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Preface

Reliable Global Optimization is an important research topic for those applications, where rigorous results
are needed for the global optimum. These include chemical, physical, and also some mechanical problems,
where finding just a near optimal solution is insufficient, for instance to obtain structural consequences. It
is also very useful for other optimization problems, as it is known how close the current solution is to the
global optimum after a finite number of steps, and also the error produced by the finiteness of computer
arithmetic. However, there are few reliable global optimization methods. and one of the most used one is
the interval branch-and-bound method. It has a long history for bound constrained continuous problems,
but lately it was developed further for harder problems taking into account either more objective functions,
difficult constraints, or even bi-level problems.

Finding the optimal location of a facility is a real-life problem. Thus, it is necessary to describe it as
close to reality as possible. The models usually take into account most of the available information, and
thus are usually rather complex, neither convex nor concave. Therefore, facility location problems are
usually global optimization problems, requiring global optimization techniques to cope with them.

The aim of this dissertation is twofold. Our first goal is to contribute to reliable global optimization. On
the one hand, we aim to provide new methods for specialized problems, which are not easy to describe by
a general Nonlinear Programming (NLP) or Mixed Integer Nonlinear Programming (MINLP) formulation,
or the general methods cannot exploit the special structure of the problem. These are graph-based
optimization problems which include both continuous and discrete decisions, but also simplicial based
problems which occur in blending problems or even in portfolio optimization. To solve such problems
efficiently, we have developed specialized methods, all of them based on the branch-and-bound (B&B)
principle. Namely, we have developed a method for the maximal covering problem, where the sub-
problems are sets of edgesets, with the number of facilities they contain. Three different bounding rules
are designed which help the method in different states. We have expanded the interval branch-and-bound
method to handle a few integer variables, and also found a location-price equilibrium by a suitable interval
B&B. We have also studied several aspects of the simplicial B&B in order to make it more efficient. These
include regular refinement, improved bounding rules, monotonicity test and exclusion by infeasibility
spheres.

Our second goal is to study new realistic models for location problems. We consider the maximal
covering problem on networks with non-uniform demand, and some planar competitive facility location
problems. In particular, we construct models where the attraction of a costumer towards a facility depends
not only on the distance to it, but also on the quality that the costumer perceives from the facility. As in real
life problems, our aim is to maximize the profit of the company, to be understood as the income obtained
from the market share captured by the facilities minus the costs incurred by running them. Besides, we
consider possible adjustment for existing facilities, price equilibria, and different costumer selection rules
as well. To show the applicability of the new models, our last goal is to solve problems with real data by
using the reliable methods previously developed.

This dissertation describes only such works, where the main results have been achieved by me. Thus, I
only note on the authorship when a result is done by my co-authors, or when a result is indivisible. None
of the studies appeared in any former thesis, and no work with students are included. If not specifically
mentioned, the results belong mainly to me. All my co-authors have seen the dissertation and justified
this personally.
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Chapter 1

Reliable methods for solving special
location problems

In this chapter we deal with three challenging location problems. First, we study a maximal covering
problem on a network, where demand is spread on the edges with given distribution, and we seek the
optimal location of p facilities such that the demand covered by facilities within the covering distance
is maximal [20]. Second, we solve a complex competitive problem, where a chain wants to locate a new
facility and determine its optimal quality so as to gain maximum profit. Besides, the chain can decide not
to open a new facility and also to close any of the existing facilities, or change their quality, respecting
the available budget [82, 83]. Third, we seek for the location and price equilibria in a competitive setting,
where two firms want to locate a new facility and decide on the price of the good such that they maximize
their market share [77]. Furthermore, they need to incorporate in the price the cost of the delivery as well,
what is called delivered pricing in literature.

All three problems are special. The first one cannot be given analytically due to the calculation of
the covered demand over any kind of distribution function. Moreover, the problem has a discrete and
a continuous part as selecting the right edges is a discrete decision, while locating inside an edge is a
continuous one. The firm-expansion problem also falls in the MINLP (Mixed Integer Nonlinear Program)
class due to the discrete decision whether to close or not the existing facilities and also to open or not
the new facility. Finally, we are going to show that the equilibria problem can be reformulated as an
optimization problem where, although all variables are continuous, our objective is non-differentiable due
to the minimization of functions.

What is common in the above problems is that all of them are hard to solve location problems. However,
we could design a specialized branch-and-bound method which are either the first to solve them or faster
than existing methods.

1.1 Maximal covering problem on a network

Covering problems are well studied in the operations research literature under the assumption that both
the set of users and the set of potential facilities are finite. In this section, the following variant, which
leads to a MINLP is addressed: locations of p facilities are sought along the edges of a network so that
the expected demand covered is maximized, where demand is continuously distributed along the edges.
This MINLP has a combinatorial part (which edges of the network are chosen to contain facilities) and a
continuous global optimization part (once the edges are chosen, which are the optimal locations within
such edges).

The Maximal Covering Location Problem (MCLP), [15, 40, 41, 88] is a classical problem in locational
analysis with applications in many fields, such as health care, emergency planning, ecology, statistical
classification, homeland security, see e.g. [3, 24, 39, 51, 174, 196] and the references therein. Given a finite
set of users A, each a ∈ A with demand ωa ≥ 0, a set of p facilities in a set F is sought in order to maximize
the demand covered. A point is said to be covered by a set F∗ ⊂ F of p facilities if there is at least one
f ∈ F∗ at a distance from a not greater than R, where R > 0 is a fixed value, called the covering radius.

Any MCLP can be easily expressed as an Integer Program. Indeed, defining binary variables y f and
za to indicate, respectively, whether a facility at f is open, and whether a is covered, MCLP amounts to

1
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2

solving the following program:

max ∑
a∈A

ωaza

s.t. za ≤ ∑
f∈F: d(a, f )≤R

y f ∀a ∈ A

∑
f∈F

y f = p

y f ∈ {0, 1} ∀ f ∈ F

za ∈ {0, 1} ∀a ∈ A.

(1.1)

MCLP is known to be NP-hard [133], but formulated as (1.1) is, in words of [166], integer-friendly,
in the sense that its continuous relaxation is often all-integer, and thus no much branching is usually
needed in a branch-and-bound algorithm. See [87, 141, 165, 168] and the references therein for heuristic
approaches to handle problems of larger size.

Extensions and closely related models to the MCLP abound in the Operations Research literature. First,
MCLP has been studied assuming that the space is not a discrete set but a network: the set A of users is the
set of nodes of a network N, and facilities are allowed to be located not only at the nodes, but anywhere
on N. It is shown, however, that one only needs to consider a finite and relatively small set of candidate
locations, [41, 133], and thus the problem can be written in the form of MCLP above. Nontrivial extensions
include, for instance, replacing the basic yes/no covering function to more general decreasing functions in
the distance separating the user and the facility, [15, 16, 17, 18]; another variant is found when the set A of
users is finite, but the feasible locations are assumed to be a subset of the plane, yielding planar covering
models, as reviewed in [153].

Much less literature exists on covering models with regional demand, [67, 131, 142], in which, by the
very nature of the problem, assuming the demand to be concentrated at a finite set (e.g. centroids of
neighbourhoods, towns, administrative units or census boundaries, [142]) is a crude approximation. The
consequences of inaccuracies due to such discretization are well studied, [49, 137, 142], and thus demand
is advocated to be modeled as following a continuous distribution on a given region. See also [33, 34, 35]
for other location models with continuously distributed demand.

The following version of the classic MCLP with regional demand is addressed in this study: demand is
assumed to be continuously distributed along the edges of a network and p points along the set of edges
of the network are sought in order to maximize the expected covering of the demand. Hence, the model
differs from the classic MCLP in two main issues: first, the set of feasible locations is not a discrete set, but
(a set of) the edges of a network; moreover, demand is assumed here to be distributed along the edges of
the network, making it a realistic model, for instance, for covering problems in an urban context, in which
users are located along streets (the edges), or for the location of emergency services to attend accidents,
which take place along the roads (edges of the transportation network).

Let us now introduce formally the problem under consideration. We are given a network N = (V, E);
each edge e ∈ E has associated its length le, which allows us to talk about points in an edge: edge e, with
endpoints u, v, is identified with the interval [0, le], and we thus identify any x ∈ [0, le] as the point in
the edge e at distance x of u and distance le − x of v. With this identification, the shortest-path distance
between the nodes in V is readily extended to a metric d on the points in the edges. Moreover, each edge e
has a weight ωe ≥ 0 and a probability density function (pdf) fe, which models the demand along edge e.
We assume that a radius R > 0 is given, and a point x along an edge e ∈ E is covered by the set of facilities
at t1, . . . , tp if

min
1≤i≤p

d(ti, x) ≤ R. (1.2)

The expected demand of edge e covered by facilities at t = (t1, . . . , tp) is given by

ωe

∫ le

0
δe(x; t) fe(x) dx,

where δe(x; t) takes the value 1 when x ∈ e is covered by facilities at t = (t1, . . . , tp), i.e., when (1.2) is
fulfilled, and takes the value 0 otherwise.

With this, the optimization problem at hand can be written as

max
t∈Ep

C(t) := ∑
e∈E

ωe

∫ le

0
δe(x; t) fe(x) dx. (1.3)
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1.1. MAXIMAL COVERING PROBLEM ON A NETWORK 3

The above model is the result of common work directed by my coauthors. The remainder of this section
is structured as follows. In Subsection 1.1.1, structural properties of the MINLP (1.3) are studied. These are
written by my coauthors, thus I report them only shortly for completeness. The counterexample is a result
of common work. A branch-and-bound method is designed in Subsection 1.1.2. Exploiting the structure
of the problem, data structures and bounding procedures are proposed, and they are tested on a set of
instances in Subsection 1.1.3, which part was made by myself with some help from my co-authors. The
section ends with concluding remarks and possible extensions in Subsection 1.1.4.

1.1.1 Structural properties

Statement 1.1.1. For any p-tuple of edges (e1, . . . , ep) ∈ Ep, the function C : t = (t1, . . . , tp) ∈ [0, le1 ]× . . .×
[0, lep ] −→ C(t) is continuous in [0, le1 ]× . . .× [0, lep ].

Once the p-tuple of edges (e1, . . . , ep) is chosen, the function C is continuous on the compact set
[0, le1 ]× . . .× [0, lep ], and attains its maximum. Since the possible choices of p-tuple of edges is also finite,
the maximum of C on Ep is attained. Finding such a maximum may be hard because, for arbitrary pdfs fe
defining the demand along the edges, the function C may not be convex, and thus Global Optimization
techniques are to be used; in its full generality, C may lack important structural properties, such as
Lipschitz-continuity. This is shown in the following example.

Example 1.1.2. Consider a graph N = (V, E) with two nodes, v1, v2, connected by an edge e of length 2,
so that we can identify the edge with the segment [−1, 1] and the nodes with the endpoints of the segment.
The density fe of the demand is given by

fe(x) =
1

4
√
|x|

, x ∈ [−1, 1],

depicted in the left of Figure 1.1. Consider the problem of locating one facility (p = 1) on e, and a coverage
radius R = 1/4. Let us study the behavior of the function C on the interval [−1, 1]. First, the cumulative
distribution Fe (see the right of Figure 1.1 is easily shown to be given by

Fe(x) =


0, if x < −1
1−
√
−x

2 , if −1 ≤ x < 0
1+
√

x
2 , if 0 ≤ x < 1

1, if x ≥ 1.

(1.4)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

2

4

6

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 1.1: The demand density function fe on the left, and the cumulative distribution Fe on the right for
Example 1.1.2.

On the other hand, C is given by

C(x) = Fe

(
x +

1
4

)
− Fe

(
x− 1

4

)
. (1.5)

               dc_1926_21



4

Joining (1.4) and (1.5) one obtains after some algebra the following expression of C:

C(x) =



1−
√
−x−1/4

2 , if −1 ≤ x < − 3
4√

−x+1/4−
√
−x−1/4

2 , if − 3
4 ≤ x < − 1

4√
x+1/4+

√
−x+1/4

2 , if − 1
4 ≤ x < 1

4√
x+1/4−

√
x−1/4

2 , if 1
4 ≤ x < 3

4
1−
√

x−1/4
2 , if 3

4 ≤ x < 1

,

which is depicted in Figure 1.2. Each part is drawn with a different color. Observe that the function C has

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Figure 1.2: The covering function C for Example 1.1.2.

infinite directional derivatives at points x = ± 1
4 , which are interior to the interval [−1, 1]. Hence C cannot

be Lipschitz-continuous in the interval [−1, 1].

Under some reasonable assumptions on the pdfs involved, the function C is Lipschitz-continuous:

Statement 1.1.3. Suppose that, for each e ∈ E, the pdf fe is bounded above by some constant M. Then, for any
p-tuple of edges (e1, . . . , ep) ∈ Ep, the function C : t = (t1, . . . , tp) ∈ [0, le1 ] × . . . × [0, lep ] −→ C(t) is
Lipschitz-continuous in [0, le1 ]× . . .× [0, lep ].

Fortunately, having a bounded pdf for the demand is a natural assumption, thus, we can design an
exact method to solve our covering problem (1.3).

1.1.2 A global optimization approach

A branch-and-bound algorithm is proposed to cope with this MINLP. As in any branch-and-bound
procedure, the original problem is divided into subproblems, and by finding suitable bounding procedures,
one can eliminate those subproblems that cannot contain the global optimum. Thus, the two key elements
are the branching and the bounding strategies, which are discussed in Subsections 1.1.2.1 and 1.1.2.2,
respectively. Firstly, we define the division rules, which take advantage of the structure of the problem,
by taking into account that the variables indicating the number of facilities per edge should be strongly
correlated: if facilities are located at a given edge, it is unlikely that more facilities are located in neighboring
edges, leaving big clusters of edges uncovered. Bounding strategies for such subdivision elements will
then be built. Other important algorithmic issues of our proposal, such as the selection, elimination and
termination rules, are outlined in Subsection 1.1.2.3.

1.1.2.1 Division rule

One first and naive approach is to decide first how many facilities are located within each edge, and
then, once these variables are fixed, one solves, by means of a standard branch-and-bound algorithm on
networks, e.g. [19, 21], the nonlinear optimization problem of deciding where to locate them. However,
full inspection of all p-tuples of edges will be doable only for small networks. For this reason, our approach
is to facilitate branching on the combinatorial and the continuous part at the same time.

               dc_1926_21



1.1. MAXIMAL COVERING PROBLEM ON A NETWORK 5

In order to avoid the enumeration of every possible combination of p edges, we propose to construct
clusters of (sub)edges. Instead of associating with each edge an integer variable indicating the number of
facilities to be located in such edge, the integer variables will be associated with the clusters of (sub)edges,
called hereafter edgesets, and the tuple of edgesets will be called superset.

To be precise, an edgeset is a finite collection of (sub)edges of E; a superset S is any tuple of the
form (E1, p1; E2, p2; . . . , Ek, pk), where E1, E2, . . . , Ek are disjoint edgesets and p1, . . . , pk are strictly positive
integer numbers with

k

∑
j=1

pj = p,

indicating, for each j = 1, . . . , k, that exactly pj facilities are to be located within the points in Ej.

Example 1.1.4. Consider the network depicted in Figure 1.3, with all lengths equal to 1, uniform demand
on each edge, weights ωe given by

ω12 = 2
ω14 = 1
ω23 = 1
ω34 = 1
ω45 = 2
ω46 = 1
ω56 = 1
ω67 = 1,

(1.6)

and suppose p = 3 facilities are to be located for a covering radius R = 1/4. The partition of E in the three
edgesets E1, E2, E3,

E1 = {(1, 2), (1, 4), (2, 3), (3, 4), (4, 6)}
E2 = {(6, 7)}
E3 = {(4, 5), (5, 6)}

(1.7)

induces, among others, the superset S
S = (E1, 2; E2, 1), (1.8)

which corresponds to the decision of locating two facilities in the edges of E1 and one facility in the edges
of E2.

1

2

3

4

5

6 7

Figure 1.3: The network considered in Example 1.1.4.

Supersets will correspond to nodes in the branch-and-bound tree, as they define the subproblems. We
discuss in what follows our proposal to build the starting nodes, and the way to sequentially subdivide
the supersets.

Initial supersets

The root node of our branch-and-bound tree is the superset S0 = (E, p). S0 is subdivided by using a
given partition E1, E2, . . . , Ek of E : we add to the branch-and-bound tree list

(
p+k−1

p

)
supersets of the

form (Ei1 , p1; . . . ; Eil , pl), where {i1, ..., il} ⊆ {1, ..., k} and p1 + . . . + pl = p. Observe that, although such
starting list will have a cardinality exponentially increasing in p, the difficulty of the MINLP under study
only allows us to handle problems with a low value of p. Hence, the cardinality of the starting list will not
grow much.

               dc_1926_21



6

A critical issue is how the edges of the network, conforming the initial superset S0, are split into
edgesets in such a way that the so-obtained subdivision fits with the actual distribution of facilities at the
optimal solution of the problem. To do this, we build from the network a discrete MCLP as follows: we
consider a discrete covering problem in which we have, as possible locations, the edges of the network,
we have as users also the edges e of the network, with demand ωe, and we define the distance d∗(e, f )
between user e and edge f as the smallest distance between the points in e and f . Then, we consider a
user e covered if d∗(e, f ) ≤ R for some edge f . Hence, we count an edge e as fully covered (and thus, the
weight ωe is taken) as soon as some point in some f is at distance not greater than R from some point in e.
Once this discrete MCLP is solved, and f ∗1 , . . . , f ∗p is an optimal solution, we build the edgesets E1, . . . , Ep
so that Ej contains the edges e for which f ∗j is the closest facility.

Let us illustrate this procedure with the data of Example 1.1.4 for p = 2. The distance matrix d∗ is then
given by

(1, 2) (1, 4) (2, 3) (3, 4) (4, 5) (4, 6) (5, 6) (6, 7)
(1, 2) 0 0 0 1 1 1 2 2
(1, 4) 0 0 1 0 0 0 1 1
(2, 3) 0 1 0 0 1 1 2 2
(3, 4) 1 0 0 0 0 0 1 1
(4, 5) 1 0 1 0 0 0 0 1
(4, 6) 1 0 1 0 0 0 0 0
(5, 6) 2 1 2 1 0 0 0 0
(6, 7) 2 1 2 1 1 0 0 0

Solving the corresponding MCLP yields as an optimal solution the edges f ∗1 = (1, 2) and f ∗2 = (4, 6),
and, starting from them, the edgesets

E1 = {(1, 2), (1, 4), (2, 3)}
E2 = {(3, 4), (4, 5), (4, 6), (5, 6), (6, 7)},

where, in case of ties in d∗, edges have been allocated randomly. With such definition of E1, E2, three
supersets are obtained as split of the starting superset S0, namely (E1, 2), (E1, 1; E2, 1), (E2, 2), represented
in Figure 1.4.

1

2

3

4

5

6 7

1

2

3

4

5

6 7

1

2

3

4

5

6 7

Figure 1.4: Splitting the starting superset in Example 1.1.4.

Subdivision of a superset

In order to guarantee convergence of the branch-and-bound algorithm, elements in the list should become
arbitrarily small. Let us define the diameter λ(E∗) of an edgeset E∗ as the sum of the lengths of the
(sub)edges in E∗, and define the diameter λ(S) of a superset S as the highest length of its edgesets with
assigned facilities,

λ(E1, p1; E2, p2; . . . ; Ek, pk) = max
j

λ(Ej).
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1.1. MAXIMAL COVERING PROBLEM ON A NETWORK 7

Reduction of the diameters of the supersets in the list guides our subdivision strategy. Superset
S = (E1, p1; E2, p2; . . . ; Ek, pk) is subdivided as follows: first, the edgeset Ej∗ with highest diameter is
found,

λ(E1, p1; E2, p2; . . . ; Ek, pk) = λ(Ej∗).

Then, the edgeset Ej∗ is split into two subsets by identifying two “central” edges, and then clustering
the edges around such edges, unless it contains only one edge, which is then bisected by its midpoint.
The process in the first case, similar to the one described in Subsection 1.1.2.1 for splitting the initial set,
is based on the construction of an auxiliary MCLP: a 2-facility discrete covering problem is considered,
in which we have, as possible locations, the edges of the edgeset Ej∗ , we have as users the edges e of the
network, with demand ωe, and we define the distance d∗(e, f ) between user e and edge f as the smallest
distance between the points in e and f . Then, we consider a user e covered if d∗(e, f ) ≤ R for some edge f .
Once this discrete MCLP is solved and an optimal solution f+, f− is obtained, we build the sets E+

j∗ and

E−j∗ so that E+
j∗ contains the edges e ∈ Ej∗ for which f+ is the closest facility.

Given the splitting of Ej∗ into E+
j∗ and E−j∗ , the superset S is subdivided into pj∗ + 1 supersets, by

assigning, respectively, i and pj∗ − i facilities to E+
j∗ and E−j∗ , i = 0, 1, . . . , pj∗ .

By construction, one immediately has

Statement 1.1.5. The given subdivision of the supersets is exhaustive, that is, for an infinite nested series of
supersets {Sq}∞

q=0, λ(Sq)→ 0 as q→ ∞.

1.1.2.2 Bounding rules

As in any branch-and-bound algorithm, procedures for giving lower and upper bounds are needed here.
Lower bounds on the objective C of (1.3) are obtained by evaluating C at heuristic solutions, built as
the midpoints of p (sub)edges in the superset under evaluation. Different strategies for obtaining upper
bounds are described next.

Shadow bound

An easy way to obtain an upper bound for C on the superset S is to consider as covered all points in S as
well as those at distance at most R of some point in S. In other words, a bound is obtained if one considers
as covered the points both in S and the “shadow” of S, i.e., those points at distance R from points in S.
Formally, the Shadow Bound, CSB(S), for C on the superset S = (E1, p1; . . . , Ek, pk) is calculated as

CSB(S) := ∑
e∈E

ωe

∫ le

0
δSB

e (x; S) fe(x) dx, (1.9)

where δSB
e (x; S) takes the value 1 when x is at distance at most R of some y ∈ Ej and takes the value 0

otherwise.
For instance, for the data of Example 1.1.4 and the superset S in (1.8), we have

δSB
e (x; S) = 1 ∀x ∈ [0, 1], ∀e ∈ E1 ∪ E2

δSB
(4,5)(x; S) =

{
1, if x ∈ [0, 1/4]
0, else

δSB
(5,6)(x; S) =

{
1, if x ∈ [3/4, 1]
0, else.

Then, given the weights in (1.6), one obtains

CSB(S) = 6 + 2
1
4
+

1
4
=

27
4

.

By construction, the Shadow bound has the important property of monotonicity, in the sense that,

Statement 1.1.6. If S = (E1, p1; . . . , Ek, pk) and S′ = (E′1, p1; . . . , E′k, pk) are supersets satisfying Ei ⊇ E′i for all
i = 1 . . . , k, then

CSB(S) ≥ CSB(S′). (1.10)
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Moreover, using the same arguments as in the proof of Property 1.1.1,

Statement 1.1.7. If {(sq
1, 1; . . . , sq

p, 1)}q is a sequence of supersets, where each sj is a subedge of an edge ej

converging to some point tj, as q→ ∞ then CSB((s
q
1, 1; . . . , sq

p, 1))→ C(t1, . . . , tp).

Hence, the bounds go arbitrarily sharp when the length of the supersets goes to zero. Consequently,

Corollary 1.1.8. In a branch-and-bound method, if an exhaustive division rule as described in Subsection 1.1.2.1
and a convergent bounding rule, as the Shadow bound is used, the method is convergent.

MCLP bound

The upper bound CMCLP is obtained by solving a variant of a discrete MCLP as (1.1): we consider a
discrete covering problem in which we have, as possible locations, the (sub)edges of the edgesets of the
superset S = (E1, p1; . . . ; Ek, pk), we have as users the edges e of the network, with demand ωe, and we
define the distance d∗(e, f ) between user e and (sub)edge f as the smallest distance between the points in
e and f . Then, we consider a user e covered if d∗(e, f ) ≤ R for some (sub)edge f of some edgeset Ej.

Hence, we count an edge e as fully covered (and thus, the weight ωe is taken) as soon as some point in
some f is at distance not greater than R from some point in e. Moreover, since the number pj of facilities
within each edgeset Ej is given, we impose at most pj different edges in Ej are to be chosen.

By construction, the optimal value of such a discrete covering problem is a valid upper bound of C on
S :

max ∑
e∈E

ωeze

s.t. ze ≤ ∑
f∈∪jEj

ae f y f ∀e ∈ E

∑
f∈Ei

y f ≤ pi, i = 1, 2, . . . , k

y f ∈ {0, 1} ∀ f ∈ ∪jEj

ze ∈ {0, 1} ∀e ∈ E,

(1.11)

where ae f is the scalar taking the value 1 if f ∈ Ej for some j with d∗(e, f ) ≤ R, and taking the value 0
otherwise.

Contrary to what happens with the Shadow Bound CSB, this bound may not be sharp enough in small
supersets, since, if any point of an edge is covered, then all the demand of that edge is considered as
covered. For this reason, the bounding approach is not convergent.

This bound can easily be sharpened by observing that, by construction, for an edge e, if at least one
point in some f in some Ej is at distance not greater than R, we are considering in (1.11) all the demand of
the edge e covered, whilst a smaller amount, ω∗e ,

ω∗e = ωe

∫ le

0
δSB

e (x, S) fe(x) dx (1.12)

can be captured. Here, δSB
e (x, S), as defined in the Shadow Bound (1.9), takes the value 1 when x is at

distance at most R of some x ∈ Ej and takes the value 0 otherwise.
In this study we call MCLP bound CMCLP as the optimal value of problem (1.11) after replacing in the

objective the weights ωe by the weights ω∗e in (1.12).
Observe that the MCLP bound is, by construction, monotonic. Moreover, when each edgeset is part of

one edge, the bound obtained is exactly the Shadow Bound, and thus it will enjoy the same convergence
properties as the Shadow Bound. Note also that, since an upper bound is needed, a (more crude but less
expensive) upper bound is obtained if, instead of the IP (1.11), its LP relaxation is solved.

Mixed bound

The upper bounds CSB and CMCLP above described usually work well if the covering areas have big
overlapping parts. When, on the contrary, the areas covered are almost disjoint, the problem could be split
into a series of (almost) independent single-facility problems, successfully yielding sharp bounds.

More precisely, for S = (E1, p1; . . . ; Ek, pk), we can combine the Shadow Bound CSB(Ej, 1) on Ej with
any upper bound C1(Ej) for the problem of locating one facility at some point in Ej. This way, the so-called
Mixed Bound CMB(S) is defined as
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1.1. MAXIMAL COVERING PROBLEM ON A NETWORK 9

CMB(S) =
k

∑
j=1

min
{

pjC1(Ej), CSB(Ej, 1)
}

,

where CSB(Ej, 1) is the Shadow Bound on Ej. So the problem is reduced to obtain an upper bound for the
single-facility problem with the edgeset Ej as set of candidate points. If Fj is a collection of small subedges
of the network with

Ej ⊆
⋃

f∈Fj

f ,

then one can take as upper bound C1(Ej) the maximum of the Shadow Bounds for locating one facility on
f , when f varies in the class Fj,

C1(Ej) = max
f∈Fj

CSB(( f , 1)),

yielding

CMB(S) =
k

∑
j=1

min

{
pj max

f∈Fj
CSB(( f , 1)), CSB(Ej, 1)

}
.

As an illustration, consider the network in Example 1.1.4 and the superset S in (1.8). If, for each edgeset
Ej, we define the split Fj as the edges of the network in Ej, we have:

C1(E1) = max{CSB((1, 2), 1), CSB((1, 4), 1), CSB((2, 3), 1), CSB((3, 4), 1)}
= max{10/4, 9/4, 7/4, 8/4} = 10/4

CSB(E1, 1) = 7
C1(E2) = 5/4
CSB(E2, 1) = 3/2
CMB(S) = 2 · 10/4 + 5/4 = 25/4.

Note that, by construction, the Mixed Bound CMB is monotonic. However, since it calculates separately
the covering of each edgeset Ej, in case of overlapping in the areas covered, such points are counted more
than once. Hence, the bound is not necessarily convergent.

1.1.2.3 Further algorithmic issues

In order to have a functional method, some other rules are necessary, although these are some of the usual
rules.

Selection Rule: The next superset to be evaluated is the one with the highest upper bound on the list.

Elimination Rule: Whenever a superset S is such that C(S) < LB, any possible location of the facilities in
the edgesets of S would lead to a worse covering that the best solution we have so far, therefore the set S
can be omitted from further consideration.

Termination Rule: When the relative error of the largest upper bound and the best found solution is less
than the tolerance ε, the algorithm stops. The supersets remaining on the list contain the global optimum,
and the best solution found so far is reported.

1.1.3 Computational results

Our branch-and-bound algorithm was implemented in Fortran 90 (Intel c©Fortran Compiler XE 12.0),
using the integration tools of the IMSL Fortran Numerical Library and calling the MIP solver of Cplex 12.5.
Executions were carried out on an Intel Core i7 computer with 8 GB of RAM memory at 2.8 GHz, running
Windows 7.

Two types of experiments were performed. First, a series of networks of medium size, obtained e.g.
from [19, 47], were solved for a small number p of facilities: p = 2, 3, 4. In order to analyze the impact of p
on the running times, we have tested our method on a small network, the Sioux-Falls, taken from [124].

Let us describe now the first experiment class. Problems on 7 test networks obtained are solved. The
number of nodes of these networks ranges from 150 to 225, and the number of edges from 296 to 386.
Demand parameters are randomly generated: the overall demand ωe of an edge e is assumed to follow a
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uniform distribution in [0, le], and the demand along each edge is assumed to follow a beta distribution
with parameters randomly generated in the interval [0.1, 5], which provides a wide range of density
functions with different shapes. We stress that we have chosen the beta distribution just because the beta
class is versatile enough and it requires numerical integration routines for evaluation, so the usefulness of
the method is demonstrated in a difficult case. However, arbitrary densities could have been used instead.

On each network, the problem is solved for p facilities, p = 2, 3, 4, and three different radii R, a small, a
medium and a large one with respect to the diameter of the networks. The stopping criterion is set to the
relative gap of 10−3 for all problems.

In order to see the efficiency of the bounding rules, different settings, using the different bounding
schemes proposed in the study, were compared. In all cases, the Shadow Bound CSB was calculated to
guarantee convergence of the branch-and-bound algorithm, and, if needed, to compute the coefficients ω∗e
in the MCLP bound CMCLP. The following strategies were tested:

SB: Just the Shadow Bound is calculated.

MCLP: In addition to the Shadow Bound (needed to calculate ω∗e ), the MCLP bound is also calculated.

MB: Both the Shadow Bound and the Mixed Bound are calculated.

ALL: All three bounds, namely the Shadow Bound, the MCLP and the Mixed Bound, are calculated.

Smart: Heuristic bound rule, where, for every third level in the division tree at each superset, all the
bounding rules are calculated. The most efficient rule is stored for each superset, where efficiency is
measured by means of a merit function which combines sharpness of the bounds and computational

time: i is the most efficient bound if for any bound j it holds that 2RUB−1RT > 1, where RUB =
Cj− f̃
Ci− f̃

is the ratio of overestimations, and RT =
Tj
Ti

is the ratio of computational time for bounds j and i;
otherwise the second best bound is chosen.

Once the most efficient bound is identified, only such bound is calculated for their descendants in
the next two levels.

In Tables 1.1–1.3, running times in seconds of the different bounding approaches are presented for
the different values of p and R. In the tables results are grouped by the radius, and average values are
also shown. For the instances which did not terminate in 5 hours (18 000 sec), the achieved relative gap is
reported. The best approach for each problem is highlighted.

In Table 1.1, the results for p = 2 are shown. One can see clearly the not surprising differences from
one approach to the other with respect to the radius. Namely, while for the SB and MCLP approaches
running time is decreasing as R is increasing, for MB is just the opposite. The balance of forces is already
clear: although SB and MCLP are good for large radius, MB is necessary for small and medium R. Our
Smart rule is shown to be the best for small and medium radii, while for large R almost always SB was the
most efficient.

In Table 1.2, the running times and achieved gaps are shown for p = 3. For the SB and MCLP
approaches, most problems with small radius are intractable, since the gap after 5 hours of running time
is still over 15-25% on average. With the exponential growth of possibilities for the solution, the MB
approach gets more useful. This happens because the evaluation of the Mixed Bound is expensive rather
at the beginning of the algorithm, when the maximal bound for each edge is calculated, but it takes almost
no time until bounds on small segments have to be evaluated. While from the pure bounding rules MB is
almost always the best, the Smart approach still has a slightly better performance.

In Table 1.3, results for p = 4 are shown for only the MB, ALL, and Smart approaches, since SB and
MCLP can solve only the PR152G problem with large R. Although the Smart approach is still the best one
on average, we can see that the average time is similar for the different approaches. This is due to the fact
that many problems were stopped after 5 hours, making averages similar (and high).

Let us discuss now the second experiment. In order to see how the results change as p grows, the Smart
bounding rule was used for a small (24 nodes and 39 edges) network, namely, the Sioux-Falls network
[124].

In Table 1.4, computational times are given for p = 2, . . . , 7, and, as in the first type of experiments,
three different radii. For the large radius, when p = 6, 7 more than 100000 supersets needed to be stored
in the list; this was the maximum allowed in the program, so the reached gap was also reported in these
cases.
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Table 1.1: Running times (p = 2).

Graph R SB MCLP MB ALL Smart

KROA150G

sm
al

l

286.4 271.2 34.8 37.2 30.7
KROA200G 413.8 373.7 36.1 38.5 33.4
KROB150G 833.4 847.3 67.3 69.5 54.2
KROB200G 789.0 770.5 53.2 56.7 45.7
PR152G 171.5 182.6 20.8 21.6 19.3
RAT195G 2021.5 2000.9 37.8 40.0 31.9
TS225G 301.4 293.3 14.6 16.9 14.1

Average 688.1 677.1 37.8 40.1 32.8

KROA150G

m
ed

iu
m

384.9 378.5 45.7 47.1 38.6
KROA200G 269.2 258.9 92.2 98.7 86.3
KROB150G 287.0 282.0 34.2 37.8 31.2
KROB200G 538.5 544.7 190.2 202.2 181.3
PR152G 12.3 16.8 6.1 6.5 6.0
RAT195G 716.6 696.4 112.8 116.5 91.2
TS225G 242.8 178.4 29.3 32.7 25.6

Average 350.2 336.5 72.9 77.4 65.7

KROA150G

la
rg

e

2.3 3.4 21.0 22.0 21.7
KROA200G 607.0 622.2 669.2 694.1 677.9
KROB150G 32.2 36.6 55.0 61.0 55.2
KROB200G 2.2 3.8 25.1 26.8 25.0
PR152G 15.7 20.3 9.8 12.1 11.0
RAT195G 2.8 6.4 22.7 26.6 24.4
TS225G 44.9 50.1 65.1 71.3 62.7

Average 101.0 106.1 124.0 130.6 125.4

Average – 379.8 373.2 78.2 82.7 74.6

Observe that for the small and large radii, an explosion in running times happens from p = 5 to p = 6,
whereas for the medium radius it is rather from p = 4 to p = 5. It is also interesting to see that the difficulty
can vary from problem to problem, as for small radius and p = 7 facilities, it can be solved faster than
the same problem with 6 facilities. This may be due to the number of local optima which are close to the
global optima, or due to the flatness of the objective function near the global optimizer. Even though
more extensive testing needs to be performed to fully understand the dependence of running times of the
covering problems with respect to all the parameters involved, it is clear from our tests that the running
times increase exponentially when p increases.

1.1.4 Conclusions

In this section we have studied a covering location problem on networks which, contrary to those already
in the literature, assumes the demand distributed along the edges of the network, which is a more realistic
assumption for problems with networks representing high-density regions, such as cities. The problem is
a challenging MINLP, in which combinatorial decisions (which edges of the network are to be selected to
contain facilities) are coupled with continuous decisions (where to locate the facilities once the edges are
chosen).

A branch-and-bound algorithm has been developed for this MINLP. While some ingredients of such
branch-and-bound are standard, the branching procedure is rather specific, since it successfully exploits
the fact that the locational decisions are taken on a network. Different bounding rules are proposed and
tested on different networks; it is shown that the so-called Smart strategy, which through a learning
process, is identifying for each branch-and-bound node the most promising branching strategy, is the most
promising in terms of running times.

For the resolution of the problem, we have also considered a special type of superset, where no
information about the number of facilities in each edgeset is stored. For these supersets similar bounding
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Table 1.2: Running times and gaps (p = 3).

Graph R SB MCLP MB ALL Smart
name T(s) Gap T(s) Gap T(s) T(s) T(s)

KROA150G

sm
al

l

– 0.254 – 0.218 337.8 355.0 285.0
KROA200G – 0.149 – 0.098 243.3 252.3 181.7
KROB150G – 0.276 – 0.206 156.1 164.1 124.2
KROB200G – 0.209 – 0.142 453.1 446.7 363.0
PR152G 15770.3 – 16863.6 – 37.2 43.9 31.3
RAT195G – 0.633 – 0.451 93.1 112.2 72.6
TS225G – 0.103 – 0.086 167.5 183.4 121.7

Average 17681.5 0.232 17837.7 0.172 212.6 222.5 168.5

KROA150G

m
ed

iu
m

12146.4 – 11096.7 – 269.8 298.9 238.5
KROA200G 4410.2 – 3992.2 – 111.8 120.4 99.0
KROB150G – 0.001 16591.4 – 632.8 652.6 477.1
KROB200G 6332.9 – 4678.2 – 198.6 196.0 144.7
PR152G 1009.3 – 1103.3 – 25.1 27.8 24.3
RAT195G – 0.101 – 0.071 3804.5 3794.3 3329.6
TS225G – 0.038 – 0.005 210.6 241.5 182.6

Average 11128.4 0.021 10494.5 0.012 750.5 761.6 642.3

KROA150G

la
rg

e

3072.0 – 3178.4 – 2987.0 3035.1 2978.9
KROA200G 4481.7 – 4675.3 – 3155.2 3277.2 3158.3
KROB150G 1993.0 – 1960.2 – 752.8 770.4 700.6
KROB200G 270.7 – 284.9 – 282.8 304.7 277.7
PR152G 77.2 – 106.2 – 17.0 22.0 18.2
RAT195G 150.4 – 169.3 – 181.9 201.6 182.7
TS225G 2686.5 – 1951.6 – 1872.5 1525.7 1574.3

Average 1818.8 0.001 1760.8 0.001 1321.3 1305.2 1270.1

Average – 10209.6 0.085 10031.0 0.061 761.5 763.1 693.6

rules can be derived, although in some cases giving looser bounds. The advantage of this data structure
is that it reduces the exponential growth of the number of supersets as p increases, but for the number
of facilities in the experiments we have performed the results were similar. However, it may give better
results for higher number of facilities, and thus this alternative approach deserves further analysis and
testing.

Several extensions of the problem are possible, and in most cases the bounding strategies proposed
in this work could be adapted to such extensions. To mention a few, the most straightforward extension
would be the addition of capacity constraints to the covering model, as proposed e.g. in [151]. On the
other hand, we have assumed the demand along each edge to follow an absolutely continuous random
variable. The more general case in which the demand is expressed as a mixture of an absolutely continuous
random variable and a discrete variable with finite support can be handled in the same way, by splitting
the edges at the preprocessing step into subedges in such a way that the cover of points with positive mass
is constant along each subedge.

