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List of Acronyms

vdW van der Waals

hBN hexagonal boron nitride

MLG monolayer graphene

BLG bilayer graphene

TLG trilayer graphene

TMDC transition metal dichalcogenide

2D two-dimensional

BZ Brillouin zone

DFT density functional theory

QPC quantum point contact

SOC spin-orbit coupling

EF Fermi energy

irreps irreducible representations

AHE anomalous Hall e�ect

QHE quantum Hall e�ect

VHE valley Hall e�ect

SHE spin Hall e�ect

SVHE spin-valley Hall e�ect

QSHE quantum spin Hall e�ect

2DEG two-dimensional electron gas

2DHG two-dimensional hole gas

LED light-emitting diode

CP circular polarization

KR Kerr rotation

CSI charge-to-spin interconversion

SCI spin-to-charge interconversion

QD quantum dot

CB conduction band

VB valence band

WAL weak antilocalization

QD quantum dot

SdH Shubnikov-de Haas
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Chapter 1

Introduction

1.1 Atomically thin materials

Since the discovery of graphene, a one-atom thin, two-dimensional (2D) carbon material, atomi-
cally thin materials, such as mono [1, 2, 3] and few-layer graphene [4, 5, 6, 7], or few-layer transition
metal dichalcogenides [8, 9, 10, 11] have been one of the most intensively studied �eld in solid states
physics. The importance of the discovery of graphene was also recognized by a Nobel Prize in 2010
which was awarded for the �groundbreaking experiments regarding the two-dimensional material

graphene�. While graphene is a semimetal, in recent years atomically thin samples encompass-
ing basically the whole range of electrical properties have been discovered, including metals [12],
semiconductors [10, 13, 14], insulators [15], ferromagnets [16, 17], antiferromagnets [18], super-
conductors [12], and topological insulators [19, 20]. Moreover, the combination of topological
properties with magnetism [21] has lead to an axion-topological state [22]. Initially, atomically
thin samples were obtained from layered bulk materials, most often by mechanical or chemical
exfoliation, that is, by removing few-layer thick �akes from the surface of a bulk sample. However,
recently few-layer thin materials that do not have naturally occurring bulk counterpart [23, 24,
25] have also been synthesized. This can potentially further enlarge the design possibilities for
synthetic materials with desirable properties.

In parallel with the discovery and synthesis or novel 2D materials, heterostructures of di�erent
monolayer and few-layer materials have also been attracting huge interest. This �eld is often
referred to as van der Waals engineering [26, 27], because e.g., the electrical properties of the
few-layer stacks can be a�ected by the weak, yet �nite van der Waals (vdW) interaction between
the constituent layers. One may use this term to describe (i) the fabrication of few-layer stacks
of di�erent 2D materials [26, 27], (ii) fabrication of few-layer stacks of the same 2D material
where there is an interlayer twist angle between the individual layers [28, 29]. In both cases the
resulting systems can posses functionalities and properties that the individual constituent layers
do not have. Namely, in comparison with bulk samples, interface properties become crucial exactly
because these heterostructures are atomically thin.

The interlayer twist angle itself has also emerged as a powerful knob to change the electronic
properties of atomically thin materials [28, 29]. A new term called twistronics was coined to
describe this emerging �eld. Currently, two main e�ect of the interlayer twist are known: it can
imprint a long wavelength (with respect to the typical wavelength of electronic quasiparticles)
e�ective potential, a so-called moiré potential, which can a�ect, e.g., the transport properties of
graphene in graphene/hexagonal boron nitride (hBN) heterostructures [30, 31, 32]. Remarkably,
it has become possible to achieve in-situ dynamical rotation and manipulation of the layers in
these heterostructures [33]. The second e�ect of interlayer twist is even more dramatic: following
the theoretical work of Ref. [34], it has been shown that in twisted graphene [29] and TMDC
bilayers [35, 36], for certain interlayer twist angles dubbedmagic angles [34], a strong reconstruction
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of the band structure takes place. The most important consequence of this reconstruction is that
almost dispersionless bands, so-called ��at bands� appear in the low energy spectrum. Since the
kinetic energy of the electrons is suppressed in the �at bands, electron-electron interaction e�ects
become dominant and, depending on other parameters, such as electron density and temperature,
lead to a variety of interacting phases [29, 37, 38, 36, 39] and even superconductivity [29]. More
generally, since these twisted vdW bilayers allow a great deal of tunability of their properties
through gating, straining, external pressure and changing the twist angle, they o�er a robust
platform to study the interplay of strongly correlated physics and topology. Moreover, they can
serve as a quantum simulator [40] to realize a large number of many-body quantum models. While
much progress has been achieved with quantum simulators based on ultracold gases of bosonic
and fermionic atoms [41], it remains a challenge to engineer Hamiltonians with tunable long-range
interactions which are relevant in condensed-matter physics. Therefore twisted VdW systems can
o�er a complementary platform to the existing quantum simulators.

It is important to mention that atomically thin materials helped to bring into focus yet another
set of interesting problems. Namely, charge carriers posses several degrees of freedom. Examples
include the spin degree of freedom, which may be coupled to the orbital motion (spin-orbit coupling)
or the valley, which is related to the minima in the dispersion of the bands. In the case of structures
consisting of more than one layer, one can de�ne in certain cases the layer degree of freedom, since
the electrons may not be spread homogeneously over every layers. The e�ects related to the
interplay of these degrees of freedom of the charge carriers will be central to this thesis.

Seeing the enormous interest in graphene shortly after its discovery, which was manifested in
the appearance of dozens of manuscripts every week on the preprint server arXiv, one was inclined
to think that such a level of interest in 2D materials was not going to last for long. This is indeed
what happened and the number of publications have decreased to a more �sustainable� level over
time. Yet, we now know, that there was going to be many more unexpected twists and turns (pun
intended) in the story. To the extend that one can extrapolate from the past to the near future, it
is to be expected that the �eld of 2D materials is going to give us many exciting discoveries is the
coming years.

1.2 Graphene

As already mention, the 2D materials �revolution� started with the demonstration that it was pos-
sible to obtain a single atom thin layer from bulk graphite and measure its electrical properties [1,
2]. Subsequent theoretical and experimental studies showed that few-layers graphene has surprising
electrical, optical and mechanical properties, such as a universal minimal conductivity at vanishing
carrier density [42, 43, 44], Klein tunneling in p−n junctions [45, 46, 47], Zitterbewegung [42, 48],
unconventional quantum Hall e�ect [2], frequency independent optical conductivity [49, 50], un-
paralleled tensile strength [51] etc. Many of these properties can be understood by considering the
single particle band structure as a �rst step. In the following we brie�y review the most important
features of the band structure of monolayer, bilayer and trilayer graphene.

1.2.1 Monolayer graphene

As shown in Fig. 1.1, in �rst approximation monolayer graphene (MLG) consist of a �at 2D layer
of carbon atoms arranged into a hexagonal lattice. There are two basis atoms, denoted by A and
B, in the unit cell. In reality, graphene is not completely �at, instead, it hosts ripples [52], which
are surface waves of typically 0.5 nm amplitude and 5nm wavelength, as illustrated in Fig. 1.1(b).
Nevertheless, a simple tight-binding (TB) model, based on the assumptions that MLG is perfectly
�at and that it is su�cient to take into account only nearest neighbor hopping, can be already be
used as a starting point to explain a wide range of experimental observations.
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Figure 1.1: a) Schematics of the graphene lattice. The two carbon atoms in the unit cell are
denoted by A and B, the primitive lattice vectors by a1 and a2. The inset shows the Brillouin
zone of graphene, with reciprocal primitive lattice vectors b1 and b2 and the coordinate system
in the wavenumber space. The low-energy states can be found at the K and −K points. b) A
more realistic view of a graphene sheet, which host ripples and therefore it is not completely �at.
Adapted from Ref. [52].

In the approximation where the non-orthogonality of the adjacent atomic orbitals is neglected,
the Hamiltonian following from the TB approach reads

Hmlg =

(
εp −γ0f(k)

−γ0f
∗(k) εp

)
. (1.1)

Here γ0 ≈ 2.67 eV is the hopping amplitude between the 2pz atomic orbitals of nearest neighbor
A and B carbon atoms and εp is the energy of these atomic orbitals. It is customary to take
εp = 0, i.e., all other energies are measured with respect to εp. The function f(k) reads f(k) =

eikya/
√

3 + 2e−ikya/2
√

3 cos(kxa/2), where a is the length of the lattice vectors a1 and a2. The
dispersion of the two bands described by Hmlg is given by E(k) = ±γ0|f(k)|. One can easily check
that f(k) = 0 for (kx, ky)T = (τ 4π

3a , 0)T ≡ τK, where τ = ±1, i.e., the valence and the conduction
bands are degenerate at the τK points of the Brillouin zone (BZ). (As one can see in Fig. 1.1(a),
there are six K points in the BZ, but only two are non-equivalent, which are denoted by τK). In
undoped graphene the Fermi energy (EF ) lies at this degeneracy point, therefore graphene is often
called a zero-gap semiconductor. Expanding f(k) for small wave vectors q around K one �nds

Hmlg(τK + q) = ~vF
(

0 (τqx + iqy)

(τqx − iqy) 0

)
, (1.2)

where vF =
√

3aγ0/(2~) ≈ 106m/s is the Fermi velocity. The eigenvalues and eigenfunctions of
Hmlg are

Emlg(q) = ±~vF |q|, Ψ±(q) =
1√
2

(
eiτϕq/2

±τe−iτϕq/2

)
, (1.3)

where ϕq is the polar angle of q: q = |q|(cosϕq, sinϕq)T . As shown by Eq. (1.3), one �nds that
the dispersion of graphene is linear close to the τK points. Since the conduction (valence) band
has a minimum (maximum) at τK, these points are often referred to as valleys and τ is called
the valley index (see Sect. 1.7 for further discussion of the valleys). Furthermore, since Ψ±(q)

has two components, it is reminiscent of the wavefunction of a spin- 1
2 particle. However, the two

components of Ψ±(q) describe the relative weight of the Bloch wavefunctions on the A and B

carbon atoms and therefore this degree of freedom in the wavefunction is called pseudospin. It is
convenient to introduce the Pauli matrices σx, σy acting in this pseudospin space and write

Hmlg(q) = ~vF (τqxσx − qyσy) (1.4)
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Introducing the notation p = ~q and performing a unitary transformation, the low-energy e�ective
Hamiltonian of MLG can be cast into

Hmlg(p) = vF (τpxσx + pyσy), (1.5)

which has the form of 2D massless Dirac equation. However, as already mention, it is the pseu-
dospin degree of freedom and not the real spin that underlies Eq. (1.5). Nevertheless, similarly to
relativistic physics, one can de�ne the chirality of the quasiparticles. The chiral operator σ · n̂,
where σ = (σx, σy) and n̂ = p/|p|, commutes with Hmlg given in Eq. (1.5). Therefore Ψ± are
eigenfunctions of the chirality operator with eigenvalues ±1. An important consequence of the
chirality of the low-energy quasiparticles in graphene is the following: a scattering potential, which
does not break the symmetry of the A−B sublattice, cannot lead to backscattering [53]. Namely,
scattering into a state with opposite momentum would require a reversal of the pseudospin, which
is forbidden.

1.2.2 Bilayer and trilayer graphene

The unit cell of graphite contains two layers of MLG, arranged in such a way that carbon atoms
on sublattice A1 in the �rst layer are directly below carbon atoms on sublattice B2 in the second
layer, see Fig. 1.2. This is called AB or Bernal stacking of the layers. Soon after the isolation of
MLG, bilayer graphene (BLG) samples were also obtained [4]. It turns out that the electrical and
transport properties of BLG di�er from those of MLG [54, 4, 55] in important ways and electron-
electron interaction e�ects tend to be much stronger [56], especially at low electron density and
high magnetic �elds. This gave further impetus for graphene research and motivated the study
of few-layer graphene, such as trilayer graphene (TLG). Importantly, TLG and other few-layer
graphene samples can have di�erent stacking order, a property that is absent in monolayers. As it
can be seen in Fig. 1.2, in the case of ABA stacking the B2 atom in under the A3 atom, while in
ABC stacked TLG the B2 atom in the second layer is under the hollow position of the hexagonal
lattice of the third layer. ABC stacking can be understood as a naturally occurring stacking fault
in graphite. While BLG samples show almost exclusively Bernal stacking, TLG samples of both
ABA and ABC stackings have been experimentally [5, 6, 7, 57] and theoretically [58, 59, 60, 61]
investigated. TLG is a good example of how the stacking order of the layers can a�ect the band
structure and the electrical properties of few-layer materials.

Figure 1.2: TB model of a) ABA and b) ABC stacked trilayer graphene. Bilayer graphene can
be obtained by neglecting the uppermost, third layer. Adapted from Ref. [62].

Let us �rst brie�y consider BLG. The primitive lattice vectors a1, a2 are the same as for MLG,
but the unit cell of BLG contains four atoms. Therefore in a TB model similar to MLG, i.e., that
takes into account one pz orbital per atomic site, there will be four bands. The possible inter-layer
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hopping amplitudes γ1, γ3 and γ4 are illustrated in Fig. 1.2. The largest and most important
of them is γ1 ≈ 0.4 eV, which describes the hopping between the atomic sites A1 and B2. The
approximation where only this inter-layer hopping amplitude is included in the TB model (in
addition to the intralayer hopping γ0) is already su�cient to obtain the most important features of
the band structure. In the basis of A1,B1,A2,B2 carbon atoms the TB Hamiltonian of BLG reads

Hblg =


εp −γ0f(k) 0 γ1

−γ0f
∗(k) εp 0 0

0 0 εp −γ0f(k)

γ1 0 −γ0f
∗(k) εp

 . (1.6)

As in the case of MLG, the most important part of the spectrum is the vicinity of the τK points.
The spectrum consists of two low-energy bands that are degenerate at the τK points and two
higher energy, �split-o�� bands at E = ±γ1, see Fig. 1.3(a). Expanding f(k) for small wave
vectors q around τK and projecting out the high energy degrees of freedom, using, e.g., Löwdin
partitioning [63], one can again obtain a low-energy, e�ective 2× 2 Hamiltonian. One �nds [54]

Hblg(p) = − 1

2meff

(
0 (τpx − ipy)2

(τpx + ipy)2 0

)
, (1.7)

where meff = γ1/2v
2
F ≈ 0.03me is the e�ective mass (me is the free electron mass). The eigenvalues

and eigenstates of Hblg(p) are

Eblg(p) = ± p2

2meff
, Ψ±(p) =

1√
2

(
eiτ2ϕp

∓e−iτ2ϕp

)
. (1.8)

One can easily check that Hblg commutes with the chiral operator σ · n̂, hence the low energy
quasiparticles of BLG are chiral as well. However, in contrast to MLG, backscattering is not
forbidden, because it does not reverse the pseudospin. Furthermore, the dispersion is quadratic
in momentum, similarly to quasiparticles described by the usual Schrödinger equation. Thus,
charge carriers have both relativistic and non-relativistic properties in BLG. Another important
di�erence with respect to MLG is that an external electric �eld can open a band gap [64], which
makes possible the electrical con�nement of charge carriers as well as interesting valleytronic e�ects
(see Sec. 1.7).
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c)

Figure 1.3: Band structure of a) AB stacked bilayer, b) ABA, and c) ABC stacked trilayer
graphene. In these calculations all γi hopping parameters shown in Fig.1.2 are taken into account,
their values are given in Ref. [60].

The TB approach can be extended to TLG graphene in a straightforward way [58, 59]. Impor-
tantly, the low-energy band structure depends on the stacking order. ABA stacked TLG has two
linearly dispersing bands at low energies, as in MLG, and two quadratically dispersing bands, as in
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BLG, see Fig. 1.3(b). On the other hand, the low-energy charge carriers in ABC stacked TLG are
chiral quasiparticles with ∼ ±|p|3 dispersion. They can be described by the e�ective Hamiltonian

HABC(p) =
v3
F

γ2
1

(
0 (τpx − ipy)3

(τpx + ipy)3 0

)
. (1.9)

In addition, ABC graphene also has four split-o� bands at E ≈ ±γ1. The comparison of Fig. 1.3(b)
and Fig. 1.3(c) shows clearly the e�ect of stacking order on the TLG band structure.

1.3 Transition metal dichalcogenides

Not long after the fabrication of the �rst monolayer a few-layer graphene samples it was realized
that the bulk form of many materials consists of stacks of atomic layers held together by weaker
interlayer interactions. These materials are amenable to obtain atomically thin samples and one of
the �rst that came into the focus was the transition metal dichalcogenide (TMDC) [65, 66] family
of materials. TMDCs can be described by the formula MX2, where X is a chalcogen (S, Se or
Te) and M is a metal from group IV (e.g., Ti, Zr, Hf) or group V (e.g., V, Nb, Ta) or group VI
(e.g., Mo, W). Regarding electronic properties, they can be metallic (e.g., NbX2 and TaX2) or
semiconducting (MoX2 and WX2), and some of them exhibit superconductivity, strong electronic
correlations or charge density wave behavior [67, 68]. In this thesis we will only be concerned with
the semiconductors MoS2, MoSe2, WS2 and WSe2 and henceforth, when we refer to TMDCs, we
usually have these four materials in mind.

Most of the initial theoretical work in this �eld considered monolayer MoX2 and WX2. We
introduce a minimal model to describe these monolayers in Sec. 1.3.1. While this minimal model
was successfully used to interpret a number of optical and transport experiments, its limitations
also became apparent over time. This motivated the work that will be presented in Chapt. 4.
The interest in monolayers was also motivated by important experimental discoveries, and three of
them will be brie�y presented in Sec. 1.3.2. Albeit later than monolayers, bilayers of TMDCs have
also started to attract both theoretical and experimental interest, their basic electronic structure
and an interesting transport property will be the subject of Chapt. 7.

1.3.1 Minimal model of monolayer TMDCs

Monolayers of group-VI TMDCs are, with regards to their thickness, the ultimate 2D semicon-
ductors [10, 11, 69], as they are only a few Ångstrom thin. Similarly to graphene, they have a
hexagonal lattice structure, where the planes of the X atoms are separated by a plane of metal
atoms, see Fig. 1.4(a). DFT band structure calculations showed that they are direct band gap ma-
terials, and the band edge can be found at the K and −K points of the hexagonal BZ (Fig. 1.4(c)).
Unlike graphene, however, these 2D crystals do not have inversion symmetry. One of the conse-
quences of the lack of inversion symmetry is that the bands can be spin polarized by the SOC.
Because of the resemblance to graphene, which is apparent when looking from above on the lay-
ers (see Fig. 1.4(b)), it is perhaps not surprising that the minimalist model used to describe the
properties at the band edge is based on mimicking them as graphene with a staggered sublattice
potential that breaks inversion symmetry. The minimal model of the band structure is given by
the Hamiltonian [70]

Htmdc = ~vF (τqxσx + qyσy) + ∆σz + τ
λtmdc

2
(σz − 1)sz. (1.10)

Here vF is the Fermi velocity of the TMDC, and the term is ∆σz appears due to the presence of a
band gap. However, in Eq. (1.10) the pseudospin degree of freedom corresponds to the conduction
band (CB) and valence band (VB), whereas in the case of MLG the pseudospin corresponded to
the A and B sublattice. Monolayer TMDCs have a strong SOC, especially in the VB. This is

               andorkormanyos_7_22



9

described by the third term of Htmdc, where sz is a spin Pauli matrix and the SOC constant λtmdc
is e.g., ≈ 140 meV for monolayer MoS2. The spin splitting described by this term can indeed be
observed in the DFT band structure calculations around the K point in Fig. 1.4(c). (As we will
see in Chapt. 4, the SOC can also be quite large in the CB, which is neglected in Eq. (1.10).) Time
reversal symmetry requires that the spin-polarization is opposite in the K and the −K valleys,
thus the valley and the spin degree of freedoms are coupled: the SOC term depends on the product
of the valley index τ and the spin operator sz. An interesting consequence of this spin and valley

coupling will be discussed in Sec. 1.7.3.
This minimal model can capture a number of optical and transport e�ects related to the valley

degree of freedom, such as the valley dependent optical selection rules, which we will brie�y discuss
in Sec. 1.7. However, as it can be seen in Fig. 1.4(c), these materials have a relatively complicated
band structure with several extrema (valleys) both in the valence and the conduction bands.
Accordingly, the TB models [71, 72, 73] are signi�cantly more complex than the graphene TB
Hamiltonian, containing a large number of hopping parameters. The accumulation of experimental

Figure 1.4: a) Schematics of the crystal structure of monolayer TMDCs. Adapted from Ref. [10].
b) Top view of the lattice. c) Overview of the band structure as obtained from DFT calculations
along the Γ�K�M�Γ line in the BZ. Inset shows the schematics of the Brillouin zone. Adapted
from Ref. [74].

data over time then called for theoretical models that are both detailed and compact, relying on
a limited number of parameters while still o�ering an accurate description. This is the main
motivation to introduce the so-called k · p methodology in Sec. 1.4, and the relevant results will
be discussed in Chap. 4.

1.3.2 Three important experiments

In order to motivate the interest in monolayer TMDCs, we mention three discoveries which were
very in�uential in the early days of this �eld. Further interesting experiments will be discussed in
Sec. 1.7, after introducing the notion of valleytronics.

The �rst experiment concerns the change in the band structure of TMDCs. Namely, band gap
is indirect in the bulk material while it is direct in the monolayer limit [9]. This results in a huge
increase of the photoluminescence from the monolayers [8, 9] with respect to bulk, or even few layer
samples, see Fig. 1.5(a). Moreover, the emitted light falls into the visible range of the spectrum.
This opened the way for a relatively straightforward optical investigation and characterization of
these materials. This was particularly important because the relatively strong disorder in the sam-
ples (compared to graphene) and problems with obtaining good electrical contacts made it initially
di�cult to perform e.g., transport studies. Obviously, the presence of strong photoluminescence
has implications for TMDC based photonics and optoelectronics as well.
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This �rst discovery also laid the foundations for the second one: the investigation of valley
selective optical transitions. It was found that one can selectively address the electronic states
either in the K or in the −K valley [75, 76, 77] using circularly polarized light. We will brie�y
discuss this phenomenon, which lead to a renewed interest in the idea of valleytronics, in Sec. 1.7

The third important discovery was that monolayer TMDCs, since they are semiconductors, can
be implemented in �eld-e�ect transistors [78, 79, 80] [see Fig. 1.5(b)] and logical devices [81, 82].
Although the mobility of the charge carriers (which would determine the speed of the operations)
in TMDCs is much smaller than in graphene, the lack of band gap in the latter means that in a
transistor setup the current through the graphene channel cannot be switched o�. This limits the
use of graphene for digital transistors. In contrast, a large current on/o� ratio can be achieved if
monolayer TMDCs are used as channel [78]. Moreover, it was expected that their extreme thinness
allows more e�cient control over switching and can help to reduce power dissipation.

Figure 1.5: a) Photoluminescence spectra normalized by Raman intensity as a function of the
wavelength λ of the emitted light for MoS2 layers with di�erent thickness. The photoluminescence
e�ciency is hugely increased for monolayers. The peaks below 550nm correspond to Raman scat-
tering. Adapted from Ref. [9]. b) Schematic illustration of a monolayer MoS2 �eld e�ect transistor.
Adapted from Ref. [78].

1.3.3 Quantum dots in few-layer TMDCs

A quantum dot (QD) is a con�ned semiconductor or metallic region, where electrons can be added
to or taken away in a controlled way due to the Coulomb interaction. Typically, a QD connects
to a source and a drain contact through tunnel barriers so that transport measurements can be
performed. QDs containing only a few electrons or even one electron can be achieved [83] using
semiconductor hosts. This means that when the size of the QD is of the order of the wavelength of
the con�ned electrons, it has a discrete energy spectrum and can behave as an arti�cial atom [84,
83]. The tremendous progress in the fabrication techniques makes it possible to manipulate the
electron's charge or spin degree of freedom [85, 86], which makes QDs currently one of the leading
platform for solid state qubits [87, 88, 89, 90, 91] and quantum computation. Indeed, proof-of-
principle quantum algorithms has recently been demonstrated [92, 93] in QD arrays de�ned on a
silicon wafer.

For our purposes the most important type of QDs are the ones fabricated in a semiconductor
host and where the con�nement potential is provided by electrostatic gates. Moreover, gate elec-
trodes can shift the chemical potential of the dot and tune the coupling of the dot levels to the
source and drain electrodes. Regarding 2D materials, currently the two main platforms to obtain
gate such controlled QDs are BLG [94, 95, 96] and few-layer TMDCs [97]. To set the stage for
Chapt. 6, we brie�y discuss recent experimental results on gate controlled QDs in atomically thin
TMDCs. We mention that QDs can be obtained by other methods of con�nement as well, e.g.,
using etching [97].
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Experiments on gate controlled quantum dots

The �nite band gap in the TMDCs makes it possible to con�ne the charge carriers using similar
fabrication techniques to those developed earlier for GaAs or Si. In this respect they o�er a viable
alternative to BLG, where a more complicated gate architecture is needed to open a band gap and
achieve con�nement simultaneously [95]. QDs has indeed been fabricated using monolayer [98, 99,
100] and few-layer [99, 101, 102, 103] TMDC samples. As shown in Figs. 1.6(a), the fabrication
of QD devices actually involves the stacking of several thin layers, where e.g., hBN is used as an
insulator, and graphene or graphite as gates.

Figure 1.6: QDs in atomically thin TMDCs. a) Optical micrograph of a device based on monolayer
MoS2. The MoS2 �ake (pink dashed lines) is encapsulated between two hBN �akes. Graphite is
used as a backgate and the electrical contacts to the MoS2 �ake are Ti/Au (yellow, numbered
1− 4). Adapted from Ref. [98]. b) Schematics of the Coulomb blockade e�ect in a QD. When the
chemical potential µ(N) of the dot is tuned into the bias window eVsd = µS − µD, the number
of electrons can vary between N − 1 and N , resulting in a single-electron tunneling current (left
panel). If µ(N) is not in the bias window, the electron number is �xed in the QD and no current
�ows, known as Coulomb blockade (right panel). Adapted from Ref. [97].

The basic transport e�ect through QDs is the so-called Coulomb blockade [83], which means,
in simple terms, that electrons are added on-by-one to the dot and then tunnel out. The chemical
potential µ(N,Vi) of the dot depends on the number of electrons N on the dot and the gate voltages
Vi (assuming a capacitive coupling between the dot and the gates). The strong Coulomb repulsion
between the electrons prevents transport through the dot unless µ(N,Vi) is in the bias window
determined by the source-drain voltage Vsd. In this case the number of electrons can vary between
N − 1 and N , resulting in a single-electron tunneling current. As shown in Fig. 1.7, transport
measurements of the TMDC QD devices at low temperatures can show clear signatures of Coulomb
blockade. Besides single dots, double quantum dots have also been realized in TMDCs [98, 104].
An example is shown in Fig. 1.7, where by changing the voltage on one of the gates it was possible
to tune the device between hosting one larger QD or two smaller QDs. This demonstrates the
tunability of gate de�ned TMDC QDs.

One of the motivations to study QDs in TMDCs is that the strong SOC and the valley degree
of freedom, which we already mentioned in Sec. 1.3.1, would add interesting aspects to the QD
physics. One should note that several experiments actually used few-layer TMDCs [99, 101, 102,
103] and not a monolayer to fabricate QD devices. This is important, because the band structure
of few-layer TMDCs is sensitive to the number of layers: the position of the band edge can shift
from the ±K point to the Q point in the CB or to the Γ point in the VB. Therefore in few-layer
samples, instead of the ±K valleys, carriers from other valleys can be dominant. The degeneracy
of the lowest energy electronic states at these points also changes depending on the layer number:
for example, the K valley is two-fold (four-fold) degenerate, the Q point is six-fold (six or twelve-
fold, depending on the stacking of the layers) degenerate, the Γ point is non-degenerate (two-fold
degenerate) in monolayers (bilayers). The layer number should therefore a�ect the electronic
states formed in the QDs as well as the transport through the QDs. However, a good control on
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Figure 1.7: Gate de�ned single and double QD in monolayer MoS2. a) Coulomb blockade diamond
measurement in the single QD regime. c) The same as in a) in the double dot regime. Dark
regions indicate low conductance, bright regions represent high conductance. b) and d) Upper
panel: scanning electron microscope image of a QD device. Bright regions correspond to metallic
electrodes, dark region is hBN. Lower panel: schematics of the electrostatic potential landscape
without and with the middle barrier potential, which is determined by the gate Vpg. Changing
Vpg allows to tune the device from single to double dot behavior. The gates VsgL and VsgR tune
the tunnel barrier to the source and drain. Adapted from Ref. [98].

the number of con�ned electrons and clear signs of valley or SOC physics has not yet been achieved
in TMDC QDs. This is partly due to the lower material quality of the TMDC �akes (compared
to BLG) and partly to fabrication problems of electrical contacts to TMDCs [97].

1.4 k · p theory

We have seen in Sec. 1.2 that all the important properties of the band structure of few-layer
graphene can be obtained using a relatively simple TB model. This is due to the simple chemical
composition of graphite (consisting of only carbon atoms) and because it is su�cient to take into
account a single atomic orbital. However, in more complicated compounds, such as TMDCs intro-
duced in Sec. 1.3, there can be several di�erent atoms in the unit cell and one would need to consider
more then one atomic orbitals for each atom. Therefore TB models can become complicated and
depend on a large number of hopping amplitudes. The parameterization of such a TB model, i.e.,
obtaining the actual values of the hopping amplitudes for a given material, is usually not easy.
Currently, the probably most widely used methodology to calculate the band structure is based
on density functional theory (DFT). The problem of determining a large number of parameters
does not arise, the results are usually quite accurate, and the needed computational power, which
is signi�cantly larger than for TB models, is nowadays readily available. Nevertheless, DFT cal-
culations can still be prohibitively expensive for certain problems, such as studying quantum dots
(see Chapt. 6), and magnetic-�eld e�ects cannot be easily addressed by DFT-based techniques.

We will discuss now a relatively simple, yet powerful approach, the k·p methodology. Starting
from the pioneering works of Luttinger and Kohn [105] to more recent monographs [106, 107], it
has a long history in describing the band structure of III-V semiconductors in the vicinity of the
Γ point of the BZ. It can give an accurate characterization of the dispersion, including important
details such as band anisotropy or coupling between bands, and often in terms of a relatively small
number of material parameters. This latter property can make it advantageous with respect to
TB models. However, in contrast to TB models and DFT modeling, its use is more restricted:
it is usually employed to describe the band structure in the vicinity of high-symmetry k-space
points in the BZ. In the case of semiconductors, which will be the main focus of this work, this
is not necessarily a problem: the physics of semiconductors is mainly governed by charge carriers
residing in the minima or maxima of the energy bands. Moreover, magnetic-�eld e�ects can also be
taken into account in a rather straightforward way. Importantly, the k ·p method can complement
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DFT band structure calculations, whereby the material speci�c parameters appearing in the k·p
methodology are extracted from DFT calculations (see Chap. 4 and 7). Furthermore, as we will
see in Chap. 8, in the case of proximity induced material properties it can give physical insights
that is not easy to obtain from other approaches.

1.4.1 Basic approach

In single-particle approximation, the physics of the electrons in the periodic potential V (r) of a
crystal is governed by the Schrödinger equation[

p̂2

2me
+ V (r)

]
Ψn,k(r) = En(k)Ψn,k(r), (1.11)

where n is the band index and the eigenfunctions of the Hamiltonian are Bloch functions: Ψn,k(r) =
1√
V
eikrun,k(r), where un,k(r) is lattice periodic, which means that un,k(r + Rm) = un,k(r) for

arbitrary lattice vector Rm. In the following, we assume that the motion of the electrons is
con�ned to two dimensions, i.e., p̂ = (p̂x, p̂y)T and for simplicity, we have neglected the SOC in
Eq. (1.11) [the discussion of SOC e�ects is deferred to Sec. 1.4.3].

Substitution of Ψn,k(r) into Eq. (1.11) gives an equation for un,k(r):[
p̂2

2me
+ V (r) +

~k · p̂
me

+
~2k2

2me

]
un,k(r) = En(k)un,k(r). (1.12)

We will mainly be interested in the properties of semiconductors, where the physically important
electron states can be found around band extrema (minima and/or maxima). Let us denote by k0

the wave vector pointing to such an extrema in the BZ, and introduce the notation

H(k0) =

[
p̂2

2me
+ V (r) +

~k0 · p̂
me

]
. (1.13)

The lattice periodic part un,k0
(r) then satis�es the Schrödinger equation

H(k0)un,k0(r) = εn(k0)un,k0(r), (1.14)

where εn(k0) = En(k0)− ~2k2
0

2me
. It follows that Eq. (1.12) can be cast into the form[

H(k0) +
~q · p̂
me

]
un,k0+q(r) = εn(k0 + q)un,k0+q(r), (1.15)

where we introduced the notation k = k0 + q. The band edge wavefunctions um,k0
(r) form a

complete orthonormal basis [108], therefore one may use the expansion

un,k0+q(r) =
∑
m

A(n)
m (k0 + q)um,k0

(r) (1.16)

and calculate calculate the matrix elements of the operatorH(k0)+ ~q·p̂
me

in the basis of the um,k0(r)

functions. Substituting Eq. (1.16) into Eq. (1.15), multiplying the resulting equation by u∗m′,k0
(r)

from the left and integrating over the unit cell Ω, one �nds the algebraic eigenvalue problem

. . .

. . . εm−1(k0) q · γm−1,m q · γm−1,m+1 . . .

. . . q · γm,m−1 εm(k0) q · γm,m+1 . . .

. . . q · γm+1,m−1 q · γm+1,m εm+1(k0) . . .
. . .





...
Am−1

Am
Am+1

...


= ε(k0 + q)



...
Am−1

Am
Am+1

...


,

(1.17)
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where γm′,m = ~
me

pm′,m and pm′,m =
∫

Ω
dru∗m′,k0

(r) p̂um,k0
(r) = 〈um′,k0

|p̂|um,k0
〉 are momen-

tum matrix elements. We have dropped the band index n because it is arbitrary and to keep the
derivation simple, we assumed that pm,m = 0. In general, the diagonal matrix elements pm,m can
be non-zero, in many cases, however, they turn out to be zero for reasons related to the symmetries
of the system, as we will see, e.g., in Chap. 4. Apart from this, the derivation has so far been
general and if the band-edge energies Em(k0) and the basis states um,k0

(r) and were known, by
solving the secular equation (1.17) one could calculate the band structure in the whole BZ.

In the spirit of k · p theory, we now assume that the band-edge energies Em(k0) are known
either from measurements (e.g., from optical spectroscopy, where interband transition energies
can be measured) or from DFT band structure calculations. This, together with two additional
observations listed below, is what can make k · p theory a workable approach:

� if one is interested in the dispersion of the bands in a small vicinity of k0, i.e., one considers
|q| � |k0| and the Em(k0) are not (near)degenerate, then usually a few um,k0

(r) basis states
can already be su�cient and therefore the matrix in Eq. (1.17) is of �nite dimensions. We
will denote this Hamiltonian matrix by Hk·p. One is usually interested in the properties
of the valence band (VB) and conduction band (CB), therefore one may take uvb,k0

(r) and
ucb,k0

(r) as basis states, and few more um,k0
(r) corresponding to Em(k0) lower and/or higher

than Evb(k0) and Ecb(k0).

� for high symmetry k0 points in the BZ not only pm,m are usually zero, but many of the
o�-diagonal pm′,m matrix elements as well. The non-zero pm′,m can be found using group
theory considerations, which we will brie�y explain in Sec. 1.4.2.

In this way one can obtain a Hamiltonian matrix Hk·p parameterized by a few non-zero parameters
γm′,m. Since there are only a few γm′,m, it is easier to extract their values either from measurements
or e.g., by �tting the band dispersion obtained by diagonalizing Hk·p to fully numerical DFT band
structure calculations.

