
Contribution to a Class of
Combinatorial Optimization Problems

DSc Dissertation

József Békési

University of Szeged
Szeged, 2022

 dc_2018_22

ii

 dc_2018_22

Contents

Preface 1

1 Bin Packing Problems 3
1.1 Introduction . 3
1.2 Algorithm Advanced Harmonic 4

1.2.1 Preliminaries . 4
1.2.2 Algorithm AH . 6
1.2.3 The method of the analysis 12
1.2.4 The parameters and the analysis of the algorithm 13
1.2.5 Conclusions . 14

1.3 Lower Bound for 3-Batched Bin Packing 14
1.3.1 Notations and definitions 14
1.3.2 Construction for K = 3 batches 15
1.3.3 Less efficient algorithms and strategies for any 3-BBP algo-

rithm . 17
1.3.4 Reduction on packing patterns 19
1.3.5 An LP model . 20
1.3.6 The lower bound . 22
1.3.7 Conclusions . 25

1.4 Bin Packing with Cardinality Constraints 25
1.4.1 Definitions and preliminaries 25
1.4.2 Lower bounds . 26
1.4.3 Conclusions . 33

1.5 NF-based Bounded-Space Bin Packing Algorithm 34
1.5.1 Definitions and preliminaries 34
1.5.2 An improved lower bound 35
1.5.3 The Algorithm NFFD-B3 37
1.5.4 Conclusions . 45

2 Scheduling Problems 47
2.1 Introduction . 47
2.2 Lower Bounds for Related Machines 48

2.2.1 Definitions and preliminaries 48
2.2.2 Combinatorial lower bounds 49
2.2.3 Computer search based lower bounds 51
2.2.4 Conclusions . 55

iii

 dc_2018_22

iv CONTENTS

2.3 Improved Analysis of an Algorithm for the CTP 55
2.3.1 Definitions and preliminaries 55
2.3.2 An improved lower bound 57
2.3.3 Tightness of the upper-bound 59
2.3.4 Conclusions . 60

2.4 A First Fit Type Algorithm for the CTP 60
2.4.1 Definitions and preliminaries 60
2.4.2 Algorithm First-Fit Decreasing 61
2.4.3 Theorems for scheduling jobs with equal delays 61
2.4.4 Theorems for two different delays 63
2.4.5 Lower bound for FFD . 66
2.4.6 Upper bound for FFD . 67
2.4.7 Conclusions . 77

3 Matrix Transpose Problem 79
3.1 Introduction . 79
3.2 Definitions and preliminaries . 81
3.3 Lower Bound in 2D . 82
3.4 Upper Bound in 2D . 84
3.5 Construction of Load Balancing Algorithm 85
3.6 Analysis of LBA . 87
3.7 Conclusions . 91

4 Route Planning for Public Transport 93
4.1 Introduction . 93
4.2 Definitions and preliminaries . 94
4.3 Modeling . 95

4.3.1 Search algorithm . 96
4.3.2 The objective function . 98

4.4 Results and analysis . 98
4.5 Conclusions . 99

Bibliography 101

Acknowledgement 109

Appendix A: The parameters of the algorithm AH 111

Appendix B: The results of the analysis of AH 115

 dc_2018_22

Preface

Combinatorial optimization is an interdisciplinary field involving discrete mathe-
matics and theoretical computer science. It is a rapidly growing area of research
and has become very important from applications point of view during the last
forty years. Combinatorial optimization models have been successfully applied in
such diverse areas as economics, environmental sciences, public transportation,
industrial production and many others. It can be also considered as a part of
operations research, which is a more general discipline. Several combinatorial
optimization problems are known, mainly originated from applications. Many of
these problems are hard to solve, even using modern computers. In the last forty
years, much research has focused on such problems. These can be the development
and analysis of mathematical models or related algorithms.

In this dissertation we focus on four discrete optimization problems. These are
the bin packing, machine scheduling, parallel routing and route planning prob-
lems. The first three chapter mainly deal with theoretical analysis of different
algorithms, giving bounds on their performance measures. The fourth chapter is
rather application oriented, when the aim was to develop an efficient algorithm
running on a computer for a real life problem. Some technical parts of the proofs
are given in two appendices.

The results given in the first three chapters of the dissertation are part of such
papers, that were written with co-authors. However, the author’s contribution
is significant in the results listed here and the co-authors agree with that. In
particular, such results that has been used by co-authors to obtain a scientific
degree are not presented here. In the text the source of the result is indicated by
a reference to the bibliography. In cases where a result needs to be mentioned for
the interpretation of subsequent text, but it is not the result of the author or the
work of the author is not significant in it, then the result is given without proof.
The author is grateful to his co-authors and colleagues for their support.

1

 dc_2018_22

2 CONTENTS

 dc_2018_22

Chapter 1

Bin Packing Problems

1.1 Introduction

In the classical one-dimensional bin packing problem a list L of a1, a2, . . . , an
elements from the interval (0, 1] is given, and we want to assign each item to a unit
capacity bin. The objective is to minimize the number of bins. In case of online
problems the input is not known completely in advance: items come one by one,
and an online algorithm assigns them to a bin immediately, irrevocably. These
online algorithms have been studied widely in the last decades. Their performance
can be measured by the asymptotic performance ratio, which is defined as follows.

For a list L, let OPT(L) denote the number of bins in an optimal packing
and let A(L) denote the number of bins that algorithm A uses for packing L.
If RA(N) denotes the supremum of the ratios A(L)/OPT(L) for all lists L with
OPT(L) = N , then the asymptotic competitive ratio (ACR) is defined as

R∞
A := lim supN→∞RA(N).

The absolute measure supI
A(I)

OPT (I)
known as the absolute competitive ratio is

also used sometimes to analyse bin packing algorithms. A standard method for
proving an upper bound for the asymptotic competitive ratio for an algorithm A
is to show the existence of a constant C ≥ 0 independent of the input, such that
for any input I, A(I) ≤ R · OPT (I) + C and then the value of the asymptotic
measure is at most R.

The classical bin packing problem was presented in the early 1970’s [84, 54, 55,
56]. It was introduced as an offline problem, but many of the algorithms initially
proposed for it were in fact online. Johnson [54, 55] defined and analysed the
simple algorithm Next Fit (NF), which tries to pack the next item into the last
bin that was used for packing, if such a bin exists, otherwise it opens a new bin
for the item. The asymptotic competitive ratio of this algorithm is 2 [54, 55].
If we keep open every bin while packing the actual item we can define several
algorithms. Among these the most known ones are First Fit and Best Fit. These
algorithms put the element into the first bin it fits, or into that bin where the
item fits the best, resp. For these algorithms R∞

FF = R∞
BF = 17/10, (see [54]).

The so-called bounded space algorithms were introduced by Lee and Lee [61].

3

 dc_2018_22

4 CHAPTER 1. BIN PACKING PROBLEMS

They defined the Harmonic Fit algorithm, which gets the elements online, but
only limited number of bins are available to put the item. They proved that
R∞
HF = 1.69103

To relax the strict online condition several relaxations have been investigated.
The so-called lookahead algorithms were considered by Grove [46]. A k-bounded
lookahead algorithm delays to pack an element until the next k − 1 items arrive.
Grove proved that the 1.69103 . . . ACR is achievable by these algorithms. The
presorted versions of NF, FF and BF are called NFD, FFD, BFD. They were
studied as well. In these versions, items are still presented one by one, but they
are sorted in a non-increasing order of sizes. For example, the approximation
ratio of NFD is (approximately) 1.69103 [5] and that of FFD is 11

9
≈ 1.22222 [54].

These presorted variants are not online algorithms. All of the above results use
asymptotic ratio. The optimal value of the absolute competitive ratio is known,
it is 5

3
[11]. A more detailed overview on the state of art of the bin packing

algorithms can be found in [31].

1.2 Algorithm Advanced Harmonic

1.2.1 Preliminaries

Already in much of the previous work on online algorithms for bin packing, items
were partitioned into classes by size. The simplest such classification is based on
harmonic numbers, leading to the Harmonic algorithm of Lee and Lee [61]. In
the harmonic algorithm of index k for an integer parameter k ≥ 2, subset j is the
intersection of the input and (1

j+1
, 1
j
] (where 1 ≤ j ≤ k − 1), and subset k of tiny

items is the intersection of the input and (0, 1
k
].

In these algorithms each subset is packed independently from other subsets
using NF (so for j ≤ k − 1, any bin for subset j, except for possibly the last
such bin, has j items, but for subset k, every bin except for the last bin for this
subset has a total size of items above k−1

k
), and for k growing to infinity, the

resulting competitive ratio is approximately 1.69103 [61]. The drawback of those
algorithms is that bins of subsets with small values of j can have relatively small
total size. For example, a bin of subset 2 may have total size just above 2

3
and a

bin of subset 1 may have just one item of size just above 1
2
.

The first idea that comes to mind is to try to combine items of those two
subsets into common bins. However, if items of class 2 arrive first, one cannot
just pack them one per bin, as this immediately leads to a competitive ratio of 2
if no items of subset 1 arrive afterwards. Lee and Lee [61] proposed the following
method to overcome this. A fixed fraction of items of subset 2 up to rounding
errors is packed one per bin and the remaining items are packed in pairs. Thus,
there are two kinds of bins for subset 2. The items we refer to here can only be
sufficiently small items, so there is a threshold ∆ ∈ (1

2
, 2
3
) such that items of sizes

in (∆, 1] and (1−∆, 1
2
] are packed as before, while the algorithm tries to combine

an item of size in (1
3
, 1 − ∆] with an item of size in (1

2
,∆]. Even if those two

items (one item of each one of the two intervals) are relatively small, still their

 dc_2018_22

1.2. ALGORITHM ADVANCED HARMONIC 5

total size is above 5
6
≈ 0.83333. This last algorithm was called Refined-Harmonic,

and its competitive ratio is smaller than 1.636. Ramanan et al. [70] designed two
algorithms called Modified Harmonic and Modified Harmonic-2. The first one has
a competitive ratio below 1.61562, and it allows to combine items of many subsets
with items of sizes above 1

2
and at most ∆. The second algorithm does not use

only a single value of ∆, but splits the interval (1
2
, 1] further, allowing additional

kinds of combinations. Its competitive ratio is approximately 1.612. For most
subsets of items (where k is chosen to be in [20, 40] in all these algorithms),
the last two algorithms pack some proportion of the items in groups of smaller
sizes, to allow it to be combined with an item of size above 1

2
. Intuitively, for

an illustrative example, assume that ∆ = 0.6, and consider the items of sizes in
(1
11
, 1
10

]. The items that are not packed into groups of ten items should be packed
into groups of four items. For some of the subsets the proportion is zero, and
they are still packed using NF. Ramanan et al. [70] showed, that the drawback
of such algorithms is that no matter how many thresholds there are, there can
be pairs of items that can be combined into the bins of an optimal solution while
the algorithm does not allow this as it has fixed thresholds. Specifically, such
algorithms allow to combine items of different intervals only in the case when the
largest items of the two intervals fit together into a bin. This is the case with the
next two harmonic type algorithms as well.

The next two papers, that of Richey [73] and that of Seiden [79] deal with
a more complicated algorithm where many more subsets can be combined. The
general structure is proposed in [73], and a full and corrected algorithm with its
analysis is provided in [79]. For illustration, the items packed into smaller groups
are called red and those packed into bins with maximum numbers of items of the
subset are called blue. The goal is to combine as many bins with blue items with
bins having red items as possible. Bins with red items always have small numbers
of items, to allow them to be combined with relatively large items of sizes above
1
2
. The analysis is far from being simple, though it leads to a competitive ratio

of at most 1.58889. The analysis of [79] is based on a complicated notion called
weight system.

The carefully designed subset structure eliminates many worst-case examples,
but the drawback mentioned above still remains. Recently, Heydrich and van
Stee [74, 50] proposed to use a method introduced by Babel et. al [4], where
some items are packed based on their exact size rather than by their subset. We
adopt the approach of [74, 50] and we apply the methods of Babel et. al [4] on
the largest items of sizes in (1

3
, 1]. This approach means to combine items of sizes

above 1
2

with items of sizes in (1
3
, 1
2
] based on their exact sizes. Moreover, the

approach involves combining pairs of items of subsets of sizes contained in (1
3
, 1
2
]

while keeping the smallest items of such a subset to be matched with items of
sizes above 1

2
(and larger items of such a subset are used to be packed into pairs),

as much as possible. Prior to the work of [74, 50], all previous algorithms for
classic bin packing that partition items into classes assumed that an item of a
certain subset has the maximum size when its possible packing was examined.
This method simplifies the algorithm and its analysis, but it is not always a good

 dc_2018_22

6 CHAPTER 1. BIN PACKING PROBLEMS

strategy as it excludes the option of combining items that can fit together into a
bin in many cases. Heydrich and van Stee [74, 50] proved a competitive ratio of
1.5816.

In Subsection 1.2.2 we present the algorithm Advanced Harmonic, which has
the current best asymptotic approximation ratio. This value is approximately
1.5783 (see [7]).

1.2.2 Algorithm AH

In algorithm AH, we do not just have red and blue items, but we potentially allow
several kind of bins (that is, several and potentially a large number of colors for
items of a given class), and furthermore items may change their colors once further
items arrive. Due to these differences we will not use the illustration via colors of
items in the description of our algorithm. For example, for the subset of items of
sizes in (1

15
, 1
14

] we group items into subsets of 14 items or three items or just one
item. We also use bins of the smallest items (our value of k is 43) where the total
size of items is at most 17

60
, to allow them to be combined (among others) with

items of sizes in (1
2
, 43
60

]. These two features are possible due to the simple nature
of our analysis, and they are crucial for getting the improved bound. Note that
all items of sizes in (0, 1

43
] are treated together by the algorithm and its analysis.

To handle the different subsets of items we use the concept of containers. A
container is a set of items of one class (in the partition of potential inputs into
items of similar sizes, called classes), and it can be complete if its planned number
of items has already arrived or incomplete otherwise, but it is treated in the same
way in both cases. Containers are of two types, either positive or negative, and
a bin may contain at most one of each of them. The goal is to have as many
bins as possible with both a positive and a negative container. Roughly speaking,
positive containers have total sizes above 1

2
and negative containers have total

sizes of at most 1
2
. This last statement is imprecise as in most cases we consider

volumes and not exact sizes, where volumes are based on the maximum sizes
for the corresponding classes. There is one exception, which is containers with
one item of size above 1

3
, where the exact size is taken into account (both by

the algorithm and the analysis), and it is defined to be the volume. A positive
container and a negative one fit together if their total volume does not exceed 1.
Our positive and negative containers have some relation to the concepts used in
[79].

Similarly to previous algorithms’ definitions, AH has a sequence of boundary
points that are used in its precise definition: 1 = t0 > t1 = 1

2
> t2 > · · · > tb =

1
3
> · · · > tM > tM+1 = 0. That is 1/2 and 1/3 are always boundary points, and

there is no boundary point in (1/2, 1).
For every j, all items of sizes in the interval (tj, tj−1] are called items of class

j. We say that a class of items (and every item of this class) is huge if j = 1, it is
large if 1 < j ≤ b (these are all items of sizes above 1/3 and at most 1/2), small
if b < j ≤M , and tiny if this is the class of items of size at most tM . That is, the
last class is the one of tiny items, and in general the index of a class corresponds
to the index j such that tj is the minimal size of any item of the class.

 dc_2018_22

1.2. ALGORITHM ADVANCED HARMONIC 7

Our algorithm will pack items into containers and pack containers into bins.
As the algorithm is online, a container will be packed into a bin immediately when
it is created, even though it may receive additional items later. In the last case,
when we say that an item is packed into a container, this means that the bin
containing the container receives that item. Any container will contain items of a
single class, and at most two different containers can be combined (packed) into
a bin. We provide additional details on combining two containers into a bin later.
Every container of items that are not tiny has a cardinality associated with it,
and this is the maximum number of items that it is supposed to receive.

Let γj = ⌊ 1
tj−1

⌋ for j ≤ M . For class j that is either large or small (but not

huge or tiny, i.e., for values of j such that 2 ≤ j ≤ M holds), and for every i
(where 1 ≤ i ≤ γj) there is a non-negative parameter αij, where 0 ≤ αij ≤ 1. The
value αij will denote the proportion of number of containers of cardinalities i of
class j items among the number of containers of class j. The sum of proportions
satisfies

∑
i αij = 1 for all j. Such containers that will eventually receive i items

of class j (unless the input terminate before this becomes possible) will be called
type i containers of class j. That is, intuitively if we let x denote the number of
containers for items of class j, we will have approximately αij ·x type i containers
each of which having exactly i items of class j. For every j such that 2 ≤ j ≤M
and every i, we let Ai,j = i · tj−1. While the values αij are defined so far only for
large and small classes, we consider one huge item as a type 1 container. Note
that the values of αij are not proportions of items but of containers for class j,
and the resulting proportions of items can be computed from them.

For classes of large items the notion of the cardinality of a container is slightly
more delicate, and we will have exactly four possible types of containers. The
first type is a regular type 2 container (already) containing exactly two items of
this class. The second type is a declared type 2 container, where this type consists
of containers for which the algorithm already decided to pack two items of this
class in the container (so the planned cardinality of the container is 2) but so far
only one such item was packed into the container. One of the few next arriving
items of this class, if they exist, will be packed there, in which case the type
will be changed into a regular type 2 container. The third is a regular type 1
container, where such a container has one item of the class and cannot ever have
an additional item of this class in future steps. Such a container will be combined
with a container of another class that is packed into the same bin. The fourth and
last type of a container of large items is a temporary type 1 container. A container
of this last type currently has one item of the class but sometimes it will get
an additional item of this class in future steps and in this case its type will be
changed to regular type 2 at that time. Its type can change to declared type 2 or
regular type 1 as well, but in those cases it does not happen as a result of packing
a new item to this container. Given a class of large items, the number of declared
type 2 containers will be a constant throughout the execution of the algorithm.
The numbers of containers of type 1 of both kinds and containers of regular type
2 can grow unbounded as the length of the input grows. The set of the union of
containers of regular type 2 and declared type 2 is called type 2 containers, and

 dc_2018_22

8 CHAPTER 1. BIN PACKING PROBLEMS

the set of the union of containers of regular type 1 and temporary type 1 is called
type 1 containers. The parameters α1j and α2j of a large class j determine the
approximate proportions of type 1 containers and type 2 containers, respectively.

For class M + 1 of the tiny items, instead of the definitions above, there is
a sequence of p possible upper bounds on the total sizes of items packed into
containers of this class: 1 ≥ Ap,M+1 > Ap−1,M+1 > · · · > A1,M+1 ≥ tM , and we
let the positive parameters αi,M+1 > 0 for i = 1, . . . , p denote the proportions
of numbers of containers of class M + 1 with items of total size in the interval
(Ai,M+1− tM , Ai,M+1] (this is the planned total size of items for such a container).
Such containers will be called type i containers of classM+1. The values of αij for
all i, j are selected heuristically via a search procedure carried out by a computer
program. Any such set of parameters give a different algorithm and our proof of
the numerical value of the upper bound is for one specific set of parameters that
we provide explicitly.

The volume of a container of type i of class j is defined as follows: If i = 1
and 1 ≤ j ≤ b (that is, for items of sizes above 1/3), the volume of the container
is the size of its (unique) item, and otherwise (i = 2 and 2 ≤ j ≤ b or i ≥ 1
and j > b) it is Ai,j. That is, the volume is usually simply the largest total size
that the container can occupy, but for a container that contains a single large or
huge item, the volume is the exact size of the item. There is one exception where
the bin already contains one large item and it is planned to contain another item
of the same class. In most cases we would like the volume of a container to be
known when it is created, which is possible for containers such that their planned
contents are known (in the sense that for example type i containers of a non tiny
class j are planned to contain i items finally). However, for large items such
containers with a single item may be temporary type 1 containers, in which case
there is still no planning of contents for them. In this last case, the volume of the
container is the size of its unique item. However, the volume of such a container
may change in the case the algorithm decides to pack another item of the same
class into this container and transforms it into a type 2 container.. The volume of
a declared type 2 container of class j is A2,j = 2 · tj−1. Thus, the volume is based
on its complete contents, no matter whether they are present already or not, as
it is the case for classes of small or tiny items.

We say that a container is negative if its volume is at most 1/2 and otherwise
it is positive. Obviously, two positive containers cannot be packed into one bin.
We will also not pack two or more negative containers into a bin together. Thus, a
bin containing two containers will contain one positive container and one negative
container, and no bin will contain more than two containers.

The rules for packing containers. The algorithm AH will pack items
into containers and pack containers into bins according to the rules we will define.
Recall that the packing of containers into bins will be such that every bin will have
at most one positive container and at most one negative container. Obviously, a
bin is non-empty if it has at least one container and at most two containers. We
say that a non-empty bin is negative if it has a negative container and does not
have a positive container, it is positive if it has a positive container and does not

 dc_2018_22

1.2. ALGORITHM ADVANCED HARMONIC 9

have a negative container, and it is neutral if it has both a negative container and
a positive container.

It is unknown whether a temporary type 1 container will eventually be positive
or negative. Therefore, such a container will not be combined in a bin with another
container as long as its type is not changed. Moreover, it is considered as a negative
container until it changes its type (so its bin is negative as long as the container
is of temporary type 1). Specifically, it remains a negative container if a positive
container joins it and its bin becomes neutral. In this case it becomes a regular
type 1 container and remains negative, and it becomes a positive container if its
type changes to type 2. It can also happen that a temporary type 1 container will
remain such till the termination of the input and the action of AH and its bin
remains negative. It is important to note that the difference between regular type
1 containers of a large class and temporary type 1 containers of the same class
is that each of the former containers is already packed into a bin with a positive
container (of some class), while the latter are not packed with other containers.
In fact, the corresponding items are placed into their own bins, one item per bin.

For every class j, we denote by nj the number of containers of class j. Let nij
denote the number of containers of type i of class j. We often consider the values
nj and nij just prior to the packing of a new item.

We say that two containers fit together if their total volume is at most 1.
In what follows, when we refer to packing an item e - or packing a container
containing e - into existing bins using Best Fit, we refer to packing e into the bin
with a container of largest volume where the existing container and e fit together.
For the original version of Best Fit, actual sizes are taken into account, but here
we base this rule on volumes. Since for a container with a single large or huge
item the volume is equal to the size of the item, if we select one such container
then our action is equivalent to the standard application of Best Fit.

Packing rules of a new item. Next, we define the packing rules of the
algorithm when a new item of class j arrives. The algorithm is defined for each
step, based on the class of the new item.

A huge item. Recall that a huge item is immediately packed into a positive
container containing only this item. Best Fit is applied on volumes, as explained
above, to pack the created container into an existing negative bin, such that the
two containers fit together. The only case where the new huge item joins a bin
with a large item of some class j′ is the case where the container of class j′ is a
temporary type 1 container, and in this case the type of this container of class
j′ is changed into regular type 1. If no bin can accommodate the container of
the new item according to those packing rules, that is, for every negative bin, the
total volume together with the new item is too big or there is no negative bin at
all, then we use a new bin for the positive container of the new item and this new
bin becomes a positive bin.

An item of a class of small or tiny items. For these classes we define the
concept of an open container. Informally, an open container of class j can receive
at least one additional item of class j. As a new container is introduced in order
to pack an item, any container (of any type and class) already has at least one

 dc_2018_22

10 CHAPTER 1. BIN PACKING PROBLEMS

item of the corresponding class. If b < j ≤ M , an open type i container of class
j is one where the total number of the items in the container is strictly smaller
than i. Once such a container receives i items, it is closed. For j = M + 1, a type
i container of this class will be open starting the time it is created and while the
total size of items in it is positive and at most Ai,M+1 − tM . Once it reaches a
total size above Ai,M+1 − tM , it will be closed. For all cases of packing a small
or tiny item, a new container of some class will be used only if there is no open
container of the same class, and thus, in particular, there will be at most one open
container for each j (and the corresponding value of i will always be one such that
αij > 0).

When a new item of class j (such that j > b) arrives, if there is an open
container of some type i of class j, then pack the item there. There can be at
most one such container, so there are no ties in this case. Otherwise, open a
new container for it (the details of the type are given below). After packing the
new item into the container (and packing its container into a bin if it is a new
container), close the container if necessary, based on its type and the rules above.

In the case that a new container is used for the item, we define the process
of packing the item in more detail. Prior to packing the item, we define the type
of the new open container. As the item is not packed yet, nj is the number of
containers of class j excluding the container opened for the new item. Find the
minimum value of i such that αij > 0 and so far there are at most ⌊αij ·nj⌋ type i
containers of class j (i.e., nij ≤ ⌊αij · nj⌋, where the values nij do not include the
new container which will be opened). Such an index i exists as otherwise there
are more than nj containers of class j. More precisely, since

∑
i αi,j = 1, there

is always a value of i satisfying that αij > 0 such that so far we opened at most
⌊αi,j · nj⌋ type i containers of class j. Open a new type i container of class j
containing the new item (increasing both nj and nij). Observe that this opening
of a new container defines its volume as well as whether it is a positive container
or a negative container.

Next, we decide where to pack this new container. First consider the case
where this container is a negative container. Then, if there is a positive bin, such
that the new container fits into the bin according to its volume, then use that bin
to pack the new container. This last case includes the possibility that the positive
container is a type 2 container of a large class (regular or declared). If there are
multiple options for choosing a bin, one of them is chosen arbitrarily.

Otherwise, (there is no positive bin where the new negative container can be
added), the algorithm checks the option of using a bin with a temporary type 1
container of some class of large items. Assume that there is a negative bin B such
that the following two conditions are satisfied. The first condition is that the bin
B has a temporary type 1 container of class j′ such that a positive container of
class j′ (with two items) will fit together with the new (negative) container. The
second condition is that there are at most ⌊α2j′ ·nj′⌋−1 type 2 containers of class
j′ (before the packing of the new item is performed). Then, pack the new negative
container into B, and define the container of class j′ packed into B as a declared
type 2 container. This last container of class j′ will get one of the next items of

 dc_2018_22

1.2. ALGORITHM ADVANCED HARMONIC 11

class j′ that will arrive, which will happen before any new container is opened for
any new class j′ item, see below. If there are multiple options for choosing B,
one of the classes of large items is chosen arbitrarily (among those that can be
used), and a temporary type 1 container of this class with maximum volume is
selected, i.e., we use Best Fit in this case. This last packing step is possible as a
temporary type 1 container is never packed with another container into a bin. If
another container joins it, its type is changed.

Otherwise, (if there is no suitable positive bin and no class of large items
has a suitable temporary type 1 container that can be used under the required
conditions), pack the new negative container into a new bin.

Finally, consider the case where the new container is a positive container.
Then, if there is a negative bin whose container is not a temporary type 1 con-
tainer, such that the new container fits together with it, then use such a bin to
pack the new container. Otherwise, if there is a temporary type 1 container with
one large item of a class j′ where the new container fits, then pack the new positive
container into this bin and define the container of class j′ in this bin as a regu-
lar type 1 container. The class j′ can be chosen arbitrarily if there are multiple
options, and among the temporary type 1 containers of class j′, one of maximum
volume (out of those that can be used) is selected, i.e., once again we use Best
Fit. Otherwise, pack the new positive container into a new bin.

A large item of a class j. If there is a declared type 2 container of class
j, pack the item there as a second item and change it into a regular type 2
container, breaking ties arbitrarily. This packing rule is checked first, and we
apply it whenever possible. We continue to the other cases in the situation where
there is no such declared type 2 container.

If the number of type 2 containers equals ⌊α2j · nj⌋ (that is, we should not
increase the number of type 2 containers at this stage), then pack the new item
into a new negative container. To pack the container into a bin, do as follows. If
there is a positive bin where the new negative container fits, then use Best Fit to
pack it as a regular type 1 container of class j (its volume is defined accordingly
as the size of the new item) together with a positive container. This positive
container is not of large items, as three large items cannot be packed into a bin
together. Otherwise the new container is packed into a new bin, in which case it
is defined to be a temporary type 1 container.

Otherwise (that is, the number of type 2 containers is strictly smaller than
⌊α2j ·nj⌋), we will increase the number of regular type 2 containers or the number
of declared type 2 containers of this class in the current iteration as follows. If
there is a negative bin B where a type 2 container of class j fits, then pack the
item into a new declared type 2 container of class j and pack this container into
this bin B. Otherwise, if there is a temporary type 1 container of class j, then we
pack the new item using Best Fit (considering only temporary type 1 containers of
class j, and selecting such a container of largest volume), and change the type of
this container into a regular type 2 container. Otherwise (all containers of class j
are either regular type 1 or regular type 2, we should increase the number of type
2 containers, and a new container with two items of this class cannot be packed

 dc_2018_22

12 CHAPTER 1. BIN PACKING PROBLEMS

into an existing bin), we open a new declared type 2 container for the new item
and open a new bin for this declared type 2 container and pack it there.

1.2.3 The method of the analysis

Let a′ = 1 − smin/2 where smin is the smallest item size in the examined input,
and let a be the smallest volume of a positive container that is unmatched, if it
exists. If no unmatched positive container exists, let a = a′. If a > a′, decrease
the value of a to be a′. A simple property of the algorithm is that it tries to
match a positive container and a negative container whenever possible. Thus
every positive container of volume smaller than a is matched.

We define a finite set of scenarios according to the value of 1−a. To do that we
define a set of values V as follows. V = {Ai,j, 1 − Ai,j : j = 2, 3, . . . ,M + 1, αij >
0} ∪ {t1, t2, . . . , tM , tM+1} and V ′ = {x ∈ V : x ≤ 1/2} (in particular, 1

2
∈ V ′).

Note that the set V ′ contains (among other) all boundary points tj (for all j ≥ 1),
even for values of j for which α1j = 0. The name of a scenario is an interval
(x, y] between consecutive values in V ′. Using this partition, we ensure that if the
scenario is (x, y], then there is no i ≥ 2 and class j such that αij > 0 and the
volume of a container of type i of class j is in (x, y) or in (1 − y, 1 − x).

The first step for analyzing each scenario is to obtain a good weight function
for the scenario, in the sense that the analysis will be as tight as possible and
can be done using a computer assisted proof within a small running time. The
weight function defines size based weights for values in (0, 1]. The goal is to define
weights such that the cost of the algorithm is roughly the total weight of all input
items. A weight function satisfying this requirement is called here valid, and if
the target competitive ratio is R, the cost of an optimal solution is at least the
total weight divided by R. This can be proved by showing that no bin can contain
items of total weight above R. Then, for an input I, letting w(I) denote its total
weight, and as defined above, letting OPT (I) the optimal cost for I, and A(I) the

number of bins used by A, we will have A(I) ≤ w(I) + c, OPT (I) ≥ w(I)
R

, which
shows that A(I) ≤ R ·OPT (I) + c. This last argument is the standard argument
for weight functions based analysis [54, 55, 56, 61, 70].

In order to define a suitable function, we solve a linear program which has only
four variables w, u, v and R (in some cases it actually has only two variables w
and R). More precisely, we will provide a feasible solution for this linear program
that is very close to the optimal one but we only use its feasibility and do not
prove that it is almost optimal. The weights of specific sizes will be based on the
values w, u, v (or just on w, if the others are undefined), and on some of the
parameters of the algorithm, namely on the αij values for the given class.

We define a quantity for each container called the required weight of the con-
tainer, and its goal is to introduce a uniform value such that weights of items are
defined based on these values, in order to satisfy all requirements. If the threshold
class k (the class containing 1−a), is a large class, we keep this quantity undefined
for that class. For a positive container of volume at least a, the required weight of
the container is 1. For a positive container of volume in the interval (1/2, a), the

 dc_2018_22

1.2. ALGORITHM ADVANCED HARMONIC 13

required weight of the container is denoted as w. This will be a decision variable of
the linear program. The required weight of a negative container is 1 if its volume
is larger than 1−a and otherwise its required weight is 1−w. We ensure that the
required weight of a container depends only on the index of the scenario (x, y] and
not the specific value of a in the interval [1−y, 1−x). A related though simplified
approach was used for online rectangle packing [49], where weight functions were
also used instead of weight systems, and the variable w was set to 1

2
for all cases.

The weight of a huge item is 1 if its size is at least a and w otherwise. The
weight of an item of class j ≤ M such that either j ̸= k or j > b is the ratio
between the average required weight of a container of class j and the average
number of items in a container of class j. The weight of a tiny item of size s is s
times the ratio between the average required weight of a container of tiny items
and the average lower bounds on the total size of items in a container of tiny items.
The weight of items of a large class is as follows. An item of this class has weight u
if its size is at most 1− a and otherwise a weight of v. We find linear inequalities
on the variables u, v, w that ensure that the resulting weight function is valid.
By solving a linear program we can find such values of u, v, w that minimize the
corresponding competitive ratio that can be proven using this weight function. In
this linear program the goal is to minimize R that is an upper bound on the total
weight of items that can fit into one bin subject to the additional constraints on
u, v, w ensuring that the resulting weight function is indeed valid.

In this way we get a table showing for each scenario the set of the values of
u, v, w (or only w for scenarios where the threshold class is not large), that define
the weight function used for the scenario. When we have these values, we can
check the upper bound for that scenario by solving the corresponding knapsack
problem using the weight function. This is done by a branch and bound procedure
implemented for this purpose. The program code of the analysis can be found on
the following link:
http://www.inf.u-szeged.hu/∼bekesi/kutatas/binp onlinealg workspace.zip.

1.2.4 The parameters and the analysis of the algorithm

We provide all required data for defining the algorithm and its analysis according
to our method of analysis. Recall that we use exact values of parameters and
exact calculations. In many cases we write an approximate value in the table in
order to provide intuition, but these values were not used in our calculations.

The table in Appendix A contains the values αij for all j such that 2 ≤ j ≤ 5
and j ≥ 166. The values αij are only given for i such that αij ̸= 0.

For 6 ≤ j ≤ 165, α1j = 22145926
78181827

≈ 0.2832618, α2j = 56035901
78181827

≈ 0.71673816. For

these values of j, tj = 0.35 − j−5
9600

and tj−1 = 0.35 − j−6
9600

. For class 166, the right
endpoint is 0.35− 160

9600
= 1

3
. There are many boundary points between 1

3
and 0.35

as AH packs such items carefully, and we would like very similar pairs of such
items to be packed together in one bin of the algorithm.

First, consider the case where the scenario is such that k is not a large class, so
it is small or tiny. For all scenarios whose interval (x, y] is contained in (0, 1

6
], we

 dc_2018_22

14 CHAPTER 1. BIN PACKING PROBLEMS

use w = 0, and find R < 82081796062891
52009705144320

≈ 1.57820153. The scenarios contained in
(3
10
, 1
3
] also have common features. Every scenario has the form (3

10
+ ℓ−1

4800
, 3
10

+ ℓ
4800

]
for 1 ≤ ℓ ≤ 160, w = 413913

524288
≈ 0.7894764, and

R <
10060574276093395247

6374352691333693440
≈ 1.57828956 .

The remaining cases are shown in the table in Appendix B. The values in the
right column (UB) are the bounds we obtained on the total weight of a bin using
the branch and bound procedure.

The case where k is a large class is also given in the table in Appendix B.
Here, for each scenario, we present the values of u, v, and w, and the resulting
upper bound on the total weight of a bin as computed by our branch and bound
procedure. The program code of the analysis can be found on the following link:
http://www.inf.u-szeged.hu/∼bekesi/kutatas/binp onlinealg workspace.zip.