A third line of extensions would consist of including congestion effects, as proposed for (standard)
covering models e.g. in [38, 129]. This calls also for the re-definition of the objective, since, in this case, the
potential users causing the congestion are not identified by a finite set. The fourth and most challenging
extension consists of incorporating competition issues in the covering problem [50, 56, 155, 156]: in a
leader-follower problem, the location of the follower is a covering problem, similar to the one described
here; solving the leader problem is a much harder problem than the one addressed here, since one has to
solve a bilevel problem in which the follower strategy is the one described in this study. This, as well as
the other extensions, deserve further study, not only by its implications in location analysis (more realistic
models for dense demand are considered) but also from the Global Optimization viewpoint, since new,
challenging MINLPs are addressed with new branch-and-bound procedures.
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Table 1.3: Running times and gaps (p = 4).

Graph R MB ALL Smart
name T(s) Gap T(s) Gap T(s) Gap

KROA150G

sm
al

l

– 0.003 – 0.003 – 0.003
KROA200G 2612.6 – 2792.8 – 2068.5 –
KROB150G 4367.5 – 4867.2 – 3658.3 –
KROB200G – 0.019 – 0.020 – 0.014
PR152G 225.5 – 261.5 – 171.8 –
RAT195G 1862.2 – 2105.0 – 1423.3 –
TS225G 435.7 – 535.6 – 357.2 –

Average 6500.5 0.004 6651.7 0.004 6239.9 0.003

KROA150G
m

ed
iu

m
2428.6 – 2573.0 – 1875.6 –

KROA200G 846.8 – 881.9 – 736.5 –
KROB150G 5619.4 – 5771.9 – 4694.6 –
KROB200G 4403.2 – 4581.3 – 3406.7 –
PR152G 9976.9 – 10681.3 – 8892.0 –
RAT195G – 0.049 – 0.049 – 0.047
TS225G 432.0 – 749.1 – 405.9 –

Average 5958.1 0.008 6176.9 0.008 5430.2 0.008

KROA150G

la
rg

e

– 0.044 – 0.041 – 0.042
KROA200G – 0.013 – 0.013 – 0.013
KROB150G – 0.004 – 0.005 – 0.004
KROB200G – 0.048 – 0.042 – 0.042
PR152G 16.1 – 21.5 – 17.9 –
RAT195G – 0.049 – 0.044 – 0.045
TS225G – 0.002 10603.9 – 10914.5 –

Average 15430.9 0.023 14375.1 0.021 14418.9 0.021

Average – 9296.5 0.012 9067.9 0.011 8696.3 0.011

Table 1.4: Running times and gaps for the Sioux-Falls network.

p 2 3 4 5 6 7
R T(s) T(s) T(s) T(s) T(s) Gap T(s) Gap

small 3.0 5.4 20.7 91.4 10652.8 – 6487.5 –
medium 10.2 29.2 257.7 6123.1 38222.6 – 58451.4 –
large 9.8 147.7 1256.5 1493.6 49633.6 0.0012 46297.7 0.14

1.2 Firm expansion: an interval B&B method for a MINLP

In this research, a continuous competitive facility location problem is investigated, which means that there
are other facilities in the same region offering the same product or service and a competition exists to
maximize market share or profit (see [7, 59, 61, 72, 97, 152] and the references therein for a review of the
topic). But when a chain is already operating in the area and wants to expand its presence, in addition to
locating new facilities it may also invest on its existing facilities, increasing or decreasing their quality, or
closing some of them (so as to invest the budget allocated to them to the other ones). However, to our
knowledge, in none of the models in the literature the existing facilities of the locating chain are allowed to
vary their quality or to be closed. And this is exactly what it is researched in this study. The most related
papers with this topic are the following ones. In [172], a continuous competitive single facility location
model with foresight is analysed, in which the facilities of the competitors may adjust their quality up or
down; but the locating chain is new in the area (it does not own any existing facility) and an unlimited
budget is assumed. A related leader-follower discrete model is considered in [122]. The leader is to open
an unknown number of facilities, and the follower reacts by adjusting the quality of its existing facilities
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and/or closing some of them and/or opening some new facilities; again, the leader is a new entrant and
an unlimited budget is assumed. In both papers the customer choice rule is probabilistic, i.e., the demand
at a demand point is distributed among all the facilities according to their attraction. In the discrete model
introduced in [64], a different approach is followed: it is assumed that customers patronize a facility only if
they are within its ‘radius of influence’ (which can be interpreted as a surrogate of the quality) and if they
are in the sphere of influence of more than one facility then their demand is equally divided among them;
the locating chain owns some of the existing facilities, it has a given budget to expand its presence in the
area, and it may open new facilities (in a discrete set of potential locations) and/or upgrade (downgrading
is not allowed) the quality (increase the radius of influence) of its existing ones. See [74] for a deeper
review of those papers.

As it will be shown in Subsection 1.2.1, the continuous location model introduced in this work is a non-
convex mixed-integer nonlinear programming (MINLP) problem. Many researches have been working on
the topic of designing and implementing practical algorithms for coping with MINLP problems during the
last decades (see [12, 23, 28, 191] and the references therein). And some software packages are available, for
both convex (AlphaECP [195], BONMIN [22], Knitro [29], or MINOTAUR [127]) and non-convex MINLP
problems (ANTIGONE [138], BARON [171], COUENNE [11], or SCIP [192]). However, since the available
packages do not seem to be successful at solving the model introduced here, solution methods are also
proposed in this study.

This work investigates up to what extent the possibilities of varying the qualities of the existing facilities
and closing them affects the solution of the problem, both in profit and in location and quality of the new
facility (in case it is open). The main contributions of the present work are: (1) a new continuous location
and design model (an extension of the model in [76]) is introduced (which was a common work with
José Fernández); the expanding chain has a limited budget, and it may locate a new facility anywhere in
a given region of the plane and/or vary (up or down) the quality of its existing facilities and/or close some of
them; the customer choice rule is assumed to be probabilistic. (2) A branch-and-bound method based on
interval analysis is proposed in Subsection 1.2.2; it is suitable for small-size instances and can also be
applied to many other MINLP problems. This was my main contribution done with José Fernández. The
computational studies (in Subsection 1.2.3) which show the usefulness of the approaches, are done by
me. The discussion ends in Subsection 1.2.4 with conclusions. The original work contains also heuristic
methods for this problem, to which my contribution was rather small, so that part is left out here.

1.2.1 The location and design model for firm expansion

The new model we are going to introduce here is an extension of the model in [76], which is described in
Subsection 3.1. The model in [76] is a pure-location model, in the sense that the expanding chain considers
only the opening of one new facility in the area. Some existing facilities may belong to the locating chain.
The location and quality of all the existing facilities is known as well as the location and demand of
customers (or demand points). The utility provided by a facility to a customer is measured as quality
divided by (a function of the) distance, and customers are assumed to follow the probabilistic choice rule.

In the original model, the expanding chain considers only one possibility to increase its profit: opening
one new facility. However, in practice, the chain could have more options. It could also consider improving
the quality of (some of) its existing facilities. Or downgrading some of them so as to allocate the budged
invested in them to other facilities: if a facility has no competitors too close, then maybe a decrease in its
quality, even though it provokes a decrease in its attraction, may not lead to a big loss of its market share;
it can even win more profit due to the lower operational costs; and, even if it is worse for that particular
facility, it can be better for the chain as a whole. In fact, it may be the case that some of the existing facilities
are not profitable at all, and closing them and investing their budget in other facilities (or in the new one,
if it is finally open) may be the best strategy. The following extended model takes into account all those
possibilities. Note that in this model it is assumed that the expanding chain already has some facilities
operating in the area.

We introduce the following notation for the model:

Index sets
i subscript for demand points, i = 1, . . . , imax.
j subscript for the existing facilities, j = 1, . . . , jmax (the first k of them (k < jmax) are owned by

the expanding chain).

Variables
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f0 coordinates of the new facility, f0 = ( f 1
0 , f 2

0 ).
α0 quality of the new facility.
αj quality of the j-th existing facility owned by the chain, j = 1, . . . , k. At present, αj = α̃j.
yj binary variable which is 0 if facility j is closed (j = 1, . . . , k) or not open (j = 0); 1 otherwise.
ns variables of the problem, ns = ( f0, α0, α1, . . . , αk, y0, . . . , yk).

Parameters
pi location of demand point i.
wi annual demand (or buying power) concentrated at pi.
f j location of existing facility j.
dij distance between pi and f j.
dmin

i radius of the circular area around pi where the location is not allowed.
S area where the new facility can be set up.
α̃j present quality of existing facility f j, j = 1, . . . , jmax.
gi(·) a non-decreasing (and non-negative) function.

ũij utility that pi perceives from f j at present, i = 1, . . . , imax, j = 1, . . . , jmax, ũij = α̃j/gi(dij).
αmin minimum quality level for the new facility.
αmax maximum quality level for the new facility.
α

j
max maximum quality level that f j may have, j = 1, . . . , k.

Aj annualized cost corresponding to the opening of the j-th facility, j = 1, . . . , k.
Cj cost of closing facility f j, j = 1, . . . , k.
B annual chain’s budget (for opening a new facility or varying the quality of existing

facilities or closing facilities as well as for the operational costs of the open facilities).

Computed values

di( f0) distance between the new facility and pi.
ui0( f0, α0) utility that pi perceives from the new facility, ui0( f0, α0) = α0/gi(di( f0)).
uij(αj) utility that pi perceives from f j, j = 1, . . . , k, uij(αj) = αj/gi(dij).
Vj(αj) annualized cost of varying the quality of f j to αj, j = 1, . . . , k.
M(ns) annual market share captured by the chain.
F(M(ns)) annual expected sales obtained by the chain.
Rj(αj) annual operating cost of the j-th facility, j = 0, . . . , k.
T(ns) annual total cost of the chain.
Π(ns) annual profit obtained by the chain.

Since the j-th facility (j = 1, . . . , k) is already established, its area can hardly be modified. Hence, most
likely its quality can be upgraded from α̃j up to certain level α

j
max ≤ αmax.

In addition to the annualized cost G( f0, α0) of opening the new facility (in case it is open) at a given
location f0 with a quality α0 (note that now G does not include the annual operating cost), some additional
costs must be taken now into account, namely, Aj, Cj, Vj(αj), j = 1, . . . , k, and Rj(αj), j = 0, . . . , k, as
described above.

With the previous notation, the annual cost of the expanding chain is given by

T(ns) =
k

∑
j=1

(yj(Aj + Rj(αj) + Vj(αj)) + (1− yj)Cj) + y0(G( f0, α0) + R0(α0)), (1.13)

and the market share it captures is

M(ns) =
imax

∑
i=1

wi
y0ui0( f0, α0) + ∑k

j=1 yjuij(αj)

y0ui0( f0, α0) + ∑k
j=1 yjuij(αj) + ∑

jmax
j=k+1 ũij

. (1.14)
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The profit maximization problem (P) can be stated as follows:

max Π(ns) = F(M(ns))− T(ns) (1.15)
s.t. f0 ∈ S ⊂ R2 (1.16)

di( f0) ≥ dmin
i , i = 1, . . . , imax (1.17)

y0αmin ≤ α0 ≤ y0αmax (1.18)

yjαmin ≤ αj ≤ yjα
j
max, j = 1, . . . , k (1.19)

T(ns) ≤ B (1.20)
yj ∈ {0, 1}, j = 0, . . . , k (1.21)

Constraint (1.18) guarantees that if the new facility is opened (y0 = 1) then α0 ∈ [αmin, αmax], and if it
is not opened (y0 = 0) then α0 = 0. Something similar is done in constraints (1.19) for the quality of the
existing facilities.

The cost function due to the change in the quality of facility f j from its present value α̃j to αj, Vj(αj),

should be non-increasing in the interval [αmin, α̃j) and non-decreasing in (α̃j, α
j
max], as the bigger the

difference |αj − α̃j|, the higher the investment required to do the modifications. Furthermore, one would
expect Vj(α̃j + αj) > Vj(α̃j − αj), since upgrading the quality is more expensive than downgrading it. And
similarly to G, one would expect Vj(αj) to be convex in (α̃j, αmax] (also in [αmin, α̃j)), since the more quality
we expect from the facility the higher the costs will be, at an increasing rate. Additionally, whenever a
variation is made, a fixed cost vj > 0 has to be paid (usually a variation in the quality requires a temporary
closure of the facility). This fixed cost prevents too small variations; in fact, a high vj value would prevent
any change. A possible expression for Vj(αj) could be the following one:

Vj(αj) =


1
δj
(G2(2α̃j − αj)− G2(α̃j)) + vj if αj < α̃j

0 if αj = α̃j

G2(αj)− G2(α̃j) + vj if αj > α̃j.

The parameter δj > 0 determines how much cheaper is decreasing the quality as compared to increasing it.
As for the operating cost function Rj(αj), it should be non-decreasing, although its functional form may

vary depending on the particular type of facility. In this research a linear form is assumed, Rj(αj) = ojαj,
with oj > 0 a given constant. However, note again that the particular choice of functions Vj and Rj does
not affect the study of the aim of the paper.

Problem (P) is a MINLP problem. Therefore, it is a challenge from the optimization point of view, and
global optimization tools are required to cope with it.

1.2.1.1 An example

The model has been applied to the case of the location of a hypermarket in an area around the city of
Murcia, in south-eastern Spain [190]. The aim of this subsection is to show how the model works.

There are imax = 21 population centers (demand points) in the area. Figure 1.5 shows their location as
a gray circle (or dot) with a radius proportional to its buying power (which in turn is considered to be
proportional to its number of inhabitants). The location of the new facility is forbidden in those circles.
There are five hypermarkets in the area: two from the expanding chain (marked with a green cross) and
three from the competitor (marked with a red dot). In both cases, the original quality is marked on the
right pane of the figure with the same symbol as the facility. The same problem has been solved with the
exact method described in Subsection 1.2 for different budgets, and we can see in the pictures how the
solution varies depending on the budget. The location and quality of the new facility, in case it is open,
is shown inside a large blue box; ‘New facility’ is written on top of the box, and an interval hull for the
solution boxes are shown on the location and on the quality pane as well. The new quality of the existing
facilities are also shown on the quality pane by a box; a green arrow points to the new quality. When a
facility is closed an orange box is drawn, and ‘Closed’ is written under the box. When there are several
global (or near-optimal) solutions different only in the quality values, like in the figure with a budget
B = 52, we can see that the boxes for the inclusion of the qualities become larger. In such cases, a low
quality on one facility is paired with a high quality for the other facility, but for the figure we show the
inclusion of all the solutions.
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Π = 691.848, M = 18.70

Figure 1.5: Solution of the small problem of Murcia with 21 demand points for different budgets
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In the first figure, to fulfill the low budget B = 40, only the facility in Murcia (the most populous city)
is kept open (with a high quality), the other shop has to be closed, and no new facility can be opened. The
same happens for budget B = 41, but then for B = 42 both existing facilities are kept opened, although
the quality of the facility in Murcia has to be reduced; no new facility is opened. From budget 42 to 46,
the solution only changes in the quality of the facility of Murcia, increasing from 3.21 to 4.17. A major
change happens when B = 47, where the new facility is opened with minimal quality, directly competing
against one of the competitor’s facilities; and of the two existing facilities, only the one in Murcia is kept
opened, with its original quality; the other one is closed. Interestingly, this is the only budget where it
is worth opening a new facility below the budget of 52. For budgets 48 and 49 the solution is to keep
opened the two existing facilities with the original qualities (the new facility is not opened), while for the
budgets 50 and 51, we can also increase the quality of our low quality facility. From the budget B = 52,
it is again worth to open a new facility, and now all existing facilities remain open; however, the quality
of the existing facilities are decreased: the quality of the facility in Murcia to 3.7–3.8 and the quality of
the other one to its original low quality. When increasing the budget from 52 to 60, first the quality of the
facility in Murcia is increased up to its original maximum quality of 5 (being the quality of the new facility
minimal), and from budget 56 only the quality of the new facility is increased.

We can see how tricky the problem is, where small changes in the budget may provoke completely
new configurations of the solutions.

1.2.1.2 Difficulties in solving the model

We implemented the model in AMPL [81] and tried first to solve two problems for different budgets, with
all the solvers suitable for MINLP problems callable from AMPL, namely, BARON [171], BONMIN [22],
COUENNE [11], SCIP [192], Knitro [29], LGO [150], and LocSol [14].

The first problem is a toy one, with just imax = 4 demand points, jmax = 4 existing facilities, one of
them belonging to the expanding chain (k = 1). Only Knitro succeeded at solving more than one of the
ten instances of our first problem. But changing the conditional definition of Vj using additional binary
variables BARON, SCIP, and LocSol were able to solve the problems as well. For LocSol, we had to set a
reasonable time limit, because it is used as stopping criterion. Setting the time limit to 1 second for this toy
problem (both BARON and our interval branch-and-bound method finished in less time) LocSol found
near optimal solutions in 9 out of the 10 problems. BONMIN without any good starting point, failed at
solving the toy problem regardless of the budget. SCIP could solve all the toy problems optimally but, on
average, it was more than 50 times slower as compared to any of the other successful methods.

The second test problem is the quasi-real example of the previous subsection. Concerning this problem,
without any starting point, BONMIN found the optimal solution only for 1 out of the 15 instances; in the
rest of problems it just found a local optimum. Similarly, LGO and Knitro found the optimal solution only
once of the 15 cases. SCIP found the optimal solution 11 out of the 15 problems but, on average, it spent
more than 5 hours on the problems it could solve. On the other hand, BARON was able to solve all the
instances optimally. Comparing the results obtained by BARON and our method, we found that for the
budget settings, our method was able to find the enclosing interval of the global optima in 25 seconds
on average, while BARON took 800 seconds on average. For the problems whose budget leads to the
opening of the new facility and also to keep opened the existing facilities, the number of near-optimal
solutions is high, due to the fact that increasing the quality of one facility can be compensated (both in
profit and budget) by decreasing the quality of another facility. Our interval branch-and-bound method
aims to find all global optimal points (in fact, to enclose all near-optimal points within a given accuracy).
Opposed to this, BARON aims to find just one global optimum point within the given tolerance and stops
immediately. Thus, in those instances BARON finds one global optimum point faster than our method
finds (enclose) all the near-optimal points. For these 4 out of 15 cases our method took 3 times more CPU
time on average than BARON. When using LocSol we had to set a reasonable time limit, which is not
evident, as both our interval branch-and-method and BARON took times in a wide range when solving
these problems. Setting the time limit to 1 second, only 2 out of 15 problems were optimally solved by
LocSol. Increasing the time limit to 10 seconds, the number of problems optimally solve increased to 6. As
for the last 6 problems with the highest budget, both BARON and our method took longer CPU times, we
run LocSol for these problems setting a time limit of 100 and 1000 seconds. LocSol found near optimal
solutions in 4 out of the 6 problems in both cases.

In order to check the reliability and performance of BARON, we then solved a larger instance, generated
randomly. It has 100 demand points, 3 existing facilities, 2 belonging to the expanding chain. Using our
interval method for 5 different budgets, the enclosure of the global optima is reached in 106 seconds on
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average, while BARON did not find a near-optimal solution within an hour. For one problem, we let
BARON to run until one day, but it could only find a good local solution, not the global optimum.

To conclude, a real-size firm expansion problem either cannot be solved or needs too much time by
commercial solvers, thus making it necessary to develop a new method.

1.2.2 An exact interval branch-and-bound algorithm

To exactly solve non-convex multimodal problems when also integer variables are present, global opti-
mization methods are needed. Spatial branch-and-bound methods (see [13]) are among the most used
algorithms. They are similar to nonlinear B&B methods used for convex MINLP problems (see for instance
Section 3.1 in [12]). However, the relaxed problems in convex MINLP are convex NLP problems which can
be solved with local techniques; thus, branching in convex nonlinear B&B is only performed in the integer
variables. On the contrary, the relaxation of a non-convex MINLP is a non-convex NLP, being themselves
also hard-to-solve problems; thus, branching is also required in the continuous variables as part of the
B&B process to solve them.

In this study, we design a B&B method based on interval analysis tools. Unlike real analysis, which
works with real numbers, interval analysis works with compact intervals (of real numbers). One of its
main advantages is that, through a clever use of its properties, it allows to compute bounds automatically,
which is specially useful in the design of B&B methods (see for instance [101, 117, 159]). Interval B&B
methods were successfully applied for solving many types of continuous NLP problems, including facility
location problems [75, 160, 188, 189]. In this study, we design interval B&B methods to solve MINLP
problems. The main idea is to work with the relaxed problem obtained when assuming that the integer
variables are also continuous, and then, before rejecting some parts of the searching region, we take care of
the integer variables so as not to remove parts which may contain an optimum.

We will adopt the standard notation suggested in [118] for interval analysis throughout the dissertation.
Intervals will be denoted by boldface letters, and lower and upper bounds of intervals by ‘underlines’
and ‘overlines’, respectively. The width of an interval z = [z, z] will be denoted by wid z = z− z, whereas
the width of an interval vector z = (z1, . . . , zn)T (also called a ‘box’) is given by wid z = max{wid zi : i =
1, . . . , n}. The midpoint of an interval z will be denoted by mid z = (z + z)/2. I and In will denote the set
of intervals and n-dimensional boxes, respectively.

The main tool used in interval B&B algorithms is that of inclusion function.

Definition 1.2.1. For a real function, f : Rn → R, we call an interval function f : In → I an inclusion function,
if { f (z) : z ∈ z} ⊆ f(z) holds for all intervals z within the domain of f .

The main benefit of an inclusion function f is that one can get bounds directly over any box in
the domain of f . There are programming languages [123] which provide inclusion functions for the
classical predeclared functions. And from them, and using the interval arithmetic, inclusion functions for
general functions can be built automatically [189] (using, for instance, the natural interval extension [101]).
Automatic differentiation [157] also allows to obtain bounds for derivatives, gradients or Hessian matrices
automatically.

The introduced MINLP location problem has the additional difficulty that functions Vj(αj) are defined
by an ‘if’ expression. Still, we can build an inclusion function for Vj and its derivative as follows:

V j(αj) =



1
δj
(G2(2α̃j − αj)− G2(α̃j)) + vj if αj < α̃j

G2(αj)− G2(α̃j) + vj if αj > α̃j

[0, max{ 1
δj
(G2(2α̃j − αj)− G2(α̃j)),

G2(αj)− G2(α̃j)}+ vj] if αj < α̃j < αj

and

V ′j(αj) =


− 1

δj
G′2(2α̃j − αj) if αj < α̃j

G′2(αj) if αj > α̃j

(−∞,+∞) if αj < α̃j < αj,

where G2 and G′2 are inclusion functions for G2 and G′2, respectively (see also [117, 149]).
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Next, we describe the main steps of the interval B&B method we have implemented. For a generalized
notation, we will denote by z the vector of the n variables, by f the objective function to be maximized,
and by gj(z) ≤ 0, j = 1, . . . , r, the constraints of the problem. In our case, z is the vector ns (with dimension
n = 2k + 4), and constraints (1.16)-(1.20) can be transformed into non-positive form constraints to obtain
functions gj(z).

1.2.2.1 Selection rule

The algorithm manages a list of boxes still to be processed, LW , which initially consists of a single box
containing the feasible region. In a given iteration k, the box to be processed is z(k) = arg max{f (z) : z ∈
LW}, i.e., the so-called best-first strategy.

1.2.2.2 Subdivision rule

Let z be the box to be subdivided. Whenever a coordinate direction i is selected to be subdivided, we
perpendicularly cut it as follows:

• If the corresponding variable zi is continuous, then the i-th component of the corresponding subboxes
will be [zi, mid zi] and [mid zi, zi], respectively.

• However, if zi is integer, then they will be [zi, bmid zic] and [dmid zie, zi]; notice that if mid zi is not
integer, the points in the open interval (bmid zic, dmid zie) are not integer, and therefore, are not
feasible. Hence, in this way, it is assured that the bounds of the integer variables are always integers
in all boxes.

The rest of the components of the subboxes do not change when performing this cut. The selection of
the coordinate directions to cut are done in two levels. First, we always select from the integer variables,
and if there are no integer coordinates to be subdivided, we select from the continuous ones. In the second
level, selection is done by the width of the interval, i.e. the widest component is selected to be bisected.

In our location problem all the integer variables are binary; thus, when splitting the box along a binary
variable the previous process just fix the binary variable in the subboxes to 0 and 1, respectively.

Furthermore, in our location problem we also do the following procedures:

(1) In the subbox with yj = 0, we also set the variable αj equal to 0 (the j-th facility is closed or
not opened), so its width is 0 and it is no longer selected to be bisected in the subdivision rule;
analogously, when y0 = 0 we also set f 1

0 = 0 and f 2
0 = 0.

(2) The first time a variable αj, j = 1, . . . , k, is selected to perform the subdivision, instead of bisecting the
interval αj by its midpoint, as described above, we perform a trisection by α̃j, generating the three
following subintervals: [αj, α̃j − EPS], [α̃j, α̃j] and [α̃j + EPS, αj], where EPS is the smallest machine
number the computer can handle. This has proved to be useful because of the Vj functions. Notice
this is only done the first time the variable is selected; bisection is used after that.

(3) A box is always subdivided perpendicularly to two coordinate directions. Hence, we always perform
a tetrasection, instead of bisection, as it is commonly used in the literature. Whenever at least two
integer variables can still be subdivided, we select the first two of them. If only one integer variable
is left to be subdivided, we select it, and also the widest continuous variable. If no more integer
variables are to be divided, we select the two widest continuous variables for subdivision.

Because of this procedure, we have to take care of many special cases. For instance, when dividing
by yj and αj, if αj is selected for the first time, only 4 new subboxes are generated: for yj = 1, αj is
subdivided into 3 pieces, as described above, but for yj = 0 only αj = 0 is set.

1.2.2.3 Discarding tests

Most discarding tests have to be modified in order to deal with integer variables. Here, we will describe
these tests with their modifications, if needed. As we have said, we denote by gj(z) ≤ 0, j = 1, . . . , r, the
constraints of the problem.
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Feasibility test

We say that constraint gj(z) ≤ 0 is certainly continuously satisfied for an interval box z if g j(z) ≤ 0, and that
it is certainly continuously unfulfilled if g

j
(z) > 0. In case 0 ∈ g j(z), we cannot guarantee neither that it is

certainly continuously satisfied nor it is certainly continuously unfulfilled, thus the constraint is called
undetermined.

We call a box z to be certainly continuously feasible if all the constraints gj(z) ≤ 0, j = 1, . . . , r, are certainly
continuously satisfied, and certainly continuously infeasible when there exists at least one constraint that is
certainly continuously unfulfilled. In any other case, when at least one constraint is undetermined, but
none of the constraints are certainly continuously unfulfilled, the box z is called continuously undetermined.

Moreover, if all the continuous constraints are strictly fulfilled, i.e., g j(z) < 0, j = 1, . . . , r, we call a box
z certainly continuously strictly feasible.

We can only reject certainly continuously infeasible boxes, thus the feasibility test discards those boxes.
Note that for a certainly continuously feasible box z, all the continuous constraints gj(z) ≤ 0, j = 1, . . . , r,

are satisfied for all points z ∈ z. Therefore, all integer points in z are certainly feasible, such as the corner
points of z which are integer points by the subdivision rule. This is specially useful for updating the best
value found by the algorithm, used in the cut-off test.

Cut-off test

Let f̃ be the best objective function value obtained so far by the algorithm. Any box z is discarded by the
cut-off test provided f (z) < f̃ . Note that, in order to update f̃ , (integer) feasible points are required, and
they can be easily obtained from any integer assignment in certainly continuously feasible boxes.

The problem becomes more difficult when the optimal solution is on the boundary of several constraints.
The budget constraint is usually binding and, when the new facility is to be opened, usually there is also
at least one binding locational constraint. In those cases, it can be hard to find a feasible point, as most
boxes near to the optimal solution are continuously undetermined.

Monotonicity test

Monotonicity can help to remove boxes where the global optimum cannot lie. It can be applied to
both certainly continuously feasible and undetermined boxes. To derive these rules, let ∇f (z) =
(∇1f (z), . . . ,∇nf (z))T be an inclusion of the gradient of the objective function f over a box z. The mono-
tonicity test can be applied when there exists a variable zi for which the objective function is monotonous,
i.e., 0 6∈ ∇if (z). Let us denote by ∂S the boundary of the searching region S (where the constraints
gj(z) ≤ 0 are not taken into account). In our problem S = (S, [0, αmax], [0, 1], . . . , [0, αmax], [0, 1]).

In continuous unconstrained problems, the facet z′ (z′ = (z1, . . . , zi, . . . , zn) or z′ = (z1, . . . , zi, . . . , zn),
depending on whether the function is decreasing of increasing, respectively) of the box z contains the
maximum. If z′ 6⊂ ∂S , there is another continuous box where z′ is included, thus the box z can be discarded.
If z′ ⊂ ∂S , so z′ is on the boundary, the box z is narrowed to z′.

However, for constrained problems with integer variables z′ has to be checked further. Having a
certainly continuously feasible box z with 0 6∈ ∇if (z) for a variable zi, the following holds:

1. If zi is continuous, we know that the maximum cannot be in the interior, thus the box z can either be
discarded (when it is strictly continuously feasible), or narrowed to its facet z′ when z′ ⊂ ∂S .

2. If zi is integer, the box can be narrowed to the facet z′.

Notice that when the variable zi is integer, the box cannot be removed since the gradient may change
its sign in the open region (z1, . . . , (zi − 1, zi), . . . , zn) or (z1, . . . , (zi, zi + 1), . . . , zn), respectively. As
in the division rule such regions with non-integer points are removed, we can interpret this as z′ is
on the boundary of the feasible set.

Now let us consider an undetermined box, z. Depending on the constraints which are not certainly
continuously satisfied by z the monotonicity test is different. In general, what is important in this case is
whether the constraints in which the monotone variable zi appears are certainly continuously satisfied in
the facet z′. We call such facet z′ to be feasible for zi. Now, if 0 6∈ ∇if (z) for a variable zi, we can state the
following:

1. If zi is a continuous variable, and the facet z′ is feasible for zi, then the box z can be either discarded
(if z′ 6⊂ ∂S) or reduced to z′ (if z′ ⊂ ∂S).
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2. If zi is an integer variable, and the facet z′ is feasible for zi, then the box can be narrowed to the facet
z′.

Specifically for our location problem, as the variables yj, αj, j = 0, . . . , k do not appear in the constraints
delimiting the feasible area for the location of the new facility, it is enough to check whether the corre-
sponding boxes certainly continuously satisfy the budget constraint. However, for the location variables
f 1
0 , f 2

0 , all the constraints have to be checked as they appear in all the constraints.
In our location problem, the budget constraint is the one that provokes more continuously undeter-

mined boxes, as it is usually binding in the optimal solution. When the budget is small, many boxes can
be discarded by the feasibility test, and when it is high, it the monotonicity test is the one that becomes
more efficient.

1.2.2.4 Projected one-dimensional Newton method

In [76], a one-dimensional Newton method was introduced, which can be applied here on both certainly
continuously strictly feasible or undetermined boxes, on their continuous quality variables.

If the box is continuously strictly feasible, we can apply the method without any changes. The main
idea is to run the interval Newton method considering only one variable at a time, fixing the other variables
to their current interval value. Notice that in contrast to the classical interval Newton method, which is
usually performed as a one-step (or one-iteration) method, the projected Newton method is run until it
cannot remove any part of the box, or until it discards the box (as no local optimum is included in it) or
until the width of the given variable is less than the tolerance in our stopping criterion.

Now let us consider an undetermined box, z. We can also apply the projected one-dimensional Newton
method to a variable zi of z provided that zi does not appear in any of the constraints which are not
certainly continuously strictly satisfied by z.

We have also employed the empirical rule of applying the method only to boxes whose width is less
than one.

In the introduced location problem, if the box z is undetermined for some locational constraints, but
strictly feasible for the budget constraint, the test can be applied to the quality variables (the objective
function is concave in those variables [76]).

Projected one-dimensional non-concavity test

Similarly to the one-dimensional Newton method, one can check the non-concavity of the objective
function only for a given variable, considering the other variables fixed at their current interval values.
The main advantage in both projected methods is that instead of computing the whole Hessian matrix,
only one second derivative is required to be computed.

Again, we can only apply the non-concavity test to a continuous variable zi provided that zi does not
appear in any of the constraints which are not certainly continuously strictly satisfied by z.

1.2.2.5 Stopping rule

We have used two stopping criteria for any of the boxes. A box z is sent to the solution list LS if either its
size is smaller than a given tolerance, i.e., wid (z) < ε, or the relative width of the inclusion of its objective
value is less than a given tolerance, i.e, wid rel(f (z)) < δ.

1.2.3 Computational studies

1.2.3.1 Hardware and software

All the computational results have been obtained under Linux on an AMD Athlon(tm) 64 X2 with 2.2 GHz
CPU and 2 GB memory. The algorithms have been implemented in C++. For the interval B&B method, we
used the interval arithmetic in the PROFIL/BIAS library [119], and the automatic differentiation of the
C++ Toolbox library [99]. We have used a time limit of 12 hours for each run.

1.2.3.2 Test problems

In order to check the performance of the methods and their variants, we have generated different test
problems varying some parameters. Namely, we have fixed the number of demand points (n = 100), but
varied the number of existing facilities (m = 3, 5) and the number of facilities belonging to the expanding

               dc_1926_21



1.2. FIRM EXPANSION: AN INTERVAL B&B METHOD FOR A MINLP 23

chain (k = 1, 2). For each setting, 10 problems were generated, by choosing the input data of the problems
randomly from the following intervals using uniform distributions:

• location of demand points and existing facilities: pi, f j ∈ ([0, 10], [0, 10]),

• demand: wi ∈ (0, 10],

• quality of existing facilities: α̃j ∈ [0.5, 5],

• income per unit of goods sold (F(·) = c ·M(·)): c ∈ [12, 14],

• parameters of function Φi: φi0 = 2, φi1 ∈ [0.5, 1.5],

• parameters of function G2: β0 ∈ [7, 9], β1 ∈ [5, 5.5],

• radius of forbidden regions: dmin
i = wi/ρ, where ρ = 3

√
n + 50− 20,

• parameter of function Rj: oj = 20,

• annualized cost for keeping a facility opened: Aj ∈ [8, 11],

• cost for closing a facility: Cj = Aj/2,

• parameters of function Vj: vj = G2(1) and δj ∈ [3, 5].

After generating the instances, we found that the original qualities remain in none of them unchanged
when solving the problem. This is because the qualities associated to the facilities were far from being the
optimal ones, due to their randomness. Thus, in order to generate problems which are closer to reality, we
performed a pre-optimization for the qualities of the existing facilities, as follows. First, we calculated
the budget needed to run the facilities of the expanding chain with their current setting, B̃ = T(ns) (i.e.,
when no new facility was taken into account (y0 = 0) and when the existing facilities were open with their
original qualities, i.e., yj = 1 and αj = α̃j ∀j = 1, . . . k). Second, we run our B&B method for the budget B̃
in order to optimize the qualities of the existing facilities, by fixing y0 = 0 and yj = 1 ∀j = 1, . . . k. Finally,
we set α̃j equal to the optimal value of αj of the previous problem.

Furthermore, we also used B̃ to set reasonable budgets for the generated instances. In particular, we
solved each problem instance for 80%, 100%, 120%, 150%, and 200% of the budget B̃, that is, from a scenario
in which the chain does not have enough budget to keep all its facilities with their current qualities, to
a scenario where the budget of the chain doubles the one required for the current setting. Hence, in all
2 · 2 · 10 · 5 = 200 instances were generated.

1.2.3.3 Versions of the interval branch-and-bound method

In order to analyse the efficiency of each of the discarding tests, we solved the test problems using the
following versions of the interval B&B algorithm:

Basic: Only feasibility and cut-off tests are applied as discarding tests, and only the natural inclusion is
evaluated for bounding.

Mono: The discarding tests of the Basic version together with the monotonicity test are applied. For
bounding, the intersection of the centered form and natural inclusion [101] is used.

Newton: This is the Mono version together with the projected one-dimensional Newton method.

NonConc: This is the Newton version together with the projected one-dimensional non-concavity test.

In Table 1.5, we can compare the different versions of the interval B&B method for the different problem
settings. As the main indicator of efficiency, the table gives the average computational time in seconds for
the 10 problems in each setting. For those settings, where the given method could not finish before its time
limit, the 12 hours were taken into account (there were 39 such cases for Basic, 4 for Mono, and only 2 for
Newton and Nonconc out of the 200 scenarios).

In the first three columns of Table 1.5, the type of the problems is shown: first the number of existing
facilities and the number of facilities belonging to the expanding chain is given, and then, the budget
in relative terms to B̃, the budget needed to run the facilities of the expanding chain with their current
setting. In the following columns, for each version of the interval method (Basic, Mono, Newton, and
NonConc) the average computational time in seconds is reported. Moreover, we report in percentages the
ratio between each version with its preceding variant, in the columns named Mono

Basic , Newt
Mono , and NonConc

Newt .
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Table 1.5: Average computational time in seconds for the different versions of the interval B&B method for
problems with 100 demand points

m k Budget Basic Mono Mono
Basic Newton Newt

Mono NonConc NonConc
Newt

3

1

80% 8437 3307 39% 3293 100% 3296 100%
100% 17732 4384 25% 4388 100% 4389 100%
120% 17570 1928 11% 1928 100% 1922 100%
150% 7210 177 2% 174 98% 176 101%
200% 7117 187 3% 153 81% 159 104%
Aver. 11613 1997 17% 1987 100% 1989 100%

2

80% 7105 716 10% 714 100% 716 100%
100% 14124 2331 17% 2314 99% 2314 100%
120% 13804 4799 35% 4755 99% 4760 100%
150% 14569 5925 41% 385 6% 424 110%
200% 19022 5926 31% 307 5% 354 115%
Aver. 13725 3939 29% 1695 43% 1713 101%

5

1

80% 3320 339 10% 339 100% 338 100%
100% 8544 335 4% 333 99% 333 100%
120% 11523 199 2% 196 98% 198 101%
150% 10131 100 1% 92 92% 94 102%
200% 13284 99 1% 47 48% 54 115%
Aver. 9360 214 2% 201 94% 203 101%

2

80% 11091 5230 47% 5211 100% 5230 100%
100% 17834 9212 52% 7178 78% 7167 100%
120% 12466 6687 54% 4162 62% 4181 100%
150% 13877 6665 48% 3616 54% 3675 102%
200% 15749 6758 43% 348 5% 388 112%
Aver. 14203 6911 49% 4103 59% 4128 101%

Additionally, for each problem setting we report the averages for the different budget scenarios taken by
the versions of the interval B&B method.

As we can see, for the Basic version of the interval method, the smallest budget always leads to
easier-to-solve problems, as the feasibility test can efficiently discard large regions from the infeasible
region. Increasing the budget usually increases the time, although for some (m, k) settings we can see a
decrease of time after the 120% budget.

The use of the monotonicity test with the centered form always makes the interval B&B method faster.
For some settings, the improvement of Mono over Basic is dramatic, being more than 10 times faster. When
only one chain-owned facility exists (k = 1), the tendency is clear: the more budget we have, the more
efficient the monotonicity test is, probably because there are more boxes which certainly satisfy the budget
constraint, and to which the monotonicity test can be applied. In case two chain-owned facilities exist,
there is no such tendency, but still, Mono is very efficient, two times faster than Basic.

The projected one-dimensional Newton method is also efficient in general, although not always. For
the lowest budget, it cannot usually be applied, as most of the boxes are undetermined for the budget
constraint; that is why for those problems it does not reduce the CPU time. The higher the budget, the
more efficient the Newton method is. And it is particularly efficient when two chain-owned facilities
exist (when the monotonicity test is less efficient): in those cases, when 150% and 200% of the budget B̃ is
available, the Newton version is 20 times faster than Mono and it employs just 5% of the running time of
the Mono version. Notice that in those settings there are three quality variables for which the projected
one-dimensional Newton method can be applied.