One may employ second-order perturbation theory to approximately diagonalize Eq. (1.17) for
a given band n:

εn(k0 + q) = εn(k0) +
~2

m2
e

∑
m′ 6=n

|q · γn,m′ |2
En(k0)− Em′(k0)

. (1.18)

Using the de�nition 1
(meff )ij

= 1
~2

εn(k0+q)
∂qi∂qj

, Eq.(1.18) allows to calculate the e�ective mass meff

characterizing the band n. If the vector γn,m′ has only one independent component denoted by
γn,m′ , which can happen for high symmetry k0 points in the BZ, then the e�ective mass is isotropic
and one �nds the well-known result [63, 109]:

me

meff
= 1 +

2

me

∑
m′ 6=n

|γn,m′ |2
En(k0)− Em′(k0)

. (1.19)

1.4.2 Group theory considerations

Whether or not the matrix element pm′,m is zero or not depends on the crystal symmetries of
the material, which is where group theoretical considerations can be useful. A detailed discussion
of the symmetry properties of Bloch wavefunctions can be found in [109, 110], here we will only
brie�y outline how group theory can help to determine which pm′,m are non-zero. For simplicity,
we will consider symmorphic crystals, where the symmetry group of the crystal contains only
translations and point group operations but no glide plains or screw axis and we denote the point
group describing the symmetries of the crystal by gcr.

Since Eq. (1.14) is an e�ective Schrödinger equation for um,k0
(r), the �rst step is to consider

the symmetry properties of H(k0). The �rst term has full rotational symmetry, while the second
term only that of the crystal lattice, i.e., discrete rotations and re�ections. Depending on k0, the
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symmetry of H(k0) can be further lowered by the third term, ~k0·p̂
me

. To see this, let us denote by
{Ga} a group of some coordinate transformations Ga which leave V (r) invariant. One may recall
that the e�ect of a symmetry transformation O(Ga) on an arbitrary function f(r) is given by
O(Ga)f(r) = f(R(G−1

a )r) = f([R(Ga)]−1r), where R is a matrix representation of the coordinate
transformation. Furthermore, note that under symmetry transformations O(Ga) the operator p̂

transforms in the same way as the polar vector r = (x, y, z)T . One �nds that the e�ect of the
transformed operator O(Ga) ~

me
k0p̂O−1(Ga) on an arbitrary function is

O(Ga)
~
me

k0p̂O−1(Ga)f(r) = O(Ga)

[
~
me

k0p̂f([R(Ga)]r)

]
=

~
me

k0

(
[R(Ga)]−1p̂

)
f(r). (1.20)

On the other hand, because of the properties of the scalar product, (R(Ga)k0) · (R(Ga)p̂) = k0 · p̂.
Thus, one may write

O(Ga)

(
~
me

k0 · p̂
)
O−1(Ga) = O(Ga)

(
~
me

[R(Ga)k0] · [R(Ga)p̂]

)
O−1(Ga) =

~
me

(R(Ga)k0) · p̂.
(1.21)

This shows that for a given k0, of all the symmetries of the Hamilton operator in Eq. (1.11), it is
of special interest to consider those which leave k0 invariant, because they will be be symmetries
of the e�ective Hamilton operator H(k0). For the corresponding set of point group operations,
formally, one may write O(Ga)k0 = k0 + Gl, where Gl is a reciprocal lattice vector. These O(Ga)

point group operations form the group of the wave vector k0 and we will use the notation gk0 for
this group. In general, not all symmetry operation in gcr satisfy the above condition, therefore gk0

is usually a subgroup of gcr. It is also easy to see that if k0 = 0 then gk0
is equivalent to gcr.

Importantly, if gk0
is the symmetry group of H(k0), then the eigenfunctions um,k0

(r) will
transform according to the irreducible representations (irreps) of gk0 . In other words, one can
assign a label um,k0

(r) → u
(Γjα)
m,k0

(r) to each eigenfunction of H(k0), where Γj denotes the irrep
and if it is not one-dimensional, then the index α denotes the partners of the irrep. Once these
labels are known for a set of um,k0

(r) of interest, this information can be used to �nd out which

pm′,m are non-zero. By writing pm′,m = 〈u(Γj′α′ )

m′,k0
|H′|u(Γjα)

m,k0
〉, it is apparent that this question can

be considered as a quantum mechanical selection rule with respect to the perturbation H′ = p̂.
Let u

(Γj′α′ )

m′,k0
and u(Γjα)

m,k0
transform as partners α′ and α of irreps Γj′ and Γj of gk0

, and p̂ transform
as Γl of gk0

. As it is known from group theoretical arguments [109, 110], the matrix element

〈u(Γj′α′ )

m′,k0
|p̂|u(Γjα)

m,k0
〉 transforms according to the direct product Γ∗j′α ⊗ Γl ⊗ Γjα of the irreps. If the

decomposition of this direct product into irreps of gk0
contains the fully symmetric representation

Γ1, then the matrix element is non-zero, otherwise it is zero. Examples of how the labels Γjα can
be determined for a concrete material and set of bands will be given in Chaps. 3 and 4.

1.4.3 Spin-orbit coupling e�ects

The spin-orbit coupling can have very important e�ect on the energy band structure En(k). It is
well known, for example, that in semiconductors, such as GaAs, the SOC gives rise to the lifting of
the four-fold degeneracy of the topmost valence band. The SOC can be similarly important in 2D
materials, leading e.g., to a spin-orbit split bands in materials that lack inversion symmetry (see,
e.g., Chapt. 4). In addition to the spin-splitting of the bands, a second important e�ect of SOC
appears in the Zeeman splitting of electrons and holes, as well as interband excitations such as
excitons. Namely, the Zeeman splitting will be characterized by e�ective g-factors that can di�er
substantially from the free-electron's value ge ≈ 2.0 (see further discussion in Chapt. 5).

Starting from the Dirac equation and developing a nonrelativistic approximation, the single-
particle Schrödinger equation including the SOC can be written as [111, 109][

p̂2

2me
+ V (r) +

~
4m2

ec
2

(∇V (r)× p̂) · s
]

Ψν,k(r) = Eν(k)Ψν,k(r), (1.22)
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where s = (sx, sy, sz)
T are Pauli matrices acting in spin-space and the Bloch wavefunction Ψν,k(r) =

eikruν,k(r) is a two-component spinor. In general, the spin quantum number s = {↑, ↓} itself is not
a good quantum number when the SOC is taken into account. The bands are labeled by ν, which
is a shorthand to denote the band index n and the irreducible double group representation Γ̃j,α.
The use of Γ̃j,α is the appropriate way to indicate the symmetry properties of the wavefunctions.
The lattice periodic part uν,k(r) satis�es the equation

[
p̂2

2me
+ V (r) +

~
4m2

ec
2

(∇V (r)× p̂) · s +
~
me

k

(
p̂ +

~
4mec2

[s×∇V (r)]

)]
uν,k(r) = εν(k)uν,k(r),

(1.23)
where εν(k) = Eν(k) − ~2k2

2me
. The procedure is now basically the same as in Sec. 1.4.1. One

can write k = k0 + q and introduce the spinfull basis states um,k0,s
= u

(Γjα)
m,k0

⊗ |s〉 where |s〉 is
an eigenstate of the spin-operator Ŝ = ~

2 sz. Note, that here the superscript Γjα refers to single
group irreps of gk0

. One may then expand uν,k(r) in terms of um,k0,s
(r) and calculate the matrix

elements of the operator appearing in Eq. (1.23). One �nds the following set of algebraic equations:

∑
m′,s′

[εm(k0)δm,m′δs,s′ + q · γm,m′δs,s′ + ∆ms,m′s′ ]A
(ν)
m′,s′ = εν(k)A(ν)

ms. (1.24)

Apart from the term ∆ms,m′s′ , Eq. (1.24) is the same as Eq. (1.17). In the derivation of Eq. (1.24)
we neglected 〈um,k0,s

| ~
4mec2

[s×∇V (r)] |um′,k0,s′
〉 with respect to 〈um,k0,s

|p̂|um′,k0,s′
〉, which is

usually a good approximation. The e�ect of SOC is therefore given by the matrix elements
∆ms,m′s′ = 〈um,k0,s

| ~
4m2

ec
2 (∇V (r)× p̂) · s|um′,k0,s′

〉 = 〈um,k0,s
|Hsoc|um′,k0,s′

〉. The use of um,k0,s

basis is especially convenient when the typical scale of the SOC is smaller than the energy sepa-
ration between states labeled by di�erent Γjα indices and therefore the mixing of these states is
weak.

In the so-called atomic approximation, Hsoc = ~
4m2

ec
2 (∇V (r)× p̂) · s is written as Hsoc =

λsoL̂ · Ŝ, where L̂ = (L̂x, L̂y, L̂z)
T and Ŝ = (Ŝx, Ŝy, Ŝz)

T are vectors of angular momentum and
spin operators, respectively, and λso is a constant indicating the strength of the SOC. This form
of Hsoc is exact in atomic physics, where V (r) ∼ 1

|r| is a central potential, and therefore ∇V (r) ∼
r
|r|3 . Regarding solid state physics, λso is an e�ective parameter which depends on the chemical
composition of the material and it is sometimes argued that the use of atomic approximation
is justi�ed because the largest contribution to the SOC comes from regions close to the atomic
cores, where the Coulomb interaction is strongest. It is probably more rigorous to think of this
form of Hsoc as a convenient notation: regardless of the exact form of the crystal potential V (r),
from symmetry point of view the gradient ∇V (r) transforms as a polar vector r. Therefore,
with respect to crystal symmetries, the operator (∇V (r)× p̂) · s transforms in the same way as
L̂ · Ŝ. This can be used to determine which matrix elements ∆ms,m′s′ are non-zero by extending
the argument put forward about the matrix elements pm,m′ in Sec. 1.4.2. If the components
L̂x,y,z transform according to an irrep Γl of gk0 , then in order to determine whether the matrix

elements 〈u(Γj′α′ )

m,k0
|L̂x,y,z|u(Γjα)

m′,k0
〉 are �nite one needs to consider the direct product Γ∗j′ ⊗ Γl ⊗ Γj

and decompose it using the irreps of gk0 .

1.4.4 Magnetic �eld and external potential

Until now we considered problems where the translation invariance of the crystal was preserved and
therefore it was natural to use Bloch wavefunctions as basis states. In many important problems,
however, the translation invariance is broken. This can happen, e.g., if a magnetic �eld or an
external electrical potential is applied to con�ne the motion of the charge carriers. Thus, one
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considers the Schrödinger equation[
(p̂ + eA)2

2me
+ V (r) +

~
4m2

ec
2

(∇V (r)× (p̂ + eA)) · s + U(r) +
ge
2
µBs ·B

]
Ψ(r) = EΨ(r),

(1.25)
where A(r) is the vector potential which gives rise to the magnetic �eld B, and U(r) is a slowly
varying (on the scale of the crystal lattice) external scalar potential. It is assumed that U(r) gives
a negligible contribution to the SOC. The last term on the right-hand side of Eq.(1.25) is the
Zeeman term describing the coupling of the spin degree of freedom to the magnetic �eld, ge ≈ 2 is
the free electron gyromagnetic factor, and µB is the Bohr magneton.

The derivation of the k · p approximation becomes more involved in this case, for details we
refer to the original work of Luttinger and Kohn [105] and recent discussions in Refs. [106, 107].
Following [63], here we only provide a short summary of the most important results. Since the
functions um′,k0

(r) form a complete orthonormal basis [108], one may use the expansion

Ψ(r) =
∑
m′,s′

Ψm′,s′(r)um′,k0,s′(r), (1.26)

where the expansion coe�cients Ψm′,s′(r) are called envelope functions. They are supposed to vary
slowly on the length scale of the lattice constant and modulate the quickly oscillating um′,k0,s′(r)

functions. We insert Eq. (1.26) into Eq. (1.25), multiply from the left by u∗m,k0,s
(r) and integrate

over one unit cell. Since A(r), U(r) and Ψm′,s′(r) are slowly varying, they can be taken out of the
integral as constant factors. One �nds

∑
m′,s′

{[
E(k0) +

(p̂ + eA)2

2me
+ U(r)

]
δm,m′δs,s′ +

1

me
(p̂ + eA) · γm,m′δs,s′

+∆ms,m′s′ +
ge
2
µBS ·Bδm,m′

}
Ψm′,s′(r) = E Ψm,s(r), (1.27)

which is system of coupled di�erential equations for the envelope function components Ψm,s(r). As
one can see, there is a close similarity between Eq. (1.24) and Eq. (1.27). Formally, the latter can
be obtained using the substitution q → q̂ = 1

~ (p̂ + eA) in the former and adding the terms U(r)

and ge
2 µBS ·B to the diagonal. This is sometimes called the Luttinger-substitution [109].

It is important to emphasize that this substitution should be performed in Eq. (1.24), which is,
formally, in�nite dimensional. In practice, from Eq. (1.24) various lower dimensional approxima-
tions or results are obtained using the method of Löwding partitioning [63]. An example of such
�downfolding� procedure is the e�ective mass equation (1.18). On the other hand, the Luttinger
substitution promotes the vector q into a vector operator q̂, and the components of the latter do
not commute:

[q̂i, q̂j ] = −i e
~
εijkBk, (1.28)

where εijk is the Levi-Civita symbol and Bk is a component of the magnetic �eld B. Therefore,
when applying the Löwding partitioning, one has keep in mind Eq. (1.28) as it can have important
consequences. An example for this will be discussed in Chap.5.

1.5 Anomalous velocity and Berry curvature

In a seminal paper [112], Michael Berry studied the adiabatic evolution of an eigenstate of a
quantum system due to some slowly varying parameters. He found that if the eigenstate remains
non-degenerate during the evolution and the change of the parameter values is cyclic, i.e., it makes
up a loop, then there will be a interesting phase di�erence between the eigenstate at the initial
and at the �nal time. While part of the total phase di�erence is of dynamical origin, there will
be another contribution, which is now commonly called the Berry phase. The Berry phase is of
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geometric origin, meaning that it can be written as a line integral of a vector �eld over a loop in
the parameter space and its value does not depend on the rate of change of the parameter values.
One can show that the Berry phase can be expressed as surface integral of another vector �eld,
the Berry curvature.

The Berry phase and Berry curvature in�uenced several �elds of physics immensely, including
solid state physics: it is closely related to the conductance quantization in the integer quantum Hall
e�ect [113], it gives an important contribution to the anomalous Hall e�ect in ferromagnets [114],
plays a central role in the modern theory of electric polarization [115, 116], to name a few important
results. It is also a fundamental concept in topological band theory. In the following we give a
brief introduction of the Berry curvature in crystalline materials and show that it can a�ect certain
transport properties through the so-called anomalous velocity. The anomalous velocity will play
an important role in Sect. 1.7 and later in Chapt. 7.

1.5.1 Anomalous velocity

Let us consider a non-degenerate band n in a crystalline material. It has been recently shown [117,
118] that if a weak electric �eld E is applied to the material, the group velocity vn(k) of the
electrons in band n is not simply vn(k) = ∂εn(k)

~∂k , but there is another contribution, which is linear
in the electric �eld:

vn(k) =
∂εn(k)

~∂k
− e

~
E×Ωn(k). (1.29)

The �rst term on the right-hand-side is the well-known group velocity and the second one is usually
called the anomalous velocity. In addition to the electric �eld, the anomalous velocity depends on
the Berry-curvature Ωn(k). It is given by the vector product [118]

Ωn(k) = ∇k × i〈un,k|∇kun,k〉, (1.30)

where un,k is the lattice-periodic part of the Bloch wavefunction Ψn,k and Im[. . . ] denotes the
imaginary part. The vector

A(k) = i〈un,k|∇kun,k〉 (1.31)

is called the Berry connection.
One can make the following symmetry considerations [118]. Under time reversal k→ −k, which

means that the �rst term on the right-hand-side of Eq. (1.29) changes sign, whereas E does not.
One expects that vn(k)→ −vn(k) and this requires that

Ωn(−k) = −Ωn(k). (1.32)

Under spatial inversion both k and E change sign. One expects that vn(k) → −vn(k), which
implies that

Ωn(−k) = Ωn(k). (1.33)

It follows from Eqs. (1.32) and (1.33) that if both time-reversal and inversion symmetry are present
then Ωn(k) vanishes everywhere in the BZ. However, if either time-reversal or inversion symmetry
is broken, the anomalous velocity is not required to vanish.

We note that one may rewrite Eq. (1.30) by expressing |∇kun,k〉 with the help of the Schrödinger
equation H(k)|un,k〉 = εn(k)|un,k〉 and making use of the fact that |um,k〉 form a complete or-
thonormal basis,

∑
m |um,k〉〈um,k| = 1. One �nds that

Ωn(k) = −2Im
∑
n 6=m

〈un,k|∇kH(k)|um,k〉 × 〈um,k|∇kH(k)|un,k〉
[εm(k)− εn(k)]2

. (1.34)

The form of Ωn given in Eq. (1.34) is signi�cant for several reasons. Firstly, it shows that the
Berry curvature is gauge-independent, i.e., a gauge transformation un,k → eiΦ(k)un,k does not
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a�ect Ωn(k). This is important in numerical calculations, because the numerical algorithms that
one can use to obtain the eigenstates of the Hamiltonian usually do not output phase factors eiΦ(k)

that are smooth functions of k everywhere in the BZ. Secondly, while Eq. (1.30) involves only the
state un,k, Eq. (1.34) shows that the Berry curvature in band n can be thought of as a result of an
interaction between un,k and um,k, i.e., between band n and other bands m in the band structure.

Thirdly, Eq. (1.34) suggest that Ωn(k) can be large if there is near-degeneracy in the band
structure, i.e., when εm(k) ≈ εn(k). This is indeed what was found for a number of materials [119,
120, 121] using DFT band structure calculations. An example is shown in Fig. 1.8 for a 2D
material, monolayer MoS2. One can see that the Berry curvature is strongly peaked at the ±K
points of the BZ. Therefore, one may expect that Ωn, and consequently transport e�ects related to

Figure 1.8: Berry curvature calculation for monolayer MoS2 based on DFT band structure calcula-
tions. a) Ωz(k) along high symmetry directions, and b) in the whole BZ. Here Ωz(k) =

∑
n Ωz,n(k),

where n∈ valence bands. The main contribution actually comes from just one band, the highest
energy valence band. Adapted from Ref. [121].

it can already be understood, at least qualitatively, if the band structure is known in the vicinity
of those k0 wavenumber vectors where εn(k0) ≈ εn+1(k0) or εn(k0) ≈ εn−1(k0). In other words,
one does not necessarily need to know the band structure in the whole BZ in order to account for
Berry phase related e�ects. As discussed in Sec. 1.4, the k · p methodology can give an accurate
characterization of the band dispersion εn(k0 + q) and allows to calculate un,k0+q. Thus, it can
be an important tool to calculate the Berry curvature.

Historically, the role of the anomalous velocity component in transport e�ects �rst emerged in
the discussion of the anomalous Hall e�ect (AHE) by Karplus and Luttinger in 1954 [122]. They
showed that the velocity operator has o�-diagonal (in the band index n) elements because the
electric �eld, which is applied to drive a current, mixes di�erent bands. However, the relation to
the Berry curvature was not realized until much later. In general, several microscopic mechanism
can contribute to the AHE, the one closely related to the anomalous velocity is usually called the
intrinsic contribution.

Finally, we note that the notion of Berry connection and Berry curvature can be extended to
degenerate or nearly degenerate bands as well. In this case the Berry curvature becomes a matrix
with a non-Abelian gauge structure [118], �rst discussed by Ref. [123] in a di�erent context. It
turns out that the non-Abelian formulation is not needed for the problems we will be discussing
in Chapt. 7, therefore we do not consider further details here.

1.5.2 O�-diagonal conductivity and Berry curvature

As one can see from Eq. (1.29), the anomalous velocity component is perpendicular to the electric
�eld E. In conductors the electric �eld would drive a current and semiclassical considerations would
suggest that the anomalous velocity can lead to transverse, Hall e�ect-like transport phenomena.
This intuition is con�rmed by a linear response analysis based on the Kubo formula, which we will
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now brie�y discuss.
Let us consider a 2D system, which will be our main focus later. The Berry curvature has only

one non-zero component in this case, which we will denote by Ωz,n(k). By applying an in-plane
electric �eld E one can drive a current in the system. The constituent relation between the current
components jν (ν = {x, y}) and the applied electric �eld Eµ is given by jν = σνµEµ, where σνµ
is the conductivity tensor. Using the Kubo formalism, the DC limit of the Hall conductivity (per
spin) reads [124]:

σxy = e2~
∑
n 6=m

∫
dk

(2π)2
[f(εn(k))− f(εm(k))]

Im [〈un,k|v̂x(k)|um,k〉〈um,k|v̂y(k)|un,k〉]
[εn(k)− εm(k)]2

. (1.35)

Here f(εn(k)) = 1/(1+e(εn(k)−EF )/kBT ) is the Fermi function and the velocity operator v̂ is de�ned
by the commutator v̂ = i

~ [H(k), r] = 1
~∇kH(k), where the Hamiltonian H(k) was introduced in

Eq. (1.13). Note, that the matrix elements of the velocity operator can be expressed using the
identity

〈un,k|∇kH(k)|um,k〉
εm(k)− εn(k)

= 〈un,k|∇k|um,k〉. (1.36)

Substituting Eq. (1.36) into Eq. (1.35) one �nds that

σxy =
e2

~
∑
n

∫
dk

(2π)2
f(εn(k))Ωz,n(k), (1.37)

i.e., σxy depends on the integral of Ωz,n(k) over the Fermi sea for each occupied band n . One can
note that Eq. (1.37) could be obtained by calculating the transverse current due to the anomalous
velocity de�ned in Eq. (1.29) and summing over the occupied bands. The integration in Eq. (1.37)
involves the whole Fermi sea, while it is usually expected that transport properties of Fermi liquids
at low temperatures should depend only on Fermi surface properties. Indeed, one can show that
σxy can be expressed as a Fermi-surface property [125].

It follows from Eq. (1.37) that when EF is in a band gap, the Hall conductivity contribution
of the nth band is given by the integral of Ωz,n(k) over the whole Brillouin zone. The number

Cn =

∫
BZ

dk

(2π)2
Ωz,n(k), (1.38)

is an integer [126] called the �rst Chern number. The physical importance of the Chern number
came to prominence when its relation to the o�-diagonal conductance of the quantum Hall e�ect
(QHE) was realized. Thouless et. al. [113] showed theoretically that σxy = Ne2/h, and the integer
N is given by N =

∑
n Cn, where the summation runs over the occupied bands and equals the

number of occupied Landau levels.

1.6 Spintronics

Broadly speaking, the aim of spintronics is to use the spin of charge carriers to control equilibrium
and non-equilibrium properties of materials in order to obtain new ways to store information and
to operate logic devices [127]. From practical point of view, key ingredients of spintronics are
the injection, transport, manipulation and detection of spin information. The implementation of
these ingredients often involves trade-o�s: for example, spin transport would require low a SOC
material, whereas spin manipulation and detection can typically be achieved using materials with
strong SOC.

The origins of spintronics go back to metals and semiconductor quantum wells [128, 129]. Atom-
ically thin materials and their heterostructures have opened new opportunities in spintronics [127,
130, 131]. Graphene is a strong candidate for spintronics applications [127], due to its long spin-
relaxation times [132, 133] and spin-di�usion lengths even at room temperature [134], which could
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be used in spin-logic devices [135, 136, 137]. Many of the ideas developed earlier for 2D quantum
wells based spintronics setups can be implemented in rather straightforward way using vdW het-
erostructures as well. However, new concepts have also been established, e.g., which make use of
the twist angle between the layers, see Chapt. 8. Spintronics in atomically thin materials can over-
lap with another recent idea called valleytronics, which will be introduced in Sec. 1.7. Our main
aim here is to brie�y present some background for the topics that will be discussed in Chapt. 3, 7,
and 8.

1.6.1 Graphene heterostructures for van der Waals spintronics

In heterostructures of graphene with TMDCs, topological insulators and 2D magnets the prox-
imity of the atomic layers means that material properties can be imprinted across the interfaces.
Although the vDW interactions are weak, the interlayer tunnel coupling can nevertheless change
the energy dispersion or the spin texture in the layers. An important example is the so-called prox-
imity induced SOC, whereby a material that has a strong intrinsic SOC can e�ectively change the
SOC properties of an atomically thin layer which is brought in close contact with it. The concept
of proximity SOC can potentially help to engineer many of the SOC related phenomena, such as
spin relaxation, charge-to-spin conversion, spin-orbit torques [130, 131] etc in vdW systems.

MLG and BLG represent model systems for SOC proximity e�ects. The intrinsic SOC of MLG is
weak, of the order of 10−2meV [138], and opens a small gap in the dispersion at ±K points. The aim
of achieving a strong proximity induced SOC is motivated by the fact that the weak intrinsic SOC
of graphene hinders the control and tunability of possible spintronics devices. In order to increase
the SOC in graphene, one of the most actively pursued direction is to interface it with materials
that have strong intrinsic SOC, such as TMDCs [139, 140, 141, 142, 143]. TMDCs appear to be
ideal material system to induce SOC, because they are chemically inert, they have strong intrinsic
SOC (see Chap. 4) and they have little impact on graphene's electronic properties in the energy
range relevant for transport studies. Following Refs. [144, 145], this is illustrated in Fig. 1.9, which
shows DFT band structure calculations for two examples of MLG/TMDC heterostructures. The
band structure of the heterostructures (upper row of Fig. 1.9) can be understood as a combination
of the band structure of the TMDC layer, which has a �nite band gap, and the linearly dispersing
MLG bands. One can clearly see that the Dirac point of the MLG band structure is located
within the band gap of the TMDC. Focusing on the electronic states close to the Dirac point, one
�nds that the spin degeneracy of the MLG bands is lifted (lower row of Fig. 1.9), which is a clear
signature of the SOC induced by the TMDC in the MLG bands . Further details of the SOC in
graphene will be discussed in Sec. 1.6.2. Here we make two important remarks:

� Although DFT calculation can underestimate the band gap of the TMDC layer and may
not give precisely the position of the Dirac point of MLG within the band gap, there is
experimental evidence [146, 147] that the picture shown in Fig. 1.9 is qualitatively correct.

� The results in Fig. 1.9 were obtained by assuming that the MLG and TMDC layers were
perfectly aligned, i.e., for zero interlayer twist angle. One can expect that a �nite twist angle
between the layers can a�ect, e.g., the magnitude of the induced SOC. This will be the main
topic of Chap. 8.

Experimental probes of the induced SOC

There are three main experimental techniques that have been used to investigate the SOC in
graphene in recent years [148]. The �rst one is the so called charge-to-spin interconversion (CSI),
and its inverse, the spin-to-charge interconversion (SCI) phenomena. An important example is the
spin Hall e�ect (SHE), which will be brie�y discussed in Sec. 1.6.3. We will mainly be interested
in the intrinsic SHE, which depends on the band structure of the host material and is �nite in the
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Figure 1.9: Band structure calculations for MLG/monolayer TMDC heterostructures. a) Overview
of the band structure of MLG/MoS2 and MLG/WS2. One can recognize the linearly dispersing
bands and the Dirac point of MLG in the band gap of the TMDCs. b) Band structure close to
the Dirac point of MLG for the systems shown in a). The bands become spin polarized due to the
induced SOC. Adapted from Ref. [145].

ballistic transport limit. We note that in graphene heterostructures the SHE is often accompanied
by another CSI e�ect, the so-called Rashba-Edelstein or inverse spin galvanic e�ect [149, 150, 151].

In the presence of SOC the spin degree of freedom can be a�ected by the momentum scattering
of the charge carriers. Materials in spintronics applications are usually characterized by the spin
relaxation time τs and the spin di�usion length λs, which are related by the relation λs =

√
Dsτs,

where Ds is the spin di�usion coe�cient. These parameters can be obtained from two di�erent
type of measurements: i) spin injection and Hanle precession in lateral spin valves and ii) weak
(anti)localization measurements. If the momentum relaxation time τp and the microscopic mech-
anism of the spin relaxation (e.g., Elliott-Yafet and D'yakonov-Perel type) are known, one can
estimate the strength of the SOC using the extracted spin-relaxation time. However, in addition
to the SOC there can be several sources of spin relaxation in graphene (e.g., strain �elds, magnetic
impurities etc), and it remains di�cult to unambiguously di�erentiate between di�erent relaxation
mechanism.

A way around this problem can be to consider the spin lifetime anisotropy ζ = τ⊥s /τ
‖
s , which is

de�ned as the ratio of the lifetime of spins pointing out of the graphene plane (τ⊥s ) to those pointing
in-plane (τ‖s ). This is motivated by the realization that di�erent spin relaxation mechanism yield
di�erent ζ values. In particular, assuming that the main spin relaxation channel is the induced
SOC and the relaxation occurs in the D'yakonov-Perel regime [152, 153, 154], it was found [155]

that ζ ≈
(
λvZ
λR

)2 (
τiv
τp

)
+ 1/2, where τiv is the intervalley scattering time, λvZ and λR are the

coupling constants of the valley Zeeman and Rashba type SOC (see Sec. 1.6.2). Since τiv � τp in
graphene, this suggest that ζ can be quite large if λvZ & λR. Indeed, ζ ≥ 10 was found in two
recent experiments [156, 157], which can be taken as a strong indication of the induced SOC.

The third main experimental technique that has been used is the weak localization (WL) and
weak antilocalization (WAL) measurements. WL and WAL are quantum corrections to the classical
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conductivity in di�usive systems due to the interference of backscattered electrons traversing time-
reversed paths. In the case WAL, which can signal the presence of SOC, the interference between
the time-reversed loops is destructive and the conductivity is increased compared to the classical
value. The dependence of the conductivity on the magnetic �eld can be used to infer various charge
and spin relaxation times. In its most general form [158] the WAL theory requires the �tting
of six independent time scales [148]. Since obtaining a unique �t is di�cult, usually simpli�ed
models are used which entail assumptions that may or may not be completely justi�ed. This, in
turn, complicates the interpretation of the experimental results. Nevertheless, WAL measurements
provided convincing evidence of the induced SOC in graphene [139, 142, 159].

Finally, we mention that in TMDC/BLG heterostructures it was also possible to use the quan-
tum Hall e�ect to gain information on the strength of the induced valley Zeeman SOC [160]. In
summary, although its strength is di�cult the determine quantitatively, the di�erent experimen-
tal techniques did demonstrate that TMDCs can induce SOC in graphene, and it is ≈ 100 times
stronger than graphene's intrinsic SOC.

1.6.2 E�ective graphene Hamiltonian in proximitized heterostructures

Various aspects of the SOC in graphene will be one of the main topics of this thesis (see Chaps. 3
and 8). Here we �rst summarize the most important SOC terms that can appear in MLG, including
both the intrinsic and the proximity induced SOC. The latter can be derived, e.g., in a heuristic
way, by considering how external perturbations break the symmetries of the graphene sheet [161].
The microscopic mechanisms giving rise to the proximity induced SOC will be discussed in Chap. 8.

Intrinsic SOC

The Hamiltonian of the intrinsic SOC of pristine MLG at the ±K points of the BZ reads

Hintr = λIτσzsz, (1.39)

where, we remind, τ = ±1 refers to the graphene valleys, σz to the sublattice, and sz to the spin
degrees of freedom. Carbon is a light element, therefore the intrinsic SOC is quite weak, in the
τK valleys the energy scale of the SOC is λI = 24− 50µeV [138]. By calculating the spectrum of
Hmlg(q) + Hintr one �nds that Hintr opens a gap in the Dirac spectrum, but the bands remain
spin degenerate due to the combined e�ect of time reversal and inversion symmetries.

Historically, Hintr motivated the prediction of the quantum spin Hall e�ect [162] and started
the �eld of topological insulators. However, the small magnitude of λI has made impossible the
direct experimental observation of this e�ect in MLG.

Bychkov-Rashba type SOC

The Rashba type SOC appears when the (horizontal) mirror symmetry with respect to the plane
of the graphene sheet is broken by a substrate, external electric �eld or adatoms. If the system still
has vertical mirror planes, i.e., it has C3v symmetry, the corresponding SOC Hamiltonian reads

HR =
λR
2

(τσxsy − σysx), (1.40)

where λR is the SOC strength. One can notice that HR does not depend on the momentum.
This is in contrast to III-V semiconductor quantum wells, where the Rashba SOC is linear in the
momentum. HR leads to a spin splitting of the otherwise spin degenerate graphene bands, but it
does not open a gap at the τK point and the spin polarization 〈s〉 of the bands is in-plane. When
the Bychkov-Rashba type SOC is due to an out-of-plane electric �eld, microscopically it can be
described by taking into account the hybridization of the π and σ orbitals of graphene [163].
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If the mirror symmetry of graphene is broken by a substrate that itself has a hexagonal lattice,
then for a general interlayer rotation angle the system has only a C3 symmetry. It was recently
realized [164, 165], that in this case the Rashba SOC in graphene reads

HR =
λR
2
ei

Θ
2 sz (τσxsy − σysx)e−i

Θ
2 sz , (1.41)

i.e., the e�ect of lowering the symmetry from C3v to C3 corresponds to a rotation in spin-space.
We will discuss the details of Eq. (1.41) and the meaning of the angle Θ in Chapt. 8.

Experimentally, by �tting the results of WAL measurements it was found that the value of
proximity induced λR was 0.3− 3.0meV in graphene/TMDC heterostructures [142].

valley Zeeman SOC

When the inversion symmetry of a heterostructure consisting of graphene and another 2D materials
is broken, then the so-called valley Zeeman SOC is also allowed to appear by symmetries. It is
given by the Hamiltonian

HvZ = λvZτsz, (1.42)

where λvZ is the SOC strength. It is similar to the intrinsic SOC given in Eq. (1.39), but it does
not depend on the sublattice degree of freedom, i.e., on σz. HvZ leads to a spin splitting of the
bands at the τK points and to an out-of-plane spin polarization. An important example for a
substrate which can induce this type of SOC are TMDCs.

Experimentally, the value of proximity induced λvZ was found to be 0.2 − 2.0meV [142] in
graphene/TMDC heterostructures, i.e., its magnitude was similar to λR.

E�ective graphene Hamiltonian

In general, all three types of SOC discussed above are present in heterostructures that involve
graphene. Therefore the e�ective (emergent) Hamiltonian would read

Heff = Hmlg(q) +Hintr +HR +HvZ , (1.43)

where Hmlg(q) was de�ned in Eq. (1.4). Here the word �e�ective� refers to the fact that Heff

acts only on the spin and pseudospin degrees of freedom of the graphene sheet. The substrate,
which would give rise to HR and/or HvZ , does not appear explicitly is this description. In
graphene/TMDC heterostructures this approach is justi�ed, because the graphene Dirac point
is located within the TMDC band gap, as shown Fig. 1.9. Therefore, in many experimental setups
the transport takes place only in the graphene layer and it is su�cient to consider Heff . As it is
clear from the preceding discussions, λI � λR, λvZ , which means that HR and HvZ are the main
SOC terms, but we kept Hintr for later reference, see Chap. 3.

We note that in Ref. [145] other terms were also included inHeff , and we now brie�y comment on
them. The �rst such term is Hbg = ∆σz, which would open a spin-independent band gap of 2∆ in
the graphene spectrum. Hbg would be relevant for rotationally aligned graphene/hBN structures,
where indeed there is experimental evidence [166] for a band gap opening. However, one can
expect that if a heterostructure consist of layers that have incommensurate lattice constants, such
as graphene/TMDC, such term should be absent (this argument does not preclude the existence of
locally gapped regions in graphene). Ref. [145] �tted the DFT bands structure calculations shown
in Fig. 1.9 with an e�ective Hamiltonian that included Hbg and obtained values of ∆ ≈ 0.5 meV.
The fact that ∆ was found to be �nite can be due to the �nite computational supercell and the
presence of atomic relaxation in these calculations. Finally, the SOC terms which are linear in
momentum [145] are also neglected in Eq. (1.43). For typical graphene dopings these terms are
much smaller than HR and HvZ , which are momentum independent.
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1.6.3 The spin Hall e�ect

The SHE was originally proposed by D'yakonov and Perel 40 years ago [167] and it is one of the
key phenomena in the �eld of spintronics. In the direct SHE, an electrical current �owing through
a material can generate a transverse spin current, which is polarized perpendicular to the plane
de�ned by the charge and spin current. This spin current can lead to spin-accumulation at the
edges of the sample. A schematic illustration of the e�ect is shown in Fig. 1.10(a). The reciprocal
e�ect also exists, which is called the inverse SHE (ISHE): a pure spin current can generate a
transverse charge current. A prerequisite for (I)SHE is that the material must possess a strong
SOC. This phenomenon is also important e.g., for proposals aiming to achieve energy e�cient
spin-logic devices [168]. In the last twenty years there has been an upsurge of interest in SHE.
In this more recent setting the details of SHE were extensively discussed for III-V semiconductors
and quantum wells, for a recent review see Ref. [129]. We now brie�y summarize a few important
results obtained in this this �eld.