Using the tables in Appendix B, we completed the proof of the following the-
orem.

Theorem 1.2.1 ([7]) The competitive ratio of AH is at most 1.57828956.

1.2.5 Conclusions

In this section we presented the design and analysis of the first algorithm of asymp-
totic competitive ratio strictly below 1.58. Specially, we provided an algorithm
AH (Advanced Harmonic) whose ACR does not exceed 1.57829. Currently this
is the algorithm with the best ACR for the online one-dimensional bin packing
problem.

1.3 Lower Bound for 3-Batched Bin Packing

1.3.1 Notations and definitions

In this section we are dealing with a special relaxation of the online problem. The
batched bin packing problem (BBPP) was defined by Gutin et al. (see [47]): the
elements come in batches and one batch is available for packing in a given time.
Each batch may contain different sizes of items, and any batch can be empty. If
we have K ≥ 2 batches then we speak about K-BBPP.

A batched algorithm packs the batch completely before the next batch arrives.
It is clear that if each batch contains one element, then we have the classical online
problem, and if only one batch is coming then the problem is the general (offline)
one-dimensional BPP.

Let us consider an input sequence L, which is a batched sequence, i.e. L =
{B1, B2, . . . , BK}, where Bj is a set of elements, 1 ≤ j ≤ K. The set of all
batched sequences exactly with K batches is denoted by B(K). Let A be a
batched algorithm, then for BBPP the ACR is defined as follows.

R∞
A,K := lim sup

N→∞

{
A(L)

OPT(L)
: L ∈ B(j), j ≤ K, OPT(L) = N

}
.

 dc_2018_22

1.3. LOWER BOUND FOR 3-BATCHED BIN PACKING 15

In [47] the authors gave a 1.3871 . . . lower bound for the ACR of any on-line 2-BBP
algorithm. It is clear that

R∞
A,i ≤ R∞

A,j ≤ . . . , if 1 ≤ i < j <∞,

and such an algorithm A is interesting for which R∞
A,i < 1.5783 holds, where 1.5783

is the best known upper bound for the one-dimensional online bin packing algo-
rithms [7]. In the paper [36] Dósa published an upper bound of 19

12
= 1.58333 . . .

for 2-BBPP.
In this section we investigate the case 3-BBPP, and we present a 1.51211 . . .

lower bound for its ACR (see [6]). The structure of the section is the following.
First we define a concatenated list of batches which we will use to prove a lower
bound and we give tight bounds for the optimal packing of the batches of given
instances. Subsection 1.3.3 investigates the possible strategies of the 3-batched
BBP algorithms. To simplify our later discussions we make some reductions in
subsection 1.3.4 on packing patterns of the algorithms under investigation. In
subsection 1.3.5 we introduce an LP model to get the desired lower bound for
R∞
A,3. Based on the LP model we give the lower bound for the ACR of any 3-BBP

algorithm in subsection 1.3.6.
We determine this bound as a solution of a linear optimization problem, and

we use theoretical analysis.

1.3.2 Construction for K = 3 batches

The construction is the following:

� The first batch B1 contains n1 = 6jn pieces of small items – denoted by a1 –
with equal sizes. Let j ≥ 4 be a fixed integer, then the size of each element
in the batch is s(a1) = 1/6j = ε.

� In the second batch one of the lists B2,k will be given to be packed. List B2,k

contains n2,k = 6j
j−kn pieces of a2,k items with size s(a2,k) = 1

3
+ kε − ε

3
=

1
3

+ ε3k−1
3

, and 1 ≤ k ≤ j − 1.

� The third batch B3,k follows the batch B2,k. The number of elements in B3,k

depends on the second batch. If we packed the list B2,k in the second step
then B3,k contains n3,k = 6j

j−kn pieces of a3 items with sizes s(a3) = 1
2

+ ε
3
.

To understand this structure it is important to see: the kth list among the second
batches and the third batch with n3,k elements belonging to B2,k form an insep-
arable ”couple”. If the list B2,k has been chosen then B3,k contains n3,k items.
To get a lower bound we investigate those three batches which consist of the con-
catenated lists (B1, B2,1, B3,1), (B1, B2,2, B3,2), . . . , (B1, B2,j−1, B3,j−1). In fact, we
will prove later, that we do not need to take into account all of these batches. It
is enough to consider only a part of them. The following lemmas are true.

Lemma 1.3.1 ([6]) OPT(B1) = n.

 dc_2018_22

16 CHAPTER 1. BIN PACKING PROBLEMS

Proof In the first batch there are items with equal sizes. We get optimal packing,
if any bin contains as many items as possible. The maximum number of a1 items
in a bin is 1/ε = 6j. Thus OPT(B1) = n. □

Lemma 1.3.2 ([6]) For any k, 1 ≤ k ≤ j − 1, OPT(B1, B2,k) = 3j
j−kn.

Proof Since 1
3
< s(a2,k) ≤ 1

2
, so packing only the items of the second batch we

need at least
n2,k

2
= 3j

j−kn bins. Therefore

OPT(B1, B2,k) ≥
3j

j − k
n. (1.1)

Let us pack the elements of B2,k into bins, 2 in each bin. Then every bin will have

1 − 2s(a2,k) =
1

3
− 2ε

3k − 1

3

empty space. Since 2(j − k)ε = 1
3
− k

3j
and

2ε
3k − 1

3
=

1

3j

3k − 1

3
<

k

3j
.

Therefore we can pack 2(j−k) elements from B1 into each bin which has 2 pieces
from the batchB2,k. Thus, into the 3j

j−kn bins we can put all the 2(j−k) 3j
j−kn = 6jn

items from the batch B1. Therefore

OPT(B1, B2,k) ≤
3j

j − k
n. (1.2)

So, (1.1) and (1.2) give together the statement of the lemma. □

Lemma 1.3.3 ([6]) For any k, 1 ≤ k ≤ j − 1, OPT(B1, B2,k, B3,k) = 6j
(j−k)n.

Proof The proof is similar to the one in the previous lemma. Any item from the
third batch needs its own bin. Therefore

OPT(B1, B2,k, B3,k) ≥
6j

j − k
n. (1.3)

Into each bin we can pack a further item from the second batch. As n2,k = n3,k,
all items from the second batch can be packed into these bins. Now in each bin
1 − a2,k − a3,k = 1/6 − kε empty space remained. Since (j − k)ε = 1

6
− k

6j
, j − k

items will fit here from the batch B1. So, all (j − k) 6j
j−kn = 6jn items from the

batch B1 can be packed into the existing bins. Therefore

OPT(B1, B2,k, B3,k) ≤
6j

j − k
n. (1.4)

From (1.3) and (1.4) the statement of the lemma follows. □

 dc_2018_22

1.3. LOWER BOUND FOR 3-BATCHED BIN PACKING 17

Let us denote by (i1, i2, i3)1, (i1, i2, i3)2,k, and (i1, i2, i3)3,k the type of a bin after
packing the batch B1, B2,k, and B3,k, respectively. If a bin is in status (i1, i2, i3)2,k
then we do not started to pack the elements of B3,k, therefore it is obvious that for
any (i1, i2, i3)2,k of bin i3 = 0. We call a triplet (i1, i2, i3) as valid packing pattern
(or feasible packing-pattern) if

i1s(a1) + i2s(a2,k) + i3s(a3,k) ≤ 1.

The set of all feasible packing-patterns will be denoted by V . We define the subsets

Vt = {v ∈ V | it > 0 and ir = 0, for r < t}, t = 1, 2, 3.

Clearly, Vt ∩ Vr = ∅ if t ̸= r.
Let us denote by V2,k the set of all opened bins after having packed the elements

of B2,k. There will be bins which belong to V1, and some of them will belong to
V2. Then

V2,k = V1 ∪ V2.
We can define similarly V3,k, and

V3,k = V1 ∪ V2 ∪ V3.

It is important to emphasize that if we open a bin while we pack the elements of
the batch B1, then its type is (i1, i2, i3)1 and it belongs to V1 i.e. (i1, i2, i3)1 ∈ V1. If
we put items from B2,k into this bin, then i2 > 0, therefore its type will be changed
to (i1, i2, i3)2,k, and it will belong to V2,k ⊃ V1 i.e. its type will be (i1, i2, i3)2,k, but
this bin henceforward will belong to V1.

Let xki1,i2,i3 denote the number of bins which contain exactly i1, i2, i3 pieces
from the lists B1, B2,k, B3,k, respectively.

To understand the following proofs we remind the reader that among the
batches any batch may be empty, so it is possible that after the first (second)
batch the 3-batched algorithm will not receive any element.

1.3.3 Less efficient algorithms and strategies for any 3-
BBP algorithm

Lemma 1.3.4 ([6]) Let A be a batched algorithm. If A packs the elements of B1

and B2,k batches, and it does not open a new bin while packing the elements of
B2,k then R∞

A,3 ≥ 3.

Lemma 1.3.5 ([6]) Let A be a batched algorithm. If A packs the elements of B1,
B2,k and B3,k batches, and it does not open a new bin while packing the elements
of B3,k then R∞

A,3 ≥ 2.

Because of Lemmas 1.3.4 and 1.3.5 it is enough to investigate only those batched
algorithms for which R∞

A,3 < 2. On the other hand, from theoretical point of view,
we are interested in those algorithms, for which R∞

A,3 ≤ 1.6.
Let us suppose that the algorithm put into a bin i1 pieces of a1 items (1 ≤

i1 ≤ 6j). Then a bin will be filled at the level i1a1. According to the value of i1,
the bins can be classified as follows.

 dc_2018_22

18 CHAPTER 1. BIN PACKING PROBLEMS

� Class 1.1. 1 − i1a1 < a2,k.

� Class 1.2. a2,k ≤ 1 − i1a1 < a3,k.

� Class 1.3. a3,k ≤ 1 − i1a1 < 2a2,k.

� Class 1.4. 2a2,k ≤ 1 − i1a1 < a2,k + a3,k.

� Class 1.5. a2,k + a3,k ≤ 1 − i1a1 ≤ 1.

Packing the items of the second batch then – according to its strategy – it will
pack the items of B2,k as follows.

� Case 2.1. The algorithm can not pack any items into the bins belonging to
the Class 1.1.

� Case 2.2. If a bin belongs to the Class 1.2 then this bin can receive only one
item from the batch B2,k (and nothing else), so the algorithm will create
bins of type (i1, 1, 0)2,k ∈ V1 ⊂ V2,k.

� Case 2.3. If the algorithm tries to put an a2,k item into bins in Class 1.3
then it has several possibilities.

� Case 2.3.1. One item from B2,k will be put into some of these bins, getting
(i1, 1, 0)2,k ∈ V1 ⊂ V2,k type of bins.

� Case 2.3.2. It ”reserves”, and – waiting an item from the batch B3,k – it
does not pack any items in some of such type of bins. This step results in
bins of type (i1, 0, 0)2,k ∈ V1 ⊂ V2,k.

� Case 2.4. If the algorithm tries to put a2,k items into bins in the class Class
1.4 then it has again two possibilities.

� Case 2.4.1. It packs at most two items from the batch B2,k. If the algorithm
packs only a single item into these bins then it does not result in any advance
for our batches, so we can suppose that the ”good” algorithms pack always
two items in this step. Now, we get bins of type (i1, 2, 0)2,k ∈ V1 ⊂ V2,k.

� Case 2.4.2. It holds the space in store and does not pack any item into some
of these bins, getting bins of type (i1, 0, 0)2,k ∈ V1 ⊂ V2,k.

� Case 2.5. If – following its strategy – the algorithm puts an a2,k item into
bins belong to Class 1.5 then it can do it as follows.

� Case 2.5.1. It puts two items from B2,k into such a bins, resulting bins of
type (i1, 2, 0)2,k ∈ V1 ⊂ V2,k.

� Case 2.5.2. It ”put this bin on ice” and places only one item into the bin,
getting bins (i1, 1, 0)2,k ∈ V1 ⊂ V2,k. Let we remark that those algorithms
which do not put any items from B2,k into these bins behave worse while
they pack our batches, so we ignore them from our analysis.

 dc_2018_22

1.3. LOWER BOUND FOR 3-BATCHED BIN PACKING 19

� Case 2.6. If the algorithm can not place items from the batch B2,k into
opened bins and there remain items unplaced, then the algorithm either put
a single item into a bin, so getting bins of type (0, 1, 0)2,k ∈ V2 ⊂ V2,k, or
put two items into it, so getting bins of type (0, 2, 0)2,k ∈ V2 ⊂ V2,k.

Finally, the algorithm tries to pack the items of B3,k as follows.

� Case 3.1. If the algorithms follows the strategy given in Case 2.3.2 then
in the (i1, 0, 0)2,k bin an item from B3,k, can be packed, so it produces
(i1, 0, 1)3,k ∈ V1 ⊂ V3,k. type bins.

� Case 3.2. If some bins of type (i1, 0, 0)2,k have bin produced in Case 2.4.2,
then there is place for an item from the batch B3,k, so (i1, 0, 1)3,k ∈ V1 ⊂ V3,k
type bins arise.

� Case 3.3. At least one bin has been produced in step Case 2.5.2. Then the
algorithm can put one item from B3,k into these bins. So, in this step we
will get (i1, 1, 1)3,k ∈ V1 ⊂ V3,k type bins.

� Case 3.4. If the algorithm put only one single item into an opened bin in
Case 2.6.1, then there is enough place for one item from the batch B3,k, and
the results are bins of type (0, 1, 1)3,k ∈ V2 ⊂ V3,k.

� Case 3.5. Finally, if unplaced items remain then the algorithm opens new
bins for each of them, getting bins with type (0, 0, 1)3,k ∈ V3 ⊂ V3,k.

1.3.4 Reduction on packing patterns

Lemma 1.3.6 ([6]) Let A be a batched algorithm for which R∞
A,3 ≤ 1.6. After

packing the elements of B2,k by A, at least one (0, 2, 0)2,k type bin must be created.

Lemma 1.3.7 ([6]) If A is a batched algorithm with R∞
A,3 ≤ 1.6, then always

exists such an algorithm A
′
which does not use more bins than A does, and it

does not create bins with types neither (i1, 1, 1)3,k ∈ V1 nor (i1, 0, 1)3,k ∈ V1, where
i1 > 0.

Lemma 1.3.8 ([6]) Let A be a batched algorithm with R∞
A,3 < 2. If A packs the

items of the batches B1, B2,k, B3,k in such a way that at least one (0, 1, 0)2,k type
bin will be produced after finishing the packing of all the batches, then always exists
an A′ online batched algorithm which does not create (0, 1, 0)2,k type bins and uses
less bins than A.

Corollary 1.3.9 ([6]) It is enough to investigate those of algorithms which pack
the batches B1, B2,k, B3,k in such a way that they create only bins of types

(i1, 0, 0)1, (i1, 1, 0)2,k, (i1, 2, 0)2,k, (0, 1, 1)3,k, (0, 2, 0)2,k, (0, 0, 1)3,k.

 dc_2018_22

20 CHAPTER 1. BIN PACKING PROBLEMS

1.3.5 An LP model

Now we will construct a linear program problem to minimize the ACR of any
online 3-BBP algorithm. We will give conditions for the number of elements in
the batches and we also give lower bounds for the possible values of the ACR of
the algorithms. To simplify the notation, instead of R∞

A,3 we will use R. The first
condition concerns to the number of elements in the first batch B1.∑

(i1,i2,i3)∈V1

i1x
k
i1,i2,i3

=

6j∑
i1=1

i1x
k
i1,i2,i3

= n1 (1.5)

where xki1,i2,i3 denote the number of (i1, i2, i3) type bins while we pack the batches
B1, B2,k, B3,k. Let we remind the reader: xri1,i2,i3 and xsi1,i2,i3 (1 ≤ r, s ≤ j − 1)
are the same variables, their upper indices sign only the type of batches we used.
Since the number of items in the first batch is independent from k, so we have
here one equality.

We can give conditions for the number of items in the batch B2,k. If we put one
item from the second batch in a bin, then this bin must contain at least 2j−2k+1
items from the first batch and it may not contain more items than 4j − k. Since
in this case i1 > 0 – because of the Lemma 1.3.7 – we get that i3 = 0 for these
type of bins.

Similarly, if a bin contains 2 pieces from B2,k then the maximum number of
the items from the first batch may not be more than 2j − 2k. For these type of
bins i3 = 0 is also valid, since we can not put any item from the batch B3,k if a
bin contains 2 items from the batch B2,k. Therefore

4j−k∑
i1=2j−2k+1

xki1,1,0 + 2

2j−2k∑
i1=1

xki1,2,0 + xk0,1,1 + 2xk0,2,0 = n2,k, k = 1, 2, . . . , j − 1. (1.6)

The last j − 1 equations concern to the number of elements in the batch B3,k

while we pack the third batch:

xk0,1,1 + xk0,0,1 = n3,k, k = 1, 2, . . . , j − 1, (1.7)

Now we give three lower bounds for the ACR.

6j∑
i1=1

xki1,i2,i3 ≤ R · OPT(B1) (1.8)

6j∑
i1=1

xki1,i2,i3 + xk0,1,1 + xk0,2,0 ≤ R · OPT(B1, B2,k) (1.9)

6j∑
i1=1

xki1,i2,i3 + xk0,1,1 + xk0,2,0 + xk0,0,1 ≤ R · OPT(B1, B2,k, B3,k) (1.10)

Let us consider the linear programming problem which has the 2(j + 1) in-
equalities of (1.5) - (1.10) as conditions and its objective function is to minimize
the value of R.

 dc_2018_22

1.3. LOWER BOUND FOR 3-BATCHED BIN PACKING 21

Now, we will eliminate the variables xk0,1,1, x
k
0,2,0, and xk0,0,1. Therefore we do

the following calculations. For k = 1, 2, . . . , j − 1 we add the appropriate pairs of
(1.9) and (1.10), and substitute the appropriate inequalities (1.6) and (1.7). Then
we get the next system of inequalities for every k = 1, 2, . . . , j − 1.

6j∑
i1=1

i1x
k
i1,i2,i3

= n1 (1.11)

6j∑
i1=1

xki1,i2,i3 ≤ R · OPT(B1) (1.12)

2

6j∑
i1=1

xki1,i2,i3 −
4j−k∑

i1=2j+1−2k

xki1,1,0 − 2

2j−2k∑
i1=1

xki1,2,0 ≤ (1.13)

≤ R · (OPT(B1, B2,k) + OPT(B1, B2,k, B3,k)) − n2,k − n3,k,

where the inequality (1.13) is taken for all k = 1, 2, . . . , j − 1. We remind the
reader that

n1 = 6jn, n2,k =
6j

j − k
n, and n3,k =

6j

j − k
n.

Let us substitute the values of OPT(B1), OPT(B1, B2,k), OPT(B1, B2,k, B3,k),
n1, n2,k, and n3,k into the right hand sides. So we get the following (k + 1) condi-
tions.

6j∑
i1=1

i1x
k
i1,i2,i3

= 6jn (1.14)

6j∑
i1=1

xki1,i2,i3 ≤ R · n (1.15)

2

6j∑
i1=1

xki1,i2,i3 −
4j−k∑

i1=2j−2k+1

xki1,1,0 − 2

2j−2k∑
i1=1

xki1,2,0 ≤ (1.16)

≤ R · (
6j

2(j − k)
+

6j

j − k
)n− 12j

j − k
n, k = 1, 2, . . . , j − 1.

If we divide the inequalities by n, and we introduce the following variables for
every valid triplets:

zki1,i2,i3 =
xki1,i2,i3
n

,

then we get the following conditions.

 dc_2018_22

22 CHAPTER 1. BIN PACKING PROBLEMS

6j∑
i1=1

i1z
k
i1,i2,i3

= 6j (1.17)

6j∑
i1=1

zki1,i2,i3 ≤ R (1.18)

2

6j∑
i1=1

zki1,i2,i3 − 2

2j−2k∑
i1=1

zki1,2,0 −
4j−k∑

i1=2j−2k+1

zki1,1,0 ≤ (3R− 4)
6j

2(j − k)
, (1.19)

k = 1, 2, . . . , j − 1.

Making some calculations in (1.19) we get the following conditions

6j∑
i1=1

i1z
k
i1,i2,i3

= 6j (1.20)

6j∑
i1=1

zki1,i2,i3 ≤ R (1.21)

4j−k∑
i1=2j−2k+1

zki1,1,0 + 2

6j∑
i1=4j−k+1

zki1,i2,i3 ≤ (3R− 4)
6j

2(j − k)
, (1.22)

k = 1, 2, . . . , j − 1.

1.3.6 The lower bound

As we mentioned earlier, we do not need to consider all conditions from the
k = 1, . . . , j − 1 possible ones. We assume that d of them is enough, i.e. erasing
the conditions for k = d+ 1, . . . , j − 1, the lower bound remains the same. Later
we will give the optimal value for d. Moreover, we make some further calculations
and simplification. For each value of k, (k = 1, 2, . . . , d) we multiply equations
(1.20) by (−1), inequalities (1.21) by 2(j−d). Furthermore, for k = 1 we multiply
(1.22) by 2j − d+ 2 and all the other ones (k = 2, . . . , d) by 2.

Lemma 1.3.10 ([6]) Making the linear combination with the above coefficients,
the left hand side of the inequality is non-negative.

Proof For every k, k = 1, 2, . . . , d, according to the value of i1, 1 ≤ i1 ≤ 6j, we
will distinguish five different cases.

� Case 1. 1 ≤ i1 ≤ 2(j − d). Since zki1,i2,i3 does not appear in the last j − d
inequalities, now the coefficients are 2(j − d) − i1 ≥ 0.

� Case 2. 2(j − d) + 1 ≤ i1 ≤ 2j − 2. In this case for the coefficients we get

2(j − d) − i1 + 2⌈(i1 − 2j + 2d)/2⌉ ≥ 2(j − d) − i1 + 2(i1 − 2j + 2d)/2 = 0.

 dc_2018_22

1.3. LOWER BOUND FOR 3-BATCHED BIN PACKING 23

� Case 3. 2j − 1 ≤ i1 ≤ 4j − d. In this case for the coefficients we get

2(j − d) − i1 + (2j − d+ 2) + 2(d− 1) = 4j − d− i1 ≥ 0.

� Case 4. 4j − d+ 1 ≤ i1 ≤ 4j − 1. In this case the coefficients are

2(j − d) − i1 + (2j − d+ 2) + 2 (d− (i1 − 4j + d+ 1)) +

+4(i1 − 4j + d) = −4j + d+ i1 ≥ 0.

� Case 5. 4j ≤ i1 ≤ 6j This case the coefficients are

2(j − d) − i1 + 2(2j − d+ 2) + 4(d− 1) = 6j − i1 ≥ 0.

□

Because the left hand side of the linear combination with the given coefficients is
non-negative, we get the following inequality:

6j ≤ 2(j − d)R + 6j(2j − d+ 2)
3R− 4

2(j − 1)
+ (3R− 4) ·

d∑
k=2

6j

(j − k)
. (1.23)

The following inequality is easy to prove, see [47].

d∑
k=2

1

j − k
< ln

j − 2

j − d− 1
.

Since 3R − 4 > 0, using the inequality (1.23), and making some calculations we
get

6j +
12j(2j − d+ 2)

j − 1
+ 24j ln

j − 2

j − d− 1
≤ (1.24)

≤
(

2j − 2d+
9j(2j − d+ 2)

j − 1
+ 18j ln

j − 2

j − d− 1

)
R.

and therefore

30j2 + 18j − 12jd+ 24j(j − 1) ln
j − 2

j − d− 1
≤ (1.25)

≤
(

20j2 + 16j − 11j · d+ 2d+ 18j(j − 1) ln
j − 2

j − d− 1

)
R.

Ordering this inequality we get

f(j, d) =
30j2 + 18j − 12j · d+ 24j(j − 1) ln j−2

j−d−1

20j2 + 16j − 11j · d+ 2d+ 18j(j − 1) ln j−2
j−d−1

≤ R. (1.26)

Now we have a lower estimation on the asymptotic ratio R for our construction.
Formula (1.26) has 2 parameters j and d, (d = 1, ..., j − 2). For a fixed j we want

 dc_2018_22

24 CHAPTER 1. BIN PACKING PROBLEMS

Figure 1.1: Graph of the function f(d) for j = 100.

to find such d, which maximizes the left hand side of (1.26). In order to determine
this d, we consider the function f(j, d) as a 1-variable continuous function f(d)
for a fixed j on the interval [1, j−2]. It is easy to see that f(d) has one maximum
in the given interval. To decide the maximum value of d first we need to derivate
f(d) by d.

f ′(d) =
−12 j + 24 j(j−1)

j−d−1

20 j2 + 16 j − 11 jd+ 2 d+ 18 j (j − 1) ln
(

j−2
j−d−1

)−
−

(
30 j2 + 18 j − 12 jd+ 24 j (j − 1) ln

(
j−2
j−d−1

))(
−11 j + 2 + 18 j(j−1)

j−d−1

)
(

20 j2 + 16 j − 11 jd+ 2 d+ 18 j (j − 1) ln
(

j−2
j−d−1

))2 .

Now we can solve the equation f ′(d) = 0, so we get the value of d0 where the
function takes its maximum.

d0 =
1

4

9 j − 4

W

(
−1,−1

4
e
−1
8

23 j−2
j−1 (9 j−4)
j−2

) + j − 1

where W (−1, x) is the negative branch of the Lambert function. Substituting d0
into f(d) and taking its limit while j → ∞ we get the required formula for R.

R ≥
32W

(
−1,−9

4
e−

23
8

)
+ 36

24W
(
−1,−9

4
e−

23
8

)
+ 33

≈ 1.51211383.

Table 1.1 shows the lower bounds for different values of j and d. So, we have the
following theorem.

Theorem 1.3.11 ([6]) If A is a batched algorithm for 3-BBPP, then

R∞
A,3 ≥ 1.51211383.

 dc_2018_22

1.4. BIN PACKING WITH CARDINALITY CONSTRAINTS 25

j d f(j, d)
5 1 1.480075901
10 3 1.494928787
20 6 1.503357743
50 15 1.508573181
100 30 1.510335641
200 60 1.511221192
500 152 1.511757013
1000 305 1.511935384

Table 1.1: The values of f(j, d)

1.3.7 Conclusions

In this section we investigated the 3-BBP problem, and we gave a lower bound
for any on-line 3-BBP algorithm. It is possible to extend the construction to the
K-BBP for K ≥ 4. This was presented in the paper [9] together with some other
results on this problem. Using the idea of branching lists the lower bound for the
online bin packing problem was improved to 1.54278 in [10].

1.4 Bin Packing with Cardinality Constraints

1.4.1 Definitions and preliminaries

In this section we study a variant of bin packing called bin packing with cardinality
constraints (BPCC) . In this problem, the input consists of items, denoted by
1, 2, . . . , n, such that item i has a size si > 0 associated with it, and there is a
global parameter k ≥ 2, called the cardinality constraint. The goal is to partition
the input items into subsets, called bins, such that the total size of items of every
bin is at most 1, and the number of items packed into each bin does not exceed k.
We believe that bounding the number of items as well as their total size provides
a more accurate model for packing problems; for example, a data center can
usually only store a constant number of files. We study online algorithms and the
asymptotic competitive ratio as the measurement of the quality of the algorithms
and only lower bounds are considered. The case k = 2 is solvable using matching
techniques in the offline scenario, but it is not completely resolved in the online
scenario. Liang [63] showed a lower bound of 4

3
on the asymptotic competitive

ratio for this case, Babel et al. [4] improved the lower bound to
√

2 ≈ 1.41421, and
designed an algorithm whose asymptotic competitive ratio is at most 1 + 1√

5
≈

1.44721 (improving over the previous bound, which was proved for FF). Fujiwara
and Kobayashi [41] improved the lower bound to 1.42764.

Lower bounds for many values of k were given by Fujiwara and Kobayashi in
[41], and in particular, they proved lower bounds of 1.5 and 25

17
≈ 1.47058 for k = 4

and k = 5, respectively. For 6 ≤ k ≤ 9, the best lower bound remained 1.5, which
was implied by the lower bound of Yao [86], and for k = 10 and k = 11, lower

 dc_2018_22

26 CHAPTER 1. BIN PACKING PROBLEMS

bounds of 80
53

≈ 1.50943 and 44
29

≈ 1.51724, respectively, were proved in [41] (see
[41] for the lower bounds of other values of k). In this section we provide improved
lower bounds on the asymptotic competitive ratio of arbitrary online algorithms
for k = 5, 7, 8, 9, 10, 11. The values of these lower bounds are 1.5 for k = 5,
and approximately 1.51748, 1.5238, 1.5242, 1.526, 1.5255, for k = 7, 8, 9, 10, 11,
respectively. We also provide improved lower bounds for larger values of k in
Table 1.3 ([16]).

1.4.2 Lower bounds

In this section we present a method for proving lower bounds on the asymptotic
competitive ratio of bin packing problems. This method can be applied for dif-
ferent variants and for bin packing with cardinality constraints it allows us to
improve the lower bounds known for relatively small values of k.

Consider an input of the following form for a given bin packing problem Π.
Let θ ≥ 2 be a fixed positive integer. There are θ lists of items, where the list Li
(for 1 ≤ i ≤ θ) has identical items, each of size si, where s1 < s2 < · · · < sθ. For
a large integer N > 0, the list Li has αi ·N items, where 0 < αi ≤ 1 is a rational
parameter for i = 1, . . . , θ (N will be selected such that αi ·N is an integer). The
items are presented to an online algorithm sorted by non-decreasing sizes (that is,
items are presented sorted by non-decreasing indices of their lists) and the input
may be stopped after all the items of some list were presented. That is, there
are θ possible inputs, and we will examine the behaviour of the algorithm for all
possible inputs.

Given a set of values wi > 0 for i = 1, . . . , θ, wi is called the weight of an
item of list Li, and the weight of a bin is equal to the total weight of its items.
For i = 1, . . . , θ + 1, let Wi denote the maximum weight of any bin that contains
only items of lists i, i + 1, . . . , θ, and no items of earlier lists (so Wθ+1 = 0),
assuming that an unlimited number of items of any size is available. Obviously,
the algorithm has no such bins if the input stops after list Lj, for some j < i. By
definition, Wi ≥ Wi+1 for i = 1, . . . , θ. For i = 0, . . . , θ, let OPTi denote the cost
of an optimal solution for the input that consists of the items of lists L1, . . . , Li
(thus OPT0 = 0), and denote this input by Li. We have OPTi = Θ(N), as
OPTi ≥ αi ·N ·si (because this is the total size of items of list i) and OPTi ≤ i ·N
(as this is an upper bound on the number of input items in Li). Let Oi be an
upper bound on OPTi

N
for 1 ≤ i ≤ θ and let O0 = 0 (these values are constants

depending on the input parameters).

Theorem 1.4.1 ([16]) The asymptotic competitive ratio of any online (determin-
istic or randomized) algorithm the bin packing problem Π is at least∑θ

i=1 αi · wi∑θ
i=1(Oi −Oi−1) ·Wi

.

Our method of proving lower bounds for BPCC is to use inputs where the
numbers of items in the lists are not necessarily equal. Consider the case k = 5.

 dc_2018_22

1.4. BIN PACKING WITH CARDINALITY CONSTRAINTS 27

Let θ = 4, α1 = 1
2
, αi = 1 for i = 2, 3, 4. Let 0 < δ < 1

2000
, s1 = 1

42
− δ > 0,

s2 = 1+δ
7

, s3 = 1+δ
3

, and s4 = 1+δ
2

. In this case, there are less items of size s1 (than
the numbers of other items), since a bin that contains two items of size s2 and two
items of size s3 can only contain one additional item. We use O1 = 1

10
, O2 = 3

10

(as any five items of sizes at most s2 can be packed into a bin), O3 = 1
2

(as a set of
five items, consisting of two items of size s3, two items of size s2, and one item of
size s1 can be packed into a bin), and O4 = 1 (as a set of items consisting of one
item of each size can be packed into a bin, while only half of the bins will contain
an item of size s1).

Consider the cases k = 7, 8, . . . , 11. Let θ = 4, the item sizes are the same as
the case k = 5, α1 = k−6

6
(where α1 < 1), αi = 1 for i = 2, 3, 4. The motivation

for the value α1 is that a bin that has six items of size s2 can contain only k − 6
additional items. We use O1 = k−6

6k
, O2 = 1

6
(as a set of six items of size s2 and

k − 6 items of size s1 can be packed into a bin), O3 = 1
2

(as a set consisting of at
most two items of each one of the three sizes s1, s2, s3 can be packed into a bin),
and O4 = 1. Let w2 = 1, w3 = w4 = 2 for all cases. For k = 5, let w1 = 2, for
k = 7, 8, let w1 = 1, for k = 9, let w1 = 1

2
, and for k = 10, 11, let w1 = 1

3
.

Lemma 1.4.2 ([16])

1. For all cases W2 ≤ 6, W3 ≤ 4, and W4 ≤ 2.

2. For k = 5, W1 ≤ 10, for k = 7, 8, W1 ≤ k + 2, for k = 9, W1 ≤ 8, and for
k = 10, 11, W1 ≤ k

3
+ 4.

Proof We start with the first part. The claim regarding W4 holds since W4 = w4

must hold (as every bin opened for the last list contains exactly one item). In the
cases where there may be items of L3 packed into a bin, any item of size s4 can
be replaced with an item of size s3 without increasing the total size or number
of items, and without changing the total weight (as w3 = w4 in all cases). Thus,
we assume that no such items are packed into the considered bins. Any bin with
items of L3 can contain at most two items and therefore W3 ≤ 2w3. Consider a
bin with no items of list L1. Let y2 be the number of items of size s2, and let
y3 ≤ 2 be the number of items of size s3. Their weight is y2 + 2y3, and their total
size is above y2+2y3

7
(and no larger than 1). Thus, W2 ≤ y2 + 2y3 ≤ 6.

Next, we bound W1 for all values of k considered here. For k = 5, since the
weight of any item is at most 2, and there are at most five items packed into each
bin, W1 ≤ 10. Otherwise, consider a packed bin, and let y2 and y3 ≤ 2 have the
same meaning as before, while y1 is the number of items of size s1. We have that
y1 +y2 +y3 ≤ k must hold, and by the value of W2, y2 + 2y3 ≤ 6. The total size of
items is at least y1(

1
42
−δ) + y2(

1+δ
7

) + y3(
1+δ
3

) > y1+6y2+14y3
42

− y1δ. Since y1δ <
1
42

,
we have y1 + 6y2 + 14y3 ≤ 42. For k = 7, 8, the weight of the bin is y1 + y2 + 2y3.
Since y1 + y2 + y3 ≤ k and y3 ≤ 2, W1 ≤ k + 2.

For k = 9, the weight is y1/2 + y2 + 2y3. Adding y1 + 6y2 + 14y3 ≤ 42 to
4(y1+y2+y3) ≤ 36, we get 5y1+10y2+18y3 ≤ 78, or alternatively, y1/2+y2+2y3 ≤
7.8 + 0.2y3. Thus, if y3 ≤ 1, W1 ≤ 8. If y3 = 2, then by substituting it into the
inequalities we get y1+6y2 ≤ 14 and y1+y2 ≤ 7, or alternatively, y1+2y2 ≤ 14−4y2

 dc_2018_22

28 CHAPTER 1. BIN PACKING PROBLEMS

and y1 + 2y2 ≤ 7 + y2. If y2 ≥ 2, then the first inequality implies y1/2 + y2 ≤ 3,
and if y2 ≤ 1, then the second inequality implies y1/2 + y2 ≤ 4. In both cases,
y1/2 + y2 + 2y3 ≤ 8.

