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To my Family who has always been by my side and let me fly. 
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“Two roads diverged in a wood, and I –  
I took the one less traveled by,  
And that has made all the difference.”  
 

 
 
“Az erdőben egy útelágazáshoz értem, s én –  
Én a kevésbé jártat választottam,  
S ez volt minden különbség.”  
 

 
 
Robert FROST – The Road Not Taken (1920) 
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CHAPTER 1. 

Introduction 
 
 

The journey from Fourier wave theory to single cell proteomics 

may not sound straightforward and cohesive, but I would like to 

invite you, my dear Reader, to take this journey with me. I will 

show you how image analysis methods, originally developed to 

detect trees on aerial images, can be modified to revolutionize 

single cell analysis, how deep learning methods will identify 

cancer and how artificial intelligence can control a needle to 

communicate with a single cell of a human brain.  

 

 
Much of the current understanding of biology, including many models of cell networks and 

signaling, is based on population-level averaged measurements  (Altschuler and Wu 2010). 

However, measurements that average the behaviour of large cell populations can lead to 

misleading conclusions if they mask the presence of rare but critical subpopulations (Pelkmans 

2012). It is now well known that heterogeneities, even within small subpopulations, can have 

important consequences for the population as a whole. Genetic heterogeneity, for example, 

plays a crucial role in drug resistance and tumour survival (Heppner 1984). Even genetically 

homogeneous cell populations have a high degree of phenotypic intercellular variability due to 

individual gene expression patterns (Tay et al. 2010). To better understand heterogeneous 

biological systems, we increasingly rely on single-cell molecular and morphological analysis 

methods (Strack 2022). Cell separation and isolation techniques available to collect single cells 

for further molecular studies and, most importantly, methods to infer the behavior, structure 

and function of biological systems based on single-cell molecular and morphological properties 

are still challenging and lack a solution (Giladi and Amit 2017).  

 

My research aims to develop techniques for single-cell microscopy, morphological and 

phenotypic analysis, single-cell isolation and molecular analysis for rapid, reliable and versatile 

characterization of cells of interest, even in the most challenging cellular microenvironments 

such as the human cerebral cortex, pediatric brain tumor spheroids in 3D, or pathological tissue 

sections.  
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1.1 Single cell image analysis techniques in microscopy (Thesis 

1) 

Image analysis transforms digital images into measurements that describe the state of every 

single cell in an experiment. This process makes use of various algorithms to compute 

measurements that can be organized in a matrix in which the rows are cells in the experiment, 

and the columns are extracted features.  

Every image acquired by a microscope exhibits inhomogeneous illumination mainly because 

a nonuniform light source or optical path often yields shading around edges. This effect is often 

underestimated; however, intensities usually vary by 10–30%, thus corrupting accurate 

segmentation and intensity measurements. Illumination correction is a process to recover the 

true image from a distorted one (Smith et al. 2015). Three major types of approaches for 

illumination correction exist; (1) Prospective methods develop correction functions from 

reference images, such as dark and bright images with no sample in the foreground. This 

approach requires careful calibration at the time of image acquisition (Singh et al. 2014). (2) 

Retrospective single-image methods calculate the correction model for each image individually 

(Babaloukas et al. 2011). However, the result may change from image to image, and thus may 

alter relative intensity. (3) Retrospective multi-image methods establish the correction function 

by using the images acquired in the experiment. These methods are often based on energy-

minimization models (Peng et al. 2017). Illumination correction is an important step towards 

high-throughput quantitative profiling; in most of the laboratories, the strategy of choice is 

retrospective multi-image correction function.  

Typically, each cell in the image is identified and assessed individually; that is, its constituent 

pixels are grouped to distinguish the cell from other cells and from the background. This 

process is called ‘segmentation’, for which two main approaches exist. (1) In model-based 

approaches, the experimentalist chooses an appropriate algorithm and manually optimizes 

parameters based on the visual inspection of segmentation results. A common procedure 

includes identifying nuclei first, as it is often a straightforward task, and then the results are 

utilized as seeds for the identification of the cells’ contours. This approach requires a priori 

knowledge (i.e. a 'model') (for details see Section 2.1), such as the objects’ expected size and 

shape (Molnar et al. 2016). Model-based approaches typically involve histogram-based 

methods, such as thresholding, edge detection, and watershed transformation. (2) In case of 

machine learning-based approaches a classifier is trained to find the optimal segmentation 

solution by providing it with ground-truth data and manually indicating which pixels of an image 
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belong to different classes of objects (Sommer et al. 2011)(Reka Hollandi et al. 2020). This 

approach typically involves applying various transformations to the image in order to capture 

different patterns in the local pixel neighborhood. Segmentation is ultimately achieved by 

applying the trained model to new images to classify pixels accordingly.  

In a review by (Caicedo et al. 2017) we gave an insight into image and data analysis strategies 

used for profiling cells. 

1.2 Single cell phenotyping (Thesis 2) 

One of the greatest achievements of science was the complete sequencing of the human 

genome (Liesegang 2001). Today, many believe, including the Human Cell Atlas consortium, 

that the next great challenge in biology lies in phenomics, i.e. the quantification of the set of 

phenotypes that fully characterizes an organism (the phenome) (Houle, Govindaraju, and 

Omholt 2010). Phenotype is defined as the observable characteristics of an organism, 

including its morphology, biochemical properties, behavior, etc. defined as a totality. By 

collecting and analyzing rich phenotypic data, we hope to better understand how genetic and 

environmental factors cause changes in the organisms or in their behavior, and may become 

capable of better predicting important outcomes such as fitness, reproduction, disease, 

carcinogenesis, resistance or mortality. Unlike genome sequencing, a complete understanding 

of the phenome is impossible with current technologies. In the efforts to understand the 

phenom, it is critical to make intelligent choices about what to measure and what phenomics 

tools to use. 

Imaging is a fast and flexible technology for studying phenomics. Spatial and temporal 

information can be recorded with high accuracy and on an extremely wide scale. It implicitly 

represents the morphological features of the cell, and labelling technologies such as 

fluorescent labels allow localization of subcellular structures, proteins, and other molecules. 

Images can be taken at low cost and quickly, enabling large-scale screening experiments. 

Recent advances in microscopy, automation, and computing have dramatically increased our 

ability to take images rich in phenotypic information. Also, images can now be generated by 

orders of magnitude faster than they could be examined manually. Consequently, for a 

phenotypic readout, we rely on phenotypic image analysis techniques, i.e. computational 

methods that transform raw image data into meaningful phenotypic information. We have 

presented a comprehensive review of this field in Smith et al (Smith et al. 2018). 

My group has developed a number of tools and software packages that intelligently help to 

determine the phenotype of certain cells. Each of these research projects aims to address the 

following two questions. 

               horvath.peter.2_10_22
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- ‘Have I entirely discovered my data? Or at least partially?’ 

- ‘Is my analysis as accurate as possible?’ 

As previously discussed, modern computational technologies are now capable of producing 

an unimaginable amount of data in a short period of time. In many applications, this includes 

hundreds of thousands of images, billions of single cells and often a few hundred unique 

features of each cell. With such a large amount of data, answering the two main questions 

above is not trivial anymore. 

In the early 2010’s we have introduced the software Advanced Cell Classifier (ACC, available 

at  www.cellclassifier.org) (Horvath et al. 2011) with the aim of providing easy access to 

machine learning methods for field experts performing single-cell phenotyping. This software 

was later extended (ACC2.0) to answer the above questions by utilizing intelligent phenotype 

finder and active learning methods (Piccinini et al. 2017). Over the past decade, different 

versions of ACC were exploited in the discovery of new drugs and genes, in resolving 

fundamental biology related issues, as well as in developing individualized therapies. 

Prestigious publications appeared in journals like Cell, Science and Nature journals (see 

webpage for a reference list). 

As a significant milestone, my research groups have laid the foundations of the theoretical 

framework that emphasizes the importance of cellular microenvironment, i.e. the phenotypes 

of cells can be determined more precisely if we know their microenvironment. Even our early 

method, in which only simple features and neighborhood definitions were taken into account, 

resulted in remarkable improvement (Toth et al. 2018). The extension of this method, which 

combined fisheye transformation with deep learning, yielded a highly significant improvement 

in single-cell phenotyping, both in tissue and cell culture samples (Toth et al. 2022 in press). 

Moreover, we have discovered that cells almost continuously undergo dynamic changes, 

which also entails a variation in their phenotype. In my thesis, I give a detailed presentation of 

our proposed solution to execute a more abstract quantification of the continuous variation of 

individual cells by utilizing artificial intelligence. For this task, we have introduced the 

regression plane concept (Szkalisity et al. 2021). 

 

1.3 Single cell isolation (Thesis 3) 

Numerous single-cell isolation methods can be used to characterize or collect cells based on 

certain characteristics. These include fluorescence-activated cell sorting (FACS), 

immunomagnetic cell sorting, microfluidics and limiting dilution. However, these collection 

techniques disrupt and dissociate cells from their microenvironment, and cannot target cells 

based on their location within the sample or based on their morphological profile. In contrast, 
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micromanipulation (e.g. patch clamping), laser capture microdissection (LCM) (Espina et al. 

2006), imaging mass spectrometry (IMS) (Bodzon-Kulakowska and Suder 2016) or Raman 

spectroscopy (Schie and Huser 2013) are microscopy-based alternatives that can directly 

analyze individual cells within solid tissue samples.  

My research groups have combined submicron resolution imaging, single-cell phenotyping and 

isolation supported by artificial intelligence (AI) with electrophysiology, sequencing, and ultra-

sensitive proteomics workflows. In this task, the most important challenge lies in precisely 

defining single-cell boundaries and phenotypic cell classes. Our software tools correlatively 

combine classical, laser microdissection (LMD) and patch clamp microscopy. It seamlessly 

combines data-rich imaging of cell cultures or archived biobank tissues (formalin-fixed and 

paraffin-embedded (FFPE)) with deep learning-based cell segmentation and machine 

learning-based identification of cell types and states. Cellular or subcellular objects of interest 

are selected by artificial intelligence before being subjected to automated omics profiling. The 

data we generate this way can be mined to discover transcriptomic and protein signatures that 

provide molecular insights into diversities at the phenotypic level of the genome, proteome or 

other omes, while preserving full spatial information. 

We have recently introduced four families of single cell isolation methods, namely (1) computer 

aided microscopy imaging (CAMI) (Brasko et al. 2018), which is a machine learning-based 

single-cell isolation technique that uses laser microdissection from a 2D microenvironment; (2) 

the AutoPatcher system, which is able to target cells in a 3D live cell environment fully 

automatically, by using a patch clamp technique combined with deep learning (Koos et al. 

2021); (3) Deep Visual Proteomics, which derives from the CAMI system and is applicable for 

ultrasensitive proteomics (Mund et al. 2022); and (4) Mito-Raman, which uses intelligent 

microscopy and Raman spectroscopy to perform automatic cell mitosis profiling (Voros et al, 

in prep.). These methods build on the image analysis and deep machine learning techniques 

we have developed so far. We aim to further improve them by incorporating novel 

methodologies, hoping to make these single-cell isolation methods the most suitable 

approaches for each dedicated modality. A more detailed prescription of methods (1), (2) and 

(3) is presented in Chapter 4. 
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CHAPTER 2 

Single cell image analysis techniques in microscopy 
 

 
When you are so lucky that your PhD work – which focused on 

satellite image analysis – can directly be applied in your first 

paid job, it is great. This happened to me, and I was even luckier, 

as my first PhD student took over that early work and further 

developed it to detect overlapping single cells in microscopy 

images. We scored best in class. BUT, science never sleeps, or 

more precisely, scientists never sleep (not much at least) and 

we have eye-witnessed the revolution of deep learning. In 2-3 

years we have completely rewritten all the achievements of the 

last two decades in microscopy imaging. Let me, my dear 

Reader, introduce you to this exciting journey, and show you the 

little pieces of bits we have contributed to this field. 

 

 

 

In case you are not a comfortable user of mathematical statistics, it is sufficient to read the first 

paragraph of section 2.1 for the understanding of this chapter. The reason for the latter of 

section 2.1 is to show the Author’s view on how image analysis tasks can be formulated and 

solved within a probability theory framework. 

 

2.1 Introduction to a probabilistic view – Is it all about priors? 

The challenge of single cell segmentation can be viewed as a special case of a general image 

understanding problem: the task is the identification of region R in the image domain 

corresponding to some entity or entities in the scene.  

In order to solve this problem in any particular case, we have to construct, even if only implicitly, 

a probability distribution on the space of regions P(R|I, K). This distribution depends on the 

current image data I, and on any prior knowledge K we may have about the region or about its 

relation to the image data, as encoded in the likelihood P(I|R, K) and the prior P(R|K) appearing 

in the Bayes' decomposition of P(R|I, K) (or equivalently in their energies −ln P(I|R, K) and −ln 

               horvath.peter.2_10_22



12 
 

P(R|K)). Then this probability distribution can be used to make estimates of the region we are 

looking for. 

In the algorithmic solution of realistic problems, the prior knowledge K, and in particular prior 

knowledge about the ‘shape’ of the region, as described by P(R|K), is critical. The single cell 

nucleus extraction problem provides a good example: R takes the form of a collection of 

approximately circular connected components of similar size. There is thus a great deal of prior 

knowledge about the region sought. Then the question is how to incorporate such prior 

knowledge into a model for R. If the prior knowledge included in the model is not sufficient, it 

should necessarily be provided by the user.  

I find it especially useful to present data analysis in biomedical imaging in a probabilistic way, 

as every computational method in this thesis is about the engineering of K, the prior knowledge, 

into image analysis models. To maximize P(R|K), or in other words to find the best solution 

given the image and our prior knowledge (e.g. best segmentation of single cells, or best 

illumination corrected image), we use a great range of optimizers (e.g. energy minimization, 

deep learning training). This chapter of the thesis presents a range of possibilities for the 

incorporation of K. First, we introduce CIDRE (Smith et al. 2015), an energy minimization 

framework to correct illumination problems in microscopy images. The major essence of 

CIDRE is that K is a composition of three types of priors, and while maximizing P(R|K) we used 

a robust solver that optimizes correction values for each pixel (i.e. iteratively approximates the 

optimal solution of an equation system for millions of variables simultaneously). In this way 

CIDRE provides state-of-the-art image correction, even in case of a low number of images. 

Second, we introduce higher-order active contours (HOACs), a differential geometry 

framework to incorporate long range interactions into image segmentation, and describe 

shapes with predefined properties, such as circles or ellipsoids (Horváth et al. 2009). 

Interestingly, here, the construction of the energy functional itself and its appropriate 

parameterization will give us K. We extended HOAC models for single cell segmentation, even 

in case of very dense and overlapping cells. Finally, we will present the nucleAIzer model, a 

deep learning framework we originally developed for the Data Science Bowl competition and 

reached the highest score at the time of its publication (Reka Hollandi et al. 2020). The idea 

we presented here is a learning model that adapts to the data itself, and creates learning 

examples to fine-tune itself. Such self-adaptive systems are still rare, and have a very 

interesting methodology to represent K, the prior knowledge. We will also present our recently 

developed augmentation techniques to artificially extend K, i.e. to generate more versatile 

training sets. 
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2.2 Illumination correction methods 

Relevant publication:  

Smith K., Li Y., Piccinini, F., Csucs G., Balazs C., Bevilacqua A., Horvath, P. (2015) 

CIDRE: an illumination-correction method for optical microscopy. 

Nature Methods 

 

No optical system is perfect. Manufacturing defects, poor settings, vignetting and uneven light 

sources all contribute to uneven illumination in every image we take. The amount of distortion 

can vary due to a number of factors, but even seemingly minor shifts in illumination can lead 

to undesirable effects in photostitching or bias measurement (Fig. 1). 

 
Figure 1. Uneven illumination can adversely affect measurements. Original images appearing in the top row 

suffer from uneven illumination. The same images appear below after being corrected using the CIDRE approach. 

(a-b) A 9x6 photostitched image of a mouse kidney section. (c-d) A stained medium containing yeast cells. 

Detections from CellProfiler are marked in yellow. (e-f) Results from an automatic cell counting algorithm on 40 

images similar to (c) and (d). (g-h) HeLa cells from a high content screen. Detections are marked in yellow. (i-l) 
Measured intensity and cell area for each region of the image averaged over 3,456 images similar to (g) and (h). 

Image source: (Smith et al. 2015) 

 

Although measurements from images are routinely used in research, scientists tend to 

underestimate the consequences of illumination distortion. For example, a task as simple as 

automatic cell counting can become unreliable as a result of uneven illumination (Fig. 1c-f). In 

a test using 40 images of yeast cells in a fluorescent medium, a 36% increase in missed 

detection rate was attributed to uneven illumination (Fig. 1e-f). False detections increased by 

35%. When asked to estimate these increases, nearly three-quarters of respondents believed 

they would be less than 10%. 
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Because of the difficulties perceiving gradual illumination change, researchers often misjudge 

the magnitude of intensity loss. Our experiments on ten datasets representing ordinary 

microscope setups revealed that between 10% and 40% less light is typically recorded at the 

corners of the image than in the center. For sensors with a large field-of-view, the attenuation 

is even more severe. Novel cameras with larger sensor areas (sCMOS and EMCCD), which 

have become popular in next generation microscopes, routinely lose half the intensity. 

 
Figure 2. CIDRE is a retrospective method for illumination correction that does not require calibration 
images. (a) The true image is corrupted by misaligned optics, vignetting, dust, etc., which is modeled as a linear 

intensity gain function v. The observed image also contains thermal and readout noise modelled as an additive term 

z. (b) To recover the true image, we consider the local distributions of observed intensities collected from many 

images (red and blue). Each is related to the true underlying distribution of the specimen (gray) by a linear transform 

parametrized by v and b which correspond to slope and y-intercept in a Quantile-Quantile plot between the true 

distribution and the local distribution. (c) We estimate these parameters simultaneously for all locations by 

minimizing a robust regularized energy function composed of several terms. (d) The first is a robust regression term 

that ensures parameter values fit the data. (e) A regularization term reduces noise and guarantees a smooth 

correction surface by forcing neighboring distributions (green) to agree on similar parameter values. (f) The third 

term estimates z, the intensity recorded by the sensor when no light is present. Because the z surface is nearly flat, 

it can be estimated by finding the common point where all regression lines intersect. (g) Applying the reverse 
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transform using estimates of v and z, local intensity distributions take the shape of the true distribution, and the 

uncorrupted image is recovered. Image source: (Smith et al. 2015) 

 

We reviewed the causes of uneven illumination. Images recorded by the sensor are corrupted 

by vignetting, misaligned optics, a non-uniform light source, or obstructions such as dust (Fig. 

2a). These distortions can be modelled by a linear intensity gain function (v) that attenuates 

the signal from the true uncorrupted image. Thermal noise and readout noise make 

contributions independent of the signal. Thermal noise is generated by heat produced by the 

system, while readout noise occurs in the analog-to-digital conversion process. We call these 

additive noise sources the zero-light noise (z) because they can be estimated by capturing 

dark frame images with the shutter closed. Thus, the process of image formation can be 

described by Io = I*v+z where Io is the intensity value observed by the sensor. The reverse 

process can be used to recover the uncorrupted image 

𝐼𝐼 =  
𝐼𝐼𝑜𝑜  −  𝑧𝑧
𝑣𝑣

 

 
The correction process seems trivial at the first glance, but this appearance is deceptive 

because it is impossible to know v and z exactly. Correction methods currently practiced by 

the community deal with this issue in several ways. Prospective methods form empirical 

estimates of v and z from special calibration images that must be collected during image 

acquisition. Retrospective single-image methods focus on smoothing the appearance of the 

image, while other retrospective methods build a correction model from groups of images, 

although they either neglect part of the image formation process or ignore it altogether. We 

considered twelve common correction methods described in (Smith et al. 2015). Of these 

twelve correction methods, only the gold standard methods have the potential to obtain the 

true correction model. However, they require special calibration images to do so. The rest 

either ignore the zero-light term or simply smooth the image without regard for the relative 

intensity of objects in the image. For details see (Smith et al. 2015). 

 

We used ten datasets representing a variety of typical microscopy setups using different 

microscopes, methods of sample preparation, staining, light sources, magnifications, and 

types of sensors (Fig. 3). Measuring the correction quality is difficult because we do not have 

access to the uncorrupted image. As a solution, we proposed to collect hundreds of pairs of 

overlapping images for each dataset, precisely align them, and measure the disagreement in 

the overlapping regions. The scores we report are these values normalized by the 

disagreement between uncorrected image pairs (Fig. 3).  
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Figure 3. Evaluation of various illumination correction methods (rows) on eleven data sets (columns). 
Scores are the mean absolute differences between pairs of overlapping test images after correction, computed 

pixel-wise and normalized by the disagreement between uncorrected image pairs. A score of 1 implies equivalent 

disagreement to the uncorrected image pairs (indicated by dashed lines), 0 implies no disagreement. Image source: 

(Smith et al. 2015) 

 

To address these limitations, we proposed a new correction model, CIDRE. CIDRE learns a 

correction model directly from a collection of images using an energy minimization approach 

(Fig. 2). We assume that objects appear everywhere in the image with equal probability. This 

implies that the distribution of intensities collected from an infinite number of uncorrupted 

images is the same for any location, but also means that time-lapse images or image sets with 

stationary objects can be problematic. Intensity distributions from a finite set of observed 

images (blue and red in Fig. 2b) are simply linear transforms of a sampling of that true 

distribution (gray). CIDRE estimates v, b, and z simultaneously for all locations by minimizing 

a robust regularized energy function comprising several terms (Fig. 2c). The first term is a 

robust regression that ensures fitting the data (Fig. 2d). The second term reduces noise and 

guarantees a smooth correction surface by encouraging neighboring distributions to agree on 

similar values for v (Fig. 2e). The third term estimates the intensity recorded by the sensor 

when no light is present. The optimization procedure estimates parameters by minimizing 

these energies. We refer back to section 2.1, K – the prior knowledge – here is the weighted 

sum of the three terms mentioned above. 

 

Like other retrospective correction methods, CIDRE is dependent on the amount and quality 

of data provided. Too few images or images with low intensity information can yield poor 

results. Experiments with a varying number of training images show that for most applications, 
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10 images are sufficient for a good performance, while for datasets with low information 

content, approximately 100 images are necessary. 

 

CIDRE offers numerous advantages over contemporary correction methods. It does not 

require calibration images, so it can be applied to previously collected data. It is the only 

computational method to estimate the zero-light term, and simultaneously learns v and z for 

every location, ensuring that the parameters interact to provide a good correction. The robust 

regression protects against outliers and utilizes every bit of provided data. CIDRE consistently 

performed well on every dataset, and outperformed the other twelve correction methods by a 

substantial margin, including the gold-standard methods (Fig. 3).  

 

2.3 Single cell segmentation 

After illumination problems are corrected, identification of the cell’s nucleus is the starting point 

for many approaches of microscopy-based cellular analyses. The precise location of the 

nucleus is the basis for a variety of quantitative assessments of essential cellular functions, 

and is the first step in determining the boundaries of individual cells, allowing for a variety of 

further analyses. Dominant approaches for this task have been based on classic image 

processing algorithms (e.g., thresholding and seeded watershed; (Carpenter et al. 2006)), 

guided by shape and spatial priors (Molnar et al. 2016). These methods require expert 

knowledge to properly adjust the parameters, which typically must be retuned when 

experimental conditions change. 

Recently, deep learning has revolutionized an assortment of tasks in image analysis, from 

image classification to face recognition. It is also responsible for breakthroughs in diagnosing 

retinal images, classifying skin lesions with superhuman performance (Esteva et al. 2017), and 

correcting artifacts in fluorescence images. A recent work reviewed in (Moen et al. 2019) 

indicates that deep learning is effective for nucleus segmentation (Falk et al. 2019), however, 

these methods often fail to properly separate touching nuclei well, and most importantly, they 

lack robustness to unseen domains (Reka Hollandi et al. 2020). We have recently published a 

comprehensive review about this topic (Reka Hollandi et al. 2022). 

We remark that the complete understanding of the models below requires solid background in 

differential geometry, variational calculus and statistics. Here we only give a high-level 

overview, and refer to the relevant publications everywhere. 
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2.3.1 Segmentation using higher-order active contours 

Relevant publication:  

Horvath, P., Jermyn, I., Kato, Z., Zerubia, J. (2009) 

A higher-order active contour model of a "gas of circles"  

Pattern Recognition 

 

As discussed above, the identification of fluorescently stained cell nuclei is the basis for cell 

recognition, segmentation and feature extraction in high-content microscopy experiments. The 

nuclear morphology of individual cells is also one of the most important indicators of phenotypic 

variation. However, the cells used in the experiments can lose their contact inhibition, and 

therefore stack on top of each other, making the detection of individual cells extremely difficult 

with current segmentation methods. The model presented can recognize cell nuclei and their 

morphology, even in highly confluent cell cultures with many overlapping nuclei. We have 

combined the active contour model "gas of circles", which favors circular shapes but allows 

small variations around them, with a new data model. We have demonstrated the power of our 

method on microscopic images of cells, comparing the results with those obtained from a 

widely used approach, and with manual image segmentations executed by experts. 

 

The term “gas of circles” refers to regions in the image domain composed of an unknown 

number of circles of approximately the same radius (Horváth et al. 2009). The model is 

constructed using higher-order active contours (HOACs) in order to include non-trivial prior 

knowledge about region shape without constraining topology. Our main theoretical contribution 

is an analysis of the local minima of the HOAC energy that allows us to guarantee stable 

circles, fix one of the model parameters, and constrain the rest. We originally applied the model 

to tree crown extraction from aerial images of plantations (Fig 4).  
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Figure 4. Tree crown extraction from aerial images of plantations. Upper row; left: an image of regularly planted 

poplars with different fields on the right; middle: result with the ‘gas of circles’ model; right: result with the inflection 

point ‘gas of circles’ model. Bottom: The corresponding field surface, thresholded with the original image. Image 

source: Horvath PhD thesis. 

 

Numerical experiments both confirmed the theoretical analysis and show the empirical 

importance of the prior shape information (for the stability calculations, see (Horváth et al. 

2009)).  

We further developed the ‘gas of circles’ model to enable single cell segmentation in 

fluorescence images (Molnar et al. 2016). The fundamental idea of the “multi-layered gas of 

circles” (ML GOC) model is the observation that fluorescently labelled single cells located 

above each other have multiples of the intensity of a single cell alone (Fig. 5). Therefore we 

have created multiple layers of the GOC model and an additional energy that allows interaction 

between the layers, and punishes overlapping circular objects unless fluorescence intensity in 

the image is high enough to justify multiples of cells (Fig. 5 f). 
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Figure 5. Comparison of different methods on microscopic images containing overlapping cells. Top row 

from left to right: (a) Original image; (b) Result (Region of Interest) obtained by adaptive threshold using CellProfiler; 

(c) Results of CellProfiler standard segmentation method; (d) Results with the proposed “multilayer gas of circles” 

method; (e) Precision, recall and Jaccard index of segmented objects (‘o’ and ‘p’ indicate that the metrics are 

computed at the object and pixel level, respectively). (f) Illustration of the proposed data model and behavior of the 

geometric model. Image source: (Molnar et al. 2016) 

 

2.3.2 NucleAIzer: deep learning-based single cell segmentation 

Relevant publication:  

Hollandi, R., Szkalisity, A.,..., Carpenter, A. E., Smith K., Horvath, P. (2020) 

nucleAIzer: A Parameter-free Deep Learning Framework for Nucleus Segmentation Using 

Image Style Transfer. 

Cell Systems 
 
The 2018 Data Science Bowl (DSB) organized by Kaggle, Booz Allen Hamilton and the Broad 

Institute challenged participants to push the state of the art in nucleus segmentation. The goal 

of the challenge was to develop fully automated and robust methods effective in a variety of 

conditions, including differing cell lines, treatments, and types of light microscopy. The 
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challenge attracted thousands of data scientists from all around the world. Approaches using 

deep learning dominated the competition, achieving scores that shattered what was previously 

possible: the best performing traditional methods, such as those discussed in the previous 

section, ranked no higher than 1,000 out of 3,891 submissions. The top deep-learning-based 

methods relied on only a handful of different architectures, namely Mask R-CNN, U-Net, and 

feature-pyramid networks; the factors that the participants commonly believed to have most 

influence over their method’s ranking were the amount of data, pre-processing and the 

methods used to augment the data. 

 

Figure 6. A single cell segmentation pipeline using nucleAIzer. Objects annotated (e.g. in this case in 

AnnotatorJ (Réka Hollandi et al. 2020)) can be exported to proper training data format suitable to train different 

types of deep learning models. The annotated object masks are stored in a mask database (denoted as ‘mask DB’ 

in the figure) which is used in the mask generation and image style transfer step of the nucleAIzer pipeline (green 

box in the figure). The resulting synthetic microscopy images adapted to the new experiment’s style (appearance) 

are generated and forwarded to train a segmentation model, together with the annotated masks, and the trained 

model yields segmentation masks as output. Image source: Reka Hollandi’s PhD thesis, with the permission of the 

Author. 

 

We presented an approach superior to any other submissions, which we named nucleAIzer 

(www.nucleaizer.org). Unlike the previous best submissions, nucleAIzer applies image style 

transfer (Isola et al. 2017), i.e. an image-to-image translation using a pixel-wise mapping from 

one image to the other, which ensures that the generated synthetic output image resembles 

the original image as closely as possible. It aims to overcome one of the greatest challenges 

of deep learning: the extent of the annotated training set. In particular, we have addressed the 

unsupervised domain adaptation problem in which the target (test) samples are drawn from a 

different distribution than the labelled training samples, but we have access to some unlabelled 
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samples from the target distribution. We have augmented the training samples by creating 

realistic-looking artificial sample images with the texture, coloration and pattern elements from 

source images not included in the training set, using image style transfer (Fig 6). Combining 

this with a segmentation network based on Mask R-CNN (He et al. 2017), an instance 

segmentation and classification network, along with boundary correction using U-Net 

(Ronneberger, Fischer, and Brox 2015), a semantic segmentation network for biomedical 

images and mathematical morphology, our method has outperformed all other methods 

reported on the final DSB leaderboard. We have also demonstrated that our method 

outperforms similar baselines on public fluorescent and histology datasets. Our trained model 

does not require parameter tuning or specialized knowledge for use, and can be applied on a 

wide variety of conditions and imaging modalities. Some example segmentations are shown 

in Figure 7 and the Reader can try the online portal under www.nucleaizer.org. 
 

 

Figure 7. Quantitative and qualitative comparison of segmentation results. (A) Mean IoU scores with error 

bars (standard deviation) on the four test image sets. The highest score is marked with a dashed line and in pink 

colour. (B) Example colour-coded segmentation results compared to ground truth annotations on difficult image 

regions cropped. Two examples are shown per test set, and rows correspond to A. See colour coding explained in 

the legend in the bottom row. We remark that ground truth annotations were not available for DSB stage 2. Image 

source: (Reka Hollandi et al. 2020) 
 

As shown above, augmentation techniques can largely improve segmentation accuracy, as 

deep learning approaches for object segmentation require a large, and often pixel-wise 

annotated dataset for training. This task relies on high-quality samples, and only domain 
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experts can accurately annotate images. Besides, analyzing biological images is challenging 

because of their heterogeneity and, sometimes, poorer quality compared to natural images. In 

addition, ground truth masks might be imperfect due to the annotator-related bias, which 

introduces further uncertainty. Consequently, a plethora of annotated samples is required, 

making object segmentation a laborious process. One of the techniques utilized to improve the 

model is data augmentation of the training set. Conventionally, a transformation (i.e. rotation, 

flipping, noise addition, etc.) or a series of transformations are applied on the original images. 

Data augmentation has become the de facto technique in deep learning, especially in the case 

of heterogeneous or small datasets, to improve the accuracy of cell-based analysis. 

Another option of improving performance relies on augmenting both the training and the test 

datasets, then performing the prediction both on the original and on the augmented versions 

of the image, followed by merging the predictions. This approach is called test-time 

augmentation (TTA) (Fig. 8). Experiments show that TTA helps to eliminate overconfident 

incorrect predictions.  

 
Figure 8. Principle of the proposed test-time augmentation techniques. Several augmented instances of the 

same test images are predicted, and the results are transformed back and merged. In the case of U-Net, pixel-wise 

majority voting was applied, while for Mask R-CNN a combination of object matching and majority voting was 

applied. Image source: (Moshkov et al. 2021) 
 

In (Moshkov et al. 2021) we assessed the impact and described cases of utilizing test-time 

augmentation for deep-learning models trained on microscopy datasets. We have trained deep 

learning models for semantic segmentation (when the network only distinguishes the 

foreground from the background, using the U-Net architecture) and instance segmentation 

(when the network assigns labels to separate objects, using the Mask R-CNN architecture) 

(Fig. 8). Test-time augmentation has outperformed single instance predictions in each test 
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case, and could further improve the best result of the DSB, as demonstrated by the 

improvement of the score, changing from 0.633 to 0.644. 

 
Figure 9. Synthesized flows, the reconstructed masks and their corresponding microscopy images generated by 

our method using two complex tissue culture types. 

 

Finally, we have recently been working on smart augmentation methods that not only mimic 

the texture of the cells as presented in (Reka Hollandi et al. 2020), but learns the structure and 

the appearance of cell cultures and tissues simultaneously, by using a complex parallel deep 

learning system (Tasnadi et al, submitted). Our pipeline uses regular and conditional 

generative adversarial networks (GANs) for image-to-image translation to construct synthetic 

microscopy images along with their corresponding masks, in order to simulate the distribution 

and shape of the objects and their appearance. The major benefit of our method is that it not 

only proposes synthetic images, but also the corresponding labelled mask images. The 

synthetic samples are then used to pre-train instance segmentation networks (such as the 

nucleAIzer). The proposed method further increases accuracy when combined with other 

augmentation techniques, such as basic transformations or nonlinear geometric 

augmentations like elastic deformation.  
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CHAPTER 3 

Phenotypic analysis 
 

 
Statistical learning-based, single cell level decisions comprise 

one of the great advancements of bioimage analysis. This is 

especially true with the rise of automation both in sample 

handling and in image acquisition. The level of complexity 

concerning biology-related questions is very high. Personally, 

what I love the most about developing and applying the 

introduced tools is the feeling of discovery: being a pioneer in 

finding new genes or drugs to modify a disease or solve 

fundamental biological questions derived from large imaging 

scenarios. 

 

Phenotypic image analysis is the task of recognizing variations in cell properties using 

microscopic image data. These variations, produced by a complex network of interactions 

between genes and the environment, may hold the key to uncover important biological 

phenomena or to understand the response to a medical treatment. Today, phenotypic analysis 

is rarely performed completely by hand. The abundance of high-dimensional image data 

produced by modern high-throughput microscopes necessitates computational solutions. Over 

the past decade, a number of software tools have been developed to address this need. They 

use statistical learning methods to infer relationships between a cell’s phenotype and data from 

the image.  

3.1 Single cell phenotyping 

Relevant publication:  

Piccinini, F., Balassa, T., Szkalisity, A., …, Smith K., Horvath, P. (2017) 

ACC: Discovery software for phenotypic image analysis. 

Cell Systems 

 

We have introduced Advanced Cell Classifier (ACC; www.cellclassifer.org ) (Piccinini et al. 

2017), a machine-learning software designed to provide a faster and more complete 

understanding of large datasets, and to train predictive models as accurately as possible. In 
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2011, we released ACC version 1.0 (ACC v1.0), a graphical image analysis software tool that 

offers access to a variety of machine-learning methods and provides accurate analysis 

(Horvath et al. 2011). Several large-scale cell-based phenotypic HCS studies have made use 

of ACC, including at least 25 human genome-wide RNAi screens and numerous extensive 

drug screens. These studies cover a wide variety of biological topics, ranging from the studies 

of influenza A virus (Banerjee et al. 2014) to studies of acute lymphoblastic leukemia (Fischer 

et al. 2015). 

 
Figure 10. The Advanced Cell Classifier interface. (a) The main ACC interface is intuitive and easy to use for 

non-experts. (b) The image selector window allows the user to select different images, easily navigating between 

plates and images. (c) Phenotype finder, a tool that uses machine learning to efficiently discover new cellular 

phenotypes. It organizes non-annotated cells into a browsable hierarchical tree, based on their appearance. (d) 
Cells automatically discovered by phenotype finder as new phenotypes. (e) Once the classes of interest are defined 

and a classifier is trained, phenotypes of non-annotated cells can be predicted with a single click. Image source: 

(Piccinini et al. 2017). 

 

ACC is a user-friendly software tool with the goal of improving the collection and understanding 

of image data and the accuracy of the analysis (Fig. 10). It allows researchers, even those 

without computer vision or machine-learning knowledge, to efficiently characterize and exploit 

their cell-based and image-based HCS experiments, leading to new discoveries. It is capable 

of answering the questions raised in the introduction (ie. ‘Have I entirely discovered my data? 

Or at least partially?’ and ‘Is my analysis as accurate as possible?’) by using intelligent 

methods to explore and annotate large single-cell image data, including (1) an active learning 

approach to improve the accuracy of the classifier, and (2) similar cell search, an algorithm to 
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find similar cells and increase the number of annotations for rare phenotypes (Fig. 11); 

moreover, (3) phenotype finder, a novel method to automatically discover new and biologically 

relevant cell phenotypes is included (Fig. 12). In addition, it provides an easy-to-use report 

generator to automatically obtain statistics on cell distribution and class incidence; a user-

friendly interface; detailed documentation, video tutorials, and online resources; as well as 

improved data visualization methods. The source code of ACC is freely distributed as an open-

source tool at www.cellclassifier.org. 

 
Figure 11. Active learning tool of ACC. The active learning annotation tool helps to refine the decision boundary 

of the classifier. It prioritizes the most informative examples and presents them to the user for annotation. (A) Known 

phenotypic classes (blue and orange) with cells initially annotated to these classes. (B) Two-dimensional illustration 

of a synthetic feature. Bold coloured points represent annotated examples, grey points represent unannotated 

examples. The orange and blue regions define the classifier’s predictions of the two phenotypes. The active learning 

tool uses a query strategy to determine which cell would be informative to the classifier (black point). (C) When a 

cell is annotated, the decision boundaries change and a new cell is chosen. (D) In some cases, the classifier may 

have low certainty for cells that do not belong to any existing phenotypes. The user may decide to create a new 

class, and (E) the decision boundaries of the multi-dimensional feature space change accordingly. Image source: 

(Piccinini et al. 2017) . 

 

ACC provides several new innovative tools designed to explore and collect the data necessary 

to train classifiers more efficiently and effectively. The ability of the classifier to correctly 

recognize cell types ultimately depends on the quality of data provided. While there is no 

universally accepted recipe for generating quality training data, many principles and 

techniques can be applied in practice to improve the efficiency and quality of the annotation 

process. The most fundamental principle is to ensure that the training data are complete in the 

sense that they include examples of all the important phenotypes present in the screen. 

Although it may seem obvious, practically speaking, this can be tedious when the amount of 

data is very large. Another common issue is imbalance between classes. Often, interesting 

phenotypes are in the minority or occur very infrequently. If the data are imbalanced due to the 

presence of a rare class, the lack of representative data will make learning difficult. Given a 

single example of a rare cell, ACC can quickly identify additional, previously unidentified 

examples by using the similar cell search feature, thereby helping to balance the dataset and 
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improve classification performance. Another way to improve data collection is to avoid 

redundant annotations and to prioritize annotations that are most useful for boosting 

classification performance. ACC uses active learning to carefully select the most informative 

examples for labelling, and thereby it avoids irrelevant examples and refines regions where 

the classifier is uncertain. 

 
Figure 12. The Phenotype Finder Tool off ACC. The phenotype finder tool organizes cells into a browsable 

hierarchy. (A) Cells are represented by dots embedded in a two-dimensional synthetic feature space. Sets of cells 

annotated by the expert are shown in green, yellow and blue. (B) A one-class classifier is used to automatically 

determine which cells are the least similar to the known cell types (pink region). (C) Cells with the least similarity to 

known examples are sampled and clustered to construct a dendrogram. The expert can browse and analyze the 

representative cells shown in the tree, create a new phenotype class from these cells, or add cells to an existing 

phenotype. (D) If a new phenotype is discovered, the region of non-annotated cells changes in the multidimensional 

feature space. Image source: (Piccinini et al. 2017). 

 

Data quality can also be improved by the iterative refinement of the classifier. During data 

collection, ACC can train a classifier on existing annotated data, and can display predicted 

annotations on unlabelled data. By correcting erroneous predictions, the user adds valuable 

data points to the training set, which can help to correct predictive errors. 

In summary, ACC includes powerful new methods to mine microscopic image data, discover 

new phenotypes, and improve recognition performance. While no single method can be 

regarded as a silver bullet that solves all annotation problems, in our experience, the most 

effective strategy is to alternate between discovery tools, adjusting it to the demands of the 

actual biological task. ACC gives the user access to a large variety of state-of-the-art machine-

learning algorithms, has an intuitive user interface with advanced visualization, and allows for 
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efficient navigation of image data. It is easy to use, well documented, and comes with helpful 

video tutorials. By using synthetic data and existing screens, we have demonstrated that the 

discovery tools in ACC improve the quality of training datasets and ultimately create classifiers 

with better phenotype recognition. Using our software, it is possible to discover interesting cell 

phenotypes hidden in large datasets. 

 

3.2 The regression plane concept 

Relevant publication:  

Szkalisity, A., Piccinini, F., Beleon, A., …,Honti, V., Horvath, P. (2021) 

Regression plane concept for analysing continuous cellular processes with machine learning 

Nature communications 

 
Biological processes are inherently continuous, and the chance of phenotypic discovery is 

significantly restricted by discretizing them. Using multi-parametric active regression we have 

introduced the Regression Plane (RP), a user-friendly discovery tool enabling class-free 

phenotypic supervised machine learning, to describe and explore biological data in a 

continuous manner (Szkalisity et al. 2021). Regression Plane (RP) is an interface for fully 

supervised, continuous machine learning, appropriate for image-based single-cell analysis. 

The idea originates from a study of cell entry of influenza A virus, revealing that histone 

deacetylase-mediated reorganization of the microtubules led to various endosomal 

morphological and trafficking phenotypes that affected influenza infection (Yamauchi et al. 

2011). The scatteredness of late endosomes and lysosomes (single output variable) was 

determined using regression instead of classification. Restricting the output to a single 

dimension prohibited the modelling of branching, circulating, parallel and crossing processes, 

therefore we extended the approach to utilize a 2D plane (Fig. 13). Considering cellular steady 

states as graph nodes and gradual changes between the states as edges, the biological 

systems that correspond to planar graphs can be modelled with RP. Further extension of the 

modelling to 3D would increase the complexity of labelling and raise the chance of annotation 

errors. Additionally, to improve the quality of the annotated sets and decrease the time required 

from experts, we have incorporated active learning methods appropriate for regression-based 

phenotyping. 
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Figure 13. The regression plane concept. (a) The classical way to model a biological process includes the 

phenotypical analysis of cells (i.e. subdividing cells into classes). However, in a high-content screening scenario, 

the multitude of different phenotypes makes it extremely challenging to create a set of representative classes. A 

possible solution builds on using a regression line, allowing to represent a single effect without the need of 

discretization. Nonetheless, biological processes are typically characterized by numerous ongoing effects. Thus, 

the regression plane represents a good trade-off between visualization capabilities and annotation complexity. (b) 
Active regression. (c) Synthetic dataset. Image from the synthetic dataset, generated using SIMCEP. (d) 
Experimental design. The designed processes overlayed on the space of perturbations. 6 processes are tracks in 

the space, and an extra process is formed of uniformly distributed cells (latent process 7). (e) Designed processes. 

The 6 continuous processes are modelled between two fixed endpoints: green cells of highly irregular shape and 

red, rounded cells. To assign a colour to the middle point of each process we interpolated between white (process 

1) and blue (process 6). (f) Classification vs. regression applied on synthetic data. Image source: (Szkalisity et al. 

2021). 

 

We tested the capabilities of RP on 2 different time-resolved datasets. First, RP was 

demonstrated to be capable of reproducing an unsupervised mitotic time model developed in 

the MitoCheck project. (Cai et al. 2018) analyzed cell mitosis by performing time-lapse 

experiments to establish a canonical model for the morphological changes appearing during 

the mitotic progression of human cells. We intended to analyze this dataset without using prior 

feature information about the underlying process, by exploiting regression techniques to 

characterize mitosis. 

In our analysis, a field expert created a regression plane representing the process of mitosis 

(Fig. 14a). After prediction, the cells followed the designed circular path recalling canonical 

mitotic phases (Fig. 14b-d), while they also represented subtle phenotypic changes and single-

cell differences in the regression plane. Additionally, we investigated whether the fluorescent 

tags have an effect on the distribution of cells on the regression plane, and in most cases we 

did not observe undesired cellular behaviour due to the perturbations. Finally, we compared 

the results of the original methodology presented by Cai et al, (multi-dimensional dynamic time 

warping [DTW] for creating the standard mitotic time, Fig. 14e) with the results obtained by RP 
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(Fig. 14f), and we concluded that RP is capable of reproducing a mitotic time model equivalent 

to the original one. This indicates that RP can compete with complex analysis techniques, such 

as DTW. Moreover, RP provides the flexibility to customize the output space, enabling higher 

resolution analysis of user-defined sections of the biological process. 

 
Figure 14. Testing the regression plane method on mitosis. (a) Regression plane of 585 cells annotated by a 

microscopy expert. (b) Trajectories for all the predicted cells. The median curve is shown in solid blue. (c) Example 

of a single-cell trajectory with representative cell icons visualized. (d) Regression plane with all (n = 19,920) 

predicted cells. (e) Trend for the normalized nuclear area according to standard mitotic time. Grey lines represent 

single-cell trajectories. (f) Trend for the normalized nuclear area according to the regression plane. Grey lines 

represent single-cell trajectories. The coordinates predicted by RP were converted to 1D by taking the angle 

argument of the polar coordinate representation as illustrated in (a).  Image source: (Szkalisity et al. 2021) 

3.3 A case study: the discovery of Neuropilin-1, a host factor for 

SARS-CoV-2 

Relevant publication:  

Daly, J.L., Simonetti, B., ...Horvath, P., ..., Yamauchi, Y. (2020) 

Neuropilin-1 is a host factor for SARS-CoV-2 infection 

Science 
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The methods presented above were used in several studies, leading to a wide range of 

fundamental biological and clinical discoveries, such as the cell entry factors of influenza A 

virus (Banerjee et al. 2014), the description of NUP98, a large multiprotein component of the 

nuclear pore complex (NPC) which regulates the transport of macromolecules between the 

nucleus and cytoplasm (Laurell et al. 2011), or personalized treatment for childhood leukemia 

(Frismantas et al. 2017). Here I will present an application which is very timely, namely the 

discovery of neuropilin-1, the second known host factor of SARS-CoV-2 coronavirus (Daly et 

al. 2020). Based on our previous studies performing whole-genome screens on flu, we already 

knew that neuropilin-1 served an entry factor in viruses. Thus, in early 2020, soon after the 

COVID-19 pandemic was declared by the WHO, we started SARS-CoV-2 screening to identify 

the main determinants of its infectivity. 

It is well known that virus-host interactions determine cellular entry and spreading in tissues. 

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the earlier SARS-CoV 

use angiotensin-converting enzyme 2 (ACE2) as a receptor; however, their tissue tropism 

differs, raising the possibility that additional host factors are involved. The spike protein of 

SARS-CoV-2 contains a cleavage site for the protease furin which is absent from SARS-CoV. 

Neuropilin-1 (NRP1), which is known to bind furin-cleaved substrates, potentiates the infectivity 

of SARS-CoV-2. NRP1 is abundantly expressed in the respiratory and olfactory epithelium, 

with highest the expression levels in endothelial and epithelial cells. We found that the furin-

cleaved S1 fragment of the spike protein binds directly to cell surface NRP1, and blocking this 

interaction with a small-molecule inhibitor or a monoclonal antibody reduced viral infection in 

cell culture. The significant role of NRP1 in SARS-CoV-2 infection may suggest potential 

targets for future antiviral therapeutics. 

Here I shortly describe the image analysis and machine learning-based single cell phenotyping 

steps of the discovery process. HeLa cells were imaged with a confocal laser scanning 

microscope (SP5II AOBS, Leica Microsystems) attached to an inverted epifluorescence 

microscope (DMI600, Thermo Fischer Scientific) with a 40X/1.25na objective. Projected 

images taken with a 20x objective were used for image analysis for single-cell and 

multinucleated cell infection image analysis with supervised machine learning. First, images of 

each fluorescence channel were corrected using the CIDRE illumination correction method 

(Smith et al. 2015). Individual cell nuclei were detected by the deep machine learning-based 

segmentation algorithm NucleAIzer (Reka Hollandi et al. 2020). Cellular cytoplasm was 

detected both on the green and red channels using UNET to enhance fluorescence images. 

The method was trained to precisely delineate the signals often being faint in the cytoplasm. 

Cellular phenotypes were assigned to each individual nucleus, differentiating between infected 

cells containing a single nucleus (single cell infection) and those that contain multiple nuclei 

(multi-nuclei infection) as observed in the distinct cell-cell fusion syncytia phenotype. 
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Supervised machine learning was used for phenotypic assignment. The decisions were based 

on single-cells and the cellular microenvironment’s morphology and intensity features (Piccinini 

et al. 2017). Final statistics included the number of multi-nucleated cells, the average number 

of 190 nuclei in these cells and the count of other phenotypic classes (Fig. 15). 

 
Figure 15. Image processing and phenotyping of SARS-CoV-2. (A) Caco-2 shSCR and shNRP1 cells were 

infected with VSV pseudotyped with VSV-G for 16 hours. (B) Schematic of the two-step staining procedure used to 

distinguish external and internal virus particles. (C) Original image of SARS-CoV-2 N signal (green) and enhanced 

image (red) using UNET deep learning algorithm. (D) Single-cell segmentation of the nuclei using the nucleAIzer 

deep learning algorithm, and the cytoplasmic region based on global thresholding of the UNET enhanced image. 

(E) Morphology, shape and intensity features of single-cells and their microenvironment are extracted. Features 
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include morphology, intensity and texture descriptor numbers. Ci: features of the i-th cell, Cj: features of the j-th cell. 