A simple model for the SHE is a two-dimensional electron gas (2DEG) with Bychkov-Rashba
SOC, which is described by the k · p Hamiltonian

HR =
p2

2meff
+
λR
~

(s× p̂)z. (1.44)

Here meff is the e�ective mass, λR is the strength of the SOC, s = (sx, sy, sz)
T is a vector of

Pauli matrices acting in the spin space, and, with respect to Sec. 1.4.1, p = ~q. This model is an
example for the intrinsic SHE, which depends on the properties of the band structure in a perfect
crystal. One may de�ne de�ne [169] the spin current operator for out-of-plane polarized spins by
jzspin = ~

4{sz,v}, where {. . . } denotes the anticommutator and v = ∂H(p)/∂p. Assuming, e.g.,
charge current �owing in the y direction due to an electric �eld Ey and substituting jzspin,x into
Eq. (1.35) one �nds that σsxy = −jzspin,x/Ey = e

8π in a broad range of the Fermi energy EF . Since
σsxy is independent of material speci�c parameters, this results was called the �universal intrinsic
spin Hall e�ect� [169]. We mention here that this contribution is canceled exactly by short-range
disorder scattering [170, 171]. However, using a more general SOC model, which includes, e.g., the
Dresselhaus type SOC [172] as well, the intrinsic contribution survives the disorder average [129].

Another example for the SHE can be found in bulk semiconductors, such as germanium [173].
In contrast to the previous case, where the Bychkov-Rashba SOC due to the structural asymmetry
breaking of the semiconductor heterostructure played a role, here the intrinsic SOC gives rise to
the e�ect in the valence band. The valence band is four-fold degenerate at the Γ point of the BZ,
away from the Γ point the degeneracy of the heavy-hole and light-hole bands is lifted but due to
the inversion symmetry, they remain spin-degenerate. Assuming that an electric �eld is applied
in the z direction, for spin parallel with the x axis and �owing into the y direction the spin Hall
conductivity is σsxy = e

12π2 (3khhF −klhF ), where khhF and klhF are the Fermi wavenumber of the heavy
hole and light hole bands, respectively.

Regarding atomically thin materials, the �rst theoretical study of SHE in MLG was performed
in Ref. [174]. In this work the e�ects of the intrinsic and the Rashba type SOC were considered
using Green's function technique (the valley Zeeman SOC was not included into the model) and
impurity scattering was neglected. It was found that both SOC terms can lead to �nite SHE.
Experimentally, however, it would be di�cult to check these predictions: on the one hand, λI
is very small, on the other hand, a later work [175] showed that the SHE based on the Rashba
SOC would be suppressed by disorder, similarly to the situation in 2DEG. More recently Ref. [176]
obtained important results for σsxy, which are summarized in Fig. 1.10(b). They used large scale
numerical calculations based on appropriately parameterized TB model of proximitized graphene
and the Kubo formalism. As one can see, the SHE is �nite in a narrow energy region near the
charge neutrality point (CNP), therefore it can be controlled by tuning the carrier density. Another
important result of the calculations of Ref. [176] is that σsxy remained �nite when intervalley
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Figure 1.10: a) Schematic picture of the intrinsic SHE assuming p-doping. A charge current Ic
generates a transverse spin current. b) Intrinsic spin Hall conductivity calculations for MLG on
di�erent TMDCs as a function of EF . The inset indicates that the valley Zeeman SOC alone does
not lead to �nite σsxy. Adapted from Ref. [177].

scattering of moderate strength was taken into account, which suggested that the SHE should be
observable experimentally.

We also point out that beyond its relevance to spintronics, the SHE inspired and in�uenced
several other ideas in the �eld of atomically thin materials, such as the valley Hall e�ect and the
coupled valley and spin Hall e�ect, which will be discussed in Sec. 1.7.2 and Sec. 1.7.3, respectively.

Intrinsic and extrinsic contributions to the SHE

It is important to mention that in general several microscopic mechanism can contribute to the
SHE (as well as to the AHE). We follow the terminology used in Ref. [129]. The �rst one, as already
mentioned above, is called the intrinsic mechanism. It is generated by the SOC and depends on the
properties of the band structure in a perfect crystal. For example, avoided crossings in the band
structure often give rise to a large Berry curvature (see Sec. 1.5.1), which, in turn, can lead to a
transverse spin current. All of the examples mentioned in the previous section rely on such intrinsic
mechanism. The second possible contribution to the SHE is called side-jump mechanism. This
can happen both when a not spin-orbit coupled wavepacket is scattered o� a spin-orbit coupled
disorder potential and when a spin-orbit coupled wavepacket scatters o� a scalar potential. Both
the intrinsic and the side-jump contributions are independent of the transport lifetime τtr of the
Bloch states. The third possible contribution is called skew-scattering. It is linear in τtr and
there can be several microscopic mechanism behind it, such as the relativistic Mott scattering, as
proposed originally by Dyakonov and Perel [167]. Which of the contributions is the dominant one
in a given sample depends on a number of factors, e.g., presence/absence of band crossings, the
importance of the disorder and the strength of the SOC [129].

Experimental probes of the SHE

The �rst experiments to detect the SHE made use of optical methods. In Fig. 1.11 we show the
setup used in Ref. [178]. It is based on a two-dimensional hole gas (2DHG) with strong SOC in
a (Al,Ga)As/GaAs heterostructure. The p-doped region is in contact with n-doped regions at the
2DHG channel edges, where the electrons and holes can recombine leading to electroluminescence.
The device therefore contains two light-emitting diode (LED)s on each side of the 2DHG channel.
The spin polarization in the system is detected by measuring the circular polarization (CP) of the
light. Due to optical selection rules, a �nite CP along a given light propagation direction indicates
that the spin-polarization of the charge carries in that direction is �nite. When a current is driven
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Figure 1.11: Optical detection of SHE. a) The scanning electron microscope image of the LED
device used in Ref. [178]. A current Ip �ows in the p-doped channel. The top (LED1) and bottom
(LED2) n doped contacts are used to facilitate electroluminescence at the opposite edges of the
2DHG. b) CP of the electroluminescence stemming from LED1 and LED2. The electroluminescence
has opposite polarization at opposite edges of the 2DHG channel. Adapted from Ref. [178]. c)
Schematics of the thin �lm GaAs device used in Ref. [179], with an applied electric �eld E. The
largest KR signal is detected close to the sample edges, indicated by the red and blue dots. d)
Upper panel: magnetic �eld dependence of the KR signal. Lower panel: the KR signal measured
along the line indicated in c). Adapted from Ref. [179].

through the p-doped channel, the emitted light into the z direction from the LEDs had a �nite CP,
indicating a �nite spin-polarization 〈sz〉 of the holes that recombine with the electrons. Moreover,
〈sz〉 was found to be opposite at opposite edges of the 2DHG channel, in accordance with the
phenomenology of the SHE. The analysis of the sample suggested that the e�ect is due to the
intrinsic mechanism of the SHE.

Another well-know experiment measured the spatial dependence of the Kerr rotation (KR) of
light [179] [Figs. 1.11 (c)-(d)]. A linearly polarized light beam was incident perpendicularly to
the sample surface and the polarization axis of the re�ected beam was measured. The rotation
angle of the polarization is proportional to the magnetization of the electron spins along the laser
propagation direction, therefore it can be used to detect the induced spin accumulation at the
sample edges. As shown in Fig. 1.11(d), a �nite and opposite KR signal was measured close to
the two edges of the sample. This indicated the accumulation of +z and − polarized spins at
opposite edges. The e�ect disappeared in small in-plane magnetic �eld, demonstrating that the
phenomenon was indeed related to the spin degree of freedom. The analysis of the properties of
the sample suggested that the extrinsic SHE was dominant in this experiment.

The results of Refs. [178, 179] demonstrated that the spin-polarization information can be
turned into light-polarization in semiconductors, thus facilitating the detection of the former phe-
nomenon. As we will see in Sec. 1.7.2, similar ideas can be used to probe phenomena related to
the valley degree of freedom.

On the other hand, when metals or graphene is used as a spin transport channel, the detection
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of the SHE relies on transport measurements. The device geometry would typically consist of a Hall
cross with ferromagnetic injector and collector contacts in one of the arms [180]. In Fig. 1.12 we
show a recent setup using proximitized graphene [151]. The device consists of a graphene Hall cross
with a WS2 �ake covering part of one of the arms and inducing SOC in the graphene channel.
Ferromagnetic injector/detector electrode(s), such as F1 (and others not shown) can be found
across the other arm of the Hall cross. An electric �eld E along the graphene-WS2 arm generates
a spin current due to the SHE (red arrows). The spins di�use into the other arm and are detected
by measuring a non-local voltage V Fnl at F1. V

F
nl is proportional to the local spin accumulation

projected along the detector magnetization M1. In zero external magnetic �eld V Fnl = 0 because
the di�using spins are orthogonal to M1. However, if a small in-plane magnetic �eld Bx is used
to make the spins precess, V Fnl will be non-zero.

Figure 1.12: Graphene Hall bar to study the SHE. A TMDC �ake covers one of the arms and a
ferromagnetic electrode F1 is found in the other. The electric �eld E generates a current through the
region with enhanced SOC in graphene. Out-of-plane spin accumulation (red arrows) is generated
by the SHE and di�uses towards F1. In addition to the SHE, a non-equilibrium in-plane spin
density is also generated (blue arrow). M1 denotes the magnetization direction of F1. Adapted
from Ref. [151].

As indicated by the blue arrow in Fig. 1.12, another e�ect is also present in this device. Due
to the �nite Bychkov-Rashba type SOC in graphene, a non-equilibrium in-plane spin density is
generated, which is polarized perpendicularly to the current. This is called the Rashba-Edelstein or
inverse spin galvanic e�ect (ISGE)[129, 149], which we already mentioned in Sec. 1.6.1. In general
both the SHE and the ISGE would have a contribution to the measured signal but the setup used
in Ref. [151] made it possible to discriminate between the SHE and the ISGE.

1.7 Valleytronics

Valleys are local minima or maxima in the band structure of crystalline materials. For example,
it is well-known that in the conduction band of bulk silicon there are six such degenerate electron
pockets, or valleys. They can be found along the Γ−X line of the BZ, at a relatively low symmetry
point of the band structure, which makes it challenging to address the electronic states in di�erent
valleys separately. However, they can be important in relaxation processes for silicon donor based
qubits [181]. Attempts for valley-dependent manipulation of electronic states have remained rather
limited [182, 183, 184] until recently. Nevertheless, already Refs. [182, 183, 184] formulated the
concept of valleytronics, which is build on the idea that the valley degree of freedom could carry
and store information, similarly to the charge in conventional electronics or the spin in spintronics.
The main motivation of valleytronics is to identify and study suitable systems that can complement
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or even surpass existing technologies based on the charge or spin degree of freedom. Generally, a
valleytronic material has a band structure that host two (or more) degenerate valleys that can be
used to encode information, and at the same time, the di�erent valleys should be addressable so
that the information can be read and written.

1.7.1 Valleytronics in atomically thin materials

The discovery of atomically thin 2D materials has given a huge boost to the interest in valley
related phenomena. Many of these materials, such as graphene or monolayer TMDCs, have a
hexagonal lattice and the band edge of the valence and conduction bands can be found at the +K

and −K points of the BZ. Thus, in analogy to a spin-1/2 system, charge carriers can be assigned a
pseudospin number in these materials: those in the +K valley can be labeled as valley pseudospin-
up, and those in the −K valley as pseudospin-down. Several 2D materials have been proposed as
a suitable valleytronics system and correspondingly, there have been a number of suggestions for
how to use and manipulate the valley pseudospin.

One of the �rst ideas was to use a quantum point contact (QPC), i.e., a short and narrow
constriction (see Fig. 1.13), made of a zigzag graphene nanoribbon [185]. For low-enough Fermi
energies the transmission through the QPC is valley polarized due to the peculiar dispersion of the
propagating modes in the QPC. Whether states in the +K or the −K valley are transmitted can
be tuned by locally raising the Dirac point in the constriction, therefore, this device can act as a
valley �lter. Two such valley �lters in series, as shown in Fig. 1.13(a), can block the current if they
have opposite polarities, demonstrating, in principle, that the QPC can function as a valley-valve.
In practice, the fabrication of graphene constrictions that have zigzag edges proved to be di�cult.

Figure 1.13: Valleytronics in graphene. a) Schematics of a valley valve device based on zigzag
graphene nanoribbon constriction. When the local gates have opposite polarities, the current
through the QPC can be blocked. Adapted from Ref. [185]. b) Schematics of a beam splitter and
valley valve in BLG. Blue denotes the BLG layer, gold and gray rectangles are gate electrodes.
Their polarity de�nes the direction of the out-of-plane electric �eld in each region. In the region
between by the electrodes, so-called kink-states are formed, which have a particular chirality in
each of the valleys (upper inset). Lower inset shows the chirality of the kink states in each of
quadrant of the setup. Assuming that intervalley scattering is suppressed, the setup shown in the
�gure can be used as a beam splitter (red arrows in the main �gure). At the same time, the current
from the bottom to the top is blocked (white arrow), which is a valley valve e�ect. Adapted from
Ref. [186].

Another idea is illustrated in Fig. 1.13(b). External out-of-plane electric �eld can open a band
gap in BLG [64]. Between regions where the polarity of the electric �eld is opposite, so-called kink-
states of topological origin can form [187] in the band gap. These states have a di�erent chirality in
each of the valleys. Assuming that the scattering between the +K and −K valleys is suppressed,
one can use the kink states to obtain a simultaneous beam splitter and valley valve [188, 186].

As a third example, one can consider monolayer TMDCs. As we have already mentioned
in Sec. 1.3, they are direct band gap semiconductors and the band gap can be found at the
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+K and −K points. The selection rules for the optical transition between the valence and the
conduction bands are valley dependent [189, 77] [see Fig. 1.14(a)]: electronic states in the +K

(−K) valley couple to right circularly polarized σ+ (left circularly polarized σ−) light. In this

Figure 1.14: Valleytronics in monolayer TMDCs. a) Valleys at the +K and −K points of the
hexagonal BZ of a monolayer TMDC. The optical interband transitions between the valence and
the conduction bands (vertical black arrows) in the +K (−K) valley are excited by σ+ (σ−)
polarized light. Adapted from Ref. [190]. b) Circularly polarized photoluminescence of monolayer
MoS2. The red and blue curves correspond to the intensities of the emitted σ+ and σ− polarizations
upon σ+ excitation. Adapted from Ref. [77]. c) Optical valley pseudospin manipulation. A linearly
polarized optical pulse excites a coherent superposition of +K and −K excitons denoted by the
green arrow. (In this �gure the notation K ′ is used for the −K valley.) When a strong σ+ polarized
control pulse is applied, the energy of the K valley exciton is increased by ~∆ω. If the duration
of the control pulse is ∆t, a dynamic phase di�erence ∆φ = ∆ω∆t develops between the exciton
components in the two valleys and the pseudospin is rotated (blue arrow). Adapted from Ref. [191].

case the information carriers are neutral or charged excitons, and as shown in Fig. 1.14(b), optical
selection rules allow the optical preparation and read-out of the valley pseudospin by measuring the
polarization of the photoluminescence [75, 76, 77]. The electronic states in the +K and −K valleys
are degenerate, because they are related by time reversal symmetry. Breaking the degeneracy of
the valleys can be important in order to provide an additional control over this pseudospin degree
of freedom. This can be achieved, e.g., by an out-of-plane magnetic �eld, which we will discuss in
Chapt. 5. All-optical control and rotation of the valley pseudospin has also been achieved [191].
As illustrated in Fig. 1.14(c), when a linearly polarized light is used for the excitation, a coherent
superposition state of the excitons in the +K and −K valley is formed. This coherent state can be
manipulated if the degeneracy of the valleys is lifted, which was achieved using the optical Stark
e�ect [192, 193].

1.7.2 The valley Hall e�ect

We now discuss the valley Hall e�ect (VHE), which is related both to the o�-diagonal conductivity
introduced in Sec. 1.5 and to the valley degree of freedom. As a �rst example, let us consider MLG
with broken inversion symmetry. Experimentally, this can be achieved in a hBN/graphene super-
lattice [194], where the MLG and the hBN layers are carefully aligned. The e�ective Hamiltonian

               andorkormanyos_7_22



31

of the graphene layer is given by

Heff = ~vF (τqxσx + qyσy) + ∆σz, (1.45)

where ∆ denotes the on-site energy di�erence of the A and B sublattice. If ∆ 6= 0, a band gap
opens in the spectrum at the ±K points and this leads to a �nite Berry curvature [195]

Ωz(q) = ∓τ v2
F∆

2(v2
Fq2 + ∆2)3/2

, (1.46)

where − (+) sign applies for electron (hole) doping. One can notice that Ωz(q) has opposite sign in
the two valleys. By injecting a (valley unpolarized) electrical current je along the ŷ direction, the

Figure 1.15: The valley Hall e�ect. a) Schematic picture of the VHE. E denotes the applied
in-plane electric �eld. b) Kerr rotation spectroscopy of bilayer MoS2. Thin dashed lines show
the boundaries of the sample. The spatial map of the KR angle δθ indicates opposite valley
polarization along the two edges of the sample. The comparison of the two �gures suggest that the
valley polarization �ips when the direction of the in-plane electric �eld is changed. Lower �gures
show line cuts for δθ. Adapted from Ref. [196]. c) Detection of the VHE in graphene using nonlocal
resistance measurement. Due to the valley dependence of the Berry-curvature, the injected current
at one of the terminals will lead to a valley population imbalance at a remote terminal, which can
be detected due to the inverse VHE (the −K valley is denoted by K ′ in this �gure). The green
arrows indicate the displacement �eld that is used to open a band gap in BLG. Adapted from
Ref. [197].

electrons in the K and −K valley will be de�ected into the ±x̂ directions due to the anomalous
velocity component, as shown schematically in Fig. 1.15(a). This leads to a transverse charge
neutral valley current jvx = jK,x − j−K,x, where one may de�ne the currents jτK = e〈τv(q)〉 as the
average of the velocity operator (times the valley index τ) over q in the τK valleys. Because of
the large separation of the K and −K valleys in k-space, the interlayer scattering is expected to
be suppressed and therefore this current may extend over large distances. By writing jvx = σvHxy Ey,
using Eq. (1.37) and taking into account the spin-degeneracy, one �nds a valley Hall conductivity
σvHxy = 2e2/h at zero temperature if EF lies in the band gap (here σvHxy is expressed in the same
units as the electrical conductivity). Comparing the SHE and the VHE, it is worth noticing that
the former, in general, does not require inversion symmetry breaking, while the latter does.
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Experimental probes of the VHE

Based on earlier work on the SHE [198], it was proposed that the transverse valley current can
be measured in a non-local setup, see Fig. 1.15(c). Far from the terminal where the electrical
current is injected, jvx creates a di�erence δµ between the chemical potentials of the charge carriers
in the K and −K valleys which leads to a non-local voltage Unl due to the inverse VHE. A large
non-local resistance Rnl = Unl/|je| was indeed measured when EF was in the induced band gap of
the MLG [194]. The same e�ect was later measured using BLG [199, 197], where a band gap can
be opened by applying an out-of-plane electric �eld.

We note that the interpretation of these experimental results is not without controversy and
alternative mechanism were suggested that can contribute to the non-local signal. These include
possible dispersive edge states that reside close to the Dirac point in MLG/hBN structures [200] or
point to the role of the spatially non-uniform gap produced by the Moiré interference pattern [201].
A recent experiment [202], which aimed to obtain local information on the current and heat dis-
tribution by using a superconducting interference device mounted on the tip of a scanning gate
microscope, have lead to further surprising observations. It indicated the presence of charge accu-
mulation and narrow conducting channels at the sample edges, thereby casting doubt on the bulk
mechanism invoked in earlier works. However, the results of Ref. [202] corresponded to a single
sample where the alignment between the MLG and the hBN layers was not addressed and it is
unclear whether Ref. [202] is su�cient to explain all the observations of Ref. [194].

In TMDC samples the VHE was studied with the help of optoelectronic measurements. In the
experiment of Ref. [203], which used monolayer MoS2, a transverse voltage was measured when a
circularly polarized light was shone one a Hall bar device. The voltage changed sign depending
on whether σ+ or σ− polarized excitation was applied. The observation was interpreted using the
valley dependent optical selection rules mentioned in Sec. 1.7.1 [see Fig. 1.14(a)]. In principle,
one can induce a valley population imbalance by shining circularly polarized light on the sample.
If an in-plane electric �eld is applied, the motion of the induced charge carriers will be a�ected
by the Berry curvature, which is opposite in the two valleys. Because of the valley population
imbalance the VHE is manifested through a charge Hall current in this setup. This is di�erent
from the transport measurement discussed above in connection with graphene, where a charge
neutral valley current was induced. Although the observations were in qualitative agreement with
the theoretical predictions [70], the microscopic mechanism behind the e�ect is not entirely clear
because of the strong excitonic e�ects in this material.

In another recent measurement bilayer MoS2 was used [196]. The inversion symmetry was
broken by applying a backgate voltage and this gave rise to a �nite Berry curvature in the ±K
valleys. If a current is driven through the sample, this can lead to an accumulation of valley polar-
ization along the edges, which can be probed by KR microscopy. Namely, as already mentioned in
Sec. 1.7.1, σ+ and σ− polarized light selectively couples to the K and −K valleys (see Fig. 1.14).
Due to the valley polarization the dielectric function for the σ+ and σ− polarized states of light
will be di�erent. Correspondingly, a linearly polarized light will acquire a KR angle δθ [204].
Thus, in similar way to the measurements of the SHE in Ref. [179], the VHE and the concurrent
valley accumulation can be converted into an optical e�ect enabling their detection. As shown
in Fig. 1.15(b), the spatially resolved Kerr signal indeed indicates opposite valley polarization at
opposite edges and it changes sign when the direction of the applied electric �eld is reversed, in
agreement with the theoretical expectations.

Similarly to the case of hBN/graphene heterostructures, the interpretation of the measurements
of Refs. [203, 196] relied on intrinsic properties of the TMDC band structure. Given that TMDC
samples are, in general, more disordered than hBN/graphene samples, one may expect that disorder
scattering should play an important role, but this has been only very recently discussed [205].
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1.7.3 Coupled spin and valley Hall e�ect

Shortly after the isolation of monolayer MoS2, it was suggested that p-doped monolayer TMDCs
may host a combination of spin and valley Hall e�ects [70]. The crystal lattice of the monolayer
TMDCs does not have inversion symmetry, therefore the Berry curvature is not required to vanish.
Calculations of the Berry curvature based on DFT band structure calculations were already shown
in Fig. 1.8. The results, which indicate a strongly enhanced Berry curvature in the ±K valleys,
can be readily understood with the help of the minimal model introduced in Sec. 1.3.1. The �rst
two terms in Eq. (1.10) have the appearance of the Hamiltonian of gapped MLG, c.f. Eq. (1.45).
Looking back to the discussion in Sec. 1.7.2, this form of the e�ective Hamiltonian implies that
there is a �nite Berry curvature in the K and −K valleys. Moreover, as shown schematically

a)

Figure 1.16: Coupled spin and valley Hall e�ect. a) Schematic of the band structure of monolayer
TMDCs at the τK point of the BZ according to the minimal model given in Eq. (1.10). The
valence band is split and spin-polarized, as indicated by the blue and red arrows. Adapted from
Ref. [70]. b) Illustration of the coupled spin and valley Hall e�ect considering a p-doped sample.
Ic denotes charge current. c) KR scans across the channel of the device in Ref. [204]. θK denotes
the KR angle. Experimental data are indicated by black symbols, blue line shows the result of a
model calculation. Adapted from Ref. [204].

in Fig. 1.16(a), the VB is split and spin-polarized due to the strong SOC. Because of the �nite
Berry curvature, this means that an applied electric �eld can give rise to a coupled spin-valley Hall
e�ect (SVHE), which is schematically illustrated in Fig. 1.16(b). The e�ect is especially easy to
see for moderate p-doping, when only the upper spin-orbit split VB is occupied by holes. In this
case the spin σsxy and valley σvxy conductivities are the same, σzxy = σvxy = 1

π
EF

2∆−λtmdc , where EF
is measured from the VB maximum [70].

The probably most convincing experimental demonstration of the SVHE can found in Ref. [204],
see Figs. 1.16(c). The measurement technique was very similar to the one discussed in Sec. 1.7.2
to detect the VHE and the geometry is basically the same as the one used in Ref. [179] [see
Fig. 1.11(c)]. When a charge current �ows along the TMDC channel, the SVHE leads to the
accumulation of spin and valley polarized carriers at the edges, which can be detected using KR
spectroscopy. An important di�erence between the samples of Ref. [204] and Ref. [196] is that the
former used monolayer WSe2, while the latter bilayer MoS2. Since the SOC is rather weak in the
CB of bilayer MoS2, it was assumed that in the n-doped and quite disordered samples of Ref. [196]
the valley index of the carriers was more robust than the spin. Therefore Ref. [196] interpreted
their experimental results in terms of the VHE. (Further discussion of the SHE and VHE in bilayer
MoS2 is presented in Chapt. 7.) In contrast, the SOC is strong in monolayer WSe2, especially in
the VB (see Chapt. 4) and therefore the spin as well as the valley should be preserved and the
KR signal [Fig. 1.16(c)] was ascribed to the SVHE. Nevertheless, the rather low mobility of the
sample suggests that disorder scattering was probably substantial, but its e�ect on the SVHE was
not quanti�ed. The analysis of the results indicated that the spin-valley polarization at the edges
was around a few percent.
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1.7.4 Brief overview of Hall e�ects

To conclude this section, it is instructive to have a brief recap of the di�erent Hall e�ects mentioned
in Secs. 1.5.2, 1.6.3 and 1.7.2. Although not discussed in this work, for comparison and because
of their importance we also show schematic illustrations of the Hall e�ect (HE), quantum Hall
e�ect (QHE), the quantum spin Hall e�ect (QSHE) [126] and the quantum anomalous Hall e�ect
(QAHE) [206] in Fig. 1.17.

Figure 1.17: Schematics of di�erent Hall e�ects. Ic denotes charge current. a) HE: charge carriers
are de�ected due to the Lorentz force. B denotes the external magnetic �eld. b) AHE: in ferro-
magnets, charge carriers with di�erent spins are de�ected due to SOC. The �nite magnetization
M means that there is an imbalance of di�erent spins. c) intrinsic SHE: charge carriers with dif-
ferent spins are de�ected due to SOC, which leads to spin accumulation at the edges. d) intrinsic
VHE: charge carriers in di�erent valleys are de�ected due to Berry curvature, which leads to valley
polarization accumulation at the edges. e) integer QHE: chiral edge state circulate the sample in
strong magnetic �eld. f) QAHE: in magnetic topological insulators helical edge state(s) form. g)
QSHE: in topological insulators pairs of counter-propagating helical edge states form.

In the case of HE, AHE, QHE and QAHE the time reversal symmetry is broken by either the
external magnetic �eld (HE and QHE) or by the magnetization of the material (AHE and QAHE).
In contrast, the time reversal symmetry is preserved for SHE, QSHE, and VHE. The presence of
SOC is required for the existence of the AHE, SHE, and QSHE. The SOC leads to spin-dependent
velocities and if there is di�erence between the populations of spin-up and spin-down electrons, as
in ferromagnets, there can be a net transverse charge current leading to the AHE. If the population
of di�erent spins is the same, as in the case of SHE, then the net transverse charge current is zero.
However, the transverse spin current can still be non-zero leading to spin accumulation at the edges
of the sample. In the case of QSHE, pairs of counter-propagating helical edge states are formed.
Regarding the VHE, it is the Berry curvature which plays the same role as the SOC for the SHE, i.e.,
it gives rise to a transverse charge neutral current and valley accumulation at the edges. The Berry
curvature is also necessary for the intrinsic contribution to the AHE. It is important to mention
that extrinsic, impurity scattering related contributions can be very important for SHE, AHE and
VHE, while the QHE, AQHE and QSHE are rooted in intrinsic properties of the materials.

Considering the transverse conductivity σxy, in the case of HE and AHE it refers to the charge
degree of freedom, which is a conserved quantity, while in SHE (VHE) it refers to the spin (valley)
degree of freedom, which is subject to relaxation. σxy is not quantized for the e�ects shown in the
upper row of Fig. 1.17, while it is quantized for QHE and QAHE [206] in units of e2/h, and in
units of 2e2/h for QSHE [126].
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Chapter 2

Structure and objectives

Atomically thin 2D materials o�er an exciting opportunity to explore the interplay of spin, valley
and layer degrees of freedom of charge carriers. An important objective of this thesis is to present
examples of the interesting e�ects that are born out of this interplay. As a common thread we will
use the spin, more precisely, the spin-orbit coupling in the rest of this thesis, but as we will see,
the valley and layer degrees of freedom repeatedly appear in the discussions.

We start with the intrinsic SOC of ABC stacked trilayer graphene in Chapt. 3. This system
provides an example of how group theory considerations, mentioned in Sec. 1.4.2, can be used
to determine the general form of the SOC. We will also see that certain SOC constants can be
considered as intralayer, while other as interlayer ones, indicating the importance of the layer
degree of freedom. Next, in Chapt. 4 we discuss the electronic band structure of semiconductor
monolayer TMDCs. We develop k · p models to describe the dispersion of the electronic bands at
high symmetry points of the BZ. We also discuss the intrinsic SOC of monolayer TMDCs, which
is important both for the optical and the electrical properties of these materials. Moreover, o�-
diagonal matrix elements of the SOC matrix, which a�ect certain details of the band structure,
will play an important role in the induced SOC of graphene/TMDC heterostructures, which we
consider in the �nal chapter of this thesis.

The developed k ·p models can be used to study magnetic �eld e�ects in monolayer TMDCs. In
Chapt. 5 we show that the degeneracy of the electronic states in the K and −K valleys is broken
by the magnetic �eld and this a�ects the Landau level spectrum. We also study the oscillations of
the longitudinal conductance as a function of the magnetic �eld. By comparing our calculations
with experimental results, we �nd that the single particle picture can be a useful starting point to
interpret the measurements. However, the electron-electron interaction e�ects become important
at low electron densities and low temperatures leading to e�ects that cannot be captured in single
particle picture.

In most of the thesis we are concerned with bulk properties of 2D materials and their het-
erostructures. The one exception we make is the study of gate de�ned quantum dots in monolayer
TMDCs in Chapt. 6. We consider single QDs to �nd out what kind of qubit states they can host.
We also study double QDs and discuss the e�ects of the interplay between the strong intrinsic SOC
of the TMDC host and the electron-electron interactions present in the QDs.

We touch on another topic of recent interest, namely, topological properties of materials in
Chapt. 7. We investigate the properties of bilayer TMDCs and show how the interlayer coupling
and the stacking order of the layers a�ect the Berry curvature. It is know from previous studies
that the Berry curvature can give rise interesting transport phenomena, such as valley and spin
Hall e�ects. We therefore investigate the spin and valley Hall e�ect in bilayer TMDCs, which
presents an example for the interplay of spin, valley and layer degrees of freedom.

Finally, in Chapt. 8 we study the heterostructure of monolayer graphene with monolayer
TMDCs. Here we are interested in two questions: i) the microscopic mechanism giving rise to
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proximity induced SOC in graphene, and ii) the interlayer twist angle dependence of the induced
SOC. We show that the strength of the induced SOC can be signi�cantly enhanced at certain in-
terlayer twist angles. We argue that our approach, which is based on virtual interlayer tunneling,
can give insights into the physics of proximity induced SOC which cannot be easily obtained from
other methodologies, such as tight binding or DFT calculations.
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Chapter 3

Intrinsic spin-orbit coupling in ABC

trilayer graphene

We have already mentioned in Sec. 1.6 that graphene is a good candidate for spintronics appli-
cations. However, since it is not possible to open a band gap in monolayer graphene with exter-
nal gates, one cannot fabricate gate de�ned transport channels. BLG and ABC stacked trilayer
graphene are more advantageous in this respect, because they allow the opening of a band gap by
electrical gates. The understanding of SOC in few-layer graphene would be one of the �rst steps to
study e.g., spin relaxation or weak localization in order to characterize the spin transport in gate
de�ned channels.

Previous ab initio calculations on MLG [138, 207] and BLG [208] provided strong evidence
that in order to understand the intrinsic SOC in �at graphene systems one has to go beyond the
usual approach of considering only the pz orbitals of the carbon atoms. This is su�cient to set
up a TB model to describe the dispersion of the bands (see Sec. 1.2), but in the case of SOC
the key step is to take into account the (nominally unoccupied) atomic d orbitals as well. As it
was discussed in Ref. [163], in MLG the main contribution to the intrinsic SOC comes from the
admixture of pz orbitals with the dxz and dyz orbitals. The other d orbitals, namely, dz2 , dxy and
dx2−y2 play no role due to the fact that they are symmetric with respect to the mirror re�ection
σh : (x, y, z)→ (x, y,−z), whereas pz is antisymmetric.

Here we will derive the intrinsic SOC Hamiltonian for ABC trilayer graphene by generalizing the
work of Ref. [163]. We will see that the multi-layer structure of ABC graphene plays an important
role in the general form of the SOC matrix.

3.1 Calculation of the intrinsic SOC

Our aim is to calculate the non-zero matrix elements of the SOC operator Hsoc = λsocL̂ · Ŝ. We
will show that the most important d orbitals to take into account are the dxz, dyz and dz2 orbitals.
While the former two have been considered in Ref. [163] in the context of monolayer graphene, the
latter one is important to understand the SOC in AB stacked bilayer and ABC stacked trilayer
graphene. As a �rst step, we will �nd suitable basis states by taking into account the symmetries
of ABC TLG at the ±K points. They can help to simplify the calculations of the SOC matrix
elements by making use of the group theory approach outlined in Sec. 1.4.3.

We have already introduced the TB model and the dispersion of the electronic bands of ABC
trilayer graphene in Sec. 1.2.2. For convenience, the schematics of the lattice is displayed again
in Fig. 3.1(a), while in Fig. 3.1(b) we show the most important hopping amplitudes in the TB
description. The symmetries of the ABC TLG are described by the point group D3d, which does
not contain a horizontal mirror plane σh. This suggest that, in contrast to the case of MLG, all d
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atomic orbitals should be considered in the discussion of the intrinsic SOC. When the d orbitals
are also included into the TB basis in addition to the pz orbitals, there will be six basis functions
centered on each of the six carbon atoms in the unit cell. By describing the hopping amplitudes
between the pz and the d orbitals using, e.g., the Slater-Koster parameterization [209], one could
obtain a TB Hamiltonian HABC , which would be a 36×36 matrix. After numerically diagonalizing
this matrix one would �nd that the pz orbitals hybridize with (some of) the d orbitals. One could
then use these eigenstates to calculate the matrix elements of Hsoc everywhere in the BZ. However,
we are only interested in the intrinsic SOC at the ±K points of the BZ, where the low energy states
can be found. Therefore the �rst step will be to approximately diagonalize the TB Hamiltonian
HABC at the ±K points.

a12a

a)

A2 B2

 A1 B1

A3 B3

Figure 3.1: a) Schematics of the lattice structure of ABC TLG. Atoms on layer j = {1, 2, 3} are
indicated with di�erent symbols. a1 and a2 are the two lattice vectors. b) Side view of the unit
cell showing the most important TB hopping amplitudes between the pz orbitals. Adapted form
Ref. [210].

3.1.1 Basic notations

According to band theory, each state at theK point belongs to one of the irreducible representations
of the small group of theK point [109], which isD3 in this case. This group has two one-dimensional
irreducible representation, denoted by ΓA1 and ΓA2 respectively, and a two-dimensional one denoted
by ΓE , see Table 3.1. The matrix elements of HABC between basis states corresponding to di�erent
irreducible representations ofD3 are zero [109]. In other words, for k = τK the orbital Hamiltonian
HABC can be block-diagonalized by choosing suitable linear combinations of atomic pz and d

orbitals such that the new basis functions transform as the irreducible representations of the group
D3. We �rst introduce some important notations, and then we will obtain the suitable basis states.

(D3) E 2C3 3C2

ΓA1
1 1 1

ΓA2
1 1 −1

ΓE 2 −1 0

Table 3.1: Character table of the group 32 (D3).