For k = 10, 11, the weight is y1/3 + y2 + 2y3, and we will show y1 + 3y2 +
6y3 ≤ k + 12. As y3 ≤ 2, we consider three cases. If y3 = 0, then we find
y2 ≤ 6 and y1 + y2 ≤ k. Thus, y1 + 3y2 ≤ k + 12. If y3 = 1, then we find
y1 + 6y2 ≤ 28, y2 ≤ 4, and y1 + y2 ≤ k − 1. If y2 ≤ 3, we get y1 + 3y2 + 6y3 ≤
(k − 1) + 2 · 3 + 6 < k + 12. If y2 = 4, then by the first inequality we find
y1 ≤ 4, and y1 + 3y2 + 6y3 ≤ 4 + 3 · 4 + 6 = 22 ≤ k + 12 as k ≥ 10. Finally, if
y3 = 2, we get y1 + 6y2 ≤ 14, y2 ≤ 2, and y1 + y2 ≤ k − 2. If y2 ≤ 1, we get
y1 +3y2 +6y3 ≤ (k−2)+2 ·1+6 ·2 = k+12. If y2 = 2, then by the first inequality
we find y1 ≤ 2, and y1 + 3y2 + 6y3 ≤ 2 + 3 · 2 + 6 · 2 = 20 ≤ k + 12. □

We apply Theorem 1.4.1 to get the following.

Theorem 1.4.3 ([16]) The following values are lower bounds on the competitive
ratios.

�
3
2

= 1.5 for k = 5.

�
k2+24k

k2+10k+24
for k = 7, 8. This value is equal to 217/143 ≈ 1.5174825 for k = 7

and to 32
21

≈ 1.5238095 for k = 8.

�
10.5
62/9

= 189
124

≈ 1.5241935, for k = 9.

�
k2+84k

k2+48k+36
for k = 10, 11. This value is equal to 235/154 ≈ 1.525974 for

k = 10 and to 209
137

≈ 1.525547 for k = 11.

Proof For k = 5,
∑4

i=1 αi · wi = 6 and
∑4

i=1(Oi −Oi−1) ·Wi = 4.

For k = 7, 8,
∑4

i=1 αi ·wi = k+24
6

and
∑4

i=1(Oi −Oi−1) ·Wi = 7
3

+ 6
k

+ k2−4k−12
6k

.

For k = 9,
∑4

i=1 αi · wi = 5.25 and
∑4

i=1(Oi −Oi−1) ·Wi = 31
9

.

For k = 10, 11,
∑4

i=1 αi·wi = k+84
18

and
∑4

i=1(Oi −Oi−1) ·Wi = 7
3
+ 6
k
+ k2+6k−72

18k
.

□

Note that in the cases k = 6 and k = 12, our methods do not produce improved
lower bounds, and they give exactly the known lower bound.

Next, consider the cases 14 ≤ k ≤ 18. Let θ = 4, αi = 1 for i = 1, 2, 3, 4. Let
0 < δ < 1

2000
, s1 = 1

18
− 3δ > 0, s2 = 1+δ

9
, s3 = 1+δ

3
, and s4 = 1+δ

2
. We use O1 = 1

k
,

O2 = 1
6

(as a set of six items of size s1 and six items of size s2 can be packed into
a bin), O3 = 1

2
(as a set of six items, consisting of two items of each size out of

s1, s2, s3 can be packed into a bin), and O4 = 1 (as a set of items consisting of one
item of each size can be packed into a bin). Let w1 = 1, w2 = 2, and w3 = w4 = 6.

Lemma 1.4.4 ([16]) We have W4 ≤ 6, W3 ≤ 12, W2 ≤ 16, and W1 ≤ 18.

 dc_2018_22

1.4. BIN PACKING WITH CARDINALITY CONSTRAINTS 29

Proof As in the proof of Lemma 1.4.2, W4 = w4 and W3 = w3 + w4. We will
prove upper bounds on W1 and W2 such that the number of packed items is not
necessarily bounded by k. This may only increase the bounds.

To prove the bound for W2, consider a bin with items of sizes above 1
9
. Replace

any item of size s4 or s3 with three items of size s2. The total size of items cannot
increase while the total weight is unchanged. The bin now contains at most 8
items of size s2, and therefore its weight is at most 16.

To prove the bound for W1, consider a bin B. Replace any item of size s4 or s3
with six items of size s1, and any item of size s2 is replaced with two items of size
s1. The total size of items cannot increase while the total weight is unchanged.
The bin now contains at most 18 items of size s1, and therefore its weight is at
most 18. □

We apply Theorem 1.4.1 to get the following.

Theorem 1.4.5 ([16]) The value 45k
29k+6

is a lower bound on the asymptotic com-
petitive ratio for k, where 14 ≤ k ≤ 18.

Proof We have
∑4

i=1 αi · wi = 15 and
∑4

i=1(Oi −Oi−1) ·Wi = 18/k + 16(1/6 −
1/k) + 12/3 + 6/2. □

Note that in the cases k = 12, 13, our method does not produce improved
lower bounds.

Finally, consider the cases k = 19, 20, . . . , 35. Let θ = 5, α1 = k−18
18

, αi = 1 for
i = 2, 3, 4, 5. Let 0 < δ < 1

10000
, s1 = 1

342
− δ, s2 = 1+δ

19
, s3 = 1+δ

9
, s4 = 1+δ

3
, and

s5 = 1+δ
2

. In this case, there are less items of size s1, since a bin that contains
18 items of size s2 can only contain k − 18 additional items. We use O1 = k−18

18k

(any bin will contain k items), O2 = 1
18

(any bin will contain 18 items of size s2
and k − 18 items of size s1), O3 = 1

6
(any bin will contain six items of size s3, six

items of size s2, and at most six items of size s1), O4 = 1
2

(any bin will contain
two items for each one of the sizes s2, s3, s4, and at most two items of size s1), and
O5 = 1 (any bin will contain one item of each of the sizes of s2, s3, s4, s5, and at
most one item of size s1). Let w2 = 1, w3 = 2, and w4 = w5 = 6. The value of w1

will differ for the different values of k, and we denote it by ρk, where 0 < ρk < 1.

Lemma 1.4.6 ([16]) We have W2 ≤ 18, W3 ≤ 16, W4 ≤ 12, and W5 ≤ 6.

Proof As in previous cases, W5 = w5 and W4 = 2 · w4. We will prove upper
bounds on W2 and W3 for bins where the number of packed items is not necessarily
bounded by k. This may only increase the bounds. Given a bin with items of
sizes in {s3, s4, s5}, replace each item of size s4 or s5 with three items of size s3.
As a result, the total size does not increase, and the total weight is unchanged.
Since at most eight items of size s3 can be packed into a bin, W3 ≤ 16. Given a
bin with items of sizes in {s2, s3, s4, s5}, replace each item of size s4 or s5 with six
items of size s2, and each item of size s3 is replaced with two items of size s2. As
a result, the total size does not increase, and the total weight is unchanged. Since
at most 18 items of size s3 can be packed into a bin, W3 ≤ 18. □

 dc_2018_22

30 CHAPTER 1. BIN PACKING PROBLEMS

Consider a bin that possibly contains items of all lists, where the total weight
of items of lists L2, L3, L4, L5 is exactly 18. Let λk denote the maximum number of
items of size s1 that the bin can contain under this condition. Similarly, consider
a bin where the total weight of items of lists L2, L3, L4, L5 is exactly 17. Let ψk
denote the maximum number of items of size s1 that the bin can contain under this
condition. Let ρk = 1

ψk−λk
(which is well defined, as we will show that ψk > λk

for all k). Recall that for any k, the value w1 is defined by ρk. We define an
additional parameter, ϕk = 18 + ρk · λk for all values of k considered here. These
values are displayed in Table 1.2.

Lemma 1.4.7 ([16]) Let k ∈ {19, 20, . . . , 35}. The values λk and ψk are as in
Table 1.2, and W1 ≤ ϕk.

Proof We start with proving that the values of λk and ψk given in Table 1.2
correspond to our definition of these values. For a given bin, let y2, y3, and y4, be
the numbers of items of sizes s2, s3, and s4 packed into the bin (we replace items
of size s5, if such items exist, with items of size s4, as they are smaller and have
the same weight).

If the total weight of the items of size at least s2 is 18, then y2+2y3+6y4 = 18,
and the total size of items is (1 + δ)(y2

19
+ y3

9
+ y4

3
) = 1+δ

18
(y2 + 2y3 + 6y4) −

1+δ
342
y2 = 1 + δ − 1+δ

342
y2. The bin can still contain items of size s1 of total size

no larger than 1+δ
342
y2 − δ. Let y1 be the number of such items. We will show

y1 = min{k − y2 − y3 − y4, y2} by proving that the total size of y2 + 1 items of
size s1 exceeds 1+δ

342
y2−δ, while the total size of y2 such items does not exceed this

value (and obviously the bin cannot contain more than k− y2− y3− y4 additional
items).

We find that y1 ≤ y2, as the total size of y2+1 items of size s1 is (y2+1)(1
342

−δ),
and (y2 + 1)(1

342
− δ) > 1+δ

342
y2 − δ is equivalent to 343δ · y2 < 1, which holds as

y2 ≤ 18 and δ < 1
10000

. On the other hand, y2(
1

342
− δ) ≤ 1+δ

342
y2 − δ is equivalent

to 343y2
342

≥ 1 (which holds for y2 ≥ 1), and therefore if y2 ≥ 1, then y2 items of size
s1 can be packed into the bin (in terms of total size).

For any valid triple (y2, y3, y4) of numbers of items, the maximum value of y1 is
therefore min{k−y2−y3−y4, y2} items. To find the possible triples (y2, y3, y4), we
take into account that y4 ≤ 2 (as no bin can contain more than two items of sizes
above 1

3
) and y3 + 3y4 ≤ 8 (as the total weight of these items is at most W3 ≤ 16,

and it is equal to w3 ·y3+w4 ·y4 = 2y3+6y4). These patterns are: (2, 2, 2), (4, 1, 2),
(6, 0, 2), (2, 5, 1), (4, 4, 1), (6, 3, 1), (8, 2, 1), (10, 1, 1), (12, 0, 1), (2, 8, 0), (4, 7, 0),
(6, 6, 0), (8, 5, 0), (10, 4, 0), (12, 3, 0), (14, 2, 0), (16, 1, 0), and (18, 0, 0). Thus,

λk = max{min{2, k − 6},min{4, k − 7},min{6, k − 8},min{8, k − 11},

min{10, k − 12},min{12, k − 13},min{14, k − 16},min{16, k − 17},

min{18, k − 18}} .

The last bound was computed by considering each pattern separately, and com-
puting min{k − y2 − y3 − y4, y2}, then removing any entry that is dominated by

 dc_2018_22

1.4. BIN PACKING WITH CARDINALITY CONSTRAINTS 31

another entry, for example, min{2, k − 8} that results from the fourth triple is
dominated by min{2, k−6} resulting from the first triple. The values in the table
are with accordance to this calculation.

If the total weight of the items of sizes above 1
19

is 17, then y2 +2y3 +6y4 = 17,
and the total size of items is (1 + δ)(y2

19
+ y3

9
+ y4

3
) = 1+δ

18
(y2 + 2y3 + 6y4) −

1+δ
342
y2 = 17(1+δ)

18
− 1+δ

342
y2. The bin can contain items of size s1 of total size no

larger than 1+δ
18

+ 1+δ
342
y2 − δ. Let y1 be this number. In this case we show that

y1 = min{y2 + 19, k− y2− y3− y4}. To show y1 ≤ y2 + 19, we prove that the total
size of y2 +20 items of size s1 exceeds 1+δ

18
+ 1+δ

342
y2−δ. Indeed, (y2 +20)(1

342
−δ) >

1+δ
342
y2 − δ + 1+δ

18
is equivalent to 1

342
> 343y2δ

342
+ 343δ

18
, which holds as y2 ≤ 18 and

δ < 1
10000

. On the other hand, it is possible to pack y2 + 19 items of size s1 (in
terms of total size) as the empty space is 1+δ

342
y2−δ+ 1+δ

18
, we saw that y2 items can

be packed into a space of 1+δ
342
y2 − δ, and since s1 <

1
342

, 19 items of size s1 can be
packed into a space of 1+δ

18
. Thus, for any triple (y2, y3, y4), it is possible to pack

min{k − y2 − y3 − y4, y2 + 19} items. The possible triples are: (1, 2, 2), (3, 1, 2),
(5, 0, 2), (1, 5, 1), (3, 4, 1), (5, 3, 1), (7, 2, 1), (9, 1, 1), (11, 0, 1), (1, 8, 0), (3, 7, 0),
(5, 6, 0), (7, 5, 0), (9, 4, 0), (11, 3, 0), (13, 2, 0), (15, 1, 0), and (17, 0, 0). Thus,

ψk = max{min{20, k − 5},min{22, k − 6},min{24, k − 7},min{26, k − 10},

min{28, k − 11},min{30, k − 12},min{32, k − 15},

min{34, k − 16},min{36, k − 17}} .

The calculation is similar to the one for λk, and the values for ψk in the table
are deduced from this calculation.

Consider a bin B, and let X denote the total weight of items that do not
belong to list L1 that are packed into B. We have X ≤ 18, as W2 ≤ 18.

If X = 18, then the total weight of items is at most X+ρk·y1 ≤ 18+ρk·λk = ϕk.
If X = 17, then the total weight of items is at most 17 + ρk · ψk = 17 + ρk · (ψk −
λk) + ρk · λk ≤ 18 + ρk · λk = ϕk, by the definitions of ρk and ϕk.

We claim that otherwise (if X ≤ 16), the total weight of items is no larger than
X+ρk ·k. For k ≤ 32, (k−λk)ρk ≤ 2, and therefore X+k ·ρk ≤ 16+2+λkρk = ϕk.
If k ≥ 33, and X ≤ 15, since (k−λk)ρk ≤ 3, we also find X+k·ρk ≤ 15+3+λkρk =
ϕk. In the case X = 16, there must be at least four items of lists L2, L3, L4, L5

packed into the bin, as the total weight of three items is at most 14 (there can
be at most two items of weight 6 as their sizes exceed 1

3
). Thus, there are at

most k − 4 items whose weights are ρk. We have that (k − 4 − λk)ρk < 2 for
k ∈ {33, 34, 35}, and X+ (k−4) ·ρk ≤ 16 + 2 +λkρk = ψk in this case as well. □

Theorem 1.4.8 ([16]) The values stated in Table 1.3 are lower bounds on the
competitive ratios for k = 19, 20, . . . , 35.

Proof Recall that α1 = k−18
18

, and αi = 1 for i = 2, 3, 4, 5. Thus,
∑θ

i=1 αi · wi =
k−18
18

· ρk + w2 + w3 + w4 + w5 = k−18
18

· ρk + 15.

 dc_2018_22

32 CHAPTER 1. BIN PACKING PROBLEMS

value of k λk ψk ρk (k − λk)ρk ϕk − 18 = ρkλk

19 8 14 1/6 11/6 4/3

20 8 15 1/7 12/7 8/7

21 9 16 1/7 12/7 9/7

22 10 17 1/7 12/7 10/7

23 10 18 1/8 13/8 5/4

24 11 19 1/8 13/8 11/8

25 12 20 1/8 13/8 3/2

26 12 20 1/8 14/8 3/2

27 12 21 1/9 15/9 4/3

28 12 22 1/10 8/5 6/5

29 13 22 1/9 16/9 13/9

30 14 23 1/9 16/9 14/9

31 14 24 1/10 17/10 7/5

32 15 24 1/9 17/9 5/3

33 16 24 1/8 17/8 2

34 16 24 1/8 18/8 2

35 17 25 1/8 18/8 17/8

Table 1.2: Auxiliary variables for the analysis of lower bounds for k =
19, 20, . . . , 35.

We have O1 − O0 = k−18
18k

, O2 − O1 = 1
k
, O3 − O2 = 1

9
, O4 − O3 = 1

3
, and

O5−O4 = 1
2
. Thus,

∑θ
i=1(Oi−Oi−1)Wi = k−18

18k
· (18 + ρk ·λk) + 18

k
+ 16

9
+ 12

3
+ 6

2
=

1 − 18
k

+ ρk·λk
18

− ρk·λk
k

+ 18
k

+ 79
9

= 88
9

+ ρk · λk(1
18

− 1
k
).

Therefore, using Theorem 1.4.1 we find a lower bound of 15+(k−18)ρk/18
88/9+ρkλk(1/18−1/k)

on
the asymptotic competitive ratio for k = 19, 20, . . . , 35. □

The construction that was used for k = 19, . . . , 35 can be used for k = 36,
but the resulting lower bound is lower than the known lower bound [41]. It is
possible, however, to prove improved bounds for larger values of k. Consider, for
example, the cases k = 43, 44, 45. Let s1 = 1

1806
− δ, s2 = 1+δ

43
, s3 = 1+δ

7
, s4 = 1+δ

3
,

and s5 = 1+δ
2

; α1 = k−42
42

, and αi = 1 for i = 2, 3, 4, 5. It can be verified that
using the weights w1 = ρk, w2 = 1, w3 = 6, and w4 = w5 = 12, where ρ43 = 1

14
,

ρ44 = 1
15

, and ρ45 = 1
16

, gives W1 = 42 + ρkλk, W2 = 42, W3 = 36, W4 = 24,
and W5 = 12. This gives lower bound of approximately 1.53903, 1.53906, and
1.53909 on the asymptotic competitive ratios for k = 43, 44, 45, respectively. This
slightly improves the previously known lower bound of approximately 1.53900 [85]
mentioned in [41].

 dc_2018_22

1.4. BIN PACKING WITH CARDINALITY CONSTRAINTS 33

value of k previous asymptotic LB new LB

5 1.47058 [41] 3/2 = 1.5

7 1.5 [86] 217/143 ≈ 1.51748

8 1.5 [86] 32/21 ≈ 1.52380

9 1.5 [86] 189/124 ≈ 1.52419

10 1.50943 [41] 235/154 ≈ 1.52597

11 1.51724 [41] 209/137 ≈ 1.52554

14 1.52595 [41] 315/206 ≈ 1.52912

15 1.52912 [41] 75/49 ≈ 1.53061

16 1.52567 [41] 72/47 ≈ 1.53191

17 1.52312 [41] 765/499 ≈ 1.53306

18 1.52459 [41] 135/88 ≈ 1.53409

19 1.52678 [41] 30799/20072 ≈ 1.53442

20 1.52912 [41] 2365/1541 ≈ 1.53471

21 1.52941 [41] 13251/8633 ≈ 1.53492

22 1.52914 [41] 10417/6786 ≈ 1.53507

23 1.53004 [41] 49795/32434 ≈ 1.53527

24 1.53086 [41] 152/99 ≈ 1.53535

25 1.53162 [41] 54175/32284 ≈ 1.53539

26 1.53231 [41] 3523/2294 ≈ 1.53574

27 1.53296 [41] 2439/1588 ≈ 1.53589

28 1.53356 [41] 1897/1235 ≈ 1.53603

29 1.53412 [41] 70789/46079 ≈ 1.53625

30 1.53465 [41] 6105/3974 ≈ 1.53623

31 1.53514 [41] 84103/54742 ≈ 1.53635

32 1.53560 [41] 39104/25449 ≈ 1.53656

33 1.53603 [41] 23925/15568 ≈ 1.53680

34 1.53644 [41] 289/188 ≈ 1.53723

35 1.53682 [41] 76195/49569 ≈ 1.53715

Table 1.3: New lower bounds on the asymptotic competitive ratio. The second
column contains the previously known bounds and the third column contains our
improved lower bounds.

1.4.3 Conclusions

In this section we proved some lower bounds for different values of k for the
cardinality constrained version of the online bin packing problem. Using fully
adaptive construction a general online lower bound of 2 was proved in [8] together
with improvements on specific values of k.

 dc_2018_22

34 CHAPTER 1. BIN PACKING PROBLEMS

1.5 NF-based Bounded-Space Bin Packing Al-

gorithm

1.5.1 Definitions and preliminaries

In [89] Zheng et al. considered the following surgery problem. In each day there
is a uniform time interval available for an operating room to process surgical
operations. Each request with a planned operation time is temporarily stored in
a waiting pool. In each day, a surgery scheduler selects a subset of requests to be
executed the next day. The total planned operation time of the selected requests
cannot exceed the time available for the day. They modelled this problem by
the one-dimensional bin packing, and developed a semi-online algorithm to give
an efficient feasible solution. In their algorithm they used a buffer to temporarily
store items, having a possibility to lookahead in the list. Because of the considered
practical problem they investigated the 2-parametric problem, i.e. maxa∈L s(a) ≤
1/2. In each iteration step their algorithm puts the largest items of the buffer into a
new opened bin using a Next Fit-based rule (NF): packing the actual preprocessed
contents of the buffer the algorithm opens a new, empty bin and – following some
simple rules – puts iteratively the items of the buffer into this bin until they fit
and closes the bin. This means that at most 1 bin can be open during the packing.
Those algorithms that use constant number of open bins are called bounded-space
algorithms. If there is at most 1 open bin, the algorithm is called NF-based online
algorithm. Analysing the performance of NF-based algorithms they proved an
ACR of 13

9
for any given buffer size not less than 1. They also gave a lower bound

of 4
3

for those bounded-space algorithms that use NF-based rules.
Later, Zhang et al. also investigated the problem (see [88]). They presented

two algorithms. The first one used a buffer with capacity of 2, and they proved
that the ACR of the algorithm is 1.4375. Using a buffer size 3 they gave further
improvement on the upper bound. Their algorithm has an ACR of 1.4243. Finally,
they gave a lower bound 1.4230, which is also better than the one previously proved
in [89].

In this section we deal with NF-based semi-online algorithms that use buffer
with constant size based on the paper [20]. Firstly, instead of the 2-parametric
problem, we investigate the parametric problem in general. It means that we
consider the lists L where maxa∈L s(a) ≤ 1

r
for a given integer r ≥ 1. We prove

lower bounds for any NF-based online algorithm with constant buffer size for the
r-parametric case. Our lower bounds for the first few values of r are the following:
h∞(1) = 1.69103, h∞(2) = 1.42312, h∞(3) = 1.30238. The special case r = 2 gives
an improvement for the earlier lower bounds.

On the positive side, we present an NF-based online algorithm that considers
the r-parametric problem, and uses a buffer with capacity of 3. We prove that
this algorithm has ACRs that are equal to the lower bounds, so we also improve
the upper bound for the case r = 2 to 1.42312.

We will use a sequence that was first introduced by Sylvester in [82] (1880)
for the case r = 1, therefore, we refer to this sequence as generalized Sylvester

 dc_2018_22

1.5. NF-BASED BOUNDED-SPACE BIN PACKING ALGORITHM 35

sequence. This sequence was commonly used in the bin packing area, see e.g.
[12, 42, 85].
For integers k > 1 and r ≥ 1, the generalized Sylvester sequence mr

1, . . . ,m
r
k can

be given by the following recursion.

mr
1 = r + 1, mr

2 = r + 2, mr
j = mr

j−1(m
r
j−1 − 1) + 1, for j = 3, . . . , k, .

mr
j r = 1 r = 2 r = 3 r = 4 r = 5

j = 1 2 3 4 5 6

j = 2 3 4 5 6 7

j = 3 7 13 21 31 43

j = 4 43 157 421 931 1807

j = 5 1807 24493 176821 865831 3263443

Table 1.4: The first few items of the generalized Sylvester sequences if k ≤ 5.

These sequences have the following properties.

k∑
i=j

1

mr
i

=
1

mr
j − 1

− 1

mr
k+1 − 1

, if j ≥ 2,

and
r

mr
1

+
k∑
i=2

1

mr
i

= 1 − 1

mr
k+1 − 1

if r ≥ 2.

Similarly, we will use the following notations.

h∞(r) = 1 +
∞∑
i=2

1

mr
i − 1

.

The first few values of h∞(r) : h∞(1) ≈ 1.69103, h∞(2) ≈ 1.42312, h∞(3) ≈
1.30238. To avoid the plenty of indices – where it is not confusing – we will denote
mr
j by mj.

1.5.2 An improved lower bound

First, we give an improvement of the lower bound of any NF-based online algo-
rithm with given buffer size S ≥ 1. The buffer can store arbitrary items with
total size less than the size of the buffer.

Theorem 1.5.1 ([20]) Let us consider the r-parametric case. If a buffer is given
with size of |B| = S, then for any A – NF-based online – algorithm R∞(A) ≥
h∞(r).

 dc_2018_22

36 CHAPTER 1. BIN PACKING PROBLEMS

Proof We will construct the following instance. Let n > 0 be a large integer
and let k > 4 be an integer. Then we will consider the concatenated list L =
(L1, L2, . . . , Lk), where

- L1 contains n(mk − 1)(m1 − 1) items with size 1
m1

+ ε.

- Li contains n(mk − 1) items with size 1
mi

+ ε, for 2 ≤ i ≤ k − 1,

- Lk contains n(mk − 1) items with size 1
mk−1

− kε,

where ε is arbitrary small, i.e. 1
mk−1

− (m1 + k − 3)ε > 1
mk
.

After packing the items of the list L1 there are at most ⌊ S
1/m1+ε

⌋ < Sm1 items

in the buffer. Therefore, the algorithm has to pack n(mk − 1)(m1 − 1) − Sm1

items from the list L1 into bins. So A needs at least

n(mk − 1)(m1 − 1) − Sm1

m1 − 1
= n(mk − 1) − Sm1

m1 − 1

bins to pack the elements of L1.
Let us pack the items of L2. We have n(mk − 1) pieces. Having packed the

elements of L2 the buffer contains ⌊ S
1/m2+ε

⌋ < Sm2 elements. So, the algorithm

has to pack n(mk − 1) − Sm2 items, m2 − 1 pieces in each bin. So, the algorithm
uses at least

n(mk − 1) − Sm2

m2 − 1
=
n(mk − 1)

m2 − 1
− Sm2

m2 − 1

bins. Since at most one active bin exists, therefore at least n(mk−1)
m2−1

− Sm2

m2−1
− 1

new bins were opened while the algorithm packed the elements of L2.
Following this train of thought while the algorithm packs the items of Li,

3 ≤ i ≤ k − 1, it will open n(mk−1)
m2−1

− Smi

mi−1
− 1 new bin for each list.

In the end the algorithm packs the items of Lk. Each bin contains (mk − 1)
items from this list, so the algorithm opens (n − 1) new bins. Therefore, the
number of bins used by the algorithm A is at least

A(L) ≥ n(mk − 1) + n
k∑
i=2

mk − 1

mi − 1
− S

k∑
i=1

mi

mi − 1
− (k − 1).

It is easy to check that (m1−1) pieces of L1, and one item from each Li, 1 ≤ i ≤ k
can be packed into one bin, therefore opt(L) ≤ n(mk − 1). So,

A(L)

opt(L)
≥ 1 +

k∑
i=2

1

mi − 1
−
S
∑k

i=1
mi

mi−1
− (k − 1)

n(mk − 1)

and so,

R∞(A) ≥ lim
k→∞

lim
n→∞

A(L)

opt(L)
= 1 +

∞∑
i=2

1

mi − 1
= h∞(r).

□

For the problem considered in [88] and [89] the given best lower bound is
1.4230, and since h∞(2) = 1.423117 . . . our lower bound gives an improvement for
the case r = 2.

 dc_2018_22

1.5. NF-BASED BOUNDED-SPACE BIN PACKING ALGORITHM 37

1.5.3 The Algorithm NFFD-B3

Investigating online bounded-space algorithms in [43] a weighting function was
defined for the items. Generalizing the idea we define the following weighting
function.

W (x) =


x+

1

mi(mi − 1)
, if 1

mi
< x ≤ 1

mi−1

mi + 1

mi

x, if 1
mi+1−1

< x ≤ 1
mi

The weight of a bin is defined as the weight of all elements in it, and generally,
the weight of a set is the weight of all items in the set. It is easy to see that the
following statements are true.

Fact 1.5.2

(i) W (x) is non-decreasing in (0, 1].

(ii) For i ≥ 1, W (x)
x

≤ mi+1
mi

if x ≤ 1
mi
,

(iii) For i ≥ 1, W (x)
x

≥ mi+1
mi

if x ≥ 1
mi+1−1

.

Lemma 1.5.3 ([20]) Let us consider the r-parametric problem. Then any packing
of a list L, the weight of any bin is at most h∞(r).

Proof Let us suppose that a bin contains the items x1, x2, . . . , xt, where x1 ≥
x2 ≥ . . . ≥ xt. Case A. First we suppose that there are exactly r items from

the interval (1
m1
, 1
m1−1

] in an arbitrary bin B. We denote the remaining items
by p1, . . . , pt−r. Case A.1. Now, we suppose that each pi is in the interval

(1
mi+1

, 1
mi+1−1

] for i = 1, . . . , (t − r). Taking into account that r = m1 − 1,

m1 = m2 − 1, and 1
mi(mi−1)

= 1
mi+1−1

we get

W (B) =
∑r

i=1W (xi) +
∑t−r

i=1W (pi)

=
∑r

i=1 xi + r
m1(m1−1)

+
∑t−r

i=1 pi +
∑t−r

i=1
1

mi+1(mi+1−1)

≤ 1 + 1
m2−1

+
∑t−r+2

i=3
1

mi−1

= 1 +
∑t−r+2

i=2
1

mi−1
< h∞(r).

Case A.2. Let us suppose that B contains s < t − r pieces of pi items, each of

them in the interval (1
mi
, 1
mi−1

], i = 2, 3, . . . , s+ 1.
Let us denote the remaining (t− r−s) items by ql, l = 1, 2, . . . , t− r−s. Then

Q =
∑t−r−s

i=1 q(i) ≤ 1
ms+2−1

, and
∑r

i=1 xi +
∑s+1

i=2 pi ≤ 1 − Q. Because of the Fact

1.5.2 (ii), we get
t−r−s∑
i=1

W (q(i)) ≤ Q
ms+2 + 1

ms+2

.

 dc_2018_22

38 CHAPTER 1. BIN PACKING PROBLEMS

Therefore

W (B) =
∑r

i=1W (xi) +
∑s+1

i=2 W (pi) +
∑t−r−s

i=1 W (qi)

=
∑r

i=1 xi + r
m1(m1−1)

+
∑s+1

i=2 pi +
∑s+1

i=2
1

mi(mi−1)
+Qms+2+1

ms+2

≤ 1 −Q+Qms+2+1
ms+2

+
∑s+1

i=2
1

mi−1

= 1 +
∑s+3

i=2
1

mi−1
< h∞(r).

Case B. Let us suppose that the bin B contains q ≤ r − 1 items belonging
to the interval (1

m1
, 1
m1−1

]. Since W (x) is a monotone increasing function, so the
weighting function is maximal if these items have maximal sizes i.e.

q∑
i=1

xi =
q

m1 − 1
.

Then the remaining place in the bin is 1 − q
m1−1

. We know that for any item

x for which x ≤ 1
m1

the weight is W (x) ≤ xm1+1
m1

.

W (B) =
∑q

i=1W (xi) +
∑t

i=q+1W (xi)

≤ q
m1−1

+ q
m1(m1−1)

+
(
1 − q

m1−1

)
m1+1
m1

= 1 + 1
m1

= 1 + 1
m2−1

< h∞(r).

□

Theorem 1.5.4 ([20]) For any list L, W (L) ≤ h∞(r)opt(L).

In the sequel we will call a bin good bin if the sum of the weights of the items
in the bin is at least one, and a set of items is good subset if the sum of the weights
of the items is greater than or equal to one and the sum of the sizes is at most one.
Of course a good bin contains a good subset. We consider a buffer with capacity
3 and we will apply three virtual bins – with capacity one – for preprocessing the
items in the buffer before we pack them into bin. The algorithm Next Fit with
First Fit Decreasing in Buffer-length 3 (NFFD-B3) is the following:

 dc_2018_22

1.5. NF-BASED BOUNDED-SPACE BIN PACKING ALGORITHM 39

(1) Fill up the buffer with the subsequent elements of the list until the next
item cannot fit into the buffer.

(2) Order the items in the buffer in non increasing order, and put the items
in three virtual bins – denoted by VBIN i, i = 1, 2, 3 – each of them with
capacity 1 using the FFD rule. The items that do not fit in any of the
virtual bins, remain in the buffer.

(3) Check the contents of the virtual bins. For all those virtual bins that are
good bins, open a new empty bin, put the items from the good bin into
this new-opened bin, and close the bin. Go to step (5).

(4) Find a good subset in the contents of VBIN i, i = 1, 2, 3, open a new empty
bin, put the items from the virtual bins into this new-opened bin, and close
the bin.

(5) If there is unplaced item then go to (1),

(6) Empty the contents of the virtual bins into new-opened bins. Close the
bins, and quit.

We remark that we speak about virtual bins since after ordering the items we
do not move them from the buffer into bins, but they get two indices, where the
first one denotes which of the virtual bin belongs to the item, and the second signs
its position within the virtual bin. (Items could not be assigned to any virtual
bins that have index values 0.) The position within the virtual bin depends on the
size of the item: the larger an item the smaller its position.

Let us divide the interval (0, 1
r
] into subintervals as follows.

A = (1/m1, 1/(m1 − 1)]
Bi = (1/mi, 1/(mi − 1)] for i ≥ 2.
Ci = (1/(mi + 1), 1/mi] for i ≥ 2.
Di = (1/(mi+1 − 1), 1/(mi + 1)] for i ≥ 2.

Figure 1.2: Splitting the interval (0, 1
r
] into subintervals for r = 2.

We will call an item X-item if it is in the interval X, X ∈ {A,Bi, Ci, Di}, i ≥ 2.
A bin is X-homogeneous, if it only contains X-items, and there is no space for
further X-items in the bin.

 dc_2018_22

40 CHAPTER 1. BIN PACKING PROBLEMS

Type Interval W (x) Type Interval W (x)

A (1/2, 1] x+ 1/2
B2 (1/3, 1/2] x+ 1/6 B3 (1/7, 1/6] x+ 1/42
C2 (1/4, 1/3] 4x/3 C3 (1/8, 1/7] 8x/7
D2 (1/6, 1/4] 4x/3 D3 (1/42, 1/8] 8x/7

Table 1.5: The weighting function W (x) for r = 1.

Lemma 1.5.5 ([20]) Any X-homogeneous bin is a good bin.

Proof Case Bi. We remind the reader that the interval A is a B1 interval. So,
if B is a Bi-homogeneous bin (i ≥ 1) then we can put mi − 1 pieces of items into
this bin, so the total size of the items is larger than mi−1

mi
. Therefore

W (B) =
∑
a∈B

s(a) + (mi − 1)
1

mi(mi − 1)
>
mi − 1

mi

+
1

mi

= 1.

Case Ci. If B is a Ci-homogeneous bin (i ≥ 2) then we can put mi pieces into
the bin, so the total size of the items is larger than mi

mi+1
. Therefore

W (B) =
mi + 1

mi

∑
a∈B

s(a) >
mi + 1

mi

mi

mi + 1
= 1.