(F) Machine learning-based phenotyping of single cells, differentiating between non-infected, single-nuclei infected 

and multinucleated cells. (G) Ratio of syncytia and single cell infection phenotypes. (H) HeLawt+ACE2 and 

HeLaNRP1 KO+ACE2 cells were infected with SARS-CoV-2 ΔS1/S2. Cells were fixed at 6 or 16 hpi and stained 

as in (G), and viral infectivity was quantified (N=3). (I) Ratio of syncytia and single cell infection phenotypes. Image 

source: (Daly et al. 2020) 
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CHAPTER 4 

Computer-aided correlative microscopy 
 

 
Finally, let me incorporate my other hobby, electromechanics 

into my thesis. So far, I have introduced you, my dear Reader, 

to image correction, and how to find cells, and how to determine 

their phenotypes. Right now I would like to show that adding a 

little bit to this would further improve fundamental biology 

research and translational personalized medicine, opening the 

way for a better understanding of major issues at a single cell 

level. This bit was the physical extraction of single cells from 

their native environment. To achieve that, we built intelligent 

machines controlled by computers. Some use little needles and 

3D navigation in the human brain, others use laser beams to 

isolate a single cancer cell, but all these approaches share a 

common feature: cell extraction is executed at micrometer 

precision.  

 

Quantifying the heterogeneity of cell populations is important in many fields, such as cancer 

research and neurobiology, but techniques for isolating individual cells are limited. We have 

developed novel automated, high-throughput, non-destructive and cost-effective isolation 

methods that can capture individual target cells using commonly available techniques. High-

resolution microscopy, image analysis, machine learning, patch clamping, and laser 

microdissection microscopy enable scalable molecular genetic, proteomic and 

electrophysiological analysis of single cells focused on morphology and 2D and 3D location 

within the sample. 

 

Specifically, we have developed a technology to increase the accuracy and throughput of 

microscopy-based single-cell isolation by automating the processes of target selection and 

isolation (Brasko et al. 2018). Computer-assisted microscopy isolation (CAMI) combines image 

analysis algorithms, machine-learning and high-throughput microscopy to recognize individual 

cells in cell suspensions or tissues, and automatically guides extraction by laser capture 

microdissection (LCM) or micromanipulation. To demonstrate the capabilities of our approach, 

we conducted experiments that require targeted single-cell isolation to collect individual cells 
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without disturbing their microenvironment. We showed that CAMI-selected cells can be 

successfully used for digital PCR (dPCR) and next-generation sequencing.  

 

Based on our promising results, we further developed CAMI and introduced the Deep Visual 

Proteomics concept, which combines intelligent laser micro capturing with ultrasensitive 

proteomics (Mund et al. 2022). Despite the availability of imaging-based and mass-

spectrometry-based methods for spatial proteomics, a key challenge remains connecting 

images with single-cell-resolution protein abundance measurements. Deep Visual Proteomics 

(DVP) combines artificial-intelligence-driven image analysis of cellular phenotypes with 

automated single-cell or single-nucleus laser microdissection and ultra-high-sensitivity mass 

spectrometry. DVP links protein abundance to complex cellular or subcellular phenotypes 

while preserving spatial context. We confirmed DVP’s practical usefulness on a variety of 

single cell experiments both on cell cultures and tissue sections. The ability of DVP to retain 

precise spatial proteomics information in the cellular context has implications for the molecular 

profiling of clinical samples. 

I can proudly remark that the CAMI system and its driving software, BIAS, was installed in 

numerous world-leading labs and pharma companies worldwide. 

 

Finally, as the “queen of challenges” in spatial single cell isolation, we have successfully 

introduced a deep learning driven needle into a slice of human brain tissue to measure a single 

cell’s electrophysiology response, and have successfully extracted single cells for genetic 

profiling (Koos et al. 2021). Patch clamp recording of neurons is a labor-intensive and time-

consuming procedure. We have presented AutoPatcher, a tool that performs 

electrophysiological recordings in label-free tissue slices, fully automatically. The automation 

process covers the detection of cells in label-free images, calibration of the micropipette’s 

movement, approaching the cell with the pipette, formation of whole-cell configuration, and 

recording. Cell detection is based on deep learning. The model was trained on a new image 

database of neurons within unlabelled brain tissue slices. The pipette tip detection and 

approaching phases use image analysis techniques for precise movements. High-quality 

measurements were performed on hundreds of human and rodent neurons. We have also 

demonstrated that further molecular and anatomical analyses can be performed on the 

recorded cells. Our tool can multiply the number of daily measurements to support brain 

research. 

 

               horvath.peter.2_10_22

https://paperpile.com/c/otCkhV/HLuPO
https://paperpile.com/c/otCkhV/kyCBn


37 
 

4.1 Computer-assisted, microscopy-based single-cell isolation 

Relevant publication:  

Brasko C., Smith K., Molnar, Cs., …, Tamas, G., Horvath, P. (2018) 

Intelligent image-based in situ single-cell isolation. 

Nature Communications 

 

On a personal note, CAMI is the system that I am the most proud of related to my scientific 

career. We have developed CAMI to increase the accuracy and throughput of microscopy-

based single-cell isolation by automating the processes of target selection and isolation. It 

combines image analysis algorithms, machine-learning and high-throughput microscopy to 

recognize individual cells in cell suspensions or tissues, and automatically guides extraction 

by laser capture microdissection (LCM) or micromanipulation. To demonstrate the capabilities 

of our approach, we conducted a set of experiments that require targeted single-cell isolation 

to collect individual cells without disturbing their microenvironment. We showed that CAMI-

selected cells can be successfully used for digital PCR (dPCR) and next-generation 

sequencing (Fig. 16). 

 
Figure 16. Summary of the computer-assisted microscopy isolation (CAMI) technology. (a) Tissue or cultured 

samples are prepared. (b) Samples are imaged with an automated high-throughput microscope. (c) Image analysis 

software identifies and segments cells. (d) Advanced Cell Classifier or BIAS software trains and optimizes machine-

learning algorithms to automatically recognize cellular phenotypes. (e) Interface to review and select imaged cells. 

(f) Selected cells are extracted by micromanipulation or laser microdissection combined with a catapulting system. 

(g) Outside the CAMI workflow, the collected cells can be characterized at the molecular level (e.g., by digital PCR 

or next-generation sequencing). Image source: (Brasko et al. 2018) 

               horvath.peter.2_10_22

https://paperpile.com/c/otCkhV/CM7yV


38 
 

 

As shown in the diagram summarizing CAMI technology in Fig. 16, samples are collected in 

variable formats etched with registration landmarks, and are potentially treated with 

compounds according to the assay (sample preparation phase). The samples may come from 

tissues or cell cultures, and are imaged with an automated high-throughput microscope. 

Images from the microscope are sent to our image analysis software that uses state-of-the-art 

algorithms to correct illumination, identify and segment cells and extract multiparametric 

cellular measurements. ACC or BIAS software trains machine-learning algorithms to 

automatically recognize the cellular phenotype of every cell in the sample, based on their 

extracted properties. If the user wishes, he/she may add or remove cells, or can correct 

mistakes in the contour and classified phenotype. Selected cells are then extracted by 

micromanipulation or laser microdissection combined with a catapulting system, and are 

collected in a microtube or high-throughput format for molecular characterization such as 

sequencing or dPCR. The software components we developed to support this technology are 

freely available. As a proof of principle in (Brasko et al. 2018), we conducted three sets of 

experiments to demonstrate the capabilities of the technology to target, isolate, and analyze 

individual cells without disturbing their microenvironment. The rationale behind the selected 

experimental designs is that none of these analyses could have been executed by conventional 

automated isolation techniques (e.g., FACS), and alternative solutions would have required 

laborious manual operation. 

 

4.2 Deep Visual Proteomics 

Relevant publication:  

Mund, A., Coscia, F., Kriston, A., Hollandi, R., …, Horvath, P.*, Mann, M.* (2022) 

Deep Visual Proteomics defines single-cell identity and heterogeneity 

Nature Biotechnology 

 
Modern microscopyʼs versatility, resolution and multi-modal nature yields increasingly detailed 

images of single-cell heterogeneity and tissue organization. Early methods combined 

proteomics with imaging modalities such as imaging mass spectrometry (IMS) or imaging 

based multiplexed proteomic approaches. Using such methods, a predefined subset of 

proteins is usually targeted for analysis, but this subset is far short of the actual complexity of 

the proteome. Taking advantage of the substantially increased sensitivity of technologies 

based on mass spectrometry (MS), we aimed to enable the analysis of proteomes within their 

native, subcellular context to explore their contribution to health and disease states (Mund et 
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al. 2022). Similar to CAMI, we combined submicron-resolution imaging, image analysis for 

single-cell phenotyping based on artificial intelligence (AI) and isolation with an ultra-sensitive 

proteomics workflow (Fig. 17). We introduced the software ‘BIAS’ (Biology Image Analysis 

Software), which coordinates image acquisition and laser microdissection (LMD) microscopes.  

 

The technique named deep visual proteomics (DVP) fluently combines microscopy of cell 

cultures or tissue samples (formalin-fixed, paraffin-embedded, i.e. FFPE) with processing of 

the samples using the cell segmentation methods described earlier, and phenotyping of the 

identified samples. The cells found to be of interest are then laser microdissected, either 

completely automatically or on the basis of expert advice, and ultrasensitive proteomics is 

performed on the extracted cells. Data generated by DVP can be mined to discover protein 

signatures, providing molecular insights into proteome variation at the phenotypic level, while 

retaining complete spatial information. 

 
Figure 17. The schematic concept of deep visual proteomics (DVP). DVP combines high-resolution imaging, 

AI-guided image analysis for single-cell classification and isolation with an ultra-sensitive proteomics workflow. DVP 

links data-rich imaging of cell culture or archived patient biobank tissues with deep-learning-based cell segmentation 

and machine-learning-based identification of cell types and states. (Un)supervised AI-classified cellular or 

subcellular objects of interest undergo automated LMD and MS-based proteomic profiling. Subsequent 

bioinformatics data analysis enables data mining to discover protein signatures, providing molecular insights into 

proteome variation in health and disease states, at the level of single cells. tSNE, t-distributed stochastic neighbor 

embedding. Image source: (Mund et al. 2022) 
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The software tools presented in chapter 2 and 3 were incorporated into a novel professional 

software named BIAS (Biological Image Analysis Software, Single-Cell Technologies Ltd.). To 

physically extract the cellular features discovered with BIAS, we have developed an interface 

between scanning and laser microdissection microscopes. BIAS transfers cell contours 

between the microscopes, preserving full accuracy. After optimization, the isolation 

microscopes are capable of autonomously excise 1,250 high-resolution contours per hour. To 

prevent potential laser-induced damage to cell membranes, we excise contours with an offset. 

 

An extensive experimental verification of DVP is available in (Mund et al. 2022). Here we 

present two examples of the potential use of this pipeline. To explore the sensitivity, specificity 

and robustness of our DVP workflow, we obtained normal human fallopian tube tissue and 

separated ciliated cells from secretory cells, the two major cell types of the fallopian tube 

epithelium, using the cell-lineage-specific transcription factor FOXJ1, a master regulator of cilia 

function, and measured their proteomes (Fig. 18). We solely detected FOXJ1 (ciliated cells) in 

FOXJ1-stained cells (Fig. 18 a, c), along with more than 5,000 other quantified proteins with 

excellent correlations of biological replicates. Bioinformatic analysis of differences in protein 

abundance mirrored the biologic features of the distinct cell types (Fig. 18 b, c, d). This was 

driven by known protein markers of ciliated cells, and was expanded to proteins not yet 

revealed to be functionally associated with these cell types. We used the fallopian tube 

epithelium as an example to highlight the importance of the combination of antibody-based 

tissue staining and unbiased, quantitative proteomics. Such in vivo cell type comparisons allow 

the discovery of cell type and cell state markers, and provide unbiased information to 

understand disease states at the global proteome level. 

 

A more complex example is shown in Figure 19. Understanding the molecular alterations in 

melanoma development and progression is key to identifying therapeutic vulnerabilities. 

Regarding that the pathogenic mutations in melanoma are largely cataloged (Pollock et al. 

2003), we aimed to directly study spatially resolved proteomes of distinct cellular phenotypes 

of melanoma progression (Fig. 19 a,b). We co-stained FFPE-embedded primary tumor 

material preserved for 17 years with two markers, SOX10 and CD146, to map melanoma cells. 

As overexpression of CD146 is implicated in melanoma progression, and immunotherapy 

against CD146 targets metastases, we used CD146 as a disease progression marker in our 

analysis. Deep learning predicted five classes with clearly defined spatial distribution: class 1, 

melanoma in situ; class 2, predominantly tumor; class 3, cells of the tumor microenvironment; 

class 4, enriched in CD146-high regions; and class 5, enriched in CD146-low regions. We used 

high-content imaging to determine the required number of cells to identify statistically and 

analytically robust cellular phenotypes for precise cell type and state isolation within a spatial 
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region. For this reason, we typically collected around 100 cells per sample. Including replicates, 

we isolated and profiled 27 different samples obtained from seven unique regions of the same 

tissue section, including normal melanocytes, melanoma in situ and primary melanoma from 

the radial and vertical growth phases (Fig. 19 a–d). We found high quantitative reproducibility 

among biological replicates, resulting in disease state and region-specific proteomes (Fig. 19 

e–g). Pre-cancerous (melanoma in situ) and primary melanoma showed differences in proteins 

involved in immune cell signalling and cell metabolism, and coincided with reduced 

melanogenesis. The advanced stages (radial and vertical melanoma growth phases) showed 

well-defined metabolic activation along with disease progression, a known hallmark of human 

cancers. Expression of proteins involved in oxidative phosphorylation and mitochondria 

function gradually increased from melanocytes, through melanoma in situ to invasive 

melanoma, indicating a dependency on mitochondrial respiration in the advanced tumor stages 

(Fig. 19 h–j). Conversely, proteins involved in antigen presentation and interferon response 

were downregulated in the advanced stages compared to melanoma in situ, which is in line 

with immune evasion strategies described for melanoma. 

 
Figure 18. Immunofluorescence staining of the human fallopian tube epithelium with FOXJ1 and EpCAM 
antibodies, detecting ciliated and epithelial cells, respectively. (a) Left panel: Ciliated (FOXJ1-positive) and 

secretory (FOXJ1-negative) cells. Right panel: Cell classification based on FOXJ1 intensity. Class 1 (FOXJ1-

positive) and class 2 (FOXJ1-negative); magnification factor = ×387. (b) PCA of FOXJ1-positive and FOXJ1-

               horvath.peter.2_10_22

https://www.nature.com/articles/s41587-022-01302-5#Fig5
https://www.nature.com/articles/s41587-022-01302-5#Fig5
https://www.nature.com/articles/s41587-022-01302-5#Fig5


42 
 

negative cell proteomes. (c) Heat map of known protein markers for secretory and ciliated cells. Protein levels are 

z-scored. Asterisks represent imputed data. (d) Volcano plot of the pairwise proteomic comparison between FOXJ1-

positive and FOXJ1-negative cells. Cell-type-specific marker proteins are highlighted in green and turquoise, and 

black represents potential novel marker proteins. Significantly enriched cell-type-specific proteins are displayed 

above the black lines. Image source: (Mund et al. 2022) 

 
Figure 19. DVP sample isolation workflow to profile primary melanoma. (a) Sample isolation and 

characteristics (b) DVP applied to primary melanoma. (c) Pathologist-guided and AI-based cell classification. (d) 
Example pictures of the seven identified classes. (e) Correlation matrix (Pearson r) of all the 27 proteome samples 

assessed. (f) PCA of proteomes. (g) PCA of all melanoma-specific proteomes from in situ to invasive (vertical 

growth) melanoma. (h) Unsupervised hierarchical clustering based on all 1,910 protein groups revealed as 

significant by ANOVA (FDR < 0.05). (i) Tissue heat map, mapping the proteomics results onto the imaging data. (j) 

Box plots of z-scored protein levels. Image source: (Mund et al. 2022) 
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4.3 AutoPatcher 

Relevant publication:  

Koos, K., Olah, G., Balassa, T.,... , Tamas, G., Horvath, P. (2021) 

Automatic deep learning-driven label-free image-guided patch clamp system 

Nature Communications 

 

We have presented a system to overcome time-consuming and expertise-intense neuron 

characterization and collection. This fully automated, differential interference contrast 

microscopy (DIC or label-free in general) image-guided patch clamping system (DIGAP or 

AutoPatcher) combines 3D infrared video microscopy, cell detection using deep convolutional 

neural networks and a glass microelectrode guiding system in order to approach, attach, break-

in, and record biophysical properties of the target cell. 

The steps of the visual patch clamp recording process are illustrated in Fig. 20. Before the first 

use of the system, the pipette has to be calibrated, so that it can be moved relative to the field 

of view of the camera (1). A position update is executed after every pipette replacement (2) 

using the built-in pipette detection algorithms (3) to overcome the problem caused by pipette 

length differences. At this point, the system is ready to perform patch clamp recordings. We 

have acquired and annotated a single cell image database on label-free neocortical brain 

tissues, which is, to our knowledge, the largest 3D set of this kind. A deep convolutional neural 

network has been trained for cell detection. The system can automatically select the detected 

cell for recording (4). When a cell is selected, multiple subsystems are started simultaneously 

that perform the patch clamping: (i) A subsystem controls the movement of the micropipette 

next to the cell. If any obstacle is found in the way, an avoidance algorithm tries to bypass it 

(5). (ii) A cell tracking system follows the possible shift of the cell in 3D (6). (iii) During the 

whole process, a pressure regulator system assures that the demanded pressure on the 

pipette tip is available (7). Once the pipette touches the cell (cell-attached configuration), the 

system performs gigaseal formation (8), then breaks the cell membrane (9) and automatically 

starts the electrophysiological measurements (10). When the recording is completed, the 

operator can decide whether to start the process again on a new target cell or to continue with 

one or both of the following manual steps. The nucleus or the cytoplasm of the patched cell 

can be harvested (11), or the recorded cells can be anatomically reconstructed in the tissue 

(12). 

At the end of the measurements, the implemented pipette cleaning method can be performed, 

or the next patch clamp recording can be started after pipette replacement, from the pipette tip 

position update step (3). An event logging system collects information during the patch clamp 
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process, including the target locations and outcome success, and report files can be generated 

at the end. The report files are compatible with the Allen Cell Types Database. 

Our system was tested on rodent and human samples in vitro. The quality of the 

electrophysiological measurements strongly correlates to that made by a trained experimenter. 

We have used the system for harvesting cytoplasm and nucleus from the recorded cells, and 

performed anatomical reconstruction on the samples. Our system can operate on unstained 

tissues using deep learning and reaches cell detection accuracy of human experts. Besides, it 

enables the multiplication of the number of recordings while preserving high-quality 

measurements. 

 
Figure 20. (left) Steps of AutoPatcher procedures. (1) Pipette calibration by the user, (2) pipette replacement 

after recording, (3) image-based automatic pipette tip detection, (4) automatic cell detection, (5) pipette navigation 

to the target cell, (6) 3D cell tracking, (7) pressure regulation, (8) gigaseal formation, (9) break-in, (10) 
electrophysiological recording, (11) nucleus and cytoplasm harvesting, (12) anatomical reconstruction of the 

recorded cell. (right) Computational steps of AutoPatcher (a) Result of the Pipette Hunter detection model. (b) 
Training dataset generation. (c) After the training session, the DIGAP system detects cells in unstained living 

neocortical tissues. (d) Accuracy of the automated cell detection pipeline. (e) Lateral tracking of the cell’s movement. 

(f, g) Z-tracking of the cell’s movement. The template image was captured at the optimal focal depth (in red boxes) 

before starting the tracking. (h) Trajectory of the pipette tip (red line) with obstacle avoidance (numbered) in the 

tissue, and the spatial location of the detected cells (green boxes). (i) Plots of the depth of the pipette tip in the 

tissue, the applied air pressure, and the measured pipette tip resistance during the approach. (j) Image of a cell 

before and after performing patch clamp recording on it. Image source: (Koos et al. 2021) 
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We have tested four different object detection deep learning architectures (Szegedy et al. 

2015). Of these, the user can choose according to the requirements and the available 

resources. For this work we used DetectNet. By using these tools, the training processes 

generated models that recognize neurons in their original environment in DIC images (Fig. 20 

b). We also implemented a procedure that extends 2D detection by uniting overlapping 

bounding boxes along the Z-axis in the image stacks in order to complete object detection in 

the 3D space (Fig. 20 c). To evaluate the performance of the proposed frameworks we 

measured precision, recall and F1 score on a validation dataset (Fig. 20 d). Due to the elasticity 

of the tissue, the movement of the pipette can significantly deform it, and thus can shift the 

location of the cell of interest. In order to precisely re-define the pipette’s trajectory, the location 

of the target cell needs to be tracked. We have developed an online system that performs 

tracking in the lateral and Z directions (Fig. 20 e-g). A representative procedure is 

demonstrated in Figure 20 h-j, trajectory, pressure, and resistance data are visualized. 
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Conclusions and outlook 
In this thesis I have presented how single cells can be profiled both morphologically and 

molecularly, even in case of a complex spatial environment. Image correction and 

segmentation methods have been developed to accurately find cells in the samples, and 

phenotyping algorithms have been developed to automatically identify cellular types and 

decide on their classifications. With single cell manipulation techniques we are able to extract 

the desired cell from its native environment for single-cell characterization.  

By providing these technologies, I believe that we have opened a door to more precise single 

cell discoveries. The presented methods can be implemented in an almost standard lab setup, 

and enable scientists to do their research of interest. I foresee several interesting forthcoming 

works based on the introduced workflows. 

 

Despite the advancements shown in this thesis, I think this is only the beginning, and there is 

still a lot to do. The plan of my research groups for the future are to further advance on the 

fields described here, as well as to make use of the developed technologies both in 

fundamental research (see the Human Mitosis Atlas below) and in single cell-based cancer 

therapies (hopeAI). Here I share my point of view on how I envision the advancement of the 

fields. 

 

Image analysis has probably benefited the most from the rise of deep learning, and this is likely 

the beginning only. With the exponential improvement of hardware and quantum computing 

being at the corner, there is a good reason to believe that we will be able to digitally process 

much larger quantities of image data and will be able to ask more systematic questions, such 

as structures and patterns in cancers across populations at a single cell level. To this end, my 

research group will continue developing deep learning tools that perform better segmentation 

and more global image understanding. Another area that will likely rise in the near future is 3D 

image generation and processing, due to the fact that spheroid, organoid and other tissue 

engineered 3D models approximate the physiology of cellular behavior better than flat biology. 

In fact, we have already made the first baby-steps towards this goal, and will put more 

resources into the efforts to standardize, accelerate and improve 3D image analysis models. 

 

With the presented tools in hand, we have already taken the first steps in a large-scale 

initiative, the Human Cancer Mitosis Atlas (MITO-Omics). This will comprehensively describe 

molecular and morphological changes of cells during mitosis at a nearly infinite resolution. Our 

plan is to extend our current data to all types of human cancers. MITO-Omics will be a great 
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resource for drug development and fundamental clinical research to better understand and 

fight against cancers.  

 

Finally, my personal aim is to bring our single-cell methods to personalized cancer therapy. 

Doing so, I would like to profile cancers at a single cell level, in order to open the way to 

proposing advanced therapies based on the revealed genomic and proteomic alterations. 

Definitely, this will be a joint venture between the academia and the industry. We have already 

taken the first steps towards this goal, and the first clinical success story is delivered 

(unpublished). Currently we are in discussion with decision makers to make this approach 

accessible to clinical practice. 
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The most common approach for correcting uneven illumina-
tion reverses the image formation process, attempting to recover 
the true image, I, from the image observed by the sensor, I0. 
Distortions to the observed image are modeled by a linear inten-
sity gain function v and an additive term z; I0(x) = I(x)v(x) + z(x), 
where I0(x) is the intensity observed at location x. The intensity 
gain models attenuations to the signal (Fig. 1a). An additive or 
zero-light term models contributions present even if no light is 
incident on the sensor, mainly camera offset and fixed-pattern 
thermal noise. It is usually nearly uniform, varying by only a few 
intensity values. The uncorrupted image is recovered by reversing 
the image formation process.

I x
I x z x

v x
( )

( ) ( )
( )

=
−0

Although simple at first glance, in practice v and z cannot be 
known exactly, which has prompted the development of a vari-
ety of correction methods (Supplementary Note 2). Prospective 
methods estimate the correction surfaces from special reference 
images collected during acquisition3,4, whereas retrospective 
methods rely on the actual image data5,6. Prospective methods are 
regarded as more reliable because they empirically estimate the 
terms in equation (1), whereas retrospective methods are more 
practical because they do not require special acquisitions.

We introduce a new retrospective method, corrected intensity 
distributions using regularized energy minimization (CIDRE), 
which achieves correction quality similar to that of prospective 
methods. Unlike existing retrospective methods, CIDRE estimates 
both v and z. The key insight to our approach is that the distribu-
tion of intensities from a single location across many images is 
related to an underlying distribution common to all locations by a 
linear transform. This assumes that objects may appear anywhere 
in the image with equal probability. Local-intensity distributions 
from a finite set of observed images are simply linear transforms 
of a sampling of the underlying distribution (Fig. 1b). The param-
eters of the transform can be visualized in a quantile-quantile 
plot, where v corresponds to the slope and b corresponds to the 
y intercept.

CIDRE estimates v, b and z simultaneously for all locations 
by minimizing a regularized energy function composed of sev-
eral terms (Fig. 1c). The first term is a robust regression that 
ensures v and b fit the data (Fig. 1d). The second term reduces 
noise and guarantees a smooth correction surface, encourag-
ing neighboring distributions to agree on similar values for v 
(Fig. 1e). The third term estimates z by finding the common 
point where all regression lines intersect (Fig. 1f). Corrected 

(1)(1)

cidre: an illumination-
correction method for 
optical microscopy
Kevin Smith1, Yunpeng Li2, Filippo Piccinini3,  
Gabor Csucs1, Csaba Balazs1, Alessandro Bevilacqua3,4 &  
Peter Horvath5–7

uneven illumination affects every image acquired by a 
microscope. it is often overlooked, but it can introduce 
considerable bias to image measurements. the most reliable 
correction methods require special reference images, and 
retrospective alternatives do not fully model the correction 
process. our approach overcomes these issues for most optical 
microscopy applications without the need for reference images.

No optical system is ideal. Inhomogeneous illumination is 
present in every image acquired by a microscope. Many factors, 
including misaligned optics, dust, nonuniform light sources and 
vignetting, contribute to uneven illumination1. It is increasingly 
common for light microscopes to be used as quantitative instru-
ments even though seemingly minor shifts in illumination can 
corrupt measurements and invalidate subsequent analyses. For 
example, we found that uneven illumination increased the false 
detections and missed detections by CellProfiler2 on images of 
yeast cells by 35% when illumination correction was neglected 
(Supplementary Fig. 1c–f). Other routine measurements can 
be affected as well. Uneven illumination substantially reduced 
the measurements of the mean intensity and mean area of  
GFP-stained HeLa cells in the corner of the image relative to the 
center (Supplementary Fig. 1g–l).

The consequences of ignoring uneven illumination are often 
underestimated, as reflected in our survey of microscope users 
(Supplementary Note 1). The magnitude of intensity loss attrib-
uted to vignetting, that is, falloff of intensity from the center of the 
image, is often substantially stronger than assumed. Data from 11 
ordinary microscope setups revealed that between 10% and 40% 
less light is typically recorded at the dimmest region of the image 
(Supplementary Data 1). Intensity loss is even more severe for cam-
eras with large sensor areas or wide apertures, such as scientific com-
plementary metal-oxide semiconductor (sCMOS) devices, which can 
experience a falloff greater than 50% (Supplementary Data 1).
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Lausanne, Switzerland. 3Advanced Research Center on Electronic Systems, University of Bologna, Bologna, Italy. 4Department of Computer Science and Engineering, 
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images are obtained using equation (1) (Fig. 1g). A complete 
explanation is provided in Supplementary Note 3.

We compared our approach to 12 commonly used methods in 
a series of tests on 12 data sets. Eleven of these data sets repre-
sent typical microscopy setups with various microscopes, sample 
preparations, staining, light sources, magnifications and sensors 
(Supplementary Table 1 and Supplementary Data 1). As a gold 
standard, we used prospective correction in which v is estimated 
as the average of several reference images or empty images and z is 
estimated as the average of several dark-frame images. To measure 
correction quality, we collected hundreds of pairs of overlapping 
images for each data set, precisely aligned them and reported 
the mean of absolute differences for each pair of correspond-
ing pixels in the overlapping regions (Supplementary Data 2). 
The scores are normalized by the mean score of the uncorrected 
pairs (Fig. 2). Although this provides a reasonable estimate of 
the correction quality, unavoidable differences between image 
pairs may cast some doubt on our measure. To address this, we 
generated a twelfth data set of synthetic images and distorted 
them using a known model (Supplementary Note 4), allowing 
us to directly measure the disagreement between the true and 
corrected images.

Our tests highlight the inadequacies of current illumination-
correction practices. Single-image retrospective methods gener-
ally made the illumination more uneven instead of correcting it. 
Multi-image retrospective methods showed some improvement, 

but no method consistently achieved satisfactory performance 
(that is, better than untreated). The gold-standard prospective 
methods performed best among existing methods, but their reli-
ance on reference images limits their usefulness.

CIDRE is a retrospective method and thus does not require 
calibration images; therefore, it can always be applied to previ-
ously collected data. Unlike other retrospective methods, it is 
capable of estimating the z term, which helped it to perform 
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figure � | Summary of illumination correction 
using CIDRE. (a) The observed image is corrupted 
by misaligned optics, vignetting, dust, etc., and 
this corruption is modeled as a linear intensity 
gain function v. The observed image also 
contains contributions from camera offset and 
thermal sources, modeled as an additive term z. 
(b) To recover the true image, we consider the 
local distributions of observed intensities (red, 
blue and green) collected from many images. 
Each is related to the true underlying distribution 
of the specimen (gray, upper plot) by a linear 
transform parameterized by v and b, which 
correspond to slope and y intercept, respectively, 
in a quantile-quantile plot between the true 
distribution and the local distribution. (c) The 
plot shows an estimation of the parameters in b 
simultaneously for all locations by minimizing 
a regularized energy function composed of 
several terms. (d–f) Terms composing the energy 
function in c. The plot in d shows a robust 
regression term that ensures parameter values 
fit the data. The plot in e shows a regularization 
term that reduces noise and guarantees 
smoothness of the correction surface, forcing 
neighboring distributions (green and blue) to 
agree on similar parameter values. The plot in f 
shows how z, a nearly uniform-intensity surface 
representing the intensity recorded when no light 
is present, is estimated by finding the common 
point where all regression lines intersect.  
(g) When we apply the reverse transform using 
estimates of v and z, local-intensity distributions 
(red, blue and green) take the shape of the true 
distribution (gray, upper and lower plots), and 
the uncorrupted images can be recovered.
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well consistently on every data set. In terms of correction qual-
ity, it surpassed all tested methods including the gold standard, 
and it also substantially reduced errors in cell counting, cell 
intensity and cell area measurements (Supplementary Fig. 1). 
CIDRE is available as open-source software in Matlab (https://
www.github.com/smithk/cidre/) and as an ImageJ plug-in  
(Supplementary Software).

Although CIDRE is useful for many applications, it is not suit-
able in certain conditions. The key assumption is violated if the 
images are highly correlated. In time-lapse images, for example, 
this may cause artifacts in the correction, although combining 
images from different sites can help reduce this danger. Like other 
retrospective methods, CIDRE performs best with many images 
containing ample intensity information. With 1,000 images or 
more, CIDRE was substantially better than the gold standard 
on average (Fig. 2 and Supplementary Fig. 2). Fewer images 
or sparse intensity information reduced correction quality. We 
found that for most applications, ten images were sufficient to 
ensure an improvement in illumination quality, whereas approxi-
mately 100 images were necessary to match the gold standard 
(Supplementary Fig. 3).

Uneven illumination is a common but misunderstood phenom-
enon, and results reported by many researchers have undoubtedly 
been affected by it. Proper illumination-correction procedures 
should be followed whenever acquiring images for quantitative 
microscopy, and CIDRE is a simple, freely available tool that can 
help ensure the quality of such measurements.

methods
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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Software. Our software, CIDRE, is available as an ImageJ plug-in  
and as a Matlab script. The open-source code for CIDRE is  
available as Supplementary Software and for download at  
https://www.github.com/smithk/cidre/. Compiled versions of 
the code and updates are available at http://www.scopem.ethz.
ch/research/software/cidre.html.

Microscopy data sets. We collected 11 data sets designed to represent 
a variety of microscopy setups commonly used for research to eval-
uate illumination-correction methods (Supplementary Table 1).  
Misaligned optics, dust, scratches, vignetting, and nonuniform 
light sources contribute to uneven illumination in these data sets. 
The most common source of uneven illumination is vignetting, 
a radial intensity falloff from the center of the image7 caused by 
blockages of extreme light paths, varying angular sensitivity of the 
sensor, and natural geometric falloff1. Images were acquired with 
eight different microscopes and one conventional SLR camera. 
We varied the microscope itself, sample preparation, staining, 
mounting, objectives, light sources, type of sensor, image resolu-
tion, and bit depth. In addition, we generated a set of synthetic 
images to form a twelfth data set allowing us to directly measure 
correction quality. Each data set contains several sets of images: 
approximately 100 images of a reference material (for example, 
fluorescent slide), 10–100 ‘empty’ images (for example, the culture 
medium or the glass slide), 10–100 dark-frame images where no 
light is incident on the sensor (acquired with the light source 
switched off or otherwise blocked), 10–100 images in a series 
with increasing exposure times, 100–200 pairs of images used to 
test the correction models, 1,000–3,000 images used to train the 
correction models, and 1,000–3,000 segmentations of the training 
images obtained with CellProfiler2. Below we give a brief descrip-
tion of each data set (Supplementary Data 1).

HCS-DNA: this data set contains propidium iodide (P3566 
Invitrogen)-stained ATCC HeLa cells from a high-content screen. 
The compound stains DNA and RNA, visualizing the nuclei and 
cytoplasm as well as clumps of Semliki Forest virus. Images 
were collected on the RFP channel of a fluorescence wide-field 
microscope using 384-well plates with a plastic-air interface. 
The microscope was a Molecular Devices ImageXpress Micro 
with a 20×/0.75-NA objective with a LED-liquid light guide 
(Lumencor Spectra X). A CCD sensor (Photometrics CoolSNAP 
HQ) acquired 1,392 × 1,040 12-bit images. The mean signal inten-
sity in the images was low (219). Reference images were acquired 
at various locations on a plastic fluorescent reference slide and 
empty wells containing fluorescent medium. The intensity attenu-
ation measured as the difference between the 99th percentile and 
1st percentile intensities computed from the mean of the reference 
images was 42.6%. The confluency, measured as the percentage 
of the image area occupied by cells, was 21.5%.

HCS-NUC: this data set contains DAPI-stained MRC5 human 
fetal lung fibroblasts (SV40 immortalized) from a high-content 
screen. Images were collected using a second microscope with 
a similar setup to that of HDC-DNA but with a DAPI-adapted 
filter set. The mean signal intensity was moderate (549), intensity 
attenuation was 18.7%, and cell confluency was low (2.7%).

HCS-ACTIN: this data set contains actin-stained HeLa cells 
from a high-content screen. Images were collected using the same 
microscope and setup as for HCS-NUC, except that a different 

filter set and light source were used (Lambda LS arc lamp, Sutter 
Instruments, with a 300-W xenon bulb, PerkinElmer). The mean 
signal intensity was bright (1,776), intensity attenuation was 
23.3%, and confluency was high (88.2%).

MICROFLUID: this data set contains yeast cells in a synthetic 
medium containing glucose and dextran coupled with Alexa 
Fluor 680, used to study regulation of the PKA pathway through  
V-ATPase. A microfluidic setup was used (CellAsic Microfluidic 
plate Y04C), and images were acquired using a Nikon Ti-Eclipse 
microscope with a 60×/1.4-NA objective and LED-liquid light 
guide (CoolLED pE-2). A high-resolution sCMOS sensor 
(Hamamatsu Orca Flash 4.0) was used to acquire 2,048 × 2,048 
16-bit images. Reference images were acquired from various 
locations on a plastic fluorescent reference slide and empty wells 
containing fluorescent medium. The mean signal intensity was 
bright (1,086), intensity attenuation was very strong 50.4%, and 
cell confluency was very low (0.6%).

FLUO-ACTIN: this data set contains muntjac skin fibroblast 
cells on a glass slide (FluoCells prepared slide F36925). The prom-
inent filamentous actin in these cells was labeled with Alexa Fluor 
488. Images were collected using a fluorescence wide-field micro-
scope with a glass-oil interface. The microscope model was a Zeiss 
200M with a 63×/1.4-NA objective and a HBO-direct light source 
with a 100-W Mercury arc lamp. A CCD sensor (Hamamatsu 
C8484) acquired 1,344 × 1,024 12-bit images. Reference 
images were acquired at various locations on a plastic fluores-
cent reference slide. The mean signal intensity was low (213), 
intensity attenuation was weak (7.5%) and cell confluency was  
moderate (32.5%).

FLUO-MITO: this data set contains bovine pulmonary artery 
endothelial (BPAE) cells on a glass slide (FluoCells prepared 
slide F36924). Mitochondria were labeled with red fluorescent 
MitoTracker Red CMXRos. Images were collected using a fluores-
cence wide-field microscope with a glass-air interface. The micro-
scope model was an Olympus IX81 with a 20×/0.75-NA objective 
and a Lambda LS arc lamp (Sutter Instruments) with a 175-W 
xenon bulb (PerkinElmer). The CCD sensor (Hamamatsu Orca 
ER) acquired 1,344 × 1,024 12-bit images. Reference images were 
acquired at various locations on a plastic fluorescent reference 
slide. The mean signal intensity was low (338), intensity attenua-
tion was strong (40.3%), and cell confluency was low (13%).

FLUO-EMCCD: this data set contains bovine pulmonary artery 
endothelial (BPAE) cells on a glass slide (FluoCells prepared slide 
F14781). Anti-bovine alpha-tubulin mouse monoclonal in con-
junction with goat anti-mouse antibodies label the microtubules. 
Images were collected using a fluorescence wide-field microscope 
with a glass-air interface. The microscope model was a Leica 
DMI6000B with a 40×/0.7-NA objective and a 100-W metal-
 halide lamp. An EMCCD sensor (Andor iXon 885) acquired 1,004 
× 1,002 16-bit images with the EM gain set at a medium setting (3).  
Reference images were acquired at various locations on a plastic 
fluorescent reference slide. The mean signal intensity was bright 
(2,155), intensity attenuation was 38%, and cell confluency was 
moderate (34.3%).

HIST-CONFOCAL: this data set contains a 16-µm cryostat 
section of mouse kidney on a glass slide stained with Alexa Fluor 
488 to label elements of the glomeruli and convoluted tubules 
(FluoCells prepared slide F24630). Images were collected using 
a fluorescence confocal microscope with a glass-air interface. 
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The microscope model was a Zeiss LSM 510 with a 10×/0.3-NA 
objective and a 30-mW argon 488-nm laser with an optical fiber 
light guide. A Hamamatsu photomultiplier tube (PMT) sensor 
acquired 512 × 512 12-bit images. Reference images were acquired 
at various locations on a plastic fluorescent reference slide. The 
mean signal intensity was medium (614), intensity attenuation 
was strong (43.9%), and confluency was high (54%).

HIST-BRIGHT: this data set contains a sagittal section of 
mouse brain on a glass slide labeled with hematoxylin and eosin 
(HE) stain. Bright-field images were collected using a wide-field 
microscope with a glass-oil interface. The microscope model 
was an Olympus IX81 with a 40×/1.3-NA objective and Lambda 
LS arc lamp (Sutter Instruments) with a 175-W xenon bulb 
(PerkinElmer). A CCD sensor (Hamamatsu Orca ER) acquired 
1,344 × 1,024 12-bit images. Reference images were acquired using 
empty locations on the glass slide. The mean signal intensity was 
bright (614), and intensity attenuation was 32%.

PHASE: this data set contains native epithelial cells from oral 
mucosa on a glass slide. Phase-contrast images were collected 
using a wide-field microscope with a glass-air interface. The 
microscope model was an Olympus IX81 with a 10×/0.3-NA 
objective and 100-W halogen lamp. A CCD sensor (Hamamatsu 
Orca ER) acquired 1,344 × 1,024 12-bit images. Reference images 
were acquired using empty locations on the glass slide. The mean 
signal intensity was moderate (923), intensity attenuation was 
12.4%, and cell confluency was low (7.1%).

PHOTOGRAPHY: this data set contains conventional photo-
graphs of projections of paintings and drawings from the National 
Gallery of Art. A consumer digital SLR camera was (Nikon D90) 
was used with an 18- to 105–mm zoom lens (set at 50 mm). 
Reference images were acquired using empty sheets of white 
paper. A CMOS sensor (Nikon DX format) acquired 1,072 × 712 
8-bit images. The mean signal intensity was bright (150), and 
intensity attenuation was 17%.

SYNTHETIC: this data set contains synthetically gener-
ated images of HeLa cells. Uncorrupted 1,392 × 1,040 12-bit 
images were synthetically generated and artificially subjected 
to illumination distortions using a physically plausible model 
(Supplementary Note 4). Reference images were synthetically 
generated in a similar manner. Because the corruption process 
is known and the image pairs are perfectly aligned, this data set 
allows us to directly measure differences between corrections and 
uncorrupted images.

Baseline illumination-correction methods. We compared our 
method to 12 commonly used prospective and retrospective 
approaches for illumination correction (Supplementary Note 2). 
Each method is summarized below, starting with prospective 
 correction methods, which require special calibration images to 
be acquired along with the data.

CALIB-ZERO models the illumination gain v as the average of 
a set of images of a plastic fluorescent reference slide8 at various 
locations. The zero-light term z is modeled by averaging a set of 
images taken at various locations with the shutter closed or the 
light source turned off or otherwise blocked. Image correction 
follows equation (1), reversing the image formation process. This 
approach is considered a gold standard because it empirically 
models both correction terms. However, it has several drawbacks 
(Supplementary Note 2).

CALIB models the illumination gain v as above but ignores the 
zero-light term8. Image correction is done by normalizing the 
image by the gain I(x) = I0(x)/v(x). This is an incomplete model, 
but it can give reasonable results when the zero-light term is small 
relative to the calibration intensity.

EMPTY-ZERO models the illumination gain v as the aver-
age of empty’ images taken at various locations3. In our experi-
ments, this includes either the culture medium without any cells 
or the glass slide. The zero-light term z is modeled by averag-
ing a set of images taken with the shutter closed. Image correc-
tion reverses the image formation process (equation (1)). This 
approach also serves as a gold standard because it empirically 
models the correction terms, but it suffers from the same draw-
backs as CALIB-ZERO (Supplementary Note 2). This method is 
appropriate for bright-field images or fluorescence imaging when 
the medium fluoresces.

EMPTY models the illumination gain v as above but ignores 
the zero-light term8. Image correction is done by normalizing 
the image by the gain I(x) = I0(x)/v(x). Although flawed, this 
approach can give reasonable results when z is small.

SIGAL uses a specially acquired set of images of a homogene-
ous medium captured with increasing exposure times to build the 
 correction model9. Estimates of v and z are obtained by perform-
ing a least-squares fitting on data from the exposure series, giving 
additional weight to data from zero exposure time to anchor the 
zero-light level. Image correction reverses the image formation 
process (equation (1)). Because the exposure series often con-
tains only a few data points (7 in the original paper9, 13–100 in 
our data) and are not regularized, estimates of v and z tend to be 
noisy and non-smooth.

Next, we describe four purely computational retrospective 
methods that build the correction model from more than one 
image.

CAN builds a model of the illumination gain by sorting image 
data by location10. The top 10th-percentile data are used to fit a 
polynomial surface in the log-intensity space to estimate v. Images 
are corrected according to I(x) = I0(x)/v(x). This approach ignores 
the zero-light term, but it can give reasonable results when that 
term is small relative to the signal.

LJOSA forms the illumination gain estimate v by fitting a 
polynomial or spline surface to an average of the images to be 
corrected5. The fitted surface is used for correction according to 
I(x) = I0(x)/v(x). This approach ignores the zero-light term, but 
it can give reasonable results when that term is small relative to 
the signal.

SCHWARZFISCHER is a method designed to correct time-
lapse fluorescence images, though it can be used for static images 
if the background contains illumination information11. Each 
image is broken into overlapping tiles, and each tile is clustered 
as either background or signal on the basis of local statistics. 
Next, background models are constructed for each image using 
natural-neighbor interpolation to smooth and fill in missing val-
ues. A foreground model is estimated using least-squares fitting 
at every location on the background data. The images are cor-
rected with a formula similar to equation (1). This method can 
compensate for photobleaching as well as uneven illumination, 
but it becomes unreliable for high-confluency images because 
it depends on a large background area (which is sparse when 
many cells are present). Comparing intensities between images 
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corrected with this method is problematic because the correction 
model is adapted to each image.

SHARIFF is the default method6 used in the software pack-
age CellProfiler2, which supports several options for illumina-
tion correction. The intensity gain is estimated using the mean 
image intensity computed at every location. It is smoothed with 
a median filter and rescaled to an appropriate range. Images are 
corrected according to I(x) = I0(x)/v(x).

Finally, we describe three single-image retrospective correc-
tion methods. These methods are applied independently to every 
image and do not require any calibration images. Although they 
are useful for improving the appearance of the image, these meth-
ods are inappropriate if intensity measurements will be made from 
the image because they nonuniformly alter the signal.

ROLLINGBALL, or the top-hat transform, applies a shape filter 
that subtracts a geometric opening of the image from the image12. 
The ‘ball’ in this case refers to the shape of the filter kernel, which 
is sized to be larger than the diameter of the largest expected 
object. For each data set, we tested several kernel sizes and chose 
the one with the best performance.

SMOOTHING also relies on subtracting a filtered version of 
the image from the original13. In this case, a Gaussian smoothing 
kernel is used, which is sized to be larger than the diameter of the 
largest expected object.

BABALOUKAS selects locations from the background of the 
image, fits a polynomial to those points, and subtracts the fitted 
surface from the original image14. In the original paper, back-
ground points were selected manually. We automatically selected 
background points using the clustering technique proposed by 
Schwarzfischer et al.11.

Evaluation protocol. To assess the quality of correction (Fig. 2 
and Supplementary Figs. 2 and 3), we defined an evaluation 
procedure, error measure, and benchmark score. Measuring cor-
rection quality is difficult because we cannot directly compare 
against the uncorrupted images. Some authors use the coefficient 
of variation (CV) of corrected reference images15, but differences 
between the reference images and actual data cast doubt on the 
validity of this measure. Our solution was to collect hundreds 
of pairs of overlapping images for each data set, precisely align 
them, and report the mean of absolute differences for each pair of 
corresponding pixels in the overlapping regions (Supplementary 
Data 2). We collected 100–200 pairs of test images for every data 
set. The various correction methods were applied to each data 
set. Prospective methods used sets of reference images to train 
the model, whereas multi-image retrospective methods were 
trained using a collection of 1,000–3,000 images acquired under 
similar conditions as the test set. Single-image retrospective 
methods operate directly on the test images. Each pair of test 
images was aligned using a subpixel registration technique16. The 
overlapping regions from each test pair were used in the evalu-
ation (Supplementary Data 2). Whenever possible, we used a 
four-quadrant solution wherein quadrant IV of the first image 
overlapped quadrant II of the second image. Our reasoning is 
that the most dramatic intensity difference often occurs between 
a corner of the image and the center, and this format allowed us 
to directly compare the corner of one image to the center of the 
other. However, our ability to automate the data collection process 
was limited by the microscope software and size of the specimen, 

so this layout was not always possible. In two cases (FLUO-MITO 
and PHASE), we were forced to overlap the left half of the first 
image with the right half of the second image. In the case of the 
SYNTH data set, each pair of test images is perfectly aligned, and 
so the entire image overlaps. For a given test pair, the overlap 
regions are two separate acquisitions of the same field of view, 
denoted IM1 and IM2. The principal sources of disagreement 
between IM1 and IM2 are uneven illumination, noise, alignment 
errors, and photobleaching. The error is the mean of absolute dif-
ferences between all aligned pixel pairs in the overlapping regions. 
More precisely

e
N

I l I ln n

ln
= −∑∑1

1 2( ) ( )

where e is the error, n indexes the image pair, l indexes locations 
in the overlapping region, and N is the total pixel pairs across 
all images pairs. To correct for photobleaching, and because the 
outputs of the correction methods have different dynamic ranges 
(some methods are purely multiplicative, some purely subtractive, 
etc.), we standardized the intensity distributions of the images, 
thus ensuring comparability across correction methods. The 
median and s.d. of the set of test image sets were normalized to 
those of the uncorrected IM1 image set. Finally, the mean error 
for all image pairs is normalized by the benchmark error, that of 
the uncorrected image pairs, with

s
e

emethod
method

UNCORRECTED
=

This yields a score s in the interval [0, ), where 0 indicates perfect 
correction (IM1 and IM2 are the same), 1 indicates disagreement 
equivalent to the uncorrected images, and >1 indicates greater 
disagreement than the uncorrected images (i.e., the correction 
process increased disagreement between image pairs).

Assumptions. Our correction method makes the following 
assumption: the probability of the specimen appearing at loca-
tion x in an image is uniform for all x, and there is no correlation 
between the images. In other words, the content of the image can 
appear anywhere in the image with equal probability. For exam-
ple, a cultured cell or a piece of tissue are just as likely to appear 
in the corner of the image as in the center. A second assumption is 
based on empirical observations: the zero-light noise z(x) should 
be approximately uniform for all x (flat across the image). This 
is based on evidence from measurements of the zero-light noise 
from the data we collected and reliable sensor manufacturing. 
To verify this assumption we captured and averaged dark frames 
from each data set. We found that the s.d. of such images was less 
than 0.1% of the dynamic range, and often less than 0.02%.

Illumination-correction formulation. Our method for illumina-
tion correction, CIDRE (corrected intensity distributions using 
regularized energy minimization), operates on a set of observed 
images corrupted by illumination distortion that were acquired 
under similar conditions. CIDRE recovers the uncorrupted images 
by first estimating the unknown parameters v and z through an 
energy-minimization technique and then applying equation (1) 
to recover the uncorrupted images (Supplementary Note 3).  
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It is assumed that objects may appear anywhere in the image with 
equal probability. If this assumption is valid, then the distribu-
tion of intensities at a single location taken from infinitely many 
images is related to an underlying distribution common to every 
location by a linear transform modeling the corruption process. 
Local-intensity distributions from a finite set of observed images 
are simply linear transforms of a sampling of the underlying dis-
tribution parameterized by v, b and z. CIDRE estimates these 
parameters simultaneously for all locations by using a quasi-
Newton method17 to minimize a regularized energy function 
comprising a robust regression term, a smoothness term, and 
an offset term. The robust regression term ensures v and b fit the 
data (Fig. 1d). The smoothness term enforces a smooth correction 
surface and reduces noise by encouraging neighboring distribu-
tions to agree on similar values for v (Fig. 1e). The offset term 
estimates z by finding the common point where all regression  

lines intersect (Fig. 1f). The results of the optimization are robust 
estimates for v and z, which allow us to apply equation (1) and 
recover the uncorrupted images.
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We present a model of a `gas of circles': regions in the image domain composed of a unknown number of
circles of approximately the same radius. The model has applications to medical, biological, nanotechno-
logical, and remote sensing imaging. The model is constructed using higher-order active contours (HOACs)
in order to include non-trivial prior knowledge about region shape without constraining topology. The
main theoretical contribution is an analysis of the local minima of the HOAC energy that allows us to
guarantee stable circles, fix one of the model parameters, and constrain the rest. We apply the model
to tree crown extraction from aerial images of plantations. Numerical experiments both confirm the
theoretical analysis and show the empirical importance of the prior shape information.