One can use as basis the Bloch wavefunctions

Ψηj
ν (r,k) =

1√
N

∑
n

eik·(Rn+tη)Φjν(r− (Rn + tη)), (3.1)

where the wave vector k is measured from the Γ point of the BZ, ηj = {A1, A2, A3, B1, B2, B3}
is a composite index for the sublattice η = {A,B} and layer j = {1, 2, 3} indices and Φjν denotes
the atomic orbitals of type ν = {pz, dz2 , dxz, dyz, dxy, dx2−y2} in layer j. The summation runs
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over all Bravais lattice vectors Rn, whereas the vectors tη give the position of atom η in the two-
dimensional unit cell. We use a coordinate system where the primitive lattice vectors are a1 =
a
2 (
√

3, 1) and a2 = a
2 (−
√

3, 1), the positions of the atoms in the unit cell are tA1 = tB3 = (0, 0),

tA2 = tB1 = a
2

(
− 1√

3
, 1
)
and tA3 = tB2 = a

2

(
1√
3
, 1
)
where a = 0.246 nm is the lattice constant.

The K and −K points of the Brillouin zone can be found at τK = (0, τ 4π
3a ), τ = ±1.

The small group of D3 contains threefold rotations by ±2π/3 around an axis perpendicular
to the graphene layers. Since the atomic orbitals dxz, dyz, dxy, dx2−y2 themselves do not possess
this symmetry, instead of Ψηj

ν (r,k) given in Eq. (3.1) we will use Bloch states which depend on
1√
2
(dxz ± idyz) ∼ ∓Y ±1

2 , 1√
2
(dx2−y2 ± idxy) ∼ Y ±2

2 (rotating orbitals), where Y ml are spherical
harmonics. Taking into account that pz ∼ Y 0

1 and dz2 ∼ Y 0
2 , the Bloch states we use as basis

will be denoted by Ψηj
l,ml

(r,k), where l = 1, 2 and m1 = 0, whereas m2 can take all allowed
values m2 = −2 . . . 2. Often, we will need a linear combination of two of these basis functions
where both of the basis functions have the same quantum number l but one of them is centered
on the A sublattice and the other one is on the B sublattice, e.g., 1√

2
[ΨA1

1,0(r,k) − ΨB3
1,0(r,k)].

As a shorthand notation, we will denote the symmetric combination of two such basis functions
by Ψj,j′

l,m,m′(r,k) = 1√
2
[ΨAj
l,m(r,k) + ΨBj′

l,m′(r,k)] and the anti symmetric one with Ψj,j′

l,m,m′(r,k) =

1√
2
[ΨAj
l,m(r,k) − ΨBj′

l,m′(r,k)]. The �rst upper index j in Ψj,j′

l,m,m′ always denotes the layer index of
the atomic orbital on the A sublattice, the second upper index j′ is the layer index for the orbital
centered on the B sublattice, the �rst lower index l is the common angular momentum quantum
number, and �nally, the second and the third lower indices m, m′ give the magnetic quantum
number in the same manner as the upper indices give the layer index. To lighten the notation, we
will usually suppress the dependence of the Bloch functions on (r,k) and use the bra-jet notation,
e.g., |Ψ1,3

1,0,0〉, |Ψ1,3
1,0,0〉.

3.1.2 Approximate eigenstate

A group-theoretical analysis of the problem shows that by taking a suitable linear combinations of
the above discussed basis functions,HABC is block-diagonal. It has two 6×6 blocks which we denote
by HΓA1

and HΓA2
, they correspond to basis states with ΓA1

and ΓA2
symmetry. Furthermore,

there is a 24 × 24 block HΓE corresponding to states with ΓE symmetry. By inspection one can
�nd that the basis states with ΓA1

, ΓA2
and ΓE symmetries are those listed in Table 3.2.

ΓA1
|Ψ1,3

1,0,0〉, |Ψ3,1
2,1,−1〉, |Ψ1,3

2,0,0〉, |Ψ3,1
2,−2,2〉, |Ψ2,2

2,−1,1〉, |Ψ2,2
2,2,−2〉

ΓA2 |Ψ1,3
1,0,0〉, |Ψ3,1

2,1,−1〉, |Ψ1,3
2,0,0〉, |Ψ3,1

2,−2,2〉, |Ψ2,2
2,−1,1〉, |Ψ2,2

2,2,−2〉

ΓE {|Ψ2,1
1,0,0〉, |Ψ3,2

1,0,0〉}, {|Ψ2,1
1,0,0〉, |Ψ3,2

1,0,0〉}
{|ΨA2

2,0〉, |ΨB2
2,0〉}, {|ΨA2

2,1〉, |ΨB2
2,−1〉}, {|ΨA2

2,−2〉, |ΨB2
2,2〉}

{|ΨA3
2,0〉, |ΨB1

2,0〉}, {|ΨA3
2,−1〉, |ΨB1

2,1〉}, {|ΨA3
2,2〉, |ΨB1

2,−2〉}
{|ΨA1

2,1〉, |ΨB3
2,−1〉}, {|ΨA1

2,−1〉, |ΨB3
2,1〉}, {|ΨA1

2,2〉, |ΨB3
2,−2〉}

{|ΨA1
2,−2〉, |ΨB3

2,2〉}

Table 3.2: Basis functions for the irreducible representations of the small group of the K point
for ABC trilayer graphene. The basis functions for the −K point can be obtained by complex-
conjugation.

As a concrete example let us consider HΓA1
. We show how one can extract an e�ective basis

state in which pz atomic orbitals with large weight and d orbitals with small weights are admixed.
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The basis states transforming as the irreducible representation ΓA1
are shown in the �rst row of

Table 3.2. The TB Hamiltonian HΓA1
can be further divided into 3× 3 blocks:

HΓA1
=

(
HA1

pd WA1

(WA1)† HA1

dd

)
. (3.2)

Explicitly, the upper left block HA1

pd , corresponding to the basis states |Ψ1,3
1,0,0〉, |Ψ3,1

2,1,−1〉 and
|Ψ1,3

2,0,0〉, reads

HA1

pd =

 εp − γ2
3√
2
Vpdπ V A1,B3

pdσ
3√
2
Vpdπ εd 0

V A1,B3
pdσ 0 εd + V A1,B3

ddσ

 . (3.3)

Here εp and εd is the energy of the pz and the d orbitals, Vpdπ, Vpdσ and Vddσ are Slater-Jouster
parameters [209] and the the upper indices A1, B3 on the parameters indicate the atomic sites
between which the hopping takes place. The parameter Vpdπ describes hopping between A and B
type atoms within the same graphene layer and we assume that its value is the same in all three
layers. We assume that the skew hopping between the pz and d orbitals are much smaller than
both Vpdπ and the vertical hopping V A1,B3

pdσ . Then the matrix elements in WA1 of the Hamiltonian
(3.3) can be neglected: they describe either remote direct hoppings between the �rst and the
third layer or skew hoppings between the pz and d orbitals located on di�erent atoms in di�erent
layers. (The skew hopping amplitude between the pz orbitals on di�erent layers are denoted by
γ3 and γ4 in Fig. 3.1 and they will not be neglected). This is not a crucial assumption but it
simpli�es the lengthy algebra that follows. Therefore WA1 ≈ 0 and HA1

dd is decoupled from HA1

pd .
The matrix HA1

pd , given in Eq. (3.3) describes the hybridization between the pz orbital based basis

vector |Ψ1,3
1,0,0〉 and the basis vectors |Ψ3,1

2,1,−1〉, |Ψ1,3
2,0,0〉 involving dxz, dyz and dz2 orbitals. The

energy of the atomic d orbitals is much larger than the energy of the pz orbitals. Since εd � εp, we
next perform a transformation H̃A1

pd = e−S HA1

pd e
S to approximately block-diagonalize HA1

pd into

a 1 × 1 and a 2 × 2 block by eliminating the matrix elements between |Ψ1,3
1,0,0〉 on one hand and

|Ψ3,1
2,1,−1〉, |Ψ1,3

2,0,0〉 on the other hand. (A detailed discussion of this method can be found in e.g.,
Ref. [63].) The matrix S is anti-Hermitian: S† = −S and only its nondiagonal blocks Spd and
−S†pd are non-zero. In �rst order of the coupling matrix elements Vpdπ and V A1,B3

pdσ one �nds that

S
(1)
pd = −

(
V̄pdπ

δεpd − γ2
,
V A1,B3
pdσ

δεpd − γ̃2

)
. (3.4)

where V̄pdπ = 3√
2
Vpdπ, δεpd = εp − εd and γ̃2 = γ2 + V A1,B3

ddσ . While the above transformation

is usually used to obtain e�ective Hamiltonians, one can also obtain the new basis in which H̃A1

pd

is block-diagonal. Making the approximation1 e−S ≈ 1 − S we �nd that the purely pz-like state
|Ψ1,3

1,0,0〉 is transformed into

|Ψpz
ΓA1
〉 = |Ψ1,3

1,0,0〉+
V̄pdπ

δεpd − γ2
|Ψ3,1

2,1,−1〉+
V A1,B3
pdσ

δεpd − γ̃2
|Ψ1,3

2,0,0〉, (3.5)

i.e. it is admixed with two other basis vectors containing dxz, dyz and dz2 orbitals. Note, however,

that V̄pdπ
δεpd−γ2

,
V A1,B3
pdσ

δεpd−γ̃2
� 1. The upper index pz in |Ψpz

ΓA1
〉 is meant to indicate that in this state pz

1The approximation e−S ≈ 1−S can be justi�ed by the numerical calculations of Ref. [163]. There it was shown

that in the case of monolayer graphene graphene 3
2

Vpdπ
(εp−εd)

≈ 0.0871. Since γ2 is a small energy scale compared to

δεpd = εp− εd, we �nd that Ṽpdπ/(δεpd−γ2)� 1. Furthermore, since V A1,B3
pdσ and V A1,B3

ddσ corresponds to hopping

between A1 and B3 atoms which are at larger distance than the A and B atoms within the same graphene layer,

one can expect that V A1,B3
pdσ < Vpdπ and V A1,B3

ddσ ∝ γ2, hence both matrix elements of S
(1)
pd in Eq. (3.4) are much

smaller than unity.
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orbitals have the largest weight. Since |Ψpz
ΓA1
〉 corresponds to a 1× 1 and hence diagonal block of

H̃A1

pd , it is an approximate eigenvector of HA1

pd with energy ε̃A1 . The explicit expression of ε̃A1 is
not important, one can show that ε̃A1 & εp. There are two other states with ΓA1 symmetry which
could be obtained by diagonalizing the the remaining 2× 2 block of H̃A1

pd . In these states |Ψ3,1
2,1,−1〉

and |Ψ1,3
2,0,0〉 would have large weight and their energy is ≈ εd. This means that they are far away

in energy from |Ψpz
ΓA1
〉 and therefore play no role in our further considerations. The same applies

to the states that could be obtained by diagonalizing the block HA1

dd of HΓA1
.

Similar considerations can be made for the blocks HΓA2
and HΓE of HABC . In the end one

obtains the six approximate, low-energy eigenstates of HABC shown in Table 3.3. We will refer to
the basis formed from the physically important approximate eigenvectors {|ΨΓA1

〉, |ΨΓA2
〉, |ΨΓE1,1

〉,
|ΨΓE1,2

〉, |ΨΓE2,1
〉, |ΨΓE2,2

〉} as the �symmetry basis� henceforth. (The symmetry basis for the −K
point can be obtained by complex-conjugation.) Looking at these basis states one can see that the
dxz, dyz, and dz2 orbitals hybridize with the pz orbital. We remind that in the case of MLG only
dxz and dyz orbitals are admixed with the pz orbital [163]. As it will be shown in Sec. 3.1, the
admixture of dz2 orbitals is crucial to obtain the non-diagonal elements of the SOC Hamiltonian.

|ΨΓA1
〉 = |Ψ1,3

1,0,0〉+ 3√
2

Vpdπ
δεpd−γ2

|Ψ3,1
2,1,−1〉+

Ṽpdσ
δεpd−γ̃2

|Ψ1,3
2,0,0〉

|ΨΓA2
〉 = |Ψ1,3

1,0,0〉 − 3√
2

Vpdπ
δεpd+γ2

|Ψ3,1
2,1,−1〉 −

Ṽpdσ
δεpd+γ̃2

|Ψ1,3
2,0,0〉

|ΨΓE1,1
〉 = |Ψ2,1

1,0,0〉+ 1
δεpd+γ1

[
Vpdσ√

2
|Ψ2,1

2,0,0〉 −
3Vpdπ

2 |Ψ1,2
2,1,−1〉

]
|ΨΓE1,2

〉 = |Ψ3,2
1,0,0〉+ 1

δεpd+γ1

[
Vpdσ√

2
|Ψ3,2

2,0,0〉 −
3Vpdπ

2 |Ψ2,3
2,1,−1〉

]
|ΨΓE2,1

〉 = |Ψ2,1
1,0,0〉+ 1

δεpd−γ1

[
3Vpdπ

2 |Ψ1,2
2,1,−1〉 −

Vpdσ√
2
|Ψ2,1

2,0,0〉
]

|ΨΓE2,2
〉 = |Ψ3,2

1,0,0〉+ 1
δεpd−γ1

[
3Vpdπ

2 |Ψ2,3
2,1,−1〉 −

Vpdσ√
2
|Ψ3,2

2,0,0〉
]

Table 3.3: The �symmetry basis functions� (see the text for explanation) in terms of Slater-Koster
parameters. Here Ṽpdσ = V A1,B3

pdσ .

3.1.3 SOC matrix elements

We can now proceed to calculate the matrix elements of Hsoc = λsocL̂ · Ŝ. One can introduce
the spinful symmetry basis functions by |Ψµ〉 → |Ψµ〉 ⊗ |s〉, where s = {↑, ↓} denotes the spin
degree of freedom. Noting that L·S = Lzsz + L+s− + L−s+, where L± = Lx ± iLy and s± =
1
2 (sx ± isy), where sx,y,z are spin Pauli matrices, it is straightforward to calculate the matrix
elements (HABC

soc )µ,ν = 〈Ψµ|Hsoc|Ψν〉 in the symmetry basis shown in Table 3.3.
The results of the calculations are given in Table 3.4. One �nds that the number of SOC con-

stants in ABC trilayer graphene is seven. Previous calculations employed various approximations
and therefore Ref. [211] found �ve SOC constant, while Ref. [62] used a single SOC constant. By
expressing the seven SOC constants in terms of Slater-Koster parameters (see Ref. [210] for explicit
expressions), one can show that λE1

1/3, λ
E2

1/3, λ
E1

2/3 and λE2

2/3 are related to interlayer SOC, i.e., they
corresponds to matrix elements where the basis functions have a large weight on di�erent layers.
In this sense the layer degree a freedom a�ects the intrinsic SOC of ABC graphene. The λ3/3

parameter ensures that the otherwise fourfold degeneracy of the high-energy split-o� states at the
K point (see Sec. 1.2.2) is lifted, as it is dictated by general group-theoretical considerations based
on the double group representation of D3. These �ve parameters are proportional to the product
VpdπVpdσ of Slater-Koster parameters and they could not be obtained considering only the dxz, dyz
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HABC
soc ΨΓA1

ΨΓA2
ΨΓE1,1

ΨΓE1,2
ΨΓE2,1

ΨΓE2,2

ΨΓA1
0 λ1/2sz λE1

1/3s+ λE1

1/3s− −λE2

1/3s+ λE2

1/3s−

ΨΓA2
λ1/2sz 0 −λE1

2/3s+ λE1

2/3s− λE2

2/3s+ λE2

2/3s−

ΨΓE1,1
λE1

1/3s− −λE1

2/3s− 0 0 λz3/3Sz λ3/3s+

ΨΓE1,2
λE1

1/3s+ λE1

2/3s+ 0 0 λ3/3s− λz3/3sz

ΨΓE2,1
−λE2

1/3s− λE2

2/3s− λz3/3 sz λ3/3s+ 0 0

ΨΓE2,2
λE2

1/3s+ λE2

2/3s+ λ3/3s− λz3/3sz 0 0

Table 3.4: Intrinsic spin-orbit Hamiltonian HABC
soc in the symmetry basis at the K point of the BZ.

orbitals. The remaining two SOC parameters, λ1/2 and λz3/3 are proportional to V 2
pdπ and describe

SOC in the plane of a graphene layer. In MLG there is one intrinsic SOC parameter, here there are
two, because the two carbon atoms in the top and the bottom graphene layers are not equivalent
due to their di�erent interlayer couplings.

Since the lattice of Bernal stacked BLG has the same symmetry group as the ABC trilayer,
the above considerations can be easily applied to AB stacked BLG as well. The importance of the
bilayer result HAB

soc is that it can be compared with the numerical calculations of Ref. [208]. In the
case of BLG, there are four SOC parameters, which we will denote by λI2, λ0, λbi4 and λI1. It is
useful to give their explicit expression in terms of Slater-Koster hopping parameters:

λ0 = 3
√

3 ξd
VpdπVpdσ
δε2
pd − γ̃2

1

γ̃1

εpd
, λI1 =

9

2
ξd
V 2
pdπ

δε2
pd

,

λbi4 = 3
√

3 ξd
VpdπVpdσ
δε2
pd − γ̃2

1

, λI2 =
9

2
ξd

V 2
pdπ

δε2
pd − γ2

1

, (3.6)

where ξd is the angular momentum resolved atomic SOC strength and γ̃1 = γ1 + Vddσ. Looking at
the expressions given in (3.6), one can make the following observations: (i) Since δεpd = εp−εd < 0

and γ̃1 > 0, one can expect that the sign of λ0 and λbi4 will be di�erent; (ii) |λ0| < |λbi4 | because
γ̃1

|εpd| < 1; (iii) λI1 and λI2 have the same sign and they are approximately of the same magnitude
because γ2

1/δε
2
pd � 1.

In order to obtain the values of the four SOC parameters of BLG, Ref. [208] used the �tting of
their TB model to DFT band structure calculations. In such multi-parameter �tting it is usually
di�cult to ascertain whether the resulting parameter set is unique. Considerations that can give
constraints on the values of the �t parameters can help to assess the result of the �tting procedure.
By �tting the band structure obtained from DFT calculations, the authors of Ref. [208] found
the following values for the bilayer SOC parameters: 2λI1 = 24µeV, 2λI2 = 20µeV, λ0 = 5µeV,
λ4 = −12µeV. These numbers are in agreement with the considerations made below Eq. (3.6). In
addition, if one assumes that VpdπVpdσ < 0, then according to Eqs. (3.6) three of the parameters
(λI1, λI2, λ0) should have the same sign, which would again agree with the results of Ref. [208].
These considerations illustrate how the approach to calculate the SOC parameters outlined in this
chapter can complement other methods, such as ab-initio calculations.

Based on this comparison between Eqs. (3.6) and the BLG results of Ref. [208], one can also
estimate the values of �ve of the seven SOC parameters of ABC trilayer graphene. To this end one
needs to transform HABC

soc obtained in the symmetry basis into the the basis of e�ective pz orbitals.
This leads to four SOC constants λ1, λ2, λ3 and λ4 which are linear combinations of λE1

1/3, λ
E2

1/3,

λE1

2/3 and λE2

2/3 obtained in the symmetry basis. The other three constants, λ1/2, λ3/3 and λz3/3, are
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not a�ected by the basis change. One can make the following estimates: 2λ1/2 ≈ 2λz3/3 ≈ 20µeV,
|λ3/3| ≈ |λ1| ≈ 10µeV and |λ2| ≈ 5µeV. We cannot estimate the values of λ3 and λ4 in this way
because their depend on Slater-Koster parameters whose values are not known. Nevertheless, one
would expect that they are much smaller than λ1 and λ2 because they depend on the presumably
weak p− d hopping between the A1 and B3 sites.

3.2 Low-energy e�ective description

One can neglect the weak k dependence of the SOC [109], and therefore the total Hamiltonian
of the system can be written as HABC = HABC

k·p + HABC
soc . Here HABC

k·p is the k·p Hamiltonian
obtained without taking into account the SOC, see, e.g., Refs. [59, 60] for the explicit expression
of this 6× 6 matrix. Regarding transport properties, one is primarily interested in the low-energy
physics, for which the use of HABC is not convenient. Namely, as it is shown in Fig. 1.3(c), this
model includes four bands which are split-o� from the Fermi energy of the (undoped) ABC TLG
by the large energy scale ≈ ±γ1. Employing the Löwding-partitioning method [63], one can derive
an e�ective low-energy Hamiltonian. The two-component (including the spin, four-component)
Hamiltonian Heff

ABC = Heff
el +Heff

soc describes the hopping between atomic sites A1 and B3 and the
SOC in the low-energy subspace. We introduce the notation π = −(ipx + τpy), where τ = 1(−1)

for valley K (−K) and the momenta px, py are measured from the K (−K) point of the BZ. We
treat γ1 as a large energy scale with respect to v0π, |γ3|, γ4, γ2 and keep only the leading order for
the terms involving γ2, v3 and v4 (the velocities vi are given by vi = (

√
3/2)aγi/~). The electronic

part is given by

Ĥ eff
el = Ĥchir + Ĥ3w + Ĥγ2

+ Ĥv4
,

Ĥchir =
v3

0

γ2
1

(
0

(
π†
)3

π3 0

)
, (3.7a)

Ĥ3w = −v0v3

γ1
[π†π + ππ†]

(
0 1

1 0

)
, (3.7b)

Ĥγ2 = γ2

(
1− 1

2

v2
0

γ2
1

[π†π + ππ†]

)(
0 1

1 0

)
, (3.7c)

Ĥv4
= −2v0v4

γ1

(
π†π 0

0 ππ†

)
. (3.7d)

In the derivation of Eqs. (3.7) we did not assume that π and π† commute, therefore this form of
H eff
el is valid in the presence of an external magnetic �eld as well. In zero magnetic �eld, when

ππ† = π†π = p2, the Hamiltonian (3.7) simpli�es to the corresponding results in Refs. [59, 60].
The leading terms of the e�ective SOC Hamiltonian are

H eff
soc = Hmlg

soc +H(1)
soc,

Hmlg
soc = τ λ1/2szσz, (3.8a)

H(1)
soc = −τ λ̃1

v0

γ1
[sτ−π

† + sτ+π]σz. (3.8b)

Here the Pauli matrix σz acts in the space of {A1, B3} sites and λ̃1 = λ1 +λ3(v3/v0)+λ2(v4/v0) ≈
λ1. The term Hmlg

soc is the well-known SOC Hamiltonian of monolayer graphene [162] and describes
the leading contribution to the SOC. H(1)

soc is the most important momentum dependent term close
to the τK points. One can note that λ̃1 depends on the interlayer SOC matrix elements of the
original SOC matrix of ABC TLG. In zero external magnetic �eldHeff

ABC can be easily diagonalized.
Similarly to MLG [162] and BLG [211, 208], the main e�ect of the SOC on the spectrum of ABC
TLG is to open a (small) band gap while preserving the spin degeneracy of the bands.
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Given the small energy scale associated with the SOC parameters, their experimental detection
does not appear to be easy. It is encouraging, however, that in monolayer graphene it was possible
to detect the band gap opened by the intrinsic SOC using a microwave technique [212].

3.3 Summary

In summary, we studied the intrinsic SOC in ABC trilayer graphene. Assuming that the most
important contribution to the SOC in �at graphene systems comes from the admixture of pz and
d atomic orbitals and using a combination of group-theoretical and tight-binding approaches, we
derived the intrinsic SOC Hamiltonian. We found that three of the �ve d atomic orbitals need
to be taken into account: the dxz, dyz and dz2 orbitals. We showed that the intrinsic SOC in
ABC graphene is characterized by seven SOC constants. Four of them can be characterized as
interlayer SOC, one SOC parameter ensures that a four-fold degeneracy of the spin-o� bands is
lifted and two SOC parameters describe the (slightly) di�erent SOC on the A and B carbon atoms
in the top and bottom graphene layers. The results could also be used to derive the intrinsic SOC
Hamiltonian of BLG. The comparison of the obtained expressions for BLG with the results of �tting
to DFT calculations [208] helped us to estimate the values of the SOC constants for ABC trilayer
graphene. In order to better see the implications of these results we derived a low-energy e�ective
Hamiltonian. This shows that the interlayer SOC parameters determine the leading momentum
dependent SOC term in the e�ective model.

The results discussed in this chapter were published in Ref. [210].
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Chapter 4

k · p Hamiltonian for monolayer

transition metal dichalcogenides

As already mentioned in Sec. 1.3.1, monolayer TMDCs have a relatively complicated band structure
with several extrema (valleys) both in the valence and the conduction bands, see Fig. 1.4(c). The
strong interest in this material motivated that an accurate yet reasonably simple model that
can describe the most important features of the band structure should be developed. Here we
brie�y describe the k · p approach that we used [74, 213, 214] to derive e�ective Hamiltonians
for all important extrema of the valence and conduction bands (at the K, Q, Γ, and M points
of the BZ). Once the general form of a k · p Hamiltonian is established, the material speci�c
parameters appearing in the Hamiltonian can be obtained by analyzing various measurements
probing the electrical and optical properties of the material. A faster approach, which can usually
give reasonably accurate material parameters is the �tting of the k·p model to DFT band structures
calculations. This approach was employed in Refs. [74, 213, 214] discussed below. These DFT
calculations are, however, not subjects of this thesis.

To illustrate the main steps involved in setting up an e�ective k·p Hamiltonian, in Sec. 4.1
we give a brief account of a seven-band k·p model of monolayer TMDCs for the ±K points of
the BZ. We will see how our model goes beyond the minimal model of Ref. [70] (see Sec. 1.3.1)
and allows to understand further important details of the physics of monolayer TMDCs. The k·p
model derived here will also be be used as a starting point in other chapters of this thesis. The ±K
points are a relatively high symmetry point in the BZ, which makes it easier to set up a k·p model.
At the end of this chapter we will consider the Q point as an example for a k·p Hamiltonian at a
lower symmetry point in the BZ.

4.1 k · p Hamiltonian at the ±K point

The k·p method relies on the use of the symmetries of the crystal structure in order to deter-
mine the non-zero matrix elements of the Hamiltonian matrix Hk·p, see Sec. 1.4.1 The two most
important symmetries for our purposes are the rotational symmetry by 2π/3 around an axis per-
pendicular to the plane of the layer (we denote it by C3) and the re�ection σh with respect to
horizontal mirror plane that contains the metal atoms. The various matrix elements appearing in
the theory are calculated with the help of Bloch wave functions of the bands that are taken into ac-
count in the model at a given BZ point. We will use the notation |Ψb

µ〉 for the Bloch wave functions,
where b is the band index and µ denotes the irreducible representation of the pertinent point group,
which is C3h in this case. Table 4.1 shows the notations of the irreps and the characters of the
point group. We set up a seven-band model (without spin) which contains every band between the
third band below the VB (which we denote by VB-3) and the second band above the CB (denoted

45
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6 (C3h) E C3 C2
3 σh S3 σhC

2
3

A′ 1 1 1 1 1 1

A′′ 1 1 1 −1 −1 −1

E′1 1 ω ω2 1 ω ω2

E′2 1 ω2 ω 1 ω2 ω

E′′1 1 ω ω2 −1 −ω −ω2

E′′2 1 ω2 ω −1 −ω2 −ω

Table 4.1: Character table of the group 6 (C3h). Here ω = e2iπ/3.

by CB+2), i.e., we take the basis {|Ψvb−3

E
′
2

〉, |Ψvb−2

E
′′
1

〉, |Ψvb−1

E
′′
2

〉, |Ψvb
A′〉, |Ψcb

E
′
1

〉, |Ψcb+1
A′′
〉, |Ψcb+2

E
′
1

〉}.
Two important questions can be raised at this point:

i) What is the motivation to include seven bands in the model and not more (or less)?

ii) How can we �nd out which irreducible representation of the group C3h is relevant for a given
band at a given k-space point?

To answer the �rst question, we note that a natural starting point would be to use a two-band
model which includes the VB and the CB, as in in Ref. [70]. While this model can explain, e.g.,
the optical selection rules for the strongest excitonic transition, it turns out that it cannot describe
a number of other e�ects. Here we brie�y mention a few examples. i) Features that appear in
DFT band structure calculations, such as the di�erent e�ective masses in the VB and the CB
or the details of the spin-splitting in the CB (see Sec. 4.1.2). In k · p theory these e�ects can be
understood as arising from the coupling of the VB and CB to other bands. ii) The Bychkov-Rashba
type SOC induced by an external electric �eld. We will brie�y discuss this e�ect in Sec. 4.1.3. iii)
The valley g-factor, which describes the strength of the coupling of the valley degree of freedom
to a perpendicular magnetic �eld. This will be discussed in Chapt. 5. iv) Interesting interference
e�ects in optical transitions are also naturally explained by going beyond the two-band model, see
Ref. [215]. Therefore the choice of the number of bands is motivated by the range of physics that
one wishes to describe.

Regarding the second question, many DFT codes can calculate the projection of the Kohn�
Sham wave functions of each energy band onto atomic orbitals Φην , where η = {M,X1,X2} denotes
whether the given orbital is centred on the metal (M) or one of the chalcogen (X1, X2) atoms in the
unit cell, and the lower index ν = {s, px, py, pz, dz2 , dxy, dxz, dyz, dx2−y2} indicates the type of the
orbital. An example for such a calculation is shown in Fig. 4.1. The procedure we will follow is then
similar to the one in Chapt. 3. Motivated by the fact that the system has a three-fold rotational
symmetry, one may use linear combinations of these orbitals to form spherical harmonics Y ml . One
can then consider the transformation properties of the Bloch wave functions formed with these
spherical harmonics:

Ψη
l,m(k, r) =

1√
N

∑
Rn

eik·(Rn+tη) Y ml (r− [Rn + tη]). (4.1)

Here the summation runs over all lattice vectors Rn, tM and tX1 = tX2 give the positions of the
metal and chalcogen atoms in the 2D unit cell, and the wavevector k is measured from the Γ point
of the BZ. By inspection one can then �nd out how the Bloch wave functions Ψη

l,m(k, r) transform
at, e.g., the k = K point of the BZ under the symmetry operations σh and C3.

The symmetry adapted Bloch wavefunctions are listed in Table 4.2. The d atomic orbitals of
the M atoms are either even ({dz2 , dxy, dx2−y2}) or odd ({dxz, dyz}) with respect to σh. Similarly,
one can also form linear combinations of ΨX1

l,m(k, r) and ΨX2
l,m(k, r) from the p orbitals of the

X1 and X2 atoms which are either even or odd with respect to σh. The Bloch wavefunctions
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Figure 4.1: Atomic orbital weights in the energy bands of MX2. a) d orbitals of the metal atom,
and b) p orbitals of the chalcogen atoms. The size of each symbol is proportional to the weight of
the atomic orbital. SOC was neglected in these calculations. Adapted from Ref. [74].

shown in Table 4.2 are also eigenstates of the rotation operation Ĉ3 with an eigenvalue ληl,m:
Ĉ3|Ψη

l,m〉 = ληl,m|Ψ
η
l,m〉. At the k = K or −K points, ληl,m can take on one of the following three

values: 1, ei
2π
3 , e−i

2π
3 . Note that Ĉ3 acts on both the spherical harmonics part Y ml (r) and on

the plane-wave component eik·(Rn+tη) in Ψη
l,m(k, r) [109], because in a rotated coordinate system

the vectors tM and tX are also transformed. Once the eigenvalues of σ̂h and Ĉ3 with respect to
|Ψη
l,m(k = ±K, r)〉 are known, a symmetry label, e.g., A′, E′ etc, of an irreducible representation

of the point group C3h can be assigned to each |Ψη
l,m〉. These are also listed in Table 4.2. In

the single-particle picture hybridisation between di�erent Bloch wavefunctions should preserve
symmetry properties; hence, e.g., the CB at the K point can be thought of as a linear combination
of c1|ΨM

2,0〉+ c2
1√
2

(
|ΨX1

1,1 〉+ |ΨX2
1,1 〉
)
, where c1, c2 are, in general, complex coe�cients.

4.1.1 The k · p matrix

The k ·p matrix elements, which characterise the coupling of the bands away from the ±K points,
are calculated using the Hamiltonian

Hk·p =
1

2

~
me

(q+p̂− + q−p̂+) = H−k·p +H+
k·p, (4.2)

where p̂± = p̂x± ip̂y are momentum operators and q± = qx± iqy are wavenumbers measured from
the ±K point. The operator Hk·p is symmetric with respect to σh: σ−1

h Hk·pσh = Hk·p. Therefore
non-zero matrix elements 〈Ψb

µ|Hk·p|Ψb′

µ′〉 only exist if the orbital parts of |Ψb
µ〉 and |Ψb′

µ′〉 are either
both even or both odd with respect to σh. As Table 4.2 shows, both the VB and the CB are even
with respect to σh, therefore a minimal model would use these two bands. A natural extension
of this model is to include one more band, which, regarding its energy, is below the VB, and one,
which is above the CB. One �nds that the �rst even band below the VB is the VB−3 and the
�rst even band above the CB is the CB+2 band. Thus we arrive at a four-band model containing
{|Ψvb

A′〉, |Ψcb
E
′
1

〉, |Ψvb−3

E
′
2

〉, |Ψcb+2

E
′
1

〉}.
Furthermore, the matrix elements of Hk·p are constrained by the symmetries of the states with

respect to Ĉ3. In order to see how Ĉ3 constrains the matrix elements, let us consider, as an example,
the states |Ψvb

A′〉 and |Ψcb+2

E
′
2

〉. The relation 〈Ψvb
A′ |p̂+|Ψcb+2

E
′
2

〉 = 〈Ψvb
A′ |Ĉ†3Ĉ3 p̂+ C

†
3C3|Ψcb+2

E′2
〉 should
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irrep basis functions band

A′ |ΨM
2,−2〉, 1√

2

(
|ΨX1

1,−1〉+ |ΨX2
1,−1〉

)
VB

A′′ |ΨM
2,1〉, 1√

2

(
|ΨX1

1,−1〉 − |ΨX2
1,−1〉

)
CB+1

E′1 |ΨM
2,0〉, 1√

2

(
|ΨX1

1,1 〉+ |ΨX2
1,1 〉
)

CB

E′2 |ΨM
2,2〉, 1√

2

(
|ΨX1

1,0 〉 − |ΨX2
1,0 〉
)

VB−3

CB+2

E′′1 |ΨM
1,0〉, 1√

2

(
|ΨX1

1,1 〉 − |ΨX2
1,1 〉
)

VB−2

E′′2 |ΨM
2,−1〉, 1√

2

(
|ΨX1

1,0 〉+ |ΨX2
1,0 〉
)

VB−1

Table 4.2: Basis functions at the K point of the BZ for the irreducible representations of the C3h.
The rightmost column shows the band where a given basis function has large weight. The basis
functions for the −K point can be obtained by complex-conjugation. Adapted from Ref. [213].

hold. Since 〈Ψvb
A′ |Ĉ†3 = 〈Ψvb

A′ |, Ĉ3p̂±Ĉ
†
3 = e∓i2π/3p̂± and Ĉ3|Ψcb+2

E′2
〉 = e−i2π/3|Ψcb+2

E′2
〉, one obtains

that 〈Ψvb
A′ |H+

k·p|Ψcb+2
E′2
〉 = e−i4π/3〈Ψvb

A′ |H+
k·p|Ψcb+2

E′2
〉, which means that this matrix element must

vanish. By contrast, 〈Ψvb
A′ |H−k·p|Ψcb+2

E′2
〉 is allowed to be �nite and one can prove that it is a real

number. In the same way all non-zero matrix elements of Hk·p can be determined, and one �nds
that the k · p Hamiltonian at the K point is given by

Hkp =


εvb γ3q− γ2q+ γ4q+

γ3q+ εcb γ5q− γ6q−
γ2q− γ5q+ εvb−3 0

γ4q− γ6q+ 0 εcb+2

 , (4.3)

where γi are the matrix elements of Hk·p in the above mentioned basis and εvb, εcb, εvb−3, εcb+2 are
band-edge energies. The Hamiltonian in Eq. (4.3) will also be the starting point for the calculations
that consider the e�ects of a perpendicular magnetic �eld in Chapt. 5.

So far we have only considered the k·p matrix elements in the basis {|Ψvb
A′〉, |Ψcb

E
′
1

〉, |Ψvb−3

E
′
2

〉, |Ψcb+2

E
′
1

〉},
where the basis functions are even with respect the σh. One could derive a similar result to Eq. (4.3)
using the other, odd basis states {|Ψvb−2

E
′′
1

〉, |Ψvb−1

E
′′
2

〉, |Ψcb+1
A′′
〉}. But there are no matrix elements

between the even and the odd block of Hk·p, therefore the odd states, at this point, do not a�ect
the low energy physics, which involves the VB and the CB. However, the odd bands do become
important when we consider the SOC in Sec. 4.1.2.

