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ABSTRACT

Automated vehicles pose various system analysis and control synthesis challenges on
the levels of vehicles, vehicle interactions and transportation systems. Although the com-
plexities and structures of these levels are different, methods with which stability and
performance requirements through optimal control systems are guaranteed must be de-
veloped.

This thesis provides new robust control synthesis frameworks based on the Linear
Parameter-Varying (LPV) theory, in which the designed robust controller is in coopera-
tion with unconventional control elements, e.g., learning-based agents. The frameworks
developed are used for providing energy-optimal controllers to various control problems.
In the thesis the analysis and synthesis methods for the longitudinal control of individual
automated vehicles, for the coordination of automated vehicles in intersection, and for
the coordination of automated vehicles on the global transportation level are elaborated.

The contributions of the thesis on each level are formed. From the viewpoint of control
theory, design frameworks for control systems with learning-based agents for different con-
trol structures have been formulated. On the level of automated vehicles control, a novel
method for achieving energy-optimal motion profile has been provided and implemented,
in which several road signals on the forthcoming road horizon have been incorporated.
Moreover, the guaranteed frameworks and motion profile methods for handling safety
critical interactions of automated vehicles have been transformed, i.e., the complex multi-
vehicle coordinated control problem of cruising vehicles in intersections has been solved.
Finally, the coordination of automated vehicles in macroscopic traffic context has been
developed, i.e., simulation-based and polynomial analysis methods for exploring the im-
pact of automated vehicles on the traffic flow have been elaborated. The results of the
analysis in the control synthesis for improving macroscopic traffic performances have been
incorporated.

The contributions of this thesis have been published in books, international journals
and in conference papers.

Keywords: automated vehicles, optimal control design, learning-based methods, multi-
vehicle scenarios, traffic-vehicle relationships
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1. INTRODUCTION AND MOTIVATION

1.1 Introduction and motivation

Due to the rapid development of automated control systems, the challenges in the
control design of road vehicles and transportation systems have been transformed. It has
induced the advent of novel research fields, i.e., the coordination of vehicle systems and
transportation systems to achieve guaranteed performances on the local vehicle level and
on the global transportation level. The coordination of the automated vehicle control and
the intelligent transportation systems requires the consideration of traffic and infrastruc-
tural environments in the design of the coordination strategy. Consequently, the control
design of individual vehicles results in the extension of models on the local level to ensure
required local performances. Nevertheless, the designed local control significantly deter-
mines the performance level on the global level, e.g., the operation of the cruise control
system has impact on the traffic flow if the ratio of automated vehicles in the traffic
network is significant.

Relations and connections between autonomous vehicles and traffic environment in
several recent papers have been examined. The traffic flow model, which is characterized
by autonomous vehicles, is proposed in [84]. In the paper the dynamics of vehicles with
intelligent cruise control is considered in a mesoscopic traffic-flow model, which is used to
derive a macroscopic model for the traffic flow. An analysis on the mixed traffic flow with
semi-automated and human-driver controlled is proposed in [22]. It is shown that fuel
consumption and level of pollutants through the reduction of rapid acceleration maneuvers
of semi-autonomous driving can be decreased. Furthermore, the semi-automated vehicles
are able to smooth traffic flow by filtering response to the rapid motion of vehicles in
the traffic. The impacts and benefits of the cooperative cruise control on the traffic flow
are examined in [155], and the role of vehicle automation on the energy and emission is
presented in [14]. The aspects of optimal control design for traffic flow in motorways in
the presence of vehicle automation and communication are shown in [128].

The coordination of automated vehicles and transportation systems relies on the avail-
ability of a high number of measured signals, i.e., some information on automated vehicles
can be transferred to the transportation level, and similarly, information on the traffic
flow properties through automated vehicles can be achieved. From the side of the vehicle,
a recent technology of the coordination is the predictive control, in which the forthcom-
ing information on the road section (terrain characteristics, speed limitations, traffic flow,
traffic light information etc.) for the reason of minimizing energy consumption and travel-
ing time is considered to be available [Gáspár and Németh, 2019]. Several control design
methods exist in this field, e.g., look-ahead control concept [56, 118, 55] or eco-cruise
control methods [131]. The method on individual vehicles has also been extended for

               dc_1992_22



12 1. Introduction and motivation

platooning systems to achieve the benefits of the cooperation, as it has been proposed in
[146, 127, 3, 153],[Németh and Gáspár, 2014].

In spite of extensive development in vehicle automation, the coordination of vehicle
systems and transportation systems in a mixed traffic must be carried out. A huge chal-
lenge for the automated vehicle control design is the presence of human-driven vehicles
in the traffic network, e.g., pedestrians, cyclists, vehicle drivers. Next to the safety chal-
lenges, it indicates two important research topics for proposing appropriate control design
method- ologies. First, the vehicle must handle the interactions with human-driven ve-
hicles, especially safety-critic maneuvers, such as overtaking and crossing intersections
[27, 158]. It requests an enhanced environment sensing technology for the estimation of
states and intentions of human-driven vehicles [94, 11]. Second, the high number of auto-
mated vehicles can have impact on the traffic flow, which incorporates in human-driven
vehicles. On the global level of transportation, the exploitation of the result of the traffic
flow analysis in the modeling and control of automated vehicles is one of the hot topics,
see e.g., [29]. The most important approaches of traffic flow modeling are summarized by
[73]. The analysis of the traffic flow, in which semi-automated and automated vehicles are
traveled together with human-driven vehicles, is proposed by [132]. Stability issues of the
traffic flow of connected and automated vehicles are examined by [144]. In [30] it has been
shown that automated vehicles have only slight negative effects but significant positive
effects on the traffic flow, depending on the penetration rate of automated vehicles and
on the traffic scenario.

The need for the coordination of vehicle control and transportation systems, together
with the consideration of human factors have posed the problem of distinguishing between
these two areas. Conventionally, the design of automated vehicle control is based on
physical microscopic motion models, while the control design for transportation systems
requires statistics-based macroscopic models. Due to the different structures of models,
constraints and the distinct forms of performance requirements, the number of applicable
control methods on the joint design problem is limited. Bridging the gap between design
methods on the local and on the global levels has led to the application of unconventional
control methods, which have been based on the increased number of information sources.
The high number of available signals on the automated vehicle and in the transportation
system has motivated the application of data-driven methods for the joint design problem,
especially learning-based techniques. Based on huge amount of data on the traffic, a novel
data-driven approach for the analysis and modeling of traffic flow dynamics is proposed
by [139]. Traffic flow prediction using a deep-learning algorithm is presented by [99]. In
that research, a deep-learning architecture model is applied by using auto-encoders as
building blocks to represent traffic flow features for prediction. Similarly, Lasso regression
is used for traffic flow prediction in [85]. Cell phone information-based big data analysis
and control for transportation purposes is proposed by [40]. The work of [24] focused on
generating models for microscopic traffic simulation, which is built upon real world data.
Identification and prediction of traffic flow states based on big data analysis method are
presented by [97].

The presented challenges indicate not only control theoretical research activity, but
they also imply the vehicle-oriented applications of the methods. In Hungary, it is mo-
tivated by the fact that autonomous vehicle technology may have considerable economic
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1.2. Objectives of the thesis 13

and social impacts [34, 130, 18]. Nevertheless, the benefits of automation cannot be
achieved without significant research, development and innovation process. For example,
the Autonomous Vehicles Readiness Index is a tool to help measure the level of pre-
paredness for autonomous vehicles in each country. The position of Hungary based on
this index is 25 (see [62]), which is suitable from global worldwide aspect, but the open
problems provide further growth potential. The goal of Autonomous Systems National
Laboratory (ARNL) is to coordinate research activities in a network of several Hungarian
research institutes and universities, in cooperation with industrial partnerships. Institute
for Computer Science and Control (SZTAKI) has a leading role in the coordination of
ARNL and in the providing of novel theoretical results in the field of automated vehicle
control methods. The contributions of this thesis fit to the scopes of ARNL on the side
of the vehicle control design in coordination with the transportation level. Moreover, the
provided control theoretical methods of this thesis by OTKA Grant Agreement No. K
135512 "Robust Control Design for Automated Vehicles with Guaranteed Performances"
are motivated. The goal of this project is to provide control theoretical methodologies for
achieving prov- able performance guarantees in case of unconventional control systems,
e.g., integration of learning-based and model-based control systems.

1.2 Objectives of the thesis

The presented challenges in the coordination of vehicle and transportation systems
provide strong motivation for developing novel methods in the field of applied control
theory. The goal of this thesis is to provide up-to-date solutions on selected problems of
the coordination, focusing on the level of vehicle control.

Robust design methods for providing performance guarantees

The first topic of this thesis reflects to the guaranteed performance level of control
systems, which contain unconventional, e.g., learning-based elements. Although the dif-
ferent types of enhanced learning control methods are able to handle various performance
requirements effectively, their achieved performance level is not theoretically guaranteed.
The quantity and quality of learning samples can be chosen to any size, but it does not
guarantee the avoidance of performance degradation in an emergency scenario or robust-
ness against faults and disturbances.

The aim of the thesis is to provide a hierarchical supervisory control structure, with
which the minimum level on selected primary (i.e., safety) performances for systems with
unconventional elements can be guaranteed. The proposed design method is independent
from the internal structure of the unconventional element, and thus, it can be used for
various control problems. The contribution is a hierarchical structure, together with the
design process of a model-based robust Linear Parameter-Varying (LPV) controller and
an optimization-based supervisory algorithm.
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14 1. Introduction and motivation

Energy-optimal control methods for automated vehicles

The second topic focuses on energy-optimal control design methods for automated
vehicles, which can achieve increased number of measured signals from the transportation
system. The question of the research is formed as how is it possible to formulate the
predictive cruise control with the consideration of road-traffic information for achieving
improved energy-consumption performances. Simultaneously, safety performance require-
ments for the cruise control must be guaranteed, which poses the problem of performance
prioritization.

The provided solution of the thesis is a multi-objective constrained optimal cruise
control design methodology, with which energy-optimal speed profile for the vehicle can
be achieved. The effectiveness of the method through high-fidelity simulation examples
is illustrated. Moreover, the method on a test heavy vehicle, as a part of an industrial
cooperation has been implemented and has been verified. Furthermore, as a contribution
of the thesis, the proposed energy-optimal cruise control in the performance-guaranteed
hierarchical control structure has been involved. Using the control structure, the auto-
mated vehicle is able to avoid safety-critic situations, while the energy consumption of
the vehicle is significantly improved.

Coordinated control design in multi-vehicle context

The third topic of the thesis is related to control of automated vehicles in multi-vehicle
context, especially to safety-critical interactions. In case of multiple automated vehicles,
the coordination of them is required to achieve time-optimal and energy-optimal motion.
An accurate challenge is the coordination of automated vehicles in urban intersection
scenarios. The intersections pose the problems of vehicle ordering selection and speed
profile design, which lead to a non-convex optimization task with safety and economy
performance requirements.

In the thesis coordinated control design methods on the problem of multi-vehicle in-
teractions in intersections have been proposed. First, the problem with the extension of
the previously proposed energy-optimal control design framework has been solved. In this
method the ordering selection and the speed profile selection methods are divided. Sec-
ond, the solution within the framework of the performance guaranteed hierarchical design
method has been provided. The advantage of this solution is that selection of ordering
and selection of speed profile in the same optimization task are formulated. In the hierar-
chical structure, the unconventional element is designed through a reinforcement learning
process, and the supervisory algorithm is based on a constrained quadratic optimization
task. In both first and second approaches, the presence of human-driven vehicles in the
transportation network is handled.

Analysis and synthesis methods for automated vehicles in traffic

The fourth topic reflects to the coordination of high number of automated vehicles in
traffic network context. It leads to an analysis problem, i.e., the impact of automated
vehicles with energy-optimal cruise control on traffic flow must be explored. Moreover, it is
necessary to form the consequences of the analysis in a traffic flow model, which fits to the
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1.3. Structure of the thesis 15

conventional traffic modeling framework. The coordination strategy of automated vehicles
in the traffic network requires enhanced control methods, with which performances on the
global level (e.g., maximization of the traffic outflow) and the performances on the local
level (e.g., minimization of the energy consumption) can be guaranteed.

The thesis proposes methods for finding answers the previous challenges, such as anal-
ysis, model formulation and coordinated control design. The analysis of the impact of
automated vehicles on the traffic flow through high-fidelity simulations has been per-
formed. The examinations have resulted relationships between the ratio of automated
vehicles in the traffic, the setting of the cruise control, the inflow into the traffic network
and the average traffic speed. Based on the results of the analysis, a novel control-oriented
traffic flow model has been formed. As an important contribution of the thesis, a polyno-
mial stability analysis based on the Sum-of-Squares (SOS) method on the traffic model
has been carried out. Finally, a predictive coordination strategy for automated vehicles,
based on the results of the stability analysis, has been proposed.

1.3 Structure of the thesis

The structure of the thesis is illustrated in Figure 1.1. In Part I robust control design
methods for providing performance guarantees are proposed, which have fundamental
roles in the thesis.

Part II focuses on energy-optimal control design for individual vehicles. The design
process through two methods is presented. In Chapter 3 a predictive control design
method is proposed, which has importance not only in the individual design, but also
in the control for multiple vehicles (Chapter 5) and in the analysis of the traffic flow
(Chapter 7). Moreover, another design method for individual vehicles using the robust
framework with performance guarantees is presented in Chapter 4.