On the other hand, the projected one-dimensional non-concavity test is not efficient for our location
problem (only for three out of the 20 settings we can see a small improvement). For smaller budgets, it
cannot usually be applied, as most of the boxes are undetermined for the budget constraint. For higher
budgets, its use provoked an increase in the CPU time, mainly because both the monotonicity and the
projected one-dimensional Newton are very efficient, and there is not much room for improvement.

Comparing the problem settings, the easiest problems are, in general, the ones with one chain-owned
facility. The reason is clear: those problems have one variable less than the others. Interestingly, among
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Table 1.6: Average computational times for each budget settings using the different versions of the interval
B&B method

Budget Basic Mono Mono
Basic Newton Newt

Mono NonConc NonConc
Newt

80% 7488 2398 32% 2389 100% 2395 100%
100% 14559 4065 28% 3553 87% 3551 100%
120% 13841 3403 25% 2760 81% 2765 100%
150% 11447 3217 28% 1067 33% 1092 102%
200% 13793 3242 24% 214 7% 239 112%

Aver. 12225 3265 27% 1997 61% 2008 101%

those problems, the ones with 5 existing facilities are easier to solve; however, it is not clear if there is a
reason for that. On the contrary, when there are two chain-owned facilities, it turns out that, in general,
the problems with 3 existing facilities are easier to solve.

In Table 1.6, we have reported the average results of all the problems for each budget scenario
comparing the different versions of the interval B&B method. As we can see, the budget needed to run the
facilities of the expanding chain with their current setting, B̃, gives in general the hardest problem for each
variant. This is because of the way we generated the random problems: remember that we performed a
pre-optimization of the qualities of the existing facilities, so it is more difficult to find a better solution. For
the Basic and Mono versions, the easiest problems on average are those whose budget is more restrictive;
on the contrary, the Newton and NonConc variants are more effective as the budget constraint becomes
looser. On average, the Mono version needs just one third of the running time of Basic. The Newton
version also reduces the computational time, specially when the budget constraint is looser. In general,
compared to the Mono version, it needs 61% of its CPU time, and compared to the Basic method, only 16%
on average.

1.2.4 Conclusions

When a chain wants to expand its presence in a given geographical area, it can choose among opening a
new facility, varying the quality of its existing facilities up or down, closing some of its existing facilities
(to invest the money devoted to those facilities to the other chain-owned facilities, or to the new one, in
case it is open) or a combination of all those possibilities. In this work, the continuous competitive facility
location and design model introduced in [76] has been extended to accommodate all those possibilities.

The resulting model is a hard-to-solve MINLP problem, for which the existing solvers fail: only BARON
[171] and LocSol [14] seem to be able to solve some small instances, although they can fail at solving other
instances, too. Thus, new algorithms are required to cope with the new problem.

An exact spatial interval branch-and-bound method is proposed to solve the problem. It is a modifi-
cation of the classical interval B&B methods proposed for continuous NLP problems to handle integer
variables. In particular, the subdivision rule has been modified to take into account the integer variables,
as well as the monotonicity test, the projected one-dimensional Newton method and the projected one-
dimensional non-concavity test. The idea for the modification of those tests is to relax the integrality of the
variables, and when the moment of discarding subregions arrives, to take the integrality back into account
so as not to remove promising parts.

The so-called Newton variant of the exact interval B&B algorithm can solve medium size problems
(with up to 100 demand points and 5 existing facilities) without difficulty in around 30 minutes of CPU
time on average. The method is guaranteed to find all optimal solutions.

1.3 Location equilibria for a continuous competitive facility location
problem under delivered pricing

The problem of selecting the optimal or best location of the facilities and the setting of the right price of a
product are two of the main drivers in a supply chain. These two interrelated logistical drivers provide a
competitive advantage while contributing significantly to both the efficiency and the responsiveness of a
supply chain. In other words, where to locate the facilities and what price to set are major decisions for
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firms that sell the same type of product and compete for customers. The profit each firm gets is affected not
only by the location of its facilities and the price that the firm sets in the market, but also by the location
of its competitors and the prices they set. The maximization of profit for each competing firm can be
seen as a location-price game, which has been studied since the work of Hotelling [112]. Most existing
literature deals with a linear market (see [52, 86, 145]), which is in part due to the complexity of solving
the associated location problems in other location spaces such as the plane or the network. The reader will
find the survey papers [71, 152, 167] to be useful.

This study deals with the competitive location problem on the plane where two firms aim to locate
optimally one facility each while maximizing their market share. A branch-and-bound (B&B) approach
based on interval analysis is developed for small/medium size problems. A new iterative Weiszfeld-like
formula is developed and used as part of an adapted version of an ‘allocate-locate-allocate’ scheme
commonly used in solving multi-source Weber problems. A proof for validating the descent property of
our approach is also provided.

Most models in this context consider a refinement of the Nash equilibrium by using a two-stage process
where the choice of the location is usually prior to the decision on the price. In the first stage, firms solve
the location problem and given the outcome of the first stage, they then choose the price of the product in
the second stage. The corresponding two-stage solution is called a subgame perfect Nash equilibrium.
It captures the idea that when firms select their location, they all anticipate the consequences of their
choice on the price. The division into two stages is motivated by the fact that the location decision usually
requires a massive investment. This is a strategic decision which cannot be easily altered. On the other
hand, the price decision is a short term or/and operational type decision which can be adjusted from
one week to the next without too much inconvenience. Note, however, that the timing for altering such
prices is usually planned earlier so to provide the other activities within the supply chain enough time to
accommodate the appropriate changes. This two-stage process is also adopted in this work. Note that in
this context, firms are supposed to decide simultaneously the location and the prices. This is in contrast to
Stackelberg competition models, where a firm (the leader) decides first the location and then the prices for
its facilities, taking into account that the other firm (the follower) will react by subsequently locating and
selecting prices for its own facilities, knowing the previous decision of the leader (see [96, 163]).

The existence of a price equilibrium in the second stage of the game depends, among other factors, on
the price policy adopted. When each firm sets a fixed factory price and the buyer takes care of the carriage
(f.o.b. or mill pricing policy) a price equilibrium rarely exists (see [89]). In this case, the associated location
problem has been studied in nonlinear location spaces by taking prices as parameters (see [69, 90, 177, 198]).
On the other hand, there always exists a price equilibrium when each firm charges a specific price in
each market area, which includes the transport costs (delivered pricing policy). The existence of a price
equilibrium was shown for the first time by Hoover [109]. The author analysed spatial discriminatory
pricing for firms with fixed locations. It was concluded that a firm serving a particular market would be
constrained in its local price by the delivery cost of the other firms serving in that market. In situations
where demand elasticity is ‘not too high’, the equilibrium price at a given market is equal to the delivery
cost of the firm with the second lowest delivery cost. This result was extended later to spatial duopoly (see
[125, 126]) and to spatial oligopoly (see [57, 89]) for different types of location spaces.

In a duopoly with completely inelastic demand and constant marginal production costs, Lederer and
Thisse [126] show that a location equilibrium exists and that any global minimizer of the social cost is
an equilibrium. This is the total delivered cost if each customer was served with the lowest marginal
delivered cost. In oligopoly, the same result is obtained by Dorta et al. [57]. Here, the authors present a
model where firms take location and delivery price decisions along a network of connected but spatially
separated markets. Under reasonable assumptions, they show that a location equilibrium can be found at
the nodes by using global minimization of the social cost. But, to the best of our knowledge, no procedure
has been proposed along this direction. Gupta [95] and Hamilton et al. [98] also showed that if the demand
is price sensitive or the marginal production costs are not constant, the optimal locations that are based on
the social cost may not coincide with an equilibrium of the location-price game.

In the present study, we assume that markets are aggregated at n demand points, where a given
homogeneous price-inelastic product will be sold by the competing firms. The firms manufacture and
deliver the product to the customers, who always opt to buy from the firm that offers the lowest price.
This is the case for instance of firms which have to serve clients who are within a distance such that the
transportation costs are similar or higher than the production cost of the product to be delivered.

In particular, we consider two firms locating a single facility each on the continuous space with the
presence of constant marginal production costs. In this game, the number of available actions for each
player (firm) is infinitely many (as the location of the facilities vary in (a subset of) the plane and the prices
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may also be chosen continuously). The payoff function for a firm is the profit it gets, which is determined
by the segment of the market served by each firm. This market depends on the prices, which in turn
depend on the location of the facilities, as it will be shown. This work could also be used as a basis for the
case when each firm wishes to have more than one facility.

This equilibrium location problem reduces to the multi-source Weber problem if the production costs
are set to zero and the marginal transportation costs are given by the distances between the facilities and
the customers. In this case, the social cost reduces to the minimisation of the transportation cost only. A
review of such continuous multi-source Weber problems is given in Brimberg et al. [26]. Recent results in
this particular area can be found in Schöbel and Scholz [175], and Brimberg and Drezner [25]. The former
paper extends on the idea of the Big Square Small Square procedure originally proposed by Hansen et
al.[102] to higher dimensions. The authors present a new approach known as The Big Cube Small Cube
to optimally solve problems with p = 2 and 3. The latter paper presents an efficient implementation to
improve on Cooper’s alternate approach [46] and produces excellent results for most values of p when
tested on the commonly used multi-source Weber data sets (see Brimberg et al.[27]). In this study, we are
not limiting ourselves to this well studied location problem, but we aim to solve the problem in the general
case when the social cost is not represented by the transportation cost only.

The section is organized as follows: In the next subsection we introduce some reduction schemes to
transform the problem into a location game and present a reformulation of the problem. These resulted
from a common work with my coauthors, and as such are indivisible. Subsection 1.3.2 discusses the
interval B&B algorithm which can solve instances with any cost structure, but only of a moderate size.
This was my main contribution done together with José Fernández. Subsection 1.3.3 addresses the case of
larger instances where an effective alternating Weiszfeld-based algorithm is designed to cater for a general
cost structure including the multi-source Weber problem as a special case. The idea came from Said Salhi
worked out by myself with José Fernández, while the theoretical result is mine. Subsection 1.3.4 describes
some experiments and presents our findings. In Subsection 1.2.4, our main conclusions are summarised.

1.3.1 A reformulation as an optimization location game problem

In this subsection, we first show that a price equilibrium exists, and then, using the equilibrium prices, we
reduce the location-price game to a location game.

We have n customers with respective demand wi (i = 1, ..., n) that need to be served from two
competing firms (u = 1, 2). In this study, each firm u can locate its facilities anywhere in the plane.
However, to relate to recent developments in this field (see [148]), we first refer to the general case where
the search space is an arbitrary location space Lu. Lu may be a discrete set, a network, or a region of the
plane. Let us denote by

pu
xi the marginal delivered cost of firm u from location x to market i.

This includes both transportation and production costs.
pu

i (Xu) = min{pu
xi : x ∈ Xu}, minimum price that firm u can offer in market i when Xu ⊂ Lu

is chosen as the set of facility locations for firm u, u = 1, 2.

We also assume that each firm offers a price which is either the same or above its marginal delivered
cost to guarantee a profit. If the two firms offer the same price in market i, the one with the minimum
marginal delivered cost can lower its price and obtains all the demand in market i. Then we consider that
ties in price are broken in favour of the firm with lower marginal delivered cost. If the tied firms have the
same marginal delivered cost in market i, no tie breaking rule is needed to share demand because they will
obtain zero profit from market i as a result of price competition. It can be shown that a price equilibrium
would be obtained as neither of the two firms, for their own competitive advantage, will attempt to change
its price. This interesting results is shown in Pelegrı́n et al. [148]. In other words, once X1 and X2 are fixed
or determined, the equilibrium prices can be defined mathematically as follows:

p1
i (X1, X2) =

{
p2

i (X2) if p1
i (X1) < p2

i (X2)

p1
i (X1) otherwise

p2
i (X1, X2) =

{
p1

i (X1) if p2
i (X2) < p1

i (X1)

p2
i (X2) otherwise.

Similarly, the market share attracted by each firm u (or the segment of the market served by firm u) is
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defined as

M1(X1, X2) =
{

i ∈ {1, ..., n} : p1
i (X1) < p2

i (X2)
}

M2(X1, X2) =
{

i ∈ {1, ..., n} : p2
i (X2) < p1

i (X1)
}

.

Other markets may be served by any of the firms or by both firms, but the profit coming from these
markets is 0. Their corresponding profit is computed as

Π1(X1, X2) = ∑
i∈M1(X1,X2)

(
p2

i (X2)− p1
i (X1)

)
wi

Π2(X1, X2) = ∑
i∈M2(X1,X2)

(
p1

i (X1)− p2
i (X2)

)
wi.

In brief, the location-price game is reduced to a location game where the decisions are about the choice
of the location and the payoff for player u is Πu(X1, X2), u = 1, 2.

We would like to emphasize that our aim in this study is not to optimize Π1 or Π2 but to find a
location equilibrium instead. Facilities (X̃1, X̃2) satisfy a location equilibrium property if the following
two conditions are both satisfied:

Π1(X̃1, X̃2) ≥ Π1(X1, X̃2) ∀X1 and Π2(X̃1, X̃2) ≥ Π2(X̃1, X2) ∀X2.

As pointed out in [148], any global optimal solution of the following minimization problem is then an
equilibrium:

min
{

S(X1, X2) : X1 ⊂ L1, X2 ⊂ L2
}

, (P)

where

S(X1, X2) =
n

∑
i=1

min
{

p1
i (X1), p2

i (X2)
}

wi

is known as the social cost. Note, however, that the converse does not hold in general. In addition, local
minimizers of the social cost lead to local equilibria only. In other words, there exist equilibria in the same
neighbourhood in which they are local minimizers.

When Lu, u = 1, 2, is part of a finite set of potential sites, the problem is thoroughly investigated in [148].
However, when Lu, u = 1, 2 is anywhere in the continuous space, problem (P) becomes relatively harder
to solve than its counterpart the discrete case. In this study, we wish to address this planar competitive
location problem using complex and novel global optimization techniques.

In particular, we concentrate on the case where Lu ⊆ R2, u = 1, 2 and |Xu| = 1, u = 1, 2. For simplicity
we use xu to denote the location of the facility chosen by firm u, i.e., Xu = {xu}. As the marginal
delivered cost can be written as pu

xi = cu
x + tu

xi, with cu
x and tu

xi representing the marginal production and
transportation costs, respectively, (P) can be rewritten as

min

{
n

∑
i=1

min
{

c1
x1 + t1

x1i, c2
x2 + t2

x2i

}
wi : x1 ∈ L1, x2 ∈ L2

}
. (P′)

In this work, our aim is to study Problem (P′). To highlight the difficulty in solving (P′), let us consider
the particular case in which c1

x = c2
x for all x ∈ R2, so we can state that pu

xi = tu
xi. Furthermore, assume

that the marginal transportation cost of firm u from location xu to market i is a linear function of the
distance di(xu) from market i to xu, so that we can assume that pu

xi = di(xu). Since |Xu| = 1 we also have
pu

i (xu) = pu
xui = di(xu). Using these assumptions, the social cost can be defined as

S(x1, x2) =
n

∑
i=1

min{di(x1), di(x2)}wi. (1.22)

In this case, (P′) reduces to the well known uncapacitated multi-source Weber problem which is known to
be NP-hard (see Megiddo and Supowit [132]).

Since the objective function of problem (P′) is neither convex nor concave, global optimization tech-
niques need to be used. An interval branch-and-bound algorithm is presented in the next section followed
by our newly constructed alternating Weiszfeld-like heuristic which we will describe in Subsection 1.3.3.
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1.3.2 A branch-and-bound based approach

As we are already familiar with the general interval B&B method, we only provide information on
extraordinary parts, followed by the rules used in our iBB implementation. Two examples with different
characteristics are also given to illustrate the method.

One of the challenges in our problem is that the objective function is given as a sum of functions
which in turn are given as a minimum of functions. When a function is defined by a minimum some
modifications are required to obtain the corresponding inclusion function. If f , g : In → I are inclusion
functions for f , g : Rn → R, respectively, we can obtain an inclusion function for min{ f , g} as

min(f (x), g(x)) = [min{f (x), g(x)}, min{f (x), g(x)}]. (1.23)

We can also obtain an inclusion function for its subgradient, as follows

∇min(f (x), g(x)) =


∇f (x) if f (x) < g(x)
∇g(x) if g(x) < f (x)
∇f (x) ]∇g(x) otherwise,

(1.24)

where ] stands for the interval hull (the smallest box containing the union of the boxes). ∇f (x) and ∇g(x)
are inclusion functions for the gradients ∇ f and ∇g of f and g, respectively, which can be obtained by
automatic differentiation [99, 157].

1.3.2.1 Our iBB implementation

The particular rules that we select for our iBB have shown to be promising in related work (see [149] and
[76]). These include the following:

Selection Rule: We select the box y with S(y) = min{S(z) : z ∈ LW}, where LW denotes the list of boxes
still to be processed. This is also known as the best-first strategy.

Division Rule: Our aim is to opt for the bisection method which divides the box into two equally sized
boxes. This simple but effective numerical method has also the advantage of acquiring well defined
convergence properties. Here, we cut the box perpendicularly to the coordinate with the maximum
width as reducing the distance between far away points can lead to tighter bounds.

Discarding Tests: We have used the classical feasibility and cut-off (or mid-point) tests [159], the pruning
test proposed in [130], and the monotonicity test (for strictly feasible and undetermined boxes) recently
introduced in [76]. Here, the inclusion of the subgradient ∇S is obtained by automatic differentiation
[99, 157] and using (1.23) and (1.24).

Termination Rule: If w(y) < ε, the box y is sent to the solution list, LS .

Both the selection and division rules are the ones commonly used in interval B&B methods. No attempt
has been made to investigate the suitability of other strategies. As for the discarding test, they have been
included because they all proved to be effective at accelerating the algorithm when applied to the problem
at hand.

The interval B&B algorithm terminates after a finite number of iterations. A list of boxes, LS , which
contains all optimal solutions is produced. Note that any vector in the boxes from this list has a value
close to the global optimum. The region of near-optimality given by ∪y∈LS y can be useful in practice. This
provides flexibility to the decision maker in choosing several solutions instead of being limited to having
one single solution only. In this situation, he/she will be able to choose a final solution that incorporates
other aspects that would have been difficult to explicitly quantify otherwise.

1.3.2.2 Two illustrative examples

Figure 1.6a) shows an example of the non-symmetric solutions found by the interval B&B method for
a problem with three equidistant points, each with unit demand, and the simplifying assumptions that
pu

xui = di(xu). This simplified problem reduces to an uncapacitated multisource Weber problem. The
problem has infinite optimal solutions. In orange (darker colour), we can see the optimal locations for
the facility of firm 1, and in brown (lighter colour) the optimal locations for the facility of firm 2, when a
lexicographical order is required. As we can infer from Figure 1.6(a), the optimal solution for firm 1 is
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to locate its facility either in one of the demand points (and then firm 2 locates its facility at any point of
the opposite edge of the triangle) or in an edge of the triangle (and then firm 2 locates its facility at the
opposite vertex).

A second example is given in Figure 1.6(b), where a problem with four demand points located in the
corners of a square is presented. The same assumptions as the ones of the previous example are considered
here. The locations of firms 1 and 2 are ordered lexicographically. In this figure, four of the eight optimal
locations for the facility of firm 1 can be identified. For instance, the facility can be located (i) either at
one of the vertices, or (ii) as the solution of the Weber problem generated by three of the vertices. In (i)
the facility of firm 2 is to be located as the solution of the corresponding Weber problem generated by the
other three demand points whereas in (ii) the facility of firm 2 is located at the other vertex of the square.
Each solution, which is a pair of locations, is shown in a different colour in Figure 1.6(b).

(a) (b)

Figure 1.6: Output of the interval B&B method for a problem with three demand points on the left, with
four demand points on the right

The above method is suitable for small to medium size problems only as will be shown empirically in
our computational results, see Subsection 1.3.4. For larger problems, a heuristic-based approach would be
the best way forward. This is presented next.

1.3.3 The heuristic-based approach

We first propose an alternating Weiszfeld-like algorithm for the easier case where the problem (P′) reduces
to the multisource Weber problem (the minimization of (1.22)). The algorithm is based on the ‘allocate-
locate-allocate’ methodology originally proposed by Cooper in [46] for the multi-source Weber problem.
A proof to validate the descent property of such an approach is also provided. This technique is then
extended to cater for a general cost structure.

1.3.3.1 The alternating Weiszfeld-like location algorithm

In this subsection, we solve the problem of minimizing (1.22) by proposing an alternating Weiszfeld
location algorithm which we refer to as AWLA for short (see Algorithm 1.1). At each iteration, only the
customers from which the corresponding firm gets a positive profit are considered (see steps 3 and 5).
Once this allocation of the demand points to a facility is completed, the facility is relocated by solving the
corresponding 1-median problem using steps 4 and 6 of Algorithm 1. These steps are implemented based
on the idea of Weiszfeld [194] but using the new iterative formula which we developed, see equations
(1.26) and (1.27). This process is repeated until the change in the location of the facilities is smaller than
a given tolerance. This algorithm improves the objective function value from one iteration to the next
until a local minimum is found and hence the search terminates. The proof for the validity of the descent
property of these formula is provided at the end of the subsection.
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Algorithm 1.1 AWLA
1: Define the two initial points x1 and x2 and set STOP=false.
2: repeat
3: Compute the set M1(x1, x2) = {i ∈ {1, ..., n} : di(x1) < di(x2)}.
4: Apply the Weiszfeld like algorithm (using (1.26) and (1.27)) to solve the 1-median problem for firm 1 based on

the set M1(x1, x2). Consider x1 as initial point and let x̂1 be the new obtained location.
5: Compute the set M2(x̂1, x2) = {i ∈ {1, ..., n} : di(x2) < di(x̂1)}.
6: Apply the Weiszfeld like algorithm (using (1.26) and (1.27)) to solve the 1-median problem for firm 2 based on

the set M2(x̂1, x2). Consider x2 as initial point and let x̂2 be the new obtained location.
7: if max(‖x̂1 − x1‖, ‖x̂2 − x2‖) < ε
8: set STOP=true
9: else

10: set x1 = x̂1 and x2 = x̂2

11: until STOP

There are several strategies on how to select the initial locations for the facilities in Step 1. The simplest
way which we implement in this work is to generate x1 and x2 randomly from the area of interest. However,
other rules could include the following:

(i) Set x1 equal to the median point (based on the set of all demand points) and x2 equal to the demand
point with maximum demand.

(ii) Set x1 and x2 as the optimal solution of the discrete 2-median problem. This can be achieved by
carrying out a complete enumeration which can be performed relatively efficiently for the case of 2
facilities.

(iii) A simple guided multi-start: For instance, we can generate several pairs of locations randomly and
choose a subset of the best pairs which can make up the set of our starting points from which we can
identify the most appropriate x1 and x2.

1.3.3.2 A general cost structure

A similar strategy can be adopted for handling the general case, when c1
x 6= c2

x and/or t1
xi 6= t2

xi. The only
difference is that the objective function of the 1-median problems to be solved in steps 4 and 6 is not that
of the classical Weber problem. In this subsection we explore this issue.

Let us denote the locations of the demand points by ai, i = 1, . . . , n. We need a mathematical formulation
for cu

x , the marginal production cost of firm u when the facility is located at x. Assuming that the operational
costs are the same regardless of the location chosen, then, cu

x depends only on the location x. This cost is
usually related to the relative location of the facility with regard to the demand points through its distances.
The cost cu

x does usually increase as x approaches any demand. This is due to the operational cost of the
facility in the centres of high population concentrations being higher because of the value of land and
premises. In [76], suitable expressions for cu

x are suggested including the following formulation which we
use here:

cu
x =

n

∑
i=1

wi
W

1
du(x, ai))

φu
i0 + φu

i1

, (1.25)

where W = ∑n
i=1 wi is the total customers demand, and φu

i0, φu
i1 > 0 are parameters whose values are

given or estimated. The first one modulates the distance whereas the second allows for adjustment while
avoiding the division by zero (i.e., in case x = ai).

Using (1.25), the corresponding minisum problems to be solved in steps 4 and 6 of the algorithm AWLA
have the following objective function

min Fu(x) = ∑
i∈Mu

wi(cu
x + tu

xi) = Qucu
x + ∑

i∈Mu
wigu(du(x, ai)),

where Mu stands for M1(x1, x2) if u = 1, and for M2(x̂1, x2) if u = 2, Qu = ∑i∈Mu wi refers to the market
share supplied by firm u, and gu(du(x, ai)) represents the transportation cost as a function of the distance.

A Weiszfeld-like procedure is developed to solve these new minisum problems using basic calculus.
By equating the first partial derivative to zero we get

∂Fu

∂x1
= Qu

n

∑
i=1

wi
W
−φu

i0(d
u(x, ai))

φu
i0−1

((du(x, ai)
φu

i0 + φu
i1)

2

∂du(x, ai)

∂x1
+ ∑

i∈Mu
wi

dg
ddu(x, ai)

∂du(x, ai)

∂x1
= 0
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If the distance function is such that

∂du(x, ai)

∂x1
= x1 Au

i1(x)− Bu
i1(x),

then

x1 =

Qu
n

∑
i=1

Bu
i1(x)

wi
W
−φu

i0(d
u(x, ai))

φu
i0−1

((du(x, ai)
φu

i0 + φu
i1)

2
+ ∑

i∈Mu
Bu

i1(x)wi
dg

ddu(x, ai)

Qu
n

∑
i=1

Au
i1(x)

wi
W
−φu

i0(d
u(x, ai))

φu
i0−1

((du(x, ai)
φu

i0 + φu
i1)

2
+ ∑

i∈Mu
Au

i1(x)wi
dg

ddu(x, ai)

(1.26)

Note that Au
i1(x) and Bu

i1(x) are functions of x which depend on the chain u, the customer i and the
variable x1. A simple representation of these functions will be given here.

Also, by equating the second partial derivative to zero and provided that

∂du(x, ai)

∂x2
= x2 Au

i2(x)− Bu
i2(x),

x2 can be computed as

x2 =

Qu
n

∑
i=1

Bu
i2(x)

wi
W
−φu

i0(d
u(x, ai))

φu
i0−1

((du(x, ai)
φu

i0 + φu
i1)

2
+ ∑

i∈Mu
Bu

i2(x)wi
dg

ddu(x, ai)

Qu
n

∑
i=1

Au
i2(x)

wi
W
−φu

i0(d
u(x, ai))

φu
i0−1

((du(x, ai)
φu

i0 + φu
i1)

2
+ ∑

i∈Mu
Au

i2(x)wi
dg

ddu(x, ai)

. (1.27)

The functions Au
i2(x) and Bu

i2(x) are defined in a similar way as Au
i1(x) and Bu

i1(x).
Using the above equations (1.26) and (1.27), we update x1 and x2 in a recursive manner which leads to

a Weiszfeld-like method which can easily be constructed.

Possible expressions for Au
i1, Bu

i1, Au
i2, and Bu

i2

A distance function satisfying the conditions

∂du(x, ai)

∂x1
= x1 Au

i1(x)− Bu
i1(x),

∂du(x, ai)

∂x2
= x2 Au

i2(x)− Bu
i2(x)

is the `2b-norm, a suitable distance predicting function (see [73]), given by

`u
2b(x, ai) =

√
bu

1 (x1 − ai1)
2 + bu

2 (x2 − ai2)
2.

For this particular function we get the following mathematical expressions:

Au
i1 =

bu
1

du(x, ai)
, Bu

i1 =
ai1 bu

1
du(x, ai)

Au
i2 =

bu
2

du(x, ai)
, Bu

i2 =
ai2 bu

2
du(x, ai)

.

Proposition 1.3.1. Each step of the AWLA method is non-increasing for the multisource Weber problem.

Proof. It is well known that the Weiszfeld algorithm is a steepest descent method with discrete step size.
As AWLA applies the Weiszfeld algorithm to different 1-median problems, we need to prove that every
time that the base set is changed within AWLA, the objective function of problem (1.22) decreases. Here
we will only show the case when the Weiszfeld algorithm is applied to firm 1 using the set M1(x1, x2). A
similar proof can be derived when the Weiszfeld algorithm is applied to firm 2 based on the set M2(x̂1, x2).

We consider the following three cases: gaining a new customer, losing an existing customer and both
receiving a new customer and losing an existing one. We also concentrate our proof on the case of one
demand point as the reasoning can easily be extended to the case of several demand points.

Case 1: The set M1(x1, x2) receives a new demand point i2.

Since demand point i2 now belongs to M1(x1, x2), we have di2(x1) < di2(x2). Before applying the
Weiszfeld method, the social cost is

Sbe f (x1, x2) = ∑
i∈M1(x1,x2),i 6=i2

di(x1)wi + di2(x2)wi2 + a,
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where
a = ∑

i∈M2(x1,x2),i 6=i2

di(x2)wi.

After applying the Weiszfeld method, a new point x̂1 is obtained and the social cost is then

Sa f t(x̂1, x2) = ∑
i∈M1(x1,x2),i 6=i2

di(x̂1)wi + di2(x̂1)wi2 + a.

We have that

Sbe f (x1, x2) > ∑
i∈M1(x1,x2),i 6=i2

di(x1)wi + di2(x1)wi2 + a ≥ Sa f t(x̂1, x2),

where the last inequality holds because of the descent property of the Weiszfeld algorithm as the
demand point i2 is now included in the base set.

Case 2: The set M1(x1, x2) loses one of its demand points i1.

Since demand point i1 does not belong to M1(x1, x2) any more, this leads to di1(x1) > di1(x2). Before
applying the Weiszfeld method, the social cost is

Sbe f (x1, x2) = ∑
i∈M1(x1,x2),i 6=i1

di(x1)wi + di1(x1)wi1 + a,

where
a = ∑

i∈M2(x1,x2),i 6=i1

di(x2)wi.

After applying the Weiszfeld method, a new point x̂1 is obtained and the social cost becomes

Sa f t(x̂1, x2) = ∑
i∈M1(x1,x2),i 6=i1

di(x̂1)wi + di1(x2)wi1 + a.

We have therefore

Sbe f (x1, x2) > ∑
i∈M1(x1,x2),i 6=i2

di(x1)wi + di1(x2)wi1 + a ≥ Sa f t(x̂1, x2),

where the last inequality holds because of the descent property of the Weiszfeld algorithm given the
demand point i1 is no longer in the base set.

Case 3: The set M1(x1, x2) receives a new demand point i2 but it also loses one of its demand points i1.

Now di2(x1) < di2(x2) and di1(x1) > di1(x2). Before applying the Weiszfeld method,

Sbe f (x1, x2) = ∑
i∈M1(x1,x2),i 6=i1,i2

di(x1)wi + di1(x1)wi1 + di2(x2)wi2 + a,

where
a = ∑

i∈M2(x1,x2),i 6=i1,i2

di(x2)wi.

After applying the Weiszfeld method, a new point x̂1 is obtained and the social cost is then

Sa f t(x̂1, x2) = ∑
i∈M1(x1,x2),i 6=i1,i2

di(x̂1)wi + di1(x2)wi1 + di2(x̂1)wi2 + a.

We have therefore

Sbe f (x1, x2) > ∑
i∈M1(x1,x2)

i 6=i1,i2

di(x1)wi + di1(x2)wi1 + di2(x1)wi2 + a

≥ Sa f t(x̂1, x2),

where the last inequality holds because of the descent property of the Weiszfeld algorithm as the
demand point i2 is included in the base set, whereas i1 is not.

The above cases cover all possibilities, thus we have shown what is stated.
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1.3.3.3 Implementation issues

We would like to highlight two computational enhancements to speed up and guide the search.
(i) To avoid the new facilities to be located on demand points, infeasible regions around the customer

sites are introduced. These are defined by small forbidden circles, each centred at a customer site with a
small radius which is proportional to the customer demand and inversely proportional to the square root
of the number of customers. These forbidden circles also help to avoid the problem of dividing by zero
in equations (1.26) and (1.27) while guaranteeing both the monotonicity and the pruning tests to remain
well defined. Note that a small constant value for all radii could also be used for simplicity if necessary.
Note that the classical Weiszfeld algorithm when applied to the 1-median problem is not guaranteed to
converge when an iterate happens to lie in one of the (non-optimal) demand points.

(ii) In addition, if from one iteration to the next, the new point, say point A, is moved to point B which
happens to lie inside a forbidden circle, the two intersection points of the line passing through A and B
and the circle are evaluated and the one yielding the least cost solution is then selected as the new location.

1.3.4 Computational results

Our algorithms are implemented in C++ under Linux on a Pentium IV computer with 3.2 GHz CPU and
3 GB memory. For the interval B&B method, the interval arithmetic implementation of the PROFIL/BIAS
library [119] and the automatic differentiation of the C++ Toolbox library [99] are used.

The performance of the proposed algorithms for solving (P′) is conducted using three scenarios. Here,
we use marginal production costs as defined by (1.25). In the first scenario, small to medium size randomly
generated problems with n = 100 to 500 with a step size of 100 are used. In the second scenario, larger
instances varying in size from n = 1000 to n = 10000 with a step size of 1000, which are also randomly
generated, are tested. In both scenarios, the instances were generated by randomly choosing the locations
of the demand points within the square ([0, 10], [0, 10]) and the demands wi in the interval (0, 10]. The
marginal transportation costs were given by the Euclidean distance, gu(du(x, ai)) = `2(x, ai), u = 1, 2.
The parameters φu

i0 and φu
i1 in (1.25) were drawn from [0.5, 2]. To gather basic and reliable descriptive

statistics, 10 instances for each value of n are considered. The third scenario, which is performed for
completeness, refers to the special case given by (1.22), namely, the multi-source Weber problem for p = 2.
In this scenario, our algorithms are tested on the four commonly used data sets from the literature (i.e.,
n=50, 287, 654, and 1060), see Brimberg et al. [27] for more details.

1.3.4.1 Scenario 1 (Small to medium size instances)

As mentioned briefly earlier, 5 data sets each with 10 instances totalling 50 cases altogether are used in our
testing. The smallest being with n = 100 and the largest with n = 500.

(a) Results of the Interval B&B method

In Table 1.7, the results for the interval B&B are given. The implementation includes the discarding tests as
described in Subsection 1.3.2 and uses an accuracy measure of ε = 0.01 as the stopping criterion. These
results will be used for benchmarking against our heuristic AWLA to assess its performance. iBBObj
shows the guaranteed upper bound on the minimum value of the objective function, MaxL records the
maximum number of boxes in the working list at any time during the execution and Time iBB represents
the running time in CPU seconds. The average results for each problem size (n = 100, 200, 300, 400, 500) is
recorded and the largest CPU time is underlined.

In general, the method obtains the optimal solutions within 1 hour for those instances with n ≤ 300
but most of the others required more time with many needing over 2 hours. MaxL, which gives an idea
of the memory requirements of the algorithm, seems to increase linearly with the size of the problem
with the exception of some of the instances with n = 500 demand points where up to 74 000 boxes were
needed. Such a drawback explains some of the reasons why the interval B&B method may not be suitable
for solving large instances.

(b) Results of the AWLA

In Table 1.7, the best results of the AWLA are also reported. Here, the method is repeated for 100 times
starting from random points, using an accuracy of 0.01 in the application of the Weiszfeld-like algorithm.
In the columns, Difference Obj gives the percentage deviation with regard to the guaranteed upper bound
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on the minimum value of the objective function value as obtained by the interval B&B, which is computed
as follows:

((Obj(AWLA)− iBBObj)/iBBObj)× 100,

where Obj(AWLA) refers to the best objective function value found by AWLA over the 100 runs. Difference
Loc shows the difference in location measured as the Euclidean distance between the two locations found
by the two methods. The number of times the optimal solution is found by AWLA in the 100 runs is
denoted by TF. Time Weisz represents the total running time in CPU seconds for AWLA (the sum of
the CPU time for the 100 runs). For each of the five problem sizes, the average over the 10 instances is
computed and both the worst deviation and the largest CPU time are underlined. According to these
results, the deviation, in terms of solution quality from the optimum is found to be relatively small, with
less than 0.05% for all problems and 0.003% on average only. For the larger problems (n = 500), the
deviations are even smaller. This could be due to the calculation of the relative distances. The negative
values show those cases where the Weiszfeld method managed to find a slightly better result than the
guaranteed upper bound provided by the interval branch-and-bound method. The computational effort
for the AWLA is relatively negligible as it accounts on average for approximately less than 0.30% of the
time spent by the interval B&B. However, we would like to emphasize that the interval B&B is an exact
method which would be able to guarantee obtaining all the optimal solutions if it was let to run till the
end, whereas AWLA is a simple greedy multi-start heuristic which is relatively very fast.

Table 1.7: Results for the interval B&B and Weiszfeld methods for small and medium sized instances

n iBBObj Difference TF MaxL Time (secs)
Obj (%) Loc iBB Weisz

100 1525.5 0.025 0.090 1 16982 432.62 1.38
100 1578.6 0.003 0.040 7 17167 453.16 1.33
100 1351.2 0.001 0.125 4 19745 609.13 1.13
100 1261.2 -0.002 0.022 1 18324 417.13 1.23
100 1295.8 0.043 0.231 1 16367 367.17 1.50
100 1474.2 0.001 0.015 49 17402 426.19 1.20
100 1522.2 -0.007 0.013 6 17347 357.15 1.25
100 1549.7 0.028 0.069 2 10883 191.69 1.56
100 1440.2 -0.007 0.008 1 38094 780.19 1.04
100 1541.9 0.002 0.013 1 26446 635.51 1.14

Average 1454.0 0.009 0.063 7.3 19875 467.0 1.28
200 2838.2 -0.000 0.008 53 30050 1280.34 3.95
200 2972.5 0.001 0.006 52 27566 1191.37 3.08
200 3153.8 0.003 0.063 7 25932 1249.20 3.14
200 3334.3 0.001 0.010 35 34444 1541.12 3.36
200 2721.8 0.002 0.093 5 49042 2035.25 2.58
200 3194.9 0.009 0.076 1 45036 1850.48 2.58
200 2915.7 -0.001 0.026 3 41926 1828.13 3.28
200 2985.5 -0.001 0.009 1 48406 2463.20 3.46
200 3020.0 0.005 0.056 8 30431 1316.83 3.71
200 3031.7 0.001 0.005 36 26053 1208.43 4.11

Average 3016.8 0.002 0.035 20.1 35888 1596.4 3.32
300 4526.0 -0.001 0.007 35 46956 3008.09 5.17
300 4612.2 -0.000 0.013 41 33360 2421.58 4.68
300 4454.1 0.003 0.063 30 48136 3205.28 4.63
300 4627.3 -0.000 0.008 17 36481 2595.10 5.08
300 4676.2 0.000 0.008 23 54122 3376.60 4.12
300 4426.4 0.001 0.024 5 39353 2719.11 5.45
300 4536.8 -0.001 0.031 13 40644 2706.72 4.86
300 4326.9 0.001 0.005 7 39011 2963.66 4.66
300 4483.5 0.003 0.022 9 38580 2809.68 4.74
300 4467.4 0.001 0.008 17 58788 3903.96 4.40

Average 4513.7 0.001 0.019 19.7 43543 2971.0 4.78
400 5831.5 0.000 0.010 21 74504 7205.46 6.25
400 5844.2 0.001 0.012 29 55013 5393.91 6.40
400 5715.5 0.001 0.063 37 43945 4352.18 9.88
400 6087.7 0.000 0.123 45 48411 5067.76 7.71
400 6011.5 0.002 0.053 28 34758 3125.16 8.37
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Table 1.7: Results for the interval B&B and Weiszfeld methods (continued)

n iBBObj Difference TF MaxL Time (secs)
Obj (%) Loc iBB Weisz

400 5865.1 0.001 0.009 44 39071 4150.61 7.99
400 6006.5 0.000 0.012 7 59185 5475.61 7.65
400 5645.6 0.007 0.061 1 63702 5897.20 8.43
400 6642.5 0.003 0.090 4 69139 6554.46 6.46
400 6365.6 0.002 0.068 9 44716 4179.55 6.12

Average 6001.6 0.002 0.050 22.5 53244 5140.2 7.53
500 7563.6 0.001 0.032 40 48527 5691.62 11.77
500 7529.0 -0.000 0.009 41 65843 7673.00 8.56
500 7367.8 0.000 0.041 24 50923 6500.49 8.05
500 7683.2 -0.000 0.012 2 65395 8401.75 9.34
500 7226.2 -0.000 0.012 62 53711 6378.73 8.52
500 7373.4 0.000 0.003 15 74007 10151.39 8.42
500 7169.2 0.001 0.006 9 60734 8040.25 8.19
500 7672.8 0.001 0.037 24 63389 7994.03 11.76
500 7607.7 -0.000 0.007 6 44040 5164.02 8.59
500 7815.9 0.001 0.047 3 49832 6071.81 8.08

Average 7500.9 0.000 0.021 22.6 57640 7206.7 9.13

1.3.4.2 Scenario 2 (larger instances)

As in scenario 1, we used 10 instances for each value of n where n = 1000 to 10000 with a step size of 1000
totalling 100 instances altogether. As in scenario 1, we used 100 restarts and 0.01 accuracy in AWLA, but 30
Weiszfeld iterations are allowed at most though in most cases this restriction was found to be unnecessary.
The average results with its standard deviation (St. Dev.) are summarized in Table 1.8. To provide some
form of evaluation of our AWLA, we also let the interval B&B method run for one hour and record the best
upper bound found which we denote by Upper Bound (UB). The percentage deviation of the objective
function value from (UB) is referred to as (Difference Obj) and is computed as follows:

((Obj(AWLA)−UB)/UB)× 100.

