∗Y

MN
N (ê′) IO,2(e, e

′) (39)

The resulting expressions [20, 38, 61] are completely

general for basis function with any N total angular
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momentum quantum number and natural parity, (−1)N

(similar functions and working formulae with unnatu-

ral parity, (−1)N+1, were introduced in Ref. [74]). It is

important to mention that details of the computer imple-

mentation with finite precision arithmetics of the final

expressions are critical in order to ensure the numeri-

cal stability and efficiency of molecular applications in

which N+2K are larger than about 5. In particular, we

had to introduce the so-called ‘quasi-normalisation’ of

the basis functions and pre-compute and tabulate certain

coefficients with infinite-precision arithmetics to be able

to evaluate the final expressions in double precision arith-

metics (this implementation was tested up to ca. 2K=40

and N=5−10) [20].

2.5. Computation of bound states

2.5.1. Direct diagonalisation

The cI linear combination coefficients in Equation (11)

are obtained by solving the generalised eigenvalue prob-

lem:

HcI = EIScI . (40)

The eigenvalues and eigenvectors are computed by

replacing Equation (40) with the symmetric eigenvalue

equation

H′c′I = EIc
′
I (41)

by using Löwdin’s procedure [75]

H′ = T′ + V′ (42)

with

T′ = S−1/2TS−1/2 and V′ = S−1/2VS−1/2. (43)

2.5.2. Non-linear parameterisation strategy

2.5.2.1. Parameter selection. The nonlinear parameters

for each basis function are selected and optimised based

on the variational principle applicable for the ground and

for a finite number of excited states (p. 27–29 of Ref. [38]).

In practice, this optimisation strategy translates to the

simple rule: the lower the energy, the better the param-

eter set. The parameter selection is carried out using the

stochastic variational method [38], in which new basis

functions are generated one by one. Trial values for the

parameters of the spatial basis functions, Equation (22),

K, ui, lnαij, are drawn from discrete uniform, continu-

ous uniform, and normal distributions, respectively. The

optimal parameters of each distribution are estimated

from short exploratory computations. Due to the one-

by-one generation of the basis functions, the updated

eigenvalues can be evaluated very efficiently [38] using

the known eigenvalues and eigenvectors corresponding

to the old basis set, and this allows a rapid assessment of

a trial set.

2.5.2.2. Refinement. The refinement of the basis-function

parameters generated by the stochastic variationalmethod

is necessary if very accurate solutions are required. Sim-

ilarly to the enlargement of the basis set, the basis func-

tions are refined one after the other with the fast rank-

1 eigenvalue update algorithm, which is used also for

the selection of a new basis function from a set of ran-

domly generated trials. Refined parameters are found

by using Powell’s method [76] started from the origi-

nally selected parameters for each basis function. The

random-walk refinement can be used to adjust theK inte-

ger value (for which the Powell method is not applicable),

however in practice it is usually sufficient to generate

K from a discrete uniform distribution spread over a

pre-optimised interval and to refine only the continuous

variables, ui and αij. During the course of and at the end

of the enlargement of the basis set, every basis function is

refined in repeated cycles.

2.6. Computation of resonance states

2.6.1. Stabilisation technique

The stabilisation of eigenvalues of the real eigenvalue

equation, Equation (40), is monitored with respect to the

size of the basis set [77,78]. This simple application of

the stabilisation method [79–82] allowed us to estimate

the energy of long-lived resonances [70]. In order to gain

access to the lifetimes (and in general, shorter-lived res-

onance positions and widths), it is necessary to estimate

the box size corresponding to the increasing number of

basis functions, which is a non-trivial task with ECG

functions.

2.6.2. Complex-coordinate-rotationmethod

The application of the complex-coordinate-rotation

method [83] requires the complex scaling of the coordi-

nates according to the r → reiθ replacement. The scaling

rule is rather simple for both the kinetic energy and

the Coulomb potential energy operators, and thus the

Hamiltonian is scaled according to

Ĥ = T̂ + V̂ → Ĥ(θ) = e−2iθ T̂ + e−iθ V̂ . (44)

The corresponding matrix equation is written as

H̃(θ)c̃i(θ) = Ei(θ)Sc̃i(θ), (45)

which, similarly to its real analogue, Equation (40), is

transformed to

H̃′(θ)c̃′i(θ) = Ei(θ)c̃′i(θ) (46)
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with

H̃′(θ) = e−2iθS−1/2TS−1/2 + e−iθS−1/2VS−1/2

= cos(2θ)T′ + cos(θ)V′

− i(sin(2θ)T′ + sin(θ)V′). (47)

The complex symmetric eigenproblem, Equation (46),

is solved using LAPACK library routines [84], and the

stabilisation point, E = (E,−Ŵ/2) with the E energy

and Ŵ width, in the complex energy plane is identified

visually.

Although the complex analogue of the real variational

principle [83] states that the exact solution is a stationary

point in the complex plane with respect to the variational

parameters and the scaling angle, there is not any practi-

cal algorithm for using this principle to optimise the basis

set and to systematically improve the resonance param-

eters. The convergence of the resonance parameters is

confirmed by achieving reasonable agreement within a

series of computations with a varying number of basis

functions and parameterisation (see also Section 2.7).

2.6.3. Parameterisation strategy

Due to the lack of any practical approach relying on the

complex variational principle to select and optimise the

non-linear parameters of the basis functions, we relied

on the random generation of the parameters from some

broad parameter intervals. In addition, we have devised

a parameter-transfer approach [70], in which a param-

eter set optimised based on the real variational princi-

ple for bound states with one set of input parameters is

transferred to a computationwith other input parameters

(e.g. different quantum numbers). Note that the spatial

symmetries of a basis function are determined by the

quantum numbers, Equation (23), and in this sense, the

parameters K, ui, and A, are transferable.

2.7. Variational results

Quantitative comparison of precision experiments and

computations is possible if extremely accurate non-

relativistic results are available and they are corrected

also for relativistic and quantum electrodynamics (QED)

effects. Such corrections have been computed in Ref. [85]

for bound states of few-particle systems within a per-

turbative scheme which started from a very accurate

Born–Oppenheimer solution. As an alternative route,

efforts have been devoted to the a direct variational solu-

tion of the Dirac equation [86,87]. As to an intermediate

approach, expectation values of the Breit–Pauli Hamil-

tonian were computed with the many-particle wave

function, i.e. without evoking the BO approximation,

to obtain relativistic corrections [88–90]. In the spirit

of this second direction, the present work focuses on

the computational methodology of very accurate pre-

Born–Oppenheimer energies and wave functions, which

provides the starting point for a forthcoming computa-

tion of relativistic and QED corrections.

Within the non-relativistic regime, the determination

of not only the ground but also the excited states with all

possible combinations of the quantum numbers is a chal-

lenging task. What makes it particularly challenging is

the fact that rovibrational states corresponding to excited

electronic states —which can be rigorously defined only

within the BO framework—, appear as bound states,

whereas the corresponding rovibronic states in pre-BO

theory are rigorously obtained as resonances, which are

fully coupled to the dissociation continuum of the lower-

lying electronic states (Figure 2, see also Section 1.4). This

makes the computation and a systematic improvement

of excited rovibronic states (with various non-relativistic

quantum numbers) a highly challenging task. Neverthe-

less, if it is successfully realised, not only the energy

position but also the predissociative lifetime is obtained,

potentially from a full pre-BO computation. The fol-

lowing paragraphs review variational results obtained in

a series of computations [20, 70] motivated by these

ideas.

2.7.0.1. Bound and resonances states of the positron-

ium molecule, Ps2 = {e+, e+, e−, e−}. Computation of

positroniumcomplexes are extremely challenging for tra-

ditional quantum chemistry methods, because of the

presence of positively charged light particles. At the same

time, positronium complexes are excellent test systems

for pre-BO methodological developments [20, 70]. The

present ECG-GVR basis set has turned out to be par-

ticularly well-suited for positronium systems, which is

qualitatively explained by their diffuse, delocalised inter-

nal structure in comparison with the localised atomic

nuclei in molecular systems. Tightly converged energy

levels were computed with basis functions including only

low-order polynomial prefactors in Ref. [70]. (Due to

the low-order polynomials in the basis functions, Equa-

tions (22) and (23), the results were obtained with amod-

est computational cost and this fact made the positron-

ium complexes excellent systems for testing and develop-

ing the pre-BO method.) The basis function parameters

were selected by minimising the energy of the lowest-

lying state. The resulting basis set was well-suited for not

only the lowest-energy bound state but also for a few

low-energy resonance states.

The obtained bound-state energies and resonance

parameters were in excellent agreement or improved

upon the best results available in the literature (see Table 2

of Ref. [70]). We may think that the computed resonance
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parameters were more accurate than earlier literature

data, because the energies of nearby-lying bound states

were improved (lowered) for which the (real) variational

principle allows us to make a clear-cut assessment.

2.7.0.2. Bound and resonances states of the hydrogen

molecule, H2 = {p+, p+, e−, e−}. The first variational

computations with explicitly correlated Gaussian func-

tions and N>0 angular momentum quantum numbers

carried out for the H2 molecule as an explicit four-

particle system were reported in Refs. [20,70]. Both the

ground and certain excited electronic states were con-

sidered. We note that exceedingly accurate pure vibra-

tional states of the ground electronic state were com-

puted earlier by the Adamowicz group [91]. Further-

more, very accurate rovibrational states corresponding to

the ground electronic state were available from the non-

adiabatic perturbation theory computations performed

by Pachucki and Komasa [92].

Besides the ground electronic state, we could access

electronically excited states by choosing different com-

binations of the non-relativistic quantum numbers in

Ref. [70]. (Note that the electronic states exist only within

the BO framework, and they are used here only to label

the pre-BO states.) Thereby, we performed independent

computations in four different blocks with natural parity:

‘X 1�+
g block’: N ≥ 0, p = (−1)N , Sp = (1 − p)/2, Se

= 0;

‘B 1�+
u block’:N ≥ 0, p = (−1)N , Sp = (1 + p)/2, Se =
0;

‘a 3�+
g block’:N ≥ 0, p = (−1)N , Sp = (1 − p)/2, Se =
1;

‘b 3�+
u block’:N ≥ 0, p = (−1)N , Sp = (1 + p)/2, Se =
1.

The computations resulted in improved energies for

some of the rotational states corresponding to electroni-

cally excited states (seeTable 3 inRef. [70]). For the lowest

rotational states of the B 1�+
u block, the newly computed

energies were lower than those of Ref. [93] by ca. 0.8µEh.

Furthermore, the computed energies improved upon the

first and the second rotational states of the a 3�+
g block

by a few tens of nEh in comparison with the best earlier

prediction [94].

In comparison with the positronium molecule, the

basis-set parameterisation for the hydrogenmolecule has

turned out to be computationally far more demand-

ing for the bound states and a really challenging task

for the resonances. As to rovibrational (rovibronic)

states corresponding to higher excited electronic states,

they can be computed within the pre-BO framework

as resonances embedded in the continuum of the

lowest-energy electronic state of their respective symme-

try block (Figure 3). At present, there is not any existing,

practical approach for the optimisation of basis func-

tions for resonance states. Instead, we followed a prac-

tical strategy to gain access to some resonance states:

we compiled a giant parameter set from all parame-

ters obtained in bound-state optimisations with various

combinations of the non-relativistic quantum numbers,

and performed a search for resonance states using this

large set (parameter-transfer approach). The stabilisa-

tion of certain points in the complex plane with respect

to the scaling angle are visualised in Figure 3 for the

X 1�+
g and b 3�+

u blocks with N = 0, 1, and 2 angu-

lar momentum quantum numbers (reproduced from

Ref. [70]).

TheX 1�+
g block starts with the bound (ro)vibrational

states corresponding to the ground electronic state,

X 1�+
g , which are along the real axis up to the first dis-

sociation threshold, H(1) + H(1), indicated with a black

arrow in each subfigure. Before the start of the seconddis-

sociation limit, H(1) + H(2), we identify (ro)vibrational

(rovibronic) states which are assigned to the EF 1�+
g

electronic state (known from BO computations).

As to the b 3�+
u block (see Figure 3), it starts with

the first dissociation channel, H(1) + H(1), and does

not support any bound state (in agreement with our

knowledge from BO and post-BO results). Before the

H(1) + H(2) channel opens, we observe a series of vibra-

tional states for N=0, which were assigned (based on

their energies) to the e 3�+
u electronic state. These states

are located very close to the real axis, which indicates

that they are long-lived resonances. It is interesting to

note the appearance of a set of lower-energy states for

N>0. This set of states were assigned to the vibrational

(R=0 rotational angular momentum) and rovibrational

(R=1) states corresponding to the c 3�+
u electronic state

(with L=1 orbital angular momentum) for N=1 and 2,

respectively. This example highlights the coupling of the

electronic orbital (�̂L) and rotational angular ( �̂R)momenta

to the total angular momentum ( �̂N), which is automat-

ically included in our pre-BO approach. We note that

the electronic, L, and rotational, R, angular momentum

quantum numbers are non-exact quantum numbers in

the full many-particle quantum treatment, but they are

useful labels to describe properties of a state with someN

total angular momentum quantum number.

Mátyus [70] gives a detailed account of the numerical

results in comparisonwith the best available results in the

literature: accurate adiabatic computations had been per-

formed by Kołos and Rychlewski for the e 3�+
u state [95],

and accurate BO calculations are available for the c 3�+
u
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Figure 3. Part of the spectrum of the complex-scaled Hamiltonian,H(θ)with θ ∈ [0.005, 0.065] for the X 1�+
g block [p = (−1)N , Sp =

(1 − p)/2, Se = 0] and for the b 3�+
u block [p = (−1)N , Sp = (1 + p)/2, Se = 1] with N = 0, 1, and 2 total spatial angular momen-

tum quantum numbers. The black triangles indicate the threshold energy of the dissociation continua corresponding to H(1)+H(1),
H(1)+H(2), and H(1)+H(3). [Reprinted with permission from E. Mátyus, J. Phys. Chem. A 117, 7195 (2013). Copyright 2013 American
Chemical Society.]

state from the same authors [96]. Mátyus [70] reported

the first computational results for rotational excitations

corresponding to the c 3�+
u electronic state, which can be

obtained only by accounting for the coupling of rotational

and electronic angular momenta (automatically included

in our method).

It is also important to note that the results reviewed

in the previous paragraphs provided accurate estimates

for the energies. In order to pinpoint the widths and the

related lifetimes, it will be necessary to optimise and/or

enlarge the basis (and parameter) set. For this purpose, it

will be necessary to develop a systematically improvable
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basis-set optimisation approach, perhaps relying on the

(complex) variational principle, which is applicable for

unbound states.

3. Molecular structure from quantum
mechanics

If the BO approximation is not introduced, the non-

relativistic limit can be, in principle, approached arbitrar-

ily close, and when relativistic and QED corrections are

also included, computations come close or even challenge

precision measurements. It is important to note how-

ever that the present-day theoretical foundations for the

structure of molecules relies on the BO approximation:

the molecular structure is identified with the equilibrium

structure, which is defined as a local minimum of the

potential energy surface. Interestingly, there is not avail-

able any rigorous and practical definition of the molecu-

lar structure independent of the BO approximation.3

In relation to the separation of the motion of the

electrons and the atomic nuclei, which is commonplace

in quantum chemistry, Hans Primas points out in his

book [97]:

We describe the six degrees of freedom of the ground
state of the helium atom (considered as 3-particle prob-
lemwith the centre-of-massmotion separated) as a prob-
lem of two interacting particles in an external Coulomb
potential. However, in the case of the molecule H+

2 we
discuss the very same type of differential equation in an
entirely different way, and split the 6 degrees of free-
dom into 1 vibrational mode, 2 rotational modes, and 3
electronic type degrees of freedom. This qualitatively dif-
ferent description does by nomeans follow from a purely
mathematical discussion.

Following this observation, we would like to study the

structure and possible structural changes within a series

of three-particle systems including H− = {e−, e−, e+} as
well as H+

2 = {p+, p+, e−}. At the same time, due to the

lack of any definition of the molecular structure beyond

the BO approximation, we may wonder how to study the

structure of a molecular system without introducing the

separation of the motion of the electrons and the atomic

nuclei?

Observables in quantum mechanics are computed as

the expectation value of the appropriate operator with the

wave function of the system. It is straightforward to cal-

culate expectation values of structural parameters with

the (all-particle) molecular wave function. However, it

is important to recognise that if we calculated the car-

bon nucleus-proton distance in an organic molecule, we

would obtain a single 〈�|rCH�〉 value [98–100] due to
the quantummechanical indistinguishability of identical

particles. Another insightful example originates from an

attempt to determine the structure of the H+
3 molecular

ion from an all-particle computation [98–100]. The cal-

culation of the single expectation value of the HHH

angle in H+
3 is not sufficient to distinguish between the

linear and triangular arrangements of the three pro-

tons, since the expectation, i.e. average value, 〈αHHH〉 =
〈�|αHHH�〉, would be the same either for a linear

〈αHHH〉 = (0o + 180o + 0o)/3 = 60o or for a triangu-

lar arrangement, 〈αHHH〉 = (60o + 60o + 60o)/3 = 60o

of the three protons.

Even if we considered the molecular Hamiltonian in

which the atomicmasses tend to infinity would not result

in the electronic Hamiltonian, Ĥel, for which we can

define the equilibrium structure, because the infinite-

mass limit leaves the nuclear position variables as multi-

plicative operators, whereas in Ĥel they are multiplicative

constants. Although considering the infinite mass limit

may result in useful approximations, it does not provide

us a direct mathematical link between the full molecu-

lar Hamiltonian, Ĥ in Equation (4), and the electronic

Hamiltonian, Ĥel in Equation (1)

The general problem of the reconciliation of the clas-

sical molecular structure theory with a full many-particle

quantum description has been recognised decades ago

and was referred to as themolecular structure conundrum

[101] (further relevant references include [101–104]).

3.1. Probabilistic interpretation of the wave

function

Claverie and Diner suggested in 1980 that appropri-

ate marginal probability density functions calculated

from the full wave function could be used to identify

molecular structural features in the full electron-nuclear

wave function [103]. In other words, structural param-

eters do not have sharp, dispersionless values, but they

are characterised by some probability density function.

This idea has been explored for the analytically solv-

able Hooke–Calogero model of molecules [105–108].

The atoms-in-molecule analysis has been extended to

the realm of electron-nuclear quantum theory [109,

110]. Most recently, it was demonstrated that the pro-

ton density in methanol obtained from an electron-

proton orbital computation (with fixed carbon and oxy-

gen nuclei) can bematched with the spatial configuration

obtained from a BO electron-structure calculation [111].

In addition, to the electronic and nuclear densities, flux

densities have also been considered in Refs. [112–114].

For the sake of the present discussion, we shall stay

with the analysis of (molecular) structure in terms of

probability density functions calculated from the full

wave function. Further general discussion of obtaining

the classical molecular structure from quantummechan-

ics is provided in Section 3.2. In what follows, one-
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and two-particle probability density functions [72,73] are

introduced which will be used for the structural analysis

later in this section. The probability density of selected

particles measured from a ‘centre point’ P fixed to the

body is

D
(n)
P,a1a2...an

(R1,R2, . . . ,Rn)

= 〈�|δ(ra1 − rP − R1)δ(ra2 − rP − R2) . . .

δ(ran − rP − Rn)|�〉 (48)

with Ri ∈ R3 and the three-dimensional Dirac delta dis-

tribution, δ(r). The centre point P can be the centre of

mass (denoted by ‘0’) or another particle. For a single

particle, this density function is

D
(1)
P,a(R1) = 〈�|δ(ra − rP − R1)|�〉 . (49)

For P = 0, D
(1)
0,a is the spatial density of particle a around

the centre of mass (‘0’), while for P = b, D
(1)
b,a measures

the probability density of the displacement vector con-

necting a and b.

Due to the overall space rotation-inversion symmetry,

D
(1)
P,a(R1) is ‘round’ forN=0, p=+1 and the correspond-

ing radial function is:

ρP,a(R) = D
(1)
P,a(R1) (50)

with R1 = (0, 0,R) and R ∈ R
+
0 . We normalise the den-

sity functions to one (so, they measure the fraction of

particles which can be found in an infinitesimally small

interval dR around R):

4π

∫ ∞

0
dRR2ρP,a(R) = 1. (51)

The probability density function for the included a–P–b

angle is obtained by integrating out the radii in the two-

particle density measured from a centre point P

ŴP,ab(α) =

∫ ∞

0
dR1R

2
1

∫ ∞

0
dR2R

2
2D

(2)
P,ab(R1,R2), (52)

with

D
(2)
P,ab(R1,R2)

= 〈�|δ(ra − rP − R1)δ(rb − rP − R2)|�〉 . (53)

The centre point, P, can be the centre of mass (P =

0) or another particle (P = c). Similarly to D
(1)
P,a(R1),

D
(2)
P,ab(R1,R2) is also spherically symmetric for wave

functions with N=0, p=+1, and its numerical value

depends only on the lengths R1 = |R1|, R2 = |R2|, and

the α included angle of the vectors R1 and R2 (for non-

zero lengths). We normalise the angle density according

to

8π2

∫ π

0
dα sinα ŴP,ab(α) = 1. (54)

In the next subsections, we continue with the study of the

structural features of few-particle (‘atomic’ and ‘molec-

ular’) quantum systems using the ‘radial’ and ‘angular’

probability density functions introduced in the previous

equations.

3.1.1. Numerical demonstration of the H− −→H+
2

transition

Following Hans Primas’ observation (Figure 4) Ref. [72]

studied the family of {a±, a±, b∓}-type three-particle

Coulomb interacting systems with two identical particles

and a third one. This family of systems is described with

the Hamiltonian

Ĥ(ma,mb, r) = −
1

2ma
�r1 −

1

2ma
�r2 −

1

2mb
�r3

+
1

|r1 − r2|
−

1

|r1 − r3|
−

1

|r2 − r3|
,

(55)

for various ma and mb mass values and unit charges.

(Note that theHamiltonian is invariant to the inversion of

the electric charges.) Furthermore, rescaling the masses

by a factor η is equivalent to scaling the energy and

shrinking the length by the factor η

Ĥ(ηma, ηmb, r) = ηĤ(ma,mb, ηr), ∀ η ∈ R \ {0}.
(56)

Thereby, it is sufficient to consider only thema/mb mass

ratio to obtain qualitatively different eigenfunctions of

Equation (55). It is also known that Ĥ(ma,mb, r) has at

least one bound state for allma/mb values [115,116].

To numerically study the H− → H+
2 transition, the

ground-state wave functions were computed in Ref. [72]

for several ma/mb values using the variational proce-

dure described in Section 2. Figure 5 shows the transi-

tion of the particle density, D
(1)
0a . It is interesting to note

Figure 4. For the three-particle He atom and for the three-
particle H+

2 molecular ion ‘we discuss the very same type of dif-
ferential equation in an entirely different way’ [97] in the standard
quantum chemistry approach.
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Figure 5. Transition of the ground-state particle density, D
(1)
0a , by increasing the ma/mb mass ratio in {a±, a±, b∓}-type systems [72].

The centre (0) of each plot is the centre of mass.

that the emergence of the particle shell is solely induced

by the increase of ma/mb [72,73], while the symmetry-

properties of the systems remain unchanged. All systems

are ‘round’ in their ground state with N=0 and p=+1.

In Ref. [72] the transition point was numerically esti-

mated to be between 0.4 and 0.8, which also suggests that

the positronium anion, Ps− = {e−, e−, e+}, has some

molecular character. The figure represents theH+
2 molec-

ular ion as a shell. We may wonder whether it is possible

to identify the relative position of the protons within

the shell. For this purpose the angular density function,

Ŵ0,pp′ , was calculated in Ref. [73], which demonstrated

that the protons are indeed found at around antipodal

points of the shell (remember that the centre of each

plot is the centre of mass). As to earlier theoretical work,

Kinsey and Fröman [117] and later Woolley [102] have

anticipated similar results by considering the ‘mass polar-

isation’ in the translationally invariant Hamiltonian aris-

ing due to the separation of the centre of mass (note that

the separation of the centre of mass is responsible also

for an important change of the spectral properties of the

Hamiltonian discussed in Section 1.4). Furthermore, the

proton shell has some finite width, which can be inter-

preted as the zero-point vibration in the BO picture.

Recent work [118–120] has elaborated more on the tran-

sition properties and vibrational dynamics of this family

of three-particle systems and determined the mass ratio

where the transition takes place more accurately.

3.1.2. Numerical example for a triangular molecule

In the particle density plots, larger molecules would

also be seen as ‘round’ objects in their eigenstates

with zero total angular momentum and positive par-

ity (N=0,p=+1), and localised particles form shells

around the molecular centre of mass. In order to demon-

strate a non-trivial arrangement of the atomic nuclei

within a molecule, the H2D
+ = {p+, p+, d+, e−, e−}

molecular ion was studied in Ref. [73]. Interestingly, the

qualitative features of the computed density functions

(see Figure 6) converged very fast, small basis sets and

Figure 6. Radial, ρab, and angular, Ŵa,bc , probability density functions computed for H2D
+ = {e−, e−, p+, p+, d+}.
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a loose parameterisation was sufficient to observe con-

verged structural features, whereas the energies were far

from spectroscopic accuracy.

Figure 6 summarises the particle-density functions

which highlight characteristic structural features of the

system. First, we can observe the delocalised electron

cloud (ρ0,e), the proton shell (ρ0,p), and the deuteron shell

(ρ0,d) around the centre of mass (0). The deuteron shell is

more peaked and more localised in comparison with the

proton shell. (Remember that these plots show the spher-

ically symmetric density along a ray, ρab, and the density

functions are normalised to one.)

Next, let’s look at the probability density functions for

the included angle, Ŵ0,ab, of two particles measured from

the molecular centre of mass (‘0’). The dashed line in

the plots shows the angular density corresponding to a

hypothetical system in which the two particles (a and

b) are independent. It is interesting to note that for the

two electrons Ŵ0,ee′ shows very small deviation from the

(uncorrelated system’s) dashed line. At the same time,

we see a pronounced deviation from the dashed line for

the nuclei, Ŵ0,pp′ and Ŵ0,pd. These numerical observa-

tions are in line with Claverie and Diner’s suggestion

based on theoretical considerations [103] that molecular

structure could be seen in an fully quantum-mechanical

description as correlation effects for the nuclei.

As to the included angle of the two protons and

the deuteron, the Ŵd,pp′ probability density function

has a maximum at around 60 degrees, which indi-

cates the triangular arrangement of the nuclei. Due to

the almost negligible amplitude of Ŵd,pp′ at around 180

degrees the linear arrangement of the three nuclei (in

the ground state) can be excluded. Thus, the structure

of H2D
+ derived from our pre-BO numerical study

is in agreement with the equilibrium structure (equi-

lateral triangle) known from BO electronic-structure

computations.

3.2. Classical structure from quantummechanics

Relying on the probabilistic interpretation of quantum

mechanics, the structure of H+
2 was visualised as a pro-

ton shell (Figure 5) with the protons found at around the

antipodal points, and H2D
+ was seen as a proton shell

and a deuteron shell within which the relative position of

the three nuclei is dominated by a triangular arrangement

(Figure 6). This analysis has demonstrated that elements

of molecular structure can be recognised in the appro-

priate marginal probability densities calculated from the

full electron-nuclear wave function. At the same time,

a chemist would rather think about H+
2 as a (classical)

rotating dumbbell (Figure 7) and H2D
+ as a (nearly)

equilateral triangle. Although elements can be recognised

Figure 7. Quantum vs. classical structure of molecules: superpo-
sition or rotating dumbbell.

in the probability density functions, the link to the clas-

sical structure which chemists have used for more than a

century to understand and design new reaction pathways

for new materials, is not obvious [97,99,100,102,121,

122].

In the next couple of paragraphs we briefly outline a

promising direction which can offer a resolution to this

puzzle. We collect the most relevant aspects and ideas,

whereas their detailed exploration is left for future work

in this field. In order to recover the classical molecular

structure from a fully quantum mechanical treatment, it

is necessary to obtain for a molecule

(a) the shape;

(b) the handedness: chiral molecules are found exclu-

sively in their left- or right-handed version or in a

classical mixture (called racemic mixture) of these

mirror images but ‘never’ in their superposition;

(c) the individual labelling of the atomic nuclei (distin-

guishability).

Although it is possible to write down appropriate lin-

ear combinations (wave packets) of eigenstates of the full

Hamiltonian, which satisfy these requirements at cer-

tain moments, we would like to recover these proper-

ties as permanent molecular observables. (Most recently,

Grohmann and Manz [123] have pointed on the fact

that it is impossible to form localised superpositions of

quantum states of molecular rotors, which would coin-

cide with our (semi)classical picture of methyl groups,

due to the different spin part corresponding to the

spatial functions which would be necessary for these

superpositions.)

A possible resolution of the quantum-classical molec-

ular structure puzzle will start out from the description

of the molecule as an open quantum system being in

interaction with an environment [124,125]. According

to decoherence theory pointer states are selected by the

continuous monitoring of the environment. As a result,

the system’s reduced density matrix (after tracing out the

environmental degrees of freedom from the world’s den-

sity matrix) written in this pointer basis evolves in time
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so that its off-diagonal elements decay exponentially with

some decoherence time, characteristic to the underlying

microscopic interaction process with the environment

(radiation or matter). This decay of the off-diagonal

elements leads to the suppression of the interference

terms between different pointer states, and results in a

(reduced) density matrix the form of which corresponds

to that of mixed states. Hence, this result can be inter-

preted as the emergence of the classical features in a

quantummechanical treatment.4 So, decoherence theory

allows us to identify pointer states, which are selected and

remain stable as a result of themolecule’s interactionwith

its environment.

It is interesting to note that importantmolecular prop-

erties (shape, handedness, atomic labels) break the fun-

damental symmetries of an isolated quantum system: the

rotational and inversion symmetry, as well as the indis-

tinguishability of identical particles. It remains a task to

explore on a detailed microscopic level how and why

these broken-symmetry states become pointer states of

a molecular system.

(a) Shape. Following the pioneering studies which have

identified pointer states and confirmed their stability

upon translational localisation [126–128] Ref. [129]

provides a detailed account of the rotational deco-

herence of mesoscopic objects induced by a photon-

gas environment or massive particles in thermal

equilibrium. The qualitative conclusions are similar

for the two different environments, but there are dif-

ferences in the estimated decoherence time and its

temperature dependence differ for the two environ-

ments. Orientational localisation of the mesoscopic

ellipsoid takes place only if there are at least two

directions for which the electric polarisabilities are

different, and coherence is suppressed exponentially

with the angular distance between two orientations.

(b) Handedness. As to the chirality of molecules, the

superselection phenomenon has been demonstrated

in Ref. [130] by using a master equation [131] which

describes the incoherent dynamics of the molec-

ular state in the presence of the scattering of a

lighter, thermalised background gas. Experimental

conditions are predicted under which the tunnelling

dynamics is suppressed between the left and right-

handed configurations of D2S2.

(c) Individual labelling of the atomic nuclei. Concerning

the distinguishability of atomic nuclei, it remains a

challenge to work out the detailed theoretical equa-

tions and to estimate the experimental conditions

under which the individual labelling of quantum

mechanically identical atomic nuclei (e.g. protons)

emerges.

4. Summary, conclusions, and future challenges

The direct solution of the full electron-nuclear Schrö

dinger equation, without the introduction of any kind

of separation of the electronic and the nuclear motion,

makes it possible to approach the non-relativistic limit

arbitrarily close. We call this approach to the molec-

ular problem pre-Born–Oppenheimer (pre-BO) theory

in order to emphasise that the usual BO separation is

avoided. The article presented details of our pre-BO com-

putational method, which we call QUANTEN (QUAN-

Tum mechanical treatment of Electrons and atomic

Nuclei), using explicitly correlated Gaussian functions

and the stochastic variational method with relevant cita-

tions to the pioneers of these computational techniques

[18,19,38].

We have reviewed numerical results obtained for sev-

eral bound and a couple of unbound states of three- and

four-particle systemswith various quantumnumbers and

with sub-spectroscopic accuracy in the energy. Although

these computations are very demanding, they will allow

us to test the results provided by more efficient, effective

Hamiltonians obtained for example from non-adiabatic

perturbation theory [92]. It is also interesting to notice

that rovibrational states bound by an excited electronic

state within the BO approximation are obtained as reso-

nances within a pre-BO treatment with direct access to

not only the energy but also to the finite predissocia-

tion lifetime of the state (due to rovibronic couplings).

Numerical results demonstrating this ideawere discussed

for the hydrogen molecule.

At the moment, larger (polyatomic) systems can be

addressed with a much reduced accuracy (in the energy)

with the various existing pre-BO methods. Indeed, it

has been an open problem for many years to define

efficient basis functions and/or parameterisation strate-

gies which make a pre-BO treatment amenable for poly-

atomics with (sub-)spectroscopic accuracy. As soon as

polyatomic pre-BO computations of (sub-)spectroscopic

accuracy will become possible (even if only a few states

of selected non-relativistic quantum numbers can be

computed), rigorous variational benchmark values will

become available to the effective non-adiabatic theories,

which can be efficiently used to compute all rovibra-

tional (rovibronic) bound and many resonance states.

At the moment results of these effective non-adiabatic

computations can be compared only with experimen-

tally measured spectroscopic transitions for which rela-

tivistic (and probably also some QED) correction must

be included, which would also need to be validated.

Already at the present stage and possibilities of pre-

BO theory, less accurate computations of polyatomic

molecules shed light to a long-standing problem: the
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reconstruction of the chemist’s (classical) molecular

structure form a fully quantum mechanical description.

We reviewed computational results, which allowed us to

identify elements of the molecular structure from the

full electron-nuclear wave function by inspecting and

finding local maxima of appropriately defined marginal

probability density functions.

We believe that this, currently less common, route

to describe molecular systems, i.e., an equal quantum

mechanical treatment of electrons and atomic nuclei,

opens up great possibilities and also sets outstanding

challenges for future theoretical work and for applica-

tions in comparisonwith the latest experimental develop-

ments. To conclude this article, we highlight three impor-

tant directions to motivate further work in this old-new

field of molecular quantum mechanics:

(1) Fully quantummechanical developments for precision

spectroscopy of small molecules The comparison of

precision measurements and highly accurate molec-

ular computations for small and lightmolecules con-

tributes to the testing of fundamental physical con-

stants, e.g. the proton-to-electronmass ratio, the fine

structure constant, or to pinpoint fundamental phys-

ical quantities, such as the proton radius, and to

test fundamental physical theories [132,133]. For a

meaningful comparison, it ismandatory to be able to

solve the non-relativistic Schrödinger equation very

accurately for several (bound and unbound) states of

di- and polyatomic molecules and to account for the

relativistic as well as QED effects.

(2) A hierarchy of approximate pre-BO methods The

idea of including the atomic nuclei in the quantum

mechanical treatment of the electrons has been pur-

sued in order to develop a systematically improvable,

hierarchy of approximate pre-BO methods [23–29,

134,135]. An appealing feature of a pre-BO treat-

ment is that it allows us to avoid the computation and

fitting of the potential energy surface(s) and non-

adiabatic coupling vectors (for multiple electronic

states). At the moment, it appears to be technically

and computationally extremely challenging to devise

a practical, accurate, and systematically improvable

hierarchy of approximate electron-nuclear methods

applicable to larger, polyatomic molecules. Recently,

a combination of electronic structure and quantum

nuclear motion theory has been suggested [30,136],

which aims to combine the best of the two worlds in

a practical manner.

(3) Chemical observables from a fully quantum mechan-

ical treatment The definition of molecular struc-

ture within a fully quantum mechanical (pre-BO)

description of molecules remains to be an unsettled

problem [97,99,100,102,121,122] either for a numer-

ically ‘exact’ or an approximate treatment. Certainly,

the probabilistic interpretation of the molecular

wave function and the study of appropriate marginal

probability densities provide useful pieces of infor-

mation about the structure of a molecule. In order

to arrive at a quantum molecular theory, in which

the molecule is treated quantum mechanically as

a whole, and at the same time the known chemi-

cal concepts are restored from the theoretical treat-

ment, it is necessary to re-establish the shape, the

handedness, and the individual labelling of the iden-

tical atomic nuclei. Interestingly, these important

chemical properties break the fundamental symme-

tries of an isolated quantum system. The application

of decoherence theory with realistic microscopic

models for molecules offers a reasonable starting

point for the reconstruction of these known classical

chemical properties. The estimation of decoherence

time for various environments and interactions has

relevance for the practical realisation of quantum

control and quantum computing experiments with

molecules.

Notes

1. We use the spectroscopists’ notation [137] for the total
angular momentum quantum number, N, instead of L that
is commonly used in the physics literature.

2. The term “spectroscopic accuracy” is not uniquely defined
but it is usually used to refer to computations providing
vibrational transition wave numbers with an uncertainty
better than 1 cm−1 (≈ 4.6µEh) and even higher accuracy
for rotational transitions.

3. For example, the IUPAC’s Compendium of Chemical Ter-
minology (‘Gold Book’) [138] defines the equilibrium
geometry in terms of a potential energy surface, but we
do not find anything beyond the BO approximation, apart
from the definition of the primary, secondary, etc. struc-
tures of macromolecules. Interestingly, themolecular shape
is defined in the Compendium.

4. There is an unsettled discussion concerning the mixed
states of open quantum systems in terms of proper vs.
improper mixtures, which is related to the quantum mea-
surement problem [139,140].
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Selected states of the EF 1�+
g electronic manifold of the hydrogen molecule are computed as resonances

of the four-body problem. Systematic improvement of the basis representation for the variational treatment is
achieved through an energy-tracking optimization procedure. The resulting nonrelativistic energy is converged
within a few nano-Hartree, while the predissociative width is found to be negligible at this level of accuracy. The
four-particle nonrelativistic energies are appended with relativistic and quantum electrodynamics corrections
which close the gap between the experimental observations and earlier theoretical work.
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The lowest-energy rotational and vibrational states of the
ground electronic state of the hydrogen molecule have re-
ceived much attention over the past decade. We have wit-
nessed several orders of magnitude improvement in terms
of accuracy and precision in both experimental [1–4] and
theoretical [5,6] frontiers of molecular physics.

The hydrogen molecule has several electronically excited
states, and many of them are very interesting on their own,
e.g., the famous double-well features caused by avoided cross-
ings. The rovibronic level structure is dominated by nonadia-
batic interactions among the states which are not yet fully,
quantitatively understood. Meanwhile, many of these elec-
tronically excited states have been measured experimentally
to high precision [3,7], and rovibronic states corresponding
to electronic excitations, e.g., the EF and GK 1�+

g mani-
folds, have been used in excitation sequences, resulting in
ultraprecise dissociation energy of the lowest rovibrational
levels of the ground electronic state [2–4]. Therefore, it is
not only of purely theoretical interest to aim for a better
and more complete theoretical description of electronically
excited states of the hydrogen molecule. In particular, the
entire dynamical range of molecular hydrogen, which has
already been experimentally studied, spans a 130 000 cm−1

broad energetic and a 15-bohr-broad structural (proton-proton
separation) range and includes a very large number of sharp
spectral transitions which can be measured to high precision.
For this reason, we think that the computation of a variety of
these rovibronic states would offer an excellent testing ground
for the numerous small effects, which have been identified
during the study of the ground state of H2; see, for example,
Ref. [6]. The present work cannot aim to include all these
effects at once, but we wish to provide a good starting point
by significantly improving upon earlier theory for the selected
states.

H2 has several challenging excited states, some of them are
bound even in the four-body treatment, e.g., the rovibronic
levels of B 1�+

u . In the present work, we will look at the first

*matyus@chem.elte.hu

electronically excited state beyond the ground state, which
is the EF 1�+

g state. The Born-Oppenheimer (BO) potential
energy curve of EF 1�+

g shows a double-well feature due to
an avoided crossing with the nearby GK 1�+

g state (Fig. 1).
In a pre-Born-Oppenheimer (pre-BO) description [8–10], all
nonadiabatic couplings and effects are automatically included,
so we will not use potential energy curves or coupling vectors
in the computations, but the curves are useful to look at and
we will continue to use the electronic state labels to have a
short description and reference for the computed four-particle
states. Since all nonadiabatic couplings are included, also the
coupling with the X 1�+

g (ground) state continuum is present
(we cannot separate it), and thus the EF states can only be
obtained as resonances within the four-body problem [9]. The
lower energy vibrations of EF have been estimated to have
a very long predissociative lifetime (much longer than their
radiative lifetime) due to their very weak coupling to the
dissociation continuum of the X 1�+

g ground electronic state
[9,11].

The nonadiabatic manifold, which includes also the EF

state, was computed by Yu and Dressler [12] by explicitly
coupling nine electronic states. Yu and Dressler used accurate
potential energy curves and nonadiabatic coupling vectors,
and their nine-state computation resulted in rovibronic term
values within 0.1–20 cm−1 of experiment. This nine-state
computation was a significant improvement upon the earlier
five-state study of Quadrelli et al. [11], which showed a
larger, 1.3–120 cm−1 deviation from the experimental results.
As pointed out by Hölsch et al. recently [7], performing a
nonadiabatic computation with more than nine fully coupled
electronic states for this system is not obvious (one would
need to include many more electronic states and probably
also the interaction with the H2

+ + e− ionization continuum)
but extension of nonadiabatic perturbation theory could be
possible. The effective Hamiltonian for the quantum nuclear
motion over coupled electronic states which perturbatively
accounts for the effect of the distant electronic states (not
included in the fully coupled electronic band) has been re-
cently formulated [13] following Refs. [14,15] and its numer-
ical application, by generalizing the computational approach

2469-9926/2019/100(2)/020501(5) 020501-1 ©2019 American Physical Society
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FIG. 1. Born-Oppenheimer potential energy curves for singlet
gerade states of H2 compiled from Refs. [28,42–44]. The ground-
state curve of H+

2 [45] is also shown. The present work is concerned
with rovibronic states which can be assigned to the EF 1�+

g elec-
tronic state.

developed for a single-state nonadiabatic Hamiltonian
[16–19], should soon follow.

However, benchmark energies and wave functions are
best obtained from the direct solution of the four-particle
Schrödinger equation. Some time ago [9], one of us iden-
tified rovibronic resonances in pre-BO computations, also
from the EF manifold, by using symmetry-adapted, explic-
itly correlated Gaussian (ECG) basis functions optimized
for bound states. The global-vector representation [20,21] of
ECGs made it possible to have a general basis set for N � 0
total angular momentum quantum number. At that time, a
systematic improvement scheme of the basis representation
for resonances was not available, which made it difficult
to assess the accuracy of the results. Although a complex
analog of the real variational principle exists for the complex-
coordinate rotated (CCR) Hamiltonian [22], the practical uti-
lization of this complex variational principle for basis function
optimization is not straightforward (of course, its utility for
computing the energy and the width for a given basis set
is well established). In this work, we propose a practical
approach inspired by the stabilization method [22–24], which
will be useful for the systematic improvement of the basis set
for long-lived resonance states that are only weakly coupled
to the continuum.

It is well known that basis functions can be optimized for
the nth excited bound state by minimizing the nth eigenvalue
of the Hamiltonian matrix [20,25]. If we used this procedure
to minimize the energy of a resonance (by picking the nth
eigenstate in a starting basis set, which is beyond the dis-
sociation threshold and resembles most the resonance to be
computed), then, after a few basis refinement cycles, discrete
representations of the continuum would start to accumulate in
our energy list and we would end up minimizing the energy
converging to the dissociation threshold. In order to avoid this
minimization “collapse,” we do not focus on the nth state
but we define an energy threshold, ε, the energy of which
is slightly smaller than the exact energy of the state we are
looking for. (This value can be estimated and does not need to
be a very tight estimate. In practice, we use the experimental
term to set a loose lower bound.) We use this energy-tracking
procedure to optimize the basis representation for the selected
rovibronic state by minimizing the energy of the first state
above the ε energy threshold. It is important to add that the
energy tracking (in its simplest form) works for long-lived
resonances, which couple to the continuum only weakly, and
the energy of which in increasing but finite basis sets stabilizes
over many iteration cycles. During the refinement cycles,
discrete representations of the continuum may drop in our
energy list, but we track and minimize the energy of that
state which is the lowest above our ε threshold. We use this
procedure only to optimize the basis functions. Following
the basis optimization, we studied resonance features using
the complex-coordinate rotation (CCR) technique [22] and its
pre-BO implementation in Ref. [9]. The point at which the
CCR trajectories stabilize in the complex energy plane defines
the full (complex) molecular wave function of the resonance
(the complex energy and the CCR angle). This complex wave
function can then be used to compute relativistic and quantum
electrodynamics (QED) corrections, using the CCR form of
the correction operators, to obtain the relativistic and QED
corrections for both the energy and the width (lifetime) [26].

Now, we focus our attention to the computation of the ro-
tational excitations, with N = 0, 1, 2, 3, 4, and 5 total angular
momentum quantum numbers, of the lowest-energy vibration
in the inner well of the EF 1�+

g electronic state. The inner-
well ground vibrational state was labeled with E0 in Ref. [12],
so we will use E0N for the N th rotational excitation of this
state. We can access these states by choosing the appropriate
nonrelativistic quantum numbers, which are listed in the cap-
tion to Table I, and by defining the ε energy threshold for the
energy-tracking procedure, which we set to ca. 10–20 cm−1

lower than the energy estimated from the experimental term
value. Using the QUANTEN computer program [8–10] (see also
the Supplementary Material [27]), we optimized, in repeated
refinement cycles, a starting basis set which was compiled
from the extensive bound-state optimization work of Ref. [9].
In retrospect, we can confirm that the largest basis set of
Ref. [9] gives EF energies accurate within ca. 10 nEh, which
we can estimate now from the convergence pattern and be-
havior of the states upon the systematic refinement of the
basis set.

In Table I, we list the nonrelativistic energy values op-
timized in the present work (E (2) column), which are es-
timated to be within a few times 1 nEh = 10−9 Eh of the
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TABLE I. Variational, nonrelativistic four-particle energy, in Eh,
corresponding to the N = 0, 1, ..., 5 rotational states of the ground
vibrational state in the inner well, E0N , of the EF 1�+

g electronic
state of H2 = {e−, e−, p+, p+}. The term values, in cm−1, are given
with respect to the rovibronic ground state. To obtain these singlet
(Se = 0) states, the parity and the proton spin were chosen to be p =

(−1)N and Sp = (1 − p)/2, respectively. The E (2) nonrelativistic
energy is estimated to be converged within a few nano-Hartree.

N E (2) T (2)a �T (2)
o-c

b �T (2)
o-c [12]

0 −0.712 197 577 99164.664 0.123 0.320
1 −0.711 908 569 99228.094 0.124 0.321
2 −0.711 332 945 99354.429 0.128 0.304
3 −0.710 475 421 99542.633 0.133 0.312
4 −0.709 342 932 99791.186 0.138 0.32
5 −0.707 944 454 100098.116 0.145 0.33

aT (2) = E (2) − E (2)(X00), where the ground-state, nonrelativistic en-
ergy is E (2)(X00) = −1.164 025 031 Eh [6].
b�T (2)

o-c = To − T (2)
c deviation of the observed (o) and computed (c)

term values, where To is taken from Ref. [41].

exact, nonrelativistic value. The nonrelativistic term values,
the difference of the E0N energies and the nonrelativistic
energy of the ground state (X00), reduce the 0.3 cm−1

deviation of the nine-state nonadiabatic computation of Yu
and Dressler [12] to 0.1 cm−1and confirm their electronic
energy error estimate. Yu and Dressler also estimated the
relativistic and QED corrections to be ca. 0.08 cm−1 for
the E0N-X00 terms. This is an average value for the states
with different rotational quantum numbers and was compiled
from the expectation value of the Breit-Pauli Hamiltonian
with the electronic wave function at R = 1.9 bohr [28] and
the QED correction of H2

+ [29] at the R = 1.9 bohr proton-
proton distance, which is near the effective structure of
the E00 state. If we correct our nonrelativistic term values
with these estimates, then the deviation from experiment
reduces to (0.035,0.036,0.040,0.045,0.050,0.057) cm−1 for
N = 0, 1, 2, . . . , 5, respectively.

We would like to have a more complete account for the
relativistic and QED effects and also to possibly know the N

dependence of the correction. For this purpose, we compiled
data from the literature [30] and carried out additional com-
putations using the nonrelativistic, pre-BO wave functions
computed in the present work. The relativistic, leading, and
higher order QED effects (we have explicitly considered
estimates up to the so-called mα7 terms) are calculated as
perturbative corrections using the nonrelativistic energy and
wave function, E (2) and ψ , in terms of increasing orders of
the fine-structure constant, α,

E (2..7) = E (2) +

5
∑

k=2

αk〈ψ |H(k+2)|ψ〉, (1)

where the H(k+2) operators are reproduced from the liter-
ature in the following paragraphs (with the usual meaning
of the symbols and operators, the details can be found in
the corresponding references). The underlying integrals, to
be described in the following paragraphs, are evaluated so
that the uncertainty of each correction term is better than
0.001 cm−1.

TABLE II. Perturbative relativistic and QED corrections up to
estimates for mα7 (see text), in cm−1, to the E0N-X00 term values
of H2 reported in Table I. The relativistic and QED corrections are
estimated to be accurate within 10−3 cm−1, which results an overall
uncertainty estimate ±0.005 cm−1 for T (2...7).

N δT (4)a δT (5)b δT (6..7)c δT (4..7)d T (2..7)e �T (2..7)
o-c

f

0 0.475 −0.351 −0.0027 0.122 99 164.786 0.001
1 0.478 −0.351 −0.0027 0.124 99 228.217 0.001
2 0.482 −0.352 −0.0027 0.127 99 354.557 0.001
3 0.488 −0.353 −0.0027 0.132 99 542.764 0.000
4 0.496 −0.355 −0.0027 0.138 99 791.326 0.000
5 0.506 −0.357 −0.0028 0.146 100 098.265 −0.001

aRelativistic correction.
bLeading QED correction.
cδT (6..7) = δT (6) + δT (7) higher order QED corrections estimated by
the dominant contributions to the one-loop term.
dδT (4..7) = δT (4) + δT (5) + δT (6) + δT (7).
eT (2..7) = T (2) + δT (4..7).
f�T (2..7)

o-c = To − T (4..7) deviation of the observed (o) and computed
(c) term values, where To is taken from Ref. [41].