The problem of control design for safety critical interactions of multiple automated
vehicles is presented in Part III. The chapters of this part focus on the handling of in-
tersection scenarios using predictive cruise control method (Chapter 5) or learning-based
approach (Chapter 6).

Finally, the challenges of coordinated control for automated vehicles in traffic are dealt
in Part IV. Macroscopic model for describing relationships between traffic flow dynamics
and the energy-optimal cruise control is presented in Chapter 7. Using these achievements,
set-based analysis and control design methods for the coordination of automated vehicles
in Chapter 8 are proposed.

The new scientific results, the consequences of the thesis, the future goals and the
further challenges in Chapter 9 are summarized.

Some supplementary simulations and definitions for Part II-IV are found in the chap-
ters of Appendix.
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16 1. Introduction and motivation

Fig. 1.1: Structure of the thesis
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2. ROBUST CONTROL DESIGN FRAMEWORKS FOR ENSURING
PERFORMANCE REQUIREMENTS

Unmanned systems require control strategies which various complex human functions
can be substituted for. Several deep learning-based methods are able to provide effective
control solutions to meet user expectations, e.g., reinforcement learning [92] or imitation
learning [121, 135]. One of the most important fields of learning-based control is related
to the control of autonomous road vehicles, in which several driving features must be au-
tomated to reduce the role of human intervention, e.g., sensing the environment, making
decisions, trajectory design, control and intervention with smart actuators. In the case of
learning-based control techniques there exist effective methods on the learning process, but
the resulting control system may have high complexity, e.g., deep convolutional neural net-
works. The complex architecture contains conventional control systems (e.g., model-based
robust and optimal solutions) and further unconventional solutions, especially machine-
learning methods, simultaneously [106]. Nevertheless, increasing complexity of the control
systems poses the challenge of performance guarantees for the designers.

The performance requirements against the unmanned control systems can be catego-
rized into two main groups based on their priorities. The primary (safety) performance
requirements must be guaranteed during the entire operation of the unmanned system
[43]. For example, the limitation of tracking error is a necessary condition in various
robotic, vehicle and medical control systems. The secondary performances, e.g., comfort,
energy consumption, pollutant emissions, must be considered by the control system, but
they can be violated in critical situations, e.g., if a vehicle collision or pedestrian accident
is predicted. The consideration of primary and secondary performances leads to a multi-
objective optimization problem in the design of the control system. A challenge of control
design is to distinguish primary and secondary performances in the control strategy and
to provide guarantees on the primary requirements.

Although different types of enhanced learning control methods are able to handle
various performance requirements effectively, their achieved performance level is not the-
oretically guaranteed. The quantity and quality of learning samples can be chosen to any
size, but they do not guarantee the avoidance of performance degradation in an emer-
gency scenario or robustness against faults and disturbances. A possible solution on this
problem is to provide a control strategy, in which learning-based and model-based control
systems are used together. Its motivation is that model-based control design methods
have advantages in terms of theoretical guarantees for the performances. In the design of
model-based control systems the performances of the system can be defined in a mathe-
matical form and thus, the yielded controller is able to guarantee the performance level
of the closed-loop system, which is achieved through the design. Since there may be
conflicts between the various performances, a balance between the levels of performances
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20 2. Robust control design frameworks for ensuring performance requirements

must be found [173, 74], e.g., the application of weighting functions or iterative tuning etc.
Consequently, the complexity of the control-oriented model and the large number of per-
formance specifications in the control design must be limited for numerical reasons in the
mathematical computation of the control and the practical implementation possibilities.

Thus, unmanned systems have created gaps in the effectiveness of performance satis-
faction and the guarantees between model-based control methods and machine-learning
techniques: the model-based control systems are able to provide guarantees, while machine-
learning-based control can provide improved performances. Nevertheless, the control of
autonomous systems must provide guarantees for safety reasons, while the performances
must be satisfied with high efficiency. It requires the combined application of conven-
tional control solutions and machine-learning methods, which is an actual research field in
control theory. A reason of this challenge is that the mathematical structure of machine-
learning-based algorithms and the formulation of the conventional dynamic controllers
are different. This complexity makes difficult to examine the system which, is yielded via
their interconnection. Machine-learning-based control systems may be complex for the
evaluation of the closed-loop system through the conventional analysis methods of the
control theory.

Related works and approaches

In the literature various approaches to provide guarantees on stability and performance
issues for machine-learning-based control systems are presented. Most of these studies
have been published in recent years, which underlines both the importance and the novelty
of the topic. In the following some results of the research area are briefly reviewed.

The application of machine learning with Model Predictive Control (MPC) methods is
found, e.g., in [2, 170]. Since computational time may be a crucial problem for the MPC
methods, learning methods are able to improve their real-time application. For example,
the role of neural networks is to approximate the output of the predictive control through
a training process on the optimal solutions of various scenarios. However, a challenge of
the approximation is to guarantee stability and constraints, see [57]. In the work of [70]
a statistical verification strategy or in [104] a stochastic MPC method has been devel-
oped to provide guarantees. A terminal set constraint is used to recursively guarantee
the existence of safe control actions at every iteration in [76], which results in a learning-
based model predictive control scheme with provable high-probability safety guarantees.
Another MPC-based repetitive learning approach is presented in [129]. The goal of the
method is to construct recursively terminal set and terminal cost from state and input
trajectories of previous iterations, while the feasibility and the nondecreasing property of
the performances are guaranteed. This method provides an acceptable solution to the
problem of guarantees, because the learning feature is incorporated in the MPC frame-
work, such as the learning of the terminal set and the terminal cost through iterations.
However, the method is incompatible with distinct machine-learning structures.

In some other methods conventional control systems and machine-learning agents op-
erate together, while their roles in the control tasks are different. For example, [168]
proposes the design for a class of discrete-time single-input single-output nonaffine un-
certain nonlinear system. In the design the purpose of the linear dynamic controller is
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2.1. Concept of robust control design frameworks 21

to stabilize the linearized system, while the state and output feedback adaptive neural
network handles nonlinearity. The stability of the closed-loop system is proved through
Linear Matrix Inequalities (LMIs). Similarly, a novel switching controller is developed
in [171], which consists of a traditional adaptive neural controller and an extra robust
controller to pull back the transient from outside of the approximation domain. As a re-
sult of the method, the system output converges to a small neighborhood of the reference
signal and the closed-loop system is globally stable. Another method for model-reference
adaptive controller design with online performance guarantees on tracking success in the
presence of a priori dynamic uncertainty is presented in [28].

The overview shows that a general solution on the problem of performances and their
guarantees for machine-learning-based control in the existing literature does not exist.
The incorporation of the learning process in the control design through iterations and
the analysis of the agents have limitations. Since machine-learning-based methods have
several well-developed and effective solutions on various problems, it may be fruitful to
take them to the part of the control without significant modification. The motivation
is to provide a design framework for the problem of performance guarantees, which is
independent of the design of the machine-learning-based controller.

2.1 Concept of robust control design frameworks

The aim of this section is to propose control design frameworks for unmanned systems,
in which machine-learning-based agents with various structures can be incorporated. The
design process is based on robust and Linear Parameter-Varying (LPV) control theories,
with which the primary performances are guaranteed and the secondary performances are
incorporated in the design process. Since the machine-learning-based agents in unmanned
control systems can typically have two important features, two design frameworks are
provided.

The agent can provide reference signals for the controller, e.g., the machine-learning-
based agent provides reference trajectory and speed for the vehicle through the processing
of visual and LiDAR (Light Detection and Ranging) information. In this case the agent is
out of the control loop (see Figure 2.1(a)), but the reference signal can have high impact
on the performance of the unmanned systems. Thus, the tasks for providing guaranteed
performance are (I) to examine the plausibility of the reference signal and (II) to design a
robust controller which is able to handle the variation of the reference signal (see Figure
2.1(b)). Thus, in the structure of the controlled system, the plausibility of the reference
signal from the learning-based agent is processed by a supervisor. The plausibility process
is based on a comparison, the reference signal of the learning-based agent is compared to
another reference signal, which is provided by an agent with simplified functionality. The
simplified agent is able to provide a reference signal, with which the primary performances
are guaranteed, but the secondary performances are not handled. Thus, the supervisor
enables the reference signal of the learning-based agent, if the primary performances
are not violated, otherwise the reference signal of the simplified agent is enabled. The
challenge of the robust control design is to design a controller which is able to track the
varied reference signal in the entire range of its enabled variation. The robust control
framework for providing performance guarantees in Section 2.2 has been proposed.
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22 2. Robust control design frameworks for ensuring performance requirements
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Fig. 2.1: Learning-based agent outside of the control loop

The machine-learning-based agent can be inside of the control loop and it provides
control input for the system, see Figure 2.2(a). For example, in the case of an end-to-
end learning solution [100] for automated steering a neural network provides the steering
signal through camera information. The machine-learning-based agent determines the
performance level of the closed-loop systems directly, and thus, the tasks for providing
guaranteed performance are (I) to examine the impact of the learning-based control signal
on the system and (II) to design a robust controller which is able to provide control
signal if the learning-based control signal is unacceptable due to the resulting performance
level degradation (see Figure 2.2(b)). Thus, in the structure of the control system a
learning-based control and a robust LPV control operate together under the monitoring
of a supervisor. In general, especially under normal operation conditions, the supervisor
uses a control signal which is calculated by the machine learning control. Nevertheless,
emergencies may occur, in which guaranteeing primary performances is essential. In this
case, the supervisor uses the control signal of the robust controller and overrides the
current control signal. Thus, the theoretically guaranteed performance level is achieved
through the application of the robust LPV controller. The robust LPV-based design
framework for the solution to the problem of guaranteed performances in Section 2.3 has
been provided.

unmanned system

& environment

learning-based
agent

measured
signals

control
input

(a) Conventional structure

unmanned system

& environment

learning-based
agent

measured
signalscontrol

input

robust LPV
controller

control
inputs

candidate
supervisor

(b) Guaranteed structure

Fig. 2.2: Learning-based agent inside of the control loop

One of the most important advantages of the proposed design frameworks is that they
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are independent of the structure of the applied control. Owing to the motivation of au-
tomated vehicles machine-learning-based controls are in focus in this thesis. However, in
the proposed method none of the structures, i.e., the learning methods or the specialties
of the machine learning is considered. Since the proposed method uses only the input
and output signals of the applied control system, it can effectively be used for various
deep learning methods independently of their internal structure. Furthermore, the robust
and LPV framework has well developed design tools and several applications on various
control problems, thus the existing experience in the control field provide a beneficial
background for the incorporation of machine-learning methods in the novel control con-
text. A drawback of the proposed method is that the design of the robust LPV control
requires the formulation of a control-oriented model, whose accuracy can influence the
effectiveness of the design.

2.2 Robust control framework with learning-based agent in the reference
signal generation

A conventional application of learning-based methods is to design agents with en-
hanced functionalities, which are able to provide reference signals for the controller, see
Figure 2.1. In this section a design framework is proposed with which the primary perfor-
mances of the unmanned system can be guaranteed if the learning-based agent provides
the reference signal. First, the supervisor is designed and second, the design of the robust
controller is presented.

2.2.1 Examinations on the reference signals through a supervisor

In this structure the reference signal, which is the output of the learning-based agent,
is noted as rL. Moreover, there is also a model-based reference signal generator in the
structure (see Figure 2.1(b)), whose output is r0. The reference signal for the controller
r is provided by the supervisor, whose inputs are rL and r0.

The purpose of the supervisor is to decide on the plausibility of rL. The examination
of the signal is based on the comparison of rL with r0. The output of the supervisor is
the reference signal r, which is formed as

r = r0 +∆∗
l , if ∆∗

l ∈ Λl, (2.1)

where ∆∗
l is a scalar design parameter and Λl is a domain.

The value of ∆∗
l is selected in such a way that if the condition ∆∗

l ∈ Λl of (2.1) is
guaranteed, then r = rL, such as

∆∗
l = rL − r0. (2.2)

But, if the condition on the relation is not guaranteed in (2.1), then ∆l is limited with
the boundary of the domain Λl. It means that the general rule of the reference signal
formulation is

r = r0 +∆l, (2.3)
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where

∆l = min
(
max(∆∗

l ; ∆l,max);∆l,min

)
, (2.4)

where ∆l,min,∆l,max are the boundaries of Λl. The presented rule in (2.3)-(2.4) expresses
that r is inside of a limited environment of r0. If rL is inside of the environment, r = rL,
but for other cases rL is overridden through the boundaries.

The relation of the reference signal and the guaranteed performances can be formed
from the aspect of the supervisor design problem and from the aspect of the control design
problem, as follows.

• There are given the learning-based agent, the model-based agent for the computa-
tion of rL, r0 and the robust controller (see Figure 2.1(b)). The task of the supervisor
design is to determine the maximum of Λl, with which the robust performance of
the system is guaranteed. This type of design problem is relevant if the controller
of the system is fixed and it cannot be changed.

• There are given the learning-based agent, the model-based agent for the computa-
tion of rL, r0 and the supervisor with a predefined Λl. The task of the robust control
design is to design a controller which is is able to guarantee the robust performance
of the system against varying r. This type of design problem is relevant if there are
predefined requirements on the reference signals.

The rest of the section is focused on the second problem, i.e., on the design of the robust
controller. Thus, it is assumed that requirements on Λl are given and a robust controller
must be designed.