We have also recorded the lower bounds derived within the set execution time. However, these have
been found to be loose which in our view are not that informative and could be even misleading. For
clarity of presentation, these are not provided here but can be collected from the authors. The AWLA
obtains solutions that outperformed the upper bounds in each of the 100 instances while requiring a tiny
fraction of the amount used by the exact method. For basic descriptive statistics, we present in bold the
averages and underline the worst deviation for each problem size. This demonstrates the efficiency as
well as the usefulness and the simplicity of our heuristic. For example, the largest average in CPU time is
just under 4 minutes accounting for approximately 7% of the total time allowed for the interval B&B. This
is observed for the instances with n = 10000 and shown in bold in Table 1.8. For the other instances, the
CPU time was found to be relatively much smaller.

Table 1.8: Average summary results for the AWLA algorithm for the larger instances

n Upper Bound Difference Obj Time Weisz (secs)
Average St.Dev. Average St.Dev. Average St.Dev.

1000 15138.7 366.02 -0.03 0.01 21.03 2.17
2000 30619.9 619.86 -0.04 0.02 41.57 3.57
3000 45893.4 462.73 -0.09 0.03 67.12 4.00
4000 60569.9 570.28 -0.12 0.05 92.74 5.41
5000 76164.4 918.39 -0.16 0.06 115.41 4.43
6000 91960.7 819.73 -0.12 0.07 139.65 5.42
7000 106565.0 772.34 -0.18 0.08 161.74 11.98
8000 122380.0 606.73 -0.15 0.08 189.43 9.80
9000 137261.0 962.05 -0.21 0.08 216.72 5.14

10000 152941.0 996.11 -0.25 0.13 239.20 13.69
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Table 1.9: Results for the 2-Weber problems

Best Known AWLA iBB

n = 50
obj 135.5222 135.52222 135.52[01685051,22315334]
x1 2.66718 5.64436 2.6676 5.6441 2.6[46,85] 5.6[25,64]
x2 7.23707 4.54258 7.2376 4.5408 7.2[26,56] 4.5[11,70]

n = 287
obj 14427.59 14427.60187 144[04.2532932, 27.7367554]
x1 21.76742 31.66553 21.768 31.665 21.[62,91] 31.[48,85]
x2 23.99999 29.00009 24.001 29.001 2[3.9,4.1] 2[8.9,9.1]

n = 654
obj 815313.2962 815313.29615 815313.29[3511738,61504267]
x1 1224.3163 3766.0064 1224.3 3766.0 1224.[24,38] 376[5.8,6.2]
x2 5633.1123 3618.9654 5633.1 3618.9 5633.[05,15] 361[8.6,9.3]

n = 1060
obj 3010448.052 3010448.05202 3010448.05[0469826,2050685]
x1 7548.24 4575.99 7548.2 4576.0 7548.[14,33] 457[5.9,6.1]
x2 15981.86 4888.624 15982.0 4888.6 1598[1.7,2.1] 4888.[45,76]

1.3.4.3 Scenario 3 (the special case: the Weber-based data sets )

We also conducted an empirical experiment on the four data sets that are commonly used for the multi-
source Weber problems (see Brimberg et al. [27]). Though this is not directly related to our problem, it is a
special case when the distance is used as a proxy for the delivered cost (see Subsection 1.3.1). There are
four instances with n = 50, 287, 654, and 1060. For n=50, 654, and 1060, all customers have a unit weight
(wi = 1 for all i) whereas for n =287 the value of wi varies enormously from 1 to 1000. These instances are
usually used as a platform to test new approaches for the multi-source Weber problem with varying the
number of open facilities (i.e., p). Here, we first record the optimal (or best known) solution with p = 2
which can be found in the literature, see for instance Brimberg and Drezner [25]. As we need to use the
corresponding facility configurations which are not published, we implemented a crude force approach
which uses all possible pairs of nodes as a starting point in the Weiszfeld recursive equations. As the cost
of the optimal solution for n = 1060 was not initially reported, we checked our result against the one
found by the recently proposed approach of [25]. This was achieved through a private communication
with Professor Zvi Drezner who kindly agreed to check it for us.

In Table 1.9 we report the ‘Best Known’ results and the solution of the 2-source Weber problem using
AWLA and iBB algorithms. In the iBB columns, the format A[b, c] is to show that the lower and upper
bounds differ significantly only in the bracketed [b, c] part. The results are found to be very similar in
terms of the objective function value and facility coordinates. The exception is for n = 287, where the
second facility is located on a demand point. It is interesting to see that although the interval hull of the
resulting intervals in the solution space is as tight as in the other problems, the inclusion of the objective is
much wider. This clearly shows how hilly the objective function may be around a good demand point. In
any case, the results confirm that both AWLA and iBB work as expected, and find the optimal solution.

We have also solved the corresponding (P′) problems obtained using the demand points and weights
of the four 2-source Weber problems but using the general cost function (1.25). We used the ‘Best Known’
solutions of the 2-source Weber problems as (i) a reference point to re-evaluate the total cost used in
the corresponding (P′) problem and (ii) as an initial solution for AWLA. In Table 1.10 the results for the
corresponding general (P′) problems are summarised under the following columns. These include the
solution points of the 2-source Weber problems and the function value of the objective function of the
corresponding (P′) at those points, the solution by AWLA starting from the solution of the 2-source Weber
problem, and the best solution of the AWLA starting from 100 random points. We refer to the two AWLA
implementations as AWLA(2W) and AWLA(Rand), respectively. For the two smaller cases, we can observe
that the solution of (P′) (as given by AWLA(Rand)), although in the neighbourhood of the solution of the
2-source Weber problem, is slightly better. It was also found that even when we start the AWLA procedure
from the solution of the 2-source Weber problem, this leads to a better solution. This demonstrates that
the optimal solution of the 2-source Weber problem is not necessary the optimal solution for (P′). For the
two larger instances, the solution is almost the same. This can be explained by the functional form of cu

x
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Table 1.10: Results for the general problem (P′)

n 2-source Weber sol. AWLA(2W) AWLA(Rand)
obj 158.82726 158.05148 158.05148

50 x1 2.6676 5.6441 2.52850 5.34531 2.52771 5.34556
x2 7.2376 4.5408 7.60611 4.50231 7.60599 4.50011

obj 19887.30311 19475.80336 19464.73714
287 x1 21.768 31.665 21.07986 32.45766 21.08255 32.45162

x2 24.0001 29.0001 23.99993 29.00009 23.84776 29.19114
obj 815313.30097 815313.30089 815313.30093

654 x1 1224.3 3766 1224.316 3765.999 1224.315 3765.980
x2 5633.1 3618.9 5633.114 3618.915 5633.112 3618.976

obj 3010448.05485 3010448.05369 3010448.05369
1060 x1 7548.25 4575.99 7548.240 4575.993 7548.240 4575.994

x2 15981.87 4888.62 15981.87 4888.619 15981.86 4888.624

in (1.25): note that as the number of demand points increases, the weight of cu
x in the objective function

gets smaller. In this case, the objective function value is mostly determined by the transportation cost, as
in the 2-source Weber problems. Of course, the use of other productions cost functions could have led
to different solutions. In brief, we can conclude that the optimal solution of the 2-source Weber problem
cannot guarantee to remain optimal for (P′) as demonstrated in the two above counter-examples.

1.3.5 Conclusions and suggestions

The problem of determining a location equilibrium of a location-price game in the plane is investigated
where two competing firms locate one single facility each. An interval B&B algorithm is adopted to solve
the problem under a general cost function but it is found to be suitable for small size instances only. An
alternating Weiszfeld-like heuristic, which is more appropriate for larger instances, is put forward based
on a newly developed iterative formula for updating the coordinates of the two facilities. Interesting
results are provided using extensive computational experiments. In brief, our simple multi-start heuristic
produces better results while requiring a tiny fraction of the CPU time allocated to the exact method. As
a special case, we also examined the relationship between the optimal solutions of the 2-source Weber
problem and (P′). We conducted experiments on existing data sets where it was found that the optimal
solution of the 2-source Weber problem does not necessarily remain optimal for our new problem (P′).

Our investigation can be extended in several ways. These can be classified under two headings; (i)
enhancements to the proposed approaches and (ii) an investigation into other related problems and
open questions. In (i), additional learning schemes and guidance may need to be embedded into the
implementation of the AWLA so to make the algorithm more competitive and more adaptive. Meta-
heuristics could obviously be combined with our Weiszfeld-type heuristic to enhance the quality of the
solutions further.

In part (ii), a study that explores the case of several competing firms that wish to locate a number of
facilities each where this can be either given or considered as a decision variable is worth attempting. There
are also questions that may be worth asking. For example, if the facilities have limited capacities, does
this lead to a price equilibrium? Does the minimization of the social cost guarantee location equilibria?
Does the complexity of the problem remains similar to the current one? In many situations, the demand
may vary with the price, the marginal production cost may not even be constant, among other parameters
that are unlikely to remain constant. These variations are useful and practical for end users while being
challenging and deserving a thorough investigation by us as academics.
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Chapter 2

Simplicial branch-and-bound methods

Branch-and-bound (B&B) algorithms in Global Optimization are used to perform an exhaustive search
over the feasible area. For some special problems, the feasible area is a simplex, for instance in portfolio
optimization and in blending problems, where the sum of the variables must be one. Also, for any
convex or concave polyhedral set, decomposition into simplicial sets is straightforward by the algorithm
described in [78]. In such cases, the natural choice is to use simplicial partition sets, resulting in a simplicial
branch-and-bound method. A review of simplicial branch-and-bound can be found in [146].

In this chapter, the result of mainly three articles are presented, all of them dealing with some part of
the simplicial branch-and-bound method. First, a discarding test is built on spherical exclusion regions at
the vertices of the simplex. Second, the subdivision rule is revisited to study regular refinement procedures,
and finally, bounding rules are designed and sharpened for simplices.

When general constraints are present, it is quite hard to show that the current simplex is feasible or
not. In [37] infeasibility spheres were found from each vertex. Thus, a simplex covered by these spheres
can be shown to be infeasible. Developing fast tests to check the infeasibility this way can speed up the
branch-and-bound considerably. Hence, in Section 2.1 results on this Simplex Cover (SC) problem are
discussed [36]. Lately, it has been proved that SC is NP-hard [199].

A natural way to define branching in simplicial branch-and-bound is bisection. The consequence
of bisecting simplices is that partition sets are in general irregular. The question is how to use regular
simplices in the refinement of the unit simplex. A regular simplex with fixed orientation can be represented
by its center and size, facilitating storage of the search tree from a computational perspective. The problem
is that a simplex defined in a space with dimension greater than three cannot be subdivided into regular
subsimplices without overlapping. We study the characteristics of the refinement by regular simplices
[85]. The main challenge is to find a refinement with a good convergence ratio which allows discarding
simplices in an overlapped and already evaluated region. As the efficiency of the division rule in B&B
algorithms is instance dependent, we focus on the worst case behaviour, i.e., none of the branches are
pruned. Section 2.2 shows that for this case surprisingly an overlapping regular refinement may generate
fewer simplices to be evaluated than longest edge bisection. On the other hand, the number of evaluated
vertices may be larger.

The other key point in the construction of efficient B&B algorithms is how to obtain sharp and cheap
bounds of the objective function over a simplex [84]. Although enclosing a simplex in a box implies an
overestimation, boxes are more natural when dealing with individual coordinate bounds, and bounding
ranges with Interval Arithmetic (IA) is computationally cheap. Section 2.3 introduces several linear
relaxations using gradient information and Affine Arithmetic. It also studies experimentally their efficiency
compared to traditional lower bounds obtained by natural and centred IA forms and their adaption to
simplices. A Global Optimization B&B algorithm with monotonicity test [104] over a simplex is used to
compare their efficiency over a set of low dimensional test problems with instances that either have a box
constrained search region or where the feasible set is a simplex. Numerical results show that it is possible
to obtain tight lower bounds over simplicial subsets.

2.1 Covering a simplex by spheres

This study is motivated by an earlier work on testing whether simplices representing the design area
of blending problems may contain feasible solutions. The spheres represent areas where certainly no

39
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feasible solution can be located. This means, that if a simplex is covered, then the simplex can be excluded
from the search, because it certainly does not contain a feasible solution [37, 105]. This work studies the
characteristics of the SC problem. The reasoning is illustrated with graphical examples and validated by
several lemmas and a theorem.

We formulate the problem and its ingredients. A simplex is a set of convex combinations of h affine
independent vertices v1, . . . , vh,

S = {x ∈ Rn : x =
h

∑
j=1

λjvj,
h

∑
j=1

λj = 1; λj ∈ [0, 1], j = 1, . . . , h}. (2.1)

Usually the vertices are defined in Euclidean space where the dimension n should at least be h− 1. Regular
simplices are special cases where all the edges have the same length. The next ingredient of the SC problem
are the spheres or balls with radius ri around the vertices,

Bi = {x ∈ Rn : ‖x− vi‖ ≤ ri}. (2.2)

In our investigation we are specifically interested in the Euclidean distance norm ‖.‖2. Now the Simplex
Cover problem can be formulated.

Simplex Cover (SC) problem. Given an instance of a simplex S and a set of spheres B1, . . . , Bh around its
vertices. Certify if

∀x ∈ S, x ∈ ∪iBi (2.3)

or alternatively, check whether
∃x ∈ S, x /∈ ∪iBi. (2.4)

An equivalent representation of the SC problem can be used that focuses far more on distance from the
vertices. This comes closer to the concept of Laguerre Voronoi diagrams (or Power diagrams) that is
elaborated in Subsection 2.1.1. We focus on squared Euclidean distance. Define the function

ϕ(x) = min
i
{‖x− vi‖2 − r2

i }, (2.5)

where the squared distance is additively weighted [8]. Notice that function ϕ being a minimum of strict
convex functions is not convex. Moreover, in the specific case where none of the spheres Bi is covering one
of the other vertices vj, i 6= j, ϕ has local minima of −r2

i in each vertex; ϕ(vi) = −r2
i . The SC problem is

equivalent to
∀x ∈ S ϕ(x) ≤ 0. (2.6)

Examples of the ϕ function can be seen in Figure 2.1.

v1 v2

SB1 B2

ϕ

(a)

v1 v2S

B1 B2

ϕ

(b)

Figure 2.1: Instances of SC problem with two vertices, where S is not covered (a), and where S is covered
(b).

Notice that for a regular instance of S, if one of the Bi covers another vertex, it covers them all and SC
is solved.

Equivalence (2.6) shows that it is interesting to study problem SCO (Simplex Cover Optimization):

Φ := max
x∈S

ϕ(x). (2.7)
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The SC problem has a certificate if Φ ≤ 0.
A lot of publications are available on so-called Power sets [68, 170] that relate to ϕ and mainly focus on

lower dimensional analysis. Our research deals with the general dimensional case. We elaborate this in
Subsection 2.1.1. Problem SCO is not necessarily easier to solve than SC (2.3) or (2.4). One of the most
obvious observations on the SC problem is that the simplex S is covered if one of the spheres Bj covers
it. If this is not the case, we require properties on the SC problem of covering and the SCO problem of
maximizing ϕ over S. In Subsections 2.1.2 and 2.1.3, we derive mathematical properties of the SC and
SCO problems that can be used to solve them, which we illustrate by numerical examples. Specifically,
Subsection 2.1.4 analyses the case of regular simplices, which is easier to solve and useful for the blending
problem. Finally, Subsection 2.1.5 summarises the results.

The problem was coming from an earlier work of my co-authors, and my main contribution were to
find out about power diagrams and the theoretical results written in Subsections 2.1.2 and 2.1.3. Of course,
my co-authors played an important role in how the final version of the published paper appeared.

2.1.1 Distances, Voronoi diagrams and simplices

Voronoi diagrams for a set of points pi, divide the space into regions D(pi) where all points in D(pi) are
closer to pi than to pj, j 6= i. A survey of Voronoi diagrams can be found in [8]. There are several distance
functions that can be used with respect to Voronoi diagrams. The usual is to consider the euclidean
distance:

de(p1, p2) = ‖p1 − p2‖2. (2.8)

A Voronoi cell of pi for Euclidean distance are those points closest to pi:

D(pi) = {x ∈ Rn|de(x, pi) ≤ de(x, pj), j 6= i, j = 1, . . . , h}. (2.9)

Each sphere Bi in the SC problem has a radius ri. This radius can be considered as a weight. Two ways
to weight the distance are commonly considered and could be used for what are called weighted points,
pi:

• Weight distance additively:
da(x, pi) = de(x, pi)− ri. (2.10)

• Weight the so-called power distance:

dp(x, pi) = de(x, pi)
2 − r2

i . (2.11)

Using da in the Voronoi concept leads to diagrams with edges that are hyperbolic curves. Also so-called
multiplicative Voronoi diagrams exist that have hyperbolic curves [8].

Life is a bit easier using dp; the separating shapes are planes. One obtains a power diagram with power
planes

Πij = {x ∈ Rn | dp(x, pi) = dp(x, pj)} (2.12)

and power cells
Dp(pi) = {x ∈ Rn | dp(x, pi) ≤ dp(x, pj), j 6= i, j = 1, . . . , h}. (2.13)

For a point x outside sphere Bi, dp(x, pi) is positive and
√

dp(x, pi) represents the distance from the sphere
with radius ri around vi to the point x outside the sphere along the tangent line through the point x [91].
The power Voronoi diagram (or power diagram) cells are convex polyhedra. Figure 2.2 shows the power
diagram edges produced by two weighted points. The difference between a Euclidean Voronoi diagram
and a Power diagram is that in the latter a cell can be empty, i.e., there is no point inside (see Figure 2.2(d)).

An important property of weighted and unweighted Voronoi diagrams is:

Statement 2.1.1. Given h affinely independent points with h > 2. The Voronoi diagram contains one vertex of
degree h (number of edges incident to the vertex).

This has been shown for low dimensional cases in [8]. In Subsection 2.1.2 we will focus on the power
diagram for the general dimensional case and derive a procedure to determine the corresponding so-called
θ point. We will show that it plays a major role in the solution of SC and SCO problems.
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(a) (b) (c) (d)

Figure 2.2: Power planes of two weighted points on four different instances

2.1.2 Covering a simplex, analysis based on the θ-point

The function
ϕ(x) = min

i
{dp(x, vi)}, (2.14)

is piecewise convex in each power cell. This implies that a maximum of ϕ over a power cell is attained in
one of its extreme points. It means that looking for the maximum value, Φ (see Equation (2.7)), we can
focus on the power planes Πij that constitute the edges of power diagrams. Let us denote the interior of
a set by int. Lemma 2.1.2 tells us that the solution of SCO should be looked for on the boundary of the
power cells.

Lemma 2.1.2. A point x∗ ∈ argmaxx∈S ϕ(x) /∈ intS ∩ ∪iintDp(vi) .

Proof. For an interior point x of a power cell around vi,

ϕ(x) = dp(x, vi) < dp(x, vj), ∀j 6= i.

This means that one can increase the value of ϕ by going in the direction ∇ϕ(x) = 2(x− vi). Therefore, x
cannot be a maximum point.

It is easy to check whether one sphere covers the complete simplex. In this case the maximum of ϕ(x)
may be attained at one or several vertices vi of S (see Figures 2.2(c) and 2.2(d)). For the case the maximum
is not in a vertex, the lemma shows us that we can concentrate on the power planes Πij. Actually, it gives
us the information that if the intersection of the power planes with the simplex are covered, i.e. ϕ ≤ 0 on
S ∩ ∪ijΠij, then all the simplex is covered. To illustrate these observations, we consider the line between
the centers of the spheres of Figure 2.2 as a simplex. One can see that in Figure 2.2(a) the spheres do not
intersect and the simplex is not covered in contrast to Figure 2.2(b). Notice that the intersection point of
power plane and simplex corresponds to the global maximum point x∗. Figure 2.2(c) illustrates the case
where one of the spheres covers the complete simplex and in (d) also the other sphere. Notice that in the
last two cases, the power plane does not intersect with the simplex and the maximum point x∗ is found in
a vertex of S.

We now focus on the situation where the maximum is attained at an interior point of S; i.e. x∗ = Vλ,
where matrix V = [v1, v2, . . . , vh] and λi > 0, ∑i λi = 1.

Lemma 2.1.3. Consider problem SCO on a simplex with vertices v1, v2, . . . , vh with corresponding Bi. Let x∗ = Vλ
be an interior maximum point of SCO.

dp(x∗, v1) = dp(x∗, vi), i = 2, . . . , h (2.15)

i.e. the power function of each vertex has the same value in x∗.

Proof. Let the index set I of active vertices be defined by dp(x∗, vi) = ϕ(x∗) for i ∈ I. Assume that the
statement is not true: x∗ is interior maximum point and ∃j, dp(x∗, vj) > ϕ(x∗) or j /∈ I. In that case, one can
construct a direction u which is the projection of vj − x∗ on the linear space where the active set remains
active; dp(x∗ + u, vi) = ϕ(x∗ + u). Direction u is an ascent direction of ϕ in the point x∗ and feasible,
because x∗ is interior. This is a contradiction with x∗ being a maximum point.

The so-called θ point satisfying equation (2.15) fulfills the necessary condition for an interior optimum.
Notice that θ can also be located outside S. The recipe to compute the θ point equating planes is derived
from setting the power function values equal:

(θ − v1)
T(θ − v1)− r2

1 = (θ − vi)
T(θ − vi)− r2

i , i = 2, . . . , h. (2.16)
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Elaboration and bringing the terms with θ to the left hand side gives

2(vi − v1)
Tθ = r2

1 − r2
i + vT

i vi − vT
1 v1, i = 2, . . . , h. (2.17)

Equation (2.17) describes the plane separating v1 and vi on equal power function value. The edge (vi − v1)
is perpendicular to the plane and the right hand side of the equation describes a constant. Focusing
on a solution θ, one can read (2.17) as linear equation (vi − v1)

Tθ = constant. As point θ has to be in
all the planes (2.17) for i = 2, . . . , h, we have h− 1 linear equalities in either θ = Vλ or in λ which is
h-dimensional:

2(vi − v1)
TVλ = r2

1 − r2
i + vT

i vi − vT
1 v1, i = 2, . . . , h. (2.18)

We are interested in the intersection with the plane through the points v1, v2, . . . , vh. It means that θ should
move in that plane, such that the last linear equality is given by

(1, 1, . . . , 1)Tλ = 1. (2.19)

This means that finding θ can be done by solving a set of h linear equalities. Given an interior θ, we have
the unique maximum point of SCO and one can simply check de(θ, v1)

2 ≤ r2
1 to verify the solution of SC.

Example 2.1.4. Consider the following instance of three spheres in 2-dimensional space (see Figure 2.3):

v1 =

(
0
0

)
, v2 =

(
5
0

)
, v3 =

(
3
6

)
, r2

1 = 4, r2
2 = 3, r2

3 = 1.

Point θ =

(
2.6
2.7

)
can be determined equating the two power planes: Π12 between v1 and v2 and Π13

between v1 and v3. The corresponding solution λ = (0.3, 0.25, 0.45)T is in the interior of the corresponding
simplex. The point is on equal power function value ϕ(θ) = 10.05 for the three vertices.

v1 v2

v3

θ

Figure 2.3: Graphical illustration of Example 2.1.4

Notice that if θ is covered by one of the spheres, it is also covered by all of them; θ ∈ Bj gives θ ∈ ∩Bj.
This is related to an earlier found result that says that if ∃x ∈ S covered by all the spheres then the simplex
is covered. It means that if θ is covered by one of the spheres then the simplex is fully covered. The result
as proven in [37], is the following. Let conv denote the convex hull of a set.

Lemma 2.1.5. Given polytope S = conv{v1, . . . , vl}, with v1, . . . , vl the extreme points of S (vertices) with
corresponding spheres Bj, j = 1, . . . , l. If ∃y ∈ ∩jBj ∩ S then S ⊂ ∪jBj.

Figure 2.4 shows illustrative examples of 2-simplices. In Figure 2.4(a) S is not covered because the θ
point is not covered. Figure 2.4(b) illustrates a simplex which is covered.

The next question is what to do if the computed θ is not an interior point of S; i.e. ∃j λj ≤ 0, at least
one of the λj is not positive. It means that the maximum point x∗ of SCO is found at the boundary of S.
We will investigate this further in Subsection 2.1.3.

Focusing on θ, after finding θ, it may be outside S, θ /∈ S, but covered by all spheres, θ ∈ ∩jBj. The
following lemma combined with Lemma 2.1.5, shows that this is also a sufficient condition to certify the
covering of S and no further analysis is required. It means that we do not need to solve problem SCO.

               dc_1926_21



44

θ

(a)

θ

(b)

Figure 2.4: Two instances of SC with corresponding θ point.

Lemma 2.1.6. Given a point x = Vλ, x /∈ S and x ∈ ∩jBj. Then ∃y ∈ ∩jBj ∩ S.

Proof. Without loss of generality, let λ1, . . . , λm ≥ 0 and λm+1, . . . , λh < 0, so that vm+1, . . . , vh are at the
other side of the facet where x is closest to. We now make an orthogonal projection of (y− v1) = P(x− v1)
on the closest facet. One can do so by constructing an n × (m − 1) matrix X with elements vj − v1
for j = 2, . . . , m. An important observation is that in the construction of X for the starting vector v1,
one can take any vi, i = 1, . . . , m. The projection y = v1 + X(XTX)−1XT(x − v1) results into y ∈ S.
Notice that ‖y− vi‖2 = ‖P(x− vi)‖2 ≤ ‖x− vi‖2, i = 1, . . . , m and y is closer to vj, j = m + 1, . . . , h. So
(y− vj)

T(y− vj) ≤ (x− vj)
T(x− vj) ∀j such that y ∈ ∩Bj.

A consequence of combining Lemmas 2.1.2-2.1.6, is the following theorem:

Theorem 2.1.7. Let θ be a solution of (2.18) and (2.19). If ϕ(θ) ≤ 0, then S is covered.

Notice that this theorem is valid even for θ /∈ S. However, if θ /∈ S and ϕ(θ) > 0, we have to investigate
the boundary solutions of SCO in a more detailed way. As shown in the next section, also there the θ-point
plays a role.

2.1.3 SCO has a boundary optimum

If the maximum of ϕ is not interior in S, it can be found on its boundary. In an extreme case, the maximum
can be in a vertex of S if one big sphere covers all the simplex S. Alternatively, maximum point x∗ can be
attained at an edge, a triangular set or even higher dimensional face C of S. Again the θ-point plays a big
role in the determination of face C. Consider the set T = conv{v1, . . . , vh, θ}. Now one can see that

θ = argmaxx∈T ϕ(x) (2.20)

because for all x ∈ T, ϕ increases in the direction of θ such that θ is the global maximum point of (2.20).
Moreover, θ is the common vertex of the power diagram. As S ⊂ T also ϕ(θ) ≥ Φ. That reconfirms the
argumentation that a negative ϕ(θ) tells us that S is covered.

If ϕ(θ) is positive, we are still interested in solving SCO. Figure 2.5 illustrates a simplex for which the θ
point is located outside. The corresponding values of λ1 and λ2 are positive and λ3 has a negative value.
S is covered because the intersection of S with the power planes are covered.

The previous analysis also helps us to determine the binding facet C of S where maximum points x∗

with Φ = ϕ(x∗) can be found. Let λ1, . . . , λm ≥ 0, then the set C where the maximum Φ is attained is
given by C = conv{v1, . . . , vm}. It means that for a (local or global) maximum point x∗ = Vµ of SCO
µm+1, . . . , µh = 0. As h−m elements of µ have a value of zero, SCO is now equivalent to

max
C

ϕ(x) = max{ϕ(V̂µ̂)|
m

∑
1

µ̂j = 1, µ̂ ≥ 0}, (2.21)
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v1 v2

v3

θ

Figure 2.5: Instance of SC with corresponding θ point not covered and outside of S

where µ̂ and V̂ now consist of the first m elements of µ and V, respectively.
One can consider the problem as a lower dimensional covering verification. Unfortunately, we are not

dealing with an equivalent SC problem. Besides the spheres B1, . . . , Bm we have to deal with the cut B̂j
of spheres Bj, j = m + 1, . . . , h with the plane of C. We will describe the plane and the intersection of the
spheres that correspond to points that are not vertices of face C.

The plane can be described by

Γ = {x ∈ Rn|x = v1 + Xy, y ∈ Rm−1}, (2.22)

where X is again the matrix X = [v2 − v1, . . . , vm − v1]. The orthogonal projection of vm+1, . . . , vh on
Γ via projection matrix P = X(XTX)−1XT gives centre points v̂j = v1 + P(vj − v1). Notice that due
to the projection, the power function value of a point z ∈ Γ to one of the vertices vj is ‖z − vj‖2 =

‖z − v̂j‖2 + ‖v̂j − vj‖2. This means that the radii of the cuts of the spheres with plane Γ are given by
r̂2

j = r2
j − ‖v̂j − vj‖2. A negative value means that Bj does not cut through plane Γ, so it does not have to

be taken into account.
Problem (2.21) is lower dimensional than the original SC problem. Unfortunately, it is not easier as

now we are dealing with a problem with m vertices and h−m other centres in the plane, not necessarily
in C. We know that the maximum of ϕ over C can be found on the vertices of the power diagram in C or
at the intersection of the power diagram and the boundary of facet C. The power planes have the shape

2(vi − vj)
TV̂µ̂ = r̂2

i − r̂2
j + v̂T

i vi − vT
j vj → aT

k µ̂ = bk, k = 1, . . . , K, (2.23)

where not all K = 1
2 h(h− 1) power planes are of interest. One can argue that the power planes in between

the vertices of C are of less interest, as x∗ is not situated on those power planes and at the boundary of C,
as one can improve the value of ϕ by going to the interior.

Example 2.1.8. Consider the following instance of 5 spheres in 6-dimensional space:

v1 =


0
0
0
0
0
0

 , v2 =


5
0
0
0
0
0

 , v3 =


3
6
0
0
0
0

 , v4 =


2
2
0
1
1
1

 , v5 =


4
3
1
0
2
1


and r2

1 = 4, r2
2 = 3, r2

3 = 1, r2
4 = 9, r2

5 = 15. Now solving system (2.18) and (2.19) gives

λ = (1.342, 0.847, 1.344,−2.233,−0.3)T .

The negative values in the vector mean θ = Vλ = (2.6, 2.7,−0.3,−2.233,−2.833, −2.533)T is situated
outside simplex S. It is at the same weighted power function value ϕ(θ) = 29.57 of v1, . . . , v5, so θ is not
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covered. The positive values in the λ vector indicate that we can look for the maximum of ϕ on the convex
hull C of the first 3 vertices, as given by problem (2.21). Correspondingly, the cut of B4 and B5 can be found
by projections v̂4 = (2, 2, 0, 0, 0, 0)T , v̂5 = (4, 3, 0, 0, 0, 0)T and reduced radii r̂4 = 6 and r̂5 = 9. Figure 2.6

v
v

v

11
2

3

v5

v4

^

^

Figure 2.6: Cross-cut of example 2 with the plane through v1, v2, and v3.

gives a 2D impression. The figure does not show us exactly whether C is covered. However, using a solver
one can verify that the global maximum Φ = −0.22 can be found in the point x∗ = (3.333, 0, 0, 0, 0, 0)T ,
and this means that S is covered.

Global optimum x∗ is attained at one of the feasible basic solutions of a polyhedral set which describe
the vertices of the power planes intersected with set C. To describe the polyhedral set we introduce free
slack variables zk of the power planes and define set H as

H = {µ̂ ∈ Rm, z ∈ RK|
m

∑
1

µ̂j = 1, µ̂ ≥ 0, aT
k µ̂− bk = zk, k = 1, . . . , K}. (2.24)

As ϕ is piecewise convex, it will have local optima at the feasible basic solutions of H, but one does not
know which one corresponds to the global maximum Φ. This shows that SC is a problem which is hard to
solve. Mainly this will be the case for instances with a large number of vertices representing an irregular
simplex where none of the spheres covers other vertices.

2.1.4 The regular case

The question is whether the SC problem is easier to solve for regular simplices. The first check in the
verification is of course to see whether one of the radii is big enough to cover the complete simplex. The
next step is to generate the θ point and to check whether it is covered. If the latter is not the case, one
should consider problem (2.21) on the lower dimensional plane C. The regular case reveals a specific
property here. Due to the equal distance of a vertex vj, j = m + 1, . . . , h to all vertices vi, i = 1, . . . , m,
the projection v̂j = Pvj on C also gives an equal distance point. This means that all projected vertices v̂j
coincide at the centroid of C.

Example 2.1.9. Consider the following instance of 5 spheres in 5-dimensional space:

v1 =


0
0
0
0
0

 , v2 =


−3

3
0
0
0

 , v3 =


−3

0
3
0
0

 , v4 =


−3

0
0
3
0

 , v5 =


−3

0
0
0
3


and r2

1 = 4, r2
2 = 4, r2

3 = 4, r2
4 = 15, r2

5 = 12. The power function value between each pair of points is 18.
Now solving system (2.18) and (2.19) gives λ = (.41, .41, .41,−.2,−.0333)T . Point θ = Vλ =

(−1.7667, 1.2333, 1.2333,−.6,−.1)T is outside simplex S at the same weighted power function value
ϕ(θ) = 2.533 from v1, . . . , v5, so θ is not covered. Projecting now via the P matrix determined by
X = [v2 − v1, v3 − v1] gives the centroid of C = conv{v1, v2, v3}: v̂4 = v̂5 = (−2, 1, 1, 0, 0)T . In the
reduced problem, only r̂2

4 = 15− ‖v̂4 − v4‖2 = 15− 12 = 3 is relevant, as r̂5 = 0. Due to the symmetry in
this instance, the global maximum Φ = −1.2778 is attained at several points on the boundary; vector µ̂
shows a permutation of the values 0, 0.611 and 0.389.
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2.1.5 Conclusions

The Simplex Cover problem to determine whether a given simplex in n dimensional space is covered by h
spheres centered at its vertices has been investigated. It is shown that this problem is equivalent to solving
a Global Optimization problem SCO. The following has been found.

• Depending on the instance, SCO may have a unique interior optimum x∗ which equals the so-called
vertex point θ of a power diagram. A procedure is described to find this θ point.

• If the θ point is covered by the spheres, the simplex is covered, independently of θ being located in
or outside the simplex.

• If SCO has a boundary optimum it may have local non-global optima.

• In the latter case, the θ point determines the face C of the simplex where the global optimum points
of SCO can be found. A global optimum point is a feasible basic solution of a polyhedral set which is
determined by C and so-called power planes.

• In the latter case, the SC problem appears to be equivalent to a problem of covering C with more
spheres than the ones centered at the vertices.

• For a regular instance with all equal distances between vertices, the optimum point of SCO is either
unique, or SCO is equivalent to the question of covering C with the spheres at its vertices plus a
sphere at its centroid.

2.2 Simplex refinement using regular simplices

This work was motivated by a mixture design problem, where one looks for mixtures composed of a
maximum number n of raw materials, and the product can be represented by a vector x ∈ Rn, which
meets certain requirements. The set of possible mixtures is mathematically defined by the n-dimensional
unit simplex

∆ = {x ∈ Rn |
n

∑
j=1

xj = 1; 0 ≤ xj ≤ 1 ∀j}, (2.25)

also called a standard (n− 1)-simplex, where the variables xj represent the fraction of the components in
a product x. Here, we use a different notation, as the vertices are unit vectors. Notice also, that in this case
the dimension of the simplex and the dimension of the space is always the same, which is important. Thus,
instead of differentiating the number of vertices h from the dimensions, we will use directly n for both.

In mixture design (blending) problems, the objective is to minimize the cost of the material. As
discussed by [105], quadratic quality requirements, minimum dose constraints, looking for robust solutions
etc. challenge the search for the best mixture design. This problem is dealt with in [105] where a branch-
and-bound approach over simplices is derived using specific discarding tests introduced in [36, 37],
described in Section 2.1.

One approach to find solutions for the problem is defining a regular grid with G equidistant grid points
for each axis, resulting in a mesh size of α = 1

G−1 relative to the size w(∆) of a simplex ∆ defined by the
length of its longest edge. A strategy to evaluate all grid points is not appealing, as it is not efficient. When
performed on a unit box, the number of function evaluations grows exponentially with the dimension: Gn.
This is not that bad on the unit simplex, as we are dealing with the mixture equality, see (2.25) and Figure
2.7. It is shown in [37] that the total number of points on the grid is given by

n−1

∑
k=1

(
G
k

)(
n− 2
k− 1

)
. (2.26)

This means that the number of points increases rapidly. For the example in Figure 2.7, n = 3 and G = 5,
we have 15 grid points and an “accuracy” of α = 0.25 relative to the size of the unit simplex.

An appealing alternative for solving blending problems is to use a branch-and-bound strategy with
the goal not to generate all the points, but to divide the area and avoid visiting those regions (subsets)
which are known not to contain an optimal solution.

Over the unit simplex, the B&B method starts with ∆ as the first element of a list Λ of subsets and
stops when the list Λ is empty. A generated subset is not stored on Λ if it can be proved that it is infeasible
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(1, 0, 0)(0, 1, 0)

(0, 0, 1)

Figure 2.7: A regular grid over the 3-dimensional unit simplex (2-simplex), G = 5

Figure 2.8: Longest edge bisection process with stopping criterion w(S) ≤ ε · w(∆) for a 3D-simplex S.
Dots represent generated vertices on the regular grid where α = ε = 0.25, while the triangles represent
additionally generated sample points.

and/or cannot contain a solution. The termination rule finishes the search for subsets smaller in size than
ε times the size of the initial feasible area.