Case Di. If B is a Di-homogeneous bin (i ≥ 2) then we can put at least mi+1
pieces into the bin. Since we can not put further Di-item into the bin, so the total
size of the items is larger than 1 − 1

mi+1
= mi

mi+1
. Therefore

W (B) ≥ mi + 1

mi

∑
a∈B

s(a) >
mi + 1

mi

mi

mi + 1
= 1.

□

Type Interval W (x) Type Interval W (x)

A (1/3, 1/2] x+ 1/3
B2 (1/4, 1/3] x+ 1/12 B3 (1/13, 1/12] x+ 1/156
C2 (1/5, 1/4] 5x/4 C3 (1/14, 1/13] 13x/12
D2 (1/12, 1/5] 5x/4 D3 (1/156, 1/14] 13x/12

Table 1.6: The weighting function W (x) for r = 2.

 dc_2018_22

1.5. NF-BASED BOUNDED-SPACE BIN PACKING ALGORITHM 41

Figure 1.3: The weighting function W (x) for r = 2.

Our main theorem is the following.

Theorem 1.5.6 ([20]) If we pack the items of any list by the algorithm NFFD-B3
then in Step (3) we either find at least one good bin, or we find a good subset in
the contents of the three virtual bins.

Proof We will assume the contrapositive. We suppose that a list L0 exists for
which after the Step (2) the algorithm NFFD-B3 neither produces at least one
virtual bin nor good subsets can be found. We can suppose that the list L0 has
the following properties.

- The total size of the items in L0 is
∑

a∈L0
s(a) > 3 − 1

r
.

- If mina∈L0 s(a) is an X-item, then in Step (2) no further X-items can be put
into any of the virtual bins.

- After Step (2) none of the virtual bins are empty.

During our proof we will distinguish different cases according to which interval
the smallest item belongs to.

Lemma 1.5.7 ([20]) If mina∈L0 s(a) is an A-item, then VBIN 1 (and VBIN 2) is
a good bin.

Proof Let us suppose that we have at least one A-item in VBIN 2 or VBIN 3.
Then VBIN 1 is an A-homogeneous bin. □

Corollary 1.5.8 ([20]) If r = 1 then maxa∈L0 s(a) ≤ 1
m1
.

Corollary 1.5.9 ([20]) After Step (2) neither VBIN 2 nor VBIN 3 contains A-
items, and VBIN 1 contains at most r − 1 = m1 − 2 pieces of A-item.

 dc_2018_22

42 CHAPTER 1. BIN PACKING PROBLEMS

Lemma 1.5.10 ([20]) If mina∈L0 s(a) is a B2-item, then VBIN 1 is a good bin.

Proof First we consider the case r = 1. Since VBIN 1 does not contain A-item,
therefore, B2 is the largest item in L0. If VBIN 2 or VBIN 3 contains B2 item then
VBIN 1 must be a B2-homogeneous bin. Therefore, if r = 1 then neither VBIN 2

nor VBIN 3 contains B2 item.
Consider the case r ≥ 2. Since VBIN 2 does not contain A-item, VBIN 2 is a

B2-homogeneous bin, and therefore it is a good bin. □

Corollary 1.5.11 ([20]) If r = 1 then neither VBIN 2 nor VBIN 3 contains B2-
item.

Lemma 1.5.12 ([20]) If mina∈L0 s(a) is a C2-item, then either at least one of
VBIN 1 and VBIN 2 is a good bin, or the algorithm can collect a good subset from
the items in the virtual bins.

Proof First we consider the case r = 1. From the Corollary 1.5.11 it follows that
neither VBIN 2 nor VBIN 3 can contain A- and B2-items. Therefore, if there is a
C2-item that does not fit in VBIN 1 then VBIN 2 must be a C2-homogeneous bin.

Now, we can suppose that r ≥ 2. Because of the Lemma 1.5.7 and Lemma
1.5.10, VBIN 3 contains only C2-items. Since

∑
a∈VBIN 1

s(a)+
∑

a∈VBIN 2
s(a) ≤ 2,

and the buffer was at least to the level 3r−1
r

full after Step (1), in the VBIN 3 there
is at least 3r−1

r
− 2 = r−1

r
place which contains C2-items only. Therefore, there

are at least r pieces of C2-items in the VBIN 3.
Case A. Let us suppose that we have r − 1 A-items in the VBIN 1, and we

denote the total sum of the sizes of A-items and the B2-items in VBIN 1 by xA
and xB2 , respectively. Then

W (VBIN 1) = xA +
r − 1

r(r + 1)
+ xB2 +

1

(r + 1)(r + 2)
.

Since xA + xB2 >
r+1
r+2

, therefore

W (VBIN 1) > (xA + xB2) +
r − 1

r(r + 1)

1

(r + 1)(r + 2)
= 1 +

r − 2

r3 + 3r2 + 2r
.

Since r ≥ 2, the right hand side is greater than 1, so VBIN 1 is a good bin.
Case B. Now, we suppose that there are at most (r − 2) A-items in the bin

VBIN 1. In this case at least 2 pieces of B2-items are in the VBIN 1. From the
Corollary 1.5.9 there is no A-item in VBIN 2.

Case B.1. If VBIN 2 contains r−1 pieces ofB2-items then these items together
with the 2 pieces of B2-items in VBIN 1 give a good subset.

Case B.2. Since VBIN 2 is full to at least level r+1
r+2

, if it contains at most
(r− 2) pieces of B2-items then the bin must contain at least 2 pieces of C2-items.
So, there are at least r+ 2 pieces of C2-items together in VBIN 2 and VBIN 3, and
so, they can form a good subset. □

 dc_2018_22

1.5. NF-BASED BOUNDED-SPACE BIN PACKING ALGORITHM 43

Corollary 1.5.13 ([20]) If r = 1 then neither VBIN 2 nor VBIN 3 contains C2-
item.

Lemma 1.5.14 ([20]) If mina∈L0 s(a) is a Di-item, i ≥ 2, then VBIN 1 is a good
bin.

Proof When the algorithm NFFD-B3 puts the first Di item into VBIN j, j = 2, 3,
then VBIN 1 is at least mi

mi+1
full. By the fact 1.5.2 (iii) W (x) ≥ x(mi + 1)/mi, so

the total weight in the VBIN 1 is at least 1, so VBIN 1 is a good bin. □

Corollary 1.5.15 ([20]) If r = 1 then neither VBIN 2 nor VBIN 3 contains Di-
item, i ≥ 2.

We introduce the following notations. Let S(X+, j) denote the sum of the
sizes of all items in the virtual bin VBIN j, j = 1, 2, 3, that are larger than the
X-elements, where X ∈ {Bi, Ci}, i ≥ 3. Furthermore, let N(X, j) and S(X, j)
denote the number and the overall sizes of X-elements in VBIN j, respectively.

Lemma 1.5.16 ([20]) Let mina∈L0 s(a) be a Bi-item, i ≥ 3. Then the number of
Bi-items in the VBIN 1 is

N(Bi, 1) > mi −
2mi

mi −mi−1

.

Proof By the assumption L0 is a counterexample, so – using the Fact 1.5.2 (iii)
– we get

W (VBIN 1) =
mi−1 + 1

mi−1

S(B+
i , 1) + S(Bi, 1) +

N(Bi, 1)

mi+1 − 1
< 1. (1.27)

Let x be the first Bi-item that has not fit into the bin VBIN 1. Since x did not fit
into VBIN 1 and x ≤ 1

mi−1
the total sizes of the items in VBIN 1 is

S(B+
i , 1) + S(Bi, 1) >

mi − 2

mi − 1
(1.28)

Let us eliminate S(B+
i , 1) from the inequalities (1.27)and (1.28) multiplying (1.27)

by mi−1 and (1.28) by −(mi−1 + 1). Adding these two inequalities we get

N(Bi, 1)
mi−1

mi+1 − 1
− S(Bi, 1) < mi−1 −

mi − 2

mi − 1
(mi−1 + 1). (1.29)

Since every Bi-item has size at most 1
mi−1

and there are N(Bi, 1) items in VBIN 1,

therefore S(Bi, 1) ≤ N(Bi,1)
mi−1

. Substituting this into the inequality (1.29) we get

N(Bi, 1)
(1

mi − 1
− mi − 1

mi+1 − 1

)
>
mi − 2

mi − 1
(mi−1 + 1) −mi−1, (1.30)

and so

N(Bi, 1) >
mi −mi−1 − 2

mi − 1
· mi(mi − 1)

mi −mi−1

=
mi(mi −mi−1 − 2)

mi −mi−1

, (1.31)

which yields the desired result. □

 dc_2018_22

44 CHAPTER 1. BIN PACKING PROBLEMS

Lemma 1.5.17 ([20]) Let mina∈L0 s(a) be a Bi-item, i ≥ 3, and let r = 1. If
i = 3 then VBIN 3 does not contain any B3 item. Furthermore, if i ≥ 4 then
neither VBIN 2 nor VBIN 3 contains any Bi item.

Proof Let x be the first Bi-item that has not fit into the bin VBIN 1.

Case i = 3. The Lemma 1.5.16 states that N(B3, 1) > 7
2
. Therefore N(B3, 1) ≥ 4.

If there are at least two B3 items in VBIN 2 and VBIN 3, we have at least 6 = m3−1
pieces of B3 elements. These items can fit into one bin, so their total weight is
at least 1. So, they form a good subset, which is a contradiction. Therefore,
there is at most one B3 item in VBIN 2 and VBIN 3 together. If r = 1 then from
the Corollaries 1.5.8, 1.5.11, 1.5.13, 1.5.15 follows that in VBIN 2 and VBIN 3 a
B3-item is the largest item. So, the B3-item must be placed in VBIN 2.

Case i ≥ 4. We know that 2mi

mi−mi−1
≤ 3. Therefore N(Bi, 1) ≥ mi − 2. Together

with x these mi−1 pieces of Bi items form a good subset, which is a contradiction.
□

From the Lemma 1.5.17 it follows that if mina∈L0 s(a) be a Bi-item, i ≥ 3, then
VBIN 3 is empty. Since the total size of the items in L0 is

∑
a∈L0

s(a) > 3 − 1
r
, so

this results in a contradiction again.

Lemma 1.5.18 ([20]) Let mina∈L0 s(a) be a Bi-item, i ≥ 3, and let r ≥ 2. Then
neither VBIN 2 nor VBIN 3 contains Bi item.

Proof Let x be the first Bi-item that has not fit into the bin VBIN 1. Now, for
every i ≥ 3 we get 2mi

mi−mi−1
< 3, and therefore N(Bi) ≥ mi − 2. So, we can use

the proof of Case i ≥ 4 of the Lemma 1.5.17. □

From the Lemma 1.5.17 and Lemma 1.5.18 follows that if mina∈L0 s(a) be a
Bi-item, i ≥ 3, then VBIN 3 is empty. Since the total size of the items in L0 is∑

a∈L0
s(a) > 3 − 1

r
, so this results in a contradiction again. Therefore it is not

possible that mina∈L0 s(a) is a Bi-item, where i ≥ 3.

Lemma 1.5.19 ([20]) If mina∈L0 s(a) is a Ci-item, i ≥ 3, then either VBIN 2 is
a good bin, or the algorithm can collect a good subset from the Ci-items in the
virtual bins.

Proof Let x be the first Ci-item in VBIN 3. If there is no larger item in L0 then
x then both virtual bins, VBIN 1 and VBIN 2, are Ci-homogeneous bins. So, we
can suppose that there are larger items in VBIN 1 and VBIN 2.

Since L0 is a counterexample, using the Fact 1.5.2 (iii) for the total weight of
the items in the VBIN 2 we get

mi−1 + 1

mi−1

S(C+
i , 2) + S(Ci, 2)

mi + 1

mi

< 1. (1.32)

 dc_2018_22

1.5. NF-BASED BOUNDED-SPACE BIN PACKING ALGORITHM 45

Since x did not fit into VBIN 2 and x ≤ 1
mi

the total size of the items in VBIN 2

S(C+
i , 2) + S(Ci, 2) >

mi − 1

mi

(1.33)

Let us eliminate S(C+
i , 2) from the inequality system (1.33) and (1.32) by multi-

plying 1.33 by −(mi−1 + 1) and 1.32 by mi−1. Adding these two inequalities we
get

S(Ci, 2) >
mi −mi−1 − 1

mi −mi−1

= 1 − 1

mi −mi−1

. (1.34)

Since every Ci-item has size at most 1
mi

and there are N(Ci, 2) items in VBIN 2,

therefore N(Ci, 2) > mi − mi

mi−mi−1
= mi − 1 − mi−1

mi−mi−1
> mi − 2. So, there are

at least mi − 1 pieces of Ci items in VBIN 2, and at least one Ci-item in VBIN 3.
The sum of the sizes of these items is at most one, and the total weight of these
items is at least one. So, we can construct a good subset again. □

With the help of the above Lemmas we have shown that if L0 is a counterexample,
i.e. packing the items of L0 by the algorithm NFFD-B3 there is neither a good
bin among the virtual bins nor a good subset, then the smallest item of L0 may
not be in any of the interval X, where X ∈ {A,Bi, Ci, Di}, i ≥ 2. Therefore L0

must be an empty list, which completes the proof of the Theorem 1.5.6. □

The algorithm NFFD-B3 opens at least one bin in each iteration step, fills up
the new opened bin(s) with items with total weight of at least one, and closes it.
At the end of the list the content of the last three virtual bins will be added to
the number of used bins. So the following theorem is valid.

Theorem 1.5.20 ([20]) Let r be a positive integer, and Lr be an arbitrary list
with items s(ai) ≤ 1

r
. Let us pack the items of L by the algorithm NFFD-B3. Then

NFFD-B3(L) ≤ W (L) + 3.

Theorem 1.5.1 and Theorem 1.5.20 and Corollary 1.5.4 together yield that

R∞(NFFD-B3) = h∞(r).

Our algorithm needs maximum O(n log n) operations to order the contents of
the buffer, and O(n) operations to find a good subset among the items in the
buffer in each iteration step. Since the number of iterations is maximum O(n),
the time-complexity of the algorithm is O(n2 log n).

1.5.4 Conclusions

In two earlier papers a bounded-space semi-online bin packing problem was con-
sidered. In papers [88] and [89] lower and upper bounds were given for the online
algorithms for this problem. Both of the papers investigated the case r = 2. The
best lower- and upper-bounds were 1.4230 and 1.4243, respectively.

In this section we defined an algorithm with asymptotic competitive ratio of
h∞(r) for any r ≥ 1 integer. We also proved that these upper bounds are tight
for every r. Especially, for r = 2 this value is h∞(2) = 1.423117

 dc_2018_22

46 CHAPTER 1. BIN PACKING PROBLEMS

 dc_2018_22

Chapter 2

Scheduling Problems

2.1 Introduction

In case of scheduling problems, we need to plan the execution of specific jobs on
machines. In the general model, jobs can consist of several activities and for them
we need to give the machines and time intervals in which each operation is to be
performed. Scheduling models can be applied in such diverse areas as economics,
transportation, industrial production and many others. More formally the prob-
lem can be defined as follows: there are m machines that are used to process n
jobs. For each machine i(i = 1, 2, . . . ,m) and each job j(j = 1, 2, . . . , n), a sched-
ule specifies one or more time intervals throughout which processing is performed
on j by i. A schedule is considered feasible if there is no overlapping of time inter-
vals corresponding to the same job and there is no overlapping of time intervals
corresponding to the same machine. More requirements can be given related to
the problem type. The type can be specified by the machine environment, the job
characteristics and the optimality criterion. In the simplest case each job requires
one operation. Considering the machine environment single and parallel machine
problem versions are known. If there are more machines, the processing times can
be independent of the machine (identical parallel machines). The machines can
operate at different speeds (uniformly related parallel machines) or the processing
time of a job can depend completely on the machine (unrelated parallel machines).
In the more complicated variants the jobs may have more phases which can be
executed on one or more machines based on several criteria. In addition to the
processing requirements the jobs may have further characteristics, like availability
for processing, precedence constraints or interruption conditions. The objectives
can be also varied, an important measure is some function of the completion times,
but flow time, lateness, earliness or other measures can be considered in different
models. The classical objective is to minimize the makespan, where the makespan
is defined as the maximum load over all machines. In this chapter first we present
lower bounds for online makespan minimization for a small number of uniformly
related machines. In the next two sections we investigate the unit execution time
version of the coupled task scheduling problem.

47

 dc_2018_22

48 CHAPTER 2. SCHEDULING PROBLEMS

2.2 Lower Bounds for Related Machines

2.2.1 Definitions and preliminaries

The instance of this problem consists of a sequence of machines with possibly
different speeds and a sequence of jobs specified by their processing times. A
schedule assigns each job to one of the machines; the time needed to process a
job is equal to its processing time divided by the speed of the machine where it
is assigned. The objective is to minimize the makespan (also called the length of
the schedule, or the maximal completion time). Usually a schedule also needs to
specify the timing of each job (its starting and completion times) so that the jobs
on each machine do not overlap. Due to the simplicity of the problem we consider,
this is not necessary and it is sufficient to specify the assignment to the machines,
silently assuming that each job is started as soon as all the previous jobs on its
machine are processed. Instead of calculating the completion times individually
for each job, we can calculate the completion time of each machine as the total
processing time of the jobs allocated to it divided by the speed of the machine;
the makespan is then the maximum of the completion times over all machines.

In the online version of the problem, jobs appear online one-by-one. When a
job appears, an online algorithm has to make an irrevocable decision and assign
the job to a machine. This decision is permanent and made without the knowledge
of the future jobs; the algorithm is not even aware of whether any future jobs exist
or not. An online algorithm is R-competitive if for each instance it produces a
schedule with makespan at most R times the optimal makespan.

First we present lower bounds of 2.141391 for m = 4 and 2.314595 for m = 5.
The construction is based on an instance where the processing times are a geo-
metric sequence, similarly as in previous works [24, 39, 37]. The speeds are chosen
so that any online algorithm can use only two fastest machines, called the active
machines. The bound is then obtained by carefully analyzing the possible patterns
of scheduling the jobs on these machines.

Generalizing this to larger values of m, we use computer search for elimination
of possible patterns and give instances with up to 5 active machines ([53]).

It is known that for two and three machines, the tight bounds are 1.618 and 2
respectively. Two other lower bounds for a small number of machines were 2.2880
for m = 6 and 2.4380 for m = 9 by [24]. For an arbitrary (large) number of
machines, the current lower bound is 2.5648 [37].

Naturally, the lower bounds need to be compared to the existing algorithms.
For a small number of machines the best currently known algorithm is the greedy
List Scheduling (LS). Here List Scheduling is defined so that the next job is always
scheduled so that it will finish as early as possible. Its competitive ratio for m = 2
is exactly ϕ ≈ 1.618, the golden ratio, and for m ≥ 3 it is at most 1+

√
(m− 1)/2;

this bound is tight for 3 ≤ m ≤ 6 [30]. Moreover, for m = 2, 3 it can be checked
easily that there is no better deterministic algorithm. For m = 2 it is possible even
to give the exact optimal ratio for any speed combination and it is always achieved
by greedy List Scheduling [38]. Already for three machines, it is not known exactly
for which speed combinations List Scheduling is optimal, even though we know it

 dc_2018_22

2.2. LOWER BOUNDS FOR RELATED MACHINES 49

is optimal in the worst case. Some recent progress is reported in [27, 48]. Another
special case when some partial results about optimality of List Scheduling are
known is the case when m− 1 machines have the same speed, see, e.g., [48, 65].

For an arbitrary (large) number of machines, the greedy algorithm is far from
optimal: its competitive ratio is Θ(logm) [3]. The first constant-competitive
algorithm for non-preemptive scheduling on related machines was developed in [3].
The currently best algorithms are 3 +

√
8 ≈ 5.828 competitive deterministic and

4.311 competitive randomized one [24]. For an alternative very nice presentation
see [13]. All these algorithms use doubling, i.e., strategies that work with some
estimate of the optimal makespan and when it turns out that the estimate is
too low, it is multiplied by 2 or some other constant. While this is a standard
technique for obtaining a constant competitive ratio, it would be surprising if it
led to optimal algorithms. Designing better algorithms both for small and large
number of machines remains one of the central open problems in this area.

2.2.2 Combinatorial lower bounds

We number the machines as well as the jobs from 0 (to obtain simpler formulas).
Thus we have machines M0,M1, . . . ,Mm−1 and jobs J0, J1, . . . , Jn−1. The speed
of machine Mi is denoted si; we order the machines so that their speeds are non-
increasing. The processing time of job Jj is denoted pj; thus the job takes time
pj/si to be processed on Mi.

For a given sequence of jobs J , let Ji be the set of indices of jobs scheduled
on machine Mi. The completion time of the machine is then simply the sum
of processing times of the jobs scheduled to the machine divided by its speed:
Ci = 1

si

∑
j∈Ji

pj. We compare the maximum completion time in the output of
the algorithm with the maximum completion time of the optimal schedule.

In all our lower bounds, we let J denote an infinite sequence of jobs j0, j1, . . .,
where ji has processing time pi = αi for some α > 1. We shall consider the
algorithm’s assignment of jobs for the prefixes of J ; we denote the prefix of J
consisting of the first t+ 1 jobs j0, j1, . . . , jt by J [t].

We first briefly review the proof of the tight lower bound of 2 for m = 3, to
introduce the main ideas.

The machine M0 has speed 1, the machines M1 and M2 have speed 1/2. We
set α = 2, i.e., pi = 2i. We observe that the optimal makespan for J [t] is pt = 2t:
jt is scheduled on M0, jt−1 on M1 and all the remaining jobs on M2. Assume we
have an algorithm with a competitive ratio smaller than 2. If a job jt is scheduled
on one of the slow machines, the makespan on J [t] is 2pt, twice the optimum.
Thus the algorithm schedules all jobs on M0. But then the makespan on J [t] is
2pt − 1, by taking t sufficiently high we get a contradiction again.

To obtain a lower bound of R for more machines, we arrange the instance so
that an R-competitive algorithm is forced to schedule all jobs on the k fastest
machines (instead of one for m = 3), for some k. With k = 2 we obtain combi-
natorial bounds for m = 4, 5 while for larger values of k we use computer search
and obtain bounds for larger k. The value of α will be chosen later separately for
each case.

 dc_2018_22

50 CHAPTER 2. SCHEDULING PROBLEMS

The machines M0,M1, . . . ,Mk−1 are called active machines; we set the speed
of the active machine Mi to si = α−i. All the remaining machines, i.e., Mk, Mk+1,
. . . , Mm−1 are called inactive and have the same speed sk. This speed is chosen
so that:
(A) sk ≤ 1/R and
(B) for any t, the optimal makespan for J [t] equals pt.

The condition (A) limits the possible lower bound on R and needs to be verified
separately in each case. As we shall see later, for some values of α, k and m it gives
the tightest bound on R, while for other values not. In any case, it is desirable to
choose sk as small possible, so that we have a chance of proving a large bound on
R.

Thus we investigate what the smallest possible speed sk is such that (B) holds,
and it turns out that a simple argument gives an exact bound. Due to our choice of
speeds of active machines, the k largest jobs of J [t] fit on the k active machines
so that they all complete exactly at time pt. Thus it is necessary that all the
remaining jobs together do not overflow the capacity of all the inactive machines.
With this in mind, we set the speeds

sk = sk+1 = · · · = sm−1

= α−k · max

{
1,

1

m− k

∑
i≥0

α−i

}

= α−k · max

{
1,

α

(m− k)(α− 1)

}
, (2.1)

and in Lemma 2.2.1 we prove that this choice of sk indeed guarantees that (B)
holds.

Lemma 2.2.1 ([53]) The optimum makespan for J [t] is pt = αt.

The lower bound proofs in each case continue by examining the possible pat-
terns of scheduling jobs on the active machines. Intuitively it is clear that the
best algorithm uses an eventually periodic pattern, which then matches the lower
bound. For the actual proof we proceed by gradually excluding more and more
patterns. For k = 2 active machines this requires only a few steps and thus can
be performed by hand. For larger k we use computer search.

We note that our lower bounds, both combinatorial and computer-assisted
ones, are optimized in the following sense: For every choice of α, assuming the
speeds and the jobs in the instance are as above, and assuming that R equals our
lower bound, there either exists a periodic pattern so that the sequence can be
scheduled on the active machines with makespan at most R times the optimum
or the speed of the inactive machines is larger than 1/R and thus the algorithm
can use them.

We give improved lower bounds for m = 4 and m = 5 machines. In both cases
we use only k = 2 active machines. However, having three inactive machines
instead of only two allows us to use smaller α and consequently obtain stronger
lower bound for five machines.

 dc_2018_22

2.2. LOWER BOUNDS FOR RELATED MACHINES 51

Theorem 2.2.2 ([53]) Let α ≈ 1.72208 be the largest real root of z4−z3−z2−z+1.
For makespan minimization on m = 4 uniformly related machines there exists no
online algorithm with competitive ratio smaller than

R =
α4

α3 − 1
= 1 +

α(α + 1)

α3 − 1
≈ 2.141391 . (2.2)

Theorem 2.2.3 ([53]) Let α ≈ 1.52138 be the only real root of z3 − z − 2. For
makespan minimization on m = 5 uniformly related machines there exists no
online algorithm with competitive ratio smaller than R = α2 ≈ 2.314595.

2.2.3 Computer search based lower bounds

The lower bounds described in [24] were found via search through possible as-
signments of jobs to k = 3 active machines. We present a generalization of their
computer search technique in order to find the exact pattern of allocations that
maximizes the lower bound obtainable for k = 3, 4, 5 active machines. It also
confirms the previous section’s results for k = 2 active machines.

First, we describe our technique. Fix some competitive ratio R that we want
to achieve. We maintain a vector S = (S0, . . . , Sk−1) that tracks the relative load
on each of the active machines. Now, we build a graph with states representing
all such vectors such that Si ≤ Rα−i and edges being the possible vectors after
a single job is scheduled. Our initial state is (0, . . . , 0). To get the relative load
after a job scheduled on machine i on a given state S, we first divide each entry
of our relative load vector S by α and then add 1 to the ith entry of our vector.
So, we get up to k edges out of each vertex.

This is the same infinite graph as the one considered by [24], though they
only considered k = 3 active machines. We also consider all possible compet-
itive ratios R, whereas they always set R to equal αk. Clearly, there is an
R-competitive deterministic scheduling algorithm if and only if there is an infinite
path in the graph starting from the initial state. In order to make this graph
computer searchable, Berman et al. made the graph finite by discretizing the S
vector. This, however, led to large rounding errors except for large choices of n,
the factor of discretization. So, we use a different method for which it is sufficient
to search only a part of the graph.

Rather than building the entire graph, we only build the tree generated by
scheduling r jobs for a small choice of r. Normally, this would generate a tree
with kr states, but since we do not include states with Si > Rα−i, many branches
of the tree are pruned. From this graph, we can determine if there is a path of
length r in the infinite graph. Thus, for a given choice of r, α, and k, if there
is no path of length r, then there is no deterministic scheduling algorithm with
competitive ratio R, giving us a lower bound.

As we are proving a lower bound of R, the common speed of the inactive
machines has to be at most 1/R, or else it would be possible to schedule at least one
job on the inactive machines. Hence, by Lemma 2.2.1, we have that the number
of inactive machines, m− k, is no less than (R/αk)

∑
i≥0 α

−i = R ·α1−k(α− 1)−1.

 dc_2018_22

52 CHAPTER 2. SCHEDULING PROBLEMS

So, this limits our choice of α to a certain range for a given combination of k and
m. We maximize the choice of R over this range to obtain our lower bound.

We can also calculate the pattern that the online algorithm can follow to
achieve a competitive ratio close to our lower bound. We select an R slightly
larger than the maximum R for which the graph was finite. Then, any sufficiently
long path is guaranteed to follow an optimal pattern; in principle there could be
several optimal patterns, actually we did not even prove that there exists one.
However, it is sufficient for us to find a single one matching the lower bound, since
any such pattern shows that our lower bound cannot be improved further—and
we have done this for each m for the optimal value of α.

As we saw in the analysis of m = 4 and m = 5, such pattern does not
necessarily make the completion times of all machines equal, i.e., for some i the
i-th entry might be much smaller than αk−i. While for our choice of α all paths
in the tree will follow the pattern after some point, there is some flexibility in the
allocation of the first few jobs, as they are very small. As we are using DFS to
find a single long path in the tree in order to find the optimal pattern, our search
is likely to find the pattern after inspecting only a small number out of many
feasible initial allocations. After finding a cyclic pattern of length ℓ, it is simple
to check if it attains the desired ratio by inspecting the relative load vector that
it yields. Our method works for values of k up to 5. We are unable to find lower
bounds and matching patterns for k ≥ 6, as the tree becomes too large.

As described, we are able to verify for a given k, m, α and R if there is an R-
competitive algorithm for our sequences. For the optimal values of α, it is feasible
to find R by binary search. To speed up computations, we have not searched
the whole tree, but only a random sample of the initial branches. This works
in practice, since if there is an infinite branch and R is not too close to the real
bound, most initial branches can be extended. If an infinite branch is found, it is
proven that the bound is smaller. If none is found, we first verify the result by
extending the random sample and then we have verified the results by a complete
search for selected values of α.

Our computer search results are presented in Table 2.1 and, in more detail, in
Figures 2.1, 2.2 and 2.3. The data in Table 2.1 is presented as follows. First, the
number of active machines, k, then the optimal number of machines, m, then the
approximation to the optimal value of α. This is followed by the optimal pattern,
presented as follows. The integer i denotes Mi, the ith fastest machine (counting
from 0), and the pattern repeatedly assigns jobs to the machines in the order
given. The next column gives the number h of the machine Mh that attains the
highest load for this pattern and this value of α. Finally, the last column gives
the value of the lower bound ratio R given by the computer search and matched
by the pattern found.

Figure 2.1 shows the bounds for all values of m and k. For each value of α, the
largest lower bound R is displayed. The values of m and k are implicit, as given
by the condition (A) and setting of the speeds. Most important, for a given α
and R, k is the smallest number such that αk ≥ R, since sk ≥ α−k and (A) would
be violated otherwise. Similarly, since (m − k)sk ≥ α1−k/(α − 1), the number of

 dc_2018_22

2.2. LOWER BOUNDS FOR RELATED MACHINES 53

k m α Pattern h R

2 4 1.722081 001 1 2.141391
2 5 1.521380 001 0 2.314595
3 6 1.450217 001021001020100102010010201 2 2.347312
3 7 1.346256 0010201012 1 2.439957
4 8 1.346256 0010201012 1 2.439957
4 9 1.255564 0102103012010210301201023 2 2.462775
5 10 1.222412 010321041230012013021041023012 0 2.483120
5 11 1.209132 010213020140312010230412010321 . . . 4 2.502672

. . . 040120310210340120132010423 . . .

. . . 010210341020130120412031020134

Table 2.1: The results of the computer search for lower bounds, together with
cyclic patterns that attain upper bounds slightly larger than these lower bounds
([53]).

1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95 2

2

2.05

2.1

2.15

2.2

2.25

2.3

2.35

2.4

2.45

2.5

2.55

2.6

m = 11 (α ϵ [1.200748,1.222412))

m = 10 (α ϵ [1.222412,1.251809))

m = 9 (α ϵ [1.251809,1.285761))

m = 8 (α ϵ [1.285761,1.346256))

m = 7 (α ϵ [1.346256,1.393838))

m = 6 (α ϵ [1.393838,1.52138))

m = 5 (α ϵ [1.52138,1.644902))

m = 4 (α ϵ [1.644902,2])

α

R

α2 2*α*(α-1)

α3
3*α2*(α-1)

α4

4*α3*(α-1)

α5

5*α4*(α-1)

Figure 2.1: The graph presents what lower bounds our strategy yields for α ∈
(1.2, 2.0).

 dc_2018_22

54 CHAPTER 2. SCHEDULING PROBLEMS

��� ���� ���� ���� ���� ���� ���� ���� ���	

����

����

����

����

����

����

����

���	

���

���

����

��
�����������������	�����������

��
������������������������	�
��

��
�
������������	�
����	������

�

�

������������ ��

Figure 2.2: A zoom-in on the left part of Figure 2.1, i.e., α ∈ (1.20, 1.28).

����� ����� ����� ����� �����

�����

�����

�����

�����

�����

�����

�����

	

Figure 2.3: A zoom-in on the center part of Figure 2.1, i.e., α ∈ (1.44, 1.46).

 dc_2018_22

2.3. IMPROVED ANALYSIS OF AN ALGORITHM FOR THE CTP 55

inactive machines (m−k) needs to satisfy (m−k)αk−1(α−1) ≥ R. These bounds
on R are drawn as thin, fast increasing functions. As α decreases, the number
of active or inactive machines increases once one of these curves is crossed. The
largest values of α correspond to m = 4 (and k = 2), but as α decreases, the curve
for R crosses 1/s2 = 2α(α − 1), so an additional inactive machine is required for
smaller α. Hence at that point the region corresponding to m = 5 and k = 2
starts, and extends to the left until the R curve crosses 1/s2 = α2; at that point
an active machine is added and the region corresponding to m = 6 and k = 3
starts, and so on.

The patterns found for k = 2 match the patterns found in our analysis of
m = 4, 5. The lower bound we found for k = 3 is slightly better than the previous
lower bound found by computer search for 3 active machines (2.438).

In general, the lower bounds increase with increasing number of machines.
However, as the figures show, the exact dependence on α is complicated.

While the optimal R is at most αk in general, sometimes it is strictly smaller:
This is the case for all even m ≤ 10, including m = 4, for which we gave a
combinatorial proof. Thus, trying all possible values of R, rather than fixing it
at αk (as [24] did) allowed us to obtain new bounds for even k. Additionally, it
is interesting that for m = 9 and m = 11, the optimal R is strictly smaller than
αk, leading to improved bounds for odd m as well. Another anomaly is that for
m = 8, the best bound matches the bound for m = 7. Thus, it does not always
help to add an active machine without an accompanying inactive machine.

2.2.4 Conclusions

We have presented new lower bounds for online makespan scheduling on a small
number of uniformly related machines. For small m we were able to take an
advantage of the combinatorial structure of the problem and of the fact that even
for the optimal online algorithm (pattern), the completion times of the active
machines will be uneven.

2.3 Improved Analysis of an Algorithm for the

CTP

2.3.1 Definitions and preliminaries

The coupled task problem (CTP) is defined as follows: we are given n jobs each
of them consisting of two sub-tasks. The two sub-tasks have to be executed in
a given sequence and there is an exact delay time (gap) to be observed between
their execution. We specify job i, i = 1, . . . , n, by a triple (ai, li, bi) of positive
integers where the values represent the processing time of the first task, the delay
time between the tasks and the processing time of the second task, respectively.
During the delay time the machine is idle and other jobs can be processed in
this time interval. The aim is to schedule the n jobs on a single machine in
such a way that no two tasks overlap and the latest completion time of a job

 dc_2018_22

56 CHAPTER 2. SCHEDULING PROBLEMS

(makespan) is as small as possible. Preemptions are not allowed. In this general
version the problem is strongly NP-hard. For the general case, we will use the
standard three-field notation – introduced by Graham et al. [44] – as follows:
1|Coup-Task, exact li|Cmax.