© 2008 Published by Elsevier Ltd.

1. Introduction

Forestry is a domain in which image processing and computer vi-
sion techniques can have a significant impact. Resource management
and conservation require information about the current state of a
forest or plantation. Much of this information can be summarized in
statistics related to the size and placement of individual tree crowns
(e.g. mean crown area and diameter, density of the trees). Currently,
this information is gathered using expensive field surveys and time-
consuming semi-automatic procedures, with the result that partial
information from a number of chosen sites frequently has to be ex-
trapolated. An image processing method capable of automatically
extracting tree crowns from high resolution aerial or satellite images
and computing statistics based on the results would greatly aid this
domain.

The tree crown extraction problem can be viewed as a special
case of a general image understanding problem: the identification of
the region R in the image domain � corresponding to some entity or
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entities in the scene. In order to solve this problem in any particu-
lar case, we have to construct, even if only implicitly, a probability
distribution on the space of regions P(R|I,K). This distribution de-
pends on the current image data I and on any prior knowledge K
we may have about the region or about its relation to the image
data, as encoded in the likelihood P(I|R,K) and the prior P(R|K) ap-
pearing in the Bayes' decomposition of P(R|I,K) (or equivalently in
their energies − ln P(I|R,K) and − ln P(R|K)). This probability distri-
bution can then be used to make estimates of the region we are
looking for.

In the automatic solution of realistic problems, the prior knowl-
edge K, and in particular prior knowledge about the `shape' of the
region, as described by P(R|K), is critical. The tree crown extraction
problem provides a good example: particularly in plantations, R takes
the form of a collection of approximately circular connected compo-
nents of similar size. There is thus a great deal of prior knowledge
about the region sought. The question is then how to incorporate
such prior knowledge into a model for R. If the model does not in-
clude enough prior knowledge, it will be necessary for the user to
provide it.

The simplest prior information concerns the smoothness of the
region boundary. For example, the Ising model and many active
contour models [1–3] use a combination of region boundary length
and region area as their prior energies, but curvature can be used too
[1]. Such models are integrals over the region boundary of a func-
tion of various derivatives of the boundary. In consequence, they
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capture local differential geometric information, corresponding to lo-
cal interactions between boundary points, but can say nothing more
global about the shape of the region. To go further, one must intro-
duce longer range interactions. There are two principal ways to do
this: one is to introduce hidden variables, given which the original
variables of interest are (more or less) independent. Marginalizing
over the hidden variables then introduces interactions between the
original variables. Another is to include explicit long-range interac-
tions between the original variables.

The first approach has been much investigated, in the form of
template shapes and their deformations. Here a probability distri-
bution or an energy is defined based on a distance measure of some
kind between regions. One region, the template, is fixed, while the
other is the variable R. Template regions may be learned from ex-
amples [4–9] or fixed by hand [10]; similarly the distance function
maybe based, for example, on the learned covariance of a Gaussian
distribution [5–9], or chosen a priori [4,10,11]. The most sophisti-
cated methods use the kernel trick to define the distance as a pull-
back from a high-dimensional space, thereby allowingmore complex
behaviours [12]. Multiple templates may also be used, correspond-
ing to a mixture model [12,13].

These methods assign high probability to regions `close' to cer-
tain points in the space of regions. The set of regions with high
probability is thus in some sense bounded. As such, it is difficult
to construct models of this type that favour regions for which the
topology, and in particular the number of connected components,
is unknown a priori, because the set of regions in this case is un-
bounded, and cannot be described as variations around one or more
templates. There are many problems, however, for which the topol-
ogy is unknown a priori, for example, the extraction of networks, or
the extraction of an unknown number of objects of a particular type
from astronomical, biological, medical, or remote sensing images.
For this type of prior knowledge, a different type of model is needed.
Higher-order active contours (HOACs) are one such category of
models.

HOACs [14] take the second approach mentioned above. They in-
troduce explicit long-range interactions between region boundary
points via energies that contain multiple integrals over the bound-
ary, thus avoiding the use of template shapes. HOAC energies can
be made intrinsically Euclidean invariant, and, as required by the
above analysis, incorporate sophisticated prior information about re-
gion shape without necessarily constraining region topology. As with
other methods incorporating significant prior knowledge, it is not
necessary to introduce extra knowledge via an initialization close to
the target region: a generic initialization suffices, thus rendering the
method quasi-automatic. Rochery et al. [14] applied the method to
road extraction from satellite and aerial images using a prior which
favours network-like objects.

In this paper, we describe a HOAC model of a `gas of circles': the
model favours regions composed of an a priori unknown number of
circles of a certain radius. For such a model to work, the circles must
be stable to small perturbations of their boundaries, i.e. they must
be local minima of the HOAC energy, for otherwise a circle would
tend to `decay' into other shapes. The main theoretical contribution
of this paper is an analysis of the stability of local minima of the
HOAC energy that allows us to ensure that circles of a given radius
are stable. In addition, it allows us to fix one of the model param-
eters in terms of the others, and to constrain the rest. This type of
calculation has wide applicability to other active contour models and
to other shapes. For example, it shows that no stable circle is possi-
ble using a classical active contour model containing only boundary
length and interior area terms. The calculation proceeds by perform-
ing a functional Taylor expansion of the HOAC energy around a circle
(or more generally, any shape), and then demanding that the first
order term be zero for all perturbations, and that the second order
term be positive semi-definite. Gradient descent experiments using

the HOAC energy, with parameters fixed using the stability calcula-
tions, produce stable circles of the expected radii, thereby demon-
strating empirically the coherence between the stability calculations
and the numerical computations used in practice to minimize the
energy.

The model has many potential applications, to medical, biolog-
ical, physical, and remote sensing imagery in which the entities to
be identified are circular. We choose to apply it to the problem of
extracting tree crowns from aerial imagery, using the `gas of circles'
model as a prior energy, and an appropriate likelihood. We will see
that the extra prior knowledge included in the `gas of circles' model
permits the separation of trees that cannot be separated by simpler
methods, such as maximum likelihood or classical active contours.
We focus on images of plantations and orchards, for which the model
is well adapted. The case of general forests is much harder, and will
be left for future work.

In the next section, we present a brief introduction to HOACs.
In Section 3, we describe the `gas of circles' HOAC model, the
stability analysis, and the results of geometric experiments. In
Section 4, we apply the new model to tree crown extraction.
We describe a likelihood energy for trees, and then present ex-
perimental results on synthetic data and on aerial images. We
conclude in Section 5, and discuss some open issues with the
model.

2. Higher-order active contours

HOAC models, like all active contour models, represent a region R
by its boundary, �R, a closed 1-chain � in the image domain � ([15]
is a useful reference for the following discussion). Although region
boundaries correspond to a special subset of closed 1-chains known
as domains of integration, active contour energies themselves are
defined for general 1-chains. It is convenient to use this more general
context to distinguish HOAC energies from classical active contours,
because it allows for notions of linearity to be used to characterize
the complexity of energy functionals.

Using this representation, HOAC energies can be defined as fol-
lows [14]. Let � be a 1-chain in �, and dom � be its domain. Then
�n : (dom �)n → �n is an n-chain in �n. We define a class of (n−p)-
forms on �n that are 1-forms with respect to (n − p) factors and
0-forms with respect to the remaining p factors (by symmetry, it
does not matter which p factors). These forms can be pulled back to
(dom �)n by �n. The Hodge duals of the p 0-form factors with respect
to the induced metric on dom � can then be taken independently
on each such factor, thus converting them to 1-forms, and render-
ing the whole form an n-form on (dom �)n. This n-form can then be
integrated on (dom �)n.

In the (n,p) = (n, 0) cases, we are simply integrating a general n-
form on the image of �n in �n, thus defining a linear functional on
the space of n-chains in �n, and hence an nth-order monomial on
the space of 1-chains in �. Taking arbitrary linear combinations of
such monomials then gives the space of polynomial functionals on
the space of 1-chains. By analogy we refer to the general (n,p) cases
as `generalized nth-order monomials' on the space of 1-chains in
�, and to arbitrary linear combinations of the latter as `generalized
polynomial functionals' on the space of 1-chains in �. HOAC ener-
gies are generalized polynomial functionals. Standard active contour
energies are generalized linear functionals on 1-chains in this sense,
hence the term `higher-order'.

The (1, 1) case is simply the boundary length in some metric.
The (1, 0) case gives the region area in some metric. An interesting
application of the (2, 2) case to topology preservation is described
by Sundaramoorthi [16]. We specialize to the (2, 0) case. Let F be
a 2-form on �n. Using the antisymmetry of F together with the
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symmetry of �2, we can write the energy functional in this case as

E(�) =
∫
(�R)2

F =
∫
(dom �)2

(� × �)∗F

=
∫ ∫

(dom �)2
dt dt′ �(t) · F(�(t), �(t′)) · �(t′), (2.1)

where F(x, x′), for each (x, x′) ∈ �2, is a 2×2 matrix, t is a coordinate
on dom �, and � = �̇ is the tangent vector to �.

By imposing Euclidean invariance on this term, and adding linear
terms, Rochery et al. [14] defined the following higher-order active
contour prior:

Eg(�) = �CL(�) + �CA(�) − �C
2

∫ ∫
dt dt′ �(t′) · �(t) �(R(t, t′)), (2.2)

where L is the boundary length functional, A is the interior area func-
tional and R(t, t′)=|�(t)−�(t′)| is the Euclidean distance between �(t)
and �(t′). Rochery et al. [14] used the following interaction function
�:

�(z) =
⎧⎨
⎩

1
2

(
1 − z − d

	
− 1



sin


(z − d)
	

)
|z − d| < 	,

H(d − z) else.
(2.3)

In this paper, we use this same interaction function with d = 	,
but other monotonically decreasing functions lead to qualitatively
similar results.

3. The `gas of circles' model

For certain ranges of the parameters involved, the energy in equa-
tion (2.2) favours regions in the form of networks, consisting of long
narrow arms with approximately parallel sides, joined together at
junctions, as described by Rochery et al. [14]. It thus provides a good
prior for network extraction from images. This behaviour does not
persist for all parameter values, however, and we will exploit this
parameter dependence to create a model for a `gas of circles', an en-
ergy that favours regions composed of an a priori unknown number
of circles of a certain radius.

For this to work, a circle of the given radius must be stable, that
is, it must be a local minimum of the energy. In Section 3.1, we show
that stable circles are indeed possible provided certain constraints
are placed on the parameters. More specifically, we expand the en-
ergy Eg in a functional Taylor series to second order around a circle
of radius r0. The constraint that the circle be an energy extremum
then requires that the first order term be zero, while the constraint
that it be a minimum requires that the operator in the second or-
der term be positive semi-definite. These requirements constrain the
parameter values. In Section 3.2, we present numerical experiments
using Eg that confirm the results of this analysis.

3.1. Stability analysis

We denote a member of the equivalence class of maps represent-
ing the 1-chain defining the circle by �0, and a small perturbation
by ��. To second order,

Eg(�) = Eg(�0 + ��) � Eg(�0) +
〈
��

∣∣∣∣∣�Eg��

〉
�0

+ 1
2

〈
��

∣∣∣∣∣�
2Eg
��2

∣∣∣∣∣��

〉
�0

,

(3.1)

where 〈·|·〉 is a metric on the space of 1-chains.
Since �0 represents a circle, it is easiest to express it in terms

of polar coordinates r,� on �. For a suitable choice of coordinate
on S1, a circle of radius r0 centred on the origin is then given by
�0(t) = (r0(t),�0(t)), where r0(t) = r0, �(t) = t, and t ∈ [−
,
). We

are interested in the behaviour of small perturbations �� = (�r,��).
Because the energy Eg is defined on 1-chains, tangential changes in
� do not affect its value. We can therefore set ��=0, and concentrate
on �r.

On the circle, using the arc length parameterization t, the inte-
grands of the different terms in Eg are functions of t − t′ only; they
are invariant to translations around the circle. In consequence, the
second derivative �2Eg/��(t)��(t′) is also translation invariant, and
this implies that it can be diagonalized in the Fourier basis of the
tangent space at �0. It is thus easiest to perform the calculation by
expressing �r in terms of this basis: �r(t) = ∑

kake
ir0kt, where k ∈

{m/r0 : m ∈ Z}. Below, we simply state the resulting expansions to
second order in the ak for the three terms appearing in Eq. (2.2).
Details can be found in Appendix A.

The boundary length and interior area of the region are given to
second order by

L(�) =
∫ 


−

dt |�(t)| � 2
r0

⎧⎨
⎩1 + a0

r0
+ 1

2

∑
k

k2|ak|2
⎫⎬
⎭ (3.2)

A(�) =
∫ 


−

d�

∫ r(�)

0
dr′ r′ � 
r20 + 2
r0a0 + 


∑
k

|ak|2. (3.3)

Note that there are no stable solutions using these terms alone. For
the circle to be an extremum, we require �C2
 + �C2
r0 = 0, which
tells us that �C = −�C/r0. The criterion for a minimum is, for each k,
�Cr0k2 + �C �0. We must have �C >0 for stability at high frequen-
cies. Substituting for �C , the condition becomes �C(r0k2 − r−1

0 )�0.

Substituting k = m/r0, gives the condition m2 − 1�0: the zero fre-
quency perturbation is never stable.

The quadratic term can be expressed to second order as∫ ∫ 


−

dt dt′ G(t, t′) = 2


∫ 


−

dp F00(p) + 4
a0

∫ 


−

dp F10(p)

+
∑
k

2
|ak|2
{[

2
∫ 


−

dp F20(p)

+
∫ 


−

dp e−ir0kpF21(p)

]

−
[
2ir0k

∫ 


−

dp e−ir0kpF23(p)

]

+
[
r20k

2
∫ 


−

dp e−ir0kpF24(p)

]}
, (3.4)

where G(t′, t′)= �(t′) · �(t) �(R(t, t′)). The Fij are functionals of � (and
hence of d), and functions of r0, as well as of p.

Combining Eqs. (3.2)–(3.4), we find, up to second order:

Eg(�0 + ��) � e0(r0) + a0e1(r0) + 1
2

∑
k

|ak|2e2(k, r0), (3.5)

where

e0(r0) = 2
�Cr0 + 
�Cr
2
0 − 
�CG00(r0)

e1(r0) = 2
�C + 2
�Cr0 − 2
�CG10(r0)

e2(k, r0) = 2
�Cr0k
2 + 2
�C − 2
�C[2G20(r0) + G21(k, r0)

− 2ir0kG23(k, r0) + r20k
2G24(k, r0)],

where Gij = ∫ 

−
 dp e−ir0(1−�(j))kpFij(p). Note that there are no off-

diagonal terms linking ak and ak′ for k� k′: the Fourier basis diago-
nalizes the second order term.

3.1.1. Parameter constraints
Note that a circle of any radius is always an extremum for non-

zero frequency perturbations (ak for k�0), as these Fourier coeffi-
cients do not appear in the first order term (this is also a consequence
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Fig. 1. Plots of e0 against r0 and e2 against r̂0k. Left: the energy of a circle e0 plotted against radius r0 for �C = 1.0, � = 0.8, and �C = 1.39 calculated from Eq. (3.6) with
r̂0 = 1.0. (The parameters of � are d = 1.0 and 	 = 1.0, but note that it is not necessary in general that d = r̂0.) The function has a minimum at r0 = r̂0 as desired. Right: the
second derivative of Eg, e2, plotted against r̂0k for the same parameter values. The function is non-negative for all frequencies.

βC

r 0 (βC
(0), r0

(0))

Fig. 2. Schematic plot of the positions of the extrema of the energy of a circle
versus �C .

of invariance to translations around the circle). The condition that a
circle be an extremum for a0 as well (e1 = 0) gives rise to a relation
between the parameters:

�C(�C ,�C , r̂0) = �C + �Cr̂0
G10(r̂0)

, (3.6)

where we have introduced r̂0 to indicate the radius at which there is
an extremum, to distinguish it from r0, the radius of the circle about
which we are calculating the expansion (3.1). The left-hand side of
Fig. 1 shows a typical plot of the energy e0 of a circle versus its
radius r0, with the �C parameter fixed using Eq. (3.6) with �C = 1.0,
�=0.8, and r̂0 =1.0. The energy has a minimum at r0 = r̂0 as desired.
The relationship between r̂0 and �C is not quite as straightforward
as it might seem though. As can be seen, the energy also has a
maximum at some radius. It is not a priori clear whether it will
be the maximum or the minimum that appears at r̂0. If we graph
the positions of the extrema of the energy of a circle against �C
for fixed �C , we find a curve qualitatively similar to that shown in
Fig. 2 (this is an example of a fold catastrophe). The solid curve
represents the minimum, the dashed the maximum. Note that there
is indeed a unique �C for a given choice of r̂0. Denote the point at

the bottom of the curve by (�(0)
C , r̂(0)0 ). Note that at �C = �(0)

C , the

extrema merge and for �C <�(0)
C , there are no extrema: the energy

curve is monotonic because the quadratic term is not strong enough
to overcome the shrinking effect of the length and area terms. Note
also that the minimum cannot move below r0 = r(0)0 . This behaviour
is easily understood qualitatively in terms of the interaction function

in Eq. (2.3). If 2r0 < d− 	, the quadratic term will be constant, and no
force will exist to stabilize the circle. In order to use Eq. (3.6) then,
we have to ensure that we are on the upper branch of Fig. 2.

Eq. (3.6) gives the value of �C that provides an extremum of e0
with respect to changes of radius a0 at a given r̂0 (e1(r̂0) = 0), but
we still need to check that the circle of radius r̂0 is indeed stable
to perturbations with non-zero frequency, i.e. that e2(k, r̂0) is non-
negative for all k. Scaling arguments mean that in fact the sign of e2
depends only on the combinations r̃0 = r0/d and �̃C = (d/�C)�C . The
equation for e2 can then be used to obtain bounds on �̃C in terms of
r̃0. (Details of these calculations and bounds can be found in [17].)
The right-hand side of Fig. 1 shows a plot of e2(k, r̂0) against r̂0k for
the same parameter values used for the left-hand side, showing that
it is non-negative for all r̂0k.

We call the resulting model, the energy Eg with parameters cho-
sen according to the above criteria, the `gas of circles' model.

3.2. Geometric experiments

To illustrate the behaviour of the `gas of circles' model, in this
section we show the results of some experiments using Eg (there are
no image terms). Fig. 3 shows the result of gradient descent using
Eg starting from various different initial regions. (For details of the
implementation of gradient descent for higher-order active contour
energies using level set methods, see [14].) In the first column, four
different initial regions are shown. The other three columns show
the final regions, at convergence, for three different sets of param-
eters. In particular, the three columns have r̂0 = 15.0, 10.0, and 5.0,
respectively.

In the first row, the initial shape is a circle of radius 32 pixels.
The stable states, which can be seen in the other three columns, are
circles with the desired radii in every case. In the second row, the
initial region is composed of four circles of different radii. Depending
on the value of r̂0, some of these circles shrink and disappear. This
behaviour can be explained by looking at Fig. 1. As already noted,
the energy of a circle e0 has a maximum at some radius rmax. If
an initial circle has a radius less than rmax, it will `slide down the
energy slope' towards r0=0, and disappear. If its radius is larger than
rmax, it will finish in the minimum, with radius r̂0. This is precisely
what is observed in this second experiment. In the third row, the
initial condition is composed of four squares. The squares evolve to
circles of the appropriate radii. The fourth row has an initial condition
composed of four differing shapes. The nature of the stable states
depends on the relation between the stable radius, r̂0, and the size
of the initial shapes. If r̂0 is much smaller than an initial shape, this
shape will `decay' into several circles of radius r̂0.
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(Initial) ˆ(r0 = 15) ˆ(r0 = 10) ˆ(r0 = 5)

Fig. 3. Experimental results using the geometric term: the first column shows the
initial conditions; the other columns show the stable states for various choices of
the radius.

4. Likelihood energy and experiments

In this section, we apply the `gas of circles' model to the extrac-
tion of trees from aerial images. We give a brief state of the art for
tree crown extraction, and then present the likelihood energy we use
in Section 4.2. In Section 4.3, we describe tree crown extraction ex-
periments on aerial images and compare the results to those found
using a classical active contour model. In Section 4.4, we examine
the robustness of the method to noise using synthetic images. This
illuminates the principal failure modes of the model, which will be
further discussed in Section 5, and which point the way for future
work. In Section 4.5, we illustrate the importance of prior informa-
tion via tree crown separation experiments on synthetic images, and
compare the results to those obtained using a classical active con-
tour model.

4.1. Previous work

The problem of locating, counting, or delineating individual trees
in high resolution aerial images has been studied in a number of
papers. For example, Gougeon [18] observes that trees are brighter
than the areas separating them. Local minima of the image are found
using a 3×3 filter, and the `valleys' connecting them are then found
using a 5× 5 filter. The tree crowns are subsequently delineated us-
ing a five-level rule-based method designed to find circular shapes,
but with some small variations permitted. While the method is quite
effective in separating trees, the size of the filters results in signifi-
cant overestimation of the size of the trees. Larsen [19] concentrates
on spruce tree detection using a template matching method. The 3D
shape of the tree is modelled using a generalized ellipsoid, while il-
lumination is modelled using the position of the sun and a clear-sky
model. Template matching is used to calculate a correlation measure
between the tree image predicted by the model and the image data.
The local maxima of this measure are treated as tree candidates,
and various strategies are then used to eliminate false positives.
This method provides 3D information about the trees, but requires

specific models for each species of tree, as well as knowledge of a
number of extraneous parameters, for example, illumination. Brandt-
berg and Walter [20] decompose an image into multiple scales, and
then define tree crown boundary candidates at each scale as zero
crossings with convex grey-scale curvature. Edge segment centres of
curvature are then used to construct a candidate tree crown region
at each scale. These are then combined over different scales and a
final tree crown region is grown.

The above methods use a series of ad hoc steps rather than a sin-
gle unified model, which makes identifying the assumptions behind
the methods difficult. Closer in spirit to the present work is that of
[21], which models the collection of tree crowns by a marked point
process, where the marks are circles or ellipses. An energy is defined
that penalizes, for example, overlapping shapes, and controls the pa-
rameters of the individual shapes. Compared to the work described
in this paper, the method has the advantage that overlapping trees
can be represented as two separate objects, but the disadvantage
that the tree crowns are not precisely delineated due to the small
number of degrees of freedom for each mark.

4.2. Likelihood energy and gradient descent

In order to couple the region model Eg to image data, we need
a likelihood, P(I|R,K). The images we use for the experiments are
coloured infrared (CIR) images. Originally they are composed of three
bands, corresponding roughly to green, red, and near infrared (NIR).
Analysis of the one-point statistics of the image in the region cor-
responding to trees and the image in the background, shows that
the `colour' information does not add a great deal of discriminating
power compared to a `greyscale' combination of the three bands, or
indeed the NIR band on its own. We therefore model the latter.

The image resolution is ∼ 0.5m/pixel, and tree crowns have di-
ameters of the order of 10pixels. Little dependence remains between
the pixels at this resolution, which means, when combined with the
paucity of statistics within each tree crown, that pixel dependencies
(i.e. texture) are very hard to use for modelling purposes. We there-
fore model the interior of tree crowns using a Gaussian distribution
with mean  and covariance �2�R, where �A is the identity operator
on images on A ⊂ �.

The background is very varied, and thus hard tomodel in a precise
way. We use a Gaussian distribution with mean ̄ and variance �̄2�R̄.
In general,  > ̄, and � < �̄; trees are brighter and more constant in
intensity than the background. The boundary of each tree crown
has significant inward-pointing image gradient, and although the
Gaussian models should in principle take care of this, we have found
in practice that it is useful to add a gradient term to the likelihood
energy. Our likelihood thus has three factors:

P(I|R,K) = Z−1 gR(IR) gR̄ (IR̄) f�R(I�R),

where IR and IR̄ are the images restricted to R and R̄, respectively,
and gR and gR̄ are proportional to the Gaussian distributions already
described, i.e.

− ln gR(IR) =
∫
R
d2x

1
2�2

(IR(x) − )2 (4.1)

and similarly for gR̄. The function f�R depends on the gradient of the
image �I on the boundary �R:

− ln f�R(I�R) = �i

∫
dom �

dt n(t) · �I(t), (4.2)

where n is the unnormalized outward normal to �. The normalization
constant Z is thus a function of , �, ̄, �̄, and �i. Z is also a functional
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Fig. 4. Left: real image with a planted forest �IFN (0.3, 0.06, 0.05, 0.05). Right: the result obtained using the `gas of circles' model (529, 5.88, 5.88, 5.64, 4, 4).

Fig. 5. From left to right: image of poplars �IFN (0.73, 0.11, 0.23, 0.094); the best result with a classical active contour (880, 13, 73); result with the 'gas of circles' model
(100, 6.7, 39, 31, 4.2, 4.2).

of the region R. To a first approximation, it is a linear combination
of L(�R) and A(R). It thus has the effect of changing the parameters
�C and �C in Eg. However, since these parameters are essentially
fixed by hand (the criteria described in Section 3.1.1 only allow us to
fix �C and constrain �C), knowledge of the normalization constant
does not change their values, and we ignore it once the likelihood
parameters have been learnt.

The full model is then given by E(R) = Ei(I,R) + Eg(R), where

Ei(I,R) = − ln gR(IR) − ln gR̄(IR̄) − ln f�R(I�R).

The energy is minimized by gradient descent. The functional deriva-
tives of all terms except the quadratic term in Eg are standard. The
functional derivative of the quadratic term gives rise to a gradient
descent force given by

n̂ · ��
��

(t) = �
∫
dom �

dt′ R̂(t, t′) · n(t′)�̇(R(t, t′)), (4.3)

where R̂(t, t′)= (�(t)− �(t′))/|�(t)− �(t′)|. To evolve the region we use
the level set framework of [22] extended to the demands of nonlocal
forces such as Eq. (4.3) [14].

The computational complexity of the algorithm is unknownwith-
out a bound on the number of iterations. However, the complexity
of one iteration is easily analysed. Eq. (4.3) involves an integration
over the contour for each contour point. The worst case complexity is
thus O(L2), where L is the length of the contour. The implementation
however, only integrates over those points within interaction range
(i.e. d + 	), and so the complexity depends on the average length l
of contour within interaction range of a point, becoming O(Ll). Typ-
ically l is a local quantity that does not depend on the size of the
image. In our application, L, on the other hand, is proportional to
the number of trees, which is in turn proportional to the size of the
image, n. So the complexity of one iteration is O(n).

4.3. Tree crown extraction from aerial images

In this section, we present the results of the application of the
above model to 50 cm/pixel colour infrared aerial images of poplar
stands located in the `Saône et Loire' region in France. The images
were provided by the French National Forest Inventory (IFN). As
stated in Section 4.2, we model only the NIR band of these images,
as adding the other two bands does not increase discriminating
power. The tree crowns in the images are ∼8–10 pixels in diameter,
i.e. ∼4–5m.

In the experiments, we compare our model to a classical active
contour model (�C =0). The parameters , �, ̄, and �̄ were the same
for both models, and were learned from hand-labelled examples in
advance. The classical active contour prior model thus has three free
parameters (�i, �C and �C), while the `gas of circles' model has six
(�i, �C , �C , �C , d and r0). We fixed r0 based on our prior knowledge
of tree crown size in the images, and dwas then set equal to r0. Once
�C and �C have been fixed, �C is determined by Eq. (3.6). There are
thus three effective parameters for the HOAC model. In the absence
of any method to learn �i, �C and �C , they were fixed by hand to give
the best results, as with most applications of active contour models.
The values of �i, �C and �C were not the same for the classical
active contour and HOAC models; they were chosen to give the best
possible result for each model separately. The initial region in all
experiments was a rounded rectangle slightly bigger than the image
domain. The image values in the region exterior to the image domain
were set to ̄ to ensure that the region would shrink inwards.

Fig. 4 illustrates the first experiment. On the left are the data,
showing a regularly planted poplar stand. The result is shown on
the right. We applied the algorithm to the central part of the image
only, for reasons that will be explained in Section 5.

Fig. 5 illustrates a second experiment. On the left are the data. The
image shows a small piece of an irregularly planted poplar forest.
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Fig. 6. From left to right: image of poplars �IFN (0.71, 0.075, 0.18, 0.075); the best result with a classical active contour (24000, 100, 500); result with the `gas of circles'
model (1500, 25, 130, 100, 3.5, 3.5).

Fig. 7. From left to right: image of poplars �IFN (0.71, 0.075, 0.18, 0.075); the best result with a classical active contour (35000, 100, 500); result with the `gas of circles'
model (1200, 20, 100, 82, 3.5, 3.5).

The image is difficult because the intensities of the crowns are varied
and the gradients are blurred. In the middle is the best result we
could obtain using a classical active contour. On the right is the result
we obtain with the `gas of circles' model.1 Note that in the classical
active contour result several trees that are in reality separate are
merged into single connected components, and the shapes of trees
are often rather distorted, whereas the prior geometric knowledge
included when ��0 allows the separation of almost all the trees and
the regularization of their shapes.

Fig. 6 illustrates a third experiment. Again the data is on the left,
the best result obtained with a classical active contour model is in
the middle, and the result with the `gas of circles' model is on the
right. The trees are closer together than in the previous experiment.
Using the classical active contour, the result is that the tree crown
boundaries touch in the majority of cases, despite their separation
in the image. Many of the connected components are malformed
due to background features. The HOAC model produces more clearly
delineated tree crowns, but there are still some joined trees. We will
discuss this further in Section 5.

Fig. 7 shows a fourth experiment. Again the data is on the left, the
best result obtained with a classical active contour model is in the

1 Unless otherwise specified, in the figure captions the values of the parameters
learned from the image are shown when the data is mentioned, in the form (,�, ̄, �̄).
The other parameter values are shown when each result is mentioned, in the form
(�i ,�C ,�C ,�C , d, r0), truncated if the parameters are not present. All parameter values
are truncated to two significant figures. Unless otherwise specified, images were
scaled to take values in [0, 1]. The region boundary is shown in white.

Table 1
Results on real images using a classical active contour model (left) and the `gas of
circles' model (right)

Figure CD % FP % FN % CD % FP % FN %

Fig. 5 85 0 15 97 0 3
Fig. 6 96.2 2.8 1.9 97.7 0 2.3
Fig. 7 89.4 5 5.6 95.5 0.6 3.9

CD: correct detections; FP: false positives; FN: false negatives (two joined trees
count as one false negative).

middle, and the result with the `gas of circles' model is on the right.
Again, the `gas of circles' model better delineates the tree crowns and
separates more trees, but some joined trees remain also. The HOAC
model selects only objects of the size chosen, so that false positives
involving small objects do not occur.

Table 1 shows the percentages of correct tree detections, false
positives and false negatives (two joined trees count as one false
negative), obtained with the classical active contour model and the
`gas of circles' model in the experiments shown in Figs. 5–7. The
`gas of circles' model outperforms the classical active contour in all
measures, except in the number of false negatives in the experiment
in Fig. 6.

The typical runtime of the `gas of circles' model in these experi-
ments (image size O(100) pixels) is of the order of 10minutes on a
normal personal computer. In our implementation, this is approxi-
mately ten times slower than using classical active contours.
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Fig. 8. One of the synthesized images, with six different levels of added white Gaussian noise. Reading from left to right, top to bottom, the image variance to noise power
ratios are 20, 15, 10, 5, 0, −5dB. Parameter values in the form (,�, ̄, �̄,�C ,�C ,�C) are shown under the six images. The parameters d and r0 were fixed to 8 throughout.

Table 2
Results on synthetic noisy images

Noise (dB) 20 15 10 5 0 −5

FP % 0 0 0 2 6.4 27.6
FN % 0 0 0 0 4 3.6
J % 0 0 0 0 0 23

FP, FN, J: percentages of false positive, false negative, and joined circle detections,
respectively, with respect to the potential total number of correct detections.

4.4. Noisy synthetic images

In this section, we present the results of tests of the sensitivity of
the model to noise in the image. Fifty synthetic images were created,
each with ten circles with radius 8 pixels and 10 circles with radius
3.5 pixels, placed at random but with overlaps rejected. Six different
levels of white Gaussian noise, with image variance to noise power
ratios from −5 to 20dB, were then added to the images to generate
300 noisy images. Six of these, corresponding to noisy versions of
the same original image, were used to learn , �, ̄, and �̄. The model
used was the same as that used for the aerial images, except that �i
was set equal to zero. The parameters were adjusted to give a stable
radius of 8 pixels.

The results obtained on the noisy versions of one of the 50 images
are shown in Fig. 8. Table 2 shows the proportion of false negative
and false positive circle detections with respect to the total number
of potentially correctly detectable circles (500 = 50 × 10), as well
as the proportion of `joined circles', when two circles are grouped
together (an example can be seen in the bottom right image of Fig. 8).
Detections of one of the smaller circles (which only occurred a few
times even at the highest noise level) were counted as false positives.

The method is very robust with respect to all but the highest levels of
noise. The first errors occur at 5dB, where there is a 2% false positive
rate. At 0 dB, the error rate is ∼ 10%, i.e. one of the 10 circles in each
image was misidentified on average. At −5dB, the total error rate
increases to ∼ 30%, rendering the method not very useful.

Note that the principal error modes of the model are false posi-
tives and joined circles. There are good reasons why these two types
of error dominate. We will discuss them further in Section 5.

4.5. Circle separation: comparison to classical active contours

In a final experiment, we simulated one of the most important
causes of error in tree crown extraction, and examined the response
of classical active contour and HOAC models to this situation. The
errors, which involve joined circles similar to those found in the pre-
vious experiment, are caused by the fact that in many cases nearby
tree crowns in an image are connected by regions of significant in-
tensity with significant gradient with respect to the background,
thus forming a dumbbell shape. Calling the bulbous extremities, the
`bells', and the join between them, the `bar', the situation arises when
the bells are brighter than the bar, while the bar is in turn brighter
than the background, and most importantly, the gradient between
the background and the bar is greater than that between the bar and
the bells.

The first row of Fig. 9 shows a sequence of bells connected by
bars. The intensity of the bar varies along the sequence, resulting
in different gradient values. We applied the classical active contour
and `gas of circles' models to these images.

The middle row of Fig. 9 shows the best results obtained using
the classical active contour model. The model was either unable to
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Fig. 9. Results on circle separation comparing the HOAC `gas of circles' model to
the classical active contour model. Top: original images. The intensity of the bar
takes values equally spaced between 48 and 128 from left to right; the background
is 255; the bells are 0. In the middle: the best results obtained using the classical
active contour model (8, 1, 1). Either the circles are not separated or the region
vanishes. Bottom: the results using the `gas of circles' model (2, 1, 5, 4.0, 8, 8). All
the circles are segmented correctly.

separate the individual circles, or the region completely vanished.
The intuition is that if there is insufficient gradient to stop the region
at the sides of the bar, then there will also be insufficient gradient
to stop the region at the boundary between the bar and the bells, so
that the region will vanish. On the other hand, if there is sufficient
gradient between the bar and the background to stop the region, the
circles will not be separated, and a `bridge' will remain between the
two circles.2

The corresponding results using the `gas of circles' model are
shown in the bottom row of Fig. 9. All the circles were segmented
correctly, independent of the grey level of the bar. Encouraging as
this is, it is not the whole story, as we indicated in Section 4.4. We
make a further comment on this issue in Section 5.

5. Conclusion

Higher-order active contours allow the inclusion of sophisticated
prior information in active contour models. HOACs are particularly
well adapted to cases in which the topology is unknown a priori. In
this paper, we have shown via a stability analysis that a HOAC energy
can be constructed that describes a `gas of circles', that is, it favours
regions composed of an a priori unknown number of circles of a cer-
tain radius. The requirement that circles be stable, i.e. local minima
of the energy, fixes one of the prior parameters and constrains the
others.

The `gas of circles' model has many uses in computer vision and
image processing. Combined with a suitable likelihood, we have ap-
plied it to the problem of tree crown extraction from aerial images
of plantations. It performs better than simpler techniques such as
maximum likelihood and classical active contours. In particular, it is
better able to separate trees that appear joined in the data than is a
classical active contour model.

The model is not without its issues, however. First, the com-
putation time is too long. We are currently working on a phase
field HOAC [23] version of the `gas of circles' model that we hope
will significantly reduce this time. Second, there are two significant

2 `Bar' and `bell' refer to image properties; we use `bridge' and `circle' to refer
to the corresponding pieces of a dumbbell-shaped region.

errormodes, as shown in the noise experiments of Section 4.4: circles
are found where the data do not ostensibly support them (`phantom
circles'), and two circles may be joined into a dumbbell shape and
never separated. We discuss these in turn.

The first issue is that of `phantom' circles. Circles of radius r̂0 are
local minima of the prior energy. It is the effect of the data that
converts such configurations into global minima. Were we able to
find the global minimum of the energy, this would be fine. How-
ever, gradient descent finds only a local minimum. This can create
problems in areas where the data do not support the existence of
circles because a circle, once formed during gradient descent, cannot
disappear unless there is an image force acting on it. We thus find
that circles can appear and remain even though there is no data to
support them.

The second issue is that of joined circles, discussed in Section 4.5.
Although the current HOAC model is better able to separate circles
than a classical active contour, it still fails to do so in a number
of cases, leaving a bridge between the circles. The issue here is a
delicate balance between the parameters, which must be adjusted
so that the sides of the bridge attract one another, thus breaking the
bridge, and so that nearby circles repel one another at close range,
so that the bridge does not re-form. Again, this is at least in part
an algorithmic issue. Even if the two separated circles have a lower
energy than the joined circles, separation may never be achieved
due to a local minimum caused by the bridge.

We propose to solve the first problem via a more detailed theo-
retical analysis of the circle energy that will allow us to remove the
local minima causing the problem, and the second via an in-depth
analysis of the energy of the dumbbell configuration. Both these
studies should lead to further constraints on the parameters, which
is a desirable goal in itself.
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Appendix A. Details of stability computations

In this appendix, we give most of the steps involved in reaching
Eq. (3.5). The equation of the region boundary is

�(t) = �0(t) + ��(t) = (r(t),�(t)) = (r0(t) + �r(t),�0(t)), (A.1)

where �0(t)=(r0(t)),�0(t))=(r0, t), �r(t)=
∑

kake
ir0kt, and k ∈ {m/r0 :

m ∈ Z}. The components of �̇ are

�̇(t) = 1 and ṙ(t) = �̇r(t) =
∑
k

akir0ke
ir0kt. (A.2)

The tangent vector field is given by

�(t) = ṙ(t)�r + �̇(t)��. (A.3)

A.1. Linear terms

To compute the length, we need the magnitude of � to second
order. The metric in polar coordinates is ds2 = dr2 + r2 d�2, so we
have that |�(t)|2 = ṙ(t)2 + r(t)2 by Eqs. (A.2). Substituting from Eqs.
(A.1) and (A.2) gives

|�(t)|2 = r20 + 2r0
∑
k

ake
ir0kt +

∑
k,k′

akak′eir0(k+k′)t(1 − r20kk
′). (A.4)
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Taking the square root, expanding it as
√
1 + x ≈ 1 + 1

2 x − 1
8 x

2, and
keeping terms to second order in the ak then gives

|�(t)| = r0

⎧⎨
⎩1 +

∑
k

ak
r0

eir0kt − 1
2

∑
k,k′

akak′kk′eir0(k+k′)t
⎫⎬
⎭ . (A.5)

Using Eq. (A.5), the boundary length is then given to second order
by

L(�) =
∫ 


−

dt |�(t)| = 2
r0

⎧⎨
⎩1 + a0

r0
+ 1

2

∑
k

k2|ak|2
⎫⎬
⎭ ,

where we have used the reality of �r to set a−k = a∗
k, where * indi-

cates complex conjugation, and orthonormality of the Fourier basis
elements.

We can write the interior area of the region as

A(�) =
∫ 


−

d�

∫ r(�)

0
dr′ r′ =

∫ 


−

d�

1
2
r2(�)

Thus, using Eq. (A.1), and again using orthonormality, we have that

A(�) = 
r20 + 2
r0a0 + 

∑
k

|ak|2. (A.6)

A.2. Quadratic terms

To compute the expansion of the quadratic term in Eq. (2.2) for
Eg, we need the expansions of �(t) · �(t′) and �(R(t, t′)).

A.2.1. Inner product of tangent vectors
The tangent vector is given by Eq. (A.3), but we must take care as

�(t) and �(t′) live in different tangent spaces, at �(t) and �(t′), respec-
tively. It is easiest to convert the tangent vectors to the Euclidean co-
ordinate basis, �r=cos(�)�x+sin(�)�y and ��=−r sin(�)�x+r cos(�)�y
as these basis vectors are preserved by parallel transport. Taking the
inner product then gives

� · �′ = cos(�′ − �)[r20 + r0�r + r0�r
′ + �r�r′ + �̇r�̇r

′
]

+ sin(�′ − �)[r0�̇r
′ − r0�̇r + �r�̇r

′ − �̇r�r′],

where unprimed quantities are evaluated at t and primed quantities
at t′.

A.2.2. Interaction function
First, we expand R(t, t′). The squared distance between �(t′) and

�(t) is given by

|�(t′) − �(t)|2 = [(r0 + �r′) cos(�′) − (r0 + �r) cos(�)]2

+ [(r0 + �r′) sin(�′) − (r0 + �r) sin(�)]2,

which after expansion gives

R2(t, t′) = 2r20(1 − cos(�t))

{
1 + 1

r0
(�r + �r′)

+�r2 + �r′2 − 2 cos(�t)�r�r′

2r20(1 − cos(�t))

}
,

where �t=�′ −�= t′ − t. Expanding
√
1 + x ≈ 1+ 1

2 x− 1
8 x

2 to second
order and collecting terms, we then find

R(t, t′) = 2r0| sin(�t/2)| + | sin(�t/2)|(�r + �r′) + A(�t)
4r0

(�r − �r′)2,

(A.7)

where A(z) = cos2(z/2)| sin(z/2)|−1.

Expanding �(z) in a Taylor series to second order, and then sub-
stituting R(t, t′) for z using the approximation in Eq. (A.7), and keep-
ing only terms up to second order in �� then gives

�(R(t, t′)) = �(X0) +
∣∣∣∣sin �t

2

∣∣∣∣�′(X0)(�r + �r′)

+ 1
4r0

A(�t)�′(X0)(�r − �r′)2

+ 1
2
sin2

(
�t
2

)
�′′(X0)(�r + �r′)2, (A.8)

where X0 = 2r0| sin(�t/2)|.

A.3. Combining terms

Using the above equations gives

G(t, , t′)

= r20 cos(�t)�(X0)︸ ︷︷ ︸
F00,even

+ (�r + �r′) r0 cos(�t)
{
�(X0) + r0

∣∣∣∣sin �t
2

∣∣∣∣�′(X0)
}

︸ ︷︷ ︸
F10,even

+ (�̇r
′ − �̇r) r0 sin(�t)�(X0)︸ ︷︷ ︸

F11,odd

+ (�r2 + �r′2) r0 cos(�t)
{
1
4
A(�t)�′(X0)+ 1

2
r0sin2

(
�t
2

)
�′′(X0)+

∣∣∣∣sin �t
2

∣∣∣∣�′(X0)
}

︸ ︷︷ ︸
F20,even

+(�r�r′) cos(�t)
{
�(X0)+2r0

∣∣∣∣sin �t
2

∣∣∣∣�′(X0)− 1
2
r0A(�t)�′(X0)+r20sin

2
(
�t
2

)
�′′(X0)

}
︸ ︷︷ ︸

F21,even

+ (�r′�̇r
′ − �r�̇r) r0

∣∣∣∣sin �t
2

∣∣∣∣ sin(�t)�′(X0)︸ ︷︷ ︸
F22,odd

+ (�r�̇r
′ − �r′�̇r) sin(�t)

{
�(X0) + r0

∣∣∣∣sin �t
2

∣∣∣∣�′(X0)
}

︸ ︷︷ ︸
F23,odd

+ (�̇r�̇r
′
) cos(�t)�(X0)︸ ︷︷ ︸

F24,even

,

where the Fij denote the functions appearing in the terms of G, and
`odd' and `even' refer to parity under exchange of t and t′. Each
line, and hence G, is symmetric in t and t′, as it should be. We
can now substitute the expressions for �r and �̇r in terms of their
Fourier coefficients, and calculate

∫∫ 

−
dt dt

′ G(t, t′). We note that in
the terms involving F10, F11, F20, F22, and F23, the presence of the
symmetric or antisymmetric factors in �r and �r′ simply leads to a
doubling of the value of the integral for one of the terms in these
factors, due to the corresponding symmetry or antisymmetry of the F
functions. We therefore only need to evaluate one of these integrals
for the relevant terms.

Because the F's depend only on �t, the resulting integrals can be
reduced, via a change of variables p=�t, to integrals over p. For F00
and F10, we have

∫ ∫ 


−

dt dt′ F00(t′ − t) =

∫ ∫ 


−

dp dt′ F00(p) = 2


∫ 


−

dp F00(p),
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and∫ ∫ 


−

dt dt′ �r(t) F10(t′−t)=

∫ ∫ 


−

dt dt′

∑
k

ake
ir0kt F10(t

′−t)

=
∑
k

ak

∫ ∫ 


−

dp dt′ eir0k(−p+t′) F10(p)

=
∑
k

ak

∫ 


−

dt′eir0kt

′ ∫ 


−

dpe−ir0kpF10(p)

=
∑
k

ak2
�(k)
∫ 


−

dp e−ir0kp F10(p)

=2
a0

∫ 


−

dp F10(p).

The calculations for the other terms proceed in a very similar
fashion, using the same change of variable and the orthonormality
of the Fourier basis. We merely list the results (full details may be
found in [24]):∫ ∫ 


−

dt dt′ �̇r(t) F11(t′ − t) = 0

∫ ∫ 


−

dt dt′ �r2(t) F20(t′ − t) = 2


∑
k

|ak|2
∫ 


−

dp F20(p)

∫ ∫ 


−

dt dt′ �r(t)�r(t′) F21(t′−t)=2


∑
k

|ak|2
∫ 


−

dp e−ir0kp F21(p)

∫ ∫ 


−

dt dt′ �r(t)�̇r(t) F22(t′−t)=0

∫ ∫ 


−

dtdt′ �r(t)�̇r(t′)F23(t′−t)=−2


∑
k

|ak|2ir0k
∫ 


−

dpe−ir0kpF23(p)

∫ ∫ 


−

dtdt′ �̇r(t)�̇r(t′)F24(t′−t)=2


∑
k

|ak|2r20k2
∫ 


−

dp e−ir0kp F24(p).

Using these results then gives Eq. (3.4), which in combination with
Eqs. (3.2) and (3.3), gives Eq. (3.5).
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SUMMARY
Single-cell segmentation is typically a crucial task of image-based cellular analysis. We present nucleAIzer, a
deep-learning approach aiming toward a truly general method for localizing 2D cell nuclei across a diverse
range of assays and light microscopy modalities. We outperform the 739 methods submitted to the 2018
Data Science Bowl on images representing a variety of realistic conditions, some of which were not repre-
sented in the training data. The key to our approach is that during training nucleAIzer automatically adapts
its nucleus-style model to unseen and unlabeled data using image style transfer to automatically generate
augmented training samples. This allows themodel to recognize nuclei in new and different experiments effi-
ciently without requiring expert annotations,making deep learning for nucleus segmentation fairly simple and
labor free for most biological light microscopy experiments. It can also be used online, integrated into Cell-
Profiler and freely downloaded at www.nucleaizer.org.
A record of this paper’s transparent peer review process is included in the Supplemental Information.
INTRODUCTION

Identifying nuclei is the starting point for many microscopy-

based cellular analyses, which are widespread in biomedical

research. Accurate localization of the nucleus is the basis of a va-

riety of quantitative measurements of important cell functions

but is also a first step for identifying individual cell borders, which

enables a multitude of further analyses. Until recently, the domi-

nant approaches for this task have been based on classic image

processing algorithms (e.g., thresholding and seeded water-

shed; Carpenter et al., 2006), guided by shape and spatial priors

(Molnar et al., 2016). These methods require expert knowledge

to properly adjust the parameters, which typically must be re-

tuned when experimental conditions change.

Recently, deep learning has revolutionized an assortment of

tasks in image analysis, from image classification (Krizhevsky
Cell Systems 10, 453–458
This is an open access article und
et al., 2017) to face recognition (Taigman et al., 2014) and scene

segmentation (Badrinarayanan et al., 2017). It is also responsible

for breakthroughs in diagnosing retinal images (De Fauw et al.,

2018), classifying skin lesions with superhuman performance

(Esteva et al., 2017), and correcting artifacts in fluorescence im-

ages (Weigert et al., 2017). Initial work (reviewed in Moen et al.,

2019) indicates that deep learning is effective for nucleus seg-

mentation (Falk et al., 2019; Van Valen et al., 2016; Cui et al.,

2018); however, these methods often fail to properly separate

touching nuclei well and most importantly lack robustness to un-

seen domains.

The 2018Data Science Bowl (DSB) organized by Kaggle, Booz

Allen Hamilton, and the Broad Institute challenged participants

to push the state of the art in nucleus segmentation. The goal

of the challenge was to develop fully automated and robust

methods effective in a variety of conditions, including differing
, May 20, 2020 ª 2020 The Authors. Published by Elsevier Inc. 453
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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cell lines, treatments, and types of light microscopy. The chal-

lenge attracted thousands of data scientists from around the

world. Approaches using deep learning dominated the competi-

tion, achieving scores that shattered what was previously

possible: the best performing traditional methods we submitted

ranked no higher than 1,000 out of 3,891 submissions in stage 1

(data not shown); even classical methods hand-tuned to five

subsets of the testing data were beaten by 85 out of 739 submis-

sions in stage 2 testing (Caicedo et al., 2019b). The top deep-

learning-based methods relied on only a handful of different

architectures, namely Mask R-CNN, U-Net, and feature-pyramid

networks; the factors that participants commonly believed had

most influence over their method’s ranking were the amount of

data, the pre-processing, and methods used to augment

the data.

We present here a superior approach we named nucleAIzer,

which, unlike the previous best submissions, applies image style

transfer (Isola et al., 2017): an image-to-image translation using a

pixel-wise mapping from one image to the other that ensures the

generated synthetic output image resembles the original as

closely as possible. It aims to overcome one of the greatest chal-

lenges of deep learning, the extent of the annotated training set.