The branching concerns the further refinement of the division. This means that one of the subsets is
selected to be split into new subsets. The use of simplicial sets in B&B and several ways of splitting them
has been studied extensively in [43, 110]. Bisection of the longest edge of the selected simplex has the
advantage that the sets never get a needle shape. Starting with the unit simplex, for all the generated
simplices the length of the longest edge is at most twice the size of the shortest edge. Figure 2.8 sketches
the idea of the bisection algorithm. It can be observed that points on a regular grid are generated, but that
the bisection also generates edges (dotted lines) in at least one additional direction other than the facets of
the unit simplex. The values of the coordinates of all generated points are a multiple of 1

2K , where K is an
integer related to the depth of the search tree.

Simplices and their shape are relevant when dealing with simplicial mesh refinements [120]. Simplices
are used in branch-and-bound on the box constrained feasible area using a face-to-face partition [100, 146].
We focus here on optimization over a simplicial shaped feasible area [54, 55]. It has been disputed in [103]
and [111] that “round” simplices have a good shape for bounding purposes. The research question is
whether a refinement can be done in the B&B method that uses regular simplices instead of bisection. How
can such a refinement be realised and what is the effect on the number of simplices to be evaluated and
the number of generated sample points (vertices)?

To investigate this question, Subsection 2.2.1 looks into the theoretical properties of a subdivision
with regular simplices. Subsection 2.2.2 focuses on how to promote vertex sharing in uniform simplex
covering and how to make vertices lay on a predefined grid. Subsection 2.2.3 compares the different ways
of subdivision in terms of computational cost if the complete B&B tree is generated. Subsection 2.2.4
summarizes our findings.

In this work, the main idea and the majority of the results were my work, but of course helped and
improved by my coauthors. The computational results were done by Leocadio G. Casado.
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Figure 2.9: A simplex cannot be partitioned into regular simplices for n > 3. Cutting of regular simplices
from the vertices of the 4D-simplex, an octahedron remains in the middle.

2.2.1 Regular subdivision

In general, a simplicial set is defined as in (2.1), but we can formulate it as

S = {x ∈ Rn : x = Vλ, λ ∈ ∆}, (2.27)

where ∆ is the unit simplex defined in (2.25) and the vertices vj in matrix V are affine independent.
Alternatively, one can write a simplicial set as the convex hull of the vertices, conv(V), as before. The
viewpoint of writing a simplex as in (2.27) for a regular simplex, shows that from a subdivision perspective
we can focus simply on the unit simplex. A subdivision of ∆ can be translated in the partitioning of any
simplicial set by multiplication with the vertex matrix V.

Our question is how one can refine ∆ using regular simplices. To illustrate that for n > 3 a simplex
cannot be partitioned into regular simplices, see Figure 2.9. Therefore, we introduce the Uniform Simplex
Cover (USC) where the simplex is covered by equally sized, equally oriented overlapping subsimplices
and we analyse its characteristics. To express the idea of equally sized and oriented simplices we introduce
the following concepts. Each simplex has a center c and a radius r which define its vertex matrix as

V = c1T + rD, (2.28)

where 1 is the all ones vector and E = (e1, . . . , en) represents the identity matrix. D = (d1, . . . , dn) =

E− 1
n 11T is a symmetric matrix with the directions from the center towards the regular simplex vertices.

Notice that the center of the unit simplex ∆ is 1
n 1, whereas the radius of the unit simplex, that is the step

size relative to the deviation matrix D is 1.
In order to study overlapping behaviour, our first question is how to determine that a regular simplex

is enclosed (covered) by another.

Theorem 2.2.1. Let S1 and S2 be simplices with vertex matrices V = c11T + r1D and W = c21T + r2D. Simplex
S2 is covered (enclosed) by simplex S1 if

c2j − c1j +
r1 − r2

n
≥ 0 j = 1, . . . , n. (2.29)

Proof. Notice that due to the convexity of S1, if the vertices wi of S2 can be written as a convex combination
of the vertices of S1, then x ∈ S2 ⇒ x ∈ S1. Now consider λij being an element j of vector λi. Vertex
wi ∈ S1 if ∃λi ≥ 0, ∑j λij = 1 so that

wi = Vλi. (2.30)

This implies
wi = c2 + r2di = (c11T + r1D)λi = c1 + r1Dλi ⇒

r1λi = c2 − c1 + r2(ei −
1
n

1) + r1
1
n

1 = c2 − c1 + r2ei +
r1 − r2

n
1.

(2.31)

Given (2.31), from condition (2.29) follows that ∀i, j λij ≥ 0. That means all vertices of S2 can be written as
a convex combination of the vertices of S1 and therefore x ∈ S2 ⇒ x ∈ S1.

               dc_1926_21



50

Theorem 2.2.1 also shows that radius r1 ≥ r2 is a necessary condition for S2 to be a subset of S1.
A refinement of the unit simplex ∆ is a collection

R = {S1, . . . , Sp}. (2.32)

The question of using identical subsimplices is which centers c1, . . . , cp and radius r to use such that ∆ is
covered by the refinement R:

∆ ⊂
p⋃

i=1

Si. (2.33)

In the following we investigate a choice where m centers are distributed in a regular way along each edge.
In this way, we get a subdivision R that covers ∆ in a uniform way. We call this mUSC. Figure 2.10 sketches
the subdivision for m = 2 for a 3D-simplex and a 4D-simplex. Figure 2.11 gives an impression of using
m = 4 centers along each axis.

Figure 2.10: 2USC refinement of a 3D-simplex (left) and a 4D-simplex (right)

Figure 2.11: 3D-simplex refined according to 4USC into 10 subsimplices

2.2.1.1 Covering by n simplices, 2USC

We first investigate 2USC and define the centers and radius of the subsimplices. Given a simplex rep-
resented by its center c and radius r, the 2USC subdivision R consists of n subsimplices Si, i = 1, . . . , n
with a reduction in size (and radius) of β ≥ n−1

n . Each subsimplex Si has a radius ri = βr and its center is
located at

ci = βc + (1− β)vi = βc + (1− β)(c + rdi) = c + (1− β)rdi. (2.34)

For the unit simplex using the reduction β = n−1
n

ci =
n− 1

n2 1 +
1
n

ei. (2.35)

Example 2.2.2. Consider the subsimplex S1 of the unit simplex using the reduction β = n−1
n . Radius

r1 = n−1
n while the center is ( 2n−1

n2 , n−1
n2 , . . . , n−1

n2 )T . Subsimplex S1 has the vertices
(1, 0, . . . , 0)T , ( 1

n , n−1
n , 0, . . . , 0)T , . . . , ( 1

n , 0, . . . , n−1
n , 0)T , ( 1

n , 0, . . . , 0, n−1
n )T .
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Theorem 2.2.3. The 2USC refinement R of the unit simplex ∆ covers ∆; if β ≥ n−1
n then ∀x ∈ ∆ ∃Si ∈ R such

that x ∈ Si.

Proof. For each x ∈ ∆ we have to find a simplex Si ∈ R and show that x can be written as a convex
combination λ of its vertices. Let x ∈ ∆ and ei with i ∈ argmaxj=1,...,n xj be the vertex of ∆ closest to x.

Notice that max xj ≥ 1
n as ∑ xj = 1.

We show that Si defined by (2.28) and ri = β contains x. Due to the definition of vertices in (2.28),

n

∑
j=1

λjvj = ci + β
n

∑
j=1

λjdj =
β

n
1 + (1− β)ei + β

n

∑
j=1

λj(ej −
1
n

1). (2.36)

Simplifying using ∑ λj = 1, we have

n

∑
j=1

λjvj = (1− β)ei + β
n

∑
j=1

λjej. (2.37)

Take λj =
1
β xj for j 6= i and λi =

1
β xi + 1− 1

β . Substitution of the values for λ in (2.37) gives

n

∑
j=1

λjvj = (1− β)ei + β
n

∑
j=1

1
β

xjej + β(1− 1
β
)ei =

n

∑
j=1

xjej = x. (2.38)

Clearly λj ≥ 0 if j 6= i, and if β ≥ n−1
n also λi ≥ 0 given that xi ≥ 1

n . Additionally,

n

∑
j=1

λj =
1
β

n

∑
j=1

xj + 1− 1
β
=

1
β
+ 1− 1

β
= 1, (2.39)

which shows that x can be written as a convex combination of the vertices of one of the subsimplices of
R.

The following proposition, illustrated in Figure 2.10 or 2.12 , gives further insight in Theorem 2.2.3.

Figure 2.12: Partition of a 3D-simplex using 2USC with β = n−1
n . Coloured dots are the vertices of the

subsimplices drawn with different line styles.

Proposition 2.2.4. Each subsimplex Si of R in 2USC of the unit simplex ∆ contains the centroid c = 1
n 1.

Proof. Centroid c = 1
n 1 is a convex combination of the vertices of Si with λj =

1
n−1 for j 6= i and λi = 0

using the smallest reduction β = n−1
n .

n

∑
j=1

λjvj =
n

∑
j 6=i

1
n− 1

(ci +
n− 1

n
dj) = (2.40)

n

∑
j 6=i

1
n− 1

(
n− 1

n2 1 +
1
n

ei +
n− 1

n
(ej −

1
n

1)
)
=

n

∑
j=1

1
n

ej = c. (2.41)
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Figure 2.13: 2∇USC for a 3D-simplex with ρ = n−2
n−1 .

Figure 2.14: 2∇USC for a 4D-simplex with ρ = n−2
n−1 . The size of the 4 overlapping subsimplices (red, blue,

dark green and light green) is n−2
n−1 = 2

3 of the original simplex while the size of the upside down oriented
simplex (black) is n(1− ρ)− 1 = 4(1− 2/3)− 1 = 1

3 of the original simplex.

The 2USC refinement generates a set of overlapping subsimplices that covers unit simplex ∆. How
much is the overlap? To answer this question, consider the perspective of volume calculations. The
n − 1 dimensional volume of a simplex is determined by the determinant of the vertex set, projected
appropriately on the plane (subspace) where the simplex is located. Without going into detail, from that
perspective one should consider that the edges of Si are β times the length of that of the unit simplex. This
means in relative volume that

Vol(Si)

Vol(∆)
= βn−1. (2.42)

The overlap in terms of volume is n times this factor in relation to the volume of the unit simplex.

2.2.1.2 Refinement using n + 1 regular simplices, 2∇USC

In our investigation we also found covers that show less overlap, but where we have to relax the property
of having equally oriented and sized subsimplices. Consider subsimplices, Ši, i = 1, . . . , n with the same
structure as Si in 2USC having a radius n−2

n−1 ≤ ρ < n−1
n . The union of Ši leaves a small “hole” Šn+1 in ∆

which has an “upside down” orientation with radius rn+1 = n(1− ρ)− 1. Šn+1 is defined by the center of
the original simplex, cn+1 = 1

n 1 having the vertices Un+1 = cn+11T − rn+1D which are the centroids of the
facets of ∆ if ρ = n−2

n−1 (see Figures 2.13 and 2.14). Subdivision P = {Š1, . . . Šn+1} now just covers ∆ with
n + 1 simplices of smaller size than Sj.

Theorem 2.2.5. The 2∇USC refinement P of the unit simplex ∆ covers ∆ if n−2
n−1 ≤ ρ < n−1

n . That is, ∀x ∈
∆ ∃Ši ∈ P such that x ∈ Ši.
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Proof. For each x ∈ ∆ we have to find a simplex Ši ∈ P and show that x can be written as a convex
combination λ of its vertices. Let x ∈ ∆ and ei with i ∈ argmaxj=1,...,n xj be a vertex of ∆ closest to x. We

will show that Ši defined by (2.28) and ri = ρ contains x, if xi ≥ 1− ρ, and x ∈ Šn+1 if xi ≤ 1− ρ.
First, we show that Ši contains x, if xi ≥ 1− ρ. One can deduce for uj and ρ that λj =

1
ρ xj for j 6= i and

λi =
1
ρ xi + 1− 1

ρ using the same argument as in the proof of Theorem 2.2.3. Using these values, x is a

convex combination of the vertices of Ši according to equations (2.38–2.39). Clearly, λj ≥ 0 if j 6= i, and
λi ≥ 0 for xi ≥ 1− ρ.

Secondly, we show that the upside down simplex Šn+1 contains x, if xi ≤ 1− ρ. Take

λj =
1− ρ− xj

n(1− ρ)− 1
∀j. (2.43)

One can derive that λj ≥ 0 ∀j if xi ≤ 1− ρ and ∑n
j=1 λj = 1 given ∑n

j=1 xj = 1. Moreover, for Šn+1,

n

∑
j=1

λjuj = cn+1 − (n(1− ρ)− 1)
n

∑
j=1

λjdj =
1
n

1− (n(1− ρ)− 1)
n

∑
j=1

λj(ej −
1
n

1).

Given ∑n
j=1 λj = 1

n

∑
j=1

λjuj = (1− ρ)1− (n(1− ρ)− 1)
n

∑
j=1

λjej

= (1− ρ)1−
n

∑
j=1

(1− ρ− xj)ej =
n

∑
j=1

xjej = x.

This shows that x can be written as a convex combination of the vertices of one of the subsimplices of
P.

In the 2∇USC subdivision, one of the subsimplices has an “upside down” orientation. To use the
theoretical result of Theorem 2.2.1 to check one upside down simplex is covered by another, we should
adapt the result to that situation.

Corollary 2.2.6. Let Š1 and Š2 be “upside down” simplices defined by vertex matrices U = c11T − r1D and
W = c21T − r2D. Simplex Š2 is covered by simplex Š1 if

c1j − c2j +
r1 − r2

n
≥ 0 j = 1, . . . , n. (2.44)

Proof. Following the reasoning in the proof of Theorem 2.2.1, let equation (2.31) be modified to

wi = c2 − r2di = (c11T − r1D)λi = c1 − r1Dλi ⇒

r1λi = c1 − c2 + r2(ei −
1
n

1) + r1
1
n

1 = c1 − c2 + r2ei +
r1 − r2

n
1.

(2.45)

All elements λij ≥ 0 under conditions (2.44) and ∑j λij = 1, which means that all vertices of Š2 are included
in Š1.

2.2.1.3 Refinement using more base points per edge, mUSC

The concept of mUSC means we can extend the cover towards more, but smaller identically oriented and
sized simplices, by using more (exactly m) simplices per edge. We investigate the properties of mUSC here.

The mUSC refinement M consists of subsimplices Sm
i with a reduction of γ ≥ n−1

m+n−2 in radius r of the
simplex to be refined. Center points are characterised by taking steps from the original center toward the
vertices. From the center, the new subsimplex with center Ct1,...,tn is described by taking in each direction
di an integer relative step size of ti where the total of the relative step sizes is m− 1, ∑i ti = m− 1.

Ct1,...,tn = c +
(1− γ)r

m− 1

n

∑
i=1

tidi. (2.46)
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As in the multinomial distribution, there are in total

N(m, n) =
(

m + n− 2
m− 1

)
(2.47)

outcome vectors t corresponding to the centers of the subsimplices. Notice that for the specific case
m− 1 = n the center of the subsimplex with t = 1T i.e. C1,...,1, corresponds to the original center c.

Example 2.2.7. Consider a 4USC refinement of the 3D-simplex with γ = n−1
m+n−2 = 2

5 . The following
centers of the subsimplices as illustrated in Figures 2.11 and 2.15 are generated: C300 = 1

3 1 + 3
5 d1 =

( 11
15 , 2

15 , 2
15 ), C210 = 1

3 1 + 2
5 d1 +

1
5 d2 = ( 8

15 , 5
15 , 2

15 ), C111 = ( 5
15 , 5

15 , 5
15 ) (the original center), C120 =

( 5
15 , 8

15 , 2
15 ), C021 = ( 2

15 , 8
15 , 5

15 ), ...
In both figures there are regions (triangles) which are covered twice, or three times. In Figure 2.15, the

regions with light blue are covered by only one simplex, which has its center inside. The middle blue
regions are covered by the two simplices whose center enclose it, and there are three dark blue regions
which are covered by three simplices. Again, covered by the ones whose centers enclose it.

c300

c210

c201c102

c120

c003

c030

c021

c012 c111

c300

c210

c201c102

c120

c003

c021

c012 c111

Figure 2.15: 4USC refinement of the unit 3D-simplex with γ = n−1
m+n−2 = 2

5

Theorem 2.2.8. The mUSC refinement M of the unit simplex ∆ covers ∆ if γ ≥ n−1
m+n−2 . That is, ∀x ∈ ∆ ∃Sm

i ∈ M
such that x ∈ Sm

i .

Proof. Knowing that a valid 2USC subdivision covers ∆, we show that the subsimplices of an mUSC
subdivision can also be generated by iteratively using a 2USC subdivision. We first show that a 3USC
division is equivalent to sequentially performing two 2USC subdivisions. Using reduction rate β1 in a first
2USC division, we obtain n subsimplices with centers

cei = c + (1− β1)di i = 1, . . . , n (2.48)

and radius β1. Notice that for 2USC, the vector t corresponds with a unit vector ei. Now, we 2USC-
subdivide all these subsimplices using reduction β2 obtaining new subsimplices with centers

c + (1− β1)di + (1− β2)β1dj i, j = 1, . . . , n. (2.49)

and radius β1β2. These centers correspond to the 3USC centers cei+ej by carefully choosing values for
reduction factors β1, β2 such that β1β2 = γ. The choice provides the centers

cei+ej = c +
1− γ

2
(di + dj) (2.50)

corresponding to the 3USC refinement with integer relative step sizes ti = 0, 1, 2. To have (2.49) and (2.50)
coincide, the values for β should fulfill 1− β1 = (1− β2)β1 = 1−γ

2 such that β1 = 1+γ
2 and β2 = 2γ

1+γ .
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Given a 3USC value γ ≥ n−1
m+n−2 = n−1

n+1 it can be verified that by this choice β1, β2 ≥ n−1
n fulfills the

condition of Theorem 2.2.3 with respect to the 2USC covering of ∆.
Now we can generalize this to mUSC. Using the same reasoning, after (m− 1) 2USC-subdivisions with

reduction rates β1, . . . , βm−1, the n(m−1) subsimplices have a center of the shape

c + (1− β1)di1 + (1− β2)β1di2 + (1− β3)β2β1di3
+ . . . + (1− βm−1)βm−2 · · · β1dim−1 ,

(2.51)

where ij is a step direction in the jth subdivision. In order to have them coincide with the N(m, n) = (m+n−2
m−1 )

centers Ct1,...,tn specified by (2.46) with integer values for the relative step sizes ti, the chosen values for
β j ≥ n−1

n should fulfil the following conditions:

γ = β1β2 · · · βm−1

1− γ

m− 1
= 1− β1

1− β1 = (1− β2)β1

1− β2 = (1− β3)β2

...
1− βm−2 = (1− βm−1)βm−2.

These conditions imply for a solution β1, . . . , βm−1 that

β j =
1

2− β j+1
j = 1, . . . , m− 2. (2.52)

Given γ ≥ n−1
m+n−2 the elaboration of (2.52) and γ = β1β2 · · · βm−1 leads to

β j ≥
m + n− 2− j
m + n− 1− j

j = 1, . . . , m− 1. (2.53)

Is it easy to check that β j ≥ n−1
n , j = 1, . . . , m− 1, such that the conditions of Theorem 2.2.3 with respect

to 2USC covering are valid. The n(m−1) subsimplices cover ∆ and coincide with the (m+n−2
m−1 ) subsimplices

of the mUSC subdivision using a reduction factor γ ≥ n−1
m+n−2 .

Although the same final simplices can be obtained by iterative 2USC-subdivision, the number of
generated simplices is smaller using mUSC.

2.2.2 Vertex sharing

From the branch-and-bound perspective, it is convenient that simplices in the search tree share vertices
because:

• vertices do not have to be re-evaluated reducing the number of vertex evaluations, and
• the chance that a subsimplex is covered by a larger subsimplex from another branch is greater; this

will be shown later in Remark 2.2.11.

Longest edge bisection typically shares vertices. As elaborated by [37], if the user is aiming at a sampling
accuracy of ε (relative to the edge size of the unit simplex) the full tree of the bisection algorithm generates
sample points as vertices on a grid. The mesh size α of the grid is typically α = 1

2k and correspondingly
the number of grid points per axis is G = 2k + 1, with k = d− log2 εe. In a branch-and-bound setting,
simplices S with a small size w(S) ≤ ε · w(∆) are no longer refined.

The same analysis does not apply directly for USC, as unlike bisection the refinement does not provide
necessarily a partition. A subsimplex may contain sampled points apart from its vertices (vertices from
other subsimplices). A refinement by 2USC up to accuracy w(S) ≤ ε · w(∆) provides sample points that
are not necessarily on a grid.

Consider a user goes for the rough accuracy of ε = 1
2 . Figure 2.16 illustrates the result of an iterative

2USC subdivision with the reduction rate β = n−1
n up to the relative size of the reached subsimplices is
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Figure 2.16: 2USC subdivision of a 3D-simplex with β = n−1
n up to relative size ε = 1

2 .

smaller than ε. It can be seen from Figure 2.16 that most of the vertices of a subsimplex are not shared with
another subsimplex.

As illustrated in the proof of Theorem 2.2.1, the reduction rates of 2USC can be adapted within certain
margins to reach a target. Now, the question is how to do so, such that vertex sharing is promoted. We
discuss these aspects in this section.

2.2.2.1 Using the reduction rate to promote vertex sharing

The first question is whether there exists a reduction rate β for 2USC such that after N successive refine-
ments, at least two of the evaluated vertices at every edge of the initial simplex coincide. A condition for
this is that 1− β = βN . Table 2.1 shows possible reduction rates β for different values of the dimension n,
such that the condition is fulfilled and β ≥ n−1

n . The number of divisions N increases with n. Although
vertex sharing is promoted by choosing a uniform reduction rate β listed in Table 2.1, vertex sharing
happens only for a few vertices. Next, we investigate how vertex sharing can be promoted forcing new
vertices to lay on a so-called final grid, using more than one reduction rate. We will focus on the so-called
2USC-Grid and 2∇USC-Grid.

Table 2.1: Reduction rate β ≥ (n−1)
n and number N of divisions leading to vertex sharing of the final

subsimplices.

n (n−1)
n N β

2 0.5 1 0.5
2 0.61803

3 2
3 3 0.68232

4 0.72449
4 0.75 5 0.75487

6 0.77808
7 0.79654

5 0.8 8 0.81165
9 0.82430

6 5
6 10 0.83508

2.2.2.2 Reduction factors to promote vertices to be on a grid

Given that we have G sample points (including the unit simplex vertices) per edge, we have that grid size
α = 1

G−1 cannot be completely freely chosen, but neither is bounded to the value of 1
2k of the bisection

refinement. The number of grid points per edge is at least G ≥
⌈

1
ε

⌉
+ 1. Forcing points to be on a grid

with G points per edge, means that they are at most α ≤ ε apart. This is well illustrated in Figure 2.17
(right). Using iterative 2USC refinement with different reduction rates up to ε = 1

2 on the 3D-simplex can
generate sample points on a uniform grid that are α = 1

4 apart due to overlap of regular simplices.
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φ
ψ

Figure 2.17: On the left-hand side: Choosing the reduction ratio to promote vertices on an α = 1
11 grid. On

the right: Iterative refinement of a 3D-simplex using 2USC-Grid with φ = n−1
n and threshold value ε = 1

2 .

In what follows, we elaborate on 2USC-Grid and 2∇USC-Grid methods. The questions are i) what is
the value of α and ii) how can we design reduction rates β, ρ of the regular covering methods such that
vertices are generated on the corresponding grid?

Consider the first question on the mesh size α of the final grid depending on the regular division
method on the unit simplex ∆. Let ω = w(S)

w(∆) be the relative size of a simplex S to be refined at the last but
one level of the tree, i.e. the children of S have a size smaller or equal than ε. Let us assume that the size of
the last simplices is exactly ε and we use the biggest possible reduction, i.e. the minimum reduction factor.
For 2USC, ε = ω n−1

n and the desired mesh size α = ω(1− n−1
n ) = ω

n = ε
n−1 . For 2∇USC, ε = ω n−2

n−1 and
α = ω(1− n−2

n−1 ) = ω
n−1 = ε

n−2 . Notice that in both cases α < ε, and the first question is answered. In
practice, the size of the last simplex is not necessarily ε, but it can be shown that the final size is (d 1

ε e)−1.

So for 2USC, α =
(d 1

ε e)−1

n−1 and for 2∇USC, α =
(d 1

ε e)−1

n−2 .
Let φ denote the minimum reduction factor, i.e. n−1

n for 2USC and n−2
n−1 for 2∇USC. One can promote

the vertices of the refinement to lay on the grid for a certain mesh size α, that depends on ε, by using as
reduction factor the value

ψ(ω) =

⌈
φω
α

⌉
· α

ω
, (2.54)

answering the second question. The choice of the reduction factor is illustrated on the left-hand side of
Figure 2.17. The right hand side of Figure 2.17 shows the final set of simplices using 2USC iteratively with
choice (2.54). We call this method 2USC-Grid. Comparing Figure 2.17 with Figure 2.16 shows that one can
promote vertices to coincide at grid points.

Remark 2.2.9. The reduction factor range of 2∇USC is in fact n−2
n−1 ≤ ρ < n−1

n as discussed in Theorem
2.2.5. Formula (2.54) may give a reduction factor ψ(ω) ≥ n−1

n . In those cases, the 2∇USC refinement is
equivalent to a 2USC refinement, because the upside down simplex disappears.

Remark 2.2.10. It is relatively easy to see that all generated vertices of the 2USC-Grid refinement do
lay on a grid with mesh size α. For 2∇USC-Grid, this is not evident. Consider a 2∇USC refinement
Š1, . . . , Šn+1 of a simplex S, where S has vertices on an α-grid. This means that there is a value K such that
ω = w(S)

w(∆) = K · α. Equation (2.54) provides a reduction factor such that there is another integer k ≤ K with

ψ(ω)ω = k · α. For the upside down sub-simplex w(Šn+1)
w(∆) = ω · (n(1−ψ(ω))− 1) = (n− 1) ·K · α− n · k · α,

i.e. the relative distance between the vertices is also a multiple of α. As its center is the same as that of S,
its vertices lay on the grid.

2.2.3 Computational aspects

This section is based on the results obtained by Leocadio G. Casado, but is presented for completeness.
Focusing on the use of partitioning by regular simplices as division rule in a branch-and-bound

algorithm, the efficiency of the division rule will depend on the generated search tree. In order to make
our study independent of the problem to solve, we investigate the worst case, i.e. none of the branches is
pruned during the search. Algorithm 2.1 shows the pseudo code where a complete tree is generated from a
division rule up to the size of the subsets smaller than ε ·w(∆). Line 8 uses Theorem 2.2.1 or Corollary 2.2.6
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Algorithm 2.1 Complete Search Tree
Input: ∆, ε

1: Λ := {∆} . Set of simplices not yet split
2: ns := 1 . Number of simplices
3: while Λ 6= ∅ do
4: Extract a simplex S from Λ . Depth-First
5: if w(S) > ε · w(∆) . Final accuracy not reached
6: Ω:=Refine(S) . Ω = set of subsimplices
7: for each Si ∈ Ω do
8: if Si * S̃, ∀S̃ ∈ Λ
9: ns := ns + 1

10: Evaluate Si
11: Store Si in Λ

to avoid the evaluation of a simplex which is covered by one to be evaluated in the future. Depth-First
search is used in line 4 in order to keep a small size of the set of simplices not yet split (|Λ|) and therefore
the number of covering checks at line 8 of the algorithm is also minimal.

Remark 2.2.11. Due to the use of a Depth-First search in Algorithm 2.1, a simplex S cannot be covered by
a simplex S̃ of the same size which has already been evaluated, because in such case simplex S̃ would
have been removed earlier due to being covered by either S or its ancestor. Therefore, final simplices are
never covered.

Since Algorithm 2.1 generates the complete search tree, the smallest number ns of generated simplices
is obtained by applying mUSC just once. In the practical application of a B&B algorithm to a real problem
with pruning, usually a smaller branching factor provides less simplices to be evaluated in contrast to the
generation of the complete tree. Table 2.2 shows the branching factor for the studied methods.

Table 2.2: Branching factor of different refinement methods.

LEB 2USC 2USC-Grid 2∇USC 2∇USC-Grid mUSC

2 n n n + 1 n or n + 1
(

m + n− 2
m− 1

)

We investigate the number of evaluated simplices and vertices for the 2USC and 2∇USC variants,
because as among regular division methods they have the smallest branching factor. The benchmark is
longest edge bisection (LEB) as that method has the smallest branching factor and is most commonly used
as division method. Notice that the storage requirement per simplex for bisection is much larger than that
of regular refinement, as the latter require only to store the center and the radius.

Table 2.3 shows the number of evaluated simplices to reach the w(S)
w(∆) ≤ ε criterion for the studied

methods. For regular simplices w(S)
w(∆) is the same as the radius of S. Therefore edge lengths calculations

are not needed. This termination criterion ensures a relative nearest neighbour distance of sample points
smaller than ε. For LEB with n > 3 more than one longest edge exists [5]. Here, we select the first one.
The relative precision is set to ε = 1

2k , which is convenient for LEB. This termination criterion generates
an oversampling beyond the grid for LEB (see Figure 2.8), 2USC (see Figure 2.16) and 2∇USC methods.
Refinement 2∇USC shows the least number of evaluated simplices for n = 3 because it provides an
efficient partition. Specifically for n = 3 2∇USC and 2∇USC-Grid generate the same tree. In general,
2∇USC outperforms 2USC due to having a higher branching factor and less overlap. For all instances,
2USC generates more simplices among the presented methods, whereas 2∇USC-Grid is the method with
the best results. 2USC-Grid and 2∇USC-Grid force vertices of simplices to lay on the α-grid using the
reduction ratio (2.54).

2∇USC-Grid has two possible branching factors in Table 2.2 as explained in Remark 2.2.9. Comparing
these methods, 2∇USC-Grid generates less simplices than 2USC-Grid for all evaluated cases. The reason
is that on the one hand, 2∇USC-Grid has a branching factor n or n+1, which is the highest among the
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Table 2.3: Number of evaluated simplices for ε = 1
2k .

n k LEB 2USC 2∇USC 2USC-Grid 2∇USC-Grid
3 1 11 13 5 10 5

2 47 100 21 56 21
3 191 663 85 283 85

4 1 63 79 26 35 19
2 507 829 371 575 179
3 4,027 19,407 4,863 6,825 1,660

5 1 379 621 177 126 71
2 6,319 26,160 3,127 5,176 2,087
3 99,563 577,509 166,061 117,676 46,987

6 1 2,189 1,265 1,509 462 266
2 79,035 337,971 127,839 46,457 20,048
3 2,510,297 26,473,770 5,803,618 2,723,725 878,738

7 1 12,685 13,021 2,704 1,716 1,002
2 1,074,163 4,840,735 1,634,936 392,876 186,160
3 71,915,489 300,537,878 49,264,562 20,617,297

presented methods, and on the other hand it provokes less overlap than 2USC. For the complete tree
generation (no pruning) a higher branching factor provides less generated simplices.

Table 2.4: Ratio of the number of covered/evaluated simplices for ε = 1
2k .

n k 2USC 2∇USC 2USC-Grid 2∇USC-Grid
3 1 0.00 0.00 0.30 0.00

2 0.11 0.00 0.52 0.00
3 0.19 0.00 0.73 0.00

4 1 0.01 0.00 0.74 0.32
2 0.30 0.08 1.47 0.48
3 0.43 0.11 1.81 0.65

5 1 0.18 0.06 1.23 0.70
2 0.58 0.21 2.24 1.38
3 0.83 0.29 2.47 1.73

6 1 0.16 0.13 1.73 1.11
2 0.71 0.41 3.00 2.06
3 1.12 0.58 3.55 2.22

7 1 0.25 0.12 2.23 1.51
2 0.84 0.52 3.60 2.71
3 0.79 4.26 3.30

Table 2.4 shows the ratio of the number of covered versus evaluated simplices (see Algorithm 2.1, line
8) for regular subdivision methods. A covered simplex is dropped as its region will be evaluated by the
covering simplex. The ratio is much larger for the grid aware methods. Therefore, forcing simplices to
have its vertices on the α-grid reduces the number of simplices to be evaluated.

Table 2.5 shows the number of generated vertices. For n = 3, 2∇USC and 2∇USC-Grid do not exhibit
overlap and therefore generate the smallest number of vertices. For n > 3 the best method in terms of the
number of generated vertices is LEB due to the already mentioned fact of creating vertices at coordinates
multiple of 1

2k , where k is an integer related to the depth of the search tree.
Missing data in Tables 2.3 to 2.5 correspond to cases where the algorithm did not finish in 10 minutes

or consumes more than 15 GB of memory.
In order to investigate how the number of evaluated simplices and vertices is affected by a chosen user

accuracy ε, we run experiments for 11 values of ε in the range [0.1, 0.5]. The tendency has been depicted in
Figures 2.18 to 2.22. Missing results mean that the algorithm did not terminate in 10 minutes.

When n = 3 (Figure 2.18), 2∇USC-Grid produces the smallest number of simplices and vertices. It
is interesting to see that the number of evaluations is constant on some ranges for a varying value of ε.
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Table 2.5: Number of generated sample points (evaluated vertices) for ε = 1
2k .

n k LEB 2USC 2∇USC 2USC-Grid 2∇USC-Grid
3 1 7 27 6 15 6

2 19 201 15 45 15
3 61 1,327 45 153 45

4 1 18 238 84 74 35
2 92 2,488 1,190 455 165
3 574 58,222 15,592 2,925 969

5 1 46 2,485 740 340 200
2 438 104,641 13,140 4,845 1,820
3 5,105 2,310,037 699,727 58,905 20,475

6 1 108 6,326 7790 1,497 942
2 1,881 1, 689,856 664,933 53,004 20,349
3 41,286 30,325,101 1,221,759 435,897

7 1 232 78,127 16,604 6,447 4,137
2 7,653 29,044,411 10,119,466 584,633 230,209
3 335,848 25,827,165 9,366,819
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Figure 2.18: Number of evaluated simplices/vertices (left/right); n = 3 varying ε

Surprisingly, for many values of ε, 2USC, the worst method in Table 2.3, is generating less simplices than
bisection.

For n = 4 (Figure 2.19), 2∇USC-Grid produces the smallest number of simplices for most of the
instances but surprisingly 2USC is the best in some instances. Regarding the number of vertices, LEB is
the best apart for the case where ε = 0.1. This shows that some values of ε are more convenient than others
for each method.

For n > 4 (Figs. 2.20 to 2.22), 2∇USC-Grid produces the smallest number of simplices and LEB the
smallest number of vertices.

Summarizing, the numerical results show that the traditional idea of partitioning the search space
can sometimes be replaced by using an overlapping refinement that generates vertices on a grid. Being
aware of a grid mesh, the number of evaluated simplices is reduced by several orders of magnitude.
However, the number of vertices evaluated is in general worse than using longest edge bisection. When
the computational cost of simplex and vertex evaluations is similar, 2∇USC-Grid is preferred.

Still, the sampling is actually too accurate in terms of a nearest neighbour distance because the reached
inter-point distance is much smaller than the required user accuracy ε ·w(∆). For USC methods, one could
use much larger final simplices. Determining their size will reduce the number of evaluated simplices and
vertices. This remains an open question.
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Figure 2.19: Number of evaluated simplices/vertices (left/right); n = 4 varying ε
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Figure 2.20: Number of evaluated simplices/vertices (left/right); n = 5 varying ε

2.2.4 Conclusions

Regularity has many advantages in practice. The present work investigated the research question whether
simplex refinement can be done in an efficient way using regular sub-simplices. The results are counter-
intuitive and surprising both theoretically and practically. Several overlapping refinement methods
are described and implemented, among which 2∇USC-Grid seems most promising according to the
experiments of generating a complete tree up to a user accuracy.

The most appropriate threshold value is still an open question. Moreover, it would be interesting to
see how the refinement methods are going to perform on branch-and-bound instances for mixture design
(blending) problems.

2.3 Gradient based simplicial bounds and monotonicity considera-
tions

Recently, there has been a renewed interest in generating tight bounds over simplicial partition sets.
Karhbet and Kearfott [116] discuss the idea of using range computation over simplices based on Interval
Arithmetic. In [139], focus is on using second derivative enclosures for generating bounds. These works
do not take monotonicity considerations over the simplex into account as discussed by [106]. Our research
question is how information on the bounds of first derivatives can be used to derive tight bounds and to
create new monotonicity tests in simplicial B&B. To investigate this question, we derive bounds based on
derivative information and implement them in a B&B algorithm to compare the different techniques.

The rest of this section is organized as follows. Subsection 2.3.1 introduces the notation. Subsection
2.3.2 presents several approaches to obtain lower bounds of a function over a simplex. Subsection 2.3.3
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Figure 2.21: Number of evaluated simplices/vertices (left/right); n = 6 varying ε
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Figure 2.22: Number of evaluated simplices/vertices (left/right); n = 7 varying ε

deals with monotonicity over a simplex. Subsection 2.3.6 describes the Global Optimization B&B algorithm
to compare lower bounding methods over a simplex. Subsection 2.3.7 compares the results of the bounding
techniques numerically on a large number of instances. Finally, Subsection 2.3.8 presents our findings.

Lower bounds were the results of common work, but many of them are based on my work, for instance
the theoretical result. Monotonicity results are similarly common, again, my contribution was crucial here
as well. Numerical results are done by Leocadio G. Casado.

2.3.1 Preliminaries

Consider a function f : Rn → R that has to be minimized over a feasible set D ⊂ Rn, which is either a box
or a simplex, on which f is differentiable:

min
x∈D

f (x). (2.55)

Actually, the problem can be posed more generically, where the feasible set is not full dimensional
compared to the objective function. The branch-and-bound algorithm works with a list Λ of partition sets,
which as a whole include all global minimum points. Let us recall our simplicial partition sets.

Notation 2.3.1. Let V = {v1, . . . , vh} ⊂ Rn denote a set of h affinely independent vertices. For the
component i of vertex j, we use the notation vji.

Notation 2.3.2. An (h− 1)-simplex S is determined by the convex hull of V , i.e. S = conv(V) as formulated
in (2.1).

The algorithm to be studied uses longest edge bisection, where the longest edge (v, w) of a partition set
S is bisected using mid-point x = v+w

2 leading to two new simplices with vertex sets V \ {v} ∪ {x} and
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V \ {w} ∪ {x}. The algorithm also considers dimension reduction due to monotonicity considerations
where the set V of vertices of (h− 1)-simplex S is reduced to V \ {v} and S is replaced by one (or more)
of its facets F := conv(V \ {v}) for some v ∈ V . Notice that F is an (h− 2)-simplex. It may be clear that
for h = 1, the 0-simplex S = conv({v1}) is an individual point and has no faces. Its dimension cannot be
reduced.

The centroid of (h− 1)-simplex S = conv({v1, . . . , vh}) is given by c =
1
h

h

∑
j=1

vj and the relative interior

is defined by

rint(S) = {x = ∑
j

λjvj, λj > 0, j = 1, . . . , h,
h

∑
j=1

λj = 1}. (2.56)

The relative boundary of a simplex S is defined by removing the relative interior from it, i.e. ∂S = S \ rint(S).
Considering a simplicial partition set S, we are interested in studying whether its (simplicial) facets F are
border with respect to feasible set D.

Definition 2.3.3. Given a feasible area D, and an (h− 1)-simplex S with h ≤ n is called border with respect to D
if there exists an (h− 1)-dimensional face ϕ of D, such that S ⊆ ϕ.

Remark 2.3.4. For a simplicial feasible area, the (h− 1)-dimensional face ϕ is an (h− 1)-simplex, while
for a box, ϕ is an (h− 1)-dimensional interval.