4.1.2 Spin-orbit coupling

The next step is to take into account the intrinsic SOC. According to DFT band structure calcula-
tions [74], it is a signi�cant energy scale both in the VB (150−400meV) and in the CB (3−50meV),
which leads to the spin-splitting of the bands around the ±K point. One can introduce the spinful
symmetry basis functions by |Ψb

µ, s〉 = |Ψb
µ〉 ⊗ |s〉, where s = {↑, ↓} denotes the spin degree of

freedom. As already explained in Sec. 1.4.3, the task is then to �nd the non-zero matrix elements

               andorkormanyos_7_22



49

of the operator L̂ · Ŝ. Note, that this Hamiltonian can have non-zero matrix elements between even
and odd states, which is due to the fact that the L̂± operators are antisymmetric with respect
to σh. Therefore it is natural to enlarge our basis of four even states by those odd states which,
regarding their energy, lie between VB−3 and CB+2: these are {|Ψvb−2

E
′′
1

, s〉, |Ψvb−1

E
′′
2

, s〉, |Ψcb+1
A′′

, s〉}.
Thus, we work with a basis that consists of 7 (or 14, if the spin degree of freedom is explicitly
counted) basis states.

The non-zero matrix elements of L̂ · Ŝ can again be obtained by considering the transformation
properties of the basis states and angular-momentum operators with respect to the mirror operation
σh and the rotation Ĉ3. To this end one may use that L̂· Ŝ = L̂zsz + L̂+s− + L̂−s+, where
L̂± = L̂x ± iL̂y and s± = 1

2 (sx ± isy), where sx,y,z are spin Pauli matrices. For the K valley one
�nds the result shown in Table 4.3 [214]. The matrix elements at the −K point can be obtained

Hintr
soc |Ψvb

A′ , s〉 |Ψcb
E
′
1

, s〉 |Ψvb−3

E
′
2

, s〉 |Ψcb+2

E
′
2

, s〉 |Ψvb−2

E
′′
1

, s〉 |Ψvb−1

E
′′
2

, s〉 |Ψcb+1
A′′

, s〉

|Ψvb
A′ , s〉 sz∆v 0 0 0 s−∆v,v−2 s+∆v,v−1 0

|Ψcb
E
′
1

, s〉 0 sz∆c 0 0 0 s−∆c,v−1 s+∆c,c+1

|Ψvb−3

E
′
2

, s〉 0 0 sz∆v−3 sz∆v−3,c+2 s+∆v−3,v−2 0 s−∆v−3,c+1

|Ψcb+2

E
′
2

, s〉 0 0 sz∆
∗
v−3,c+2 sz∆c+2 s+∆c+2,v−2 0 s−∆c+2,c+1

|Ψvb−2

E
′′
1

, s〉 s+∆∗v,v−2 0 s−∆∗v−3,v−2 s−∆∗c+2,v−2 sz∆v−2 0 0

|Ψvb−1

E
′′
2

, s〉 s−∆∗v,v−1 s+∆∗c,v−1 0 0 0 sz∆v−1 0

|Ψcb+1
A′′

, s〉 0 s−∆∗c,c+1 s+∆∗v−3,c+1 s+∆∗c+2,c+1 0 0 sz∆c+1

Table 4.3: SOC matrix of TMDCs at the K point in the seven-band model.

by taking into account the time-reversal symmetry, which dictates that the wave functions at K
and −K are connected by complex conjugation.

We want to make the following points regarding the SOC matrix in Table 4.3: i) In contrast to
the minimal model introduced in Sec. 1.3.1, the SOC is not zero in the CB, i.e., ∆c 6= 0. This is
due to the small, but �nite chalcogen p-orbital weight in the CB, which can be seen in Fig. 4.1(b)
and also indicated in Table 4.2. ii) Moreover, there are o�-diagonal elements in the SOC matrix
between certain even and odd states. Together with ∆c, they can help to understand certain
details of the DFT calculations regarding the SOC in the CB. We will brie�y discuss this question
in Sec. 4.1.3, after introducing the low-energy e�ective model. iii) As it will be shown in Chapt.8,
these o�-diagonal matrix elements can give rise to the Bychkov-Rashba type proximity induced
SOC in graphene.

Until now we discussed the intrinsic SOC of monolayer TMDCs. Previous works on GaAs
quantum wells showed that there the Bychkov-Rashba type SOC could be tuned [216, 217] by
external electric gates providing an important knob to control their spin related properties. This
motivated the study of the e�ects of a perpendicular external electric �eld Ez in monolayer TMDCs.
The same basis that we used to consider the intrinsic SOC can also be used to consider the e�ects
of a Ez. We assume that the external electric �eld is homogeneous and that its strength is given by
Ez, which can be described by the Hamiltonian U(z) = eEzz. It breaks the mirror symmetry σh of
the monolayer and therefore there are non-zero matrix elements between even and odd basis states
of the seven-band model. The matrix elements between states of the same symmetry are zero. It
can be shown that Ez has two e�ects [214]: (i) it can induce Bychkov-Rashba type SOC, and (ii)
it can change the energy of the band edge. We will brie�y discuss the induced Bychkov-Rashba
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SOC in Sec. 4.1.3. The change in the energy of the band edge is a very small e�ect for realistic
electric �elds which can be neglected.

4.1.3 Low-energy e�ective Hamiltonian

In practice, working with a 7×7 (or 14×14, if the spin degree of freedom is explicitly counted) Hk·p
Hamiltonian is not very convenient. However, in most cases one can use a low-energy e�ective two-
band Hamiltonian that describes the dispersion of the VB and the CB and the coupling between
these two bands. An e�ective Hamiltonian can be obtained from Hk·p +Hintr

soc by means of Löwdin
partitioning (see, e.g., Ref. [63]), which implicitly accounts for the various inter-band couplings in
the original, seven-band model.

One �nds that the low-energy e�ective Hamiltonian Hτ,s
eff = H0 + Hτ,s

k·p + Hτ,s
soc is the sum of

three terms. The �rst one is the free-electron term H0 = ~2q2

2me
. It is usually neglected in the k · p

models on GaAs because of the light e�ective mass of this material, but in general this term can
be added to the e�ective Hamiltonian. The second term describes the dispersion of the VB and
the CB at the ±K points. Hτ,s

k·p is given by

Hτ,s
k·p = Hτ,s

D +Hτ,s
as +Hτ,s

3w , (4.4)

where

Hτ,s
D =

(
εvb τ · γτ,sqτ−

τ · γ∗τ,sqτ+ εcb

)
, (4.5)

Hτ,s
as =

(
ατ,sq

2 0

0 βτ,sq
2

)
, (4.6)

Hτ,s
3w =

(
0 κτ,s(q

τ
+)2

κ∗τ,s(q
τ
−)2 0

)
. (4.7)

Here qτ± is de�ned as qτ± = qx± iτqy, ϕq = arctan(qy/qx), εvb and εcb are band-edge energies, γτ,s,
ατ,s, and βτ,s are material parameters. Due to time-reversal symmetry these parameters depend
on the product τ · s. Concrete values for γτ,s, ατ,s, βτ,s and κτ,s for each MX2 material can be
obtained e.g., by �tting a DFT band structure calculations [74]. Hτ,s

D is basically the massive
Dirac fermion model introduced in Ref. [70] and already presented in Sec. 1.3.1. It is linear in
q+ and q−, it describes an isotropic dispersion around the band edge and it does not break the
electron-hole symmetry. The value of γs,τ depends on the SOC, but this dependence is weak. The
diagonal Hamiltonian Hτ,s

as contains terms which are quadratic in q±. It breaks the electron-hole
symmetry because in general ατ,s 6= βτ,s. This means that in contrast to the minimal model in
Eq. (1.10), the e�ective masses in the CB and the VB are di�erent. We note that the observation of
photoluminescence peak splitting in magnetic �eld [218, 219, 220, 221] indicated that electron-hole
symmetry is indeed broken. O�-diagonal terms quadratic in q± appear in Hτ,s

3w . In combination
with Hτ,s

D , it leads to the trigonal warping of the energy contours, which was observed in ARPES
measurements [222, 223, 224]. The trigonal warping also plays an important role in the explanation
of the electroluminescence experiments of Ref. [225]. Further terms of the low energy model, which
are cubic in q±, are listed in Ref. [74]. This discussion indicates the limitations of the minimal
model introduced in Sec. 1.3.1 in the interpretation of a number of experimental results.

The SOC of the e�ective model is given by the Hamiltonian Hτ,s
soc = Hintr +HBR. It is the sum

of Hintr, which stems from the intrinsic SOC, and the Bychkov-Rashba HBR term, which is �nite
if an external electric �eld is applied. Hintr reads

Hintr =

(
τ∆vbsz 0

0 τ∆cbsz

)
, (4.8)

i.e., it is diagonal in spin space. Hintr describes the spin-orbit splitting of the CB and the VB,
which is due to the absence of inversion symmetry in monolayer TMDCs. Note that ∆vb and ∆cb
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in Eq. (4.8) are not the same as ∆v and ∆c in Table 4.3. This is especially important [214] in the
CB: here ∆cb ≈ ∆c +

|∆c,c+1|2
(εcb−εcb+1) −

|∆c,v−1|2
(εcb−εvb−1) . Since |εc − εv−1| is much larger than |εcb − εcb+1|,

one may write ∆cb ≈ ∆c+
|∆c,c+1|2

(εcb−εcb+1) . Since ∆c > 0 at the K point (the corresponding Bloch wave

function is an eigenfunction of L̂z with positive eigenvalue, see Table 4.2) and (εcb − εcb+1) < 0,
∆cb can be either positive of negative, depending on whether the �rst of the second contribution
dominates. DFT band structure calculations indeed suggest that the sign of ∆cb is di�erent in
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Figure 4.2: Spin polarisation and dispersion of the spin-orbit split CB and VB in the vicinity of
the K point from DFT calculations. Arrows show the direction of the spin expectation values (red:
spin-up, blue: spin-down). a) and c) shows the situation for MoX2; b) and c) for WX2 compounds.
Note that the order of spin-up and spin-down bands in the CB is di�erent for MoX2 and WX2.
The vertical dashed line shows the position of the K point. The actual calculations were performed
for MoSe2 and WSe2. Adapted from Ref. [74].

the MoX2 and the WX2 compounds, see Fig. 4.2. A plausible explanation for the results shown
in Fig. 4.2 is that for MoX2 materials the �rst, X-p orbital related term is larger, whereas in the
case of WX2, which contains a heavier metal, the second term is larger. Regarding the VB, there
∆vb ≈ ∆v and the sign is the same for both the MoX2 and the WX2 compounds [74].

We note that the the relative sign of ∆cb and ∆vb matters in optical transitions, which can
be easily seen by looking at Fig. 4.2. If the sign is di�erent, then the lowest energy exciton is
bright, meaning that it can relax through photoluminescence. If the sign is the same, then the
highest-energy spin-split VB and the lowest-energy spin-split CB have opposite spin polarization
and optical transitions, since they preserve the spin, are not possible between these two bands.
However, it may happen that the electron of the slightly higher-energy bright exciton �ips its
spin due to other processes and relaxes into the lower energy spin-split CB band. Since it cannot
then recombine with the hole left behind in the VB leading to photoluminescence, this exciton is
called dark [226, 227]. (More generally, excitonic states can also be dark because of momentum
mismatch [226]). Dark excitons are important in e.g., exciton relaxation processes [228].

As one can see from Eq. (4.8), the e�ective intrinsic SOC Hamiltonian of both the CB and
the VB are diagonal in spin-space. This is no longer the case if a perpendicular external electric
�eld Ez is applied to the monolayers, which induces a Bychkov-Rashba SOC. The Hamiltonian
of the Bychkov-Rashba SOC projected onto the CB can be obtained by employing the Löwdin
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transformation. It reads [214]

Hcb
BR = λcb,iBR (syqx − sxqy) + λcb,rBR (sxqx + syqy)

=

(
0 (λcbBR)∗ q−

λcbBR q+ 0

)
. (4.9)

Here sx and sy are spin Pauli matrices. The �rst term in Eq. (4.9) is the well-known Bychkov-
Rashba [229, 230] Hamiltonian, which is also present in GaAs and other III-V semiconductor
compounds. The second term in Eq. (4.9) is also allowed by symmetry in monolayer TMDCs
because the pertinent symmetry group at the K point in the presence of an external electric �eld
is C3, whereas it is C3v in III-V semiconductor quantum wells. The Bychkov-Rashba SOC in the
VB has the same form as in the CB with a di�erent coupling constant λvbBR. In terms of k ·p band
parameters λcbBR can be estimated by [214]

λcbBR ≈
γ∗3ξv,c+1∆∗c,c+1

(εcb − εvb)(εcb − εcb+1)
, (4.10)

where ξv,c+1 is a matrix element shown of the potential U(z) = eEzz describing the electric �eld. An
estimate for the magnitude of λBR in TMDCs shows that for the electric �eld values of Ez ≤ 10−2

V/Å, where the perturbation theory approach can be expected to work, |λBR| is smaller by an
order of magnitude than in InAs [231] or InSb [232] quantum wells. It is worth pointing out that
the Bychkov-Rashba SOC given in Eq. (4.9) also appears in the so-called Janus-TMDCs [233],
which possess a strong built-in electric �eld and therefore a much larger SOC of this form.

4.2 k · p Hamiltonian at the Q points

Similar considerations to the ones in Sec. 4.1 can be used to derive a k · p Hamiltonian for the Γ,
Q andM points int the BZ as well, see Ref. [74]. These models are, in general, less developed than
the one for the ±K points, because most of the theoretical and experimental attention focused on
the valleytronics related physics associated with the ±K points. As an example, we now consider
the six Qi points in the CB [see Fig. 4.3(a)] which are important regarding relaxation processes.
This is especially the case in the WX2 compounds, where the energy di�erence between the band
edge at the ±K points and at the Qi points is relatively small [74]. This allows phonon scattering
between the ±K and the Qi valleys to be e�ective which a�ects, e.g., the electron mobility [234,
235]. The Qi valleys also play a role in the dynamics of the K valley excitons [236]. Therefore we
now brie�y discuss the k · p Hamiltonian at the Qi points. The discussion will also show how the
k ·p methodology and DFT calculations can complement each other in order to obtain a relatively
simple and transparent model.

Due to the low symmetry of the Qi points in the BZ and because there are many nearby bands
in energy, there is a large number of k ·p matrix elements that would need to be taken into account
in a detailed multi-band k · p model. Such a model would therefore o�er less physical insight and
for this reason we use the theory of invariants [237, 238] to derive a simpli�ed low-energy e�ective
k · p Hamiltonian. The pertinent symmetry group is C1h; for convenience, its character table is
shown in Table 4.4 [109]. As an example, let us consider the Q1 and Q4 minima, which can be

C1h E σh
A′ k2

x, k
2
y, kxky sz, kx, ky 1 1

A′′ z, sx, sy 1 −1

Table 4.4: Character table and invariants for the group C1h.

found along the Γ�K and Γ�(−K) directions, respectively. This direction is parallel to the kx
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component of k. Using Table 4.4, the most general Hamiltonian, up to second-order in k and
taking SOC into account, reads:

Hτ,s
Q =

~2k2
x

2mτ,sQ,x
+

~2k2
y

2mτ,sQ,y
+

~2kxky
2mτ,sQ,xy

+ ∆Qszτz + a1kxsz + a2kysz

+b1kxτz + b2kyτz + EQ. (4.11)

Here we used the following notations. The Qi-point minima are pairwise connected by time-reversal
symmetry and to describe this one can introduce the matrix τz, whose eigenvalues, τ = ±1 label
individual members of the pairs of valleys. s = ±1 are the eigenvalues of the spin Pauli matrix sz.
1/mτ,s

(Q,x,y,xy) are e�ective masses, one can show that they depend on the product τ · s. EQ is the
band-edge energy if SOC is neglected, ∆Q is the spin-splitting at the Q point, and a1,2 and b1,2
are material parameters. According to DFT calculations [see Fig. 4.3(b)], close to the Q point the
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Figure 4.3: a) Schematics of the position of the ±K valleys and the six Qi valleys in the BZ. b)
Energy contours at the Q point obtained from DFT calculations for MoS2. SOC is not taken into
account. The energy di�erence between the energy contours is 0.04 eV. c) Band structure of WSe2

along the Γ�K direction around the Q point with SOC (red and blue lines) and without SOC
(green line). The bands without SOC are shifted in energy for clarity. Vertical bars indicate the
kx values at which the corresponding curve has a minimum. Adapted from Ref. [74].

energy contours are in a good approximation ellipses whose axes are parallel to kx and ky, which
means that 1/mτ,s

(Q,xy) = 0. The e�ect of the terms ∼ b1, b2 in Eq. (4.11) is to shift the minimum
of the dispersion, and the terms ∼ a1, a2 describe the same e�ect but the shift can also depend on
the spin polarization of the bands. Introducing the wavenumbers qx and qy, which are measured
from k = (τkQ, 0), i.e., from the Q1 (Q4) point, one can set b1 = b2 = 0 and write

Hτ,s
Q =

~2(qx + sz · q̃Q,x)2

2mτ,s
Q,x

+
~2(qy + sz · q̃Q,y)2

2mτ,s
Q,y

+ ∆Qszτz + EKQ. (4.12)

As one can see by looking at Fig. 4.3(c), the dispersion given by Eq. (4.12) captures the most
important features in the DFT band structure calculations: the bands are spin-split by the SOC,
the e�ective masses of the spin-polarized bands are di�erent, and the minima of dispersions of the
spin-split bands are shifted, which is described by the parameters q̃s,x and q̃Q,y. DFT calculations
indicate that q̃Q,y is zero and q̃Q,x always very small [74].

4.3 Summary

In summary, we presented the derivation of k ·p Hamiltonians at high symmetry points of the BZ
of monolayer TMDCs. Firstly, we set up a seven-band model (fourteen-band model, if the spin-
degree is explicitly counted) for the ±K points, which takes into account the coupling between the
VB and CB as well as couplings of these two bands to other, in energy more remote bands. We
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used this model to obtain an e�ective two-band model that describes the dispersion and the SOC
in the CB and the VB. We pointed out the implications of our model with respect to a previously
derived minimal model and also how it can give a plausible explanation for the di�erent spin-
orbit splitting in the CB of MoX2 and WX2 materials. Besides the e�ects of the intrinsic SOC,
we discussed the Bychkov-Rashba SOC as well and showed that the BR Hamiltonian contains an
extra term compared to the corresponding Hamiltonian valid for III-V semiconductors. As a second
example for k · p approach, we derived a Hamiltonian to describe the dispersion of the CB at the
Qi points. We directly wrote down the terms that are allowed by symmetry in the Hamiltonian
and showed how the general form of the Hamiltonian can be simpli�ed by taking into account the
results of DFT calculations.

The results discussed in this chapter were published in Refs. [74, 213, 214]. A further work [239],
closely related to the low-energy e�ective Hamiltonian in Eq. (4.4) but not discussed in this thesis,
considered the edge states in �nite samples.
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Chapter 5

Shubnikov-de Haas oscillations in

monolayer TMDCs

Magnetic �eld is an important tool to probe material properties. For example, the Shubnikov-de
Haas (SdH) oscillations can provide information about the cross-sectional area of the Fermi surface
and the e�ective mass of the carriers. The measurement of the SdH oscillations of the longitudinal
resistance were performed in boron-nitride encapsulated mono� and few-layer MoS2 [240, 241] and
in mono� and bilayer WSe2 [242]. Furthermore, the magnetic �eld breaks the degeneracy of the
electronic states in the inequivalent K and −K valleys of the BZ. This is due to the fact the
electronic states in K and −K valleys are related by time-reversal symmetry (TRS). Therefore,
if TRS is broken by the magnetic �eld, the degeneracy of the states can be lifted. In commonly
reachable magnetic �elds the energy di�erence between the K and −K valley states is rather small,
of the order of few meV. Because of the disorder broadening of the electronic states, for a long time
it was di�cult to resolve such a small energy scale in transport experiments, but this has recently
become possible [241]. On the other hand, optical techniques, such as magnetoluminescence[218,
221, 220, 219, 243], were also used to obtain information on the valley degeneracy breaking.

Here we �rst brie�y overview the most important steps to calculate the Landau level (LL) spec-
trum in monolayer semiconductor TMDCs using a multi-band k · p model. We then use the LL
spectrum and the self-consistent Born approximation to calculate the SdH oscillations of the longi-
tudinal conductance σxx. This can help to understand many features of recent magnetotransport
measurements, but the experimental results also indicate the limitations of this approach when
electron-electron interaction e�ects become important.

5.1 Landau levels in monolayer TMDCs

We consider monolayer TMDCs, where the band edge can be found at he ±K points of the BZ.
As already mentioned in Sec. 1.4.4, in order to take into account the e�ects of a perpendicular
magnetic �eld Bz in a k · p Hamiltonian, one may use the co-called Kohn-Luttinger prescription.
This means that one can replace the wavenumbers q = (qx, qy) appearing in the seven-band k · p
model introduced in Sec. 4.1 by operators q̂: q → q̂ = 1

i∇ + e
~A, where AT = (0, Bzx, 0) is the

vector potential in Landau gauge and e > 0 is the magnitude of the electron charge. We note
that it is important to perform the Kohn-Luttinger prescription in the original, seven-band model,
which contains the wavenumbers qx, qy in linear-order, and not in an e�ective low-energy model
where products of qx, qy appear in certain terms. This is because the operators q̂x, q̂y do not
commute and therefore their order is important.

Since working with a seven-band model is not very convenient, one may want to obtain an
e�ective model Hτ,s

eff that involves fewer bands and describes the physics in the CB and the VB.

55
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This can be again done using Löwdin-partitioning method [63]. The original seven band k·p model
depended on the wavenumbers q± = qx± iqy. Therefore, in the process of obtaining the low-energy
e�ective Hamiltonian one has to take care because the operators q̂+ = q̂x + iq̂y and q̂− = q̂x − iq̂y
do not commute: [q̂−, q̂+] = 2eBz

~ , where Bz is the strength of the magnetic �eld and [. . . ] denotes
the commutator. In this way one can obtain, e.g., an 2 × 2 (4 × 4 if spin is taken into account)
e�ective Hamiltonian Hτ,s

eff (Bz) that corresponds to Eq. (4.4) derived for zero-magnetic �eld. The
explicit form of Hτ,s

eff (Bz) is given in Ref. [244]. Taking Bz > 0 for concreteness, the operators a
and a† de�ned as q̂− =

√
2

lB
a, q̂+ =

√
2

lB
a† , where lB =

√
~/(eBz) is the magnetic length, satisfy

the bosonic commutation relation [a, a†] = 1. Therefore one can calculate the matrix elements of
Hτ,s

eff in a large, but �nite harmonic oscillator basis and diagonalize the resulting matrix to obtain
the spectrum. An example for such a calculation is shown in Fig. 5.1. One can notice that the LLs

-0.02

-0.015

-0.01

-0.005

 0

 0  5  10  15  20  25

E
 [
e

V
]

 Bz [T]

a)

-0.164

-0.16

-0.156

-0.152

-0.148

 0  5  10  15  20  25

 1.67

 1.68

 1.69

 0  5  10  15  20  25

E
 [
e

V
]

 Bz [T]

b)

Figure 5.1: Numerically calculated LL spectrum of monolayer MoS2. a) The �rst few LLs in the
higher spin-orbit split VB. Red lines: the K valley (τ = 1), blue lines: the −K valley (τ = −1).
The inset shows the LLs in the lower spin-orbit split VB. b) The �rst few LLs in the CB. LLs
both in the lower spin-orbit split band and in the higher spin-orbit split band are shown. Red and
purple lines: the K valley, blue and cyan: the −K valley. For the calculations we used the material
parameters given in Ref. [74]. Adapted from Ref. [244].

in di�erent valleys are not degenerate. The magnitude of this valley degeneracy breaking (VDB)
is di�erent in the VB and CB and for the lower-in-energy and higher-in-energy spin-orbit split
bands. One can also observe that in the CB the lowest LL is in valley K, whereas in the VB it
is in valley −K. We note that LL calculations based on the minimal model of Eq. (1.10) do not
capture the VDB and hence, as we will see in Sec. 5.3, they are in contradiction with experimental
measurements.

The results shown in Fig. 5.1 were obtained using a model that describes the low-energy physics
in the subspace spanned by the VB and CB and takes into account the coupling between these
two bands explicitly. One may perform a further Löwdin partitioning step to obtain an e�ective
model that corresponds to the CB or the VB alone. One �nds that the LL energies are given by

Eτ,sn,vb = ετ,svb + ~ω(τ,s)
vb

(
n+

1

2

)
+

1

2
geµBBzs+

1

2
g

(s)
vl,vbµBBz τ, (5.1a)

Eτ,sn,cb = ετ,scb + ~ω(τ,s)
cb

(
n+

1

2

)
+

1

2
geµBBzs+

1

2
g

(s)
vl,cbµBBz τ. (5.1b)

Here n = 0, 1, 2, . . . is an integer denoting the LL index, ετ,svb(cb) = εvb(cb) + τ∆vb(cb)sz are the

band edge energies in the VB (CB) for a given spin-orbit split band s, ω(τ,s)
vb (cb) = eBz

m
(τ,s)

vb (cb)

are

cyclotron frequencies, where m(τ,s)
vb (cb) are e�ective masses in the VB (CB). The second term, which

corresponds to a harmonic oscillator spectrum, is due to the fact that in the simplest approximation
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the dispersion is parabolic at the band edge and this leads to a harmonic oscillator spectrum in
quantizing magnetic �eld. The third term is the Zeeman coupling of the spin degree of freedom
to the magnetic �eld with the free-electron g-factor ge ≈ 2. The spin-index s to be used in the
evaluation of this term follows from the spin-polarization of the given spin-orbit split band, see
Fig. 4.2. The VDB is described by the last term in Eqs. (5.1). As one can see, the VDB is linear in
magnetic �eld. The strength of the coupling of the valley degree of freedom to the magnetic �eld
are given by the valley g-factors g(s)

vl,vb and g(s)
vl,cb. As indicated by the subscript vb and cb, they

are, in general, di�erent in the VB and the CB. One can show that they depend on the (virtual)
inter-band transitions to higher energy bands that have been projected out. The valley g-factors
can be expressed in terms of the band-structure parameters ατ,s, βτ,s and γτ,s ≈ γ discussed in
Sect. 4.1.3 and the band gaps E↓bg, E

↑
bg corresponding to the spin-orbit split bands. One �nds that

g
(s)
vl,vb = 4

me

~2

(
αs +

|γ|2

E
(s)
bg

)
, (5.2a)

g
(s)
vl,cb = 4

me

~2

(
|γ|2

E
(s)
bg

− βs
)
. (5.2b)

Using Eqs. (5.1), the valley splitting can be written as δE(i)
cb(vb) = g

(i)
eff,cb(vb)µBBz where the

e�ective g-factor is given by g
(i)
eff,cb(vb) = (gesτ + gsvl,cb(vb)) and i = 1(2) denotes the higher-in-

energy (lower-in-energy) spin-orbit split band, see Fig. 5.2 (note, that the spin polarization in the
CB is di�erent in MoX2 and WX2 compounds, see Sec. 4.1.3). The e�ective g-factors geff,cb(vb)

can be calculated once the band-structure parameters appearing Eq. (5.2) are determined by, e.g.,
�tting the k · p model to DFT band-structure calculations. As an example, we show the results
of such calculations for monolayer MoS2 and WSe2 in Table 5.1, which are based on the material
parameters given in Ref. [74]. As one can see from Eqs. (5.2), g(s)

vl depends explicitly on the band-

E↓bg E↑bg g↓vl,vb g↑vl,vb g
(1)
eff,vb g

(2)
eff,vb g↓vl,cb g↑vl,cb g

(1)
eff,cb g

(2)
eff,cb

MoS2

DFT 1.66 eV 1.838 eV 0.98 0.96 −1.02 2.96 −2.11 −2.05 −0.05 −4.11

GW 2.8 eV 2.978 eV 2.57 2.38 0.57 4.38 −0.52 −0.6 1.4 −2.52

WSe2

DFT 1.337eV 1.766eV −0.38 −0.23 −2.38 1.77 −2.71 −2.81 −4.71 −0.81

GW 2.457eV 2.886eV 2.55 1.9 0.55 3.9 −0.67 0.13 −2.67 2.13

Table 5.1: Valley g-factors in MoS2 and WSe2. In the �rst row the g-factors are obtained using
the DFT band gap, in the second row the g-factors are calculated with a band gap taken from GW

calculations. Adapted from Ref. [244].

gap E(s)
bg of a given spin s. It is known that E(s)

bg is underestimated in DFT calculations, therefore

we calculate two sets of g(s)
vl : the �rst one using E(s)

bg from DFT and the second one using E(s)
bg

extracted from more advanced GW calculations. The results shown in Fig. 5.1 were obtained with
the former parameter set. As shown in Table 5.1, the calculated g-factors depend quite signi�cantly
on the choice of the parameter set, we expect that the g-factors obtained by using the DFT and
the GW parameter sets should bracket the actual experimental values.
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5.2 Shubnikov-de Hass oscillations of the longitudinal con-

ductivity

The results in Sec. 5.1 provide the starting point for the calculation of the SdH oscillations of
the magnetoconductance in monolayer TMDCs. The calculations, detailed in Ref. [244], rely on
two main assumptions. The �rst one is that one can neglect inter-valley scattering and also intra-
valley scattering between the spin-orbit split bands. One can argue that in the VB, if no magnetic
impurities are present, for realistic values of EF the inter-valley scattering should be strongly
suppressed because it would also require a simultaneous spin-�ip, since the bands are spin-polarized.
In the CB, especially if EF is high enough so that electronic states in both spin-orbit split CB bands
are occupied, the inter-valley scattering is not forbidden by spin selection rules. However, one can
expect that it should be suppressed due to the large momentum transfer that it would require. On
the other hand, the intra-valley scattering between the spin-split bands in the CB should be absent
due to the speci�c form of the intrinsic SOC. The second assumption is that we only consider the
e�ect of random disorder potential V (r) with short range correlations 〈V (r)V (r′)〉 = λscδ(r− r′).
This assumption is widely used in the interpretation of SdH oscillations, as it facilitates to obtain
analytical results [245]. We note that according to Refs. [240, 246], evidence for the presence
of short range scatterers in monolayer MoS2 has indeed been recently found. While short-range
scatterers can, in general, cause inter-valley scattering, a recent study shows that the scattering
probability for this process is low [247].

Using these assumptions it is straightforward to extend the theory of Ando [245] to the SdH
oscillations of monolayer TMDCs. Ando's theory was developed for a two-dimensional electron
gas with parabolic dispersion and short-range scatterers. As it has been shown above, the LLs
in monolayer TMDCs can be described by a formula which is the same as for a simple parabolic
band except that it contains a term which describes a linear-in-magnetic �eld valley-splitting.
Since we assume that one can neglect inter-valley and intra-valley inter-band scattering, the total
conductance will be the sum of the conductances of individual bands with valley and spin indices
τ, s. This simple model allows us to focus on the e�ects of the intrinsic SOC and valley degeneracy
breaking on the SdH oscillations.

We treat impurity scattering in the self-consistent Born approximation (SCBA) and use the
Kubo-formalism to calculate the longitudinal conductivity σxx (for a recent discussion see, e.g.,
Refs. [248, 249]). The complex self-energy of the charge carriers due to the impurity scattering is
denoted by Στ,sR = Στ,sr + iΣτ,si . For short range scatterers Στ,sR in a given band (τ, s) does not
depend on the LL index n. It is given by the implicit equation

Στ,sr + iΣτ,si =
λsc

2πl2B

∞∑
n=0

1

E − Eτ,sn − (Στ,sr + iΣτ,si )
, (5.3)

where Eτ,sn is the energy of the LLs given by Eqs (5.1a)-(5.1b). We note that the term λsc/2πl
2
B

on the right-hand side of Eq. (5.3) can be written as λsc
2πl2B

= 1
2π~ω

(i)
c

~
τ isc

, where 1/τ
(i)
sc = λscm

(i)/~3

is the scattering rate calculated in the Born-approximation in zero magnetic �eld.
The self-energy are then used to calculate the disorder-averaged retarded Gτ,sR and advanced

Gτ,sA Green's functions. They are given by Gτ,sR,A(n,E) = [E−Eτ,sn −Στ,sR,A]−1 and they are diagonal
in the indices τ, s. Moreover, in the LL representation they are also diagonal in the LL index n.
The conductivity στ,sxx in a single valley and band is then calculated as

στ,sxx =
e2

π2~

∫
dE

(
−∂f(E)

∂E

)
στ,sxx (E), (5.4)

where f(E) is the Fermi function and

στ,sxx (E) = (~ω(i)
c )2

∞∑
n=0

(n+ 1)Re[Gτ,sA (n,E)Gτ,sR (n+ 1, E)−Gτ,sA (n,E)Gτ,sA (n+ 1, E)]. (5.5)
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The total conductivity is then given by σxx =
∑
τ,s σ

τ,s
xx , where the summation runs over occupied

sub-bands for a given total electron (hole) density ne (nh). As shown in Fig. 5.2, in p-doped
samples there is one occupied band per valley, while for n-doping there can be two occupied bands
per valley.

Figure 5.2: Schematics of the dispersion in the VB and in the CB around the K and −K points of
the band structure. The spin-orbit split bands are denoted by red and blue lines, di�erent colours
indicate di�erent spin-polarization. The arrows show the spin-polarization for MoS2. For typical
values of p (n) doping, EF (denoted by a dashed line) would intersect only the upper spin-orbit
split band in the VB (both spin-orbit split bands in the CB). The index (1) and (2) denote the
upper and lower spin-split band.

In general, one has to determine Στ,sR by solving Eq. (5.3) numerically. In particular, this is the
case if there are only a few occupied LLs below the Fermi energy, either because of the low electron
density or because of the high magnetic �eld. In the so-called semiclassical limit, when there are
many occupied LLs below EF , i.e., ~ω(i)

c � EF , one can derive an analytical result for στ,sxx , see
Refs. [245, 248] for the details of this calculation. Assuming that only a single spin-orbit split band
is occupied in each of the valleys, which is, practically, always the case for p-doped samples, one
�nds

σxx/σ0 =
2

1 + (ω
(1)
vb τ

(1)
sc )2

[
1− 4(ω

(1)
vb τ

(1)
sc )2

1 + (ω
(1)
vb τ

(1)
sc )2

e
− π

(ω
(1)
vb

τ
(1)
sc ) cos

(
2πEF

~ω(1)
vb

)
A1 B

+
g

(i)
eff

2

µBBz
EF

4(ω
(1)
vb τ

(1)
sc )2

1 + (ω
(1)
vb τ

(1)
sc )2

e
− π

(ω
(1)
vb

τ
(1)
sc ) sin

(
2πEF

~ω(1)
vb

)
A2 B

]
. (5.6)

Here σ0 =
e2τ(1)

sc

2π~2 EF =
e2τ(1)

sc

m
(1)
vb

nh
2 is the zero �eld conductivity per single valley and band, nh is the

total charge density and we assumed Στ,sr � Στ,si � EF . The amplitudes A1,2 and B are given by

A1 = cos

(
π

2
g

(1)
eff,vb

m
(1)
vb

me

)
, A2 = sin

(
π

2
g

(1)
eff,vb

m
(1)
vb

me

)
, (5.7)

and

B =
2π2kBT/~ω(1)

vb

sinh
(

2π2kBT/~ω(1)
vb

) , (5.8)

where kB is the Boltzmann constant and T is the temperature. One can see that Eqs. (5.6)-(5.8)
are similar to the well known expression derived in Ref. [245] for a 2DEG. The valley-splitting,
which leads to the appearance of the amplitudes A1,2, plays an analogous role to the Zeeman
spin-splitting in 2DEG. The term proportional to µBBz/EF in Eq. (5.6) is usually much smaller
than the �rst term. The amplitude B in Eq. (5.8) is the so-called Dingle-factor and describes the
temperature dependent damping of the conductivity oscillations.