2.2.2 Design process of the robust controller

The design of the robust controller requires the description of the system via state-
space representation as

ẋ = Ax+B1w +B2u, (2.5)

where x is the state vector, w is the disturbance vector and u is the vector of the control
inputs. The goal of the control design is to guarantee the performance requirements,
which are composed in the vector z =

[
z1 . . . zn

]T as

|zi| → min, ∀i = 1 . . . n. (2.6)

The formulation of zi depends on the current control problem. Nevertheless, due to the
reference tracking structure in Figure 2.1 there are performances, which are in relation
with the reference signal r. It is assumed that zj, 1 ≤ j ≤ n has the form

zj = xj − r, (2.7)

where xj is the signal from the convex combination of x,w and u, which must track
reference r. Performance zj can be reformed using (2.3) as

zj = xj − r0 +∆l, (2.8)

in which r0 and ∆l are considered to be measured disturbances. There is an important
difference between the measured disturbances:
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• r0 is generated by the model-based agent. The mathematical structure of the model-
based agent is considered to be known and using r0 the primary performances of the
system are guaranteed. Therefore, the control designer can have exact knowledge
about the properties of r0, i.e. the range of its value or the frequency content of the
signal.

• ∆l depends on the model-based and the learning-based agents and their bounds are
determined by Λl. Since there can be more uncertainties in the determination of the
properties of the learning-based agent, the characterization of ∆l can be a complex
problem. In the practice of the robust control design, the characteristics of ∆l can
be covered by a conservative approximation.

Since the dynamics of the measured disturbance signals are different, it is recommended
to handle them separately in the control design.

The dynamic equations, the performance and the measurement equation are trans-
formed into a joint state-space representation

ẋ = Ax+B1wext +B2u, (2.9a)
z = C1x+D11wext +D12u, (2.9b)
y = C2x+D21wext +D22u, (2.9c)

where A,B1, B2 and C1, C2, D11, D12, D21, D22 are matrices and the disturbance vector
w is extended as wext =

[
w r0 ∆l

]T . The measurement vector y contains the signals,
which are measured for the output generation of the robust controller.

The control design is based on the robust H∞ method, with which the robust sta-
bility and the performance requirements of the system against the disturbances can be
guaranteed. The design method requires the augmentation of the closed-loop system with
weighting functions, see an illustration for three performances in Figure 4.1. The inter-
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Wz,2

Wn

Wl

Ww z1

z2

n

w

∆l

u

x

W0

r0

r

Wz,3

z3

Fig. 2.3: Illustration of closed-loop interconnection structure for H∞ design

connection structure contains several weighting functions, whose roles are to guarantee

               dc_1992_22



26 2. Robust control design frameworks for ensuring performance requirements

the trade-off between the performances and to scale the signals. The weight Wn is related
to the sensor characteristics on the measurement, where n represent noises, Wdist scales
the longitudinal disturbance force.

The role of weight W0 is to consider the dynamics of the reference signal r0. Similarly,
W1 scales the disturbance ∆l. This weight is selected in the form of

Wl =
max(∆l,min; ∆l,max)

T12s2 + T11s+ 1
, (2.10)

where T12, T11 are design parameters, which represent the dynamics of the signal. The
selected forms guarantee that the values of the disturbances are ∆l,1,m,∆l,2,m in steady
state.

Wz,1,Wz,2 and Wz,2 are the weights for the performances in (2.6), which represent the
minimization of them. Weight Wz,1 has important role from the aspect of the overall
performance of the control, because it scales the tracking error (2.8). The form of the
weight is

Wz,1 =
ēj

T2s+ 1
, (2.11)

where T2 is a design parameter and ēj is the expected maximum tracking error. The
selected form guarantees that the tracking error is ēj in steady state.

The state space representation of the closed-loop control system is formulated in the
following way:

ẋcl = Aclxcl +Bclw, (2.12a)
z = Ccl1x+Dcl1w. (2.12b)

The objective of control design is to minimize the H∞-norm of the transfer function Tz,w,
which represents the relationship between the disturbances and the performances. More
precisely, the problem can be stated as follows [133, 25]: the closed-loop RMS (power-to-
power) gain from w to z does not exceed γ, if and only if there exists a symmetric matrix
X∞ such that AclP + PAT

cl PBcl CT
cl

BT
clP −γI DT

cl

Ccl Dcl −γI

 < 0. (2.13)

For the system P , find an admissible control K which satisfies the following design criteria:

• the closed-loop system must be asymptotically stable,

• the closed-loop transfer function from wext to z satisfies the constraint:

∥Tz,w(s)∥∞ < γ, (2.14)

for a given real positive value γ.
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New result 2.2.1: Robust control design framework for systems with learning-based agent
in the reference signal generation has been provided. The result of the method is a super-
visory control system, with which requirements on selected performances are guaranteed.
The design of the robust control is based on the H∞ method, in which the variation of
the reference signal as a disturbance has been incorporated.
References: [Németh and Gáspár, 2021, Németh et al., 2020, Németh and Gáspár, 2020,
Németh et al., 2021b, Fényes et al., 2021b]

2.3 Robust control framework with learning-based agent in the control
loop

The application of learning-based agents inside of the control loop is an innovative
solution on several control problems in the field of automated vehicles. In this case the
agent has control purposes, which means that it provides the control input using measured
signals, see Figure 2.2. The purpose of this section is to propose the fundamentals of the
robust framework, the design of the supervisor and the robust LPV-based controller.

2.3.1 Concept of the design framework

The aim of the concept is to form the structure of the robust design framework with
which requirements on the primary performances can be guaranteed. The idea behind
the framework is that the control input of the system is equivalent to the output of the
learning-based agent, if the requirements on the primary performances can be guaranteed.
But, if the primary performances are violated, the output of the learning-based control
is overridden by the supervisor. Decision on the violation of the primary performances is
performed through the comparison of the output of the learning-based agent and that of
the robust LPV controller.

The output of the learning-based controller is vector uL with n elements as

uL = F(yL), (2.15a)

uL =
[
uL,1 uL,2 . . . uL,n

]T
, (2.15b)

where yL vector contains the inputs of the controller with mL elements. F represents the
learning-based controller itself, e.g., a deep-learning neural network, which is activated on
its input layer. Moreover, the output of a robust LPV controller is uK with n elements
as

uK = K(ρL, yK), (2.16a)

uK =
[
uK,1 uK,2 . . . uK,n

]T
, (2.16b)

where K represents the LPV controller and yK is the vector of the measured signals with
mK elements. In (2.16) ρL ∈ ϱK vector contains the scheduling variables of the controller,
which is considered to have at least n elements.

The fundamental assumption of the design method is that the control input signal
of the system u =

[
u1 u2 . . . un

]T can be expressed as a function of uK in a linear
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form, under predefined conditions. The parameters in the linear formulation are selected
to guarantee u = uL if the requirements on the primary performances are guaranteed by
uL. Thus, the relationship between u, uK and uL with the conditions is formed as

u = uL =In×n ◦ (ρ∗LJ1×n)uK +∆∗
L, if ρ∗L,i ∈ ϱL,i, ∆∗

L,i ∈ ΛL,i, ∀i = 1 . . . n, (2.17)

where ◦ represents Hadamard product, In×n is an n × n identity matrix, J1×n is matrix
of ones with one row, ρ∗L and ∆∗

L are n× 1 vectors as

ρ∗L =
[
ρ∗L,1 ρ∗L,2 . . . ρ∗L,n

]T
, (2.18a)

∆∗
L =

[
∆∗

L,1 ∆∗
L,2 . . . ∆∗

L,n

]T
, (2.18b)

and ρ∗L,i, ∆∗
L,i, i = 1 . . . n are time-dependent weighting signals. ϱL,i = [ρL,i,min; ρL,i,max],

ΛL,i = [∆L,i,min; ∆L,i,max] represent domains in (2.17), where ρL,i,min, ρL,i,max, ∆L,i,min,
∆L,i,max are scalars. The sets of the domains are denoted by ϱL, ΛL. Since In×n ◦ (ρ∗LJ1×n)
in (2.17) leads to an n × n diagonal matrix with the related elements of ρ∗L, ui depends
only on uK,i.

If the conditions of (2.17) for ρ∗L,i and ∆∗
L,i are guaranteed, the control input of the

system u is equal to uL. But, if there exists at least one i ∈ [1;n], where ρ∗L,i ̸∈ ϱL,i or
∆∗

L,i ̸∈ ΛL,i, the variables ρ∗L,i, ∆∗
L,i are limited with the boundaries of ϱL,j and ΛL,j during

the computation of the control signal ui. In this case u ̸= uL.
The general control rule, which contains both cases is formed as

u = In×n ◦ (ρLJ1×n)uK +∆L, (2.19)

where

ρL =
[
ρL,1 ρL,2 . . . ρL,n

]T
, (2.20a)

∆L =
[
∆L,1 ∆L,2 . . . ∆L,n

]T
, (2.20b)

ρL,i = min

(
max

(
ρ∗L,i; ρL,i,max

)
; ρL,i,min

)
, ∀i = 1 . . . n, (2.20c)

∆L,i = min

(
max

(
∆∗

L,i; ∆L,i,min

)
; ∆L,i,max

)
, ∀i = 1 . . . n. (2.20d)

The relations (2.20c)-(2.20d) guarantee that ρL ∈ ϱL and ∆L ∈ ΛL. The minimum
performance level is determined by the LPV controller in the entire operation domain of
the system, while inside of the domains ϱL,ΛL the performance level is enhanced through
learning-based control. Thus, the advantages of learning-based control can be achieved,
while its drawback, such as performance degradation in some scenarios is eliminated
through the minimum performance level.

In Figure 2.4 the structure of the given control architecture is presented. In the
proposed concept the feedback loop contains the LPV controller, while the learning-based
controller is in an auxiliary loop from the control aspect. The role of the supervisor block
is to select ρL,∆L. The actuated control input u on the system depends on uK , ρL,∆L.

The design of the control architecture requires the following steps in the process.
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system

LPV controller
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Fig. 2.4: Structure of the control architecture

1. It is necessary to select the values of ρL,∆L and the domains ϱL,ΛL, as defined in
(2.19)-(2.20).

2. The robust LPV control must be designed, in which the domains ϱL,ΛL are incor-
porated.

The challenge of the control design is that the determination of ϱL,ΛL and the LPV
design are not independent from each other. The control design requires the selection
of the domains, while the effective selection of the domains requires experience on the
performance of the design control. As a solution to this anomaly, an iterative design
method is proposed, which incorporates the domain selection and the LPV design in
itself. The proposed approach is focused on the iterative design, while the learning-based
control is considered to be given.

2.3.2 Selection strategy in the supervisor

The selection strategy of ρP and ∆P is based on the idea that the performance level
of the unmanned control system must be maximized. It can be achieved if u = uL (2.17).
However, a predefined minimum performance level for the primary performances must also
be guaranteed by the supervisor. The problem of performance level leads to a constrained
optimization problem. The maximization of the performance level is achieved through
the minimization of the cost function, and the minimum level of primary performances is
guaranteed by the constraints. The role of the supervisor is to perform the optimization
problem online based on the current signals, e.g., uL, uK . The variables of the optimization
problem are ρP ,∆P , which are used for the computation of u (2.19).

The objective of the optimization is to minimize the difference between the elements
of the control input vector u and the elements of the learning-based agent output uL.
Thus, the cost function is formed as:

n∑
i=1

(
ui − uL,i

)2 → min. (2.21)
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The objective (6.4) using (2.19) is rearranged to a quadratic form as
n∑

i=1

(
ui − uL,i

)2
=

n∑
i=1

([
ρL,i
∆L,i

]T [
u2
K,i uK,i

uK,i 1

] [
ρL,i
∆L,i

]
+

[
−2uL,iuK,i

−2uL,i

]T [
ρL,i
∆L,i

]
+ u2

L,i

)
=

=

[
ρL
∆L

]T
β

[
ρL
∆L

]
+ ωT

[
ρL
∆L

]
+ u2

L, (2.22)

in which u2
L is independent of ρL,∆L and thus, it can be eliminated during the minimiza-

tion process (6.4).
The constraints for the optimization are based on the state-space representation of

the system:

ẋ = Ax+ B̂1w + B̂2u, (2.23)

where x represents the state vector and A, B̂1, B̂2 are matrices in the system representa-
tion. The state-space representation of the system is reformulated using the predefined
control strategy (2.19) to express uK instead of u. Therefore, the state-space represen-
tation of the system (4.7) is reformulated through the relationship between u and uK

as

ẋ = Ax+B1wK +B2(ρL)uK , (2.24)

where the disturbance vector wK in the state-space representation (4.8) is composed as
wK =

[
w ∆L

]T . The matrices are

B1 =
[
B̂1 B̂2

]
, (2.25a)

B2(ρL) = B̂2

(
In×n ◦ (ρLJ1×n)

)
. (2.25b)

Thus, the system is transformed into a LPV representation.
The primary performance requirements on the unmanned control system can typically

be formed as inequality constraints on the convex combination of the states and the control
input, such as

Θmin ≤ Θ1x+Θ2u ≤ Θmax, (2.26)

where Θmin,Θmax represent the vectors of the constraints. Θ1,Θ2 are matrices, which
are formed based on the relationships between x and u. The application of (2.26) in the
optimization problem as a constraint requires the reformulation of (2.26), depending on
∆L, ρL.