The general problem was first studied by Shapiro [80]. He discussed practical
applications and gave three simple heuristics. The heuristics were not analyzed,
but experimental results showed their effectiveness. Orman and Potts [67] exam-
ined the complexity of several special cases of the problem defined by additional
conditions on the numbers ai, li and bi. In [2] a dynamic programming algorithm
for the special case where all n jobs have identical specifications is presented. This
problem is of special interest since its complexity is still unknown.

Yu et al. [87] proved that the problem remains NP-hard even if the jobs have
unit execution time (UET problem). So, research turned on the investigation of
approximation algorithms.

Let S(n) be a given list of n job pairs and let A be an approximation algorithm.
We will denote by Cmax(A, S(n)) and Cmax(OPT, S(n)) the makespan produced
by algorithm A and of the optimal schedule for S(n), respectively. Algorithm A
is called ρ-approximation algorithm (ρ ≥ 1) if

Cmax(A, S(n)) ≤ ρCmax(OPT, S(n))

for every list of jobs. The smallest possible such value ρ is called worst-case
(performance) ratio of algorithm A and is denoted by ρA.

Ageev and Baburin [1] defined the following algorithm for the case of unit
execution times, i.e., for the case ai = bi = 1, for i = 1, . . . , n.

Algorithm DNF

(1) Sort the jobs according to non-decreasing idle times, i.e., l1 ≤ l2 ≤ . . . ≤ ln.

(2) Construct schedule σ1 as follows:

(2.1) Start job 1 at position 0.

(2.2) For i = 2, . . . , n: start job i at the earliest possible position after the
first task of the previously scheduled job is finished.

(3) Let k be the number of jobs which terminate completely before the start of
job n.

(4) Construct schedule σ2 as follows (only if k > 0):

(4.1) Start job k + 1 at position 0.

(4.2) For i = k + 2, . . . , n, 1, . . . , k: start job i at the earliest possible posi-
tion after the first task of the previously scheduled job is finished.

(5) Output schedule σ which is the better one of σ1 and σ2.

 dc_2018_22

2.3. IMPROVED ANALYSIS OF AN ALGORITHM FOR THE CTP 57

So basically, this algorithm consists of performing two times a greedy algorithm
according to a next fit rule for the first sub-tasks, once for the list (1, . . . , n) and
once for the list (k + 1, . . . , n, 1, . . . , k). Therefore we call it Double Next Fit
(DNF).

The following theorem is proven in [1].

Theorem 2.3.1 (Ageev, Baburin, [1]) The worst-case performance ratio of DNF
satisfies

ρDNF ≤ 7

4
.

For analyzing the tightness of this competitive ratio, Ageev and Baburin con-
structed the following problem instances. Let n ≥ 3 be odd and t = n−1

2
. Define

the unit execution time problem series SAB(n) by setting

li = n− 2, i = 1, . . . , n− t,

ln−t+r =
3n− 7

2
+ r, r = 1, . . . , t.

It is easy to see that for this problem

Cmax(DNF, SAB(n)) = Cmax(σ1, SAB(n)) = Cmax(σ2, SAB(n)) =
1

2
(7n− 5),

where Cmax(σ1, SAB(n)) and Cmax(σ2, SAB(n)) denote the makespans of sched-
ules σ1 and σ2. For any list S(n) a trivial lower bound on the optimum makespan
of a UET problem is

Cmax(OPT, S(n)) ≥ max
{

2n, 2 + max{li | i = 1 . . . , n}
}
.

In [1] the authors used 2n as lower bound and thus came to the conclusion
that problem series SAB(n) would prove the ρDNF = 7

4
.

2.3.2 An improved lower bound

We will now derive a better lower bound for UET problems and thus show that
the above series does not yield the tightness of the bound 7

4
(see [23]).

Theorem 2.3.2 ([23]) Suppose that
∑n

i=1 li > n(n− 1). Then, for any list S(n)

Cmax(OPT, S(n)) ≥ 2n+
⌈ 1

n

(n∑
i=1

li − n(n− 1)
)⌉
.

Proof Consider an arbitrary schedule of n jobs. For each position of the schedule
count the number of jobs for which this position falls into their gap. Let OT denote
the total sum of the overlap counts over all positions where the machine is busy
and OI denote the sum over all idle positions.

 dc_2018_22

58 CHAPTER 2. SCHEDULING PROBLEMS

We get an upper bound on OT if we simply consider a schedule of length 2n,
i.e., without idle positions. The first position of the schedule cannot be contained
in any gap. The second position can be contained in at most one gap. Continuing
this idea we get that the m-th position of the schedule can be contained in at
most m − 1 gaps, for m = 3, . . . , n. We get the same for the second n positions
by scanning the schedule from right to left. So, the overlap sum OT is at most
n(n− 1).
Obviously OT +OI =

∑n
i=1 li, and therefore OI ≥

∑n
i=1 li − n(n− 1).

If
∑n

i=1 li > n(n − 1), then the schedule must have p idle positions, p > 0.
Since every idle position can contribute at most n to Is, we get that

p ≥
⌈ 1

n

(n∑
i=1

li − n(n− 1)
)⌉
.

□

Lemma 2.3.3 ([23]) For problem series SAB(n)

lim
n→∞

Cmax(DNF, SAB(n))

Cmax(OPT, SAB(n))
≤ 28

19
.

Proof By definition we obtain

n∑
i=1

li = (n− t) (n− 2) + t
3n− 7

2
+
t(t+ 1)

2

=
11n2 − 24n+ 5

8

and therefore

n∑
i=1

li − n(n− 1) =
3n2 − 16n+ 5

8
.

For n ≥ 5 the condition of Lemma 2.3.2 holds and we get that

Cmax(OPT, SAB(n)) ≥ 2n+

⌈
3n2 − 16n+ 5

8n

⌉
≥ 19n2 − 16n+ 5

8n
.

From these bounds we obtain for problem series SAB(n)

lim
n→∞

Cmax(DNF, SAB(n))

Cmax(OPT, SAB(n))
≤ lim

n→∞

28n2 − 20n

19n2 − 16n+ 5
=

28

19
.

□

So, the result in [1] actually is 28
19

≤ ρDNF ≤ 7
4
.

In fact, using a time-indexed integer programming approach [22] we were able
to compute the true optimum solutions for odd n ≤ 57. In every case the optimum
solution was equal to our improved lower bound.

 dc_2018_22

2.3. IMPROVED ANALYSIS OF AN ALGORITHM FOR THE CTP 59

2.3.3 Tightness of the upper-bound

However, by constructing a different example we will show that the worst-case
bound 7

4
for algorithm DNF is indeed tight.

Let n = 4m+ 2, for m ≥ 2. We define the problem series SI(n) by setting

li = 2m− 1, i = 1, . . . , 2m− 1,

l2m = 4m,

li = 4m+ 1, i = 2m+ 1, . . . , 4m,

l4m+2 = 8m+ 1.

Lemma 2.3.4 ([23]) For problem series SI(n)

Cmax(DNF, SI(n)) =
7n− 6

2
.

Proof It is easy to see that

Cmax(σ1, SI(n)) = n+m+ ln + 1 = n+
n− 2

2
+ 2n− 3 + 1 =

7n− 6

2

and that k = 2m.
For computing Cmax(σ2, SI(n)) note the following facts. Since lk+1 = ... = l2k =
l1 + n− k, second operation of job 1 will collide with all the second operations of
the jobs k+ 1, ..., 2k. By definition of the algorithm the machine will be idle in σ2
in the interval [n−k+ 1, n] and job 1 will be scheduled after the second operation
of job 2k = n−2, i.e., at position n+k+1. The second operation of job n−1 will
scheduled after the second operation of job 1, because n− k− 1 + n+ k+ 1 = 2n
and n+ k + 1 + k − 1 + 1 + 1 = 2n.
Consequently, the machine will be idle in position n+k+2, and the first operation
of job k can be scheduled only after the second operation of job k − 1, i.e., at
position.

n− k + k + k + 1 + k − 1 + 1 = n+ 3k + 1 =
5n− 4

2
.

From this

Cmax(σ2, SI(n)) =
5n− 4

2
+ n− 2 + 1 =

7n− 6

2
,

and the statement of the lemma follows. □

Figure 2.4 displays the schedules σ1 and σ2 and the optimum schedule for
n = 10, i.e., m = 2. (Second tasks are grayed.) The structure of this optimum
solution will be generalized in the following.

Lemma 2.3.5 ([23]) For problem series SI(n)

Cmax(OPT, SI(n)) = 2n.

 dc_2018_22

60 CHAPTER 2. SCHEDULING PROBLEMS

Figure 2.4: Schedules σ1, σ2 and the optimum schedule for n = 10.

We can now show the tightness of the worst-case bound.

Theorem 2.3.6 ([23]) The worst-case performance ratio of algorithm DNF is 7
4
.

Proof. Using the previous lemmas we now immediately obtain

ρDNF ≥ lim
n→∞

Cmax(DNF, SI(n))

Cmax(OPT, SI(n))
= lim

n→∞

7n− 6

4n
=

7

4

which proves the tightness of the upper bound for algorithm DNF.

2.3.4 Conclusions

Ageev and Baburin [1] gave an approximation algorithm for the unit execution
time version of the coupled task scheduling problem. By deriving a new lower
bound on the minimum makespan and by giving a new example we proved that
their worst-case bound 7

4
is tight.

2.4 A First Fit Type Algorithm for the CTP

2.4.1 Definitions and preliminaries

In this subsection we will consider again UET coupled task problems based on [18].
Let us consider an arbitrary feasible schedule σ. We will say that in σ Ji and Jj are
consecutive if S(bi) < S(aj), the jobs are nested if S(ai) < S(aj) < S(bj) < S(bi),
and the jobs are interleaved if S(ai) < S(aj) < S(bi) < S(bj).

A similar definition can be done for the set of jobs: e.g. let S1 and S2 be sets
of jobs. In schedule σ S2 is nested in S1 if ∀Ji ∈ S1 and ∀Jj ∈ S2, S(ai) < S(aj) <
S(bj) < S(bi). If a task is performed in the time-period [i− 1, i], then we say that
the task occupies the position i.

From the literature, there are some lower bounds known to estimate the opti-
mal schedule for the CTP.

OPT(In) ≥ LB1 = 2n. (2.3)

 dc_2018_22

2.4. A FIRST FIT TYPE ALGORITHM FOR THE CTP 61

The next one gives an improvement for those cases where
∑
li ≥ n(n − 1) (see

[23]).

OPT(In) ≥ LB2 = 2n+
⌈ 1

n

(n∑
i=1

li − n(n− 1)
)⌉
. (2.4)

If we apply the lower bound (2.4) for inputs with two different delays we can use
the following estimation.

OPT(In) ≥ LB3 = n1 + n2 +
n1L1 + n2L2

n1 + n2

+ 1, (2.5)

where n1 and n2, mean the number of jobs with longer and shorter delays, respec-
tively. At the end, if we have inputs with two different delays then the first part
of the input – with n1 jobs and L1 delays – gives also a lower bound.

OPT(In) ≥ LB4 = n1 + L1 + 1. (2.6)

2.4.2 Algorithm First-Fit Decreasing

We introduce the First-Fit Decreasing (FFD) approximation algorithm for the
problem

1|Coup-Task, exact li ∈ {L1, L2}, ai = bi = 1|Cmax.

The FFD algorithm was originally defined by D. S. Johnson [54] as a bin pack-
ing approximation algorithm. We define the appropriate version of this algorithm
to our problem in consideration. Naturally, the algorithm is designed to solve
problems with arbitrary number of different delays but we investigate it only for
the UET problem with two distinct delays among tasks.
Algorithm First-Fit Decreasing

Step 1. Sort the jobs in non-increasing order according to the idle times. After
ordering we suppose that l1 ≥ l2 ≥ . . . ≥ ln. Let i = 1.

Step 2. Schedule job Ji from the earliest time which results in a feasible schedule.

Step 3. i = i+ 1. If i ≤ n then goto Step 2. Otherwise END.

2.4.3 Theorems for scheduling jobs with equal delays

Let In be an instance with jobs of equal delay times, and let us denote the common
delay time by L. Such instance will be called L-uniform instance. We will say
that the subset {Ji, . . . , Jm} of jobs are continuously scheduled if ∀j, i ≤ j < m,
S(aj+1) = S(aj) + 1. It is clear that for an L-uniform instance FFD schedules the
items in a block continuously. Furthermore, let Jk and Jk+1 be the last item of
block B, and the first item of block B+1, respectively. Then if S(bk)+1 = S(ak+1),
then the two blocks are also continuously scheduled.

Let In be an L-uniform instance. Let k = ⌊n/(L+ 1)⌋, and n = nc+nr, where
nc = k(L + 1), and nr = n − k(L + 1) ≤ L. In [67] an optimal algorithm has

 dc_2018_22

62 CHAPTER 2. SCHEDULING PROBLEMS

been defined for the problem 1|CTP, ai = bi = p, li = L|Cmax. If we apply this
algorithm for the case ai = bi = 1, then we get the following algorithm.

Algorithm Greedy

Step 1. Compute k = ⌊n/(L+ 1)⌋.

Step 2. Form k (complete) blocks of jobs, where each block contains L+ 1 jobs.

Step 3. If nr > 0, then form an incomplete block containing all the remaining
jobs where the first tasks are scheduled continuously.

Step 4. Schedule the complete blocks and the incomplete blocks – if any – con-
tinuously.

This algorithm has been analyzed in [67] and it was proven to provide an optimal
schedule. The value of OPT(In) was not given. Here, we give a simpler – but
more formalized – proof, and we give OPT(In) explicitly.

Theorem 2.4.1 ([18]) Algorithm Greedy generates an optimal schedule for the
1|Coup− Task, ai = bi = 1, li = L|Cmax problem in O(n) time, and

OPT(In) =

{
k(L+ 1) + n, if nr = 0;

(k + 1)(L+ 1) + n, otherwise.

Proof We already know that Greedy generates an optimal schedule, so we prove
only the validity of the formula.
First consider the case when all blocks are complete, i.e. nr = 0. Then OPT(In) =
2k(L+ 1) and n = k(L+ 1) thus the claim holds.
Now suppose that the last block is not complete. The contribution of k complete
blocks to the makespan is 2(L+1)k. The length of the last block is L+2+(nr−1)
where nr = n− k(L+ 1). Thus we get

OPT(In) = 2(L+ 1)k + L+ 2 + n− k(L+ 1) − 1

= 2(L+ 1)k + L+ 1 − k(L+ 1) + n

= (k + 1) (L+ 1) + n.

□

Since for L-uniform instances an FFD schedule is identical toGreedy, the following
corollary is a consequence of Theorem 2.4.1.
Corollary For L-uniform instances

CFFD
max (In) =

{
k(L+ 1) + n, if nr = 0;

(k + 1)(L+ 1) + n, otherwise.
(2.7)

We realize that CFFD
max (In) is a function of n, and L. Let us denote this function

by
CFFD

max (In) = f(n, L). (2.8)

 dc_2018_22

2.4. A FIRST FIT TYPE ALGORITHM FOR THE CTP 63

Considering the formula of (2.7), we see that moving from n to (n + 1), f(n, L)
grows by 1 if the last block is not complete (for n), otherwise (if the last block
is complete for n) the value of (2.7) is growing by L + 2. In both cases, by
n→ (n+ 1), the value of (2.7) is growing by at least 1. Thus, if we increase n by
d ≥ 1, the value of (2.7) is growing by at least d. Thus we have

f(n− d, L) ≤ f(n, L) − d (2.9)

for any 1 ≤ d ≤ n.

2.4.4 Theorems for two different delays

Hereinafter, we suppose that instances contain only jobs with two different delay
times L1 and L2, where L1 > L2. Jobs with delay time L1, or L2 are called long,
or short, resp. Let In = (I1, I2) be the concatenation of instances I1 and I2, with
n1 long and n2 short jobs (n = n1 +n2), resp. To avoid the complicated notations
sometimes we write instead of In simply I.

If we have two different delay times, then Step 1 in algorithm FFD can be
performed in O(n) time creating two ”heaps” for the long and short jobs, respec-
tively.

In subsection 2.4.1 we defined the set of interleaved jobs. If we have jobs
with two different gaps, then a (set) of short jobs can be in interleaved position
either with a (set) of long jobs or with a (set) of short jobs. In these cases, we
speak about long-interleaved or short-interleaved jobs, resp. If for a short job Ji,
S(ai) > S(bn1) (i > n1,) then we call the job long-consecutive.

Figure 2.5: An example for two different types of interleaved short jobs. Boxes
denote the long jobs and circles correspond to short jobs.

We define the algorithm Separate, denoted by SEP. This algorithm applies the
FFD rule independently for the sub-instances I1, and I2, and concatenates the
two schedules.

Algorithm Separate

Step 1. t = 1. Schedule all jobs in I1 from the position t using FFD.

Step 2. t = CFFD
max (I1) + 1. Schedule all jobs in I2 starting at position t by the

algorithm FFD.

First, we prove a simple Claim that we use several times thereinafter.

 dc_2018_22

64 CHAPTER 2. SCHEDULING PROBLEMS

Claim 2.4.2 ([18]) If the FFD schedule of input In contains long-interleaved short
jobs, and there is at least one empty position just after the second task of the last
long job, then the idle time (denoted by τ) in the FFD schedule is at most L2.

Proof During the proof we use the following – easily provable – facts. If the
conditions are true then
(a) there is at least one nested complete short block,
(b) there is no incomplete nested short block,
(c) the first long-interleaved short job starts just after the second task of the last
nested short job.

Because of the conditions, there is at least one empty position just after the
second task of the last long job. Let us denote the number of complete nested
blocks of short jobs by n2,cn. There are two cases.

Case A. Suppose that n2 ≥ (L1 − n1 + 1) − 2(L2 + 1)n2,cn.
In this case, the gap within the incomplete long block will be filled with nested

jobs and the first tasks of interleaved short jobs. Therefore, there is no gap within
the incomplete block of the long jobs. So, idle time can occur only after the
incomplete block of the long jobs. By this reason, the sum of idle times in the
FFD schedule – independently whether or not long-consecutive short jobs exist –
is at most L2.

Case B. Suppose that n2 < (L1 − n1 + 1) − 2(L2 + 1)n2,cn.
Now, there is no long-consecutive short job. A gap remains within the incom-

plete block of the long jobs, and there is also an idle time after the second task of
the last long job. Let us denote these gaps by τ1, and τ2, resp. Both gaps start
up within the two tasks of the first interleaved short job (see Figure 2.6), thus
τ = τ1 + τ2 < L2.

□

Figure 2.6: Schedule of short interleaved jobs if second tasks are not consecutive.

Lemma 2.4.3 ([18]) For any input I with two different delays CSEP
max (I) ≥ CFFD

max (I).

Proof For scheduling the long jobs FFD and SEP are identical, so CFFD
max (I1) =

CSEP
max (I1). Furthermore, the two algorithms remain identical if there are only

complete blocks from long jobs. So we can suppose that an incomplete block from
long jobs exists. Let us apply the equality (2.8) for the instances I1 and I2 with
parameters (n1, L1), and (n2, L2) We get

CSEP
max (I) = CFFD

max (I1) + CFFD
max (I2) = f(n1, L1) + f(n2, L2) = t+ f(n2, L2).

 dc_2018_22

2.4. A FIRST FIT TYPE ALGORITHM FOR THE CTP 65

Denote the number of nested short jobs by n2,ne ≥ 0. Now we distinguish
several cases.

Case A. There is no (long-)interleaved short job. Then FFD schedules n2 −
n2,ne jobs from time t, so

CFFD
max (I) = t+ f(n2 − n2,ne, L2) ≤ t+ f(n2, L2) − n2,ne ≤ CSEP

max (I).

Case B. There is at least one long-interleaved short job. Suppose the last
interleaved short job ends at position p > t. It follows that positions j = t, ..., p−1
are either idles or they are occupied by the second tasks of some interleaved short
jobs.

Case B.1. There is no empty position between t and p− 1. This means that
there are n2,i = p− t interleaved short jobs.

Let n2,lc ≥ 0 be the number of long-consecutive short jobs. Since there are
also n2,ne nested small jobs, n2,lc = n2 − n2,ne − n2,i. The long-consecutive short
jobs are scheduled by FFD from position p. Then

CFFD
max (I) = p+ f(n2 − n2,ne − (p− t), L2) ≤ p+ f(n2, L2) − n2,ne − (p− t)

= t+ f(n2, L2) − n2,ne ≤ SEP (I).

Case B.2. There is at least one empty position between t and p − 1. Now, we
can use the Claim 2.4.2, and so, τ ≤ L2.

In this case the first interleaved short job ends strictly later than t + 1, and
the incomplete long block will be filled with nested jobs and the first tasks of
interleaved short jobs. By this reason, the sum of idle times in the FFD schedule
is at most L2.

On the other hand, in the SEP schedule all positions in the gap of the in-
complete long block remain idle. Since in the FFD schedule there is at least one
complete block of nested jobs, the length of the gap is at least 2(L2 + 1) > L2.
Thus the total length of idle intervals in the SEP schedule is bigger than L2. Then
clearly CFFD

max (I) < CSEP
max (I). □

At this point we are able to easily determine the time complexity of algorithm
FFD . We assume that L1 and L2 are fixed.

Claim 2.4.4 ([18]) The time complexity of the FFD algorithm is O(n).

Proof The ordering in Step 1 needs only O(n) time, since there are only two
different types of jobs. In Step 2, FFD first schedules the long jobs in O(n) time.
Then come the short jobs. From this point we store (in a vector) that what time-
slots are occupied and what time slots are free. Note, that any time slot will be
checked at most once: if the time slot will be occupied by the current job, this
time slot will be never checked again. Otherwise, if the time slot is free but cannot
be occupied by the current (short) job, it never will be able to be occupied by
some other short job.

We know from Lemma 2.4.3 that CFFD
max (I) ≤ CSEP

max (I) ≤ 2n+L1+L2 holds, it
means that at most so many time slots are tried (each one is tried at most once).
We conclude that the complexity is O(n). □

 dc_2018_22

66 CHAPTER 2. SCHEDULING PROBLEMS

2.4.5 Lower bound for FFD

In this subsection, we give lower bounds for the performance ratio of FFD.

Theorem 2.4.5 ([18]) Let I(n, k) be an instance which contains n = n1+n2 = 9k
jobs, where n1 = 3k and n2 = 6k pieces of long and short jobs, respectively. Let
us suppose that L1 = 12k − 2 and L2 = 9k − 2. Then

lim sup
k→∞

CFFD
max (I(n, k))

OPT(I(n, k))
=

30

19
.

Proof After having scheduled long jobs there is a gap of 9k − 1 among the two
tasks of the items. Figure 2.7 shows the status when every long job of I(n, k) has
been scheduled.

Figure 2.7: Status when all long jobs are scheduled by FFD.

Since a short job needs 9k positions, FFD can not schedule any short job as
nested job in the gap of long jobs. So, FFD will start to schedule interleaved short
jobs.

FFD will schedule the first item in such a way that its second task occupies the
first empty position after the last task of the long jobs. It occupies the positions
6k+2 and 15k positions for the first and the second tasks, respectively. (The tasks
occupy the units [6k + 1, 6k + 2] and [15k − 1, 15k]. It is clear that the position
15k was free. Similarly, the position 6k + 2 is also free. So, the first interleaved
short job can be scheduled in this position. Following this idea, FFD can schedule
(12k − 1) − (6k) = 6k − 1 interleaved short jobs. The second task of the last
interleaved short job occupies the position 21k − 2.

Figure 2.8: Status when all the jobs of I(n, k) are scheduled by FFD.

The remaining short job needs L2 + 2 units to be completed. Therefore, the
makespan of the instance I(n, k) produced by the algorithm FFD is CFFD

max (I(n, k)) =
21k − 2 + L2 + 2 = 30k − 2. For the instance I(n, k)⌈ 1

n

(n∑
i=1

li − n(n− 1)
)⌉

= k − 1 ≥ 0,

 dc_2018_22

2.4. A FIRST FIT TYPE ALGORITHM FOR THE CTP 67

therefore, we can apply lb2, and so C∗(I(n, k)) ≥ 19k − 1. Therefore,

lim sup
k→∞

CFFD
max (I(n, k))

OPT(I(n, k))
≤ 30k − 2

19k − 1
(2.10)

To prove that the right hand side of the inequality (2.10) is tight, we consider
the following feasible schedule of the instance I(n, k). We schedule three times k
pieces of long jobs and 2k pieces of short jobs at the earliest possible time. We
illustrate the schedule on the Figure 2.9 for the case k = 2.

Figure 2.9: An optimal schedule of the instance I(n, k) if k = 2.

It is easy to check that all the positions are occupied except those ones which are
between the first task of the last interleaved short job and the second task of the
first nested short job. So the gap in this schedule is:

(12k − 2) − [(k − 1) + 2k + 3k + 3k + 2k] = k − 1.

So,
C∗(I(n, k)) ≤ 2n+ (k − 1) = 19k − 1. (2.11)

Therefore

lim sup
k→∞

CFFD
max (I(n, k))

OPT(I(n, k))
≥ 30k − 2

19k − 1
(2.12)

Taking the inequalities (2.10) and (2.12), we get the desired result.
□

2.4.6 Upper bound for FFD

In this section, we give an upper bound for the performance ratio of FFD. This
ratio depends strongly on the structure of an instance i.e. does the FFD schedule
contain complete blocks, are there nested short jobs, or interleaved short jobs, etc.?
We will investigate FFD schedules with different structures. In the following, if
for two instances I and I ′, CFFD

max (I)/OPT(I) ≤ CFFD
max (I ′)/OPT(I ′), then we say

that CFFD
max (I ′) dominates CFFD

max (I). Our upper bound proof will be divided into
three parts.

- First, we will consider instances for which CFFD
max (I)/OPT(I) ≤ 3

2
.

- Secondly, we investigate inputs for which there is a dominant instance with
a given structure.

 dc_2018_22

68 CHAPTER 2. SCHEDULING PROBLEMS

- Finally, we give an upper bound for the set of dominant instances.

In the sequel, we will use the following notations. Let kb, ks, rb, and rs be such
integers, for which n1 = kb(L1+1)+rb where 1 ≤ rb ≤ L1 and n2 = ks(L2+1)+rs
where 0 ≤ rs ≤ L2. Then

kb(L1 + 1) = n1 − rb and ks(L2 + 1) = n2 − rs. (2.13)

Inputs with performance ratio at most 3
2
.

Lemma 2.4.6 ([18]) If I is such an input for which there is at least one complete

block of long jobs in the FFD schedule, then CFFD
max (I)
OPT(I)

≤ 3/2.

Proof Since there is a complete block of long jobs, we have

L1 + 1 ≤ n1. (2.14)

Applying (2.8) for the instances I1 and I2 separately, and taking into account
that for L-uniform instances CFFD

max (I) = CSEP
max (I), we get that

CSEP
max (I) = f(n1, L1) + f(n2, L2). (2.15)

On the other hand, applying Theorem 2.4.1 for I1, we have

OPT(I) ≥ OPT(I1) = f(n1, L1).

Case A. If ks = 0 (i.e. there is no complete block of short jobs in the SEP
schedule), then we first apply the lower bound (2.6). Then using the inequality
(2.14) and the lower bound (2.3), we have

CSEP
max (I) − OPT(I) ≤ f(n2, L2) = L2 + 1 + n2

≤ L1 + n2 < n1 + n2 = n ≤ OPT(I)/2,

thus CSEP
max (I) ≤ (3/2)OPT(I) and we are done.

Case B. If ks > 0 (i.e. there is at least one complete block also from the short
jobs in the SEP schedule), then

L2 + 1 ≤ n2. (2.16)

Let us start with (2.15) and apply (2.13)- (2.16). Then we get

CSEP
max (I) = f(n1, L1) + f(n2, L2)

≤ (kb + 1)(L1 + 1) + n1 + (ks + 1)(L2 + 1) + n2

= n1 − rb + (L1 + 1) + n1 + n2 − rs + (L2 + 1) + n2

≤ 2n1 + (L1 + 1) + 2n2 + (L2 + 1) < 3n1 + 3n2 = 3n

≤ (3/2)OPT(I)

where the last inequality follows from the lower bound (2.3).
□

 dc_2018_22

2.4. A FIRST FIT TYPE ALGORITHM FOR THE CTP 69

Lemma 2.4.7 ([18]) Let us suppose that kb = 0, i.e. there is no complete block
from the big jobs. If there is at least one complete block of short jobs, then
CFFD

max (I)
OPT(I)

≤ 3/2.

Proof Let us denote the number of short jobs in complete blocks by n2,c. Then

n2 ≥ n2,c ≥ L2 + 1. (2.17)

If all of the short jobs are nested jobs then the FFD schedule is optimal. So,
we can suppose that there is at least one short job i with S(bi) ≥ S(bn1) + 1.
Let us denote the sum of idle times in the FFD schedule by τ. If τ ≤ n then
CFFD

max (I) ≤ 3n. Thus it is enough to show that τ ≤ n.
Case A. There is at least one long-interleaved short job, and these jobs are
scheduled so that the second tasks are not consecutive to the last task of the long
jobs (see Figure 2.6). Now, we apply Lemma 2.4.2, which results that τ ≤ L2.
From (2.17) we get L2 < n2 < n. Therefore τ < n, and we are done.
Case B. There is at least one long-interleaved short job, and these jobs are
scheduled so that the second tasks are consecutive to the last task of the long
jobs. This schedule of the interleaved jobs does not result in gap just after the
second task of the last long job (see Figure 2.10).

Let us consider the tasks which are scheduled in the gap of the last long-
interleaved short job. These tasks are the second tasks of the last incomplete
block of nested jobs (if any), the second tasks of the long jobs and second tasks
of the long-interleaved jobs except the last one. Since there is no gap within this
time interval, here there are L2 tasks. Note that we also have at least one complete
block of L2 + 1 short jobs (which are nested jobs or long-consecutive jobs), and
these jobs belong to another subset of I2. This means, that the number of jobs is
at least n ≥ 2L2 + 1.

Figure 2.10: Schedule of short interleaved jobs if first tasks are consecutive.

On the other hand, gap (idle time interval) can happen only in the incomplete
block of long-consecutive jobs and within the first tasks and second tasks of the
long jobs. The size of both gaps is at most L2. Thus, the total gap is at most
τ ≤ 2L2 ≤ n and we are done.
Case C. There is no interleaved short job in the FFD schedule at all. Similar to
the Case B, we get that the total gap is at most τ ≤ 2L2.

Now, we can suppose that the number of long-consecutive jobs is n2,lc > 0,
otherwise the schedule is optimal. Any long-consecutive job could not be scheduled
as long-interleaved job, thus n2,icn + n1 > L2, where n2,icn is the number of jobs
in the incomplete block of the nested short jobs (see again Figure 2.10). Since in

 dc_2018_22

70 CHAPTER 2. SCHEDULING PROBLEMS

the schedule there are further short jobs which form at least one complete block,
n ≥ n2,icn + n1 + (L2 + 1) > 2L2 + 1 > τ.

□

Lemma 2.4.8 ([18]) If there are neither nested nor interleaved short jobs in the
input I, then CFFD

max (I)/OPT(I) ≤ 3/2.

Proof If the conditions are true then all short jobs are long-consecutive and
CFFD

max (I) = CSEP
max (I). Since there is no interleaved job, therefore L2 ≤ n1 − 1. So,

we get

CFFD
max (I) = (n1 + L1 + 1) + (n2 + L2 + 1) = n+ L1 + L2 + 2

≤ n+ (L1 + n1 + 1) =
1

2
LB1 + LB4 ≤ (3/2)OPT(L).

□

In the next lemma, we exclude the case when there is no long-consecutive short
job at all.

Lemma 2.4.9 ([18]) If there is no long-consecutive short job in the input I, then
CFFD

max (I)/OPT(I) ≤ 3/2.

Proof We claim that CFFD
max (I) ≤ L1 +n+ 2. Let us consider the status when all

the long jobs are just scheduled. Now, the first n1 time slots are occupied, and
the time slots are busy from L1 + 1 to L1 + 2 + (n1 − 1) = L1 + n1 + 1.

Now let us see how the short jobs are scheduled.
First, suppose that there is no nested short job. Then all short jobs are

interleaved jobs and since L2 < L1, the second tasks of the short jobs can be
assigned continuously from the time L1 + n1 + 1, and so we have CFFD

max (I) =
(L1 + n1 + 1) + n2.

Otherwise, there are several nested jobs. Let us denote by n2,ne and n2,i the
number of nested short jobs and the number of interleaved jobs, resp. Then
n2 = n2,ne + n2,i and so n2,i < n2. Therefore,

CFFD
max (I) = (L1 + n1 + 1) + n2,i < (L1 + n1 + 1) + n2 = L1 + n+ 1,

and so

3

2
OPT(I) ≥ LB4 + LB1/2 = (L1 + n1 + 1) + n ≥ CFFD

max (I).

□

Inputs with dominant instances

From Lemma 2.4.8 we know that if there are neither nested nor interleaved
short jobs then CFFD

max (I)/OPT(I) ≤ 3
2
. In this part we will investigate those cases

when one of them occurs. Let

LB = max {LB1, LB3, LB4} .

 dc_2018_22

2.4. A FIRST FIT TYPE ALGORITHM FOR THE CTP 71

Lemma 2.4.10 ([18]) Suppose that I is an input that contains nested short jobs
in its FFD schedule. Then there exists a dominant instance I ′ for which the FFD
schedule does not contain nested jobs.

Proof Let z > 0, n2,i denote the number of nested and the number of interleaved
short jobs, respectively. By Lemma 2.4.6, we can suppose that the FFD schedule
of I does not contain complete blocks of long jobs, and by Lemma 2.4.7, there is no
complete block of nested short jobs. So, the nested short jobs form an incomplete
block, and their second tasks occupy z positions just before the second tasks of
the long jobs (see Figure 2.11).

Now, in I ′ let L′
1 = L1 − z, and we consider the changes in the FFD schedule

of our modified input. We remark that L2 = L′
1 − n1.

Claim 2.4.11 LB(I ′) ≤ LB(I)

Proof Since LB1 depends on only the number of jobs therefore LB1(I) =
LB1(I ′). In I ′ the sum of the gaps are smaller than in I. Therefore, lb3(I ′) ≤
lb3(I), and lb4(I ′) ≤ lb4(I).

□

Case A. First, we suppose that there is at least one interleaved short job in I.
Then

L2 = n1 + z + (n2,i − 1). (2.18)

If we schedule the items of I ′, then each earlier nested short job will be interleaved
and the interleaved short jobs remain interleaved, i.e. z′ = 0, and n′

2,i = z + n2,i.
It is easy to check that after having scheduled all long jobs and all interleaved
jobs, the makespan is the same and the number of already scheduled short jobs is
also the same, i.e. n1 + z + n2,i = n1 + z′ + n′

2,i. As a consequence of (2.18), there
is no complete block in the modified schedule.

Figure 2.11: An instance with jobs, L1 = 14, n1 = 2, L2 = 9, n2,i = 5, and z = 3.

Figure 2.12: The modified instance with L′
1 = 11, n1 = 2, L2 = 9, n′

2,i = 8.

 dc_2018_22

72 CHAPTER 2. SCHEDULING PROBLEMS

By finishing the schedule with the remained short jobs (that all will be long-
consecutive jobs), the makespan of the FFD schedule does not change. So, apply-
ing the Claim 2.4.11 we get CFFD

max (I ′)/LB(I ′) > CFFD
max (I)/LB(I).