To calculate the (spin-independent) relativistic correction,
we have started out from the expectation value of the Breit-
Pauli Hamiltonian (of the electrons) [31,32]

H
(4) = −

1

8

(

p4
1 + p4

2

)

+
π

2

2
∑

i=1

4
∑

a=3

δ(ria)

+ πδ(r12) −
1

2

[

p1
1

r12
p2 + p1 · r12

1

r3
12

r12 · p2

]

,

(2)

where the electrons are labeled with 1 and 2, while the protons
are labeled with 3 and 4. Wolniewicz already calculated the
expectation value of H(4) with the electronic wave function
along a series of nuclear separations [30,33]. We obtained
the relativistic correction to each E0N state by evaluating
the expectation value of the BO relativistic correction curve
(represented with polynomial fits) with the pre-BO wave
functions. To obtain the term corrections, δT (4) (Table II),
we used the relativistic correction value, −1.652 cm−1, of the
X00 ground state derived from a similar level of theory [32].
Note that this value is 0.002 cm−1 smaller than the correction
calculated directly with the Breit-Pauli Hamiltonian of the
electrons and protons and the four-particle wave function of
the X00 state [5], which will have to be accounted for when
we estimate the uncertainties of the present results.

The leading QED contribution (to the electronic part of the
problem) [31,34–36] is

H
(5) =

4

3

[

19

30
− 2 ln α − ln K

] 2
∑

i=1

4
∑

a=3

δ(ria)

+

[

164

15
+

14

3
ln α

]

δ(r12) −
7

6π
P
(

1/r3
12

)

(3)

which we evaluated with accurate electronic wave functions
along a series of nuclear configurations. The ln K nonrel-
ativistic Bethe logarithm was also treated within the BO
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approximation similarly to that in Ref. [37]. The ln K (R)
values for the EF electronic state were approximated with
the ln K (R) function of the ion core of EF , so we could
use the accurate ln K (R) values of (the lowest electronic
state of) H2

+ computed by Korobov [25,38]. The Dirac δ

terms containing the electron-proton and electron-electron
displacement vectors were obtained similarly to the Darwin
terms of the relativistic correction, i.e., by computing the
expectation value of the R-dependent correction curves with
the pre-BO wave function for each N . The last term in Eq. (3)
is the Araki-Sucher (AS) correction, which we computed for
the EF state in the present work using accurate electronic
wave functions (obtained within the BO module of QUANTEN

using floating ECGs [16,17]) and the integral transformation
technique [39]. The AS correction to each E0N state was
obtained as the expectation value of the correction curve with
the four-particle wave function and was found to be an order
of magnitude smaller, −0.001 cm−1, than the correction for
the ground state, −0.013 cm−1 [6,36]. By summing up all
these contributions, we obtain the leading QED correction to
the energy, which changes from 0.385 to 0.379 cm−1 as N

increases from 0 to 5. To calculate the δT (5) leading QED term
corrections listed in Table II, we used the 0.736 cm−1 value of
the ground state compiled from Refs. [6,32].

Higher order QED corrections were estimated at the one-
loop level by retaining only those terms which give the
dominant corrections at these orders [6,37,40]

H
(6)
est = π

(

427

96
− 2 ln 2

) 2
∑

i=1

4
∑

a=3

δ(ria), (4)

H
(7)
est = −4 ln2 α

2
∑

i=1

4
∑

a=3

δ(ria). (5)

While the H
(6)
est contribution to the E0N-X00 term values is

−0.003 cm−1, the H
(7)
est changes the terms by as little as 2 ×

10−4 cm−1, which is negligible given the uncertainty of the
current evaluation of the relativistic and QED integrals.

The overall δT (4..7) contribution (Table II) of the rel-
ativistic, leading, and higher order QED effects increases
from 0.122 to 0.146 cm−1 upon the increase of N = 0 to
5. The resulting T (2..7) term values for N = 0, . . . , 5 show
±0.001 cm−1 deviations from the experimental values of
Ref. [41], which is better (probably fortuitous) than the un-
certainty of the present theoretical values, which are thought
to be accurate within about ±0.005 cm−1.

The experimental values of Ref. [41] are more precise
than our theoretical results, and the additional significant

digits surely hide interesting physics, so theory should aim
for further improvements. In order to help future work, we
close this article with commenting on the possible sources of
uncertainties in our work.

First of all, the nonrelativistic energy was obtained in a
variational procedure (stabilized for long-lived resonances),
and systematic improvement of this value is rather straightfor-
ward. The convergence pattern observed in repeated rounds
of refinement cycles suggests that the nonrelativistic energy,
E (2), is converged within 0.000 5 cm−1. Assessment of the
uncertainty of the relativistic and QED corrections is more
delicate. In light of the developments of recent years for the
rovibronic ground state [5,6,32,40], we think that the largest
source of error in our work must be due to the relativistic
recoil effect, on the order of a few 10−3 cm−1, which in
simple terms means that (at least) the relativistic corrections
should be computed using the full electron-nucleus Breit-
Pauli Hamiltonian and the four-particle wave functions [5,6].
Then, in order to pinpoint one or two more digits in the
calculations, the current approximations used for the nonrela-
tivistic Bethe-logarithm term will have to be checked and the
contribution of the neglected terms in the higher order QED
corrections (in particular, the full mα6 contribution of H(6))
will have to be elaborated.

In the usual perturbative manner, relativistic quantum elec-
trodynamics (and possibly beyond) is adapted to molecular
computations, it is necessary to evaluate and sum several,
small (and often not so small) contributions (of different
signs) on top of a direct, variational, nonrelativistic computa-
tion. We think that the extremely rich excited state, rovibronic
level structure of the hydrogen molecule (Fig. 1) offers an
excellent opportunity to challenge and cross-check the the-
oretical and computational procedures both in terms of the
completeness of the physical description and regarding the
error balance of possible uncertainties and inaccuracies. The
present work demonstrates that electronically excited states
of H2 can be theoretically described to high precision and,
with further improvements, they will provide equally useful
and complementary information to the study of the ground
electronic state.
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ABSTRACT

The mass-correction function is evaluated for selected excited states of the hydrogen molecule within a single-state nonadiabatic treatment.
Its qualitative features are studied at the avoided crossing of the EF with the GK state and also for the outer well of the HH̄ state. For the HH̄
state, a negative mass correction is obtained for the vibrational motion near the outer minimum, which accounts for most of the deviation
between experiment and earlier theoretical work.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5109964., s

I. INTRODUCTION

This work represents the first steps toward a fully coupled
nonadiabatic calculation of the EF − GK −HH̄-, etc., singlet-gerade
manifold of H2 including the formerly neglected mass-correction
terms which appear in the multistate, effective nonadiabatic Hamil-
tonian recently formulated.1 Relying on the condition of adiabatic
perturbation theory2 that the electronic band must be separated
from the rest of the electronic spectrum by a finite gap over the
relevant dynamical range, already a single-state treatment deliv-
ers insight into the extremely rich nonadiabatic dynamics of
electronically excited hydrogen. Motivated by these ideas and after
careful inspection of the singlet-gerade manifold, we have selected
the lower-energy region of the EF 1

Σ
+
g and the outer well of the

HH̄ 1
Σ
+
g state (Fig. 1), often labeled H̄, for a single-state nonadiabatic

study. After a short summary of the theoretical and computational
details, we present the nonadiabatic mass curves and discuss them in
relation to earlier theoretical and experimental work.

II. THEORETICAL AND COMPUTATIONAL DETAILS

A. Summary of the theoretical background

Let us start with the electronic Schrödinger equation,

Ĥelψa = Eaψa, (1)

including the electronic Hamiltonian (in Hartree atomic units)

Ĥel = −1
2

Nel∑
i=1

Δri +
Nel∑
i=1

Nel∑
j>i

1

∣ri − rj∣ −
Nel∑
i=1

N∑
k=1

Zk∣ri − Rk∣ +
N∑
k=1

N∑
l>k

ZkZl∣Rk − Rl∣
(2)

with the ri electronic and the Rk nuclear coordinates and Zk nuclear
charges. In order to approximate the rovibronic energies of the
full, electron-nucleus Schrödinger equation accurately, it is neces-
sary to go beyond the Born–Oppenheimer (BO) approximation. In
the present work, we explore the selected states within a single-state
nonadiabatic treatment, using the second-order, effective Hamil-
tonian which had been formulated and reformulated in different
contexts3–7 and most recently reproduced as a special case of the
multistate effective Hamiltonian.1 The single-state Hamiltonian has
already been used for the ground electronic state of several diatomic
molecules,8–12 in an approximate treatment of the water molecule,13

and in example single-point computations for polyatomics7 (for a
detailed reference list see Ref. 10).

The second-order or ε2 effective Hamiltonian for the quantum
nuclear motion over a selected “a” electronic state is

Ĥ
(2)
aa = 1

2

3N∑
i=1

3N∑
j=1

(−iε∂i)(δij − ε2Maa,ij)(−iε∂j) + ε2Ua + Ea, (3)
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FIG. 1. Single-state nonadiabatic treatment for the lower-energy part of the EF 1
Σ
+
g

electronic state, highlighted in red. The results are also obtained within the single-
state nonadiabatic framework for the outer well of the HH̄ 1

Σ
+
g electronic state,

which is highlighted in blue (see also Table I). The Born–Oppenheimer potential
energy curves shown in the figure were compiled from Refs. 33–37.

where ε2 is the electron-to-nucleus mass ratio, and in particular, for
the H2 molecule in atomic units, it is ε2 = 1/mp. ∂ i = ∂/∂Rkα where
i = 3(k − 1) + α [k = 1, . . ., N, α = 1(x), 2(y), 3(z)] is the partial
derivative with respect to the nuclear coordinates.

Besides the nuclear kinetic energy (with constant mass)

and the Ea electronic energy, Ĥ
(2)
aa contains the diagonal

Born–Oppenheimer correction (DBOC),

ε
2
Ua = ε2 1

2

3N∑
i=1

⟨∂iψa∣∂iψa⟩, (4)

and the mass correction tensor,

ε
2
Maa,ij = ε22⟨∂jψa∣Ra∣∂iψa⟩

= ε22⟨∂jψa∣(Hel − Ea)−1(1 − Pa)∣∂iψa⟩, i, j = 1, . . . 3N,
(5)

where the electronic energy, Ea, and the electronic wave function,
ψa, are obtained from solving the electronic Schrödinger equation
[Eq. (1)]. For a better understanding of the numerical results, it will
be important to remember the appearance of the reduced resolvent,
Ra = (Hel − Ea)−1(1 − Pa) with Pa = |ψa⟩⟨ψa| in the expression of
the mass correction tensor. The “effect” of the outlying electronic

states on the quantum nuclear dynamics is accounted for through
this reduced resolvent. In addition, note that the term containing
Maa ,ij in Eq. (3) is indeed O(ε2), since we do not assume small
nuclear momenta, hence the action of p̂i = −iε∂i on the nuclear wave
function creates an O(1) contribution [instead of O(ε)] (for more
details, see, for example, Ref. 1).

The general transformation of the second-order nonadiabatic
kinetic energy operator for an N-atomic molecule—first term in
Eq. (3)—to curvilinear coordinates was worked out in Ref. 10.
The special transformation for a diatomic molecule described
with spherical polar coordinates, (ρ, Ω), which we are using in
the present work, had been formulated earlier.3,6,8,14 Hence, the
effective, nonadiabatic, single-state Schrödinger equation for the
hydrogen molecule with J rotational angular momentum quantum
number is

[− ∂

∂ρ

1

mp
(1 − (Aa)ρρ

mp
) ∂

∂ρ
+
J(J + 1)
mp ρ2

(1 − (Aa)ΩΩ

mp
)

+
1

mp
Ua(ρ) + Va(ρ)]ϕJ(ρ) = EJϕJ(ρ) (6)

with the volume element dρ. The (Aa)ρρ and (Aa)ΩΩ (coordinate-
dependent) coefficients originate from the mass-correction tensor
[Eq. (5)] and the coordinate transformation rule from Cartesian
coordinates to curvilinear coordinates (see Refs. 10 and 11). Since
1/(1 + y) ≈ 1 − y for small y, we may write 1/mp(1 − a/mp)
≈ 1/mp ⋅ 1/(1 + a/mp) = 1/(mp + a), and in this sense, (Aa)ρρ and(Aa)ΩΩ can be interpreted as the correction to the proton mass for
the vibrational and rotational motion, or in short, vibrational and
rotational mass corrections, respectively.

B. Computational details

We used the QUANTEN computer program10,11,15,16 to
accurately solve the electronic Schrödinger equation [Eq. (1)] for the
second, third, and fourth singlet gerade electronic states—EF, GK,
andHH̄ 1

Σ
+
g , respectively—of the hydrogen molecule using floating,

explicitly correlated Gaussian functions as spatial functions,

f (r;A, s) = exp[−1
2
(r − s)T(A⊗ I3)(r − s)]. (7)

The A ∈ R2×2 and s ∈ R2⋅3 parameters were optimized variationally
for each basis function at every nuclear configuration, Rk(k = 1, 2),
over a fine grid of the ρ = |R1 − R2| nuclear separation. For the
computational details of the wave function derivatives and the mass
correction functions in curvilinear coordinates, see Refs. 10 and 11.

The electronic states we study in this work and the correspond-
ing DBOCs and relativistic corrections have already been computed
accurately by Wolniewicz17 for several proton-proton distances. We
have repeated these computations to check the accuracy of the data
and to improve it where necessary (vide infra). In addition, we have
computed the nonadiabatic mass-correction functions in the present
work.

The effective nuclear Schrödinger equation for the diatom,
Eq. (6), was solved using the discrete variable representation

(DVR)18 and associated Laguerre polynomials, L(α)n with α = 2
for the vibrational (ρ) degree of freedom. The outer-well
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H̄ states were computed by scaling the DVR points to the
[Rmin, Rmax] = [6, 20] bohr interval.

III. RESULTS AND DISCUSSION

The nonadiabatic corrections to the vibrational and rotational
mass of the proton in the EF and HH̄ 1

Σ
+
g electronic states of H2

are shown in Figs. 2 and 3. These numerical examples highlight
qualitative features of the mass-correction functions. The sign and
the amplitude of the correction can be understood by remembering
that the mass-correction tensor contains the Ra reduced resolvent
[Eq. (5)].

A. The EF state

Concerning the EF 1
Σ
+
g state of H2 below ∼110 000 cm−1

(below the GK minima, Fig. 1), the effective vibrational mass
of the proton becomes gigantic at the avoided crossing with the

GK 1
Σ
+
g curve. The large correction value, δm(EF)vib = 480 me near

R = 3 bohr, which should be compared with the ∼1836me mass of the
proton,38 indicates that it is necessary to go beyond the second-
order, single-state nonadiabatic treatment to achieve spectroscopic
accuracy. For this purpose, one can consider either using higher-
order corrections—the third-order correction formulae can be
found in Ref. 1— or including explicit nonadiabatic coupling with
the near-lying perturber state(s), in this case GK (and probably
other states), and to use the effective nonadiabatic Hamiltonian
of Ref. 1 for a multidimensional electronic subspace. Note that in
the single-state treatment, only the EF state is projected out from
the resolvent, Eq. (5), whereas in a multistate treatment, the full
explicitly coupled subspace will be projected out, which will result
in smaller corrections from electronic states better separated in
energy.

With these observations in mind, we have nevertheless checked
the rotation-vibration term values obtained within the second-
order, single-state nonadiabatic model. We have found that the EF

FIG. 2. Nonadiabatic mass correction functions to the rotational and the vibrational
degrees of freedom, δm̃rot and δm̃vib, computed for the EF 1

Σ
+
g electronic state

of the hydrogen molecule.10,11 (The thin, solid black line indicates the mass of the
electron, which together with the proton mass gives the atomic mass.)

FIG. 3. Nonadiabatic mass correction functions to the rotational and the vibrational
degrees of freedom, δm̃rot and δm̃vib, computed for the HH̄ 1

Σ
+
g electronic state

of the hydrogen molecule.10,11 (The thin, solid black line indicates the mass of the
electron, which together with the proton mass gives the atomic mass.)

vibrational term values obtained with the effective masses (Fig. 2)
were closer to the experimental values than the constant-mass
adiabatic description (using either the nuclear mass of the pro-
ton or the atomic mass of hydrogen, which is commonly used
as an “empirical” means of modeling nonadiabatic effects). The∼30–35 cm−1 root-mean-square deviation of the adiabatic ener-
gies from experiment was reduced to 10 cm−1 when the rigorous
nonadiabatic vibrational functions were used instead of the constant
(nuclear or atomic) mass. More detailed numerical results will be
obtained within a coupled-state nonadiabatic treatment in future
work.

B. The HH̄ state

Next, we have studied the HH̄ state, for which already a single-
state model turns out to be useful for spectroscopic purposes, at
least for the outer-well states. The inner well of the HH̄ potential
energy curve (PEC) gets close to those of several other PECs, and for
this reason a single-state treatment is not appropriate here. At the
same time, most of the outer-well state energies (below the barrier)
can be accurately computed without considering delocalization to
the inner well. This behavior was pointed out already several times
in the literature,17,19–22 and we have also checked it for every rovi-
brational state by solving the rovibrational Schrödinger equation
with different [Rmin, Rmax] intervals. In particular, we obtained the
(adiabatic) inner-well state energies (below the barrier) with an
accuracy better than 0.01 cm−1 even if we used the restricted
[Rmin, Rmax] = [6, 20] bohr interval. This behavior was observed
with using either constant (e.g., nuclear or atomic) or coordinate-
dependent, nonadiabatic masses. The few exceptions (states near the
top of the barrier which separate the inner and the outer wells) are
shown in gray in Table I.

The experimental term values for the outer-well rotation-
vibration states of the HH̄ electronic state were first reported
in 199723 and also later in 1999 together with an improved
theoretical treatment.19,20 The computations were carried out on an
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TABLE I. Term values and deviation from experiment, in cm−1, for the outer-well rovibrational states of the HH̄ 1
Σ
+
g electronic state of the hydrogen molecule.

J = 0 J = 1 J = 2

Tobs − Tcalc
a Tobs − Tcalc

a Tobs − Tcalc
a

v Tnad
b nadc adH

d adp
e Tnad

b nadc adH
d adp

e Tnad
b nadc adH

d adp
e

0 122 883.4 n.a.f 122 885.3 n.a.f 122 889.1 n.a.f

1 123 234.5 n.a.f 123 236.4 n.a.f 123 240.2 n.a.f

2 123 575.8 0.1g 1.1g 0.9g 123 577.7 0.0g 1.0g 0.8g 123 581.5 0.2g 1.1g 0.9g

3 123 907.5 −0.2 1.1 0.8 123 909.4 −0.2 1.1 0.8 123 913.3 −0.2 1.1 0.8
4 124 229.9 −0.2 1.3 0.9 124 231.8 −0.2 1.3 0.9 124 235.7 −0.3 1.2 0.8
5 124 543.0 −0.3 1.4 0.9 124 544.9 −0.3 1.4 0.9 124 548.8 −0.3 1.4 0.9
6 124 847.2 −0.2 1.6 1.1 124 849.1 −0.2 1.6 1.0 124 853.0 −0.2 1.6 1.0
7 125 142.5 −0.2 1.7 1.1 125 144.5 −0.2 1.7 1.1 125 148.4 −0.2 1.7 1.1
8 125 429.3 −0.2 1.8 1.2 125 431.3 −0.1 1.8 1.2 125 435.1 −0.2 1.8 1.1
9 125 707.6 −0.1 1.9 1.2 125 709.6 −0.1 2.0 1.3 125 713.5 −0.1 1.9 1.2
10 125 977.6 −0.1 1.9 1.2 125 979.5 −0.1 2.0 1.2 125 983.4 −0.1 1.9 1.2
11 126 239.1 −0.1 1.9 1.1 126 241.1 −0.1 2.0 1.2 126 245.0 −0.2 1.9 1.1
12 126 492.4 −0.2 1.9 1.1 126 494.4 −0.2 1.9 1.0 126 498.3 −0.2 1.9 1.0

13h 126 737.1 −0.2 1.8 0.9 126 739.1 −0.2 1.8 0.9 126 743.1 −0.3 1.8 0.9

14h 126 972.9 −0.5 1.5 0.6 126 975.0 −0.5 1.5 0.6 126 979.1 −0.6 1.4 0.5

15h 127 199.3 −1.8 0.2 −0.8 127 201.4 −1.7 0.3 −0.7 127 205.6 −1.5 0.4 −0.5

J = 3 J = 4 J = 5

Tobs − Tcalc
a Tobs − Tcalc

a Tobs − Tcalc
a

v Tnad
b nadc adH

d adp
e Tnad

b nadc adH
d adp

e Tnad
b nadc adH

d adp
e

0 122 894.9 n.a.f 122 902.5 n.a.f 122 912.0 n.a.f

1 123 246.0 n.a.f 123 253.6 n.a.f 123 263.2 n.a.f

2 123 587.3 0.0g 1.0g 0.8g 123 595.0 0.4g 1.4g 1.2g 123 604.6 −0.3g 0.7g 0.5g

3 123 919.1 −0.2 1.0 0.7 123 926.8 −0.2 1.1 0.7 123 936.4 0.0g 1.3g 0.9g

4 124 241.5 −0.2 1.2 0.9 124 249.2 −0.3 1.2 0.8 124 258.8 −0.2 1.3 0.9
5 124 554.6 −0.2 1.4 1.0 124 562.3 −0.3 1.4 0.9 124 572.0 −0.2 1.4 0.9
6 124 858.8 −0.2 1.6 1.1 124 866.5 −0.2 1.6 1.0 124 876.2 −0.2 1.6 1.0
7 125 154.2 −0.1 1.8 1.2 125 161.9 −0.2 1.7 1.1 125 171.6 −0.2 1.7 1.1
8 125 441.0 −0.2 1.8 1.2 125 448.7 −0.2 1.8 1.1 125 458.4 −0.2 1.8 1.2
9 125 719.3 −0.1 1.9 1.2 125 727.0 −0.1 1.9 1.2 125 736.7 −0.1 1.9 1.2
10 125 989.3 −0.1 2.0 1.2 125 997.0 −0.1 1.9 1.2 126 006.8 −0.1 1.9 1.2
11 126 250.9 −0.1 2.0 1.2 126 258.7 −0.2 1.9 1.1 126 268.5 −0.1 1.9 1.1
12 126 504.2 −0.2 1.9 1.0 126 512.1 −0.2 1.9 1.0 126 522.0 −0.2 1.9 1.0

13h 126 749.1 −0.3 1.8 0.9 126 757.1 −0.3 1.8 0.9 126 767.1 −0.3 1.8 0.9

14h 126 985.2 −0.4 1.6 0.7 126 993.4 −0.6 1.4 0.5 127 003.6 −0.4 1.7 0.7

15h 127 211.9 −1.3 0.7 −0.3 127 220.4 −0.9 1.1 0.1 127 230.8

aDeviation of experiment and theory. The Tobs experimental term values were taken from Refs. 20 and 23.
bCalculated term value, Tnad = Enad − E0 , referenced to the ground-state energy, E0 .

31,32 Enad was obtained by solving Eq. (6) using the rigorous nonadiabatic masses computed in the
present work (Fig. 3) and using the relativistic and diagonal Born–Oppenheimer corrections of Refs. 17 and 19, as well as the radiative corrections and an improved PEC computed in
this work.
cTcalc = Tnad .
dTcalc = TadH

= EadH − E0 , where EadH was obtained as Enad but using the constant, atomic mass of hydrogen formp and approximating the mass-correction functions by zero.
eTcalc = Tadp = Eadp − E0 , where Eadp was obtained as EadH but using the constant, nuclear mass of the proton formp .
fExperimental data not available.
gNote that the experimental uncertainty is an order-of-magnitude larger for these term values than for the others.
hNeglect of delocalization to the inner well introduces an at least 0.1 cm−1 error in the computed energy.
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accurate, adiabatic PEC including relativistic corrections and were
also appended with an estimate for the quantum electrodynam-
ics (QED) effects.17,20 The resulting term values were in ∼1 cm−1

(dis)agreement with experiment (of ∼0.04 cm−1 uncertainty), which
was attributed to the neglect of nonadiabatic effects.

We have repeated the rovibrational computations using the
potential energy, diagonal Born–Oppenheimer correction, relativis-
tic correction curves computed, and the QED correction estimated
by Wolniewicz,17 but we used the nonadiabatic mass correction
functions for the rotational and the vibrational degrees of freedom
computed in the present work (Fig. 3).We obtained a somewhat bet-
ter agreement with the experimental results; the 1–1.2 cm−1 devia-
tion of theory and experiment of Ref. 20 was reduced to 0.3–0.4 cm−1

(the computed values are larger than the experimental ones).
In order to identify the origin of the remaining discrep-

ancy, we refined the potential energy curve using the QUANTEN
program, which resulted in a few tenths of cm−1 reduction for
R > 10 bohr (the improved electronic energies are deposited in the
supplementary material). Next, we have checked the accuracy of the
earlier relativistic corrections and found them to be sufficient for
the present purposes. We have also explicitly evaluated the leading-
order QED correction [see, for example, Eq. (3) of Ref. 24] instead of
approximating it with the QED correction value of H− proposed by
Wolniewicz.17 For this purpose, we used the one- and two-electron
Darwin integrals already available from the relativistic computa-
tions17 and approximated the nonrelativistic Bethe-logarithm with
ln k0 ≈ 3 based on its value for the ground state of the hydrogen
atom (remember the strong H− + H+ ion-pair character of the outer
well and the observation that ln k0 is not very sensitive to the num-
ber of electrons25). We also computed the Araki–Sucher term for the
HH̄ state in the present work, although it gives an almost negligible
contribution at the current level of precision. Based on these com-
putations, the radiative correction curve takes values between 0.27
and 0.29 cm−1 over the outer well of HH̄, and thus, we confirm the
earlier estimate using the H− value.17

As a summary, we collect in Table I the best rovibrational term
values (“Tnad” column) and their deviation from experiment (“nad”
column) resulting from the computations carried out within the
present work. Inclusion of the nonadiabatic masses in the rovibra-
tional treatment and further refinement of the potential energy curve
reduces the earlier ∼1–1.5 cm−1 deviation to ∼0.1–0.2 cm−1. The
v ≥ 14 states are shown in gray in the table, because for these states,
tunneling to the inner well has an important effect on the energy and
an “isolated” outer-well treatment is not sufficient for these states.
We also note that the experimental term values for the v = 2 states
with N = 0, 1, . . ., 4 and the v = 2 and 3 states for N = 5 are an
order-of-magnitude less accurate than for the other states.20,23

In the table, we also compare with experiment the adiabatic
energies (a) computed rigorously with the nuclear masses (“adp”
column)—these values are almost identical to the values in Table
VI of Ref. 20—and (b) with the hydrogenic atomic mass (“adH”
column), which is often used to capture some nonadiabatic effects
in the spectrum. In the present case, this atomic-mass model does
not perform well, which can be understood by noting that the rig-
orous nonadiabatic (vibrational) correction to the nuclear mass is
negative over most of the outer well.

Finally, we mention that Andersson and Elander,21 by extend-
ing earlier work of Yu and Dressler,26 solved the coupled-state

equations, including the coupling of the six lowest-energy 1
Σ
+
g states,

and also studied the outer-well region of HH̄. They found that it
was necessary to include all six 1

Σ
+
g states to converge the H̄ vibra-

tional energies better than 0.1 cm−1, whereas the 15th and 16th
vibrational states (v = 14 and 15 in Table I) changed by 0.12 and
24.11 cm−1 between the five- and six-state treatment. Although
their computed values are off by 10–35 cm−1 from experiment,
probably due to the fact that they used less accurate potential
energy curves, their results seem to underline the general observa-
tion that the many-state Born–Oppenheimer (BO) expansion con-
verges relatively slowly with respect to the number of electronic
states.

IV. SUMMARY AND CONCLUSIONS

Due to the slow convergence of the Born–Oppenheimer (BO)
expansionwith respect to the number of electronic states, it is impor-
tant to think about the truncation error when one is aiming to
compute highly accurate molecular rovibrational (rovibronic) ener-
gies. Direct truncation introduces an error ofO(ε) in the rovibronic

energies, where ε = (me/mnuc)1/2 is the square root of the electron-
to-nucleus mass ratio.1,2,27 This truncation error can be made lower
order in ε by using adiabatic perturbation theory.2,27 For an isolated
electronic state, the first-order corrections can be made to vanish.
The second-order nonadiabatic effective Hamiltonian, used in the
present work, reproduces eigenvalues of the full electron-nucleus
Hamiltonian with an error ofO(ε3), but it contains corrections both
to the potential energy as well as to the kinetic energy of the atomic
nuclei,1 which give rise to effective coordinate-dependent masses to
the different types of motions.

In particular, we have found a nontrivial, negative mass-
correction to the vibrational mass of the proton in the outer well
of the HH̄ 1

Σ
+
g electronic state. This negative value, i.e., an effec-

tive vibrational mass smaller than the nuclear mass, is dominated by
the interaction with the H(1) + H(2) dissociation channel to which
HH̄ gets close near its outer minimum. Of course, the precise value
of the mass correction is the result of an interplay of the interac-
tion of the nuclear dynamics on HH̄ with all the other (discrete and
continuous) electronic states. It is interesting to note that, whereas
the vibrational mass shows this special behavior for HH̄, the nona-
diabatic value of the rotational mass remains close to the atomic
mass of the hydrogen (proton plus electron, see Fig. 3). Due to
these properties, HH̄ makes a counterexample to the simple, empir-
ical recipe according to which small nonadiabatic effects can be
“approximately modeled” by using (near) the atomic mass value for
vibrations and the nuclear mass for rotations.28–30 In the case of
the outer well of HH̄, the vibrational mass is better approximated
by the nuclear mass, while the rotational mass equals the atomic
mass to a good approximation. Using the rigorous nonadiabatic,
mass-correction functions computed in the present work, the nona-
diabatic rovibrational energies are ∼1 cm−1 (2 cm−1) larger than the
energies obtained using the nuclear (atomic) mass. This, together
with the relativistic and radiative corrections as well as with a minor,
0.1–0.2 cm−1 improvement for the outer-well electronic energies,
allows us to achieve a 0.1–0.2 cm−1 agreement, an order of magni-
tude better than earlier theory, with experiment.20,23

All in all, we have demonstrated that small, nonadiabatic
corrections in the (high-resolution) spectrum can be efficiently
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described using the effective nonadiabatic Hamiltonian which
accounts for the truncation error in the electronic space pertur-
batively. For the particular case of the outer well of the HH̄ 1

Σ
+
g

electronic state, the discrepancy of earlier theoretical work with
experiment can be accounted for by a nontrivial decrease in the
effective, nonadiabatic vibrational mass of the protons as they pass
along near-lying electronic states.

SUPPLEMENTARY MATERIAL

Improved Born–Oppenheimer electronic energies computed in
the present work are listed in the supplementary material for the
[6.60, 20.10] bohr interval of the R proton-proton separation. For
R < 6.60 bohr, we used the energies of Ref. 19.
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ABSTRACT

The quantum mechanical motion of the atomic nuclei is considered over a single- or a multidimensional subspace of electronic states which
is separated by a gap from the rest of the electronic spectrum over the relevant range of nuclear configurations. The electron-nucleus Hamil-
tonian is block-diagonalized up to O(εn+1) through a unitary transformation of the electronic subspace, and the corresponding nth-order
effective Hamiltonian is derived for the quantum nuclear motion. Explicit but general formulas are given for the second- and the third-order
corrections. As a special case, the second-order Hamiltonian corresponding to an isolated electronic state is recovered which contains the
coordinate-dependent mass-correction terms in the nuclear kinetic energy operator. For a multidimensional, explicitly coupled electronic
band, the second-order Hamiltonian contains the usual Born–Oppenheimer terms and nonadiabatic corrections, but generalized mass-
correction terms appear as well. These, earlier neglected terms, perturbatively account for the outlying (discrete and continuous) electronic
states not included in the explicitly coupled electronic subspace.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5097899., s

I. INTRODUCTION

Molecules are central paradigms of chemistry. They acquire
unique features as physical objects due to the three orders of mag-
nitude difference in the mass of their constituent particles, the
electrons and the atomic nuclei.

Significant improvements in the energy resolution of spec-
troscopy experiments,1,2 developed or adapted for the molecular
domain, provide us with new pieces of information which can be
deciphered, if a similarly precise and accurate theoretical description
becomes available. For this purpose, it is necessary to reconsider the
usual approximations used in quantum chemistry, in particular, the
Born–Oppenheimer (BO) and the nonrelativistic approximations.
These two approximations give rise to “effects” which play a role
at the presently available experimental energy resolution. Further
“effects” may also be visible; for example, the interaction between
the molecule and the quantized photon field is more and more

appreciated as significant corrections to the molecular energy at
this resolution.3 Molecules have a large number of sharp spectral
transitions, which can be measured experimentally to high preci-
sion. The interplay of the many small (or often not so small) effects
(may) show up differently for the transitions between the different
dynamical domains, so we cannot rely on the cancellation of the
small effects, but their explicit computation,3–5 and hence further
development of molecular quantum theory, is necessary.

As to the coupling of the quantum mechanical motion of the
electrons and the atomic nuclei benchmark, energies and wave func-
tions can be obtained by the explicit, variational solution of the
few-particle Schrödinger equation.6–16 We call this direction pre-
Born–Oppenheimer (pre-BO) theory because it completely avoids
the BO separation, nor does it evoke the concept of a potential
energy surface (PES). Obviously, a pre-BO computation captures
“all” nonadiabatic “effects.” Although all bound and low-lying res-
onance states of the three-particle H+

2 = {p+, p+, e−} molecular ion

J. Chem. Phys. 151, 014113 (2019); doi: 10.1063/1.5097899 151, 014113-1

Published under license by AIP Publishing

               dc_1955_21



The Journal
of Chemical Physics

ARTICLE scitation.org/journal/jcp

have been recently reported to an outstanding precision,17 already
for four- and five-particle systems,15 the explicit many-particle solu-
tion is typically limited to a few selected states due to the increased
computational cost and other methodological challenges.

In order to compute (reasonably) accurate energies and wave
functions over a broad dynamical range, we look for effective nona-
diabatic Hamiltonians.

There is a vast literature about dominant nonadiabatic fea-
tures,18–20 such as conical intersections, the geometric phase effect,
or Jahn–Teller systems. Practical diabatization procedures19,21,22

have been developed which make it possible to couple close-coming
electronic states (to a good approximation) without the explicit
knowledge of nonadiabatic coupling vectors, which are tedious
to compute and burdensome to interpolate for larger systems.
These effects are sometimes called first-order nonadiabatic effects
and represent qualitatively important features for the molecular
dynamics.

In the case of an isolated electronic state, the dynamics is well
described using a single potential energy surface. In order to obtain
more accurate results, one would need to couple an increasing num-
ber of electronic states. These additional, explicitly coupled states
would give small but non-negligible contributions to the molecu-
lar energy when studied under high resolution. Tightly converg-
ing the rovibrational (rovibronic) energy by increasing the number
of explicitly coupled electronic states is impractical (or impossi-
ble, since one would need to include also continuum electronic
states).

A correction which is often computed is the diagonal Born–
Oppenheimer correction (DBOC), which gives a mass-dependent
contribution to the potential energy surface (PES). It has been
(empirically) observed that in rovibrational computations carried
out on a single potential energy surface, it is “better” (in compari-
son with experiments) to use the atomic mass, especially for heavier
atoms, instead of the nuclear mass, which would have been rigor-
ously dictated by the BO approximation. The difference between
the atomic and the nuclear mass is small; it is the mass of the
electrons. This empirical adjustment of the mass of the nuclei used
in the rovibrational kinetic energy operator has been supplemented
with the argument that attaching the electron mass to the nuclear
mass approximately accounts for small, “secondary” nonadiabatic
effects.23 The empirical adjustment is motivated by the picture that
the electrons “follow” the atomic nuclei in their motion.

For an isolated electronic state, the effective rovibrational
Hamiltonian including the rigorous mass-correction terms has been
derived and rederived in a number of independent and different
(perturbative) procedures24–30 over the past decades and was numer-
ically computed for a few systems.26,31–38 These mass-correction
terms perturbatively account for the effect of all other electronic
states on the rovibrational motion.

We would like to have similar perturbative corrections, for a
systemwhich is governed by not only a single but by a few close-lying
electronic states, which are explicitly, nonadiabatically coupled, but
which are distant (separated by a finite gap) from the rest of the (dis-
crete and continuous) electronic states over the relevant range of the
nuclear coordinates (Fig. 1).

To the best of our knowledge, the explicit formulas have never
been derived for an electronic band which includes multiple elec-
tronic states, but all the necessary ideas and techniques have been

FIG. 1. Schematic plot of the electronic energy with respect to the nuclear geome-
try to visualize the aim of the present work: formulation of an effective nonadiabatic
Hamiltonian for the quantum nuclear motion over an explicitly coupled electronic
band, which is separated by a gap and decoupled perturbatively from the outlying
(discrete or continuous) electronic spectrum.

available in the literature, in particular, in relation with the space-
adiabatic theory of quantum mechanics,39–43 but also other rigor-
ous approaches to compute higher-order corrections to the Born-
Oppenheimer approximation have been developed, most notably
in Ref. 44. The techniques we use in this article are somewhat
reminiscent of Van Vleck perturbation theory and contact trans-
formation often used in chemistry and physics. We use here a
compact and powerful notation which will allow us to obtain
not only second- but also third-order correction formulas for a
single or multidimensional (nonadiabatically coupled) electronic
subspace.

We believe that the explicit formulation of the effective
nonadiabatic Hamiltonians for coupled electronic states, includ-
ing the earlier missing kinetic (or mass) correction terms, will
be useful for the chemical physics community. Their numeri-
cal application assumes the computation of nonadiabatic cou-
pling vectors. Earlier work in which the mass-correction terms
were computed for a single electronic state, e.g., Refs. 37 and
38, can be generalized for a multistate band, so numerical appli-
cations will probably follow this theoretical work in the near
future.

A. Summary of the main result

At the end of this introduction, we summarize the main result
of the paper to help orientation in the rather technical sections to
come. In this article, we derive the general form of the effective

nonadiabatic Hamiltonian Ĥ
(2)

for a group of d electronic lev-
els E1(R), . . ., Ed(R) that are separated by a gap from the rest of
the spectrum. Our analysis implies, for example, that its eigenval-
ues approximate the eigenvalues of the full molecular Hamiltonian

up to order ε3, where ε = √ m
M

is the square root of the mass
ratio of electron and nuclear mass. It thus captures all second-
order contributions. It is important to note that the perturbative
expansion is carried out without assuming small nuclear momenta,
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so the nuclear kinetic energy ∥ε∇Rψ∥2 is of order one and not of
order ε2.

After choosing d electronic states ψ1(R), . . ., ψd(R) that are
smooth functions of R and pointwise form an orthonormal basis
of the selected electronic subspace, the projection onto which we
denote by P(R) (i.e., an adiabatic or diabatic basis set for the selected

electronic subspace), the effective nonadiabatic Hamiltonian Ĥ
(2)

takes the form of an operator acting on wave functions on the

nuclear configuration space R
3N that take values in C

d and thus

can be written as a d × d-matrix of operators (Ĥ(2))αβ acting on

functions on R
3N ,

(Ĥ(2))αβ =
3N

∑
i,j=1

[ 1
2
(−iε∂i1 + εAi)(δij1 − ε2Mij)(−iε∂j1 + εAj)]αβ

+ (E + ε2Φ)αβ .
Here, the boldface objects are (d × d) matrix-valued functions on
the nuclear configuration space, with (1)αβ := δαβ denoting the iden-
tity matrix and the others given as follows in terms of the electronic
states ψ1(R), . . ., ψd(R).

The coefficients of the nonabelian Berry connection are as
expected, Aαβ ,i(R) = −i⟨ψα(R)∣∂iψβ(R)⟩. The “diabatic” elect-
ronic level matrix becomes Eαβ (R) = ⟨ψα(R)|He(R)|ψβ (R)⟩,
where He(R) is the electron Hamiltonian for fixed nuclear
configuration R. The second-order diagonal correction is
Φαβ(R) = 1

2 ∑3N
i=1⟨∂iψα(R)∣P⊥(R)∣∂iψβ(R)⟩, where P�(R) = 1 − P(R)

projects on the orthogonal complement of the selected electronic
subspace, i.e., on the orthogonal complement of the span of ψ1(R),
. . ., ψd(R).

While the matrix versions of terms discussed up to now could
have been easily guessed from the single band (d = 1) case, the
determination of the second-order mass correction matrix requires
the systematic perturbation approach developed in Sec. IV. The
resulting expression is

Mαβ ,ij =
d

∑
a,b=1

⟨ψα ∣Pa(∂jP)(Ra +Rb)(∂iP)Pb∣ψβ⟩,

where for better readability, we dropped the argument R in all the
functions. Here,Ra(R) := (He(R) − Ea(R))−1 P⊥(R) is the reduced
resolvent of the level Ea(R) acting as a bounded operator on the
range of P�(R), and Pa(R) is the projection onto the eigenspace of
He(R) corresponding to the eigenvalue Ea(R). In the special case
that ψ1(R), . . ., ψd(R) form an adiabatic basis set, i.e., He(R)ψα(R)
= Eα(R)ψα(R) for α = 1, . . ., d, the expression for the mass
correction term simplifies to Mab,ij(R) = ⟨∂jψa(R)∣Ra(R)
+Rb(R)∣∂iψb(R)⟩.

II. HAMILTONIAN, COUPLING PARAMETER,
AND OPERATOR ORDERS

A. Molecular Hamiltonian

The molecular Hamiltonian is the sum of the nuclear kinetic
energy acting on the nuclear coordinates R̃, the electron kinetic
energy acting on the electronic coordinates r, and the Coulomb

interaction terms (in hartree atomic units,me = h̵ = 1),

Ĥ = −
N

∑
i=1

1

2mi
∆R̃i −

n

∑
k=1

1

2
∆rk + V(R̃, r). (1)

By absorbing the different masses of the atomic nuclei in the

mass-scaled Cartesian coordinates Ri = M−1/2i R̃i, where Mi are the

nuclear masses in atomic mass units,45 one can rewrite the nuclear
kinetic energy operator as

−
N

∑
i=1

1

2mi
∆R̃i = −ε2

N

∑
i=1

1

2Mi
∆R̃i = −

ε2

2

N

∑
i=1

∆Ri

= − ε
2

2
∆ = − �

2

2
(ε∇)(ε∇) = −1

2

3N

∑
j=1

(ε∂j)2, (2)

and we label ε2 =me/mu≪ 1 the conversion factor between the elec-
tronic and the atomic mass scale, which is characteristic of the three
orders of magnitude mass difference of the electrons and the atomic
nuclei.

Using the common notation He(R) := −∑n
k=1

1
2
∆rk + V(R, r)

for the electronic Hamiltonian, we can rewrite the electron-nucleus
Hamiltonian into the compact form,

Ĥ = − ε
2

2
∆ +He(R) =: K̂ +He(R), (3)

which highlights the ε2 scale-separation (and coupling) between the
electron-nucleus quantum mechanical motion. Also note that capi-
tal letters without a hat label operators that are functions of R, i.e.,
they act fibrewise (pointwise in R) on the electronic Hilbert space,
such asHe. All other operators (which include differential operators
of R) are labeled with a wide hat, and the nuclear kinetic energy K̂ is
an example for this type of operators.

B. Counting operator orders

During the course of this work, we will perform an asymptotic
expansion of operators in powers of the small parameter ε. Since
many of the operators appearing in the calculations are unbounded,
we emphasize that we are interested in the action of operators on
typical molecular wave functions with energies of order O(1). In
particular, the nuclear kinetic energy − ε2

2
∆ = 1

2
p̂ 2 and thus also the

nuclear momentum operator p̂ = −iε∇ are of order O(1) (instead
of O(ε), which one could naïvely think). This is because a typi-
cal molecular wave function shows oscillations with respect to the
nuclear coordinates on a spatial scale of order ε−1, and thus, it has
derivatives of order ε−1. However, when p̂ acts on a smooth, perhaps
operator-valued, function f (R) of the nuclear coordinates, we have a
quantityO(ε), indeed,

[̂p, f (R)]ψ = p̂( f ψ) − f p̂ψ = (̂pf )ψ = −iε(∇f )(R)ψ. (4)

These observations will be important to remember for the following
calculations.
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III. THE ZEROTH-ORDER NONADIABATIC
HAMILTONIAN: TRUNCATION ERROR
AND A STRATEGY FOR REDUCING THIS ERROR

Let {Ea(R), a = 1, . . ., d} be a finite set of eigenvalues of the
electronic HamiltonianHe(R) that are isolated by a finite gap

47 from
the rest of the spectrum over the relevant range of nuclear configu-
rations and denote by Pa(R) the corresponding spectral projections.

Then, P(R) = ∑d
a=1 Pa(R) projects onto the selected electronic sub-

space and P�:= 1 − P is the projection onto the orthogonal comple-
ment.

The full electron-nucleus Hamiltonian can be written in a block
form as

Ĥ =
⎛
⎝
PĤP PĤP⊥

P⊥ĤP P⊥ĤP⊥
⎞
⎠, (5)

where Ĥ
(0)
P := PĤP corresponds to the “usual” nonadiabatic Hamil-

tonian.48 In numerical computations, Ĥ
(0)
P is usually represented

over some adiabatic or diabatic basis, whereas the off-diagonal (OD)
PĤP⊥ and P⊥ĤP blocks have been neglected in earlier work.

The following calculation shows that the off-diagonal terms are
indeed small (remember the gap condition at the beginning of this
section), more precisely, of order ε:

P
⊥
ĤP = P

⊥(K̂ +He)P
= P
⊥
K̂P ([P,He] = 0)

= P
⊥[K̂,P]P (PP = P and P⊥P = 0)

= − ε2
2
P
⊥[∆,P]P

= − 1
2
P
⊥(ε2∆P − Pε2∆)P

= − 1
2
P
⊥(ε∇ ⋅ ε(∇P) + ε(∇P) ⋅ ε∇)P

= −
ε
2
P
⊥(ε∇ ⋅ P′ + P′ ⋅ ε∇)P

=: −εP⊥P̂′∇P , (6)

where for any fibered operator A, we use the abbreviations A′ :=∇A,
and the symmetrized directional derivative of A is

Â
′
∇ := 1

2
(ε∇ ⋅ A′ + A′ ⋅ ε∇) = i

2
(̂p ⋅ A′ + A′ ⋅ p̂), (7)

i.e., A′ is again a fibered operator, while Â′∇ is a first-order differen-
tial operator in the nuclear coordinates ofO(1). For the upper-right
off-diagonal block, we find similarly

PĤP
⊥
= εPP̂

′
∇P
⊥. (8)

Hence, the off-diagonal part of the nuclear kinetic energy operator
K̂ is of order ε and we introduce the abbreviation

Q̂ := 1
ε
(PK̂P⊥ + P⊥K̂P) = PP̂′∇P⊥ − P⊥P̂′∇P , (9)

which, as explained above, is an operator of O(1). Using Q̂ and the
properties of P and P�, the off-diagonal blocks of the Hamiltonian
are written in the compact form,

P
⊥
ĤP = εP

⊥
Q̂P and PĤP

⊥
= εPQ̂P

⊥ , (10)

which are both ofO(ε), and thus,

Ĥ =
⎛
⎝
Ĥ
(0)
P εPQ̂P⊥

εP⊥Q̂P P⊥ĤP⊥

⎞
⎠ =
⎛
⎝
Ĥ
(0)
P 0

0 P⊥ĤP⊥

⎞
⎠ +O(ε). (11)

This expression confirms the well-known fact that the off-diagonal
nonadiabatic couplings are small (for a group of bands separated by
a gap from the rest of the electronic spectrum). As a consequence, the

spectrum of Ĥ
(0)
P provides anO(ε) approximation, at least locally in

energy, to the spectrum of Ĥ. More precisely, within a neighborhood

of order ε around any spectral value of Ĥ
(0)
P , there is also a spectral

value of the full Hamiltonian Ĥ.49

To obtain a better approximation, we replace the projection P
by a slightly “tilted” projection Π̂ such that the off-diagonal terms in

the block-decomposition of Ĥ with respect to Π̂ are of lower order,
namely,

Ĥ =
⎛
⎝

Π̂ĤΠ̂ Π̂ĤΠ̂⊥

Π̂⊥ĤΠ̂ Π̂⊥ĤΠ̂⊥
⎞
⎠ =
⎛
⎝
Ĥ
(n)
P 0

0 Π̂⊥ĤΠ̂⊥

⎞
⎠ +O(εn+1), (12)

for some n ≥ 1. The projection Π̂ is obtained from P through a near-
identity unitary transformation,

Π̂ = eiε̂SPe−iε̂S, (13)

where the generator Ŝ ≈ Â1 + εÂ2 + ε
2Â3 + . . . will be determined

exactly by the condition that the off-diagonal elements in Eq. (12) are

of order εn+1. The nth-order effective Hamiltonian Ĥ
(n)
P obtained

in this way will give an O(εn+1) approximation to the spectrum of
Ĥ. The physical picture behind the projection Π̂ is the following.
The range of the adiabatic projection P is spanned by states of the
form Ψ(R, r) = '(R)ψa(R, r), where ψa(R, r) are eigenstates of the
electronic Hamiltonian He(R) for the clamped nuclear configura-
tion R, He(R)ψa(R, ⋅) = Ea(R)ψa(R, ⋅). However, since the nuclei are
also moving, the molecular eigenstates are only approximately but
not exactly of this local product form. Loosely speaking, the state
of the electrons depends also on the momenta of the nuclei. This
effect is taken care of by slightly tilting the projection P into the
projection Π̂.