Notation 2.3.5. We recall here, that we denoted intervals by boldface letters and their lower and upper
bound by ‘underline’ and ‘overline’, respectively. The radius of an interval x = [x, x] is denoted by
rad (x) = x−x

2 and its midpoint by mid (x) = x+x
2 . For an interval vector (also called a box) these are taken

component-wise. The width of a box x = (x1, . . . , xn)T is to be understood as wid (x) = 2 max
i=1,...,n

rad (xi).

Notation 2.3.6. The interval hull of a simplex S is denoted by �S = � conv(V), that is the smallest interval
box enclosing the simplex S. Let x = �S, where

xi = [xi, xi] = [min
vj∈V

vji, max
vj∈V

vji] ∀i ∈ {1, . . . , n}. (2.57)

Remark 2.3.7. For cases where x = �S ⊆ D, f is differentiable over x. Notice that if D is a box and S ⊂ D,
automatically we have �S ⊆ D. However, if D is a simplex, then f is not necessarily differentiable over
x = �S.

2.3.2 Bounding techniques over a simplex

2.3.2.1 Extension of standard interval bounding techniques to simplices

Extensive investigation on Interval Arithmetic has lead to many ways to derive rigorous bounds, see for
instance [101, 117, 140, 158].

Notation 2.3.8. Let f denote the natural interval extension [140] of an expression f with

f (x) = [ f (x), f (x)] ⊇ [min
x∈x

f (x), max
x∈x

f (x)], ∀x ⊆ D.

Remark 2.3.9. ∀x ∈ S ⊂ x = �S, f (x) ∈ f (x).

Notation 2.3.10. Let ∇ f (x) denote an enclosure of the gradient and ∇ fi(x) = [∇ f
i
(x),∇ f i(x)] the i-th

component of the interval gradient. They can be computed using Interval Arithmetic and Automatic
Differentiation [157].

Remark 2.3.11. ∀x ∈ x, ∂ f
∂xi

(x) ∈ ∇ f i(x). Then, ∀x ∈ S ⊂ x = �S, ∂ f
∂xi

(x) ∈ ∇ fi(x).

Notation 2.3.12. A centered form on a box x with center c is denoted by fc(x). It is in fact the interval
extension of the first-order Taylor expansion using ∇ f (x):

fc(x) = f (c) + (x− c)T∇ f (x), with c ∈ x.

Usually c is the midpoint (or center) of box x. In that case, we refer to fcb(x) where cb = mid (x). The lower
bound fc(x) can also be written as f (c) + (x− c)T∇ f (x) = f (c) + (x− c)T∇ f (x), where underline takes
the lower bound of the formula computed by IA.
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Remark 2.3.13. ∀x ∈ S ⊂ x = �S, f (x) ∈ fc(x). Thus, fc(x) provides lower and upper bounds of f over
S, even if c 6∈ S.

Baumann [9] proposed another base-point instead of the center cb to improve the lower and upper
bounds of the centered form.

Notation 2.3.14. We denote the Baumann base-point for the optimal lower bound in the centered form on
a box by bb−. Component i is given by

bb−i =


xi∇ f i(x)− xi∇ f

i
(x)

wid (∇ fi(x))
if 0 ∈ ∇ fi(x)

xi if ∇ f
i
(x) > 0

xi if ∇ f i(x) < 0.

Any centered form (with a base-point y ∈ x) can be tightened based on the vertices of simplex S.

Proposition 2.3.15. Let
fy(S) = f (y) + min

v∈V
{(v− y)T∇ f (x)}, y ∈ x. (2.58)

Then fy(S) ≤ minx∈S f (x).

Proof. A first-order Taylor form provides a concave lower bounding function [9, 187]. A concave function
takes its minimum over a convex set at its extreme points. Consequently, the lower bounding function
over the simplex takes its minimum at a vertex of the simplex. Thus, instead of computing the interval
enclosure over x=�S, taking the minimum over the simplex vertices provides a valid lower bound.

Remark 2.3.16. We can use y = cb or y = bb− in (2.58).

Now, it is interesting to see how the Baumann point bb− can be generalized to a simplicial base-point.
For bb−, the aim is to select the best base-point for the Taylor form, such that the lower bound is as high as
possible. For a simplex, instead of using the limits of enclosing box x=�S, we use the simplex vertices.

The highest lower bound in (2.58) over a simplex is taken at the base-point

argmaxy∈x min
v∈V

(
f (y) + (v− y)T∇ f (x)

)
=

argmaxy∈x

(
f (y) + min

v∈V
(v− y)T∇ f (x)

)
.

(2.59)

Obviously, optimizing (2.59) is a nonlinear problem as it includes the optimization of f (y) varying y.
Therefore, it is advisable to optimize only the second part.

Definition 2.3.17. Let us define bs− = argmaxy∈x minv∈V (v− y)T∇ f (x) as the Baumann point over the
simplex. This point can be found by an interval linear program:

max
y∈x,z∈R

z

s.t. z ≤ (v− y)T∇ f (x), ∀v ∈ V .
(2.60)

Let (z∗, y∗) be the optimum of (2.60). Then we take base point bs− = y∗ with the corresponding lower
bound fbs−(x) = f (bs−) + z∗.

Notation 2.3.18. ∇w f (x) ∈ Rn denotes gradient bounds with components ∇w fi(x) = ∇ f
i
(x) if wi = xi

and ∇w fi(x) = ∇ f i(x) if wi = xi.

Remark 2.3.19. In Notation 2.3.18, all possible variations of lower and upper bounds of the gradients are
taken into account when considering all vertices w of x.

Writing (2.60) as a linear program requires 2n constraints for each vertex v ∈ V :

max
y∈x,z∈R

z

s.t. z ≤ (v− y)T∇w f (x), ∀v ∈ V , ∀w vertex of x.
(2.61)
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The constraints in (2.61) can be written as 2n linear inequalities

max
y∈x,z∈R

z

s.t. z + yT∇w f (x) ≤ min
v∈V

vT∇w f (x), ∀w vertex of x.
(2.62)

Note that we do not force bs− to be in simplex S, because it may happen that a point outside S would give
the best lower bound. In case we want to use f (bs−) to update the upper bound of the global minimum in
a B&B algorithm, bs− has to be in the initial search region. In our experiments we force bs− to be in S by
adding y ∈ S using simplex inclusion constraints (2.1) to (2.62) in a similar way as it is done in (2.65).

Notice that (2.60), (2.61), and (2.62) are equivalent descriptions of the same problem, thus providing
the same optimum corresponding to the same bound.

2.3.2.2 Linear relaxation based lower bounds

Following earlier results in interval based B&B [144, 178, 179], we can now define other lower bounds for
simplicial subsets.

Standard linear relaxation of f over a box

Let w be a vertex of x=�S and consider a first order Taylor expansion

fw(x) = f (w) + (x− w)T∇w f (x) ≤ f (x) ∀x ∈ x. (2.63)

Since we have 2n vertices of x, we obtain 2n inequalities from equation (2.63), see [135] for more details.
Consider the linear program

min
x∈x,z∈R

z

s.t. z ≥ f (w) + (x− w)T∇w f (x), ∀w vertex of x.
(2.64)

Let (x∗, z∗) be the optimal solution of (2.64), then

f (x) ≥ z∗, ∀x ∈ x,

such that z∗ is a lower bound of f over x. z∗ is also a lower bound of f over S ⊂ x = �S.

Linear relaxation of f over a simplex

We now focus on the bounds of f over simplex S = conv(V). The earlier bound in (2.64) is valid for f
over x = �S, such that it is also a bound over the simplex S. However, it is interesting to force x ∈ x to be
inside S, like in (2.1). Introducing the corresponding linear equations into problem (2.64) provides linear
program

min
x∈x,z∈R

λ∈[0,1]n+1

z

s.t. z ≥ f (w) + (x− w)T∇w f (x), ∀w vertex of x

x =
h

∑
j=1

λjvj

h

∑
j=1

λj = 1.

(2.65)

Let (x∗, z∗, λ∗) be the solution of (2.65). Then we have that

f (x) ≥ z∗, ∀x ∈ S

and therefore, z∗ is a lower bound of f over S.

A straightforward idea is to consider the vertices of the simplex instead of the vertices of the enclosing
box. Unfortunately, such a formulation leads to a Mixed Integer Programming problem, as the piece-wise
linear lower bounding function is neither convex nor concave anymore.
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2.3.2.3 Bounding technique using Affine Arithmetic

This section describes the use of Affine Arithmetic (see [4, 53, 134, 136, 169, 180]) to generate a linear
underestimation of function f over x=�S. We add the constraint that the solution has to be inside the
simplex S = conv(V), see (2.1). This provides a linear program.

First, we focus on the transformation of an interval vector into a vector of affine forms. Second, we
describe how the computations are made using Affine Arithmetic to provide linear equations. Third, we
sketch how the so-obtained linear equations are used to provide linear underestimations of f over x and
then we provide the linear program to find a lower bound of f over the simplex S. Fourth, we show a
simple way to solve the linear program.

Conversion into affine forms

The interval vector x=�S can be converted to an affine form vector, denoted by x̂, as follows

x =



x1
...

xi
...

xn

 =



[x1, x1]
...

[xi, xi]
...

[xn, xn]

→ x̂ =



x̂1
...

x̂i
...

x̂n

 =



mid (x1) + rad (x1)ε1
...

mid (xi) + rad (xi)εi
...

mid (xn) + rad (xn)εn

 , (2.66)

where εi ∈ [−1, 1] for all i ∈ {1, . . . , n}. The affine form x̂ can be transformed back into an interval by
changing εi to [−1, 1]. Moreover, for all x ∈ x, there is exactly one corresponding value for ε in the affine
description,

x = T(x, ε) = mid (x) + rad (x)ε,

where εi =
xi−mid (xi)

rad (xi)
, i = 1, . . . , n.

Affine Arithmetic

By replacing all the occurrences of the variable xi by the corresponding affine form x̂i in an expression of f ,
and by performing the computations using Affine Arithmetic, we obtain a resulting affine form, denoted
by

f̂ (T(x, ε)) = r0 +
n

∑
i=1

riεi +
N

∑
k=n+1

rkεk, (2.67)

where ε j is in [−1, 1] for all j ∈ {1, . . . , N}. Note that some error terms rkεk are added for all k ∈
{n + 1, . . . , N}, which come from non affine operations in f .

Linear underestimation of f over x

Using Affine Arithmetic, (2.67) underestimates f over x

f (x) = f (T(x, ε)) ≥ f̂ (T(x, ε)) = r0 +
n

∑
i=1

riεi −
N

∑
k=n+1

|rk|, (2.68)

because all error terms are taken into account using their worst value.

Remark 2.3.20. Equation (2.68) is a linear underestimation of f over x using the new variables εi.

Linear program to provide lower bounds

In order to compute a lower bound of f over the simplex S (and not only on the x=�S), we constrain the
point x to be inside S by adding (2.1). In this case, we describe x by its affine form T(x, ε) and thus, we
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obtain the linear program

min
ε∈[−1,1]n

λ∈[0,1]n+1

n

∑
i=1

riεi

s.t. T(x, ε) =
h

∑
j=1

λjvj

h

∑
j=1

λj = 1.

(2.69)

Denoting the exact solution of (2.69) by (ε∗, λ∗), we have that

f (x) = f (T(x, ε)) ≥
n

∑
i=1

riε
∗
i + r0 −

N

∑
k=n+1

|rk|, ∀x ∈ S (2.70)

and therefore, this is a lower bound of f over S.
Note that to solve the above linear program, we just need to evaluate f at each vertex of S and then

take the minimum value of the linear underestimation (2.68). If rad (xi) 6= 0 (else ri = 0), εi(vj) is a
transformation of component i of vertex vj into variable ε

εi(vj) =


vji −mid (xi)

rad (xi)
, if rad (xi) > 0

0, if rad (xi) = 0
∀i ∈ {1, . . . , n}, and ∀vj ∈ V .

Then, the lower bound of (2.70) becomes

min
j∈{1,...,h}

n

∑
i=1

riεi(vj) + r0 −
N

∑
k=n+1

|rk|. (2.71)

Therefore, instead of solving linear program (2.69), we can determine (2.71) and this yields directly the
lower bound of f over S. The solution corresponds to the solution of linear program (2.69).

2.3.3 Monotonicity test

Now, we describe a concise monotonicity test which excludes an interior partition set S if it does not
contain a stationary point. To be more precise:

Proposition 2.3.21. Let S ⊂ int(D) be a simplex in the interior of the search area D. If ∃i ∈ {1, . . . , n} with
0 /∈ ∇ f i(�S) then S does not contain a global minimum point of (2.55).

Proof. The condition implies that

∀x ∈ S,
∂ f
∂xi

(x) 6= 0

such that S cannot contain an interior minimum of D. Moreover, S does not touch the boundary, i.e.
S ∩ ∂D = ∅, such that neither it can contain a boundary optimum point.

The test is not strong as initial partition sets typically touch the boundary. Stated it differently, for a
simplex S ⊆ D, if ∃i ∈ {1, . . . , n} with 0 /∈ ∇ f i(�S) then rint(S) does not contain a global minimum
point of (2.55). The practical consequence is that the interior of S cannot contain the optimum, so S can be
replaced by its border facets.

A slight relaxation is the following corollary, where a simplicial partition set has no facets on the
boundary.

Corollary 2.3.22. Let S ⊆ D be a simplex as partition set in a branch-and bound-algorithm with corresponding
gradient enclosure ∇ f (�S). If ∃i ∈ {1, . . . , n} with 0 /∈ ∇ f i(�S) and S has no border facets, then S can be
rejected.

Proof. The same reasoning as in the proof of Proposition 2.3.21 applies with respect to the interior of S.
The relative boundary of S may contain a global minimum point, but the same point is enclosed in the
relative border of another partition set, such that we do not have to store S anymore.
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This corollary is not strong, but it is relatively easy to check. For practical tests, Proposition 2.3.21 offers
the conditions for removing an interior simplicial partition set S. We can also remove it, if just several
vertices of S touch the boundary of D according to Corollary 2.3.22. Otherwise, we should store the facets
of S which are completely in a face of the search region as new simplicial partition sets with less than h
vertices.

Even not all border facets are interesting partition sets. It might be shown that the relative interior of a
facet F cannot contain a minimum point.

For this property, we can focus on bounds of the directional derivative in a direction d, denoted by
dT∇ f (�S) and dT∇ f (�S). For instance, an upper bound of the directional derivative

dT∇ f (�S) =
n

∑
i=1

max{di∇ f
i
(�S), di∇ f i(�S)}. (2.72)

Notice that a necessary condition for dT∇ f (�S) ≤ 0 according to (2.72) is that f is monotone on �S, i.e.
0 /∈ ∇ f (�S).

Moreover, let us introduce the so-called normal vector p with respect to facet F. Let S = conv(V), v ∈ V ,
U = V \ {v}, facet F = conv(U ). Consider u ∈ U and construct a set of vectors Y := {w− u, w ∈ U \ {u}}
with corresponding matrix representation Y. The normal vector of F in the direction of v can be expressed
by defining (see e.g. [5])

p =
[

I −Y(YTY)−1YT
]
(v− u). (2.73)

The projection procedure (2.73) is sketched in Figure 2.23. Vector p points into the same half-space where

u

v

y F

p
v−

u

Y(Y TY)−1Y T(v− u)

Figure 2.23: Normal vector calculation via projection of an edge v− u

S is located. From each point in rint(F) a direction d with pTd > 0 points into rint(S). Considering the
gradient enclosure ∇ f (�S) component wise, we can come to several conclusions.

Proposition 2.3.23. Given simplex S = conv(V) with a facet F generated by removing vertex v from V with
normal vector p as in (2.73). If for one component i we have ∇ f i(�S)pi < 0 (either ∇ f i(�S) < 0 and pi > 0, or
∇ f

i
(�S) > 0 and pi < 0), then rint(F) cannot contain a minimum point of (2.55).

Proof. Suppose that the assumptions of Proposition 2.3.23 hold. We know that for any x ∈ rint(F) exists
an ε > 0 such that y = x + εpiei ∈ S. No point x ∈ rint(F) can be a global optimizer, as

f (y) = f (x + εpiei) ≤ f (x) +∇ f (�S)piei = f (x) +∇ f (�S)pi < f (x).

In the branch-and-bound procedure, if the search space is a full-dimensional simplex, the partition sets
are full-dimensional n-simplices, up to reduction to its facets. Using the property of 0 /∈ ∇ f (�S), if rint(S)
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can be removed, we can reduce it to its border facets. However, for lower dimension (h− 1)-simplices,
h ≤ n, the condition 0 /∈ ∇ f (�S) is a necessary condition to have monotonicity, but not sufficient.
Therefore, we have to focus on directional derivative bounds. For the ease of notations, from now on, we
will denote the inclusion of the gradient for the interval hull of simplex S by G = ∇ f (�S).

Now consider a directional vector d as the difference of two points in S, then the corresponding
directional derivative dT∇ f (x) is also included in the inner product

〈d, G〉 =
[
dTG, dTG

]
=

[
n

∑
i=1

min{diGi, diGi},
n

∑
i=1

max{diGi, diGi}
]

. (2.74)

The most general result for an (h− 1)-simplex is the following.

Proposition 2.3.24. Let S ⊆ D be an (h− 1)-simplex with h ≤ n + 1 and gradient enclosure G. If ∃ x, y ∈ S,
such that direction d = x− y has corresponding directional derivative bounds (2.74) with 0 /∈ [dTG, dTG] then
rint(S) does not contain a global minimum point of (2.55).

Proof. Consider z ∈ rint(S). As z is in the relative interior, there exists a feasible direction d in which lower
function values can be found, i.e. ∃ε ∈ R small enough, such that z + εd ∈ S and f (z + εd) < f (z). So z
cannot be a minimum point of f .

The elaboration for the algorithm depends on the choice of the direction d and the way to compute it.
Again, in a branch and bound context, Proposition 2.3.24 has some practical impact.

Corollary 2.3.25. Let S ⊆ D be an (h − 1)-simplex as partition set in a branch-and-bound algorithm with
corresponding gradient enclosure G. If the conditions of Proposition 2.3.24 apply and S has no border facets, then S
can be rejected.

The argument is that the relative border of S may contain a global minimum point, but the same point is
enclosed in the relative border of another partition set.

Given that the minimum is not in rint(S), we have to decide which of the facets to focus on.

Proposition 2.3.26. Given (h− 1)-simplex S = conv(V), 1 ≤ h ≤ n + 1 and a facet F generated by removing
vertex v from V , consider direction d = v− y, where y ∈ S. If dTG > 0, i.e. the directional derivative in the
direction d = v− y is positive, then the facet F contains all minimum points in S, i.e. argminx∈S f (x) ⊆ F.

Proof. Without loss of generality, consider the vertex set V = {v1, . . . , vh} and for v = v1 the facet
F = conv({v2, . . . , vh}). First we show that ∀x ∈ S \ F, ∃ρ > 0 such that z = x− ρd ∈ F. We have x, y ∈ S,
such that there exist vectors λ, γ with x = ∑h

j=1 λjvj with λ1 > 0 and y = ∑h
j=1 γjvj. Looking for the value

ρ, such that z = x− ρ(v1 − y) ∈ F, we have that λ1 − ρ(1− γ1) = 0. Hence, taking ρ = λ1
1−γ1

, we obtain
z ∈ F. According to the mean value theorem, there exists a point ξ in between x and z such that

f (x) = f (z + ρd) = f (z) + 〈ρd,∇ f (ξ)〉 ≥ f (z) + ρdTG > f (z).

This means that each point x ∈ S \ F corresponds to a point z ∈ F with a lower function value.

Remark 2.3.27. Notice that if there are several facets fulfilling the condition of Proposition 2.3.26, then the
consequence is also valid for the intersection of the facets, which is a face of S. So if Proposition 2.3.26
applies to facets F and H, then it also applies to F ∩ H.

Proposition 2.3.28. Given (h− 1)-simplex S fulfilling the conditions in Proposition 2.3.26. If F is a non-border
facet, then global minimum points of (2.55) cannot be in rint(F), i.e. global minimum points can only be found at
the relative boundary of F.

Proof. According to Proposition 2.3.26, the minimum points of f over S can be found on facet F. We first
show that x ∈ rint(F) does not contain global minimum points. Consider a point x ∈ rint(F). Because F is
non-border, there exists an ε > 0, such that z(ε) := x− ε(v− y) ∈ D and z(ε) /∈ S. As dTG > 0 and f is
continuously differentiable, there exists an ε > 0 (sufficiently small) such that for all δ ∈ [0, ε], we have
dT∇ f (z(δ)) > 0. Therefore, following the mean value theorem, there exists a point δ ∈ [0, ε] such that
f (z(ε)) = f (x)− ε(v− y)T∇ f (z(δ)) < f (x) . This means that in an environment of x outside S we can
find a feasible point with a lower function value than x. The relative boundary of F could contain global
minimum points of (2.55).
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Remark 2.3.29. First, let us note that the boundary of F is shared by other partition sets, thus we can
disregard simplex S in a branch-and-bound process.

Second, notice that there can be several facets fulfilling the condition of Proposition 2.3.26, however,
we need only one non-border facet fulfilling the condition to remove simplex S from consideration.

Corollary 2.3.30. Given (h− 1)-simplex S fulfilling the conditions of Proposition 2.3.26 with centroid c, consider-
ing direction d = v− c. If dTG > 0, then the facet F contains all minimum points in S, i.e. argminx∈S f (x) ⊆ F.
Moreover, if F is a non-border facet, then simplex S cannot contain the global minimum of (2.55).

This follows from Proposition 2.3.26 and 2.3.28 just by using the centroid y = c.

v1

v2

v3

S

x4

F
x5

Figure 2.24: Three partition sets generated by bisection, using bisection points x4 and x5. We focus on
monotonic directions in S.

Example 2.3.31. For the illustration of the concept, consider the simplices in Figure 2.24. It shows three
partition sets generated by bisection, using bisection points x4 and x5. Consider the light blue simplex
S = conv(V) with V = {v2, x4, x5}, where we assume that the orange direction provides a monotonously
increasing direction. According to Proposition 2.3.24, the interior of S does not contain a global minimum
point. Blue direction provides an increasing monotonicity for facet F = conv(V \ {v}) with v = x5.
According to Proposition 2.3.26, facet F = conv({v2, x4}) contains all minimum points on S. Specifically,
they are at lower dimensional faces, as rint(F) cannot contain minima either. Now, Proposition 2.3.28
states, that we can even remove S, as there is another partition set at its left, that encloses all minimum
points.

An alternative is to use the projection point y = (v − p) ∈ S of the normal vector p of (2.73) as
illustrated in Figure 2.23 for the choice of y. However, this is only correct if the simplex has angles of less
than 90 degrees. This is typically the case when we follow the longest edge bisection process.

Corollary 2.3.32. Given a simplex partition set S = conv(V) in the bisection and dimension reduction process
and a facet F generated by removing vertex v from V with normal vector p according to (2.73). If pTG > 0, then F
contains all minimum points over S. Moreover, if F is a non-border facet, then simplex S cannot contain the global
minimum of (2.55).

This follows from Proposition 2.3.26 and 2.3.28 by using the normal vector p in place of d = v− y.

Proposition 2.3.33. Given simplex S = conv(V), 1 ≤ h ≤ n + 1, consider a facet F generated by removing
vertex v from V . If for direction d = v− y with y ∈ S we have dTG < 0, then rint(F) ⊂ S does not contain a
minimum point of (2.55).

Proof. Following the proof of Proposition 2.3.26 by taking ∇ f (ξ) ≤ dTG, we have

f (x) = f (z + ρd) = f (z) + 〈ρd,∇ f (ξ)〉 ≤ f (z) + ρdTG < f (z)

and the result follows.
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This leads to a nice test in case there is a monotone direction in the simplex, but we cannot show that
any of the facets contain all the minima using Proposition 2.3.26. In such case we have to replace the
simplex by all its border facets, unless Proposition 2.3.33 holds. Thus, we need to consider only those
border facets where we cannot find a point y for which Proposition 2.3.33 holds.

Corollary 2.3.34. Given simplex S = conv(V), 1 ≤ h ≤ n + 1, fulfilling the conditions of Proposition 2.3.33
with centroid c, considering direction d = v− c. If dTG < 0, then facet F can be disregarded.

2.3.3.1 Checking on monotonicity

To prove that there exists a monotone direction in a simplex, at least we should have 0 /∈ G. This is a
necessary, but not sufficient condition for an (h− 1)-simplex, h ≤ n. To prove that such a direction exists,
according to Proposition 2.3.24, we need to find a direction d = x− y, with x, y ∈ S corresponding to a
positive lower bound of the directional derivative

0 < dTG =
n

∑
i=1

min{diGi, diGi}. (2.75)

Finding such a direction can be done by searching for the steepest monotone direction maxd dTG. Consider
the terms zi = min{diGi, diGi}. This means we can write dTG = ∑n

i=1 zi. If we fix one of the points
x ∈ S in d = x − y, then the term zi(y) = min{(xi − yi)Gi, (xi − yi)Gi} is a concave function in y, as
it is the minimum of two affine functions. Therefore, the lower bound on the directional derivative
g(y) = (x− y)TG is a concave function, being the sum of concave terms. Similarly, it can be shown
that the upper bound g on the directional derivative is a convex function. We will illustrate this with an
example and then show how an LP problem can be formulated to find a maximum of g(y).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-60

-40

-20

0

20

40

60

Figure 2.25: Shape of concave directional derivative lower bounding function g(y) = g(λv2 + (1− λ)v3)

as function of λ in orange and the corresponding convex upper bounding g in purple.

Example 2.3.35. Consider a simplex S = conv(V) with V = {v1, v2, v3} in R6 with v1 = 0, v2 =
(1,−2, 3,−4, 5, 6)T and v3 = (0, 3,−2, 5,−4,−5)T . In d = x− y, we take as fixed point x = v1 and vary y
over the edge between v2 and v3 as suggested in Proposition 2.3.26, so y = λv2 + (1− λ)v3, 0 ≤ λ ≤ 1.
Figure 2.25 sketches the concave piece-wise linear shape of g as function of λ and the convex shape of g.

Looking for the existence of a positive value of dTG for some direction d, we can fix x to the centroid in
the directional vector, i.e. d = c− y. The maximization of concave piece-wise linear function g(y) over
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y ∈ S can be formulated as the following LP problem.

max
n

∑
i=1

zi

s. t. zi ≤ (ci − yi)Gi, i = 1, . . . , n

zi ≤ (ci − yi)Gi, i = 1, . . . , n
h

∑
j=1

λj = 1

y =
h

∑
j=1

λjvj

λj ≥ 0, j = 1, . . . , h.

(2.76)

If there is no monotone direction, then y = c and ∑m
i=1 zi = 0.

v1v2

v3

c

y

F

Figure 2.26: 2D image of the 2-simplex S. The point y provides a positive lower bound on the directional
derivative in direction d = c− y.

Example 2.3.36. For the illustration of the concept, consider the 2-simplex S defined by three vertices
V = {(4, 0, 1)T , (0, 0, 0)T , (3, 2, 1)T} in 3-dimensional space, projected in 2D for Figure 2.26. Its centroid is
given by 1

3 (7, 2, 2)T . Now let the bounds of the gradient be given by G = (−3, 1, 0)T and G = (1, 2, 1)T .
For none of the directions d = vj − c, we have that lower bound dTG is positive. Running the LP (2.76)
provides us with a positive directional derivative bound of 2

3 for the point y = ( 7
3 , 0, 7

12 )
T . The monotone

direction c− y is drawn by an orange arrow in Figure 2.26. This means that f is monotone on S. This
illustrates that checking a finite number of directions over the simplex is not necessarily sufficient to prove
that f is monotone. The LP (2.76) provides a numerical proof of f being monotone over S or not. Notice
again that y = c is a feasible solution of the LP yielding an objective function value of zero as soon as
monotonicity cannot be proven.

Following the line of reasoning of the example, according to Proposition 2.3.24, we can conclude that
simplex S can be replaced by its facets. Now at least one of the facets is of interest, although that cannot
be concluded by only considering the directions d = v− c for this specific example. The question is now
whether there is a monotone direction from a vertex v to a point y on the facet F = conv(V \ {v}) for
which d = v− y has a positive lower bound on the directional derivative dTG > 0. If such direction can be
found, according to a similar reasoning as in Proposition 2.3.26, the minimum of the simplex is in F.

To answer the question whether such a direction would exist, we can solve the following LP for a
specific facet F maximizing the lower bound of a directional derivative. Consider the ordered vertex set
V := {v1, v2, . . . , vh} and the vertex set of F given as {v2, . . . , vh} := V \ {v1}. Focusing on the direction
v1 − y with y = ∑h

j=2 λjvj, we can demonstrate that there is a (maximum) positive directional derivative,
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if it exists, by solving the LP

max
n

∑
i=1

zi

s. t. zi ≤ Gi(v1i − yi), i = 1, . . . , n

zi ≤ Gi(v1i − yi), i = 1, . . . , n
h

∑
j=2

λj = 1

y =
h

∑
j=2

λjvj

λj ≥ 0, j = 2, . . . , h.

(2.77)

If the result is positive, we have proven theoretically that all minima of f over S are on F. However,
computationally, better to ensure that the resulting direction is monotone by checking dTG > 0 by interval
computations.

Example 2.3.37. We can now show how LP (2.77) is working, following the illustration in Figure 2.26
for facet F = conv{v1, v2}. Although the lower bound on the directional derivative of d = v3 − c is
not positive, the LP will provide a solution y = (3, 0, 3

4 )
T with an objective function value of 2. The

corresponding direction is also illustrated with an arrow between (3, 0, 3
4 )

T and v3 in Figure 2.26.

In a procedure for searching for such a facet, in the worst case we need to solve LP (2.77) h times.
Instead, we might solve only one Mixed Integer Programming problem (MIP) where a binary variable δj
selects the facet corresponding to the most positive directional derivative:

max
n

∑
i=1

zi

s. t. zi ≤ Gidi, i = 1, . . . , n

zi ≤ Gidi, i = 1, . . . , n
h

∑
j=1

λj = 1
h

∑
j=1

δj = 1

d =
h

∑
j=1

δjvj −
h

∑
j=1

λjvj

λj ≥ 0, δj ∈ {0, 1}, j = 1, . . . , h.

(2.78)

MIP (2.78) can be used to replace LP problem (2.77) if such a monotonously increasing direction towards
one of the vertices exists. If this is not the case, the solution is 0 with the direction d = 0. However, there
still may exist an increasing direction according to LP (2.76).

Example 2.3.38. For our example in Figure 2.26 with S = conv{v1, v2, v3} the MIP (2.78) finds indeed the
positive objective function value of ∑n

i=1 zi, stating that the facet corresponding to δ3 = 1 provides the
maximum derivative lower bound.

The two steps, looking whether a monotone direction exists and identifying which facet contains all
the minima (if any), can also be done in one step. Thus, instead of solving LP (2.76) and (2.77) h times (or
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MIP (2.78)), we can solve directly one MIP:

max
h

∑
j=1

δj

s. t. zi ≤ Gidi, i = 1, . . . , n

zi ≤ Gidi, i = 1, . . . , n
h

∑
j=1

λj = 1
h

∑
j=1

µj = 1
h

∑
j=1

δj ≤ 1

d =
h

∑
j=1

(λj − µj)vj

n

∑
i=1

zi ≥ ε

µj ≥ δj ∀j = 1, . . . , h

µj, λj ∈ [0, 1] , δj ∈ {0, 1}, j = 1, . . . , h,

(2.79)

where d = x− y, for x, y ∈ S, so x = ∑h
j=1 λjvj and y = ∑h

j=1 µjvj, thus d = ∑h
j=1(λj − µj)vj.

A solution with µk = 1 and µj = 0, j 6= k represents a direction d pointing to vertex vk. A solution
with λk = 1 and λj = 0, j 6= k represents a direction pointing from vertex vk. We connect µj with binary
variables δj such that δj = 1 implies µj = 1. The inequality ∑n

i=1 zi ≥ ε with ε > 0 assures d is a monotone
direction. Moreover, it forces µ 6= λ, because otherwise z = 0 as well. If no monotone direction exists,
(2.79) has no feasible solution.

The objective is to maximize the sum of δj, meaning that we aim at finding a monotone direction with
µk = 1 corresponding to δk = 1. In this case, we know that facet F = conv(V \ {vk}) contains all minima
according to Proposition 2.3.26. If the objective is zero, there is no facet containing all the minima, i.e. there
is no δk = 1, but there is a monotone direction d.

Example 2.3.39. Following our example in Figure 2.26 with S = conv{v1, v2, v3} the MIP (2.79) finds the
positive objective function value 1 for ∑n

i=1 zi, stating that the facet corresponding to δ3 = 1 provides a
positive directional derivative for d = v3 − v1. Notice, that this direction is not the maximum directional
derivative, but still positive, which is the main question.

Interestingly, solving the LP-s and MIP-s in Matlab, the necessary time for this example was counter-
intuitive: LP (2.76) 0.521, LP (2.77) 0.033, while MIP (2.79) 0.048 seconds.

We investigated whether the counter-intuitive result of a smaller solution time for the MIP than for
the LP is a general trend. Therefore, we compared the solution time and effectiveness of formulations
(2.76), (2.77), (2.78), and (2.79). We took 447 simplices from a branch-and-bound process over the functions
Hartman 3, 4, and 6 that, as the name suggests, have dimension 3, 4, and 6. We have used the routines
linprog and intlinprog in Matlab setting IntegerTolerance to 1e-6 and ConstraintTolerance to 1e-8.
The result is given in Table 2.6. In each line of the table we give for the LP and MIP formulations the
percentage of the effectiveness measured as proven monotonicity. For instance, for problem Hartman 3,
LP (2.76) proved in 81.6% that there is a monotone directional derivative.

We can prove there is a monotone decreasing direction from any facet by solving LP (2.77) for all
vertices, or by solving any of the MIP-s once. Comparing the formulations, LP (2.77) is the strongest, while
MIP (2.79) is the weakest due to the ε in its formulations, which is hard to set together with the tolerances.
The percentage development shows that, as the found monotone directions are less and less solving LP
(2.77), MIP (2.78), and MIP (2.79), and the percentage where the best results are not found goes up in the
same order.

Surprisingly, the average computing time is the smallest for MIP (2.78), followed by MIP (2.79) or LP
(2.76), and the slowest is LP (2.77). The latter is no surprise as in that case we added up the time needed to
solve LP (2.77) for all facets, or until it found a monotone decreasing direction from a facet.

2.3.4 Keeping track of border facets

To know the border status of a given facet, we use a labelling system to find out which minimum
dimensional face of D the facet or simplex is included in. Here, we consider only simplicial feasible
regions, as [104] deals with hyper-rectangle feasible sets, which is easier to handle.
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Table 2.6: Time and effectiveness of the LP and MIP formulations

LP (2.76) LP (2.77) MIP (2.78) MIP (2.79)

Hartman 3
Monotone dir exists 81.6% - - 77.6%
No monotone dir 18.4% - - 18.4%
Mon.neg.dir.from F exists - 73.5% 73.5% 69.4%
No Mon.dir.from F exists - 24.5% 24.5% 18.4%
Best result not found 2.0% 2.0% 4.1%
Time 0.018 0.029 0.009 0.012
Hartman 4
Monotone dir exists 92.3% - - 80.2%
No monotone dir 7.7% - - 7.7%
Mon.neg.dir.from F exists - 67.0% 60.4% 57.1%
No Mon.dir.from F exists - 33.0% 33.0% 23.1%
Best result not found - - 6.6% 12.1%
Time 0.014 0.030 0.008 0.016
Hartman 6
Monotone dir exists 98.0% - - 87.3%
No monotone dir 2.0% - - 2.0%
Mon.neg.dir.from F exists - 83.1% 73.0% 72.6%
No Mon.dir.from F exists - 16.9% 16.9% 14.7%
Best result not found - - 10.1% 10.7%
Time 0.015 0.038 0.009 0.011

For a simplicial feasible set D = conv(W), this is done by assigning to each face ϕ of D a label B(ϕ),
starting with the vertex faces labelled B(vj) = 0..010..0 where the only 1 is the jth bit, for j = 1, . . . , n + 1.
Each face ϕ, which is a convex combination of vertices V ⊆ W , the corresponding bit-string B(ϕ) has a
value 1 for each vertex v ∈ V in the same position as in B(v). For instance, in Figure 2.27, the edge (v2, v3)
has label 011, and the simplex itself has label 111. In fact, for any simplex face ϕ of the feasible set, its label
is given by the bitwise or of the label of all its vertices. The complete face graph is given in Figure 2.28 for
a 4-vertex simplex.

After bisecting the original set of verticesW , we store the bisection points in set X. For instance, in
Figure 2.27, we have X = {v1, v2, v3, x4, x5}. We label all generated points x ∈ X, which serve as vertices
for the partition sets. The label of point x is the same as the label of the minimum dimensional face ϕ of
the feasible set x is in. For instance, the label of x4 is 101, the same as the label of face conv(v1, v3). In the
bisection, a new vertex x = v+w

2 gets label B(x) = BitOr(B(v),B(w)).
Given a simplex S = conv(V), the question is what is the label of the (smallest dimensional) face ϕ it

v1

100

010
v2

v3

001

x4

101

x5111

110 011

Figure 2.27: Faces of the feasible set with bisection points x4 and x5.
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011010101100 1001

001001001000 0001

0101 0011

Number of vertices

4

3

2

1

v0 v1 v2 v3v1 v2 v3 v4

Figure 2.28: Face graph for 4-vertex simplex. Binary labels are shown in boxes for each face.

is included in. This is determined by the label B(ϕ) = BitOr(B(V)), to be interpreted as a bitwise or on
all its vertex labels. The number of ones of a bitstring B(ϕ) is denoted by |B(ϕ)|, giving the number of
vertices of ϕ. According to Definition 2.3.3, (h− 1)-simplex S is border if there exists an (h− 1)-simplex
face ϕ of the feasible set including S (h ≤ n).

Proposition 2.3.40. Given (h− 1)-simplex S = conv(V) with h ≤ n, if |BitOr(B(V))| = h, then simplex S is
border.

Proof. Consider the face ϕ, which is the minimal dimensional face containing S, i.e. label B(ϕ) =
BitOr(B(V)). As |BitOr(B(V))| = h, we have |B(ϕ)| = h, thus ϕ is an (h − 1)-simplex. Therefore,
S is enclosed by an (h− 1)-simplex face of the feasible set and thus is border.

For an example, let us check the edges in Figure 2.27. The edge (x4, v3), half of the original edge (v1, v3),
is border, as |BitOr(B({x4, v3}))| = |BitOr(101, 001)| = |101| = 2 corresponding to face conv({v1, v3}).
In contrast, edge (x4, x5) is not border, because |BitOr(B({x4, x5}))| = |111| = 3 6= 2. In fact, the
minimum dimensional face it is included in, is D itself.

As we have seen in the theoretical results, for monotonicity testing the border certification of facets
is of importance. One way to do so is to follow Proposition 2.3.40. One of our research questions is
whether it might be more efficient in an algorithm to store the border status of the facets in a Boolean
vector β indicating for each facet whether they are border or not. Then, we can transfer the status β to
facets of newly generated simplicial subsets instead of evaluating the border status |BitOr(B(V))| = h
for all facets. Therefore, we introduce a border status for each facet of (h− 1)-simplicial subset S. Each
facet F corresponds to a vertex v ∈ V which is dropped from the vertex set S to obtain F. Let us denote it
by Fv, and its marker by β(Fv) ∈ {true, f alse}. Storing this information with subset S requires storing a
binary vector β = (β1, . . . , βh) = (β(Fv1), . . . , β(Fvh)) ordered in the same way as the vertex set and the
corresponding facets.