Case B. Now assume that there is no interleaved short job while FFD schedules
items of I. Let us denote the number of long-consecutive jobs by nlc. It is clear that
the FFD schedule of I ′ does not contain complete block from the long-consecutive
short jobs. Now, after the scheduling of the long jobs, the last occupied time slot in
I ′ will be z unit earlier, and the number of nested jobs is z′ = 0. The schedule will
contain n′

2,i = z new interleaved short jobs, therefore – before the FFD schedules
the long-consecutive short jobs – the makespan of the two schedules is equal.
Since the number of long-consecutive short jobs have not changed, CFFD

max (I ′) =
CFFD

max (I), and – using again Claim 2.4.11 we get the desired inequality.

Figure 2.13: An instance without interleaved jobs L1 = 13, n1 = 2, L2 = 6,
n2 = 7, z = 5.

Figure 2.14: The modified instance with L′
1 = 8, n1 = 2, n2,i = 5, L2 = 6, n2 = 7.

□

Lemma 2.4.12 ([18]) Let I be an instance for which the FFD schedule contains
interleaved short jobs. Then there exists a dominant instance I ′ for which in the
FFD schedule the first short job is an interleaved short job, and L2 = L1 − n1.

Proof There are no nested jobs, therefore L2 ≥ L1 − n1. Then I ′ must contain
at least one interleaved job. If L2 = L1 − n1 then we are ready, I ′ = I. Let
L2 = L1 − n1 + z, where z > 0, integer.

Figure 2.15: An instance with L1 = 10, n1 = 7, n2 = 4, L2 = 7, and z = 4

 dc_2018_22

2.4. A FIRST FIT TYPE ALGORITHM FOR THE CTP 73

Figure 2.16: The modified instance with L1 = 10, n′
1 = 3, n′

2 = 8, and L2 = 7

Let us make a modified input I ′ where n′
1 = n1 − z and n′

2 = n2 + z. Note
that the number of jobs does not change. Now, having scheduled the long jobs
and the interleaved short jobs by FFD the makespan is the same as earlier, and
the number of already scheduled short jobs is increasing by z. So, finishing the
schedule with the remained short jobs (that all will be long-consecutive jobs), the
value of the FFD schedule remains the same.

Let us see how the lower bound changes. LB1 does not change, LB3 will be
smaller, and LB4 decreases by z. Therefore, LB will not increase, thus for I ′

CFFD
max (I ′)/LB(I ′) > CFFD

max (I)/LB(I) still holds.
□

Now, we will investigate the structure of the long-consecutive short jobs.

Lemma 2.4.13 ([18]) Let I be an instance that its FFD schedule does not contain
nested short jobs, contains interleaved and long-consecutive short jobs. Then there
exists such a dominant instance I ′ which contains exactly one long-consecutive
short job.

Proof Suppose there are at least z+1 long-consecutive short jobs, where z ≤ L2.
We derive the following instance: let L′

1 = L1 + z and L′
2 = L2 + z. Note that the

number of jobs does not change.

Figure 2.17: Instance with z = 2 short jobs in long-consecutive block.

Figure 2.18: Modified input with z = 0 short jobs in long-consecutive block.

Now after scheduling the long jobs, the last occupied time slot will be z units
later. Since L′

2 > L2, the number of interleaved jobs increases by z, and just after
scheduling the interleaved jobs, the corresponding makespan increased by 2z. So,
if it was previously t, now it is t + 2z. The number of the remained short jobs is
decreased by z, but since L2 is also increased by z, the increment comparing to

 dc_2018_22

74 CHAPTER 2. SCHEDULING PROBLEMS

t+ 2z is the same, as the increment was comparing to t in the previous input. It
means that the makespan of the FFD schedule increases by 2z.

Let us see how the lower bound changes. LB1 does not change, LB3 will be
increased by z, and LB4 also grows by z. This means that LB increases by at
most z. Therefore, for I ′ it still holds that CFFD

max (I ′)/LB(I ′) > CFFD
max (I)/LB(I),

as the numerator increased by 2z, while the denominator increased by at most
z. □

The upper bound

In the previous subsections we have found some instances with performance
ratio ≤ 3/2, and also some instances have been analyzed for which the FFD
schedules have dominant examples with given structures. Therefore the following
proposition is true.

Proposition 2.4.14 If we want to find an instance I with CFFD
max (I)/LB(I) > 3/2

then we have to analyze those cases for which the FFD schedule
(a) does not contain complete blocks (Lemma 2.4.6, Lemma 2.4.7),
(b) does not contain nested short jobs (Lemma 2.4.8, Lemma 2.4.10),
(c) contains interleaved short jobs (Lemma 2.4.8, Lemma 2.4.12),
(d) the idle time of the short jobs is L2 = L1 − n1 (Lemma 2.4.12),
(e) contains exactly one long-consecutive short job (Lemma 2.4.9, 2.4.13).

Let I be an example, which satisfies the conditions (a)-(e). From Proposition
2.4.14 the following simple assumptions follow.

- n1 < L1 + 1, results in a schedule with one – incomplete – block of long
jobs, and after having scheduled the long jobs an idle time starts up with
size L1 − n1 + 1 > 0.

- L2 + 2 > L1 − n1 + 1, to avoid nested short jobs. We will investigate those
special inputs where L2 = L1 − n1, which results in the longest short jobs
in the instance.

- L2 ≥ n1, results in several interleaved jobs.

- n2 = L2 − n1 + 2. Using this condition, FFD schedules as much interleaved
jobs as possible and just one short job remains. This lonely short job will
be a long-consecutive job.

As consequence of the assumptions above, if an instance I disposes of the charac-
teristics above, the following facts are true.

Fact 2.4.15 From the conditions it follows that L2 = L1 − n1 ≥ n1, and so

L1

n1

≥ 2. (2.19)

 dc_2018_22

2.4. A FIRST FIT TYPE ALGORITHM FOR THE CTP 75

Fact 2.4.16 After scheduling the long jobs we have

CFFD
max (I1) = L1 + 2 + n1 − 1 = L1 + n1 + 1. (2.20)

Fact 2.4.17 After scheduling the interleaved jobs we have

CFFD
max (I) = (L1 + n1 + 1) + (L2 − n1 + 1) = L1 + L2 + 2. (2.21)

Fact 2.4.18 After scheduling the last short job we have

CFFD
max (I) = (L1 + L2 + 2) + L2 + 2 = L1 + 2L2 + 4. (2.22)

We compare CFFD
max (I) and OPT(I). Estimating the optimal solution, we use

the lower bound LB3. To do that, let us express L2 and n2 as the variables of L1

and n1. Applying L2 = L1 − n1 and n2 = L2 − n1 + 2 = L1 − 2n1 + 2, we get

CFFD
max (I) = L1 + 2L2 + 4 = 3L1 − 2n1 + 4.

and

OPT(I) ≥ n1 + (L1 − 2n1 + 2) +
n1L1 + (L1 − 2n1 + 2)(L1 − n1)

n1 + L1 − 2n1 + 2
+ 1

= L1 − n1 + 3 +
n1L1 + (L1 − 2n1 + 2)(L1 − n1)

L1 − n1 + 2

Let us introduce the new variable x = L1/n1. Then we can express the previous
values as CFFD

max (I)/n1 = 3x− 2 + 4/n1 and

OPT(I)

n1

≥ x− 1 +
3

n1

+
x+ (x− 2 + 2

n1
)(x− 1)

x− 1 + 2
n1

.

For the sake of simpler notation we introduce the substitution 1/n1 = a. Then
we get

CFFD
max (I)

OPT(I)
≤ 3x− 2 + 4a

x− 1 + 3a+ x+(x−2+2a)(x−1)
x−1+2a

=
(3x− 2 + 4a)(x− 1 + 2a)

(x− 1 + 3a)(x− 1 + 2a) + x+ (x− 2 + 2a)(x− 1)
(2.23)

=
(3x− 2 + 4a)(x− 1 + 2a)

6a2 − 7a+ 7ax+ 2x2 − 4x+ 3

and we are interested in the maximum of the right hand side. Because of the
inequality (2.19), we can suppose that 2 ≤ x.

Lemma 2.4.19 ([18]) If for an instance I, 2 ≤ x ≤ 4 then

CFFD
max (I)

OPT(I)
≤ 30

19

 dc_2018_22

76 CHAPTER 2. SCHEDULING PROBLEMS

Proof Applying the equality (2.23), our claim is equivalent with

3x2 + (20a− 25)x+ (28a2 − 58a+ 52) ≥ 0 (2.24)

Here, the discriminant is

D(a) = (20a− 25)2 − 4 · 3 · (28a2 − 58a+ 52) = 64a2 − 304a+ 1.

Recall that a = 1/n1 where n1 is integer, thus 0 < a ≤ 1. It is easy to see that
D′(a) = 128a−304 < 0 in the whole (0; 1] interval. Thus, D(a) is decreasing. The
unique solution of D(a) = 0 in the considered interval is 19

8
− 3

4

√
10 ≈ 0.0032918

which means that D(a) < 0 for 19
8
− 3

4

√
10 < a ≤ 1, or in equivalent form,

n1 < 1/(19
8
− 3

4

√
10) ≈ 303.79.

Now let us suppose that 0 < a ≤ 19
8
− 3

4

√
10 which means that n1 ≥ 304. Then,

the equation (2.24) has two solutions, which are x1,2 = 25
6
−10

3
a±1

6

√
64a2 − 304a+ 1.

We state that both solutions are strictly bigger than 4. It suffices to see that the
smaller root is bigger than 4, i.e.

1

6
− 10

3
a− 1

6

√
64a2 − 304a+ 1 > 0,

By simple calculation, we get 24a (14a+ 11) > 0, which holds. This means that
the function in the left hand side in (2.24) is positive, if x ≤ 4.

□

Lemma 2.4.20 ([18]) If for an instance I, 4 < x, then

CFFD
max (I)

OPT(I)
≤ (3x− 2)(x− 1)

2x2 − 4x+ 3
≤

√
11 + 3

4
≈ 1.579156.

Proof Applying (2.23), we have to prove the following inequality.

(3x− 2 + 4a)(x− 1 + 2a)

6a2 − 7a+ 7ax+ 2x2 − 4x+ 3
≤ (3x− 2)(x− 1)

2x2 − 4x+ 3
, (2.25)

which is equivalent to the following inequality.

a(2x2 + 2x− 12) + x3 − 13x+ 10 ≥ 0.

In the left hand side 2x2+2x−12 = 2 (x+ 3) (x− 2) ≥ 0 because x ≥ 2. Moreover,
it is easy to see that for x ≥ 4

x3 − 13x+ 10 > x3 − 13x− 12 = (x+ 3) (x− 4) (x+ 1) ≥ 0.

Now we are interested in the biggest possible value of (3x−2)(x−1)
2x2−4x+3

, considering
that x ≥ 4. To prove this, it is enough to see that

(3x− 2) (x− 1)

2x2 − 4x+ 3
−

√
11 + 3

4
≤ 0. (2.26)

 dc_2018_22

2.4. A FIRST FIT TYPE ALGORITHM FOR THE CTP 77

The left hand side can be transformed as follows.

(3x− 2) (x− 1)

2x2 − 4x+ 3
−

√
11 + 3

4
=

3 −
√

11

4

(
x− 1

2

√
11 − 5

2

)2
x2 − 2x+ 3

2

.

Since 3 −
√

11 < 0 and x2 − 2x+ 3
2
> 0 if x > 4, (2.26) is true.

□

Combining the results in the Lemma 2.4.19, Lemma 2.4.20, and Theorem 2.4.5
we get the following theorem.

Theorem 2.4.21 ([18]) For those problems where we only have jobs with two
different idle times, the worst-case ratio of the FFD algorithm is

1.57894 . . . =
30

19
≤ ρFFD ≤

√
11 + 3

4
= 1.579156 . . . ,

and the lower bound is tight if L1/n1 ≤ 4.

2.4.7 Conclusions

In this section, we investigated a special case of the CTP where the tasks have
unit length and there are only two different gaps. We considered the First Fit
Decreasing (FFD) algorithm where the jobs are scheduled in greedy way according
to their delay time: the larger the delay time, the sooner the schedule. We proved
that the worst-case ratio of FFD is between 30

19
and

√
11+3
4

.

 dc_2018_22

78 CHAPTER 2. SCHEDULING PROBLEMS

 dc_2018_22

Chapter 3

Matrix Transpose Problem

3.1 Introduction

The rapidly increasing computational demands of the applied sciences pushed the
computer systems progressively towards the higher computational capacity. In
the same time they required more effective algorithms. Therefore, recently high
performance computing is in the focus of computer science. To make comput-
ers more efficient, developments were needed both on the fields of hardware and
software. Hardware developments resulted in multicore processors and connected
computers with different architectures, while the algorithms became more sophis-
ticated step by step and they have been analysed deeper than ever before. A
good architecture or a more efficient algorithm may decrease the processing time
strongly in a parallel computational environment.

On the hardware side the effectiveness of any parallel computation effort vigor-
ously depends on how fast we can send data from a source processor to a destina-
tion one. Therefore different architectures were developed in the last two decades.
Hypercubes, tori and meshes are the architectures that have been intensively
studied. See e.g. [51], [66], [71], and [81].

Routing, sorting, merging, and matrix transpose are the problems that were
investigated already in the early ages of parallel computation (see e.g. [25], [58],
[60], [75]). These problems are among the basic ones, that often appear in numer-
ical computations. For example matrix transpose is one of the basic operations
in linear algebra. The speed of such computations can be critical in some real
time practical applications, like digital signal processing, image processing, radar
systems, etc. (see [28]). To exploit the increased computational capacity on the
software side parallel algorithms have been developed, so in the last decade parallel
processing has been further improved by leaps and bounds. All of the investigated
algorithms were accommodated to a given architecture. The effectiveness of cer-
tain algorithms were investigated extensively, see e.g. [29], [40], [52], [62], [72] and
[78].

The effectiveness of a parallel computation effort strongly depends on how
fast we can send data from a source processor to a destination one. Meshes are
the architectures that are flexible, the processors can be connected in different

79

 dc_2018_22

80 CHAPTER 3. MATRIX TRANSPOSE PROBLEM

ways, and they are suitable to implement different algorithms in an efficient way.
Therefore among the different architectures the most extensively studied ones are
the mesh architectures. In the simplest, one dimensional (1D) case a mesh is a
linear array where the elements are the processors and each processor is connected
by a full duplex line with its neighbours. In higher dimensions (2D, 3D) processors
form an array, and they are connected by communication links. Figure 3.1 shows
some mesh architectures.

Execution of any algorithm is performed in steps. In one step two connected
processors can change data. Normally, only the connected processors can commu-
nicate with each other. There are different communication modes which influence
the speed of data transfer. MIMD, SPMD, SIMD and the Weak SIMD are some
examples for communication. (More details see in [45] and [68]).

Here we suppose MIMD communication among the processors, i.e. processors
choose their communication directions independently, and they can communicate
with all their neighbours in one step.

The efficiency of an algorithm is measured by the number of steps needed to
fulfill the given task. While routing from a source processor to a destination one,
data may pile up at a processor. This may cause a bottleneck effect if we do not
have enough memory for storing these data. We assume that all processors have
sufficiently large memory to store the waiting data – sometimes called as messages
or items – in separate queues.

Grid Torus

Eight-neighbor mesh Hexagonal mesh

Figure 3.1: Some mesh architectures.

If the processors can communicate with only their neighbours, then sending
data from a processor to a far one may take many steps. There are different

 dc_2018_22

3.2. DEFINITIONS AND PRELIMINARIES 81

ways to avoid this situation. In [83] the so-called wormhole switched meshes are
considered. In case of wormhole routing the data transfer has two steps. In
the first one a circuit is established between the source and destination processors
facilitating a quick data transfer between the nodes, and in the second step packets
are sent over different paths independently from each other. The advantage of this
communication lies in the first step: although it takes more time than the second
one, it builds up a direct connection between the processors, and the second step
allows to send packages between the processors saving much more time.

Figure 3.2: 1D mesh with bus.

To speed up the communication between two far processors, it is possible to
use buses. Buses can be used in 1D meshes (see Figure 3.2.) and for 2D meshes
as well. We show different bus-configurations in Figure 3.3. Row and column
buses were used in [21]. If we use a bus then the processors connected to the bus
can communicate not only with their neighbours but also with the ones that are
connected to the same bus. In one step only one processor can send data to a bus
and one of the others can accept it in the same step. In case of 2D meshes we
can use row and column buses, and all processors in the same row or column are
connected to one bus. To a 2D mesh which has both, row and column buses we
will refer as 2RCB-mesh.

Snake like bus Row and column buses

Figure 3.3: Single (snake-like) bus, row and column buses.

3.2 Definitions and preliminaries

A special permutation routing problem is the matrix transpose problem (MTP) on
a 2D mesh [19]. In this case a message originally contained by the processor (i, j)
should be routed to the processor (j, i) for all i, j where 1 ≤ i, j ≤ n. We will call
those two processors pairs. For 2D meshes with MIMD processors and without
buses Ding, Ho and Tsai [35] analyzed the MTP. They denoted by TA(k, n) the

 dc_2018_22

82 CHAPTER 3. MATRIX TRANSPOSE PROBLEM

number of steps needed to transpose k pieces of n× n matrices by the algorithm
A. For this k − k version their main result is the following lower bound. For any
MTP algorithm A,

TA(k, n) ≥ (1 − 1/
√

2)kn ≈ 0.293kn.

Later Kaufmann, Meyer and Sibeyn [57] gave an algorithm which requires 0.301kn+
O(n/k) steps. So, for any constant k the additive term is proportional to n, there-
fore the gap is large between the upper and the lower bounds.

A natural generalization of the (2D) matrix transpose problem to d-dimensions
(d ≥ 2) is to consider the permutations

(a1, . . . , ad) → (ai, ai+1, . . . , ad, a1, a2, . . . , ai−1)

for some i, 1 ≤ i ≤ d. These permutations are also called transposes [57]. There
are d transposes, one of them is the identity permutation. Especially in 3D the
two non–trivial transposes are (i, j, k) → (j, k, i) and (i, j, k) → (k, i, j). An
architecture of a 3D mesh with buses in each direction will be denoted by 3RCB-
mesh.

First we will show that in case of a 2RCB-mesh, we can improve the efficiency
of the matrix transpose algorithms. More precisely, if we denote by TBA (1, n) the
number of steps needed to transpose a matrix by the algorithm A on a 2RCB-
mesh, then in Section 3.3 we prove that limn→∞(TBA (1, n)/n) > 0.4508 . . ., and we
will define an algorithm – denoted by MTB – for which TBMTB(1, n) ≤ n

2
+ 9. We

also investigate the 3D case, and we prove that any solution of a matrix transpose
problem with a 3RCB-mesh architecture needs at least 0.45n steps. In our analysis
we consider only the 1 − 1 version of the problem.

3.3 Lower Bound in 2D

Let us consider the MTP on a 2RCB-mesh architecture, and let n be the number
of processors both in the rows and the columns. In this case the following theorem
is true.

Theorem 3.3.1 ([19]) Let A be an arbitrary algorithm and let TBA (1, n) be the
number of steps needed to solve the MTP on a 2RCB-mesh with n×n processors.
Then

lim
n→∞

TBA (1, n)

n
≥ 2 − 2

5

√
15 ≈ 0.450806 . . . (3.1)

Proof The idea of the proof is that we compare the walking distances to the total
number of bus operations required to send data to far processors and calculate
the optimal number of steps. Let us divide the n × n processors into 5 diagonal
regions as shown on Figure 3.4. The regions denoted by the same letters (A and B)
contain equal number of processors in the corresponding rows and in the columns
as well. Furthermore, let us choose x so that n

2
< x < n, and let y = 2x− n+ 1.

So we get that 0 < y ≤ x. Let P (Ai) and P (Bi) be the number of processors in

 dc_2018_22

3.3. LOWER BOUND IN 2D 83

x

A

A

B

B

C

y

x

y

Figure 3.4: Division of the n× n mesh.

the i-th row in a region A and B, respectively (1 ≤ i ≤ n). The regions are chosen
so that x = P (B1) + P (A1), and y = P (A1).
Let us denote the distance of a pair by |pi,j|, which means the minimum number
of steps while a message moves to a destination processor through the connection
lines. We will call a route that uses only communication lines to reach the desti-
nation processor as walk. Then |pi,j| = 2|i− j|. We will investigate the regions A,
B, and C separately.

In the region C processors are close to each other, and

max
pi,j∈C

|pi,j| = |p(n−x),1| = 2(n− x− 1) (3.2)

The distance between any pair in the regions A and B is always longer than
2(n−x−1), which means that if we want to get a better result, then each message
must use a bus at least once in these regions. For the pairs in regions A we get
that

min
pi,j∈A

|pi,j| = |pn,y| = 2(n− y),

so we get that
2(n− y) = 2(2n− 2x− 1) > 4(n− x− 1). (3.3)

From (3.3) it follows that the messages in the region A must use bus twice to
reach their destinations in at most 2(n− x− 1) steps. This means that the total
number of steps that use bus operations while routing all the messages is at least

4P (A) + 2P (B).

 dc_2018_22

84 CHAPTER 3. MATRIX TRANSPOSE PROBLEM

We get that

P (A) =

y∑
i=1

P (Ai) = 1 + 2 + ...+ y =
(2x− n+ 1)(2x− n+ 2)

2
.

Similarly,

P (B) =
x∑

i=y+1

P (Bi) = 1 + 2 + ...+ x− P (A) =

=
x(x+ 1) − (2x− n+ 1)(2x− n+ 2)

2
.

Since the total number of buses is 2n, routing of all the 2(P (A) +P (B)) messages
requires at least

TBA (1, n, x) =
4P (A) + 2P (B)

2n
=
x(x+ 1) + (2x− n+ 1)(2x− n+ 2)

2n
.

steps. Since TBA (1, n, x) is an increasing function, while 2(n−x−1) is a decreasing
function of x, we get the best possible choice for x by solving the equation

TBA (1, n, x) = 2(n− x− 1). (3.4)

The solution is

x = − 7

10
+

1

10

√
60n2 − 20n+ 9.

Substituting this into (3.2) and using equation (3.4) we get the desired result.
□

3.4 Upper Bound in 2D

Now, we define an algorithm for solving the matrix transpose problem in 2–
dimensions. During the construction we will follow the ideas used in the proof
of the lower bound: those messages which are close to their destinations will
walk. We call these messages W-messages. For a longer distance a message will
be routed using one bus transfer and some walk. These are the BW-messages.
Those messages which are very far from their destinations will be scheduled to
use buses twice. We call them BB-messages. There are two basic problems:

� How can we determine the regions which define the message-type during the
execution?

� Those pairs which are very far from each other are placed in the lower left
and upper right corners. This induce that they must be defined as BB-
messages. But, in this case message transfers for these pairs require a heavy
usage of the outer buses, while the center buses remain idle. So, to make
our algorithm more efficient we change the schedule of some parts of these

 dc_2018_22

3.5. CONSTRUCTION OF LOAD BALANCING ALGORITHM 85

C

A

A

D

B

B

B

B

E

D

C

x

y

z

u

x

y

z

u

Figure 3.5: Division of the n× n mesh by algorithm LBA.

messages: first they will walk to reach one of the buses which are closer to
the center, and some steps later they will ”catch” one of the center buses.
So, they become BW-messages. This modification results in load-balancing
among the buses.

We will call our algorithm the Load-Balancing Algorithm (LBA).

3.5 Construction of Load Balancing Algorithm

Preparation step: Let

x = n−
⌊
⌊n

2 ⌋
2

⌋
− 1, y =

⌈
n
2

⌉
,

z =

⌊
⌊n

2 ⌋
2

⌋
+ 1, u =

⌈⌊
⌊n
2 ⌋
2

⌋
+1

2

⌉
and divide the processors into five diagonally symmetric disjoint sets A,B, C,D, E
as seen on Figure 3.5.
Step 1: Label the processors in the regions C and D by R and C as seen on
Figure 3.6. During the execution, processors labelled by R and C will use a row
bus or a column bus first, respectively. A message originated from a C-labeled or

 dc_2018_22

86 CHAPTER 3. MATRIX TRANSPOSE PROBLEM

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

RR

R

R

R

R

R

R

R

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

R

R
1 5

R
1

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

Figure 3.6: Schedule of the row and column buses on a 15 × 15 bused mesh.

 dc_2018_22

3.6. ANALYSIS OF LBA 87

a R-labeled processor will be called C-item or R-item, respectively. Notice that if
a processor is C-labeled then its pair is R-labeled.
The next four steps (Step 2.1 - Step 2.4) are scheduled in parallel:

Step 2.1: Pairs in the region E walk by a greedy algorithm.

� Each element under the main diagonal first moves to its destination column,
turns up, and moves step by step to its destination processor.

� Each element above the main diagonal first moves to its destination row,
turns left and moves to its destination processor.

Step 2.2: Schedule the pairs of the regions C and D according to their labels as-
signed in Step 1. A row bus transfers messages belonging to a R-labeled processors
using farthest first strategy, starting with the elements of the regions D.

� Messages originated from the region D will walk along their destination
column.

� Messages from the region C will use column buses,so their transfers require
always only two steps.

The transfer of the items belonging to C-labeled processors is similar.

Step 2.3: Items of regions B in the positions (1, n− z + 1), (z, n), (n− z + 1, 1),
and (n, z) walk to the direction of the center until they arrive at positions (1, y+
1), (n− y, n), (y + 1, 1), and (n, n− y), respectively.

Step 2.4: Schedule the newly arrived items (originated from the regions B) into
the region C to the corresponding row and column buses when the buses become
available. The items have been moved up or down will be scheduled to row buses,
the items moving left or right will be scheduled to column buses. Whenever such
an item is transferred by a bus, we always move a new item to its former position
to become transferable in the next step for the bus. After the first bus transfer,
these items will wait for the second bus transfer in the processor buffers. To
shorten the processor queues these items even can move in the direction of their
destinations.

Step 3: When the above steps are finished, the algorithm transfers the items of
regions A and those ones which are waiting in a buffer from Step 2.4 using row
and column buses. Since they do not require common buses, the transfer of these
two groups can be done in parallel.

3.6 Analysis of LBA

Lemma 3.6.1 ([19]) Items of the region E can be routed to their destination in
at most n

2
steps.

 dc_2018_22

88 CHAPTER 3. MATRIX TRANSPOSE PROBLEM

Proof Since maxpi,j∈E |pi,j| = 2(n− x− 1), using the definition of x we get that

max
pi,j∈E

|pi,j| = 2(n− x− 1) = 2

⌊⌊
n
2

⌋
2

⌋
≤

⌊n
2

⌋
≤ n

2
.

Since all messages turn at the main diagonal, no items can delay each other.
□

Lemma 3.6.2 ([19]) Items of the region D can be routed to their destination in
at most n

2
steps.

Proof We give the proof only for the R-items. Similar argument can be used
for C-items. Step 2.2 uses farthest first strategy in the region D for the R-items.
Consider an arbitrary row of the mesh. Order the R-items of the region D in this
row by the distances from their pairs in decreasing order. The distance of the i-th
item in this order from its pair is 2(n− y− i). By the schedule, the i-th item uses
the bus in the i-th step, so for the total number of steps S required we get that

S = (n− y − i) + (i− 1) + 1 = n− y = n−
⌈n

2

⌉
≤ n

2
.

□

Consider now those rows from the region C which are indexed by n− x+ 1, ..., x,
i.e. the central rows of the mesh and denote them by Rn−x+1, ..., Rx. Let |Ri|
be the total number of bus operations required to route all the R-items in row
Ri, n − x + 1 ≤ i ≤ x, including also those row bus operations which route the
C-items destined to the row Ri in the region C.

Lemma 3.6.3 ([19]) maxi |Ri| < 3n
8

+ 4 where n− x+ 1 ≤ i ≤ n− y.

Proof By a simple calculation we get the following formula for |Ri| .

|Ri| =

⌈
i− n+ x

2

⌉
+

⌊
x− y

2

⌋
+ 2

⌈
y − i+ 1

2

⌉
≤

≤ i− n+ x

2
+
x− y

2
+ y − i+ 3 =

= x+
y

2
− n

2
− i

2
+ 3.

From this it follows that

 dc_2018_22

3.6. ANALYSIS OF LBA 89

max
i

|Ri| = x+
y

2
− n

2
− n− x+ 1

2
+ 3 =

=
3x

2
+
y

2
− n+

5

2
=

=

3

(
n−

⌊
⌊n

2 ⌋
2

⌋
− 1

)
+
⌈
n
2

⌉
− 2n

2
+

5

2
≤

≤
n− 3⌊n

2 ⌋
2

+ n
2

+ 1

2
+

5

2
≤

≤
n− 3n

4
+ n

2
+ 5

2

2
+

5

2
<

<
3n

8
+ 4.

□

Lemma 3.6.4 ([19]) |Rn−i+1| ≤ |Ri|+ 1 where n− x+ 1 ≤ i ≤ n− y. If n is odd
then |Rn−y+1| = |Rn−y|

Proof

|Rn−i+1| =

⌊
i− n+ x

2

⌋
+

⌈
x− y

2

⌉
+ 2

⌊
y − i+ 1

2

⌋
≤

≤
⌈
i− n+ x

2

⌉
+

⌈
x− y

2

⌉
+ 2

⌈
y − i+ 1

2

⌉
≤ |Ri| + 1

If n is odd then

|Rn−y+1| =

⌊
x− y

2

⌋
+

⌈
x− y

2

⌉
+ 2 = |Rn−y|

□

Corollary 3.6.5 ([19]) maxi |Ri| < 3n
8

+ 5 where n− x+ 1 ≤ i ≤ x.

Lemma 3.6.6 ([19]) |Rn−y| > x− y.

Proof

|Rn−y| =

⌈
x− y

2

⌉
+

⌊
x− y

2

⌋
+ 2

⌈
2y − n+ 1

2

⌉
> x− y.

□

 dc_2018_22

90 CHAPTER 3. MATRIX TRANSPOSE PROBLEM

Corollary 3.6.7 ([19]) The items at positions (1, n − z + 1), (z, n), (n − z +
1, 1), (n, z) arrive at positions (1, y+ 1), (n− y, n), (y+ 1, 1), (n, n− y) in Step 2.3
of LBA before the row and column buses in rows Rn−y and Ry+1 and in columns
Cy+1 and Cn−y finish their task defined in Step 2.2.

Lemma 3.6.8 ([19]) Step 2.4 needs at most 3n
8

+ 6 steps.

Proof From Corollary (3.6.7) it follows that the buses in rows Rn−y−i, where
1 ≤ i ≤ z − u can continue their work with Step 2.4 immediately after finishing
Step 2.2. We calculate the total number of operations defined in Steps 2.2 and
2.4 for the buses in rows Rn−y−i. Denote again this number by |Rn−y−i|. We get
the following:

|Rn−y−i| =

⌈
x− y − i

2

⌉
+

⌈
x− y

2

⌉
+ 2

⌈
2y − n+ i+ 1

2

⌉
+ z − u− i+ 1 ≤

≤ x+ y + z − n− u− i

2
+ 5.

From this

max
i

|Rn−y−i| = x+ y + z − n− u+
9

2
= y − u+

9

2
<

3n

8
+ 6. (3.5)

From Corollary (3.6.5) and (3.5) the statement of the lemma follows.
□

Notice that when Step 2.4 is finished, then all the items in the region C have
arrived at their pair.

Lemma 3.6.9 ([19]) Step 2.2 finishes in at most n
8

+ 3 steps.

Proof Since u < n
8

+ 2, the items in the region A and the waiting items from
Step 2.4 can be routed in at most n

8
+ 3 steps using bus operations.

□

Combining the statements of Lemmas (3.6.1),(3.6.2),(3.6.8),(3.6.9) we get the fol-
lowing theorem.

Theorem 3.6.10 ([19]) Algorithm LBA solves the matrix transpose problem in
less than n

2
+ 9 steps.

 dc_2018_22

3.7. CONCLUSIONS 91

The next table shows on which step the specific elements arrive at their des-
tinations on a 10x10 mesh. The second code presents the way of transfer in the
last step, which can be walking (W), row bus (R) and column bus(C).

0 2W 4W 5W 5W 5C 5R 5C 4R 4C
4W 0 2W 5W 5W 5W 3C 5R 4C 4R
4W 4W 0 2W 5W 5W 5W 3C 3R 4R
5W 4W 4W 0 2W 5W 4W 5W 5C 4R
5W 5W 4W 4W 0 2W 4W 4W 5W 5C
5R 5W 5W 4W 4W 0 4W 4W 4W 5W
5C 3R 5W 4W 4W 4W 0 4W 4W 4W
5R 5C 3R 5W 4W 4W 2W 0 4W 4W
4C 4R 3C 5R 5W 4W 4W 2W 0 4W
4R 4C 4C 4C 5R 5W 4W 4W 2W 0

Finally, we show some values of the upper bound on the required steps and
the corresponding lower bounds:

n 10 100 500 1000 4000
LB 5 45 226 451 1803

MTB 14 59 259 509 2009
Ratio 2.8 1.3111 1.1460 1.1286 1.1142

3.7 Conclusions

In this section we considered the matrix transposition problem for parallel ma-
chines, and we proved that using meshes with buses one can expect better results
than for those architectures where buses are not available.

 dc_2018_22

92 CHAPTER 3. MATRIX TRANSPOSE PROBLEM

 dc_2018_22

Chapter 4

Route Planning for Public
Transport

4.1 Introduction

Nowadays, the use of computer-based route planners is widespread among passen-
gers. Individual passengers have a large choice of websites and GPS navigation
devices. Generally speaking, with these kind of systems the available road net-
work is modeled by a graph. The vertices of the graph represent the points of
contact of the roads, while the edges represent the road sections connecting the
points. If we assign the length of the road section to the edges, we get a weighted
graph. We can use the well-known Dijkstra algorithm to calculate the shortest
distance between two points. The efficiency of the Dijkstra algorithm is quite
good, but the size of the graphs describing real-world road networks can be very
large, especially in the case of a larger geographical area like the road network of a
continent. As passengers generally expect an almost immediate response to their
searches, even the Dijkstra algorithm with polynomial running time is not good
enough for large graphs. Over the last two decades, many potential speed-ups
have been investigated to address the problem. More details about this can be
found in [34].

Routing services are available not only for private passengers, but for passen-
gers travelling by public transportation as well. In this case, usually the road
network does not need to be described by the graph. The reason for this is that
the route is pre-determined, or the journey is often not on a conventional road
network but on a bound track (e.g. rail) or in the air, or even on water. The nodes
of public transport routing graphs generally represent the vehicle stops, and the
edges provide travel possibilities between stops. The weight of the edges may
represent the travel time, but as different users may look at travel from different
aspects, other models should be considered. Public transport networks may gen-
erally be larger than those of road networks, given that travel is time-dependent,
and handling this is also required in the model. Therefore, in this case, the oppor-
tunities for speeding-up searches are particularly important, and they have also
been widely investigated. Some of the speed-up options available on road graphs

93

 dc_2018_22

94 CHAPTER 4. ROUTE PLANNING FOR PUBLIC TRANSPORT

can be used here, but not those that use the special features of road networks.
For more details on models and speed-up options, see [15, 64].