For computing eigenvalues of the nth-order effective Hamil-

tonian Ĥ
(n)
P , it will be more appropriate to consider the unitarily

equivalent (and thus isospectral) operator,

Ĥ
(n)
P := e−iε̂SĤ

(n)
P eiε̂S = e−iε̂SΠ̂ĤΠ̂eiε̂S = Pe−iε̂SĤeiε̂SP, (14)

which, by choosing a basis representation for P, will provide an nth-
order effective Hamiltonian for the quantum nuclear motion cor-
responding to the selected electronic subspace. The eigenvectors of

Ĥ
(n)
P and Ĥ

(n)
P are related by the unitary transformation eiε̂S.
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IV. CALCULATION OF THE nTH-ORDER
TRANSFORMATION MATRIX

We would like to achieve an O(εn+1) block diagonalization of
the electron-nucleus Hamiltonian by conjugating it with an appro-

priate unitary operator eiε̂S, a strategy that is somewhat reminiscent
of what is known in chemical physics as Van Vleck perturbation
theory and contact transformation. The actual procedure we use is
known as adiabatic perturbation theory in the mathematical litera-
ture39–42 but was applied before in physics also in the context of the
Born–Oppenheimer approximation in Ref. 43.While the quoted ref-
erences, with the exception of Ref. 41, used pseudodifferential calcu-
lus and are therefore quite technical and demanding, our approach
is rather elementary and uses a general and compressed notation.
As a consequence, we are able to derive with relatively little effort

explicit expressions not only for Ĥ
(2)
P but also for Ĥ

(3)
P and not only

for a single but for a finite number of coupled electronic states. Note

that Ĥ
(2)
P for a single electronic state was explicitly calculated earlier,

e.g., in Refs. 24, 29, 30, 40, 41, and 43, although in some cases with-
out carefully paying attention to the subtleties of counting operator
orders in relation with the nuclear momenta (see Sec. II B).

The simplicity and generality of our derivation is based on the
concept and simple algebraic properties of diagonal and off-diagonal
operators and an explicit expression for the inverse of the quantum
Liouvillian (vide infra) acting on operators which do not contain
nuclear differential operators.

A. Technical preliminaries

Before constructing Ŝ and Ĥ
(n)
P , we introduce the concept of

(off)diagonal operators and the (inverse) Liouvillian as well as some
of their properties, which will become useful during the course of
the calculations. Further useful relationships are collected in the
Appendix.

1. Diagonal and off-diagonal operators

We define the diagonal (D) and the off-diagonal (OD) parts of
a linear operator Â with respect to the orthogonal projections P and
P� = 1 − P as

Â
D := PÂP + P⊥ÂP⊥ and Â

OD := PÂP⊥ + P⊥ÂP , (15)

respectively. From this definition, a number of simple relation-
ships follow immediately. For example, it holds for all operators Â

and B̂ that

[ÂD,P] = [ÂD,P⊥] = 0 and [ÂOD,P] = P⊥ÂP − PÂP⊥, (16)

and

[ÂD, B̂D]OD = 0, [ÂD, B̂OD]D = 0, and [ÂOD, B̂OD]OD = 0.
(17)

Finally, note that Q̂ defined in Eq. (9) is related to the off-diagonal
part of the nuclear kinetic energy as

K̂
OD
= εQ̂. (18)

2. Commutators, the quantum Liouvillian,
and its inverse

Given an operator B̂, let us define the linear mapping

Â↦LB̂(Â) := −i[B̂, Â], (19)

whenever the commutator is well defined (for the operators we con-
sider in this work, no problems with operator domains occur). For
B̂ = He, we call this mapping the quantum Liouvillian of Â,

LHe(Â) = −i[He, Â]. (20)

Since He commutes with P and P�, the Liouvillian LHe preserves
(off)diagonality, i.e.,

LHe(ÂD) =LHe(Â)D and LHe(ÂOD) =LHe(Â)OD. (21)

Furthermore, LHe is invertible on the space of fibered off-diagonal
operators (labeled without any hat). Explicitly, for B := BOD, its
inverse is

IHe(B) = i d

∑
a=1

(RaBPa − PaBRa) , (22)

where

Ra(R) := (He(R) − Ea(R))−1P⊥(R) (23)

is the reduced resolvent (with the nuclear coordinate depen-
dence shown explicitly). Note that, due to the gap condition,(He(R) − Ea(R))−1 is indeed a bounded operator when restricted
to states in the orthogonal complement of the range of P(R).

In the following lines, we check that Eq. (22) is indeed the
inverse Liouvillian on off-diagonal fibered operators, but we carry
out this calculation for a general operator, B̂, which may contain
also the nuclear momentum operator (highlighted with a hat in the
notation),

LHe(IHe(B̂)) = −i[He, i∑
a

(RaB̂Pa − PaB̂Ra)]
=∑

a

[He, (RaB̂Pa − PaB̂Ra)]
=∑

a

[He − Ea, (RaB̂Pa − PaB̂Ra)] +∑
a

(Ra[Ea, B̂]Pa − Pa[Ea, B̂]Ra)
=∑

a

(P⊥B̂Pa + PaB̂P⊥) +∑
a

(Ra[Ea, B̂]Pa − Pa[Ea, B̂]Ra)
= B̂

OD +∑
a

(Ra[Ea, B̂]Pa − Pa[Ea, B̂]Ra), (24)
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where Ea(R) is the electronic energy. For off-diagonal, fibered oper-
ators IHe is indeed the (exact) inverse of LHe since [Ea, B] = 0. Oth-
erwise, it is an approximation to the inverse with an error depending
on the value of the commutator [Ea, B̂]. For example, if B̂ = K̂OD, the
commutator in Eq. (24) is [Ea(R), K̂OD] = ε[Ea(R), Q̂], and thus,
LHe(IHe(K̂OD)) = K̂OD +O(ε), so the inverse is obtained with an
O(ε) error.
B. Conditions for making the off-diagonal block
of the Hamiltonian lower order

As explained in Sec. III, in order to reduce the off-diagonal
coupling between the selected electronic subspace P and its orthog-
onal complement P�, we will choose the self-adjoint operator
Ŝ = Â1 + εÂ2 + . . . such that the off-diagonal part (coupling) within
the Π̂-block decomposition of the Hamiltonian Ĥ [Eq. (12)] is
small,

Π̂⊥ĤΠ̂
!
= O(εn+1). (25)

Due to hermiticity, this condition also implies that Π̂ĤΠ̂⊥ is of
O(εn+1). To construct explicitly the operators Â1, Â2, . . ., it is more
practical to use the unitary transform

e−iε̂SΠ̂⊥ĤΠ̂eiε̂S = P⊥e−iε̂SĤeiε̂SP

= P
⊥
ĤP

!
= O(εn+1) (26)

of condition (25), where the transformed Hamiltonian is defined as

Ĥ = e−iε̂SĤeiε̂S . (27)

In the language of diagonal and off-diagonal operators, the condi-
tion of Eq. (26) is fulfilled if the off-diagonal part of the transformed

Hamiltonian, Ĥ
OD
= P⊥ĤP + PĤP⊥, is small,

Ĥ
OD !
= O(εn+1), (28)

which will be our working equation to determine the operators
Â1, . . . , Ân up to the (n + 1)st order in ε. Then, using these opera-
tors, an explicit expression will be derived for the relevant block of

the transformed Hamiltonian, namely, of Ĥ
(n)
P = P ĤP as defined in

Eq. (14) and explained in Sec. III.

C. Reduction of the off-diagonal coupling:
Determination of Â1, . . . , Ân

The transformed electron-nucleus Hamiltonian is expanded in
terms of increasing powers of ε (see the Appendix) as

Ĥ = e−iε̂SĤeiε̂S

= Ĥ + εLŜ(Ĥ) + ε2

2
LŜ(LŜ(Ĥ)) + ε3

6
LŜ(LŜ(LŜ(Ĥ))) + . . . .

(29)

For the electronic Hamiltonian, the expansion up toO(ε4) is

e−iε̂SHee
iε̂S
= He + εLÂ1

(He) + ε2(LÂ2
(He) + 1

2
LÂ1
(LÂ1

(He)))
+ ε3(LÂ3

(He)+ 1
2
LÂ1
(LÂ2

(He))+ 1
2
LÂ2
(LÂ1

(He))
+ 1

6
LÂ1
(LÂ1

(LÂ1
(He)))) +O(ε4). (30)

Anticipating that commutators of the form [Âj, K̂] are of order ε,
the expansion for the nuclear kinetic energy term up to the same
order is

e−iε̂SK̂eiε̂S = K̂ + ε2LÂ1
( 1
ε
K̂) + ε3(LÂ2

( 1
ε
K̂)

+ 1
2
LÂ1
(LÂ1

( 1
ε
K̂))) +O(ε4). (31)

Note that K̂ = K̂D + εQ̂, so its diagonal part is of leading order, while
the off-diagonal part isO(ε).

Thus, the transformed Hamiltonian has an asymptotic expan-
sion in powers of ε,

Ĥ = ĥ0 + εĥ1 + ε
2
ĥ2 +⋯ + εnĥn +O(εn+1), (32)

with

ĥ0 = K̂ +He, (33)

ĥ1 =LÂ1
(He) = −LHe(Â1), (34)

ĥ2 =LÂ2
(He) + 1

2
LÂ1
(LÂ1

(He)) +LÂ1
( 1
ε
K̂)

= −LHe(Â2) − 1
2
LÂ1
(LHe(Â1)) +LÂ1

( 1
ε
K̂), (35)

and

ĥ3 =LÂ3
(He) + 1

2
LÂ1
(LÂ2

(He)) + 1
2
LÂ2
(LÂ1

(He))
+ 1

6
LÂ1
(LÂ1

(LÂ1
(He))) +LÂ2

( 1
ε
K̂) + 1

2
LÂ1
(LÂ1

( 1
ε
K̂))

= −LHe(Â3) − 1
2
LÂ1
(LHe(Â2)) − 1

2
LÂ2
(LHe(Â1))

−
1
6
LÂ1
(LÂ1

(LHe(Â1))) +LÂ2
( 1
ε
K̂) + 1

2
LÂ1
(LÂ1

( 1
ε
K̂)).

(36)

To reduce the off-diagonal coupling, we will now proceed by
induction. Assuming that Â1, Â2, . . . , Ân−1 have been chosen such
that

(Ĥ(n−1))OD := (n−1∑
i=0

ε
i
ĥi)

OD

=

n−1

∑
i=0

ε
i
ĥ
OD
i =: ε

n
B̂n−1 (37)

is O(εn), we will fix Ân such that (Ĥ(n))OD = ∑n
i=0 ε

iĥODi =: εn+1B̂n
isO(εn+1).

We mention already at this point that fulfillment of this
sequence of requirements will fix only the off-diagonal part ÂOD

i of
each Âi. The diagonal parts, Â

D
i , generate merely rotations within the

subspaces P and P� but do not affect the (de)coupling. Hence, we set
ÂD
i = 0 (i = 1, 2, . . .). With this choice, Â1, Â2, . . . , Ân are completely

determined by the requirement [Eq. (28)].
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Zeroth-order off-diagonal (OD) terms: The off-diagonal part of ĥ0
[Eq. (33)],

ĥ
OD
0 = K̂

OD
= εQ̂ =: εB̂0, (38)

is of order ε; hence, decoupling is automatically fulfilled at this order.
First-order OD terms: In the next step, we require

ĥ
OD
0 + εĥOD1 = ε(B̂0 + ĥOD1 ) = ε(Q̂ −LHe(Â1)OD)

= ε(Q̂ −LHe(ÂOD
1 )) !

= ε
2
B̂1, (39)

where we used Eq. (21) and the fact that Â1 = Â
OD
1 . This condition

can be fulfilled by choosing

Â1 := IHe(Q̂). (40)

Inserting Eq. (40) back into Eq. (39) and using Eq. (24), we find
that

εB̂1 = Q̂ −LHe(IHe(Q̂))
= −∑

a

(Ra[Ea, Q̂]Pa − Pa[Ea, Q̂]Ra),
= −ε∑

a

(Ra[Ea, 1ε Q̂]Pa − Pa[Ea, 1ε Q̂]Ra)
= −ε∑

a

E
′
a ⋅ (RaP

′
Pa + PaP

′
Ra). (41)

This explicit expression for B̂1 will be required for calculat-

ing the third-order terms in the effective Hamiltonian Ĥ
(3)
P [see

Eqs. (57)–(67)].
Second-order OD terms: We require

ĥ
OD
0 + εĥOD1 + ε2ĥOD2 = ε

2
B̂1 + ε

2
ĥ
OD
2

= ε
2(B̂1 −LHe(Â2)OD − 1

2
LÂ1
(LHe(Â1))OD

+LÂ1
( 1
ε
K̂)OD)

= ε
2(B̂1 −LHe(Â2) +LÂ1

( 1
ε
K̂

D)) !
= ε

3
B̂2,

(42)

where in the third equality, we used the algebraic relations of
Eq. (17). Again, we solve this equation for Â2 using the approximate
inverse Liouvillian, Eq. (22),

Â2 := IHe(LÂ1
( 1
ε
K̂

D) + B̂1). (43)

The explicit expression for the remainder B̂2 could be determined,
if needed, through the calculation of the O(ε) error term [Eq. (24)]
from the approximate inversion,

εB̂2 = B̂1 −LHe(Â2) +LÂ1
( 1
ε
K̂

D)
= B̂1 −LHe(IHe(LÂ1

( 1
ε
K̂

D) + B̂1)) +LÂ1
( 1
ε
K̂

D). (44)

Third-order OD terms: By the same reasoning, we require

B̂2 + ĥ
OD
3 = B̂2−LHe(Â3)OD − 1

2
LÂ1
(LHe(Â2))OD

−
1
2
LÂ2
(LHe(Â1))OD − 1

6
LÂ1
(LÂ1

(LHe(Â1)))OD
+ LÂ2

( 1
ε
K̂)OD + 1

2
LÂ1
(LÂ1

( 1
ε
K̂))OD

= B̂2 −LHe(Â3) − 1
6
LÂ1
(LÂ1

(LHe(Â1)))
+ LÂ2

( 1
ε
K̂

D) + 1
2
LÂ1
(LÂ1

(Q̂))
!
= εB̂3, (45)

where we used that the last two terms in the first line are zero
(off-diagonal part of diagonal operators). Again, we make the left-
hand side of Eq. (45) small by solving the equation for Â3 using the
approximate inverse Liouvillian [Eq. (22)],

Â3 := IHe(B̂2 − 1
6
LÂ1
(LÂ1

(LHe(Â1))) +LÂ2
( 1
ε
K̂

D)
+ 1

2
LÂ1
(LÂ1

(Q̂))), (46)

and the remainder term B̂3 can be determined by the direct calcula-
tion of theO(ε) error of the inversion using Eq. (24).

It is obvious how to continue this induction to arbitrary orders.
However, as we are only interested in explicit expressions for the
effective Hamiltonians up to third order, we refrain from stating the
general induction explicitly.

D. Second- and third-order Hamiltonians

In this section, we calculate the leading terms in the expansion
of the nth-order effective Hamiltonian,

Ĥ
(n)
P =

n

∑
j=0

ε
j
P ĥjP +O(εn+1), (47)

up to and including P ĥ3P, and thus obtain explicit expressions for

the second and the third-order effective Hamiltonians, Ĥ
(2)
P and

Ĥ
(3)
P . To this end, we first calculate the diagonal parts ĥDj and then,

in a second step, project onto the range of P.
Zeroth-order diagonal (D) terms:

ĥ
D
0 = K̂

D +HD
e = K̂

D +He. (48)

First-order D terms: Recalling that Âj = Â
OD
j for all j ≥ 1 and the

algebraic relations in Eq. (17), we find, in particular, that

ĥ
D
1 = −LHe(Â1)D = −LHe(ÂD

1 ) = 0. (49)

Second-order D terms: Similarly, since B̂j = B̂
OD
j for all j ≥ 1, we find

ĥ
D
2 = −LHe(Â2)D − 1

2
LÂ1
(LHe(Â1))D +LÂ1

( 1
ε
K̂)D

= −
1
2
LÂ1
(LHe(Â1)) +LÂ1

(Q̂)
= −

1
2
LÂ1
(Q̂ − εB̂1) +LÂ1

(Q̂)
=

1
2
LÂ1
(Q̂) + ε

2
LÂ1
(B̂1). (50)
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Third-order D terms:

ĥ
D
3 = −LHe(Â3)D − 1

2
LÂ1
(LHe(Â2))D − 1

2
LÂ2
(LHe(Â1))D − 1

6
LÂ1
(LÂ1

(LHe(Â1)))D +LÂ2
( 1
ε
K̂)D + 1

2
LÂ1
(LÂ1

( 1
ε
K̂))D

= −
1
2
LÂ1
(LHe(Â2)) − 1

2
LÂ2
(LHe(Â1)) +LÂ2

(Q̂) + 1
2
LÂ1
(LÂ1

( 1
ε
K̂

D))
= −

1
2
LÂ1
(LÂ1

( 1
ε
K̂

D) + B̂1 − εB̂2) − 1
2
LÂ2
(Q̂ − εB̂1) +LÂ2

(Q̂) + 1
2
LÂ1
(LÂ1

( 1
ε
K̂

D))
= −

1
2
LÂ1
(B̂1) + 1

2
LÂ2
(Q̂) +O(ε). (51)

By combining these expressions, we obtain the second- and the third-order effective Hamiltonians as

Ĥ
(2)
P := PK̂P + PHeP +

ε2

2
PLÂ1

(Q̂)P +O(ε3) (52)

and

Ĥ
(3)
P := PK̂P + PHeP +

ε2

2
PLÂ1

(Q̂)P + ε3

2
PLÂ2

(Q̂)P +O(ε4), (53)
respectively. We note that in the third-order correction, the
−

1
2
LÂ1
(B̂1) remainder from second order cancels the 1

2
LÂ1
(B̂1)

third-order term. In Subsection IV E, we continue with inserting the
explicit formulas for Â1, Â2, and Q̂ into the compact expressions of

Ĥ
(2)
P and Ĥ

(3)
P just obtained.

E. More explicit expressions for the second-
and the third-order nonadiabatic Hamiltonian
corrections

1. Second-order correction

Using the explicit expression for the inverse Liouvillian
[Eq. (22)], Eq. (40) yields

Â1 = i
d

∑
a=1

(RaQ̂Pa − PaQ̂Ra). (54)

Thus, the O(ε2) correction term of the effective Hamiltonian in
Eq. (52) is

ε2

2
PLÂ1

(Q̂)P = − ε2
2

d

∑
a,b=1

(PbQ̂RaQ̂Pa + PaQ̂RaQ̂Pb)

=
ε2

2

d

∑
a,b=1

(PbP′∇RaP
′
∇Pa + PaP

′
∇RaP

′
∇Pb), (55)

where we inserted Eq. (9) for Q̂ and used the fact that the reduced
resolventRa acts only in the P� subspace. [Recall that P′∇ is defined
by Eq. (7).] Since the commutator of ε∇ in P′∇ with smooth, fibered
operators yields higher-order terms in ε, we can further simplify

Ĥ
(2)
P to

Ĥ
(2)
P = PK̂P + PHeP +

ε2

2

3N

∑
j,i=1

d

∑
a,b=1

(Pb(ε∂j)(∂jP)Ra(∂iP)(ε∂i)Pa + Pa(ε∂j)(∂jP)Ra(∂iP)(ε∂i)Pb)

= PK̂P + PHeP +
ε2

2

3N

∑
j,i=1

d

∑
a,b=1

(ε∂j)(Pb(∂jP)Ra(∂iP)Pa + Pa(∂jP)Ra(∂iP)Pb)(ε∂i) +O(ε3)

= PK̂P + PHeP + ε
2

3N

∑
j,i=1

d

∑
a,b=1

(ε∂j)Pa(∂jP)Ra+Rb

2
(∂iP)Pb(ε∂i) +O(ε3). (56)

Note, however, that the O(ε3) term does contribute to the third-
order effective Hamiltonian and cannot be neglected when comput-

ing Ĥ
(3)
P .

2. Third-order correction

To obtain an explicit expression for the third-order correction,
we need to derive an explicit expression for Â2 [Eq. (43)],

Â2 = IHe(LÂ1
( 1
ε
K̂

D)) +IHe(B̂1), (57)

which assumes the explicit knowledge of the first-order remainder
term B̂1 [Eq. (41)], too. The first term in Eq. (57) includes

LÂ1
( 1
ε
K̂

D) = −i[Â1,
1
ε
K̂

D]
= −i[i d

∑
a=1

(RaQ̂Pa − PaQ̂Ra), 1ε K̂D]

=
1
ε

d

∑
a=1

(RaQ̂PaK̂P − P
⊥
K̂RaQ̂Pa − PaQ̂RaK̂P

⊥

+PK̂PaQ̂Ra), (58)
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and its inverse Liouvillian [Eq. (22)] is

IHe(LÂ1
( 1
ε
K̂

D)) = i d

∑
a,b=1

(Rb LÂ1
( 1
ε
K̂

D)Pb − Pb LÂ1
( 1
ε
K̂

D)Rb)

=
i
ε

d

∑
b=1

(Rb(RaQ̂PaK̂ − K̂RaQ̂Pa)Pb
−Pb(K̂PaQ̂Ra − PaQ̂RaK̂)Rb)
=

i
ε

d

∑
a=1

(PaQ̂RaK̂Ra −RaK̂RaQ̂Pa)

+ i
ε

d

∑
a,b=1

(RbRaQ̂PaK̂Pb − PbK̂PaQ̂RaRb). (59)

The inverse Liouvillian of B̂1 [Eq. (41)] is

IHe(B̂1) = i d

∑
a=1

(RaB̂1Pa − PaB̂1Ra)

= −i
d

∑
a,b=1

E
′
b ⋅ (RaRbP

′
PbPa − PaPbP

′
RbRa)

= −i
d

∑
a=1

E
′
a ⋅ (RaRaP

′
Pa − PaP

′
RaRa). (60)

Next, the explicit expression for Â2, obtained as the sum of Eqs. (59)
and (60), is used to expand the third-order correction as

1
2
PLÂ2

(Q̂)P = − i
2
P[Â2, Q̂]P = 1

2ε

d

∑
a=1

(PQ̂RaK̂RaQ̂Pa + PaQ̂RaK̂RaQ̂P)

−
1
2ε

d

∑
a,b=1

(PbK̂PaQ̂RaRbQ̂P + PQ̂RbRaQ̂PaK̂Pb)

+ 1
2

d

∑
a=1

E
′
a ⋅ (PQ̂RaRaP

′
Pa + PaP

′
RaRaQ̂P). (61)

By working out the second sum of Eq. (61), we obtain

d

∑
a,b=1

(PbK̂PaQ̂RaRbQ̂P + PQ̂RbRaQ̂PaK̂Pb) = d

∑
a,b=1

(Pb[K̂,Pa]Q̂RaRbQ̂P + PQ̂RbRaQ̂[Pa, K̂]Pb)

+
d

∑
a=1

(PaK̂Q̂RaRaQ̂P + PQ̂RaRaQ̂K̂Pa)

=

d

∑
a,b=1

(Pb[K̂,Pa]Q̂RaRbQ̂P + PQ̂RbRaQ̂[Pa, K̂]Pb) + d

∑
a=1

(Pa[K̂, Q̂]RaRaQ̂P

+PQ̂RaRa[Q̂, K̂]Pa) + d

∑
a=1

(PaQ̂K̂RaRaQ̂P + PQ̂RaRaK̂Q̂Pa)

=

d

∑
a,b=1

(Pb[K̂,Pa]Q̂RaRbQ̂P + PQ̂RbRaQ̂[Pa, K̂]Pb) + d

∑
a=1

(Pa[K̂, Q̂]RaRaQ̂P

+PQ̂RaRa[Q̂, K̂]Pa) + d

∑
a=1

(PaQ̂[K̂,Ra]RaQ̂P + PQ̂Ra[Ra, K̂]Q̂Pa)

+
d

∑
a=1

(PaQ̂RaK̂RaQ̂P + PQ̂RaK̂RaQ̂Pa), (62)

where the last expression exactly cancels the first term in Eq. (61), and thus, the correction term at third order is

1
2
PLÂ2

(Q̂)P = − 1
2

d

∑
a,b=1

(Pb[ 1ε K̂,Pa]Q̂RaRbQ̂P + PQ̂RbRaQ̂[Pa, 1ε K̂]Pb) − 1
2

d

∑
a=1

(Pa[ 1ε K̂, Q̂]RaRaQ̂P + PQ̂RaRa[Q̂, 1ε K̂]Pa)

−
1
2

d

∑
a=1

(PaQ̂[ 1ε K̂,Ra]RaQ̂P + PQ̂Ra[Ra,
1
ε
K̂]Q̂Pa) + 1

2

d

∑
a=1

E
′
a ⋅ (PQ̂RaRaP

′
Pa + PaP

′
RaRaQ̂P). (63)
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The commutators can be evaluated as

[ 1
ε
K̂,Pa] = − ε

2
[∆,Pa] = − 1

2
(ε∇ ⋅ P′a + P′a ⋅ ε∇) = −P′a∇, (64)

and

P[ 1
ε
K̂, Q̂]P⊥ = − ε

2
P[∆,PP′∇P⊥ − P⊥P′∇P]P⊥ = −PP′′∇2P

⊥ +O(ε),
(65)

with P′′∇2 := ε∑3N
i,j=1 ∂j(∂j∂iP)ε∂i, and

P
⊥[ 1

ε
K̂,Ra]P⊥ = −P⊥R′a∇P⊥. (66)

Inserting these identities into Eq. (63), we finally obtain for the third-
order correction as

ε3

2
PLÂ2

(Q̂)P
= −

ε3

2

d

∑
a,b=1

(PbP′a∇P′∇RaRbP
′
∇P − PP

′
∇RbRaP

′
∇P
′
a∇Pb)

−
ε3

2

d

∑
a=1

(PaP′′∇2RaRaP
′
∇P − PP

′
∇RaRaP

′′
∇2Pa)

−
ε3

2

d

∑
a=1

(PaP′∇P⊥R′a∇RaP
′
∇P − PP

′
∇RaR

′
a∇P

⊥
P
′
∇Pa)

+ ε3

2

d

∑
a=1

E
′
a ⋅ (PP′∇RaRaP

′
Pa−PaP

′
RaRaP

′
∇P)+O(ε4). (67)

Note that the first three lines are third order in the nuclear momen-
tum, p̂, and the last line is linear in p̂.

When looking at the second- and the third-order corrections
in Eqs. (56) and (67), one might worry about singular expressions.
Indeed, some of the summands become singular near points of
the nuclear configuration space at which eigenvalues within the set
{Ea|a = 1, . . ., d} cross. At these points, the single spectral projec-
tions Pa might not be differentiable. However, as it can be seen from

the original expressions [Eqs. (52) and (53)], for Ĥ
(2)
P and Ĥ

(3)
P ,

the complete expression (the full sum) remains bounded because
the singularities in the different summands cancel each other. This
property might require additional care in numerical computations.

V. BASIS REPRESENTATION AND EFFECTIVE
NUCLEAR HAMILTONIANS

By choosing an electronic (e.g., adiabatic or diabatic) basis set
{ψα , α = 1, . . ., d} for PHe, one can represent a molecular wave func-

tion Ψ in the range of P, Ψ ∈ PH, as Ψ(R, r) = ∑d
α=1 φα(R)ψα(R, r)

(where He and H denote the electronic and the molecular Hilbert
space, respectively). It is common practice to represent the zeroth-

order effective Hamiltonian Ĥ
(0)
P = Ĥ

(0)
P = PĤP as a matrix oper-

ator Ĥ
(0)
P with respect to such a basis set, which then acts only on

the nuclear functions (φ1(R), . . . ,φd(R)). This yields, in particu-
lar, also the Berry phase and the diagonal BO correction terms (see
below).

In what follows, we construct the matrix representation also for

the second-order Hamiltonian Ĥ
(2)
P . As a special case, the known

mass-correction terms for a single, isolated electronic state will be
recovered. The basis representation for the third-order correction
[Eq. (67)] can be worked out along the same lines.

A. Basis representation for the second-order,
multistate Hamiltonian

Let us choose an electronic (e.g., adiabatic or diabatic) basis
set ψ1(R), . . ., ψd(R) such that ψα are smooth functions of R and
pointwise form an orthonormal basis of the range of P(R), i.e.,

⟨ψα(R)∣ψβ(R)⟩ = δα,β and P(R) = d

∑
α=1

∣ψα(R)⟩⟨ψα(R)∣. (68)

Because of the gap condition, such a smooth diabatic basis set always
exists at least locally.50 However, due to possible crossings within
the set of eigenvalues E1, . . ., Ed, it might not be possible to choose
ψ1(R), . . ., ψd(R) as smooth functions of R, and at the same time, as
pointwise eigenfunctions of He(R), i.e.,

He(R)ψα(R) = Eα(R)ψα(R), α = 1, . . . ,d

is not assumed in general!
(69)

Then, thematrix representation of Ĥ
(2)
P [Eq. (56)] overψα , α = 1, . . .,

d, results in a matrix operator Ĥ
(2)
P for the quantum nuclear motion

with matrix elements,

(Ĥ(2)P )αβ = ⟨ψα ∣Ĥ(2)P ∣ψβ⟩ = ⟨ψα ∣K̂∣ψβ⟩ + ⟨ψα ∣He∣ψβ⟩
+ ε2

2 ∑
j,i
∑
a,b

(ε∂j)⟨ψα ∣Pa(∂jP)(Ra +Rb)(∂iP)Pb∣ψβ⟩(ε∂i)
+O(ε3). (70)

For the kinetic-energy part, we find

⟨ψα ∣K̂∣ψβ⟩ = −∑
i

( 1
2
(ε∂i)2δαβ + ε⟨ψα ∣∂iψβ⟩(ε∂i) + ε2

2
⟨ψα ∣∂2

i ψβ⟩).
(71)

By introducing the coefficient of the nonabelian Berry-connection

Aαβ ,i := −i⟨ψα ∣∂iψβ⟩ = Aβα,i, (72)

we find

[ 1
2
(−iε∂i1 + εAi)2]αβ
= [− 1

2
(ε∂i)21 − iεAi(ε∂i) − i ε22 (∂iAi) + ε2

2
(Ai)2]

αβ

= −
1
2
(ε∂i)2δαβ − ε⟨ψα ∣∂iψβ⟩(ε∂i) − ε2

2
⟨ψα ∣∂2

i ψβ⟩
−

ε2

2
⟨∂iψα ∣∂iψβ⟩ − ε2

2 ∑
γ

⟨ψα ∣∂iψγ⟩⟨ψγ ∣∂iψβ⟩. (73)

With ⟨ψα ∣∂iψγ⟩ = −⟨∂iψα ∣ψγ⟩, the last term becomes
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∑
γ

⟨ψα ∣∂iψγ⟩⟨ψγ ∣∂iψβ⟩ = −∑
γ

⟨∂iψα ∣ψγ⟩⟨ψγ ∣∂iψβ⟩
= −⟨∂iψα ∣P∣∂iψβ⟩ , (74)

and thus, the kinetic-energy term can be written in the form

⟨ψα ∣K̂∣ψβ⟩ = 3N

∑
i=1

[ 1
2
(−iε∂i1 + εAi)2]αβ + ε2Φαβ , (75)

with the matrix-valued Berry-connection coefficient Ai and the
matrix-valued potential energy correction

Φαβ(R) := 1
2

3N

∑
i=1

⟨∂iψα(R)∣P⊥(R)∣∂iψβ(R)⟩. (76)

This latter quantity can be understood as anO(ε2) correction to the
“diabatic” electronic level matrix,

Eαβ(R) := ⟨ψα(R)∣He(R)∣ψβ(R)⟩. (77)

Note that Eαβ is a diagonal matrix if and only if all ψα are eigen-
vectors of He. Defining the second-order mass-correction term as

Mαβ ,ij :=
d

∑
a,b=1

⟨ψα ∣Pa(∂jP)(Ra +Rb)(∂iP)Pb∣ψβ⟩, (78)

the matrix representation of Ĥ
(2)
P over ψα , α = 1, . . ., d, can be

compactly written as

(Ĥ(2)P )αβ = 3N

∑
i,j=1

[ 1
2
(−iε∂i1 + εAi)(δij1 − ε2Mij)(−iε∂j1 + εAj)]αβ

+ (E + ε2Φ)αβ +O(ε3). (79)

We note that this is the complete second-order nonadiabatic Hamil-
tonian operator for the nuclear motion. It is important to remember
the peculiarities of counting operator orders (Sec. II B), which follow
from not making the assumption that the nuclear momenta (when
−iε∂R acts on the nuclear wave function) are small. Also note that we
used Cartesian coordinates scaled with the nuclear mass [Eq. (2)], so
the derived expressions can be used also for heteronuclear systems
by making this scaling factor explicit in the numerical computa-
tions.

In the special case, where ψ1, . . ., ψd form an adiabatic basis set,
i.e., satisfy Eq. (69), the expression forMαβ ,ij simplifies to

Mαβ ,ij = ⟨∂jψα ∣Rα +Rβ ∣∂iψβ⟩.
To see this, one uses that the reduced resolvent [Eq. (23)] contains a
projection P�, and

(∂jP)P⊥ = d

∑
γ=1

(∂j∣ψγ⟩⟨ψγ ∣)P⊥ = d

∑
γ=1

∣ψγ⟩⟨∂jψγ ∣P⊥, (80)

and similarly for its adjoint, P⊥(∂iP) = ∑d
γ=1 P

⊥∣∂iψγ⟩⟨ψγ ∣.
In all our expressions, the nuclear differential operators are

written in terms of Cartesian coordinates. The operators can be
transformed to curvilinear coordinates, necessary for efficient rovi-
brational computations, similarly to the transformation of the
single-state nonadiabatic Hamiltonian as it was carried out in

Ref. 37 using the Jacobi and the metric tensors of the new coordi-
nates.

For the special case of a single electronic state (ψ1, E1), we
are free to choose a real-valued, normalized electronic wave func-
tion ψ1. Then, the effective operator of the atomic nuclei [Eq. (79)]
simplifies to

(Ĥ(2)P )1,1 = 3N

∑
i,j=1

1
2
(−iε∂i)(δij − ε2M11,ij)(−iε∂j)

+ E1 + ε
2Φ1 +O(ε3). (81)

So, we assume that ψ1 is chosen such that A1 = −i⟨ψ1∣∇ψ1⟩ = 0 and
find for the mass correction term that

M11,ij = 2⟨∂jψ1∣R1∣∂iψ1⟩ = 2⟨∂jψ1∣(He − E1)−1(1 − P1)∣∂iψ1⟩. (82)

This mass-correction function is identical with that used in Ref. 37,
and thus, for a single, isolated electronic state, the known expression
of the second-order nonadiabatic Hamiltonian is recovered.

VI. SUMMARY AND CONCLUSIONS

Molecular wave functions are often approximated on the sub-
space PH of the full electron-nucleus HHilbert space, where P is the
electronic subspace which governs the motion of the atomic nuclei.

We have shown that a complete neglect of the complemen-
tary electronic subspace (1 − P)H introduces an O(ε) error in the
Hamiltonian and also in the molecular spectrum (ε is the square
root of the electron-to-nucleus mass ratio). We improved upon this
O(ε) approximation, by using a near-identity unitary transform of

P, Π̂ = eiε̂SPe−iε̂S. Terms of the self-adjoint transformation operator
Ŝ = Â1+εÂ2+ε

2Â3+. . .were determined for increasing orders of ε by
making the coupling, and hence the error of the molecular energy,
ε times smaller at every order. The resulting transformation opera-
tors include the momentum operator p̂ of the atomic nuclei; thereby,
the transformed electronic space Π̂, which makes the coupling lower
order, depends not only on the nuclear positions R but also on
the nuclear momenta p̂. The transformed electronic states adjusted

by p̂ up to order p̂n achieve a block-diagonalization of Ĥ up to
terms of order εn+1. From the transformed, O(εn+1) block-diagonal
Hamiltonian, we obtained effective nth-order Hamiltonians for the
quantum nuclear motion. Explicit expressions were derived up
to the third-order corrections for a multidimensional electronic
subspace.

In particular, the second-order nonadiabatic Hamiltonian con-
tains correction terms quadratic in the nuclear momenta, which
may be small near the bottom of the electronic band, but for
highly excited states, they can easily dominate the diagonal correc-
tion. These kinetic energy correction terms can be identified as a
coordinate-dependent correction to the nuclear mass in the nuclear
kinetic energy operator. These earlier neglected “mass-correction
terms” perturbatively account for the effect of the electronic states
not included in the selected, explicitly coupled electronic band. For
a single electronic state, the multistate expressions simplifies to the
known, second-order Hamiltonian including the mass-correction
function.
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This perturbative decoupling can be used for isolated (groups
of) electronic states, and we believe that at least the second-
order, multistate expression will soon gain practical applications
in rovibronic and quantum scattering computations. Examples for
potential applications include the electronically excited manifold
of molecular hydrogen—the first steps toward these applications
are reported in Ref. 46—the predissociation dynamics of H+

3 , in
which the interaction of the electronic ground and excited states
is thought to play a role, and also the H+H2 reactive scattering
system.
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APPENDIX: SIMPLE MATHEMATICAL RELATIONS
USED IN THIS WORK

1. Contact transform of an operator

Transformation of an operator Ŷ with eiε̂S can be expanded in
terms of increasing powers of ε as

Ŷ = e−iε̂SŶeiε̂S = Ŷ + εLŜ(Ŷ) + ε2

2
LŜ(LŜ(Ŷ))

+ ε3

6
LŜ(LŜ(LŜ(Ŷ))) + . . . (A1)

2. Commutator operations with diagonal
and off-diagonal operators

[X̂D, Ŷ]D = [X̂D, ŶD] and [X̂D, Ŷ]OD = [X̂D, ŶOD], (A2)

[X̂OD, Ŷ]D = [X̂OD, ŶOD] and [X̂OD, Ŷ]OD = [X̂OD, ŶD]. (A3)

For the example of the diagonal He and the off-diagonal Âi, we have
collected the following identities (relevant for the calculations in the
manuscript):

LHe(Âi)D = 0, (A4)

LHe(Âi)OD =LHe(Âi), (A5)

LÂj
(LHe(Âi))D =LÂj

(LHe(Âi)), (A6)

LÂj
(LHe(Âi))OD = 0, (A7)

LÂk
(LÂj

(LHe(Âi)))D = 0, (A8)

LÂk
(LÂj

(LHe(Âi)))OD =LÂk
(LÂj

(LHe(Âi))). (A9)

3. Commutator expressions

[K̂,A] = − ε2
2
[∆,A] = − ε

2
(ε∇ ⋅A′ +A′ ⋅ ε∇) = −εA′∇ = O(ε). (A10)

REFERENCES

1M. Beyer, N. Hölsch, J. A. Agner, J. Deiglmayr, H. Schmutz, and F. Merkt, Phys.
Rev. A 97, 012501 (2018).
2C.-F. Cheng, J. Hussels, M. Niu, H. L. Bethlem, K. S. E. Eikema, E. J. Salumbides,
W. Ubachs, M. Beyer, N. Hölsch, J. A. Agner et al., Phys. Rev. Lett. 121, 013001
(2018).
3K. Piszczatowski, G. Lach,M. Przybytek, J. Komasa, K. Pachucki, and B. Jeziorski,
J. Chem. Theory Comput. 5, 3039 (2009).
4M. Puchalski, J. Komasa, and K. Pachucki, Phys. Rev. A 95, 052506 (2017).
5L. M. Wang and Z.-C. Yan, Phys. Rev. A 97, 060501 (2018).
6Y. Suzuki and K. Varga, Stochastic Variational Approach to Quantum-
Mechanical Few-Body Problems (Springer-Verlag, Berlin, 1998).
7M. Cafiero, S. Bubin, and L. Adamowicz, Phys. Chem. Chem. Phys. 5, 1491
(2003).
8S. Bubin, F. Leonarski, M. Stanke, and L. Adamowicz, Chem. Phys. Lett. 477, 12
(2009).
9E. Mátyus and M. Reiher, J. Chem. Phys. 137, 024104 (2012).
10E. Mátyus, J. Phys. Chem. A 117, 7195 (2013).
11S. Bubin, M. Pavanello, W.-C. Tung, K. L. Sharkey, and L. Adamowicz, Chem.
Rev. 113, 36 (2013).
12J. Mitroy, S. Bubin, W. Horiuchi, Y. Suzuki, L. Adamowicz, W. Cencek,
K. Szalewicz, J. Komasa, D. Blume, and K. Varga, Rev. Mod. Phys. 85, 693
(2013).
13K. Pachucki and J. Komasa, Phys. Chem. Chem. Phys. 20, 247 (2018).
14A. Muolo, E. Mátyus, and M. Reiher, J. Chem. Phys. 148, 084112 (2018).
15A. Muolo, E. Mátyus, and M. Reiher, J. Chem. Phys. 149, 184105 (2018).
16E. Mátyus, Mol. Phys. 117, 590 (2019).
17V. I. Korobov, Mol. Phys. 116, 93 (2018).
18C. A. Mead and D. G. Truhlar, J. Chem. Phys. 77, 6090 (1982).
19T. Pacher, L. S. Cederbaum, and H. Köppel, J. Chem. Phys. 89, 7367 (1988).
20D. R. Yarkony, Rev. Mod. Phys. 68, 985 (1996).
21A. Viel and W. Eisfeld, J. Chem. Phys. 120, 4603 (2004).
22T. Karman, A. van der Avoird, and G. C. Groenenboom, J. Chem. Phys. 144,
121101 (2016).
23W. Kutzelnigg, Mol. Phys. 105, 2627 (2007).
24P. R. Bunker and R. E. Moss, Mol. Phys. 33, 417 (1977).
25P. R. Bunker and R. E. Moss, J. Mol. Spectrosc. 80, 217 (1980).
26M. Aubert-Frecon, G. Hadinger, and S. Ya Umanskii, J. Phys. B: At., Mol. Opt.
Phys. 27, 4453 (1994).
27D. W. Schwenke, J. Chem. Phys. 114, 1693 (2001).
28D. W. Schwenke, J. Phys. Chem. A 105, 2352 (2001).
29K. Pachucki and J. Komasa, J. Chem. Phys. 130, 164113 (2009).
30A. Scherrer, F. Agostini, D. Sebastiani, E. K. U. Gross, and R. Vuilleumier, Phys.
Rev. X 7, 031035 (2017).
31P. R. Bunker, C. J. McLarnon, and R. E. Moss, Mol. Phys. 33, 425 (1977).
32K. L. Bak, S. P. A. Sauer, J. Oddershede, and J. F. Ogilvie, Phys. Chem. Chem.
Phys. 7, 1747 (2005).
33F. Holka, P. G. Szalay, J. Fremont, M. Rey, K. A. Peterson, and V. G. Tyuterev,
J. Chem. Phys. 134, 094306 (2011).
34K. Pachucki and J. Komasa, J. Chem. Phys. 137, 204314 (2012).
35S. P. A. Sauer, H. J. A. Jensen, and J. F. Ogilvie, Adv. Quantum Chem. 48, 319
(2005).
36M. Przybytek, W. Cencek, B. Jeziorski, and K. Szalewicz, Phys. Rev. Lett. 119,
123401 (2017).
37E. Mátyus, J. Chem. Phys. 149, 194111 (2018).
38E. Mátyus, J. Chem. Phys. 149, 194112 (2018).
39A. Martinez and V. Sordoni, C. R. Math. 334, 185 (2002).
40S. Teufel, Adiabatic Perturbation Theory in Quantum Dynamics, Lecture Notes
in Mathematics (Springer, 2003).
41G. Panati, H. Spohn, and S. Teufel, ESAIM:Math. Modell. Numer. Anal. 41, 297
(2007).

J. Chem. Phys. 151, 014113 (2019); doi: 10.1063/1.5097899 151, 014113-12

Published under license by AIP Publishing

               dc_1955_21



The Journal
of Chemical Physics

ARTICLE scitation.org/journal/jcp

42A. Martinez and V. Sordoni, Twisted Pseudodifferential Calculus and Appli-
cation to the Quantum Evolution of Molecules (American Mathematical Society,
2009).
43S. Weigert and R. G. Littlejohn, Phys. Rev. A 47, 3506 (1993).
44G. A. Hagedorn, Commun. Math. Phys. 116, 23 (1988).
45E. Cohen, T. Cvitaš, J. Frey, B. Holmström, K. Kuchitsu, R. Marquardt, I. Mills,
F. Pavese, M. Quack, J. Stohner et al., Quantities, Units and Symbols in Physical
Chemistry, The IUPAC Green Book, 3rd ed. (RSC Publishing, Cambridge, 2007).
46D. Ferenc and E. Mátyus, “Non-adiabatic mass correction for excited states
of molecular hydrogen: Improvement for the outer-well HH̄ 1Σ+

g term values,”
e-print arXiv:1905.05525 (submitted).
47A precise formulation of the gap assumption is as follows. We say that there is
a gap of size g > 0 in the relevant regionΩ ⊂ R

3N of nuclear configuration space
if there are two continuous functions f± : Ω → R such that dist(f ±(R), σ(He(R)))
≥ g/2 such that the interval I(R) := [f −(R), f +(R)] satisfies I(R) ∩ σ(He(R))
= {E1(R), . . ., Ed(R)}. Then, all correction terms (Berry phase, diagonal correc-
tion, and effective mass) are asymptotically small as ε → 0 when choosing any
smooth diabatic basis {ψ1(R), . . ., ψd(R)}. In a real problem, of course, ε is fixed
by the physical parameters and smallness of the correction terms is an indicator of
a sufficiently large spectral gap.

48Note that we follow here the physical chemistry terminology in which a descrip-

tion is called nonadiabatic if it concerns more than one electronic states which
are coupled among each other. Compare this terminology with the mathematics’
naming conventions, in which BO or “adiabatic” is commonly used for a descrip-
tion in which a (single or multidimensional) electronic subspace is not coupled
with the rest of the electronic spectrum.
49One simple way to see this is as follows: Let ψ be a normalized eigenfunction

of Ĥ
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(0)
P , one can use the same argument with a Weyl sequence instead

of an eigenfunction.
50Strictly speaking, such a smooth diabatic basis set exists over each contractible

subset Ω ⊆ R
3N of the nuclear configuration space R3N on which the gap con-

dition is satisfied. This is because the gap condition implies that the projections
P(R) define a smooth rank-d vector bundle over Ω, and a vector bundle over a

contractible set always allows for a global trivialization, that is, for a diabatic basis
set as above.

J. Chem. Phys. 151, 014113 (2019); doi: 10.1063/1.5097899 151, 014113-13

Published under license by AIP Publishing

               dc_1955_21



The Journal
of Chemical Physics

ARTICLE scitation.org/journal/jcp

H+
3 as a five-body problem described

with explicitly correlated Gaussian basis sets

Cite as: J. Chem. Phys. 151, 154110 (2019); doi: 10.1063/1.5121318

Submitted: 23 July 2019 • Accepted: 17 September 2019 •

Published Online: 18 October 2019

Andrea Muolo,1 Edit Mátyus,2,a) and Markus Reiher1,b)

AFFILIATIONS

1ETH Zürich, Laboratory of Physical Chemistry, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
2Institute of Chemistry, ELTE, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary

a)Electronic mail:matyuse@caesar.elte.hu
b)Electronic mail:markus.reiher@phys.chem.ethz.ch

ABSTRACT

Various explicitly correlated Gaussian (ECG) basis sets are considered for the solution of the molecular Schrödinger equation with particular
attention to the simplest polyatomic system, H+

3 . Shortcomings and advantages are discussed for plain ECGs, ECGs with the global vector
representation, floating ECGs and their numerical projection, and ECGs with complex parameters. The discussion is accompanied with
particle density plots to visualize the observations. In order to be able to use large complex ECG basis sets in molecular calculations, a
numerically stable algorithm is developed, the efficiency of which is demonstrated for the lowest rotationally and vibrationally excited states
of H2 and H+

3 .

Published under license by AIP Publishing. https://doi.org/10.1063/1.5121318., s

I. INTRODUCTION

Recent progress in the experimental energy resolution1,2 of
spectroscopic transitions of small molecules urges theoretical and
computational methods to deliver orders of magnitude more accu-
rate molecular energies than ever before. The current and near
future energy resolution of experiments allow for a direct assess-
ment of relativistic quantum electrodynamics effects and beyond
them, as soon as calculations with a low uncertainty become avail-
able. For small molecules, composed of just a few electrons and a
few nuclei, this endeavor should be realistic within the near future.
A remarkable experiment–theory concourse has been unfolding for
the three-particle H+

2 molecular ion3,4 and for the four-particle H2

molecule.1,5–7 In addition, there are promising initial results for the
five-particle He+2

8–11 for which an explicit five-particle treatment, at
least for the lowest vibrational and rotational excitations, should be
possible.12

H+
3 is also a five-particle system, but it is a polyatomic system. In

comparison with atoms and diatomic molecules, there has been very
little progress achieved for polyatomics over the past two decades
regarding an accurate description of the coupled quantum mechan-
ical motion of the electrons and the atomic nuclei. In addition to

the variational treatment considered in the present work, nonadi-
abatic perturbation theory offers an alternative route for closing
the gap between theory and experiment. The single-state nonadi-
abatic Hamiltonian has been known for a long time13–18 and has
been used a few times in practice,10,19,20 while the general work-
ing equations for the effective nonadiabatic nuclear Hamiltonian
for multiple, coupled electronic states have been formulated only
recently.21

We have already worked on the development of explicitly cor-
related Gaussian (ECG)Ansätze in relation with the variational solu-
tion of polyatomics (electrons plus nuclei). In 2018, we proposed
to use (numerically) projected floating ECGs, which allowed us to
approach the best estimate obtained on a potential energy surface
(PES) for the Pauli-allowed ground state within 70 cm−1 (31 cm−1

with basis set extrapolation).22

The present work starts with an overview of the advantages
and shortcomings of the different ECG representations together
with proton density plots which highlight important qualitative
features. Then, we develop an algorithm which ensures a numer-
ically stable variational optimization of extensive sets of ECGs
with complex parameters, another promising Ansatz for molecular
calculations,23,24 and demonstrate its applicability for the lowest
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rotational and vibrational states of H2 and H+
3 . Our focus in this

work is on the convergence of density distributions for which a
smaller number of basis functions is sufficient than what would be
required to observe energy convergence.