2.3.4.1 Setting the border status for facets in Longest Edge Bisection refinement

Consider a simplicial subset S with ordered vertex set (v1, . . . , vi, . . . , vj, . . . , vh) and the corresponding
facet border status vector (β1, . . . , βi, . . . , β j, . . . , βh). Longest Edge Bisection (LEB) along edge (vi, vj)

generates the new point x =
vi+vj

2 and two new subsets S1 = conv({v1, . . . , x, . . . , vj, . . . , vh}) and S2 =
conv({v1, . . . , vi, . . . , x . . . , vh}). Both new simplices inherit the border status β from parent S, but we set
the border status of the new facet to false: for S1, we set β j :=false and for S2 we put βi :=false. So, apart
from the newly generated shared facet, all other facets inherit their border status from the bisected simplex.
Figure 2.29 shows the first bisection of the original 3-simplex D with the border status of its facets.
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S2 S3
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2(t)
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4(t) 4(t)

4(t)

(t)
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(2-3) (3-2)

Figure 2.29: Part of the search tree where Longest Edge Bisection splits simplex S into two new simplices.
Blue edges are border and red ones are non-border. The border status of vertex vj and corresponding
facet Fj is represented by j(t) or j(f): if Fj is border (t) or non-border (f). The dotted facet is the new facet
generated by the bisection.

2.3.5 Setting border status for facets in simplicial dimension reduction

Consider a simplicial subset S with ordered vertex set (v1, . . . , vh) and corresponding border status
(β1, . . . , βh). Let us focus on dropping one of the vertices and reducing the simplex to the corresponding
border facet. Without loss of generality consider dropping v1. The remaining facet F1 = conv({v2, . . . , vh})
is border when β1=true, otherwise F1 is not border. What will be the new border status (β2, . . . , βh)?

Proposition 2.3.41. Given (h − 1)-simplex S = conv(V) and border facets F = conv(V \ {v}) and E =
conv(V \ {w}), v 6= w. The intersection F ∩ E = conv(V \ {v, w}) is border.

Proof. According to Proposition 2.3.40, the including faces ϕF, ϕE corresponding to F and E have a label B
with |B(ϕF)| = |B(ϕE)| = h− 1, because F and E are border. The intersection F ∩ E is an h− 3-simplex,
as we removed two vertices from V .

Assume that F ∩ E is not border, then |B(ϕF∩E)| > h− 2. As ϕF∩E ⊂ ϕF, we have that |B(ϕF∩E)| ≤
h− 1 bits, so |B(ϕF∩E)| = h− 1.

As (F ∩ E) ∪ {w} = F, also BitOr(B(ϕF∩E),B(w)) = B(ϕF). From |B(ϕF∩E)| = |B(ϕF)| = h − 1
follows B(ϕF∩E) = B(ϕF). Similarly, we obtain B(ϕF∩E) = B(ϕE), therefore B(ϕF) = B(ϕE) and
ϕE = ϕF. Two border facets F and E cannot be included in the same (h− 1)-face of the feasible set. Thus,
F ∩ E must be border.

S15

1001

0001

0110

0011

S15

1001

0001

0011

1(t)1(t)

2(t)

2(t)

3(f)

3(f)

4(f)

(3-2)

Figure 2.30: Reduction of S15 by removing vertex 1. Before reduction, S15 is included in face ϕ with label
BitOr(B(V)) = 1111. So S15 contains interior points in D. After reduction, BitOr(B(V)) = 1011. The
border status of facet F1 is true and stays the same. Vertex 3 (4) becomes vertex 2 (3) and because their
facet border status is false, their new status requires recalculation.
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The consequence of Proposition 2.3.41 is that a border status β(Fv) = true remains true after reduction
and β(Fv) = f alse requires recalculation using Proposition 2.3.40. Figure 2.30 shows an illustrative
example.

2.3.6 Simplicial B&B algorithm (SBB)

Algorithm 2.2 SBB( f , P, α)

Input:
f : the n dimensional objective function.
P: initial simplicial partition of the search region D.
α: termination criterion.

1: Λ = {∅} . Storage structure
2: f̃ = ∞ . Incumbent value
3: for S ∈ P do
4: Evaluate f (S), ∇ f (S) . + other lower bounds
5: f̃ ← min{ f̃ , minvj∈S f (vj)}
6: if f (S) ≤ f̃ and not ReduceToFacets( f ,S,Λ)
7: Λ← S . Store S and its bounds in Λ
8: S← Λ . Retrieve S from Λ with smallest f (S) value
9: while wid ([ f (S)), f̃ ]) > α do

10: if not ReduceToFacets( f ,S,Λ)
11: {S1, S2} ← Divide(S) . Longest Edge Bisection
12: if f ( new vertex ) < f̃
13: f̃ = f (new vertex)
14: Λ = CutOff(Λ) . Remove S ∈ Λ : f (S) > f̃
15: for each subset Sj do
16: Evaluate f (Sj), ∇ f (Sj) . + other lower bounds
17: if f (Sj) ≤ f̃ and not ( Monotone and @ vertex labelled border )

. See Proposition 2.3.21
18: Λ← Sj . Store Sj and its bounds in Λ
19: S← Λ
20: return [ f (S), f̃ ]

Algorithm 2.2 uses an AVL tree1 [2] Λ, a self-balancing binary search tree, for storing partition sets.
Such a structure has a computational complexity of sorted insertion and extraction of an element of
O(log2 |Λ|). Evaluated and not rejected simplices are sorted in Λ by non decreasing order of the bounds
on the objective using any of the methods from Subsection 2.3.2. This means [x, x] < [y, y] when x < y or
when x = y and x < y. Simplicial partition sets having the same bounds are stored in the same node of
the AVL tree using a linked list.

All vertices of a simplex are also stored in an AVL tree. Vertices may be shared among several simplices,
such that we avoid duplicate storage. Although Algorithm 2.2 describes vertices to be evaluated in order
to update the incumbent f̃ (see Algorithm 2.2, lines 5 and 13), their evaluation depends on the actual lower
bounding method. The simplex S with the lowest value of f (S) is extracted from Λ (lines 8 and 19). The
lower bound of f (S) is used in the stopping criterion of the algorithm (line 9).

Evaluation of a simplex S always includes computation of the natural inclusion f (S) = f (�S) of
the objective function and inclusion of the gradient ∇ f (S) = ∇ f (�S) using Automatic Differentiation
(see Algorithm 2.2, lines 4 and 16, and Algorithm 2.3 line 6). Other bounding methods can be applied
afterwards in order to improve the calculated bounds in f .

Simplices with a lower bound greater than the incumbent f̃ are rejected. They are also rejected using
Proposition 2.3.21 when they are in the relative interior of the search space D and 0 /∈ ∇ fi(�S) (see
Algorithm 2.2, lines 14 and 17, and Algorithm 2.3, line 7).

In case f is monotone on �S and S ∩ ∂D 6= ∅, S can be reduced to a number of facets by Corollary
2.3.34 (see calls to Algorithm 2.3 from Algorithm 2.2, lines 6 and 10). From computational perspective it
is better to label the vertex opposed to a facet to be border or not-border. Thus, a border vertex means that
when it is removed from S, the remaining facet is on the boundary of D. Setting the border status later on
is done by the procedures written in Subsection 2.3.4. If the search region is a simplex, P contains just the

1named after the inventors Adelson-Velsky and Landis
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initial simplex, and all initial facets are at the boundary, such that all vertices are labelled border. In case
the search region is a box, P contains the result of the combinatorial vertex triangulation of the box into n!
simplices [186, 200].

This technical detail has not been included in Algorithm 2.2 for the sake of simplicity. The specific
triangulation is not appealing for large values of n. We use this here because box constrained problems are
used to compare methods. Each of the n! initial simplices has two border facets. They are determined by
removing the smallest and largest vertex (numbered in a binary system), see the grey nodes in Figure 2.31.
In the binary system, 0 is the lower bound and 1 is the upper bound of the given component of the box.

001 101

000 100

011 111

010 110

01 11

00 10

000 100

111

110

101

000 100

111

000

111

010 110

000

011 111

010

001 101

000

111

001

000

011 111

Figure 2.31: Combinatorial vertex triangulation of an hyper-rectangle. Vertices 000 and 111 are labelled
border in all sub-simplices. Removing one of them leaves a facet that is completely on the boundary of D.

A simplicial partition set, which was neither rejected nor reduced, is divided using Longest Edge
Bisection (LEB), see Algorithm 2.2, line 11. When several longest edges exist, the longest edge with a
vertex with the lowest value of f and the other vertex having the highest value of f is selected. In case
vertices are not evaluated, the first longest edge is selected.

In the described algorithm, we do not use all the potential of the monotonicity described in Subsection
2.3.3, as at this point we want to compare the inclusion functions.

2.3.7 Numerical results

This subsection is based on the work done by Leocadio G. Casado, but is presented for completeness.
Algorithm 2.2 was run on an Asus UX301L NoteBook with Intel(R) Core(TM) i7-4558U CPU and

8 GB of RAM running Fedora 32 Linux distribution. The algorithm was coded with g++ (gcc version
10.1.1) and it uses Kv-0.4.50 for Interval Arithmetic and Affine Arithmetic (AA). Kv uses boost libraries.
Algorithms were compiled with -O3 -DNDEBUG -DKV FASTROUND options and AA uses #define
AFFINE SIMPLE 2 and #define AFFINE MULT 2 in Kv. For the Linear Programming, we use PNL
1.10.4 with -DCMAKE BUILD TYPE = Release -DWITH MPI = OFF, as a C++ wrapper to LPsolve
5.5.2.0.

Notice that Kv Affine Arithmetic is slow in execution speed: When the direction of rounding is fixed as
”upward”, the downward calculation is performed as ”sign inversion”, and it currently does not support division

Algorithm 2.3 ReduceToFacets( f ,S,Λ)
1: Reduced=false
2: if Mon( f ,S) andS ∩ ∂D 6= ∅ . See Proposition 2.3.21
3: for each border facet F do
4: if not dT∇ f (S) < 0 . See Corollary 2.3.34
5: Reduced=true
6: Evaluate f (F), ∇ f (F) . + other lower bounds
7: if f (F) ≤ f̃ and not ( Monotone and @ vertex labelled border )

. See Proposition 2.3.21
8: Λ← F . Store F and its bounds in Λ
9: return Reduced
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by affine variables containing zero. Additionally, the execution time for Interval Arithmetic can be reduced
on processors supporting Advanced Vector Extensions SIMD (AVX-512) (see last table at kv-rounding web
page), which is not our case. Moreover, the PNL library has support for MPI, which is not used here.

Table 2.7 describes the studied instances. Their detailed description can be found in [116] and the
optimization web page.

Table 2.7: Test problems. The problems are box constrained apart from KE2-1 and KE2-2 with search
regions {(-3,-1),(1,1),(1.5,-2)} and {(-2,0),(0,-3),(2,3)}, respectively. An asterisk at n indicates that this is the
selected dimension for a varying dimension test instance.

Instance Description n
KE2-1 Karhbet example 6 over simplex 1 2
KE2-2 Karhbet example 6 over simplex 2 2
GP2 Goldstein-Price 2
THCB2 Three Hump Camel Back 2
SHCB2 Six Hump Camel Back 2
G7 Griewank 7*
S4 Shekel 10 4
H3 Hartmann 3 3
H4 Hartmann 4 4
H6 Hartmann 6 6
L8 Levy 8*
SCH2 Schubert 2
MC2 McCormick 2
RB2 Rosenbrock 2*
MCH2 Michalewicz 2*
MCH5 Michalewicz 5*
ST2 Styblinski-Tang 2*
ST5 Styblinski-Tang 5*
DP2 Dixon-Price 2*
DP5 Dixon-Price 5*

The used termination accuracy is α = 10−6 and Interval Arithmetic is applied with Automatic Differen-
tiation to obtain bounds of f and ∇ f on �S. The following notation is used to describe the variants to
calculate lower bounds:

IA : Natural IA.

+CFcb : IA + Centered form on a box (see Not. 2.3.12) using the center of �S.

+CFbb : IA + Centered form on a box (see Not. 2.3.12) using the Baumann point bb− on �S (see Not.
2.3.14).

+CFcs : IA + Centered form on a simplex (see Prop. 2.3.15) using the centroid as the base-point and the
gradient on �S.

+CFbs : IA + Centered form on a simplex (see Prop. 2.3.15) using base-point y = bs− (see Def. 2.3.17) and
the gradient on �S.

+CFvs : IA + Centered form on a simplex (see Prop. 2.3.15) using base-point y = argmaxv∈S{ f (v)} and
the gradient on �S.

+AA : IA + Affine Arithmetic lower bound (2.71) over �S.

+LR : IA + Linear Relaxation bound (2.64) on �S.

+LRS : IA + Linear Relaxation bound (2.65) on �S, forcing the solution on S.

Rejection tests like the ones on monotonicity, are checked after the bound calculations. This is not
efficient, but it allows us to compare the calculated bounds.

Improvement of the best function value found f̃ is done by point evaluation. Together with the IA
bound calculation we evaluate simplex vertices. When other lower bound methods are added to IA, the
evaluation of simplex vertices can be disabled in order to save computation. However, this may imply
another (worse) update of f̃ and a different course of the algorithm, due to Longest Edge Bisection (LEB)
by the first longest edge, instead of the best LEB [173].
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The following points are evaluated for each method. +CFc* methods (*=b or s) evaluate only the center
and +CFb* evaluate only base-points bb− or bs−. Such points are not stored. Notice that base point bb−

might be located outside the simplicial search region. +CFvs and +AA evaluate and store simplex vertices.
+LR and +LRS evaluate and store box vertices when the search region is a box. Additionally, simplex
vertices are evaluated when the search region is a simplex, because vertices of �S may be outside the
search region and should not be used to improve f̃ .

The +CF*s (*=c,b or v) methods only update lower bounds. The other methods also update upper
bounds, which may affect the partition set storage order.

Figures 2.32 and 2.33 show the normalized (to the range [0,1]) number of simplex evaluations (NS) and
execution time (T), respectively. The number of simplex evaluations can be considered as the number of
iterations, as in each iteration one simplex is evaluated. The problems are sorted by NS in both figures.
Reduction to border facets due to monotonicity does not occur in box constrained problems. It happens in
the simplex constrained instances (see Corollary 2.3.34). The monotonocity test reduces the number of
simplex evaluations significantly for all test problems. Without that test, the algorithm lasts more than the
limit of 15 minutes for several problems. Therefore, we always apply the monotonicity test.

A value of > 15m in Figures 2.32 and 2.33 means that i) the algorithm reached the 15 minute time limit,
or ii) there was a problem with the Linear Programming solver in methods +LR and +LRS or iii) a division
by zero occurred. The latter only happens for the +AA method for problem L8, because the Kv library
does not implement division by zero in Affine Arithmetic.
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Figure 2.32: Normalized number of simplex evaluations in log scale. A value of > 15m means time
out of 15 minutes or execution error. The ranges of evaluated simplices per problem are as follow:
RB2∈ [44, 66], KE2-2∈ [47, 60], DP2∈ [16, 112], MCH2∈ [128, 192], EX2-1∈ [186, 510], MC2∈ [434, 1, 052],
ST2∈ [558, 1, 382], SHCB∈ [556, 1, 646], THCB∈ [626, 1, 986], H3∈ [2, 286, 4, 430], G7∈ [5, 040, 5, 314],
S4 ∈ [3, 984, 5, 288], SCH2∈ [4, 862, 6, 834], L8∈ [40, 462, 40, 662], DP5∈ [97, 060, 188, 476], GP2∈
[2, 272, 167, 800], H4∈ [53, 368, 170, 622], MCH5∈ [189, 198, 210, 356], H6∈ [2, 641, 024, 4, 944, 040], and
ST5∈ [2, 569, 082, 6, 358, 328].

Focusing on the number of required simplex evaluations (NS), Figure 2.32 shows that the +AA method
requires the least evaluations for most of the test cases. The second best methods regarding the NS metric
are those using LP (+LR* and +CFbs). The +LRS lower bounding requires less simplex evaluations than
+LR for some cases, and +CFcb has the best NS values for only a few test cases.

For smooth functions, the algorithm converges to a region which is captured by a convex quadratic
function. To study the limit convergence behaviour of the algorithm, we run all variants over the so-
called Trid function from [184], which represents a convex quadratic function. One can observe for this
limit situation that the Linear Relaxation variants are relatively close models and require less simplex
evaluations than other lower bounding methods. This means that, for all cases, the +LR variants have an
advantage in the final stages of the algorithm. It is worth mentioning that, when the dimension increases,
the required Linear Programming gets more time consuming and also the +AA variant starts to do better.

The execution time is a difficult performance indicator, as it depends on the used external subroutines.
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Figure 2.33: Normalized execution time (seconds) in log scale. A value of > 15m means time out of 15 min-
utes or execution error. The ranges of execution time per problem are as follow: RB2∈ [0.005, 0.014], EX2-
2∈ [0.005, 0.010], DP2∈ [0.005, 0.019], MCH2∈ [0.006, 0.024], EX2-1∈ [0.005, 0.034], MC2∈ [0.005, 0.019],
ST2∈ [0.006, 0.085], SHCB2∈ [0.006, 0.101], THCB2∈ [0.008, 0.1], H3∈ [0.032, 0.415], G7∈ [0.048, 6.69],
S4 ∈ [0.056, 0.995], SCH2∈ [0.104 0.696], L8∈ [0.566, 159.124], DP5∈ [0.526, 61.352], GP2∈ [0.051, 1.461],
H4∈ [1.196, 19.844], MCH5∈ [3.611, 60.438], H6∈ [51.057, 187.538], and ST5∈ [58.476, 184.924].

Figure 2.33 provides normalized values. In the first 9 test cases (ordered according to NS), the execution
time is similar for most of the methods apart from those using LP (+LR* and +CFbs). In fact, methods
using LP are in general the most time consuming due to the called routines, followed by +AA which
avoids solving an LP due to (2.71). According to the Kv library documentation, Affine Arithmetic is slow
and its implementation could be improved.

The +CFvs method requires the least execution time for most of the instances. Comparing +CFvs
with other +CF* methods, the centered form used in +CFvs has to evaluate one sum term less and the
base-point vertex can already have been evaluated and stored. On average, +CFbb is the best method, but
this is because it is the best for the ST5 test problem, which is one of the most time consuming instances.

2.3.8 Conclusions

In simplicial branch-and-bound methods, the determination of the lower bound is of great importance.
The Interval Arithmetic lower bound on the interval hull of a simplex can be tightened by additional
calculations at a given cost. Several methods have been described and investigated. We have used the
centered form with several base-points over a simplex and the interval hull of a simplex. The use of Affine
Arithmetic and a Linear Relaxation over the interval hull and over the simplex has also been presented.
Moreover, we introduced several theoretical results about monotonicity that can be applied to construct
new rejection tests.

Results on a set of well-known low dimensional test instances show that Affine Arithmetic is a
promising method to get lower bounds over a simplex. It requires the least number of simplex evaluations
in many problems. However, its computational time is larger than several other methods. In general,
methods using a Linear Programming solver suffer the same drawback requiring more time. We found
that the monotonicity tests were essential for the reduction of computing time.

The method requiring the least computing time in several test problems is the one based on the centred
form on a simplex using the vertex of a simplex with the highest function value as a base-point. The vertex
can already have been evaluated and stored, and the centered form requires one less additional function
evaluation.

This means that it is preferable to evaluate cheap lower bounds that reuse previous information over
more simplices than expensive lower bounds over less simplices for low dimensional instances.
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Chapter 3

Modelling costumer selection rules in
competitive facility location problems

The estimation of market share that can be captured by a facility in a competitive environment where
other facilities offer the same product is a topic of major concern for managers, as the survival of a facility
depends on the revenues it can obtain, and those revenues largely depend on the market share. Where to
locate a facility is a strategic decision which cannot easily be altered, as the location of a facility usually
requires a massive investment. But how do we choose the right location for a new facility?

Competitive location problems concerning optimally placing facilities in a competitive environment
have been widely developed for a number of contextual applications in the traditional retail sector, see for
instance the survey papers of [70, 71] and [152], and the references therein. They vary in the ingredients
which form the model. For instance, the location space may be the plane, a network or a discrete set. We
may want to locate just one or more than one new facility. The competition may be static, which means
that the competitors are already in the market and the owner of the new facility knows their characteristics,
or with foresight, in which the competitors are not in the market yet but they will be soon after the new
facility enters. Demand is usually supposed to be concentrated in a discrete set of points, called demand
points, and it can be either inelastic or elastic, depending on whether the goods are essential or inessential.

It is also necessary to specify what the attraction (or utility) function of a customer towards a given
facility is. Usually, the attraction function depends on the distance between the customer and the facility,
as well as on other characteristics of the facility which determine its quality.

The patronising behaviour of the customers must also be taken into account, since the market share
captured by the facilities depends on it. This is the topic this chapter is devoted to. For instance, it is not
uncommon to see in the literature papers where consumers shop at the closest store supplying a specific
product or service. But, does this assumption reflect consumer behaviour? It seems more realistic to
admit that consumers do not merely consider distance when choosing retail outlets. Also, consumers may
patronise more than one facility to satisfy their demand. Consumer choice behaviour literature studies
the key variables that a customer takes into account to patronise one or another facility, and how these
variables interact.

A common classification of the consumer choice behaviour states that this can be done in three groups
[48]:

• The first one includes models that rely on some “normative assumption” regarding consumer travel
behaviour. This hypothesis is too simple and is useful only in a limited number of applications. The
classic example is the so-called deterministic rule, which says that “consumers patronise the nearest
outlet that provides the required goods or service”. This hypothesis has not found much empirical
support, except in areas where shopping opportunities are limited and transportation is difficult.

• The second group uses information revealed by past behaviour to understand the dynamics of retail
competition and how consumers choose among alternative shopping opportunities. [113] was the
first one to use the revealed preference approach to study retail store choice. The Huff probability
formulation, known as the probabilistic rule, uses distance (or travel time) from consumer zones to
retail centres and the size of retail centres as inputs to find the probability of consumers shopping at
a given retail outlet.
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• The third group of models estimates the consumer utility function from simulated choice data
using information integration, conjoint, or logit techniques. Instead of observing past choices, these
methods use consumer evaluations of hypothetical store descriptions to calibrate the utility function.
The best representative model of this group is the one developed by [92] based on game theory.

Clarkon [42] have pointed out that firms prefer the revealed preference approach to model consumer
store-choice behaviour. This approach is preferred to normative models since it more faithfully reflects
real consumer behaviour, and to the direct utility approach because it is simpler since it uses surveys and
linear regression instead of conjoint, logit techniques, or game theory. We follow the revealed preference
approach in this chapter.

The two customer choice rules commonly used in literature are the following:

Deterministic (or binary) rule: it assumes that the full demand of a customer is satisfied by only one
centre, the one to which he/she is attracted most, disregarding all other facilities which are less
attractive, even those whose difference in attraction is very small.

Probabilistic rule: it assumes that a customer splits his/her demand probabilistically over all facilities in
the market proportionally to his/her attraction to each facility.

Hotelling [112] was the first to propose the deterministic choice rule for a simple model on a line. That
is why competitive location models using this rule are also referred to as Hotelling models. The first two
papers that introduced location models in a more general space assuming that customers patronize the
closest facility were [66] in the plane and [96] on a network.

Huff [113, 114] described the gravity model suggested by Reilly [164], although he did not investigate
any location problem. The first paper that considered the location problem based on the Huff rule was [58].
Later on, [76] and [1] introduced the design as an additional variable of the model, although an earlier
version of location and design was already introduced in [60].

Deciding the location and the quality of the new facilities to be opened is a hard task. There are
many competitive location models in literature for that purpose. See for instance [70, 71, 152] and the
references therein. Depending on the location space, the number of facilities to be located, the type of
competition, the demand and the way the attraction is measured, different location models have been
proposed. Recently, in some of them, the quality of the new facility is also included as a variable to be
determined (see [1, 64, 76, 161, 162, 172]).

The chapter is organized as follows. The classical probabilistic choice rule is reviewed in the next section
in the context of a continuous competitive facility location and design model. The partially probabilistic
choice rule is then introduced in Section 3.2 based on the paper [80]. In Section 3.3 we present another new
choice rule, named multi-deterministic choice rule [79]. These new rules may, in some cases, model the
patronising behaviour of customers closer to reality than other existing rules in many practical applications.
The exact B&B method will be used in Section 3.4 to research up to what extent the use of a particular
customer choice rule may affect the decision about the optimal location of a new facility. The chapter ends
with Section 3.5 offering some conclusions.

This chapter contains those parts of papers [80, 79] where my contribution was significant, although
done together with José Fernández. These articles have been very well received in the literature, having
many citations compared to their age.

3.1 The probabilistic choice rule

In the rest of this chapter, in order to fix ideas, we assume the following scenario: a chain wants to
locate a new single facility in a given area of the plane, where there already exist other facilities in the
vicinity offering the same goods or product. Some of those facilities may belong to the locating chain.
The demand is supposed to be fixed and concentrated at given demand points, whose locations and
buying powers are known, as well as the location and quality of the existing facilities. The attraction of a
demand point towards a facility is modelled multiplicatively as quality divided by perceived distance.
This generalizes the law of retail gravitation of Reilly [164], who considered the perceived distance to be
the squared distance. Quality was first estimated as store surface by Huff [113], and later several other
store characteristics were incorporated by Jain [115] and Nakanishi [143]. For details see [65].

The objective is to maximize the profit obtained by the chain after the location of the new facility, to be
understood as the income due to the market share captured by the chain minus its operational costs. Both
the location and the quality of the new facility are to be found.
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Notice, however, that the main conclusion remains valid for other competitive location models as well,
that is the selection of the right customer choice rule is a critical issue for the location decisions of a firm
that wants to set up new facilities.

In order to give a mathematical formulation of location models using the different customer choice
rules, the following notation will be used:
Indices

i index of demand points, i ∈ I = {1, . . . , imax}.
c index of competing chains, c ∈ C = {1, . . . , cmax} where chain c = 1 is the locating chain.
j index of existing facilities, j ∈ J = {1, . . . , jmax} where j ∈ Jc = {jc

min, . . . , jc
max} belongs to

chain c ∈ C with j1min = 1, j1max is the number of facilities in the locating chain, jc
max = jc+1

min − 1
and jcmax

max = jmax. Clearly, J = ∪c∈C Jc

Variables
x location of the new facility, x = (x1, x2).
α quality of the new facility.

Input data
pi location of demand point i.
wi demand (or buying power) at pi, wi > 0.
f j location of existing facility j.
dij distance between demand point pi and facility f j, dij > 0.
αj quality of facility f j, αj > 0.
dmin

i minimum distance from pi at which the new facility can be located, dmin
i > 0.

αmin minimum level of quality for the new facility, αmin > 0.
αmax maximum level of quality for the new facility, αmax ≥ αmin.
S region of the plane where the new facility can be located.
Gex fixed costs due to the existing chain-owned facilities.

Miscellaneous
gi(·) a continuous non-negative non-decreasing function, which modulates the decrease

in attractiveness as a function of distance.
di(x) distance between demand point pi and the new facility.
ui0(x, α) attraction that pi feels for the new facility; ui0(x, α) = α/gi(di(x)).

Computed parameters
uij attraction that pi feels for f j (or utility of f j perceived by the people at pi). In this study,

uij = αj/gi(dij).
uc

i maximum attraction that pi feels for any of the existing facilities of chain c,
uc

i = max{uij : j ∈ Jc}.
Based on these assumptions, the market share captured by the chain when a deterministic rule is used

is
MD(x, α) = ∑

i∈ID

wi, where ID = {i ∈ I : max{u1
i , ui0(x, α)} ≥ max

c∈C\{1}
uc

i }.

In the previous formula we have assumed that, in case of ties in the attraction, customers choose the
locating chain. Notice that in the deterministic rule it is assumed that the attraction of the customers at pi
towards a chain is determined only by the facility to which they are attracted most. The rest of the facilities
do not play any role.

When a probabilistic rule is used, the market share captured by the chain is given by

MP(x, α) = ∑
i∈I

wi
ui0(x, α) + ∑j∈J1

uij

ui0(x, α) + ∑j∈J uij
.

In the probabilistic rule the attraction of the customers at pi towards a chain is determined by all the
facilities belonging to the chain. As we can see, it is assumed that the utility is additive: for instance, the
utility for the first chain is given by U1

i (x, α) = ui0(x, α) + ∑j∈J1
uij.

The problem to be solved is then
max ΠP(x, α) = F(M(x, α))− G(x, α)− Gex

s.t. di(x) ≥ dmin
i ∀i

α ∈ [αmin, αmax]
x ∈ S ⊂ R2,

(3.1)
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where F(·) is a strictly increasing differentiable function which transforms the market share into expected
sales. M(x, α) stands for either MD(x, α) or MP(x, α), G(x, α) is a function which gives the operating cost
of a facility located at x with quality α, and Π(x, α) is the profit obtained by the chain.

In this work the function F is assumed to be linear, F(MP(x, α)) = c ·Mp(x, α), where c is the income
per unit of goods sold. And for simplicity it is also assumed that c is the same across different facilities
(which may not be true in the real world cases). Of course, other functions can be more suitable depending
on the real problem considered (see [76]). Function G(x, α) should increase as x approaches one of the
demand points, since it is rather likely that at around those locations the operational costs of the facility
will be higher (due to the value of land and premises, which will make the cost of buying or renting
the location higher). On the other hand, G will be in many cases a non-decreasing and convex function
in the variable α, since the more quality we require of the facility, the higher the costs will be, at an
increasing rate. But other more general functions could be considered if appropriate. In this study we have
assumed G to be separable, i.e. of the form G(x, α) = G1(x) + G2(α), with G1(x) = ∑i∈I Φi(di(x)), with

Φi(di(x)) = wi/((di(x))φi0 + φi1), φi0, φi1 > 0 given parameters, and G2(α) = e
α

β0
+β1 − eβ1 , with β0 > 0

and β1 given values (see [76] for more details and other possible expressions).
The parameters dmin

i > 0 and αmin > 0 are given thresholds, which guarantee that the new facility is
not located over a demand point and that it has a minimum level of quality, respectively. The parameter
αmax is the maximum value that the quality of a facility may take in practice. By S we denote the region of
the plane where the new facility can be located. Distances are assumed to be computed with the help of a
distance predicting function induced by a norm (see [73]). As for gi(d), it is usually considered to be of the
form gi(d) = dλ for some λ > 0 (see [113, 114, 143]) or gi(d) = exp(κdτ) for some κ, τ > 0 (see [10, 107]).
Notice that since dmin

i > 0, then gi(di(x)) is strictly positive for any feasible location x.
An example of the objective function for imax = 100, jmax = 10, j1max = 4 can be seen in Figure 3.1. As

our function is three-dimensional, we can only depict it for a chosen quality or for a chosen location.
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Figure 3.1: (a) The objective function for a fixed quality, Π( f0, 2.9), and (b) for a fixed location Π((5, 5), α0).

It can be seen from Figure 3.1(a) that the objective function Π is neither convex nor concave and may
have several local optima. Figure 3.1(b) illustrates the concavity of Π as a function of α, which can be
easily proved for any fixed f0.

3.2 The partially probabilistic choice rule

A demand point aggregates the demand of all the consumers that it represents. The probabilistic choice
rule assumes that the demand at a demand point (or the buying power concentrated at it) is split probabilis-
tically over all the facilities in the market proportionally to his/her attraction to each facility. Alternatively,
it can be interpreted that customers patronize all the existing facilities (not just the most attractive to them),
but the amount spent at each facility is proportional to the attraction that the customers feel towards the
facility. This is the interpretation used throughout this work, as well as in most of the location papers in
the literature.
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However, does a customer really go to all the available facilities offering the product to satisfy his/her
needs? To what extent does this assumption have an influence on the selection of the location and the
quality of the new facilities to be located? This is the research question studied here. If the attraction that
a demand point feels towards a facility is strictly positive, then, no matter how small that attraction is,
according to the probabilistic rule the facility will capture part of the demand of the demand point. This
may be unrealistic in some cases.

The idea of patronizing only some of the existing facilities is not new. For example, in marketing
literature, some theories of consumer behavior involve thresholds or discontinuities. For instance, in [94]
the authors investigate consumers’ use of screening rules as part of a discrete-choice model and they
present a model that accommodates conjunctive, disjunctive, and compensatory screening rules. However,
in the location literature this topic has been hardly investigated. We are only aware of three location
papers. In the first one, the so-called Pareto–Huff rule (see [147]) was introduced. According to it, a
customer patronizes a more distant facility only if that facility has a higher quality. The second paper [183]
introduces another variant, in which customers only patronize a facility provided that it offers a minimum
attraction to them. Both papers deal with network location problems. The third paper is [93], where the
related concept of reservation distance is used in a discrete location model. In all the three papers it is
assumed that the quality of the new facilities to be located are fixed and given beforehand.

In this section we follow the idea in [183], i.e., customers at each demand point have associated a
minimum level of attraction in order to patronize a facility, and then they share their buying power among
the facilities that pass this threshold. However, this work differs from [93, 147] and [183] in two key
points: (i) we analyze location problems in the plane, and (ii) the quality of the new facilities is not given
beforehand, but it is considered to be an additional variable of the problem to be determined. Both details
make the problem much more challenging from the optimization point of view. It also differs from [147]
and [183] in two additional points: (iii) the function of the distance used in the attraction function does not
have to be necessarily concave, and (iv) the locating chain does not have to be a new entrant in the market,
it may already own some of the existing facilities. The variant of the probabilistic rule used in this work,
which will be referred to as partially probabilistic choice rule hereinafter, is in many cases a more realistic
assumption than that of the probabilistic rule. Notice that when the attraction threshold is very low, this
rule is similar to the proportional one. For higher threshold values this procedure may coincide with the
deterministic rule. For intermediate threshold values, the customers’ choices may be different from both
cases.

The use of attraction thresholds is related to the constrained choice-set concept used in [185] for
the analysis of non-cooperative competition between multi-branch networks when consumers have
heterogeneous preferences. The implications of thresholds has also been investigated in some discrete
choice models studies from different perspectives, considering them as minimum perceptible changes
in attributes required for a decision maker (DM) to differentiate among alternatives (see for example
[30, 31, 32]). Those studies reveal that where perception thresholds exist in the population, the use of
models without them leads to errors in estimation and prediction. However, in those papers the purpose
is to analyse how the thresholds affect the decisions made by DMs, whereas in this study we assume that
perception thresholds exist for the customers and want to investigate its final influence in the location of
the new facility.

In the location literature the use of thresholds is usually related to the distance. For example, in the
location of some emergency facilities, the emergency facility is assumed not to provide a good response to
a demand point if it is at a distance greater than a given threshold (see, for instance, [108] or [128]). In the
location of some undesirable facilities, the undesirable effects produced by the facility are supposed to be
negligible for a demand point if the facility is further than a given threshold distance (see for instance [154]
or [197]). In covering location problems, a demand point is assumed to be covered by a facility if their
interdistance is less than a given threshold (see [15] and references therein). There are also competitive
location papers where thresholds are used. For instance, there are location models in which the facilities
to be located are required to capture a minimum level of demand (see, for instance, [44]). When the
deterministic choice rule is used, the location of the competitive facilities is fixed, and only the location is
to be determined, then profit changes only occur at particular threshold qualities (see [155]). There are
also competitive location models where two facilities with the same quality are regarded as similar for a
customer if the difference between the distances from the customer to the facilities is less than a given
threshold (see [121] for a survey of that type of models on networks). The requirement of minimum level
of attraction is also suggested in [6] (apart from [185] and [183]).

Notice that if for a given demand point none of the facilities attains the minimum attraction level,
then the demand at that demand point will not be served. Hence, in our model, it may exist some unmet
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demand. This feature also makes our model different from most of the models in the literature, where
it is usually assumed that the whole demand is fully served. The most remarkable exceptions are the
papers by Drezner and Drezner [62, 63], where the authors try to model the lost demand in a competitive
environment similar to the one used in our work (the probabilistic choice rule is explicitly considered
in those two papers). However, the way in which lost demand is considered in those papers is different
from the way it is done in our model. In those papers, (i) all customers are partially served (part of their
demand is not served) and (ii) the demand actually served at any given demand point is served from all
the existing facilities. Furthermore, (iii) in [62] an exponential distance decay function is assumed to model
the disutility of the facility as the distance between the demand point and the facility increases. On the
contrary, in our model (i) some customers are fully served, whereas others may be not served at all; (ii) the
demand at a given demand point may be served by only some of the existing facilities (not necessarily all)
and the facilities which serve a demand point depend on the demand point; and (iii) a general distance
decay function can be used in our model.

In order to give a mathematical formulation, we consider the same location scenario and notation as
in the previous section. Let us denote u the minimum level of attraction that a facility must have for a
customer to spend some of his/her buying power there. For simplicity, we assume that minimum level to
be the same for all the demand points, but we could have a different value ui for each demand point i. Let
us define

ũij =

{
uij if uij ≥ u
0 otherwise

and

ũi0(x, α) =

{
ui0(x, α) if ui0(x, α) ≥ u

0 otherwise.

Then, the market share captured by the chain with the modified choice rule is

MPP(x, α) = ∑
i∈IPP

wi
ũi0(x, α) + ∑j∈J1

ũij

ũi0(x, α) + ∑j∈J ũij
, (3.2)

where

IPP = {i ∈ I : max{ui0(x, α), max{uij : j ∈ J}} ≥ u}.

Notice that if for a given demand point i, i 6∈ IPP, i.e.

max{ui0(x, α), max{uij : j ∈ J}} < u,

then the demand at i is not served by any facility. Hence, in this model, some of the demand may be
unmet. Notice that, in particular, this means that the model is suitable only for inessential goods.

The corresponding continuous competitive facility location and design problem is the same as (3.1),
except that MP(x, α) is replaced by MPP(x, α) as given by (3.2). Accordingly, its objective function will be
denoted by ΠPP.

It is known that (3.1) is a hard-to-solve global optimization problem, with many local maximum
points which are not global optimal points [76]. The corresponding problem with the modified choice
rule is even harder, as in addition to this, it also has many discontinuities. As an example, consider
Figure 3.2, which gives the graphs of the objective function on the location domain for a problem with
setting (imax = 71, jmax = 5, j1max = 2) when the variable α is fixed to its optimal value for the partially
probabilistic problem when u = 2. The white holes in the graphs correspond to the forbidden regions
around the demand points. As can be seen, this problem is also highly nonlinear (as the one in Figure
3.1) and require global optimization techniques to be solved, although the discontinuities of the problem
due to the capture or loss of new customers, make it much more challenging. Something similar can be
seen in Figure 3.3, where the graphs of the objective functions are shown for both the probabilistic and
partially probabilistic rule when the location of the new facility is fixed at the optimal location of the
partially probabilistic problem. As can be seen, whereas for the probabilistic choice rule the function is
differentiable and concave with regard to α (left picture), this is no longer true for the problem with the
partially probabilistic choice rule (right picture).
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Figure 3.2: Objective function of an instance with setting (imax = 71, jmax = 5, j1max = 2) when α = 1.545898
with the partially probabilistic choice rule with u = 2.
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Figure 3.3: Objective function of an instance with setting (imax = 71, jmax = 5, j1max = 2) when (x1 =
3.989257, x2 = 7.065429): in the left figure, using the probabilistic rule, in the right figure with the partially
probabilistic choice rule with u = 2.