In particular, we address the unsupervised domain adaptation

problem in which the target (test) samples are drawn from a

different distribution than the labeled training samples, but we

have access to some unlabeled samples from the target distribu-

tion. We augment the training samples by creating realistic-look-

ing artificial sample images with the texture, coloration, and

pattern elements from source images not included in the training

set using image style transfer (Figure 1). Combining this with a

segmentation network based on Mask R-CNN (He et al., 2017),

an instance segmentation and classification network, along

with boundary correction using U-Net (Ronneberger et al.,

2015), a semantic segmentation network for biomedical images,

(Figure S4) and mathematical morphology, our method outper-

forms all other methods reported on the final DSB leaderboard

(post-competition) (Our method achieved the top-score after

the competition ended. An early version of our approach placed

27th out of 739 submissions in round 2 of the competition). We

also demonstrate that our method outperforms similar baselines

on public fluorescent and histology datasets. Our trained model

does not require parameter tuning or specialized knowledge to

use and can be applied on a wide variety of conditions and imag-

ing modalities.

Our software is open source and freely available (Data S1 at

https://github.com/spreka/biomagdsb). Pre-trained networks

for DSB, fluorescent, and histology data can be applied to new

images via CellProfiler (Data S2 and at https://github.com/

CellProfiler/CellProfiler-plugins/blob/master/nucleaizer.py) or

through an online interface at www.nucleaizer.org.

Our approach (Figures 1A and S1; STAR Methods) begins by

automatically rescaling the images such that nucleus size is

approximately uniform, as the performance of the network is

improved if the nucleus size is fixed during training and infer-

ence (see STAR Methods; Figures S3 and S6). To do this, we

estimate the typical nucleus size in the provided images with

a Mask R-CNN-based network pretrained on a large set of

diverse images with nucleus segmentations and fine-tuned us-

ing the provided training data and label masks. The output of
454 Cell Systems 10, 453–458, May 20, 2020
this network is an initial segmentation we use to estimate the

typical nucleus size. Alternatively, if the typical nucleus size is

known a priori, it can be provided manually and the images re-

scaled accordingly.

Next, to adapt our model to handle a wide variety of cell

types, staining methods, and imaging modalities, even those

for which no segmentation annotations are available, we

augment the training set with an artificially generated set of

representative image-label pairs. This is accomplished using

image style transfer. Training and inference both begin by auto-

matically clustering training images into similar styles based on

their appearance, using k-means (see STAR Methods; Fig-

ure 1B). For each cluster of similar image types, a style transfer

network (Isola et al., 2017) is trained to generate synthetic im-

ages of the desired style with nuclei at specified locations. Dur-

ing training, nucleus annotations are used to train the style

transfer network; during inference on out-of-domain target im-

ages, we use nucleus masks output from the initial segmenta-

tion network. After a style transfer network is trained for each

image style, we generate a set of artificial nucleus masks repre-

sentative of the shape, size, and spatial distribution of nuclei

belonging to that style. For this, we used �100,000 manually

labeled single nucleus masks from the DSB set. A subset of

these nuclei is selected that represent the shape distribution

of the original morphologies, and they are placed such that

they follow the spatial distribution of the image style (see

STAR Methods). With trained style networks and representative

nucleus masks in hand, we generate synthetic images in the

desired style nearly indistinguishable from real microscopy im-

ages (see STAR Methods) with nuclei in locations defined by

the artificial masks. The synthetic image-mask pairs make up

the augmented dataset; samples are shown in Figures 1B

and S7A. The augmented data are added to the training data

for the segmentation network and further extended with

conventional augmentations (rotation, cropping, intensity

stretching, etc., see STAR Methods). For this experiment, we

generated 20 synthetic image/mask pairs for each of the 134

style clusters we identified in the final round data.

Finally, the ultimate Mask R-CNN segmentation model is

trained on the combined augmented and rescaled training

data. All images are adjusted such that the estimated nuclei

size is uniform. To refine the segmentations for high pixel-level

accuracy, the edges of each detected nucleus are corrected us-

ing a U-Net-based model trained on the same data, followed by

some mathematical morphology-based post-processing (see

STAR Methods). This step may be skipped if such accuracy is

unnecessary for the application, for example, if simply counting

nuclei.

RESULTS

We evaluated our approach on four different datasets: DSB

stage 1, DSB stage 2, our own set of fluorescence microscopy

images, and our own set of histology images from various sour-

ces (DSB1, DSB2, fluo, and hist, respectively, details in Table

S2). We compare our approach against submissions from other

teams on DSB1 and DSB2 (nearly 3,000 in stage 1 and 739 in

stage 2). As benchmarks, we include the results reported in the

first and second positions of the leaderboard, which was frozen

https://github.com/spreka/biomagdsb
https://github.com/CellProfiler/CellProfiler-plugins/blob/master/nucleaizer.py
https://github.com/CellProfiler/CellProfiler-plugins/blob/master/nucleaizer.py
http://www.nucleaizer.org
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Figure 1. Overview of Our Approach

(A) Upper row of boxes presents the nucleus segmentation and pre-processing; an initial Mask R-CNN network estimates typical nucleus sizes, then images are

rescaled such that mean nucleus size is uniform and a Mask R-CNN network trained on images with uniform nucleus size predicts segmentations. A contour

refinement step using a U-Net-based network with a morphology operation is applied to obtain the final segmentation result. The data augmentation pipeline is

depicted in the bottom row, the training set is augmented with an artificially generated set of image/label pairs in the target domain(s), and a pre-trained Mask

R-CNNmethod is fine-tuned using the augmented images. Augmentation and training steps may be iteratively repeated as the gray dashed line suggests. Upper

row depicts the inference pipeline; bottom row, training. Solid lines indicate data flow; dashed lines indicate transfer of a trained model.

(B) Image style-transfer-based data augmentation. To adapt our model to handle out-of-domain image types for which we have no segmentation labels, we

synthesize new training data by first clustering images into similar groups, then learn a style transfer model. The style transfer model is provided with simulated

nucleus masks, which mimic the number, shape, and size of the unseen nuclei, and then synthetic training image/label pairs are generated using the masks and

the style transfer models. These data are added to the standard training data provided to Mask R-CNN, and the network learns to segment nuclei in the new

domain. See also Figure S1.
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at the close of the competition (https://www.kaggle.com/c/

data-science-bowl-2018/leaderboard), a recent deep learning

method, unet4nuclei (Caicedo et al., 2019a), which is based on

a U-Net (Ronneberger et al., 2015) structure, a widely used

Otsu threshold and seeded watershed method with object split-

ting (Carpenter et al., 2006), the pixel-based classification soft-

ware ilastik (Sommer et al., 2011), and a more sophisticated

but still classical gradient vector flow (GVF) based method,

where an active contour is driven to edges using gradient vectors

pointing to bright regions (Li et al., 2008) (Figure 2; Table S1; Data

S2). Notably, the DSB stage 2 evaluation is performed on an un-
known subset of the provided test images, many of which are

outside the domain of the training images, truly challenging the

ability of the model to generalize. We provide additional bench-

marks and variations of our approach for comparison—including

how our proposed style transfer learning step improves perfor-

mance—in STAR Methods and Figure S2. Training a model on

the same data with and without style transfer augmentation

showed increased accuracy with style.

Our method scores higher (DSB-score, 0.633) than the top

ranked deep learning approach (0.631, the highest of 739

teams) on the DSB stage 2 test set and has a simpler
Cell Systems 10, 453–458, May 20, 2020 455
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Figure 2. Results

(A) DSB-scores with error bars (standard deviation) for four image sets: hist, fluo, DSB stage 1, and DSB stage 2 (see details in STAR Methods). DSB-score is a

modified mean average precision of segmented nuclei (see STAR Methods). Highest scores are marked with dashed lines and red color.

(B) Segmentation results for various methods on sample image crops with difficult cases (two example images of each); rows match those of (A) (note: ground

truth is not public for DSB stage 2). A crop of the original image is provided in the first column, followed by segmentation results predicted by variousmethods. The

color coding of the results is explained in the legend at the bottom. See also Figures S2, S5, and S8; Table S1.
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architecture with fewer parameters. Our method outperforms

all other tested methods, too, including a classical baseline

(0.528) (Caicedo et al., 2019b; Carpenter et al., 2006) (Fig-

ure 2A). In addition, our proposed method outperformed all

prior published results on hist, a diverse set of histology images

and on fluo, a fluorescent image set (BBBC039; Caicedo et al.,

2019a) (see Data S1 and S2 for details). A detailed comparison

of our results against six other methods evaluated with addi-

tional metrics is provided in Table S1; Figures S5 and S8 (see

details in STAR Methods).
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DISCUSSION

We proposed a deep-learning-based nucleus segmentation

approach designed for robustness to new experimental settings,

using image style transfer to augment our training data with valu-

able out-of-domain samples. Our segmentation network learned

from these artificially generated image/mask pairs, which mimic

the patterns of new data types. This approach helped the

network adapt to a diverse set of test data outside the domain

of the training data, outperforming every other deep learning
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and classical method tested. Our generalized models success-

fully segment images across several domains, achieving perfor-

mance close to or matching that achieved by models derived

from and applied to a specific domain. The idea of augmenting

difficult-to-obtain data using style transfer has enormous poten-

tial not only for nucleus detection but also more broadly in appli-

cations requiring some form of image understanding.

Key Changes Prompted by Reviewer Comments
Themanuscript was extendedwith the section Segmentation Er-

ror Analysis describing both advantages and limitations of our

approach compared with other methods, while practical run-

time and resource details were also given in section Methods

Used for Comparison for training and inference so that the reader

might have a better overview of applicability. Specific algo-

rithmic considerations were clarifiedmore extensively, e.g., clus-

tering and image style transfer or post-processing. For context,

the complete transparent peer review record is included within

the Supplemental Information.
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Software and Algorithms

Code repository This manuscript https://github.com/spreka/biomagdsb

NucleAIzer online tool This manuscript www.nucleaizer.org

CellProfiler plugin This manuscript https://github.com/CellProfiler/CellProfiler-

plugins/blob/master/nucleaizer.py
RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Peter

Horvath (horvath.peter@brc.hu).

Materials Availability
This study did not generate new unique reagents.

Data and Code Availability
The authors declare that the data supporting the findings of this study are available within the paper and its Supplemental Informa-

tion files.

The authors also declare that the software supporting the findings of this study are available within the paper, its Supplemental

Information files, under www.nucleaizer.org, and https://github.com/spreka/biomagdsb.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Kaggle Competition
We designed our pipeline to recognize nuclei as accurately as possible in a wide variety of images acquired with different micro-

scopes, under varying imaging conditions with different stains for nuclei of various cell types. This was the challenge set forth in

the 2018 Data Science Bowl (DSB) by Kaggle, Booz Allen Hamilton and the Broad Institute. The competition included a preparatory

stage 1, to which teams could submit their solutions during a four-month period and a 4-day long stage 2 final scoring period.

Existing nucleus segmentation methods do not generalize well, they perform well only on the limited experimental conditions they

are designed or tuned for. The Data Science Bowl was highly successful in the sense that many robust solutions were developed that

pushed the state-of-the-art in terms of segmentation performance and insensitivity to image type and quality. Solutions such as ours

are now being developed into toolkits for biologists that will accelerate science by improving automation in identifying nuclei.

We participated in the competition in both stages, reaching the top 1% in stage1 and top 4% in stage 2. The presented results are

based on further improvements post-competition.

Data
The official dataset for the challenge is composed of a training set and two tests sets, one for each stage. The number of images in

each set is 670 (training), 65 (stage 1 test), and 3019 (stage 2 test), stage 1 test masks were released in the second stage. The final

evaluation of the teams’ performance was measured on a subset of the stage 2 test set (the identity of the subset remained hidden to

the competitors). Many of the competitors used additional data besides the provided training data, as this was permitted as long as

participants shared their sources on the official competition website (https://www.kaggle.com/c/data-science-bowl-2018). Our an-

notated training data included 12 additional data sources besides the DSB data, including some data sources annotated by experts

in our institution. This extended the total number of training image/mask pairs from 735 to 1,102, and the number of annotated nuclei

from 33,814 to 80,692 (not including the synthetic data). A summary of the data we used is provided in Table S2.

Using style transfer, we augmented our training data with synthetic image/mask pairs generated in the style of k=134 clusters of

images from the DSB Stage 2 set, as described in Sections Clustering to Synthesizing new image/mask pairs. This added 2,680 syn-

thetic image/mask pairs to the training data (approximately 263,701 annotated nuclei).

We tested various versions of our method along with several competing methods on four test datasets: DSB test1, DSB test2,

fluo, and hist. DSB test1 and DSB test2 are heterogeneous test sets from the Kaggle challenge (stage 1 and stage 2). The fluo

dataset is fluorescence images of U2OS cells in a chemical screen taken from the Broad Bioimage Benchmark Collection
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(BBBC039) (Caicedo et al., 2019a). The hist dataset is a mixture of histology images collected from the internet and prostate H&E

stained slides collected in-house.

A fraction of the histological images manually annotated in our lab were used as test set hist (see Supplemental Data). BBBC039

(Caicedo et al., 2019a) images were used to train a fluorescent segmentation model, we refer as fluo. The hist and fluo test sets are

disjoint from the respective training data.

We carefully prepared our test sets for evaluation by automatic clustering as follows. Each test set was split into disjoint parts; one

was completely held out of all training procedures and solely used for evaluation, while the remaining part served as out-of-domain

unannotated data, was clustered by k-means and forwarded to style transfer and subsequent training steps.

We collected histopathology images of test set hist intentionally from such experiments that lacked similar instances in our entire

training set to test how well our approach would perform on various out-of-domain experiments. Hence, only style transfer learning

could be used to input these missing domains’ information to our segmentation network.

All input images were initially converted to 8-bit 3-channel RGB images in.png format as well as images produced by our pipeline

(except masks).

Computational environment
Software

Our pipeline is implemented using a shell script to allow continuous execution of the entire pipeline. Python 3 scripts execute the

training and inference of Mask R-CNN, U-Net, and pix2pix which rely on the TensorFlow, Keras, and PyTorch environments. The

clustering, post-processing, and initial steps of style transfer are implemented in Matlab. Our software is available for download

at: https://github.com/spreka/biomagdsb where a detailed documentation can also be found discussing the required versions of

frameworks and details about the architecture parameters.

The entire pipeline can be run both under Linux andWindows. In a typical use case, it is not necessary to retrain any of the models.

Calling the postCompmethod without post processing provides excellent results. For specific experiments with no ground truth an-

notations, performing the style transfer learning part of our pipeline generates new synthetic training data in the missing domain on

which training a new model results in fine segmentation. Alternatively, an online version of our method is available at www.

nucleaizer.org.

Hardware

Our methods were trained and tested on a variety of Nvidia graphics cards, including GTX 1070, 1080Ti, and Titan Xp.

Related work
Mask R-CNN
He et al. (2017) publishedMaskR-CNN as an extension of Faster R-CNN to allow simultaneous instance detection and segmentation.

The network architecture is similar to that of Faster R-CNN: feature extraction uses ResNet (50 or 101 layers) or alternatively Feature

Pyramid Network (FPN), while head is as in Faster R-CNN extended with a fully convolutional mask prediction branch. A detailed

discussion of extended R-CNN versions can be found in Weng, 2017.

We decided to incorporate Mask R-CNN in our pipeline due to its robustness, scalability and instance-awareness. It is currently

one of the leading computational architectures in instance segmentation of arbitrary object classes, and its applications dominated

the methods submitted to the DSB 2018 competition alongside solutions based on U-Net.

U-Net
U-Net (Ronneberger et al., 2015) was specifically created for bioimage segmentation with an encoder-decoder architecture and skip

connections between layers of the encoding branch and decoding branch to provide the decoder with access to spatial information

to reason about upsampling the segmentation.

We applied U-Net in our post-processing pipeline as it can efficiently be used to detect subtle differences such as those around the

edges of objects. The network structure is straightforward and computationally feasible.

Post-processing the segmented nuclei per se is needed due to the inevitable uncertainty in marginal cases, like relatively small

objects most likely corresponding to false detections. We found probability maps predicted by U-Net helpful in such scenarios.

METHOD DETAILS

Overview of the Pipeline
As a first step, pre-segmentation of the input images is performed using a pre-trained deep convolutional model (which we refer as

preseg) to estimate nuclei sizes as well as to create a mask input for image style transfer learning. Simultaneously, we cluster similar

images of the input data into groups, and learn styles on these clusters (see Figure 1B and sections Clustering for Style Transfer

Learning and Learning Image Style Transfer Models for details). As a next step, we extend the training data with artificially created

style transferred images for fine-tuning a Mask R-CNN (He et al., 2017) pre-trained on our nucleus segmentation dataset. For infer-

ence on unseen data, we use the refined Mask R-CNN network incorporating knowledge about estimated cell sizes. The resulting

contours are refined with U-Net (Ronneberger et al., 2015) and a morphology step.

The proposed method consists of procedures for training and inference, as shown in Figure S1. Inference merely requires unan-

notated images as its input – provided the pre-trained models are available. Training the network produces a learned segmentation
e2 Cell Systems 10, 453–458.e1–e6, May 20, 2020
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model, and requires a set of annotated training data and a pre-trained segmentation network (pre-segmentation network), as well as

any available unannotated images that can be used for data augmentation. The pretrained segmentation network is crucial to both

the training and inference procedures, so we discuss it first and then continue with training and prediction steps.

Training and Style Transfer Data Augmentation
Pre-segmentation

The architecture for the segmentation networks is based on the Mask R-CNN architecture. The pretrained segmentation network

(pre-segmentation network) is used to make rough estimates about the nucleus size and shape while being robust to changes in im-

aging modality or magnification. The network is initialized with pretrained weights from the MS-COCO dataset, which contains im-

ages and segmentation masks for 91 object types including people, trucks, sheep, dogs, etc. For details about the original COCO

competition see http://cocodataset.org or the corresponding publication (Lin et al., 2014). The network was trained using a diverse

set of annotated images containing various imagingmodalities, cell lines, magnifications, etc. Formore information see Section Data.

The annotations consisted of segmentation masks for the nuclei. Augmentation was used during training including geometric trans-

formations, intensity stretching, cropping, noise, and blur (see Data S1 documentation for details).

The resulting network, which we refer to as preseg, already performed reasonably well on unannotated images in the test set (Fig-

ure S2), although this was not its purpose. The preseg network is used to: estimate properties of nuclei in new unannotated images

(size, shape, and area) in clustering, and to generate rough segmentations on unannotated images for the style transfer data augmen-

tation step (see the following two sections for details).

Clustering for Style Transfer Learning
Images without annotations are automatically clustered to define multiple groups with similar properties: textures, imaging modal-

ities, cell lines, sample type (tissue or culture), etc. These groups are used as data sources to learn style transfer models to generate

additional synthetic data that mimics the properties of each cluster of unannotated images.

To perform the clustering, we use a pairwise similarity metric between feature vectors describing each unannotated image. Fea-

tures were extracted using CellProfiler (Carpenter et al., 2006) modules including intensity and texture and a similarity metric was

computed by a shallow fully connected neural network (Frank et al., 2016). This similarity network was trained on the DSB train1

data set, where images taken with the same condition are given a label of 1 and images from different conditions are given a label

of 0. The output of this network on the unannotated data yielded a similarity matrix which we clustered with k-means. The number of

clusters, k=134 for DSB stage 2 test set, was chosen automatically based on the number of images to over-segment the groups to

avoid accidental mixing of the true underlying groups. Ideally, each obtained cluster of unannotated images represents a ‘‘style’’ or

distribution of data which can be augmented with style transfer (e.g. digital slides of H&E stained breast cancer histology samples at

63x magnification, or fluorescent images of Human MCF7 cell nuclei at 40x).

Learning Image Style Transfer Models

We use the pix2pix (Isola et al., 2017) framework for image style transfer (https://github.com/junyanz/pytorch-CycleGAN-and-

pix2pix). The architecture consists of two adversarial networks, a generator tasked with synthesizing realistic looking images, and

a discriminator tasked with identifying real images from synthesized images. This model learns to map one image domain to another

through an adversarial loss that encourages the generator to learn to fool the discriminator. The input to the generator in our case is a

binary mask containing 1’s at the locations of the desired nuclei, and 0’s elsewhere. The input of the discriminator is an image/mask

pair (either a real pair, or a synthetically generated pair). The generator learns to transform the binarymask into the desired style of the

real images from the cluster, and the discriminator encourages this by trying to identify real image/mask pairs from fakes. We use the

rough segmentations provided by the preseg network as masks for the unannotated images in the style cluster during learning. We

train a pix2pix style transfer network to synthesize realistic images from masks for each of the style clusters.

Synthesizing New Image/Mask Pairs

Using our set of 134 trained style transfer networks, we synthesized 20 new image/mask pairs for each of the styles in the unanno-

tated data. A crucial step for this task was to generate novel binarymasks to provide as input to the style transfer network, which uses

the mask to generate a realistic image of the cells with nuclei in the locations defined in the mask. We generated the masks algorith-

mically as a combination of 1) fetching real nuclei masks from a database, and 2) synthesizing nuclei using software (simcep; Leh-

mussola et al., 2007). Approximately 50% of the nucleus masks were created using each approach. In this manner, we generated 20

masks for each of the 134 style clusters, and then used the style transfer network to generate the corresponding images.

We assembled our nucleus mask database from images of the official DSB training set and further external datasets (see

Table S2) - some of which we corrected for slight contour errors - and added each nucleus mask to the database. We fetched

such nuclei masks that follow the features of the desired style and placed them on the synthetic mask images in accordance with

the localization properties of the given style.

Training the Mask R-CNN Segmentation Network

The synthetic image/mask pairs generated by the style transfer network were added to the annotated training data to update the

Mask R-CNN segmentation network. We used the implementation of Matterport (https://github.com/matterport/Mask_RCNN) and

wrote handler scripts in Python to create the appropriate data structures and call functions. Training was performed in 3 steps

with decreasing learning rate and targeted different layers of the Mask R-CNN network, as described in the documentation of the

aforementioned Matterport repository.
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The loss function was as defined in (He et al., 2017): it comprises of classification, localization and segmentation mask losses:

L=Lcls+Lbox+Lmask by ROIs, and defines mask loss as follows. Given the k-th region does belong to ground truth class k it takes

the average binary cross-entropy loss which is formulated as

Lmask = � 1

m2

X
1%i;j%m

h
yij , log byk

ij +
�
1� yij

�
log

�
1� byk

ij

�i
(Equation 1)

where yij is the true label of a cell (i,j) from a ROI ofmxm size on the ground truth mask of class k and bykij is the predicted class label of

the same cell. The formula only includes masks for ground truth class k that are associated with the k-th class.

Image Augmentation and Resizing

The performance of deep learning networks is known to scale with the size of the dataset (Hestness et al., 2017). Therefore, we use a

number of approaches to augment the training data. The first, as we described above, is to add new synthetic image/mask pairs

generated in the style of unseen examples to the existing annotated training data. Each minibatch contained 10-50% synthetic

images. We also used standard data augmentation techniques including random cropping, colour channel swapping, intensity modi-

fication by histogram stretching or equalization and inversion, rotation to an arbitrary degree and translation as geometric transfor-

mations and finally, to better resemble low-quality images, blur and additive noise were used as well. These operations were applied

to all the input training data – style transfer results too – with a random probability.

MASK R-CNN is reasonably robust to changes in scale, but superior performance is obtained if the nucleus size is approximately

40 pixels in diameter for the data and parameters we used. Figure S3 shows the results of the robustness of our method with a fixed

parameter against different nuclei sizes. Quantitative evaluation is shown in Figure S6.

Another preprocessing step was to resize the images by a scaling factor to obtain a training dataset homogeneous both in cell and

image size. The scaling factors were computed from the size estimation of the preseg nucleusmasks such that the resultingmean cell

size is set to 40 pixels diameter. Images were then either cropped or padded so that the resulting image was 512 x 512 pixels.

Inference
Mask R-CNN Prediction

TheMask R-CNNmodel trained as described above is used to predict segmentation masks when new images are provided as input.

The images are resized before they are input to the network as described in the previous section.

Post-processing and U-Net Correction

We found that the segmentations could be further improved by postprocessing and refining nucleus contours using U-Net (Ronne-

berger et al., 2015). This encouraged better boundary reasoning between adjacent nuclei, and finer segmentations with the back-

ground. First, outlier objects were removed or merged as follows: 1) Smaller objects that were entirely within another object were

eliminated. 2) objects that were surrounded by another object more than p1% were merged, and 3) objects smaller than p2 pixels

area were removed. Next, U-Net based correction was performed (Figure S4): 1) an optimal threshold p3 for U-Net probability values

was determined, 2) a soft margin around theMask R-CNN contour was defined for each object, with an extension of p4 pixels inwards

and p5 outwards. The contour was extended/shrunk based on the U-Net predictions. 3) objects that had in total less than p6 mean

U-Net probability were removed. Parameters p1..p6 were optimized on the training set with a genetic algorithm to the DSB-score

function (see formulation in section Evaluation Metrics). Best values were: (0.17, 44, 0.9375, 1, 1, 0.8).

QUANTIFICATION AND STATISTICAL ANALYSIS

Evaluation Metrics
The evaluation metric used for the DSB competition is based on the mean average precision, as defined on the competition website,

at different intersection-over-union (IoU) thresholds. A successful nucleus detection was determined by an IoU test (also known as

the Jaccard index):

IoUðx; yÞ = jxXyj
jxWyj=

jxXyj
jxj+ jyj � jxXyj (Equation 2)

which measures the overlap between prediction pixels x and the annotation pixels y over the intersection of the two areas. Using a

threshold ranging from 0.5 to 0.95 with steps of 0.05, true positive (TP) detections, false positive (FP) detections and false negative

(FN) detections were identified. For a threshold of 0.5, a predicted object is considered a ‘‘hit’’ if the IoU is greater than 0.5. For each

threshold t, a modified version of precision was calculated

DSB scoreðtÞ = TPðtÞ
TPðtÞ+ FPðtÞ+FNðtÞ+ ε

(Equation 3)

for all thresholds in (0.5, 0.95). These scores were averaged for all thresholds, and then the mean of the average scores is reported

over the images in the test dataset. In addition to the DSB-score, we evaluated our results with three additional metrics based on the

IoU detection test: mean average precision- (mAP), recall and F1-score.We used the same t, TP, FP and FN values as above.We also

added a small ε= 10�40 value to the denominators.
e4 Cell Systems 10, 453–458.e1–e6, May 20, 2020
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precisionðtÞ = TPðtÞ
TPðtÞ+FPðtÞ+ ε

(Equation 4)
recallðtÞ = TPðtÞ
TPðtÞ+FNðtÞ+ ε

(Equation 5)
F1 scoreðtÞ = 2 ,
precisionðtÞ,recallðtÞ

precisionðtÞ+ recallðtÞ+ ε

(Equation 6)

The same strategy was used to calculate mean values for these measures as was for the DSB-score, taking the average over

various thresholds t, and the mean among the test images. In the following sections, we refer to these measures as mAP (mean

average precision), mAR (mean average recall), and mF1 (mean average F1-score).

We also introduce classification accuracy regarding our style-transfer generated image quality evaluation as follows:

accuracy =

P
correctly classified instancesP

instances
(Equation 7)

Methods Used for Comparison
Our tests included several variations of our method along with six competing methods and several variations of our approaching us-

ing different style augmentation: NOstyle did not contain style augmented images, AUTOstyle used nuclei masks generated by the

preseg network, andGTstyle used hand annotated ground truth to generate nuclei masks. CellProfiler (CP) (Carpenter et al., 2006) is a

widely-used bioimage analysis software incorporating several methods to segment, measure and analyze cellular compartments.

We createdmultiple pipelines for the different image types of the test sets – except for our fluorescent set which comprised of a single

experiment. Preseg refers to our general scale-independent pre-segmentation model while postComp is our final refined post-

competition submission (an AUTOstyle model customized for DSB test2).

We compared against several other approaches including ilastik (Sommer et al., 2011), which provides a pixel classification setup

where users can manually annotate regions of the input images to desired classes and obtain predictions as either probability maps

or segmented images. Segmentations were obtained by applying a threshold to probabilities from ilastik (with additional object split-

ting). Unet4nuclei (Caicedo et al., 2019a) is an implementation of the popular U-Net deep learning approach to segmentation. GVF

(Li et al., 2008), or gradient vector flow, is an active contour-based segmentation method suitable if objects are bright regions on a

dark background. Pipelines of these compared methods are provided in Data S2. DSB1 and DSB2 are the first and second place

entries on the final Kaggle leaderboard. The approach from DSB1 (https://www.kaggle.com/c/data-science-bowl-2018/

discussion/54741) uses a very deep U-Net architecture alongwith prediction of touching borders.DSB2 also uses a U-Net approach,

and forces the network to predict relative locations within each nucleus (https://github.com/jacobkie/2018DSB).

Comparing the complexity as well as the computation time and resources needed to trainDSB1, we are confident to claim that our

method is considerably simpler andmuch faster.DSB1 combines a total of 32 trained deep neural networks to achieve their reported

score on DSB test2 set, the training of which can take days even when performed on a high computation-capable GPU (Nvidia GTX

1080Ti). In contrast, in ourmethod only aMaskR-CNN andU-Netmodels are trained for prediction, taking approximately 10 hours for

training on the same GPU. The computation time for image style transfer strictly depends on the number of different styles present in

the target data as one style model is trained for each, individually taking about 15 minutes. DSB2 uses a simpler architecture.

We also investigated computation time regarding inference with our method. Even though inference time is affected by multiple

circumstances including image size, number of objects on the image and VRAM of the GPU used, an approximate one image per

2 seconds can be achieved given the following. An image of 520x696 pixels size having about 120 objects of�20 pixelsmedian diam-

eter size, rescaled to 2x its original size to have�40 pixels diameter sized objects, i.e. 104031396 pixels resized image, on an Nvidia

GTX 1080Ti GPU having 11 GB VRAM can be predicted in 2 seconds.

Detailed Results
Style Transfer Increases Performance

We tested the methods outlined in Section Methods Used for Comparison on four test datasets: DSB test1, DSB test2, fluo, and hist,

described in Section Data. The resulting DSB-scores are presented in Table S1. When running these tests, the test data was never

included in the data to train themodel, e.g. when testing onDSB test1, theDSB test1 datawas held out from the training set. Similarly,

when testing on hist, biomag2 and biomag6 subsets were held out.

The test image sets were used as style transfer learning input as determined by our automatic clustering method: a portion of the

set was left out when the clustering algorithm could not find a sufficient number of images for a cluster. Therefore, we report our re-

sults on such fractions of the test sets that none of the deep learning networks have seen prior to inference as follows. 100/200 fluo,

21/50 hist, 28/65 DSB test1 images were used for evaluation. None of the final DSB test2 evaluation image set was used for training.
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The results demonstrate that our style transfer approach improves performance in test sets containing data from heterogeneous

sources: hist,DSB test1 andDSB test2. We also see excellent performance on single domain fluorescence data, fluo. Comparing the

results of our method with (AUTOstyle [postComp is the AUTOstyle for DSB stage 2 test] and GTstyle) and without style transfer

augmentation (NOstyle), we see a clear trend towards increased performance with style transfer augmentation. If we have access

to ground truth nucleus masks (GTstyle) our performance improves, though in many realistic scenarios such masks will not be avail-

able. Figure S2 shows the output of the various methods we tested on challenging examples (note that DSB1 and DSB2 are not re-

ported because we did not have access to their code). In Figure S5, we present mAP, mAR, mF1 and mIoU metrics for the various

methods on each dataset. As expected, there is a strong correlation between the metrics.

Objects of Various Sizes can Be Detected Accurately

In addition to the qualitative demonstration on Figure S3, we provide a quantitative analysis of the range of object sizes correctly de-

tected by two of our compared methods: preseg and postComp. Note that while postComp was trained on fixed sized (40 pixels

diameter) nuclei images and is expected to perform best on objects of approximately the fixed size, preseg is more flexible as we

intentionally included images presenting a wide range of object sizes in its training to prepare it for an initial robustness. Therefore

we expect preseg to detect objects robustly in a wider size range. We tested both models on DSB stage 2 test set and scaled

the images to 0.25-4.0 times relative to our generally expected median 40 pixels diameter objects. Our results confirm our expec-

tations of preseg (our scale-independent model) which performs significantly better than postComp (scaledmodel) on shrunk images

as presented on Figure S6 below.We found that the accuracy of bothmodels is decreased far less rapidly when enlarging the images.

We also note that the object sizes can vary on individual images ( Figure S6B) suggesting the scaling procedure by median object

sizes cannot necessarily be optimal for all images; we mark some of the extremes with black arrows.

Synthetic Images Are often Mistaken for Real

We tested how well our style transfer-generated synthetic images compared to real microscopy images by showing a representative

selection of both to field experts (pathologists and biologists) and asked them to tell the synthetic images apart from the real ones.

The only prior information forwarded to the participating experts was there are fake images in the collection. Their decision accuracy

was measured in a binary fashion: whether the expert could identify a truly synthetic image (1) or not (0). We show an example test

imagemontage below (Figure S7) with the average detection of experts and the labels (real or fake). We collected 64 cropped images

each for our two test image mosaics comprising of 50% real and fake tiles, respectively.

We report an approximate 57% accuracy (ranging from 42% to 73%) of fake image recognition averaging both our experts and the

test cases. Based on the performance of the experts we can conclude the visual quality of the style transfer-generated images is on

par with real microscopy images suggesting the advance our approach may bring to cellular compartment segmentation.

Segmentation Error Analysis

We visually compare segmentation errors and improvements on Figures 2 and S2. To better understand the distribution of such com-

mon errors in any of the analyzed segmentation methods we compared how well they perform in terms of avoiding the main error

types: 1) missing a nucleus, 2) falsely detecting an object as nucleus, 3) splitting a nucleus and 4) merging adjacent nuclei unneces-

sarily. An example image presented on Figure S8A shows them visually. All existing methods fail to overcome these issues in at least

some instances, as they significantly depend on the experimental and imaging conditions used to produce the images. Our method

aims to help reduce these issues.

We measured such types of errors as follows. 1) a missed nucleus is a false negative (FN) i.e. present on ground truth (GT) with no

corresponding object on the prediction. 2) A falsely detected nucleus is a false positive (FP): a predicted object with no corresponding

GT. 3) A split nucleus is identified as two ormore predicted objects that overlap with a significant region of the best corresponding GT

object, respectively; we considered an overlap of at least 30% as significant in this case if two objects contributed to the overlap, and

15% if more. Splits were only considered if the given GT object did not have a single matching predicted object. 4) A merged nucleus

is a single predicted object that has a significant overlap with multiple GT objects each. We calculated merges similarly to splits but

swapped the role of GT and predicted objects.

We conducted our evaluation on the same subsets of each test set discussed in the previous sections. Quantitative analysis of

segmentation errors support our results: our method (and its modified versions) generally outperform the compared methods.

Comparative results are displayed on Figures S8C–S8E. Remarkably, unet4nuclei produced in total fewer errors than our methods

on test set fluo but it has been trained and published on this image set.

Segmentation errors naturally occur in automatic methods. Classical methods (CP, ilastik,GVF) tend to predict a higher frequency

of false positive objects, typically on complex background regions similar to e.g. Figure S4C. They are also more prone to merging

touching nuclei or background regions around them to the objects (see Figure S2B rows 1–2) and to split larger, irregularly shaped

objects. Unet4nuclei could not have been trained accurately enough for heterogeneous sets (hist, DSB test1) due to the inevitable

uncertainty of U-Net in complex histological regions while it excelled on the single-domain set fluo.

Our method typically failed to split (i.e. merged) very small or elongated adjacent nuclei with weak textural difference from the

dividing background region. Similarly, it unnecessarily split nuclei in cases where texture or edge information may suggest multiple

nuclei-like structures inside a single nucleus.
e6 Cell Systems 10, 453–458.e1–e6, May 20, 2020
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SUMMARY

High-content, imaging-based screens now routinely
generate data on a scale that precludes manual veri-
fication and interrogation. Software applying ma-
chine learning has become an essential tool to auto-
mate analysis, but these methods require annotated
examples to learn from. Efficiently exploring large
datasets to find relevant examples remains a chal-
lenging bottleneck. Here, we present Advanced Cell
Classifier (ACC), a graphical software package for
phenotypic analysis that addresses these difficulties.
ACC applies machine-learning and image-analysis
methods to high-content data generated by large-
scale, cell-based experiments. It features methods
to mine microscopic image data, discover new phe-
notypes, and improve recognition performance. We
demonstrate that these features substantially expe-
dite the training process, successfully uncover rare
phenotypes, and improve the accuracy of the anal-
ysis. ACC is extensively documented, designed to
be user-friendly for researchers without machine-
learning expertise, and distributed as a free open-
source tool at www.cellclassifier.org.

INTRODUCTION

In thepast, limits in automation, processing, and storage technol-

ogy imposed practical restrictions on the number of images we

could analyze. Typical research projects were limited to a few

dozen to a few hundred. On that scale, it was possible to verify

entire experiments manually. Today, high-content screening

(HCS) experiments easily produce over 10,000 times more data
(Neumann et al., 2010). It is no longer feasible to visually interpret

and verify every data point. As we depend more and more on

automated computational methods for complex and large-scale

image analysis, we run the risk of only partially understanding the

data. Wemust ask ourselves ‘‘Have I understood the data?’’ and

‘‘Is my analysis as accurate as possible?’’ Without the right anal-

ysis tools, our answers to these questionsmay be unsatisfactory.

In this paper, we introduce Advanced Cell Classifier (ACC), a

machine-learning software designed to give a quicker and

more complete understanding of large datasets and to train pre-

dictive models as accurately as possible. In 2011, we released

ACC version 1.0 (ACC v1.0), a graphical image analysis software

tool that offers access to a variety of machine-learning methods

and provides accurate analysis (Horvath et al., 2011). Several

large-scale cell-based phenotypic HCS studies have made use

of ACC v1.0, including at least 15 human genome-wide RNAi

screens and numerous extensive drug screens. These studies

cover a wide variety of biological topics ranging from the studies

of influenza A virus (Banerjee et al., 2014) to studies of acute

lymphoblastic leukemia (Fischer et al., 2015).

ACC v1.0 shared a drawback with other similar machine-

learning HCS analysis software (Orlov et al., 2008; Uhlmann

et al., 2016; Held et al., 2010; Sommer et al., 2011; Laksamee-

thanasan et al., 2013; Ogier and Dorval, 2012; R€amö et al.,

2009; Misselwitz et al., 2010; Jones et al., 2008; Dao et al.,

2016); it lacked discovery and data visualization tools to enable

the user to fully explore and understand their data. We view

this as a crucial shortcoming. Little attention has been given to

the methods used to explore the data, understand it efficiently,

or to ensure the quality of the annotations. The cost of collecting

expert annotations is high and categorizing cells into strict clas-

ses is often ambiguous. Experts are often unsure if they have un-

covered all the important phenotypes buried within the data

because they lack the tools to fully explore it. There are also lim-

itations in the annotation process. Existing software packages

force the user to manually select cells to label or randomly select
Cell Systems 4, 651–655, June 28, 2017 ª 2017 Elsevier Inc. 651
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Figure 1. Phenotype Finder Tool

The phenotype finder tool organizes cells into a browsable hierarchy, which facilitates the discovery of new classes.

(A) Cells are represented by dots embedded in a two-dimensional synthetic feature space. Sets of cells annotated by the expert are shown in green, yellow, and

blue. Unannotated cells are shown in gray.

(B) A one-class classifier is used to automatically determine which cells are least similar to the known cell types (pink region).

(C) Cells with the least similarity to known examples are sampled and clustered to construct a dendrogram. The expert can browse and analyze the representative

cells shown in the tree, create a new phenotype class from these cells, or add cells to an existing one. In addition, irrelevant cells can be discarded to improve the

classification results to be obtained in the next run.

(D) If a new phenotype is discovered, the region of non-annotated cells changes in the multidimensional feature space.
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cells. These methods are inefficient and generate many wasteful

annotations that ultimately do not prove useful for the classifier.

Furthermore, these procedures make it difficult to discover new

phenotypes or to intelligently refine decision boundaries (Smith

and Horvath, 2014).

ACC v2.0 is a completely re-designed and user-friendly soft-

ware tool with the goal of improving the collection and under-

standing of image data and the accuracy of the analysis (Fig-

ure S1). It allows researchers, even those without computer

vision or machine-learning knowledge, to efficiently charac-

terize and exploit their cell-based and image-based HCS ex-

periments, leading to new discoveries. The main differences

between ACC v2.0 and its previous versions include: (1) intelli-

gent methods to explore and annotate large single-cell image

data, including an active learning approach to improve the ac-

curacy of the classifier, and similar cell search, an algorithm to

find similar cells and increase the number of annotations for

rare phenotypes; (2) an easy-to-use report generator to auto-

matically obtain statistics on cell distribution and class inci-

dence; (3) a new, re-designed and user-friendly interface; (4)

detailed documentation, video tutorials, and online resources;

and (5) improved data visualization methods. Finally, and

most importantly, (6) we have implemented phenotype finder,

a novel method to automatically discover new and biologically

relevant cell phenotypes (Figure 1). The source code of ACC
652 Cell Systems 4, 651–655, June 28, 2017
v2.0 is freely distributed as an open-source tool at www.

cellclassifier.org.

RESULTS

To evaluate the effectiveness of the discovery and annotation

tools included in ACC v2.0, we generated a synthetic dataset

simulating images of cells from a high-content screen. This pro-

vided us with completely accurate knowledge concerning every

cell and phenotype in every image, something that is impossible

with images of actual cells. Using this information, we compared

ACC v1.0 with ACC v2.0. A group of annotators were able to

reach much higher recognition accuracy and found even

extremely rare phenotypes in significantly less time using the

tools we developed. A description of the synthetic dataset is

given in the STAR Methods section along with the analysis,

which is summarized in Figure S2.

We also applied ACC v2.0 to a drug screen and a small inter-

fering (siRNA) screen to identify phenotypic classes using real

data. In each case, the annotators were able to discover relevant

phenotypic classes, including rare types, within a short time us-

ing our new methods. Details of the drug and the siRNA screens

are provided in the STAR Methods section. Example images

from the phenotypic classes identified using ACC v2.0 are shown

in Figures 2 and S3.

http://www.cellclassifier.org
http://www.cellclassifier.org


Figure 2. Efficient Example-Based Mining of Relevant Cell Phenotypes

(A) Cells from nine relevant cell phenotypes identified using the phenotype finder on data from the Broad Bioimage Benchmark Collection (Ljosa et al., 2012).

Searching through thousands of images for more examples of a rare phenotype can be cumbersome, but the similar cell search function makes it simple.

(B) Results of the similar cell search given the query examples above. Similar cells were determined by computing the cosine similarity on image feature vectors

between the query example and other cells in the dataset.
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DISCUSSION

ACC v2.0 provides several new innovative tools designed to

explore and collect the data necessary to train classifiers more

efficiently and effectively. The ability of the classifier to correctly

recognize cell types ultimately depend on the quality of data pro-

vided. While there is no universally accepted recipe for gener-

ating quality training data, many principles and techniques can

be applied in practice to improve the efficiency and quality of

the annotation process.

Perhaps the most fundamental principle is to ensure that the

training data are complete in the sense that they includes exam-

ples of all the important phenotypes present in the screen.

Although it may seem obvious, practically speaking, this can

be tedious when the amount of data is very large. Another com-

mon issue is imbalance between classes. Often, interesting phe-

notypes are in the minority or occur very infrequently. If the data

are imbalanced due to the presence of a rare class, the lack of

representative data will make learning difficult (He and Garcia,

2009). Given a single example of a rare cell, ACC v2.0 can quickly

identify additional, previously unidentified examples using the

similar cell search feature, thereby helping balance the dataset

and improve classification performance. Another way to improve

data collection is to avoid redundant annotations and to prioritize

annotations that are most useful for boosting classification per-
formance. ACC v2.0 uses active learning to carefully select the

most informative examples for labeling, which avoids irrelevant

examples and refines regions where the classifier is uncertain.

Data quality can also be improved through iterative refinement

of the classifier. During data collection, ACC v2.0 can train a

classifier on existing annotated data and display predicted anno-

tations on unlabeled data. By correcting erroneous predictions,

the user adds valuable data points to the training set, which

can help correct predictive errors.

In total, ACC v2.0 includes powerful new methods to mine

microscopic image data, discover new phenotypes, and

improve recognition performance. While no single method can

be regarded as a silver bullet that solves all annotation problems,

in our experience, the most effective strategy is to alternate be-

tween discovery tools as the biological task demands. ACC v2.0

gives the user access to a large variety of state-of-the-art ma-

chine-learning algorithms, has an intuitive user interface with

advanced visualization, and allows for efficient navigation of im-

age data. It is easy to use, well documented, and comes with

helpful video tutorials. Using synthetic data and existing screens,

we demonstrated that the discovery tools in ACC v2.0 improve

the quality of training datasets and ultimately create classifiers

with better phenotype recognition. Using our software, it is

possible to discover interesting cell phenotypes hidden in large

datasets.
Cell Systems 4, 651–655, June 28, 2017 653



               horvath.peter.2_10_22
STAR+METHODS

Detailed methods are provided in the online version of this paper
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Synthetic Dataset
To evaluate the effectiveness of the discovery and annotation tools included in ACC v2.0 (Figure S1), we designed and generated a

synthetic dataset simulating images of cells from a high content screen. This provided us with completely accurate knowledge con-

cerning every cell and phenotype in every image, something that is impossible with images of actual cells. Using this information, we

compared ACC v1.0 to ACC v2.0 and evaluated how the tools we introduced improved the ability of annotators to discover pheno-

types and train accurate classifiers.

The dataset was organized into 32 plates containing 384 images each. Every image contained human cells simulated using

SIMCEP, a software tool for simulating fluorescence microscopy images of cell populations (Lehmussola et al., 2007). The amount

of cells in each image was sampled uniformly between 5 and 40. In total, 12,288 images and 310,929 cells were generated. While this

is a relatively small dataset by HCS standards, it provides sufficient statistical power to judge the efficacy of our tools. Eight distinct

phenotypic classes were designed by varying the size and shape of the nucleus and cytoplasm, and by varying the number and size

of subcellular vesicles (Figure S2A). Each cell is assigned a phenotype sampled from these classes, ranging in frequency from very

common (appearing with 49.7% probability), to less common (24.8%), to extremely rare (0.01%). Furthermore, each image was

generated with a dominant phenotype (approximately 80%of the cells in the image), and random cell classesmade up the remainder

of the phenotypes in the image. The synthetic images were processed with a CellProfiler pipeline to segment the cells and extract

features. The synthetic data and pipeline are available in Data S1.

Three experts used ACC v1.0 and ACC v2.0 to annotate the dataset. They were given no prior information about the number of

phenotypes or their locations. In each trial, the expert was given 30 minutes to annotate the synthetic data. The goals were (1) to

discover all the phenotypes within the given time and (2) to create a high quality dataset which, when used to train a classifier, results

in the highest accuracy on the whole dataset. The results of the experiment appear in Figure S2. All three experts were able to

discover all eight phenotypes within the time limit using ACC v2.0 (Figure S2B). Using ACC v1.0, the three rarest phenotypes

were only discovered by 2/3 of the experts. The experts were able to find phenotypes faster using ACC v2.0. Using the annotations

collected by the experts, classifiers were trained and used to predict phenotypes for the entire dataset. The phenotypes predicted by

trained classifiers were compared to the true phenotypes and normalized prediction accuracy was computed. The results show a

substantial improvement (a 27% increase in recognition) with annotations collected using ACC v2.0 (Figure S2C). The last pane of

the figure shows timelines of howmany annotationswere collected by each annotator using each version of the software (Figure S2D).

The bold line shows the mean number of collected annotations.

Drug HCS Dataset
To demonstrate the capabilities of ACC v2.0 on real data, we analysed a dataset of MCF-7 breast cancer cells (BBBC021v1 (Caie

et al., 2010), available from the Broad Bioimage Benchmark Collection (Ljosa et al., 2012): https://www.broadinstitute.org/bbbc/

BBBC021/) treated with a collection of 113 small molecules in 8 different concentrations for 24 hours. A subset of this dataset is

formatted for ACC and supplied as a test dataset with the software (www.cellclassifier.org/download/). The molecule set consists

of a mechanistically distinct set of targeted and cancer-relevant cytotoxic compounds inducing a broad range of gross and subtle

phenotypes. Cells were fixed, labelled for DNA, F-actin, and b-tubulin, and imaged by fluorescent microscopy acquiring multiple im-

ages of all data points and technical repeats (Caie et al., 2010). This resulted in 39,600 images containing approximately

2,000,000 cells.

The images were segmented and features were extracted with CellProfiler 2.2.0 (CellProfiler pipeline provided as File S1). To

demonstrate the phenotype discovering capabilities of ACC v2.0, we started by manually annotating a few cells from a single class

(standard abundant cells from the most common phenotype). We then used the phenotype finder tool to identify interesting cell
e1 Cell Systems 4, 651–655.e1–e5, June 28, 2017
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phenotypes. Representative cells from each phenotypic class appear in Figure 2A. Names of the phenotypic classes were

selected by using Cellular Microscopy Phenotype Ontology (CMPO; http://www.ebi.ac.uk/cmpo/), which provides a species-

neutral controlled vocabulary for cellular phenotypes. To increase the number of annotations for rare classes such as multinucle-

ated cells, we used the ‘find similar cells’ tool (Figure 2B). To improve the classifier’s ability to distinguish between classes, we

used the active learning module to refine decision boundaries. After approximately one hour we obtained around 1,500 annotated

cells from 9 phenotype classes.

Finally, we assessed the predictive capability of the classifiers trained using the data we collected. We applied several different

popular supervised classification methods and chose the one with best 10-fold cross validation performance. The Logistic Boost

classifier achieved 88.4%, the highest recognition accuracy (Figure S4), and was applied to the entire screen. The final results of

the analysis showing the number of cells in every phenotypic group for the different drug treatments can be found in Data S2.

We evaluated whether the identified phenotypes correlated to any known effects of the used drugs (Table S1). While most of the

identified phenotypes were determined to be non-drug specific, we highlight two phenotypes showing strongly correlated charac-

teristics to specific well-known drug effects: (a) multinucleated; and (b) bundled microtubule, cells with collapsed microtubule. The

Cytochalasin B treatment leads to the classification of 20% of cells in the multinucleated group. Cytochalasin B is known to inhibit

both the rate of actin polymerization and the interaction of the actin filaments in solution (MacLean-Fletcher and Pollard, 1980), thus

preventing the formation of contractile microfilaments. This can result in a disturbed cell cycle, yielding an increased number of nuclei

with variable shape and size within the cell (Cooper, 1987). The bundled microtubules group contains samples of a characteristic

phenotype with microtubular bundles crossing through the centre of the cell. Most of the cells in this phenotypic class were treated

with Taxol (Paclitaxel), Docetaxel, or Epothilone B. All of these agents bind the b-tubulin, and stabilize microtubules. They inhibit the

microtubule function and alter their dynamics, as well as enhance the polymerization of tubulin, whereby they have antimitotic effect

(M€uhlradt and Sasse, 1997). In this case, the software identified a characteristic phenotype linked to different agents with the same

mechanism of action.