As an example, a �t of the oscillatory part of Eq. (5.6) to the measurement results of Ref. [242]
performed in p-doped monolayer WSe2 is shown in Figure 5.3. The theoretical results were �tted
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Figure 5.3: Experiment results of Ref. [242] (red) and the theoretical �t (blue).

in the range 6 − 10T. Once the amplitude A1 is extracted from the �t, one can also obtain
g

(1)
eff,vb if the e�ective mass m(1)

vb is known. In Ref. [242] the m(1)
vb was extracted by measuring the

temperature dependence of the SdH oscillations amplitude [see Eq. (5.8)] and it was found that
m

(1)
vb = −0.45me, where me is the free electron mass. From the �tted value of Afit1 the e�ective

g-factor is calculated as g(1)
eff,vb = ±2.52. The magnitude is in reasonable with the theoretical value

shown in Table 5.1, the sign of the g(1)
eff,vb cannot be determined from the SdH measurements.

As already mentioned, Eq. (5.6) was derived for charge densities where only one spin-orbit split
subband is occupied in each of theK and −K valleys. For strong n-doping one can reach the regime
where both spin-orbit split bands are occupied. This was indeed the case in the measurements on n-
doped monolayer MoS2, which will be discussed in Sect. 5.3. An expression similar to Eq. (5.6) can
be derived for this situation [244] as well. Since the bands are spin-polarized, the total conductance
is simply given by the sum of the conductances coming from the two spin-orbit split sub-bands:
σxx = σ

(1)
xx + σ

(2)
xx . The analysis shows that the intrinsic SOC can a�ect the amplitude of the

oscillations and it also leads to a phase di�erence between the oscillations coming from the two
spin-orbit split sub-bands.

Finally, we brie�y comment on the relevance of the other valleys in the band structure for the
SdH oscillations in monolayer TMDCs. Regarding p-doped samples, the Γ point is signi�cantly
lower in energy than the ±K point, therefore it is unlikely to a�ect the SdH oscillations for realistic
dopings. The situation might be more complicated for n-doped samples, especially for WS2 and
WSe2. For these two materials the states in the six Q valleys are likely to be close in energy with
the states in the ±K valleys. Therefore the Q valleys could be populated for �nite n-doping and
contribute to the SdH oscillations.

5.3 Interactions and magnetotransport in monolayer MoS2

Transport measurements in monolayer TMDCs were for a long time a�ected by the relatively low
mobilities (strong disorder) of the samples. This made the comparison between theoretical and
experimental results di�cult. Recently, new fabrication techniques have made it possible to obtain
much higher quality samples [250, 251, 252, 241], and therefore magnetotransport measurements
can be more directly compared to the theoretical calculations. It turns out that in cleaner samples
electron-electron interaction e�ects, which were neglected in Sec. 5.2, become important, especially
at low temperatures.

That interactions may play a signi�cant role should not come as a surprise. The importance
of the electron-electron interaction e�ects is indicated by the dimensionless Wigner-Seitz radius
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rs = 1/(
√
πnea

∗
B). Here ne is the electron density, a∗B = aB(κme/m

∗) is the e�ective Bohr radius,
m∗ is the e�ective mass, κ is the dielectric constant and aB is the Bohr radius. In the experiments
of Ref. [241] discussed below, the value of rs was in the range of rs = 9.8− 7.5, meaning that the
system is in a regime where interactions are important [253, 111]. Compared to e.g., the 2DEG
in GaAs quantum wells, the e�ective mass in monolayer TMDCs is much larger, which leads to
a larger Wigner-Seitz radius. This means that the ratio of the average kinetic energy and the
Coulomb energy of the electron gas is smaller in monolayer TMDCs than in GaAs quantum wells,
indicating the relative importance of interaction e�ects in the former system.

To illustrate the complex interplay of the energy scales related to electron-electron interaction,
disorder and temperature, we start the discussion by comparing the magnetoconductance data
measured in n-doped monolayer MoS2 at two di�erent temperatures, T = 100mK and T = 1.7K,
see Fig. 5.4. The longitudinal resistance was recorded in a four-terminal setup as a function of

Figure 5.4: SdH measurements in monolayer MoS2. (a) Four-terminal resistance R24;13 as a func-
tion of the backgate VBG and magnetic �eld at T ≈ 100 mK. One can see a pronounced change
in the slope (cyan dashed lines) of the Landau fan diagram at VBG ≈ −1.6 V, corresponding to
electron density ne ≈ 4 × 1012 cm2 (black arrow). The Landau fan diagram can be divided into
three di�erent regions: (I) VBG < −1.6 V, (II) −1.6 < VBG < 1 V, and (III) VBG > 1 V. Inset:
Sketch of the conduction band minima at the K and −K valleys in the �rst Brillouin zone of
monolayer MoS2 (The −K valley is denoted by K ′ in this �gure). Because of the strong spin-orbit
interaction, the spin degeneracy is lifted and spin and valley degrees of freedom are locked. Black
dashed lines represent the Fermi energy corresponding to regions (I), (II), and (III), respectively.
(b) The same as in (a) but measured at T ≈ 1.7 K. The vertical dashed line indicates the backgate
voltage at which the upper spin-orbit split CB starts to �ll, see the inset. Adapted from Ref. [241].

perpendicular magnetic �eld Bz and backgate voltage VBG. At T = 100mK a rather complex
structure of brighter and darker ridges, corresponding to higher and lower resistance can be ob-
served [Fig. 5.4(a)]. As VBG (i.e., ne) is changed, three regions can be distinguished, they will
be discussed in more details below. Although at T = 1.7K [Fig. 5.4(b)] many of the details that
can be seen at T = 100mK are washed out, the main features remain quite robust. It is these
main features that can be explained by an extended single particle picture [251, 254]. In this
picture electron-electron interaction e�ects are accounted for by assuming i) an electron density
dependent valley g-factor gvl, and ii) in good approximation electron density independent e�ective
mass m∗. (We note that a weaker dependence of m∗ on the electron density than that of the
spin-susceptibility was predicted in Ref. [253]). With these additional assumptions one can make
use of the results of Sec. 5.2 to interpret the measurements shown in Fig. 5.4.

We now discuss the measurements taken at T = 1.7K [Fig. 5.4(b)]. To understand how the
results of Sec. 5.2 can be useful, note that in linear order the measured resistivity oscillations δρxx
are given by the oscillations δσxx of the conductivity [255]. For small amplitudes of the oscillations
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δρxx/ρ� 1 therefore one can use Eq. (5.6) to write

δρxx ∝ −R0 exp

(
− π

ωcbτq

)
cos

(
2πνe
d

)
cos

(
π
Evz
Ec

)
. (5.9)

Here R0 is related to the zero �eld resistance, τq is the quantum scattering time, ν = hne
eBz

is
the �lling factor, ne is the electron density, h is the Planck's constant and d = 2 stands for
the two valleys, each hosting a band that is non-degenerate in spin. Moreover, Ec = ~ωcb and
Evz = gvlµBBz are the cyclotron and the valley Zeeman energy, respectively. Although Eq. (5.6)
was derived having p-doped samples in mind, it can also be used for n-doped samples as long as
there is only one spin non-degenerate occupied band in each of the valleys. Amplitude factors that
are smooth functions of the magnetic �eld in Eq. (5.6) are not explicitly taken into account in
Eq. (5.9), it is a common practice that a smooth background is subtracted from the measurements.

The term cos
(
πEvzEc

)
is the amplitude factor A1 given in Eq. (5.7). The term ∼ g

(i)
eff

2
µBBz
EF

appearing

in Eq. (5.6) is neglected because it is expected to be small for the magnetic �eld range used in
these measurements.

Note, it follows from Eq. (5.9) that if Evz/Ec is approximately even (odd), the minima in δρxx
should be at even (odd) ν, as sketched in Fig. 5.5(a). Indeed, measurements in Fig. 5.5(b) for
nSdH = 3.8 ∗ 1012cm−2 and nSdH = 4.3 ∗ 1012cm−2 show minima at even and odd �lling factors,
respectively. A transition even→odd or odd→even ν minima can happen if gvl is electron density
dependent due to interaction e�ects. The transition corresponds to the case when Evz/Ec becomes
a half integer, i.e., m∗gvl

2me
= l + 1/2, where l = 0, 1, 2 . . . . However, Eq. (5.9) cannot be valid

for densities close to the transition because it would imply vanishing δρxx. Looking at the SdH
oscillation trace measured at n(1)

tr = 3.0 ∗ 1012cm−2 and n
(2)
tr = 4.1 ∗ 1012cm−2 [see Fig. 5.5(b)],

it is also clear that δρxx cannot be described by a single harmonic in the inverse magnetic �eld
1/B. In order to gain further insight, we calculated δρxx numerically using Eqs. (5.3)-(5.5). The
comparison of the measurements and the calculated SdH curves is shown in Fig. 5.5(b) for several
densities. We used gvl, τq and R0 as adjustable parameters to reproduce the lineshape and the
amplitude of the oscillations. As one can see, a qualitatively good agreement can be obtained
between the calculations and the measurements made at T ≈ 1.7K. We found that for densities
close to n(1)

tr the lineshape of the oscillations depends quite sensitively on whether one assumes
the same τq for both valleys. A much better agreement between calculations and measurements
was found using di�erent valley scattering times τK,q and τ−K,q. Assuming gvl > 0, we found
that τK,q < τ−K,q, implying that the scattering time is shorter for the valley where, at a given
total density nSdH and EF, the charge density is lower due to the valley Zeeman e�ect and the
concomitant charge re-distribution between the valleys. The gvl values that gave the best �ts were
density dependent and we found gvl > 10 for all densities considered. This suggests a signi�cant
enhancement of the magnitude of gvl due to electron-electron interaction as compared to the single
particle values calculated in Sec. 5.1.

Furthermore, as indicated in Fig. 5.4(a) with cyan dashed lines [one in region (I), the other in
region (III)], there is a change in the slope of the SdH minima by about a factor of two. Such a
change can be expected if the density of states doubles. Additional data not shown here indicates
that the Hall mobility µ and the four terminal resistance R24,13 at zero magnetic �eld exhibit
a pronounced change in slope at the same point. One can attribute these observations to the
occupation of the upper spin-orbit split bands in the K and −K valleys, as shown schematically
in the insets of Fig. 5.4. The sudden change in the slope of the SdH minima happens for n(2)

tr ≈
4.1 ∗ 1012cm−2. Assuming a 2D density of states DOS = m∗/π~2 (implying a two-fold degeneracy
corresponding to the valley), using the experimentally determined e�ective mass of m∗ = 0.65me

and the density n(2)
tr , one can calculate that the Fermi energy is EF ≈ 15 meV when the upper spin-

orbit split bands start to be �lled. This gives us an estimate of the intrinsic spin-orbit interaction
2∆∗cb for K-valley electrons in monolayer MoS2. This value of 2∆∗cb is about �ve times larger
than the results of DFT band structure calculations [74]. The apparent enhancement of the spin-
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Figure 5.5: Density dependent g-factor in monolayer MoS2. (a) LL structure highlighting the
interplay between even and odd �lling factors as Evz/Ec increases. Even (odd) Evz/Ec corresponds
to even (odd) �lling factor sequence. The red and blue lines indicate valley −K spin-up and valley
K spin-down LLs (the −K valley is denoted by K ′ in this �gure). (b) Measurements of the four
terminal resistance ∆R24,13 at T ≈ 1.7K, after subtracting a smooth background, as a function
of LL �lling factors at di�erent electron densities (black solid line). By increasing the electron
density, one can see transitions between even and odd �lling factor sequences in the minima. Red
dotted lines represent numerical calculations using Eqs. (5.3)-(5.5). Adapted from Ref. [241].

orbit splitting of the bands might be due to an exchange interaction driven band renormalization.
Moreover, as shown in Fig. 5.5(b), although the upper spin-orbit split bands start to be �lled, at
T ≈ 1.7 K the measurements can still be �tted nicely assuming that only the lower spin-orbit split
bands give visible contributions to the SdH oscillations.

The e�ect of the LLs corresponding to the upper spin-orbit split bands become apparent at
lower temperatures. One can see the distinctive �waviness� of the lines in Fig. 5.4(a) measured
at T ≈ 100mK. Comparison with Fig. 5.4(b) suggests, that LLs corresponding to the lower spin-
orbit split bands are a�ected by the LLs originating from the upper spin-orbit split bands. The
interaction e�ects start to be visible already at T ≈ 500mK. For VBG > 3V, corresponding to
high densities, one can observe a string of bright spots surrounded by fainter lines that show clear
anticrossings, see Fig. 5.6(a). It is tempting to interpret the bright spots as crossings between LLs
residing in the same valley but belonging to di�erent spin-orbit split bands, while the resolved
anticrossings may be due to LLs belonging to di�erent valleys, as shown in Fig. 5.6(b). This
interpretation is motivated by the extended single particle picture. Due to the spin-orbit coupling,
LLs in di�erent valleys and di�erent spin-orbit split bands should have the same spin-polarization
and therefore they can anticross e.g., due to exchange interaction induced band repulsion. On the
other hand LLs residing in the same valley but di�erent spin-orbit split bands would have di�erent
spin polarization and therefore they can cross. These observations (and others not discussed here)
clearly indicate that the single particle picture becomes insu�cient at very low temperatures.
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a

K↓

K’↑

K↑

K’↓

b

T ≈ 500 mK

Figure 5.6: Interaction e�ects in the LL spectrum of monolayer MoS2 . (a) ∆R24,13 measurements
as a function of VBG and magnetic �eld in region (III) at T ≈ 500mK. For VBG > 3V, by increasing
the electron density one can observe both crossings (bright spots) and anticrossings between LLs.
For VBG < 3V , the bright spots appear to be weak anticrossings between not fully spin polarized
LLs. (b) Schematic of the LL interaction e�ects in the CB of monolayer MoS2. LLs residing in
the same valley can cross (squares). LLs residing in di�erent valleys and di�erent spin-orbit split
bands anticross (circles). Adapted from Ref. [241].

5.4 Summary

In summary, we calculated the Landau level spectrum of monolayer TMDCs by making use of
the k · p model developed in Chapt. 4. We found that the LLs in the K and −K valleys are not
degenerate. This valley degeneracy breaking is linear in the magnetic �eld and can be characterized
by an e�ective valley g-factor. We then used the LL spectrum to extend previous results for
the Shubnikov-de Haas oscillations of the longitudinal magnetoconductance σxx to the case of
monolayer TMDCs. In particular, we considered the e�ects of valley degeneracy breaking and
the intrinsic SOC of the TMDCs on σxx. Our results relied on single-particle considerations and
they proved to be useful in the interpretation of the SdH measurements in monolayer MoS2 for
temperatures 1 < T . 1.7K. However, the measurement also gave clear indications that the single-
particle picture is not su�cient at lower temperatures and at low dopings, when the signatures of
strong electron-electron interactions become apparent. The electron-electron interaction leads to,
e.g., avoided crossings between LLs and further theoretical work is needed to understand the LL
phenomena in this regime.

The results of Secs. 5.1-5.2 were published in Ref. [244], while the discussions of Sec. 5.3 can
be found in Ref. [241]. A further work [218], not discussed in this thesis, studied experimentally
and theoretically the valley degeneracy breaking in magnetoluminescence. It was one of the �rst
reports [218, 221, 220, 219, 243] of this phenomenon. The theoretical considerations in [218] relied
on calculations similar to those in Sec. 5.1.
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Chapter 6

Quantum dots in monolayer TMDCs

We have already mentioned in Sec. 1.3.3 that one can use electrostatic gates to create quantum dots
in TMDCs. This is in contrast to MLG, where con�nement of the charge carriers by electrostatic
gates is not possible. Compared to III-V semiconductors, such as GaAs [256, 85], TMDCs have
several isotopes with vanishing nuclear spin, thus lacking hyper�ne interactions with the electronic
spin. This means that TMDC based QDs may o�er a platform to host qubits with longer coherence
time than III-V semiconductors. Moreover, monolayer TMDCs comprise an additional valley
pseudospin. Although these two features (i.e., isotope with vanishing nuclear spin and valley
pseudospin) are common to several other materials, such as Si/SiGe quantum wells [257, 258],
carbon nanotubes [259, 260], or BLG [94, 95, 96], what sets monolayer TMDCs apart is that they
host strong spin-orbit coupling as well.

First, we consider a simple model for QDs de�ned by electrostatic gates in monolayer TMDCs.
Note, that the typical size of such nanostructure (several tens of nanometers) and the presence of
the con�ning potential means that, e.g., DFT calculations would be impracticable for this problem.
However, one can make use of the k ·p approach introduced in Chapt. 4. We also take into account
the e�ect of external magnetic �eld and show that the interplay of magnetic �eld and con�nement
provides a possible realization of combined spin-valley qubits. We then discuss double quantum
dots (DQDs) and in particular, the e�ects of strong SOC and Coulomb interaction on the low-
energy states.

6.1 Single quantum dot in the non-interacting limit

We assume n-doped samples and make use of the k · p Hamiltonian obtained for the ±K point
of the BZ, where the band edge can be found in monolayer TMDCs. We will be interested in the
magnetic �eld dependence of the QD spectrum and discuss which eigenstates can be used as two-
level systems for qubits. We consider relatively small QDs, which can be treated in the ballistic
limit.

As already mentioned in Chapter 5, the e�ective Hamiltonian of the CB in external magnetic
�eld can be obtained in two steps: �rst making the Kohn-Luttinger prescription in the seven-band
model, followed by projecting out all other bands using the Löwdin-partitioning. The resulting
Hamiltonian can be cast into the following form:

Hcb = τ∆cbsz +
~2q̂+q̂−
2mτ,s

eff

+
1

2
geff,cbµBBz. (6.1)

Here the operators are de�ned as q̂± = q̂x± iq̂y, where q̂ = 1
i∇+ e

~A, and A is the vector potential
describing the magnetic �eld, see Sec. 5.1. Moreover, mτ,s

eff is the e�ective mass and geff,cb is the
valley g-factor. One may add the Bychkov-Rashba type SOC Hτ

BR (see Sect. 4.1.2) to Hcb, but
since it introduces a relatively small energy scale, it can be treated as a perturbation. One can

65

               andorkormanyos_7_22



66

take into account the electrostatic con�nement by adding the term Vdot(r) to Hcb, so that the
Hamiltonian reads Hdot = Hcb + Vdot(r).

As a simple example, we consider a circular QD with hard wall boundary conditions, because
their spectrum can be obtained relatively easily and can illustrate some important features of the
spectrum of more general cases. The con�nement is described by the potential Vdot(r) = 0 for
r ≤ Rd and Vdot(r) = ∞ if r > Rd. In order to preserve the rotational symmetry of the system
around the z axis one may use the axial gauge to describe the magnetic �eld, where Aφ = Bzr/2

and Ar = 0. Hdot then commutes with the angular momentum operator L̂z and the eigenfunctions
of Hdot will be eigenfunctions of L̂z as well. Therefore a quantum number l = 0,±1,±2, . . . can
be assigned to the eigenvalues and eigenfunctions.

In order to �nd the eigenfunctions and eigenvalues of Hdot, one may re-write the operators
q̂± in cylindrical coordinates and introduce the operators α̂± by the relations q̂− = −i

√
2

lB
α̂− and

q̂+ = i
√

2
lB
α̂+, where lB =

√
~
eBz

is the magnetic length. The eigenfunctions of the operators

α̂+ and α̂−, which are (i) regular at ρ = 0 and (ii) also eigenfunctions of L̂z, are ga,l(ρ, ϕ) =

eilϕρ
|l|
2 e−

ρ
2M(a, |l|+ 1, ρ), where ρ = 1

2

(
r
lB

)2

and M(a, |l|+ 1, ρ) is the con�uent hypergeometric

function of the �rst kind [261]. Since the intrinsic SOC is diagonal in the spin space, one may use

the Ansatz Ψ↑l (ρ, ϕ) =

(
1

0

)
ga,l(ρ, ϕ) and Ψ↓l (ρ, ϕ) =

(
0

1

)
ga,l(ρ, ϕ) to solve the Schrödinger

equation HdotΨ = EΨ. The bound state solutions of the QD problem are determined by the
condition that the wave function has to vanish at the wall of the QD, i.e., at r = Rd. The task
can be therefore re-formulated as �nding, for a given magnetic �eld Bz and quantum number l,
the roots of M(al, |l| + 1, ρ[r = Rd]) = 0 as a function of al. For each l, there can be several
such roots, which correspond to a radial quantum number n. Once the nth root an,l is known,
the energy of the bound state Eτ,sn,l can be expressed in terms of an,l, the magnetic �eld and the
material parameters appearing in Eq. (6.1). The roots of the equation M(al, |l|+ 1, ρ[r = Rd]) = 0

can be found numerically.
An example of the calculation of the lowest QD bound state energies is shown in Figure 6.1.

At zero magnetic �eld there is an e�ective time reversal symmetry acting within each valley and

0
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V
]

K, l=0 ↓ K, l=-1 ↓

K, l=1 ↓ K’, l=0 ↑

K’, l=-1 ↑

K’, l=1 ↑

b)

Bz

Figure 6.1: The �rst few bound states of a MoS2 QD of radius Rd = 40 nm as a function of the
perpendicular magnetic �eld Bz > 0. Labels show the valley, orbital quantum number l, and spin
state for each level. The valley −K is denoted by K ′ in this �gure. All states have the lowest,
n = 1 radial quantum number. Adapted from Ref. [214].

therefore states with angular momentum ±l within the same valley are degenerate. Not surpris-
ingly, the valley degeneracy breaking introduced in Sec. 5.1 also appears in the QD spectrum and
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for �nite magnetic �eld all levels are both valley and spin split. When the magnetic �elds becomes
larger, so that lB . Rd, the dot levels start to merge into Landau levels. One can also see that for
Bz & 1 T the lowest energy states reside in the K valley. We emphasize that, in contrast to gapped
monolayer [262, 263, 264] and bilayer [263, 264] graphene, the energy states are spin polarized.
This suggest that QDs in MoS2 can be used as simultaneous valley and spin �lters.

The Bychkov-Rashba SOC turns the crossings between states |l, ↑〉 and |l + 1, ↓〉, l ≥ 0 in the
same valley into avoided crossings. This can be shown by rewriting H̃τ

BR in terms of the operators
α− and α+ and calculating their e�ect on the non-perturbed eigenstates. For the low-lying energy
states shown in Fig. 6.1, the e�ect of the Bychkov-Rashba SOC is to introduce a level repulsion
between these states and higher energy ones which lie outside of the energy range of this �gure.
One can show that for magnetic �elds . 10 T and electric �elds Ez . 10−2 V/Å the level repulsion
is much smaller than the intrinsic spin-orbit splitting ∆cb and therefore one can neglect it.

Considerations for qubit states

We now brie�y discuss which eigenstates of the QDs can be used as two-level systems for qubits.
Firstly, we note that one would need to use relatively small QDs in order to make the mean
level spacing (at zero magnetic �eld) larger than the thermal energy kBT . This is because of
the relatively large e�ective mass in the CB compared to, e.g., GaAs quantum wells. Assuming
a chaotic QD with mean level spacing δ = 2π~2/(meffA) where A is the area of the dot, taking
R = 40nm and the e�ective mass of MoS2 meff = 0.45me, one �nds δ ≈ 0.2meV which corresponds
to T = 2.3K. In this respect TMDCs with smaller meff , such as WS2 and WSe2 [74], might be
more advantageous. Secondly, by looking at the QD spectrum shown in Fig. 6.1, the most realistic
approach appears to be to use the lowest Kramer's pairs around B = 0, e.g., |l = 0;K ′; ↑〉 and
|l = 0;K; ↓〉, as a combined spin-valley qubit [265, 266]. The external magnetic �eld can be used
to tune the energy splitting of this two-level system and the exchange interaction would provide
the necessary coupling to adjacent spin-valley qubits for the realization of two-qubit gates.

6.2 Double quantum dots

We will now discuss double quantum dots (DQDs) and the e�ect of Coulomb interaction on the low
energy states. Restricting the considerations to the case when there are two electrons in the two
QDs leads to a relatively simple problem where analytical calculations can be made and the insight
gained in this way may serve as a basis for the interpretation of the results of more complicated
situations, where only numerical calculations are feasible. One may note that the system of DQDs
in carbon nanotubes [267, 268] shares similarities with the case in TMDCs, but the interplay of
the exchange interaction with the strong SOC have not been studied previously.

We introduce the notation (nL, nR), which means that there are nL electrons in the left QD and
nR electrons in the right QD. Furthermore, we will use the following notations. The operators c(†)jτσ
annihilate (create) an electron in QD j with valley τ and spin σ indices. Here j = L (R) refers to
the left (right) QD, τ = K (K) indicates the positive (negative) valley and σ =↑ (↓) speci�es spin
up (spin down). The schematic energy diagram of the system is shown in Fig. 6.2. The Hubbard
Hamiltonian describes the on-site Coulomb repulsion between electrons in the same QD:

HU =
U

2

∑
j=L,R

nj(nj − 1), (6.2)

where U > 0 is the positive charging energy of the dot and the number operator is de�ned as
nj =

∑
τ=K,K̄

∑
σ=↑,↓ c

†
jτσcjτσ. The energy di�erence ε between the dots is speci�ed by a detuning

term:
Hε =

ε

2
(nL − nR). (6.3)
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Spin and valley preserving electron tunneling between the dots is described by

Ht =
∑
τ,σ

(
t c†Rστ cLστ + h.c.

)
, (6.4)

where t is the tunneling coe�cient. The intrinsic SOC of the TMDC is modeled by H∆ = ∆τzσz,
where τi (σi) is the ith Pauli matrix acting on the valley (spin) (i = x, y, z), while ∆ is the SOC
constant, which can be either positive or negative. Then the SOC Hamiltonian for the DQD system
reads

H∆ = ∆
∑
j,τ,σ

c†jτσ(τz)ττ (σz)σσcjτσ. (6.5)

This implies that the Kramer's pair states in the set P =
{
|K ↑〉 , |K ↓〉

}
are shifted by the energy

+∆, while the Kramer's pair states in the set N =
{
|K ↓〉 , |K ↑〉

}
are shifted by the energy −∆.

We also assume that the spin-orbit splitting is the same for both dots, which is usually the case
for dots created on the same material, although a more general case can also be treated [269]. The
total Hamiltonian is given by

Htot = HU +Hε +Ht +H∆. (6.6)

In the following discussions we will assume a small detuning and weak tunneling, i.e., |t| � |U ±ε|.

V (x)

K K

K K

t

L R

E

x

ε

2(∆ + hSLz)

2(∆ + hV Rz)

Figure 6.2: Schematic energy diagram of the DQD system. V (x) (dark red line) represents the
double-well potential that de�nes the left (L) and right (R) QDs. The energy levels of the valley
and spin states inside the dots are shown here with a positive detuning ε > 0. Spin states in valley
K (K) are coloured in red (blue). The energy levels are shifted by a symmetric spin-orbit splitting
(∆) and by inhomogeneous spin and valley Zeeman terms along the z-direction, with coupling
constants hSLz/hSRz and hV Lz/hV Rz respectively. Electrons are allowed to tunnel from one dot
to the other with tunneling coe�cient t. Adapted from Ref. [269].

The possible charge con�gurations in this DQD system are (2, 0), (1, 1) and (0, 2). Because of
the spin and valley degrees of freedom and due to the Pauli exclusion principle, there are 28 linearly
independent states: 6 (2, 0)-states, 16 (1, 1)-states and 6 (0, 2)-states. As we will see, the basic
physics of the system can be described in terms of virtual tunneling between the (1, 1)-states and
the (2, 0), (0, 2)-states. Due to the Pauli exclusion principle, not all the states in the (1, 1)-subspace
are allowed to tunnel to (0, 2) or (2, 0)-states, but only those which are antisymmetric in spin and
valley [268]. We now introduce a basis consisting of states that are symmetric or antisymmetric
in both spin and valley: |sV sS〉(nL,nR), where sV (sS) indicates the exchange symmetry of valley
(spin) degree of freedom (DOF) and (nL, nR) is the charge con�guration. The exchange symmetry
can be either that of a singlet (S) or that of a triplet (T−, T0, T+); see Table 6.1 for the de�nitions
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|S〉 |T−〉 |T0〉 |T+〉

Spin |↑↓〉−|↓↑〉√
2

|↓↓〉 |↑↓〉+|↓↑〉√
2

|↑↑〉

Valley |KK〉−|KK〉√
2

|KK〉 |KK〉+|KK〉√
2

|KK〉

Table 6.1: De�nitions of singlet and triplet states taking into account spin and valley.

of these states. The spin-orbit coupling term H∆ is not diagonal in this basis. In order to work
with a basis that makes H∆ diagonal, one can substitute the states |ST0〉, |T0S〉, |SS〉 and |T0T0〉
with the following states in the (1, 1)-subspace:

|n±〉 = (|ST0〉 ± |T0S〉)/
√

2, (6.7a)

|n±〉 = (|T0T0〉 ± |SS〉)/
√

2. (6.7b)

Here |n±〉 (|n±〉) are antisymmetric (symmetric) spin-valley states, which are superpositions of
only positive (subscript +) or negative (subscript −) Kramer's pairs. Note that |n±〉 (|n±〉) are
odd (even) under time-reversal. For these states there is no de�ned exchange symmetry for spin
or valley alone. States analogous to |n±〉 can be de�ned in the (2, 0) and (0, 2)-subspaces as well.

Low-energy subspace when Coulomb energy dominates

The spin-orbit coupling H∆ shifts the states formed by two elements of the negative (positive)
Kramer's pair by −2∆ (+2∆), while it leaves unchanged those states formed by one element of
the negative Kramer's pair and one element of the positive Kramer's pair. Taking into account
the Coulomb interaction as well, one can show that the whole (1, 1) charge sector is the low energy

subspace (no (2, 0) or (0, 2)-state is lower in energy than any (1, 1)-state) if the condition

4|∆| < U − |ε| (6.8)

is ful�lled. This means that the tunneling out from the (1, 1)-sector into (2, 0) and (0, 2)-states is
strongly suppressed. However, virtual tunneling processes need to be taken into account. Since we
assumed that the tunneling is spin- and valley-preserving, the antisymmetric (1, 1)-states can tunnel
only to their (0, 2) and (2, 0) counterpart states that have the same spin and valley con�guration.
Therefore there is no transition from a negative Kramer's pair to a positive Kramer's pair and vice
versa and the energy di�erences between initial and �nal states in a virtual tunneling process do
not depend on ∆. After projecting out the high-energy (2, 0) and (0, 2) subspaces, one obtains the
following e�ective Hamiltonian for the low-energy subspace:

He� = −JPas + ∆Σ. (6.9)

Here J = 4|t|2U
U2−ε2 is the exchange energy and Pas = (3−σL ·σR− τL · τR− (σL ·σR)(τL · τR))/8 is

the projection operator over the whole antisymmetric subspace of the (1, 1) sector [270] (σj , τj are
vectors of Pauli matrices acting on spin and valley, respectively.) Furthermore, ∆Σ = H∆|(1,1) =

∆ (τLzσLz + τRzσRz), where H∆|(1,1) is the restriction of H∆ to the (1, 1)-subspace. The spectrum
of the Hamiltonian He� is shown schematically in Fig. 6.3. Assuming ∆ > 0, the ground state is
|n−〉 because it is the only state that is shifted down by both −J and −2∆. Thus, the ground
state space is one-dimensional. Note, that the dimensionality of the ground state space changes
from one to six if ∆ = 0. As shown in Figs. 6.3, there are �ve groups of excited states with various
degrees of degeneracy and whose relative distances in energy depend on ∆ and J . Further analysis
shows that each antisymmetric state is separated from its symmetric counterparts by the same
energy J .
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Figure 6.3: Level structure of (1, 1)-states at �xed (small) detuning for di�erent ratio of ∆ and the
exchange coupling J . It is assumed that 4|∆| < U−|ε|. Horizontal lines illustrate the energy levels
and degenerate levels are shown as a group of thick lines close together with a number indicating
the degree of degeneracy. The coloured energy levels display states inside the N × N -sector, see
the text for de�nition. The red energy levels indicate the antisymmetric state |n−〉, while the blue
energy levels are the symmetric states |n−〉, |T+T−〉, |T−T+〉. (a) When the SOC splitting is zero,
the higher (lower) manifold of states correspond to the symmetric (asymmetric) states, separated
by the exchange energy J . (b) For ∆ 6= 0 and 2∆ < J both symmetric and antisymmetric energy
levels are separated in three groups, |n−〉 becomes the ground state and the �rst excited states are
antisymmetric. (c) When 2∆ > J , the N × N -sector becomes the low-energy subspace and the
�rst excited states are symmetric. Adapted from Ref. [269].

Low energy subspace when SOC dominates

In the derivation of Eq. (6.9) we assumed that 4|∆| < U − |ε|. The available experiments on QDs
created in monolayer WSe2 [99, 100] and MoS2 [98] indicate that U ≈ 2meV for QDs having a
radius of around 100 nm. Since the intrinsic SOC is relatively strong even in the CB, the above
mentioned condition does not seem to be satis�ed for monolayer TMDC QDs. (According to DFT
calculations 2∆ = 3meV in MoS2 and 2∆ = 30meV in WSe2 [74].) In other words, ∆ is expected
to be the dominant energy scale in these QDs.

When 4|∆| > U − |ε|, the states |n−〉(2,0) and |n−〉(0,2) in the (2, 0) and (0, 2) charge con�g-
urations have lower energy than most of the states in the (1, 1) con�guration. Nevertheless, it
turns out that in order to give an e�ective description of the system it is possible to focus on
a smaller subspace inside the (1, 1)-sector. For weak tunneling |t| � |U ± ε| and 2∆ > J , the
low energy subpace of the (1, 1) charge con�guration is spanned by the states in N × N , where
the N =

{
|K ↓〉 , |K ↑〉

}
Kramer's pair states were de�ned above Eq. (6.6). One can identify the

negative Kramer's pair N as a spin-1/2 degree of freedom with |↑̃〉 ≡ |K ↑〉 , |↓̃〉 ≡ |K ↓〉 . One can
now use the analogy with the known case of the e�ective Hamiltonian for two spinful electrons in
two QDs, each QD having a single available energy level. For weak tunneling between the QDs,
and taking into account the detuning and the Hubbard potential, the e�ective Hamiltonian for
the latter system is given by He� = JSL · SR [85]. Here J is the exchange energy de�ned below
Eq. (6.9), and Sj is the vector of spin operators acting in the jth QD. Similarly, by de�ning the op-
erators, σ̃z = σz, σ̃x = τxσx, σ̃y = τxσy, the Hamiltonian of the system restricted to the sub-space

               andorkormanyos_7_22



71

N ×N reads
He�, N×N = JS̃L · S̃R, (6.10)

where S̃ji = 1
2 σ̃ji is the spin operator proportional to the new Pauli operator σ̃i, i = x, y, z, acting

on QD j = L,R. In other words, the description of the low-energy physics in this case is formally
identical to the Heisenberg exchange interaction between two spin-only qubits in a material which
does not have two valleys. This renders the Kramer's pair an ideal implementation of a qubit in
TMDCs. Namely, a recipe for a CNOT gate with these states is readily available from the original
Loss and DiVincenzo proposal for spin-only qubits [271]. If, in addition, the τx operation could be
e�ectively implemented (for theoretical proposals see, e.g., Refs. [272, 273]), then one would have
a full set of single qubit operations.

Further cases

Although we will not consider them in details, more general setups can can also be studied [269].
For example, the SOC strength may not be the same in the two dots. In this case one can use
the following more general SOC Hamiltonian: H∆L,∆R

=
∑
j ∆j

∑
τ,σ c

†
jτσ(τz)ττ (σz)σσcjτσ, where

∆L and ∆R are the spin-orbit splittings in the left and right QD respectively. Such asymmetric
SOC would change the exchange coupling constant J . One can also take into account the coupling
of spin and valley to an external magnetic �eld. The corresponding spin Zeeman term is given
by HS =

∑
j hSj ·

∑
τ,σ1,σ2

c†jτσ1
(σ)σ1σ2

cjτσ2
, where hSL and hSR are two vectors of coupling

constants for left and right QD, respectively, and σ is the vector of Pauli matrices acting on
spin. The valley Zeeman term is reads HV =

∑
j hV jz

∑
τ,σ c

†
jτσ(τz)ττ cjτσ where hV Lz and hV Rz

describe the valley splittings in the left and right dot. One can show that HS and HV would mix
a large number of the basis states used in the previous discussions and lead to a more complicated
low-energy e�ective theory.