In practice, it is usual for public transportation companies to provide route
planners for their own service area. This usually includes the services of the
company or other companies closely related to that city, region or country. In
most cases, however, these services provide only route planning for one kind of
journey; for example, a route planner of a rail company can be searched for rail
routes, while route planners of bus companies can be used for bus routes. In
the case of local transport, it is common that there are search engines that cover
different modes of transport in a given city, such as buses, trams and metro, trains,
but they are usually not intended for long-distance transport. So, for instance, if
a passenger wants to get from a point in a city to a point in another city, using
local and then several long-distance modes of transport, he or she usually will not
find a search engine that offers such a travel option, not even in a country or in a
region. And the graphs of road networks can handle the same problem for larger
areas such as continents. This suggests that finding a route to public transport is
a more difficult issue than planning private trips.

In this chapter, we present a route planning system and its search algorithm,
where the latter operates on a complete public transport network of two regions
from two countries, namely Hungary and Serbia [17]. The databases on which the
model is based include long-distance trains, buses and complete local transport
of the major cities. The databases are based on timetables taken from service
providers operating in the regions. The system can also model the pedestrian
traffic between stops not too far from each other. It can take into account indi-
vidual user preferences, like walking distances, modes of transport, and properties
of the objective function. The graph representing the transport network was very
large, but with the help of some speed-up techniques, we managed to create an
effective search algorithm that is able to handle user requirements.

The algorithm was developed under the EU-funded Hungary-Serbia Interreg-
IPA CBC Program as part of a complex route planning application. This study
presents the most common methods used in the search algorithm, as well as the
experiences and results obtained during the practical running.

4.2 Definitions and preliminaries

The simplest modelling of public transport networks can be achieved using the so-
called Station Graph [77]. In this case, the graph’s nodes represent the stops and
edges only exist between two stops if one of the stops can be reached directly from
the other. Generally speaking, the Station Graph is a relatively small graph, since
each stop has exactly one node and there is at most one edge between any two
stops. However, this graph contains limited information as it does not represent
the time of the routes at all. Hence it is not suitable for precise route planning, and
it can only provide a poor estimate for the length of the trip or for the minimum
required transfers.

The Time-Dependent model may be regarded as an extension of the Station

 dc_2018_22

4.3. MODELING 95

Graph [26], in which the edges may have multiple weights. During a route search,
the current weight is calculated using the given time, taking into account the bus
lines departing from the stop. In this case, the size of the graph does not increase,
but the determination of the weight requires more complex calculations, which
may slow down the search. The model has often been studied on railway networks
and has been developed, for instance, for the correct modelling of transfers [69].

The most common model used is the Time-Expanded model [76]. Here, the
starting and arrival times of the vehicles are represented by special nodes. The
nodes belonging to a station can be sorted by time and the waiting can be repre-
sented by edges. Trips between the different stations can be expressed by edges
between the appropriate departure and arrival times. Therefore the model can
handle transfers, and pedestrian traffic between two specific stops can also be
modelled. Initially, due to the large size of the graph, searches in this model were
not sufficiently fast, but due to technological developments and improvements, we
can now consider it a competitive method [32].

While the aim of search engines is normally to find the shortest route between
departures and arrivals, this is not always the case for public transport networks.
Passengers may view things from different aspects; some may want to minimize
the number of passes against the earliest arrival, while others may want to keep
their travel costs as low as possible. What is more, we usually choose one mode
of transport on the route; for example, like that for a motorist or pedestrian.
With public transport, someone may want to use a variety of vehicles or does not
even have the opportunity to reach the goal otherwise; for example, he or she
needs to combine buses and railways, and has to reach the stop on foot. Hence
special models have also been developed for public transport networks. This is
why besides the classical earliest arrival problem, [76] multiobjective optimization
methods were applied [64].

The research work of recent years has focused mainly on developing complex
multiobjective, multimodal route-planning algorithms [14, 59], which include ap-
propriate speed-up techniques [33].

4.3 Modeling

All three types of graphs described above were used to model our transport net-
work. Only the Station Graph and the Time-Dependent Graph built on it were
stored permanently in the memory. The number of edges of the Time-Dependent
Graph was already quite large as there were seven different timetable versions in
use during that period. This meant that searches for different days and periods
were subject to different schedules. For example, the Sunday schedule was dif-
ferent from the weekday one. In the Time-Dependent Graph there were different
edges for the different lines, and the departure and arrival times of the lines were
stored in separate structures. It also included possible walking routes. And the
Station graph and the Time Dependent graph did not have any direct search, but
only had roles in the preprocessing of searches. In the actual search, the Dijk-
stra algorithm was implemented on a Time Expanded Graph. The current Time

 dc_2018_22

96 CHAPTER 4. ROUTE PLANNING FOR PUBLIC TRANSPORT

Expanded Graph was not stored permanently in memory as the many different
timetable versions dynamically changed it. The generation of the current graph
was always related to the actual query.

Graph type Number of nodes Number of edges
Station 12014 416163
Time Dependent 12014 6786662
Time Expanded ≈ 562000 ≈ 4616000

Table 4.1: Sizes of the graphs.

Table 4.1 lists the sizes of different graphs. Figure 4.1 depicts the modelling of

Figure 4.1: The Station Graph of a line.

a line with the Station Graph. Figure 4.2 shows a part of the Time Expanded
Graph. The horizontally positioned nodes are part of a stop’s timeline, and the
pink nodes represent the departure times, the green ones represent the arrival
times. The orange edges are the waiting edges of the timeline. The black edges
model the lines between the stops, while the red edges show the walking options.
The departure timeline is in the upper line, the arrival is in the lowest one. Thickly
marked paths indicate the travel possibilities chosen by the system.

4.3.1 Search algorithm

After producing the Time Expanded Graph and weighing the edges appropriately,
with the help of the Dijsktra algorithm we can find the shortest path. In our
case, we came up against a difficulty caused by the search dependence of the
Time Expanded Graph. Its structure was influenced by the time specified in the
search and by the modes of transport that the user wanted to use, or by other

 dc_2018_22

4.3. MODELING 97

Figure 4.2: Part of the Time Expanded Graph.

parameters such as the maximum allowed walking distance. Despite the large
size of the graph, its generation was relatively fast, but after including the search
time, in some cases we could not achieve the desired speed with this method. In
addition, the structure of the entire graph resulted in excessive memory usage
during a search, which was a real problem, because multiple clients wanted to use
the services of the server simultaneously.

To overcome the problems listed above, we performed a preprocessing step
before producing the Time Expanded Graph and the search. The aim was to
determine the nodes which include some of the shortest paths corresponding to
the user parameters and the objective function. The method is similar to the
TRANSIT algorithms described in the literature [59]. In the end, the Time Ex-
panded Graph contained far fewer nodes, and it led to a significant speed-up of
the search.

The purpose of the preprocessing was to determine the nodes that lie on the
shortest paths from the source to the target. Here, we used the Station Graph for
the preprocessing part. Our aim was to determine all the nodes that lie on the
maximum k-length paths between the source and destination. In this case, the
parameter k means the maximum number of transfers that can be made during
the journey. Here, we used a modified version of the depth first search algorithm
that did not take into account the nodes farther from the source than the desired
length. Given that in some cases the execution of the procedure might take longer,
the value of the parameter k and the execution time were also limited in the search.
Experience has shown that these heuristics worked well in practice so, in almost

 dc_2018_22

98 CHAPTER 4. ROUTE PLANNING FOR PUBLIC TRANSPORT

every case, the Time Expanded Graph built on these nodes contained the shortest
path of the entire graph. For a more detailed analysis of this, see section 4.4.

4.3.2 The objective function

In general, different objective functions are used for public transport route plan-
ning. One of the most common is the earliest arrival, but it does not always fully
meet the user’s preferences. Finding different Pareto optima is also a common
problem. We used an objective function that included a weighted sum of different
goals. And the weights were determined based on information provided by the
users, using preset patterns.

The weight of a travel edge is the following: trwr + fr, where tr is the time
of travel, wr is the actual weight of the journeys, and fr is the additive factor for
the travel cost.

The weight of a waiting edge is the following: tiwi, where ti is the waiting
time, and wi is the actual weight of the waiting.

The weight of a pedestrian edge is the following: tawa + fa, where ta is the
time of walking, wa is the actual weight of the walking, and fa is the additive
factor for pedestrian cost.

In the search, there were three options available to the users regarding the
search query. These three options are the fastest route, the minimum number
of connections and the minimum walking distance. And the parameters of the
weights for each goal are given in Table 4.2.

Options wr fr wi wa fa
Fastest 1 30 0.8 1.5 30
Less transfer 1 1000 0.8 1.5 10
Less walking 1 30 0.8 30 1000

Table 4.2: Parameters of the weights.

4.4 Results and analysis

We investigated the proportion of the investigated instances such that the reduced
graph contained all nodes of the shortest path. This ensured that the search
on the reduced Time Expanded Graph would give an optimal solution. In the
pre-processing heuristics we modified two parameters. One was the previously
mentioned k parameter, while the other was the search time. For the possible
values of k, we selected s+1 and s+2, where s is the shortest path between two
points in the Station Graph.

Here, we used two types of test queries. They both contained 1000 queries, one
of which concerned questions regarding local traffic (T1) and the other concerned
long-distance traffic (T2). In the table below, we summarize how efficient the
pre-processing heuristics was for the two types of test data, for different values of

 dc_2018_22

4.5. CONCLUSIONS 99

k. In the table out of the 1000 questions we see how many times the reduced-size
Time Expanded Graph gave a solution that differed from the optimum, which we
calculated using the complete Time Expanded Graph.

Input type k = s+ 1 k = s+ 2
T1 13 0
T2 54 11

Table 4.3: Non-optimality statistics of the preprocessing heuristics. ([17])

Tables 4.4 and 4.5 contain the average and maximum search times in millisec-
onds on the above-mentioned query lists for the reduced and for the complete
Time Expanded Graphs. The notations used for the columns are the following:
RB: Reduced graph build time
RS: Reduced graph search time
RC (=RB+RS): Reduced graph complete search time
FB: Full graph build time
FS: Full graph search time
FC (=FB+FS): Full graph complete search time

RB RS RC FB FS FC
T1, k = s+ 1 308 18 327

5327 166 5493
T1, k = s+ 2 1394 406 1801
T2, k = s+ 1 256 55 312

5427 1137 6564
T2, k = s+ 2 1186 316 1502

Table 4.4: Average running times in milliseconds.([17])

RB RS RC FB FS FC
T1, k = s+ 1 1478 446 1529

5744 4130 9502
T1, k = s+ 2 4959 2458 5453
T2, k = s+ 1 2491 788 3279

6290 10216 15650
T2, k = s+ 2 3119 3938 6469

Table 4.5: Maximal running times in milliseconds.([17])

4.5 Conclusions

We presented an algorithm used by a route planning system for a complete public
transport network of two regions from Hungary and Serbia. The graph represent-
ing the transport network was very large, but with the help of some speed-up
techniques, we managed to create an effective search algorithm that is able to
handle user requirements.

 dc_2018_22

100 CHAPTER 4. ROUTE PLANNING FOR PUBLIC TRANSPORT

 dc_2018_22

Bibliography

[1] Alexander A. Ageev and Alexei E. Baburin. Approximation algorithms for
UET scheduling problems with exact delays. Operations Research Letters,
35(4):533–540, July 2007.

[2] Dino Ahr, József Békési, Gábor Galambos, Marcus Oswald, and Gerhard
Reinelt. An exact algorithm for scheduling identical coupled tasks. Mathe-
matical Methods of Operations Research (ZOR), 59(2):193–203, June 2004.

[3] James Aspnes, Yossi Azar, Amos Fiat, Serge Plotkin, and Orli Waarts. On-
line routing of virtual circuits with applications to load balancing and ma-
chine scheduling. Journal of the ACM, 44(3):486–504, May 1997.

[4] L. Babel, B. Chen, H. Kellerer, and V. Kotov. Algorithms for on-line bin-
packing problems with cardinality constraints. Discrete Applied Mathematics,
143(1-3):238–251, 2004.

[5] B. S. Baker and E. G. Coffman, Jr. A tight asymptotic bound for next-
fit-decreasing bin-packing. SIAM J. on Algebraic and Discrete Methods,
2(2):147–152, 1981.

[6] János Balogh, József Békési, Gábor Dósa, György Galambos, and Zhiyi Tan.
Lower bound for 3-batched bin packing. Discrete Optimization, 21:14–24,
2016.

[7] János Balogh, József Békési, György Dósa, Leah Epstein, and Asaf Levin. A
New and Improved Algorithm for Online Bin Packing. In Yossi Azar, Han-
nah Bast, and Grzegorz Herman, editors, 26th Annual European Symposium
on Algorithms (ESA 2018), volume 112 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 5:1–5:14, Dagstuhl, Germany, 2018. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik.

[8] János Balogh, József Békési, György Dósa, Leah Epstein, and Asaf Levin.
Online bin packing with cardinality constraints resolved. Journal of Com-
puter and System Sciences, 112:34–49, September 2020.

[9] János Balogh, József Békési, György Dósa, Leah Epstein, and Asaf Levin.
Lower bounds for batched bin packing. Journal of Combinatorial Optimiza-
tion, August 2021.

101

 dc_2018_22

102 BIBLIOGRAPHY

[10] János Balogh, József Békési, György Dósa, Leah Epstein, and Asaf Levin.
A new lower bound for classic online bin packing. Algorithmica, 83(7):2047–
2062, March 2021.

[11] János Balogh, József Békési, György Dósa, Jǐŕı Sgall, and Rob van Stee.
The optimal absolute ratio for online bin packing. Journal of Computer and
System Sciences, 102:1–17, June 2019.

[12] János Balogh, József Békési, and Gábor Galambos. New lower bounds for
certain classes of bin packing algorithms. Theoretical Computer Science,
440:1–13, 2012.

[13] Amotz Bar-Noy, Ari Freund, and Joseph (Seffi) Naor. New algorithms for
related machines with temporary jobs. Journal of Scheduling, 3(5):259–272,
2000.

[14] Hannah Bast, Erik Carlsson, Arno Eigenwillig, Robert Geisberger, Chris Har-
relson, Veselin Raychev, and Fabien Viger. Fast routing in very large public
transportation networks using transfer patterns. In Algorithms – ESA 2010,
pages 290–301. Springer Berlin Heidelberg, 2010.

[15] Hannah Bast, Daniel Delling, Andrew Goldberg, Matthias Müller-
Hannemann, Thomas Pajor, Peter Sanders, Dorothea Wagner, and Renato F.
Werneck. Route planning in transportation networks. In Algorithm Engineer-
ing, pages 19–80. Springer International Publishing, 2016.

[16] J. Békési, Gy. Dósa, and L. Epstein. Bounds for online bin packing with
cardinality constraints. Information and Computation, 249:190–204, 2016.

[17] József Békési. Regional multicriteria and multimodal route planning system
for public transportation: A case study. Acta Cybernetica, 23(3):773–782,
2018.

[18] József Békési, György Dósa, and Gábor Galambos. A first fit type algorithm
for the coupled task scheduling problem with unit execution time and two
exact delays. European Journal of Operational Research, 297(3):844–852,
March 2022.

[19] József Békési and Gábor Galambos. Matrix transpose on meshes with buses.
Journal of Parallel and Distributed Computing, 96:194–201, October 2016.

[20] József Békési and Gábor Galambos. Tight bounds for NF-based bounded-
space online bin packing algorithms. Journal of Combinatorial Optimization,
35(2):350–364, September 2017.

[21] József Békési, Gábor Galambos, and Péter Hajnal. Analysis of permutation
routing algorithms. European Journal of Operational Research, 125(2):249–
256, September 2000.

 dc_2018_22

BIBLIOGRAPHY 103

[22] József Békési, Gábor Galambos, Michael N. Jung, Marcus Oswald, and Ger-
hard Reinelt. A branch-and-bound algorithm for the coupled task problem.
Mathematical Methods of Operations Research, 80(1):47–81, April 2014.

[23] József Békési, Gábor Galambos, Marcus Oswald, and Gerhard Reinelt. Im-
proved analysis of an algorithm for the coupled task problem with UET jobs.
Operations Research Letters, 37(2):93–96, March 2009.

[24] Piotr Berman, Moses Charikar, and Marek Karpinski. On-line load balancing
for related machines. Journal of Algorithms, 35(1):108–121, April 2000.

[25] A. Borodin and J.E. Hopcroft. Routing, merging, and sorting on parallel mod-
els of computation. Journal of Computer and System Sciences, 30(1):130–145,
February 1985.

[26] Gerth Stølting Brodal and Riko Jacob. Time-dependent networks as mod-
els to achieve fast exact time-table queries. Electronic Notes in Theoretical
Computer Science, 92:3–15, February 2004.

[27] Sheng-Yi Cai and Qi-Fan Yang. Online scheduling on three uniform machines.
Discrete Applied Mathematics, 160(3):291–302, February 2012.

[28] Yee Kit Chan and Voon Chet Koo. AN INTRODUCTION TO SYNTHETIC
APERTURE RADAR (SAR). Progress In Electromagnetics Research B,
2:27–60, 2008.

[29] S. Cheung and F.C.M. Lau. A lower bound for permutation routing on two-
dimensional bused meshes. Information Processing Letters, 45(5):225–228,
April 1993.

[30] Yookun Cho and Sartaj Sahni. Bounds for list schedules on uniform proces-
sors. SIAM Journal on Computing, 9(1):91–103, February 1980.

[31] Edward G. Coffman, János Csirik, Gábor Galambos, Silvano Martello, and
Daniele Vigo. Bin packing approximation algorithms: Survey and classifica-
tion. In Handbook of Combinatorial Optimization, pages 455–531. Springer
New York, 2013.

[32] Daniel Delling. Engineering and augmenting route planning algorithms. PhD
thesis, Universität Karlsruhe, Fakultät für Informatik, 2009.

[33] Daniel Delling, Thomas Pajor, and Dorothea Wagner. Accelerating multi-
modal route planning by access-nodes. In Lecture Notes in Computer Science,
pages 587–598. Springer Berlin Heidelberg, 2009.

[34] Daniel Delling, Thomas Pajor, and Dorothea Wagner. Engineering time-
expanded graphs for faster timetable information. In Robust and Online
Large-Scale Optimization, pages 182–206. Springer Berlin Heidelberg, 2009.

 dc_2018_22

104 BIBLIOGRAPHY

[35] Kuo-Shun Ding, Ching-Tien Ho, and Jyh-Jong Tsay. Matrix transpose on
meshes with wormhole and XY routing. In Proceedings of 1994 6th IEEE
Symposium on Parallel and Distributed Processing, pages 656–663. IEEE
Comput. Soc. Press, 1994.

[36] Gy. Dósa. Batched bin packing revisited. Journal of Scheduling, 20(2):199–
209, 2017.

[37] Tomáš Ebenlendr and Jǐŕı Sgall. A lower bound on deterministic online
algorithms for scheduling on related machines without preemption. Theory
of Computing Systems, 56(1):73–81, February 2013.

[38] Leah Epstein, John Noga, Steve Seiden, Jǐŕı Sgall, and Gerhard Woegin-
ger. Randomized on-line scheduling on two uniform machines. Journal of
Scheduling, 4(2):71–92, 2001.

[39] Leah Epstein and Jǐŕı Sgall. A lower bound for on-line scheduling on uni-
formly related machines. Operations Research Letters, 26(1):17–22, February
2000.

[40] S. Fujita and M. Yamashita. Fast gossiping on mesh-bus computers. IEEE
Transactions on Computers, 45(11):1326–1330, 1996.

[41] H. Fujiwara and K. M. Kobayashi. Improved lower bounds for the online
bin packing problem with cardinality constraints. Journal of Combinatorial
Optimization, 29(1):67–87, 2015.

[42] G. Galambos. Parametric lower bound for on-line bin-packing. SIAM Journal
on Algebraic Discrete Methods, 7(3):362–367, July 1986.

[43] G. Galambos and G. J. Woeginger. Repacking helps in bounded space online
bin packing. Computing, 49:329–338, 1993.

[44] R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G.Rinnooy Kan. Optimiza-
tion and approximation in deterministic sequencing and scheduling: a survey.
In Discrete Optimization II, Proceedings of the Advanced Research Institute
on Discrete Optimization and Systems Applications of the Systems Science
Panel of NATO and of the Discrete Optimization Symposium co-sponsored by
IBM Canada and SIAM Banff, Aha. and Vancouver, pages 287–326. Elsevier,
1979.

[45] Ananth Grama, George Karypis, Vipin Kumar, and Anshul Gupta. Intro-
duction to Parallel Computing. Pearson, London, 2003.

[46] E.F. Grove. Online bin packing with lookahead. In Proceedings of the
sixth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 430–
436, 1995.

[47] G. Gutin, T. Jensen, and A. Yeo. Batched bin packing. Discrete Optimization,
2(1):71–82, 2005.

 dc_2018_22

BIBLIOGRAPHY 105

[48] Fangqiu Han, Zhiyi Tan, and Yang Yang. On the optimality of list scheduling
for online uniform machines scheduling. Optimization Letters, 6(7):1551–
1571, May 2011.

[49] X. Han, F. Y. L. Chin, H.-F. Ting, G. Zhang, and Y. Zhang. A new upper
bound 2.5545 on 2D online bin packing. ACM Transactions on Algorithms,
7(4):50:1–50:18, 2011.

[50] S. Heydrich and R. van Stee. Beating the harmonic lower bound for online bin
packing. In Proc. of 43rd International Colloquium on Automata, Languages,
and Programming (ICALP2016), pages 41:1–41:14, 2016.

[51] Kazuo Iwama, Eiji Miyano, and Yahiko Kambayashi. Routing problems on
the mesh of buses. Journal of Algorithms, 20(3):613–631, May 1996.

[52] Kazuo Iwama, Eiji Miyano, Satoshi Tajima, and Hisao Tamaki. Efficient
randomized routing algorithms on the two-dimensional mesh of buses. The-
oretical Computer Science, 261(2):227–239, June 2001.

[53] Lukasz Jeż, Jarett Schwartz, Jǐŕı Sgall, and József Békési. Lower bounds
for online makespan minimization on a small number of related machines.
Journal of Scheduling, 16(5):539–547, September 2012.

[54] D. S. Johnson. Near-optimal bin packing algorithms. PhD thesis, MIT, Cam-
bridge, MA, 1973.

[55] D. S. Johnson. Fast algorithms for bin packing. Journal of Computer and
System Sciences, 8:272–314, 1974.

[56] D. S. Johnson, A. Demers, J. D. Ullman, M. R. Garey, and R. L. Gra-
ham. Worst-case performance bounds for simple one-dimensional packing
algorithms. SIAM Journal on Computing, 3:256–278, 1974.

[57] M. Kaufmann, U. Meyer, and J.F. Sibeyn. Matrix transpose on meshes:
theory and practice. In Proceedings 11th International Parallel Processing
Symposium, pages 315–319. IEEE Comput. Soc. Press, 1997.

[58] M. Kaufmann, R. Raman, and J. F. Sibeyn. Routing on meshes with buses.
Algorithmica, 18(3):417–444, July 1997.

[59] Jolanta Koszelew. Two methods of quasi-optimal routes generation in public
transportation network. In 2008 7th Computer Information Systems and
Industrial Management Applications. IEEE, June 2008.

[60] Manfred Kunde. Routing and sorting on mesh-connected arrays. In VLSI
Algorithms and Architectures, pages 423–433. Springer New York, 1988.

[61] C. C. Lee and D. T. Lee. A simple online bin packing algorithm. Journal of
the ACM, 32(3):562–572, 1985.

 dc_2018_22

106 BIBLIOGRAPHY

[62] F. T. Leighton. Average case analysis of greedy routing algorithms on arrays.
In Proceedings of the second annual ACM symposium on Parallel algorithms
and architectures - SPAA '90. ACM Press, 1990.

[63] Frank M Liang. A lower bound for on-line bin packing. Information processing
letters, 10(2):76–79, 1980.

[64] Matthias Müller-Hannemann, Frank Schulz, Dorothea Wagner, and Christos
Zaroliagis. Timetable information: Models and algorithms. In F. Geraets,
L. Kroon, A. Schoebel, D. Wagner, and C.D. Zaroliagis, editors, Algorithmic
Methods for Railway Optimization. Lecture Notes in Computer Science, pages
67–90. Springer Berlin Heidelberg, 2007.

[65] Antoine Musitelli and Jean-Marc Nicoletti. Competitive ratio of list schedul-
ing on uniform machines and randomized heuristics. Journal of Scheduling,
14(1):89–101, May 2010.

[66] Ted Nesson and S. Lennart Johnsson. ROMM routing on mesh and torus
networks. In Proceedings of the seventh annual ACM symposium on Parallel
algorithms and architectures - SPAA '95. ACM Press, 1995.

[67] A.J. Orman and C.N. Potts. On the complexity of coupled-task scheduling.
Discrete Applied Mathematics, 72(1-2):141–154, January 1997.

[68] Behrooz Parhami. Introduction to Parallel Processing. Kluwer Academic
Publishers, 2002.

[69] Evangelia Pyrga, Frank Schulz, Dorothea Wagner, and Christos Zaroliagis.
Efficient models for timetable information in public transportation systems.
ACM Journal of Experimental Algorithmics, 12:1–39, June 2008.

[70] P. Ramanan, D. J. Brown, C. C. Lee, and D. T. Lee. Online bin packing in
linear time. Journal of Algorithms, 10:305–326, 1989.

[71] Abhijeet A. Ravankar and Stanislav G. Sedukhin. Mesh-of-tori: A novel
interconnection network for frontal plane cellular processors. In 2010 First
International Conference on Networking and Computing. IEEE, November
2010.

[72] Abhijeet A. Ravankar and Stanislav G. Sedukhin. An o(n) time-complexity
matrix transpose on torus array processor. In 2011 Second International
Conference on Networking and Computing. IEEE, November 2011.

[73] M. B. Richey. Improved bounds for harmonic-based bin packing algorithms.
Discrete Applied Mathematics, 34(1–3):203–227, 1991.

[74] R. van Stee S. Heydrich. Beating the harmonic lower bound for online bin
packing. The Computing Res. Rep. (CoRR), abs/1707.01728, 2017.

 dc_2018_22

BIBLIOGRAPHY 107

[75] C P Schnorr and A Shamir. An optimal sorting algorithm for mesh con-
nected computers. In Proceedings of the eighteenth annual ACM symposium
on Theory of computing - STOC '86. ACM Press, 1986.

[76] Frank Schulz, Dorothea Wagner, and Karsten Weihe. Dijkstra's algorithm
on-line. ACM Journal of Experimental Algorithmics, 5:12, December 2000.

[77] Frank Schulz, Dorothea Wagner, and Christos Zaroliagis. Using multi-level
graphs for timetable information in railway systems. In Algorithm Engineer-
ing and Experiments, pages 43–59. Springer Berlin Heidelberg, 2002.

[78] Stanislav G. Sedukhin and Marcin Paprzycki. Generalizing matrix multipli-
cation for efficient computations on modern computers. In Parallel Processing
and Applied Mathematics, pages 225–234. Springer Berlin Heidelberg, 2012.

[79] S. S. Seiden. On the online bin packing problem. Journal of the ACM,
49(5):640–671, 2002.

[80] Roy D. Shapiro. Scheduling coupled tasks. Naval Research Logistics Quar-
terly, 27(3):489–498, September 1980.

[81] Quentin F. Stout and Bruce Wagar. Intensive hypercube communication
prearranged communication in link-bound machines. Journal of Parallel and
Distributed Computing, 10(2):167–181, October 1990.

[82] J. J. Sylvester. On a point in the theory of vulgar fractions. American Journal
of Mathematics, 3(4):332, December 1880.

[83] Jyh-Jong Tsay, KS Ding, and WT Wang. Optimal algorithm for matrix
transpose on wormhole-switched meshes. Journal of Information Science
and Engineering, 19(1):167–177, 2003.

[84] J. D. Ullman. The performance of a memory allocation algorithm. Technical
Report 100, Princeton University, Princeton, NJ, 1971.

[85] A. van Vliet. An improved lower bound for online bin packing algorithms.
Information Processing Letters, 43(5):277–284, 1992.

[86] A. C. C. Yao. New algorithms for bin packing. Journal of the ACM, 27:207–
227, 1980.

[87] Wenci Yu, Han Hoogeveen, and Jan Karel Lenstra. Minimizing makespan in
a two-machine flow shop with delays and unit-time operations is NP-hard.
Journal of Scheduling, 7(5):333–348, September 2004.

[88] Minghui Zhang, Xin Han, Yan Lan, and Hing-Fung Ting. Online bin packing
problem with buffer and bounded size revisited. Journal of Combinatorial
Optimization, 33(2):530–542, December 2015.

 dc_2018_22

108 BIBLIOGRAPHY

[89] Feifeng Zheng, Li Luo, and E. Zhang. NF-based algorithms for online bin
packing with buffer and bounded item size. Journal of Combinatorial Opti-
mization, 30(2):360–369, July 2014.

 dc_2018_22

Acknowledgement

The author is grateful to his co-authors, János Balogh, György Dósa, Gábor
Galambos, Leah Epstein, Lukasz Jeż, Asaf Levin, Marcus Oswald, Gerhard Reinelt,
Jarret Schwartz, Jǐŕı Sgall and Zhiyi Tan. Without their contribution, the articles
containing the results would not have been possible.