• The state in the constraint is reformulated as follows. It is assumed that the op-
timization is solved online with T sampling time. The role of the constraint is to
guarantee (2.26) in time step t + T , where t denotes the current time. For the
computation of x(t + T ) the state-space representation (4.8) is transformed into a
discrete form with T sampling time as

x(k + 1) = Adx(k) + B1,dwK(k) + B2,d(ρL(k))uK(k), (2.27)
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where x(k + 1) is equal to x(t + T ) and Ad, B1,d, B2,d are matrices. It is assumed
that the current state vector x(k) = x is known, i.e., it is measured or estimated.
Since wK(k) = wK is a disturbance vector in the system, not all of its elements can
be measured. B1,dwK can be divided into the components of B̂1,dw + B̂2,d∆L. The
second term B2,d∆L contains the variable ∆L of the optimization problem, while
the first term B̂1,dw can contain unmeasured disturbances. Therefore, instead of
the exact information on B̂1,dw, it is covered by the lower and upper limits of the
disturbance vector:

Θmin,w ≤ B̂1,dw ≤ Θmax,w, (2.28)

where Θmin,w,Θmax,w are vectors which represent the lower and upper limits of the
disturbance vector, respectively. In the composition of the vectors Θmin,w,Θmax,w,
the disturbances are considered elementwise.

• The reformulation of u in (2.26) is provided by (2.19).

The inequalities of constraint (2.26) are reformulated as

−Θ1

(
Adx+Θmin,w + B̂2,d∆L +B2,d(ρL)uK

)
−Θ2

(
In×n ◦ (ρLJ1×n)uK +∆L

)
≤ −Θmin,

(2.29a)
Θ1

(
Adx+Θmax,w + B̂2,d∆L +B2,d(ρL)uK

)
+Θ2

(
In×n ◦ (ρLJ1×n)uK +∆L

)
≤ Θmax,

(2.29b)

which can be written in the compact form of

ΘA

[
ρL
∆L

]
≤ ΘB, (2.30)

where ΘA is a matrix and ΘB is a vector.
The constrained optimization problem contains the objective (4.20), the constraint on

the states and the control input (2.26) and the constraints on the optimization variables
as:

min
ρL,∆L

[
ρL
∆L

]T
β

[
ρL
∆L

]
+ ωT

[
ρL
∆L

]
, (2.31a)

subject to

ΘA

[
ρL
∆L

]
≤ ΘB, (2.31b)

ρL ∈ ϱL, (2.31c)
∆L ∈ ΛL. (2.31d)

The results of the optimization problem are ρL and ∆L. The output of the supervisor is
u, which is computed through (2.19) using ρL,∆ and uK .
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2.3.3 Design of the controller via the robust LPV method

The design of the robust LPV controller is based on the state-space representation
of the system, which is augmented with ∆L, ρL, see (4.8). Figure 2.5 provides a deeper
insight into the idea behind the control architecture from the viewpoint of the robust LPV
control design. The control rule (2.19) can be handled as a manipulation of the robust
LPV controller output with a known uncertainty ∆L and a scheduling variable ρL (Figure
2.5(a)). ∆L and ρL are the outputs of the supervisor. In the proposed control problem of
the design framework the scheme of the controller-uncertainty structure is reformulated,
i.e., the plant is augmented with the uncertainty block. Thus, in the design problem
of the controller the signals ρL,∆L and domains ϱL,ΛL are incorporated in the design
process, see Figure 2.5(b). The reformulated augmented plant motivates the use of the
LPV theory due to parameter variation. The elements of ρL are handled as scheduling
variables and ∆L is referred to as a known disturbance vector of the system.

Plant

ControllerUncertainty

yKu

uK

ρL ∆L

(a) Controller with uncertainty block

Plant

Controller

Uncertainty

yK

u

uK

ρL∆L

augmented plant

(b) Plant with uncertainty block

Fig. 2.5: Reformulation of the control design problem

The goal of the robust LPV design is to find a controller with guarantees on the
minimum level of primary performances. Nevertheless, in the design of the control further
performances can be considered, i.e. secondary performances. These are incorporated in
the performance vector z. Performance vector zK is expressed through the control input
u and the existing disturbances w as

z = C2x+D21w +D22u. (2.32)

Similarly to the state-space representation (4.7)-(4.8), the performance equation (8.29)
through u = In×n ◦ (ρLJ1×n)uK +∆L is reformulated as

z = C2x+D21wK +D22(ρL)uK , (2.33)

where the matrices are

D21 =
[
D̂21 D̂22

]
, (2.34a)

D22(ρL) = D̂22

(
In×n ◦ (ρLJ1×n)

)
. (2.34b)
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The measured signals for the LPV controller is composed in vector yK , see Figure 2.4.
The model-based design of the controller requires the expression of yK in the function of
x,w and u. The measurement equation is formed as

yK = C1x+ D̂11w + D̂12u. (2.35)

Through the relation u = In×n ◦ (ρLJ1×n)uK +∆L the measurement equation is reformu-
lated as

yK = C1x+D11wK +D12(ρL)uK , (2.36)

where the matrices of (2.36) are

D11 =
[
D̂11 D̂12

]
, (2.37a)

D12(ρL) = D̂12

(
In×n ◦ (ρLJ1×n)

)
. (2.37b)

Finally, the augmented plant for the design of the robust LPV controller using (4.8),
(2.33) and (2.36) is formulated:

ẋ = Ax+B1wK +B2(ρL)uK , (2.38a)
z = C2x+D21wK +D22(ρL)uK , (2.38b)

yK = C1x+D11wK +D12(ρL)uK . (2.38c)

The goal of the design method of the LPV control is to provide the quadratic stability
of the closed-loop system and the induced L2 norm from the disturbance vector wK to z
is less than the scalar γ > 0. The existence of a controller that solves the quadratic LPV
γ-performance problem can be expressed as the feasibility of a set of LMIs, which can
be solved numerically. The constraints set by the LMIs are not finite. The infiniteness
of the constraints is relieved by a finite, sufficiently fine grid. To specify the grid of the
performance weights for the LPV design, the scheduling variables are defined through
lookup-tables. Gridding reflects the qualitative changes in the performance weights, i.e.,
the scheduling variables ρL ∈ ϱL. The stability and the performance level of the closed-
loop system are guaranteed by the design procedure [161, 26, 41]. The quadratic LPV
performance problem is to choose the parameter-varying controller K(ρL, yK) in such a
way that the resulting closed-loop system is quadratically stable and the induced L2 norm
from the disturbance and the performances is less than the value γ. The minimization
task is the following:

inf
K(ρL,yK)

sup
ρL∈ϱL

sup
∥wK∥2 ̸= 0,
wK ∈ L2

∥z∥2
∥wK∥2

. (2.39)

The existence of a controller that solves the quadratic LPV γ-performance problem can
be expressed as the feasibility of a set of LMIs, which can be solved numerically. Finally,
the state-space representation of the LPV control K(ρL, yK) is constructed, see [161, 138,
109, 20]. The optimization problem (4.23) is solved offline and the resulted controller
is K(ρL, yK) implemented for online control input computation. It leads to the control
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input uK (2.16), which is incorporated in the computation of u (2.19) together with the
selection of ρL, ∆L. The control rule results in that the minimum performance level of
the closed-loop system is determined by K(ρL, yK).

The relationship between the selection of ϱL, ΛL and the design of K(ρL, yK) has
been presented in Subsection 2.3.1. The scaling of the performance level through the
design of K(ρL, yK) requires the preliminary selection of ϱL, ΛL. Similarly, the scaling
of the performance level through the selection of ϱL, ΛL requires the preliminary design
of K(ρL, yK). Moreover, the design problem of the robust LPV controller (4.23) and the
optimization problem in the supervisor (4.21) are not independent of each other due to
ϱL, ΛL. A possible solution to the problem is to create an iterative design process, in
which the control design, the selection of ϱL, ΛL and the optimization in the supervisor
are ordered and performed in an iterative method.

The goal of the iteration is to minimize the difference between u, uL and to minimize
the bounds ϱL, ΛL. The result of the fitting is the reduction of the domains and the
reduction of the conservativeness of controller K(ρL, yK). The fitting of the domains is
achieved through an iterative process. Through the iteration a balance between the range
of the domains and the characteristics of the control intervention can be achieved. Thus,
in the iteration the domains and the characteristics of the intervention are incorporated,
which leads to the following optimization task

min
ρL,i,min > 0,
ρL,i,max > 0

n∑
i=1

Ri

(
ρL,i,max − ρL,i,min

)
+Di

(
|∆L,i,max| − |∆L,i,min|

)
+ TiĒi, (2.40)

with the constraint ρL,i,max > ρL,i,min, where Ēi is the average relative error of ui and uL,i.
Moreover, Ri > 0, Di > 0 and Ti > 0, i = 1 . . . n scalars are design parameters.

Through the selection of T the average relative error of ui and uL,i can be scaled. The
motivation behind the increasing of T is to design an LPV controller whose output is
as close as possible to the output of the learning-based controller. If ui is close to uL,i,
the advantageous dynamics of the learning-based controller is approximated by the LPV
controller. Its consequence is that the domains of ϱL,i and ΛL,i are increased. Nevertheless,
in a scenario with the performance loss of the learning-based controller, ui can be close
to uL,i for a long time, which can reduce the minimum performance level of the system.
It motivates the limitation of T . The roles of Ri, Di parameters are to scale the domains
and to guarantee a balance between them. Thus, the values of Ri, Di express priority
between the reduction of the scheduling variable domain and the disturbance domain.
The motivation behind the selection of R,D is to facilitate the LPV control design. If
the domain of ϱL,i is increased, the grid of the LPV design is also increased. Due to the
increased difference between the edges of the grid, the design process of the LPV controller
can be difficult, because the domains of the systems with the frozen scheduling variables
are high. Similarly, if the domain of ΛL,i is increased, an increased robustness against the
system is required. Both effects can result in unfeasible LMI problems in the design of
the LPV control. Therefore, it is necessary to limit R and D.

The solution of the optimization problem (4.24) begins with domains with high ranges,
which are reduced through the following iteration process.

1. The domains ϱL,i = [ρL,i,min; ρL,i,max] and ΛL,i = [∆L,i,min; ∆L,i,max] are selected high
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in the first step. The initial value of ρL,i,min is selected ρL,i,min = εi, where 0 < εi has
a small value. Initially, ρL,i,max is selected high and similarly, |∆L,i,min|, |∆L,i,max|
also have high values, which results in a conservative LPV control. The goal of the
iterative design process is to reduce the conservativeness through the appropriate
selection of the boundaries.

2. The LPV control with the selected domains is designed using (4.23).

3. The closed-loop system with the incorporation of the designed K(ρL, yK) and the
domains ϱL, ΛL are analyzed through various scenarios. It yields the signals uL and
uK .

4. Due to the results of the scenarios the boundaries are modified to reduce the cost
function of the optimization problem (4.24). The new values of ρL,i,min, ρL,i,max and
∆L,i,min, ∆L,i,max for all i = 1 . . . n are selected by the optimization algorithm, e.g.,
through simplex search or trust-region-reflective methods [80, 35].

5. The LPV design, the scenarios and the evaluation (steps 2-4) are performed until
the minimum of (4.24) is reached. If the minimum performance level of the designed
control is not suitable, or the ranges of the domains result in frequent control in-
tervention on the bounds, the parameters Ri, Di and Ti must be modified (step 1)
and the iteration must be performed again.

The results of the iteration process are the robust LPV controller and the domains ϱL,ΛL.

New result 2.3.1: Robust control design framework for systems with learning-based agent
in the control loop has been provided, with which requirements on selected performances
are guaranteed. The novel framework contains two main elements, i.e., the supervisor and
the robust controller. The role of the supervisor is to decide on the actual control input,
which is based on the comparison of the outputs of the learning-based agent and the
robust controller. The algorithm of the supervisor is formed as a constrained quadratic
optimization problem. The design of the robust controller based on the Linear Parameter-
Varying (LPV) method, in which the difference between the outputs of the learning-based
agent and the robust controller through a scheduling variable and a measured disturbance
is considered.
References: [Németh and Gáspár, 2021, Németh and Gáspár, 2021c, Németh, 2021,
Gáspár and Németh, 2016, Németh, 2019]
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3. PREDICTIVE ENERGY-OPTIMAL CRUISE CONTROL FOR
AUTOMATED VEHICLES

Various safety, economy and comfort requirements against automated vehicles pose
complex decision and control design challenges. A possible solution on the adaptation to
the environment of vehicles is to use increased number of information on the road and
traffic through vehicle-to-vehicle (V2V) and infrastructure-to-vehicle (I2V) communica-
tion [137].

In the recent years several design methodologies in the field of enhanced energy-efficient
driving systems on several vehicle control tasks have been developed. Several methods
for considering road conditions have already been proposed, see e.g., [64, 114] and the
overview on the principles of the energy efficient cruise controls [53]. The consideration of
forthcoming terrain characteristics has been handled by using a receding horizon control
under real road conditions in [55, 118]. A study on the implementation of eco-cruise
control systems has been published by [5]. In another approach the impact of terrain
characteristics and of traffic flow dynamics have been modeled in stochastic framework
using a Markov chain model in [77], or [162] has presented a deep learning-based eco-
driving solution to electric vehicles.

The motivation of the research is that current cruise control systems are able to take
into consideration only instantaneous effects of road conditions and preceding vehicles.
Nevertheless, information on the oncoming road can improve the energy-efficient motion
of automated vehicles. For example, the effect of longitudinal acceleration on downhill
road sections can motivate the reduction of velocity on the previous road sections. It
leads to reduced energy consumption on the previous road section and to reduced brake
activation on the downhill section.

As a result of my research activity in SZTAKI, systematic design and analysis methods
for predictive cruise control systems of automated vehicles with the consideration of road
and traffic information have been summarized in book [Gáspár and Németh, 2019]. In
this section the fundamentals of the methods and their implementation possibilities are
presented.