II. EXPLICITLY CORRELATED GAUSSIANS

We consider the solution of the time-independent Schrödinger
equation (inHartree atomic units) including all electrons and atomic
nuclei, in total Np particles, of the molecule,

⎡⎢⎢⎢⎢⎣
−

Np

∑
i=1

1

2mi
Δri +

Np

∑
i=1

Np

∑
j>i

ZiZj

∣ri − rj∣
⎤⎥⎥⎥⎥⎦
Ψ = EΨ , (1)

with electric charges Zi and Zj and positions ri and rj. The exact
quantum numbers of the molecular energies and wave functions, E
and Ψ, are the total angular momentum quantum numbers, N and
MN , the parity, p, and the spin quantum numbers for each particle
type, Sa,MSa , Sb,MSb , . . ..

We obtain increasingly accurate approximations to the Ψ

molecular wave function by using a linear combination of antisym-

metrized products of (many-particle) spatial, ψ
[N,MN ,p,]
i , and spin,

χ
[Sa ,MSa ,Sb ,MSb

,...]

i , functions,

Ψ
[N,MN ,p,Sa ,MSa ,Sb ,MSb

,...] =
Nb∑
i=1

ciÂ{ψ[N,MN ,p]
i χ

[Sa ,MSa ,Sb ,MSb
,...]

i } , (2)

where Nb is the number of basis functions and Â is the anti-
symmetrization operator for fermions (we would need to sym-
metrize the product for bosonic particles). The nonlinear param-
eters of the spatial and the spin functions are optimized based
on the variational principle,25,26 and the ci coefficients are deter-
mined by solving the linear variational problem in a given basis
set.

Concerning the construction of the basis set, explicitly cor-
related Gaussian (ECG) functions have been successfully used as
spatial basis functions for a variety of chemical and physical prob-
lems.26,27 In what follows, we consider various ECG basis sets
aiming at an accurate solution that can approach spectroscopic
accuracy of the molecular Schrödinger equation [generally defined
as obtaining (ro)vibrational state energies within better than a
1 cm−1 uncertainty]. A precise description of vibrational states
of di- and polyatomic molecules assumes the use of basis func-
tions which have sufficient flexibility to describe the nodes of the
wave function along the interparticle distances, sharp peaks corre-
sponding to the localization of the nuclei displaced from the cen-
ter of mass, and allow us to obtain efficiently the solutions cor-
responding to the exact quantum numbers of this nonrelativistic
problem.

Concerning the spin functions, we use the spin functions of two
and three identical spin-1/2 fermions (electrons and protons) with
the spin quantum numbers (S,MS) = (0, 0) and (S,MS) = (1/2, 1/2),
respectively, formulated according to Refs. 25 and 28.

In the case of H+
3 , the mathematically lowest-energy (ground

electronic, zero-point vibrational) state of the Schrödinger equation
with N = 0 and p = +1 is not allowed by the Pauli principle (for
the Se = 0 electrons’ and Sp = 1/2 protons’ spin states), or in short,

the nonrotating vibrational and electronic ground state of H+
3 is spin

forbidden.29,30 The lowest-energy, Pauli-allowed state is the vibra-
tional ground state (v = 0) with N = 1 and p = −1 (the first rotation-
ally excited state). The lowest-energy state with N = 0 is the (0, 11)
fundamental vibration,29 which corresponds to asymmetric distor-
tions (antisymmetric for the proton exchange) with respect to the
equilateral triangular equilibrium structure.

For the assessment and visualization of the results obtained
with the different spatial basis sets, we use particle density func-
tions, which are very useful in analyzing the qualitative properties
of the molecular wave function.31–33 We will focus on properties
of the proton (p) density (measured from the center-of-mass, CM,
position),

Dp,CM(R) = ⟨Ψ∣δ(rp − rCM − R)∣Ψ⟩. (3)

A. Plain ECG, polynomial ECG, and ECG-GVR

Plain ECG-type functions,

ψECG(A; r) = exp[−rT(A⊗ I3)r] (4)

with the collective position vector r = (r1, r2,⋯, rNp ) and the A

∈ RNp×Np symmetric matrix, have been successfully used to describe
atoms and positron-electron complexes (with N = 0 total angular
momentum quantum number and p = +1 parity).25 To describe the
localization and vibrational excitation of atomic nuclei, a linear com-
bination of several plain ECG functions is necessary, which makes
their use in molecular calculations very inefficient. The slow conver-
gence of plain ECGs for the lowest-energyN = 0 state of H+

3 is shown
with respect to ECG-GVR (vide infra) in Fig. 1 [compare Figs. 1(a)
and 1(b)].

Explicitly correlated Gaussians with the global vector repre-
sentation (ECG-GVR) have been originally proposed by Suzuki,
Usukura, and Varga in 1998.34 These functions represent a general
form of ECGs with polynomial prefactors. When several ECG-GVR
functions are used in a variational procedure, molecular states can
be converged with a total angular momentum quantum number, N,
and natural parity, p = (−1)N ,
ψ
[N,MN]
ECG-GVR(r;A,u,K) = YNMN (v̂) ∣v∣2K+N exp [−rT(A⊗ I3)r] , (5)

where the “global vector” v is a linear combination of particle
coordinates,

v = u1r1 + u2r2 +⋯ + uNprNp = (u⊗ I3)Tr , (6)

and v̂ contains the spherical polar angles corresponding to the
unit vector v/|v|. The integer value K and the global vector coef-
ficient v may be unique to all basis functions and are determined
variationally.

The general ECG-GVR basis set can be very well used to con-
verge the ground- and excited states of atoms, positron-electron
complexes, as well as diatomic molecules (for which plain ECGs
would be inefficient) with various total angular momentum quan-
tum numbersN.28,35–38 It is important to stress, however, that higher
vibrational excitations, heavier nuclei, or higherN values require the
use of higher-order polynomials in front of the ECG, whichmake the
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FIG. 1. Proton probability density for
H+

3 = {p
+, p+, p+, e−, e−} (Se = 0, Sp

= 1/2) obtained with plain ECG for (N
= 0, p = +1) in (a) and with ECG-GVR
functions for (N = 0, p = +1) in (b) and
(N = 1, p = −1) in (c). The density is
shown along a ray measured from the
center of mass, D(Rx , 0, 0), which is
sufficient as the overall space rotation-
inversion leaves the system invariant
(N = 0, p = +1). In the ECG-GVR calcu-
lations, the maximal order for the poly-
nomial prefactor was 2Kmax = 20. The
reference energy values obtained by us
on a PES are EPES(N = 0, p = +1)
=−1.311 950 Eh and EPES(N = 1, p =−1)

= −1.323 146 Eh
39 (note that the latter

value corresponds to the lowest-energy
Pauli-allowed state). All quantities in the
figure are given in atomic units.

integral evaluation and the entire calculation computationally more
demanding.

For N = 0, an ECG-GVR with the special parameterization
ui = 1, uj = −1, and uk = 0 (k ≠ i, j) simplifies to an ECG with a
single (even-power) polynomial prefactor,

ψ
[0,0]
ECG-r(r;A,K) = ∣ri − rj∣2K exp[−rT(A⊗ I3)r],

= r2Kij exp[−rT(A⊗ I3)r] , (7)

which has been successfully used to describe vibrations of diatomic
molecules by Adamowicz and co-workers.40–42

In spite of the success of these types of basis functions for atoms
and diatoms, the ECG-GVR Ansatz was found to be inefficient22

[comparable to the single-polynomial ECG Ansatz, Eq. (7) 43] to
converge the five-particle energy of H+

3 within spectroscopic accu-
racy. Even the proton density can be hardly converged (Fig. 1),
while the energy has uncertainties (much) larger than 1 mEh. The
proton density for the lowest-energy N = 0 state has two peaks,
which may be qualitatively correct, since this state (if converged)
corresponds to the antisymmetric fundamental vibration, which
should feature two peaks in the proton density measured from the

center of mass. The two peaks appear already in the plain ECG
calculation [Fig. 1(a)], but plain ECG densities have even larger
uncertainties. A further increase in the basis set (toward conver-
gence) is hindered by near-linear dependency problems, which is an
indication of insufficient flexibility in the mathematical form of the
basis functions.

Figure 1(c) shows the (convergence of the) proton density
obtained with ECG-GVR functions for the lowest-energy rota-
tional (N = 1) state which corresponds to the lowest-energy Pauli-
allowed state of the system. Notice the significant amount of den-
sity at the origin (center of mass) and the large deviations of
results obtained with different basis set sizes, which must be arti-
facts due to incomplete convergence (compare with Figs. 3 and 5).
The “best” (lowest) five-particle energy, we obtained with an
ECG-GVR representation for the lowest-energy state (N = 1), is
1.8 mEh larger than the best estimate on a potential energy surface
(PES).22

Hence, the slow convergence of the energy and the density in
the ECG-GVR Ansatz is related to the fact that these functions are
not flexible enough to efficiently describe the triangular arrangement
(and vibrations) of the protons in H+

3 and the spherical symmetry
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of the system at the same time.22 In principle, it would be possible
to define ECG-GVRs with multiple global vectors which could give
a better account of the rotational and the multiparticle clustering
effects in a polyatomic molecule, but the formalism would be very
involved.

B. ECGs with three pre-exponential polynomials

We note in passing that, in 2005, Bednarz, Bubin, and
Adamowicz proposed an ECG Ansatz for H+

3 ,
43

ψ
[0,0]
ECG-3r(r;A, k12, k13, k23) = r2k1212 r

2k13
13 r

2k23
23 exp[−rT(A⊗ I3)r] , (8)

by including polynomial prefactors for all three proton-proton dis-
tances, rij = |ri − rj| (i, j = 1, 2, 3, j > i). The integral expressions have
been formulated, but to our best knowledge, they have never been
used in practical calculations due to their very complicated form and
numerical instabilities.44

C. Floating ECGs with explicit projection

Floating ECGs (FECGs),

ψFECG(A, s; r) = exp[−(r − s)T(A⊗ I3)(r − s)] , (9)

offer the flexibility to choose (optimize) not only the exponents but
also the centers, s ∈ RNp×3, which allows one to efficiently describe
localization of the heavy particles in polyatomics. At the same time,
the FECG functions with arbitrary, s ≠ 0, centers do not transform
as the irreducible representations (irreps) of the three-dimensional
rotation-inversion group, O(3), and therefore, they are neither
eigenfunctions of the total squared angular momentum operator,
N̂2, nor eigenfunctions of space inversion (parity). Although these
symmetry properties are numerically recovered during the course
of the variational optimization converging to the exact solution [see
Figs. 2(a)–2(c), 3(a), and 3(b)], it is extremely inefficient (impracti-
cal) for molecular calculations to recover the continuous symmetry
numerically.

To speed up the slow convergence in the FECG Ansatz due to
the broken spatial symmetry, we proposed in 201822 to project the
floating ECG basis functions onto irreps of O(3),

ψ
[N,p]
p-FECG(A, s; r) = 1

4π ∫ [D
(N)
MNMN

(Ω)]∗R̂(Ω) 1
2
(1 + p ⋅ î)

× exp[−(r − s)T(A⊗ I3)(r − s)]dΩ , (10)

where Ω collects parameterization of the 3-dimensional rotation,

e.g., in terms of three Euler angles, D
(N)
MNMN

(Ω) is the (MN , MN)th

element of the Nth-order Wigner D matrix, and R̂(Ω) is the corre-
sponding three-dimensional rotation operator. p is the parity, +1 or
−1, and ı̂ is the 3-dimensional space-inversion operator. Both the
R̂ rotational and the ı̂ space-inversion operators act on the parti-
cle coordinates, r, but the mathematical form of the ECGs allowed
us to translate their action onto the transformation of the ECG
parameters, A and s.22,28

For the projected basis functions, the integral expressions of the
nonrelativistic operators are in general not known analytically, and
for this reason, we have carried out an approximate, numerical pro-
jection in Ref. 22. Using numerically projected floating ECGs, we

achieved to significantly improve upon the five-particle energy for
H+

3 and to approach the current best estimate (on a potential energy
surface) for the Pauli-allowed ground state within 70 cm−1 (with
extrapolation within 31 cm−1).

Properties of (unprojected, symmetry-breaking) and (approxi-
mately) projected FECGs are shown for the example of the proton
density of H2 and H+

3 in Figs. 2 and 3, respectively. At the begin-
ning of an unprojected calculation, the proton density first localizes
at around three (two) lobes which corresponds to the localization of
the protons inH+

3 (andH2), exhibiting small-amplitude vibrations in
a fixed orientation (which can be understood as a superposition of
several eigenstates with differentN,MN , and p values). Then, during
the course of the variational increase in the basis set, the spherical
symmetry is recovered, but the triangular (dumbbell-like) relative
configuration of the protons in H+

3 (in H2) is also described within
the proton shells (not shown in the figures). Numerical projection
reconstructs the expected spherical symmetry directly, without the
need of variational optimization, as it is shown in Figs. 3(c), 3(d),
and 2(d).

To construct the density plots, we had to evaluate the pro-
ton density at several points in space, which is demanding for H+

3

with the current projection scheme. For this reason, the largest basis
set used for the density plot [Fig. 3(d)] is smaller than the best
one obtained during the convergence of the five-particle energy in
Ref. 22. Projected FECGs are promising candidates for solving H+

3 as
a five-particle problem, and we anticipate further progress along this
line in the future.

D. Complex ECGs

In 2006, Bubin and Adamowicz23 proposed to use ECGs with
complex parameters (CECGs),

ψCECG(C; r) = exp[−rT(C ⊗ I3)r] , (11)

to describe vibrational (N = 0, p = +1) states of molecules.
C = A + iB ∈ C

Np×Np is a complex-valued matrix with the real,
symmetric matrices, A and B. To ensure square integrability, ψmust
decay to zero at large distances. Furthermore, to have a positive def-
inite ψ, A must be positive definite. Most physical operators have
very simple integrals in this basis set, and the integrals can be eval-
uated with a small number of operations (i.e., at low computational
cost), which does not increase with increasing the number of nodes
of the basis function (unlike for ECG-GVR or polynomial ECG).
The rich nodal structure of CECGs, introduced by the B imaginary
part of the exponent, can be understood through the Euler identity,

e−(a+ib)r
2 = e−ar2[cos(br2) − i sin(br2)].

In 2008, Bubin and Adamowicz24 proposed to extend CECGs
for computing N = 1 states of diatomics with

ψzCECG(C; r) = ρz exp[−rT(C ⊗ I3)r] , (12)

using ρz = (rn1 − rn2)z , which is the z-component of the displace-
ment vector between the two nuclei, n1 and n2. This Ansatz yields
a very good description for the first rotationally excited state of a
diatomic molecule (the electrons’ contribution to the total angular
momentum is almost negligible).

The analytic matrix elements for the overlap, kinetic energy,
Coulomb potential energy, and particle density (together with the
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FIG. 2. Proton probability density for the ground state of H2 = {p+, p+, e−, e−} (Se = 0, Sp = 0) obtained with floating ECGs. (a)–(c) Nonprojected (symmetry breaking) FECGs
with 50, 200, and 700 basis functions, respectively; (d) FECG basis functions numerically projected onto the (N = 0, p = +1) irrep of O(3) using 22 quadrature points for each

Euler angle (see Ref. 22 for details). Nb is the number of basis functions. The energy and the square of the total angular momentum operator are ⟨Ĥ⟩ = −1.164 025 031 Eh
17

and ⟨N̂2⟩ = 0, respectively. All quantities in the figure are given in atomic units.

energy gradients with respect to the Cmatrix parameters) have been
derived by Bubin and Adamowicz, and the expressions can be found
in Refs. 23 and 24.

Widespread application of the CECG basis-function family
is hindered by the fact that matrix operations (matrix inversion,

etc.) are more affected by numerical instabilities in finite (dou-
ble) precision complex arithmetics when compared to real
arithmetics.

Earlier this year, Varga proposed45 a numerically stable imple-
mentation of the CECG functions, through real combinations,
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FIG. 3. Proton probability density for the lowest-energy, Pauli-allowed state of H+
3 = {p

+, p+, p+, e−, e−}, which is the first rotationally excited state (N = 1) of the zero-point
vibration. (a) and (b) Nonprojected (symmetry breaking) FECGs with 240 and 2250 basis functions, respectively; (c) and (d) FECGs approximately projected onto the (N = 1,

p = −1) irrep of O(3) using 4 and 8 quadrature points, respectively, for each Euler angle.22 For the exact wave function, ⟨N̂2⟩ = 2 (N = 1). All quantities are given in atomic
units.

ψC-CECG(r;C) = 1

2
[ψCECG(r;C) + ψCECG(r;C∗)] , (13)

ψS-CECG(r;C) = 1

2i
[ψCECG(r;C) − ψCECG(r;C∗)], (14)

with C
∗ being the complex conjugate of C, which allowed him to

work with real-valued Hamiltonian and overlap matrices. Further-
more, he also proposed an imaginary-time propagation approach to
make the optimization of the complex exponent matrices efficient
for the ground state of molecular systems.45

III. ALGORITHM FOR NUMERICALLY STABLE
CALCULATIONS WITH COMPLEX ECGS

In this section, we present the key elements of a numerically
stable algorithm that we developed for the original (complex) CECG
functions.

Following Eq. (12), we define a new CECG basis function
by specifying the A and B ∈ R

Np×Np real symmetric matri-
ces, which give the complex symmetric matrix, C = A + iB,
in the exponent of the ECG. We work in laboratory-fixed Cartesian
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coordinates (LFCCs)46,47 and use a multichannel optimization pro-
cedure, i.e., optimize the coefficient matrices corresponding to dif-
ferent translationally invariant (TI) Cartesian coordinate represen-
tations.47 Owing to the mathematical form of the ECGs, the trans-
formation of the coordinates can be translated to the transformation
of the parameter matrix.28 In all TI representations, the A and B

matrices are block diagonal, i.e., the TI and the center-of-mass (CM)
blocks do not couple. To ensure square integrability, we choose the
CMblock ofA to have nonzero values on its diagonal.We choose the

same nonzero value for all diagonal entries and for each basis func-
tion, the contribution of which is eliminated (subtracted) during the
evaluation of the integrals. With this choice for the real part A, we
are free to set the CM block of the imaginary part B to zero, and ψ, of
course, remains positive definite (due to the nonvanishing CM block
of A).

In order to obtain N = 1 states, we use CECGs multiplied
with the z coordinate of a “pseudoparticle.” Bubin and Adamow-
icz used the z component of the nucleus-nucleus displacement

FIG. 4. Proton probability density calculated for the ground (v = 0, N = 0) in (a) and the lowest rotationally (N = 1) and vibrationally (v = 1) excited states in (b)–(d) of
H2 = {p+, p+, e−, e−} (Se = 0, Sp = (1 −N)/2, p = (−1)N) using (gz)CECG functions. The particle densities are converged within figure resolution; deviation of the energy from

benchmark values17 is given in parentheses. All quantities in the figure are given in atomic units.
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vector in diatomic molecules.24 We do not choose only a sin-
gle pseudoparticle but pick different particle pairs for the dif-
ferent basis functions (and possibly several other linear combi-
nations of the particle coordinates, inspired by the ECG-GVR
idea48) to ensure that the contribution of each particle pair to
the angular momentum is accounted for. Hence, our general
form for complex basis functions, gzCECG, for N = 1, p = −1
states is

ϕgzCECG(r;C, i) = ρ(i)z (r) exp[−rT(C ⊗ I3)r] , (15)

where ρ
(i)
z is the z component of the ith translationally invariant

vector, formed as a linear combination of the particle coordinates,

ρ
(i)
z (r) =

Np

∑
j=1

u
(i)
j rj,z . (16)

Of course, there are infinitely many such combinations. In the
present calculations, we have included all possible pairs of particles,
i.e., i in Eq. (16) cycles through the possible particle pairs only. For

example, there are (5
2
) = 10 possible particle pairs in H+

3 , and we

consider the following ρ
(i)
z -parameterization (i = 1, 2, . . ., 10) in the

gzCECG representation:

(1) u
(1) = (1, −1, 0, 0, 0),

(2) u
(2) = (1, 0, −1, 0, 0),

(⋯)
(10) u

(10) = (0, 0, 0, 1, −1).

A robust and numerically stable implementation of (gz)CECGs
has been a challenging task. The overlap and Hamiltonian matrix
elements are complex, and the complex generalized eigenvalue

problem quickly becomes unstable when increasing the size of the
basis set in a stochastic variational approach. We have studied the
nature of these instabilities and have identified two ingredients
producing this unstable behavior.

First, an unrestricted optimization of the B matrix generates
increasingly oscillatory functions, and thus, the basis function decays
slowly in the limit r → ∞. This behavior affects a broad region
of the parameter space; it happens whenever the imaginary part B
dominates the real part A.

Second, the analytic overlap and Hamiltonian matrix ele-
ments require the calculation of the determinant and the inverse
of the complex, symmetric matrix C, the evaluation of which
suffers from loss of precision in floating-point arithmetics, i.e.,
an ill-conditioned matrix is still invertible, but the inversion is
numerically unstable. The quality of the eigenvalues and eigen-
functions of the Hamiltonian matrix (with the complex, nondi-
agonal overlap matrix) is thereby compromised by ill-conditioned
matrices C, an undesired feature which can be identified by
repeating the calculations with higher-precision arithmetics or
by monitoring the range spanned by the eigenvalues of the
matrices.50

Based on these observations, we propose the following con-
ditions to ensure numerical stability of the variational procedure
in finite-precision arithmetics. During the course of the variational
selection and optimization of the basis function parameters, we
monitor

(1) the ratio of the diagonal elements of the real and the imagi-
nary parts of C = A + iB: Aii/Bii < ǫ1i, i = 1, . . ., Np;

(2) the condition number of C: κ(C) < ǫ2;
(3) the condition number of the (complex symmetric) S overlap

and theH Hamiltonian matrices: κ(S) < ǫ3S and κ(H) < ǫ3H .

FIG. 5. Proton probability density for the lowest-energy, Pauli-allowed state of H+
3 (N = 1, p = −1, Se = 0, Sp = 1/2) obtained with 2000 and 2300 gzCECG functions in (a)

and (b), respectively. The density is converged within figure resolution [compare plots (a) and (b)], while the deviation of the five-particle energy from the best value obtained

on a PES in our earlier work,22 Eref = −1.323 146 Eh,39 is given in parentheses (δE = E − Eref). All quantities in the figure are given in atomic units.
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For acceptance of a trial basis function as a new basis function in
the basis set, these three conditions must be fulfilled in addition to
minimization of the energy. In this way, the numerical stability of
the computational procedure can be ensured. For the present cal-
culations, carried out using double precision arithmetics, we have
found that the same ǫ1i = ǫ2 = ǫ3S = ǫ3H = ǫ = 1010 value for
each condition ensures numerical stability for the desired preci-
sion, i.e., 6–9 significant digits in the energy. Conditions (1)–(3)
and the selected value of ǫ have been constantly tested during the
calculations by solving the linear variational problem within the
actual basis set with increased (quadruple and beyond) precision
arithmetics.

The first two conditions ensure that the parameter optimization
algorithm avoids the regions which would result in overly oscillatory
basis functions at large distances, while the third condition con-
trols the level of linear dependency within the (nonorthogonal)
basis set.

The computational bottleneck of the (gz)CECG calculations is
related to the solution of the generalized complex eigenvalue prob-
lem as it was also noted in Ref. 44. For this reason, we have imple-
mented and used the FEAST eigensolver algorithm,49 which is a
novel, powerful iterative eigensolver for the generalized, complex,
symmetric eigenvalue problem.

Figure 4 shows the convergence of the proton density (the
energy is also given) for the ground and rotationally and vibra-
tionally excited states of the H2 molecule (Se = 0, Sp = 0). These
results were obtained within a few days on a multicore worksta-
tion. While the densities are very well converged, the energies can
be further improved by subsequent basis-set optimization.

Figure 5 shows our best results obtained for selected
states of H+

3 (Se = 0, Sp = 1/2) using the numerically sta-
ble gzCECG implementation developed in this work. The pro-
ton probability density for the lowest-energy, Pauli-allowed state
(zero-point vibration, N = 1) is well converged; the difference
between Figs. 5(a) and 5(b) can hardly be seen. The best energy
is 0.7 mEh ≈ 153 cm higher than the reference value obtained on
a PES.39

IV. CONCLUSIONS

Explicitly correlated Gaussian basis sets have been an excellent
choice when aiming for ultraprecise energies for atoms, electron-
positron complexes, and diatomic molecules. However, tight con-
vergence of the energy of H+

3 , the simplest polyatomic system, by
including all electrons and protons in a variational procedure has
not yet been achieved.

In this work, we critically assessed explicitly correlated Gaus-
sian (ECG) basis sets for solving the molecular (electrons plus
nuclei) Schrödinger equation through the study of the convergence
of the energy and the particle (proton) density. These observations
will contribute to developments that will eventually allow for the
convergence of the five-particle energy of H+

3 within spectroscopic
accuracy, i.e., an uncertainty better than 1 cm−1 (<5 × 10−6 Eh) for
the molecular energy.

In 2018, we developed an algorithm for numerically projected
floating ECGs22 to compute the lowest-energy state of H+

3 in a
variational procedure. In the present work, we presented a numeri-
cally stable algorithm for another promising basis set for solving H+

3 ,

complex ECGs, which makes it possible to use large basis set sizes
in finite precision arithmetics. Although projected floating ECGs
provided a somewhat lower energy22 than complex ECGs (present
work) so far, it is currently unclear which type of basis set will
finally allow one to reach spectroscopic accuracy for H+

3 treated as
a five-particle system.

Reaching and transgressing this level of uncertainty in a vari-
ational computation will make it possible to directly assess effec-
tive nonadiabatic mass models and to study relativistic and quan-
tum electrodynamics effects in the high resolutions spectrum. Such
calculations are beyond the scope of the present work and therefore
deferred to future studies.
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Numerical projection methods are elaborated for the calculation of eigenstates of the non-relativistic

many-particle Coulomb Hamiltonian with selected rotational and parity quantum numbers employ-

ing shifted explicitly correlated Gaussian functions, which are, in general, not eigenfunctions of

the total angular momentum and parity operators. The increased computational cost of numerically

projecting the basis functions onto the irreducible representations of the three dimensional rotation-

inversion group is the price to pay for the increased flexibility of the basis functions. This increased

flexibility allowed us to achieve a substantial improvement for the variational upper bound to the

Pauli-allowed ground-state energy of the H+
3
= {p+, p+, p+, e−, e−} molecular ion treated as an explicit

five-particle system. We compare our pre-Born–Oppenheimer result obtained for this molecular ion

with rotational-vibrational calculations carried out on a potential energy surface. Published by AIP

Publishing. https://doi.org/10.1063/1.5050462

I. INTRODUCTION

Energies and wavefunctions of small systems at the low-

energy scale can be calculated with very high accuracy. Such

calculations serve as a reference for approximate theories and

provide results to compare with high precision experimen-

tal measurements. The continuous advance of experimental

techniques as well as theoretical and computational methods

allowed for, e.g., scrutinizing expressions for particle inter-

actions1–4 and testing extensions to the standard model5 as

solutions to the puzzling experimental results6,7 of small atoms

and molecules and investigating long-range interactions of

nuclei with few-ppt uncertainty.8–13 Three recent examples

are (i) relativistic calculations on the H2 = {p+, p+, e−, e−}
four-particle system leading to a remarkable agreement of its

theoretical D0 dissociation energy12,13 with experiment,14 (ii)

relativistic calculations on the H+
2
= {p+, p+, e−} three-particle

system10 that yielded the energy-level structure with a rela-

tive accuracy of 10−12 and allowed for using this system in

metrology as an alternative way to determine fundamental

physical constants, and (iii) the transition frequencies of high-

n Rydberg states of H2 belonging to a series converging on the

ground state of H+
2

measured with a relative frequency accuracy

of 10−10.15

Methods for solving quantum-mechanical few-body prob-

lems have been employing the family of explicitly corre-

lated Gaussians (ECG) basis functions.16–24 Their application

is mostly limited to eigenstates of few-electron atoms and

diatomic molecules with various total angular momentum val-

ues and to natural parity, p = (−1)N . A serious difficulty in

a)Authors to whom correspondence should be addressed: matyus@chem.
elte.hu and markus.reiher@phys.chem.ethz.ch

molecular applications is obeying the correct rotational sym-

metry with generally applicable Np-particle basis functions.

For systems for which nonspherical (N > 0) functions are

required, the evaluation of the corresponding matrix elements

becomes increasingly complicated.

The difficulties can be understood by considering the tra-

ditional partial-wave construction of the angular part of the

basis functions,

θ̃NMN
(r) =

[ [ [
Yl1 (r1)Yl2 (r2)

]

N12
Yl3 (r3)

]
N123

. . .

]
N MN

, (1)

where li and N i are the angular momentum quantum numbers

and Yl(r) are the solid spherical harmonics. The expansion

length and, hence, the evaluation time of the matrix ele-

ments quickly becomes untractable as the number of particles

increases.

Different approaches have been developed in the literature

to avoid these difficulties. For example, one can restrict the cal-

culation to a special N value and develop the formalism and

efficient computer implementations for that case.25–30 Alterna-

tively, the angular motion of the few-body system is described

by introducing variationally tunable parameters ui that depend

on the position of the particles and define the so-called global

vector,31,32

v =

Np−1
∑

i=1

uiri. (2)

The orbital-rotational motion is then described by the

orientation (v̂ = v/|v |) of this global vector as follows:

θNMN
(r; u, K) = |v |2K+N YNMN

(v̂). (3)

It was shown in Ref. 31 that the global vector representa-

tion (GVR), Eq. (3), and the partial wave expansion, Eq. (1),

are mathematically equivalent when they are used in a varia-

tional procedure in which the ui coefficients are selected based

on the energy minimization condition.

0021-9606/2018/149(18)/184105/12/$30.00 149, 184105-1 Published by AIP Publishing.
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In the present work, a direct projection method is devel-

oped in which a general (non-symmetric) ECG basis func-

tion is projected onto irreducible representations (irreps)

of the O(3) three-dimensional rotation-inversion group. Our

approach relates to the work by Strasburger33 of reducing

unwanted angular momentum contaminations by means of

projecting basis functions onto an irrep of a point-group sym-

metry but exploits the generality of the O(3) group and does

not suffer from deviations of 〈N2〉 from the exact values of

N(N + 1). In the most straightforward application, the basis

function parameters are optimized for the non-projected func-

tions. Then, the linear variational problem is solved with

numerically projected basis functions (without any further

non-linear optimization). Ideally, the parameter optimization

would be carried out for the projected functions but this optimal

approach is currently limited by the computationally expen-

sive task of performing the numerical projection at every

iteration of the optimization. A hybrid approach consisting

of iterations for unprojected functions followed by further

steps on projected functions will be described and employed

to obtain substantially improved variational upper bounds for

the H+
3
= {p+, p+, p+, e−, e−} molecular ion as an explicit

five-particle system.

II. THEORY

A. Translational symmetry

Symmetries allow for the classification of solutions and

also make their approximation more efficient. We briefly intro-

duce basic notation in Secs. II A–II C needed in Secs. II D–II F

to present our computational methodology. The translation

of a wavefunction Ψ(r) in the position representation, e.g.,

a wave packet at r = 0, can be represented by an (active) shift

a achieved by the operation Ψ(r)→ Ψ(r − a); see Fig. 1.

We denote the space translation r→ r + a by Tar = r + a

and the corresponding mapping in the Hilbert space,

(UaΨ)(r) = Ψ(r − a)

a small
≈ Ψ(r) − a · (∇Ψ)(r)

= (1 − ia · p)Ψ(r)

≈ exp(−ia · p)Ψ(r), (4)

FIG. 1. Active translation of a wavepacket by a: Ψ(x) → Ψ(x − a)

= (UaΨ)(x).

produces a representation of the (Abelian) group

GT =

{
Ta |a ∈ R

3
}

of translation in the Hilbert space

of the wavefunction. We denote this representation by

G = {Ua |Ta ∈ GT }.

The result in Eq. (4) can be made exact by writingΨ(r − a)

in a Taylor series or by integrating with an infinitesimal shift

a→ a + δa,Ψa+δa = Ψa−(iδa · p)Ψa, obtaining the differential

equation ∂aΨa = −i(p)Ψa. With the initial condition Ψ0 = Ψ,

one obtains the solution Ψa = exp(−ia · p)Ψ0. Hence, the

translation operator,

Ua = exp(−ia · p), (5)

describes the active displacement of the wavefunction by a,

where the momentum operator p is the infinitesimal gen-

erator of translations. With a Hermitian p, Ua is unitary,

G and GT are Abelian, continuously connected, isomorphic

groups.

B. Spatial rotations and the SO(3) group

Given an axis of rotation ω and an angle 0 ≤ ω < 2π, the

elements Rω ∈ SO(3) represent 3-dimensional rotations. The

corresponding U(Ω) unitary representation in the Hilbert space

of the many particle wavefunction Ψ(r) with r ≡ (r1 . . . rNp
)T

is

(UωΨ)(r) = Ψ
((

1Np
⊗ R−1

ω

)

r
)

. (6)

For small rotations and Np = 1 with R−1
ω

r ∼ r − ω ∧ r,

(UωΨ)(r) ≈ Ψ(r − ω ∧ r)

= Ψ(r) − ǫ ijkωirj∂kΨ(r) + . . .

= [1 − iω · l + . . .]Ψ(r)

= exp(−iω · l)Ψ(r), (7)

where the angular momentum operator l̂ = −ir ∧ ∇ with

r̂ = (x, y, z)T and ∇̂ =
(

∇x,∇y,∇z

)T
.

The representation Uω = exp(−iω · l) holds also for large

ω rotation angles, and the angular momentum operator is the

infinitesimal generator of rotation,

Uω = exp(−iω · l) ∈ SO(3), (8)

where the group SO(3) and its representation SO(3) in

the Hilbert space H are isomorphic, non-Abelian, and

continuous.

The orthogonal (or rotation-inversion) group O(3) is the

direct product of the special orthogonal group SO(3) and the

group CI = {E, I} including the identity and the inversion

operator: O(3) = SO(3) ⊗ CI . The irreducible representations

of SO(3), labeled with Dl, are dim Dl
= 2l + 1 dimensional,

where l ∈ N0. The irreducible representations of O(3) are Dl±

with dim Dl±
= 2l + 1. Spherical harmonics functions, Y lm (of

the so-called natural parity), belong toDl+ if l is even and toDl−

if l is odd. Functions with unnatural parity can be constructed

from combinations of spherical harmonics functions (see, for

example, Ref. 34).

C. Rotations and tensors

Let the eigenstate |l, m〉 be rotated by Uω = exp (−iω · l)

by an angle |ω | (positive rotation) about the axis defined by ω̂.
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An arbitrary rotation operator R̂ can then be defined by means

of the Euler angles α, β, γ (we use the z − y − z convention;

see also Fig. 2) as35

R̂(Ω) ≡ R̂(α, β, γ) = e−iαlz e−iβly e−iγlz . (9)

By definition of an irreducible representation, R̂(Ω) leaves

the irreducible subspace spanned by |l, m′〉 with m′ = −l, . . .,

+l invariant,

R̂(Ω)|l, m
〉

=

l∑

m′=−l

Dl
m′m(Ω)|l, m′

〉

, (10)

where Dl
m′m

(Ω) is the (m′, m)th element of the lth Wigner

D-matrix. Wigner D-matrices define the (2l + 1)-dimensional

irreducible representations of the rotation group, SO(3),

Dl
m′m(Ω) ≡ 〈l, m′ |R̂(Ω)|l, m〉. (11)

The Dl(Ω) matrices have a number of important proper-

ties.36 First of all, they are unitary,

Dl†(Ω)Dl(Ω) = Dl(−Ω)Dl(Ω) = 1, (12)

and also

D
l†
m′m

(Ω) = D
l†
m m′

(Ω) = Dl
m′m(−Ω). (13)

Furthermore, the special case Dl
mm′

(0, β, 0) = dl
mm′

(β) is

the “small” d-matrix,36

dl
mm′(β) = [(j + m′)!(j − m′)!(j + m)!(j − m)!]

1
2 , (14)

×
∑

s

[
(−1)s

(j + m − s)!s!(m′ − m + s)!(j − m′ − s)!
,

(15)

×

(

cos
β

2

)2j+m−m′−2s (

sin
β

2

)m′−m+2s . (16)

Due to their construction, the Dl
m m′

elements appear in

the rotation expressions of tensor operators. An irreducible

tensor operator, T k , of order k is transformed by its 2k + 1

components T k
q , with q ∈ {−k, −k + 1, . . ., k − 1, k} under

rotations according to the following equation:

R(Ω) T k
q R(Ω)−1

=

k∑

q′=−k

Dk
q′q(Ω) T k

q′ . (17)

D. Hamiltonian and expansion of the wavefunction

We aim at the variational calculation of the bound states

of the many-particle Schrödinger Hamiltonian for Np particles

FIG. 2. Euler angles: α is a rotation about the z axis and defines y′, β is a

rotation about y′ and defines z′, and γ is a rotation about the z′.

with Cartesian coordinates r =
(

r1, . . . , rNp

)T
, masses mi, and

charges qi,

Ĥ = −∇T
r M∇r +

Np∑

i=1

Np∑

j>i

qiqj���ri − rj
��� , (18)

where ∇r = (∇r1
, . . . ,∇rNp

)T collects the 3-dimensional

Nabla operators for each particle with ∇r1
= ( ∂

∂r1x
, ∂
∂r1y

, ∂
∂r1z

).

The entries of the diagonal matrix Mij = δij
1

2 mi
absorb the

factor 1
2
.

The many-particle Schrödinger Hamiltonian, Eq. (18), is

invariant to three-dimensional space translation and rotation-

inversion of the total many-particle system,[
Ĥ, Ua

]
= 0 ∀ Ta ∈ GT , (19)[

Ĥ , Uω

]
= 0 ∀ Rω ∈ SO(3), (20)[

Ĥ , Î
]
= 0 Î ∈ CI , (21)

and the operators Ĥ, Ua ∈ GT , Uω ∈ SO(3), and I ∈ CI have

common eigenvectors. This is an important property, which

we would like to build in the basis set in order to design an

efficient variational procedure for calculating the eigenvalues

and eigenfunctions of Ĥ.

We approximate eigenfunctions of Ĥ in a variational

procedure as

Ψ(r) =

Nb∑

I=1

cI χ
S,MS

I
ŶφFECG

I

(

r; {AI , sI }
)

, (22)

where the cI are the linear expansion parameters, χ
S,MS

I
are

the spin functions, φFECG
I

are the floating explicitly correlated

Gaussians (FECGs), and Ŷ is the Young operator projecting

onto the appropriate (anti)symmetric subspace.

A basis function φFECG
I

is defined as

φFECG
I (r; AI , sI ) = exp

[
−(r − sI )

T AI (r − sI )
]
, (23)

where AI = ĀI ⊗ 13 with ĀI ∈ R
Np×Np exponents and sI

positions being optimized variationally.

E. Projection onto O(3) irreducible representations

A general FECG function, Eq. (23), is neither invariant to

space inversion nor to space rotation. Although this property

of the exact eigenfunctions of Ĥ is restored in the complete

basis set limit, this is unfeasible to approach in practice. Space

translation and the description of the translationally invariant

properties have been discussed in detail in our earlier work,37,38

and the results of which are used in the numerical application

part of this work.

The broken space rotation-inversion symmetry of an

FECG function will be restored by explicit projection onto

the irreps of O(3).

We first consider the N = 0, p = +1 case (a totally symmet-

ric spherical state) for which the symmetrization of a general

FECG function corresponds to averaging over all possible

orientations,

φ
FECG [N=0]
I

=

∫
dΩ R̂(Ω)φFECG

I (r; AI , sI ), (24)
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where R̂(Ω) denotes an active rotation operator and the angular

integration is

∫
dΩ ≡

∫ 2π

0

dα

∫ π

0

sin β d β

∫ 2π

0

dγ. (25)

By construction, φ
FECG [N=0]
I

is an eigenstate of the square of

the total angular momentum operator, N̂2 with N = 0.

How can we now construct functions from FECGs for

N > 0 non-zero angular momentum quantum number? These

functions have a more involved angular nodal structure. In

general, the overall rotational symmetry can be recovered by

projecting the FECG functions onto the N th irreducible rep-

resentation of the rotation group corresponding to the total

orbital angular momentum N. We first construct the projection

operator, P̂[N], used by Broeckhove and Lathouwers and by

several other authors,39–43

P̂[N]
=

MN=+N∑

MN=−N

P̂
[N]
MN MN

, (26)

with

P̂
[N]
M1M2

≡

∫
dΩ

4π3
D

[N]
M1M2

(Ω)∗R̂(Ω), (27)

where D
[N]
M1M2

(Ω) is the (M1M2)th element of the N th Wigner

D-matrix, Eq. (11) (note the convenient extension of nota-

tion) and the rotation operators R̂(Ω) is expressed in terms

of three Euler angles Ω ≡ (α, β, γ), Eq. (9). In short, P̂[N]

projects any trial functionϕ(r) onto the eigenspace correspond-

ing to N, spanned by all eigenfunctions of the N̂z component

of total angular momentum with quantum number MN ∈

[−N , +N]. Another possible choice for the projection oper-

ator is described in Appendix C and follows Löwdin’s idea44

later reconsidered by Shapiro and Crossley.45,46 A projected

FECG function obtained with the P̂
[N]
M1M2

operator, Eq. (27),

for N = 0, p = +1 is identical with Eq. (24), which we wrote

for simple averaging over all possible orientations [note that

D
[0]

00
(Ω) = 1].

Analogously, projection onto the desired irrep of CI can

be performed through the action of the following projection

operator:

P̂
[p]

CI
= Ê + pÎ. (28)

The irreps of O(3) can then be accessed by the product of

projection operators,

P̂
[N ,p]

MN
= P̂

[N]
MN MN

P̂
[p]

CI
. (29)

From the definition in Eq. (27), it follows that P̂
[N ,p]

MN
is

idempotent, Hermitian, and commutes with Ĥ39 due to the

rotational invariance of the Hamiltonian,

P̂
[N′,p′]

M1
P̂

[N ,p]

M2
= δN′N δM1M2

δp′pP̂
[N ,p]

M1
, (30)

(

P̂
[N ,p]

MN

)2
= P̂

[N ,p]

MN
,

(

P̂
[N ,p]

MN

)†
= P̂

[N ,p]

MN
, [Ĥ , P̂

[N ,p]

MN
] = 0.

(31)

We rely on these properties during the calculation of the

matrix elements for various quantum mechanical operators.

F. Numerical projection by quadrature

Given an FECG function and a representation of the N th

irrep of the rotation group, we project the FECG function onto

the MN th subspace by numerically performing the angular

integration with Gauss–Legendre quadrature,

P̂
[N ,p]

MN
φFECG

I =

∫
dΩ

4π3
D

[N]
MN MN

(Ω)∗R̂(Ω)P̂
[p]

CI
φFECG

I

≈

n∑

i1=1

n∑

i2=1

n∑

i3=1

ωi1ωi2ωi3 D
[N]
MN MN

(Ωi)
∗

× R̂(Ωi)P̂
[p]

CI
φFECG

I , (32)

with weights

ωi =

2
(

1 − x2
i

)

(n + 1)2[Pn+1(xi)]
2

, (33)

where xa ∈ (−1, +1) labels the a = (1, 2, . . ., n + 1) roots of

the Pn(x) Legendre polynomials and Ωi = (αi, βi, γi) are the

Euler angles at the quadrature points obtained from scaling

the xa points to the appropriate intervals, α, γ ∈ [0, 2π) and

β ∈ [0, π].

We rearrange the rotated FECG as

R̂(Ω)φFECG
I

(

r; ĀI ⊗ 13, sI

)

= φFECG
I

(

U(Ω)−1 r; ĀI ⊗ 13, sI

)

= exp
[
−
(

U(Ω)−1 r − sI

)T (

ĀI ⊗ 13

) (

U(Ω)−1 r − sI

)]
= exp

[
−

(

r − U(Ω)sI

)T (

ĀI ⊗ Ū(Ω)−T Ū(Ω)−1)

×
(

r − U(Ω)sI

)]
= φFECG

I

(

r; AI , U(Ω)sI

)

, (34)

which means that rotating an FECG in the three-dimensional

space is equivalent to a rotation of the shift vector defining

its center point, sI ∈ R
3Np . It is also important to note that

only the parametrization changes [sI is replaced with U(Ω)sI ],

while the mathematical form of the FECG function remains

invariant under rotation. Employing the (z − y − z) convention

introduced earlier, the U(Ω) rotation matrix is obtained from

three consecutive in-plane rotations,

U(Ω) = 1Np
⊗ Ū(Ω) = 1Np

⊗
{
Uz(αi)Uy

(

βj

)

Uz(γk)
}

= 1Np
⊗


*..,

cos αi − sin αi 0

sin αi cos αi 0

0 0 1

+//-
·

*..,
cos βj 0 − sin βj

0 1 0

sin βj 0 cos βj

+//-
·

*..,
cos γk − sin γk 0

sin γk cos γk 0

0 0 1

+//-


, (35)
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where 1Np is indicated in order to emphasize that the entire

object is rotated (as a rigid body) by U(Ω) about the origin.

By exploiting the form invariance of FECGs, Eq. (34), and

the hermiticity and idempotency of P̂
[N ,p]

MN
, Eqs. (30) and (31),

integrals for a rotationally invariant operator, Ô, are evaluated

as

〈P̂
[N ,p]

MN
φ

[FECG]
I

(r; AI , sI )|Ô|P̂
[N ,p]

MN
φ

[FECG]
J

(r; AJ , sJ )〉

= 〈φ
[FECG]
I

(r; AI , sI )|Ô|P̂
[N ,p]

MN
φ

[FECG]
J

(r; AJ , sJ )〉

=

∫
dΩ

4π3
D

[N]
MN MN

(Ω)∗

× 〈φ
[FECG]
I

(r; AI , sI )|Ô|P̂
[p]

CI
φ

[FECG]
J

(r; AJ , U(Ω)sJ )〉.

(36)

III. RESULTS

In this section, we explore the projection method for the

calculation of rovibrational (rovibronic) states of diatomic sys-

tems, H+
2
= {p+, p+, e−} and H2 = {p+, p+, e−, e−}, as well as

for the triatomic molecular ion H+
3
= {p+, p+, p+, e−, e−} calcu-

lated as three-, four-, and five-particle systems, respectively.

The Pauli principle is explicitly imposed on both the elec-

trons and the protons in the basis set, Eq. (22). We label the

total proton spin quantum number with Ip and consider singlet

(antiparallel, Se = 0) electron spin states for H2 and H+
3
.

The expectation value of the parity, p̂, and the total angular

momentum squared operator, N̂2, was evaluated to measure

the effectiveness of the numerical projection (the analytic

expressions for the 〈φ
[FECG]
I

|N̂2 |φ
[FECG]
J

〉 matrix elements are

derived in Appendix A). The effect of the overall center-of-

mass motion is eliminated during the integral calculations38 by

subtracting the center-of-mass related terms from the expec-

tation values (e.g., 〈Ĥ〉, 〈N̂2〉, etc.). In Appendix B, we derive

the analytic matrix elements for the squared angular momen-

tum operator, the projection of the angular momentum onto

one axis, and the center-of-mass (CM) elimination expres-

sions. All 〈N̂2〉 and 〈Ĥ〉 in the following tables correspond

to translationally invariant expectation values.

To demonstrate the efficiency of the numerical projec-

tion method introduced in this work, we first build a small

basis set composed of only 3 FECG functions. This test set

is parametrized by converging the first four decimal places

of the energy expectation value in a variational procedure.

Table I collects the results obtained with the projector defined

in Eq. (27) with N = 0 and N = 1 and parity p = +1 and

p = −1, respectively, for this small basis set. 〈N̂2〉 is converged

to at least three to four decimal places with 20–50 quadrature

points for each Euler angle (α, β, γ).

If we start with a set of unprojected functions, the plain

energy minimization algorithm can build up the ground-state

rotational symmetry. In other words, the contributions from

states of different symmetry are reduced at each iteration

(energy-minimization) step. This observation suggests that the

projection after non-linear optimization will perform well for

low-N values (or high-N states which have a similar internal

structure to the low-N states).

Next, we consider a much larger basis set obtained by

optimizing projected functions (optimization after projection)

TABLE I. Expectation values for Ĥ, N̂2, and p̂ in atomic units for a small

test set with a fixed number of Nb = 3 FECG basis functions for the (Pauli-

allowed) ground state of H+
2
= {p+, p+, e− } with Ip = 0 and Se =

1
2

and

H+
3
= {p+, p+, p+, e−, e− }with Ip =

1
2

and Se = 0. For H+
2

and H+
3
, the numerical

projection is carried out onto the (N = 0, MN = 0, p = +1) and (N = 1, MN

= 0, p = ☞1) rotation-inversion functions, respectively. The numerical results

are shown for an increasing number of quadrature points n (the same n value

is applied for each Euler angle). The n = 0 case corresponds to unprojected

basis functions.