6.3 Summary

In summary, we studied the physics of single and double quantum dots in monolayer TMDCs.
First, we considered a simple model of a circular QD in the non-interacting limit. We calculated
the spectrum of the QD as a function of magnetic �eld. We pointed out that the valley degeneracy
breaking discussed in Chapt. 5 appears in the QD spectrum and this o�ers the possibility to use
the lowest energy Kramer's pair as spin-valley qubit. We then considered TMDC DQDs assuming
that each QD hosts a single energy level and there are two electrons in the two QDs. In the limit of
small detuning we derived e�ective Hamiltonians for the low-energy subspace in the (1, 1) charge
con�guration of this system. When the Coulomb interaction dominates the intrinsic SOC, we take
into account all states of the (1, 1) charge con�guration to construct the e�ective Hamiltonian. In
the opposite case, when the intrinsic SOC is large, it is su�cient to consider only the lowest energy
Kramer's pair. One can de�ne spin-valley operators and in terms of these operators the e�ective
low-energy Hamiltonian is formally identical to the Heisenberg exchange Hamiltonian between two
spins.

The results of Sec. 6.1 were published in Ref. [214], while the results on DQDs in Sec. 6.2 can
be found in Ref. [269].
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Chapter 7

Spin and valley Hall e�ect in bilayer

MoS2

Bilayers of TMDCs have attracted comparatively less attention than monolayers. Nevertheless, sev-
eral intriguing experimental observations, such as electrical tuning of valley magnetic moment [274],
spin-layer locking [275], and �nite valley Hall e�ect [196] have recently been reported in bilayer
TMDCs. The observation of the VHE is interesting because it can be related to the Berry cur-
vature, i.e., a topological property of the band structure. Another important property of bilayer
TMDCs is that they can exists in di�erent stacking orders. As it was discussed in Sec. 1.2.2 using
the example of trilayer graphene, the stacking order can have an important e�ect on the elec-
tronic properties. Bilayer MoS2 therefore o�ers an interesting system to study several phenomena
introduced in Chap. 1.

In the following we �rst present the stacking order dependent k · p Hamiltonians for the ±K
valley of bilayer TMDCs [276]. Similarly to Chap. 4, the material parameters of the k · p model
were extracted from DFT calculations which are not subjects of this thesis. The k ·p Hamiltonians
will be the starting point to consider the Berry curvature properties of the valence and conduction
bands. These properties have novel aspects compared to earlier examples discussed, e.g., for (few-
layer)graphene. Finally, one can expect that the Berry curvature leads to spin and valley Hall
e�ects in ballistic samples, and we discuss a particularly interesting scenario in this respect.

7.1 Stacking dependent k · p Hamiltonian for the ±K valley

Bulk MoS2 occurs in nature in two polytypes: the so-called 2H and 3R polytypes. The unit cell
of the 2H polytype contains two monolayer units which are rotated with respect to each other by
180◦. In the case of the 3R polytype there are three monolayers in the unit cell which are shifted
with respect to each other. Experimentally, bilayer samples both have been exfoliated from both
bulk polytypes [274, 277]. The schematic crystal structure of the 2H and 3R bilayers can be seen
in Fig. 7.1. As it will be shown below, the di�erence in the stacking is re�ected in the form of the
corresponding k · p Hamiltonians.

Motivated by the development of the theory for BLG [54], whereby the TB Hamiltonian could
be written in terms of the TB Hamiltonians of the individual monolayers and certain interlayer
hopping terms, one may ask if the k ·p Hamiltonian for bilayer TMDCs can be written in terms of
the k · p Hamiltonian of monolayers that we discussed in Chap. 4. It turns out that this is indeed
possible. Furthermore, as in the case of monolayers, one can derive a separate k · p Hamiltonian
for each high-symmetry point of the BZ. We note that the BZ of the bilayer is the same hexagonal
BZ as for the monolayer1. We also remind that in monolayer TMDCs the dz2 atomic orbitals of

1It is not true, however, that the K point of a monolayer would necessarily map onto the K point of the bilayer.
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the metal atoms have the largest weight in the CB and the dx2−y2 ± idxy orbitals in the VB at the
±K point of the BZ. These orbitals are mostly localized to the monolayers, therefore interlayer
hybridization in bilayers should be weak at the ±K point and mainly due to the chalcogen p-
orbitals. Therefore one may expect that, at least for the ±K valley, one can write the bilayer k ·p
Hamiltonian in the following way:

Hbl =

(
H

(1)
ml H

(γ)
il

(H
(γ)
il )† H

(2)
ml

)
(7.1)

Here H(i)
ml is the e�ective k · p Hamiltonian of the ith monolayer and H(γ)

il describes the interlayer
coupling. The index γ denotes the stacking con�guration of the bilayer, to be discussed below. We
note that similarly to H(i)

ml, H
(γ)
il can be obtained from considerations based on the symmetry of

the bilayer.
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Figure 7.1: a) and c): Band structure of 3R and 2H stacked bilayer MoS2, respectively, from DFT
calculations. b) and d): Schematic crystal structure in side view and in top view of 3R and 2H
stacked bilayer MoS2, respectively. Adapted from Ref. [276].

As a �rst step in the derivation of the k · p Hamiltonians we neglect the SOC and show that
the di�erence in the stacking order is re�ected in the form of the k · p model. We will come back
to the e�ects of intrinsic SOC in Sec. 7.3.

3R stacking

For 3R bilayers both H
(1)
ml and H

(2)
ml should be taken as the monolayer TMDC Hamiltonian at

the K point. In order to keep the bilayer model simple, one may use the minimal k · p model of
monolayer TMDCs given in Eq. (4.5). The interlayer coupling Hamiltonian reads

H
(3R)
il =

(
γccq− 0

0 γvvq−

)
. (7.2)

In the case of AB stacked bilayers, the K point of one of the monolayers map onto the K point of the bilayer,

however, for the other monolayer it is the −K point of the monolayer BZ that maps onto the K point of the bilayer.
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As one can see, the coupling between the VB and the CB of the top and bottom layers is q

dependent and it is characterized by coupling constants γvv and γcc, respectively. Thus the minimal
model for the band structure of 3R bilayers at the K point reads:

H3R
K =


εbcb γ3 q+ γcc q− 0

γ3 q− εbvb 0 γvv q−
γcc q+ 0 εtcb γ3q+

0 γvvq+ γ3q− εtvb

 . (7.3)

The crystal structure of 3R bilayers is not inversion symmetric which means that the band edge
energies εbcb and ε

t
cb for the CB in the bottom and top layers can be di�erent, and the same is true for

the VBs. According to DFT calculations [276], the band-edge energy di�erences δEcc = (εbcb−εtcb)/2
and δEvv = (εbvb − εtvb)/2 are around 30meV. The di�erence between δEcc and δEvv is a rather
small energy scale which can be neglected for certain problems, see Sec. 7.2. Therefore we introduce
here the notation δEll for the interlayer band-edge energy di�erence of 3R bilayers.

2H stacking

For 2H bilayers H(1)
ml can be chosen as the monolayer Hamiltonian at the K point of the monolayer

BZ, while H(2)
ml should be taken as the monolayer Hamiltonian at the −K point. The interlayer

coupling is given by

H
(2H)
il =

(
γcc q− 0

0 t⊥

)
. (7.4)

Here t⊥ describes the momentum independent interlayer tunnelling between the VBs of the con-
stituent monolayers and was introduced in Refs. [278, 274]. The CBs of the monolayers are also
coupled, albeit with a weaker, momentum dependent coupling given by the matrix element γcc q−
in Eq (7.4). Thus the minimal model for the band structure of 2H bilayers at the K point reads:

H2H
K =


εcb + Ug γ3 q+ γcc q− 0

γ3 q− εvb + Ug 0 t⊥
γcc q+ 0 εcb − Ug γ3q−

0 t⊥ γ3q+ εvb − Ug

 . (7.5)

The diagonal blocks correspond to Eq. (4.5), i.e., the �rst term of the monolayer TMDC Hamil-
tonian, but we also assume that a homogeneous external electric �eld is applied which adds a
potential di�erence ±Ug between the layers. The electric �eld breaks the inversion symmetry and
will be important for the Berry curvature calculations in Sec. 7.2.

Remarks

One may note the following:

1. The o�-diagonal elements in Eqs. (7.2) and (7.4) are, strictly speaking, non-zero, but for
simplicity they have been neglected. We have checked that the DFT band structure can be
�tted very well using this model.

2. The above construction of the bilayer k · p Hamiltonian relied on the assumption that the
monolayer units are only weakly coupled at the ±K points of the BZ. The same approach
may not be useful for all high symmetry points: DFT band structure calculations indicate
that, e.g., the monolayer bands are strongly hybridised at the Γ point of bilayer TMDCs.
While it is possible to establish a k ·p Hamiltonian for the Γ point, it may not be particularly
useful to write this Hamiltonian in terms of monolayer Hamiltonians.

As we will see in Secs. 7.2, the di�erences in the crystal structure, and consequently, in the
e�ective Hamiltonians of 2H and 3R bilayers lead to important di�erences in the Berry-curvature
properties as well.
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7.2 Berry curvature calculations

We now calculate both analytically and numerically the Berry curvature Ωz(q) in the ±K valleys.
To this end we use the 4× 4 k · p models shown in Eqs. (7.3) and (7.5). As we show below, these
models allow to take into account both intralayer and interlayer contributions to Ωz(q). The
existence of both of these contributions is an interesting property of bilayer TMDCs. In bilayer
graphene, e.g., only the interlayer contribution is �nite. The analytical calculations for the Berry
curvature were obtained by deriving a perturbation series for Ωz(q). This approach allowed to
work with 2-spinors instead of the 4-spinors that are the eigenstates of the 4× 4 k · p models and
therefore made the analytical calculations easier.

In the case 3R bilayers, one can treat the interlayer coupling as perturbation which modi�es
the Berry curvature calculated for each layer separately. One �nds that Ω

(b)
z (Ω(t)

z ) for the bottom
(top) layer can be written as Ω

(b)
z ≈ Ω

(0)
z − Ω

(1,1)
z (Ω(t)

z ≈ Ω
(0)
z + Ω

(1,1)
z ), where

Ω(0)
z (q) = ±τ

2

(
γ3

δEbg

)2
1(

1 +
(
γ3|q|
δEbg

)2
)3/2

(7.6a)

is the well-known result for a gapped-graphene two-band model [118, 189]. Here |q| is the mag-
nitude of q and we used the notation δEbg = Ebg/2 for half of the monolayer bandgap. The

contribution Ω
(1,1)
z reads

Ω(1,1)
z (q) ≈ τ

(2δEll)2

λ1 ±
λ2(

1 +
(
γ3|q|
δEbg

)2
)1/2

 , (7.6b)

and it is due to the interlayer coupling. Here λ1 = γ2
cc + γ2

vv, λ2 = γ2
cc − γ2

vv and the + (−) sign
corresponds to the CB (VB).

In 2H bilayers Ωz vanishes because of the presence of time reversal and inversion symmetry, see
Sec. 1.5.1. However, by applying an external electric �eld, the inversion symmetry can be broken
and the Berry curvature will be �nite. As mentioned, the e�ect of a �nite external electric �eld
can be taken into account by an interlayer potential ±Ug in H2H

K . For the physically relevant
case of Ug � δEbg it proves to be useful to treat the intralayer coupling between the CB and
VB in each layer as a perturbation. One �nds that in the CB the Berry curvature is given by
Ωz,cb = Ω

(0)
z,cb + Ω

(1,1)
z,cb , where

Ω
(0)
z,cb(q) = ∓τ

2

γ2
ccUg(

U2
g + (γcc|q|)2

)3/2
(7.7a)

is due to the interlayer coupling of the CBs. The second contribution reads

Ω
(1,1)
z,cb (q) ≈ ±τ

2

(
γ3

δEbg

)2

λ3
Ug(

U2
g + (γcc|q|)2

)1/2
, (7.7b)

where, using the notation ε̃vb =
√
t2⊥ + U2

g , the constant λ3 is given by λ3 = 1 + 3
4

(
ε̃vb
δEbg

)2

. The

upper (lower) sign in Eqs. (7.7a)-(7.7b) and below in Eq. (7.8) corresponds to the band that have
larger weight in the layer at +Ug (−Ug) potential. Ω

(1,1)
z,cb (q) is non-zero even if we set γcc = 0,

i.e., this term describes a Berry curvature contribution due to the intralayer coupling of the CB
and the VB. One can note that the interlayer (Ω(0)

z,cb) and intralayer (Ω(1,1)
z,cb ) contributions have

opposite sign in each valley. For the VB one �nds that Ω
(0)
z,vb = 0 and the �rst non-zero term is

Ω
(1,1)
z,vb = ∓2τ

γ2
3Ug

ε̃vb(Ebg ∓ ε̃vb)2
, (7.8)
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which is in agreement with Ref. [274] for ε̃vb � Ebg.
The comparison of the analytical results given in Eqs. (7.6)-(7.8) with the results of numerical

calculations is summarized in Fig. 7.2. The numerical calculations of Ωz(q) were performed by
employing the FHS method [279] and we used material the parameters of bilayer MoS2 [276]. As
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Figure 7.2: Calculation of Ωz(q) in the K valley for a) 3R stacked, and b) 2H stacked bilayer
MoS2. Solid lines show analytical results, symbols show numerical calculations. The dashed line
indicates the Berry curvature Ω

(0)
z (q) for monolayer MoS2. The results for CBs are indicated by �

and for VBs by ©. In a), brown colour corresponds to bands in the bottom layer, purple to bands
in the top layer. In c) brown colour corresponds to the layer at −Ug potential, purple to the layer
at +Ug. In the calculations we used Ug = 10meV. Adapted from Ref. [276].

one can see the analytical and numerical results are in good agreement. It is also clear that the
Berry curvature in both types of bilayer is substantially di�erent from the monolayer case. This
shows that the contributions due to interlayer coupling, described in Eqs. (7.6b) and (7.7a), play
an important role. One can note that although the band structure of 3R and 2H stacked bilayers
look rather similar in Fig. 7.1, the comparison of Figs. 7.2(a) and 7.2(b) reveals several important
di�erences between their Berry curvature properties.

Discussion

Considering �rst the 3R bilayers, Ωz(q) is signi�cantly larger for the CB of the top layer than for
the CB of the bottom layer, while the converse is true for the VBs [Fig. 7.2(a)]. The analytical
calculations reveal that this happens because the interlayer and the intralayer contributions to
Ωz(q) are of the same order of magnitude and they can either reinforce or weaken each other. For
example, in the CB one �nds for q = 0 that Ωz,cb = Ω

(0)
z,cb + Ω

(1,1)
z,cb = τ

2 [(γ3/δEbg)
2 ∓ (γcc/δEll)

2],
where − (+) sign is for the bottom (top) layer. Therefore the interlayer coupling reduces Ωz,cb for
the bottom layer and enhances it for the top layer. We point out that an external electric �eld,
depending on its polarity, could both decrease and increase δEll. Therefore one can expect that
Ω

(1,1)
z , hence Ωz is tunable. (Note, that δEbg and hence Ω

(0)
z would be di�cult to change by electric

�eld.)
For 2H bilayers, on the other hand, the Berry-curvature is CB-coupled : its magnitude is much

larger in the CB than in the VB [Fig. 7.2(b)], independently of the layer index. This is due to the
fact that close to the ±K points, where γcc|q| � Ug, the main contribution to Ωz(q) in the CB
comes from the interlayer coupling. This contribution scales as (γcc/Ug)

2 and can be quite large
for small Ug. Therefore Ωz,cb is gate tunable, similarly to the situation in 3R bilayers. In contrast,
using Eq. (7.8) and realistic material parameters, one can expect that the Berry curvature, albeit
gate tunable, will be rather small in the VB.

The results in Fig. 7.2 clearly show the e�ect of stacking order on the Berry-curvature properties.
It is also clear that both intralayer and interlayer contributions to the Berry curvature can be
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important. Moreover, bilayers of TMDCs also o�er an example for systems, where a topological
property, in this case the Berry curvature, is tunable by external electric �eld.

7.3 Spin-orbit coupling e�ects

We start the discussion of the SOC by reminding that 2H bilayers have inversion symmetry, while
the 3R bilayers do not. A consequence of the presence/absence of inversion symmetry is that
the bands of 2H bilayers are spin-degenerate, whereas the SOC can lift the spin-degeneracy of the
bands of 3R bilayers. DFT band structure calculations which take into account the SOC are shown
in Figs. 7.1(a) and 7.1(c) for 3R and 2H bilayer MoS2, respectively. Comparing these two �gures
one can observe that the bands of 3R bilayers are split by the intrinsic SOC around the K and Q
points. Because of the presence of an additional symmetry, bands remain spin-degenerate for both
stacking along the Γ−M line.

In general, the SOC in bilayer TMDCs is more complex than in monolayers. In addition to
the SOC in the constituent monolayers, certain interlayer terms are also allowed by symmetry
considerations. However, the DFT calculations of Ref. [276] suggest that for bilayer MoS2 it is
su�cient to take into account only the intrinsic SOC of the constituent monolayers and one can
neglect interlayer SOC terms. The e�ects of the SOC in the ±K valleys are summarized in Fig. 7.3.

a)   3R, noSOC b)     3R, SOC

KK

c)   2H, noSOC d) 2H, SOC

KK

Figure 7.3: Schematic representation of SOC e�ects in the band structure of bilayer MoS2 at the
K point. a) For 3R bilayers, close to the ±K points the layer index is an approximately good
quantum number for each of the bands both in the CB and the VB. Neglecting the SOC (noSOC)
the lowest CB is mostly localized to the top layer (dashed line), while the next CB band (solid
line) to the bottom layer. The opposite is true for the two highest energy VBs. The bands are
shifted in energy due to the interlayer band edge energy di�erences 2δEcc and 2δEvv. b) When
SOC is taken into account for 3R bilayers, each of the bands becomes split and spin polarized.
Red corresponds to ↑, blue to ↓ spin polarization. The spin-orbit splitting ∆cb of the two lowest
CBs is much smaller than the inter-layer splitting δEcc. The situation is di�erent for the VBs:
here ∆vb & δEvv and therefore the spin-polarized bands have an alternating layer index. c) For
2H bilayers, if the SOC is neglected (noSOC), the two lowest energy CBs are degenerate at the
±K points and weakly split away from the ±K points due to the interlayer coupling. The energy
splitting of the two highest energy VBs is 2t⊥. Both layers contribute with equal weight to each of
the bands. d) When SOC is taken into account for 2H bilayers, there are two two-fold degenerate
and spin-unpolarized bands separated by an energy 2∆cb at the ±K point in the CB. A combined
layer and spin index can be assigned to each of the four CB bands at the ±K point, away from the
±K points both layers contribute to each of the bands, but with di�erent weights. In the VB both
layers contribute to each of the bands, even at the ±K points. Only if ∆vb � t⊥ do the bands
become approximately layer polarized [278]. Adapted from Ref. [276].
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To set the stage for Sec. 7.4, here we discuss 2H bilayers in some details. If SOC is neglected and
inversion symmetry is not broken, the CB is doubly degenerate, while the VB is non-degenerate at
the ±K point [Fig. 7.3(c)]. If now spin is taken into account but SOC is neglected, this would mean
a four-fold degeneracy of the CB. However, the SOC partially lifts this four-fold degeneracy and
leads to two-fold degenerate bands, see Fig. 7.3(d). This remaining spin-degeneracy of the bands
is due to the inversion symmetry. The SOC of 2H bilayers can be described by the Hamiltonian
H2H
so,cb = ∆cbτzσzsz (H2H

so,vb = ∆vbτzσzsz) in the CB (VB) of the bilayer. Here the Pauli matrix
σz indicates that within a given valley the SOC has a di�erent sign [278] in the two layers: this
can be understood from the fact that the layers are rotated by 180◦ with respect to each other.
Note that this form of the intrinsic SOC implies that the out-of-plane component of the spin is
conserved. In the CB the splitting between the two-fold degenerate bands is basically given by the
SOC strength 2∆cb of monolayer TMDCs. In the VB the main e�ect of the SOC is to increase the
energy splitting of the two highest bands from 2t⊥ to 2

√
∆2
vb + t2⊥.

The SOC a�ects the Berry curvature as well. The corresponding formulas can be obtained
from Eqs. (7.7a) and (7.7b) by making the substitution Ug → ∆cb and using ε̃vb =

√
∆2
vb + t2⊥ in

the expression for λ3. One can label Ωz by a spin index s =↑, ↓ and write Ω↑z,cb = Ω
(0)
z,cb + Ω

(1,1)
z,cb ,

where the upper (lower) sign appearing in Eqs. (7.7a) and (7.7b) corresponds to the band at energy
εcb + τ∆cb (εcb − τ∆cb) for q = 0. Regarding the ↓ bands, one �nds Ω↓z,cb(q) = −Ω↑z,cb(q).

7.4 Spin and Valley Hall e�ects in 2H bilayer MoS2

As discussed in Sec. 1.5, if the Berry curvature is �nite, the charge carriers can acquire an anomalous
transverse velocity component, which can give rise to various Hall e�ects in the ballistic limit. It
turns out that 2H bilayer MoS2 may host a particularly interesting scenario in this respect. Since
few-layer MoS2 on dielectric substrate is often found to be n-doped [280], we will focus on the
Hall e�ects in the CB and we restrict the discussion to the intrinsic, Berry curvature related
contribution.

Following the discussions in Sec. 1.5.2 and Sec. 1.7.2, one can de�ne the valley Hall conductivity
σvHxy,n of band n as [70]

σvHxy,n =
e2

~

∫
dq

(2π)2

[
f↑n(q)Ω↑z,n(q) + f↓n(q)Ω↓z,n(q)

]
(7.9)

where f↑,↓n (q) is the Fermi-Dirac distribution function for charge carriers with spin ↑, ↓ and Ω↑,↓z,n(q)

denotes the corresponding Berry curvatures. As mentioned above, the out-of-plane component of
the spin is a good quantum number in bilayer TMDCs. Similarly, the the contribution- to the spin
Hall conductivity σsHxy,n can be de�ned (in units of e/2, [70])

σsHxy,n =

∫
dq

(2π)2

[
f↑n(q)Ω↑z,n(q)− f↓n(q)Ω↓z,n(q)

]
. (7.10)

In the evaluation of Eqs. (7.9) and (7.10) the integration is restricted to the K valley. This assumes
that the Berry curvature is strongly peaked in the ±K valleys. Since we only study the Hall e�ects
in the CB, we will neglect the band index n in the following.

In our case the formulas for Ωz(q) were derived in Sec. 7.2 and the e�ect of the SOC was
explained in Sec. 7.3. Let us start with the qualitative discussion of the e�ects of the interlayer
potential the Ug. When Ug = 0, i.e., there is no out-of-plane external electric �eld applied, and if
the SOC is neglected, then both σvHxy and σsHxy vanishes because the Berry curvature is zero, see
Eqs. (7.7a)-(7.7b). If the SOC is not neglected, then the Berry curvature is �nite even for Ug = 0.
Since each band is spin-degenerate [Fig. 7.4(a)], f↓n(q) = f↑n(q) and one �nds that σvHxy vanishes in
this limit. However, σsHxy is non-zero. This is allowed because both the (in-plane) electric �eld and
the spin current transform in the same way under time-reversal and inversion symmetries [173].
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On the other hand, for Ug 6= 0 both σvHxy and σsHxy will be �nite. The �nite interlayer potential
di�erence leads to the breaking of inversion symmetry and splitting of the spin-degenerate bands,
see Fig. 7.4(b). Each band can be labelled by a spin index ↑, ↓ and by an index ± depending on
whether the band edge is at ±Ug potential for q = 0. When Ug = ∆cb [Fig. 7.4(c)], the (+, ↓) and
(−, ↓) bands become degenerate. This degeneracy is lifted if Ug is further increased [Fig. 7.4(d)].
As we will show below, the contribution to the Hall conductivity which is due to the interlayer
coupling changes sign going from Ug < ∆cb to Ug > ∆cb. At the −K point, by time reversal
symmetry, the (+, ↑) and (−, ↑) bands can become degenerate as a function of Ug.

Figure 7.4: Schematic evolution of the four low-energy CB bands as a function of the interlayer
potential Ug at the K point of the BZ. Spin-degenerate bands are shown with purple, ↑ polarized
with red and ↓ polarized with blue. Solid line corresponds to bands at +Ug, dashed line to bands
at −Ug potential. Adapted from Ref. [276].

In the following we will assume that EF > 2(Ug + ∆cb) for all Ug values considered, i.e., EF is
large enough so that both layers and all four low-energy CBs are occupied and contribute to the
valley and spin Hall e�ects. In MoS2, given the relatively small ∆cb ≈ 3meV value of the SOC, we
expect that this situation is realistic. Moreover, we assume that Ug 6= ∆cb and that EF is of the
order of few tens of meV. The latter condition ensures that it is su�cient to consider only the ±K
valleys, see below the discussion on the Q valleys. The case Ug = ∆cb requires slightly di�erent
considerations [276] because two bands become degenerate [Fig. 7.4(c)]. Under the above listed
assumptions and after summing up the contributions of all four bands shown in Fig. 7.4, one �nds
that

σvHxy ≈
e2

~

[
εcc
2π

Ug
U2
g −∆2

cb

− ρ2dUg

(
γ3

δEbg

)2

λ4(Ug)

]
, (7.11)

and

σsHxy ≈ −
[
εcc
2π

∆cb

U2
g −∆2

cb

+ ρ2d∆cb

(
γ3

δEbg

)2

λ4(Ug)

]
. (7.12)

Here εcc = 2meff

~2 γ2
cc, ρ2d = meff/2π~2 is the 2D density of states per spin and valley, and λ4(Ug) =(

1 + 3
4

∆2
vb+t

2
⊥+U2

g

δE2
bg

)
.

One can see that σvHxy vanishes for Ug → 0, but σsHxy remains �nite. When Ug ≈ ∆cb the �rst
term on the r.h.s of Eqs. (7.11) and (7.12), which is related to the interlayer contribution to the
Berry curvature, is larger than the second term. Moreover, this term changes sign as Ug is changed
from Ug < ∆cb to Ug > ∆cb and one can expect that this leads to a sign change in σvHxy and
σsHxy . It is interesting to note that in lattice Chern insulators such a sign change of the o�-diagonal
conductivity was associated with a topological transition [126, 281]. In our case the sign change
of σvHxy and σsHxy happens when the ↓ (↑) bands become degenerate at the K (−K) point and then
the degeneracy is lifted again as the amplitude of the electric �eld is increased further. However,
the true band gap of the system, between the VB and CB, does not close, nor does the gap close
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and re-open for the (↑,+) and (↑,−) bands. Therefore i) σvHxy and σsHxy are not quantized, and ii)
those contributions to σvHxy and σsHxy , which are related to the intralayer coupling of the CBs and
the VBs, do not change sign as a function of Ug.

The Q valleys

As one can see in, e.g., Figs. 7.1(a) and (b), the local minimum of the CB at the Q points of the
BZ is almost degenerate with the K valley. According to the DFT band structure calculations of
Ref. [276], the band edge is at the ±K point for both stackings, but the di�erence δEQK between
the band edge at the ±K and Q points is only δEQK ≈ 10meV. Regardless of the exact value
of δEQK in DFT calculations, it is of interest to understand if the six Q valleys can a�ect the
valley Hall conductivity. The calculations of Ref. [282] indicate that the Berry curvature is very
small at the Q point of monolayer TMDCs, therefore it is only the inter-layer contribution that
needs to be considered in bilayers. To this end we derived a k · p Hamiltonian for the Q points
as well. However, we found that the Berry curvature is signi�cantly smaller in the Q valley than
in the K valley for bilayer MoS2. Therefore, as long as intervalley scattering between the K and
Q valleys is not strong, the Q valleys should have only a minor e�ect on the valley Hall and spin
Hall conductivities.

7.5 Summary

In summary, we have studied the Berry curvature properties and the corresponding and the valley
and spin Hall conductivities of bilayer TMDCs, in particular, of bilayer MoS2. We have considered
both 3R and 2H stacked bilayers and found intralayer as well as interlayer contributions to the
Berry curvature. Such a situation, where both types of contributions are �nite, has not been
discussed before for layered materials. We pointed out that the stacking order has important
e�ects on the Berry curvature. Due to the interlayer contribution, the Berry curvature is gate
tunable. We studied the consequences of the Berry curvature for n-doped 2H MoS2 bilayers. We
found that the valley Hall conductivity is �nite if the inversion symmetry is broken by an out-of-
plane external electric �eld. Furthermore, if the intrinsic SOC of the constituent layers is taken
into account, the spin Hall conductivity is also �nite. Regarding the valley and spin Hall e�ects,
the interplay of SOC and �nite interlayer potential can lead to a change in the sign of the interlayer
contribution, while the intralayer contribution does not change sign. These results highlight the
e�ects of stacking order, intralayer and interlayer couplings of the energy bands in shaping the
Berry curvature properties of a material. One can expect that these �ndings can be relevant for a
wide range of van der Waals materials.

The results presented in this chapter were published in Ref. [276].
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Chapter 8

Induced spin-orbit coupling in

twisted graphene-TMDC

heterobilayers

As we discussed in Sec. 1.6.1, experiments on TMDC/graphene heterostructures have found clear
evidence of induced SOC in the graphene layer. This �nding was also supported by early DFT
calculations of Refs. [139, 144, 145]. A direct comparison of [139, 144, 145] and the measurements
discussed in Sec. 1.6.1 is not straightforward, among others, because in contrast to the theoretical
calculations, in the experiments the layers were not intentionally aligned. In general, there is a
twist angle between the graphene and the TMDC layers in the prepared samples, as observed
e.g., in Ref. [146]. This detail was not considered in the early theoretical calculations: they
assumed perfectly aligned layers. One may expect that the twist angle can a�ect the strength
of the induced SOC. This could be one of the reasons why the SOC strength extracted from the
measurements varied quite a lot between di�erent experiments (other reasons can be the di�erent
sample preparation methods and di�erences in the assumptions that were used to interpret the
measurements). Indeed, a recent development in the �eld of atomically thin materials has been
the understanding that a rotation angle between the layers can have a profound e�ect on the
electronic properties [28, 29]. This has given rise to the �ourishing �eld of �twistronics�, which
aims to understand how the twist angle can be used to tailor the properties of the heterostructures
of atomically thin materials.

In the following, we present our theoretical work on the microscopic mechanism and interlayer
twist angle dependence of the induced SOC in graphene/TMDC heterostructures. As we will show,
the interlayer twist angle can be an important tool to tune the induced SOC in graphene.

8.1 Hamiltonian of the graphene/TMDC heterostructure

We consider a heterostructure consisting of a monolayer graphene and a monolayer TMDC. As
shown in Fig. 8.1(a), there can be an arbitrary twist angle θ between the layers. We will describe
the induced SOC in terms of virtual band-to-band tunneling between graphene and the monolayer
TMDC substrate. This perturbation approach is motivated by previous DFT calculations [144, 145]
which show that the Dirac point of the graphene layer can be found in the band gap of the TMDC
layer and the linear dispersion of graphene close to the Dirac point is preserved, see Sec. 1.6.1.
The total Hamiltonian has three parts, describing the isolated graphene and TMDC layers and the
interlayer tunneling, respectively: Htot = Hgr +Htmdc +HT. We assume that in graphene/TMDC
heterostructures the relaxation of the graphene and/or TMDC lattice can be neglected. Therefore
one can use the Bloch states of the graphene and the TMDC layers to investigate the e�ects of the
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Figure 8.1: a) Schematics of a twisted graphene/TMDC bilayer with twist angle θ between the
layers. The orientation of the coordinate systems x− y (x′ − y′) is �xed to the graphene (TMDC)
layer. b) The Brillouin zone (BZ) of graphene (purple) and the TMDC (orange) for a �nite
twist angle. Backfolded TMDC BZ vectors satisfying the quasi-momentum conservation for the
rotated Dirac point of graphene Kθ are also shown. The dashed lines indicate the full paths of
the backfolded vectors in the range of twist angles θ ∈ [0, π/3]. Adapted from Ref. [283].

weak tunneling between the layers.

Interlayer tunneling

Following the approach of Ref. [284], one �nds that the interlayer tunneling matrix element
UXb(k,k

′) = gr 〈X,kθ|HT |b,k′〉tmdc between orbital X of graphene and band b of the TMDC
reads

UXb(k
θ,k′) =

∑
G,G′

δkθ+Gθ,k′+G′tb(k
′ +G′)× eiGθ·(tθX+r0)−iG′·tX′ . (8.1)

Here we used the following notations. r0 denotes a possible shift between the graphene and the
TMDC layers, and tX (tX′) are vectors pointing to orbital X (X ′) in the graphene (TMDC) unit
cell. kθ is a wavenumber in the �rst Brillouin zone (BZ) of graphene and k′ is in the �rst BZ
of the TMDC. G, G′ are reciprocal lattice vectors of graphene and TMDC, respectively. In the
derivation of Eqs. (8.1) the Slater-Koster two-center approximation [285] has been used, whereby
the tunneling matrix element between orbitals that can be found at positionsRθ

X andRX′ depends
only on (Rθ

X −RX′), i.e., 〈Rθ
X |HT |RX′〉 = TXX′(R

θ
X −RX′). The Fourier transform of TXX′(R)

will be denoted by tXX′(q). The state of an electron in band b of the TMDC can be written as
a linear combination of single orbital Bloch states: |b,k′〉tmdc =

∑
X′ cbX′(k

′) |X ′,k′〉tmdc. Here
X ′ runs over the relevant atomic orbitals of the TMDC and the complex amplitudes cbX′(k′) are
di�erent for each band b. In real space, we take into account tunneling processes between graphene
and the closest layer of chalcogen atoms in the TMDC. This approximation allows to obtain a
simple and e�ective parametrization of the interlayer tunneling using just two real parameters, as
shown below in Eq. (8.4). We note that this approximation can be extended to take into account
the tunneling between graphene and the metal atoms of the TMDC layer in a straightforward
way [283]. Since we assume that the tunneling to the d atomic orbitals is suppressed, the sum
over atomic orbitals in the expression of |b,k′〉tmdc runs over the three p orbitals of the nearest
chalcogen layer when one calculates UXb(kθ,k′). Accordingly, the Fourier transform tb(k

′+G′) of
the tunneling amplitude between orbital X of graphene and band b of the TMDC reads

tb(k
′ +G′) =

∑
X′

cbX′(k
′) tX′(k

′ +G′). (8.2)

               andorkormanyos_7_22



85

This quantity does not depend explicitly on X, because both atomic orbitals taken into account
in the unit cell of graphene are of the same kind.

The term δkθ+Gθ,k′+G′ expresses quasi-momentum conservation and its meaning is further
explained in Fig. 8.1(b). If the graphene layer is rotated with respect to the TMDC layer by a
twist angle θ, the BZ of graphene is also rotated. Since the relevant low energy states in graphene
are at the τK points of the BZ and assuming low doping one may take kθ = τKθ. It was pointed
out in Refs. [34, 284] that one can expect |tb(q)| to decay very fast as function of |q|. This can be
used to restrict the summation in Eq. (8.1) to only three terms, as we now explain. Namely, one
may consider only those vectors k′ in the TMDC BZ that respect the quasi-momentum conservation
τKθ +Gθ = k′ +G′ such that |k′ +G′| is minimal. For these k′ +G′ vectors the corresponding
|tb(k′+G′)| will be the largest. These two conditions, i.e., quasi-momentum conservation and that
|k′ +G′| is minimal, are satis�ed for three distinct vectors τk′j , j = 1, 2, 3 of the TMDC BZ, see
Fig. 8.1(b). The τk′j vectors are related by 2π/3 rotations.

For later reference we introduce the the tunneling matrix(
T (τk′j)

)
Xb

= eiτG
θ
j ·r0tb(τk

′
j)e

iτφXj , (8.3)

where the phase φXj is de�ned as φXj = tθX ·Gθ
j . One can show that the band tunneling strength in

Eq. (8.2) can be parameterized by two real numbers, t‖ and t⊥. For an arbitrary interlayer twist
angle θ it can be written in the following way:

tb(τK
θ) = iτ [cbx(τk′1) cos θ + cby(τk′1) sin θ] t‖ + cbz(τk

′
1) t⊥. (8.4)

In order to compute the band tunneling strength, Eq. (8.4) requires the knowledge of the amplitudes
cbp(τk

′
j), p = x, y, z, which are intrinsic properties of the TMDC. We have obtained their values

for MoS2 from the tight-binding model of Ref. [73]. Finally, using DFT calculations of aligned
graphene/MoS2 structures [144], one can estimate t‖ ≈ t⊥ ≈ 100 meV.