3.1 Formulation of energy-optimal speed profile using road information

In this section road inclinations and speed limits are formulated for achieving energy-
optimal speed profile. Information on road inclinations is a necessary assumption for the
calculation. It can be achieved through enhanced digital maps [96], measurements, e.g.,
cameras, laser/inertial profilometers, differential GPS or a GPS/INS systems [12, 79, 52],
or Kalman filtering [91].
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40 3. Predictive energy-optimal cruise control for automated vehicles

The principle of considerating road conditions is illustrated in Figure 3.1. A finite
horizon ahead of the vehicle is divided into n number of segments. vref,i original reference
velocities to each segment endpoints are assigned. Moreover, it is assumed that the
automated vehicle moves with constant acceleration values along each segments. The
dynamics of the vehicle is described on each segments, from the initial point (0) to the
endpoint (n) of the horizon. The longitudinal motion of the vehicle is influenced by the
traction force Fl as control signal and the disturbance force Fd. Several longitudinal
disturbances influence the motion of the vehicle, such as Fd = Fr + Faer +Gx, where Fr,
Faer and Gx are the rolling resistance, the aerodynamic force and the weighting force,
respectively.

The task of the design method is to select modified reference velocity λ for initial
point 0, with which the vehicle speed profile guarantees performances requirements on
longitudinal control force Fl and on traveling time. The formulation for achieving speed
profile is as follows. In the prediction model it is assumed that the velocity in the initial
point is equal to the first original reference velocity:

ξ̇20 = v2ref,0. (3.1)

The displacement of the vehicle in the first section can be expressed by the velocity
differences using kinematic equation s1 =

1
2
(ξ̇1+ ξ̇0)t, where ξ̇0 is the velocity of vehicle at

the initial point, ξ̇1 is the velocity of vehicle at the first point and s1 is the length of first
segment [1]. Since in the prediction model the acceleration of the vehicle on each segments
is considered to be constant, t is expressed as t = ξ̇1−ξ̇0

ξ̈
. Consequently, the velocity of the

0 4321 5 6 n

vref0 vref1

original reference velocities:
vref2 vref3 vref4 vref5 vref6 vrefn

bbb

modified reference velocity:

λ

α1

α1

α4

Fl1

s1 s2

s3

Fig. 3.1: Segment points on the road ahead of the vehicle

first section point can be expressed by the initial velocity and the acceleration as follows:

ξ̇21 = ξ̇20 + 2ξ̈s1 = ξ̇20 +
2

m
s1(Fl1 − Fd1). (3.2)

The velocity of the first section point ξ̇21 is defined as the reference velocity v2ref,1 = ξ̇21 .
The velocity of the vehicle can be formulated for similarly to the next n − 1 section

points. Using this principle, a velocity-chain model, which contains velocities along the
way of the vehicle, is constructed. At the calculation of the control force it is assumed that
additional longitudinal forces Fli, i ∈ [2, n] will not affect the next sections. The velocities
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of vehicle are described at each section point of the road by using similar expressions to
(3.2). The velocity of the nth section point is

ξ̇2n = ξ̇20 +
2

m
(s1Fl1 −

n∑
i=1

siFdi) = v2ref,n. (3.3)

In the prediction model Fdi = Fdi,r+Fdi,o disturbance force is considered to be divided
in two parts: the first part is the force resistance from road slope Fdi,r, while the second
part Fdi,o contains all of the other resistances such as rolling resistance, aerodynamic
forces, etc. It is assumes that Fdi,r is known while Fdi,o is unknown. The known part of
the disturbances contains the longitudinal component of the weighting force, and thus,
Fdi,r = Gx depends on the mass of the vehicle and the angle of the slope αi. When the
control force Fl1 is calculated, only Fd1,o influences the vehicle of all of the unmeasured
disturbances. In the control design the effects of the unmeasured disturbances Fdi,o, i ∈
{2, n} are ignored. The consequence of this assumption is that the model does not contain
all the information on road disturbances. Therefore it is necessary to design a robust speed
controller for handling undesirable effects.

In the next step weights on each segment points are introduced. Weight Q is applied to
the current reference velocity, weights γ1, γ2, ..., γn are applied to the reference velocities at
the section points. Weight Q has essential role: it characterizes the tracking requirement
of the actual original reference velocity vref,0. Weights γi represent the rate of the road
conditions ahead of the vehicle. The weights should sum up to one, i.e.,

γ1 + γ2 + ...+ γn +Q = 1. (3.4)

Weight Q is applied in equation (3.1) and weights γ1, γ2, ..., γn are applied in order to
prioritize the importance of each sections, i.e.,

Qξ̇20 = Qv2ref,0 (3.5a)

γ1ξ̇
2
0 + γ1

2

m
s1Fl1 − γ1

2

m
s1Fd1,o = γ1v

2
ref,1 + γ1

2

m
s1Fd1,r (3.5b)

γ2ξ̇
2
0 + γ2

2

m
s1Fl1 − γ2

2

m
s1Fd1,o = γ2v

2
ref,2 + γ2

2

m
(s1Fd1,r + γ2s2Fd2,r) (3.5c)

...

γnξ̇
2
0 + γn

2

m
s1Fl1 − γn

2

m
s1Fd1,o = γnv

2
ref,n + γn

2

m

n∑
i=1

siFdi,r (3.5d)

Since the sum of Q and γi weights are 1, see (3.4), the sum of equations in (3.5) leads to
a weighted average of each sub-equations and the following formula is yielded:

(Q+ γ1 + γ2 + ...+ γn)ξ̇
2
0 +

2

m
s1(γ1 + γ2 + ...+ γn)Fl1 −

2

m
s1(γ1 + γ2 + ...+ γn)Fd1,o

= Qv2ref,0 + (γ1v
2
ref,1 + γ2v

2
ref,2 + ...+ γnv

2
ref,n) +

2

m
s1Fd1,r(γ1 + γ2 + ...+ γn)+

+
2

m
s2Fd2,r(γ2 + ...+ γn) + . . .+

2

m
snFdn,rγn (3.6)
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Through the rearrangement of (3.6), the following representation of the prediction model
is achieved:

ξ̇20 +
2

m
s1(1−Q)Fl1 −

2

m
s1(1−Q)Fd1,o = ϑ, (3.7)

where the right hand side, i.e., value ϑ depends on road slopes, original reference velocities
and weights

ϑ = Qv2ref,0 +
n∑

i=1

γiv
2
ref,i +

2

m

n∑
i=1

siFdi,r

n∑
j=i

γj. (3.8)

Note that weights have important role both in further analysis and synthesis. By
making an appropriate selection of the weights, the importance of the road condition is
taken into consideration. For example, when Q = 1, γi = 0, i ∈ [1, n] the control
exercise is simplified to a cruise control problem without any road conditions. When
equivalent weights are used the road conditions are considered with the same importance,
such as Q = γ1 = γ2 = ... = γn. The optimal determination of the weights has an
important role, i.e., to achieve a balance between the current velocity and the effect of the
road slope. Consequently, a balance between the velocity and the economy parameters of
the vehicle is formulated.

The modified reference velocity for the automated vehicle through the rearrangement
of (3.7) is yielded:

λ =

√
ϑ− 2s1(1−Q)(ξ̈0 + gsinα), (3.9)

where Fl1 is expressed by the longitudinal motion equation and thus, longitudinal accel-
eration ξ̈0 is measured. As a result of the prediction model, road conditions and speed
limit information in formulation and tracking of a reference velocity tasks are formulated.

New result 3.1.1: Prediction method for speed profile design of automated vehicles has
been developed. In the provided new method several information on the forthcoming road
section, i.e., terrain characteristics, speed limitations, traffic information and motion of
surrounding vehicles, are incorporated in.
References: [Gáspár and Németh, 2019, Németh et al., 2013a, Gáspár and Németh, 2015,
Gáspár and Németh, 2014b]

3.2 Optimization of the cruise control for automated vehicles

In this section the goal is to find an optimal selection of weights Q, γi, ∀i ∈ [1;n] in
such a way that both the minimization of control force and of traveling time are taken
into consideration. In the rest of this section, Q, γi, ∀i ∈ [1;n] are called as prediction
weights.

Equations (3.7)-(3.9) show that λ depends on the prediction weights. In the following
the longitudinal force is expressed by the weights:

Fl1 = β0(Q) + β1(Q)γ1 + β2(Q)γ2 + . . .+ βn(Q)γn +K, (3.10)
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where the members of the expression can be expressed by the weights Q and γi and K rep-
resents the sum of prediction weight-independent terms. The cruise control optimization
problem can be divided into two optimization problems in the following forms:

Optimization 1: The longitudinal control force must be minimized. In practice, the
quadratic formulation of Fl1 is used to express the objective, such as

F 2
l1 → Min! (3.11)

Optimization 2: The difference between reference velocity and actual velocity must be
minimized, i.e.,

|vref,0 − ξ̇0| → Min! (3.12)

The two optimization criteria lead to different optimal solutions. In the first criterion
the predicted road inclinations and speed limits are taken into consideration by using
appropriately chosen weights Q̂, γ̂i. At the same time the second criterion is optimal if
the predicted information is neglected. In the latter case the prediction weights resulted
by Optimization 2 are noted by Q̆, γ̆i.

The first criterion (Optimization 1) is met by the formulation of a quadratic optimiza-
tion problem with the following form:

F̂ 2
l1(Q̂, γ̂i) = (β0(Q̂) + β1(Q̂)γ̂1 + β2(Q̂)γ̂2 + . . .+ βn(Q̂)γ̂n)

2, (3.13)

and with the following constrains

γ̂1 + γ̂2 + ...+ γ̂n + Q̄ = 1, (3.14a)
0 ≤ Q̂, γ̂i ≤ 1. (3.14b)

This task is nonlinear because of the prediction weights. If in the first optimization the
prediction weight Q̂ is frozen, the optimization task is quadratic in the sense of prediction
weights γ̂i, and (3.13) is formulated in the following matrix form:

F̂ 2
l1(Γ) =

1

2
ΓTΦΓ− κΓ, (3.15)

where the matrix Γ is Γ =
[
γ̂1 · · · γ̂i · · · γ̂n

]T and the matrix Φ comes from the
rearrangement of (3.13). Thus, the optimization problem leads to a set of quadratic
programming tasks for each frozen Q̂.

The optimal solution for the second criterion (Optimization 2) can be computed in a
relatively easy way, since the vehicle tracks the predefined velocity if the predicted road
conditions are not considered. Consequently, the optimal solution is achieved by selecting
the prediction weights in the following way: Q̆ = 1 and γ̆i = 0, i ∈ [1, n].

Finally, a balance between the two performances must be achieved, which is based on
a tuning of the designed prediction weights, i.e., the first criterion is met by selecting pre-
diction weights Q̄, γ̄i, and the second performance is met by selecting constant prediction
weights Q̆, γ̆i. For achieving a balance between the two solutions, in the proposed method
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two performance weights, i.e., R1 and R2, are introduced. The performance weight R1

(0 ≤ R1 ≤ 1) is related to the importance of the minimization of the longitudinal con-
trol force Fl1 (Optimization 1) while performance weight R2 (0 ≤ R2 ≤ 1) is related to
the minimization of |vref,0 − ξ̇0| (Optimization 2). It is defined a constraint according
to the performance weights: R1 + R2 = 1. The advantage of performance weights com-
pared to prediction weights is that the selection of R1, R2, i.e., balance between energy
consumption and traveling time, can be better articulated for the operator of the vehi-
cle. The performance weights, which guarantee balance between optimizations tasks, are
calculated in the following expressions:

Q = R1Q̄+R2Q̆ = R1Q̄+R2 = 1−R1(1− Q̄), (3.16a)
γ1 = R1γ̄1 +R2γ̆1 = R1γ̄1, (3.16b)

...
γn = R1γ̄n +R2γ̆n = R1γ̄n. (3.16c)

Method for selecting performance weights

Although the selection of performance weights is the role of the vehicle operator, e.g.,
driver, a systematic method for a time-constrained selection is proposed. Since travel-
ing time has great importance for both drivers and logistic services, keeping a scheduled
traveling time has impact on the acceptance of such autonomous systems. Hence, man-
aging traveling time is a key element of the proposed method, which is guaranteed by the
proper selection of the tuning parameter R1. Hence, in order to keep the desired traveling
time constraints in the optimization of R1 is needed. For this purpose, the formulation of
actual and predicted future motion of the controlled vehicle is necessary. For this reason,
the vehicle speed on the forthcoming road horizon must be estimated. The speed in the
ith section points is the following:

ξ̇2i = ξ̇20 +
2

m
s1Fl1 −

2

m
Fd1,o −

2

m

n∑
j=1

sjFdj, i = {1, ..., n}, (3.17)

where ξ̇0 depends on the selected weighting gain R1 according to (3.9).
The goal of the optimal speed design is to keep traveling time of the vehicles under

a required traveling time ∆tmax, i.e., R1 must be maximized and simultaneously, this
criterion must be guaranteed. Thus, if the time requirement cannot be accomplished, the
speed strategy results in R1 = 0 and thus, the maximum speed is applied.