N = 0, MN = 0, p = +1 N = 1, MN = 0, p = ☞1

n 〈Ĥ〉 〈p̂〉 〈N̂2〉 〈Ĥ〉 〈p̂〉 〈N̂2〉

H+
2

0 ☞0.561 18 0.9766 +39.018 ☞0.559 18 +0.9766 +39.018

10 ☞0.568 76 0.9998 ☞1.114 ☞0.565 95 ☞0.9998 +1.074

20 ☞0.568 68 1.0000 ☞0.002 ☞0.566 31 ☞1.0000 +1.997

30 ☞0.568 68 1.0000 +0.000 ☞0.566 29 ☞1.0000 +2.000

40 ☞0.568 68 1.0000 +0.000 ☞0.566 29 ☞1.0000 +2.000

H+
3

0 ☞1.171 64 ☞0.0000 +86.250 ☞1.171 64 ☞0.0000 +86.250

10 ☞1.142 64 +1.0144 +124.530 ☞1.206 78 ☞0.9996 +5.846

20 ☞0.968 46 +0.9952 +104.307 ☞1.224 68 ☞0.9999 +3.309

30 ☞0.848 55 +1.0003 +2.317 ☞1.227 17 ☞0.9999 +2.063

40 ☞0.846 98 +1.0000 +0.029 ☞1.227 35 ☞1.0000 +2.001

50 ☞0.846 97 +1.0000 +0.000 ☞1.227 35 ☞1.0000 +2.000

instead of minimizing the energy for unprojected functions

and then calculating the energy expectation value for projected

functions in a separate step (optimization before projection). In

Table II, we show the results for H+
3

calculated with a moderate

basis set size composed of Nb = 120 FECGs. The non-linear

parameters of the projected basis functions are generated with

the competitive selection method described by Suzuki and

Varga,34 and the selected parameters are refined using Pow-

ell’s method.47 The projection is carried out onto the (N = 1,

MN = 0, p = −1) irreducible representation of O(3). Optimiza-

tion before projection (Table I) and optimization with projected

functions (Table II) shows that non-linear optimization for pro-

jected functions requires fewer quadrature points to converge

the first two to three decimal places of the 〈N̂2〉 expectation

value. Hence, it is computationally less demanding (a smaller

TABLE II. Energy, Ĥ, parity, p̂, and squared total angular momentum, N̂2,

expectation values in atomic units for H+
3
= {p+, p+, p+, e− e− } with a total

proton spin Ip =
1
2

, and a singlet, Se = 0, electronic state obtained with

Nb = 120 optimized FECGs basis functions projected onto (N = 1, MN

= 0, p = ☞1). The expectation values correspond to a growing number of

quadrature points, n. The n = 0 row shows the results with unprojected basis

functions.

〈Ĥ〉 〈p̂〉 〈N̂2〉

n = 0 ☞1.315 01 ☞0.0000 +41.233

n = 16 ☞1.321 20 ☞1.0001 +2.321

n = 17 ☞1.321 23 ☞0.9997 +2.116

n = 18 ☞1.321 24 ☞0.9999 +2.091

n = 19 ☞1.321 27 ☞0.9999 +2.030

n = 20 ☞1.321 15 ☞0.9999 +2.036

n = 21 ☞1.321 16 ☞1.0000 +2.014

n = 22 ☞1.321 28 ☞1.0000 +2.003

n = 24 ☞1.321 28 ☞1.0000 +2.001
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number of quadrature points is sufficient) to project a larger,

more tightly pre-optimized basis set to the rotational-inversion

irreducible representation of the ground state (N = 0, p = +1

for H+
2

and N = 1, p = −1 for H+
3
).

Finally, we explore the feasibility of a variational opti-

mization of the numerically projected FECG functions (np-

FECG), that is, optimization after projection. The non-linear

optimization consists of the generation of a good parameter

set by competitive selection,34 which is refined with Powell’s

method in repeated cycles. When performing projection on-

the-fly, the variational machinery can generate functions that

would require a number of quadrature points much higher than

20-25 (see Table I). However, since the computational cost of

the numerical integration for the Euler angles by quadratures

scales cubically n3, there are cases for which the quadrature

yields matrix elements that are far off the exact value. We note

that we exploit the idempotency of the projector in order to

reduce the quadratic scaling with the number of quadrature

points to a linear dependence. However, only the exact pro-

jector is strictly idempotent. If its numerical representation by

quadrature was not accurate enough, which also depends on

the basis function parametrization, we encountered variational

collapse and unphysical energies. We then employed an adap-

tive quadrature scheme, in which we dynamically adjusted the

number of points and dropped trial functions which would

have required a number of quadrature points above a certain

threshold, to achieve a good compromise between robustness

and computational expense. This adaptive projection optimiza-

tion of FECGs remains computationally very demanding and

is a practical approach for small-sized basis sets (with about

10 < Nb < 500). Larger basis sets can be handled only if

the number of optimization steps per cycle is dramatically

reduced.

To calculate tight variational upper bounds which can

serve as pre-Born–Oppenheimer (pre-BO) benchmark values

for non-adiabatic models, further improvements in the projec-

tion scheme were necessary. The idea behind Gauss quadrature

is to choose n nodes and weights in such a way that polynomials

of order 2n + 1 are integrated exactly. The difference between

quadratures of order n and n + 1 can be considered as an error

estimate but, as the zeros of the Legendre polynomials (nodes

of the Gaussian quadrature) are never the same for different

orders, 2n + 1 function evaluations must be performed. As

an alternative, we consider the Gauss–Kronrod quadrature,48

which is an efficient but nested quadrature scheme. For the

variational optimization, we built the basis set with the com-

petitive selection method and then performed every refining

step in the space of projected functions. Finally, the quadra-

ture with respect to the angle β was improved by employing

Gauss quadrature rules (nodes plus weights) specifically tai-

lored for the weight function W (β) = sin β that is part of the

projector operator, as shown in Eq. (25).

TABLE III. Energy, parity, and angular momentum expectation values for the ground states of H2 = {p+, p+, e☞

e☞} and H+
3
= {p+, p+, p+, e− e− }. Nb is the number of FECGs projected onto the (N = 0, MN = 0, p = +1) and

(N = 1, MN = 0, p = ☞1) angular momentum states. The entries in italics represent the best 5-particle variational

upper bound for H+
3
; “∞” denotes the extrapolated result.

Nb 〈Ĥ〉a/Eh 〈Ĥ〉proj.
b/Eh 〈p̂〉 〈p̂〉proj. 〈N̂2〉 〈N̂2〉proj.

H2 (Ip = 0, N = 0, MN = 0, p = +1)

440 ☞1.162162 ☞1.163897 +0.999955 +1.000000 +4.513534 +0.000054

600 ☞1.162358 ☞1.163927 +0.999952 +1.000000 +3.976680 +0.000060

760 ☞1.162525 ☞1.163945 +0.999953 +1.000000 +3.399123 +0.000067

920 ☞1.162630 ☞1.163967 +0.999939 +1.000000 +2.954402 +0.000050

1080 ☞1.162685 ☞1.163969 +0.999945 +1.000000 +2.785041 +0.000024

1240 ☞1.162716 ☞1.163980 +0.999952 +1.000000 +2.722068 +0.000052

1400 ☞1.162732 ☞1.163989 +0.999944 +1.000000 +2.686361 +0.000052

1560 ☞1.162739 ☞1.163998 +0.999946 +1.000000 +2.640778 +0.000053

Reference 57 / ☞1.164025 / +1 / 0

H+
3

(Ip = 1/2, N = 1, MN = 0, p = ☞1)

180 ☞1.316346 ☞1.321340 ☞0.000008 ☞0.999940 +36.105414 +2.001901

420 ☞1.317690 ☞1.322344 ☞0.000174 ☞0.999961 +28.775371 +2.001383

660 ☞1.318216 ☞1.322548 ☞0.000189 ☞0.999980 +26.623718 +2.000129

840 ☞1.318523 ☞1.322652 ☞0.000256 ☞0.999991 +24.868238 +2.000136

1080 ☞1.318904 ☞1.322726 ☞0.000656 ☞0.999993 +22.316282 +2.000014

1320 ☞1.319011 ☞1.322782 ☞0.001249 ☞0.999992 +21.117237 +2.000048

1560 ☞1.319 089 ☞1.322 826 ☞0.001249 ☞0.999 994 +20.843 642 +2.000 055

∞ ☞1.319 288 ☞1.323 005 / / / /

Estimatec / ☞1.323146 / (☞1) / (+2)

a〈Ĥ〉 is the lowest eigenvalue of the Hamiltonian obtained with the non-projected FECG basis set.
b〈Ĥ〉proj. is the lowest eigenvalue of the Hamiltonian obtained with the projected FECG basis set.
cNon-adiabatic estimate for the energy of this rotational(-vibrational) state that we obtained with the GENIUSH program. The

value of the parity and squared angular momentum for the atomic nuclei is 〈p̂nuc.〉 = −1 and 〈R̂2〉 = +2, respectively. These values

are indicated in parentheses because they are not strictly the total parity and total angular momentum values of the five-particle

system.

               dc_1955_21
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The energy, parity, and total angular momentum expecta-

tion values for both unprojected and projected (indicated by

subscript “proj.”) basis sets for optimization after projection

are shown in Table III and plotted in Fig. 3. The digits of accu-

racy reported for the projected energy expectation values are

reliable since the Gauss-Kronrod scheme iteratively increased

the number of integration points until convergence of the first

6 digits was reached. The projected total angular momentum

expectation values were calculated with n = 26 fixed num-

ber of quadrature points. As the basis set progresses toward

lower energies, 〈N̂2〉proj. converges to the expected value. The

lowest-energy pre-BO state with N = 1, p = −1, and Sp = 1/2

(Se = 0) corresponds to the (J, Ip, p, n) = (1, p, −, 1) state using

the notation of Ref. 49.

The data listed in Table III allow an extrapolation of the

energy to the infinite basis-set size. We considered the inverse

power functional form, Eh = a + b/Nb, and fitted a and b to

the npFECG energies. The interpolating function is shown in

Fig. 3, and the extrapolation to infinite basis-set size is given

in Table III.

We report also a non-adiabatic estimate (see Table III) for

the energy of this rotational-vibrational state that we calcu-

lated with the GENIUSH program50–52 with the Polyansky–

Tennyson model (Moss’ mass for the vibrations and nuclear

mass for rotations)53 and the GLH3P potential energy sur-

face.54 The GLH3P potential energy surface contains both

the diagonal Born–Oppenheimer correction (DBOC) as well

as relativistic corrections. As we consider here the non-

relativistic Schrödinger Hamiltonian, we removed the rela-

tivistic corrections from the potential energy surface for a

proper comparison. In order to obtain an absolute energy

value, we employed the adiabatic electronic energy (BO plus

FIG. 3. Energy convergence (in cm−1) with respect to the number of basis

functions Nb, for unprojected and projected basis sets. The non-adiabatic

estimate was subtracted from the energies. The dotted line represents the

interpolation of the projected FECG energies, while the dashed line shows the

best result obtained throughout ECG-GVR functions.

DBOC) at the equilibrium structure given in Ref. 55. This

non-adiabatic estimate for the total energy is not variational.

It is based on a perturbative correction to the BO appoxima-

tion, resulting in the diagonal BO correction and non-adiabatic

(mass-correction) effects, which are included here only with

a simple model. Nevertheless, such a setup is usually consid-

ered to be accurate within about one wavenumber (1 cm−1).

A direct comparison of a variational and (a rigorous) per-

turbative treatment was recently presented by Pachucki and

Komasa for rotational states of the four-particle hydrogen

molecule.56 For the case of H+
3
, the present work represents a

significant step toward a variational validation of effective non-

adiabatic models for the description of the ground- and, the

considerably more complicated, near-dissociation states; such

models may be developed to compute hundreds and thou-

sands of rovibrational states and transitions available from

experiment.

We now compare the results obtained with our numeri-

cally projected FECG basis set with the results obtained for

the ECG-GVR ansatz and from the literature. Table IV shows

the convergence of the (Pauli-allowed) ground-state energy

of H+
3
= {p+, p+, p+, e−, e−} using ECG-GVR basis functions

(see Sec. I) with N = 1 and p = −1. Our best result obtained

with ECG-GVR is 7.897 mEh higher than the best variational

upper bound obtained with the numerical projection method

(see Table III). The global vector representation is an excellent

alternative of the partial-wave decomposition of the wavefunc-

tion. Its simplicity and generality allowed the calculation of the

lowest-energy N = 1 and N = 2 states for the 7Li atom and for

antiprotonic helium.31,32 However, the variational reconstruc-

tion of the rotational symmetry appears to be cumbersome

already for triatomic systems. The slow convergence of the

ground-state energy in Table IV shows that the ECG-GVR

basis set (with a single global vector) is impractical for calcu-

lating variational upper bounds to the ground-state energy of

H+
3
.

Earlier results with unprojected FECG functions for the

ground-state energy of H+
3

(Se = 0 and Ip =
1
2
), Ep−H+

3
/

Eh = −1.314 383 574, were reported in Ref. 58, which is

8.442 mEh higher in energy than our best result calculated

with numerically projected FECGs (Table III). The numerical

projection of FECG functions described in Sec. II F allowed

us to substantially improve upon the best variational estimates

for H+
3
.

TABLE IV. Convergence of the ground state energy of H+
3

= {p+, p+, p+, e− e− } with Se = 0 and Ip =
1
2

with respect to the

number of ECG-GVR functions Nb. The general vector representation is

employed to describe the natural parity state (N = 1, MN = 0, p = +1). The

K exponent of the polynomial prefactor is randomly selected and optimized

from the {1, . . ., 20} set.

Nb 〈Ĥ〉/Eh Nb 〈Ĥ〉/Eh

60 ☞1.290269 660 ☞1.313773

180 ☞1.304466 780 ☞1.314465

300 ☞1.309775 900 ☞1.314716

420 ☞1.311816 1020 ☞1.314850

540 ☞1.312467 1140 ☞1.314929
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IV. CONCLUSIONS

The advantage of explicitly correlated Gaussian functions

in calculations on highly accurate (non-relativistic) bound

states for few-particle systems is due to the analytic and gen-

eral Np-particle integral expressions available for almost all

important operators. Various basis sets with N ≥ 0 total spatial

angular momentum quantum numbers (isolated systems) have

been proposed in the past. The traditional partial-wave expan-

sion as well as the more generally applicable (but in variational

approaches equivalent) global vector representation have been

used with success. Molecular pre-Born–Oppenheimer calcu-

lations, especially for systems with more than two heavy

nuclei, have turned out to be challenging because the electronic

and the nuclear motion, including rotation-inversion symme-

try and correlation effects, have to be efficiently described

simultaneously.

In this work, we developed numerical projection tech-

niques for the non-symmetric but flexible basis set of explicitly

correlated Gaussian functions with shifted centers. The numer-

ical projection ensures the correct spatial rotation-inversion

symmetry of the variational ansatz, while the shifted ECGs

are better suited to describe the (de)localization of the atomic

nuclei. We presented theoretical as well as technical details

for a practical implementation of projected floating ECG func-

tions in a variational pre-Born–Oppenheimer calculation. The

first applications of this new numerical approach resulted in

an 8.442 mEh improvement on the earlier best variational

upper bound for the (Pauli-allowed) ground-state energy of

the H+
3
= {p+, p+, p+, e− e−} molecular ion treated as a five-

particle system. Further possible improvements on the projec-

tion approach and the parametrization of the basis set were dis-

cussed in order to provide five-particle variational benchmark

values for selected eigenstates of the H+
3

molecular ion.

SUPPLEMENTARY MATERIAL

See supplementary material for the optimized basis func-

tion parameters of H2 and H+
3
.
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APPENDIX A: ANGULAR MOMENTUM EXPECTATION
VALUES FOR FECG FUNCTIONS

In this section, we derive matrix elements for FECG

functions for the squared total spatial angular momentum

operator

N̂2
= N̂2

x + N̂2
y + N̂2

z , (A1)

with N̂ =
∑Np

P=1
l̂
(P)

, which is the sum of angular momentum

operators for each particle P,

l̂
(P)
= r̂(P) × p̂(P)

= −i

(

r̂(P) × ∇̂
(P)

)

. (A2)

With the elementary angular momenta, we re-write the N̂2

operator as

N̂2
=

Np∑

P=1

l̂
(P) 2

+ 2
∑

P1<P2

l̂
(P1)

l̂
(P2)

= −

Np∑

P=1

ǫ ijkǫ ipqr
(P)

j
∇

(P)

k
r

(P)
p ∇

(P)
q

− 2
∑

P1<P2

ǫ ijkǫ ipq r
(P1)

j
∇

(P1)

k
r

(P2)
p ∇

(P2)
q , (A3)

where the Levi-Civita symbol ǫ is used together with Einstein

summation convention over the i, j, k, p, q ∈ {x, y, z} indices.

Then, the ith component of N is

N̂i =

Np∑

P=1

l̂
(P)

i
=

1

i
ǫ ijk

Np∑

P=1

r
(P)

j
∇

(P)

k
− r

(P)

k
∇

(P)

j
. (A4)

1. 〈N̂z〉 for FECG functions

The action of N̂z on FECG functions is given by

N̂z |φ〉 =
1

i

Np∑

P=1

(

r
(P)
x ∇

(P)
y − r

(P)
y ∇

(P)
x

)

exp
[
−sT As − rAr + 2rT As

]

=

1

i

Np∑

P=1

(

− r(P,x)A
T
(P,y)r − rT A(P,y)r(P,x) + 2r(P,x)A

T
(P,y)s

+ r(P,y)A
T
(P,x)r + rT A(P,x)r(P,y) − 2r(P,y)A

T
(P,x)s

)

× exp
[
− sT As − rT Ar + 2rT As

]
, (A5)

where A(P ,i) is the column vector of variational parameters

corresponding to the ith component of the position vector rP.

The pre-exponential terms can be written in a more compact

way incorporating the sum over every particle P in the matrix

algebra,

N̂z |φ〉 =

[
− rT A(x,y)r − rT A(y,x)r + 2rT A(x,y)s + rT A(y,x)r

+ rT A(x,y)r− 2rT A(y,x)s

]
exp

[
− sT As− rT Ar + 2rT As

]

=

(

rT
(

A(y,x) + A(x,y) − A(x,y) − A(y,x)

)

r

+ 2rT
(

A(x,y) −A(y,x)

)

s

)

exp
[
− sT As − rT Ar + 2rT As

]
,

(A6)

where, given (Eij)xy = δixδjy, it is

A(i,j) = Ā ⊗ Eij. (A7)

Given the two symmetric matrices Ω(x ,y) and ω(x ,y),

Ω
(x,y) ≡ A(y,x) + A(x,y) − A(x,y) − A(y,x), (A8)

ω(x,y) ≡ A(x,y) − A(y,x), (A9)

and it can be seen that, when A = Ā ⊗ 13 is symmetric, Ω(x ,y)

is 0 by construction. This observation greatly simplifies the

expectation value calculation 〈N̂z〉,

〈

φI
���N̂z

���φJ

〉

=

2

i

〈

φI
���rTω

(x,y)

J
sJ

���φJ

〉

, (A10)
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where the subscript attached to the ω matrix indicates that the

row exchanging operation is applied to the ket function cor-

relation matrix AJ . The integration in Eq. (A10) is carried out

expressing the appropriate derivatives of φJ , which is followed

by the evaluation of the standard overlap integral,

〈

φI
���N̂z

���φJ

〉

=

1

i

(

∂

∂e
ω

(x,y)

J
sJ

) ∫
dr

× exp

(

− sT
I AI sI − sT

J AJsJ − rAr + 2rT e

)

=

1

i

(

∂

∂e
ω

(x,y)

J
sJ

) (

(2π)3Np

det(A)

) 1
2

× exp

(

− sT
I AI sI − sT

J AJsJ + eT A−1e

)

=

2

i

(

eT A−1ω
(x,y)

J
sJ

)〈

φI |φj

〉

, (A11)

with A = AI + AJ and e = AI sI + AJsJ . For the diagonal matrix

elements, one finds

〈

φI
���N̂z

���φI

〉

=

2

i

*..,
sT


A ⊗

*..,
0 1 0

0 0 0

0 0 0

+//-
−A ⊗

*..,
0 0 0

1 0 0

0 0 0

+//-

s
+//-

×
〈

φI |φj

〉

= 0. (A12)

2. 〈N̂2〉 for FECG

First, we re-write the integrals by exploiting the Hermitic-

ity of N̂ as

〈φI |N̂
2 |φJ〉 = 〈N̂φI |N̂φJ〉. (A13)

The terms originating from the action of the N̂i =
∑Np

P=1
l
(P)

i

on the bra and the ket functions have already been derived in

Appendix A 1,

〈

N̂iφI | = −
2

i
ǫ ′ipq

〈

φI |
[

rTω
(p,q)

I
sI

]

(A14)

and

|N̂iφJ

〉

= +
2

i
ǫ ′ijk

[

rTω
(j,k)

J
sJ

]

|φJ

〉

, (A15)

where ǫ ′
abc

is non-zero only when the corresponding Levi-

Civita symbol is equal to +1. Then, the integral in Eq. (A13)

becomes

〈N̂φI |N̂φJ〉 =

∫
ǫ ′ijk

[
4
(

rTω
(j,k)

I
sI

) (

rTω
(j,k)

J
sJ

)]

× exp
*.,sT

I AI sI − sT
J AJsJ − rT (AI + AJ )

︸    ︷︷    ︸
≡A

r

+ 2rT (AI sI + AJsJ )
︸          ︷︷          ︸

≡e

+/-dr. (A16)

We collect the pre-exponential terms from the integration by

writing them in terms of derivatives of A and e. The remaining

integrand function is that of the simple 〈φI
��φJ〉 overlap integral

given in Eq. (A11) for two FECG functions φI and φJ ,

〈N̂φI |N̂φJ〉 = ǫ ′ijk

[(
∂

∂e
ω

(j,k)

I
sI

) (

∂

∂e
ω

(j,k)

J
sJ

)]
〈φI |φJ〉.

(A17)

Finally, the integral of N̂2 with the φI and φJ functions is

obtained as

〈N̂φI |N̂φJ〉 = ǫ
′
ijk

[(
∂

∂e
ω

(j,k)

I
sI

)
(

2 eT A−1ω
(j,k)

J
sJ

)
]
〈φI |φJ〉

= ǫ ′ijk

[(
2sT

I ω
(j,k)T

I
A−1ω

(j,k)

J
sJ

)

+

(

2 eT A−1ω
(j,k)

J
sJ

) (

2 eT A−1ω
(j,k)

I
sI

)]
〈φI |φJ〉,

(A18)

a. Alternative evaluation of 〈φI |N̂
2 |φJ〉

Instead of exploiting the Hermiticity of N̂, as in Eq. (A13),

we may directly expand N̂2 as the sum of the square of its

components,

〈

φI
���N̂2���φJ

〉

=

〈

φI
���N̂2

x + N̂2
y + N̂2

z
���φJ

〉

. (A19)

Starting from Eq. (A10), we find that by applying the operator

N̂z on an FECG, the action of another N̂z operator produces a

lengthy expression,

N̂2
z |φJ

〉

= −2
(

rx∇y − ry∇x

) (

rxAJ(x,y)sJ − ryAJ(y,x)sJ

)

|φJ

〉

.

(A20)

However, after simple algebraic manipulations, the following

expression is obtained:

N̂2 |φJ

〉

= ǫ ′ijk2
(

rAJ(j,k)sJ

)

− 2
(

rω(j,k)sJ

)2
|φJ

〉

. (A21)

With this result, we can write the integral as

〈

φI
���N̂2���φJ

〉

= ǫ ′ijk


(

∂

∂e
AJ(k,j)sJ

)

−

(

∂

∂e
ω(j,k)sJ

)2〈φI |φJ〉

= ǫ ′ijk

(

2eT A−1AJ(k,j)sJ − 2sJω
(j,k)T

J
A−1ω

(j,k)

J
sJ

+ 4
(

eT A−1ω
(j,k)

J
sJ

)2
)

〈φI |φJ〉, (A22)

where A
(j,k)

J(row)
is obtained from the AJ matrix by setting all

elements for the ith coordinate of every particle to zero.

The final results read

N̂i |φJ

〉

=

2

i
ǫ ′ijk

(

rTω
(j,k)

J
sJ

)

|φJ

〉

, (A23)

N̂2
i |φJ

〉

= ǫ ′ijk

[
2
(

rAJ(j,k)sJ

)

− 2
(

rω(j,k)sJ

)2
]
|φJ〉. (A24)
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APPENDIX B: ELIMINATION OF THE
CENTER-OF-MASS CONTRIBUTIONS FROM
THE INTEGRAL EXPRESSIONS OF THE SQUARE
OF THE TOTAL ANGULAR MOMENTUM OPERATOR

The center of mass (CM) of a system moves like a free par-

ticle, and its states are not quantized and not square integrable.

We eliminate the contributions from this continuous degree of

freedom, rCM, from the angular momentum integrals derived

in Appendix A employing our approach described in Ref. 38.

Generally speaking, the separation of space-translation

variables from internal variables is a well understood prob-

lem.59 The CM correction terms for the angular momentum

integrals are derived in the following equations.

We start with Eq. (A18),

〈N̂2〉 = ǫ ′ijk

[(
2s

(r)T

I
ω

(j,k)T

I
A−1ω

(j,k)

J
s

(r)

J

)

︸                           ︷︷                           ︸
≡A

+

(

2 e(r)T

A−1ω
(j,k)

J
s

(r)

J

)

︸                    ︷︷                    ︸
≡B

(

2 e(r)T

A−1ω
(j,k)

I
s

(r)

I

)

︸                    ︷︷                    ︸
≡C

]

× *,
(det(AI ) det(AJ ))

1
2

det(A)
+-

1
2

exp

(

− s
(r)T

I
AI s

(r)

I
− s

(r)T

J
AJs

(r)

J
+ eT A−1e

)

︸                                                                                 ︷︷                                                                                 ︸
≡

〈φI |φJ 〉

(〈φI |φI 〉〈φJ |φJ 〉)
1
2

, (B1)

where e = AI s
(r)

I
+ AJs

(r)

J
, and focus on the pre-exponential

terms generated by the N̂2 operator leaving aside the remain-

ing overlap integral. The superscript (r) refers to variational

vectors associated with laboratory-fixed Cartesian coordinates

(LFCC). The superscript (x) denotes variational vectors in

transformed translationally invariant Cartesian coordinates

(TICC) s(x ),

s(r)
= U−1

x s(x)
= U−1

x s(x)

(

s′

cS

)

, (B2)

where cS is a 3-dimensional vector associated with rCM and

Ā(r)
= UT

x Ā(x)Ux. (B3)

We have

A = 2

(

s
(x)T

I
ω̃

(j,k)T

I
UxA−1UT

y ω̃
(j,k)

J
s

(x)

J

)

, (B4)

B = 2

(

s
(x)T

I
A

(x)

I
UxA

−1UT
y ω̃

(j,k)

J
s

(x)

J
+ s

(y)T

J
A

(y)

J
UyA−1UT

y ω̃
(j,k)

J
s

(x)

J

)

,

(B5)

C = 2

(

s
(x)T

I
A

(x)

I
UxA

−1UT
x ω̃

(j,k)

I
s

(x)

I
+ s

(y)T

J
A

(y)

J
UyA

−1UT
x ω̃

(j,k)

I
s

(x)

I

)

,

(B6)

where ω̃ indicates that it is built in the TICC set defined by

the Ux matrix (see also Ref. 38). Next, we recall the results of

Ref. 38,

UxĀ−1
IJ UT

y =


A−1

IJ 0

0 1
cAI

+cAJ

 (B7)

and

UxĀ−1
IJ UT

x =


A′−1

IJ 0

0 1
cAI

+cAJ

 , (B8)

to re-write A, B, and C as

A = 2*,
s′

I

cSI

+-
T 

*,
AI 0

0 cAI

+- ⊗ 1jk



*.,
A−1

IJ 0

0 1
cAI

+cAJ

+/- ⊗ 13


×


*,
AJ 0

0 cAJ

+- ⊗ 1jk


*,

s′
J

cSJ

+-, (B9)

B = 2*,
s′

I

cSI

+-
T 

*,
AI 0

0 cAI

+- ⊗ 13



*.,
A−1

IJ 0

0 1
cAI

+cAJ

+/- ⊗ 13


×


*,
AJ 0

0 cAJ

+- ⊗ 1jk


*,

s′
J

cSJ

+-
+ 2*,

s′
J

cSJ

+-
T 

*,
AJ 0

0 cAJ

+- ⊗ 13



*.,
A−1

IJ 0

0 1
cAI

+cAJ

+/- ⊗ 13


×


*,
AJ 0

0 cAJ

+- ⊗ 1jk


*,

s′
J

cSJ

+-, (B10)

C = 2*,
s′

I

cSI

+-
T 

*,
AI 0

0 cAI

+- ⊗ 13



*.,
A′−1

IJ 0

0 1
cAI

+cAJ

+/- ⊗ 13


×


*,
AI 0

0 cAI

+- ⊗ 1jk


*,

s′
I

cSI

+-
+ 2*,

s′
J

cSJ

+-
T 

*,
AJ 0

0 cAJ

+- ⊗ 13



*.,
A−1

IJ 0

0 1
cAI

+cAJ

+/- ⊗ 13


×


*,
AI 0

0 cAI

+- ⊗ 1jk


*,

s′
I

cSI

+-, (B11)

where 1jk = Ekj −Ejk and Eij are 3 × 3 matrices in which only

the ijth element is different from zero and it is equal to 1.
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Following the prescriptions of Ref. 38, the CM contribu-

tions are eliminated by subtracting the following terms from

the A, B, and C expressions in Eqs. (B9)–(B11):

A(CM)
= 2 cT

SI

(

cAI
⊗ 1jk

)
(

1

cAI
+ cAJ

⊗ 13

)
(

cAJ
⊗ 1jk

)

cSJ
,

(B12)

B(CM)
= 2 cT

SI

(

cAI
⊗ 13

)

(

1

cAI
+ cAJ

⊗ 13

)
(

cAJ
⊗ 1jk

)

cSJ

+ 2 cT
SJ

(

cAJ
⊗ 13

)

(

1

cAI
+ cAJ

⊗ 13

)
(

cAJ
⊗ 1jk

)

cSJ
,

(B13)

C(CM)
= 2 cT

SI

(

cAI
⊗ 13

)

(

1

cAI
+ cAJ

⊗ 13

)
(

cAI
⊗ 1jk

)

cSI

+ 2 cT
SJ

(

cAJ
⊗ 13

)

(

1

cAI
+ cAJ

⊗ 13

)
(

cAI
⊗ 1jk

)

cSI
.

(B14)

APPENDIX C: ALTERNATIVE
PROJECTION APPROACH

Löwdin proposed two different forms for the angular

momentum projection: a sum45,46 which is derived from a

product form.44 In his original method the projector is con-

sidered as a product of annihilation operators that remove all

components other than that of the desired symmetry. This iter-

ative process is accomplished by means of the two operators

P̂N and P̂MN
acting on an arbitrary function ψ that is resolved

into components CNMN
ψNMN

which are eigenfunctions of N̂2

and N̂z,

ψ =
∑

N

∑

MN

CNMN
ψNMN

, (C1)

where the summation is over all possible values of N and MN

and the wavefunction is written in the basis of mutually orthog-

onal unit vectors ψNMN
spanning the complete Hilbert space.

The eigenvalue relations for N̂2 and N̂z may be written in the

form [
N̂2 − N(N + 1)

]
ψNMN

≡ 0, (C2)[
N̂z −MN

]
ψNMN

≡ 0, (C3)

which means that the eigenfunction ψNMN
is annihilated by

the operator
[
N̂2 − N(N + 1)

]
or

[
N̂z −MN

]
. It is therefore

possible to select a specific component, CNMN
ψNMN

, from ψ

by annihilating all other components. This can be achieved

with the following projectors:44

P̂N =

∏

l,N

N̂2 − l(l + 1)

N(N + 1) − l(l + 1)
, (C4)

P̂MN
=

∏

µ,MN

M̂N − µ

MN − µ
, (C5)

where the numerators are products of Löwdin’s elementary

annihilation operators over all quantum numbers except those

which correspond to the selected value(s). The denominators

have been chosen so that the projectors have eigenvalue 1 when

acting on the term ψNMN
.

Löwdin showed that Eq. (C4) may be rewritten, when

acting on an eigenvector of N z with eigenvalue MN ≥ 0, in the

so-called sum form,45

P̂NMN
=

∏

l,N

(2N + 1)(N + MN )!

(N −MN )!

∑

l,N

(−1)lN
N−MN +k
− N

N−MN +k
+

k!(2N + 1 + k)!
,

(C6)

where

N̂± = N̂x ± iN̂y (C7)

are the usual raising and lowering operators and the subscript

MN is added to PN since Eq. (C6) is valid only when acting

on a state of definite MN .

For practical applications, the product operators (C4) and

(C5) can be restricted to contain only a finite number of fac-

tors, lmax. However, the product series in Eq. (C4) converges

quadratically with respect to l since the lth term is ≈1 for

sufficiently large l.44

We have not explored the feasibility of a numerical

approach based on Eq. (C4) or Eq. (C6) because the expres-

sions for N̂n
i

, for n being a positive integer, become lengthy as

shown in Appendix A 2 a already for n = 2.
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50E. Mátyus, G. Czakó, and A. G. Császár, J. Chem. Phys. 130, 134112 (2009).
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Abstract

This paper presents the derivation of a kinetic-balance condition for explicitly correlated basis

functions employed in semi-classical relativistic calculations. Such a condition is important to

ensure variational stability in algorithms based on the first-quantized Dirac theory of 1/2-
fermions. We demonstrate that the kinetic-balance condition can be obtained from the row

reduction process commonly applied to solve systems of linear equations. The resulting form of
kinetic balance establishes a relation for the 4N components of the spinor of an N-fermion system

to the non-relativistic limit, which is in accordance with recent developments in the field of exact

decoupling in relativistic orbital-based many-electron theory.
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1. Introduction

Most of relativistic quantum chemistry and molecular physics

is based on the (first-quantized) Dirac Hamiltonian [1–7].

However, unlike its non-relativistic counterpart, the Dirac

Hamiltonian is not bounded from below and measures have to

be taken in order to obtain correct lower bounds for the

ground- and excited-state energies of bound states. Depend-

ing on whether the small components of the one-fermion basis

spinors are included or eliminated (by some decoupling

approach [8]), methods are classified as four- or two-com-

ponent methods. Four-component methods rely on the

kinetic-balance condition for variational stability. This con-

dition is well-defined for single fermions [9–16] and can

therefore easily be applied to orbital-based methods such as

the Dirac–Hartree–Fock approach and electron-correlation

methods based on it [17–30]. For orbital-based theories with

explicit correlation factors, recent work focused on four-

component second-order Møller–Plesset perturbation theory

with positive-energy-states projection operators in combina-

tion with the one-electron kinetic-balance condition [31]. Li

and co-workers have studied coalescence conditions for

explicitly correlated four-component wave functions [32] but

without addressing the issue of kinetic balance.

A first solution to the full problem of kinetic balance for

explicitly correlated trial wave functions was presented by

Pestka and co-workers who have published a series of papers

investigating the relativistic helium-like two-electron systems

treated as a two-electron system in a central potential [33–39].

They have demonstrated that the energy levels associated

with the two-fermion Dirac Hamiltonian are in fact reso-

nances with a small imaginary part. The imaginary part, and

thus coupling to the continuum, is detectable in the numerical

solution for systems with large nuclear charges, Z, and with a

kinetically balanced basis set constructed from a large number

of explicitly correlated basis functions. As to the kinetic-

balance condition, their solution involves an infinite series of

transformations of the individual components of the two-

electron 16-spinor, and it remains unclear how this kinetic-

balance approach can be extended to systems containing more

than two fermions.

In this paper, we extend the pioneering work by Pestka

et al on He-like atoms [37] and focus our attention on the

kinetic balance condition of general, N-particle, non-separable

basis functions. We present a scheme which allows us to
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derive an explicitly correlated kinetic-balance condition based

on row reduction and an expression similar to the row-

reduced echelon form of the augmented matrix. We begin in

section 2 with the presentation of the theoretical background.

In section 3, we apply our scheme to a two-electron system.

Then, in section 4, we show that the correct non-relativistic

limit is obtained. In section 5, we illustrate how the compu-

tational cost can be reduced for the N-fermion case by

introducing systematic approximations to a given order in the

speed of light. Finally in section 6, we demonstrate the var-

iational stability of explicitly correlated, kinetically balanced

trial wave functions for the ground state of the He atom.

2. Theoretical background

The relativistic description of electrons based on the many-

1/2-fermion Dirac Hamiltonian provides us with a first-

quantized, i.e., semi-classical formalism capturing essential

aspects of special relativity for molecular matter [1, 3].

2.1. The relativistic electron

A single 1/2-fermion, such as an electron, may be described

by the Dirac Hamiltonian [40, 41]

h p Vc mc . 1D
2· ( )B C� � �

The matrices , ,x y z( )B B B B� and C are defined by anti-

commutation relations. The most common choice that

respects these relations is the standard representation of

4 × 4 matrices,

i x y z
0

0

1 0

0 1

with , , and

, 2

i
i

i

2

2

2 2

2 2

{ }

( )

B
T

T

C

� �

�
�

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

where iT denotes one of the three Pauli spin matrices and 12 is

the two-dimensional unit matrix. p p p p, ,x y z
T( )� is the

momentum operator, V is an operator for the interaction

energy due to external potentials, m is the rest mass of the

fermion, and c is the speed of light.

It is convenient to introduce a block structure for the one-

fermion eigenfunction r ,( )Z the 4-spinor, according to the

2 × 2 super-structure of the four-dimensional iB and C

matrices in standard representation,

r
r

r

l

s
, 3

l

s
( )

( )

( )

∣

∣
( )Z

Z

Z
� �

§

§

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

where ‘l’ denotes the so-called large and ‘s’ the corresponding

small component. As we develop the entire formalism in the

coordinate representation, we follow the common shorthand
notation that abbreviates, for instance, r rl l( ) ∣Z Z� � § as l∣Z §
or just as l .∣ § We refer the reader to the review by Esteban,

Lewin and Séré [42] and the book by Thaller [43] for a more

detailed mathematical discussion of the Dirac Hamiltonian

and its eigenfunctions.

The spectrum of the Dirac Hamiltonian features three

distinct parts. The first part comprises the discrete bound
states with energies between mc2� and mc .2� The second
part is the positive continuum ranging from mc2� to .�d
The last part of the spectrum is the negative continuum ran-
ging from mc2� to .�d The negative continuum is a source

of instabilities in variational calculations where the Rayleigh

quotient,

h r
r h r

r r
E , , 4D

D[ ]( )
( )∣ ∣ ( )

( )∣ ( )
( )Z

Z Z

Z Z
�
� §

� §

is minimized and (usually unwanted) negative-energy con-

tinuum solutions can be encountered if no precautions (such

as projection onto positive-energy states) are taken into

account. For basis-set expansion techniques, Schwarz and co-

workers showed that the finite size of ordinary basis sets may

pose difficulties [44, 45], which is therefore sometimes called

the ‘finite-basis disease’ [46].

An effective means of dealing with the problem of var-

iational collapse is the kinetic-balance condition [9, 10, 12–

16] which relates the large and the small component of the

4-spinor:

r
p

r
mc2

. 5s l( )
·

( ) ( )Z
T

Zx

The derivation of this relation is straightforward. The

Dirac eigenvalue problem

h rE1 0 6D 4( ) ( ) ( )Z� �

leads to a set of two linear equations for the two components

of the 4-spinor in equation (3). After the energy spectrum has
been shifted by mc2� to match the non-relativistic energy

scale, this system of equations reads

r p rV E c 0, 7l s( ) ( ) · ( ) ( )Z T Z� � �

r p rV E mc c2 0, 8s l2( ) ( ) · ( ) ( )Z T Z� � � �

where the four-dimensional operator V was assumed to be a

diagonal matrix with the same element V as diagonal entries.

We only need one of the two equations to relate the small

component to the large one. Since p·T has no multiplicative

inverse, it is more convenient to choose the second equation

in order to obtain an expression for r .s ( )Z After rearranging

the terms, we obtain the exact relation for equation (8)

r
p

r
c

E V mc2
. 9s l

2( )
( )

·
( ) ( )Z

T
Z�

� �

This relation depends on the energy of the system which is

not known a priori but is one of the desired results of the

problem. Equation (9) can therefore not be applied to our

problem. Now, E V( )� is considered small compared to mc2

2
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so that we may introduce the approximation

E V mc mc2 2 102 2 ( )� � x

to eliminate E V( )� and arrive at the kinetic-balance

condition in equation (5). We note that this approximation

step turned out to be unimportant for the construction of

variationally stable basis-set expansion techniques applied in

four-component orbital-based theories [8, 47], which we

assume to remain valid for the N-particle theory to be

developed in this work.

Basis-set expansions which obey equation (5) provide a

variationally stable parametrization of a trial wave function

for a single fermion. Equation (5) may therefore be for-

mulated in terms of the one-fermion model spaces

[14, 37, 48]

pl sand . 11l l s∣ ∣ ( · ) ( )   T§ � § � �

This one-fermion kinetic-balance condition can be

imposed by a transformation [8],

U p
U

U p

1 0

0

0

0
12l

s

KB
1

1
2

2
1

2 2

2
· ( )( )

( )

( )
T� �

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

(with pp ∣ ∣� ) on basis functions into which the large

component of the one-fermion 4-spinor is expanded. Hence,

the model spaces for the large and the small components are

generated in terms of this transformation. The advantage of

this form of the kinetic-balance condition is that the large-

component and small-component model spaces remain

normalized. It is also possible to transform the Dirac

Hamiltonian and then form identical model spaces for the

large and small components. The transformed Dirac Hamil-

tonian is the so-called modified Dirac Hamiltonian [47] and is

the basis of orbital-based exact-decoupling methods [8].

The kinetic-balance condition in equation (5) also

ensures the correct non-relativistic (NR) limit for c .l d
The Rayleigh quotient of equation (4) yields in the limit

c l d the non-relativistic Schrödinger energy:

r h r

r r
E

mc

l V l

l l

lim

, 13

c

D

p

m

NR

2

2

2

( )∣ ∣ ( )

( )∣ ( )

˜ ˜

˜ ˜
( )

Z C Z

Z Z
�

� � §

� §

�
�

ld

where l∣ ˜§ denotes the (scalar part of the) large component of

the spinor after taking the limit.

2.2. Many-fermion Dirac Hamiltonian

The relativistic first-quantized many-fermion Hamiltonian

(with positive-energy projection not explicitly shown for the

sake of brevity) reads,

H h Wi 14D
N

i

N

D
N

1

( ) ( )( ) ( )�� �
�

with

h hi i

i N

1 1

1 1

1 1

1 , 15

D D4 4

4 4

( ) ( ) ( )

( ) ( ) ( )

� � � � �

� � � �

"

"

where hD is the one-fermion Dirac Hamiltonian of
equation (1) taken for fermion i and W N( ) describes the

interaction of all pairs of the N fermions. The wave function
for N non-interacting fermions, i.e., W 0,N( ) � can be

constructed as the direct product of one-fermion 4-spinors

r ,i i( )Z

r r r r , 16i i N N1 1( ) ( ) ( ) ( ) ( )Z Z Z: � � y � � y �

which can be antisymmetrized to fulfill the Pauli principle.

Now, r r r, , N1
T( )� y collects all N one-fermion coordinates.

In the case of two fermions, we have the direct product of two

basis states

r r

r

r

r

r

r

r

r

r

r r

r r

r r

r r

r r

r r

r r

. 17

l

l

s

s

l

l

s

s

l l

l l

l s

l s

l l

l l

s s

1 1 2 2

1
1

1

1
2

1

1
1

1

1
2

1

2
1

2

2
2

2

2
1

2

2
2

2

1
1

1 2
1

2

1
1

1 2
2

2

1
1

1 2
1

2

1
1

1 2
2

2

1
2

1 2
1

2

1
2

1 2
2

2

1
2

1 2
2

2

( ) ( )

( )

( )

( )

( )

( )

( )

( )

( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( )

Z Z

Z

Z

Z

Z

Z

Z

Z

Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

� � �

�

#

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

The superscripts ‘l’ and ‘s’ indicate large and small 2-spinors,

respectively, as before. The number attached to these letters

indicates the element of a 2-spinor. For instance, the elements

of the large-component 2-spinor are denoted as

r
r

r
. 18l

l

l1 1
1
1

1

1
2

1

( )
( )

( )
( )Z

Z

Z
�

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

A basis-set expansion of an N-fermion wave function

may be constructed to be consistent with the model space

, 19N l l s sN1 ( )( )    � � y � � y �M My y y

where each N1 M My is constructed from the one-fermion

model spaces,

, 20N N1 1 ( )   � � y �M M M My

with l s, , , .N1 { }M My � The highlighted spinor components

in equation (17) are those contained within the model space
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.ll We recognize that the wave function in equation (16) and

the model space in equation (19) are not compatible since it is

not possible to partition equation (16) in terms of the one-

fermion model spaces. However, we can reorder the spinor

elements of the wave function as

P r r r r 21i i N N
T

1 1( ) ( ) ( ) ( ) ( )
 
 
 
Z Z Z: � y y

where ) is the Tracy–Singh product and P is a permutation

matrix (see appendix A.1 for further details). Then, our two-

spinor example reads

r r

r r

r r

r r

r r

r r

r r

r r

r r

r r

r r

r r

. 22

l l

l s

s l

s s

l l

l l

l l

l l

l s

l s

s s

1 1 2 2

1 1 2 2

1 1 2 2

1 1 2 2

1 1 2 2

1
1

1 2
1

2

1
1

1 2
2

2

1
2

1 2
1

2

1
2

1 2
2

2

1
1

1 2
1

2

1
1

1 2
2

2

1
2

1 2
2

2

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( )


Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

�

�

�

�

�

�

#

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

The spinor components highlighted in equation (22) are

those contained within the ll model space as in

equation (17). We see that the wave function in equation (22)

can be partitioned such that the individual components are

part of the different model spaces in equation (19),

P r r

r r , 23
i i N N

T
1 1

N

i N

1 1( ) ( )

( ) ( ) ( )

Z

Z Z

: � � y

� � y �

M M M

M M

y⎡⎣ ⎤⎦

where l s, , ,N1 { }M My � as in equation (20) and antisymme-

trization will be required.

The Hamiltonian is transformed accordingly (cf.

equation (99) in the appendix)

H P H P P h P

P W P h P W P

i

i 24

DTS
N

D
N

i

N

D

N

i

N

DTS
N

T

1

T

T

1

T

( )

( ) ( )

( ) ( )

( ) ( )

�

�

� �

� w �

�

�

with

h P h P

h

i i i

i N

1 1

1 1

1 1

1 . 25

DTS D

D

T
4 4

4 4

( ) ( ) ( ) ( )

( ) ( ) ( )


 



 
 
 


� � �

�

"

"

The potential-energy operator W N( ) will be invariant under

this transformation if only the instantaneous Coulomb

interaction is considered as it is a diagonal matrix with

identical entries. The situation is more complicated when

magnetic interactions are taken into account. A N-fermion

wave function for 1/2-fermions can then be partitioned in
terms of the model space into 2N components each of

dimension 2 ,N

r

r

r

r

l l

s s

. 26

l l

s s

N1N1( )

( )

( )

( )

∣

∣

( )M M:

:

:

:

�
y

y
�

y §
y

y
y
y §

M M

y

y

y

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

Note that a related reordering of the Hamiltonian similar to

equation (24) is key for the quaternion formulation of four-

component self-consistent field algorithms [49].

3. Two-particle kinetic-balance condition

In this section, we derive the kinetic-balance condition for

explicitly correlated basis functions for a system of two fer-

mions. According to equation (19) the model space takes the

form

, 27ll ls sl ss2 ( )( )     � � � �

where the four subspaces are formed from the single-fermion

model spaces l and :s 

, 28ll l l ( )   � �

, 29ls l s ( )   � �

, 30sl s l ( )   � �

. 31ss s s ( )   � �

Each model space in equations (28)–(31) is assigned to one of

four components in the 16-component wave function. The

structure of the Dirac Hamiltonian has to respect the structure

of the Tracy–Singh product (see equation (97) in the

appendix) to match the partitioning of the wave function

according to equation (26). We then obtain the following

block structure for the two-fermion Hamiltonian defined in

equation (24):

32

H r r

V W p p

p V W p

p V W p

p p V W

c c

c m c c

c m c c

c c m c

0

1 0

0 1

0 1

,

2

2

2

DTS
2

1 2

2
2

2 1
2

1 4

2
2

2 2
2

4 4 1
2

1

1
2

1 4 1
2

4 2
2

2

4 1
2

1 2
2

2 12
2

4

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( )

( )

· ·

· ·

· ·

· ·

( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

T T

T T

T T

T T

�

�

� �

� �

� �

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

where we introduced the four-dimensional unit matrix 14 to

highlight the dimension and V r rV V 11 2 4[ ( ) ( )]� � to yield

a four-dimensional respresentation of the external potential-

energy operator. Moreover, we assume that V and also the

four-dimensional fermion–fermion interaction operatorW are

diagonal, which does not hold if magnetic and retardation

effects are considered for the interaction of the two fermions
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(hence, we apply the compact notation ‘W ’ for a 4 × 4 matrix

operator describing the Coulomb interaction of two fermions

only). If this assumption is not made, rather complicated

expressions will emerge for a magnetically balanced,

explicitly correlated basis. In particular, the zero entries in

equation (32) that represent the cases with a large and small

component in the bracket per fermion would carry the

magnetic fermion–fermion interaction (as expressed, for

instance, in the Gaunt or Breit operators). As we will later

make an assumption that all potential energy contributions are

small compared to the rest energies of the fermions, we aim at

a kinetic balance condition free of any reference to a potential

energy operator in analogy to the orbital-based two-

fermion case.

Note that we have also introduced an energy shift of the
whole spectrum in equation (32) by m c12

2� with

m m m .12 1 2� � Moreover, we absorbed the direct products

into i
2( )T as

1 1 1, , , 33x y z1
2

2 2 2
T( ) ( )( )T T T T� � � �

and

1 1 1, , . 34x y z2
2

2 2 2
T( ) ( )( )T T T T� � � �

The idea of kinetic balance is to relate the small-com-

ponent one-fermion model spaces to their large-component

one-fermion model spaces in the eigenvalue problem

H r rE1 , 0. 35DTS
2

16 1 2( ) ( ) ( )( )
:� �

This leads to a system of four equations, analogously to

equations (7) and (8),

V W p

p

E c

c

10

, 36
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4 2
2

2

1
2

1

( )

( )

( ) ·

· ( )

( )

( )

T

T

: :

:
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�

p V W
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c

E m c c1 1

0

2 , 37
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2
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· (

) · ( )
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p V W

p

c

E m c c1 1

0

2 , 38
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sl ss

1
2

1

4 1
2

4 2
2

2

( )

( )

· (

) · ( )

( )

( )

T

T

:

: :
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p p

V W

c c

E m c1 1

0

2 , 39

ls sl

ss

1
2

1 2
2

2

4 12
2

4

( ) ( )
( )

· ·

( )

( ) ( )T T: :

:

� �
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where we have suppressed the coordinate dependence of the

4-spinors and will continue to do so where convenient. We

eliminate one of these four equations because we search for a

relation between the four four-dimensional components of the

wave function which we can then apply as a constraint on

explicitly correlated basis functions. As in the case of a single

fermion, we eliminate the energy E from the equations by

approximating

V Wm c E m c1 12 2 40i i
2

4
2

4 ( )� � � x⎡⎣ ⎤⎦

where m m m m, , .i 1 2 12{ }� Similarly to the one-fermion case,

equation (10), we assume that this approximation remains

valid and a variationally stable many-particle basis set can be

derived.