3.3 Multi-deterministic selection rule

In this section, we derive another costumer choice rule, based on a different aspect of costumer behaviour.
Consider, for instance, the case of a customer who needs to do his/her weekly shopping. There are
five supermarkets around his/her home, two of them belonging to chain A, and the other three to a
different chain, B. Most likely, the customer will not do all the weekly shopping in a single supermarket,
as some products may not be available there, or their price is lower in the supermarkets of the other chain.
However, he/she will not go to all the supermarkets either, as he/she will find the same products, even
with the same price, in all the supermarkets belonging to the same chain. So, the customer will decide
to go to one of the supermarkets in chain A and to one of the supermarkets in chain B. In particular, the
supermarket from each chain that he/she will choose will be the one for which he/she is attracted most.
And the customer will do his/her weekly shopping in those two supermarkets not on a 50% basis: most
likely, he/she will spend more money in the supermarket for which he/she feels more attraction. The
multi-deterministic rule that we introduce next in this section tries to model this behaviour.

Hakimi already proposed something like this back in 1990, see Section 10.4 in [97]. He called it ‘partially
binary rule’ (a name that we consider a bit misleading). Following this idea, Serra and colleagues ([45, 176])
presented a discrete location model using the multi-deterministic rule, but in which the utility of a facility
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for a demand point was determined by the distance between them only. The multi-deterministic rule
has also been addressed in networks in papers by Suárez-Vega and colleagues [181, 182], where some
discretization results are shown. However, to the extent of our knowledge, this is the first study to address
the problem in a continuous setting, and we do it using a general attraction function and including the
quality as a third variable to be determined in the problem.

As in Section 3.1, we consider the problem of locating a single facility in the plane, with static competi-
tion and inelastic demand, where the attraction function depends on both the location and the quality of
the facilities. These two last factors are the variables of the problem. The objective is again to maximize the
profit obtained by the chain, to be understood as the income due to the market share captured by the chain
minus its operational costs. As before, several firms are present in the market, but now customers split
their demand among the firms by patronising only one facility from each firm, the one with the highest
utility, and the demand is split among those facilities proportionally to their attraction.

The market share captured by the locating chain (chain c = 1) is

MMD(x, α) = ∑
i∈I

wi
max{ui0(x, α), u1

i }
max{ui0(x, α), u1

i }+ ∑cmax
c=2 uc

i
. (3.3)

As can be seen in the formula, it is assumed here that the attraction of the customers at pi towards
a chain is determined only by the facility of the chain to which they are attracted most. The rest of the
facilities of the chain do not play any role. But unlike the deterministic rule, now all the chains capture
part of the demand at pi.

The market share captured by the new facility is

mMD0(x, α) = ∑
i∈I

wi
ũi0(x, α)

max{ui0(x, α), u1
i }+ ∑cmax

c=2 uc
i
,

where

ũi0(x, α) =

{
ui0(x, α) if ui0(x, α) ≥ u1

i
0 otherwise.

The corresponding continuous competitive facility location and design problem is given by (3.1), where
M(x, α) is given by (3.3). Figure 3.4 gives the graph of the objective function on the location domain for a
problem with setting (imax = 71, jmax = 5, cmax = 2, j1max = 2) for a fixed value of the variable α. Ascan be
seen, this problem is again a highly nonlinear optimization problem which requires global optimization
techniques to be solved. Notice that when the number of facilities of each competing chain is equal to one,
and the locating chain is a newcomer, the model reduces to the standard probabilistic model introduced in
[76], described in Section 3.1.

Figure 3.4: Objective function of an instance with setting (imax = 71, jmax = 5, cmax = 2, j1max = 2) when
α = 0.5.

3.4 Empirical comparison of the costumer selection rules

To what extent is the difference between the probabilistic and the new choice rules important when
deciding the location of the new facility? How much does it affect the optimal profit? We study these and

               dc_1926_21



3.4. EMPIRICAL COMPARISON OF THE COSTUMER SELECTION RULES 91

other issues first using a quasi-real example of the location of a hypermarket, and then analysing some
random problems. In both studies we will solve the same location problems using all rules, and using
the exact interval branch-and-bound method mentioned in Subsection 1.3.2.1, so as to have the optimal
solutions and carry out a fair comparison.

Let us denote by ΠP(·) the objective function of location problem (3.1) when the probabilistic choice
rule is employed, by LP the list of solution boxes provided by iB&B, and by (x∗P, α∗P) the best point found
by iB&B during the execution, and by ΠN(·), LN , and (x∗N , α∗N) the corresponding items when a new
choice rule is employed (N = PP for the partially-probabilistic and N = MD for the multi-deterministic
rule).

We will compute the Euclidean distance between x∗P and x∗N , denoted by distloc, and the difference
between the qualities, distqual = |α∗P − α∗N | to measure the difference between the optimal solutions for
N = PP and N = MD.

We will also compute the relative profit loss incurred when the probabilistic choice rule is assumed in a
problem where one of the new rule should have been chosen,

loss(P|N) = 100 · (ΠN(x∗N , α∗N)−ΠN(x∗P, α∗P))/ΠN(x∗N , α∗N),

and the relative profit loss incurred when one of the new choice rule is assumed in a problem where the
probabilistic rule should have been chosen,

loss(N|P) = 100 · (ΠP(x∗P, α∗P)−ΠP(x∗N , α∗N))/ΠP(x∗P, α∗P),

to measure the cost of choosing the wrong model for the chain as a whole.
Finally, in order to measure the cost of choosing the wrong model in the profit increment because of

the new facility, the relative profit lost due to the new facility only when the probabilistic choice rule is
assumed in a problem where the new rule should have been chosen,

loss(P|N)0 = 100 · (IncrΠN(x∗N , α∗N)− IncrΠN(x∗P, α∗P))/IncrΠN(x∗N , α∗N),

is computed, where IncrΠN(x∗N , α∗N) = ΠN(x∗N , α∗N)−ΠN(be f ore) and IncrΠN(x∗P, α∗P) = ΠN(x∗P, α∗P)−
ΠN(be f ore), and ΠN(be f ore) stands for the profit obtained by the chain before the location of the new
facility. Analogously, loss(N|P)0 will be computed, too.

3.4.1 A case study

First, we will investigate a quasi-real example dealing with the location of a shopping mall in an area
around the city of Murcia, in south-eastern Spain. A working radius of 25 km around Murcia was
considered. 632 558 people live within the circle, distributed over imax = 71 population centres, with
population varying between 1 138 and 178 013 inhabitants. In this study, we have considered each
population centre as a demand point, with buying power proportional to its total population (one unit
of buying power per 17 800 inhabitants). Their position and population can be seen in Figure 3.5: each
demand point is shown as a grey circle (or a black dot), whose radius is proportional to the buying power.
Note that here the grey circles also show the forbidden regions. There are five shopping malls present in
the area: two from a first chain A (marked with a red •, and three from another chain B, marked with a
green ×). Figure 3.5 shows the location of each mall. The feasible set S was taken exactly as depicted in
Figure 3.5, i.e., the smallest rectangle containing all demand points. This is approximately a square centred
in Murcia and of sides close to 45 km.

The coordinates of the population centres and the malls were obtained with the geographical infor-
mation system called VisualMap [193], and were rescaled from coordinates ([200, 245], [243, 285]) to an
approximate standard square ([0, 10], [0, 10]). Thus, the units correspond approximately to 4.5 km. The
minimum distance dmin

i at which the new facility must be from the population centre i was chosen to be
wi/30. The qualities of the existing facilities lie in the interval [0.4, 4] and for the new facility in the interval
[0.5, 5]. For more details about the data set, the interested reader is referred to [190].

The basic data described above have been used to define several different competitive market structures:

Scenario ‘newcomer 1’: cmax = 2 (number of chains), and the number of existing facilities belonging to
each chain is 0 and 5, respectively. Notice that in this case the locating chain (chain c = 1) has no
existing facilities and all the existing facilities are assumed to belong to the same chain.
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Table 3.1: Differences in the solutions obtained by the
probabilistic and the partially probabilistic choice rules
for the scenario ‘small chain A’.

u 0 0.5 1.0 1.5 2.0 2.5 3.0

quality 1.45 1.24 4.70 0.70 1.49 1.86 2.24
distloc 0.16 5.31 6.35 5.88 5.88 5.90
distqual 0.22 3.24 0.76 0.03 0.41 0.78
ΠPP(before) 176.2 151.4 141.1 133.4 127.4 123.6
ΠPP(x∗PP, α∗PP) 197.0 182.6 166.9 162.6 157.1 153.6
G(x∗PP, α∗PP) 12.5 47.4 11.0 17.8 20.6 23.6
lost(P|PP) 0.1 8.3 5.9 8.1 8.7 9.3
lost(PP|P) 0.1 8.0 9.8 11.4 11.6 12.1
lost(P|PP)0 1.4 48.6 37.9 45.0 46.1 47.4
lost(PP|P)0 0.8 77.7 94.2 110.2 112.5 117.1
%WTB 95.0 83.3 76.9 76.2 72.2 66.5
%WTA 95.0 91.4 85.5 84.4 82.0 78.9
%WCB 41.3 35.5 33.1 31.3 29.9 29.0
%WCA 49.1 53.9 41.7 42.3 41.7 41.6
%Wnew 7.9 19.1 8.6 11.0 11.9 12.6

[2,3]
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0.5
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1.5
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Figure 3.5: Scenario small chain A

Scenario ‘newcomer 2’: cmax = 3 , and the number of existing facilities belonging to each chain is 0, 3, and
2, respectively. Again, in this case, the locating chain has no existing facilities, so it is a new entering
firm. But now the existing facilities are assumed to belong to two different chains. This scenario is
only interesting for the multi-deterministic case, as for the (partially) probabilistic behaviour it is
equivalent to ‘newcomer 1’.

Scenario ‘small chain A’: cmax = 2, and the number of existing facilities belonging to each chain is 2 and
3, respectively. The locating chain is the small one, chain A.

Scenario ‘large chain B’: cmax = 2, and the number of existing facilities belonging to each chain is 3 and
2, respectively. The locating chain is the greater one, chain B.

3.4.1.1 Probabilistic choice rule versus partially probabilistic choice rule

As the demand actually served by the facilities may vary depending on the threshold value u employed
for the partially-probabilistic rule (remember that we may have unmet demand), we will also compute
the percentage of the total demand really served before (%WTB) and after (%WTA) the location of the new
facility, the percentage of the total demand captured by the locating chain before (%WCB) and after (%WCA)
the new facility is located, and the percentage of the total demand captured by the new facility (%Wnew).
Notice that %WCB + %Wnew may be different from %WCA, since the new facility may steal part of the
demand to the existing chain-owned facilities (an effect known as cannibalization). The total demand in
the region in all the cases is W = ∑imax

i=1 wi = 35.53. For the newcomer case, %WCB and %WCA are omitted,
as the locating chain has no existing facilities. For the sake of completeness, we also show the quality of
the new facility for each value of u.

The results obtained for each of the three scenarios are shown in Tables 3.1, 3.2, and 3.3, and Figures
3.5, 3.6, and 3.7, respectively.

As we can see, in the scenario ‘small chain A’ (see Table 3.1), even for the threshold u = 0.5 (a small
value with which 95% of the total demand is still served) we can observe that both the location and the
quality of the new facility to be located are different from those of the probabilistic choice rule (see Figure
3.5, where the optimal locations for the different values of u are drawn as small squares in different colors).
However, the differences are not too important, as the optimal solution is still to locate the new facility
close to Orihuela, the second most populous city, in the North-East of the map, where one of the facilities
of the competing chain is set up (the chain already has two facilities in the surroundings of the most
populous city, Murcia, so this is not the optimal place to expand the chain, due to the cannibalization).
In fact, the differences in objective function value are almost negligible. It is for u = 1 where we can
observe a big change, both in location and quality. In this case, the optimal location changes to the third
most populous city, Molina (in the North-West of the map, where another facility of the competing chain
operates). The reason is that Molina is closer to Murcia, and the new facility not only competes against the
competitor’s facility in Molina, but also attracts part of the demand from Murcia and Alcantarilla (the
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Table 3.2: Differences in the solutions obtained by the
probabilistic and the partially probabilistic choice rules
for the scenario ‘large chain B’.

u 0 0.5 1.0 1.5 2.0 2.5 3.0

quality 0.58 0.50 4.33 3.87 0.92 1.16 2.25
distloc 0.07 2.13 1.57 0.28 0.28 0.89
distqual 0.08 3.75 3.29 0.35 0.58 1.67
ΠPP(before) 229.0 203.7 186.7 191.6 180.6 159.9
ΠPP(x∗PP, α∗PP) 236.0 236.6 212.5 215.8 203.2 189.4
G(x∗PP, α∗PP) 10.7 48.8 43.8 12.6 14.2 23.6
lost(P|PP) 0.2 7.2 4.0 4.3 4.5 8.5
lost(PP|P) 0.0 1.6 0.8 1.3 1.4 3.8
lost(P|PP)0 5.4 51.9 33.3 38.2 40.5 54.4
lost(PP|P)0 1.2 61.9 30.8 51.2 52.3 147.6
%WTB 95.0 83.3 76.9 76.2 72.2 66.5
%WTA 95.7 91.5 84.6 84.9 80.9 78.9
%WCB 53.7 47.8 43.8 44.9 42.3 37.5
%WCA 57.9 66.9 60.1 53.6 51.0 50.0
%Wnew 7.4 25.1 22.0 8.6 8.6 12.6

[2.5,3]
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Figure 3.6: Scenario large chain B.

fourth most populous city), thanks to its high quality. Notice that when the facility is located in Orihuela,
if u = 1, even a high quality is not enough to attract demand from Murcia. As can be seen in Table 3.1,
when u = 1 an inadequate choice in the patronizing behavior of customers may lead to a considerable
relative profit lost of around 8%. In fact, in this case the new facility captures 19.1% of the total demand,
more than 1/3 of the demand captured by the chain. When u = 1.5 we can observe another change in
the location, which moves to the South-West, close to Alcantarilla and closer to Murcia; now the quality
of the new facility is small, which reduces the costs, but still allows to capture most of the demand from
Alcantarilla and its surroundings. Finally, for u = 2, 2.5, and 3 a final change can be observed, where the
location is the same for all those values, and only the quality changes. Now, although the new facility
is at a similar distance from the most populous city, it is set up in a cheaper place and it is closer to the
competitor’s facility in Murcia, which allows to compete against it and to capture part of the demand from
the South-West area (although at the cost of a higher quality).

Note that an increase in the market share captured does not necessarily means an increase in the profit,
since the increment in the market share captured can be due to a higher quality or a better and more
expensive location, and in both cases this implies a higher cost, and maybe the cost exceeds the income
obtained from the market share captured. For instance, from u =0.5 to 1.0 the chain capture more market
share (from 49.1% to 53.9%, which is an increase of 9.77%), but the profit decreases (from 197.0 to 182.6, a
7.30%) since the cost due to the new facility increases from 12.5 to 47.4, mainly due to the increment in the
quality (from 0.22 to 3.24).

In the scenario ‘large chain B’, for both the probabilistic choice rule (u = 0) and the partially probabilistic
choice rule with threshold value u = 0.5, the optimal solution is to locate the facility close to Alcantarilla,
the fourth most populous city, with a very bad quality: since there exist no other facilities around, the new
facility captures most of its demand (see Figure 3.6) with a low cost.

However, when u = 1 the optimal location moves to the surroundings of Murcia, the most populous
city, between the two existing facilities of the competing chain, and this, despite the fact that the chain
already owns a facility in the South-East of that city; to compete against them, a high quality is required.
Notice that with u =0.5, the total market share served before the location of the new facility was 95.0%;
whereas with u =1.0 it is only 83.3%. This means that part of the demand at Murcia (and other cities
around) is not served by the existing facilities, and so, there is an opportunity for the new facility to
capture that unserved demand. In fact, after the location of the new facility, the total demand served
increases to 91.5%. As we can see, in this case, lost(P|PP) = 7.2%, a very high value taking into account
that the locating chain is dominant in the market and that 91.5% of the total demand is served after the
location of the new facility. In this case, the new facility captures 25.1% of the total demand, whereas the
chain, considering all the facilities, gets 66.9% of the total demand, i.e., the new facility captures 37.5% of
the demand of the chain. This is, however, at the expense of suffering some cannibalization: notice that
%WCB +%Wnew = 72.9%, more than %WCA = 66.9%. When u = 1.5 the optimal location moves to another
part of the city of Murcia, far from the existing competing facilities, which allows reducing the quality,
and hence, the costs, but still capturing a good part of the demand at Murcia, even though suffering some
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Table 3.3: Differences in the solutions obtained by the
probabilistic and the partially probabilistic choice rules
for the scenario ‘newcomer’.

u 0 0.5 1.0 1.5 2.0 2.5 3.0

quality 5.00 5.00 4.92 4.16 4.37 5.00 2.24
distloc 0.10 0.67 0.04 0.01 0.09 1.29
distqual 0.00 0.08 0.84 0.62 0.00 2.76
ΠPP(before) 0.0 0.0 -0.0 0.0 0.0 0.0
ΠPP(x∗PP, α∗PP) 45.6 60.9 52.2 50.6 43.3 30.1
G(x∗PP, α∗PP) 56.7 55.7 46.8 49.3 56.6 23.6
lost(P|PP) 0.9 11.8 3.7 4.1 45.0 17.4
lost(PP|P) 0.7 5.8 3.8 2.3 10.2 64.5
%WTB 95.0 83.3 76.9 76.2 72.2 66.5
%WTA 95.7 91.5 84.6 83.4 80.8 78.9
%Wnew 24.0 27.3 23.2 23.4 23.4 12.6

1

3

201.5

2.5
0.5
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Molina
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Alcantarilla

Figure 3.7: Newcomer

cannibalization. When u =2.0 the location changes again, close to Alcantarilla, again with a low quality.
Since the costs are again much smaller, the profit increases, and this despite capturing a smaller percentage
of the market. And finally, for u = 2.5 and 3, a new location is obtained, similar to that of the small chain
scenario, not too close to Murcia nor to Alcanrilla to reduce the location costs (see Figure 3.6), and with a
medium quality. Notice that, as expected, the cannibalization decreases as u increases.

Concerning the ‘newcomer’ case, for u = 0 to 2.5, the optimal solution is to locate the new facility in
the surroundings of Murcia, the most populous city (see Figure 3.7). Even though there already exist three
facilities around Murcia and there will be fierce competition, for the newcomer it is still the best option, as
most of the demand is concentrated there. A high quality is required, though. It is important to highlight,
however, that even with very small differences in location and quality, the relative profit loss incurred
when an inadequate patronizing behavior of customers is assumed may be very high. See, for instance,
the case u = 2.5. In this case, the difference in location is very small (distloc = 0.09) and the difference
in quality with regard to the probabilistic case is almost negligible. Nevertheless, lost(PP|P) = 10.2%
and lost(P|PP) = 45.0%. This clearly shows the big difference between the probabilistic and the partially
probabilistic choice rule. For u = 3 the relative profit lost is even higher, although in this case the location
moves to a different place, the same as that of the small and large chain scenarios when u is 2.5 or more
(not too close to Murcia nor to Alcantarilla to reduce the location costs), and the quality is also different
from that of the probabilistic case. In this case, since u is very high, none of the existing facilities can
capture the demand from Alcantarilla and the cities around, so the new facility can capture it with a low
quality and in a cheap location.

Summarizing, we can see that both the location and/or the quality of the facility to be located may
change drastically as the threshold value varies, and even when those changes are very small, the relative
profit loss incurred for the chain when an inadequate choice rule is employed may be very high. This is
due to discontinuities of the objective function, see Figures 3.2 and 3.3: every time a new demand point is
captured or lost (and this may happen with a small change in the location and/or the quality), a jump
in the objective function happens. This clearly shows that the selection of the choice rule in competitive
location models should be made with care, and the assumption of the probabilistic choice rule commonly
done in literature should only be considered when it is really the case.

3.4.1.2 The influence of the choice rule using the multi-deterministic choice rule

The results obtained for the multi-deterministic case are shown in Table 3.4. As we can see, for the second
and third scenarios the differences are rather slight. However, in the ‘newcomer 1’ scenario, the relative
profit loss incurred when the multi-deterministic choice rule is assumed instead of the probabilistic rule is
more than 6%.

For the ‘large chain B’ scenario, the differences are much higher. The relative profit loss incurred for the
chain when the probabilistic choice rule is assumed instead of the multi-deterministic rule is more than
10%. This is a rather high loss, especially taking into account that the locating chain, chain B, is dominant
in the market, and after the location will have four facilities, against the two facilities of the competitor.
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Table 3.4: Differences in the solutions obtained by the probabilistic and multi-deterministic choice rules.

Scenario distloc distqual loss(P|MD) loss(MD|P) loss(P|MD)0 loss(MD|P)0
newcomer 1 0.67 0.14 1.06 6.31 1.06 6.31
newcomer 2 0.09 0.14 0.39 0.49 0.39 0.49

small chain A 0.15 0.07 0.02 0.02 0.16 0.17
large chain B 2.23 3.44 10.06 1.13 418.53 23.51

But the loss for the new facility is much higher, more than 400%, which clearly shows that the location
chosen for the new facility in that case is completely wrong. If the patronising behaviour of customers was
probabilistic, then the corresponding relative profit loss incurred for the chain and for the facility will be
1.13% and 23.51%, respectively. As we can see, although the loss for the chain as a whole is not that big,
the loss for the new facility is rather high.

Figure 3.8: Case study: scenario large chain B.

In Figure 3.8, we can see a picture of this last scenario projected onto the 2-dimensional locational
space. When the probabilistic choice rule is used, the boxes of the solution list LP , marked in dark blue
in the picture, are around the city of Murcia, the big grey circle where most of the inhabitants of the
region live. Even though the chain already has a facility in the South-East of the city, it is still more
advantageous for the chain to locate the new facility there, either close to one of the existing facilities of the
competitor or opposite it, and also from the second facility of the competitor chain. However, when the
multi-deterministic choice rule is used, those areas are no longer an optimal solution, as the existing facility
of the chain already captures a large part of the demand from Murcia. Locating the new facility close to
Murcia will not increase the captured demand too much (most of the demand that the new facility will
capture will be stolen from its own existing facility, an effect known as cannibalisation). That is why the
optimal solution in this case is to locate the new facility in the surroundings of the fourth most populous
city of the region, where the locating chain does not have any facility yet. The area covered by the list LM
is drawn in brown colour, and is located in the South-West of the fourth most populous city. As we can
see in the example, the probabilistic choice rule is more prone to the concentration of facilities around the
areas with more demand, whereas the multi-deterministic choice rule favours the dispersion of facilities
more.

Not only the location for the new facility is different, but also its quality. When the probabilistic rule is
used, the facility has to be located in Murcia, where there already exist other facilities. So, the new facility
needs to have a high quality in order to capture more demand (the optimal value for the parameter α lies
in the interval [3.35, 4.72]). However, when the multi-deterministic rule is employed, the facility is located
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in an area where there are no facilities around, hence a small quality is enough to capture most of the
demand of the area (the optimal value of the variable α lies in this case in the interval [0.60, 0.68]).

As we have seen in the case study, the assumption of a wrong customer choice rule may, depending on
the location of demand points and existing facilities, provoke high losses in profit.

3.4.2 Random problems

We have completed a similar study on a set of random problems, half of them with n = 500 demand
points and the rest with 1000 demand points for the partially-probabilistic, and n = 100, also n = 1000
for the multi-deterministic case. For the sake of brevity, here only the differences in the location, quality,
and objective value have been analysed. Several settings (imax, jmax, j1max) have been considered (see Table
3.5), and for each of them, five problems were generated by randomly choosing the parameters of the
problems uniformly within the following intervals for the partially-probabilistic and in parentheses for the
multi-deterministic case, if it is different:

• pi, f j ∈ S,

• wi ∈ [0, 100/
√

n], ([1, 10])

• αj ∈ [0.4, 6], ([0.4, 4])

• G(x, α) = ∑imax
i=1 Φi(di(x)) + G2(α) where

• Φi(di(x)) = wi
1

(di(x))φi0+φi1
with φi0 = φ0 = 2, φi1 ∈ [0.5, 1.5], ([0.5, 2])

• G2(α) = e
α

β0
+β1 − eβ1 with β0 ∈ [7, 9], ([5, 7])β1 ∈ [6, 6.5], ([4, 5])

• c ∈ [10, 11], ([2, 3.5]), the parameter for F(M(x, α)) = c ·M(x, α).

Those intervals were obtained by varying up and down the value of the parameters of the quasi-real
problem studied in Subsection 3.4.1.

3.4.2.1 Probabilistic choice rule versus partially probabilistic choice rule

Table 3.5: Random problems: differences in the solutions obtained by the probabilistic and partially
probabilistic choice rules.

Settings u distloc distqual lost(P|PP) lost(PP|P) lost0(P|PP) lost0(PP|P)

0.5 (1.5,2.9) (0.0,0.0) (9.5,13.2) (2.2,5.6) (14.6,21.7) (4.0,8.7)
(500,6,1) 1.0 (1.6,2.2) (0.1,0.2) (21.1,30.7) (3.4,4.7) (32.0,44.7) (7.0,10.5)

2.0 (4.0,7.4) (0.1,0.2) (25.3,31.0) (7.0,11.6) (42.5,58.3) (14.2,24.0)
0.5 (2.7,5.3) (0.1,0.4) (7.1,12.0) (2.6,4.0) (20.3,35.0) (15.5,39.0)

(500,6,3) 1.0 (3.2,6.1) (0.1,0.3) (14.3,20.2) (2.2,4.6) (34.2,66.0) (14.2,44.3)
2.0 (3.5,6.9) (0.2,0.3) (20.0,27.8) (2.6,4.9) (48.5,60.0) (15.8,47.2)
0.5 (1.3,3.7) (0.1,0.3) (7.3,18.3) (0.8,2.1) (18.3,39.2) (4.2,14.9)

(500,12,3) 1.0 (2.0,3.4) (0.1,0.1) (12.0,22.3) (1.7,2.3) (25.9,33.5) (6.7,9.8)
2.0 (1.8,4.0) (0.5,2.0) (18.8,34.0) (2.6,5.1) (39.5,50.3) (9.5,14.4)
0.5 (1.6,3.7) (0.0,0.0) (5.8,8.8) (1.0,2.2) (16.7,26.7) (6.4,16.7)

(500,12,6) 1.0 (2.3,6.2) (0.0,0.1) (10.0,15.1) (2.7,8.5) (27.8,38.5) (13.1,38.3)
2.0 (2.6,3.8) (0.2,0.3) (14.6,20.3) (2.7,4.1) (44.6,53.9) (14.8,28.2)
0.5 (0.8,1.2) (0.0,0.0) (4.5,8.8) (0.9,1.6) (7.5,13.9) (2.2,4.3)

(1000,12,3) 1.0 (0.9,1.5) (0.0,0.0) (6.3,8.4) (1.2,2.7) (11.4,16.1) (3.4,6.5)
2.0 (1.4,2.0) (0.0,0.1) (10.5,14.0) (2.7,5.3) (19.1,25.1) (6.4,10.8)
0.5 (3.8,9.0) (0.4,1.8) (4.5,9.2) (1.3,3.4) (15.0,28.1) (7.2,19.0)

(1000,12,6) 1.0 (4.1,7.8) (0.0,0.0) (9.9,20.0) (1.4,2.1) (28.2,50.7) (8.4,13.7)
2.0 (3.9,7.7) (0.1,0.2) (11.9,24.8) (1.8,3.6) (37.3,66.7) (11.6,26.2)
0.5 (0.5,0.7) (0.0,0.0) (1.2,2.1) (0.5,0.9) (3.1,5.4) (2.2,5.0)

(1000,25,6) 1.0 (1.1,2.1) (0.0,0.2) (5.1,9.2) (1.5,3.0) (13.6,27.8) (6.1,16.2)
2.0 (2.4,6.7) (0.1,0.4) (10.3,16.5) (2.2,3.6) (29.1,53.3) (9.5,20.5)
0.5 (3.6,8.5) (0.4,0.8) (1.5,2.2) (0.6,1.1) (12.7,29.8) (6.7,9.4)

(1000,25,12) 1.0 (4.3,8.6) (0.3,0.7) (5.0,8.4) (1.0,1.5) (31.6,63.0) (12.1,23.1)
2.0 (5.8,10.3) (0.4,1.0) (8.0,10.3) (1.1,2.4) (41.7,66.3) (13.6,29.7)
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The meaning of the columns in Table 3.5 correspond to those of Tables 3.1, 3.2, and 3.3. For each
setting and each threshold value u, the average value of the five problems, followed by the corresponding
maximum, are given.

As we can see, even for u = 0.5 we have instances where the relative profit loss incurred when the
probabilistic choice rule is assumed instead of the partially probabilistic choice rule is more than 18% (see
the maximum value of lost(P|PP) for the setting (500, 12, 3)). In fact, the mean is also rather high for some
settings (see the results for (500,6,1)).

We can also see that there are some instances where the relative profit lost is high despite the location
and quality being quite close to that of the probabilistic choice rule. See for instance the setting (1000, 12, 3)
when u = 1: the difference in quality is negligible, and in location is rather small, but lost(P|PP) = 6.3%
in average, and the maximum is 8.4%.

As in the example, the relative profit lost increases as the threshold value increases. Also, the figures of
the relative profit lost due only to the new facility are higher.

3.4.2.2 The influence of the choice rule using the multi-deterministic choice rule

Results are shown in Table 3.6 in the same way as in Table 3.5.

Table 3.6: Random problems: differences in the solutions obtained by the probabilistic and multi-
deterministic choice rules.

Setting distloc distqual loss(P|MD) loss(MD|P) loss(P|MD)0 loss(MD|P)0
(100,2,5) (0.49,1.20) (0.22,0.73) (0.6,2.0) (0.4,1.0) (13.0,40.6) (8.6,26.3)
(100,2,10) (0.13,0.62) (0.10,0.48) (0.0,0.2) (0.0,0.2) (7.5,37.0) (2.6,11.4)
(100,3,10) (0.13,0.43) (0.06,0.15) (0.1,0.4) (0.0,0.2) (6.0,20.7) (1.8,6.3)
(100,3,15) (1.83,4.91) (1.01,2.36) (1.1,3.6) (1.1,3.7) (109.8,454.9) (33.1,120.0)
(100,4,15) (3.97,10.00) (1.05,3.45) (1.3,2.4) (1.2,3.8) (18.7,40.4) (67.8,301.9)
(1000,3,15) (0.17,0.31) (0.00,0.00) (0.1,0.1) (0.0,0.0) (4.2,15.4) (0.8,1.5)
(1000,4,30) (0.51,1.13) (0.55,2.76) (0.5,1.0) (0.4,0.8) (16.9,33.3) (13.8,37.7)
(1000,6,30) (7.40,14.14) (0.30,1.48) (2.0,5.9) (0.6,0.8) (31.8,131.3) (7.7,15.6)
(1000,5,40) (4.23,10.29) (0.00,0.00) (1.5,4.6) (1.2,4.9) (31.0,65.1) (28.0,53.2)
(1000,8,40) (2.71,10.47) (0.52,1.35) (1.0,2.0) (1.7,5.4) (5.8,13.6) (7.9,18.9)

From the results in column distloc, we can see that the location of the facility may vary considerably
depending on the behaviour of customers assumed when solving the problem. This is also true for the
quality of the facility to be located (see the results in distqual).

But for a decision maker it is the profit that makes a difference. As we can see, the average relative
profit loss for the locating chain is not too big, regardless the choice rule assumed. Since the problems are
generated at random, with the demand points and the existing facilities uniformly distributed over the
feasible set, the chances of having clusters of points with high demand concentration and with facilities
belonging to the locating chain around those clusters (as in the case study) is small. Still, notice that the
relative profit loss is greater than 4.5% in at least 4 of the problems (see the maximum values of columns
loss(P|MD) and loss(MD|P)).

The differences are much clearer regarding the average relative profit loss for the new facility. In this
case, it is over 5% in most of the settings, regardless the customer choice rule assumed. And in 6 of them
the average loss is over 25%. Concerning the maximum values, they are greater than 25% in at least 12
settings.

3.5 Conclusions

Two extensions of the classical probabilistic choice rule have been introduced and studied. According to
the first new rule, called partially probabilistic choice rule, a customer, in order to satisfy his/her demand,
only patronizes those facilities for which he/she feels an attraction greater than or equal to a threshold
value, and the demand is split among them proportionally to their attraction. Unlike most of the choice
rules employed in literature, the threshold value implicitly implies that there may be some unmet demand.
Hence, the model is suitable for inessential goods. The other new customer choice rule employed in this
work, named multi-deterministic choice rule, assumes that customers split their demand among all the
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firms by patronizing only one facility from each firm, the one with the highest utility, and the demand is
then split among those facilities proportionally to their attraction.

The influence of the choice rule in the location of competitive facilities has been analysed. In particular,
the problem of locating a single new facility in the plane has been considered. The corresponding location
problem for profit maximization has been formulated, and a rigorous interval branch-and-bound method
(iB&B) has been used to cope with the problem.

According to the computational studies, the optimal location and quality of the new facility as well as
the profit obtained by the chain and by the new facility may vary considerably depending on the customer
choice rule employed. Hence, the selection of the choice rule to be used in real applications should be
made with care. In particular, although the assumption of the probabilistic choice rule makes the problem
more computationally tractable, it should only be used when customers really patronize all the existing
facilities because even a small threshold value may lead to a very different solution.

A modification of the partially probabilistic choice rule is required to handle essential goods, since in
that case all the demand has to be served. But what if at a given demand point the attraction towards
any of the facilities falls below the minimum threshold level? One possibility is that the demand at that
demand point be served by the most attractive facility for that demand point (hence, all the customers
at that demand point will go the same facility, the most attractive for them, similarly to the customers of
the demand points for which there is only one facility with an attraction level above the threshold). This
modified rule requires a deeper study, as the objective function should be reformulated.

As already stated in [177], competitive location is a difficult field not only because it involves rather
complex mathematical models, but also because customer behaviour cannot easily be transcribed into
neat equations. Models provide only an approximation to reality. More research on customer behaviour
modelling, as we have done here, is required. In particular, the influence of the attraction function in
the location of facilities deserves its own study. The extension of the single facility location model with
the new choice rules to the case of the location of more than one facility [162], and to the case where
competitors react by locating new facilities, too [163], should also be studied. Variable demand [161] is
also an extension that should be researched in the future. From a computational point of view, the design
of new algorithms that are able to solve larger instances, or the parallelization of the introduced ones, is
another promising field for research.
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Summary

This dissertation contains novel results in both the field of global optimization and facility location.
Some results belong to either only the global optimization or the facility location field, but there are also
works where both fields are involved. These classes correspond to Chapter 2, Chapter 3, and Chapter 1,
respectively.

In Chapter 1 three challenging problems were solved using spatial branch-and-bound methods. Each
problem is from the field of facility location, but all are quite different in the problem settings. Due to that,
although all the methods are based on the branch-and-bound principle, they are different in the type of
subproblems, and thus also how bounding rules can be defined.

Unsurprisingly, the branching and the bounding rules are the two most important decisions in a B&B
framework. In the studied problems, the general methods could not work, hence the structure of the
problem had to be taken into account. For the covering problem in Section 1.1, a novel structure for the
subproblems has been designed. It was able to describe a set of subproblems where neither the discrete nor
the continuous part of the decision was directly fixed, only restricted, but it was still possible to find strong
bounding procedures. What was surprising, how the three different bounding rules could complement
each other, making the method even more efficient and powerful.

For the firm expansion problem in Section 1.2, both the branching and bounding procedures were kind
of standard, with a slight specialization due to the connections between the variables. What was really
important to boost the efficiency of the method is the use of discarding tests, which were developed in this
work for both continuous nonlinear constraints and integer restrictions. The use of the new monotonicity
and projected one-dimensional Newton method made it possible to develop a method which is faster than
any commercial solver available for academic use.

Solving the location-price equilibrium problem in Section 1.3, the first step was to transform it to a pure
location problem, where prices can be determined dynamically. However, the transformed optimization
problem is not differentiable anymore, thus a special rule is needed that can handle it. Using the described
inclusion for the min function and its gradient, the problem could be solved up to medium-sized problems
by the interval branch-and-bound method. For larger problems, an alternating Weiszfeld-like location
algorithm has been designed, which was shown to find the solution efficiently.

The developed methods of the chapter expand the size and type of problems that can be solved using
an exhaustive search method.

Chapter 2 showed our main results in simplicial branch-and-bound methods. We have dealt with all
the important aspects of the general branch-and-bound framework.

In Section 2.1, a procedure was built for testing infeasibility in the presence of infeasibility spheres at
the vertices of the simplices. This so-called Simplex Covering problem was rewritten as an optimization
problem, and based on geometrical considerations using power planes some easily computable routines
were derived to check infeasibility. Interestingly, the problem becomes much simpler in case of regular
simplices.

In continuation, in Section 2.2, investigation on regular simplex refinement was carried out. The
research question was how a regular refinement can be done, and what are the advantages and disadvan-
tages of such branching procedure. It turned out, that despite the huge overlapping between simplices, in
case of grid-aware refinement the use of regular simplices can be beneficial. Still, in larger dimensions,
and when many sub-problems can be discarded, the use of longest edge bisection is more efficient.

Finally, in Section 2.3 bounding rules for simplicial partitions were investigated using either gradient
information or Affine Arithmetic. In total, eight inclusion functions were designed and compared on a
number of test problems in a simplicial branch-and-bound framework. The developed bounding rules were
quite different in computational effort and effectiveness. Not surprisingly, those using linear programming
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to obtain a bound, were not efficient enough due to the high computational cost. Affine Arithmetic based
bounds were the tightest, but still, cheap centred forms give the best results in general. We saw that
monotonicity test plays a big role in all cases and there is potential for even further improvement.

In Chapter 3 our results in modelling competitive facility location problems were described. We
construct models where our aim is to describe costumer selection behaviour as close to reality as possible.

We start by describing the classical models in the literature in Section 3.1. Afterwards, we design the
partially probabilistic selection rule in Section 3.2, that models the costumer behaviour, when costumers
do not want to patronize centres having lower utility than a minimal utility given to the problem.

Our next model, in Section 3.3, describes the multi-deterministic selection rule, that alloy the determin-
istic and probabilistic rule. We choose deterministically from the facilities of any chain, but among the best
facilities of all the chains the costumers distribute their demand probabilistically according to their utility.

Additionally, in Section 1.2, we have modelled the problem of chain expansion, where we consider
not only the opportunity to open a new facility but possible adjustments for the existing facilities of the
locating chain as well. The chain has some budget restrictions, but can decide to close some existing
facilities but even to not open a new facility.

These models expand the state-of-the-art in competitive facility location, rendering them more realistic
to solve practical problems.
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[27] J. Brimberg, P. Hansen, N. Mlandinović, and E. Taillard. Improvement and comparison of heuristics
for solving the uncapacitated multisource Weber problem. Operations Research, 48(3):444–460, 2000.

[28] S. Burer and A. Letchford. Non-convex mixed-integer nonlinear programming: a survey. Surveys in
Operations Research and Management Science, 17(1):97–106, 2012.

[29] R. H. Byrd, J. Nocedal, and R. Waltz. KNITRO: An integrated package for nonlinear optimization.
In G. di Pillo and M. Roma, editors, Large-Scale Nonlinear Optimization, volume 83 of Nonconvex
Optimization and Its Applications, pages 35–59. Springer, 2006.

[30] V. Cantillo, J. Amaya, and J. d. D. Ortúzar. Thresholds and indifference in stated choice surveys.
Transportation Research Part B: Methodological, 44:753–763, 2010.
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[189] B. Tóth, J. Fernández, and T. Csendes. Empirical convergence speed of inclusion functions for facility
location problems. Journal of Computational and Applied Mathematics, 199:384–389, 2007.
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