In the following a prediction for the desired traveling time is presented. Assuming
constant accelerations on each road sections, it is possible to predict the traveling time
between section points as follows:

∆t1 =
2s1

ξ̇1 + λ
, i = 1; ∆ti =

2si

ξ̇i + ξ̇i−1

, i = 2 . . . n (3.18)

The overall travel time on the look-ahead horizon can be calculated by summing up travel
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times between section points:

∆t =
n∑

i=1

∆ti. (3.19)

Desired traveling time ∆tmin is calculated by taking speed limits into consideration. It
must be compared to both the predicted traveling time ∆t and the required traveling time
∆tmax. For this purpose, based on the speed limits vref,i, the traveling time is computed
for each road sections as follows:

∆ti,min =
2si

vref,i + vref,i−1

, i = 1 . . . n (3.20)

Hence, the total minimum traveling time can be given as sum of the minimum time values:

∆tmin =
n∑

i=1

∆ti,min (3.21)

The computed ∆tmin results in the minimum traveling time of the vehicle on the horizon.
Next, the differences between the predicted traveling time ∆t, the minimum traveling

time ∆tmin, and the required traveling time ∆tmax are analyzed. From these values, ∆t
depends on the weighting parameter R1. If R1 = 0, i.e., the optimization focuses only
on the traveling time, the difference is ∆t − ∆tmin = 0. If R1 > 0 then the difference
will be positive, since the predicted traveling time increases: ∆t−∆tmin > 0. Moreover,
a maximum value of the acceptable time delay tmax is introduced, which is defined by
the driver or a fleet management system based on logistics service requirements. In the
selection of tmax, both the minimum traveling time ∆tmin and the required traveling time
∆tmax are taken into consideration.

The purpose of the speed design is to achieve a balance between energy consumption
and traveling time. Thus, the design usually leads to the positive value of R1 > 0. Besides,
the total delay of the vehicle must be checked, i.e., it must be smaller or equal to tmax:

∆t−∆tmin ≤ tmax. (3.22)

The formed constraint depends on R1 according to (3.9), (3.18)-(3.21). The acceptable
time delay in (3.22) has high impact, because it influences ∆t and ∆tmin. The longer
time horizon is set, the longer road section can be considered. Certainly, if (3.22) cannot
be guaranteed, R1 = 0 for the remaining road sections must be selected, i.e., the vehicle
moves as high speed as possible.

Handling preceding vehicle in the speed design

Since automated vehicle may catch up with a preceding vehicle, it is necessary to
consider speed of the latter vlead. The estimation of the safe stopping distance may be
conservative in a normal traffic situation, where the preceding vehicle can also brake, and
therefore the distance between the vehicles may be reduced. The safe stopping distance
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between the vehicles is determined according to the rule of 91/422/EEC, 71/320/EEC
UN and EU directives (in case of M1 vehicle category, the velocity in km/h):

dst = 0.1ξ̇0 + ξ̇20/150, (3.23)

in which ξ̇ is the current speed.
The consideration of the preceding vehicle is determined by W , which is selected in

the following structure:

W =


1 if d < dst

(αdst − d)/((α− 1)dst) if dst ≤ d ≤ α · dsafe
0 if d > α · dst

(3.24)

where α is a design parameter. For example, α = 0.5 means that the speed of the vehicle
must be reduced, when the distance is less than 1.5 · dst. The weight is illustrated in
Figure 3.2.

dst α · dst d

W

1

0

Fig. 3.2: Selection of weight W

The velocity of the vehicle is calculated by using the optimization procedure. It does
not modified until the distance from the preceding vehicle is greater than the predefined
value αdst. When the distance is reduced, i.e., d ≤ αdst, the velocity must be modified
by applying the weight factor W in the following way:

λ = W · vlead. (3.25)

Consequently, the distance between the vehicles decreases to the safety value. This veloc-
ity must be applied, but the velocity is calculated by using the optimization procedure.
When the preceding vehicle accelerates and exceeds the calculated velocity, the optimal
speed can be applied again.

Because of safety reasons, factor W has priority over the prediction weights Q and γi.
Thus, in the weighting strategy instead of (3.4), weights should sum up to

γi + γ2 + . . .+ γn +Q = 1−W, (3.26)

and the new weights must be reduced in the following way:

Qn = Q(1−W ), γn,i = γi(1−W ), i ∈ [1, n], (3.27)

where Q and γi are the original weight factors. The designed speed of the vehicle does
not exceed the speed, defined in (3.25).
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Architecture of energy-optimal cruise control system

The energy-optimal cruise control system can be realized in three layers as Figure 3.3
shows.

Layer 1: The aim of the first, i.e., the high-level layer is the computation of the reference
velocity λ (3.9). The results of this computation are prediction weights and the
modified reference velocity, which must be tracked by the vehicle. The computation
process in block K0 is compressed in Figure 3.3. The reference velocity is realized
through the following layers.

Layer 2: In the second, i.e., control-level layer, the longitudinal control force of the vehicle
(Fl1) is designed. The role of the high-level controller K1 is to calculate this required
longitudinal force.

Layer 3: In third layer, i.e., actuator-level layer, the real physical inputs of the system,
e.g., throttle, gear position and brake pressure are generated by the low-level con-
troller K2.

GK1 K2

longitudinal

force
throttle

pressure

gear

Upper level Low level

K0

measured velocity

performances

predicted

informations

reference
velocity

Reference signal
generator

ECU

Vehicle

λ Fl1

Fig. 3.3: Scheme of control system implementation

In the proposed method the layers are separated from each other. The reference
velocity signal generator K0 can be added to the control-level and actuator-level of the
vehicle cruise control, i.e., it is possible to design a reference signal generator unit almost
individually, and to attach it to the cruise control system. Thus the reference signal unit
can be designed and produced independently from automobile suppliers, only a few vehicle
data are needed. The independent implementation possibility is an important advantage
in practice.

New result 3.2.1: New advanced energy-optimal solution on the multi-criteria motion
profile design problem for automated vehicles has been provided. The method is based
on a constrained quadratic optimization, with which the balance between energy con-
sumption and traveling time is achieved. The speed profile computation in the control
architecture from the cruise control is separated, which provides increased variability in
the implementation of the method.
References: [Gáspár et al., 2017, Németh and Gáspár, 2014, Németh and Gáspár, 2015b,
Gáspár and Németh, 2014a]
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3.3 Implementation of the energy-optimal cruise control in a truck

The implementation of the proposed cruise cruise control system is evaluated in an
incremental manner. First, both the vehicle itself and the control system is realized in
TruckSim and Matlab/Simulink simulation environment. In this step, the vehicle and
the control system are not separated physically, since both of them exist in the same
simulation scheme. Some illustrative simulation results can be found in Appendix A.1.
Second, a Hardware-In-the-Loop (HIL) simulation environment has been developed, in
which the vehicle dynamics simulation and the control system are physically separated.
Third, the validation of the energy-optimal cruise control system has been carried out in
cooperation with the Hungarian R&D center of Knorr-Bremse AG. The test vehicle used
in the experiment granted by Knorr-Bremse AG is a Volvo FH13 62R 6x2 three-axle truck
with total mass of 16 tonnes.

The architecture of the real control system is as follows. The proposed energy-optimal
cruise algorithm is running on a MicroAutoBox II system. This device is directly con-
nected to the vehicle via CAN communication system and it is able to control the speed of
the vehicle. MicroAutoBox II is also connected to a second industrial on-board computer
via RS-232 interface that is used to store or query online maps and other databases on the
one hand. It is implemented via a wireless communication unit through a GSM mobile
internet connection. On the other hand, the second on-board computer is responsible
for receiving data from the GNSS receiver via RS-232 interface and transmitting it to
MicroAutoBox II in order to evaluate the cruise control algorithm. The connection to
the truck on-board management system is realized via CAN network. Through this, the
measurement data of the vehicle can be extracted and the traction power demand for
the ECU controlling the engine and a deceleration command for the brake system can be
obtained.

The results of the implemented energy-optimal cruise control algorithm have been
compared to that of an experienced truck driver. The driver traveled in his own driving
style without the use of any cruise control system, thus the throttle and brake pedal has
been operated manually. The speed profile used by the driver is illustrated in Figure 3.4
(a). It can be seen that the prescribed speed limit of 80 km/h has not been accurately
maintained, often exceeded or gone below by the test driver. The driving style of the
truck driver resulted in the consumption shown in Figure 3.4 (b). The entire journey has
been completed in 1807 seconds while the fuel consumption of the truck was 10.23 liters.
These metrics serve as a benchmark for the energy-optimal cruise control that has been
tested with multiple parameter settings.

Based on the measurements carried out in the preliminary vehicle simulations in Truck-
Sim environment, the horizon has been set to L = 2000m with n = 20 section points, thus
only the optimization weight R1 was altered during the algorithm testing. Several test
runs have been performed with different R1 weights, and the results have been compared
to that of the truck driver. In Figure 3.5 (a) the speed profile of the truck is depicted using
the energy-optimal cruise control system and R1 = 0.3 parameter setting. Note, that in
order to avoid high deviations from the speed limit, the reference speed for the truck to
follow has been limited between 70− 85 km/h. The journey has been completed in 1944
seconds, while the fuel consumption of the truck was 9.37 liters, see Figure 3.5 (b). Thus,
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Fig. 3.4: Tatabánya-Budapest road test with driver

by utilizing the proposed energy-optimal cruise control system with the aforementioned
parameter settings, fuel consumption has been reduced by 8.4%, while traveling time with
only 137s has been increased.
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Fig. 3.5: Tatabánya-Budapest road test with energy-optimal cruise control

New result 3.3.1: The new energy-optimal method of the motion profile design for auto-
mated vehicles in simulation and in test vehicle environment has been implemented. The
results of the implementations show that the developed design method improves energy
and time performances of the automated vehicle motion effectively, under real circum-
stances.
References: [Gáspár and Németh, 2019, Soumelidis et al., 2018]
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4. PERFORMANCE GUARANTEED ENERGY-OPTIMAL CRUISE
CONTROL FOR AUTOMATED VEHICLES

Due to various external information sources the achieved performance level of auto-
mated vehicle control can depend on the quality of communicated data [61]. Nevertheless,
degradation in their quality, i.e., time delays, pocket losses or data manipulation can im-
pair the performance of the cruise control system [Németh et al., 2016d]. A challenge of
the enhanced cruise control systems in the automated vehicles is to build reliable archi-
tectures, which are less sensitive on the degradation of communicated data and thus, the
predefined performances can be guaranteed [157, 81]. In this section the design of a cruise
control using various information sources and with guarantees on safety performances are
proposed.

Information sources of cruise control systems in automated vehicles can be classified
as follows. First, automated vehicle has information from topography database, which
provides altitude and road curvature information. The road section ahead of the vehicle is
divided into n number of segments, where the lengths of the segments are selected to have
constant inclinations. Second, the vehicle has information on speed limitations on the road
segments. Since speed limitations can also depend on the actual road construction works
and variable speed limit signs in high-speed roads, information from static road map and
I2V communication can be required. Third, information on the average traffic speed on
the forthcoming road section and the state of the traffic lights expect communication
with the traffic control system. Fourth, information on the actual speed and the positions
of the surrounding vehicles can require V2V communication and on-board sensors, e.g.,
radar measurements.

The performances of the predictive cruise control are formed as follows. A primary
performance of the vehicle is to keep safe distance from the preceding vehicles in the own
lane and from the follower vehicles in the case of a lane change maneuver on the entire
horizon. As an assumption, it is considered that the vehicles move in the same directions
on the road. Moreover, motion information on the surrounding vehicles are considered in
a predefined region of interest, which leads to Np number of preceding vehicles and Nf

number of follower vehicles. Formally, it leads to the conditions

ekp+

j∑
i=1

(
η
kp
i − ξi

)
≥ dsafe, ∀j ∈ {1, ..., n}, ∀kp ∈ {1, ..., Np}, (4.1a)

ekf+

j∑
i=1

(
ξi − η

kf
i

)
≥ dsafe, ∀j ∈ {1, ..., n}, ∀kf ∈ {1, ..., Nf}, (4.1b)

where kp, kf represent the indexes of the preceding and follower vehicles, ekp , ekf are the
actual distance between vehicle kp, kf and the automated vehicle and dsafe is the requested
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safe distance. Index j represents the road segment and
j∑

i=1

ξi is the predicted longitudinal

displacement of the automated vehicle until step j and
j∑

i=1

η
kp
i ,

j∑
i=1

η
kf
i are the predicted

displacements of vehicle kp and kf . Relations in (4.1) represent that the predicted distance
between the automated vehicle and a surrounding vehicle until horizon j cannot be smaller
then the predefined safe distance. If the relations are guaranteed, the safe distances from
all surrounding vehicles on the entire horizon are kept.

Further primary performance of the control is keeping vehicle speed in a limited range
around reference speed vref,i in segment i. vref,i is selected based on the speed limitation,
road curvature, average traffic speed [Gáspár and Németh, 2019]. The performance is
formed as

ξ̇i ∈
[
vmin,i; vmax,i

]
, ∀i ∈ {1, ..., n}, (4.2)

where ξ̇ is the speed of the automated vehicle and vmin,i, vmax,i values are the minimum
and maximum limits of the speed range, in which the vehicle speed can vary. Performance
(4.2) guarantees keeping speed limitations. Furthermore, it guarantees the avoidance of
the dangerously slow motion of the automated vehicle. The values of vmin,i, vmax,i are
derived from the value of the speed reference vref,i on each segment, e.g., −20%,+5%
related to vref,i.