We also identified phenotypes that correlate with well-known physiological cell status: (1) increased amount of punctate actin

foci; and (2) fragmented nucleus, often the hallmark of apoptosis. The cells identified in the punctate actin class received Cyto-

chalasin D as top hit. Cytochalasin D is an actin depolymerizing drug and can also induce the actin aggregation (Mortensen and

Larsson, 2003). Interestingly, some of the cells treated with Rapamycin correlated strongly with this phenotype, while most of the

Rapamycin–treated cells were classified to abundant or elongated cells classes. Rapamycin targets the mTOR (a mammalian

target of Rapamycin-complex) with an essential role in the cell cycle and responses to changing nutrient levels. Inhibition of

mTOR signalling by Rapamycin leads to defects in mitochondrial function, cell proliferation, cytoskeletal organization, protein syn-

thesis, and can result in cell death in many ways: apoptosis, necrosis or autophagy (Laplante and Sabatini, 2009). Thanks to the

new tools in ACC v2.0, we were also able to find the cells in a rarer actin-related phenotype of Rapamycin, reported to affect the

F-actin reorganization by blocking the kinase activity of mTOR (Liu et al., 2008). Demecolcine (Colcemid) and Vincristine treatment

resulted in an overrepresented number of cells of the phenotype fragmented nucleus. By inhibiting the polymerization of micro-

tubules, they can arrest the cells in the metaphase, which can ultimately lead to apoptosis (Fujikawa-Yamamoto et al., 1994; Jor-

dan and Wilson, 2004). These drugs are known to bind the tubulin and destabilize the microtubules, in contrast to the stabilizing

agents, such as Docetaxel and Paclitaxel described above with a strong bundled microtubules phenotype (Kavallaris, 2010). This

demonstrates the power of the ACC v2.0 to correctly categorize the drugs with opposite biological functions although they would

have a potentially similar end-point outcome (cell death). As these results show, ACC v2.0 is an effective tool to find the novel,

unknown biological effects of drugs or silencing/overexpression of certain genes, as well as for mining previously described phe-

notypes of interest.

siRNA HCS Dataset
We analysed images derived from a pilot siRNAs screen targeting selected hit factors as well as a suite of positive and negative con-

trols for a genome-wide screen on 60S ribosomal subunit biogenesis in HeLa cells. The assay relies on an inducible RPL29-GFP re-

porter as a read-out, similar to our recent genome-wide analysis of 40S synthesis using RPS2-YFP (Badertscher et al., 2015). In brief,

cells were transfected with the respective siRNAs by reverse transfection in 384 well plates. Reporter construct expression was

induced by addition of tetracycline after 44 hours. 8 hours later, the culture medium was replaced by medium lacking tetracycline

and cells were incubated for another 20 hours. Then, cells were fixed, DNA stained with Hoechst, and images taken by fluorescent

microscopy acquiring 9 images per well.

Images were segmented based on Hoechst staining of cell nuclei, and 150 diverse features were extracted, including nuclear and

cytoplasmic fluorescence intensities. We started by manually annotating a few cells from a single class of a mock-treated well. We

then used the phenotype finder tool to identify interesting cell phenotypes. Representative cells from each phenotypic class appear in

Figure S3A. To increase the number of annotations for rare classes such as large nuclei, we used the find similar cells tool (Fig-

ure S3B). We acquired �500 annotated cells from 7 phenotype classes.

Finally, we assessed the predictive capability of the classifiers trained using the data we collected. We applied several different

popular supervised classification methods and chose the one with best 10-fold cross validation performance. The Artificial Neural

Network classifier achieved 95%, the highest recognition accuracy (Figure S5), and was applied to the entire screen.
Cell Systems 4, 651–655.e1–e5, June 28, 2017 e2
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METHOD DETAILS

Overview of the Software
ACC v2.0 is a software tool to apply sophisticatedmachine learning analysis tomicroscopic image data. Particular attention has been

given to user-friendliness and tools to help non-experts explore their data, understand it, and train machine learning algorithms to be

as accurate as possible. Figure S1A shows themain interface which consists of amenu bar, a toolbar, themain window, and cell view

windows focusing on details of the currently highlighted cell. A separate image selector window allows the user to quickly switch

between images and plates from the experiment (S1B). ACC v2.0 works in Windows, Linux, and Macintosh environments, and takes

images as input with support for most common image formats (e.g. tif, bmp, png). In addition to the original image data, ACC v2.0

requires features, the image measurements extracted from the segmented objects (in txt, csv, or HDF5 format), and it supports con-

tours of segmented sub-cellular/cellular objects (e.g. cells membranes and nuclei), such as those produced byCellProfiler (Carpenter

et al., 2006).

Detailed documentation (File S2 and File S3) provides step-by-step instructions to use the software, and a series of video tutorials

with how-to examples are also available (Movies S1–S5). A detailed flowchart diagram of the usage and services is presented on

Figure S6. Typically, analysis begins with the user starting a project (‘‘Getting started’’, Movie S1) and importing data (‘‘ACC and

CellProfiler’’, Movie S2, and ‘‘Input data structure’’, Movie S3). We provide a CellProfiler module designed to export necessary seg-

mentation and feature data directly to ACC v2.0 (File S4). The next step is to begin exploring the data and assigning annotations to

cells as members of a phenotypic class. Instructions on how to define classes, customize the visualization, and navigate the data are

provided in Movie S1. Several innovative annotation strategies are available in ACC v2.0 which greatly improve the efficiency and

quality of data annotation. These include the phenotype finder (Figure S1C, Figure 1), similar cell search, active learning, as well

as manual and random selection. Examples on how to apply these strategies are shown in Movie S4. Once the annotated data is

collected, up to sixteen different classifiers may be chosen to predict phenotypes for unannotated cells (Figure S1E) including

well-known methods such as support vector machine (SVM), multilayer perceptron (MLP), and random forest using theWeka frame-

work (Witten and Frank, 2005). Initial predictions may contain errors, but these can be corrected by replacing the incorrect prediction

with the correct annotation and re-training the classifier. This process can be repeated until satisfactory results are achieved. Finally,

the improved classifier is applied to the entire experiment and user selects the desired formats of the output including (a) cell-by-cell

classification; (b) incidence and distribution of the different classes; (c) phenotype-based statistics of any selected features

(Movie S5).

Phenotype Finder
Screening datasets often consist of tens of thousands of images, or orders of magnitude more. The amount of data is often so sub-

stantial that it exceeds the capabilities of a human expert to observe everything. Therefore, it is difficult for the annotator to know

whether the training data he/she collected contains examples representing all the important phenotypes present in the screen. To

address this, ACC v2.0 includes a phenotype finder tool which helps find and define new phenotypes efficiently, without requiring

a priori knowledge about the underlying dataset (Figure 1). It does this by hierarchically grouping cells based on their appearance.

Images of the cells are organized into a browsable tree-like structure (Figure 1C) which allows the user to quickly identify previously

unseen phenotypes or subpopulations within a known phenotype (Movie S4). The phenotype finder operates on the assumption that

true phenotypes will cluster together in a space of relevant image features. Using a bottom-up approach, a dendrogram can be con-

structed by first defining each observation (cell) as its own cluster, and bymaking pairwise similarity comparisons between each clus-

ter. The dendrogram is constructed by greedily merging themost similar clusters first, and proceeding up the hierarchy until the entire

set belongs to a single cluster (Figure S1D). In ACC v2.0, the similarity metric is defined as the Euclidean distance between the mean

of the feature vectors associated with cells belonging to each cluster.

The computational complexity and memory consumption associated with hierarchical clustering means it cannot be directly

applied to very large data sets (in practice, 25,000-50,000 cells can be clustered on a standard computer with 16 GB memory in

15-80 s). Because of this limitation, unless the dataset is small, the phenotype finder must be applied to subsets of the data - cells

belonging to a known phenotype or cells that are hypothesized to belong to an undiscovered phenotype. In the first case, existing

annotations are used to train a classifier that predicts which cells belong to a selected known phenotype. These are sampled and

clustered using hierarchical clustering. In the second case, a one-class classifier is used to identify cells that do not fall within any

currently known phenotype. One-class classification, also known as unary classification (Moya et al., 1993), is a method that can

perform this task by estimating the support of a high-dimensional distribution given a set of positive samples (Figures 1A and 1B).

A one-class SVM (Schölkopf et al., 2000) predicts the probability that a given cell belongs to any of the known phenotypes in this

manner. Cells are sorted based on this probability, and the cells least likely to belong to an existing phenotype are clustered using

hierarchical clustering (Figure 1C). The one-class SVM can be sensitive to the features it is provided. Oftentimes, HCS data contains

some redundant features or features with little discriminative power. Feature selectionmethods can help by reducing the feature vec-

tor to the most informative features. We have tested three methods on synthetic and real HCS data: information gain, principal

component analysis (PCA), and factor analysis. We found that information gain proves to be the most useful method, and the optimal

number of selected features is in the range of 10-20 (Figure S7).

Once a subset of cells has been selected and the dendrogram has been constructed, it is displayed as a collapsible tree interface

which allows the user to view themember cells for each cluster in the hierarchy and to quickly create new annotations from a cluster in
e3 Cell Systems 4, 651–655.e1–e5, June 28, 2017
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the dendrogram (Figure 1C). If the user determines that the cluster shows signs of novelty it can be annotated as a new class, other-

wise it can be inserted into an existing phenotype. If a new phenotype is discovered, the class boundaries will change (Figure 1D).

Iteratively applying the phenotype finder in this manner will allow the user to quickly identify rare phenotypes or subpopulations within

an existing phenotype.

Similar Cell Search
Often, important or interesting phenotypes occur very infrequently. While the phenotype finder can help initially discover the pheno-

type, without sufficient examples of the phenotype to train with, the classifier may struggle to identify it reliably. ACC v2.0 offers a

solution to this issue. Given a single example of a rare cell, it can quickly identify new examples with similar appearance to the

selected cell. This is accomplished by computing the cosine similarity on a reduced feature vector between the query cell and all

other cells in the screen (Ljosa et al., 2013). The feature set is reduced in a pre-processing step to remove highly correlated features.

The cells are sorted according to their similarity score, and the most similar cells are presented to the user (Figures 2B and S3B). The

user may then select these cells and add them to the corresponding classes. In this manner, rare and important phenotypes can be

quickly populated with reliable annotations.

Active Learning Methods to Prioritize Useful Annotations
Expert annotations are costly to acquire, but typically no guidance is provided as to which cells are useful to annotate. The user is

often left to select cells manually, or is presented with a random sampling of cells. But there is no guarantee on the usefulness of the

labels provided with these strategies. It can be advantageous to avoid redundant annotations and prioritize annotations that will be

most useful for increasing classification performance. ACC v2.0 uses active learning to carefully select the cell which, if annotated,

will be most useful in improving the classification accuracy. It avoids uninformative examples and refines regions where the classifier

is uncertain. Using the currently annotated set (Figure S8A), a classifier is trained andmakes predictions on unlabeled data and uses a

query strategy to estimate which example will bemost useful to improve classification performance (Figure S8B).We use two popular

query strategies: uncertainty sampling and query by committee (Smith andHorvath, 2014). Uncertainty sampling selects the instance

it is least certain how to label based on the classifier prediction probabilities. Query by committee selects the instance with the most

disagreement between different classification algorithms. The expert annotates the requested cell, and the annotation is added to the

training set. A new predictive model is trained and a new cell is selected for annotation according to the query strategy (Figure S8C).

This process is repeated and iteratively improves classification performance. Potentially, new phenotypes can be discovered by

exploring the boundary between classes (Figures S8D–S8E).

Manual Correction of Predictions
Another practical method of improving the quality of training data is to iteratively refine classifier performance by correcting errors in

its predictions. ACC v2.0 can train a classifier on existing annotated data and visualize predicted annotations on unlabeled data. The

user can visually inspect these predictions and add new annotations by confirming correct labels or by correcting erroneous predic-

tions. By adding corrective annotations where the classifier made a mistake, the user adds valuable data points to the training set to

improve performance.

Annotation of Manually Selected Cells
This annotation method is standard in most cell classification software. The expert is free to navigate the data and select which cells

he/she wishes to annotate. Manual exploration has its merits, as the expert may often have a good intuition about which cells are

useful to annotate early in process. However, there are several dangers to relying solely on this method. The user may be biased to-

wards easy or redundant examples, may not balance the number of examples between classes, and may fail to discover rare phe-

notypes. When performing manual annotation, it is recommended that cells are selected from several different images. We also note

that is it always possible to override other annotation modes and switch to a manual annotation if the user notices something inter-

esting in the image.

Annotation of Randomly Selected Cells
To ensure a representative sampling of the data, it can be advantageous to randomly sample from the screen. This is a forced choice

mode: the expert is required to annotate the phenotype class of a randomly selected cell from a randomly chosen image. This anno-

tation mode thereby avoids selection bias by the user (Misselwitz et al., 2010). However, with this method and with manual annota-

tion, luck may be required to discover rare phenotypes in large datasets.

DATA AND SOFTWARE AVAILABILITY

In this work we used the HCS image set BBBC021v1 (Caie et al., 2010), available from the Broad Bioimage Benchmark Collection

(Ljosa et al., 2012). It is composed of 39,600 image files (13,200 fields of view imaged in three channels) in TIFF format. It can be

downloaded at: https://www.broadinstitute.org/bbbc/BBBC021/. For any copyright issues regarding the dataset, follow the instruc-

tions provided at the referenced website.
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ACC v2.0 is freely distributed at www.cellclassifier.org as an open-source tool. It is written in MATLAB R2015a and requires the

Image Processing Toolbox 9.2. The source code, standalone versions, video tutorials, help documentation files, and additional mod-

ules are available at the official repository for all future software releases www.cellclassifier.org. Further developing the source code

requires Matlab license. However, Windows, Linux, andMacintosh standalone compiled versions— that do not require license— are

also available online. All the ACC materials are copyright protected and distributed under GNU General Public License version

3 (GPLv3).
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Biological processes are inherently continuous, and the chance of phenotypic discovery is

significantly restricted by discretising them. Using multi-parametric active regression we

introduce the Regression Plane (RP), a user-friendly discovery tool enabling class-free phe-

notypic supervised machine learning, to describe and explore biological data in a continuous

manner. First, we compare traditional classification with regression in a simulated experi-

mental setup. Second, we use our framework to identify genes involved in regulating tri-

glyceride levels in human cells. Subsequently, we analyse a time-lapse dataset on mitosis to

demonstrate that the proposed methodology is capable of modelling complex processes at

infinite resolution. Finally, we show that hemocyte differentiation in Drosophila melanogaster

has continuous characteristics.

https://doi.org/10.1038/s41467-021-22866-x OPEN

1 Synthetic and Systems Biology Unit, Biological Research Centre (BRC), Szeged, Hungary. 2 Department of Anatomy and Stem Cells and Metabolism
Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland. 3 Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST)
IRCCS, Meldola, FC, Italy. 4 Institute of Genetics, Biological Research Center (BRC), Szeged, Hungary. 5 Institute for Molecular Medicine Finland-FIMM,
Helsinki Institute of Life Science-HiLIFE, University of Helsinki, Helsinki, Finland. 6 Indian Institute of Science Education and Research (IISER), Mohali, India.
7 School of Cellular and Molecular Medicine, University of Bristol, BS8 1TD University Walk, Bristol, UK. 8 Faculty of Information Technology and
Communication Sciences, Tampere University, FI-33014 Tampere University, Tampere, Finland. 9 Department of Computer Science, Aalto University,
Aalto, Finland. 10 Single-Cell Technologies Ltd., Szeged, Hungary. ✉email: horvath.peter@brc.hu

NATURE COMMUNICATIONS |         (2021) 12:2532 | https://doi.org/10.1038/s41467-021-22866-x |www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

               horvath.peter.2_10_22

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-22866-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-22866-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-22866-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-22866-x&domain=pdf
http://orcid.org/0000-0002-0371-7782
http://orcid.org/0000-0002-0371-7782
http://orcid.org/0000-0002-0371-7782
http://orcid.org/0000-0002-0371-7782
http://orcid.org/0000-0002-0371-7782
http://orcid.org/0000-0001-9073-5788
http://orcid.org/0000-0001-9073-5788
http://orcid.org/0000-0001-9073-5788
http://orcid.org/0000-0001-9073-5788
http://orcid.org/0000-0001-9073-5788
http://orcid.org/0000-0001-8382-1135
http://orcid.org/0000-0001-8382-1135
http://orcid.org/0000-0001-8382-1135
http://orcid.org/0000-0001-8382-1135
http://orcid.org/0000-0001-8382-1135
http://orcid.org/0000-0002-8233-9133
http://orcid.org/0000-0002-8233-9133
http://orcid.org/0000-0002-8233-9133
http://orcid.org/0000-0002-8233-9133
http://orcid.org/0000-0002-8233-9133
http://orcid.org/0000-0003-3125-2406
http://orcid.org/0000-0003-3125-2406
http://orcid.org/0000-0003-3125-2406
http://orcid.org/0000-0003-3125-2406
http://orcid.org/0000-0003-3125-2406
http://orcid.org/0000-0002-4492-1798
http://orcid.org/0000-0002-4492-1798
http://orcid.org/0000-0002-4492-1798
http://orcid.org/0000-0002-4492-1798
http://orcid.org/0000-0002-4492-1798
mailto:horvath.peter@brc.hu
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Large-scale imaging technologies, such as high-content
screening (HCS) and digital pathology imaging, have
become the de facto tools for discovering drugs and genes

and understanding tissue physiologies and pathologies, including
cancer heterogeneity. This has induced a rapid growth in the
amount of microscopy data, making it essential to elaborate
appropriate bioinformatics tools to analyze them, and thus
improve the current understanding of underlying biological
processes1–3.

Machine learning provides automation for analyzing big data,
such as that acquired in large-scale, image-based experiments,
and it has been successfully utilized for phenotypic analysis
tasks4. Although a great variety of software tools are available for
performing imaging assays in a supervised manner (e.g. Cell-
Profiler Analyst, Ilastik, CellCognition, Advanced Cell
Classifier5), all of them rely on the assumption that the under-
lying biological processes have stable steady states that can be
dissected into discrete phenotypic classes (Fig. 1a). However,
biological processes inherently contain continuous transitions
between these phenotypes, consequently restricting the modelling
to a set of discrete states reduces the potential to fully understand
biological phenomena.

The application of traditional classification models for single-
cell image analysis6–8 is especially unreliable when the cells of
interest change their morphological features gradually in the
course of time (e.g. cell cycle). Annotation of such data is error-
prone and laborious, and even field experts tend to make faulty

decisions (e.g. in the case of samples with interclass properties),
often leading to arbitrary labelling. Additionally, user-defined
classes may obscure the real underlying distribution by inap-
propriate discretization.

Currently, none of the available and widely used software tools
enable single-cell-based image analysis in a continuous, supervised
manner. Instead, unsupervised models, such as Lineage Recon-
struction Techniques (LRT)9 and Dynamic Time Warping (DTW)
prevail. Cycler8 is an LRT and embeds 5 pre-selected image-based
single-cell features to a one-dimensional (1D) continuous space
called the cell-cycle trajectory. Similarly, Cai et al. used DTW to
align mitotic cells into the mitotic standard time based on
6 selected features10. HipDynamics is a software for visualizing cell
population dynamics in live-cell imaging data and it utilizes
unsupervised linear regression to characterize the changes in user-
selected features11. Indeed, these tools provide robust solutions for
their targeted tasks, but the lack of expert interaction significantly
reduces the potential to customize these methods for various
purposes. Therefore, another set of tools known as Visual Ana-
lytics (VA) was developed, offering various techniques for experts
to interactively change the machine learning model through a
visualization interface, which is most often a continuous space
(visualization map)12,13. CellCognition was a pioneer of super-
vised tools, designed with the intent to efficiently analyze biolo-
gical processes, however still using classification7.

Here, we propose a methodology called Regression Plane (RP),
an interface for fully supervised, continuous machine learning
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Fig. 1 Classification vs regression. a Regression plane concept. The classical way to model a biological process includes the phenotypical analysis of cells
(i.e. subdividing cells into classes). However, in a high-content screening scenario, the multitude of different phenotypes makes it extremely challenging to
create a set of representative classes. A possible solution builds on using a regression line, allowing to represent a single effect without the need of
discretization. Nonetheless, biological processes are typically characterized by numerous ongoing effects. Thus, the regression plane represents a good
trade-off between visualization capabilities and annotation complexity. Basically, it allows to represent a biological process with the limits of a planar graph.
b Active regression. The aim of an active regression algorithm is to improve the training set (TS) to achieve better prediction performance. It is an iterative
process where a cell that is difficult to annotate is proposed to the oracle who annotates it, and by doing so moves it to the TS used to train the regression
model. c Synthetic dataset. Image from the synthetic dataset, generated using SIMCEP. d Experimental design. The designed processes overlayed on the
space of perturbations. 6 processes are tracks in the space, and an extra process is formed of uniformly distributed cells (latent process 7). e Designed
processes. The 6 continuous processes are modelled between two fixed endpoints: green cells of highly irregular shape and red, rounded cells. To assign a
colour to the middle point of each process we interpolated between white (process 1) and blue (process 6). f Classification vs regression applied on
synthetic data. Comparison of the performance of regression and classification. Statistics: precision, recall and the number of identified processes. Columns
represent mean, error bars show the standard deviations from n= 5 independent users/experimental setup. Source data are provided as a Source Data file.
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appropriate for image-based single-cell analysis. The idea origi-
nates from a study of an influenza A virus entry in which histone
deacetylase-mediated reorganization of the microtubules led to
various endosomal morphological and trafficking phenotypes that
affected influenza infection14. The scatteredness of late endo-
somes and lysosomes (single output variable) was determined
using regression instead of classification. Restricting the output to
a single dimension prohibited the modelling of branching, cir-
culating, parallel and crossing processes, therefore we extended
the approach to utilize a 2D plane (Fig. 1a). Considering cellular
steady states as graph nodes and gradual changes between the
states as edges, the biological systems that correspond to planar
graphs can be modelled with RP. Further extension of the
modelling to 3D would increase the complexity of labelling and
raise the chance of annotation errors. Additionally, to improve
the quality of the annotated sets and decrease the time required
from experts, we have incorporated active learning methods
appropriate for regression-based phenotyping.

Results
Regression plane. Regression plane is implemented as an open-
source module of Advanced Cell Classifier (ACC)6, and it has
been available since ACC v3.0. RP was incorporated into tradi-
tional phenotypic classification in a hierarchical manner: each
class may be extended with a distinct regression plane, allowing
multiple regression planes to be included in a single project. RP is
easy to use, well documented and supported by video tutorials
(Supplementary Software 1, Supplementary Movies 1, 2). Anno-
tation is performed by assigning continuous labels to repre-
sentative cells via placing them on a 2D plane. After training, RP
predicts the position of every unlabelled cell and outputs versatile
and easy-to-read visual representations at single-cell, population
and treatment levels (for details see the Methods section).

Similarly to classification, a representative Training Set (TS) is
also essential for RP. Active learning algorithms are routinely
used in classification to find the most efficient TS15 but are not
widely used in regression16. In this work, we introduce various
active regression algorithms by extending those used in classical
active learning tasks (Fig. 1b, Supplementary Fig. 1a). These
methods propose cells whose automatic prediction on the
regression plane is uncertain or ambiguous. Details are reported
in the Methods section.

Synthetic experiment: classification vs regression. To analyze
data discovery capabilities of RP, we generated a synthetic HCS
image dataset simulating perturbations of cell shape and protein
expression (Fig. 1c, Supplementary Software 2). We designed
gradual perturbations to enable smooth transition between cell
states and hence facilitating the modelling of biological processes.
We defined 6 processes as continuous changes from one cell state
to another, plus an extra process (latent process 7) formed from
uniformly distributed cells (Fig. 1d, e). Each well in the HCS plate
was associated with an underlying process, and the corresponding
images were generated by sampling cells uniformly from the
process distribution. Based on the associated processes we defined
a partitioning on the wells (those wells were in the same partition
that had the same process associated to them), forming the
ground-truth of our experiment. Details about the modelled
biological processes are reported in the Methods section.

Subsequently, ten microscopy experts were divided into two
groups and asked to identify the distinct underlying processes
in the experiment (Supplementary Note 1), or equivalently to
define a partitioning on the wells. The first group of five experts
used ACC v2.1 (extended with Supplementary Software 3 to
compensate for the advanced clustering features available in RP)

to annotate cells with discrete labels, while the other group used
RP only (ACC v3.0). Despite the great variety of the regression
planes created by the microscopists (Supplementary Fig. 2), the
results obtained using RP significantly outperformed the
classification, both in terms of precision and recall (Fig. 1f).
Specifically, the experts using RP performed better in estimating
the number of ongoing processes, and achieved, on average, an
improvement of approximately 20% in precision and 5% in recall,
upon defining image sets containing cells with similar behaviour.

Lipid droplet study. Lipid droplets are storage units for neutral
lipids, including triglycerides, and play a significant role in several
disorders, including e.g. cardiovascular diseases. We evaluated
whether siRNA perturbations of candidate genes, previously
revealed to influence blood triglyceride (TG) levels in humans in
a genome-wide association study17, would affect the morphology
of lipid droplets (LDs) in cultured hepatocytes (Huh7 cell line).
Regarding their continuous changes in localization, number and
size, LDs form a heterogeneous population reflecting different
cellular metabolic states18. Thus, RP was used for the analysis of
lipid droplets labelled with LipidToxGreen (Supplementary
Fig. 3a–c), a probe used for quantitative analysis of neutral lipids.
To train the model, 457 cells were placed on the regression plane
by a cell biology expert (Fig. 2a).

We found that siRNA-mediated knockdown of TM6SF2 (a
gene associated with decreased blood TGs) led to increased
intracellular staining of neutral lipids, as it had been expected
from the earlier evidence of TM6SF2 affecting hepatic lipid
droplet content and TG secretion19. In contrast, the cells
transfected with siRNAs targeting CD300LG (a gene associated
with increased blood TGs17) showed a decreased amount of
intracellular TGs, accompanied by the disappearance of (larger)
LDs. Additional biochemical analysis measuring cellular TG
levels confirmed these findings (Supplementary Fig. 3d). These
data provide functional evidence for the role of CD300LG in
regulating TG metabolism in hepatocytes.

Intriguingly, the knockdown of TM4SF5 (a gene associated
with decreased blood TGs17) which codes for a protein
functioning as an arginine sensor and mTORC1 regulator on
lysosomal membranes20, not shown earlier to affect TG levels in
functional studies, promoted the increase of small LDs (Fig. 2b).
Meta-visualization and clustering of the regression planes (Fig. 2c,
Supplementary Fig. 3e–h) further supplemented the findings
from an earlier study17, and suggest that CD300LG and TM4SF5
may have biological effects on hepatic TG levels and LD
composition, to be further addressed in future studies. Details
are reported in Methods section.

Time-lapse microscopy: cell cycle analysis. We tested the cap-
abilities of RP on 2 different time-resolved datasets. First, RP has
been demonstrated to be capable of reproducing an unsupervised
mitotic time model developed in the MitoCheck project (www.
mitocheck.org).

Cai et al.10 analyzed cell mitosis by performing time-lapse
experiments to establish a canonical model for the morphological
changes appearing during the mitotic progression of human cells.
They reorganized the feature space according to the mitotic
standard time instead of the imaging time (see Fig. 1f in ref. 10),
and by applying an unbiased peak-detection method in the
warped feature space they identified up to 20 mitotic stages. The
model was then used to integrate dynamic concentration data of
several fluorescently labelled mitotic proteins, and to create a
generic dynamic protein atlas of human cell division. Their public
data include 3D images and segmented masks of 31 z-stacks. We
intended to analyze this dataset without using prior feature
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information about the underlying process by exploiting regres-
sion techniques to characterize mitosis.

In our analysis, a field expert created a regression plane
representing the process of mitosis, resulting in a training set of
585 cells (Fig. 3a). After prediction, the cells followed the
designed circular path recalling canonical mitotic phases
(Fig. 3b–d), while they also represented subtle phenotypic
changes and single-cell differences in the regression plane.
Additionally, we investigated whether the fluorescent tags have
effect on the distribution of cells on the regression plane, and in
most cases we did not observe undesired cellular behaviour due to
the perturbations (Supplementary Fig. 4). Finally, we compared
the results of the original methodology presented by Cai et al.
(multi-dimensional dynamic time warping for creating the
standard mitotic time, Fig. 3e) with the results obtained by RP
(Fig. 3f), and we concluded that RP is capable of reproducing a
mitotic time model equivalent to the original one. This indicates
that RP can compete with complex analysis techniques, such as
DTW. Moreover, RP provides the flexibility to customize the
output space, enabling higher resolution analysis of user-defined
sections of the biological process.

Time-lapse microscopy: blood cell differentiation. The fruit fly,
Drosophila melanogaster, serves as a popular model system to
study innate immune functions, such as phagocytosis, wound
healing and capsule formation21. In the larva, these functions are
executed by hemocytes, which are categorized into three main cell
types: (1) phagocytic plasmatocytes, accounting for the majority
of circulating hemocytes, (2) crystal cells, which play a role in
melanization and wound healing, and (3) lamellocytes, which are
large flat cells that appear only in certain tumorous genetic
backgrounds or following immune induction22. Such an immune
induction appears in nature as a result of egg-laying by a para-
sitoid wasp, Leptopilina boulardi. Following infestation, newly
differentiating lamellocytes, together with plasmatocytes, elim-
inate the invader by forming a multilayer capsule around the
wasp egg23–25. Lamellocytes are also produced when larvae are
wounded with an insect pin26 (Supplementary Fig. 5).

Cell lineage-tracing studies revealed that plasmatocytes, which
had previously been considered as terminally differentiated
phagocytic cells, show plasticity, and are capable of differentiating
into encapsulating lamellocytes upon immune induction22,27–29.

This transdifferentiation process has been underlined by recent
single-cell RNA sequencing studies30,31. However, the cellular
intermediates of the plasmatocyte-lamellocyte transition process
have not been characterized morphologically in detail so far, and
the routes of differentiation are still controversial32. A study by
Anderl et al.33 described two types of lamellocytes, and suggested
that only the smaller type II lamellocytes (Supplementary
Movie 3) differentiate from plasmatocytes, while the regular,
flattened type I lamellocytes (Supplementary Movie 4) originate
from dedicated precursors.

To clarify the potential routes of differentiation, we developed an
ex vivo method for culturing Drosophila hemocytes, appropriate
for monitoring their differentiation with time-lapse microscopy.
Blood cell types can be characterized by their morphologies and
in vivo transgenic reporter expression pattern33. The regression
plane was manually trained using 109 cells based on their
morphology and reporter gene expression (Fig. 4a).

The analysis revealed that 5.6% of the plasmatocytes
transdifferentiated into lamellocytes upon immune induction
(wounding) of the larvae (the threshold line is indicated in
Fig. 4c), which is well reflected by the expression of cell type
specific transgenes (Supplementary Movies 5, 6). After the
formation of lamellocytes, no significant alterations in their cell
size were observed, indicating that all types of lamellocytes are
terminally differentiated cells. Most of the plasmatocytes (94.4%),
however, did not differentiate into lamellocytes, but either spread
out, increasing their cell size, or kept their size and morphology
during the experiment, which is in line with the results of in vivo
studies on blood cell differentiation in Drosophila.

However, in the case of lamellocytes instead of identifying 2
clearly separated subtypes I and II, we have observed that the
differentiation processes are evenly distributed on the regression
plane, as reflected by specific features (Fig. 4b, c, f). This finding
suggests that type I and type II lamellocytes, both differentiating
from plasmatocytes, are not definitely distinguishable cell types,
but rather they are two extreme stages of a size continuum
(Fig. 4e). Details are reported in the Methods section.

Discussion
Regression plane increases the resolution of classification to
represent subtle phenotypic differences by exploiting regression
techniques, extended by active learning. First, using artificial
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datasets we have demonstrated its capability to outperform the
available classification tools in phenotypic discovery. Second, we
have applied RP to analyze lipid droplets in hepatocytes during
siRNA-mediated gene silencing, serving as a model of a hetero-
geneous population that reflects different cellular metabolic states.
We have revealed genes playing a crucial role in regulating tri-
glyceride levels in hepatocytes. Finally, we have identified the
previously undiscovered continuous characteristics of hemocyte
differentiation in Drosophila melanogaster. Our findings indicate
that RP is a promising tool to explore biological data in a con-
tinuous manner, reflecting the non-discrete nature of biological
processes.

Methods
Synthetic dataset. To generate the dataset we used a customized version of
SIMCEP34, provided as Supplementary Software 2. Synthetic microscopy images
were organized into a 24-well plate format, and the dataset was composed of 9
images/well, for a total of 216 images and 8117 cells. The images of each well were
generated by considering a predominant process mixed with other ones. To model
the continuous processes we fixed two endpoints: green cells of highly irregular
shape, and red, rounded cells (Fig. 1e). The degree of cell shape deformation
decreases from the green to the red endpoint. Next, for each process we selected a

middle point, and assigned a colour to that, ranging from white (process 1) to blue
(process 6). The colour of the cells in each process was then defined by linear
interpolation between the colour of the middle point and one of the two endpoints.
The generated dataset was deposited to the Broad Bioimage Benchmark Collection
(BBBC), and it is freely available at: https://data.broadinstitute.org/bbbc/
image_sets.html (dataset ID: BBBC031).

Lipid droplet dataset. Huh7 hepatocellular carcinoma cell line (from Prof. Ilkka
Julkunen, THL, Finland35) was authenticated using Promega StemEliteTM ID
System at Genomics Unit of Technology Centre, Institute for Molecular Medicine
Finland (FIMM), University of Helsinki. The cells were cultured in Minimum
Essential Medium (MEM, Gibco® Life Technologies) supplemented with 10% FBS
(fetal bovine serum, Gibco® Life Technologies), 100 IU/ml Penicillin and 100 µg/ml
Streptomycin (Penicillin/Streptomycin combination, Gibco® Life Technologies) at
37 °C incubator with 5% CO2. siRNAs (Supplementary Data 1) were transferred
from source plates (Echo Qualified 384-Well Low Dead Volume Microplate,
384LDV, Labcyte) to the assay plates (384 -Well Flat Clear Bottom Black Poly-
styrene TC-Treated Microplates, Corning®, USA) in a final concentration of 10 nM
with Echo® 550 Liquid Handler (Labcyte, UK) and Echo Cherry Pick software
(version 1.4.4). 25 nl/well of transfection reagent Lipofectamine RNAiMAX
(Invitrogen, Life Technologies, USA) in 5 µl of Opti-MEM (Gibco® Life Tech-
nologies) was added to the assay plate with Multidrop Combi nL Reagent Dis-
penser (Thermo Fisher Scientific Oy, Finland). The cells (750 cells in 20 µl of
complete medium/well) were delivered to the wells with Multidrop Combi Reagent
Dispenser (Thermo Fisher Scientific Oy, Finland) using a standard cassette
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(Thermo Fisher Scientific Oy). After 72 h of siRNA transfection the cells were fixed
with 4% paraformaldehyde, quenched with 50 mM NH4Cl and stained with
Lipidtox Green (HCS LipidTox Green Neutral Lipid Stain, Invitrogen) and 300 nM
DAPI (Sigma-Aldrich) for 30 min at RT. Nine images/well were acquired per
channel for duplicate plates with an automated epifluorescence ScanR microscope
(Olympus) equipped with a 150W Mercury-Xenon mixed gas arc burner, a 20×
long working distance objective (UIS2) and a digital monochrome CCD camera
(Hamamatsu). The image resolution was 1344 × 1024 pixel and 16 bit per channel.
The 2 identical plates contained a total of 3956 images of 232,084 cells (>2200 cells
per siRNA). The generated dataset was deposited to FigShare36.

To validate our findings, additional biochemical analysis was performed to
siRNA-transfected Huh-7 cells. The cells were collected in 0.2 N NaOH, followed
by lipid extraction. TGs and CEs were resolved on TLC plates using hexane/diethyl
ether/acetic acid (80:20:1) as the mobile phase. Lipids were visualized by charring,
the plates were scanned and the intensities were quantified by ImageJ.

Blood cell differentiation dataset. Early third instar Me larvae (eaterGFP as a
marker of plasmatocytes, MSNF9MOmCherry as a marker of lamellocytes33) were
immune induced by wounding the cuticle with an Austerlitz Insect Pin® of 0.2 mm
in diameter. Wounded larvae were kept on standard Drosophila food at 25°C.
Circulating blood cells were isolated 12 h after wounding. Blood samples of 10
larvae were collected, pooled in 300 µl Schneider’s medium (Lonza, Cat: 04-351 Q)
supplemented with 10% fetal bovine serum (FBS; Gibco®, Cat: 10270) plus 0.01
mg/ml gentamicin (Sigma, Cat: G3632), 0.065 mg/ml penicillin (Sigma, Cat: P7794)
and 0.1 mg/ml streptomycin (Sigma, Cat: S6501). Next it was spread into a well
chamber of an 8-well µ-slide (Ibidi, Cat: 80826). Both sample storage and micro-
scopic analysis were carried out at 25 °C.

We acquired 15-frame image sequences/field (141 fields) on 3 channels:
brightfield, mCherry, and EGFP, with 2-hour-gaps between the subsequent frames.
Images were acquired with a high-content screening microscope (Operetta, Perkin
Elmer) equipped with a 60× high-numeric-aperture objective and a digital high
resolution 14-bit CCD camera, yielding a total of 4230 images (2 plates, 2115
images in each). The image size was 1360 × 1024 pixels and 8-bit per channel, in
TIFF format. The generated dataset was deposited to FigShare37.

Image segmentation and feature extraction. In order to classify the cells in an
image, ACC requires the position and features of each cell to be analyzed. For this
purpose, we first flattened illumination distortions of the acquired images by using
CIDRE38. Then, we used CellProfiler39 and the NucleAIzer deep learning
framework40 to segment the cells and extract the standard features describing
morphology, intensity and texture characteristics. Details of the image analysis and
the regression models used in each experiment are reported in Supplementary
Note 2.

Regression models. Regression methods, a subgroup of supervised machine
learning techniques, are aiming at approximating continuous target variables. Alike
for classification, various models have been proposed for regression, ranging from
linear regression to neural networks and random forests41.

The diverse set of regression models raise the problem of model selection for
RP. As the RP is completely user-defined, it is impossible to have any prior
assumptions on the function to be learnt, hence model selection should be data-
driven. RP provides cross-validation assessment of model performance by root
mean squared error measure (RMSE) and relative RMSE42. Additionally, two
important aspects are to be considered when selecting the model.
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First, the two-dimensional output format of RP requires the use of multi-target
regression, as we require a 2D position (expressed by 2 coordinates) to be
predicted. Traditionally, regression models aim at predicting a single continuous
variable, which may be naturally extended for multiple dimensions by considering
the outputs as independent variables, also called the single-target (ST) method43.
On the contrary, it has been reported several times that multi-target models that
exploit the possible correlation between the output variables may yield significantly
better results than the ST methods44,45. Consequently, when a strong relationship
between the output variables is evident, choosing a multi-target regression model is
more appropriate.

Secondly, models that are capable of providing a probabilistic output (i.e. those
that provide not only the predictive mean, but also some sort of uncertainty) are
less wide-spread for regression than for classification. However, uncertainties
provide valuable information to assess the model’s performance, and most of the
active learning strategies essentially rely on them.

Gaussian processes (GPs) can be used as non-parametric regression models
with a probabilistic output46. Instead of providing a single prediction for each cell,
GP returns a normal distribution whose mean can be used as the predicted value.
More importantly, its variance is an estimate for the uncertainty of the given cell.
GP is originally considered as a single-target method, however, its multi-target
extensions also exist and are known as co-kriging44,47. Although GP is a non-
parametric method (hence training is not required in principle), it still has
hyperparameters (mean, covariance, likelihood, inference functions and their
parameters) that can be optimized for enhanced performance. The most frequently
applied iterative optimization methods (gradient descents) require initial
hyperparameter settings which significantly affect the quality of the ultimate
hyperparameter set. Consequently, we have designed heuristic hyperparameter
initialization methods for several mean and covariance functions as described in
Supplementary Note 3. Due to the broad selection of implementable models, RP
provides an interface (via Object Oriented Programming) to facilitate the extension
of implemented regression methods. By default, the package contains bridges to
several models from Weka48, Mulan49 and Matlab’s Deep Learning Toolbox. The
full list and instructions on how to include new models are provided in
Supplementary Note 4.

Active regression. Usually, the most time-consuming part of statistical learning
for biomedical applications (including shallow and deep learning) is the pro-
cedure of annotation, and – as transfer learning is rarely used – it is often
repeated for new experiments. Active learning50 aims at reducing the number of
training samples needed to achieve the most representative training set by
automatically proposing cells for annotation. It has previously been shown by
Smith and Horvath51 that active learning reduces the time cost of annotation in
HCS compared to classical labelling. Most of the active classification methods
are based solely on the predicted class labels, enabling the underlying model to
be freely modified. However, these methods are not directly applicable for
regression, as they assume that the predicted label is discrete. Active regression
methods were developed by Cohn et al.52, based on variance reduction for
Neural Networks, Mixture of Gaussians and Locally Weighted Regression. Here
we present active regression methods inspired by the general active classification
approaches, and a specific method for Gaussian Processes utilizing its properties
(Supplementary Fig. 1).

Committee members. The Committee Members approach is inspired by the
QueryByCommittee active classification method. Similarly to cross-validation, a set
of models (committee) is built up from the available training samples, and a
measure of disagreement is defined for the committee. In case of regression, the
classical measures cannot be applied directly for two reasons: (1) they rely on the
fact that the output is discrete, and (2) they require a probabilistic model. Thus, we
propose using the quadratic mean of the Euclidean distance between the committee
consensus and the single committee predictions. Hence, the next cell to be labelled
by the expert is defined by the following formula:

x* ¼ argmax
x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑C
i¼1

dðŷi; �yÞ2
C

s

ð1Þ

where C is the size of the committee, ŷi is the predicted position for x (a sample not
taken from the TS) by the ith committee member, �y is the mean of ŷ, and d is the
Euclidean distance.

Empty regions. The Empty regions method targets the cells which were predicted to
the least dense region of the regression plane in terms of training samples. This
heuristic is supposed to explore those cell types that are not presented in the TS.

Out of bounds. By design, the regression plane is represented by a unit-square, and
has limits in each direction. However, this limitation was not incorporated into the
regression models, consequently it is possible that cells are predicted outside of the
regression plane’s boundaries. Therefore, we propose a strategy that selects these
cells for annotation, ranked by their distance from the edges of the
regression plane.

Uncertainty sampling. When a probabilistic regression model (such as GP) is
available, then, instead of plain predictions, a posterior distribution is defined for
each cell, enabling the application of active learning methods aiming at decreasing
the variance of this posterior. Our proposed method targets the cell with the
highest posterior variance, where the final value for the selection is determined by
taking either the mean, the sum, the product, the minimum or the maximum of the
2 separate variances, calculated for each output dimension of the regression plane.

Overall uncertainty sampling. GP has an intriguing property, namely that the
posterior distribution is independent of the actual TS positions; it only depends on
the input features and the hyperparameters of the GP. In consequence, given fixed
hyperparameters, it is possible to exactly calculate how the posterior variance
changes, assuming that a new cell is included in the TS even without knowing its
position on the regression plane. Executing this calculation for all possible can-
didates, the resulting cell proposed for annotation is the one that decreases overall
variance the most. This approach is formulated by:

x* ¼ argmin
x

∑
N

i¼1
f xσ ðxiÞ ð2Þ

where N is the size of the full dataset (including the training dataset) and f xσ ðxiÞ is
the variance for xi, supposing that the GP was trained on the available training set
extended with x. The predictive variances for individual samples are calculated
from the diagonal elements of the predictive variance matrix according to ref. 46 by
the following formula:

K X*;X*

� �� KðX*;XÞK X;Xð Þ�1KðX;X*Þ ð3Þ

where K is the kernel (covariance) function, X is the feature matrix of samples not
yet predicted and X is the feature matrix of the training set’s elements.

We assessed the performance of the proposed active learning methods with 4
regression models: Random Forest, Gaussian Process, Neural Network and Support
Vector Machine; on 2 of our datasets: Lipid droplets and MitoCheck containing
457 and 585 annotated cells, respectively. In each scenario the experiment started
with randomly isolating 1/3 of the available samples to a test set, leaving the
remaining 2/3 in a pool. Then, 10 cells were randomly selected from the pool for
initializing the training set, followed by iteratively extending it with 290 cells
according to the active query strategy. In each iteration a regression model was
trained, and the relative root mean square error (RRMSE) was calculated on the
test set.

The results from 50 independent runs are displayed in Supplementary Fig. 1b, c.
In all but one (Gaussian Process in the MitoCheck dataset) scenario there was at
least one active learning technique that outperformed random sampling, despite
the high variance of error values among different regression models. The Random
Forest and Gaussian Process models achieved smaller RRMSE values than the other
two methods inhibiting the active strategies’ ability to significantly improve the
performance in these cases. Still, the CommitteeMembers strategy resulted in the
lowest average area under the curve value in 5 out of the 8 cases. We also note that
although mean prediction error is the most widespread measure of active learning,
other aspects of the model performance (e.g. model coverage) might be equally
interesting for the users.

Regression plane output. RP provides output in various formats to satisfy the
diverse needs of field experts (Supplementary Movie 2). The simplest output can be
obtained by predicting an image in the main window of ACC, by clicking on a cell
to see its raw regression plane position. Alternatively, in the regression plane one
can select an arbitrary number of images, so that all cells in those images are going
to be visualized on the regression plane with their icon at their predicted position.
Importantly, these predictions can easily be added to the TS as well.

For well-based analysis, a multi-component report can be generated for each
plate. The first component of the report is a pdf file containing a heatmap (simple
cell count in a discretized regression plane) and a kernel density estimation (KDE)
visualizing the distribution of cells on the regression plane in the particular well
(Fig. 2b, c). Besides, the difference and the most dense position shift between single
wells, and the average of user-defined control wells are also included.

Secondly, RP provides standard visualization tools (PCA, t-SNE53 and NeRV54)
for assessing the relationships among the wells. Each of these methods can generate
the figure of Plot of plots (PoP; Fig. 2c, Supplementary Fig. 4a–c). In PoP each well
is represented by its KDE/heatmap, and the distance between these representations
corresponds to the difference between the wells’ regression plane distributions (i.e.
similar wells are close in PoP, whilst differing ones are farther from each other). In
case of plates with higher well-numbers (e.g. 96 or 384) this may result in an
overwhelmingly dense diagram, so the PoPs can be re-loaded to RP where they can
be examined interactively. Importantly, in the RP-PoP, wells of similar
perturbations (replicates) can be highlighted with colours. In addition to these tools
for visualization, a clustergram can also be generated, providing a way to compare
the perturbations by performing hierarchical clustering (Supplementary Fig. 3e–h,
Supplementary Fig. 4d). The matrix in the middle of the clustergram visualizes
pairwise Kullback–Leibler divergence (KLD) between the cell-number weighted
average of the replicate wells. Clustering is performed on the pairwise KLD matrix
with correlation as distance, and average linkage.
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Additionally, RP enables the analysis of underlying image features by the
Colour Frame (CF) module. CF works by visualizing the feature distribution of
cells from the regression plane, using an artificial colour scale. In particular, the
user selects a specific feature and adjusts the visualization settings to define a colour
for each cell icon’s frame in the regression plane. (Figs. 3d and 4b). Notably, CF can
be used either for fine tuning of the TS, or for assessing features of interest after
prediction.

Finally, the Trajectory Plot (TP) facilitates the assessment of live-cell data
composed of time-resolved image sequences of the same fields. Organizing the
corresponding single-cells into trajectories using the predicted coordinates of the
regression plane enables the visualization of the dynamics of underlying processes
(Fig. 4c–f). TP is a multifunctional visualization tool that facilitates a better
understanding of the continuous aspect of biological processes and offers several
possibilities to investigate cell fates or to compare the development of particular
cells as a function of time. Filtering functions help to find subgroups of phenotypes
with different behaviours. Interestingly, the dynamics of the process can be
perceived by animating the evolution of trajectories (Supplementary Movies 7, 8).
We note that the observed distances and the derived speed of motion in trajectories
are completely user-defined, hence they should be interpreted relative to the
designed training set. This is a general property of supervised methods and
represents a trade-off between customizability and fully unbiased approaches.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Synthetic dataset: https://data.broadinstitute.org/bbbc/image_sets.html (dataset ID:
BBBC031). Lipid droplet dataset: https://doi.org/10.6084/m9.figshare.c.5067638.v136.
Mitocheck dataset: http://www.mitocheck.org/mitotic_cell_atlas/downloads/v1.0.1/
mitotic_cell_atlas_v1.0.1_fulldata.zip. The training set for the Mitocheck data generated
in this study is available as Supplementary Data 2. Drosophila dataset: https://doi.org/
10.6084/m9.figshare.c.5075093.v137. Source data are provided with this paper.

Code availability
RP is a new module of ACC (current version 3.1). ACC is written in MATLAB (The
MathWorks, Inc., USA). ACC supports the most common image formats (e.g. tif, bmp,
png) and it works under Windows 64-bit, Linux, and OS X environments. Source code
and standalone versions (which do not require a MATLAB license), video tutorials, and
help documentation files are publicly available at: www.cellclassifier.org. All the ACC
materials are copyright protected and distributed under GNU General Public License
version 3 (GPLv3). Further software involved in this study: CellProfiler v1 is available
freely at: https://cellprofiler.org/previous-releases. The CIDRE framework is freely
available at: https://github.com/smithk/cidre. The nucleAIzer pipeline source code is
available at: https://github.com/spreka/biomagdsb. The experiments involving Matlab
were conducted with Matlab v9.5.0.1298439 (R2018b). The data analysis involving
ImageJ was conducted with version 1.49b.
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SARS-CoV-2 is the coronavirus responsible for the current 
COVID-19 pandemic (1, 2). A striking difference between the 
S protein of SARS-CoV-2 and SARS-CoV is the presence, in 
the former, of a polybasic sequence motif, RRAR, at the S1/S2 
boundary. It provides a cleavage site for a host proprotein 
convertase, furin (3–5) (fig. S1A). The resulting two proteins, 
S1 and S2, remain non-covalently associated, with the serine 
protease TMPRSS2 further priming S2 (6). Furin-mediated 
processing increases infectivity and affects the tropism of 
SARS-CoV-2, while furin inhibition diminishes SARS-CoV-2 
entry, and deletion of the polybasic site in the S protein re-
duces syncytia formation in cell culture (3–5, 7). 