We eliminate the first equation, equation (36), from the
system of equations since it is the only equation where m c2 i

2

does not occur so that equation (40) cannot be applied. After

applying equation (40) to equations (37)–(39), we find the

following relations among the four components of the two-

fermion wave function:

p pc m c c0 2 , 41ll ls ss
2
2

2 2
2

1
2

1( ) ( )· · ( )( ) ( )T T: : :x � �

p pc m c c0 2 , 42ll sl ss
1
2

1 1
2

2
2

2( ) ( )· · ( )( ) ( )T T: : :x � �

p pc c m c0 2 . 43ls sl ss
1
2

1 2
2

2 12
2( ) ( )· · ( )( ) ( )T T: : :x � �

The matrix form of this under-determined system of linear

equations can be interpreted as the augmented form of a linear

system with a unique solution:

44

A

p

p

p p

p

p

m c

m c

m c

1 0

0 1

0 1
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2

1 4 1 4
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12 4
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⎥

The augmented form of linear systems and row reduction are

explained in somewhat more detail in appendix A.2. The number

in curly brackets on the right-hand side counts every row. It will

be used to express the manipulations in the row reduction below.

There is no row-reduced echelon form for the augmented

form in equation (44). The lack of a multiplicative inverse of

the differential operator prohibits setting the leading element

of each row of the row-reduced echelon form to 1 (see

equation (103) in the appendix) and therefore to relate

r r, ,ll
1 2( ): r r, ,ls

1 2( ): and r r,sl
1 2( ): to r r, .ss

1 2( ): However, we

are able to find a similar form with pairwise relations between

r r,ss
1 2( ): and the other three components. These individual

steps are to be taken in order to obtain this modified row-

reduced echelon form:

1. Insert p p1 21
2

1 2
2

2( · ){ } ( · ){ }( ) ( )T T� into 2 :{ }

p

p p

p p

p
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0
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2
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4 2 1
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1 1 2
2

2
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2
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2
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⎥
⎥

5

J. Phys. B: At. Mol. Opt. Phys. 48 (2015) 245004 B Simmen et al
               dc_1955_21



2. Insert m c2 2 32{ } { }� into 3 :{ }

3. Insert
m

m
2 3

m

m

12

2

1

2

{ } { }� � into 2 :{ }

4. Insert p m m1 21
2

1 12 2( · ) { } { }( )T � into 1 :{ }

We arrive at a set of simple pairwise relations between

r r,ss
1 2( ): and the other three components

p p

p p

m

m m m m m c4 , 45
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Forming the least common multiple from the operators on the

left-hand sides of the equations, we can introduce a four-

dimensional spinor r r,1 2( )2 related to the r r,ss
1 2( ):

component,

r r p p r rcm, 2 , ,

48

ss
1 2 12 1

2
1 2

2
2 1 2( )( )( ) · · ( )

( )

( ) ( )T T: 2� �

insert it into equations (45)–(47) and eliminate identical terms

on both sides. Instead of relating the upper component to the

lower component, we relate all four four-dimensional

components of the 16-spinor,

r

r

r

r

r

ll
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sl

ss
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to a common spinor r r, :1 2( )2
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Here, we have introduced the short-hand notation U ,ll
2( ) U ,ls

2( )

U ,sl
2( ) and Uss

2( ) for the transformation to kinetically balanced
components in analogy to the one-fermion case in

equation (12). In a subsequent section, we refer to the i-th

term in the prefactor of such expressions as di
N( ) with N = 2

for the two-fermion case; e.g., d N
3
( ) for sl∣ § is then

p c21
2

1·( )T� m m c4 .2 12
2q The physical role of r r,1 2( )2

will become clear when we study the non-relativistic limit

(see below). We emphasize that r r,1 2( )2 is in general an

explicitly correlated geminal rather than a simple orbital

product.

Because of the derivation in equation (48), r r,ss
1 2( ): is

uniquely defined by r r,1 2( )2 up to a constant, i.e. the con-

stant of integration. For square-integrable functions, this

constant is zero. Hence, cancellation of differential operators

is not a problem and all components are uniquely determined

by r r, .1 2( )2

Finally, we consider fermion exchange symmetry (Pauli

principle) for the two identical fermions leading to the rela-

tions [39]

r r r r, , , 54ll ll
1 2 2 1( ) ( ) ( ): :� �

r r r r, , , 55ls sl
1 2 2 1( ) ( ) ( ): :� �

r r r r, , , 56ss ss
1 2 2 1( ) ( ) ( ): :� �

which have to be fulfilled in addition to the relations in

equations (50)–(53). r r,1 2( )2 is antisymmetrized before the

components are constructed according to equations (50)–(53)

because the operators p1
2

1( · )( )T and p2
2

2( · )( )T do not
commute with the permutation operator which exchanges

fermions 1 and 2.

4. The non-relativistic limit

The one-fermion kinetic-balance condition yields the correct

non-relativistic limit for c .l d This is a key requirement

ensuring variational stability. We therefore require any

kinetic-balance condition for more than one fermion to yield

the correct non-relativistic limit.

Finding the non-relativistic limit for the one-fermion case

is fairly trivial. For the two-fermion kinetic-balance condition,

this is somewhat more involved. In order to find the correct

limit, we rely on de l’Hôspital’s rule for limits,

f x

g x

f x

g x
lim lim , 57
x y x y

( )

( )

( )

( )
( )�

a

al l

where f x( )a and g x( )a are the derivatives of f(x) and g(x) with

respect to x, whereas y is the limiting value of x.

The non-relativistic limit of the two-fermion total energy

for a wave function kinetically balanced according to

equations (50)–(53), can be taken as a limiting case of the

Rayleigh quotient

H
E lim . 58

c

DTS
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2∣ ∣

∣
( )

( )
: :

: :
�

� §

� §ld

For the one-electron part in HDTS
2∣ ∣( )

: :� § we have

h r

p p

p

p p

p

p p

V

ll c ls ll c sl

ls c ll ls m c ls

ls c ss sl c ll

sl m c sl sl c ss

ss c ls ss c sl

ss m c ss 1

2

2

2 , 59

i

DTS i

1
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2
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2
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2
2

2 2
2

1
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2
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1
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�
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T
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T
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� §
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� � § � � §

� � § � � §

� � § � � §

� � § � � §

� � § � � � §

�

where we have not resolved the potential-energy expectation

value for convenience. It must now be noted that

p

p

ls c ll ls m c ls

ls c ss

2

0, 60

2
2

2 2
2

1
2

1

( )

( )

∣ · ∣ ∣ ∣

∣ · ∣ ( )

( )

( )

T

T

� § � � §

� � § �

which can be shown by exploiting equations (45) and (46) to

replace ll∣ § and ls∣ § by expressions for ss .∣ § Analogously, we

can exploit equations (45)–(47) to show

p

p

sl c ll sl m c sl

sl c ss

2

0, 61
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Hence, we find for the full Hamiltonian with interacting

fermions

H p

p V W

ll c ls

ll c sl 1 .

63

DTS
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1 4

( )
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∣ ∣ ∣ · ∣
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� § � � §

� � § � � � � §

We now apply de l’Hôspital’s rule to equation (58) by taking

the fourth-order derivative with respect to c of both the

numerator and the denominator:

p

p

V W

p

p V W

E
d

dc
ll c ls

ll c sl

d

dc

m m m

m m m m m m

c m m m
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1

1

lim

lim 192

192 384

384 .
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⎥

⎡
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⎤
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The potential energy term, V W,� may also contain

contributions depending on c, but these contributions are of
second or higher order in c .1� When taking the limit, they are
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all zero and we find the limit to be a simplified Rayleigh

quotient depending on r r,1 2( )2

V W
E , 65

p p

m m
NR

2 2

1
2

1

2
2

2

∣ ˜ ˜ ∣

∣
( )

2 2

2 2
�
� � � � §

� §

where Ṽ and W̃ are the limiting values with c l d for V

and W, respectively. In equation (65), we obtain the

Schrödinger energy and therefore the correct non-relativistic

limit. The limit also identifies the four-dimensional spinor

r r,1 2( )2 as the non-relativistic two-fermion Schrödinger

wave function (note that this function still features a four-

dimensional spinor structure as it accounts for the spin of

two electrons).

It is interesting to note that the value of the non-relati-

vistic, c ,l d limit is determined by the leading terms in c

of the three components ll ,∣ § ls ,∣ § and sl∣ § in equations (50)–

(52) define the non-relativistic limit when we apply de

l’Hôspital’s rule. These leading terms are

ll c m m m c: 4 , 662
1 2 12

2( )∣ ( )2§ �

pls c m m c: 2 , 671 12 2
2

2( )∣ ( ) · ( )( )T 2§ �

and

psl c m m c: 2 . 682 12 1
2

1( )∣ ( ) · ( )( )T 2§ �

We also note that equations (66)–(68) are related to

equation (5). If we apply equation (5) for particles 1 and 2
subsequently to r( )2 and then multiply by m m m c4 ,1 2 12

2
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we obtain the expressions of equations (66)–(68). Hence, we

have shown that the one-fermion kinetic-balance condition in

equation (5) is sufficient for obtaining the correct non-

relativistic limit for a two-fermion system. At first sight, this

seems reassuring as obtaining the correct non-relativistic limit

has been connected to variational stability for orbital-based

theories (see, e.g., [50]). However, the one-fermion kinetic-

balance condition may not be sufficient to ensure variational

stability in the general case considered here [14, 37, 48].

Accordingly, the non-relativistic limit will then not be a

sufficient, albeit a necessary condition for variational stability.

5. Kinetic-balance condition for more than two
fermions

The derivation presented in section 3 can also be applied to

systems of more than two fermions, and thus establishes in its

full form a kinetic-balance condition for general (non-separ-

able) N-particle basis functions. How such a generalization

could be achieved for the approach of Pestka and co-workers

[14, 37, 48] is not obvious and was not discussed in their

papers. In our ansatz, we obtain rather lengthy expressions for

three fermions, which we refrain from presenting explicitly

for the sake of brevity. The resulting expressions can, how-

ever, be expanded into a polynomial with respect to c. The

individual terms d ci
3 ( )( ) of the prefactor of the 3-fermion

8-spinor r r r, ,1 2 3( )2 feature the important property

p p p

d c k m m m c, ,

70

i i
u v w

u v w

3 3
1 2 3

6

1
3

1 2
3

2 3
3

3( ) ( ) ( )
( ) ( )

· · · ( )

( ) ( ) ( )

( ) ( ) ( )T T T

� q

q

� � �

where we have omitted to indicate that each d ci
3 ( )( ) will be

different for different sectors lll ,∣ § lls ,∣ § lss ,∣ § and so forth and

depend on u v w, , . The positive semi-definite exponents

u v w, , obey the constraints u v w0 7( )- -� � and we

have

1 1 1, , , 71x y z1
3

4 4 4
T( ) ( )( )T T T T� � � �

1 1 1 1 1 1, , , 72x y z2
3

2 2 2 2 2 2
T( ) ( )( )T T T T� � � � � � �

1 1 1, , . 73x y z3
3

4 4 4
T( ) ( )( )T T T T� � � �

The multiplicative prefactors k m m m, ,i
3

1 2 3( )( ) depend on the

masses of the individual fermions and the kinetic-balance

conditions simplify significantly if all three fermions have

equal masses.

Equation (70) shows that the explicitly correlated kinetic-

balance condition for three particles contains the momentum

operator to the power of seven, which is unfavorable from a

computational point of view. However, we can observe that

the power of the momentum operators decreases with

increasing orders of c. The leading terms with respect to c are

the one-fermion kinetic-balance terms and ensure the non-

relativistic limit.

For the assessment of the general properties of an N-

fermion kinetic-balance condition, let us first re-write the two-

fermion kinetic balance condition, equations (50)–(53), in a

general form similar to equation (70):

p p

d c k m m

c

,

, 74

i i

u v u v

2 2
1 2

4
1
2

1 2
2

2( ) ( )
( ) ( )

· · ( )

( ) ( )

( ) ( ) ( )T T

�

q � �

where the multiplicative prefactors k m m,i
2

1 2( )( ) depend on

the masses of the two fermions and the positive semi-definite

exponents, u and v, obey the constraints u v0 3.( )- -�
By comparing the results for two- and three-fermion

systems, equations (70) and (74), we obtain for the N-fermion

8

J. Phys. B: At. Mol. Opt. Phys. 48 (2015) 245004 B Simmen et al
               dc_1955_21



case:

pd c k m m c, ,

75

i
N

i
N

N
N u

j

N

j
N

j

u
1

2

1

j( )( ) ( ) ·

( )

( ) ( ) ( ) ( )� T� y q �

�

where we skipped the explicit derivation. The power of c,

N u2 ,� and the power of the pj
N

j·( )T operator, uj, are

determined in the kinetic-balance solution by

u u N0 2 1. 76
j

N

j

1

( )- -�� �
�

High powers of the momentum operator is unfortunate from a

computational point of view, but with the complete set of

kinetic-balance conditions at hand for any set of non-

separable N-particle basis functions, equations (75) and

(76), one may introduce a hierarchy of approximate kinetic-

balance conditions and investigate their properties

systematically.

As an example, we present the approximate kinetic-bal-

ance condition for a three-electron system (in Hartree atomic

units and with m 1e � for the electron mass) where only the

leading terms in c are included:

p p

p r r
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c U
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sls1
3

1 3
3

3
4 3( )( )∣ · · ( ) ( )

( )

( ) ( ) ( )T T 2 2§ � w

p p r rssl c U12 ,

83

ssl1
3

1 2
3

2
4 3( )( )∣ · · ( ) ( )

( )

( ) ( ) ( )T T 2 2§ � w

p p p r

r

sss c

U

6

, 84sss

1
3

1 2
3

2 3
3

3
3

3

( )( )( )∣ · · · ( )

( ) ( )

( ) ( ) ( )

( )

T T T 2

2

§ ��

w

with the pi i
3 ·( )T operators defined in equations (71)–(72).

r( )2 with r r r r, ,1 2 3
T( )� is the non-relativistic limit of

r .( ): We see that the lowest order of c to consider is 3 due to

the sss∣ § component. Equations (77)–(84) can be considered

as a minimal explicitly correlated kinetic-balance condition

for a three-electron system.

6. Basis-set expansion and numerical results

In practice, a many-particle wave function can be expanded

into a basis set

r rC 85
i

i i( ) ( ) ( )��: '�
M

M M

�-

where Ci
M are the expansion coefficients and ri ( )'

M are the

basis functions. Λ is the set of all component-index strings

consisting of lʼs and sʼs according to equation (26), i.e., it is
the set of 2N strings of such indices of length N for an N-

fermion basis function. For the sake of clarity, we explicitly

provide the basis functions for the two-fermion case,

0

0

0

,
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0
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,

0

0

0
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0

0
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where the four-dimensional basis functions ,i
ll
'̃ ,i

ls
'̃ ,i

sl
'̃ and

i

ss
'̃ are promoted to 16-dimensional functions for a compact

notation of the expansion in equation (85); note that we write

‘0’ in equation (86) to indicate four-dimensional null vectors

for the sake of brevity. Eventually, these four-dimensional

basis functions are to be expressed in terms of basis functions

i2 that represent the common non-relativistic limit 2

according to the analysis presented above.

A transformation, similar to that in equation (12) for the

one-fermion case, can be formulated for the explicitly corre-

lated kinetic-balance condition in the two-fermion case,

U

U

U

U

U

U

U

U

U

0 0 0

0 0 0

0 0 0

0 0 0

, 87
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2

2
4 4 4

4

2

2
4 4

4 4

2

2
4

4 4 4

2

2

( )( )

( )

( )

( )

( )

( )

( )

( )

( )

�

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

in the notation introduced in equations (50)–(53) and with a

normalization introduced for each basis-function component
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according to

U U U 88ll i

ll

i

ll
i ll ll i

2 2 , 2˜ ˜ · ( )( ) ( ) † ( )
' ' 2 2w �

and so forth for the other λ labels; note that we dropped the

basis-function index on the left-hand side for the sake of

brevity. Essentially, we normalize each component of each

basis function individually to ensure numerical stability when

solving the eigenvalue problem. This procedure can be

understood as the relativistic counterpart of the quasi-

normalization in pre-Born–Oppenheimer theory [51]. Hence,

explicit normalization of a trial wave function has to be taken

into account when the energy is calculated.

In full analogy to the two-fermion case, we constructUKB
3( )

from equations (77)–(84). In general, the N-fermion trial wave

function is expressed in terms of the transformation as

r

r

r

r

C U r

C
U

U

C
U

U

C
U

U

, 89
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i
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N
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ss s ss s

N
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N

... ...
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...

KB
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( )

( )

· · ( ) ( )

( )

( )

( )

( )

( )

( )

( ) ( )

�

�

:

2

2

2

2

�

w

M M

M

#

#

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎡⎣ ⎤⎦

where the U UN N∣ ∣( ) ( )
M M are the entries of the diagonal matrix

U N
KB
( ) normalized by

U U U 90N
i i i

N N
i

,˜ ˜ · ( )( ) ( ) † ( )
' ' 2 2w �M

M M

M M

(with the index i dropped for the sake of brevity as before).

The vector i
N( )

2 contains the non-relativistic limit, ,i2 2N

times as entry, i.e., , ,..., .i
N

i i i( )( )
2 2 2 2�

6.1. Numerical results

As an example, we present numerical results for a standard

two-electron system: two electrons moving in the central

potential of a helium nucleus within the Born–Oppenheimer

approximation. Our starting point is a non-relativistic basis

set, which corresponds to L = 0 total spatial angular

momentum, p 1� � parity, and S = 0 total electron spin

quantum numbers, and which is antisymmetrizd according to

the Pauli principle:

r r r,

1

2

1
0

0

1

0

1

1
0

, 91

i i 1 2

( ) ( ) ( ) ( )
( ) ( )

( )

2 2� a

q � � �
⎡

⎣⎢
⎤

⎦⎥

where we inroduced the explicit form of the spin functions

1
0

and
0

1
. 92( ) ( ) ( )B C� �

In this notation, the four-dimensional structure of the

non-relativistic limit is highlighted in agreement with

equation (65). In equation (91), the spatial part can be any

non-separable two-particle function and in our calculations it

is an explicitly correlated Gaussian function with L = 0 and

p = +1,

r r r A r1, exp
1

2
, 93i i1 2

T
3( )( ) ( )2a � � �⎜ ⎟

⎛

⎝

⎞

⎠

where r r r,1 2
T( )� and the elements of the symmetric,

positive definite matrix, A ,i
2 2�� q are parametrized by

A

k l

exp 0.1 1 exp

with , 1, 2 . 94

i kl kl kl i kl kl i, ,( ){ } ( ) ( )

{ } ( )

E B E B� � � �

�

The kl i,B values are optimized stochastically to minimize the

relativistic energy. Trial values for kl i,B were generated from a

normal distribution as in [51] (see also references therein).

The optimized parameter values of Ai are deposited in the

supplementary information.

With equation (89) (see also equations (50)–(53) for the

two-particle case) we generate a kinetically balanced basis set

from r ,i( )2 equation (91), for the relativistic calculations and

Table 1. Ground-state energy of the two-electron helium atom with fixed nucleus obtained for increasing basis-set sizes. ER% and ENR% are
the differences between the calculated relativistic and non-relativistic energies, respectively, with respect to the reference values. n is the
number of basis functions, ,i2 defined in equations (91) and (93). The parameters of the basis functions are deposited in the supplementary
data and the value for the speed of light was set to 137.0359895 atomic units.

n ER [Eh] ER% [Eh] ENR [Eh] ENR% [Eh]

10 −2.89757665 0.00628019 −2.89744422 0.00628016

20 −2.90288205 0.00097479 −2.90275061 0.00097377

50 −2.90382266 0.00003418 −2.90369103 0.00003335

100 −2.90384822 0.00000862 −2.90372140 0.00000298

200 −2.90385566 0.00000118 −2.90372429 0.00000009

300 −2.90385674 0.00000010 −2.90372430 0.00000008

[37] − 2.90385684 [52] −2.90372438
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minimize the Rayleigh quotient, equation (4),

H r

C C U r H U r

C C U r U r

E ,

95

DTS i

ij

i j i DTS j

ij

i j i j

2

KB
2 2 2

KB
2 2

KB
2 2

KB
2 2

{ }( )

· ( ) · ( )

· ( ) · ( )

( )

( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

�

�

�

�

2

2 2

2 2

�⎡⎣ ⎤⎦

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

with respect to the expansion coefficients Ci
M by solving the

generalized eigenvalue problem

HC ESC. 96( )�

In equation (96), the Hamiltonian matrix, H, has a block

structure with Hij � U riKB
2 2· ( )( ) ( )
2 H U rDTS j

2
KB
2 2· ( )( ) ( ) ( )
2

i j,2 2N N

(�� �q n1, 2 ,..., ) and similarly the overlap

matrix, S, contains Sij � U r U ri jKB
2 2

KB
2 2· ( ) · ( )( ) ( ) ( ) ( )

2 2 �

i j,2 2N N

(� �q n1, 2 ,..., ) for n basis functions and for two

electrons, N = 2. Accordingly, C n n2 2N N

�� q is a matrix

containing the expansions coefficients Ci
M and E is an n2N( )

-dimensional diagonal matrix with the energies on its

diagonal.

The ground-state energy eigenvalue of the helium atom is

obtained from equation (96) by direct solution of the gen-

eralized eigenvalue problem in the stochastically optimized

basis set (see table 1). The non-relativistic energies, also given

in table 1, were obtained from the generalized eigenvalue

problem solved for the Schrödinger Hamiltonian in the basis

of the non-relativistic basis functions of equation (91), con-

taining the parameters obtained in the relativistic calculations

(see the supporting information for details). As it can be seen

from the data in table 1, both the relativistic and the non-

relativistic energies converge with increasing basis-set size

towards the reference data in a variationally stable fashion.

7. Conclusions

The kinetic-balance condition for the one-fermion case

ensures variational stability in orbital-based approaches to

first-quantized relativistic many-fermion theory. In this paper,

we derived a kinetic-balance condition for general, non-

separable N-particle basis functions. Similarly to the deriva-

tion of a one-particle kinetic-balance condition, we set out

from the assumption that the potential energy contributions

are small compared to the rest energies of the fermions. We

arrived at an N-particle kinetic balance condition by com-

bining the well-known multiplication properties of the Pauli

matrices with the row-elimination approach of solving linear

systems of equations. In agreement with the one-fermion

case, the N-particle kinetic-balance condition also ensures that

the correct non-relativistic limit is obtained for an infinite

speed of light. It had been anticipated, however, that the N-

particle kinetic-balance condition provides better stability

when solving the first-quantized Dirac Hamiltonian var-

iationally with an explicitly correlated basis set, and hence

suggested that the requirement of matching the non-relati-

vistic limit is a necessary but not a sufficient condition.

We demonstrated that the variational solution of the

Dirac equation is stable for the ground state of the two-fer-

mion helium atom when a relativistic basis set is generated

from explictily correlated Gaussian functions using the N-

particle kinetic balance condition for N = 2.

Concerning the general applicability of our results, the

theoretical expressions and our preliminary investigations

show that the direct use of the full N-particle kinetic-balance

condition becomes tedious and computationally expensive for

more than two fermions. However, it might be possible to

reduce the computational cost by systemtically eliminating

terms of high order in momentum operators from the full

expressions and, at the same time, retain variational stability

for the solutions. A systematic investigation of the variational

stability under such approximations is beyond the scope of

the present paper and left for future work.
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Appendix A

A.1. Tracy–Singh product

The Tracy–Singh product [53] is defined as

A B C B C

B C B C

B C B C

97

ij uv

uv n uv

m uv mn uv

tsp

11 1

1

( )

( ) ( )

( ) ( )
( )


� � �

�

� �

� �

"

#

"

⎡⎣ ⎤⎦

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

where B Bij[ ]� and C Cuv[ ]� are two matrices of dimen-

sion m n( )q and p q ,( )q respectively. They are partitioned

block-wise in terms of the matrices Bij and C .uv Atsp is a

matrix of dimension mp nq .( )q It is partitioned block-wise

with the elements being the matrices B C .ij uv( )� The Tracy–

Singh product may be considered a more general form of the

Kronecker product

A B C

C C

C C

b c

b b

b b

98

ij uv

n

m mn

kp

11 1

1

( )

( )

� � �

�
"

#

"

⎡⎣ ⎤⎦

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

where bij and cuv are the matrix elements of B and C,

respectively. Akp is a matrix of dimension mp nq .( )q The

two matrices A tsp and Akp are identical in the case that B and

C are not partitioned (or partitioned into 1 1( )q blocks).

Generally the two products are related through a permutation
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of the row and column space of either matrix [54–56]

P B B Q B B 99T
n n1 1( ) ( )
 
� y � � y

where P and Q are the permutation matrices for the row and

the column space and n is the number of matrices involved.

For vectors v ,i we find the relation

P v v v v . 100n n
T

1 1( ) ( )
 
� y � � y

The partitioning of the matrices and vectors depends on the

permutation matrices P and Q. If all matrices are square and

symmetrically partitioned, the two permutation matrices are

identical [54] P Q� and the two products are related through

a unitary transformation.

A.2. Row reduction and row reduced echelon form

Systems of linear equations are conveniently solved by first

representing them in matrix form

A x b 0, 101· ( )� �

where A is a matrix containing the linear factors. x is a vector

and contains the values which are to be determined and b is a

vector containing the constant factors of the linear system. A

reliable method of solving such a linear system is row

reduction, i.e., Gaussian elimination. It involves performing a

series of operations on the augmented form

A A b 102aug [ ]∣ ( )�

until it is in row-reduced echelon form. The row-reduced

echelon form is

A b1 103rre ∣ ( )� a⎡⎣ ⎤⎦

for systems with a unique solution. Possible operations are

permutation of two rows, multiplication of individual rows

with a constant scalar factor and evaluating the difference of

two rows.
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ABSTRACT: The main motivation for this work is the exploration of
rotational−vibrational states corresponding to electronic excitations in a pre-
Born−Oppenheimer quantum theory of molecules. These states are often
embedded in the continuum of the lower-lying dissociation channel of the
same symmetry and thus are thought to be resonances. To calculate
rovibronic resonances, the pre-Born−Oppenheimer variational approach of
[J. Chem. Phys. 2012, 137, 024104], based on the usage of explicitly
correlated Gaussian functions and the global vector representation, is
extended with the complex coordinate rotation method. The developed
computer program is used to calculate resonance energies and widths for the
three-particle positronium anion, Ps−, and the four-particle positronium
molecule, Ps2. Furthermore, the excited bound and resonance rovibronic
states of the four-particle H2 molecule are also considered. Resonance
energies and widths are estimated for the lowest-energy resonances of H2 beyond the b 3∑u

+ continuum.

■ INTRODUCTION

The present work is devoted to conceptual and computational
problems in pre-Born−Oppenheimer (pre-BO) molecular
structure theory. Without the Born−Oppenheimer (BO)
approximation,1−3 in a “pre-BO world”, we can gain in accuracy
for the numerical results but lose a central paradigm for the
well-accustomed concepts of chemistry. The reconstruction or
interpretation of many common chemical concepts becomes a
real challenge. One of these famous challenges, the problem of
the quantum structure of molecules, has been recognized long
ago4−7 and studied by many authors.8−20

In the present work we address another challenge, the status
of electronically excited rotational−vibrational states in a pre-
BO quantum mechanical description. In a pre-BO description
there are no electronic states with corresponding potential
energy curves or surfaces on which the rotational−vibrational
Schrödinger equation could be solved. In addition, rotational−
vibrational states corresponding to electronic excitations are
often embedded in the lowest-lying dissociation channel of the
system (Figure 1) prone to predissociation.21 These rovibronic
states are thus accessible in a pre-BO description only as
resonances. These rovibronic resonances are characterized with
some energy and width corresponding to a finite nonradiative
(predissociative) lifetime. Our aim is to explore how these
properties can be calculated in a pre-BO approach.
As for the numerical results, there are practical approaches

used for the calculation of quasi-bound states in molecular
science.22−24 The stabilization technique, a very simple
computational tool, has been used to identify resonances and
to estimate the resonance energy25−27 and can also be extended

to the calculations of the width.28−31 The complex coordinate
rotation method32−34 is a neat mathematical approach for the
calculation of the resonance energy and width and has been
used in several cases,23,24 for example in rotational−vibrational
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Figure 1. Motivation for this work: calculation of rovibrational levels
corresponding to electronically excited states, which are bound in the
Born−Oppenheimer description but which appear as resonances in
pre-Born−Oppenheimer molecular structure theory.
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calculations on a potential energy surface within the Born−
Oppenheimer (BO) theory.31,35 The usage of complex
absorbing potentials36−38 has been a popular technique in
molecular spectroscopy and quantum reaction kinetics with
many applications.39−41 There exist also more involved and
specialized approaches, such as the solution of the Faddeev−
Merkuriev integral equations.42,43

The present work is organized as follows. First, the necessary
theoretical framework is described for the variational solution
of the Schrödinger equation for bound states of few-particle
systems. Then, this approach is extended for the identification
and calculation of quasi-bound states. Next, numerical examples
are presented for the three-particle Ps− and the four-particle
Ps2. Finally, the description of excited bound and resonance
rovibronic states of the four-particle H2 is explored. In the end,
we finish with a summary and outlook.

■ THEORY AND COMPUTATIONAL STRATEGY

The Schrödinger equation for an (np + 1)-particle system with
mi masses and qi electric charges assigned to the particles is

̂ Ψ = ΨH E (1)

with the nonrelativistic quantum Hamiltonian in Hartree
atomic units

∑ ∑ ∑̂ = ̂ + ̂ = − Δ +
| − |

=

+

=

+

>

+

H T V
m

q q

r r

1

2
i

n

i
r

i

n

j i

n
i j

i j1

1

1

1 1

i

p p p

(2)

written in laboratory-fixed Cartesian coordinates r = (r1, r2, ...,
rnp+1).

In the present work we use the bound-state variational
approach of ref 44 and (a) combine it with the stabilization
technique to quickly identify long-lived resonances and (b)
extend it with the complex coordinate rotation method to
calculate resonance energies and widths.
Variational pre-BO Calculations Using Explicitly

Correlated Gaussian Functions and the Global Vector
Representation. The overall translation of the center of mass
is eliminated by writing the kinetic energy operator in terms of
Jacobi Cartesian coordinates, and the translational kinetic
energy of the center of mass is subtracted. As an alternative to
this approach, the original laboratory-fixed Cartesian coor-
dinates can be used throughout the calculations without any
further coordinate transformation employing a special elimi-
nation technique for the overall translation during the
evaluation of the matrix elements.45

The matrix representation of the translationally invariant
Hamiltonian is constructed using a symmetry-adapted basis set
defined as follows.
A basis function with the quantum numbers λ = (N, MN, p)

and ς = (Sa, MSa, Sb, MSb, ...) (a,b, ... label the particle type) is

constructed as

σ ϕ χ σΦ = ̂λ ς λ ςr r( , ) { ( ) ( )}[ , ] [ ] [ ]
(3)

where ε̂ = ∑ ̂−
=

N P( )
i

N
i iperm

1/2
1
perm is the symmetrization and

antisymmetrization operator for bosonic and fermionic-type
particles, respectively. P̂i (i = 1, 2, ..., Nperm) is an operator
permuting identical particles, and εi = −1 if P̂i corresponds to
an odd number of interchanges of fermions; otherwise, εi = +1.
(N denotes here the total spatial (orbital plus rotational)
angular momentum quantum number in agreement with the

recommendations of the International Union of Pure and
Applied Chemistry.46 We note that in ref 44 the symbol L was
used in the same sense. Furthermore, p is the parity, which we
call “natural” if p = (−1)N and “unnatural” if p = (−1)N+1. In
this work we restrict the discussion to natural-parity states. The
total spin quantum number for particles of type a is Sa. For
example, Sp and Se denote the total spin quantum numbers for
the protons and the electrons, respectively.)
The spatial part of the basis functions with natural parity, p =

(−1)N, is constructed using explicitly correlated Gaussian
functions47−51 and the global vector representation52−54 as
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(4)

where the v ̂ = ν/|ν| unit vector points in the direction of the
global vector, ν = ∑i=1

np+1ui
(0)ri. YNMN

denotes the Nth order MNth

degree spherical harmonic function. The spin function, χ[ς], is
constructed from elementary spin functions so that the
resulting function is an eigenfunction of S ̂a

2 and (S ̂a)z for each
type of particles (a,b,...) with the quantum numbers ς = (Sa,
MSa, Sb, MSb, ...).

Then, the resulting Φ
[λ,ς] basis function has the quantum

numbers of the nonrelativistic quantum theory (it is
“symmetry-adapted”) and contains free parameters, which can
be optimized for an efficient description of the “internal
structure” of a system. The free parameters of the spatial
function, eq 4, are K; α, αij(i = 1, ..., np + 1, j = i + 1, ..., np + 1);
and u, ui

(0)(i = 1, ..., np + 1) with the restriction ∑i=1
np+1ui

(0) = 0,
which guarantees translational invariance. The spin functions
used in this work do not contain any free parameters.
We only note here that for the positronium molecule, Ps2, as

a special case studied in this work, the entire basis function was
additionally adapted to the charge-conjugation symmetry of the
electrons and the positrons.55−57

The matrix elements of the kinetic and potential energy
operators corresponding to the basis functions with natural
parity, eqs 3 and 4, were evaluated with the pre-BO program
according to ref 44.
Since the basis functions are not orthogonal we have to solve

a generalized eigenvalue problem

=Hc E Sci i i (5)

to find the variationally optimal linear combination of the basis
functions with the linear combination coefficients ci corre-
sponding to the eigenvalue Ei. The generalized eigenproblem is
solved by introducing H′ = S−1/2HS−1/2 and ci′ = S1/2ci, which
simplifies the eigenvalue equation, eq 5, to H′ci′ = Eici′. In our
computations the Cholesky decomposition of S for the
evaluation of S−1/2 as well as the diagonalization of the real,
symmetric transformed Hamiltonian matrix, H′, were carried
out by using the LAPACK library routines.58

The computational efficiency and usefulness of the varia-
tional approach described depend on the parametrization of the
basis functions (the choice of the values of KI, αI, and uI for the
basis functions I = 1, ..., Nb). For bound-state calculations we
adopted the stochastic variational approach54,59−62 for the
optimization of the basis function parameters. The (quasi-
)optimization of the parameter set is a very delicate problem,
and our recipe includes the following details:44 (a) a system-
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adapted random number generator is constructed using a
sampling-importance resampling strategy for the generation of
trial parameter sets; (b) the acceptance criterion of the
generated trial values is based on the linear independence
condition and the energy minimization requirement (relying on
the variational principle); (c) the selected parameters are fine-
tuned using a simple random walk approach or Powell’s
method.63

Furthermore, once a parameter set has been selected or
optimized for a system with some quantum numbers, it can be
used, “transferred”, to parametrize basis functions for the same
system with different quantum numbers (“parameter transfer
approach”). It is important to emphasize that the basis
functions are not transferred since they have a different
mathematical form for different quantum numbers, but only the
parameter set is taken over from one calculation to another.
Calculation of Resonances. The bound-state pre-BO

approach described was extended for the calculation of
resonance states as follows. First of all, without any change of
the computer program, we looked for the quasi-stabilization of
higher-energy eigenvalues (higher than the lowest-energy
threshold) of the real eigenvalue problem. This application of
the stabilization technique25−27 is a simple, practical test for
identifying possible quasi-bound states and was found to be
useful as a first check of the higher-energy eigenspectrum. By
making full use of the stabilization theory, both the resonance
energies and widths could be calculated from consecutive
diagonalization of the (real) Hamiltonian matrix corresponding
to increasing number of basis functions, which cover increasing
boxes of the configuration space.28−31

Instead of using this approach, the complex coordinate
rotation method (CCRM)23,24,32−34 was implemented for the
calculation of resonance parameters, energies, and widths. The
resonance parameters were determined by identifying stabiliza-
tion points in the complex plane with respect to the coordinate
rotation angle and (the size and parametrization of) the basis
set. The localized real part of the eigenvalue, Re( ), was taken
to be the resonance energy, and the imaginary part provided
the resonance width, Γ = −2Im( ), which is inversely
proportional to the lifetime, τ = ℏ/Γ.22

Implementation of the Complex Coordinate Rotation
Method for the Coulomb Hamiltonian. The complex

scaling of the coordinates r → reiθ translates to the replacement
of the Hamiltonian Ĥ = T̂ + V̂ with

θ̂ = ̂ + ̂θ θ− −T V( ) e e2i i
(6)

The matrix representation of θ̂ ( ) is constructed with the
matrices of T̂ and V̂ evaluated by the pre-BO program.44 Then,

the eigenvalue equation for θ̂ ( ) reads as

θ θ θ θ=v Sv( ) ( ) ( ) ( )i i i (7)

where S is the overlap matrix of the (linearly independent) set
of basis functions. S is eliminated from the equation similarly to
the case of the real generalized eigenproblem, eq 5

θ θ θ θ′ ′ = ′v v( ) ( ) ( ) ( )i i i (8)

with

θ

θ θ θ

θ

′ = ′ + ′

= ′ + ′ − ′

+ ′

θ θ− −e T e V

T V T

V

( )

cos(2 ) cos( ) i(sin(2 )

sin( ) )

2i i

(9)

and

′ = ′ =− − − −T S TS V S VSand1/2 1/2 1/2 1/2 (10)

The complex symmetric eigenvalue problem, eq 8, is solved
using the LAPACK library routines.58

■ NUMERICAL RESULTS

The first numerical applications of our implementation were
carried out for the notoriously nonadiabatic positronium anion,
Ps− = {e−,e−,e+}, and for the positronium molecule, Ps2 =
{e−,e−,e+,e+}. The reason for the choice of these systems was of
technical nature: we observed in bound-state calculations44 that
it was straightforward to find an appropriate parametrization of
the basis set for the positronium complexes. Furthermore,
comparison of the results with earlier calculations27,42,64,65

allowed us to check the developed computational methods and
gain experience in the localization of the real and imaginary
parts of the complex eigenvalues using the complex coordinate
rotation method.

Table 1. Identified Bound- and Resonance-State Energies and Resonance Widths, in Eh, of Ps
− = {e−, e−, e+}a

(N,p,S−)
b Re( )c Γ/2c Re( )ref

d
Γref/2

d ref

(0,+1,0) −0.262 005 070e 0e −0.262 005 070 0 66

(0,+1,0) −0.076 030 455 2.152 × 10−5 −0.076 030 442 2.151 7 × 10−5 64

(0,+1,0) −0.063 649 173 4.369 × 10−6 −0.063 649 175 4.339 3 × 10−6 64

(0,+1,0) −0.062 609 2.5 × 10−5 −0.062 550 5.0 × 10−7 42

(0,+1,0) −0.035 341 85 3.730 × 10−5 −0.035 341 885 3.732 9 × 10−5 64

(0,+1,0) −0.029 845 70 2.781 × 10−5 −0.029 846 146 2.635 6 × 10−5 64

(0,+1,0) −0.028 271 1.8 × 10−5 −0.028 200 7.5 × 10−6 42

(0,+1,0) −0.020 199 8.800 × 10−5 −0.020 213 921 6.502 6 × 10−5 64

(0,+1,1) −0.063 537 352 2.132 × 10−9 −0.063 537 354 1.570 0 × 10−9 64

(0,+1,1) −0.062 591 2.6 × 10−7 −0.062 550 2.5 × 10−10 42

(0,+1,1) −0.029 369 87 1.300 × 10−7 −0.029 370 687 9.395 0 × 10−8 64

(0,+1,1) −0.028 21 1.9 × 10−5 −0.028 05 5.0 × 10−8 42

(0,+1,1) −0.017 071 6.710 × 10−6 −0.017 101 172 3.560 9 × 10−7 42
aThe dissociation threshold energies, in Eh, accessible for both the S− = 0 and 1 states are E(Ps(1)) = −1/4 = −0.25, E(Ps(2)) = −1/16 = −0.062 5,
and E(Ps(3)) = −1/36 = −0.027 7̇. bN, p, and S−: total spatial angular momentum quantum number, parity, and total spin quantum number of the
electrons, respectively. cRe( ) and Γ: resonance energy and width with Γ = −/2 Im( ) calculated in this work. dRe( )ref and Γref: resonance energy

width with Γ = −/2 Im( )ref ref taken from refs 42 and 64. eBound state.
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While for the bound-state calculations the basis function
parameters were optimized for the lowest-energy level(s) using
the variational principle, this handy optimization criterion was
not available in the CCRM calculations. Thus, we used
optimized bound-state basis sets and enlarged them with
linearly independent basis functions for the estimation of the
resonance parameters.
Next, we investigated the calculation of some of the excited

states of the H2 molecule. The construction of a reasonably
good parametrization for the basis set has turned out to be a
challenge. Nevertheless, we describe the essence of our
observations and give calculated resonance energy values and
approximate widths for the lowest-lying excited states beyond
the b 3∑u

+ repulsive electronic state embedded in the H(1) +
H(1) continuum.
Ps−. In Table 1 bound- and resonance-state parameters (N =

0, p = +1) are collected, which were obtained in this work. The
basis sets were generated using the energy minimization and
the linear independence conditions using a random number
generator setup following the strategy described in ref 44. The
parameters for the largest basis sets used during the calculations
are given in the Supporting Information. The generated basis
sets were apparently large and flexible enough to obtain
resonance states not only beyond the first but also beyond the
second and the third dissociation channels which correspond to
Ps(1) + e−, Ps(2) + e−, and Ps(3) + e−, respectively. As to the
accuracy, the (real) variational principle, directly applicable for
bound states, is not useful for the assessment of the resonance
parameters. Instead, we used benchmarks available in the
literature resulting from extensive three-body calculations using
Pekeris-type wave functions with one and two length scales64

and from the solution of the Fadeev−Merkuriev integral
equations for three-body systems.42

First of all, the present results and the literature data are in
satisfactory agreement. Our results could be certainly improved
by running more extensive calculations with larger basis sets.
Instead of going in this direction, a careful comparison is
carried out with the reference data to learn about the accuracy
and convergence behavior of our approach. The results are
often in excellent agreement with the benchmarks, but in some

cases the lifetimes are orders of magnitude off. It can be
observed that the calculated lifetimes are worse when the real
part of the complex energy was determined less accurately (and
given to less significant digits in Table 1). The inaccuracy
appears in both the real and the imaginary parts and is about of
the same order of magnitude compared to the absolute value of
the complex energy. Thus, if the widths are expected to be very
small and the real part can be determined only to a few digits,
the width should be considered only as a rough estimate to its
exact value. This observation can be used later in this work also
for the assessment of the calculations carried out for the four-
particle Ps2 and H2.

Ps2. Our next test case was the four-particle positronium
molecule, Ps2 = {e−,e−,e+,e+}. Resonances of the positronium
molecule have recently attracted attention.27,65,67 Ps2 has few
bound states, and thus a detailed spectroscopic investigation of
its structure and dynamics is possible only through the
detection and analysis of its quasi-bound states.
In our list of numerical examples, the positronium molecule

is unique because, in addition to the spatial symmetries, its
Hamiltonian is invariant under the conjugation of the electric
charges. To account for this additional property, the basis
functions, eqs 3 and 4, were adapted also to the charge
conjugation symmetry.55−57,65,68 As a result, the total
symmetry-adapted basis functions and also the calculated
wave functions are not necessarily eigenfunctions for the total
spin angular momentum of the electrons or that of the
positrons, S ̂−

2 or S ̂+
2. Nevertheless, the total spatial angular

momentum quantum number, N, the parity, p, as well as the
charge-conjugation parity, c = +1 or −1, are always good
quantum numbers.
The parametrization strategy of the basis set was similar to

that used for Ps−: we employed (a) the energy minimization
condition for the lowest-energy eigenvalue and (b) the linear
independence condition for the generation of new basis
function parameters. The parameter sets used in the largest
calculations are given in the Supporting Information.
The bound and resonance states calculated with N = 0 total

spatial angular momentum quantum number and p = +1 parity
are collected in Table 2. Considering all possible charge

Table 2. Identified Bound- and Resonance-State Energies and Resonance Widths, in Eh, of Ps2 = {e−, e−, e+, e+}a

(N, p, c)b (S−, S+)
c Re( )d Γ/2d Re( )ref

e
Γref/2

e ref.

(0,+1,+1) (0,0) −0.516 003 789 741f 0f −0.516 003 790 416 0 69

(0,+1,+1) (0,0) −0.329 38 3.03 × 10−3 −0.329 4 3.1 × 10−3 65

(0,+1,+1) (0,0) −0.291 7 2.5 × 10−3 −0.292 4 1.95 × 10−3 65

(0,+1,−1) (0,0) −0.314 677 072f 0f −0.314 673 3 0 65

(0,+1,−1) (0,0) −0.289 789 3 7.7 × 10−5 −0.289 76 7 × 10−5 65

(0,+1,−1) (0,0) −0.279 25 2.3 × 10−4 −0.279 13 1 × 10−4 65

(0,+1,+1) (1,1) −0.277 2 5.4 × 10−4 −0.276 55 1.55 × 10−4 65

(0,+1,−1) (1,1) −0.309 0 5.7 × 10−3 −0.308 14 1.2 × 10−4 65

(0,+1,−1) (1,1) −0.273 3 2.3 × 10−3 −0.273 6 8.5 × 10−4 65

(0,+1,±1) (1,0)/(0,1) −0.330 287 505f 0f −0.330 276 81 0 65

(0,+1,±1) (1,0)/(0,1) −0.294 3 3.1 × 10−3 −0.293 9 2.15 × 10−3 65

(0,+1,±1) (1,0)/(0,1) −0.282 2 × 10−3 −0.282 2 8.5 × 10−4 65
aFor the five symmetry blocks with different (N, p, c) quantum numbers and (S−, S+) labels the lowest accessible thresholds are Ps(1S) + Ps(1S),
Ps(1S) + Ps(2P), Ps(1S) + Ps(2P), Ps(1S) + Ps(1S), and Ps(1S) + Ps(2S,2P), respectively.68 The corresponding energies, in Eh, are E(Ps(1) +
Ps(1)) = −1/2 = −0.5 and E(Ps(1) + Ps(2)) = −5/16 = −0.312 5. bN, p, and c: total spatial angular momentum quantum number, parity, and
charge-conjugation quantum number, respectively. cS− and S+: total spin quantum numbers for the electrons and the positrons, respectively. In the
last symmetry block, (S−, S+) = (0, 1) and (S−, S+) = (1,0) are not good quantum numbers because these spin states are coupled due to the charge-
conjugation symmetry of the Hamiltonian. dRe( ) and Γ: resonance energy and width with Γ = −/2 Im( ) calculated in this work. eRe( )ref and

Γref: resonance energy and width with Γ = −/2 Im( )ref ref taken from ref 65. fBound states.
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conjugation and spin functions, we obtained only three bound
states in agreement with the literature.27,65,69 Two of the three
calculated bound states substantially improve on the best
available results.65 It is interesting to note that the bound state
with E = −0.314 677 072 Eh (c = −1 and (S−,S+) = (1, 1)) is
bound only due to the charge-conjugation symmetry of the
electrons and the positrons. The localization of the energy and
width for the lowest-energy resonance state of Ps2 is shown in
Figure 2. The calculated resonance positions are in good

agreement with the literature. In some cases our results might
even improve on the best available data,27,65 although there is
no such direct criterion for the assessment of the accuracy of
the resonance parameters as the variational principle for bound
states.
Toward the Calculation of Rovibronic Resonances of

H2. Next, our goal was to explore how the lowest-lying
resonance states of H2 can be calculated in a pre-Born−
Oppenheimer quantum mechanical approach. It could be
anticipated that one of the major challenges in this undertaking
would be the parametrization of the basis functions, which was
already in the bound-state calculations more demanding for H2

than for Ps2.
44 In the bound-state calculations the optimized

parameters were fine-tuned in repeated cycles. The entire
parameter selection and optimization procedure relied on the
variational principle and the minimization of the energy.
According to the spatial and permutational symmetry

properties of the H2 molecule, there are four different blocks
with natural parity

″ Σ ″ ≥ = −

= − =

+X N p

S p S

B1: block : 0, ( 1) ,

(1 )/2, 0

N1
g

p e

″ Σ ″ ≥ = −

= + =
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S p S
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which can be calculated in independent runs with our computer
program using basis functions with the appropriate quantum
numbers, eqs 3 and 4. The lowest-energy levels of the first three
blocks correspond to bound states, while the last block starts
with the H(1) + H(1) continuum. In the BO picture the b 3∑u

+

electronic state is repulsive70 and does not support any bound
rotational−vibrational levels (see Figure 3 and Table 3). Then,
one of our goals was the identification of the lowest-energy
quasi-bound states in the b 3∑u

+ block.
During the calculation of the lowest-energy resonances of

Ps2, the basis function parameters were generated randomly
using a system-adapted random number generator.44 Unfortu-
nately, this simple strategy for the H2 resonances was not
useful.
The energy minimization criterion for the lowest (few)

eigenstates was not useful either since it resulted only in the
accumulation of functions near the H(1) + H(1) limit, the
lowest-energy levels in the b 3∑u

+ block, and the higher-lying
quasi-bound states were not at all described by the basis sets
generated in this way.
Then, our alternative working strategy was the usage of the

parameter transfer approach (described in Section “Theory and
Computational Strategy” and in ref 44). In this approach a
parameter set optimized for a bound state with some quantum
numbers, “state ”, is used to parametrize the basis functions
corresponding to another set of quantum numbers and used to
calculate “state ”. It is important to emphasize that the
mathematical form of the basis functions is defined by the
selected values of the quantum numbers, eqs 3 and 4, and thus
not the basis functions but only the parameters are transferred
from one calculation to another. Our qualitative understanding
tells us that this parameter-transfer strategy is computationally
useful if the internal structures of state and state are more
or less similar. By inspecting the orientation chart of H2 (Figure
3), our idea was that the combination of the (natural-parity)
bound-state optimized parameter sets could provide a para-
metrization good enough for the identification of the lowest-
lying resonance states embedded in the b 3∑u

+ continuum.
For this purpose, we used the parameters of 2250 basis

functions optimized for the lowest-lying bound states with N =
0 and 1 angular momentum quantum number corresponding to
the X 1∑g

+, B 1∑u
+, and a 3∑g

+ blocks using the sampling-
importance resampling strategy of ref 44 and Powell’s method63

for the fine-tuning of each basis function. As a result of these
calculations, we obtained a parameter set large enough for 6 ×

2250 = 13 500 basis functions. In addition, 1000 basis functions
were generated and less tightly optimized for the lowest-energy
levels of the b 3∑u

+ block with N = 0 and 1. Using this large
parameter set, L, 15 500 basis functions were constructed for
all possible quantum numbers of the four blocks, B1−B4, with
N = 0, 1, and 2. In each case the resulting basis set was found to
be linearly independent. The complete parameter set is given in
the Supporting Information. The proton−electron ratio was
mp/me = 1836.15267247 throughout the calculations.71

Bound-State Energy Levels. The lowest-lying energy values
obtained with L for the different quantum numbers are
collected in Table 3 and are in good agreement with the best
available nonrelativistic results in the literature. The energy
values of the X 1∑g

+ electronic and vibrational ground states

Figure 2. Localization of the parameters for the lowest-energy
resonance state of Ps2 with N = 0, p = +1, c = +1, and S− = 0, S+ = 0.
The stabilization of the trajectories with respect to the rotation angle
(circles) and the basis functions (colors) is shown. The stabilization
point is located at (Re( ), Im( )) = (−0.329 38, −0.003 03) Eh.
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with N = 0, 1, and 2 are larger by only less than 2 nEh than the
theoretical results of ref 72.
For all three calculated B 1∑u

+ N = 0, 1, 2 levels our energy
values are lower by more than 1 μEh compared to the results of
ref 73 obtained in close-coupling calculations using adiabatic
potential energy curves and nonadiabatic couplings for six
electronic states. We also note that for the N = 0 lowest-lying
vibrational level of B 1∑u

+ there is a “variational-perturbational”

estimate given in Table 3 of ref 73, which was anticipated to be
more accurate, and thus it was the recommended value for this
level in the article, though not a strict upper bound to the exact
value. It was obtained not in the six-state close-coupling
calculation, but as a result of two-state close-coupling
calculations with the potentials and couplings of ref 73,
incremented with a nonadiabatic correction term.74 This term
value translates to the energy value −0.753 026 440 Eh based on
the explanation given below eq 13 of ref 73. An earlier
nonadiabatic estimate75 (not upper bound) for this energy level
was −0.753 027 31 Eh calculated using the adiabatic energy and
a correction to the BO potential76 incremented by a
nonadiabatic correction.74 For comparison, the pre-Born−
Oppenheimer energy calculated in the present work (in a fully
variational procedure) is −0.753 027 186 Eh (Table 3).
In the case of the a 3∑g

+ N = 1, 2 energy levels the presented
energy values obtained in this work are lower than the lowest
energies values published.77

On the basis of this overview, we can conclude that the
parameter set, L, performs well for the lowest-lying bound-
state energy levels and also contains basis functions optimized
for an approximate description of the H(1) + H(1) continuum.
Then, we can hope that the application of this parameter set in
the CCRM calculations for the description of the related or just
energetically nearby-lying quasi-bound states will be useful.