Bilayer Hamiltonian

Using the results of Sec. 8.1 one can set up the following Hamiltonian for the graphene/TMDC
heterostructure:

H =


Hgr,θ
τK (δk) T (τk′1) T (τk′2) T (τk′3)

T †(τk′1) Htmdc
τk′1

(δk) 0 0

T †(τk′2) 0 Htmdc
τk′2

(δk) 0

T †(τk′3) 0 0 Htmdc
τk′3

(δk)

 . (8.5)

Here δk is a small displacement, |δk| � |K|, measured from the backfolded vectors τk′j . H
gr,θ
τK (δk) =

e−iτz
σz
2 θHgr

τK(δk)eiτz
σz
2 θ is the rotated graphene orbital Hamiltonian, whereHgr

τK(δk) = vF (τzσxδkx−
σyδky), see Sec. 1.2.1. Note, that we express the Hamiltonian Eq. (8.5) in the coordinate system
aligned with the TMDC layer [see Fig. 8.1(a)]. Htmdc

τk′j
(δk) denotes the Hamiltonian of the TMDC

and contains the dispersion of those bands that we take into account, e.g., in the simplest case the
VB and the CB. The dispersion of the bands can be obtained, e.g., using the k ·p method or taken
from TB calculations. In our work Htmdc

τk′j
(δk) also includes the e�ects of the intrinsic SOC of the

TMDC on the band structure. We used the TB model of Ref. [73] to obtain Htmdc
τk′j

(δk). Finally,

T (τk′j) are interlayer tunneling matrices describing the tunneling from the τKθ point of graphene
to the τk′j points of the TMDC BZ for each band b taken into account in Htmdc

τk′j
. They were de�ned

explicitly in Eq. (8.3). We use the approximation where the tunneling matrices do not depend on
the value of the small wave vector δk and assume spin-independent tunneling, therefore T (τk′j) is
diagonal in spin space.
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8.2 Analytical results for the induced SOC

The bilayer Hamiltonian (8.5) can serve as a starting point for further perturbation theory steps.
The small parameters in the perturbation theory are the interlayer tunneling amplitudes tb(τk′j).
As we show below, these calculations can help to understand how the intrinsic properties of the
monolayer TMDC determine the induced SOC in graphene.

One may use the Löwdin partitioning to derive an e�ective graphene Hamiltonian

Hgr,θ
eff = e−iτz

σz
2 θHgr

τK(δk)eiτz
σz
2 θ +Hgr

R +Hgr
vZ , (8.6)

where Hgr
R and Hgr

vZ denote the Hamiltonian of the induced Bychkov-Rashba and valley Zeeman
SOC. One may also perform a unitary transformation eiτz

σz
2 θHgr,θ

eff e−iτz
σz
2 θ, which leaves HvZ

unchanged and one �nds

Hgr
eff = Hgr

τK(δk) + eiτz
σz
2 θHgr

R e
−iτz σz2 θ +Hgr

vZ . (8.7)

valley Zeeman SOC

Using second-order perturbation theory the correction to the graphene Hamiltonian reads

δHgr,τ
Xs,X′s =

∑
j,b

[T (τk′j)]X,b [T (τk′j)]
†
b,X′

Egr
D − Etmdc

bs (τk′j + δk)
, (8.8)

where X,X ′ = A,B refers to the graphene sublattices, s =↑, ↓ is the spin index. The energy of the
Dirac point of graphene is denoted by Egr

D and without the loss of generality, one can �x Egr
D = 0.

Etmdc
bs (τk′j + δk) is the energy of band b of the TMDC at the BZ point τk′j + δk and s is the spin

index. Note, that since the tunneling matrices [T (τk′j)]X,b are spin-preserving, δH
gr,τ
X↑,X′↓ = 0.

By expanding Etmdc
bs up to linear order in δk one can show that the diagonal matrix elements

X = X ′ describe the induced valley Zeeman type SOC in graphene:

HvZ = λvZ τsz, (8.9)

where sz is a Pauli matrix for spin. The SOC strength λvZ is given by

λvZ = 3
∑
b

|tb(τKθ)|2∆0,b(k
′
1)

E2
b (k′1)−∆2

0,b(k
′
1)
, (8.10)

where Eb(k′1) is the energy of band b (ignoring SOC) computed with respect to the Dirac point
of graphene. Furthermore, ∆0,b(k

′
1) is the spin-orbit splitting of band b at k′1 due to the diagonal

part of the intrinsic SOC of the TMDC, see Sec. 4.1.2. According to Eq. (8.10), the strength of
the induced valley Zeeman SOC has three main contributions from each band b: it is proportional
to the magnitude square of the tunneling strength |tb|2 and to the spin splitting ∆0,b, while it is
inversely proportional to the energy di�erence E2

b −∆2
0,b. The induced valley Zeeman type SOC

can be understood as follows: the bands of the TMDC layer are, in general, spin-split due to the
intrinsic SOC of the TMDC and this is then imprinted on the bands of the proximity graphene
layer as well. Eq. (8.10) shows explicitly how λvZ depends on the intrinsic properties of the TMDC
substrate and the twist angle θ between the layers. Namely, θ determines the wavenumber k′1 and
as well as the tunneling strength tb(τKθ) through Eq. (8.4). As a simple example, in Fig. 8.2 we
show how ∆0,b(k

′
1) and the tunneling amplitudes to the CB and VB change as a function of θ for

MoS2. We defer the numerical calculations of λvZ to Sec. 8.3.
We note that the o�-diagonal elements X 6= X ′ of Eq. (8.8) describe the renormalization of

graphene's Fermi velocity due to the coupling to the TMDC layer. We found that this is a small
e�ect and therefore do not discuss it here.
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a) b)

c) d)

Figure 8.2: Spin-orbit splitting in the (a) conduction and (b) valence band of MoS2 in the whole
BZ. Blue (orange) arcs indicate the paths of the three backfolded vectors k′j (−k′j) for Dirac point
K (−K). c) Spin-orbit splitting along the blue paths in (a) (green line) and in (b) (purple line).
d) |tb(τKθ)|2 for a tunneling process between graphene and the CB (green line) and VB (purple
line) of MoS2. Adapted from Ref. [165].

Bychkov-Rashba SOC

Traditionally, the Rashba SOC in graphene was understood in terms of the symmetry breaking
e�ect of a perpendicular electric �eld [286, 138]. However, the DFT calculation of Ref. [145]
indicated that a �nite Bychkov-Rashba SOC is induced in graphene in graphene/TMDC bilayers
even if the external electric �eld is zero. We show that this can be understood in terms of virtual
interlayer tunneling processes that are facilitated by o�-diagonal spin-�ipping elements of the
intrinsic SOC matrix of the TMDC layer. In general, such matrix elements can be non-zero
between pairs of bands if one of the bands is symmetric (even) and the other one is antisymmetric
(odd) with respect to re�ection on the horizontal mirror plane of the TMDC. We have already
encountered such matrix elements in Sec. 4.1.2, in the context of the SOC Hamiltonian at the ±K
point of the BZ.

The Hamiltonian of the induced Bychkov-Rashba type SOC can be obtained from third-order
perturbation theory:

(δHgr
R )Xs,X′s′ =

∑
j,b,b′,s′′,s′′′

(
T (τk′j)

)
Xs,bs′′

(Hsoc)bs′′,b′s′′′
(
T †(τk′j)

)
b′s′′′,X′s′

[Egr
D − Etmdc

b (τk′j)][E
gr
D − Etmdc

b′ (τk′j)]
. (8.11)

where s, s′, s′′ are spin indices, b 6= b′ are band indices running over the bands of the TMDC layer
and (Hsoc)bs,b′s′ denotes spin-�ip o�-diagonal elements of the intrinsic SOC matrix. The details
of the calculations for Hgr

R can be found in Ref. [165, 283]. One can show that the Hamiltonian of
the induced Rashba SOC can be written as

Hgr
R = −λR(k′1)

2
ei
sz
2 ϑR(k′1) (τzσxsy + σysx) e−i

sz
2 ϑR(k′1). (8.12)

This form of Hgr
R was also obtained in Ref. [164]. As one can see, the Bychkov-Rashba type SOC

is characterized by two constants: λR(k′1) and ϑR(k′1). λR(k′1) denotes the strength of the induced
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SOC. ϑR(k′1) is quantum phase which depends on the interlayer tunneling and on the spin-�ip o�-
diagonal matrix elements of the intrinsic SOC of the TMDC. Note that both λR(k′1) and ϑR(k′1)

depend implicitly on the interlayer twist angle θ through k′1. Similarly to Eq. (8.10), one can
derive explicit expressions for λR(k′1) and ϑR(k′1) in terms of the interlayer tunneling and the band
structure of the TMDC layer. They are rather complicated and hence not shown here, but can be
evaluated numerically and the results will be reported in Sec. 8.3.

The terms containing ϑR appear because for a general interlayer twist angle the symmetry of
the heterostructure is lowered from C3v to C3. Thus, the form of the Bychkov-Rashba Hamiltonian
given in Eq. (8.11) is valid not only for graphene/TMDC heterostructures, but for a wide range of
twisted heterostructures consisting of hexagonal layers. This includes heterostructures of graphene
with semiconductor [287, 288], ferromagnetic [289], and topological insulator [290, 291] structures.
However, the physical signi�cance of ϑR was not appreciated before and the relation of ϑR to the
interlayer twist angle θ was not discussed. Our numerical calculations for graphene/TMDC twisted
bilayers indicate that ϑR can acquire �nite values, see Sec. 8.3. It is important to note that for
θ = lπ/6, l = 0, 1, 2 . . . the vertical mirror planes of the graphene and the TMDC lattice line up
and the system, as a whole, has C3v symmetry. One can show that in this case HR simpli�es to
HR = (−1)n+1 λR(θ)

2 (τzσxsy − σysx), where n is an integer. This is the form of HR which was
used previously in the literature [162, 145]. We found that the integer n can be, in general, both
even and odd [see Fig.8.5], which means that λR(θ) can acquire a negative sign as θ is changed.

As already mentioned above Eq. (8.7), it is convenient to change to the coordinate system �xed
to the graphene layer using the transformation e−iτz

σz
2 θHgr

R e
iτz

σz
2 θ. From the explicit form of the

transformed Rashba Hamiltonian one �nds that the non-zero matrix elements are ∝ λRe±i(ϑR+θ),
i.e., the sum of the geometric angle θ and the quantum phase ϑR plays an important role. Looking
at Eqs. (8.12) and (8.7) one may get the impression that the phase factors e±i(ϑR+θ) are not
important because they come about due to a unitary transformation. Indeed, the phase factors
e±i(ϑR+θ) do not change the band structure. However, one can easily show that when ϑR+θ 6= nπ,
the spin-orbit �eld s(q) = (〈ŝx〉, 〈ŝy〉, 〈ŝz〉)T is not tangential to the Fermi surface, which is the
case for the usual Bychkov-Rashba SOC. However, the orientation of s(q) can have a concrete
physical consequence and we will comment on this in Sec. 8.3.

8.3 Numerical calculations

In Sec. 8.1 we introduced a simpli�ed model whereby the interlayer tunneling between the graphene
and the TMDC layer depended only on the p atomic orbitals of the nearest chalcogen layer. This
model can be extended to take into account the tunneling between graphene and the the d orbitals
of the metal atoms of the TMDC layer as well. In the numerical calculations shown below both
type of tunneling was taken into account, for details see Ref. [283].

In addition to tunneling amplitudes tb(τk′j), there are further parameters that enter the nu-
merical calculations, which we now brie�y discuss.

� The value of the band gap Eg of the TMDC. One can take Eg either from experiments
(when available) or from previous theoretical works. We use the TB model of Ref. [73]
to calculate the band structure, the SOC Hamiltonian matrix elements and the interlayer
tunneling amplitude, therefore we also used the Eg of this model. Although this model itself
is based on DFT calculations, the value of Eg is di�erent from what one can extract from
the calculations of Ref. [145] that were performed for MLG/TMDC supercells. For example,
in the case of MoS2 the model of Ref. [73] has a band gap that is 17% larger than the
corresponding Eg given in Ref. [145]. See Table 8.1 for the Eg values used in this work.

� The position of the Dirac point of graphene within the band gap of the TMDC. We describe
the energy of the Dirac point of graphene in the band gap of the TMDC by a number
fG ∈ [0, 1]. The value of fG is a linear function of the position of the Dirac point in the

               andorkormanyos_7_22



89

TMDC band gap. When fG = 0, the Dirac point is aligned with the TMDC valence band
edge, for fG = 1 the Dirac point has the same energy as the TMDC conduction band edge.
We used the fG values taken from DFT calculations, when available, its value could also be
taken from experiments [146, 147]. See Table 8.1 for the fG values used in this work.

� The number of bands in the model for the TMDC layer. The explicit expression to calculate
λvZ involve a sum over the contributions of TMDC bands, see Eq. (8.10). Similarly, in order
to calculate ϑR and λR, one needs to sum over pairs of even (e) and odd (o) bands. In
Ref. [165] we used the approximation that only the CB and the VB were taken into account
for λvZ , and three pairs of e-o bands for λR. As it is shown in Sec. 8.3.1 below, this already
leads to qualitatively good results in many cases. It turns out [283] that due to band crossings
and near-degeneracies of certain e bands, more pairs of e and o bands need to be taken into
account in the calculation of λR for θ ≈ π/6. The TB model that we use involves 11 bands
of the TMDC layer. Unless otherwise indicated, we use the contributions of all 11 bands to
calculate λvZ , and 30 pairs of e and o bands for the ϑR and λR calculations.

� The TB model of the TMDC. We note that a comparison of the DFT band structure calcu-
lations and the corresponding results of the TB model indicates that the TB model is less
accurate for the bands above the band gap [73]. This can add further uncertainty to the re-
sults, especially in the case graphene/MoS2, where fG = 0.974, i.e., the relative contributions
of e-o band pairs above Eg is larger than the contribution coming from the valence bands.

Eg (DFT) Eg (exp) fG (DFT) fG (exp)
MoS2 1.807 eV[73] 2.0 eV[146] 0.974 [145] 0.55 [146]
WSe2 1.638 eV[73] 1.95 eV[147] 0.161 [145] 0.426 [147]

Table 8.1: Band gap Eg and MLG Dirac point energy position fG parameters extracted from DFT
calculations and angle resolved photoluminescence (ARPES) experiments.

8.3.1 Twist angle dependence of λvZ and λR

We now present the results of numerical calculations for λvZ and λR. We consider two heterostruc-
tures, MLG/MoS2 and MLG/WSe2.

In Fig. 8.3(a) we show calculations for λvZ vs θ for graphene/MoS2 using the DFT parameters
for Eg and fG (see Table 8.1). The dashed curve in Fig. 8.3(a) corresponds to the case when only
the p atomic orbitals of the chalcogen atoms are taken into account in the interlayer tunneling and
the summation in Eq. (8.10) is restricted to the CB and the VB. The thin solid line is obtained by
considering both the p orbitals of the chalcogen atoms and the d orbitals of the metal atoms in the
interlayer tunneling and, as in the previous case, only tunneling to the VB and the CB is taken
into account. The thick solid line shows the result when contributions of all 11 bands of the TB
model are summed up in the evaluation of Eq. (8.10). As one can see, the λvZ vs θ dependence
is qualitatively the same in all three cases. The results suggests that λvZ is highly tunable by the
interlayer twist angle θ and going from θ = 0 to θ ≈ 20◦ it is signi�cantly increased. The peak in
λvZ around θ = 20◦ is expected for multiple reasons. First of all, note that for the particular fG
value used in the calculations, the dominant contribution to λvZ comes from the CB of the TMDC
layer. Close to θ = 20◦ both the spin splitting ∆0,c(k

′
1) and tunneling strength tc(Kθ) reach their

largest absolute values, see Figs. 8.2(c) and (d), respectively. For ∆0,c(k
′
1) this happens because

the backfolded points k′j in the TMDC BZ can be found very close to the Q valley of the CB, which
has large spin splitting. Moreover, the energy distance between the Dirac point of graphene and
the bottom of the Q valley is also smaller than for other k′1 points in the BZ. These consideration,
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Figure 8.3: a) λvZ and b) λR for MLG/MoS2 as a function of interlayer twist angle θ using the
DFT parameters given in Table 8.1. Di�erent lines correspond to di�erent tunneling amplitudes
and number of bands in the calculations, see text for details. Adapted from Ref. [283].

together with Eq. (8.10) can explain the enhancement of λvZ for θ = 20◦. On the other hand, λvZ
vanishes for θ = 30◦. In this case the backfolded points k′j lie on the Γ�M line [see Fig. 8.2(a)-(b)]
and the spin-orbit splitting of all TMDC bands is zero along this line.

In Fig. 8.3(b) we show similar calculations for λR vs θ, using the DFT parameters for Eg
and fG. The meaning of the dashed and thin solid lines is the same as in Fig. 8.3(a) and the
contribution of three pairs of even and odd bands have been used. The larger tunneling strength
when both types of tunneling is taken into account leads to overall larger values of λR, but the θ
dependence of the two results agree, including the deep minimum at θ = 30◦. However, when all
possible even-odd pairs of bands are included in the calculation (thick solid line), this minimum
becomes a small dip and the value of λR is signi�cantly enhanced. This happens because of band
crossings and near-degeneracies of certain e bands which means that more pairs of e and o bands
need to be taken into account.

The above discussions illustrate how the interlayer tunneling, band-edge energy di�erence, the
band structure and the intrinsic SOC of the TMDC layer determine the twist angle dependence of
the induced SOC in graphene.

Figure 8.4: a) λvZ and b) λR for MLG/WSe2 as a function of interlayer twist angle θ using the
DFT parameters given in Table 8.1. Adapted from Ref. [283].

Similar calculations to the MLG/MoS2 case can also be performed for MLG/WSe2. The twist
angle dependence of λvZ and λR are shown in Fig. 8.4. Contributions from all bands or pairs of
bands of the TB model are taken into account. Importantly, one can see that both λvZ(θ) and
λR(θ) are di�erent from the corresponding results of the MLG/MoS2 heterostructure shown in
Fig. 8.3. For example, λvZ(θ) is a roughly monotonous function of θ and it does not have a large
peak at θ ≈ 20◦. This is mainly due to the fact that the Dirac point of graphene is closer to the
VB of WSe2 and we used fG = 0.161 in these calculations versus fG = 0.976 in Fig. 8.3. Therefore
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in this case the valence bands give larger contributions to the induced SOC.

8.3.2 Twist angle dependence of ϑR

The results for the ϑR + θ vs θ dependence for MoS2 and WSe2 are shown in Figs. 8.5(a) and (b),
respectively. We used the parameters given in Table 8.1. In the case of MLG/MoS2 one can see

Figure 8.5: Twist angle dependence of ϑR and the spin-orbit �eld s(q). a) and b) ϑR + θ as
a function of θ for MoS2 and WSe2, respectively. Blue (red) curves were calculated using DFT
(experimental) parameters, see main text for details. s(q) for c) θ = 0, d) θ = 7◦ and e) for θ = 15◦,
using the ϑR vs θ dependence shown in Fig. 8.5(b). The green circles indicate the Fermi surfaces
for the two spin subbands. s(q) lies in the plane if only Rashba SOC is induced in graphene (black
arrows), whereas it acquires a non-zero 〈ŝz〉 component if the valley Zeeman type SOC is �nite as
well (blue and red). Adapted from Ref. [283].

that ϑR + θ remains in a limited range around π as θ varies from 0 to π/3 [Fig. 8.5(a)] when the
DFT parameter set is used. However, for parameters extracted from ARPES measurements ϑR+θ

covers the entire range [0, 2π]. For MLG/WSe2 one �nds that ϑR + θ covers the whole range of
[0, 2π] [Fig. 8.5(b)] and the results obtained from the two parameter sets qualitatively agree. The
di�erence between the results for the two materials is mainly due to the di�erent energy alignment
of the Dirac point in the TMDC band gap.

In Figs. 8.5(c)-(e) we show the calculations for the spin-orbit �eld s(q) = (〈ŝx〉, 〈ŝy〉, 〈ŝz〉)T as a
function of θ. We considered two cases: i) when both the Bychkov-Rashba and the valley Zeeman
SOC is taken into account and therefore all three components of s(q) are non-zero, ii) only the
Bychkov-Rashba SOC is considered, which means that 〈ŝz〉 = 0 and 〈ŝx〉, 〈ŝy〉 6= 0. When θ = lπ/6,
l = 0, 1, 2 . . . then the heterostructure has a C3v symmetry and (〈ŝx〉, 〈ŝy〉)T is perpendicular to the
wave vector q [Figs 8.5(c)]. This is the case known from numerous studies on 2DEG. However, for
a general θ this is not any more the case, and the vector (〈ŝx〉, 〈ŝy〉)T is rotated by an angle ϑR+ θ

with respect to the tangential direction. This means that it has both tangential and perpendicular
component to the Fermi surface and according to our calculations even a �hedgehog�-like spin
polarization shown in Fig. 8.5(e) can occur.

We note that recently two experimental works [292, 293] based on charge-to-spin conversion
type experiments have reported observations which suggest that the spin polarization can indeed
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be of the more general type shown in Fig. 8.5(d).

8.4 Quantum interference e�ects in trilayers

Our methodology makes it possible to study twisted TMDC/graphene/TMDC trilayers as well,
which would be di�cult by other methods. In such trilayer structures there are in general two
twist angles, denoted by θ(b) and θ(t), for the bottom and top TMDC layers. This allows an even
broader control of the induced SOC in graphene.

Since the layers are only weakly coupled, the e�ective graphene Hamiltonian isHgr
eff = HτK(δk)+

H
(t)
soc + H

(b)
soc, where the indices t and b refer to the contribution of the top and bottom TMDC

layers, respectively. Note, that H(b)
soc = H

(b)
vZ + H

(b)
R and H(t)

soc = H
(t)
vZ − H

(t)
R , i.e., H(b)

R and H(t)
R

have a di�erent sign. As a simple physical explanation, consider the case when the two TMDC
layers are perfectly aligned and θ(b) = θ(t). Then the graphene layer corresponds to a horizontal
mirror plane of the whole stack, which dictates that the Rashba SOC must vanish.

One can de�ne the complex Rashba coe�cient for the trilayer system (tls) by

λ̄
(tls)
R = λ

(b)
R e

i
(
ϑ

(b)
R +θ(b)

)
− λ(t)

R e
i
(
ϑ

(t)
R +θ(t)

)
, (8.13)

and we introduce the notations λ(tls)
R =

∣∣∣λ̄(tls)
R

∣∣∣ and ϑ(tls) = Arg
[
λ̄

(tls)
R

]
. In terms of these quantities

the induced Rashba type SOC can be written as H(tls)
R =

λ
(tls)
R

2 ei
sz
2 ϑ

(tls)

(τzσxsy − σysx) e−i
sz
2 ϑ

(tls)

.
An important consequence of the phase ei(ϑR+θ) discussed for bilayers is that the strength λ(tls)

R

of the induced Bychkov-Rashba SOC in trilayer stacks can be a�ected by quantum interference
e�ects if ϑ(b)

R +θ(b) and/or ϑ(t)
R +θ(t) are non-zero. This can be interpreted as an interference of the

virtual hopping processes to the two TMDC layers that give rise to the induced Rashba SOC. Thus,

Figure 8.6: Calculations of the induced Bychkov-Rashba SOC for TMDC/graphene/TMDC tri-
layers as a function of the twist angles θ(t) and θ(b). a) and b) λ(tls)

R for two-sided encapsulation
of graphene by MoS2 and WSe2, respectively. c) and d) the angle ϑ(tls) for MoS2 and WSe2 two-
sided encapsulation. We used parameters from DFT band structure calculations. Adapted from
Ref. [283].

λR can be changed not only by external electric �eld, known from studies on 2DEG [216, 294], or
by pressure, as it has recently been demonstrated for graphene/TMDC proximity structures [295],
but in trilayers λR can also be e�ected by quantum interference e�ects. In Fig. 8.6 we show the
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results of numerical calculations for λ̄(tls)
R as a function of the twist angles θ(t) and θ(b). As one can

see in Figs. 8.6(a) and (b), there are extended regions where λ(tls)
R is very small. This is due to the

fact that for those twist angles the λR and ϑR contributions of both layers change slowly and they
approximately cancel in Eq. (8.13). Regarding the phase ϑ(tls), the apparent lines Figs. 8.6(c) and
(d) correspond to λ(tls)

R = 0, where ϑ(tls) is not de�ned.

Experimental detection of the induced SOC in trilayers

We now brie�y outline one of the possible approaches that can help to detect the twist angle
dependence of the induced SOC in TMDC/graphene/TMDC heterostructures. It is based on the
measurement of the anisotropy of the out-of-plane τ⊥ and in-plane τ‖ spin lifetimes. As already
mentioned in Sec. 1.6.1, assuming a strong intervalley scattering in graphene, the ratio of the spin
lifetimes in a graphene/TMDC bilayer is given by τ⊥/τ‖ = (λvZ/λR)2(τiv/τp)+1/2, where τiv (τp)
is the intervalley (momentum) scattering time [155]. Taking now, e.g., a WSe2/graphene/WSe2

heterostructure, one can consider a case where θ(b) is kept �xed while θ(t) is changed. The ratio
λvZ/λR can, in principle, be tuned in a wide range in such trilayer heterostructures. For example,
λR is never zero for graphene/TMDC whereas one can choose θ(b) and θ(t) such that λ(tls)

vZ 6= 0

and λ
(tls)
R = 0. Using τiv/τp ≈ 5 [155], τ⊥/τ‖ as a function of θ(t) is plotted for θ(b) = 0◦ and

θ(b) = 30◦ in Fig. 8.7. When θ(b) = 0 and 1◦ < θ(t) . 15◦, then λ(tls)
R becomes small but λ(tls)

vZ

Figure 8.7: Calculated spin lifetime anisotropy in a WSe2/graphene/WSe2 heterostructure as a
function of θ(t) for θ(b) = 0◦ (blue) and θ(b) = 30◦ (green).

is �nite, therefore τ⊥/τ‖ strongly increases as a function of θ(t). In contrast, if θ(b) = 30◦ then
τ⊥/τ‖ remains �nite for all θ(t) angles. This shows that spin relaxation anisotropy measurements
can help to obtain clear indications of the twist angle dependence of the induced SOC.

8.5 Summary

In summary we studied the induced SOC in graphene/TMDC and TMDC/graphene/TMDC het-
erostructures. We developed a theoretical framework based on virtual band-to-band tunneling to
explain the microscopic mechanism of the induced SOC. This framework simpli�es the study of
heterobilayers where coupling between the layers is weak and the band structure of the constituent
layers is well known and understood. It also helps to understand the role of the intrinsic properties
of the individual layers, as well as the role of the energy alignment of the energy bands. We found
that one can induce valley Zeeman and Bychkov-Rashba type SOC in graphene. In contrast, the
strength of the intrinsic SOC cannot be changed by TMDC substrate. The valley Zeeman SOC is
characterized by the SOC constant λvZ , which gives its strength. The induced Rashba type SOC
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in twisted hexagonal bilayers can be parameterized by the strength λR and a spin-rotation angle
ϑR. Our methodology allows to map out the interlayer twist angle dependence of the induced SOC.
Using numerical calculations we found that both λvZ and λR can be signi�cantly enhanced as a
function of the interlayer twist angle. The parameter ϑR can also be changed, which a�ects the
spin polarization of the graphene states such that it may not be tangential to the Fermi surface.
Regarding TMDC/graphene/TMDC trilayers, we pointed out that quantum interference e�ects
can a�ect the strength λ(tls)

R as well as the phase θ(tls) of the Rashba SOC. We showed that the
twist angle dependence of λvZ and λR could be detected through spin anisotropy measurements
in TMDC/graphene/TMDC trilayers.

The methodology based on band-to-band tunneling to describe the induced SOC in graphene
was published in Ref. [165]. Numerical calculations for the twist angle dependence of λvZ and λR
were published in Refs. [165, 283]. The importance of ϑR and the related interference e�ects in
trilayer structures were discussed in Ref. [283].
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Chapter 9

Thesis Statements

1. We derived the general form of the intrinsic SOC for �at ABC trilayer graphene. Using
a combination of group-theoretical and tight-binding approaches we showed that for the
calculation of the SOC constants the dxz, dyz and dz2 atomic orbitals need to be taken into
account in addition to the usually considered pz atomic orbitals. We determined that the
intrinsic SOC can be described by seven SOC constants. Four of these SOC constant can
be characterized as interlayer SOC. One of them lifts the otherwise four-fold degeneracy of
the high-energy split-o� bands. The remaining two SOC constants are intralayer ones and
they due to the fact that the two carbon atoms in the top and bottom graphene layer of
the ABC graphene have di�erent atomic environment. We expressed the SOC constants in
terms of atomic orbital energy di�erences and wavefunction overlaps. This allowed us to
give an estimate for the values of the SOC constants of ABC graphene by making use of
previously known results for AB stacked bilayer graphene. From the original model for ABC
graphene we derived an e�ective low-energy Hamiltonian which is usually more convenient
to use. We showed that the interlayer SOC parameters of the original model determine the
leading momentum dependent SOC term in the e�ective model.

The results were published in Ref. [1].

2. We derived the general form of the k · p Hamiltonian for monolayer TMDCs at the high
symmetry ±K, Γ, Q and M points in the BZ. To this end we determined the symmetry
properties of several bands below and above the band gap of monolayer TMDCs. We then
set up a seven-band model (fourteen-band, if spin is explicitly counted) for the ±K points,
which takes into account the coupling between the VB and CB as well as couplings of these
two bands to other, in energy more remote bands. We also determined the non-zero matrix
elements of the intrinsic SOC in this seven-band model. Because of the lack of inversion
symmetry, the intrinsic SOC leads to spin-orbit splitting of the bands at a general point
in the BZ. We used these results to obtain an e�ective two-band model that describes the
dispersion of the CB and the VB. We pointed out that o�-diagonal SOC matrix elements of
the original, seven band model can help to understand the details of the spin-orbit splitting
of the CB in the low-energy model. Using a symmetry analysis of the bands and considering
an external, out-of-plane electric �eld we derived the general form of the Bychkov-Rashba
type SOC in monolayer TMDCs and the matrix elements that determine its strength. We
showed that the Hamiltonian of the Bychkov-Rashba SOC contains two terms, one of which
is not present in the corresponding Hamiltonian of III-V semiconductors.

The results were published in Refs. [2, 3, 4].

3. We used the k · p Hamiltonian developed for the ±K valleys of monolayer TMDCs and the
Luttinger prescription to calculate the Landau level spectrum. We found that the LLs in
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the K and −K valleys are not degenerate. This valley degeneracy breaking is linear in the
magnetic �eld and can be characterized by an e�ective valley g-factor. We showed how to cal-
culate the valley g-factors using the band structure parameters of the zero-magnetic �eld k ·p
Hamiltonian. We then used the LL spectrum to calculate the Shubnikov-de Haas oscillations
of the longitudinal magnetoconductance σxx. We showed that the valley degeneracy break-
ing a�ects σxx in a similar way to the Zeeman spin-splitting in a two dimensional electron
gas. We calculated the total σxx as the sum of the conductances coming from the occupied
spin-orbit split bands. By comparison to experimental results we found that our results,
which relied on single-particle considerations, present a useful starting point to interpret the
SdH measurements in monolayer MoS2. For temperatures 1K . T . 1.7K the main e�ect of
the electron-electron interaction can be taken into account by a re-normalized value of the
valley g-factor and the intrinsic SOC with respect to the values obtained in the single particle
picture. At lower temperatures (T < 1K) the measurements gave clear indications that the
single-particle picture is not su�cient and signatures of strong electron-electron interactions
become apparent.

The results were published in Refs. [5] and [6].

4. We studied the properties of gate de�ned single and double quantum dots in monolayer
TMDCs. Considering a circular QD in the non-interacting limit we calculated the spectrum
of the QD as a function of out-of-plane magnetic �eld. We pointed out that the valley
degeneracy breaking due to the magnetic �eld o�ers the possibility to use lowest energy
Kramer's pair as spin-valley qubit. We also studied double quantum dots in the (1, 1) charge
con�guration. We assumed that each QD hosts a single energy level and that the Coulomb
repulsion of electrons can be modeled by a Hubbard Hamiltonian. We investigated how
the interplay of the valley degree of freedom, the strong SOC, the Coulomb interaction,
the detuning of the QD levels and the interdot tunneling a�ect the low-energy spectrum of
these DQDs. In the limit when the Coulomb interaction dominates the intrinsic SOC, we
constructed an e�ective Hamiltonian that takes into account all states of the (1, 1) charge
con�guration and we determined the ground state in this model. In the opposite case, when
the intrinsic SOC is large with respect to the Coulomb repulsion, we showed that the low-
energy subspace is four-dimensional. In this subspace we de�ned spin-valley operators. We
showed that in terms of these spin-valley operators the e�ective Hamiltonian is formally
identical to the Heisenberg exchange Hamiltonian between two localized spins.

The results were published in Refs. [4] and [7].

5. We studied the Berry curvature properties and the corresponding valley and spin Hall con-
ductivities of bilayer TMDCs, in particular, of bilayer MoS2. By developing a k · p model
for the ±K valleys, we showed that there are intralayer as well as interlayer contributions
to the Berry curvature. An important consequence of the interlayer contribution is that the
Berry curvature is tunable by an out-of-plane electric �eld. This is a rare example where
a topological property of a material can be changed by an external parameter. We pointed
out that the stacking order also has important e�ects on the Berry curvature and therefore
3R and 2H stacked bilayers have very di�erent Berry curvature properties. We studied the
intrinsic contribution to the valley and spin Hall e�ect and calculated the corresponding con-
ductivities σvHxy and σsHxy in n-doped bilayer MoS2. Since they are closely related to the Berry
curvature, they are tunable by external out-of-plane electric �eld. In particular, we found
that in 2H bilayers σvHxy , in leading order, a linear function of the interlayer potential di�er-
ence, whereas σsHxy is �nite even in the absence of an out-of-plane electric �eld. We showed
that there can be a sign change in σvHxy and σsHxy when the interlayer potential di�erence,
which is due to an out-of-plane electric �eld, becomes larger than the intrinsic SOC in the
CB. This is reminiscent of the physics in Chern insulators, where the sign change signals a
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topological transition. However, we pointed out that in bilayer TMDCs these o�-diagonal
conductivities are not quantized and the material does not become a topological insulator.

The results were published in Ref. [8].

6. We developed a theoretical framework for the microscopic mechanisms of the induced SOC in
graphene/TMDC heterostructures. We used a band-to-band tunneling picture between the
two layers and a perturbation theory approach where the small parameter of the perturbation
theory is the interlayer coupling. We found that two types of SOC, the valley Zeeman and
Bychkov-Rashba SOC can be induced in graphene, while the intrinsic SOC of graphene
cannot be enhanced by the TMDC layer. We showed that the magnitude of the induced
valley Zeeman SOC depends on the diagonal elements of the intrinsic SOC matrix of the
TMDC layer. On the other hand, the induced Bychkov-Rashba SOC can be explained by a
three step virtual process, whereby a spin-independent tunneling between graphene and the
TMDC bands is followed by a spin-�ip tunneling between certain TMDCs bands and �nally
a spin-independent tunneling from the TMDC back to the graphene layer takes place. We
also pointed out that the energy alignment of the electronic bands of the two layers a�ects
the magnitude of the induced SOC constants λvZ and λR. We used our methodology to
investigate the e�ects of the twist angle between the layers on the magnitude of the induced
SOC. Our numerical calculations showed that the interlayer twist can signi�cantly enhance
the induced SOC, which we explained by features in the band structure of the TMDC layer.

The results were published in Refs. [9] and [10].

7. We showed that for a general interlayer twist angle the induced Bychkov-Rashba type SOC
in graphene/TMDC heterostructures is characterized not only by its amplitude λR, but
also by a spin-rotation angle ϑR. The value of ϑR depends on the interlayer twist angle θ
and it a�ects the spin polarization of the graphene bands. When ϑR + θ is not an integer
multiple of π, the spin polarization of the graphene states is not tangential to the Fermi
surface as in a 2DEG, but it has a component which is perpendicular to the Fermi surface.
We found that in TMDC/graphene/TMDC trilayers the quantum phase factor associated
with ϑR can lead to interference e�ects between the contributions of the two TMDC layers.
This interference a�ects the strength λ

(tls)
R as well as the spin-rotation angle ϑ(tls) of the

induced Bychkov-Rashba SOC in such trilayer structures. According to our calculations the
twist angle dependence of λ(tls)

vZ and λ(tls)
R can be detected using spin relaxation anisotropy

measurements in TMDC/graphene/TMDC trilayers.

The results were published in Ref. [10].
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