The C terminus of the S1 protein generated by furin cleav-
age has an amino acid sequence (682RRAR685), that conforms 
to a [R/K]XX[R/K] motif, termed the ‘C-end rule’ (CendR) 
(fig. S1B) (8). CendR peptides bind to Neuropilin-1 (NRP1) 
and NRP2, transmembrane receptors that regulate plei-
otropic biological processes, including axon guidance, angio-
genesis, and vascular permeability (8–10). To explore the 
possibility that the SARS-CoV-2 S1 protein may associate with 
neuropilins we generated a GFP-tagged S1 construct (GFP-S1) 
(fig. S1C). When expressed in HEK293T cells engineered to 
express the SARS-CoV-2 receptor ACE2, GFP-S1 immunopre-
cipitated endogenous NRP1 and ACE2 (Fig. 1A). We transi-
ently co-expressed NRP1-mCherry and either GFP-S1 or GFP-
S1 ΔRRAR (a deletion of the terminal 682RRAR685 residues) in 

HEK293T cells. NRP1 immunoprecipitated the S1 protein, 
and deletion of the CendR motif reduced this association (Fig. 
1B). Comparable binding was also observed with mCherry-
NRP2, a receptor with high homology to NRP1 (fig. S1, D and 
E). In both cases, residual binding was observed with the 
ΔRRAR mutant indicating an additional CendR-independent 
association between neuropilins and the S1 protein. 

To probe the functional relevance of this interaction, we 
generated HeLa wild type and NRP1 knock out (KO) cell lines 
stably expressing ACE2, designated as HeLawt+ACE2 and 
HeLaNRP1KO+ACE2 respectively (the level of ACE2 expression 
was comparable between these lines) (fig. S1F). Using a clini-
cal isolate SARS-CoV-2 (SARS-CoV-
2/human/Liverpool/REMRQ001/2020), we performed viral 
infection assays and fixed the cells at 6 and 16 hours post in-
fection (hpi). SARS-CoV-2 infection was reduced in 
HeLaNRP1KO+ACE2 relative to HeLawt+ACE2 (Fig. 1C). HeLa 
cells lacking ACE2 expression were not infected (fig. S1G). In 
Caco-2 cells, a human colon adenocarcinoma cell line endog-
enously expressing ACE2 and widely used in COVID-19 stud-
ies, the suppression of NRP1 expression by shRNA greatly 
reduced SARS-CoV-2 infection at both 7 and 16 hpi respec-
tively, whereas that of vesicular stomatitis virus (VSV) 
pseudotyped with VSV-G was unaffected (Fig. 1D and figs. 
S1H and S2A). To determine if NRP1 was required for early 
virus infection, we established a sequential staining 
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SARS-CoV-2, the causative agent of COVID-19, uses the viral Spike (S) protein for host cell attachment and 
entry. The host protease furin cleaves the full-length precursor S glycoprotein into two associated 
polypeptides: S1 and S2. Cleavage of S generates a polybasic Arg-Arg-Ala-Arg C-terminal sequence on S1, 
which conforms to a C-end rule (CendR) motif that binds to cell surface Neuropilin-1 (NRP1) and Neuropilin-
2 (NRP2) receptors. Here, we used X-ray crystallography and biochemical approaches to show that the S1 
CendR motif directly bound NRP1. Blocking this interaction using RNAi or selective inhibitors reduced 
SARS-CoV-2 entry and infectivity in cell culture. NRP1 thus serves as a host factor for SARS-CoV-2 
infection and may potentially provide a therapeutic target for COVID-19. 
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procedure using antibodies against SARS-CoV-2 S and N pro-
teins to distinguish extracellular and intracellular viral parti-
cles (fig. S2B). While NRP1 depletion did not affect SARS-
CoV-2 binding to the Caco-2 cell surface (Fig. 1E), virus up-
take was halved in NRP1-depleted cells compared to control 
cells after 30 min of internalization (Fig. 1F). Thus, NRP1 en-
hances SARS-CoV-2 entry and infection. 

We also observed that SARS-CoV-2-infected HeLawt+ACE2 
cells displayed a multi-nucleated syncytia cell pattern, as re-
ported by others (Fig. 1C) (5). Using an image analysis algo-
rithm and supervised machine learning (fig. S2, C to F) (11), 
we quantified syncytia of infected HeLawt+ACE2 and 
HeLaNRP1KO+ACE2 cells. At 16 hpi, the majority of 
HeLawt+ACE2 cells formed syncytia, while in 
HeLaNRP1KO+ACE2 cells this phenotype was reduced (fig. S2G). 
When infected with a SARS-CoV-2 isolate lacking the furin 
cleavage site (SARS-CoV-2 ΔS1/S2) (fig. S1A) the differences 
in infection and syncytia formation were less pronounced 
(fig. S2, H and I). However, a significant decrease in infection 
of HeLaNRP1KO+ACE2 was still observed at 16 hpi, indicating 
that NRP1 may additionally influence infection through a 
CendR-independent mechanism (fig. S2H). 

The extracellular regions of NRP1 and NRP2 are com-
posed of two CUB domains (a1 and a2), two coagulation fac-
tor domains (b1 and b2), and a MAM domain (9). Of these, 
the b1 domain contains the specific binding site for CendR 
peptides (fig. S3A) (12). Accordingly, the mCherry-b1 domain 
of NRP1 immunoprecipitated GFP-S1, and a shortened GFP-
S1 construct spanning residues 493-685 (figs. S1C and S3B). 
Isothermal titration calorimetry (ITC) established that the b1 
domain of NRP1 directly bound a synthetic S1 CendR peptide 
(679NSPRRAR685) with an affinity of 20.3 μM at pH 7.5, which 
was enhanced to 13.0 μM at pH 5.5 (Fig. 2A). Binding was not 
observed to a S1 CendR peptide in which the C-terminal argi-
nine was mutated to alanine (679NSPRRAA685) (Fig. 2A). We 
co-crystallized the NRP1 b1 domain in complex with the S1 
CendR peptide (Fig. 2B). The resolved 2.35 Å structure re-
vealed 4 molecules of b1 with electron density of the S1 CendR 
peptide clearly visible in the asymmetric unit (fig. S3C). S1 
CendR peptide binding displayed remarkable similarity to 
the previously solved structure of NRP1 b1 domain in complex 
with its endogenous ligand VEGF-A164 (Fig. 2B and fig. S3D) 
(12). The key residues responsible for contacting the C-termi-
nal R685 of the CendR peptide - Y297, W301, T316, D320, 
S346, T349 and Y353 - are almost identical between the two 
structures (Fig. 2B and fig. S3D). The R682 and R685 
sidechains together engage NRP1 via stacked cation-π inter-
actions with NRP1 side chains of Y297 and Y353. By project-
ing these findings onto the structure of the NRP1 ectodomain, 
the b1 CendR binding pocket appears to be freely accessible 
to the S1 CendR peptide (fig. S3E) (13). 

Site-directed mutagenesis of the S1 R685 residue to 

aspartic acid drastically reduced GFP-S1493-685 immunoprecip-
itation by mCherry-b1, confirming the critical role of the C-
terminal arginine (Fig. 2C). Mutagenesis of the T316 residue 
within the mCherry-b1 domain of NRP1 to arginine also re-
duced association with GFP-S1493-685, consistent with its inhib-
itory impact on VEGF-A164 binding (12) (Fig. 2D). Accordingly, 
incubation of mCherry-b1 with VSV particles pseudotyped 
with trimeric S resulted in immunoprecipitation of processed 
forms of S1, which was dependent on the T316 residue (fig. 
S3F). Next, we transiently expressed either GFP, full length 
NRP1 wt-GFP or full length NRP1-GFP harboring the T316R 
mutation in HeLaNRP1KO+ACE2 cells. GFP expression and 
ACE2 expression levels were comparable and both constructs 
retained similar cell surface localization (fig. S3, G and H). 
SARS-CoV-2 infection was significantly enhanced in cells ex-
pressing NRP1 wt-GFP compared to GFP control, whereas it 
was not enhanced in cells expressing the T316R mutant (Fig. 
2E). Thus, the SARS-CoV-2 S1 CendR and NRP1 interaction 
promotes infection. 

To establish the functional relevance of the S1 CendR-
NRP1 interaction, we screened monoclonal antibodies 
(mAb#1, mAb#2, mAb#3) raised against the NRP1 b1b2 ecto-
domain. All three bound to the NRP1 b1b2 domain, displayed 
staining by immunofluorescence in NRP1-expressing PPC-1 
(human primary prostate cancer) cells but not in M21 (hu-
man melanoma) cells that do not express NRP1 (fig. S4A) (8), 
and stained the extracellular domain of NRP1-GFP expressed 
in cells (fig. S4B). Of these antibodies, mAb#3, and to a lesser 
extent mAb#1, bound to the CendR-binding pocket with high 
specificity, as defined by reduced ability to bind to a b1b2 mu-
tant that targets residues (S346, E348, T349) at the opening 
of the binding pocket (Fig. 3A) (12). Incubation of Caco-2 cells 
with mAbs#1 and 3, reduced SARS-CoV-2 infection compared 
to a control mAb targeting avian influenza A virus (H11N3) 
hemagglutinin (Fig. 3B). Consistent with this, mAb#3 inhib-
ited binding of GFP-S1493-685 and mCherry-b1 (Fig. 3C). As a 
comparison, Caco-2 and Calu-3 cells were incubated with sol-
uble ACE2, which inhibited SARS-CoV-2 infection in both 
cases (fig. S4C). 

Next, we turned to the small molecule EG00229, a selec-
tive NRP1 antagonist that binds the b1 CendR binding pocket 
and inhibits VEGF-A binding (Fig. 3D) (14). ITC established 
that EG00229 bound to the NRP1 b1 domain with a Kd of 5.1 
and 11.0 μM at pH 7.5 and 5.5 respectively (Fig. 3E). EG00229 
inhibited the direct binding between b1 and the S1 CendR 
peptide, and the immunoprecipitation of GFP-S1493-685 by 
mCherry-b1 (Fig. 3E and fig. S4D). Finally, incubation of 
Caco-2 cells with EG00229 reduced the efficiency of SARS-
CoV-2 infection at 7 and 16 hpi (Fig. 3F). Thus, the SARS-CoV-
2 interaction with NRP1 can be targeted to reduce viral infec-
tivity in relevant human cell lines (fig. S5). 

Cell entry of SARS-CoV-2 depends on priming by host cell 
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proteases (5, 6, 15). Our data indicate that a component of 
SARS-CoV-2 S protein binding to cell surface neuropilins oc-
curs via the S1 CendR motif generated by the furin cleavage 
of S1/S2. While not affecting cell surface attachment, this in-
teraction promotes entry and infection by SARS-CoV-2 in 
physiologically relevant cell lines widely used in the study of 
COVID-19. The molecular basis for the effect is unclear, but 
neuropilins are known to mediate the internalization of 
CendR ligands through an endocytic process resembling 
macropinocytosis, (8, 16, 17). Interestingly, gene expression 
analysis has revealed an up-regulation of NRP1 and NRP2 in 
lung tissue from COVID-19 patients (18). A SARS-CoV-2 virus 
with a natural deletion of the S1/S2 furin cleavage site 
demonstrated attenuated pathogenicity in hamster models 
(19). NRP1 binding to the CendR peptide in S1 is thus likely 
to play a role in the increased infectivity of SARS-CoV-2 com-
pared with SARS-CoV. The ability to target this specific inter-
action may provide a route for COVID-19 therapies. 
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Fig. 1. NRP1 Interacts with S1 and enhances SARS-CoV-2 infection. (A) HEK293T cells transduced to express 
ACE2 were transfected to express GFP or GFP-tagged S1 and lysed after 24h. The lysates were subjected to 
GFP-nanotrap and the immune-isolates were blotted for ACE2 and NRP1 (N=3). (B) HEK293T cells were co-
transfected to express GFP-tagged S1 or GFP-S1 ΔRRAR and mCherry or mCherry-tagged NRP1 and subjected 
to GFP-nanotrap (N=5). Two-tailed unpaired t-test; P= 0.0002. (C) HeLawt+ACE2 and HeLaNRP1 KO+ACE2 cells 
were infected with SARS-CoV-2. Cells were fixed at 6 or 16 hpi and stained for N protein (magenta) and Hoechst 
(cyan), and virus infectivity was quantified (N=3). Two-tailed unpaired t-test; P=0.00002 and 0.00088. Scale 
bar=200 μm. (D) Caco-2 cells expressing shRNA against NRP1 or a non-targeting control (SCR) were infected 
with SARS-CoV-2 and fixed at 7 or 16 hpi. The cells were stained for N protein (magenta) and Hoechst (cyan), 
and infectivity was quantified (N=3). Two-tailed unpaired t-test; P=0.0005 and 0.00032. Scale bar=500 μm. 
(E) Caco-2 shSCR or shNRP1 cells were inoculated with MOI=50 of SARS-CoV-2 and incubated in the cold for 
60 min, and fixed. A two-step antibody staining procedure was performed using anti-S and -N Abs to distinguish 
external (green) and total (red) virus particles, and the binding of particles per cell was quantified for over 3300 
particles per condition (N=3). Two-tailed unpaired t-test; P=0.6859. (F) Caco-2 shSCR or shNRP1 cells were 
bound with SARS-CoV-2 as in (E), followed by incubation at 37 °C for 30 min. The cells were fixed and stained 
as in (E). Viral uptake was quantified for over 4200 particles per condition (N=3). Two-tailed unpaired t-test; 
P=0.00079. Scale bars for (E) and (F) = 10 μm and 200 nm (zoom panels). The square regions were zoomed in. 
The bars, error bars, circles and triangles represent the mean, SEM (B) and SD (C-F), individual data points, 
respectively. ∗P< 0.05, ∗∗P< 0.01, ∗∗∗P< 0.001, ∗∗∗∗P< 0.0001. 
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Fig. 2. Molecular basis for CendR binding of SARS-CoV-2 S1 with NRP1. (A) Binding of NRP1 b1 with native 
(green line) and mutant (orange line) form of S1 CendR peptide (corresponding to residues 679-685) by ITC at 
two different pH conditions (N=3). All ITC graphs represents the integrated and normalized data fit with 1-to-1 
ratio binding. (B) Left: NRP1 b1 – S1 CendR peptide complex superposed with NRP1 b1 – VEGF-A fusion complex 
(PDB ID: 4DEQ). Bound peptides are shown in stick representation. RMSD = root mean square deviation. Right: 
Enlarged view highlighting the binding of S1 CendR peptide b1. Key binding residues on b1 are shown in stick 
representation. (C). HEK293T cells were co-transfected with combinations of GFP-tagged S1493-685 and S1493-685 
R685D, and mCherry or mCherry-NRP1 b1, and subjected to mCherry-nanotrap (N=5). Two-tailed unpaired t-
test; P <0.0001. (D). HEK293T cells were co-transfected with combinations of GFP-tagged S1493-685 and 
mCherry, mCherry-NRP1 b1 or mCherry-NRP1 b1 T316R mutant and subjected to mCherry-nanotrap (N=5). 
Two-tailed unpaired t-test; P <0.0001. (E) HeLaNRP1KO + ACE2 cells transfected with GFP, NRP1 wt-GFP or NRP1 
T316R-GFP constructs were infected 24 h later with SARS-CoV-2. At 16 hpi the cells were fixed and stained for 
SARS-CoV-2-N, and viral infection quantified in the GFP-positive subpopulation of cells (N=3). The percentage 
of infection was normalized to that of GFP-transfected cells. Two-tailed unpaired t-test; p = 0.002. The bars, 
error bars and circles represent the mean, SEM (C-D) and SD (E), individual data points, respectively. ∗P< 0.05, 
∗∗P< 0.01, ∗∗∗P< 0.001, ∗∗∗∗P< 0.0001. 
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Fig. 3. Selective inhibition of the S1-NRP1 interaction reduces SARS-CoV-2 infection. (A) ELISA of anti-NRP1 
monoclonal antibodies (mAb#1, mAb#2, mAb#3) at 3 μg/mL using plates coated with NRP1 b1b2 wild type, 
b1b2 mutant (S346A, E348A, T349A) or BSA, used as control (N=3). Binding is represented as arbitrary units 
of absorbance at 655 nm. Two-tailed unpaired t-test; P = 0.0207, 0.2430, 0.0007. (B) Cells were pre-treated 
with 100 μg/mL of anti-H11N3 (Ctrl) mAb, mAb#1, 2 or 3 for 1 h prior to infection with SARS-CoV-2. Cells were 
fixed at 16 hpi and stained for N protein (magenta) and Hoechst (cyan) (N=3). Two-tailed unpaired t-test; 
P=0.015, 0.36, 0.0003. Scale bar=500 μm. (C) HEK293T cells were co-transfected with combinations of 
mCherry or mCherry-b1 and GFP-tagged S1493-685 and subjected to mCherry-nanotrap with or without co-
incubation with mAb#3 (N=3). Two-tailed unpaired t-test; P = 0.0143. (D) NRP1 b1 – S1 CendR peptide complex 
superimposed with NRP1 b1 – EG00229 inhibitor complex (PDB ID:3I97). Key binding residues on b1, bound 
peptides and EG00229 are shown in stick representation. (E) ITC analysis of EG00229 binding to b1 domain of 
NRP1 at two different pH conditions. Pre-incubation with EG00229 blocks S1 CendR peptide binding (orange 
line), and the CendR peptide can reduce binding of EG00229 (green line). (N=3). All ITC graphs represents the 
integrated and normalized data fit with 1-to-1 ratio binding. (F). Cells were pre-treated with 100 μM of EG00229 
or DMSO prior to infection with SARS-CoV-2. Cells were fixed at 7 and 16 hpi and stained for N protein (magenta) 
and Hoechst (cyan) (N=3). The square region was zoomed in. Scale bars=500 μm and 100 μm (zoom panel). 
Two-tailed unpaired t-test; P = 0.0059 and 0.0013. The bars, error bars, circles and triangles represent the 
mean, SEM (C) and SD (A, B, F) and individual data points, respectively. ∗P< 0.05, ∗∗P< 0.01, ∗∗∗P< 0.001, 
∗∗∗∗P< 0.0001. 

on O
ctober 20, 2020

 
http://science.sciencem

ag.org/
D

ow
nloaded from

 

               horvath.peter.2_10_22

http://www.sciencemag.org/
http://science.sciencemag.org/


Neuropilin-1 is a host factor for SARS-CoV-2 infection

Julian A. Hiscox, Tambet Teesalu, David A. Matthews, Andrew D. Davidson, Brett M. Collins, Peter J. Cullen and Yohei Yamauchi
Shoemark, Lorena Simón-Gracia, Michael Bauer, Reka Hollandi, Urs F. Greber, Peter Horvath, Richard B. Sessions, Ari Helenius, 
James L. Daly, Boris Simonetti, Katja Klein, Kai-En Chen, Maia Kavanagh Williamson, Carlos Antón-Plágaro, Deborah K.

published online October 20, 2020

ARTICLE TOOLS http://science.sciencemag.org/content/early/2020/10/19/science.abd3072

MATERIALS
SUPPLEMENTARY http://science.sciencemag.org/content/suppl/2020/10/19/science.abd3072.DC1

REFERENCES

http://science.sciencemag.org/content/early/2020/10/19/science.abd3072#BIBL
This article cites 31 articles, 7 of which you can access for free

PERMISSIONS http://www.sciencemag.org/help/reprints-and-permissions

Terms of ServiceUse of this article is subject to the 

 is a registered trademark of AAAS.ScienceScience, 1200 New York Avenue NW, Washington, DC 20005. The title 
(print ISSN 0036-8075; online ISSN 1095-9203) is published by the American Association for the Advancement ofScience 

No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY).
Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science.

on O
ctober 20, 2020

 
http://science.sciencem

ag.org/
D

ow
nloaded from

 

               horvath.peter.2_10_22

http://science.sciencemag.org/content/early/2020/10/19/science.abd3072
http://science.sciencemag.org/content/suppl/2020/10/19/science.abd3072.DC1
http://science.sciencemag.org/content/early/2020/10/19/science.abd3072#BIBL
http://www.sciencemag.org/help/reprints-and-permissions
http://www.sciencemag.org/about/terms-service
http://science.sciencemag.org/


ARTICLE

Intelligent image-based in situ single-cell isolation
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Abel Szkalisity4, Farkas Sukosd1, Katalin Kocsis1, Balazs Balint 6, Lassi Paavolainen7, Marton Z. Enyedi4,

Istvan Nagy 4,6, Laszlo G. Puskas4,5, Lajos Haracska4, Gabor Tamas1 & Peter Horvath4,7

Quantifying heterogeneities within cell populations is important for many fields including

cancer research and neurobiology; however, techniques to isolate individual cells are limited.

Here, we describe a high-throughput, non-disruptive, and cost-effective isolation method that

is capable of capturing individually targeted cells using widely available techniques. Using

high-resolution microscopy, laser microcapture microscopy, image analysis, and machine

learning, our technology enables scalable molecular genetic analysis of single cells, targetable

by morphology or location within the sample.
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Much of our current understanding of biology is built
upon population-averaged measurements, including
many models for cellular networks and signaling1.

However, measurements averaging the behavior of large popu-
lations of cells can lead to false conclusions if they mask the
presence of rare but critical subpopulations2. It is now well
recognized that heterogeneities within a small subpopulation can
carry important consequences for the entire population. For
example, genetic heterogeneity plays a crucial role in drug resis-
tance and the survival of tumors3. Even genetically homogeneous
cell populations possess large degrees of phenotypic cell-to-cell
variability due to individual gene expression patterns4. To better
understand biological systems with cellular heterogeneity, we
increasingly rely on single-cell molecular analysis methods5.
However, single-cell isolation, the process by which we target and
collect individual cells for further study, is still technically chal-
lenging and lacks a perfect solution.

A number of isolation methods are capable of collecting cells
based on certain single-cell properties in a high-throughput
manner, including fluorescence-activated cell sorting (FACS),
immunomagnetic cell sorting, microfluidics, and limiting
dilution6,7. However, these harvesting techniques disrupt and
dissociate the cells from the microenvironment, and they are
incapable of targeting the cell based on location within the sample
or by phenotypic profile. In contrast, micromanipulation and
laser capture microdissection8 (LCM) are microscopy-based
alternatives that directly capture single cells from suspensions
or solid tissue samples. They can target cells by location or
phenotype, and this contextual information can provide impor-
tant insights when interpreting data from genetic analysis. LCM
and micromanipulation methods can isolate specific subpopula-
tions without substantial disruption of the tissue while limiting
contamination (e.g., from chemical treatments needed for FACS).
This is an important advantage for assaying single-cell gene
expression and molecular processes. Recently, other single-cell
isolation techniques have been introduced to perform mass
spectrometry on single cells9. However, all these methods have a
crucial limitation—they require manual operation to choose cells
for isolation and to precisely target and extract them. These
human-operated steps are error-prone and laborious, which
greatly limits capacity.

We developed a technique to increase the accuracy and
throughput of microscopy-based single-cell isolation by auto-
mating the target selection and isolation process. Computer-
assisted microscopy isolation (CAMI) combines image analysis
algorithms, machine-learning, and high-throughput microscopy
to recognize individual cells in suspensions or tissue and auto-
matically guide extraction through LCM or micromanipulation.
To demonstrate the capabilities of our approach, we conducted
three sets of experiments that require targeted single-cell isolation
to collect individual cells without disturbing their micro-
environment. We show that CAMI-selected cells can be suc-
cessfully used for digital PCR (dPCR) and next-generation
sequencing through these experiments.

Results
The CAMI system. A diagram summarizing CAMI technology is
provided in Fig. 1. During preparation, samples are collected in
variable formats etched with registration landmarks (Supple-
mentary Note 1), and potentially treated with compounds
according to the assay (Fig. 1a). Samples may come from tissue or
cell cultures, and they are imaged with an automated high-
throughput microscope (Fig. 1b). Images from the microscope are
sent to our image analysis software that uses state-of-the-art
algorithms to correct illumination, identify and segment cells

(even in cases of overlap, Supplementary Note 2)10, and extract
multiparametric cellular measurements11 (Fig. 1c). Advanced Cell
Classifier software12 trains machine-learning algorithms to
automatically recognize the cellular phenotype of every cell in the
sample based on their extracted properties (Fig. 1d), and these
data along with the location and contour of each cell are sent to
our interactive online database computer-aided microscopic iso-
lation online (CAMIO; Fig. 1e). CAMIO provides an interface to
approve the cells chosen to be extracted. If the user wishes, he/she
may add or remove cells, or correct mistakes in the contour and
classified phenotype. Selected cells are then extracted by micro-
manipulation or laser microdissection combined with a cata-
pulting system (Fig. 1f) and collected in a microtube or high-
throughput format for molecular characterization such as
sequencing or dPCR (Fig. 1g). The software components we
developed to support this technology are freely available (Sup-
plementary Software).

As a proof of principle, we conducted three sets of experiments
to demonstrate the capabilities of the technology to target, isolate,
and analyze individual cells without disturbing their microenvir-
onment (Fig. 2). These experiments were chosen because they
could not have been analyzed using conventional automated
isolation techniques (e.g., FACS), and alternative solutions would
have required laborious manual operation.

Cell selection by phenotype validated by dPCR. First, we check
whether immunofluorescent-labeled cells selected using machine-
learning in CAMI corresponded to mRNA quantification in
individual neurons extracted from 10 μm thick sections of the rat
cerebral cortex. To accomplish this, we applied fluorescent labels
to tissue fixed in 4% paraformaldehyde using immunohis-
tochemistry with nNOS antibodies (Fig. 2a). Then, we auto-
matically targeted and extracted individual cells that were
predicted to belong to two phenotypic categories using CAMI
technology (Fig. 2b). Cells that were most confidently predicted to
be nNOS-expressing interneurons and non-labeled pyramidal
cells were selected and isolated using laser microdissection
(Fig. 2c). These individual cells were then catapulted and collected
in PCR tubes containing SingleCellProtect stabilization and lysis
buffer and directly used for cDNA conversion (Fig. 2d). The
cDNA mixture was divided into two parts and used for single-cell
dPCR to measure nNOS and RS18 gene expression for each
extracted cell13. The dPCR results confirm that single nNOS-
expressing neurons were reliably separated from nearby cells of
other types within the same tissue (Fig. 2e). We also checked that
the RNA did not significantly degrade by confirming that the
number of transcripts of RS18, a housekeeping gene used as a
control and for normalization between cells, matched values
previously observed using live-cell aspirates with good fidelity13,14

(Supplementary Data 1).

Whole-transcriptome sequencing of pyramidal cells. Next, we
applied CAMI to target pyramidal cells for isolation from the
same cortex sections. Using an online cell isolation tool we
developed CAMIO, we automatically identified pyramidal cells
based on morphological image features and selected cells speci-
fically from layers L2 and L3 of the somatosensory cortex. The
cells were extracted using LCM, pooled in SingleCellProtect
buffer, and amplified using a REPLI-g WTA Single Cell Kit that
contains an optimized Phi 29 polymerase and uses multiple dis-
placement amplification technology. After quality control, we
prepared sequencing libraries from the purified cDNA, sequenced
the fragments on an Ion Torrent PGM, and recorded a list of gene
expression. The experiment was repeated for three biological
replicates (50, 50, and 300 cells), and the whole-transcriptome
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profiles were compared (Fig. 2f). A comparison of the profiles
revealed high correlations (Pearson’s R) and high overlap in the
top-100 expressed genes between the replicates (Supplementary
Data 2, Supplementary Data 3). In a similar procedure, 50
astrocytes were also collected and sequenced, revealing negligible
correlation with the pyramidal cells (Fig. 2f, Supplementary
Data 2). This experiment shows that it is possible to automatically
collect populations of a distinct type of cell from a specific region
of fixed tissue in a high-throughput manner, and to perform
reproducible whole-transcriptome sequencing using CAMI
extraction.

Identification of upstream regulators by phenotyping. Last, we
demonstrate that CAMI technology can provide a highly sensitive
and cost-effective alternative to RNA interference (RNAi) library
screens to uncover novel gene functions. While RNAi knock-
downs test one gene at a time—measuring population responses
(~20,000 experiments for a genome-wide library)—CAMI tech-
nology can be used to select individual cells from a mixture of
stably silenced cell lines. Pooled cells exhibiting interesting phe-
notypes can be collected for further analysis, and the cell’s
silenced gene can be identified. The DNA of extracted cells is
sequenced using universal primers flanking the specific silencing
short hairpin RNA (shRNA)-coding region present in each cell of
the library. As a proof of concept, we followed this approach to
identify both known and novel genes involved in the response to

DNA damage. We prepared a mixture of single shRNA-
expressing stable human embryonic kidney cell lines (limited to
10 cell lines in our study). DNA damage was induced in the cells
through UV exposure. In normal cells, this results in the
recruitment of DNA repair proteins to the damage site and the
formation of nuclear foci15. A fluorescent marker indicating
polymerase η expression allowed us to visualize the formation of
foci as spots within the nucleus (Fig. 2g). In the absence of
upstream regulators, recruitment of repair proteins to the damage
sites is prevented, resulting in a homogeneous expression of
polymerase η (Fig. 2h). Using CAMI, we automatically identified
150 foci-forming and 150 homogeneous cells, captured them, and
sequenced their shRNA-coding DNA region using next-
generation sequencing (NGS). Our results confirm the identifi-
cation of previously published upstream regulators of polymerase
η (SPARTAN, BRCA2, and RAD18)16–18, and identified RAD52
and FANCA as promising new potential regulators (Fig. 2i).

Discussion
LCM has been around for nearly 20 years19, yet only now have
the technologies matured sufficiently and computational techni-
ques become sophisticated enough to support targeted automatic,
environment-preserving, high-throughput single-cell isolation as
we propose. Computer-driven automation increases throughput
over manual techniques by orders of magnitude (from several
hundred to over a thousand cells per day with CAMI, see
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Supplementary Note 3, compared to 10 with patch-clamp har-
vesting), and microscopy-based isolation boasts several advan-
tages over conventional high-throughput isolation techniques.
These include non-disruptive collection of individual cells from
fixed tissue or cell culture and selection of cells based on phe-
notypic morphology or location within the tissue. The through-
put, precision, and versatility of CAMI enable new modes of
highly reproducible molecular analysis and make it an attractive
technique to drive new discoveries, for example, through alter-
native RNA and CRISPR/Cas9-screening approaches or through
clinical applications using fresh or archived tissue samples.

Methods
Set-up. As a first step for every experiment, we etched 50 × 50 μm landmarks into
poly-L-lysine-coated slides (one landmark per slide) using a microdissection
microscope (Zeiss Axio Observer microscope with PALM MicroBeam manip-
ulator). The landmarks are easily recognized by software and serve as an absolute
zero position to register image data between microscopes. The landmarks were
designed to indicate the orientation in order to avoid any errors due to rotation of
the coordinates (Supplementary Note 1). An image of the landmark is also
acquired and stored. Optionally, unique barcodes may also be etched into the slide
to identify samples.
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150 foci-forming and 150 homogeneous cells and extracted them. i Extracted cells were sequenced using next-generation sequencing (NGS). The ratio
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Tissue preparation. Male Wistar rats (between 200 and 350 g) were anesthetized
by inhalation of 2-Bromo-2-chloro-1,1,1-trifluoroethane followed by intraper-
itoneal administration of 1 ml of 4% chloral hydrate per 100 g of body weight.
Animals were then transcardially perfused with ice-cold saline for 2–4 min (10 ml/
1 min) followed by 4% paraformaldehyde (PFA) made up in 0.1 M phosphate
buffer (PB, pH = 7.4) for 10 min. Coronal sections of 10 μm thickness were cut with
a Leica vibratome (Leica, VT 1000 S). All procedures were performed with the
approval of the University of Szeged and in accordance with the National Institutes
of Health Guide for the Care and Use of Laboratory Animals.

Immunohistochemistry. Rat coronal sections were washed twice with 0.1 M PB for
10 min, followed by two washes with Tris-buffered saline (TBS, pH = 7.4) for 10
min. Sections were blocked for 2 h in a solution containing 20% normal horse
serum and 0.2% Triton-X-100 made up in TBS. The sections were then incubated
with primary antibodies to detect markers for neuronal cell populations including a
mouse-anti-NeuN antibody (1:2000, MAB377, Chemicon, Temecula, CA) and a
rabbit anti-nNOS antibody (1:1200, 160870 Cayman Chemical Company, Ann
Arbor, MI). The antibodies were diluted in TBS and incubated for 2 days. After
incubation, sections were washed four times with TBS for 10 min, and secondary
antibodies including donkey anti-rabbit Alexa Fluor 488 (711-545-152, Jackson
ImmunoResearch Laboratories, West Grove, PA), donkey anti-rabbit Cy3 (711-
165-152, Jackson ImmunoResearch Laboratories), and donkey anti-mouse Alexa
Fluor 568 (A10037, Thermo Fisher) were applied in 1:400 dilution and incubated
for 2.5 h at room temperature. During the last 30 min of the incubation, Hoechst
blue (Sigma, B2261) was added in 1 µg/ml concentration. Finally, sections were
washed 3× with TBS for 10 min and then washed 2× with 0.1 M PB for 5 min
before mounting in vectrashield (H-1000 Vector Laboratories, Burlingame, CA).

Imaging set-up and acquisition. Prior to extraction, a high-throughput screening
campaign was performed using an automated imaging system (Operetta, Perki-
nElmer, Germany) allowing us to automatically analyze thousands of cells and to
select the best examples for isolation. A 20× long working distance objective with
0% overlap was used to collect 1200 images with two fluorescent channels: Hoescht
333 and Alexa 568. The system we propose is compatible with any open format
microscope where image position and pixel size can be measured, and has been
successfully tested with a confocal slide scanner (Pannoramic Confocal, 3DHistech,
Hungary) and a laser-scanning confocal microscope (FV 1000, Olympus, Japan)
using 20× water and 40× oil emerging objectives. Alternatively, manual cell
selection can be performed directly using the dissection microscope. However,
throughput is significantly reduced.

Image analysis and pattern recognition. We developed a software pipeline to
precisely outline every cell from the screen and to predict its phenotypic class. This
software allows us to quickly visualize and select the best cell candidates from
relevant subpopulations for isolation. The pipeline is composed of three steps: pre-
processing, segmentation and feature extraction, and classification. The pre-
processing step corrects artifacts due to uneven illumination present in the images
using a quasi-newtonian optimization technique20. In the segmentation step, cells
were outlined and properties were extracted using CellProfiler software11 with
custom pipelines. If individual cells were well separated, the default nuclei seg-
mentation method was used: a seed-based adaptive Otsu thresholding. For cells in
close proximity to one another, this method often fails. To overcome this, we used
a two-step approach that first identifies nucleus centers using an à trous wavelet
transform21 and then expands the seeds to fit the boundaries using either Cell-
Profiler secondary objects or high-order active contours10 in the case of over-
lapping cells (Supplementary Note 2). This method allowed us to reliably identify
cells with overlapping nuclei, which are typically discarded from molecular ana-
lysis. Custom CellProfiler modules implementing these methods and the pipelines
used are provided (Supplementary Software). Nucleus segmentations were used to
construct a polygon approximation of a 3 μm ring around the nucleus. This defines
the cutting regions for isolation. It ensures that the laser does not destroy molecular
information from the nucleus and also minimizes contamination from extracellular
sources. After the segmentation step is complete, 92 single-cell properties
describing the intensity, texture, and shape of the nuclei were extracted using
CellProfiler and stored in the Advanced Cell Classifier (ACC) format12.

We used supervised machine-learning algorithms to predict the phenotypic
class for every cell in the screens based on the extracted features. Using Advanced
Cell Classifier software11, segmented objects were labeled according to their
phenotypes. Using these data as a training set, ACC was used to train several
machine-learning models using multiple methods to predict phenotypic class of all
cells; 10-fold cross-validation was used to select the best-performing model. A
random forest classifier achieved 91% cross-validation accuracy and was trained
using every annotation (Supplementary Figure 1). It was then used to predict the
phenotypic class for every cell. ACC software with modules to upload single-cell
information for selected subpopulations to an online repository is included
as Supplementary Software.

Single-cell online repository and selection tool. Cell phenotype predictions are
ranked by confidence, and the 200 cells with highest confidence for the interneuron

and pyramidal phenotype classes were automatically uploaded to CAMIO, an
online single-cell data repository and selection tool we developed (Supplementary
Software). The purpose of this tool is to visualize individual cells and facilitate the
selection of appropriate candidates for isolation. Individual cells are displayed,
organized by experiment and phenotypic class. Cells can be selected for isolation
automatically or through manual verification. Selected cells are sent instantly to the
single-cell isolation device. The CAMIO interface allows the user to verify and
correct the proposed cutting regions for each cell. It also records the location of the
etched landmark relative to each object. The CAMIO interface is shown in Sup-
plementary Figure 2, and an online read-only version of the system can be tested at
https://camio-webapp.herokuapp.com/.

Image coordinate registration between microscopes. To register data between
microscopes, the landmark etched in each sample slide is automatically detected by
our software using two-dimensional cross-correlation. The landmark location is
used as the zero position and orientation reference to transform data from one
microscope to another. The offset between the orientation landmark and the
microscope coordinate system is recorded in the source microscope (high-
throughput microscope) and recorded. It is also measured in the target microscope
(laser microdissection microscope). With this information, coordinates defining
the cutting region for a cell can be transformed from the source image coordinates
to the target microscope coordinates using the following relation

x2; y2
� �T¼ y1; x1

� �T� y1off ; x
1
off

� �Tþ x2off ; y
2
off

� �T

where x1and y1 are the coordinates in the source microscope, x1off and y1off are the
origin offsets in the source microscope, and x2off and y2off are the origin offsets in the
target microscope. By applying this transform, contours of cells from the high-
throughput microscope and CAMIO can be registered in the laser microdissection
microscope.

Single-cell isolation. To prevent contamination, a custom-designed closed hood
was mounted on the isolation microscope and a UV sterilizer was built in (UVR-M
Biosan) that was run before every experiment for 30 min. Temperature in the hood
and laboratory was 20 °C, and humidity was kept at 50–60% to prevent sample
drying.

After cells were selected for isolation using the CAMIO online tool, samples
were hydrated with 0.1 M PB. The tissues were initially overhydrated. Immediately
prior to cell isolation, the liquid was entirely removed from the surface. This
practice allowed a more flexible schedule when cutting. The cutting path for each
cell was provided by CAMIO. As a last step before each cell was extracted, we
acquired an image of the specimen in situ to document the cell before isolation.
This allowed us to perform quality control and refer to the source image when
examining results from further analysis. A Zeiss PALM laser microdissection
microscope was used for isolation with a 63× LCM-compatible magnification
objective (LD Plan-Neofluar, 63×). The cutting was performed using the ultraviolet
(337 nm) N2 laser microbeam system of Zeiss PALM, emitting 3 ns pulses. The
laser-cutting speed was 1% (~ 4.7 µm/s), and cutting time ranged between 10 and
20 s per cell, depending on the contour of the cell and stage velocity. The cutting
energy varied between 36 and 48 μJ depending on the glass thickness. By keeping
the laser pulses short and low-power, we promoted a “cold cutting” that is less
harmful to the samples.

Isolated cells were pressure-catapulted into PCR tube caps containing 4 µl
SingleCellProtectTM (Avidin Ltd., Szeged, Hungary) buffer media facing downward
for storage. To avoid dripping and evaporation of the media, microtubes were kept
at −20 °C and catapulting was performed when the buffer transitions from frozen
to liquid state (between 10 and 20 s after removal from the fridge). After collection,
the tubes were closed and immediately stored at −80 °C.

Single-cell reverse transcription and dPCR of rat cortical neurons. Reverse
transcription of individual microdissected cells was carried out in two steps. The
first step was performed for 5 min at 65 °C in a total reaction volume of 7.5 μl
containing the cell captured in 4 μl SingleCellProtectTM (Avidin Ltd., Cat.No.: SCP-
250), 0.45 μl TaqMan Assays (Thermo Fisher), 0.45 μl 10 mM dNTPs (Thermo
Fisher, Cat.No.: 10297018, 1.5 μl 5× first-strand buffer, 0.45 μl 0.1 mol/l DTT, 0.45
μl RNase inhibitor (Thermo Fisher, Cat.No.:N8080119), and 100 U of reverse
transcriptase (Superscript III, Thermo Fisher, Cat.No.: 18080055). The second step
of the reaction was carried out at 55 °C for 1 h, and then the reaction was stopped
by heating at 75 °C for 15 min. The reverse transcription reaction mix was stored at
−20 °C until PCR amplification.

For dPCR analysis, the reverse transcription reaction mixture (7.5 μl) was
divided into two parts: 6 μl was used for amplification of the gene of interest and
1.5 μl cDNA was used for amplifying the housekeeping gene, RS18. Template
cDNA was supplemented with nuclease-free water to a final volume of 8 μl.
TaqMan Assays (2 μl; Thermo Fisher), 10 μl OpenArray Digital PCR Master Mix
(Thermo Fisher, Cat.No.: 4458095), and nuclease-free water (3 μl) were mixed to
obtain a total volume of 20 μl, and the mixture was evenly distributed on four
subarrays (256 nanocapillary holes) of an OpenArray plate by using the OpenArray
autoloader. Processing of the OpenArray slide, cycling in the OpenArray NT
cycler, and data analysis were done as previously described22. For our dPCR
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protocol amplification, reactions having CT values less than 23 or greater than 33
were considered primer dimers or background signals, respectively, and excluded
from the data set.

The following Taqman Assays were used: RS18 (Thermo Fisher, Cat.No.:
4331182, Rn01428913_gH), NOS1 (Thermo Fisher, Cat.No.: 4331182,
Rn00583793_m1), NPY (Thermo Fisher, Cat.No.: 4331182, Rn01410145_m1).

Whole-transcriptome sequencing of rat cortical neurons. For RNA and sub-
sequent cDNA amplification, REPLI-g WTA Single Cell Kit (Qiagen, Cat.No.:
150063) was used with the Amplification of Total RNA from Single Cells' protocol
according to the manufacturer’s guidelines with the exception that 3 μl Lysis buffer
was added to 8 μl 1× SingleCellProtect solution containing either 50 or 300 col-
lected cells (three replicates were collected—two with 50 cells and one with 300
cells, denoted 50× nNOS—Replicate 1, 50× nNOS—Replicate 2, and 300× nNOS
—Replicate 3). In addition, 50 astrocytes were collected, denoted 50× Astrocytes).
All subsequent steps were performed as described in the protocol manual. The
quality and quantity control of cDNA pools were performed on TapeStation using
genomic DNA ScreenTape and Reagents (Agilent Technologies, Cat.No.: 5067-
5365 and 5067-5365) and Qubit using dsDNA High-Sense assay (Thermo Fisher,
Cat.No.: Q32854), and were purified using Agencourt AMPure XP magnetic beads
(Beckman Coulter, Cat.No.: A63881). Fragment libraries were constructed from
purified cDNA using NEBNext Fast DNA Fragmentation & Library Prep Set for
Ion Torrent (New England Biolabs, Cat.No.: E6285) according to the manu-
facturer’s instructions. Briefly, cDNA was enzymatically digested, and the frag-
ments were end-repaired; the fragmentation time was adjusted to cDNA quality
and quantity (generally 5–8 min of fragmentation). Fragmented cDNA pools were
purified with Agencourt AMPure XP magnetic beads. Purified fragments were end-
repaired, Ion Xpress Barcode Adaptors (Thermo Fisher, Cat.No.: 4474521) were
then ligated and the template fragments size-selected using AMPure beads.
Adaptor-ligated fragments were PCR-amplified, cleaned-up using AMPure beads,
quality-checked on D1000 ScreenTape and Reagents using TapeStation instrument
(Agilent Technologies, Cat.No.: 5067-5582 and 5067-5583), and finally quantified
using Ion Library TaqMan Quantitation Kit (Thermo Fisher, Cat.No.: 4468802).
The library templates were processed for sequencing using the Life Technologies
Ion OneTouch protocols and reagents. Library fragments were clonally amplified
onto Ion Sphere Particles (ISPs) through emulsion PCR and then enriched for
template-positive ISPs. More specifically, Ion PGM emulsion PCR reactions uti-
lized the Ion OneTouch 200 Template Kit (Thermo Fisher, Cat.No.: 4480974), and
emulsions and amplification were generated using the Ion OneTouch System
(Thermo Fisher). Enrichment was completed by selectively binding the ISPs con-
taining amplified library fragments to streptavidin-coated magnetic beads,
removing empty ISPs through washing steps, and denaturing the library strands to
allow for collection of the template-positive ISPs. For all reactions, these steps were
accomplished using the ES module of the Ion OneTouch System. Template-
positive beads were deposited onto the Ion 318 chips (Thermo Fisher, Cat.No.:
4484354); finally, sequencing was performed with the Ion PGM Hi-Q Sequencing
Kit (Thermo Fisher, Cat.No.: A25592) on Ion Torrent PGM instrument generating
between 2.9 and 5.3 million reads per sample.

Ion Torrent PGM sequencing data processing and expression analysis. The
PGM sequencing data were processed using Genomics Workbench ver 9.0.1 (CLC
Bio). Raw sequencing data were trimmed by removal of low-quality (quality limit:
0.05) and short (length limit: 40 bases) sequences so that only high-quality
sequences were used in further analysis. Sequences were mapped on the Rattus
norvegicus 6.0 genome (Rnor_6.0) using the CLC RNA-Seq algorithm, allowing
mapping to intergenic regions, using default parameters except for the following:
minimum alignment length 80%, minimum similarity 80% with the maximum
number of hits for a read set to 30. Total read counts were used as a measure of
gene expression in all samples.

The level of correlation between the biological replicates was determined by
using the Pearson’s product–moment correlation coefficient (PCC) which infers
the linear relationship between two data sets based on the covariance and SD from
the expression values. These values computed between each nNOS− replicate and
the astrocytes are provided in Fig. 2f.

Sample preparation to detect subnuclear foci formation in human cells.
HEK293 cells stably expressing different shRNAs were harvested in Dulbecco’s
modified Eagle’s medium (Sigma, Cat. No. D6429) supplemented with 10% fetal
bovine serum (Gibco, Cat. No. 10270) and 300 μg/ml G418 (Biochrom, Cat. No.
A291-25) at 37 °C. The cells were transfected with GFP-polymerase η-expressing
plasmid using the Lipofectamine 2000 transfection reagent (Invitrogen, Cat. No.
11668). Cells were plated in six-well plates 24 h before transfection. Then, the
growth media was removed and changed to 1.5 ml OptiMEM per well. An amount
of 3 μg plasmid DNA and 5 μl Lipofectamine 2000 reagent were used for each well.
Both the DNA and the transfection reagent were diluted in 250–250 μl OptiMEM,
mixed by vortexing, and incubated for 5 min. After mixing the two tubes, the
solution was further incubated for 20 min, added to the cells dropwise and incu-
bated for 4 h, and then the transfection media were removed and changed to 3 ml
fresh growth media.

After 48 h had elapsed since transfection, cells were exposed to 20 J/m2 UVC
light to induce DNA damage and polymerase η foci formation. After 3 h of
incubation, cells were counted in a Burker chamber and mixed in the same
amounts to avoid the over-representation of any type of cell line. The fixation step
was carried out using 3% PFA solution for 10 min. The cells were suspended and
dropped to poly-L-lysine-covered slides. After the fixation, the sample was washed
with PBS, followed by the staining of the nuclei with 0.5 μg/ml DAPI solution in
PBS and then washing with MQ. The samples were kept in a humidity chamber
until microscopic analysis to prevent drying.

Direct amplification and sequencing of shDNA fragments from human cells.
Cells were captured in 5 µl catapult buffer, 150 cells for each phenotype (0.1 mM
EDTA, 1 mM Tris pH 8, 0.5% Igepal). After capture, we added 0.5 µl Proteinase K
(1 mg/ml) to the samples and incubated them at 60 ˚C for 20 min, followed by 3
min at 98 ˚C. Next, a two-step amplification reaction was carried out in 20 µl
volume. In the first PCR, we used 10 µM shDNA-specific primer pair with a
universal tag sequence, 1 × PCR buffer, 2.0 mM MgCl2, 2.5 mM dNTPs, and 1 unit
of AmpliTaq Gold DNA Polymerase (Thermo Fisher, Cat. No. 8080241). Thermal
cycler conditions were: 95 °C for 2 min, 25 cycles of 95 °C for 15 s, 60 °C for 15 s,
72 °C for 30 s, and finally 2 min at 72 °C. In the second PCR, 1 µl from the first
amplification reaction was used as a template with primers complementary to the
universal tag sequence. The 5’ end of the primers consisted of Illumina specific
adaptor sequences. Other PCR conditions were the same as the first ones per-
forming 30 PCR cycles this time. PCR reactions were run on a 2% agarose gel for
amplification quality control. Successfully amplified samples were quantified using
the qPCR-based quantification method (Kapa Biosystems, Cat. No. KK4854) on
LightCycler480 qPCR (Roche, Indianapolis, IN). Finally, Illumina sequencing was
carried out on the Illumina MiSeq system with Standard Flow Cell v2 (Illumina,
Cat. No. MS-102-2002), following the manufacturer’s instructions. Sequencing data
were analysed using proprietary NGSeXplorer bioinformatics software. Sequencing
reads were mapped to a reference sequence that contained all the 10 shDNA-
specific sequences. Read counts were measured at each shDNA sequence. These
data were then used to calculate the shDNA patterns for the two phenotypic groups
(foci-forming and homogeneous cells).

Limiting factors and sources of error. Our approach is capable of isolating from
several hundred to over a thousand cells per day. However, the throughput of
CAMI is still limited by several bottlenecks. In the imaging and set-up stage, the
main bottleneck is the microscope set-up (locating the landmark, configuring the
microscope settings, finding focus, and selecting the region of interest). This comes
at a fixed time cost per sample slide (see Supplementary Note 3 for timings). In the
software analysis stage, the main bottleneck is processing enough images to find the
desired number of cells for isolation. Rare phenotypes require searching through
more images to find interesting cells to isolate. In the isolation stage, the main
bottleneck is the laser microdissection, which takes ~10 s per cell (catapulting and
stage movement are substantially quicker than cutting). Depending on the
experimental parameters (rarity of the phenotype, number of desired cells, etc), the
most costly bottleneck changes (Supplementary Note 3). When collecting relatively
few cells (less than 100) of a common phenotype, the imaging and its set-up is the
limiting factor. For very rare cell types that require the software to process thou-
sands of images to find isolation candidates, the analysis software is the limiting
factor (although this can be mitigated using distributed computing). When a large
number of cells are desired (more than 1000), laser-cutting is the limiting factor.