Electronically Excited Bound and Resonance Rovibronic
States. In the orientation chart of H2 (Figure 3), the electronic
states are collected below the H(1) + H(2) dissociation
threshold known from the literature78,79 (only natural-parity
states are considered). Although in our calculations there are no
potential energy curves corresponding to electronic states, these
conventional electronic-state labels help the orientation and the
reference to the calculated energy levels. In the figure those
states which are coupled by symmetry and calculated in the
same block are highlighted similarly (green or red color and
oval or rectangular marking) corresponding to the B1−B4
blocks introduced earlier in this section. This coupling is
included in the calculations automatically by specifying the total
spatial (orbital plus rotational) angular momentum, parity, and
spin quantum numbers. The empty ellipses and rectangles
indicate bound states, while the shaded signs are for resonance
states embedded in their corresponding lowest-lying continuum
(here: H(1) + H(1)).
We carried out calculations in all four blocks, B1−B4, with N

= 0, 1, and 2 total spatial angular momentum quantum
numbers, and most of the states indicated in Figure 3 could
have been identified using the largest parameter set, L.
Unfortunately, the accuracy of the calculated energies often did
not meet the level of spectroscopic accuracy,80 and thus we
collect here only the essence of the calculations.
First of all, the most important qualitative results can be

explained by inspecting Figure 4 prepared for the “X 1∑g
+

block” and for the “b 3∑u
+ block”, B1 and B4. Figure 4 shows a

part of the eigenspectrum of the complex scaled Hamiltonian,
θ( ) of eq 6, corresponding to small θ values, θ ∈

[0.005,0.065], and the [−1.2,−0.5] Eh interval of the real part
of the eigenvalues.
In both cases the onset of the H(1) + H(1) continuum can

be observed on the real axes at −0.999 455 679 Eh. In the
X 1∑g

+ block the bound rovibrational energy levels assignable to
the X 1∑g

+ electronic state line up on the real axis with
=Im( ) 0 (deviations from this value are due to the

Figure 3. Orientation chart for the electronic states of H2 below the
H(1) + H(2) dissociation threshold (see, for example, Herzberg78 or
Brown and Carrington79). The same color (red or green) and shape
(rectangle or ellipse) coding indicates those states, which can be
obtained in the same pre-Born−Oppenheimer calculation. Empty
objects indicate bound states, while filled objects refer to the fact that
the corresponding rovibronic states (if there are any) are resonances
embedded in the H(1) + H(1) continuum.

Table 3. Assessment of the Basis Set Parameterization: The
Lowest-Lying Bound-State Energies

(N, p, Sp, Se)
a E/Eh

b
ΔEref/μEh

c ref assignmentd

(0,+1,0,0) −1.164 025 030 −0.000 6 72 X 1∑g
+

(1,−1,1,0) −1.163 485 171 −0.001 4 72 X 1∑g
+

(2,+1,0,0) −1.162 410 408 −0.001 9 72 X 1∑g
+

(0,+1,1,0) −0.753 027 186 1.383 7 73 B 1∑u
+

(1,−1,0,0) −0.752 850 233 1.444 6 73 B 1∑u
+

(1,+1,1,0) −0.752 498 022 1.529 1 73 B 1∑u
+

(0,+1,0,1) −0.730 825 193 −0.006 9 77 a 3∑g
+

(1,−1,1,1) −0.730 521 418 0.008 0 77 a 3∑g
+

(2,+1,0,1) −0.729 916 268 0.047 9 77 a 3∑g
+

(0,+1,1,1) [−0.999 450 102]e [−5.578] f b 3∑u
+

(1,−1,0,1) [−0.999 445 835]e [−9.844] f b 3∑u
+

(2,+1,1,1) [−0.999 439 670]e [−16.010] f b 3∑u
+

aN: total spatial angular momentum quantum number; p: parity, p =
(−1)N; Sp and Se: total spin quantum numbers for the protons and the
electrons, respectively. bE: the energy obtained with the largest
parameter set, L, used in this study corresponding to 15 500 basis
functions for each set of quantum numbers (see the text for details and
the Supporting Information for the numerical values). The proton−
electron ratio was mp/me = 1836.152 672 47.71 cΔEref = Eref − E with
Eref being the best available non-Born−Oppenheimer theoretical
energy value in the literature. dBorn−Oppenheimer electronic state
label. Each energy level given here can be assigned to the lowest-
energy vibrational level of the electronic state. eThe lowest-energy
eigenvalue of the Hamiltonian obtained for the given set of quantum
numbers. fThe nonrelativistic energy of two ground-state hydrogen
atoms, E(H(1) + H(1)) = −0.999 455 679 Eh, was used as reference.
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incomplete convergence only, and the estimated stabilization
points are on the real axis). In the b 3∑u

+ block, however, we
find no states below the H(1) + H(1) continuum, in agreement
with the BO calculations.70 The next, H(1) + H(2) threshold
corresponds to the energy value −0.624 659 800 Eh. Beyond
the H(1) + H(1) but below the H(1) + H(2) thresholds
stabilization points (with respect to the θ rotation angle and the
basis set) were observed with small negative imaginary values,
which were assigned (based on the real parts of the
eigenvalues) to rotational−vibrational levels corresponding to
the electronically excited states in their symmetry blocks (see
Figure 4 and also Figure 3). The lack of any stabilization points
beyond the H(1) + H(2) threshold can be explained with the
limited size and flexibility of the basis set.

It can be observed in Figure 4 in the b 3∑u
+ block that a

group of stabilization points appear for N = 1 and 2, which are
not present for N = 0. These points for N = 1 and 2 were
assigned to the rotational−vibrational states with R = 0 and 1
rotational angular momentum quantum numbers of the c 3∏u

+

electronic state, respectively. This result demonstrates that the
coupling of the rotational and orbital angular momenta is
automatically included in the calculations by specifying only the
total spatial angular momentum quantum number, N.
Finally, we note that the H(1) + H(1) continuum does not

couple neither to the “B 1∑u
+ block” nor to the “a 3∑g

+ block”,
and in these cases the lowest-lying continuum corresponds to
the H(1) + H(2) dissociation channel (Figure 3).

Numerical Results for the Resonance Energies and
Widths. In Table 4 numerical results are given for the

Figure 4. Part of the spectrum of the complex scaled Hamiltonian, θ( ), with θ ∈ [0.005,0.065] corresponding to the largest basis set used in this
work for the X 1∑g

+ block [p = (−1)N, Sp = (1 − p)/2, Se = 0] and for the b 3∑u
+ block [p = (−1)N, Sp = (1 + p)/2, Se = 1] with N = 0, 1, and 2 total

spatial angular momentum quantum numbers. The black triangles indicate the threshold energy of the dissociation continua corresponding to H(1)
+ H(1), H(1) + H(2), and H(1) + H(3).
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“b 3∑u
+ block”, B4, for the lowest-lying rotational−vibrational

levels with N = 0, 1, and 2 corresponding to the e 3∑u
+ (N = 0,

1, 2) and to the c 3∏u
+ (N = 1, 2) electronic-state labels. These

rovibronic levels are embedded in the H(1) + H(1) continuum,
and thus they are considered as rovibronic resonances.
The real energy values are in satisfactory agreement with the

experimental results.81 We consider however the given
imaginary parts as estimates to their accurate values, and all
we can conclude at this point is that the obtained imaginary
parts are of the order of 10−7 Eh, which corresponds to a
predissociative lifetime, τ = ℏ/Γ, of the order of 0.2 ns. As it
was explained earlier, it is difficult to assess the accuracy of the
calculated resonance energies and widths since there is no such
simple criterion as the (real) variational principle for bound
states. According to our observations in the test calculations for
Ps− (Table 1), the relative errors in the real and imaginary parts
with respect to the absolute value of the complex energy are
similar. The accuracy of the pre-BO real energy values can be
estimated here by their comparison with available experimental
results. This observation also indicates that the resonance
widths given in Table 4 should be considered as rough
estimates.
Theoretical energy values are available in the literature

calculated by Kołos and Rychlewski70,82 and are also cited in
Table 4. In ref 70 adiabatic rotational−vibrational energy levels
were determined for the e 3∑u

+ electronic state by calculating an
accurate adiabatic potential energy curve and solving the
corresponding rotational−vibrational Schrödinger equation.
The theoretical reference value for the c 3∏u

+, R = 0, ν = 0
level was taken from ref 82, which was obtained by the
calculation of an accurate BO potential energy curve and

solving the corresponding vibrational Schrödinger equation.
The resulting BO energy could be furthermore corrected for
the Λ-doubling, but the numerical value for this correction term
was not clearly identifiable in ref 82. It would be interesting to
see if nonadiabatic corrections can be calculated to these levels,
for example using the recently developed nonadiabatic
perturbation theory by Pachucki and Komasa.72,83

The lifetimes of rotational−vibrational levels corresponding
to the e 3∑u

+ state were measured in delayed coincidence
experiments,84 which include both the radiative and predis-
sociative decay channels accessible from these levels. In the
same work the competition of the two decay channels was
investigated using ab initio (full configuration interaction
electronic wave functions using Gaussian-type orbitals and an
accurate adiabatic potential energy curve70) as well as quantum
defect theory with a one-channel approximation.84 According
to these calculations the predissociative lifetimes are of the
order of 1 μs and 100 ns for the v = 0 and v = 1 vibrational
levels, respectively, for the e 3∑u

+ state with N = 0. The lifetimes
of the lowest rotational−vibrational levels of the c 3∏u

+ state
were calculated using a simple perturbative model, which
included the orbit−rotation interaction and used several
approximations during the calculations.85 In a similar
perturbative treatment,86 the orbit−rotational coupling oper-
ator was included, and accurate BO potential energy curves
were used to describe the b 3∑u

+ and c 3∏u
+ states.82,87

According to both the lifetime measurements88,89 and the
calculations85,86 the predissociative lifetime of the lowest-lying
rotational−vibrational levels of c 3∏u

+ is of the order of 1 ns.
Unfortunately, calculated energy levels were not reported in
any of these theoretical works84−86 on the predissociative

Table 4. Identified Resonance-State Energies and Widths, in Eh, of H2 in the b 3∑u
+ Block [p = (−1)N, Sp = (1 + p)/2, Se = 1] for

N = 0, 1, and 2

(N, p, Sp, Se)
a Re( )b Γ/2b Eref,exp

c Eref,theo
d assignmente

(0,+1,1,1) [−0.999 450 1]f [−0.999 455 7] H(1) + H(1) continuum

[...]

(0,+1,1,1) −0.677 947 1 1 × 10−7 −0.677 946 1 −0.677 942 770 e 3∑u
+, R = 0, ν = 0

(0,+1,1,1) −0.668 549 3 9 × 10−7 −0.668 547 8 −0.668 541 070 e 3∑u
+, R = 0, ν = 1

(1,−1,0,1) [−0.999 445 8]f [−0.999 455 7] H(1) + H(1) continuum

[...]

(1,−1,0,1) −0.731 434 0 5 × 10−7 −0.731 438 8 −0.731 469 182 c 3∏u
+, R = 0, ν = 0

(1,−1,0,1) −0.720 72 2 × 10−7 −0.720 782 6 c 3∏u
+, R = 0, ν = 1

[...]

(1,−1,0,1) −0.677 705 5 2 × 10−7 −0.677 704 1 −0.677 698 270 e 3∑u
+, R = 1, ν = 0

(1,−1,0,1) −0.668 32 1 × 10−6 −0.668 319 7 −0.668 309 870 e 3∑u
+, R = 1, ν = 1

(2,+1,1,1) [−0.999 439 7]f [−0.999 455 7] H(1) + H(1) continuum

[...]

(2,+1,1,1) −0.730 888 2 9 × 10−7 −0.730 888 7 c 3∏u
+, R = 1, ν = 0

(2,+1,1,1) −0.720 219 0 <2 × 10−7 −0.720 258 0 c 3∏u
+, R = 1, ν = 1

[...]

(2,+1,1,1) −0.677 222 9 2 × 10−8 −0.677 222 2 e 3∑u
+, R = 2, ν = 0

(2,+1,1,1) −0.667 863 2 7 × 10−7 −0.667 865 3 e 3∑u
+, R = 2, ν = 1

aN: total spatial angular momentum quantum number; p: parity, p = (−1)N; Sp and Se: total spin quantum numbers for the protons and electrons,
respectively. bRe( ) and Γ: resonance energy and width with Γ = −/2 Im( ) calculated in this work. The largest basis set contained 15 500 basis
functions for each set of quantum numbers. The proton−electron ratio was mp/me = 1836.152 672 47.71 cEref,exp experimental reference value, in Eh,
derived as Eexp = E0 + Texp with the ground-state energy (X 1∑g

+, N = 0, ν = 0) E0 = −1.164 025 030 Eh. All Texp values were obtained by correcting
the experimental term values of Dieke,81 with −0.000 681 7 Eh = −149.63 cm−1 (1 Eh = 219 474.631 4 cm−1), since all triplet term values were too
high.70,90 dEref,theo: the best available theoretical reference energy values, in Eh, corresponding to accurate adiabatic calculations for the e 3∑u

+ levels70

and to accurate Born−Oppenheimer calculations for the c 3∏u
+ levels.82 The nonrelativistic energy of two ground-state hydrogen atoms is given in

square brackets. eBorn−Oppenheimer electronic- and vibrational-state labels. The (approximate) rotational angular momentum quantum number, R,
is also given. fThe lowest-energy eigenvalue of the real Hamiltonian obtained with the largest parameter set and with the given quantum numbers.
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lifetimes of the e 3∑u
+ and c 3∏u

+ states, which makes
comparison of the results more difficult.
To pinpoint the resonance energies and especially the widths

of the rovibronic levels within the rigorous pre-BO framework
developed in the present work, further calculations are
necessary. Nevertheless, the results shown in Table 4 improve
on the best available theoretical values for energy levels
published in the literature.70,82 Furthermore, our primary goal
was also completed, as it was demonstrated that in pre-BO
calculations (a) electronically excited rovibronic levels are
accessible and (b) there are excited rovibronic levels, which are
described as bound states in the BO theory but appear as
resonances in a pre-BO description, i.e., if the introduction of
the BO approximation is completely avoided.
How to Improve on the Present Results? First of all, one of

the lessons of the present study is that an efficient
parametrization of the basis set is one of the main challenges
of the calculation of rovibronic resonances in pre-BO theory.
We have shown that the random generation of parameters

can be improved using the parameter-transfer approach
assuming that there are bound states of comparable internal
structure to the quasi-bound states to be calculated. In the case
of H2 the presented calculations could be improved by the tight
optimization of parameter sets for the lowest-lying bound states
with unnatural parity, p = (−1)N+1, and by the inclusion of also
these parameters in an extended parameter set.
Then another technically straightforward, but computation-

ally more demanding, option is the optimization of parameters
not only for the lowest-lying states of a symmetry block but also
for more (or all) vibrational and vibronic excited bound states,
e.g., for all (ro)vibrational states of X 1∑g

+ up to the H(1) +
H(1) threshold or for all the bound (ro)vibronic energy levels
corresponding to the “B 1∑u

+ block” as well as to the “a 3∑g
+

block” up to their lowest-lying correlating threshold, H(1) +
H(2) (see Figure 3).
Finally, a more generally applicable solution to the

parametrization problem of resonance states would be the
development of a useful and practical application of the
complex variational principle for resonances.24

■ SUMMARY AND OUTLOOK

The present work was devoted to the calculation of rotational−
vibrational energy levels corresponding to electronically excited
states, which are bound within the Born−Oppenheimer (BO)
approximation but appear as resonances in a pre-Born−
Oppenheimer (pre-BO) quantum mechanical description.
To calculate resonance energies and widths, corresponding

to predissociative lifetimes, the pre-BO variational approach
and computer program of ref 44 were extended with the
complex coordinate rotation method (CCRM). Similarly to the
bound-state calculations, the wave function was written as a
linear combination of basis functions which have the non-
relativistic quantum numbers (total spatial−rotational plus
orbital−angular momentum quantum number, parity, and total
spin quantum number for each particle type). The basis
functions were constructed using explicitly correlated Gaussian
functions and the global vector representation.
This pre-BO resonance approach was first used for the three-

and four-particle positronium complexes, Ps− = {e−,e−,e+} and
Ps2 = {e−,e−,e+,e+}, respectively. These applications allowed us
to test the implementation and gain experience in the
identification of resonance parameters. For the dipositronium,

Ps2, we managed to improve on some of the best available
results reported in the literature.
Then, the developed methodology and technology was

employed for the four-particle molecule, H2. First, the
rovibronic states known in the literature were collected and
considered which were accessible in our calculations with
various sets of (exact) quantum numbers of the nonrelativistic
theory. The experimental and theoretical energy values of the
literature were also used for the assignment of our calculated
energy levels with the common BO terminology of electronic
and vibrational state labels.
As to the computational part, we had to find a useful

parametrization strategy for the basis functions. Since the
bound-state parameter-optimization approach relied on the
energy minimization condition and the (real) variational
principle, it was not directly applicable for making the
CCRM calculations more efficient. A simple and practical
solution to the parametrization problem was the parameter-
transfer approach, where the basis functions used to describe
low-energy resonances of some symmetry were parametrized
with optimized parameters of (high-energy) bound states. As a
result, a large parameter set was constructed, which was
compiled from parameters optimized for different symmetry
blocks. The parametrization of basis functions, which have
mathematical forms defined by the exact quantum numbers,
with this extended parameter set immediately lead to an
improvement for the best available energy values available in
the literature for the lowest-lying rotational states assigned to
the B 1∑u

+ and a 3∑g
+ electronic states.

Then, using this extended parameter set low-energy
rovibronic resonances became accessible beyond the b 3∑u

+

repulsive electronic state, embedded in the H(1) + H(1)
continuum. On the basis of these calculations, resonance
energies were evaluated, and resonance widths were estimated
for the lowest-lying rotational−vibrational levels of the
electronically excited e 3∑u

+ and c 3∏u
+ states. We note here

that the coupling of the rotational and orbital angular momenta
was automatically included in our computational approach by
specifying only the total spatial angular momentum quantum
number, N. Although the presented results improve on the best
available (BO and adiabatic) calculations in the literature for
these states, to pinpoint the resonance energies and especially
the widths more extensive calculations are necessary.
As for further improvements, the major present technical

difficulty is the efficient parametrization of the basis set for
resonance states. A generally applicable solution to this
problem would be a useful application and implementation of
a complex analogue for the real variational principle. In the lack
of such a general solution, optimization of large parameter sets
for bound (excited) states together with the parameter-transfer
strategy might be appropriate for the calculation of a larger
number and/or more accurate rovibronic resonances of H2. In
addition to the improvement of the parametrization strategy, a
generally applicable analysis tool would also be desirable which
provides an assignment for the pre-BO wave function with the
common BO electronic- and vibrational-state labels where such
an assignment is possible.
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We elaborate on the theory for the variational solution of the Schrödinger equation of small
atomic and molecular systems without relying on the Born–Oppenheimer paradigm. The all-particle
Schrödinger equation is solved in a numerical procedure using the variational principle, Cartesian
coordinates, parameterized explicitly correlated Gaussian functions with polynomial prefactors, and
the global vector representation. As a result, non-relativistic energy levels and wave functions of
few-particle systems can be obtained for various angular momentum, parity, and spin quantum
numbers. A stochastic variational optimization of the basis function parameters facilitates the cal-
culation of accurate energies and wave functions for the ground and some excited rotational-
(vibrational-)electronic states of H+

2 and H2, three bound states of the positronium molecule, Ps2,
and the ground and two excited states of the 7Li atom. © 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4731696]

I. INTRODUCTION

The clamped nuclei or Born–Oppenheimer (BO)
approximation1–3 is one of the central paradigms of present
day theoretical and computational chemistry. This paper
is devoted to a theoretical approach, which does not rely
on this paradigm. A recent overview of such a pre-Born–
Oppenheimer or “molecular structure” approach is given in
Ref. 4, which also presents one of the central conceptual prob-
lems of molecular structure theory: the reconstruction of the
classical molecular structure from a fully quantum mechani-
cal description.4–19 Numerical contributions to this question
can be found in Refs. 20–29. In recent work,25, 26 we in-
troduced radial and angular density functions to recognize
elements of classical molecular structure in the all-particle
quantum theory as strong correlation effects for the nuclei.
Using these concepts the atomic-to-molecular transition was
observed for a three-particle system by rescaling the relative
mass of the particles in the calculations.25

In this work, we report on the development of a varia-
tional approach for the accurate calculation of energy levels
and wave functions of few-particle systems with various an-
gular momentum, parity, and spin quantum numbers. Method-
ological contributions to this field have a long history in the
physicists’ community30–35 and have found increasing interest
in the molecular domain.36–38 We can only note here that there
are also efforts toward chemical and possible biochemical ap-
plications of a quantum electrons-nuclei theory.39–42 Another
interesting direction is a variational reduced-density matrix
theory for electrons and protons.43

a)Author to whom correspondence should be addressed. Electronic mail:
matyus@chem.elte.hu.

b)Present address: Institute of Chemistry, Eötvös University, P.O. Box 32,
H-1518, Budapest 112, Hungary.

Our goal here is the accurate solution of the Schrödinger
equation of few-particle systems. We describe electrons and
atomic nuclei (or other particles) on equal footing, while fo-
cusing on the molecular domain. We are aiming at “spec-
troscopic accuracy.”44 This is motivated by high-resolution
measurements of the bonding energy of the H2 molecule45, 46

and post-Born–Oppenheimer calculations including relativis-
tic and quantum-electrodynamic corrections47, 48 as well as
by spectroscopic investigations of the H+

3 molecular ion.49–51

Following the recent methodological developments in Ref. 37
and especially in Refs. 35, 52, and 53, we had to solve some
technical issues to be able to use these ideas for our purposes.

The usage of explicitly correlated Gaussian functions
considering the pioneering contributions54–56 since the early
work of Boys and Singer,57, 58 the inclusion of polyno-
mial prefactors, and the global vector representation (GVR)
(Refs. 35, 53, and 59) appear to be an appealing combination
for the construction of a flexible basis set with the required
spatial symmetry. This parameterization allows one to include
polynomial prefactors in terms of more than one coordinate.
However, it was noted in Refs. 60 and 61 that in the case of
polynomial prefactors for several coordinates with large expo-
nents instabilities might appear during the integral evaluation
in a numerical procedure. Our preliminary tests indicated sim-
ilar problems for a direct implementation of the formulae in
Refs. 35 and 53. At the same time, small exponents in the
polynomial prefactors were not sufficient for an efficient cal-
culation of the energy levels of molecular systems. Thus,
we decided to rearrange the original formulation35, 53 and
make it applicable to molecular systems in practice. This
would allow us the variational calculation of energy levels
and wave function of molecules with not only zero, for ex-
ample, Refs. 37, 62, and 63 but also non-zero (rotational or
orbital) angular momentum quantum numbers within a pre-
Born–Oppenheimer approach.

0021-9606/2012/137(2)/024104/17/$30.00 © 2012 American Institute of Physics137, 024104-1
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As to the parameterization of the basis functions, a
stochastic optimization of the parameters30, 35, 64–66 can result
in a flexible, on-the-fly adjustment of the basis set to vari-
ous systems. We shall address the questions how to choose
an “appropriate” random number generator for the stochas-
tic optimization and whether this choice has an effect on the
efficiency of the procedure.

Finally, for actual calculations, one can use laboratory-
fixed (LF) or various translationally invariant Cartesian coor-
dinates, e.g., Radau or Jacobi coordinate sets. Also in this con-
text various questions arise: Which is the best choice? Does
this choice have any effect on the convergence rate of the en-
ergy? We decided to stick to (laboratory-fixed or translation-
ally invariant) Cartesian coordinates, which allows us to write
the Hamiltonian in a simple form, in contrast to the common
choice of curvilinear coordinates in BO rotational-vibrational
calculations, which results in complicated kinetic energy op-
erators (see, for example, Refs. 67–70).

In Sec. II, we summarize first the necessary theory, and
then we describe our solutions to the technical issues raised
above. In the paper, we indicate only the main steps of the
integral evaluation and our choices made to restore the nu-
merical stability in our calculations, while the lengthy integral
formulae are collected in the supplementary material.71 Based
on the methodological details presented in Sec. II, a computer
program was developed using the FORTRAN 90 programming
language.

To demonstrate the applicability of this program, we re-
port in Sec. III numerical results for rotational(-vibrational)
energy levels corresponding to the ground and some electron-
ically excited states of the H+

2 and H2 molecules; three bound
states of the positronium molecule Ps2, and the ground and
two excited states of the 7Li atom. Finally, we investigate the
transferability of the optimized basis function parameters and
point out possible directions for future methodological devel-
opments.

II. VARIATIONAL SOLUTION OF THE MANY-PARTICLE
SCHRÖDINGER EQUATION

A. Quantum Hamiltonian and the Pauli principle

The non-relativistic quantum Hamiltonian in Hartree
atomic units and expressed in Cartesian coordinates in the LF,
r i for i = 1, 2, . . . , np + 1 particles, is

Ĥ = T̂ + V̂ (1)

with the kinetic and the potential energy terms

T̂ = −
np+1
∑

i=1

1

2mi

�ri
, (2)

V̂ =
np+1
∑

i=1

np+1
∑

j>i

qiqj

|r i − rj |
, (3)

respectively, where the masses, mi, and the electric charges,
qi, are properties associated to the point-like particles. The
physically relevant eigenstates of this Hamiltonian satisfy the
Pauli principle, i.e., conditions of the spin-statistics theorem

considering the bosonic or fermionic nature of the particles
associated with some spin si.

Instead of re-expressing this Hamiltonian using trans-
lational, orientational, and internal coordinates, we use
Cartesian coordinates and set up a trial wave function in a
variational procedure as a linear combination of symmetry-
adapted basis functions, which are angular momentum (total
spatial angular momentum, i.e., angular momentum without
the spins), parity, and spin eigenfunctions. As a result, the
eigenvalues and eigenfunctions are obtained according to the
quantum numbers of the non-relativistic theory.

Since we do not want to specify at the outset of the theo-
retical description the particle types, we simply use L for to-
tal spatial (rotational or orbital) angular momentum quantum
number. For the notation of the total spin quantum number for
particles a, we use the symbol Sa. At a later stage, when the
particle types and the system are specified one can adapt the
common notations in atomic and molecular spectroscopy (see
for example the recommendations of the International Union
of Pure and Applied Chemistry, Ref. 72): N for the total spa-
tial angular momentum without the spins and S and I for the
electronic and nuclear spin quantum numbers.

B. Translationally invariant coordinates and
Hamiltonian

In order to obtain a translationally invariant wave func-
tion, �, for an (np + 1)-particle system there are two ways
to proceed, see, for example, Ref. 20. (A) One can either pa-
rameterize the basis functions expressed in terms of LF Carte-
sian coordinates, r ∈ R

3(np+1), and choose the parameters so
that the overall momentum for the wave function is zero, i.e.,
P̂ total� = 0; or (B) one can transform the LF Cartesian coor-
dinates to some translationally invariant (TI) set of Cartesian
coordinates, x ∈ R

3np plus the coordinates of the center of
mass (CM), RCM ∈ R

3 by a linear transformation
(

x

RCM

)

= (U ⊗ I3)r and r = (U−1 ⊗ I3)

(

x

RCM

)

(4)

with U ∈ R
(np+1)×(np+1). The coordinates x are translationally

invariant73 if

np+1
∑

j=1

Uij = 0, i = 1, 2, . . . , np (5)

and

Unp+1,j = mj/mtot, j = 1, 2, . . . , np + 1 (6)

with mtot =
∑np+1

j=1 mj .
Then, the Hamiltonian is transformed accordingly and af-

ter subtracting the kinetic energy of the translational motion
of the center of mass, T̂CM = −1/(2mtot)�RCM , we have

Ĥ ′ = Ĥ − T̂CM = −
np

∑

i=1

np
∑

j=1

Mij∇T
xi
∇xj

+
np+1
∑

i=1

np+1
∑

j>i

qiqj

|( f ij ⊗ I3)Tx|
(7)
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with ∇T
xi

= (∂/∂xi1, ∂/∂xi2, ∂/∂xi3). I3 ∈ R
3×3 is the unit

matrix, the masses are contained in

Mij =
np+1
∑

k=1

UikUjk/2mk, (8)

and the kth element (k = 1, 2, . . . , np) of f ij is defined as

( f ij )k = (U−1)ik − (U−1)jk. (9)

We note that the total spatial angular momentum relative
to the center of mass commutes with the translationally invari-
ant Hamiltonian.20, 73, 74 In this work, we make use of both the
coordinates defined according to (A) and (B). However, we
will always apply those that lead to a simpler formulation.

C. Symmetry-adapted basis functions,
parameterization

We apply basis functions constructed as (anti)
symmetrized products of spin functions and spatial functions,
which are angular momentum and parity eigenfunctions.
Thus, the ansatz for some set of quantum numbers λ = (L,
ML, p) and ς = (Sa,MSa

, Sb,MSb
, . . .) (a, b, . . . denote the

particle type) is constructed as

�[λ,ς] = Â{φ[λ]χ [ς]} (10)

with the symmetrization and antisymmetrization operator

Â = (Nperm)−1/2
Nperm
∑

p=1

εpP̂p (11)

for bosonic and fermionic-type particles, respectively. P̂p

∈ Sna
⊗ Snb

⊗ . . . is an operator permuting identical particles
and εp = −1 if P̂p represents an odd number of interchanges
of fermions, otherwise εp = +1. Nperm is the number of all
possible permutations.

1. Spatial functions

Spatial functions with some λ = (L, ML, p) can be con-
structed through the successive coupling of angular momenta
of the subsystems within the partial wave decomposition
(PWD) formalism. It was shown in Refs. 35, 53, and 59 that
there is an alternative and equivalent route, named the global
vector representation (GVR), which relies on a linear com-
bination of several basis functions with some global vectors
whose orientation as well as the linear combination coeffi-
cients are optimized variationally. The resulting function is an
angular momentum and parity eigenfunction, while the partial
wave contributions, which do not correspond to any “exact”
quantum number, are optimized in the variational procedure.
In our work, the main advantage of the GVR over the PWD is
its simple and direct applicability for many-particle systems
with an arbitrary angular momentum quantum number.

Thus, the spatial basis functions (Figure 1) are explicitly
correlated Gaussian functions in the form recommended in
Refs. 35, 53, and 59, which describe the particle-particle cor-
relation by including products of Gaussian geminals, polyno-
mial prefactors, and an angular function, which is a spherical

Particle-particle interactions, αij Angular distribution, ui

FIG. 1. Visual representation of the inter-particle and the angular parts
of the basis functions for a four-particle system: (a) Particle-particle

interactions: particle-particle displacement vectors and the corresponding
geminal exponents, αij, are used to describe the inter-particle correla-
tion; (b) Angular distribution: “atoms-in-molecule”-type coordinates
are used in this example to express the global vector v = u1x1 + u2x2
+ u3x3 with the “inter-atomic” coordinate, x1 = m+/(m+ − m−)
(r2 − r1) + m−/(m+ − m−)(r3 − r4) and the “intra-atomic” coordinates,
x2 = r4 − r1 and x3 = r3 − r2. Note that the (anti)symmetrization of the
product of the spatial and spin functions guarantees that identical particles
enter the description equivalently.

harmonic function of Lth order and MLth degree and depends
on the orientation of the global vector v,

φ[λ](r; α, u,K) = |v|2K+L YLML
(v̂)

× exp



−
1

2

np+1
∑

i=1

np+1
∑

j>i

αij (r i − rj )2



 , (12)

where v̂ is a collective label for the spherical angles charac-
terizing the orientation of the unit vector v/|v| with

v =
np+1
∑

i=1

u
(0)
i r i = (u(0) ⊗ I3)Tr (13)

and (u(0))T = (u(0)
1 , u

(0)
2 , . . . , u

(0)
np+1). As to the parameteriza-

tion corresponding to LF Cartesian coordinates (approach
(A)), the

∑np+1
i=1 u

(0)
i = 0 condition is introduced to guarantee

zero overall momentum for the basis function.

2. Integral transformation, generator coordinates

During the evaluation of the matrix elements not the orig-
inal form of the basis functions given in Eq. (12) is used, but
it is generated by the integral transformation53

φ[λ](r;A, u,K) =
1

BKLp

∫

dê ηLMLp(ê)

×
{

D̂(2K+L)
a g

(

r;A, s(a, u, e)
)}

ai=0,|ei |=1 (14)

with the generating function

g(r;A, s) = exp

(

−
1

2
rT(A ⊗ I3)r + sTr

)

, (15)

where s ∈ R
3(np+1) is also called the generator coordinate and

the definition of the symbols are collected in Table I for
any L, ML, and p values including both the “natural-parity,”
p = (−1)L, and the “unnatural-parity,” p = (−1)L + 1, cases.

In this work, we present results obtained using the basis
functions with label “A” of Table I, i.e., states with arbitrary
angular momentum quantum numbers, L, and “natural par-
ity,” p = (−1)L. We have obtained preliminary results with
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TABLE I. Explanation of the notation used in the general definition of basis functions, Eq. (14), with angular momentum L, ML, and parity p.

L p BKLp
a êb ηLMLp(ê)b,c s D̂

(κ)
a

d Label

>0 (−1)L BKL ê1 YLML
(ê1) a1u1 ⊗ e1 ∂κ

a1
A

>1 (−1)L + 1 B01BKL (ê1, ê2) [YL(ê1)Y1(ê2)]LML

∑2
i=1 ai ui ⊗ ei ∂κ

a1
∂a2 B

= 0 − 1 B2
01BKL (ê1, ê2, ê3)

[

[Y1(ê1)Y1(ê2)]1 Y1(ê3)
]

00

∑3
i=1 ai ui ⊗ ei ∂κ

a1
∂a2 ∂a3 C

aBKL = 4π(2K + L)! (K + L + 1)! 2L + 1/[K! (2K + 2L + 2)!] with K, L ∈ N0.
b êi is the collective label for the spherical angles characterizing the orientation of the unit vector ei .
c[Yl1 Yl2 ]lml

denotes the coupling of the l1th and l2th spherical harmonics to the lth order and mlth degree spherical harmonic function.
dκ = 2K + L and the shorthand notation ∂k

ai
= ∂k/∂ai

k are introduced.

functions of label “B”, i.e., “unnatural-parity” basis functions
with p = (−1)L + 1 for L > 0, but they are not discussed in the
present work.

The generating function g(r;A, s) equals (within a con-
stant factor) an explicitly correlated Gaussian function with
shifted origin, R ∈ R

3(np+1) (in short, “floating geminal”) ac-
cording to

f (r;A,R) = exp

(

−
1

2
(r − R)T(A ⊗ I3)(r − R)

)

= exp

(

−
1

2
RT(A ⊗ I3)R

)

× exp

(

−
1

2
rT(A ⊗ I3)r + RT(A ⊗ I3)r

)

,

(16)

and thus by choosing R = (A−1 ⊗ I3)s so that RT

= sT(A−1 ⊗ I3) (A is symmetric and non-singular), we
obtain

f (r;A, (A−1⊗ I3)s)=exp

(

−
1

2
sT(A−1⊗ I3)s

)

g(r;A, s).

(17)

The functions f and g with appropriate exponents A describe
well particles localized near R, which is different from the
origin. However, for such an R �= 0 vector, they are not par-
ity and angular momentum eigenfunctions. It is the integral
transformation of Eq. (14), which restores the space rotation-
inversion symmetry of an isolated system for g.

We note that this approach can be considered as a spe-
cial application of the more general “generator coordinate
method” introduced by Hill and Wheeler in 1953 (Ref. 75)
with one of first applications in chemistry during the late
1970s by Lathouwers, van Leuven, and co-workers.76, 77 We
also note here that the ansatz introduced in Eq. (12) shows
similarities with the “Hagedorn-type” wave packets78 used,
for example, in Ref. 79. Of course, the space rotation-
inversion symmetry for floating geminals could be restored
numerically in a variational procedure, which was pursued
by Adamowicz and Cafiero for L = 0, for example, in
Ref. 22. It would also be interesting to consider this numeri-
cal reconstruction of the spatial symmetry for higher L values,
but for the present work we stick to the analytic expressions
and employ Eq. (14).

3. Linear transformation of the coordinates, channels

The LF Cartesian coordinates, r, and various sets of trans-
lationally invariant Cartesian coordinates, say x or y, together
with the coordinates of the center of mass, RCM, are related
by simple linear transformations
(

x

RCM

)

= (U ⊗ I3)r and r = (U−1 ⊗ I3)

(

x

RCM

)

(

y

RCM

)

= (V ⊗ I3)r and r = (V −1 ⊗ I3)

(

y

RCM

)
(18)

so that
(

y

RCM

)

= (V U−1 ⊗ I3)

(

x

RCM

)

and
(

x

RCM

)

= (U V −1 ⊗ I3)

(

y

RCM

)

(19)

hold. We thus can easily switch from one set of coordinates to
another.

By switching between the coordinates, the mathemat-
ical form of the spatial functions remains unchanged and
only the parameters have to be transformed. This “re-
parameterization” of the basis functions by changing the co-
ordinate representation reads

φ[λ] = |v|2K+L YLML
(v̂) exp

(

−
1

2
rT(A(0) ⊗ I3)r

)

= |v|2K+L YLML
(v̂) exp

(

−
1

2
xT(A(x) ⊗ I3)x

)

= |v|2K+L YLML
(v̂) exp

(

−
1

2
yT(A(y) ⊗ I3) y

)

, (20)

where the exponents

(A(0))ij = −αij (1 − δij ) +





np+1
∑

k=1,k �=i

αik



 δij + cA

mi

mtot

mj

mtot

(21)

are transformed according to

A(x) = U−TA(0)U−1 ⇐⇒ A(0) = UTA(x)U

and

A(y) = V −TA(0)V −1 ⇐⇒ A(0) = V TA(y)V , (22)
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which also yields the relations

A(y) = (U V −1)TA(x)U V −1 (23)

and

A(x) = (V U−1)TA(y)V U−1. (24)

Note that

A(x) =
(

A(x) 0

0 cA

)

and A(y) =
(

A(y) 0

0 cA

)

. (25)

Similarly, the global vector can be written as

v = (u(0) ⊗ I3)Tr = (u(x) ⊗ I3)Tx = (u(y) ⊗ I3)Ty, (26)

where u(0), u(x), u(y) obey the transformations u(x)

= U−Tu(0), u(0) = UTu(x), u(y) = V −Tu(0), u(0) = V Tu(x),
u(x) = (U V −1)Tu(y), and u(y) = (V U−1)Tu(x). Note also that

u(x) =
(

u
(x)

cu

)

and u(y) =
(

u
(y)

cu

)

(27)

and the zero overall momentum of the basis function in the
LF Cartesian representation is guaranteed if cu = 0. The con-
dition cu = 0 is equivalent to the requirement

∑np+1
i=1 u

(0)
i

= cu = 0 according to the properties of the transformation
matrix, Eq. (6).

It is convenient to consider various coordinates for the
calculations, for at least two reasons. First, the evaluation of
the matrix elements can be simplified using a certain type of
coordinates. Of course, the Jacobian of the coordinate trans-
formation (here a constant) must be included in the volume el-
ement expressed in terms of the transformed coordinates (see
Eq. (26) of Ref. 26). Second, different coordinates can repre-
sent efficiently different correlations (Figure 2), and thus the
parameterization of the wave function expressed in terms of
one set of coordinates can be more convenient than in terms
of another set of coordinates. Additionally, the action of a per-
mutation operation on the spatial coordinates is equivalent to
a linear transformation of the Cartesian coordinates, and thus,
its effect on the spatial functions can be accounted for by the
transformation of the parameters.

Finally, we note here that since A is real symmetric,
it is always possible to find some set of translationally in-
variant coordinates, which corresponds to a diagonal expo-
nent matrix, A′, and thus an effective “one-particle” (pseudo-
particle) basis function. As the wave function is written as a
linear combinations of the basis functions with different ex-
ponent matrices, each of these exponent matrices is diagonal
in some set of coordinates (“coordinate channels”), and thus
the wave function can be written as a linear combination of
this multiple-channel basis set.

FIG. 2. Examples for translationally invariant Cartesian coordinates for four
particles. Every choice can describe different correlations efficiently.

4. Spin functions

In this work, we consider systems in which only the cou-
pling of spin-1/2 particles occur. A spin-1/2 particle can have
α and β spin functions, σ 1

2 , 1
2
(1) = | ↑〉σ and σ 1

2 ,− 1
2
(1) = | ↓〉σ

corresponding to (sα,msα
) =

(

1
2 , 1

2

)

and (sβ,msβ
) =

(

1
2 ,− 1

2

)

,
respectively (the subscript σ refers to the spin degree(s) of
freedom). For n identical particles, products of one-particle
spin functions (“elementary” spin functions or uncoupled ba-
sis representation) are coupled to the many-particle spin func-
tion, �S,MS

(1, . . . , n), with the total spin quantum numbers S

and MS.
The α and β projections are distributed between the

n particles according to n = nα + nβ and MS = msα
nα

+ msβ
nβ . Thus, each n-particle uncoupled basis function,

σ 1
2 ,ms1

(1) . . . σ 1
2 ,msn

(n), which contribute to the n-particle to-
tal spin eigenfunction �S,MS

(1, . . . , n), must contain nα

= n/2 + MS and nβ = n/2 − MS one-particle spin func-
tions, σ 1

2 ,msi
(i), which can be written down in all possi-

ble permutations, resulting in a total of Ns =
(

n

nα

)

=
(

n

nβ

)

uncoupled n-particle basis functions. Then, �S,MS
(1, . . . , n)

is expressed as a linear combination of the uncoupled ba-
sis functions using the Clebsch–Gordan expansion coef-
ficients, 〈j1,mj1 , j2,mj2 |J,MJ 〉, and the requirement that
�S,MS

(1, . . . , n) is normalized.
In the present work, we consider only systems with two

and three identical spin-1/2 particles, and the spin functions
corresponding to the calculated states are constructed as fol-
lows (the construction of any other spin function of systems
with few spin-1/2 particles can be done similarly).

For two spin-1/2 particles, we use here the �0, 0(1, 2)
(singlet) and the �1, 0(1, 2) (a triplet) spin functions. Both
spin functions have well-known forms, which we present here
to introduce notation needed later. For both �0, 0(1, 2) and
�1, 0(1, 2) holds MS = 0, and thus nα = nβ = 1. The number
of uncoupled basis functions is Ns =

(

n

nα

)

=
(

n

nβ

)

= 2. Then,
the total spin function can be obtained as

�0,0(1, 2) =
[

σ 1
2
(1)σ 1

2
(2)

]

0,0

=
〈

1
2 , 1

2 , 1
2 ,− 1

2

∣

∣0, 0
〉

σ 1
2 , 1

2
(1)σ 1

2 ,− 1
2
(2)

+
〈

1
2 ,− 1

2 , 1
2 , 1

2

∣

∣0, 0
〉

σ 1
2 ,− 1

2
(1)σ 1

2 , 1
2
(2)

= 1√
2

σ 1
2 , 1

2
(1)σ 1

2 ,− 1
2
(2) − 1√

2
σ 1

2 ,− 1
2
(1)σ 1

2 , 1
2
(2)

= 1√
2

(| ↑↓〉 − | ↓↑〉) , (28)

where [. . .]jmj
refers to the angular momentum coupling.

Similarly, we obtain the triplet spin function as

�1,0(1, 2) =
[

σ 1
2
(1)σ 1

2
(2)

]

1,0

=
〈

1
2 , 1

2 , 1
2 ,− 1

2

∣

∣1, 0
〉

σ 1
2 , 1

2
(1)σ 1

2 ,− 1
2
(2)

+
〈

1
2 ,− 1

2 , 1
2 , 1

2

∣

∣1, 0
〉

σ 1
2 ,− 1

2
(1)σ 1

2 , 1
2
(2)

= 1√
2

σ 1
2 , 1

2
(1)σ 1

2 ,− 1
2
(2) + 1√

2
σ 1

2 ,− 1
2
(1)σ 1

2 , 1
2
(2)

= 1√
2

(| ↑↓〉 + | ↓↑〉) . (29)
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For three spin-1/2 particles, the � 1
2 , 1

2
(1, 2, 3) (a doublet) spin

function has MS = 1/2, and thus nα = 2 and nβ = 1 with
Ns =

(

n

nα

)

=
(

n

nβ

)

= 3 uncoupled basis functions. Then, the
total spin function expressed in terms of the uncoupled spin
functions can be obtained by evaluating

� 1
2 , 1

2
(1, 2, 3) = c1

[[

σ 1
2
(1)σ 1

2
(2)

]

1 σ 1
2
(3)

]

1
2 , 1

2

+ c2
[[

σ 1
2
(1)σ 1

2
(2)

]

0 σ 1
2
(3)

]

1
2 , 1

2
. (30)

The normalization condition for � 1
2 , 1

2
(1, 2, 3) requires c2

1

+ c2
2 = 1, which can be fulfilled by choosing c1 = sin ϑ1 and

c2 = cos ϑ1 with ϑ1 ∈ [−π /2, π /2], similar to Ref. 35. Then,
we couple the one-particle spin functions, insert the corre-
sponding Clebsch–Gordan coefficients, and obtain

� 1
2 , 1

2
(1, 2, 3)

= sin ϑ1〈1, 0, 1
2 , 1

2 | 1
2 , 1

2 〉
[

σ 1
2
(1)σ 1

2
(2)

]

1,0 σ 1
2 , 1

2
(3)

+ sin ϑ1〈1, 1, 1
2 ,− 1

2 | 1
2 , 1

2 〉
[

σ 1
2
(1)σ 1

2
(2)

]

1,1 σ 1
2 ,− 1

2
(3)

+ cos ϑ1〈0, 0, 1
2 , 1

2 | 1
2 , 1

2 〉
[

σ 1
2
(1)σ 1

2
(2)

]

0,0σ 1
2 , 1

2
(3)

= κ1(ϑ1) σ 1
2 , 1

2
(1)σ 1

2 ,− 1
2
(2)σ 1

2 , 1
2
(3)

+ κ2(ϑ1) σ 1
2 , 1

2
(1)σ 1

2 , 1
2
(2)σ 1

2 ,− 1
2
(3)

+ κ3(ϑ1) σ 1
2 ,− 1

2
(1)σ 1

2 , 1
2
(2)σ 1

2 , 1
2
(3). (31)

Thus, in short the total spin function can be written as

� 1
2 , 1

2
(1, 2, 3) = κ1(ϑ1)| ↑↓↑〉 + κ2(ϑ1)| ↑↑↓〉

+ κ3(ϑ1)| ↓↑↑〉, (32)

where we collected the linear combination coefficients in
κ(ϑ1) = (κ1(ϑ1), κ2(ϑ1), κ3(ϑ1))

κ1(ϑ1) = 1√
2

cos ϑ1 − 1√
6

sin ϑ1, (33)

κ2(ϑ1) =
√

2
3 sin ϑ1, (34)

κ3(ϑ1) = − 1√
2

cos ϑ1 − 1√
6

sin ϑ1. (35)

If there are several types of identical particles, a, b, . . . in
the system, the total spin function is constructed as

χS,MS
= �Sa ,MSa

(1, . . . , na)�Sb,MSb
(1, . . . , nb) . . . (36)

and here (S, MS) is a collective index for (Sa,MSa
),

(Sb,MSb
), . . . Since the total spin function for any particle

type a, �Sa ,MSa
(1, . . . , na), can be written as a linear com-

bination of uncoupled many-particle spin functions, the χS,MS

function can also be written in a similar way, and thus for later
convenience we introduce the shorthand notation

χS,MS
(ϑ) =

Ns
∑

n=1

κn(ϑ)|n〉σ , (37)

where |n〉σ denotes the product of uncoupled many-particle
spin functions for each particle type, Ns = Nsa

Nsb
. . ., σ

refers to the spin degrees of freedom, and ϑ contains the
free parameters if there are several “partial waves.” The

value of κn(ϑ) is determined by the normalization condition,
the Clebsch–Gordan coefficients, and the angular momentum
coupling procedure carried out for each particle types similar
to Eqs. (28)–(35).