One of the most important secondary performance in the cruise control problem is
to achieve minimum control intervention on the road horizon ahead of the automated
vehicle, which leads to the criterion

n∑
i=1

|Fl,i| → min, (4.3)

where Fl,i represents traction/braking force on segment i of the horizon.
Another secondary performance is to minimize traveling time of the vehicle. Since the

shortest traveling time is equivalent with the maximum speed motion of the vehicle, it
can be transformed to the speed objective as

|vmax,i − ξ̇i| → min, ∀i ∈ {1, ..., n}. (4.4)

The motions of the automated vehicles can have impact on the characteristics of
the traffic flow, because the speed profiles of automated vehicles can significantly differ
from the speed profiles of human-driven vehicles. This impact has increasing importance
through the increase of the traffic density and the ratio of the automated vehicles in
the traffic flow. A further secondary performance of the control is that motion of the
automated vehicles must have advantageous impact on the traffic flow. It means that the
output flow of the traffic network qout must be maximized, such as

qout → max. (4.5)

The relationships between qout, the speed selection strategy of the automated vehicles,
the ratio of the automated vehicles and the traffic density are characterized in [Gáspár
and Németh, 2019].
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4.1 Design of the supervisory control strategy

The purpose of the supervisor is to provide control force actuation u through the
selection of ρP ,∆P , with which the primary performances during the cruising of the
vehicle are guaranteed. The selection is based on the signals uP , uK , which are the inputs
of the supervisor. The output of the supervisor u is constructed through (2.19), and
moreover, the resulted ρP is used in the operation of the robust LPV control.

The design of the supervisor is based on the simplified longitudinal model of the
vehicle:

mξ̈ = Fl − Fd, (4.6)

where m is the mass of the vehicle. The state vector is x =
[
ξ̇ ξ

]T , where ξ represents the
longitudinal displacement of the vehicle, w = Fd contains the longitudinal disturbances
and u = Fl involves the longitudinal control force. The state-space representation of the
system is formed as

ẋ = Ax+ B̂1w + B̂2u, (4.7)

where x represents the state vector and A, B̂1, B̂2 are matrices in the system representa-
tion.

The state-space representation of the system is reformulated using the predefined
control strategy (2.19), the control input of the robust LPV controller uK is used in the
expression u = ρPuK +∆P . Therefore, the state-space representation of the system (4.7)
is reformulated through the relationship between u and uK as

ẋ = Ax+B1wK +B2(ρP )uK , (4.8)

where the disturbance vector wK in the state-space representation (4.8) is composed as
wK =

[
w ∆P

]T and the matrices are B1 =
[
B̂1 B2

]
and B2(ρP ) = B̂2ρP . Thus, the

system is transformed into a LPV representation.

Specification of conditions to provide guarantees on primary performances

The conditions to provide primary performances through the supervisor are specified
based on the derived system formulation (4.8).

Performance (4.1) in the supervisor design process is focused on keeping safe distance
from the closest preceding vehicle and from the closest follower vehicle of another lane,
which leads to Np = 1, Nf = 1. The goal of this simplification is to use less communicated
data in the computation of ρP ,∆P . The selection of the closest vehicles is performed con-
tinuously during the operation of the supervisor based on on-board sensor measurements.
If a vehicle in the region of interest of the sensors is not found (e.g., the lane of the au-
tomated vehicle is empty ahead or behind), a virtual vehicle is considered to be on the
bound of the region.

The prediction of the forthcoming distance dkp between the preceding vehicle and
the automated vehicle is formulated based on their accelerations. The time-dependent
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function of d̈kp is based on (4.6) as

d̈kp(t) = η̈kp(t)− ξ̈(t) = η̈kp(t)− Fl(t)

m
+

Fd(t)

m
. (4.9)

Through the integration of (4.9) the forthcoming speed difference in time T can be derived
as

ḋkp(T ) =

T∫
0

d̈kp(t)dt =

T∫
0

(
η̈kp(t)− Fl(t)

m
+

Fd(t)

m

)
dt. (4.10)

The integration requires knowledge about the functions η̈kp(t) and Fd(t). Nevertheless, it
is difficult to predict the forthcoming acceleration command of the preceding vehicle and
the forthcoming road disturbances. In case of a safe control strategy, these functions are
substituted by constant values, which are resulted by worst-case scenarios. It is considered
that

amin ≤ η̈kp(t) +
Fd(t)

m
, (4.11)

where amin represents the worst-case scenario, when the preceding vehicle has maximum
deceleration and the road disturbance has minimum value. The value of amin is a design
parameter, which can be selected based on preliminary experimental results. Using amin,
(4.10) is computed as

ḋkp(T ) = aminT − Fl

m
T + ḋkp(0) = aminT − Fl

m
T + η̇kp(0)− ξ̇(0), (4.12)

where ḋkp(0) = η̇(0)− ξ̇(0) is the speed difference at time t = 0 and Fl(t) is considered to
be constant between 0 and T . The predicted distance between the vehicles is resulted by
the integration of (4.12), such as

dkp(T ) =
aminT

2

2
− FlT

2

2m
+ η̇kp(0)T − ξ̇(0)T + ekp , (4.13)

where ekp is the measured distance between the preceding vehicle and the automated
vehicle in time T = 0. The prediction in (4.13) requires measurement on the actual
distance ekp and the relative speed between the automated vehicle and the preceding
vehicle η̇kp(0)− ξ̇(0), which can be performed through on-board sensors, e.g., radar.

Similarly, the predicted distance between the automated vehicle and the follower
vehicle kf can be derived from the second derivative of the distance between them as
d̈kf (t) = ξ̈(t) − η̈kf (t). The worst-case scenario is characterized by the acceleration amax

through the expression η̈kf (t) + Fd(t)
m

≤ amax, which leads to the predicted distance

dkf (T ) =
FlT

2

2m
− amaxT

2

2
+ ξ̇(0)T − η̇kf (0)T + efp . (4.14)
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The formulation of the primary performances, which means that safe distances from the
preceding vehicle and the follower vehicle must be kept, are written as inequalities

aminT
2

2
− FlT

2

2m
+ η̇kp(0)T − ξ̇(0)T + ekp ≥ dsafe, (4.15a)

FlT
2

2m
− amaxT

2

2
+ ξ̇(0)T − η̇kf (0)T + efp ≥ dsafe. (4.15b)

Since u = Fl and u = ρPuK +∆P (2.19), the inequalities (4.15) are rewritten as

aminT
2

2
−(ρPuK +∆P )T

2

2m
+ η̇kp(0)T − ξ̇(0)T + ekp ≥ dsafe, (4.16a)

−amaxT
2

2
+
(ρPuK +∆P )T

2

2m
+ ξ̇(0)T − η̇kf (0)T + efp ≥ dsafe. (4.16b)

Thus, it is necessary to select ρP ,∆P for given uK to guarantee inequalities (4.16), with
which the primary performance of keeping safe distance is guaranteed.

Performance of keeping vehicle speed in a given speed range (4.2) is also based on the
simplified motion model of the vehicle (4.6). The predicted speed of the vehicle in T is
resulted through the integration of the acceleration ξ̈ as

ξ̇(T ) =

T∫
0

(
Fl

m
− Fd

m

)
dt. (4.17)

Similarly to the derived conditions of keeping safe distance, the worst-case scenario is
considered as |Fd| ≤ Fd,max, where Fd,max is considered to be the upper bound of the
unknown disturbance. If Fd > 0, which means that the disturbance has accelerating
effect, (4.17) is transformed as FlT

m
+

Fd,maxT

m
+ ξ̇(0), where ξ̇(0) is the actual speed of

the automated vehicle and Fl is considered to be constant. If Fd < 0, (4.17) results in
FlT
m

− Fd,maxT

m
+ ξ̇(0), which means that Fd decelerates the vehicle. The condition for

keeping vehicle speed in the given range
[
vmin,0; vmax,0

]
is formed as

(ρPuK +∆P )T

m
+

Fd,maxT

m
+ ξ̇(0) ≤ vmax,0, (4.18a)

(ρPuK +∆P )T

m
− Fd,maxT

m
+ ξ̇(0) ≥ vmin,0, (4.18b)

in which relations u = Fl is transformed to ρPuK + ∆P (2.19). Thus, it is necessary to
select ρP ,∆P , with which conditions in (4.18) together with (4.16) are guaranteed.

Optimization in the supervisor strategy

In the supervisory process ρP ,∆P are selected during the operation of the energy-
optimal cruise control system. The objective of the supervisor is to provide control input
u, which is as close as possible to uP :(

u− uP

)2 → min. (4.19)
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Through (6.4) the control force intervention of the enhanced cruise control system approx-
imates the output signal of the predictive cruise control. Moreover, during the selection of
ρP ,∆P the criteria of (4.16) and (4.18) must be guaranteed and the constraints ρP ∈ ϱP ,
∆P ∈ ΛP must also be satisfied.

Objective (6.4) using (2.19) is rearranged to a quadratic form as

(u− uP )
2 =

[
ρP
∆P

]T [
u2
K uK

uK 1

] [
ρP
∆P

]
+

[
−2uPuK

−2uP

]T [
ρP
∆P

]
+ u2

P =

=

[
ρP
∆P

]T
β

[
ρP
∆P

]
+ ωT

[
ρP
∆P

]
+ u2

P , (4.20)

in which u2
P is independent from ρP ,∆P and thus, it can be eliminated during the mini-

mization process (6.4).
The strategy of the supervisor is to compute ρP ,∆P during the operation of the cruise

control. In each steps the following constrained optimization problem must be solved,
which is yielded from (4.20) and the constraints (4.16), (4.18) together with the bounds
on ρP ,∆P :

min
ρP ,∆P

[
ρP
∆P

]T
β

[
ρP
∆P

]
+ ωT

[
ρP
∆P

]
, (4.21a)

subject to

−(ρPuK +∆P )T
2

2m
+

aminT
2

2
+ η̇kp(0)T − ξ̇(0)T + ekp ≥ dsafe, (4.21b)

(ρPuK +∆P )T
2

2m
− amaxT

2

2
+ ξ̇(0)T − η̇kf (0)T + efp ≥ dsafe, (4.21c)

(ρPuK +∆P )T

m
+

Fd,maxT

m
+ ξ̇(0) ≤ vmax,0 + S, (4.21d)

(ρPuK +∆P )T

m
− Fd,maxT

m
+ ξ̇(0) ≥ vmin,0 − S, (4.21e)

ρP ∈ ϱP , (4.21f)
∆P ∈ ΛP . (4.21g)

In (4.21d)-(4.21e) S is a slack variable. The role of S is to set a hierarchy in the constraints
and to ensure that the optimization problem returns a feasible solution [149]. For example,
if the automated vehicle must be stopped to avoid the collision with a preceding vehicle
and vmin,0 > 0, constraint (4.21e) cannot be guaranteed. It leads to the infeasibility of the
optimization problem of (4.21). It must be avoided by setting S to a high value. Since
the avoidance of the collision has higher priority than keeping the speed is the predefined
range, the following process must be performed for the selection of S.

• S = 0 is selected as a default value. If (4.21) has feasible solutions ρP ,∆P , control
input u = ρPuK +∆P is computed.

• If (4.21) is not feasible with S = 0, S is selected for a high value to guarantee the
feasibility. Then, (4.21) with the new value of S is solved. The resulted ρP ,∆P are
applied to provide control input u = ρPuK +∆P .
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4.2 Design of the robust LPV-based cruise control system

The aim of the robust LPV control is to provide uK control input signal for the su-
pervisor. The design process using the proposed method in Section 2.3.3 is carried out.
The robust LPV control has importance in the situations, when the output of the pre-
dictive cruise control can violate the primary performances. Nevertheless, in most of the
operation of the enhanced cruise control, uP might be acceptable. Therefore, uK has
importance mainly in critical situations, and in these scenarios the maintenance of the
secondary performances has low priority. Consequently, it is enough to use the simplified
control-oriented model (4.6) for the robust LPV control design, with which the objective
of the main functionality in cruise control, such as speed tracking can be specified as
z1 = vref,0 − ξ̇, |z1| → min. Moreover, the minimization of the control input uK must
be considered as an objective of the robust control design z2 = uK , |z2| → min. The
consideration of uK has the role to guarantee the quantification of z1 through the balance
between the objectives. Furthermore, through z2 the insufficiently high longitudinal con-
trol force is avoided. The objectives z1, z2 are composed in a vector of objectives, such
as zK =

[
z1 z2

]T . Using the state-space formulation of the system (4.8), zK is formed
as zK = C1x + D11wK + D12uK , where wK is extended as wK =

[
Fd ∆P vref,0

]T ,
C1, D11, D12 are matrices.

The measurement equation for the robust LPV control design is formed as yK =
vref,0 − ξ̇ = C2x+D21wK , where C2, D21 are matrices. The value of vref,0 in (2.33)-(2.36)
is selected as follows. If Np = 0, vref,0 is get from static map database of speed limits
and the camera-based traffic sign recognition system of the vehicle. If Np > 0, the speed
information of database and the speed information of the recognition system are limited
by radar measurement about η̇p. Thus, in the robust LPV control low number of external
information is incorporated and most of the information is based on own sensors.