Because CAMI relies on a diverse set of complex technologies, there exist
several potential sources of error. It is difficult to mount a slide in perfect alignment
with the stage for different microscopes, so there is potential for angular
misalignment between microscope coordinates (multiple landmarks can mitigate
this). When setting up the microscope, the user must select the appropriate areas of
the sample to image or they may have difficulty finding isolation candidates. When
imaging, problems with focus and artifacts in the image can cause errors in cell
segmentation. The segmentation software itself is prone to errors, and the
machine-learning predictions are imperfect. Errors in cell isolation contours may
be caused by imperfect registration between microscope coordinates, which can
result in poorly cut cells. In the laser microdissection step, losing focus or choosing
the wrong cutting speed may result in failure to properly cut the cell (slow cutting
can burn the cell, fast cutting can cause problems ejecting). Finally, the catapulting
laser must be correctly calibrated or cells may be lost in the collection step.

Data availability. The authors declare that the data supporting the findings of this
study are available within the paper and its supplementary information files.

Received: 1 January 2017 Accepted: 14 December 2017

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-02628-4

6 NATURE COMMUNICATIONS |  (2018) 9:226 |DOI: 10.1038/s41467-017-02628-4 |www.nature.com/naturecommunications

               horvath.peter.2_10_22

www.nature.com/naturecommunications


References
1. Altschuler, S. & Wu, L. Cellular heterogeneity: when do differences make a

difference? Cell 141, 559–563 (2010).
2. Pelkmans, L. Using cell-to-cell variability—a new era in molecular biology.

Science 336, 425–426 (2012).
3. Heppner, G. H. Tumor heterogeneity. Cancer Res. 44, 2259–2265 (1984).
4. Tay, S. et al. Single-cell NF-kappaB dynamics reveal digital activation and

analogue information processing. Nature 466, 267–271 (2010).
5. Gawad, C., Koh, W. & Quake, S. R. Single-cell genome sequencing: current state

of the science. Nat. Rev. Genet. 17, 175–188 (2016).
6. Anselmetti, D. Single Cell Analysis: Technologies and Applications. (Wiley,

Hoboken, 2009).
7. Gross, A. et al. Technologies for single-cell isolation. Int. J. Mol. Sci. 16,

16897–16919 (2015).
8. Espina, V. et al. Laser-capture microdissection. Nat. Protoc. 1, 586–603 (2006).
9. Fujii, T. et al. Direct metabolomics for plant cells by live single-cell mass

spectrometry. Nat. Protoc. 10, 1445–1456 (2015).
10. Molnar, C. et al. Accurate morphology preserving segmentation of overlapping

cells based on active contours. Sci. Rep. 6, 32412 (2016).
11. Carpenter, A. E. et al. CellProfiler: image analysis software for identifying and

quantifying cell phenotypes. Genome Biol. 7, R100 (2006).
12. Piccinini, F. et al. Advanced cell classifier: user-friendly machine-learning-based

software for discovering phenotypes in high-content imaging data. Cell Syst. 4,
651–655 (2017).

13. Farago, N. et al. Digital PCR to determine the number of transcripts from single
neurons after patch-clamp recording. Biotechniques 54, 327–336 (2013).

14. Molnar, G. et al. GABAergic neurogliaform cells represent local sources of
insulin in the cerebral cortex. J. Neurosci. 34, 1133–1137 (2014).

15. Friedberg, E. C. et al. DNA Repair and Mutagenesis. (ASM Press, Washington,
DC, 2006).

16. Watanabe, K. et al. Rad18 guides polη to replication stalling sites through
physical interaction and PCNA monoubiquitination. EMBO J. 23, 3886–3896
(2004).

17. Juhasz, S. et al. Characterization of human Spartan/C1orf124, an ubiquitin-
PCNA interacting regulator of DNA damage tolerance. Nucleic Acids Res. 40,
10795–10808 (2012).

18. Buisson, R. et al. Breast cancer proteins PALB2 and BRCA2 stimulate
polymerase η in recombination-associated DNA synthesis at blocked
replication forks. Cell Rep. 6, 553–564 (2014).

19. Emmert-Buck, M. R. et al. Laser capture microdissection. Science 274,
998–1001 (1996).

20. Smith, K. et al. CIDRE: an illumination-correction method for optical
microscopy. Nat. Methods 12, 404–406 (2015).

21. Olivo-Marin, J. C. Extraction of spots in biological images using multiscale
products. Pattern Recognit. 35, 1989–1996 (2002).

22. Farago, N. et al. Human neuronal changes in brain edema and increased
intracranial pressure. Acta Neuropathol. Commun. 4, 78 (2016).

Acknowledgements
A.B., C.B., T.B. and P.H. acknowledge the Hungarian National Brain Research Program
(MTA-SE-NAP B-BIOMAG). P.H. and L.P. acknowledge support from the Finnish
TEKES FiDiPro Fellow Grant 40294/13. N.F. and G.T. were supported by the National

Research, Development and Innovation Office of Hungary (VKSZ-14-1-2015-0155), the
Hungarian Academy of Sciences and the ERC INTERIMPACT project. P.H. and I.N.
were supported by the János Bolyai Research Scholarship of the Hungarian Academy of
Sciences. L.H. and P.H. acknowledge the European Union and the European Regional
Development Funds (GINOP-2.3.2-15-2016-00006, GINOP-2.3.2-15-2016-00020).

Author contributions
P.H. and K.S. conceived the project. P.H. led the project. G.T. and L.H. co-supervised the
RNA and DNA studies, respectively. C.B., A.B., F.S. and L.H. executed the pipeline and
performed single-cell isolation. C.M., A.B., L.P., T.B., A.S. and P.H. wrote the software
components. C.B., N.F. and L.G.P. performed dPCR analysis. C.B., B.B. and I.N. per-
formed transcriptome analyses. L.H., M.E. and L.H. performed DNA analysis. K.S., C.B.,
L.H., C.M., A.B., I.N., L.P., L.H., G.T. and P.H. wrote the manuscript. All authors read
and approved the final manuscript.

Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-
017-02628-4.

Competing interests: P.H. is the founder and shareholder of Single-cell technologies
Ltd.; L.G.P. is the founder and shareholder of Avidin Ltd. that provided SingleCellProtect
reagent; B.B. and I.N. had consulting positions at SeqOmics Biotechnology Ltd. at the
time the study was conceived. Single-cell technologies Ltd., Avidin Ltd., and Seqomics
Biotechnology Ltd. were not directly involved in the design and execution of the
experiments or in the writing of the manuscript. This does not alter the author’s
adherence to all the Nature policies on sharing data and materials. The remaining
authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2018

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-02628-4 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:226 |DOI: 10.1038/s41467-017-02628-4 |www.nature.com/naturecommunications 7

               horvath.peter.2_10_22

https://doi.org/10.1038/s41467-017-02628-4
https://doi.org/10.1038/s41467-017-02628-4
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications


ARTICLE

Automatic deep learning-driven label-free
image-guided patch clamp system
Krisztian Koos 1,7, Gáspár Oláh2,7, Tamas Balassa1, Norbert Mihut 2, Márton Rózsa2, Attila Ozsvár2,

Ervin Tasnadi1, Pál Barzó3, Nóra Faragó2,4,5, László Puskás4,5, Gábor Molnár 2, József Molnár 1,

Gábor Tamás 2 & Peter Horvath 1,6✉

Patch clamp recording of neurons is a labor-intensive and time-consuming procedure. Here,

we demonstrate a tool that fully automatically performs electrophysiological recordings in

label-free tissue slices. The automation covers the detection of cells in label-free images,

calibration of the micropipette movement, approach to the cell with the pipette, formation of

the whole-cell configuration, and recording. The cell detection is based on deep learning. The

model is trained on a new image database of neurons in unlabeled brain tissue slices. The

pipette tip detection and approaching phase use image analysis techniques for precise

movements. High-quality measurements are performed on hundreds of human and rodent

neurons. We also demonstrate that further molecular and anatomical analysis can be per-

formed on the recorded cells. The software has a diary module that automatically logs patch

clamp events. Our tool can multiply the number of daily measurements to help brain

research.
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Research of the past decade uncovered the unprecedented
cellular heterogeneity of the mammalian brain. It is well
accepted now, that the complexity of the rodent and human

cortex can be best resolved by classifying individual neurons into
subsets by their cellular phenotypes1–3. By characterizing mole-
cular, morphological, connectional, physiological, and functional
properties several neuronal subtypes have been defined4,5.
Revealing cell-type heterogeneity is still incomplete and challen-
ging since classification based on quantitative features requires
large amounts of individual cell samples, often thousands or more,
encompassing a highly heterogeneous cell population. Recording
morphological, electrophysiological, and transcriptional properties
of neurons requires different techniques combined on the same
sample such as patch clamp electrophysiology, posthoc morpho-
logical reconstruction, or single-cell transcriptomics. The funda-
mental technique to achieve such trimodal characterization of
neurons is the patch clamp recording, which is highly laborious
and expertise intense. Therefore, there is a high demand to effi-
ciently automate this labor intense and challenging process.

Recently, the patch clamp technique has been automated and
improved to a more advanced level6,7. Blind patch clamping was
first done in vitro and only later performed in vivo8–10. In
this case, the pipette is gradually moved forward and the brain
cells are detected automatically by a resistance increase at the
pipette tip. Automated systems soon incorporated image-
guidance by using multiphoton microscopy on genetically mod-
ified rodents11–13. Further improvements include the integration
of tools for monitoring animal behavior14, the design of an
obstacle avoidance algorithm before reaching the target cell15 or
the development of a pipette cleaning method which allows the
immediate reuse of the pipettes up to ten times16,17. Automated
multi-pipette systems were developed to study the synaptic
connections18,19. It is also shown that cell morphology can be
examined using automated systems20. One crucial step for image-
guided automation is pipette tip localization. Different label-free
pipette detection algorithms were compared previously21. Some
automated patch clamp systems already contain pipette detection
algorithms, e.g., intensity clustering11 or thresholding-based22 for
fluorescence imaging, or Hough transform-based23 for DIC
optics. The other crucial step is the automatic detection of the
cells which has only been performed in two-photon images so far.
It is currently not possible to efficiently fluorescently stain human
brain tissues. Alternatively, detection of cells in label-free images
would open up new application possibilities in vitro23, e.g.,
experiments on surgically removed human tissues. Most recently,
deep learning24 has been emerging to a level that in the case of
well-defined tasks, outperforms humans, and often reaches
human performance on ill-defined problems like detecting
astrocyte cells25.

In this paper, we describe a system we developed in order to
overcome time-consuming and expertise-intense neuron char-
acterization and collection. This fully automated differential
interference contrast microscopy (DIC, or label-free in general)
image-guided patch clamping system (DIGAP) combines 3D
infrared video microscopy, cell detection using deep convolu-
tional neural networks and a glass microelectrode guiding system
to approach, attach, break-in, and record biophysical properties
of the target cell.

The steps of the visual patch clamp recording process are
illustrated in Fig. 1. Before the first use of the system, the pipette
has to be calibrated, so that it can be moved relative to the field of
view of the camera (1). Thereafter, a position update is made after
every pipette replacement (2) using the built-in pipette detection
algorithms (3) to overcome the problem caused by pipette length
differences. At this point, the system is ready to perform patch
clamp recordings. We have acquired and annotated a single cell

image database on label-free neocortical brain tissues, to our
knowledge the largest 3D set of this kind. A deep convolutional
neural network has been trained for cell detection. The system
can automatically select a detected cell for recording (4). When a
cell is selected, multiple subsystems are started simultaneously

Fig. 1 Steps of DIGAP procedures. 1: Pipette calibration by the user, 2:
pipette replacement after recording, 3: image-based automatic pipette tip
detection, 4: automatic cell detection, 5: pipette navigation to the target
cell, 6: 3D cell tracking, 7: pressure regulation, 8: gigaseal formation, 9:
break-in, 10: electrophysiological recording, 11: nucleus and cytoplasm
harvesting, 12: anatomical reconstruction of the recorded cell.
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that perform the patch clamping: (i) A subsystem controls the
movement of the micropipette next to the cell. If any obstacle is
found in the way, an avoidance algorithm tries to bypass it (5). (ii)
A cell tracking system follows the possible shift of the cell in
3D (6). (iii) During the whole process, a pressure regulator
system assures that the requested pressure on the pipette tip is
available (7).

Once the pipette touches the cell (cell-attached configuration)
the system performs gigaseal formation (8), then breaks in the cell
membrane (9) and automatically starts the electrophysiological
measurements (10). When the recording is completed, the
operator can decide either to start over the process on a new
target cell or continue with one or both of the following manual
steps. The nucleus or the cytoplasm of the patched cell can be
harvested (11), or the recorded cells can be anatomically recon-
structed in the tissue (12).

At the end of the measurements, the implemented pipette
cleaning method can be performed or the next patch clamp
recording can be started after pipette replacement and from the
pipette tip position update step (3). An event logging system
collects information during the patch clamp process, including
the target locations and the outcome success, and report files can
be generated at the end. The report files are compatible with the
Allen Cell Types Database26.

Our system was tested on rodent and human samples in vitro.
The quality of the electrophysiological measurements strongly
correlates to that made by a trained experimenter. We have used
the system for harvesting cytoplasm and nucleus from the
recorded cells and performed anatomical reconstruction on the
samples. Our system can operate on unstained tissues using deep
learning, that reaches the cell detection accuracy of human
experts, and that enables the multiplication of the number of
recordings while preserving high-quality measurements.

Results
Here, we introduce an automated seek-and-patch system that
performs electrophysiological recordings and sample harvesting

for molecular biological analysis from single cells on unlabeled
neocortical brain slices. Using deep learning, trained on a pre-
viously built database of single neurons acquired in 3D, our
system can detect most of the healthy neuronal somata in a Z-
stack recorded by DIC microscopy from a living neocortical slice.
The pipette approaches the target cell, touches it, acquires elec-
trophysiological data, and the cell’s nucleus can be isolated for
further molecular analysis. Components of the system are a
typical electrophysiological setup: IR video microscopy imaging
system, motorized microelectrode manipulators, XY shifting
table, electrical amplifier, and a custom-designed pressure con-
troller. All these elements were controlled by a custom-developed
software (available at https://bitbucket.org/biomag/autopatcher/).
The system was successfully applied to perform patch clamp
recordings on a large set of rodent and human cells (100 and 74,
respectively). The automatically collected cells well represent the
wide-range phenotypic heterogeneity of the brain cortex. Sub-
sequent transcriptome profiling and whole-cell anatomical
reconstruction confirmed the usefulness and applicability of the
proposed system.

Hardware development and control. The hardware setup of the
proposed system is shown in Fig. 2. The software system we
developed controls each hardware using their drivers on appli-
cation programming interface (API) level, which makes the sys-
tem modular and different types of hardware components (e.g.,
manipulators, biological amplifier, and XZ shifting table) can be
attached. The classes which control hardware elements are
inherited from abstract classes. Thus, if the software is to be used
with a different hardware element then only a few methods
should be implemented in a child class that sends commands to
that specific device (e.g., to get or set the pipette position or
initiate a protocol in the amplifier’s software).

The electrophysiological signal from the current monitor output
of the amplifier is transferred to the DIGAP software via the analog
input channel of the USB digitizer board (National Instruments,
USB-6009), which enables real-time resistance measurement.

Fig. 2 Hardware setup of the DIGAP system. aMicroscope with a motorized stage. bMicromanipulator. c Controller electronics for manipulators. d Patch
clamp amplifier. e Pressure controller module. f Computer with the controller software.
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To send commands to the amplifier, we used the “batch file
control” protocol of HEKA PatchMaster 2×90.3 software (HEKA
Elektronik, Germany). To apply different air pressure on the
pipette in distinct phases of the patching procedure we built a
custom pressure controller detailed in Supplementary Information:
Pressure Regulator. Analog pressure sensors are used for
monitoring the actual air pressure on the pipette and voltage
signals of the sensors were connected in the input channels of
the USB digitizer board. The solenoid valves of the regulator are
controlled with TTL signals of the digital output channels of
the digitizer.

Pipette calibration and automatic detection. Pipette calibration
is a one-time process which determines the coordinate system
transformation between the pipette and the stage axes. The cali-
bration consists of moving the pipette along its axes with known
distances, finding it with the stage and detecting the exact pipette
tip position in the camera image. Calibration allows the pipette to
be moved at any position of the microscope stage space. Note that
no assumptions are made on the orientation or the tilt angles of
the pipette.

The glass pipettes usually differ in length, thus the tip position
should be updated after a pipette change. To automate this step
we have developed algorithms for pipette detection in DIC
images. First, we use a fast initialization heuristic and then refine
the detection. The refinement step is the extension of our
previous differential geometry-based method to three dimen-
sions21. The pipette is modeled as two cylinders that have a
common reference point and an orientation. The model is
updated by the gradient descent method such that it covers dark
regions introduced by the pipette in the image. Figure 3a shows
the starting and final state of the algorithm from different
projections in gradient images for visualization purposes. The
detailed description of the algorithms and the equation deriva-
tions can be found in Supplementary Information: Pipette
Detection System. The algorithm has an accuracy of 0.99 ±
0.55 μm compared to manually selected tip positions, that makes
it possible to reliably reach cells of 10 μm diameter (on average)
with the pipette when oriented towards their centroids.

Cell detection. We applied a deep learning algorithm in order to
detect cells in DIC images and propose them for automatic patch
clamp recording. Various software solutions were developed to
detect25,27 or segment28,29 neurons (and cells in general) in cell
cultures or tissues, however, they do not provide satisfactory
results on images of contrast-enhancing techniques such as DIC
or oblique. To obtain a reliable object detection in brain tissue, we
designed a cell detection algorithm, which involved three steps:
data annotation, training of the model, and inference.

For acquiring an appropriate set of labeled objects, we created
and included a labeling tool into the software (see Supplementary
Information: Software Usage) that offers a platform to generate
an annotated dataset. Field experts labeled 6344 cells on 265 stacks
(184 rat, 81 human). The annotation procedure consisted of
putting bounding boxes around the recognized cells over multiple
slices in the stack. The stacks consisted of 60–100 slices
depending on the image quality in the actual sample. The
dimension of the individual slices is 1392 × 1040 pixels (FoV
160.08×119.6 µm). The living cells were labeled on the slices such
that a 2D bounding box was put in the 3D center of each object.
We also copied the same boxes to the next two slices above and
below. This resulted in a bounding box that has five-slices depth.
The collected labeled data was converted into the required input
format of the deep learning framework we used.

We have tested four different object detection deep learning
architectures, including DetectNet30,31, Faster Region-based
Convolutional Neural Network (FRCNN)32,33, Darknet-
ResNeXt34,35, and Darknet-YOLOv3-SPP36. A detailed descrip-
tion and performance comparison is given in (Supplementary
Information: Cell Detection System). DetectNet and FRCNN
have been implemented into DIGAP software. The former has
lower performance but very high efficiency in inference speed,
while the latter is the opposite. Users can choose based on
requirements and available resources. For this work we used
DetectNet.

DetectNet30,31 architecture was trained using NVIDIA’s Deep
Learning GPU Training System (DIGITS37), which is an
extension of Caffe38, and allows even the non-advanced deep
learning users to perform training. The solver used for the
training process was adaptive moment estimation39 (ADAM).
The pre-trained weights of the ImageNet dataset were used for
the initialization of GoogLeNet to speed up the training process.
The number of epochs was 2500 which took 6 days and 15 h.

FRCNN with ResNet50 backbone was also pretrained on
ImageNet. The Stochastic Gradient Descent with Momentum
(SGDM)40 was used as the optimizer with cross-entropy loss
function. The number of epochs was 6. The initial learning rate
was 1e−3, which was dropped every 2 epochs by a factor of 0.2.
The training method was set to “end-to-end”, that simultaneously
trains the region proposal and region classification subnetworks.
MATLAB R2019b was used for training, which took 2 days and
11 h. The prediction time of a single image using DetectNet was
0.1 s, while FRCNN required approx. an order of magnitude more
time, 0.96 s per image.

By using these tools, the training processes generated models
that recognize neurons in their original environment in DIC
images (Fig. 3b). We also implemented a procedure that extends
the 2D detection by uniting overlapping bounding boxes along
the Z-axis in the image stacks to complete the object detection in
3D space (Fig. 3c). Bounding boxes of different Z slices are
compared and if their intersection is at least 60% of the smaller
box then they are united. The following detections are compared
iteratively with the intersection region. To compensate for the
detection errors when cells are not detected, bounding boxes that
are three slices away from each other can still be united even if the
two slices in between do not contain detections.

To evaluate the performance of the proposed frameworks we
measured precision, recall, and F1 score on a validation dataset
(Fig. 3d). This dataset consisted of three image stacks (305 images
in total) annotated by the same annotator and was not used in the
training process. The detected objects were matched with ground
truth data automatically if their centroid were at most 5 µm in the
lateral plane and 3 µm in the Z axis from each other. If a detection
could not be matched, it was treated as a false positive (FP).
Ground truth objects not paired with a detection were treated as
false negatives (FN). Based on these aspects the detection
accuracy was calculated as precision P= TP/(TP+ FP), recall
R= TP/(TP+ FN), and F1 score = 2 * P * R/(P+ R). DetectNet
achieved 56.88% F1-score (precision = 53.04%, recall = 61.33%).
FRCNN architecture provided better results with a 65.83% F1-
score (precision = 60.73%, recall = 71.88%). Furthermore, the
authors of the DeNeRD model27 showed that simpler neural
networks can be used to achieve good accuracy in object detection
tasks. Therefore, we have compared the ResNet50 backbone to
MobileNetV241 combined with FRCNN (Supplementary Infor-
mation: Cell Detection System). This showed that MobileNetV2
can be a good compromise if hardware limitations or inference
speed is an issue.

To test the performance of the annotators we have determined
intraexpert and interexpert accuracies. These were measured by
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showing the same image stack (102 images) of the validation
dataset to two annotators twice within 3 months time shift. The
annotators reached 77.12% (precision = 71.91%, recall = 83.12%)
and 77.78% F1-score (precision = 70%, recall = 87.5%),
respectively. To compare the experts, the interexpert accuracy
was measured which resulted in 72.73% F1-score (precision =
75%, recall = 70.59%) (Fig. 3d).

When the user initiates cell detection in the software, a stack is
created and the detected cells are highlighted with bounding
boxes (Fig. 3c). The detections are ordered by the confidence
value, thus healthier cells are offered earlier. The target cell can
also be selected manually based on arbitrary criteria required for
the experiment.

Tracking the cell in 3D. Due to the elasticity of the tissue, the
movement of the pipette can significantly deform it and change
the location of the cell of interest. In order to precisely re-define
the pipette trajectory, the location of the target cell needs to be
tracked. We have developed an online system that performs
tracking in the lateral and Z directions (Fig. 3e–g). Both direc-
tions require a template image of the target cell which is acquired

before starting the patch clamp process when the cell is in
the focal plane of the microscope. The lateral tracking is per-
formed in the image of the most recent focal level. It uses the
Kanade–Lucas–Tomasi (KLT) feature tracker algorithm42,43. The
Z tracking is based on a focus detection algorithm that operates
on a small image stack encompassing the target cell body. The
standard deviation of the images of the target cell body is com-
puted and compared to initial images. As a result, the displace-
ment direction of the target cell along the Z axis is determined.
The whole process was done with stopped pipette to ensure that
the cell is not pushed away meanwhile. The detailed explanation
of the algorithms with examples can be found in Supplementary
Information: Cell Tracking System.

Automated patch clamping steps. After pipette calibration and
cell detection the patch clamping procedure can be started. First,
the DIGAP software calculates the trajectory of the pipette
movement along which the manipulator moves the pipette tip
(stepwise, 2 µm) close to the cell while applying medium air
pressure (50–70 mbar). The initial trajectory is a straight line
along the manipulator’s X axis. Note that this is tilted (in our case

Fig. 3 The developed algorithms for the DIGAP system. a Result of the Pipette Hunter detection model shown in three different projections of the image
stack. Initial state (blue contour) and the result (green contour) of our pipette localization algorithm are shown. b Training dataset generation: 265 image
stacks (60–100 images per stack with 1 μm frame distance along the Z-axis) captured from human and rodent neocortical slices with DIC videomicroscopy
(left). 31,720 objects as healthy cells (green boxes) labeled on every slice of the image stack by four experts. c After the training session, the DIGAP
system detects cells in unstained living neocortical tissues. d Accuracy of the automated cell detection pipeline. e Lateral tracking of the cell movement
(n= 174). DIC images of the targeted (in blue box) and patched cell (in green box). The cell drifted from its initial location (arrows in the right panel)
during the pipette maneuver. f, g Z-tracking of the cell movement (n= 174). The template image was captured at the optimal focal depth (in red boxes)
before starting the tracking. During the pipette movement, image stacks were captured from the targeted cell (upper panels) such that the middle slice was
taken of the most recent focus position. The bottom row shows the differences between the template and the image of the corresponding Z position. The
lowest standard deviation value of the difference images (plots) shows the direction of the cell drift in the Z-axis. Source Data is available as a Source
Data file.
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approximately −33 degrees from the horizontal plane) so the
movement vector of the pipette is parallel to the longitudinal axis
of the pipette. We found that approaching is more reliable if the
pipette is first moved a few micrometers above the cell and then
finally descending on it. The impedance of the pipette tip is
monitored continuously during the movement.

During the movement of the pipette, air pressure is dynamically
changed with predefined air pressure values. Air pressures were
empirically set for the different phases: hunting, sealing, and
breaking. Pipette tip impedance was continuously checked in
order to detect phases and apply the task-specific pressure.

Early resistance increase denotes the presence of an obstacle in
front of the pipette, e.g., a blood vessel or another cell. If an
obstacle is hit, the pipette is pulled back, slightly moved laterally
and when the obstacle is passed the pipette is oriented back to the
initial trajectory towards the target15. Meanwhile, the described
3D tracking algorithm compensates for the movement trajectory
due to the possible displacement of the target cell. When the
pipette tip reaches the target position above the cell, the pressure
is decreased to a low positive value (10–30 mbar). Then the
pipette is moved in the Z direction and the resistance of the tip is
monitored by 5 ms long −5 mV voltage steps. If the impedance
increases more than a predefined value (0.7–1.2 MΩ) the sealing
phase is initiated. The cell-attached configuration is set up by the
immediate cease of pressure. To achieve tight sealing of the cell
membrane into the glass we apply small negative pressure (from
−30 to −10 mbar) and the holding potential is set to −60 mV
stepwise. If the sealing process is slow and does not reach 1 GΩ
(“gigaseal”) in 30 s, different protocols are applied. First, the
initial vacuum is amplified by 1.5 and 2 times, each for 20 more
sec. Then the pipette is moved +/−2 µm in each axis for 2 s.
Finally, the pressure is released for 10 s and reapplied for 20 s.
If the gigaseal state is reached then suction pulses (−140 to
−100 mbar) of increasing length (0.5+ 0.2*attempt sec) are
applied for up to 3 min to break-in the membrane. Information
about the process, including pipette distance from the target,

actual air pressure, and electrical resistance values are continu-
ously monitored and shown in the GUI windows. Description of
the steps and the parameter values are described in detail
in Supplementary Information: Software Usage. A representative
procedure is demonstrated in Fig. 4, and further trajectory,
pressure, and resistance data is visualized in Supplementary
Information: Representative examples.

Software. The control software is written in MATLAB and the
source code is made publicly available at https://bitbucket.org/
biomag/autopatcher/. The visual patch clamping process can be
started from a user-friendly GUI (Fig. 5) which allows every
parameter to be set and the process to be monitored in real-time
by the operator. Throughout the session, the Patch Clamp Diary
module collects and visualizes information about patch clamping
attempts, including their location and outcome status. The user
can additionally mark positions in the biological sample that help
orientation during the experiment (i.e., boundaries of the brain
slice or the parallel strands that keep the tissue secure).

Many utility features are present to help everyday experiment-
ing. Single images or image stacks can be acquired, saved, or
loaded from the menu bar. The acquired images can be processed
by performing background illumination correction or DIC image
reconstruction, which can help in identifying cells and their
features. The graphical processing unit (GPU) extension of our
reconstruction algorithm44 can be used for reconstruction, which
results in about 1000× speed increase. The software contains a
built-in labeling tool that allows image database generation to
train deep learning cell recognition. Furthermore, most recent
practices from other automation systems have also been
implemented for the in vivo usage, including pipette cleaning16,17

or hit reproducibility check45. The XML configuration file makes
the adaptation easy between different setups and the software can
also operate as a general microscope controller. A logging system
is used for maintainability purposes.

Fig. 4 A representative example of a visual patch clamping procedure. a Trajectory of the pipette tip (red line) with obstacle avoidance (numbered) in
the tissue and the spatial location of the detected cells (green boxes). The steps of the avoidance algorithm are the following. 1: The pipette is moved
forward in the initial trajectory until an obstacle is hit. 2: The pipette is pulled back. 3: The pipette is moved laterally in a spiral pattern until the resistance is
back to normal. 4: The obstacle is passed. 5: The pipette is readjusted to the trajectory. 6: The approaching is continued. b Plots of the depth of the pipette
tip in the tissue, the applied air pressure, and the measured pipette tip resistance during the approach. c Image of a cell before and after performing patch
clamp recording on it. Source Data is available as a Source Data file.
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Application in brain slices. To test the performance and effec-
tiveness of our system we obtained a series of recordings (Sup-
plementary Information: Electrophysiology stimuli for DIGAP)
on slice preparation of rat somatosensory and visual cortices (n=
23 animals) and human temporal and association cortices (n= 16
patients). Successful automatic whole-cell patch clamp trials
without experimenter assistance were achieved in a total number
of n= 100 and n= 74 (rodent visual and somatosensory cortices
and human cortex, respectively) out of n= 157 and n= 198
attempts. The data analysis was carried out using Fitmaster 2×73
(HEKA Elektronik, Germany), OriginPro 7.5 (OriginLab, USA),
Excel 2016 (Microsoft, USA), and MATLAB R2017a (Mathworks,
USA). The quality of recordings was supervised by measuring
series resistance (Rs) (Fig. 6). We found a wide range of Rs values
within successful attempts in both species: 34.52 ± 18.99 MΩ in
rat and 31.39 ± 16.67 MΩ in human recordings. Trials with Rs
value exceeding 100 MΩ were noted as unsuccessful attempts.
Access resistance in 48.28% of our recordings was under 30 MΩ

which we denoted as high quality and used for further analysis.
Once the whole cell configuration was formed cells were usually
held at most for 15 min to protect neuron viability for further
procedures. To test the stability of whole cell configurations, we
executed a separate set of experiments and found that half of the

trials (n= 5 out of 9) could be kept up to 1 h. The average time of
experiments during the recording configuration could be main-
tained was 2729.9 ± 1104.2 s (n= 9, min: 928 s, max: 3825 s).
During our measurements we were able to detect spontaneous
postsynaptic events in the entire length of the recordings. We
applied standard stimulation protocol and recorded membrane
potential responses to injected currents. Based on the extracted
common physiological features and firing patterns we grouped
neurons into electrophysiological types (e-types46) based on cri-
teria established by the Petilla convention47. There were eight e-
types in automatic patched rat samples: pyramidal cell (pyr),
burst adapting (bAD), continuous non-accommodating (cNAC),
continuous stuttering (cSTUT), burst stuttering (bSTUT), delayed
stuttering (dSTUT), continuous adapting (cAD), and delayed
non-accommodating (dNAC). From the human samples, seven e-
types were identified. In our automatically-collected dataset,
dNAC type was not represented (Fig. 6).

Electrophysiological recordings were acquired using a
biocytin-containing intracellular solution. We performed
further anatomical investigation on n= 44 experiments with
<30 MΩ access resistance and we achieved n= 18 (n= 16 and
n= 2 from human and rat, respectively) full and n= 11 (n= 3
and n= 8 from human and rat, respectively) partial recovery

Fig. 5 GUI of the software. a Main window with an image stack loaded and the built-in labeling tool started. b Monitoring window to check the pressure
and resistance values. Pressure values can be set here when operating manually, or the measurement can be restarted from different subphases here.
cMain window when browsing the detected cells, initiated with the Find and Patch button. The measurement can be started by selecting a cell. d The Patch
Clamp Diary module showing a plot with annotations of a sample and measurements in it.
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(Fig. 7a, Supplementary Information: Anatomical reconstruc-
tion examples).

We next tested if single-cell RNA analysis is achievable from
the collected cytoplasm of autopatched neurons. After whole-cell
recording of the neurons in the brain slices the intracellular
content of the patched cells was aspirated into the recording
pipette with gentle suction applied by the pressure regulator unit

(−40 mBar for 1 min, then −60 mBar for 2–3 min, and finally
−40 mBar for 1 min). The tight seal was maintained and the
pipette was carefully withdrawn from the cell to form an outside-
out configuration. Subsequently, the content of the pipette was
expelled into a low-adsorption test tube (Axygen) containing
0.5 μl SingleCellProtectTM (Avidin Ltd. Szeged, Hungary)
solution in order to prevent nucleic acid degradation and to be
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compatible with direct reverse transcription reaction. Then the
samples were used for digital polymerase chain reaction (dPCR)
analysis to determine the copy number of selected genes. From
four single pyramidal cell cytoplasm samples which were
extracted from the human temporal cortex, we determined the
copy number of a ribosomal housekeeping RPS18 and aquaporin
1 (AQP1) genes (Fig. 7b). The results of the dPCR experiments
are in agreement with our previous observations48,49.

Discussion
The developed DIGAP system is able to fully automatically perform
whole-cell patch clamp recordings on single neurons in rodent and
human neocortical slices (Supplementary Movie 1, 2, 3). This is a
step forward towards characterizing and understanding the phe-
notypic heterogeneity and cellular diversity of the brain. The pre-
sented system has a cell detection module in label-free imaging,
which is achieved by deep learning. The system we developed is
fully controlled by a single software, including all hardware com-
ponents, data handling, and visualization. The control software has
its highly comprehensive internal logging system, that allows
tracking the parameters of each patch clamp recording attempt in
addition with the option to store details of the cytoplasm harvesting
process. In addition, it can connect to and save database entry
records that are compatible with the Allen Brain Atlas single
neuron database. In this work, we demonstrated the power of our
system that is capable of measuring a large set of rodent and
human neurons in the brain cortex. The results show strong cor-
relation to the earlier results in literature in terms of quality and

phenotypic composition of cell heterogeneity. Records of measured
cells were inserted to the database of the Allen Institute for Brain
Science and a subset of the cells was isolated from their tissue
environment and single-cell mRNA copy numbers of two selected
genes were determined. Furthermore, we successfully demonstrated
that autopatched neurons can be anatomically reconstructed.

The main advantage of the proposed system is that it can easily
be integrated into any existing setups and although we do not
believe that it will fully substitute human experts, it is a great
choice for complex specific tasks, allows parallelization and
speeds up discovery. It is important to emphasize the need for a
standardized and fully documented patch clamping procedure,
which is guaranteed by using DIGAP. The choice of advanced
image analysis and deep learning techniques made it possible to
work with the least harmful imaging modalities at a human
expert level of single-cell detection that was impossible so far.
Further possibilities are more widespread and potentially
enabling or accelerating discoveries. Combining with intelligent
single-cell selection strategies of the detected cells, the proposed
system can be the ultimate tool to reveal and describe cellular
heterogeneity. In multiple patch clamp setup it can be used to
describe the connectome at cellular level. We presented DIGAP’s
application to brain research, but other fields, such as cardio-
vascular or organoid research will benefit from the system. Based
on its nearly complete automation, it can help in education.

Future work includes adding multipipette support to study
connections between pairs, triplets, or a higher number of cells at
a time. Furthermore, the cell detection can be improved by
increasing the size of the training dataset, the diversity of images

Fig. 6 Electrophysiological properties of the cells patched by DIGAP. a Main electrophysiological parameters from the successful automatic patch clamp
recordings. The box plots show the series resistance (Rs, left panel), the membrane resistance (Rm, middle panel), and the resting membrane potential
(right panel) of all successful measurements (n= 47 for rat and n= 41 for human samples). The boxes show the median, 25 and 75 percentiles, and min/
max values, and the whiskers are 1.5 interquartile ranges. b Different cell types are identified according to firing features: pyr pyramidal cell, bAD burst
adapting, cNAC continuous non-accommodating, cSTUT continuous stuttering, bSTUT burst stuttering, dSTUT delayed stuttering, cAD continuous
adapting, dNAC delayed non-accomodating. c Individual neurons’ action potential half-widths are presented as a function of the same neuron’s Rm. Note
the segregation of excitatory and inhibitory neuronal classes. Dataset is recorded from rodent samples (Panel c and d colors correspond to panel b). d The
proportion of recorded cell types. e–g Same plots as b–d, representing the dataset recorded in human neocortical slices. Source Data is available as a
Source Data file.

Fig. 7 Anatomical and molecular biological investigation of neurons patched by DIGAP. a Two anatomically reconstructed human autopatched neurons.
The darker colors represent somata and dendrites of the pyramidal (green) and the interneuron (red) cells. The brighter color shows the axonal
arborization. The firing patterns of the cells are the same color as their reconstructions. b mRNA copy numbers of a housekeeping (RPS18, black bars) and
the aquaporin 1 (AQP1, red bars) gene from four representative human pyramidal cells. Source Data is available as a Source Data file.
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(by collecting them from various setups), and improving the
annotation process, or even extending it to 3D instance seg-
mentation instead of object detection.

Methods
Hardware setup. A customized Olympus BX61 (Olympus, Japan) microscope with
a 40× water immersion objective (0.8 NA; FoV 0.6625 mm; Olympus, Japan) with
motorized Z axis (Femtonics, Hungary) which is controlled by API calls to the
software was used for imaging. For moving the pipette and the microscope stage we
used Luigs & Neumann Mini manipulators with SM-5 controllers (Luigs & Neu-
mann, Germany). The electrophysiological signals were measured by a HEKA
EPC-10 amplifier (HEKA Elektronik, Germany). The signals were digitized at
100 kHz and Bessel filtered at 10 kHz.

In vitro preparation of human and rat brain slices. All procedures were per-
formed according to the Declaration of Helsinki with the approval of the University
of Szeged Ethics Committee. Human slices were derived from materials that had to
be removed to gain access for the surgical treatment of deep-brain tumors, epilepsy,
or hydrocephalus from the association cortical areas with written informed consent
of female (n= 9, aged 48.2 ± 26.6 years) and male (n= 7, aged 48.3 ± 9.9 years)
patients prior to surgery. Anesthesia was induced with intravenous midazolam and
fentanyl (0.03 mg/kg, 1–2 µg/kg, respectively). A bolus dose of propofol (1–2 mg/kg)
was administered intravenously. To facilitate endotracheal intubation, the patient
received 0.5mg/kg rocuronium. After 120 s, the trachea was intubated and the
patient was ventilated with a mixture of O2 and N2O at a ratio of 1:2. Anesthesia
was maintained with sevoflurane at monitored anesthesia care (MAC) volume of
1.2–1.5. After surgical removing blocks of tissue were immediately immersed in ice-
cold solution containing (in mM) 130 NaCl, 3.5 KCl, 1 NaH2PO4, 24 NaHCO3,
1 CaCl2, 3 MgSO4, 10 d(+)-glucose, saturated with 95% O2 and 5% CO2. Slices were
cut perpendicular to cortical layers at a thickness of 350 μm with a vibrating blade
microtome (Microm HM 650 V, Thermo Fisher Scientific, Germany) and were
incubated at room temperature for 1 h in the same solution. The artificial cere-
brospinal fluid (aCSF) used during recordings was similar to the slicing solution, but
it contained 3 mM CaCl and 1.5 mM MgSO4.

Coronal slices (350 μm) were prepared from the somatosensory cortex of male
Wistar rats (P18-25, n= 23, RRID: RGD_2312511)50. All procedures were
performed with the approval of the University of Szeged and in accordance with
the Guide for the Care and Use of Laboratory Animals (2011). Recordings were
performed at 36 °C temperature. Micropipettes (3.5–5 MΩ) were filled with low
[Cl] intracellular solution for whole-cell patch clamp recording: (in mM) 126 K-
gluconate, 4 KCl, 4 ATP-Mg, 0.3 GTP-Na2, 10 HEPES, 10 phosphocreatine, and
8 biocytin (pH 7.20; 300 mOsm).

Molecular biological analysis. After harvesting the cytoplasm of the recorded cells
the samples were frozen in dry ice and stored at −80 °C until used for reverse
transcription. The reverse transcription (RT) of the harvested cytoplasm was car-
ried out in two steps. The first step took 5 min at 65 °C in a total reaction volume of
5 μl containing 2 μl intracellular solution and SingleCellProtectTM mix with the
cytoplasmic contents of the neuron, 0.3 μl TaqMan Assays, 0.3 μl 10 mM dNTPs,
1 μl 5× first-strand buffer, 0.3 μl 0.1 mol/l DTT, 0.3 μl RNase inhibitor (Life
Technologies, Thermo Fisher Scientific, Germany) and 100 U of reverse tran-
scriptase (Superscript III, Invitrogen, Thermo Fisher Scientific, Germany). The
second step of the reaction was carried out at 55 °C for 1 h and then the reaction
was stopped by heating at 75 °C for 15 min. The reverse transcription reaction mix
was stored at −20 °C until PCR amplification. For digital PCR analysis the reverse
transcription reaction mixture (5 μl), 2 μl TaqMan Assays (Life Technologies,
Thermo Fisher Scientific, Germany), 10 μl OpenArray Digital PCR Master Mix
(Life Technologies, Thermo Fisher Scientific, Germany) and nuclease-free water
(5.5 μl) were mixed in a total volume of 20 μl. The mixture was evenly distributed
on an OpenArray plate. RT mixes were loaded into four wells of a 384-well plate
from which the OpenArray autoloader transferred the cDNA master mix by
capillary action into 256 nanocapillary holes (four subarrays) on an OpenArray
plate. Processing of the OpenArray slide, cycling in the OpenArray NT cycler and
data analysis was done as previously described48. For our dPCR protocol ampli-
fication, reactions with CT confidence values below 100 as well as reactions having
CT values less than 23 or greater than 33 were considered primer dimers or
background signals, respectively, and were excluded from the data set.

Anatomical processing and reconstruction of recorded cells. Following elec-
trophysiological recordings, slices were transferred into a fixative solution con-
taining 4% paraformaldehyde, 15% (v/v) saturated picric acid, and 1.25%
glutaraldehyde in 0.1M phosphate buffer (PB; pH = 7.4) at 4 °C for at least 12 h.
After several washes with 0.1M PB, slices were frozen in liquid nitrogen then
thawed in 0.1M PB, embedded in 10% gelatin, and further sectioned into 60-μm
slices. Sections were incubated in a solution of conjugated avidin-biotin horseradish
peroxidase (ABC; 1:100; Vector Labs) in Tris-buffered saline (TBS, pH = 7.4) at
4 °C overnight. The enzyme reaction was revealed by 3′ 3-diaminobenzidine tetra-
hydrochloride (0.05%) as chromogen and 0.01% H2O2 as oxidant. Sections were

postfixed with 1% OsO4 in 0.1M PB. After several washes in distilled water, sections
were stained in 1% uranyl acetate and dehydrated in an ascending series of ethanol.
Sections were infiltrated with epoxy resin (Durcupan) overnight and embedded on
glass slides. Three-dimensional light-microscopic reconstructions were carried out
using a Neurolucida system (MicroBrightField, USA) with a 100× objective.

Pipette cleaner. We implemented a pipette cleaning method16 into our system.
The cleaning procedure requires two cleaning agents: Alconox, a commercially
available cleaning detergent, and artificial cerebrospinal fluid (aCSF). We 3D printed
a holder for two PCR tubes containing the liquids that can be attached to the
microscope objective and are reachable by the pipette tip. The cleaning is performed
by pneumatically taking up and then removing the agents into and from the pipette.
The vacuum strength used for the intake of the liquids is −300 mBar and the
pressure used for the expulsion is +1000 mBar. The method consists of three steps.
First, the pipette is moved to the cleaning agent bath and vacuum is applied for 4 s.
Then, to physically agitate glass-adhered tissue, pressure and vacuum are alternated,
each for 1 s and repeated for five times total. Finally, pressure is applied for 10 s to
make sure all detergent is removed. In the second step, the pipette is moved to the
aCSF bath and any remaining detergent is expelled by applying pressure for 10 s. In
the third step, the pipette is moved back to the position near to the biological sample
where the cleaning process was initiated. In the original paper, it is shown that these
pressure values and the duration of the different steps are more than enough to cycle
the volume of agents necessary to clean the pipette tip. We provide a graphical
window in our software to calibrate the pipette positions of the tubes containing the
cleaning agent and the aCSF and to start the cleaning process.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available in the manuscript, Source
Data file, supplementary information and available from the authors upon reasonable
request. The annotated image data used for deep learning are available from the
corresponding author upon request. Source data are provided with this paper.

Code availability
Source code is available from Bitbucket at https://bitbucket.org/biomag/autopatcher/.
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Modern microscopyʼs versatility, resolution and multi-modal 
nature delivers increasingly detailed images of single-cell 
heterogeneity and tissue organization1. Currently, a pre-

defined subset of proteins is usually targeted, far short of the actual 
complexity of the proteome. Taking advantage of substantially 
increased sensitivity in technology based on mass spectrometry 
(MS), we set out to enable the analysis of proteomes within their 
native, subcellular context to explore their contribution to health and 
disease. We combined sub-micron-resolution imaging, image analy-
sis for single-cell phenotyping based on artificial intelligence (AI) 
and isolation with an ultra-sensitive proteomics workflow2 (Fig. 1). 
Key challenges turned out to be the accurate definition of single-cell 
boundaries and cell classes as well as the transfer of the automati-
cally defined features into proteomic samples, ready for analysis. To 
this end, we introduce the software ‘BIAS’ (Biology Image Analysis 
Software), which coordinates scanning and laser microdissection 
(LMD) microscopes. This seamlessly combines data-rich imag-
ing of cell cultures or archived biobank tissues (formalin-fixed 
and paraffin-embedded (FFPE)) with deep-learning-based cell 

segmentation and machine-learning-based identification of cell 
types and states. Cellular or subcellular objects of interest are selected 
by the AI alone or after instruction before being subjected to auto-
mated LMD and proteomic profiling. Data generated by DVP can be 
mined to discover protein signatures providing molecular insights 
into proteome variation at the phenotypic level while retaining com-
plete spatial information.

Results
Image-guided single-cell isolation for cell-type-resolved pro-
teomics. The microscopy-related aspects of the DVP workflow 
build on high-resolution whole-slide imaging, machine learning 
(ML) and deep learning (DL) for image analysis.

First, we used scanning microscopy to obtain high-resolution 
whole-slide images and developed a software suite for integrative 
image analysis termed ‘BIAS’ (Methods). BIAS processes multiple 
two-dimensional (2D) and three-dimensional (3D) microscopy 
image file formats, supporting major microscope vendors and 
data formats. It combines image pre-processing, DL-based image 
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Despite the availabilty of imaging-based and mass-spectrometry-based methods for spatial proteomics, a key challenge remains 
connecting images with single-cell-resolution protein abundance measurements. Here, we introduce Deep Visual Proteomics 
(DVP), which combines artificial-intelligence-driven image analysis of cellular phenotypes with automated single-cell or 
single-nucleus laser microdissection and ultra-high-sensitivity mass spectrometry. DVP links protein abundance to complex 
cellular or subcellular phenotypes while preserving spatial context. By individually excising nuclei from cell culture, we classi-
fied distinct cell states with proteomic profiles defined by known and uncharacterized proteins. In an archived primary mela-
noma tissue, DVP identified spatially resolved proteome changes as normal melanocytes transition to fully invasive melanoma, 
revealing pathways that change in a spatial manner as cancer progresses, such as mRNA splicing dysregulation in metastatic 
vertical growth that coincides with reduced interferon signaling and antigen presentation. The ability of DVP to retain precise 
spatial proteomic information in the tissue context has implications for the molecular profiling of clinical samples.
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segmentation, feature extraction and ML-based phenotype clas-
sification. Building on a recent DL-based algorithm for cytoplasm 
and nucleus segmentation3, we undertook several optimizations 
to implement pre-processing algorithms to maintain high-quality 
images across large image datasets. DL methods require large train-
ing datasets, which is a considerable challenge due to the limited 
size of high-quality training data4. To address this challenge, we 
used nucleAIzer3 and applied project-specific image style transfer to 
synthesize artificial microscopy images resembling real images. This 
approach is inherently adaptable to different biological scenarios, 
such as new cell and tissue types or staining techniques5. We trained 
a deep neural network with these synthetic images for specific seg-
mentation of the cellular compartment of interest (for example, 
nucleus or cytoplasm; Fig. 2a). We benchmarked it against two lead-
ing DL approaches—unet4nuclei6 and Cellpose7—and a widely used 
adaptive threshold-based and object-splitting-based method8. Our 
cell and nucleus segmentation algorithms of cell cultures and tissues 
showed the highest accuracy (Fig. 2b, Extended Data Fig. 1a, Table 1  
and Supplementary Table 1). Our current benchmarking results  
are supported by a previous study3 where we performed an exten-
sive comparison to additional methods and software (for example, 
ilastik9, on a large heterogeneous microscopy image set). For inter-
active cellular phenotype discovery, BIAS performs phenotypic fea-
ture extraction, taking into account morphology and neighborhood 

features based on supervised and unsupervised ML (Extended Data 
Fig. 1b and Methods). Feature-based phenotypic classification is 
readily combined with biomarker expression level from antibody 
staining for precise cell classification. ML has previously been used 
for image analysis and cell selection but not combined with unbi-
ased proteomics10. Furthermore, we extended BIAS with a Python 
interface; thus, data access and manipulation is also possible using 
standard Python functions in a generic way, including the integra-
tion of open-source packages and custom algorithms.

To physically extract the cellular features discovered with BIAS, 
we developed an interface between scanning and LMD micro-
scopes (currently Zeiss PALM MicroBeam and Leica LMD6 and 
LMD7) (Fig. 2c). BIAS transfers cell contours between the micro-
scopes, preserving full accuracy. LMD has a theoretical accuracy of 
70 nm using a ×150 objective, but, in practice, we reached 200 nm. 
After optimization, the LMD7 can autonomously excise 1,250 
high-resolution contours per hour, equivalent to 50 to 100 cells per 
sample (Methods). To prevent potential laser-induced damage to 
cell membranes, we excise contours with an offset (Fig. 2c,d and 
Supplementary Videos 1 and 2).

Current LMD methods preserve the spatial context but are 
mostly limited to human-eye-observable phenotypes and require 
manual selection of cells, often resulting in admixing of different 
cell types, which constrains throughput and de novo discovery11.