5. Permutation of identical particles

For the (anti)symmetrization of the product of the spatial
and the spin functions, Eq. (10), we have to evaluate the effect
of a permutation operator on this product by acting on both the
spatial and the spin “coordinates”

P̂p

{

φ[λ]χ [ς]
}

=
{

P̂pφ[λ](r)
}{

P̂pχ [ς]
}

= φ[λ]
(

P̂ −1
p r

)

Ns
∑

n=1

κn(ϑ)P̂p|n〉σ . (38)

To proceed, we construct the matrix representation of
P̂p for both the elementary (uncoupled) spin functions,
P s

p ∈ R
Ns×Ns , and for the LF Cartesian coordinates, P r

p

∈ R
(np+1)×(np+1) with

P̂pr =
(

P r
p ⊗ I3

)

r. (39)

Since the effect of P̂p is a simple permutation for both the
elementary spin functions and the LF Cartesian coordinates,
the corresponding matrices contain “0”s except for a single
“1” element in each row and column. Then, we can write

P̂p{φ[λ]χ [ς]} = φ[λ]
((

P r
p ⊗ I3

)−1
r; u(0),A(0)

)

×
Ns
∑

n=1

((

P s
p

)T
κ(ϑ)

)

n
|n〉σ

= φ[λ]
(

r; u(0)
p ,A(0)

p

)

Ns
∑

n=1

(κ̃p(ϑ))n|n〉σ , (40)

where the transformation of the spatial function parameters
upon the linear transformation, P r

p, of the coordinates was in-
serted, Eqs. (18)–(27), and for brevity the following notation
was introduced:

κ̃p(ϑ) =
(

P s
p

)T
κ(ϑ) (41)

and

u(0)
p =

(

P r
p

)T
u(0) and A(0)

p =
(

P r
p

)T
A(0) P r

p. (42)

D. Overlap and Hamiltonian matrix elements

The matrix element of a spin-independent and permuta-
tionally invariant operator, Ô, for basis functions I and J is
evaluated as

O
[λ,ς]
IJ =

〈

�
[λ,ς]
I

∣

∣Ô
∣

∣�
[λ,ς]
J

〉

r,σ

=
〈

Â
{

φ
[λ]
I χ

[ς]
I

}

|Ô|Â
{

φ
[λ]
J χ

[ς]
J

}〉

r,σ
. (43)
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By exploiting the quasi-idempotency ÂÂ = (Nperm)1/2
Â, the

(Ith,Jth) matrix element is

O
[λ,ς]
IJ =

Nperm
∑

p=1

εp

〈

φ
[λ]
I χ

[ς]
I

∣

∣Ô
∣

∣P̂p

{

φ
[λ]
J χ

[ς]
J

}〉

r,σ

=
Nperm
∑

p=1

εp

〈

φ
[λ]
I

∣

∣Ô
∣

∣P̂pφ
[λ]
J

〉

r

〈

χ
[ς]
I

∣

∣P̂pχ
[ς]
J

〉

σ

=
Nperm
∑

p=1

c
[ς]
IJp

O
[λ]
IJp

(44)

with

c
[ς]
IJp

= εp

〈

χ
[ς]
I

∣

∣P̂pχ
[ς]
J

〉

σ
, (45)

O
[λ]
IJp

=
〈

φ
[λ]
I

∣

∣Ô
∣

∣P̂pφ
[λ]
J

〉

r
. (46)

In this work, Ô will be the unit operator, Î , the kinetic en-
ergy operator, T̂ , and the potential energy operator, V̂ . Ac-
cordingly, the overlap matrix element is

S
[λ,ς]
IJ =

Nperm
∑

p=1

c
[ς]
IJp

S
[λ]
IJp

with S
[λ]
IJp

=
〈

φ
[λ]
I

∣

∣P̂pφ
[λ]
J

〉

r
. (47)

The matrix elements for the kinetic and the potential energy
operators are

T
[λ,ς]
IJ =

Nperm
∑

p=1

c
[ς]
IJp

T
[λ]
IJp

with T
[λ]
IJp

=
〈

φ
[λ]
I

∣

∣T̂
∣

∣P̂pφ
[λ]
J

〉

r
(48)

and

V
[λ,ς]
IJ =

Nperm
∑

p=1

c
[ς]
IJp

V
[λ]
IJp

with V
[λ]
IJp

=
〈

φ
[λ]
I

∣

∣V̂
∣

∣P̂pφ
[λ]
J

〉

r
(49)

so that

H
[λ,ς]
IJ = T

[λ,ς]
IJ + V

[λ,ς]
IJ . (50)

Then, we are left with the evaluation of S
[λ]
IJp, T

[λ]
IJp, and

V
[λ]
IJp, i.e., the matrix elements for two spatial functions,

Eqs. (12) and (14). The procedure (see, for example, Ref. 35)
is somewhat tedious, so we list here only the main steps of the
evaluation and collect the explicit formulae in the supplemen-
tary material.

A matrix element of operator Ô is best written using the
form of the basis function given with the generating integral
equation (14), and it is, with λ = (L, ML, p),

〈φ[λ](r;A, u,K)|Ô|φ[λ](r;A′, u′,K ′)〉r

=
1

BKLpBK ′Lp

∫

dê

∫

dê′ η∗
LMLp(ê)ηLMLp(ê′)

×
{

D̂(2K+L)
a D̂(2K ′+L)

a′

〈

g
(

r;A, s(a, u, e)
)

|Ô|g
(

r;A′, s′(a′, u′, e′)
)〉

r

}

ai=a′
i=0,|ei |=|e′

i |=1.

(51)

The definition of the symbols is given in Table I and the in-
tegration is carried out over the points of the unit sphere de-

scribed by the spherical angles collected in ê and ê′ of the unit
vectors e and e′, respectively. 〈. . .〉r indicates that the integra-
tion has to be carried out for the spatial coordinates r.

The evaluation of the integral in Eq. (51) includes the
following steps.

(1) Evaluation of the integral with the generating functions
(floating geminals)

IO,1(s, s′) = 〈g(r;A, s)|Ô|g(r;A′, s′)〉r . (52)

(2) Differentiation prescribed by the operators D̂(2K+L)
a and

D̂(2K ′+L)
a′ (see Table I for the definition). Then, the result

is expressed in terms of polynomials of scalar products
of the unit vectors, eTe′,

I
[(L)]
O,2 (e, e′) =

{

D̂(2K+L)
a D̂(2K ′+L)

a′

IO,1
(

s(a, u, e), s′(a′, u′, e′)
)

}

ai=a′
i=0,|ei |=|e′

i |=1
. (53)

(3) Evaluation of the angular integrals

I
[λ=(L,ML,p)]
O,3 =

1

BKLpBK ′Lp

∫

dê

×
∫

dê′ η∗
LMLp(ê)ηLMLp(ê′)I [(L)]

O,2 (e, e′), (54)

which reads for the natural-parity case, p = (−1)L, as

I
[λ=(L,ML,(−1)L)]
O,3 =

1

BKLpBK ′Lp

∫

dê

×
∫

dê′ Y ∗
LML

(ê)YLML
(ê′)I [(L)]

O,2 (e, e′). (55)

The evaluation of the angular integrals is facilitated by
the identity, see p. 87 of Ref. 35, related to the addition
theorem of spherical harmonics

(eTe′)k =
k

∑

l=0

[(k−l)/2∈N0]

B k−l
2 ,l

l
∑

m=−l

Y ∗
lm(ê)Ylm(ê′), (56)

which is for k = 1

eTe′ =
4π

3

1
∑

m=−1

Y ∗
1m(ê)Y1m(ê′). (57)

Further details of the derivation of the overlap, kinetic,
and potential energy integrals are given in the supplementary
material.

For large (2K + L) > 4 exponents of the |v|2K+L poly-
nomial prefactor, Eq. (12), a direct implementation of the in-
tegral formulae given in Refs. 35 and 53 resulted in numeri-
cal instabilities for a computer program with a finite number
representation (double precision in FORTRAN). To restore the
numerical stability, we introduced quasi-normalization for the
basis functions, which allowed us to cancel some problematic
terms. We call the normalization with respect to the spatial
function,

�[λ,ς] = (〈φ[λ]|φ[λ]〉r )−1/2
Â{φ[λ]χ [ς]}, (58)
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quasi-normalization. The quasi-normalized and rearranged
integral formulae are collected in the supplementary mate-
rial. Where it was necessary and useful, we used a logarithmic
evaluation of products and fractions, e.g.,

(a · b)/(c · d) = sign(ab/cd) · 10(lg a+lg b−lg c−lg d), (59)

which allowed us to obtain small numbers as ratios and prod-
ucts of large ones. Furthermore, it was possible to factor out
the term, see the supplementary material,

FKL =
K

∑

m=0

22m(L + m + 1)!

(K − m)!(K − m)!m!(2L + 2m + 2)!
, (60)

whose value for a finite number of K and L integer values was
pre-calculated with MATHEMATICA.80 These numbers were
stored in a file and are read in by the FORTRAN program.

E. Multi-stage variational optimization

The wave function for some set of quantum numbers
λ = (L, ML, p) and ς = (S, MS) is written as a linear com-
bination of Nb basis functions

�[λ,ς](r, σ ) =
Nb
∑

I=1

cI�
[λ,ς]
I (r, σ )

= (Nperm)−1/2
Nb
∑

I=1

cI

×
Nperm
∑

p=1

P̂p{φ[λ](r; αI , uI ,KI )χ [ς](σ ; ϑ I )}.

(61)

The concept of this parameterization is visualized in Figure 3.
Since the overlap and the Hamiltonian matrix elements are
evaluated analytically (Sec. II D and the supplementary mate-
rial), we can rely on the variational principle during the course
of the selection of the numerical values for the “free parame-
ters” of this ansatz. Thus, the lower the eigenenergy, the better
the parameterization is. During the course of the calculations
we tightened the optimization criterion of the free parameters
and increased the number of the basis functions to obtain a
lower energy eigenvalue.

In this work, we solved the generalized linear variational
problem corresponding to Nb basis functions with some fixed

c1 + c2 + c3 + . . .

{α1,ij, u1,i, K1} {α2,ij, u2,i, K2} {α3,ij, u3,i, K3}

FIG. 3. Visual representation of the parameterization of the wave function
for H2. The width of the lines of the double-headed arrows, which connect
the particles i and j is proportional to the value of αI, ij (i = 1, . . . , 4; j = i

+ 1, . . . , 4), and the orientation of the grey arrows represent the orientation
of the global vectors parameterized by uI,i (i = 1, 2, 3) (I = 1, 2, . . . , Nb).

PI = (αI , uI ,KI ; ϑ I ) parameters

H [λ,ς]c
[λ,ς]
i = E

[λ,ς]
i S[λ,ς]c

[λ,ς]
i i = 1, 2, . . . , Nb (62)

using the LAPACK “divide and conquer” diagonalizer avail-
able in Intel’s Math Kernel Library (MKL).81 If the parameter
set, PI , was selected appropriately (see the discussion below),
we did not observe any near-linear dependency problems in
finite-precision, 8-byte (double precision in FORTRAN), arith-
metics. Near-linear dependency problems were always indi-
cators of an inadequate parameter generation.

The parameters were generated for one basis function af-
ter the other in a random procedure.30, 35, 64–66 The random
generation with a variational selection criterion is a straight-
forward approach, and this explains our choice here. We have
found the description in Ref. 35 the most useful in our work,
including the fast eigenvalue estimation procedure of an up-
dated parameter set, described on pp. 27–29 of Ref. 35.

In addition, we have investigated the effect of the coor-
dinate representation and the sampling strategy on the con-
vergence rate of the energy with respect to the computational
effort. We have found that both have a crucial impact on the
efficiency, and we summarize our observations and our strat-
egy developed as follows.

1. Non-linear variational problem

Optimization of the parameters of the basis functions is
a delicate problem. For example, for an (np + 1)-particle sys-
tem there are (np + 1)np/2 + np + 1 = (np + 1)(np + 2)/2 free
parameters, {αI , uI ,KI }, corresponding to each spatial func-
tion, Eqs. (12) and (13). If, for example, np + 1 = 4, there are
10 free parameters for each basis function, and thus for 500
basis functions, the ansatz contains 5000 parameters to be op-
timized. One may suspect that there is a myriad of local min-
ima for such a large number of free parameters. Nevertheless,
the variational principle and the physical-chemical intuition
served as two major guiding tools for us in the construction
of a useful strategy for calculating as low of an energy eigen-
value (and the corresponding wave function) as possible. The
actual values of the free parameters at the minimum point are
not of primary interest, and there might be several equiva-
lent or at least “almost equivalent” parameterizations due to
the non-orthogonality of the basis functions and the multiple
equivalent coordinate representations.

During the course of the buildup of the basis set, the free
parameters were optimized one after the other. To select a
new parameter a large number of trial values were generated
randomly, which were then tested using the fast eigenvalue-
update procedure of Ref. 35. Then, that trial value was utilized
for the extension of the basis set, which provided the lowest
energy eigenvalue (or the lowest few energy eigenvalues if
vibrational excited states were also of interest). For small to
medium-sized basis sets (with typically 50–200 basis func-
tions), we run regular refinement cycles for the already se-
lected parameters, which allowed us to replace an earlier se-
lected parameter with a newly generated and better one, i.e.,
which corresponded to a lower energy eigenvalue.

In order to select parameters for new spatial and spin
functions, we had to generate and test trial values for the
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FIG. 4. Optimized basis function parameters for H2 (L = 0, p = +1, Sp = 0, Kmax = 10). The αp-e exponents corresponding to laboratory-fixed Cartesian

coordinates were optimized using ξ = (αp-e)−1/2 and a random number generator with a uniform continuous distribution of ξ ∈ u(a(p−e)
min , a

(p−e)
max ). The K values

were generated (not optimized) in a uniform discrete distribution with [0, Kmax].

K ∈ N0 polynomial exponent, the αij ∈ R
+ Gaussian expo-

nents (or the entries of the symmetric A(0) or A(x) matrices),
the ui ∈ R (or ui) global vector parameters, and, in the case of
the three-fermionic 7Li, the ϑ1 ∈ [−π /2, π /2] spin-function
parameter. As to the efficiency of this trial-and-error opti-
mization, we had to address a few technical questions:

1. Shall we sample the parameters corresponding to the
laboratory-fixed Cartesian coordinate representation,
i.e., αij and A(0)

ij , or is it better to generate first the trial
parameters corresponding to some x translationally in-
variant set of coordinates, A

(x)
ij ?

In general, which is the most convenient coordinate set
for the optimization?

2. Shall we generate random values for the original param-
eter, say αij, or shall we use instead a transformed one,
e.g.,

√
αij or ln αij?

In general, what kind of probability distribution shall we
use in the random number generator to generate ran-
dom trials efficiently for the selected parameterization
and coordinate representation?

In the calculations, we used the quasi-random number
generators of the Vector Statistical Library available in Intel’s
MKL.81 The intrinsic randomness or quasi-randomness of the
trials did not play a role here.

The first question is related to the quasi-separability
of the many-particle correlation problem to some, coupled,
few-particle correlations represented by some coordinate set,
Figure 2, and the corresponding geminal basis. The second
question addresses the characteristic values and the distribu-
tion of the parameters in some representation. In an ideal case,
all parameters, A12, A13, . . . , u1, u2, . . . could be optimized in-
dependently and the optimal values would be distributed ac-
cording to some ordinary probability distribution, which is
characterized by a few, well-defined parameters. Then, the
generation of a trial value according to this probability dis-
tribution would be a reasonable first guess, not far from a real
minimum point. In practice, a brute-force treatment of a few-
particle system can be far from this ideal case, but it can be
approached by a good choice of the coordinate set.

Assuming that a coordinate set has been selected, we give
an example to our second question in Figure 4, which presents
histograms for the optimized values of the proton-electron
correlation exponents corresponding to the ground state of the
H2 molecule. As it is apparent from the figure, it is the most
practical to sample the distribution of ln αp-e, instead of αp-e.

After exploratory test calculations, we estimated the envelope
of the histograms with a normal probability density function
parameterized with the sample mean and the unbiased sample
variance and used this random distribution in our large-scale
calculations to generate “reasonable” trial values for the opti-
mization. In principle, it would be possible to automatize this
procedure in the spirit of a sampling-importance-resampling
strategy.82 We note here that the sampling of a uniform contin-
uous distribution for αij resulted in a very slow convergence
rate and near-linear dependence problems in finite precision
arithmetics. In any case, we conclude that the parameteriza-
tion and the random distribution, which we sample, have a
(sometimes dramatic) influence on the convergence rate. At
the same time, the convergence is guaranteed, in theory, by
the variational principle.

2. Basis function generation strategy

We can summarize our basis function generation strategy
as follows.

1. K was generated (not optimized) according to some
discrete uniform or discretized normal distribution with
the sample mean and the unbiased sample variance
determined in test calculations, similar to Refs. 36, 83,
and 84.

2. In the case of lithium, ϑ1 was generated (not optimized)
according to a uniform continuous distribution over the
interval [−π/2, π/2].

3. Trial values of ln αij corresponding to LF Cartesian co-
ordinates were generated according to a normal distribu-
tion with some sample mean and some unbiased sample
variance determined in test calculations. That trial value

c1 + c2 + c3 + . . .

{α1,ij, u1,i, K1} {A
(x)
2,ij , u

(x)
2,i , K2} {A

(y)
3,ij, u

(y)
3,i , K3}

FIG. 5. Visual representation of an ansatz for the H2 molecule expressed
in terms of several coordinates (channels). The Gaussian geminal expo-
nents represented by double-headed arrows and wavy lines correspond to
(1) laboratory-fixed Cartesian coordinates; (2) Jacobi coordinates; (3) heavy-
particle centered coordinates, respectively, where the different widths of the
lines represent the different numerical values of the various exponents. The
grey arrows indicate the orientation of the global vectors parameterized by
uI,i (i = 1, 2, 3) (I = 1, 2, 3, . . . , Nb).
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was selected for the construction of the basis function,
which provided the lowest energy eigenvalue.

4. Trial values of u
(x)
i (i = 1, 2, . . . , np) were generated ac-

cording to a normal distribution with some sample mean
and some unbiased sample variance determined in test
calculations. That trial value was selected for the con-
struction of the basis function, which provided the low-
est energy eigenvalue. Instead of using LF Cartesian co-
ordinates, a set of translationally invariant coordinates,
x, was selected, which described reasonably well the an-
gular distribution of the particles. In the case of H2, the
atoms-in-molecule coordinates (Sec. III) were found to
provide a useful representation, similar to Ps2.85

During the extension of the basis set, we regularly run re-
finement cycles for the already selected Gaussian exponents,
αij, and the global vector coefficients, u

(x)
i , using the same ran-

dom number distributions as before, while the values of the K

and ϑ1 parameters were kept fixed.
Finally, the αij and the u

(x)
i values were further optimized

in repeated fine-tuning cycles based on random walks. The
fine-tuning was carried out for each αij and ui parameter
one after the other, and was started from the original value of
the parameter. A new value was accepted or rejected based on
the variational principle. During the random walk, the param-
eter values were not restricted within any interval, but they
were controlled by the definition of a “fine-tuning” radius,
which allowed the program to change the parameter value
with a certain percentage only, and each random walk se-
quence was limited by a maximum number of steps.

The optimization of the Gaussian exponents and the
global vector parameters were carried out in terms of differ-

ent coordinates. Due to the simple transformation property
of the basis functions (and thus the integrals) in terms of a
linear transformation of the coordinates, one can use several
coordinate representations during the same calculation (“re-
parameterization”). As a result of this observation, we pro-
pose a multiple-coordinate or multiple-channel optimization
strategy.

3. Multiple-channel optimization

Our optimization strategy needs to answer the questions
of how to guess a “good enough” coordinate representation
for the optimization procedure and what the best strategy to
follow is if there are more than one coordinate representa-

tions which describe important but qualitatively different few-
particle correlations?

Since the re-parameterization of the basis functions in
terms of various sets of Cartesian coordinates is straightfor-
ward, one can optimize (generate and test, refine, and fine-
tune) the basis function parameters using several coordinate
representations, Figure 5.

A simple application of this multiple-channel optimiza-
tion strategy is used in our present optimization procedure
(steps 1–4), but it can, of course, be generalized by relying
on several coordinate representations.

III. NUMERICAL RESULTS

We have implemented the theory outlined to study the
ground and some excited states of H+

2 , Ps2, H2, and 7Li. As
characteristic properties of these systems, the mass, the elec-
tric charge, and the spin of the particles as well as the spatial
angular momentum and the spin quantum numbers were spec-
ified, while we considered states with natural parity only. The
virial coefficient, η = |1 + 〈�|V̂ |�〉/2〈�|T̂ |�〉|, was evalu-
ated to assess the quality of the calculated wave functions.

During the course of the non-linear optimization the ln αij

coefficients were generated and optimized corresponding to
the LF Cartesian coordinates where the αij parameter is the
exponent corresponding to the square of the Cartesian dis-
placement vector between the ith and jth particles, Eq. (12).
The global vector coefficients were generated and opti-
mized using the translationally invariant coordinates shown in
Figure 6.

After the selection and refinement of the αij and ui pa-
rameters, we ran repeated fine-tuning cycles by carrying out
random walk sequences, which started from the original value
and with a random but less than 10% change of the ac-
tual value. A new value was accepted if it lowered the total
energy.

Before we discuss the results obtained, we should stress
that due to omission of the BO paradigm, no potential energy
surface with respect to a subset of coordinates is obtained.
Instead, we obtain the total energies and thus all but one are
excited states.

A. H+

2

Figure 7 summarizes our results for H+
2 and the corre-

sponding BO potential energy curves are also sketched for

H+

2 = {p+, p+, e−} Ps2 = {ē+, ē+, e−, e−} H2 = {p+, p+, e−, e−} 7Li = {7Li3+, e−, e−, e−}

FIG. 6. The translationally invariant Cartesian coordinates used for the optimization of the global vector coefficients. The empty and the full circles represent
the electrons and the positively charged particles, respectively. H+

2 : proton-centered coordinates (similar to heavy-particle centered coordinates35); Ps2 and H2:
“atoms-in-molecule” coordinates85 (AIM-Ps2 and AIM-H2, respectively), where the “inter-atomic” distance vector connects the center-of-mass points of the
two “subatoms”; 7Li: Jacobi coordinates.35
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TABLE II. Calculated energy levels of H+
2 = {p+, p+, e−}.

La pa Sp
a E/Eh

b ηc δE/µEh
d Ref. Assignmente

0 1 0 −0.597139059 1.6 × 10−8 −0.004 89, 90 para X̃ 2
�

+
g v = 0

0 1 0 −0.587155670 3.2 × 10−9 −0.009 89, 90 para X̃ 2
�

+
g v = 1

[. . .]

1 − 1 1 −0.596873733 7.9 × 10−9 −0.005 89, 90 ortho X̃ 2
�

+
g v = 0

1 − 1 1 −0.586904311 9.4 × 10−8 −0.010 89, 90 ortho X̃ 2
�

+
g v = 1

[. . .]

2 1 0 −0.596345202 1.8 × 10−8 −0.004 89, 90 para X̃ 2
�

+
g v = 0

2 1 0 −0.586403620 1.4 × 10−7 −0.011 89, 90 para X̃ 2
�

+
g v = 1

[. . .]

3 − 1 1 −0.595557635 4.1 × 10−10 −0.004 90 ortho X̃ 2
�

+
g v = 0

3 − 1 1 −0.585657606 1.6 × 10−8 −0.006 90 ortho X̃ 2
�

+
g v = 1

[. . .]

4 1 0 −0.594517166 2.0 × 10−9 −0.003 90 para X̃ 2
�

+
g v = 0

4 1 0 −0.584672130 4.0 × 10−8 −0.004 90 para X̃ 2
�

+
g v = 1

[. . .]

5 − 1 1 −0.593231725 6.4 × 10−9 −0.004 88 ortho X̃ 2
�

+
g v = 0

5 − 1 1 −0.583454791 1.6 × 10−8 −0.005 88 ortho X̃ 2
�

+
g v = 1

[. . .]

0 1 1 −0.499743489 1.1 × 10−8 −0.014 88 ortho Ã 2
�

+
u v = 0

1 − 1 0 −0.499739262 1.5 × 10−8 −0.006 88 para Ã 2
�

+
u v = 0

2 1 1 −0.499731516 1.9 × 10−8 −0.007 88 ortho Ã 2
�

+
u v = 0

aL: quantum number of the total angular momentum without the spins; p: parity; Sp: total spin quantum number of the protons.
bmp/me = 1836.15267247.86 The dissociation limit is E(H(n = 1)) = −0.499727840 Eh. The wave functions were optimized as a linear combination of Nb = 400 basis functions and
for the exponents 2K of the polynomial prefactors the K values were generated in a normal distribution with mean and variance 5 and 1, respectively, and then the generated value was
rounded to the nearest integer.
cη = |1 + 〈�|V̂ |�〉/(2〈�|T̂ |�〉)|.
dδE = E(Ref.) − E.
eThe assignment of the ortho (Sp = 1) and para (Sp = 0) descriptions corresponds to the value of the Sp quantum number. The electronic state label of the BO theory is assigned
based on comparison with the literature.87, 88 There are two energy levels shown corresponding to every set of (L, p, Sp) quantum numbers in the electronic ground state, which can be
assigned to the ground and the first excited vibrational energy levels of the BO theory.

comparison. The calculated numerical values are given in
Table II. We used a proton-electron mass ratio of mp/me

= 1836.15267247.86 The corresponding non-relativistic
ground-state energy of the free hydrogen atom, which is the
dissociation limit, is E(H) = −0.499727840 Eh.

The quantum numbers of the non-relativistic theory are
L, p, and Sp. To obtain the various energy levels shown in
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FIG. 7. Calculated all-particle (pre-Born–Oppenheimer) energy levels of
H+

2 (on the right). For comparison, the Born–Oppenheimer potential energy
curves are also illustrated (on the left). The dissociation energy corresponds
to the ground state energy of the hydrogen atom. The numerical values of the
calculated energy levels are given in Table II. L: Total angular momentum
quantum number without the spins, p = (−1)L: parity, and Sp: the total spin
quantum number of the protons.

Figure 7, we chose various values for L and Sp, and always
assumed natural parity, p = (−1)L. Due to the Pauli princi-
ple for the protons, if the internal part of the wave function is
symmetric with respect to the interchange of the two protons
for even (odd) L, the total spin of the protons, Sp must be 0
(1), i.e., para-H+

2 (ortho-H+
2 ). This case can be assigned to the

rotation-vibration energy levels of the electronic ground state,
X̃ 2

�
+
g , of standard BO-based theory. On the other hand, if

the internal part of the wave function is antisymmetric with
respect to the interchange of the two protons for even (odd)
L, Sp must be 1 (0), i.e., ortho-H+

2 (para-H+
2 ). This case cor-

responds to the electronically excited state, Ã 2
�

+
u of BO

theory.
The numerical results are compared to literature data,

Table II, and the agreement with for example, Refs. 87–
90 is good. As to the Ã 2

�
+
u states, we obtained only

three rotation-only (vibrational ground state) energy lev-
els below the dissociation limit, in agreement with earlier
calculations.87, 88

B. Ps2

Our second example is the positronium molecule (Ps2),
with four particles of equal mass, two of them positively
charged and two of them negatively charged. Variational cal-
culations without the adiabatic separation of the positive and
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TABLE III. Calculated energy levels of the positronium molecule, Ps2 = {ē+, ē+, e−, e−}.

La pa S+
a S−

a E/Eh
b ηc δE/µEh

d Ref. Assignmente

0 1 0 0 −0.5160037887 3.9 × 10−9 − 0.0017 97 0+ A1

0 1 1 0 −0.3302874964 3.3 × 10−8 +10.686 85 0+ E

1 − 1 0 0 −0.3344082953 1.8 × 10−8 − 0.022 99 1− B2

aL: quantum number of the total angular momentum without the spins; p: parity; S+ and S-: total spin quantum number of the positrons, ē+, and that of the electrons, e−, respectively.
bm+/m− = 1. The energy of the lowest-lying dissociation threshold is E(Ps(n = 1) + Ps(n = 1)) = −1/2 Eh = −0.5 Eh, while the second two states belong to a different symmetry
block, and the corresponding dissociation threshold is E(Ps(n = 1) + Ps(n = 2)) = −5/16 Eh = −0.3125 Eh.85 The wave functions were optimized as a linear combination of
Nb = 1 200 basis functions and the exponents of the polynomial prefactors were 2K = 0 or 2, selected randomly.
cη = |1 + 〈�|V̂ |�〉/(2〈�|T̂ |�〉)|.
dδE = E(Ref.) − E.
eLp and the symmetry labels are taken from Refs. 33 and 85.

negative particles were presented already in 1947 (Ref. 91)
and later more accurate calculations for the ground,33, 34, 92, 93

excited,85, 94, 95 and possible metastable states33, 96 followed.
Bound states must lie below the lowest-energy dissocia-

tion limit, and the states above are in the continuum. There
are however different symmetry blocks or spin states which
are not coupled to the continuum of the lowest-lying disso-
ciation products, and thus they can be calculated within the
present approach.

We considered here only three states, which are known
to be bound.85 Our L = 0 and L = 1 calculations, Table III,
with zero spins agree well with the best available literature
data.97, 98 For all three states, we obtain substantially lower
energies than those of Ref. 85 and the results could be fur-
ther improved by extended optimization times. In this work,
we have not considered the fourth known bound state, which
would become easily accessible to the present approach by
considering the charge conjugation symmetry, a special prop-
erty of this system.

C. H2

Figure 8 summarizes our results for the H2 molecule and
the numerical results are collected in Table IV. With various
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FIG. 8. Calculated all-particle (pre-Born–Oppenheimer) energy levels of
H2 (on the right). For comparison the Born–Oppenheimer potential energy
curves are also illustrated (on the left). The lower- and the higher-energy dis-
sociation thresholds shown in the figure correspond to two hydrogen atoms
in the ground state, and to one hydrogen atom in the ground state and the
other in the first excited state, respectively. The numerical values of the cal-
culated energy levels are given in Table IV. L: quantum number of the total
angular momentum without the spins, p = (−1)L: parity, Sp: the total spin
quantum number of the protons, and Se: the total spin quantum number of the
electrons.

selections for the quantum number of the total angular mo-
mentum without the spins, L, the total proton spin, Sp, and the
total electron spin, Se, the lowest energy levels of four “types”
(symmetries) of states became easily accessible, while we al-
ways considered natural parity, p = (−1)L. These four “sym-
metry cases” (or “spin cases”) are

(1) L = 0, 1, . . . , p = (−1)L, Se = 0 (singlet),
Sp = (1 − p)/2 (para for even L, ortho for odd L);

(2) L = 0, 1, . . . , p = (−1)L, Se = 1 (triplet), Sp = (1 − p)/2
(para for even L, ortho for odd L);

(3) L = 0, 1, . . . , p = (−1)L, Se = 0 (singlet),
Sp = (1 + p)/2 (ortho for even L, para for odd L);

(4) L = 0, 1, . . . , p = (−1)L, Se = 1 (triplet), Sp = (1 + p)/2
(ortho for even L, para for odd L).

The four cases are assigned, based on direct compari-
son of the calculated energy levels with the literature, to the
X 1

�
+
g ,47 b 3

�
+
u (repulsive),100 B 1

�
+
u ,101–106 and a 3

�
+
g

(Refs. 101, 107, and 108) electronic states of the BO theory,
respectively. These electronic states are the four lowest ones
of the hydrogen molecule.109 The corresponding potential en-
ergy functions are visualized in Figure 8 (for their calculation
and applications see, for example, Refs. 47 and 101–106). Ac-
cording to the literature relying on the BO paradigm, there
are bound rotation(-vibration) energy levels corresponding to
the X 1

�
+
g , B 1

�
+
u , and a 3

�
+
g , while the b 3

�
+
u electronic

state is repulsive.
In our calculations, we obtained rotation energy levels

lower than the corresponding dissociation thresholds in cases
(1), (3), and (4) assignable to X 1

�
+
g , B 1

�
+
u , and a 3

�
+
g

electronic states, respectively. Whereas in case (2) the calcu-
lated energy levels converged from above to the energy of two
ground-state hydrogen atoms, E(H(n = 1) + H(n = 1)) (see
Table IV), in agreement with the known results based on the
BO theory.100

Although the lowest-lying dissociation products are two
ground-state hydrogen atoms, H(n = 1) + H(n = 1) with
E(H(n = 1) + H(n = 1)) = −0.499727840 Eh, the rotation-
vibration-electronic wave function can have different sym-
metry properties upon the interchange of identical particles,
which can correspond to higher-lying dissociation thresholds.
Although these states have larger energies than the dissocia-
tion continuum of the two ground-state hydrogen atoms, they
can be calculated within our variational procedure because of
their different symmetry (and different spin). Concerning the
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TABLE IV. Calculated energy levels of H2 = {p+, p+, e−, e−}.

La pa Sp
a Se

a E/Eh
b ηc δE/µEh

d Ref. Assignmente

0 1 0 0 −1.164025026 1.4 × 10−8 −0.004 62, 63 para singlet X 1
�

+
g

1 − 1 1 0 −1.163485167 3.2 × 10−9 −0.006 47 ortho singlet X 1
�

+
g

2 1 0 0 −1.162410402 2.2 × 10−8 −0.007 47 para singlet X 1
�

+
g

3 − 1 1 0 −1.160810486 7.9 × 10−9 −0.006 47 ortho singlet X 1
�

+
g

4 1 0 0 −1.158699660 6.7 × 10−9 −0.006 47 para singlet X 1
�

+
g

[. . . ]
0 1 1 1 [−0.999450] [6.3 × 10−6] [−5.8] 100 ortho triplet b 3

�
+
u

1 − 1 0 1 [−0.999445] [8.9 × 10−6] [−10.4] 100 para triplet b 3
�

+
u

[. . . ]
0 1 1 0 −0.753026938 1.8 × 10−6 −0.455 106 ortho singlet B 1

�
+
u

1 − 1 0 0 −0.752848338 5.9 × 10−6 −2.041 106 para singlet B 1
�

+
u

[. . . ]
0 1 0 1 −0.730825002 1.2 × 10−6 −0.198 108 para triplet a 3

�
+
g

1 − 1 1 1 −0.730521133 7.4 × 10−7 −0.277 108 ortho triplet a 3
�

+
g

[. . . ]

aL: quantum number of the total angular momentum without the spins; p: parity; Sp: total spin quantum number of the protons; Se: total spin quantum number of the electrons.
bmp/me = 1836.15267247.86 The energy of the lowest-lying dissociation threshold is E(H(n = 1) + H(n = 1)) = −0.999455679 Eh, while the third and fourth set of states belong to a
different symmetry block, and the corresponding dissociation threshold is E(H(n = 1) + H(n = 2)) = −0.624659800 Eh. The wave function for the X 1

�
+
g (for the B 1

�
+
u , a 3

�
+
g )

states was written in terms of a linear combination of Nb = 1500 (Nb = 1000) basis functions and the K values of the “2K” exponents of the polynomial prefactors were generated in
a normal distribution with mean and variance 9 and 1, respectively, and the generated value was rounded to the nearest integer.
cη = |1 + 〈�|V̂ |�〉/(2〈�|T̂ |�〉)|.
dδE = E(Ref.) − E.
eThe para (ortho) and singlet (triplet) descriptions correspond to Sp = 0 (1) and Se = 0 (1), respectively. The electronic-state label of the Born–Oppenheimer theory is assigned to the
calculated energy levels based on comparison with the literature.47, 100, 106, 108 In each case, the vibrational ground state is shown, i.e., the lowest energy level corresponding to each set
of angular momentum, parity, and spin quantum numbers.

clamped-nucleus analogy, correlation rules between molecu-
lar states and dissociation limits were derived by Hund110, 111

and by Wigner and Witmer112 for homonuclear diatomic
molecules, which were later extended by Mulliken113 (see
also Refs. 109 and 114).

As to the technical details of our calculations, we used
LF Cartesian coordinates to optimize the logarithm of the
basis function exponents, ln αij, while the GVR coefficients
were generated first corresponding to the atoms-in-molecule
coordinates85 (see “AIM-H2” in Figure 6). The random num-
ber generators were parameterized following the sampling-
importance-resampling strategy for the X 1

�
+
g states. These

random distributions (normal distributions with some mean
and variance for each ln αij (i = 1, 2, . . . , np + 1; j = i

+ 1, . . . , np + 1) and u
(AIM−H2)
i (i = 1, 2 . . . , np)) were used

not only for the X 1
�

+
g states but also for the the generation

of the trial parameters for the electronically excited states. Of
course, the internal distribution of the particles can be very
different in the various electronic states, as it can be antici-
pated from the very different minimum positions and width
of the potential energy curves (Figure 8). Thus, if we re-
parameterized the random distributions of the random num-
ber generators for each electronically excited state (following
a sampling-importance-resampling strategy), we could have
a more efficient optimization procedure, and thus could cal-
culate lower energy eigenvalues with a similar computational
effort. This requires a series of calculations, which we might
pursue in a later work.

As to the optimization of the global vector coefficients,
the parameter optimization in terms of the AIM coordinates
seem to represent the physical idea that the lighter elec-
trons “follow” the heavier protons, and thus provide a rea-

sonable choice for the parameterization of the angular distri-
bution of the particles. Of course, the coordinates of the two
electrons and the two protons enter the procedure symmet-
rically due to the (anti)symmetrization of the trial functions,
Eq. (10).

In Table IV, we present the calculated energy values
and their comparison with earlier calculations. For L = 0,
Sp = 0, Se = 0 tightly converged all-particle (“pre-Born–
Oppenheimer”) variational calculations62, 63 were used as
reference data. For every other energy levels calculations
within a pre-Born–Oppenheimer approach were not avail-
able, and we compared our results to the results of ac-
curate “post-Born–Oppenheimer” variational-perturbational
calculations.47, 101–106 The b 3

�
+
u energy eigenvalues shown

in Table IV converged from above to the energy of two
ground-state hydrogen atoms, which we interpret as an indica-
tion of the repulsive character of this electronic state in the BO
theory.

Although the numerical results reported in Table IV
could be improved, our goal is accomplished by demonstrat-
ing that rotational energy levels corresponding to the ground
and some excited energy levels can be calculated within the
presented variational all-particle procedure.

As a next logical question, one may ask if it is pos-
sible to calculate rotation(-vibration) energy levels corre-
sponding to higher-lying bound electronic states, for exam-
ple, to e 3

�
+
u ,109 within the present approach. We think that

the rotation(-vibration) states, which could be assigned to
e 3

�
+
u ,109 are embedded in the continuum assignable to the

b 3
�

+
u , and thus could be calculated as resonances with some

characteristic energy and finite lifetime within an all-particle
approach.
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TABLE V. Calculated energy levels of 7Li = {7Li3 +, e−, e−, e−}.

La pa Se
a Eb ηc δE/µEh

d Ref.

0 1 1/2 −7.477451901 1.3 × 10−9 −0.029 115
1 − 1 1/2 −7.409557349 8.8 × 10−9 −0.410 116
2 1 1/2 −7.334926959 1.1 × 10−9 −0.347 117, 118

aL: quantum number of the total angular momentum without the spins; p: parity; Se: total
spin quantum number of the electrons.
bm7Li3+ /me+ = 12 786.393 The wave functions were optimized as a linear combination
of Nb = 1500 basis functions and the exponents of the polynomial prefactors were 2K

= 0 or 2, selected randomly.
cη = |1 + 〈�|V̂ |�〉/(2〈�|T̂ |�〉)|.
dδE = E(Ref.) − E.

D. 7Li

The last system to be considered is the 7Li isotopologue
of the lithium atom described as a four-particle quantum sys-
tem with three spin-1/2 fermionic particles (electrons). The
numerical results obtained for the doublet electronic states are
collected in Table V and agree well with the available litera-
ture data.115–118

E. On the transferability of optimized basis
function parameters

We should describe our observations concerning the
transferability of the non-linear parameters of the basis func-
tions. Assume that there is a set of basis function parame-
ters, B(A), optimized for some system A, where A is a collec-
tive symbol for the input parameters of a calculation (mass,
charge, and spin of the particles, quantum numbers, size of
the basis set, etc.). Then, we use B(A) to parameterize the ba-
sis functions for calculation A′ (with particles of some mass,
charge, and spin, quantum numbers, etc.) and solve the linear
variational problem only

�(A′) =
Nb
∑

I=1

cI�
(A′)
I [BI (A)] (63)

to obtain an estimate (an upper bound), E(A′)[B(A)] to the
energy for A′. We may say that the basis function parameters
are transferable from calculation A to A′ if the energy estimate

E(A′)[B(A)] is close to the energy obtained with optimizing
the basis function parameters for system A′, E(A′)[B(A′)].

We emphasize here that we do not transfer the basis func-
tions but only the parameters (geminal exponents, global vec-
tor coefficients, polynomial exponents), while the mathemat-
ical form of the basis functions is determined by the quantum
numbers (spatial and permutational symmetries). This strat-
egy is reminiscent of the vibrational subspace technique for
an efficient calculation of rotation-vibration energy levels119

using pre-calculated vibrational wave functions.
In Table VI, we present examples for such a transfer of

the basis function parameters between rotational energy lev-
els of H2 (X 1

�
+
g electronic state) with various L quantum

numbers. In this example, the basis function parameters opti-
mized for a rotational energy level of H2 with L′ were used for
the parameterization of basis functions for another rotational
energy level with L. Table VI shows that the parameterization
transfer between neighboring rotational energy levels, L = L′

± 1, gives an estimate within 0.5 µEh of the optimized value.
For larger |L − L′| values, the solution of the linear variational
problem only seems to provide less and less good estimates.
A qualitative explanation for this observation can be given as
follows. For neighboring rotational states, the internal distri-
bution of the particles is similar, and thus the same parameter
set can describe both states, while the mathematical form of
the basis functions is determined by the quantum numbers,
and the flexibility of this ansatz is provided by the linear vari-
ational coefficients.

IV. SUMMARY AND OUTLOOK

The variational solution of the Schrödinger equation of
few-particle systems was considered without the introduction
of the Born–Oppenheimer approximation. We presented an
algorithm and reported some numerical results calculated
with a computer program (implemented in FORTRAN 90),
which are based on (a) a quantum Hamiltonian expressed
in terms of laboratory-fixed or translationally invariant
Cartesian coordinates; (b) basis functions constructed with
symmetry-adapted explicitly correlated Gaussian functions
and polynomial prefactors also using the global vector

TABLE VI. On the transferability of the basis function parameters between different rotational levels of H2 corresponding to the X1�+
g electronic state

(see also Table IV). The energy differences, �EL[B(L′)], between the energy obtained via the optimization of the basis function parameters, B(L) and four
transferred parameter sets, B(L′), are given in µEh.

La EL[B(L)]/Eh
b,c �EL[B(0)]b,d �EL[B(1)]b,d �EL[B(2)]b,d �EL[B(3)]b,d �EL[B(4)]b,d

0 − 1.164025026 0.00 − 0.06 − 1.53 − 2.53 − 5.03
1 − 1.163485167 − 0.21 0.00 − 0.35 − 0.97 − 2.54
2 − 1.162410402 − 0.76 − 0.09 0.00 − 0.21 − 1.01
3 − 1.160810486 − 1.53 − 0.37 − 0.29 0.00 − 0.23
4 − 1.158699660 − 2.41 − 0.83 − 1.05 − 0.18 0.00

aL: quantum number of the total angular momentum without the spins; p = (−1)L: parity; Se = 0; and Sp = (1 − p)/2. See also the entries of Table IV assigned to the Born–Oppenheimer
electronic ground state, X1�+

g .
bThe mass ratio is mp/me = 1836.15267247.
cEL[B(L)] is the lowest eigenvalue obtained in the non-linear variational optimization, and the optimized basis function parameters are B(L).
d�EL[B(L′)] = EL[B(L)] − EL[B(L′)] (L′ = 0, 1, 2, 3, 4), where EL[B(L′)] is the lowest eigenvalue of the linear variational problem solved for a set of basis functions parameter-
ized with B(L′), which was optimized for the angular momentum quantum number (L′).
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representation;59 (c) analytic expressions for the calcula-
tion of the overlap, the kinetic, and the potential energy
integrals following the prescriptions of Refs. 35 and 53;
and (d) stochastic variational optimization of the non-linear
parameters of the basis functions.

Our work is a practical adaptation of that described in
Refs. 35 and 53 for molecular systems with various (rotational
or orbital) angular momentum quantum numbers (L ≥ 0). An
accurate calculation of the energy levels of molecular systems
required the inclusion of large exponents (>4) for the poly-
nomial prefactors in the basis functions. In order to obtain
a numerically stable and practical implementation with large
exponents, we had to rearrange the integral expressions of
Refs. 35 and 53, introduce quasi-normalization for the basis
functions, use a logarithmic evaluation of products of poly-
nomials and factorials, and pursue a careful implementation
strategy.

It was an advantageous property of the basis functions
that upon a linear transformation of the Cartesian coordinates
their mathematical form remained unaltered, and only the ba-
sis function parameters (Gaussian exponents and global vec-
tor coefficients) had to be transformed. We did make use of
this simple transformation property during the integral eval-
uation and the parameter optimization. During the evaluation
of the integrals the operators were written in their simplest
form in terms of the coordinates.

Clearly, we had to choose some set of coordinates for the
parameter optimization, but we were able to exploit the ease
of re-parameterization of the basis functions in terms of differ-
ent coordinates. For the systems studied here, we have found
the best to generate and optimize the Gaussian exponents
corresponding to laboratory-fixed Cartesian coordinates,
while for the global vector coefficients some “well-chosen”
translationally invariant Cartesian coordinates performed
better.

In general, it is not trivial how to choose an appropriate
set of coordinates or there might be not only one but several
types of correlations in the system, which are represented ef-
ficiently by different sets of coordinates. To circumvent this
coordinate dilemma, we suggested a multiple-channel opti-
mization strategy for the optimization of the basis function
parameters. Indeed, due to the simple transformation prop-
erty of the basis functions upon a linear transformation of the
coordinates, the basis function parameters can be optimized
in terms of one or another set of the coordinates during the
course of the same calculation.

Besides the stochastic optimization (competitive selec-
tion and refinement35) of the non-linear parameters, we in-
cluded repeated fine-tuning cycles. In the stochastic opti-
mization procedure, we studied the effect of various random
number generators on the efficiency of the procedure, i.e.,
the convergence rate of the energy with respect to the com-
putational effort, and finally selected a log-normal distribu-
tion for each Gaussian exponent and normal distributions for
the global vector coefficients. We have proposed a sampling-
importance-resampling strategy for the parameterization of
the random number distribution, i.e., to be able to choose a
reasonably good sample mean and sample variance for the
probability distributions.

Our emphasis was on the calculation of energy levels and
wave functions with various quantum numbers of total spatial
angular momentum (rotational and orbital angular momenta
of the BO theory), parity, and spin quantum numbers. Though
in this work we restricted the presentation to the natural-parity
case, p = (−1)L only, we have preliminary results for the un-
natural parity case, p = (−1)L + 1 as well, which might be
presented in a later publication.

Although the optimization, especially the “fine-tuning”
of the basis function parameters could be certainly improved,
our primary goal was here to test the applicability of the pro-
cedure, and thus we calculated rotation-vibration energy lev-
els of the molecular H+

2 corresponding to the X̃ 2
�

+
g ground

and the Ã 2
�

+
u electronically excited states as well as ro-

tational energy levels of H2 assigned to the X 1
�

+
g ground

and to the B 1
�

+
u and a 3

�
+
g electronically excited states.

We also calculated three bound states of the positronium
molecule, Ps2, and the 7Li atom with various angular momen-
tum quantum numbers.

The assignment of the calculated energy levels to elec-
tronic states defined within the Born–Oppenheimer theory
was carried out based on the comparison of the calculated en-
ergy eigenvalues with the literature. It would be possible to
make the assignment based on the analysis of the calculated
wave function, which can be explored in a later work. The de-
velopment of such an assignment tool would allow us to better
understand the qualitative meaning of the parameterization of
the wave function, and thus could help the improvement of the
parameterization strategy and a development of a systematic
approximation scheme.

For future work, it would be interesting to calculate
rotation-vibration energy levels, for example, for the H2

molecule, which can be assigned to higher-lying electroni-
cally excited states of the Born–Oppenheimer theory. This
undertaking appears not to be a simple, straightforward task
in the present all-particle quantum mechanical approach. We
believe that these states could be calculated as resonances em-
bedded in the continuum of lower-lying energy levels of the
same symmetry.

Finally, we discussed the transferability of the basis
function parameters between rotational states of the H2

molecule. We have found that between neighboring rotational
levels the transferred parameters provided a satisfactory basis
set, which—without further optimization of the non-linear
parameters—, when used in a linear variational problem to
parameterize the basis functions corresponding to the actual
quantum numbers, provided a very good approximation to
the energy.
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