109

 dc_2018_22

110 ACKNOWLEDGEMENT

 dc_2018_22

Appendix A: The parameters of
the algorithm AH

Class Left Right

index: j endpoint tj endpoint tj−1 i αij or αi,j

1 1
2

= 0.5 1 1

2 3
7
≈ 0.42857 1

2
= 0.5 2 1

3 43
120

≈ 0.35833 3
7
≈ 0.42857 1 31755722

150095589
≈ 0.2115

3 2 118339867
150095589

≈ 0.7884

4 59
166

≈ 0.35542 43
120

≈ 0.35833 1 33382666
150909061

≈ 0.2212

4 2 117526395
150909061

≈ 0.7787

5 7
20

= 0.35 59
166

≈ 0.35542 1 4493270
19023851

≈ 0.2361

5 2 14530581
19023851

≈ 0.7638

166 271
960

≈ 0.28229 1
3
≈ 0.33333 1 3445801

1433952966
≈ 0.0024

166 3 1430507165
1433952966

≈ 0.9975

167 1
4

= 0.25 271
960

≈ 0.28229 1 18718929
79588150

≈ 0.2351

167 3 60869221
79588150

≈ 0.7648

168 97
480

≈ 0.20208 1
4

= 0.25 1 10193524
41199575

≈ 0.2474

168 4 31006051
41199575

≈ 0.7525

169 1
5

= 0.2 97
480

≈ 0.20208 1 22658284
84102577

≈ 0.26945

169 4 61444293
84102577

≈ 0.7305

170 15
88

≈ 0.17045 1
5

= 0.2 5 1

171 1
6
≈ 0.16667 15

88
≈ 0.17045 1 76872685

1135239972
≈ 0.0677

171 5 1058367287
1135239972

≈ 0.9322

172 3
20

= 0.15 1
6
≈ 0.16667 2 24797889

191010959
≈ 0.1298

172 1 48313566
191010959

≈ 0.2529

172 6 117899504
191010959

≈ 0.6172

173 12
83

≈ 0.14458 3
20

= 0.15 2 158075552
480752651

≈ 0.3288

173 1 20946010
480752651

≈ 0.0435

173 6 301731089
480752651

≈ 0.6276

111

 dc_2018_22

112 APPENDIX A: THE PARAMETERS OF THE ALGORITHM AH

174 1
7
≈ 0.14286 12

83
≈ 0.14458 2 5682641

14973238
≈ 0.3795

174 6 9290597
14973238

≈ 0.6204

175 11
83

≈ 0.13253 1
7
≈ 0.14286 2 11653567744

42727973215
≈ 0.2727

175 1 103268403
85455946430

≈ 0.0012

175 7 62045542539
85455946430

≈ 0.7260

176 1
8

= 0.125 11
83

≈ 0.13253 2 4313813
11469903

≈ 0.3760

176 7 7156090
11469903

≈ 0.6239

177 1
9
≈ 0.1111 1

8
= 0.125 2 35844844

93992497
≈ 0.3813

177 8 58147653
93992497

≈ 0.6186

178 1
10

= 0.1 1
9
≈ 0.1111 2 145576935

381661961
≈ 0.3814

178 9 236085026
381661961

≈ 0.6185

179 1
11

≈ 0.09091 1
10

= 0.1 2 8723245
23755812

≈ 0.3672

179 10 15032567
23755812

≈ 0.6327

180 1
12

≈ 0.08333 1
11

≈ 0.09091 3 145045373
508140728

≈ 0.2854

180 11 363095355
508140728

≈ 0.7145

181 1
13

≈ 0.07692 1
12

≈ 0.08333 3 16276212
45761591

≈ 0.3556

181 12 29485379
45761591

≈ 0.6443

182 1
14

≈ 0.07143 1
13

≈ 0.07692 3 72087509
189669658

≈ 0.38

182 13 117582149
189669658

≈ 0.6199

183 1
15

≈ 0.06667 1
14

≈ 0.07143 3 36413948928
97499546341

≈ 0.3734

183 1 182118174
97499546341

≈ 0.0018

183 14 60903479239
97499546341

≈ 0.6246

184 1
16

= 0.0625 1
15

≈ 0.06667 4 36527825
116265557

≈ 0.3141

184 15 79737732
116265557

≈ 0.6858

185 1
17

≈ 0.05882 1
16

= 0.0625 4 30799804
90208717

≈ 0.3414

185 16 59408913
90208717

≈ 0.6585

186 1
18

≈ 0.05556 1
17

≈ 0.05882 4 61076393
180923205

≈ 0.3375

186 17 119846812
180923205

≈ 0.6624

187 1
19

≈ 0.05263 1
18

≈ 0.05556 5 246282282
848959177

≈ 0.2900

187 18 602676895
848959177

≈ 0.7099

188 1
20

= 0.05 1
19

≈ 0.05263 5 3612237
11491762

≈ 0.3143

188 19 7879525
11491762

≈ 0.6856

189 1
21

≈ 0.04762 1
20

= 0.05 5 11086689792
34169004389

≈ 0.3244

189 3 99039140
34169004389

≈ 0.0028

189 20 22983275457
34169004389

≈ 0.6726

190 1
22

≈ 0.04545 1
21

≈ 0.0476 5 1773973504
5453794899

≈ 0.3252

 dc_2018_22

113

190 3 11750995
4674681342

≈ 0.0025

190 21 21996671405
32722769394

≈ 0.6722

191 1
23

≈ 0.04348 1
22

≈ 0.0454 6 72660709
254170744

≈ 0.2858

191 22 181510035
254170744

≈ 0.7141

192 1
24

≈ 0.04167 1
23

≈ 0.0434 6 17990899
63629269

≈ 0.2827

192 23 45638370
63629269

≈ 0.7172

193 1
25

= 0.04 1
24

≈ 0.0416 6 6868668
21928717

≈ 0.3132

193 24 15060049
21928717

≈ 0.6867

194 1
26

≈ 0.03846 1
25

= 0.04 7 6623739
23559574

≈ 0.2811

194 25 16935835
23559574

≈ 0.7188

195 1
27

≈ 0.03704 1
26

≈ 0.0384 7 20598370
73772911

≈ 0.2792

195 26 53174541
73772911

≈ 0.7207

196 1
28

≈ 0.03571 1
27

≈ 0.037 7 20611449
73987996

≈ 0.2785

196 27 53376547
73987996

≈ 0.72142

197 1
29

≈ 0.03448 1
28

≈ 0.0357 7 5843252
21159655

≈ 0.2761

197 28 15316403
21159655

≈ 0.7238

198 1
30

≈ 0.03333 1
29

≈ 0.0344 8 97422165
338982541

≈ 0.2873

198 29 241560376
338982541

≈ 0.7126

199 1
31

≈ 0.03226 1
30

≈ 0.0333 8 246577815
717694643

≈ 0.3435

199 30 471116828
717694643

≈ 0.6564

200 1
32

= 0.03125 1
31

≈ 0.03226 8 136787965
369923301

≈ 0.3697

200 31 233135336
369923301

≈ 0.6302

201 1
33

≈ 0.0303 1
32

= 0.03125 9 193885600
743335051

≈ 0.2608

201 32 549449451
743335051

≈ 0.7391

202 1
34

≈ 0.02941 1
33

≈ 0.0303 9 2009051
7752584

≈ 0.2591

202 33 5743533
7752584

≈ 0.7408

203 1
35

≈ 0.02857 1
34

≈ 0.02941 9 63841426
248268817

≈ 0.2571

203 34 184427391
248268817

≈ 0.7428

204 1
36

≈ 0.02778 1
35

≈ 0.02857 9 389848025
1497560942

≈ 0.2603

204 35 1107712917
1497560942

≈ 0.7396

205 1
37

≈ 0.02703 1
36

≈ 0.02778 10 99052686
407082371

≈ 0.2433

205 36 308029685
407082371

≈ 0.7566

206 1
38

≈ 0.02632 1
37

≈ 0.02703 10 407411107
1639477277

≈ 0.2485

206 37 1232066170
1639477277

≈ 0.7514

207 1
39

≈ 0.02564 1
38

≈ 0.02632 10 44138539
166740862

≈ 0.2647

207 38 122602323
166740862

≈ 0.7352

 dc_2018_22

114 APPENDIX A: THE PARAMETERS OF THE ALGORITHM AH

208 1
40

= 0.025 1
39

≈ 0.02564 11 73429915
298784748

≈ 0.2457

208 39 225354833
298784748

≈ 0.7542

209 1
41

≈ 0.02439 1
40

= 0.025 11 479473800
1824013513

≈ 0.2628

209 40 1344539713
1824013513

≈ 0.7371

210 1
42

≈ 0.02381 1
41

≈ 0.02439 11 478583529
1826578078

≈ 0.2620

210 41 1347994549
1826578078

≈ 0.7379

211 1
43

≈ 0.02326 1
42

≈ 0.02381 11 119627466
457395215

≈ 0.2615

211 42 337767749
457395215

≈ 0.7384

212 0 1
43

≈ 0.02326 A1,212 = 17
60

13701867480
32568497273

≈ 0.4207

212 A2,212 = 1 18866629793
32568497273

≈ 0.5792

 dc_2018_22

Appendix B: The results of the
analysis of AH

Small classes

Threshold Scenario

Class Interval w UB(
1
6
, 15
88

] (
1
6
, 15
88

]
40165

4194304
≈ 0.0095 134279683919467

85106790236160
≈ 1.5777(

15
88
, 1
5

] (
15
88
, 23
120

]
40165

4194304
≈ 0.0095 134279683919467

85106790236160
≈ 1.5777(

15
88
, 1
5

] (
23
120

, 1
5

]
40165

4194304
≈ 0.0095 134279683919467

85106790236160
≈ 1.5777(

1
5
, 97
480

] (
1
5
, 97
480

]
2754177

536870912
≈ 0.0051 134279683919467

85106790236160
≈ 1.5777(

97
480

, 1
4

] (
97
480

, 3
14

]
2754177

536870912
≈ 0.0051 134279683919467

85106790236160
≈ 1.5777(

97
480

, 1
4

] (
3
14
, 2
9

]
2754177

536870912
≈ 0.0051 134279683919467

85106790236160
≈ 1.5777(

97
480

, 1
4

] (
2
9
, 3
13

]
9224745

1073741824
≈ 0.0085 176162272658562716766643

111689991334728680079360
≈ 1.5772(

97
480

, 1
4

] (
3
13
, 4
17

]
9224745

1073741824
≈ 0.0085 176162272658562716766643

111689991334728680079360
≈ 1.5772(

97
480

, 1
4

] (
4
17
, 5
21

]
9224745

1073741824
≈ 0.0085 176162272658562716766643

111689991334728680079360
≈ 1.5772(

97
480

, 1
4

] (
5
21
, 1
4

]
9224745

1073741824
≈ 0.0085 176162272658562716766643

111689991334728680079360
≈ 1.5772(

1
4
, 271
960

] (
1
4
, 9
35

]
2179203
16777216

≈ 0.1298 10460110890923925809177
6663323346674154209280

≈ 1.5698(
1
4
, 271
960

] (
9
35
, 8
31

]
2179203
16777216

≈ 0.1298 10460110890923925809177
6663323346674154209280

≈ 1.5698(
1
4
, 271
960

] (
8
31
, 7
27

]
2179203
16777216

≈ 0.1298 10460110890923925809177
6663323346674154209280

≈ 1.5698(
1
4
, 271
960

] (
7
27
, 6
23

]
2179203
16777216

≈ 0.1298 10460110890923925809177
6663323346674154209280

≈ 1.5698(
1
4
, 271
960

] (
6
23
, 11
42

]
2179203
16777216

≈ 0.1298 10460110890923925809177
6663323346674154209280

≈ 1.5698(
1
4
, 271
960

] (
11
42
, 5
19

]
2179203
16777216

≈ 0.1298 10460110890923925809177
6663323346674154209280

≈ 1.5698(
1
4
, 271
960

] (
5
19
, 9
34

]
2179203
16777216

≈ 0.1298 10460110890923925809177
6663323346674154209280

≈ 1.5698(
1
4
, 271
960

] (
9
34
, 22
83

]
2179203
16777216

≈ 0.1298 10460110890923925809177
6663323346674154209280

≈ 1.5698(
1
4
, 271
960

] (
22
83
, 4
15

]
2750781
16777216

≈ 0.1639 10446431817507488684327
6663323346674154209280

≈ 1.5677(
1
4
, 271
960

] (
4
15
, 11
41

]
2750781
16777216

≈ 0.1639 10446431817507488684327
6663323346674154209280

≈ 1.5677(
1
4
, 271
960

] (
11
41
, 7
26

]
2750781
16777216

≈ 0.1639 10446431817507488684327
6663323346674154209280

≈ 1.5677(
1
4
, 271
960

] (
7
26
, 10
37

]
2750781
16777216

≈ 0.1639 10446431817507488684327
6663323346674154209280

≈ 1.5677(
1
4
, 271
960

] (
10
37
, 3
11

]
2750781
16777216

≈ 0.1639 10446431817507488684327
6663323346674154209280

≈ 1.5677(
1
4
, 271
960

] (
3
11
, 11
40

]
2750781
16777216

≈ 0.1639 10446431817507488684327
6663323346674154209280

≈ 1.5677(
1
4
, 271
960

] (
11
40
, 8
29

]
2750781
16777216

≈ 0.1639 10446431817507488684327
6663323346674154209280

≈ 1.5677(
1
4
, 271
960

] (
8
29
, 5
18

]
2750781
16777216

≈ 0.1639 10446431817507488684327
6663323346674154209280

≈ 1.5677(
1
4
, 271
960

] (
5
18
, 7
25

]
2750781
16777216

≈ 0.1639 10446431817507488684327
6663323346674154209280

≈ 1.5677(
1
4
, 271
960

] (
7
25
, 9
32

]
2750781
16777216

≈ 0.1639 10446431817507488684327
6663323346674154209280

≈ 1.5677(
1
4
, 271
960

] (
9
32
, 11
39

]
2750781
16777216

≈ 0.1639 10446431817507488684327
6663323346674154209280

≈ 1.5677(
1
4
, 271
960

] (
11
39
, 271
960

]
2750781
16777216

≈ 0.1639 10446431817507488684327
6663323346674154209280

≈ 1.5677(
271
960

, 1
3

] (
271
960

, 17
60

]
10600561
134217728

≈ 0.0789 1382826099045786640337
888443112889887227904

≈ 1.5564(
271
960

, 1
3

] (
17
60
, 2
7

]
13203731
16777216

≈ 0.7870 906785414291053674997
576099831014536249344

≈ 1.574(
271
960

, 1
3

] (
2
7
, 24
83

]
13203731
16777216

≈ 0.7870 906785414291053674997
576099831014536249344

≈ 1.574

115

 dc_2018_22

116 APPENDIX B: THE RESULTS OF THE ANALYSIS OF AH

(
271
960

, 1
3

] (
24
83
, 3
10

]
6614407
8388608

≈ 0.7884 2517076902114799893609
1596120743936377487360

≈ 1.5769

Large classes

Scenario Interval u v w RBB(
1
3
, 1067
3200

]
4849071
8388608

1228277
2097152

13637073
16777216

976466097504059936537
618737167905457176576

≈ 1.5781(
1067
3200

, 1601
4800

]
4848391
8388608

9827191
16777216

13636371
16777216

65094396453287453231117
41249144527030478438400

≈ 1.57807(
1601
4800

, 3203
9600

]
4847711
8388608

4914083
8388608

3408917
4194304

2219013169161278425799
1406220836148766310400

≈ 1.5779(
3203
9600

, 267
800

]
4847031
8388608

2457285
4194304

13634965
16777216

195263112314549308140883
123747433581091435315200

≈ 1.5779(
267
800
, 641
1920

]
9692701
16777216

9830115
16777216

6817131
8388608

8135544964525835898911
5156143065878809804800

≈ 1.5778(
641
1920

, 1603
4800

]
9691341
16777216

9831091
16777216

13633559
16777216

3549873807061904759441
2249953337838026096640

≈ 1.5777(
1603
4800

, 1069
3200

]
9689981
16777216

4916033
8388608

1704107
2097152

1743151995805501132663
1104887799831173529600

≈ 1.5776(
1069
3200

, 401
1200

]
2422155
4194304

9833041
16777216

13632153
16777216

21691442925099755308363
13749714842343492812800

≈ 1.5775(
401
1200

, 3209
9600

]
9687259
16777216

307313
524288

13631449
16777216

938523792217307183471
594939584524478054400

≈ 1.5775(
3209
9600

, 107
320

]
9685899
16777216

9834991
16777216

6815373
8388608

97601454441832379372417
61873716790545717657600

≈ 1.5774(
107
320
, 3211
9600

]
4842269
8388608

9835967
16777216

13630043
16777216

106662777263302497317
67621548404967997440

≈ 1.5773(
3211
9600

, 803
2400

]
9683177
16777216

4918471
8388608

3407335
4194304

48795709950512261582249
30936858395272858828800

≈ 1.5772(
803
2400

, 1071
3200

]
1210227
2097152

9837917
16777216

13628637
16777216

799888507648052575393
507161613037259980800

≈ 1.5771(
1071
3200

, 1607
4800

]
9680455
16777216

9838893
16777216

13627933
16777216

844860460332803406563
535703175675720499200

≈ 1.5771(
1607
4800

, 643
1920

]
4839547
8388608

2459967
4194304

6813615
8388608

48788179926934140662201
30936858395272858828800

≈ 1.577(
643
1920

, 67
200

]
9677733
16777216

2460211
4194304

13626527
16777216

39028537296861897028793
24749486716218287063040

≈ 1.5769(
67
200
, 3217
9600

]
2419093
4194304

9841819
16777216

13625823
16777216

2710175530013886781293
1718714355292936601600

≈ 1.5768(
3217
9600

, 1609
4800

]
9675011
16777216

9842795
16777216

425785
524288

6097581320136123887941
3867107299409107353600

≈ 1.5767(
1609
4800

, 1073
3200

]
9673649
16777216

9843771
16777216

425763
524288

234510295646344141999
148734896131119513600

≈ 1.5766(
1073
3200

, 161
480

]
302259
524288

9844747
16777216

13623713
16777216

65034175789299211990013
41249144527030478438400

≈ 1.5766(
161
480
, 3221
9600

]
4835463
8388608

9845723
16777216

13623009
16777216

1393517774329773967033
883910239864938823680

≈ 1.5765(
3221
9600

, 537
1600

]
9669565
16777216

4923349
8388608

6811153
8388608

8867383288693055361043
5624883344595065241600

≈ 1.5764(
537
1600

, 3223
9600

]
9668203
16777216

4923837
8388608

6810801
8388608

1477821141624138598811
937480557432510873600

≈ 1.5763(
3223
9600

, 403
1200

]
9666841
16777216

4924325
8388608

6810449
8388608

8866470349521856454129
5624883344595065241600

≈ 1.5762(
403
1200

, 43
128

]
1208185
2097152

4924813
8388608

6810097
8388608

34632866359469257597
21972200564824473600

≈ 1.5762(
43
128
, 1613
4800

]
4832059
8388608

4925301
8388608

13619491
16777216

866854473982499251647
549988593693739712512

≈ 1.5761(
1613
4800

, 3227
9600

]
2415689
4194304

9851579
16777216

13618787
16777216

7501239398070167193691
4759516676195824435200

≈ 1.576(
3227
9600

, 269
800

]
4830697
8388608

9852555
16777216

13618083
16777216

27860310850528313052091
17678204797298776473600

≈ 1.5759(
269
800
, 3229
9600

]
75469
131072

9853531
16777216

13617379
16777216

16251010517460625461749
10312286131757619609600

≈ 1.5758(
3229
9600

, 323
960

]
4829335
8388608

9854507
16777216

13616675
16777216

195002075117312289565019
123747433581091435315200

≈ 1.5758(
323
960
, 1077
3200

]
9657307
16777216

2463871
4194304

13615971
16777216

19499203742889618437113
12374743358109143531520

≈ 1.5757(
1077
3200

, 101
300

]
9654005
16777216

4928925
8388608

13611571
16777216

7457779830355679220749
4733508388347759820800

≈ 1.5755(
101
300
, 3233
9600

]
2413161
4194304

4929413
8388608

13610869
16777216

31015987293220839318841
19687091706082728345600

≈ 1.5754(
3233
9600

, 539
1600

]
4825641
8388608

4929901
8388608

13610167
16777216

1364633163438840555319321
866232035067640047206400

≈ 1.5753(
539
1600

, 647
1920

]
9649921
16777216

4930389
8388608

13609465
16777216

227427146094410028878003
144372005844606674534400

≈ 1.5752

 dc_2018_22

117

(
647
1920

, 809
2400

]
9648559
16777216

4930877
8388608

13608763
16777216

272898516056915156775019
173246407013528009441280

≈ 1.5752(
809
2400

, 1079
3200

]
9647197
16777216

4931365
8388608

13608061
16777216

15504798574922583944779
9843545853041364172800

≈ 1.5751(
1079
3200

, 1619
4800

]
2411459
4194304

4931853
8388608

13607359
16777216

151594662165810553673821
96248003896404449689600

≈ 1.575(
1619
4800

, 3239
9600

]
4822237
8388608

4932341
8388608

53151
65536

2664612582117044275993
1691859443491484467200

≈ 1.5749(
3239
9600

, 27
80

]
1205389
2097152

4932829
8388608

6802977
8388608

682105654058662162308929
433116017533820023603200

≈ 1.5748(
27
80
, 3241
9600

]
4820875
8388608

4933317
8388608

3401313
4194304

5683920686588408219107
3609300146115166863360

≈ 1.5747(
3241
9600

, 1621
4800

]
2410097
4194304

9867611
16777216

6802275
8388608

682035357649256549876341
433116017533820023603200

≈ 1.5747(
1621
4800

, 1081
3200

]
4819513
8388608

9868587
16777216

13603847
16777216

682000180089309563487227
433116017533820023603200

≈ 1.5746(
1081
3200

, 811
2400

]
9637663
16777216

9869563
16777216

13603145
16777216

41331211775978752332917
26249455608110304460800

≈ 1.5745(
811
2400

, 649
1920

]
9636301
16777216

2467635
4194304

6801221
8388608

332973563943163219793
211482430436435558400

≈ 1.5744(
649
1920

, 541
1600

]
9634939
16777216

2467879
4194304

3400435
4194304

68189466375708315383477
43311601753382002360320

≈ 1.5743(
541
1600

, 3247
9600

]
1204197
2097152

9872493
16777216

6800519
8388608

37881084193626042951837
24062000974101112422400

≈ 1.5743(
3247
9600

, 203
600

]
4816107
8388608

9873469
16777216

13600335
16777216

1363648628756210055261719
866232035067640047206400

≈ 1.5742(
203
600
, 1083
3200

]
9630851
16777216

4937223
8388608

849977
1048576

21305911255966877993659
13534875547931875737600

≈ 1.5741(
1083
3200

, 65
192

]
601843
1048576

9875423
16777216

6799465
8388608

227251332599389259383933
144372005844606674534400

≈ 1.574(
65
192
, 3251
9600

]
4814063
8388608

9876399
16777216

13598227
16777216

2478977391127248024761
1574967336486618267648

≈ 1.5739(
3251
9600

, 271
800

]
9626763
16777216

77167
131072

3399381
4194304

340841807120908724567593
216558008766910011801600

≈ 1.5739(
271
800
, 3253
9600

]
1203175
2097152

9878353
16777216

6798411
8388608

28402018238670299772763
18046500730575834316800

≈ 1.5738(
3253
9600

, 1627
4800

]
9624037
16777216

4939665
8388608

13596119
16777216

1363226519980709081267741
866232035067640047206400

≈ 1.5737(
1627
4800

, 217
640

]
4811337
8388608

9880307
16777216

1699427
2097152

7745205426604181330903
4921772926520682086400

≈ 1.5736(
217
640
, 407
1200

]
9621311
16777216

2470321
4194304

13594713
16777216

30290795128023441955693
19249600779280889937920

≈ 1.5735(
407
1200

, 3257
9600

]
2404987
4194304

9882261
16777216

6797005
8388608

170376924627108250321189
108279004383455005900800

≈ 1.5734(
3257
9600

, 543
1600

]
1202323
2097152

4941619
8388608

3398327
4194304

340736249228769438239761
216558008766910011801600

≈ 1.5734(
543
1600

, 3259
9600

]
2404215
4194304

4942237
8388608

6795959
8388608

1428453243143512141799
907925684877891993600

≈ 1.5733(
3259
9600

, 163
480

]
9615497
16777216

9885451
16777216

13591215
16777216

638961729657449450353963
406145423035377018470400

≈ 1.5732(
163
480
, 1087
3200

]
9614133
16777216

2471607
4194304

849407
1048576

23959826404898791776701
15230453363826638192640

≈ 1.5731(
1087
3200

, 1631
4800

]
9612769
16777216

4943703
8388608

13589809
16777216

1916687167806180270563231
1218436269106131055411200

≈ 1.573(
1631
4800

, 3263
9600

]
4805703
8388608

9888383
16777216

13589105
16777216

91266098781049354432547
58020774719339574067200

≈ 1.5729(
3263
9600

, 17
50

]
4805021
8388608

9889361
16777216

6794201
8388608

958244551649243177648759
609218134553065527705600

≈ 1.5729(
17
50
, 653
1920

]
4804339
8388608

4945169
8388608

13587699
16777216

1916389973691814198771709
1218436269106131055411200

≈ 1.5728(
653
1920

, 1633
4800

]
4803657
8388608

2472829
4194304

13586995
16777216

42584244127472991954513
27076361535691801231360

≈ 1.5727(
1633
4800

, 1089
3200

]
4802975
8388608

9892293
16777216

3396573
4194304

43549814309358760573049
27691733388775705804800

≈ 1.5726(
1089
3200

, 817
2400

]
4802293
8388608

9893271
16777216

3396397
4194304

43547563979990343602953
27691733388775705804800

≈ 1.5725(
817
2400

, 3269
9600

]
4801611
8388608

9894249
16777216

13584885
16777216

638664592575390310874761
406145423035377018470400

≈ 1.5725(
3269
9600

, 109
320

]
4800929
8388608

9895227
16777216

13584181
16777216

24881749827237400000967
15823847650728974745600

≈ 1.5724(
109
320
, 3271
9600

]
9600493
16777216

9896205
16777216

6791739
8388608

191579567278604859795569
121843626910613105541120

≈ 1.5723(
3271
9600

, 409
1200

]
9599129
16777216

4948591
8388608

6791387
8388608

319282743328592446082311
203072711517688509235200

≈ 1.5722(
409
1200

, 1091
3200

]
2399441
4194304

618635
1048576

6791035
8388608

957798689566464461366261
609218134553065527705600

≈ 1.5721(
1091
3200

, 1637
4800

]
599775
1048576

4949569
8388608

13581367
16777216

1915498275440243753880953
1218436269106131055411200

≈ 1.572(
1637
4800

, 131
384

]
9595035
16777216

9900117
16777216

13580663
16777216

212822145923762135255601
135381807678459006156800

≈ 1.572(
131
384
, 273
800

]
9593671
16777216

9901095
16777216

13579959
16777216

383060038533099768465509
243687253821226211082240

≈ 1.5719(
273
800
, 3277
9600

]
4796153
8388608

9902073
16777216

1697407
2097152

34200018735559994763271
21757790519752340275200

≈ 1.5718(
3277
9600

, 1639
4800

]
9590941
16777216

9903051
16777216

1697319
2097152

79795912583596606079363
50768177879422127308800

≈ 1.5717

 dc_2018_22

118 APPENDIX B: THE RESULTS OF THE ANALYSIS OF AH

(
1639
4800

, 1093
3200

]
1198697
2097152

9904029
16777216

1697231
2097152

239375342693527943715041
152304533638266381926400

≈ 1.5716(
1093
3200

, 41
120

]
9588211
16777216

619063
1048576

1697143
2097152

239362964133249590154553
152304533638266381926400

≈ 1.5716(
41
120
, 3281
9600

]
9574953
16777216

4957255
8388608

13553857
16777216

1495266333842777226977
951903335239164887040

≈ 1.5708(
3281
9600

, 547
1600

]
9573585
16777216

9915491
16777216

3388287
4194304

3737971784757563262733
2379758338097912217600

≈ 1.5707(
547
1600

, 3283
9600

]
1196527
2097152

1239559
2097152

1694055
2097152

155740737142497672059
99156597420746342400

≈ 1.5706(
3283
9600

, 821
2400

]
299089
524288

9917453
16777216

13551731
16777216

14950334357491487905151
9519033352391648870400

≈ 1.5705(
821
2400

, 219
640

]
9569479
16777216

4959217
8388608

6775511
8388608

3737389461217747706737
2379758338097912217600

≈ 1.5704(
219
640
, 1643
4800

]
4784055
8388608

9919415
16777216

13550313
16777216

332195138395961895179
211534074497592197120

≈ 1.5704(
1643
4800

, 3287
9600

]
9566741
16777216

2480099
4194304

3387401
4194304

8341520371837818791
5311960576111411200

≈ 1.5703(
3287
9600

, 137
400

]
2391343
4194304

9921377
16777216

13548895
16777216

14947227680416248798199
9519033352391648870400

≈ 1.5702(
137
400
, 3289
9600

]
9564003
16777216

4961179
8388608

6774093
8388608

1245537562505576488103
793252779365970739200

≈ 1.5701(
3289
9600

, 329
960

]
4781317
8388608

9923339
16777216

13547477
16777216

1358697610480488950053
865366668399240806400

≈ 1.57(
329
960
, 1097
3200

]
9561265
16777216

9924321
16777216

846673
1048576

46702805346340105397
29746979226223902720

≈ 1.57(
1097
3200

, 823
2400

]
1194987
2097152

4962651
8388608

13546059
16777216

4981373489060959129669
3173011117463882956800

≈ 1.5699(
823
2400

, 3293
9600

]
9558527
16777216

2481571
4194304

6772675
8388608

339621460315043539411
216341667099810201600

≈ 1.5698(
3293
9600

, 549
1600

]
9557157
16777216

9927265
16777216

13544641
16777216

2134652400193077494953
1359861907484521267200

≈ 1.5697(
549
1600

, 659
1920

]
2388947
4194304

9928247
16777216

13543931
16777216

18865897030054472569
12018981505545011200

≈ 1.5696(
659
1920

, 103
300

]
4777209
8388608

2482307
4194304

6771611
8388608

298820255727094090723
190380667047832977408

≈ 1.5695(
103
300
, 1099
3200

]
9553049
16777216

4965105
8388608

13542513
16777216

7470118077615630740381
4759516676195824435200

≈ 1.5695(
1099
3200

, 1649
4800

]
9551679
16777216

9931191
16777216

3385451
4194304

1244954857076533900907
793252779365970739200

≈ 1.5694(
1649
4800

, 3299
9600

]
4775155
8388608

9932173
16777216

6770547
8388608

1867335189159116883697
1189879169048956108800

≈ 1.5693(
3299
9600

, 11
32

]
2387235
4194304

9933155
16777216

13540385
16777216

14937904568779219079413
9519033352391648870400

≈ 1.5692(
11
32
, 3301
9600

]
2386613
4194304

4967469
8388608

13537557
16777216

3808805900044886000665
2427353504859870461952

≈ 1.5691(
3301
9600

, 1651
4800

]
9545083
16777216

9935919
16777216

13536849
16777216

761721555357534853652867
485470700971974092390400

≈ 1.569(
1651
4800

, 1101
3200

]
4771857
8388608

2484225
4194304

13536141
16777216

380840962693780962134227
242735350485987046195200

≈ 1.5689(
1101
3200

, 413
1200

]
9542345
16777216

9937881
16777216

6767717
8388608

54403020465723070833259
34676478640855292313600

≈ 1.5688(
413
1200

, 661
1920

]
596311
1048576

9938863
16777216

6767363
8388608

8654576179425707744141
5516712511045160140800

≈ 1.5687(
661
1920

, 551
1600

]
9539607
16777216

2484961
4194304

6767009
8388608

76156305786765362781011
48547070097197409239040

≈ 1.5687(
551
1600

, 3307
9600

]
9538237
16777216

4970413
8388608

13533311
16777216

380761730466132202387531
242735350485987046195200

≈ 1.5686(
3307
9600

, 827
2400

]
2384217
4194304

9941807
16777216

13532603
16777216

761483804377150609715159
485470700971974092390400

≈ 1.5685(
827
2400

, 1103
3200

]
4767749
8388608

9942789
16777216

13531895
16777216

11897565630876931130309
7585479702687095193600

≈ 1.5684(
1103
3200

, 331
960

]
9534129
16777216

9943771
16777216

13531187
16777216

761404591056565992060113
485470700971974092390400

≈ 1.5683(
331
960
, 3311
9600

]
9532759
16777216

621547
1048576

13530479
16777216

10876641693512292118391
6935295728171058462720

≈ 1.5683(
3311
9600

, 69
200

]
9531389
16777216

4972867
8388608

13529771
16777216

761325298589241682199147
485470700971974092390400

≈ 1.5682(
69
200
, 3313
9600

]
9530019
16777216

2486679
4194304

13529063
16777216

190321418328523083301661
121367675242993523097600

≈ 1.5681(
3313
9600

, 1657
4800

]
9528649
16777216

4973849
8388608

13528355
16777216

1134494847571404472891
723503280137070182400

≈ 1.568(
1657
4800

, 221
640

]
595455
1048576

1243585
2097152

13527647
16777216

380603203404100943254399
242735350485987046195200

≈ 1.5679(
221
640
, 829
2400

]
9525909
16777216

4974831
8388608

13526939
16777216

13839395737772014341881
8826740017672256225280

≈ 1.5678(
829
2400

, 3317
9600

]
9524539
16777216

2487661
4194304

13526231
16777216

95140889878523638524229
60683837621496761548800

≈ 1.5678(
3317
9600

, 553
1600

]
9523169
16777216

4975813
8388608

13525523
16777216

108726781022912406382847
69352957281710584627200

≈ 1.5677(
553
1600

, 3319
9600

]
9521799
16777216

311019
524288

6762407
8388608

190261953374162263057889
121367675242993523097600

≈ 1.5676(
3319
9600

, 83
240

]
9520429
16777216

4976795
8388608

6762053
8388608

380504075494014799243069
242735350485987046195200

≈ 1.5675(
83
240
, 1107
3200

]
4759529
8388608

2488643
4194304

6761699
8388608

19024212079021989045911
12136767524299352309760

≈ 1.5674

 dc_2018_22

119

(
1107
3200

, 1661
4800

]
1189711
2097152

9955555
16777216

13522689
16777216

760928871399143283572207
485470700971974092390400

≈ 1.5674(
1661
4800

, 3323
9600

]
9516317
16777216

9956537
16777216

13521981
16777216

380444596465588028345497
242735350485987046195200

≈ 1.5673(
3323
9600

, 277
800

]
4757473
8388608

9957519
16777216

13521273
16777216

760849509144678246905501
485470700971974092390400

≈ 1.5672(
277
800
, 133
384

]
1189197
2097152

4979251
8388608

3380141
4194304

1698236342438227951421
1083639957526727884800

≈ 1.5671(
133
384
, 1663
4800

]
9512205
16777216

2489871
4194304

844991
1048576

1901925467462527805549
1213676752429935230976

≈ 1.567(
1663
4800

, 1109
3200

]
4755417
8388608

9960467
16777216

13519147
16777216

34578661300196807203331
22066850044180640563200

≈ 1.5669(
1109
3200

, 26
75

]
9509463
16777216

9961449
16777216

13518439
16777216

760690843536197568224759
485470700971974092390400

≈ 1.5669(
26
75
, 3329
9600

]
2377023
4194304

155663
262144

6758865
8388608

95081399313398370675127
60683837621496761548800

≈ 1.5668(
3329
9600

, 111
320

]
9506721
16777216

9963415
16777216

13517021
16777216

760611540152133730827083
485470700971974092390400

≈ 1.5667(
111
320
, 3331
9600

]
4752675
8388608

9964397
16777216

13516313
16777216

76057181912089774301981
48547070097197409239040

≈ 1.5666(
3331
9600

, 833
2400

]
9503979
16777216

2491345
4194304

3378901
4194304

27161862647054116763159
17338239320427646156800

≈ 1.5665(
833
2400

, 1111
3200

]
9502607
16777216

9966363
16777216

13514895
16777216

95061560473511270495863
60683837621496761548800

≈ 1.5665(
1111
3200

, 1667
4800

]
2375309
4194304

4983673
8388608

6757093
8388608

380226404066311213407583
242735350485987046195200

≈ 1.5664(
1667
4800

, 667
1920

]
9493465
16777216

2493229
4194304

13501373
16777216

141611096872472700200291
90430816847720664268800

≈ 1.5659(
667
1920

, 139
400

]
2373023
4194304

2493475
4194304

13500661
16777216

18880492143682657223507
12057442246362755235840

≈ 1.5658(
139
400
, 3337
9600

]
4745359
8388608

2493721
4194304

6749975
8388608

35399070916863617830051
22607704211930166067200

≈ 1.5657(
3337
9600

, 1669
4800

]
9489345
16777216

9975869
16777216

6749619
8388608

12871716969171545606503
8220983349792787660800

≈ 1.5657(
1669
4800

, 1113
3200

]
9487971
16777216

9976853
16777216

13498527
16777216

257889758215323713103
164719156371075891200

≈ 1.5656(
1113
3200

, 167
480

]
4743299
8388608

4988919
8388608

13497815
16777216

283148156523474240613187
180861633695441328537600

≈ 1.5655(
167
480
, 3341
9600

]
1185653
2097152

9978823
16777216

13497103
16777216

12639881988121217147
8074180075689345024

≈ 1.5654(
3341
9600

, 557
1600

]
4741925
8388608

9979807
16777216

13496391
16777216

8579349484586716593901
5480655566528525107200

≈ 1.5653(
557
1600

, 3343
9600

]
2370619
4194304

1247599
2097152

105435
131072

1105873936667833345961
706490756622817689600

≈ 1.5653(
3343
9600

, 209
600

]
4740551
8388608

9981777
16777216

1686871
2097152

35386115227622790352823
22607704211930166067200

≈ 1.5652(
209
600
, 223
640

]
592483
1048576

4991381
8388608

843391
1048576

1474344343033289213191
941987675497090252800

≈ 1.5651(
223
640
, 1673
4800

]
4739177
8388608

4991873
8388608

1686693
2097152

7076482058770152376727
4521540842386033213440

≈ 1.565(
1673
4800

, 3347
9600

]
2369245
4194304

9984731
16777216

421651
524288

4422569850109370951347
2825963026491270758400

≈ 1.5649(
3347
9600

, 279
800

]
4737803
8388608

2496429
4194304

1686515
2097152

561566778711479378089
358852447808415334400

≈ 1.5648(
279
800
, 3349
9600

]
4736809
8388608

9987141
16777216

6745125
8388608

582566669044251570404083
372299971115762266931200

≈ 1.5647(
3349
9600

, 67
192

]
9472245
16777216

9988125
16777216

3372385
4194304

2621412859662547736738383
1675349870020930201190400

≈ 1.5646(
67
192
, 1117
3200

]
1183859
2097152

9989109
16777216

6744415
8388608

149787182298284044767131
95734278286910297210880

≈ 1.5646(
1117
3200

, 419
1200

]
4734749
8388608

4995047
8388608

13488121
16777216

3494851587101814851987261
2233799826694573601587200

≈ 1.5645(
419
1200

, 3353
9600

]
9468125
16777216

4995539
8388608

13487411
16777216

10484005936339043623382941
6701399480083720804761600

≈ 1.5644(
3353
9600

, 559
1600

]
9466751
16777216

4996031
8388608

13486701
16777216

10483457037748672197869699
6701399480083720804761600

≈ 1.5643(
559
1600

, 671
1920

]
4732689
8388608

9993047
16777216

13485991
16777216

1164767651600377921797473
744599942231524533862400

≈ 1.5642(
671
1920

, 839
2400

]
2366001
4194304

9994031
16777216

6742641
8388608

1048235977172324906266867
670139948008372080476160

≈ 1.5642(
839
2400

, 1119
3200

]
9462631
16777216

1249377
2097152

3371143
4194304

2620452862795471260412937
1675349870020930201190400

≈ 1.5641(
1119
3200

, 1679
4800

]
9461257
16777216

9996001
16777216

6741931
8388608

249553882309917869707153
159557130478183828684800

≈ 1.564(
1679
4800

, 3359
9600

]
9459883
16777216

9996985
16777216

842697
1048576

655044611897385906503719
418837467505232550297600

≈ 1.5639(
3359
9600

, 7
20

]
9458509
16777216

4998985
8388608

6741221
8388608

5240082624472449502119691
3350699740041860402380800

≈ 1.5638(
7
20
, 59
166

]
9075501
16777216

2461325
4194304

13365787
16777216

690817828427621169838459
446759965338914720317440

≈ 1.5462(
59
166
, 43
120

]
4456807
8388608

9835417
16777216

13254243
16777216

58585852828075806845873
38187188798677831385088

≈ 1.5341(
43
120
, 3
7

]
1045721
2097152

636339
1048576

6779541
8388608

447130049349370498541651
284301796124763912929280

≈ 1.5727(
3
7
, 1
2

]
8388625
16777216

8388625
16777216

1 470739775199623
298261319516160

≈ 1.5782

 dc_2018_22

120 APPENDIX B: THE RESULTS OF THE ANALYSIS OF AH

 dc_2018_22