Archived patient
tissue samples
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Deep Visual Proteomics

High-parametric images with
subcellular resolution

Image segmentation
using deep learning

Resource for researchers
and clinicians

Bioinformatic data analysis Ultra-high-sensitivity proteomics
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b3
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Fig. 1 | DVP concept and workflow. DVP combines high-resolution imaging, AI-guided image analysis for single-cell classification and isolation with 
an ultra-sensitive proteomics workflow2. DVP links data-rich imaging of cell culture or archived patient biobank tissues with deep-learning-based cell 
segmentation and machine-learning-based identification of cell types and states. (Un)supervised AI-classified cellular or subcellular objects of interest 
undergo automated LMD and MS-based proteomic profiling. Subsequent bioinformatics data analysis enables data mining to discover protein signatures, 
providing molecular insights into proteome variation in health and disease states at the level of single cells. tSNE, t-distributed stochastic neighbor embedding.
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Fig. 2 | BiAS for integrative image analysis and automated LMD single-cell isolation. a, AI-driven nucleus and cytoplasm segmentation of 
normal-appearing and cancer cells and tissue using BIAS. b, We benchmarked the accuracy of its segmentation approach using the F1 metric and 
compared results to three additional methods—M1 is unet4nuclei6, M2 is CellProfiler8 and M3 is Cellpose7—while OUR refers to nucleAIzer3. Bars show 
mean F1 scores with s.e.m.; n = 10 independent images for melanoma tissue and (U2OS) cells, and n = 20 for salivary gland tissue. Visual representation 
of the segmentation results: green areas correspond to true positive, blue to false positive and red to false negative. c, BIAS serves as the interface 
between the scanning and an LMD microscope, allowing high-accuracy transfers of cell contours between the microscopes. Illustration of cutting 
offset with respect to the object of interest and optimal path finding. d, Practical illustration of the functions in the upper panel. e, Immunofluorescence 
staining of the human fallopian tube epithelium with FOXJ1 and EpCAM antibodies, detecting ciliated and epithelial cells, respectively. Left panel: Ciliated 
(FOXJ1-positive) and secretory (FOXJ1-negative) cells. Right panel: Cell classification based on FOXJ1 intensity. Class 1 (FOXJ1-positive) and class 2 
(FOXJ1-negative); magnification factor = ×387. f, PCA of FOXJ1-positive and FOXJ1-negative cell proteomes. g, Heat map of known protein markers 
for secretory and ciliated cells. Protein levels are z-scored. Asterisks represent imputed data. The marker list was derived from the Human Protein 
Atlas20 project and based on literature mining. h, Volcano plot of the pairwise proteomic comparison between FOXJ1-positive and FOXJ1-negative cells. 
Cell-type-specific marker proteins are highlighted in green and turquoise, and black represents potential novel marker proteins. Significant enriched 
cell-type-specific proteins are displayed above the black lines (two-sided t-test, FDR < 0.05, s0 = 0.1, n = 4 biological replicates).

NAtuRE BiotECHNoLoGy | VOL 40 | AUGUST 2022 | 1231–1240 | www.nature.com/naturebiotechnology 1233

               horvath.peter.2_10_22

http://www.nature.com/naturebiotechnology


Articles NATuRE BIoTEcHNology

To explore the sensitivity, specificity and robustness of our DVP 
workflow, we obtained normal human fallopian tube tissue and 
separated ciliated from secretory cells—the two major cell types 
of the fallopian tube epithelium12—using the cell-lineage-specific 
transcription factor FOXJ1, a master regulator of cilia function, and 
measured their proteomes (Fig. 2e–h, Extended Data Fig. 1c–f and 
Supplementary Table 2). We solely detected FOXJ1 (ciliated cells) 
in FOXJ1-stained cells (Fig. 2e,g), along with more than 5,000 other 
quantified proteins with excellent correlations of biological repli-
cates (Extended Data Fig. 1d,e). Bioinformatic analysis of differ-
ences in protein abundance mirrored the biologic features of the 
distinct cell types. (Fig. 2f–h and Extended Data Fig. 1c–f). This 
was driven by known protein markers of ciliated cells and expanded 
to proteins not yet functionally associated with these cell types. We 
used the fallopian tube epithelium as an example to highlight the 
importance of the combination of antibody-based tissue staining 
and unbiased, quantitative proteomics. Such in vivo cell type com-
parisons will allow the discovery of cell type and cell state mark-
ers and provide unbiased information to understand disease states 
at the global proteome level. Of note, high-grade serous ovarian 
cancer originates in the fallopian tube epithelium, and our method 
can now be applied to study the early onset of the disease without 
admixing unrelated cell types13.

DVP defines single-cell heterogeneity at the subcellular level. We 
applied our workflow to an unperturbed cancer cell line to deter-
mine if DVP can characterize functional heterogeneity between 

ostensibly similar cells (fluorescent ubiquitination-based cell cycle 
indicator (FUCCI) U2OS cells14). After DL-based segmentation for 
nuclei and cell membrane detection, we isolated 80–100 single cells 
or 250–300 nuclei per phenotype (Figs. 2c,d and 3a,b). The analysis 
of small numbers of cells by MS has been a longstanding goal, held 
back by formidable analytical challenges in the transfer, process-
ing and analysis of minute samples15, which we addressed in turn. 
We processed samples using our recently developed workflow for 
ultra-low sample input2,16, which omits any sample transfer steps 
and ensures de-crosslinking in very low volumes (Methods). We 
found that samples could be analyzed directly from 384 wells with-
out any additional sample transfer or clean-up. For MS measure-
ments, we employed a data-independent acquisition method using 
parallel accumulation–serial fragmentation with an additional ion 
mobility dimension and optimal fragment (diaPASEF) ion recovery 
on a newly developed mass spectrometer2,17. Replicates of cell and 
nucleus proteomes demonstrated high quantitative reproducibility 
(Pearson r = 0.96), and proteomes of whole cells differed from those 
of nuclei alone, as expected from subcellular proteomics experi-
ments based on biochemical separation18 (Extended Data Fig. 2a,b). 
In the bioinformatic enrichment analysis, terms like plasma mem-
brane, mitochondrion, nucleosomes and transcription factor com-
plexes were highly significant (false discovery rate (FDR) < 10−5) 
(Fig. 3c).

To address if morphological differences between nuclei are also 
reflected in their proteomes, we used an unsupervised phenotype 
finder model to identify groups of morphologically distinct nuclei 

Table 1 | Mean F1 scores of the compared segmentation methods on our samples

Sample Method

M1 M2 M3 ouR

U2OS cyto 0.0667* ± 0.0075 0.5994 ± 0.0262 0.7205 ± 0.0152 0.7336 ± 0.0218

Melanoma nuc 0.1126 ± 0.0151 0.4386 ± 0.0157 0.1801 ± 0.0504 0.5498 ± 0.0231

Melanoma cyto 0.0058* ± 0.0021 0.0549 ± 0.0083 0.4859 ± 0.0354 0.5536 ± 0.0625

Salivary gland nuc 0.0797 ± 0.0138 0.6488 ± 0.0430 0.0338 ± 0.0145 0.7684 ± 0.0316

Salivary gland cyto 0.0714* ± 0.0151 0.0793 ± 0.0167 0.3174 ± 0.0588 0.5051 ± 0.0586

Melanoma (pink) nuc 0.0682 ± 0.0183 0.2999 ± 0.0599 0.0364 ± 0.0238 0.5079 ± 0.0392

Melanoma (pink) cyto 0.0261* ± 0.0070 0.0865 ± 0.0213 0.2659 ± 0.0429 0.2839 ± 0.0229

Fallopian tube nuc 0.0006 ± 0.0009 0.3121 ± 0.0501 0.3160 ± 0.0631 0.4724 ± 0.0683

Fallopian tube cyto 0.0016* ± 0.0023 0.0671 ± 0.0208 0.4566 ± 0.0530 0.3455 ± 0.0473

The methods are as follows: M1 is unet4nuclei6, M2 is CellProfiler8, M3 is Cellpose7 and OUR refers to nucleAIzer3 (implemented in BIAS). High scores are highlighted in bold. Asterisks (*) mark that M1 is 
intended for nucleus segmentation but was applied to segment cytoplasm. s.e.m. is displayed with ± after the mean F1 scores in each cell.

Fig. 3 | DVP defines single-cell heterogeneity at the subcellular level. a, Segmentation of whole cells and nuclei in BIAS of DNA (DAPI)-stained U2OS 
cells. Scale bar, 20 μm b, Automated LMD of whole cells and nuclei into 384-well plates. Images show wells after collection. c, Relative protein levels  
(x axis) of major cellular compartments between whole cell (n = 3 biological replicates) and nuclei (n = 3 biological replicates) specific proteomes. y axis 
displays point density. d, Left: conceptual workflows of the phenotype finder model of BIAS for ML-based classification of cellular phenotypes. Right: 
results of unsupervised ML-based classification of six distinct U2OS nuclei classes based on morphological features and DNA staining intensity. Colors 
represent classes. Scale bar, 20 μm. e, Phenotypic features used by ML to define six distinct nuclei classes. Radar plots show z-scored relative levels of 
morphological features (nuclear area, perimeter, solidity and form factor) and DNA staining intensity (total DAPI signal). f, Example images of nuclei 
from the six classes identified by ML. Blue color shows DNA staining intensity, and red color shows EdU staining intensity to identify cells undergoing 
replication. Represented nuclei are enlarged for visualization and do not reflect actual sizes. g, PCA of five interphase classes based on 3,653 protein 
groups after data filtering. Replicates of classes (n = 3 biological replicates) are highlighted by ellipses with a 95% confidence interval. h, Enrichment 
analysis of proteins regulated among the five nuclei classes. Significant proteins (515 ANOVA significant, FDR < 0.05, s0 = 0.1) were compared to the set 
of unchanged proteins based on Gene Ontology Biological Process (GOBP), Reactome pathways as well as cell cycle and cancer annotations derived 
from the Human Protein Atlas (HPA)20. A Fisher’s exact test with a Benjamini–Hochberg FDR of 0.05 was used (Supplementary Table 3). i, Unsupervised 
hierarchical clustering of all 515 ANOVA significant protein groups (Supplementary Table 4). Cell-cycle-regulated proteins reported by the HPA are shown 
in the lower bar. Nuclei classes (n = 3 biological replicates) are shown in the row bar. C1–C4 show clusters upregulated in the different nucleus classes.  
j, Network analysis of enriched pathways for protein clusters C1–C4. Pathway enrichment analysis was performed with the ClusterProfiler R package36.  
ER, endoplasmic reticulum; PC, principal component.
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based on nuclear area, perimeter, form factor, solidity and DNA 
staining intensity (Fig. 3d). ML found three primary nuclei classes 
(27–37% each) and also identified three rare ones (2–4% each) 
(Extended Data Fig. 2c). The resulting six distinct nuclei classes 
had visible differences in size and shape, with class 1 representing 
mitotic states and the remaining five classes representing interphase 
with varying feature weighting (Fig. 3e,f). We focused on those five 
nuclei classes of unknown origin for subsequent analysis. In prin-
cipal component analysis (PCA), replicates of the respective pro-
teomes clustered closely, and the more frequent classes (2, 3 and 5) 
grouped together (Fig. 3g). To verify and quantify this observation, 
we compared each cell class proteome to a proteome of all ‘mixed’ 
nuclei in a field of view. This revealed that the rarest cell classes had 
the highest numbers of differentially expressed proteins compared 
to unclassified ‘bulk’ proteomes (Extended Data Fig. 2d,e). We next 
asked if the proteomic differences across the five nuclei classes sug-
gested any functional differences among the interphase states (Fig. 
3d,f). The 515 significantly differentially expressed proteins across 
classes were enriched for nuclear and cell-cycle-related proteins (for 
example, ‘switching of origins to a post-replicative state’ and ‘con-
densation of prophase chromosomes’), suggesting the cell cycle as a 
functional driver of separation (Fig. 3h–j, Extended Data Fig. 2f and 
Supplementary Tables 3 and 4). Comparing our data to a single-cell 
imaging dataset of cell-cycle-regulated proteins19, we found signifi-
cant enrichment in our regulated proteins (FDR < 10−6). Nuclear 
area, one of the driving features among the different classes identi-
fied, increased during interphase from G1 to S/G2 cells (Fig. 3e and 
Extended Data Fig. 3a–c), further supporting the importance of the 
cell cycle in defining the nuclei classes.

Our single-cell-type proteomes discovered several unchar-
acterized proteins, presenting an opportunity to associate them 
with a potential cellular function. Focusing on C11orf98, C7orf50, 
C1orf112 and C19orf53, which remained after data filtering 
(ANOVA P <0.05), showed class-specific expression patterns 
(Extended Data Fig. 3d). C7orf50 was most highly expressed in the 
nucleoli of classes 2, 4 and 3 nuclei, which showed S/G2-specific 
characteristics (Fig. 3f and Extended Data Fig. 3d,e), suggesting 
that its expression is cell cycle regulated. Indeed, we confirmed 
higher levels of C7orf50 in G1/S and S/G2 compared to G1 phase 
cells (Extended Data Fig. 3e). As cell-cycle-regulated proteins may 
be associated with cancer prognosis19, we investigated C7orf50 in 
the human pathology atlas20 where high expression was associ-
ated with favorable outcomes in pancreatic cancer (Extended Data 
Fig. 3g; P < 0.001). Bioinformatic analysis revealed interaction, 
co-expression and co-localization with the protein LYAR (‘cell 
growth-regulating nucleolar protein’), suggesting a functional link 
to cell proliferation (Extended Data Fig. 3f,h).

Class 6 showed an intriguing proteomic signature independent of 
known cell cycle markers (Fig. 3i,j). These rare, bean-shaped nuclei 
showed upregulation of specific cytoskeletal and cell adhesion pro-
teins (for example, VIM, TUBB, ACTB and ITGB1), suggesting that 
these signatures derived from migrating cells undergoing nuclear 
deformation, suggestive of cellular invasion21,22. Note that we clas-
sified nuclei from 2D images, but LMD isolates them in 3D. Thus, 

samples also probe morphology-driven protein re-localization 
around the nucleus as exemplified by class 6 nuclei. Likewise, excis-
ing the nuclei captures the trafficking of proteins to and from the 
cytosol to some degree.

These cell culture experiments establish that DVP correlates cel-
lular phenotypes, heterogeneity and dynamics with the proteome 
level in an unbiased way for common and rare phenotypes.

DVP applied to cancer tissue heterogeneity. Billions of patient 
samples are collected routinely during diagnostic workup and 
stored in the archives of pathology departments around the world23. 
The precise proteomic characterization of single cells in their spatial 
and subcellular context from tissue slides could have a tremendous 
clinical effect, complementing the emerging field of digital pathol-
ogy24. We selected archived paraffin-embedded tissue of a salivary 
gland acinic cell carcinoma, a rare and understudied malignancy 
of epithelial secretory cells of the salivary gland. We developed an 
immunohistochemical (IHC) staining protocol on glass membrane 
slides for LMD and stained the tissue for EpCAM to outline the cel-
lular boundaries for segmentation and feature extraction by BIAS 
(Methods). These histologically normal-appearing regions were 
mainly comprised of acinar, ductal and myoepithelial cells, whereas 
the carcinoma component had predominatly uniform tumor cells 
with round nuclei and abundant basophilic cytoplasm (Fig. 4a,b).

To identify disease-specific protein signatures, we aimed to 
compare the histologically normal-appearing acinar cells with the 
malignant cells rather than admixing with varying proportions of 
unrelated cells. To this end, we classified acinar and duct cells from 
normal parotid gland tissue based on their cell-type-specific mor-
phological features and isolated single-cell classes for proteomic 
analysis (Fig. 4c and Extended Data Fig. 4a). Bioinformatics analy-
sis of the measured proteome differences revealed significant bio-
logical differences between these neighboring cell types, reflecting 
their distinct physiological functions. Acinar cells, which produce 
and secrete saliva in secretory granules, showed high expression of 
proteins related to vesicle transport and glycosylation along with 
known acinar cell markers such as α-amylase (AMY1A), CA6 and 
PIP (Extended Data Fig. 4b). In contrast, ductal cells expressed high 
levels of mitochondria and metabolism-related proteins required 
to meet the high energy demand for saliva secretion25 (Extended 
Data Fig. 4c and Supplementary Table 5). For comparison, we 
exclusively excised malignant and benign acinar cells from the vari-
ous regions within the same tissue section. The proteomes of aci-
nar cells clustered together regardless of disease state, indicating a 
strong cell-of-origin signature (Extended Data Fig. 4d). Analyzing 
six normal-appearing replicates and nine neoplastic regions showed 
excellent within-group proteome correlation (Pearson r > 0.96). 
The lower correlation of normal cells and cancer cells reflected 
disease-specific and cell-type-specific proteome changes (Pearson 
r = 0.8; Fig. 4d,e and Supplementary Table 6). Acinar cell mark-
ers in the carcinoma were significantly downregulated, consistent 
with previous reports25. DVP allowed us to discover upregulation 
of interferon response proteins (for example, MX1 and HLA-A; 
Supplementary Table 6) and the proto-oncogene SRC, both  

Fig. 4 | DVP applied to archived tissue of a rare salivary gland carcinoma. a, IHC staining of an acinic cell carcinoma of the salivary gland using the cell 
adhesion protein EpCAM. b, Representative regions from normal-appearing tissue (upper panels I and II) and acinic cell carcinoma (lower panels III 
and IV) from a. c, DVP workflow applied to the acinic cell carcinoma tissue. DL-based single cell detection of normal-appearing (green) and neoplastic 
(magenta) cells positive for EpCAM. Cell classification based on phenotypic features (form factor, area, solidity, perimeter and EpCAM intensity).  
d, Proteome correlations of replicates from normal-appearing (normal, n = 6) or cancer regions (cancer, n = 9). e, Volcano plot of pairwise proteomic 
comparison between normal and cancer tissue. t-test significant proteins (two-sided t-test, FDR < 0.05, s0 = 0.1, n = 6 biological replicates for normal and 
n = 9 for cancer) are highlighted by black lines. Proteins more highly expressed in normal tissue are highlighted in green on the volcanoʼs left, including 
known acinic cell markers (AMY1A, CA6 and PIP). Proteins more highly expressed in the acinic cell carcinoma are on the right in magenta, including the 
proto-oncogene SRC and interferon response proteins (MX1 and HLA-A; Supplementary Table 6). f, IHC validation of proteomic results. CNN1, SRC, CK5 
and FASN are significantly enriched in normal or cancer tissue. Scale bar, 100 μm.
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actionable therapeutic targets26 (Fig. 4e). We validated the proteomic 
findings using IHC analysis of significantly enriched proteins in 
either normal-appearing or cancererous tissue. This resulted in the 
selection of CNN1, SRC, CK5 and FASN (Fig. 4f), which confirmed 

our proteomic results, demonstrated the absence of contamination 
and supported the specificity of our DVP approach.

Decoding the molecular alterations in melanoma development 
and progression is key to identifying therapeutic vulnerabilities in 
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this highly metastatic disease. With pathogenic mutations in mela-
noma largely catalogued27–29, we set out to directly study spatially 
resolved proteomes of distinct cellular phenotypes of melanoma 
progression (Fig. 5a,b and Extended Data Fig. 5a,b). We co-stained 
FFPE-embedded primary tumor material preserved for 17 years 
with two markers, SOX10 and CD146, to map melanoma cells. As 
overexpression of CD146 is implicated in melanoma progression, 
and immunotherapy against CD146 targets metastasis30, we used 
CD146 as a disease progression marker in our analysis. ML pre-
dicted five classes with clearly defined spatial distribution: class 1, 
melanoma in situ; class 2, predominantly tumor; class 3, cells of the 
tumor microenvironment; class 4, enriched in CD146-high regions; 
and class 5, enriched in CD146-low regions. We used high-content 
imaging to determine the required number of cells to identify sta-
tistically and analytically robust cellular phenotypes for precise cell 
type and state isolation within a spatial region. For this reason, we 
typically collected around 100 cells per sample (Methods). Including 
replicates, we isolated and profiled 27 different samples obtained 
from seven unique regions of the same tissue section, including nor-
mal melanocytes, melanoma in situ and primary melanoma from the 
radial and vertical growth phases (Fig. 5a–d). We found high quan-
titative reproducibility among biological replicates, resulting in dis-
ease state and region-specific proteomes (Fig. 5e–g). Pre-cancerous 
(melanoma in situ) and primary melanoma showed differences in 
proteins involved in immune cell signaling and cell metabolism and 
coincided with reduced melanogenesis (Supplementary Table 7 and 
Extended Data Fig. 5d). The advanced stages (radial and vertical 
melanoma growth phase) showed well-defined activation of meta-
bolic activation along with disease progression, a known hallmark 
of human cancers31. Expression of proteins involved in oxidative 
phosphorylation and mitochondria function gradually increased 
from melanocytes, melanoma in situ to invasive melanoma, indi-
cating a dependency on mitochondrial respiration in the advanced 
tumor stages (Fig. 5h–j, Extended Data Fig. 5c and Supplementary 
Tables 7–9). Conversely, proteins involved in antigen presentation 
and interferon response were downregulated when compared to 
melanoma in situ (Fig. 5h–j and Supplementary Tables 7–9), in line 
with immune evasion strategies in melanoma32.

Melanoma progression is a stepwise process involving radial and 
vertical growth phases. The direct comparison of these spatially 
defined regions of the same phenotype (class 4 cells) further high-
lighted critical features of cancer metastasis, such as extracellular 
matrix (ECM) remodeling (for example, collagen degradation) and 
upregulated PDGF signaling33 (Fig. 5k,l, Extended Data Fig. 5e and 
Supplementary Table 10). These tumor-driven changes support 
growth, increase migration of tumor cells and remodel the ECM 

to facilitate metastasis to distant organs via adjacent blood vessels33. 
DVP also discovered a significant upregulation of mRNA splicing 
in the vertical compared to the radial growth phase. Pro-oncogenic 
alternative splicing has recently become a therapeutic strategy in 
oncology34, and these tumors often present immunogenic neoanti-
gens35. The increase in splicing coincided with a significant down-
regulation of immune-related signaling (interferon signaling and 
antigen presentation) (Fig. 5l and Supplementary Table 10), sug-
gesting the transition from an immunogenic ‘hot’ to a ‘cold’ tumor 
zone in the vertical growth phase within the same tumor section. 
Clearly, DVP spatially resolved tumor heterogeneity by localiz-
ing tumor-related mRNA splicing, immune responses and ECM 
remodeling pathways in different regions.

Discussion
DVP combines imaging technologies with unbiased proteomics to 
quantify the number of expressed proteins in a given cell, map tis-
sue or cell-type-specific proteomes or to identify targets for future 
drugs and diagnostics. We showed how our analyses describe a rich 
‘microcosm in a slide’, uncovering key pathways dysregulated in 
cancer progression and effectively extending ‘digital pathology’ by a 
molecular dimension. It is broadly applicable to any biological sys-
tem that can be microscopically imaged, from cell culture to pathol-
ogy. As a single slide can encompass hundreds of thousands of cells, 
DVP can discover and characterize rare cell states and interactions. 
In contrast to single-cell transcriptomics, DVP can readily analyze 
the ECMʼs subcellular structures and spatial dynamics. With fur-
ther improvements in proteomics technology, DVP should also be 
suited to study proteoforms and post-translational modifications at 
a single-cell-type level.
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Methods
Patient samples and ethics. We collected archival FFPE tissue samples of salivary 
gland acinic cell carcinoma and melanoma from the Department of Pathology, 
Zealand University Hospital, in Roskilde, Denmark. Melanoma tissue was from 
a 51-year-old male and located at the left upper chest. TNM stage at diagnosis 
was T3aN1M0. The histological subtype was superficial spreading melanoma; 
the Clark level was 4; and the Breslow thickness was 2.27 mm. Tumor immune 
infiltration was categorized as non-brisk. The FFPE sample was 17 years old. The 
patient experienced recurrence at different locations 17 months after diagnosis 
and died after 71 months. The acinic cell carcinoma was removed from the 
right parotid gland of a 29-year-old male. There was no sign of mitosis, necrosis 
de-differentiation or perineural or intravascular growth. The tumor cells were 
positive in EpCAM, CK7, DOG1 and SOX10. Mammaglobin was negative. 
The sample was 4 years old, and the patient is currently disease-free. The study 
was carried out in accordance with institutional guidelines under approval by 
the local Medical Ethics Review Committee (SJ-742) and the Data Protection 
Agency (REG-066-2019) and in agreement with Danish law (Medical Research 
Involving Human Subjects Act). The fallopian tube tissue shown in Fig. 2 is from a 
64-year-old female and was macroscopically and histologically normal appearing. 
All patients consented before surgery. Patient-derived tissues were obtained 
fresh or paraffin-embedded according to an approved institutional review board 
protocol (13372B) at the University of Chicago hospital. In accordance with the 
Medical Ethics Review Committee approval, all FFPE human patient tissue samples 
were exempted from consent, as these studies used existing archived pathological 
specimens. Human tissue specimens were assessed by a board-certified pathologist.

Cell lines. The human osteosarcoma cell line U2OS was grown in DMEM (high 
glucose, GlutaMAX) containing 10% FBS and penicillin–streptomycin (Thermo 
Fisher Scientific).

The U2OS FUCCI cells were kindly provided by Atsushi Miyawaki14. These 
cells are endogenously tagged with two fluorescent proteins fused to the cell 
cycle regulators CDT1 (mKO2-hCdt1+) and geminin (mAG-hGem+). CDT1 
accumulates during the G1 phase, whereas geminin accumulates in the S and G2 
phases, allowing cell cycle monitoring. The cells were cultivated at 37 °C in a 5.0% 
CO2 humidified environment in McCoy’s 5A (modified) medium GlutaMAX 
supplement (Thermo Fisher Scientific, 36600021) supplemented with 10% FBS 
(VWR) without antibiotics.

U2OS cells stably expressing a membrane-targeted form of eGFP were 
generated by transfection with plasmid Lck-GFP (Addgene, 61099 (ref. 37)) and 
culturing in selection medium (DMEM medium containing 10% FBS, penicillin–
streptomycin and 400 μg ml−1 of Geneticin) under conditions of limited dilution to 
yield single colonies. A clonal cell line with homogenous and moderate expression 
levels of Lck-eGFP at the plasma membrane was established from a single colony.

All cell lines were tested for mycoplasma (MycoAlert, Lonza) and authenticated 
by STR profiling (IdentiCell).

IHC staining on membrane slides. Membrane PEN slides 1.0 (Zeiss, 415190-
9041-000) were treated with UV light for 1 hour and coated with APES 
(3-aminopropyltriethoxysilane) using VECTABOND reagent (Vector Labs, 
SP-1800-7) according to the manufacturer’s protocol. FFPE tissue sections were 
cut (2.5 µm), air dried at 37 °C overnight and heated at 60 °C for 20 minutes to 
facilitate better tissue adhesion. Next, sections were deparaffinized, rehydratrated 
and loaded wet on the fully automated instrument Omnis (Dako). Antigen 
retrieval was conducted using Target Retrieval Solution pH 9 (Dako, S2367) 
diluted 1:10 and heated for 60 minutes at 90 °C. Single stain for EpCAM (Nordic 
BioSite, clone BS14, BSH-7402-1, dilution 1:400) and sequential double stain for 
SOX10/CD146 (SOX10, Nordic BioSite, clone BS7, BSH-7959-1, dilution 1:200; 
CD146, Cell Marque, clone EP54, AC-0052, dilution 1:400) was performed, 
and slides were incubated for 30 minutes (32 °C). After washing and blocking of 
endogenous peroxidase activity, the reactions were detected and visualized using 
EnVision FLEX, High pH kit (Dako, GV800 and GV809/GV821) according to the 
manufacturer’s instructions. In the double stain, EnVision DAB (Dako, GV825) 
and EnVision Magenta (Dako, GV900) substrate chromogen systems were used 
for visualization of CD146 and SOX10, respectively. Finally, slides were rinsed in 
water, counterstained with Mayerʼs hematoxylin and air dried without mounting.

IHC staining for validation of DVP studies. FFPE tissue sections were cut 
(2.5 µm), placed on coated slides (Agilent/Dako, K8020) and air dried vertically 
before heating at 60 °C for 20 minutes to facilitate tissue adhesion. Next, slides were 
loaded on the fully automated instrument Omnis. Sections were dewaxed, and 
antigen retrieval was conducted using Target Retrieval Solution High pH (Agilent/
Dako, GV804, diluted 1:50) at 97 °C for 24 minutes. Subsequently, the sections 
were incubated with the primary antibodies. We selected antibodies assessed and 
approved by a board-certified consultant pathologist. Proto-oncogene tyrosine 
protein kinase SRC/c-Src (Cell Signaling Technology, clone 36D10, 2109, dilution 
1:3,200), fatty acid synthase/FASN (Cell Signaling Technology, clone C20G5, 3180, 
dilution 1:100), calponin-1/CNN1 (Cell Marque, clone EP63, AC-0060, dilution 
1:300) and cytokeratin 5/CK5 (Leica Biosystems, clone XM26, NCL-L-CK5, 
dilution 1:200) for 30 minutes at 32 °C. After washing and blocking of endogenous 

peroxidase activity, the reactions were detected and visualized using EnVision 
FLEX, High pH kit (Agilent/Dako, GV800 and GV809/GV821) according to the 
manufacturer’s instructions. Finally, slides were rinsed in water, counterstained 
with Mayerʼs hematoxylin and cover-slipped.

Immunofluorescence staining. Cells were first incubated with 5-ethynyl-
2′-deoxyuridine (EdU) for 20 minutes and then fixed for 5 minutes at room 
temperature with 4% paraformaldehyde (PFA) and washed three times with PBS. 
Cells were then permeabilized with PBS/0.2% Triton X-100 for 2 minutes on ice 
and washed three times with PBS. Cells were then stained with an EdU labeling kit 
(Life Technologies) and counterstained with Hoechst 33342 for 10 minutes. Slides 
were mounted with GB mount (GBI Labs, E01-18).

For validation experiments (Extended Data Fig. 3), 96-well glass-bottom 
plates (Greiner SensoPlate Plus, Greiner Bio-One) were coated with 12.5 µg ml−1 
of human fibronectin (Sigma-Aldrich) for 1 hour at room temperature. 
Immunocytochemistry was carried out following an established protocol38. 
Then, 8,000 U2OS cells were seeded in each well and incubated in a 37 °C and 
5% CO2 environment for 24 hours. Cells were washed with PBS, fixed with 40 µl 
of 4% ice-cold PFA and permeabilized with 40 µl of 0.1 Triton X-100 in PBS for 
3×5 minutes. Rabbit polyclonal HPA antibodies targeting the proteins of interest 
were diluted in blocking buffer (PBS + 4% FBS) at 2–4 µg ml−1 along with primary 
marker antibodies (see below) and incubated overnight at 4 °C. Cells were washed 
with PBS for 4×10 minutes and incubated with secondary antibodies (goat 
anti-rabbit Alexa Fluor 488 (A11034, Thermo Fisher Scientific), goat anti-mouse 
Alexa Fluor 555 (A21424, Thermo Fisher Scientific) and goat anti-chicken Alexa 
Fluor 647 (A21449, Thermo Fisher Scientific)) in blocking buffer at 1.25 µg ml−1 for 
90 minutes at room temperature. Cells were counterstained in 0.05 µg ml−1 of DAPI 
for 15 minutes, washed with for 4×10 minutes and mounted in PBS.

Primary antibodies used were as follows:
For C7orf50 cell cycle validation: mouse anti-ANLN at 1.25 µg ml−1 

(amab90662, Atlas Antibodies)
Mouse anti CCNB1 at 1 µg ml−1 (610220, BD Biosciences)
Rabbit anti-C7orf50 at 1 µg ml−1 (HPA052281, Atlas Antibodies)
For human fallopian tube tissue, FFPE tissue sections (2.5 µm) were mounted 

and pre-processed as described above. Thereafter, tissue was dewaxed by washing 
2×2 minutes in 100% xylene, followed by a series of 100%, 95% and 70% ethanol 
for 1 minute, respectively, and 3×1 minute in ddH2O. Antigen retrieval was 
performed in a water bath employing EDTA retrieval buffer (1 mM EDTA, 0.05% 
Tween 20, pH 8.0) at 95 °C for 1 hour. Subsequent to a cooling phase of 1 hour at 
room temperature, blocking was conducted with 10% goat serum in TBST for 
1 hour at room temperature. Primary antibodies targeting FOXJ1 (mouse, dilution 
1:200, 14-9965-80, Invitrogen) and EpCAM (rabbit, dilution 1:200, 14452, Cell 
Signaling Technology) were diluted in 10% goat serum and incubated overnight 
at 4 °C in a humidified chamber. Tissue specimens were washed 5× in TBST 
and secondary antibodies for the visualization of FOXJ1 (Alexa Fluor 647 goat 
anti-mouse, dilution 1:200, A21235, Invitrogen) and EpCAM (Alexa Fluor 555 
goat anti-rabbit, dilution 1:200, A21428, Invitrogen), and SYTO 10 for nuclear 
visualization (10624243, Invitrogen) was applied for 1 hour at room temperature 
in darkness. Samples were washed 5× in TBST, followed by 2× in TBS and 
cover-slipped for high-content imaging.

High-resolution microscopy. Images of immunofluorescence-labeled cell 
cultures were acquired using an AxioImager Z.2 microscope (Zeiss), equipped 
with wide-field optics, a ×20, 0.8 NA dry objective and a quadruple-band filter 
set for Hoechst, FITC, Cy3 and Cy5 fluorescent dyes. Wide-field acquisition 
was performed using the Colibri 7 LED light source and an AxioCam 702 mono 
camera with 5.86 μm per pixel. Z-stacks with 19 z-slices were acquired at 3-mm 
increments to capture the optimal focus plane. Images were obtained automatically 
with Zeiss ZEN 2.6 (blue edition) at non-saturating conditions (12-bit dynamic 
range).

IHC images from salivary gland and melanoma tissue were obtained using 
the automated slide scanner Zeiss Axio Scan.Z1 for bright-field microscopy. 
Bright-field acquisition was obtained using the VIS LED light source and a CCD 
Hitachi HV-F202CLS camera. PEN slides were scanned with a ×20, 0.8 NA 
dry objective yielding a resolution of 0.22 mm per pixel. Z-stacks with eight 
z-slices were acquired at 2-mm increments to capture the optimal focus plane. 
Color images were obtained automatically with Zeiss ZEN 2.6 (blue edition) at 
non-saturating conditions (12-bit dynamic range).

Wide-field fluorescence microscopy for validation of cell-cycle-dependent C7orf50 
expression. Cells were imaged on a Leica Dmi8 wide-field microscope equipped 
with a 0.8 NA, ×40 air objective and a Hamamatsu Flash 4.0 V3 camera using 
LAS X software. The segmentation of each cell was performed using Cell Profiler 
software8 using DAPI for nuclei segmentation. The mean intensity of the target 
protein and the cell cycle marker protein was measured in the nucleus. The 
cells were grouped into the G1 and G2 phases of the cell cycle by using the 
0.2 and 0.8 quantile of ANLN or CCNB1 intensity levels in the nucleus, and 
cell-cycle-dependent expression of C7orf50 was validated by comparing differences 
in expression levels between G1 and G2 cells.
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LMD. To excise cells or nuclei, we used the Leica LMD7 system, which we adapted 
for automated single-cell automation. High cutting precision was achieved using 
an HC PL FLUOTAR L ×63/0.70 (tissue) or ×40/0.60 (cell cultures) CORR XT 
objective. We used the Leica Laser Microdissection V 8.2.3.7603 software (adapted 
for this project) for full automated excision and collection of contours. For FFPE 
tissue proteome analysis, we collected 50–100 cells per sample (total area collected 
× slide thickness / average mammalian cell volume of 2,000 µm3; BNID 100434), in 
agreement with estimations in spatial transcriptomics analysis39.

Leica LMD7 cutting accuracy (Leica R&D, patent EP1276586)
For ×150 objective: 10

150 = 0.07 μm

Segmentation methods and accuracy evaluation. nucleAIzer3 models were 
integrated into BIAS and customized for these experiments by retraining and 
refining the nucleus and cytoplasm segmentation models. First, style transfer5 
learning was performed as follows. Given a new experimental scenario such as 
our melanoma or salivary gland tissue sections stained immunohistochemically, 
the acquisition of which produces such an image type that no annotated training 
data exist for, preventing efficient segmentation with even powerful DL methods. 
With an initial segmentation or manual contouring by experts (referred to as 
annotation), a small mask dataset is acquired (masks represent, for example, 
nuclei), which is used to generate new (synthetic) mask images such that the spatial 
distribution, density and morphological properties of the generated objects (for 
example, nuclei) are similar to those measured on the annotated images. The initial 
masks and their corresponding microscopy images are used to train an image style 
transfer model that learns how to generate the texture of the microscopy images 
on the masks, marking objects using GANs40 (generative adversarial networks): 
foreground to mimic, for example, nuclei, and background for surrounding, for 
example, tissue structures. Parallelly, artificial masks of either nucleus or cytoplasm 
objects were created and input to the image style transfer learning network that 
generated realistic-looking synthetic microscopy images with the visual appearance 
of the original experiment. Hence, with this artificially created training data 
(synthetic microscopy images and their corresponding, also synthetic, masks), 
their applied segmentation model, Mask R-CNN, is prepared for the new image 
type and can accurately segment the target compartments.

We benchmarked the accuracy of the segmentation approach on a fluorescent 
Lck-U2OS cell line as well as tissue samples of melanoma, salivary gland and 
fallopian tube and compared results to three additional methods, including two 
DL approaches—unet4nuclei (denoted as M1 in Fig. 2a and S1)6 and Cellpose 
(M3)7—alongside a widely used, conventional adaptive threshold-based and object 
splitting-based application (M2)8. We note that M1 is not intended for cytoplasm 
segmentation (see details in ref. 6 and below). Segmentation accuracy according to 
the F1 metric is displayed as bar plots (Fig. 2b, Extended Data Fig. 1a, Table 1 and 
Supplementary Table 1), and visual representation in a color-coded manner is  
also provided.

unet4nuclei6 is optimized to segment nuclei on cell culture images; Cellpose7 
is an approach intended for either nucleus or cytoplasm segmentation on various 
microscopy image types; and CellProfiler8 is a conventional threshold-based and 
object splitting-based software broadly used in the bioimage analysis community. 
unet4nuclei, as its name suggests, is primarily intended for nucleus segmentation 
and uses a U-Net-based network after pre-processing of input images and then 
post-processes detected objects. Cellpose uses a vector flow representation of 
instances, and its neural network (also based on U-Net) predicts and combines 
horizontal and vertical flows. unet4nuclei has successfully been applied in 
nucleus segmentation of cell cultures, whereas Cellpose is able to generalize 
well on various image modalities even outside microscopy and can be used 
to segment nuclei and cytoplasms. However, as most segmentation methods, 
neither is able to adapt to a new image domain, such as a particular experiment 
type (for example, IHC salivary gland tissue), without re-training on newly 
created ground truth annotations. On the contrary, our segmentation algorithm 
(nucleAIzer3) is able to do so via the image style transfer approach mentioned 
above. Obviously, conventional algorithms cannot adapt either; thus, they need to 
be re-parameterized for each experiment. For the evaluation, an expert CellProfiler 
user was asked to optimize a pipeline for each sample type to the best possible 
segmentation result, and then all images per sample type were segmented with one 
pipeline (corresponding to the given sample).

We evaluated our segmentation performance (and comparisons) according to 
the F1 score metric calculated at the 0.7-IoU (intersection over union) threshold. 
IoU, also known as Jaccard index, was calculated from the overlapping region of 
the predicted (segmented) object with its corresponding ground truth (real) object 
at a given threshold (see formulation below). True-positive (TP), false-positive 
(FP) and false-negative (FN) objects were counted accordingly, if they had an 
IoU greater than the threshold t (in our case, 0.7), to yield the F1 score at this 
threshold (see formulation below). Segmentation evaluation was performed 
on 10–20 randomly selected images sampled from visually distinct regions for 
each sample type (U2OS cells and melanoma, salivary gland and fallopian tube 
tissues) to show robustness, compared to ground truth annotations drawn by 
experts using AnnotatorJ41. We included images from all relevant regions of each 
sample—for example, duct cells, acini cells, cells without any membrane staining 
and lymphocytes—in the salivary gland tissue, and similarly for the other samples 

as well, to ensure robustness. Outlines or contours of all visible objects (nucleus 
or cytoplasm) were drawn individually and then exported to mask images in the 
same format that the segmentation yielded (instance segmentation masks with 
increasing gray intensities by objects). The ground truth masks were solely used 
in evaluation; the aforementioned image style transfer learning was trained on 
automatically fetched masks of the new experiments. Considering the mean F1 
scores measured, we conclude that the applied DL-based segmentation method3 
available in BIAS produced segmentations on both nucleus and cytoplasm level in 
a higher quality than the compared methods (see results in Fig. 2a,b and Extended 
Data Fig. 1a).

Jaccard index =

|x ∩ y|
|x ∪ y|

=

|x ∩ y|
|x| + |y| − |x ∩ y|

precision(t) =

TP(t)
TP(t) + FP(t)

recall(t) =

TP(t)
TP(t) + FN(t)

F1 score(t) = 2 ·

precision(t) · recall(t)
precision(t) + recall(t)

Our evaluation results of nucleus and cell body segmentation on melanoma, 
salivary gland and fallopian tube epithelium tissues and U2OS cells is presented  
in Table 1.

These results correlate with our pevious study3 that showed superior 
performance of nucleAIzer on various microscopy image data modalities 
(fluorescent cell culture, hematoxylin and eosin tissue and further experimental 
scenarios) compared to multiple segmentation approaches, including, for example, 
M2 and ilastik9.

We also note that previous methods, such as CellProfiler or ilastik, can perform 
accurate segmentation of cells; moreover, the performance of M2 on tissue nucleus 
segmentation is remarkable. On the other hand, robust methods (for example, 
DL-based) offer the convenience of not needing to reset most parameters when 
working on images from a different sample or type.

Sample preparation for MS. Cell culture (nuclei or whole cells) and tissue samples 
were collected by automated LMD into 384-well plates (Eppendorf, 0030129547). 
For the collection of different U2OS nuclei classes (Fig. 3 and Extended Data  
Figs. 2 and 3), we normalized nuclear size differences (resulting in different total 
protein amounts) by the number of collected objects per class. On average, we 
collected 267 nuclei per sample. For FFPE tissue samples of salivary gland and 
melanoma (2.5-µm-thick sections cut with a microtome), an area of 80,000–
160,000 µm2 per sample was collected for an estimated number of 100–200 cells 
based on the average HeLa cell volume of 2,000 μm3 (BNID 100434).

Next, 20 µl of ammonium bicarbonate (ABC) was added to each sample well, 
and the plate was closed with sealing tape (Corning, CLS6569-100EA). After 
vortexing for 10 seconds, plates were centrifuged for 10 minutes at 2,000g and 
heated at 95 °C for 30 minutes (cell culture) or 60 minutes (tissue) in a thermal 
cycler (Bio-Rad S1000 with 384-well reaction module) at a constant lid temperature 
of 110 °C. Then, 5 µl of 5× digestion buffer (60% acetonitrile in 100 mM ABC) was 
added, and samples were heated at 75 °C for another 30 minutes. Samples were 
shortly cooled down, and 1 µl of LysC was added (pre-diluted in ultra-pure water to 
4 ng µl−1) and digested for 4 hours at 37 °C in the thermal cycler. Subsequently, 1.5 µl 
of trypsin was added (pre-diluted in ultra-pure water to 4 ng µl−1) and incubated 
overnight at 37 °C in the thermal cycler. The next day, digestion was stopped by 
adding trifluoroacetic acid (TFA, final concentration 1% v/v), and samples were 
vacuum dried (approximately 1.5 hours at 60 °C). Then, 4 µl of MS loading buffer 
(3% acetonitrile in 0.2% TFA) was added, and the plate was vortexed for 10 seconds 
and centrifuged for 5 minutes at 2,000g. Samples were stored at −20 °C until liquid 
chromatography–mass spectrometry (LC–MS) analysis.

High-pH reversed-phase fractionation. We used high-pH reversed-phase 
fractionation to generate a deep U2OS cell precursor library for data-independent 
MS analysis (below). Peptides were fractionated at pH 10 with the spider- 
fractionator42. Next, 30 μg of purified peptides was separated on a 30-cm C18 
column in 100 minutes and concatenated into 12 fractions with 90-second exit 
valve switches. Peptide fractions were vacuum dried and reconstituted in MS 
loading buffer for LC–MS analysis.

LC–MS analysis. LC–MS analysis was performed with an EASY-nLC-1200 
system (Thermo Fisher Scientific) connected to a modified trapped ion 
mobility spectrometry quadrupole time-of-flight mass spectrometer with 
about five-fold-higher ion current (timsTOF Pro, Bruker Daltonik) with a 
nano-electrospray ion source (CaptiveSpray, Bruker Daltonik). The autosampler 
was configured for sample pick-up from 384-well plates.
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Peptides were loaded on a 50-cm in-house-packed HPLC column (75-µm inner 
diameter packed with 1.9-µm ReproSil-Pur C18-AQ silica beads, Dr. Maisch).

Peptides were separated using a linear gradient from 5–30% buffer B (0.1% 
formic acid and 80% ACN in LC–MS-grade water) in 55 minutes, followed 
by an increase to 60% for 5 minutes and a 10-minute wash in 95% buffer B at 
300 nl min−1. Buffer A consisted of 0.1% formic acid in LC–MS-grade water. The 
total gradient length was 70 minutes. We used an in-house-made column oven to 
keep the column temperature constant at 60 °C.

Mass spectrometric analysis was performed as described in Brunner et al., 
either in data-dependent (ddaPASEF) (Fig. 4) or data-independent (diaPASEF) 
mode (Figs. 2, 3 and 5). For ddaPASEF, one MS1 survey TIMS-MS and ten PASEF 
MS/MS scans were acquired per acquisition cycle. Ion accumulation and ramp 
time in the dual TIMS analyzer was set to 100 ms each, and we analyzed the ion 
mobility range from 1/K0 = 1.6 Vs cm−2 to 0.6 Vs cm−2. Precursor ions for MS/MS 
analysis were isolated with a 2-Th window for m/z < 700 and 3-Th for m/z > 700 
in a total m/z range of 100–1.700 by synchronizing quadrupole switching events 
with the precursor elution profile from the TIMS device. The collision energy 
was lowered linearly as a function of increasing mobility starting from 59 eV at 
1/K0 = 1.6 Vs cm−2 to 20 eV at 1/K0 = 0.6 Vs cm−2. Singly charged precursor ions 
were excluded with a polygon filter (otof control, Bruker Daltonik). Precursors for 
MS/MS were picked at an intensity threshold of 1.000 arbitrary units (a.u.) and 
re-sequenced until reaching a ‘target value’ of 20.000 a.u., taking into account a 
dynamic exclusion of 40-second elution. For data-independent analysis, we made 
use of the correlation of ion mobility with m/z and synchronized the elution of 
precursors from each ion mobility scan with the quadrupole isolation window. The 
collision energy was ramped linearly as a function of the ion mobility from 59 eV 
at 1/K0 = 1.6 Vs cm−2 to 20 eV at 1/K0 = 0.6 Vs cm−2. We used the ddaPASEF method 
for library generation.

Data analysis of proteomic raw files. Mass spectrometric raw files acquired in 
ddaPASEF mode (Fig. 4) were analyzed with MaxQuant (version 1.6.7.0)43,44. 
The UniProt database (2019 release, UP000005640_9606) was searched with 
a peptide spectral match and protein-level FDR of 1%. A minimum of seven 
amino acids was required, including N-terminal acetylation and methionine 
oxidation as variable modifications. Due to omitted reduction and alkylation, 
cysteine carbamidomethylation was removed from fixed modifications. Enzyme 
specificity was set to trypsin with a maximum of two allowed missed cleavages. 
First and main search mass tolerance was set to 70 p.p.m. and 20 p.p.m., 
respectively. Peptide identifications by MS/MS were transferred by matching 
four-dimensional isotope patterns between the runs (MBR) with a 0.7-minute 
retention time match window and a 0.05 1/K0 ion mobility window. Label-free 
quantification was performed with the MaxLFQ algorithm45 and a minimum 
ratio count of 1.

For diaPASEF measurements (Figs. 2, 3 and 5), raw files were analyzed with 
DIA-NN46 (version 1.8). To generate a project-specific spectral library, a 24-fraction 
high-pH reversed-phase fractionated precursor library was created from the same 
tissue specimen and acquired in ddaPASEF mode, as described above. Raw files 
were analyzed with MSFragger47 under default settings (with the exception that 
cysteine carbamidomethylation was removed from fixed modifications) to generate 
the library file used in DIA-NN. The library consisted of 90,056 precursors, 79,802 
elution groups and 7,765 protein groups.

Bioinformatic analysis. Proteomics data analysis was performed with Perseus48 
and within the R environment (https://www.r-project.org/). MaxQuant output 
tables were filtered for ‘Reverse’, ‘Only identified by site modification’ and 
‘Potential contaminants’ before data analysis. Data were stringently filtered 
to keep proteins with only 30% or less missing values (those displayed as 0 in 
MaxQuant output). Missing values were imputed based on a normal distribution 
(width = 0.3; downshift = 1.8) before statistical testing. PCA was performed in 
R. For multi-sample (ANOVA) or pairwise proteomic comparisons (two-sided 
unpaired t-test), we applied a permutation-based FDR of 5% to correct for 
multiple hypothesis testing. An s0 value49 of 0.1 was used for the pairwise 
proteomic comparison in Figs. 2h and 4e. Pathway enrichment analysis was 
performed in Perseus (Supplementary Tables 2, 3, 5 and 9; Fisher’s exact test with 
Benjamini–Hochberg FDR of 0.05) or ClusterProfiler36 (Supplementary Tables 7 
and 10), the ReactomePA package50 and the WebGestalt gene set analysis toolkit 
(WebGestaltR)51, with an FDR filter of 0.05, respectively. Minimum category size 
was set to 20 and maximum size to 500.

Microscopy and proteomics data integration. To visualize combined microscopy 
and MS-based proteomics results, we exported the spatial data files for each 
predicted class from the BIAS software. This export generates .xml output 
files with the geometry and location of cells within a class. We used Python to 
extract this information and aggregated it into a data frame. We then plotted the 
centroid (x–y coordinates) of each cell in a scatterplot and overlapped proteomics 
data. To visualize protein functional results in spatial context, we performed a 
REACTOME pathway enrichment analysis on the generated proteomics results 
and used normalized enrichment scores (z-scores) as a color gradient reflecting 
overrepresentation of a given pathway.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The mass spectrometry proteomics data have been deposited to the 
ProteomeXchange Consortium via the PRIDE partner repository52 with the 
dataset identifier PXD023904. BIAS raw data, image raw data, a demo dataset and 
online material of how to install BIAS and reproduce our work can be accessed 
at the European Bioinformatics Institute BioStudies database53 (https://www.ebi.
ac.uk/biostudies/) with the accession number S-BSST820. We used the UniProt 
database (2019 release, UP000005640_9606, https://www.uniprot.org) for all mass 
spectrometric raw file searches.

Code availability
A free compiled version of BIAS with limited high-throughput capabilities is 
available at the BioStudies Archive (accession number S-BSST820), containing all 
features applied in the described workflows. Several major components of our work 
are available in open-source repositories (Supplementary Table 11).
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