Finally, the plant for the robust LPV control design is formed as follows:

ẋ = Ax+B1wK +B2(ρP )uK , (4.22a)
zK = C1x+D11wK +D12uK , (4.22b)
yK = C2x+D21wK , (4.22c)

in which ρP is the scheduling variable of the system.
The control design is based on the resulted control-oriented model (4.22). Scaling of

wK and providing a balance between the elements of zK require a weighting strategy in the
control design method. The closed-loop interconnection structure is presented in Figure
(4.1). The interconnection structure contains several weighting functions. The weight
Wn is related to the sensor characteristics on the velocity error measurement, where n
represent sensor noise. Wd scales the longitudinal disturbance force Fd. The bound of Fd

also has role in the supervisor design. Weight Wd is characterized as Wd =
Fd,max

Tds+1
, where

Td is a tuning parameter, which represents the dynamics of Fd variation. Similarly, W∆P

scales uncertainty ∆P . This weight is selected in the form W∆P
=

max(|∆P,min|;|∆P,max|)
T∆2s2+T∆1s+1

,
where T∆2, T∆1 are design parameters, which represent the dynamics of the signal. The
role of weight Wref,0 is to scale the reference signal vref,0. It is considered as a constant
parameter with the supreme of vmax,0.

               dc_1992_22



58 4. Performance guaranteed energy-optimal cruise control for automated vehicles

G(ρP )
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Fig. 4.1: Closed-loop interconnection structure for robust LPV control design

Wz,1,Wz,2 are the weights on the control performances, which provide a balance be-
tween them. Weight Wz,1 has important role from the aspect of the minimum performance
level of the cruise control, because it scales the tracking error vref,0 − ξ̇. The form of the
weight is Wz,1 =

ev
Tzs+1

, where Tz is a design parameter and ev is the expected maximum
tracking error. The selected form guarantees that the tracking error is ev in steady state.
The selection of ev must guarantee ev ≤ vmax,0 − vref,0 and ev ≤ vref,0 − vmin,0 to avoid
the degradation of performance (4.2). Weight Wz,2 scales the control input uK . Its value
is selected as a constant parameter, which represents the supreme of |uK |.

The quadratic LPV problem is to choose the parameter-varying controller K(ρP , yK)
in such a way that the resulted closed-loop system is quadratically stable and the induced
L2 norm from the disturbance wK to the objectives zK is less than the value γ [161, 26].
The minimization task is the following:

inf
K(ρP ,yK)

sup
ρP∈ϱP

sup
∥wK∥2 ̸= 0,
wK ∈ L2

∥zK∥2
∥wK∥2

. (4.23)

The optimization problem shows that the resulting controller depends on the domains
ϱP ,ΛP , which demonstrates that the selection process of ϱP ,ΛP and the LPV design are
not independent from each other. During the control design it is necessary to find a
balance in the selection of the domain, which is based on an iteration process.

The goal of the iteration is to find domains ϱP ,ΛP , with which u approximates uP . It
provides that the enhanced cruise control system operates with uP as most as possible,
without the violation of primary performances. The following optimization is based on
scenarios, which are performed in each steps of the iterations:

min
ρP,min, ρP,max

∆P,min,∆P,max

N∑
j=1

(
u(j)− uP (j)

)2
= min

ρP,min, ρP,max

∆P,min,∆P,max

N∑
j=1

(
ρP (j)uK(j) + ∆P (j)− uP (j)

)2
,

(4.24)

where j expresses the time step and N is the length of a given scenario.
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4.3 Illustration of the enhanced cruise control strategy

In the simulation example the automated vehicle travels on a section of the hilly
Hungarian M1 highway, which interconnects capital cities Budapest and Vienna. In the
example there is an accident on the highway (see 5000m segment point in Figure 4.2(a)),
which results in a congestion. The traffic control system provides information about the
reduction of the traffic speed between 3500m− 5000m, see Figure 4.2(a).

The automated vehicle incorporates the traffic speed information in its enhanced cruise
control strategy through vref,i. Since the automated vehicle has 1000m prediction horizon
in the example, the information about the reduced traffic speed is considered from 2500m.
It results in the reduction of the vehicle speed (see Figure 4.2(b)), with which an energy-
efficient motion can be achieved through the approaching to the accident [Németh and
Gáspár, 2017]. Moreover, there is a preceding vehicle ahead of the automated vehicle,
which stops at 3800m, when the congestion is reached, see its speed profile in Figure
4.2(b). The goal of the enhanced cruise control is to provide minimum control force in the
cruising, while the safe distance dsafe = 20m from the preceding vehicle is guaranteed,
especially at the stop of the preceding vehicle. The distance between the vehicles is
illustrated in Figure 4.2(c). It can be seen that the safety distance 20m is guaranteed in
the given example. The control signal u and the values of ρP ,∆P are illustrated in Figure
4.2(d)-(f). At the end of the simulation, when the distance is reduced, ρP is set to zero
and ∆P is also reduced. It results in the tracking of the preceding vehicle speed (close to
zero) through the control input of the robust LPV control.
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Fig. 4.2: Simulations of lane change scenario

Further simulation examples on the operation of the system under various scenarios,
i.e., degradation in V2V communication or impact of computational issues, are found in
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Appendix A.2.

New result 4.3.1: Energy-optimal motion profile with the consideration of forthcoming
road and traffic information in a performance guaranteed structure has been designed.
The provided new advanced control strategy guarantees safety performance requirements
for the vehicle, i.e., keeping safe distance and speed limitations, even if the communicated
measured signals are degraded.
References: [Németh and Gáspár, 2021, Németh et al., 2021c, Németh et al., 2021a]

               dc_1992_22



Part III

CONTROL DESIGN FOR SAFETY CRITICAL
INTERACTIONS OF AUTOMATED VEHICLES

               dc_1992_22



               dc_1992_22



5. PREDICTIVE CRUISE CONTROL FOR SAFETY CRITICAL
VEHICLE INTERACTIONS

Handling of intersection scenarios is an important challenge in the research field of
autonomous vehicles. From the aspect of control design, several crucial tasks of the au-
tomated vehicle control in intersection scenarios should be formulated. For example, the
ordering of autonomous vehicles in intersections has an impact on the energy consumption
of the vehicles, traveling time, emission or e.g., on traveling comfort due to the acceler-
ation/deceleration maneuvers [108, 172]. It leads to a multi-objective optimization task,
which generally has Pareto-optimal solutions. Moreover, the solution of the optimization
problem regarding to autonomous vehicles in intersections can require long calculation
time. It poses the challenge of the minimization of the computation time, e.g., finding
approximations of the optimal solution. The coordination of automated vehicles requires
enhanced infrastructure, e.g., Vehicle-to-Vehicle and Vehicle-to-Infrastructure communi-
cations [165]. The accurate detection of a vehicle position in intersections [102, 123, 159]
or detection and prediction of the human behavior [83, 7] are open problems.

A control-oriented challenge, i.e., ordering of vehicles in unsignalized intersection sce-
narios, is illustrated through an example, see Figure 5.1. In the scenario it is necessary to
modify motion profile for the vehicles to achieve minimum traveling time or energy con-
sumption. Nevertheless, it is not a trivial question, which ordering of the vehicles in the
intersection can be an appropriate choice, as it is illustrated by the following example. It
is considered that Vehicle 1 has internal combustion engine and its motion is slow, while
Vehicle 2 is a fast electric vehicle. Moreover, Vehicle 3 is a truck with high mass. The
ordering of the vehicles can differ, depending on the objective function.

• If the goal is the minimization of the traveling time, then the ordering 2− 1− 3 of
the vehicles is the best choice, which means that the actual speeds of the vehicles
have high relevance.

• In case of the minimization of the energy loss the ordering 3−1−2 is ideal, because
the heavy vehicle is not stopped unnecessary.

• If the emission in the intersection must be reduced, the ordering 1 − 3 − 2 is the
appropriate selection to avoid the start/stop of the conventional vehicle.

Since the various performances cannot be simultaneously guaranteed, in the control design
a balance between the performances can be achieved.

The high number of challenges in the field of autonomous vehicle control in intersec-
tions has motivated increased research activity, i.e., several publications with different
approaches. One of the most important group of the methods are based on the MPC
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Fig. 5.1: Illustration of intersection scenario without traffic sign

technique [75, 126, 17, 60]. Although it can provide appropriate results, increasing in
the number of vehicles can make real-time computation difficult. A possible solution to
the problem of increasing computation effort is the approximation of the optimal solution
with neural networks, see e.g., [Németh et al., 2018b]. However, in this case it may be
difficult to provide guarantees on collision avoidance for all intersection scenarios [Szilassy
et al., 2019]. The quadratic programming method is the possibility of real time implemen-
tation compared to the convex optimization using space coordinates, see [112]. Collision
avoidance is guaranteed through the definition of regions in the intersection with special
rules, which reduce the complexity of the problem, but the conservativeness of the solu-
tion increases. Due to the ordering problem of the vehicles in the intersection the control
problem can be formed as a Mixed-Integer Linear Programming (MILP) task, see e.g., a
method on the coordination in [42]. The goal of the control is to find an arrival schedule
of the vehicles, which ensures safety while it reduces the number of stops and intersection
delays. [111] presents a centralized another MILP-based approach for intersection control
in an urban environment of highly automated vehicles, with which the minimum vehi-
cle delay at the intersection can be achieved. Another solution in the predictive control
framework is to examine all ordering combinations of the vehicles [Németh and Gáspár,
2019], which can also be difficult for an increased number of vehicles.

The short review on the existing literature shows that several efficient solutions ex-
ist, but there are challenges for achieving a reliable control method. The goal of the
recent research activities is to find a control design method, with which high number
of autonomous vehicles can be handled, the energy consumption and time minimization
requirements can be carried out, and the safe motion, i.e., the avoidance of the collision
must be guaranteed.

In this dissertation two different methods for the coordinated control design of au-
tomated vehicles in intersection scenarios are proposed. The first method in Chapter
5 is an extension of the provided energy-optimal cruise control strategy of Chapter 3.
In this method the ordering of vehicles and the computation of their speed profile are
different tasks. The second in Chapter 6 method uses learning-based approach in the
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guaranteed control design framework of Chapter 2. It provides a method, with which the
vehicle ordering and the speed profile computations in the same optimization problem are
incorporated.

Although these coordination methods in their approaches are different, the sources
of measures signals are similar. In both methods it is considered that motion informa-
tion (position, velocity, acceleration) on automated vehicles taking part in the interaction
through V2V communication is received. The own position, velocity and acceleration
signals through on-board measurement are available. In case of human-driven vehicles
position and velocity signals on their motion is also considered to be available, e.g.,
though V2V communication or camera, LiDAR measurement. The forthcoming motions
of human-driven vehicles through kinematic and dynamic relationships are predicted.

5.1 Ordering strategy of the vehicles in intersections

It has been shown that the control of automated vehicles in the intersections depends
on several factors. However, the proposed predictive control algorithm of Section 3.2
provides an appropriate formulation, in which the energy and the traveling time require-
ments can be handled together. In the further examination of the intersection problem it
is required to find the speed profile of the vehicles, which is able to guarantee a balance
between the energy consumption and the traveling time through the performance weight
R1 and W . Moreover, the designed speed trajectories must guarantee the safe motion of
the vehicles, which means the avoidance of the collision. It means that the speed of the
vehicles with predictive cruise control can be influenced through the weights R1,W .

The fundamental idea of the vehicle control in the intersection is to find the maximum
set of vehicles, in which the vehicles are able to be in cooperation. Cooperation means
that the safe motion of the controlled vehicles in the set can be guaranteed without a
stopping command. In these sets all of the controlled vehicles can be moved through
R1 and W ≡ 0. The controlled vehicles, which are out of the set, can by influenced
through R1 and W ̸= 0 to guarantee their safety motion. The role of the optimization in
the intersection is to find the maximum set of vehicles, in which the cooperation can be
guaranteed.

In the real traffic scenario of the intersections human-driven vehicles and automated
vehicles with predictive cruise control are together. Due to the human drivers it is neces-
sary to provides some regulations, by which the motion of their vehicles can be controlled.
Therefore, the automated vehicles must adapt to the regulations and these constraints
must be incorporated in the optimization problem. During the design of automated vehi-
cle control strategy, the motion of the human-driven vehicles are estimated. It results in
the predicted speed profile of the human-driven vehicles, which is based on the available
signals, e.g., actual position, speed and acceleration, see Section 5.2.

During the optimization process, human-driven vehicles can be the parts of the max-
imum set of vehicles, in which the vehicles are able to be in cooperation. It means that
it can be found speed profiles for automated vehicles, by which the collision with human-
driven vehicles can be avoided and stopping commands are not used for the vehicles in
the set. Regarding to the conventional vehicles it is considered that humans keep the traf-
fic regulations. Similarly, it must be created confidence in the human participants that
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the automated vehicles also keep regulations and the collision is avoided in the intersec-
tion. Therefore, an increased safety distance between the conventional and the automated
vehicles are guaranteed.

The computation of the maximum set of cooperating vehicles requires to define a
quantity, by which the size of the set is defined. It influences the order of the vehicles in
the intersection and the number of the cooperating vehicles. Moreover, this quantity can
represent the importance of the vehicles regarding to the transportation system or some
social aspects. For example, the quantity can be defined as the number of passengers in
the vehicles, which means that a public transport buses can have an increased weight.
Another example is the presence of high priority vehicles in the traffic (e.g., ambulances,
fire brigades), of which motion must be absolutely guaranteed [37, 140, 113]. In this
strategy a quasi-kinetic energy is defined as the quantity of the set. The energy of the
vehicle i is formed as follows

Ei(t) = (1− ηi)
1

2
miv

2
i (t), (5.1)

where mi is the virtual mass of the vehicle and vi(t) is its actual speed. The parameter
ηi is in relation with the efficiency of the driveline recuperation. The parameters of (5.1)
are chosen as follows.

• The virtual mass mi is in relation with the mass of the vehicle. Generally, mi is
equal to the nominal mass of the vehicle, e.g. at passenger cars. However, in case of
public transport buses mi can also contain the mass of the passengers. In this way
the number of the passengers in the vehicle can be considered in the optimization
problem. Since mi represents an importance factor, it is enough to estimate the
the additional mass, e.g. the number of passenger is multiplied with an average
unit-mass. Furthermore, the importance of the high priority vehicles can be scaled
through a huge virtual mass.

• The actual speed vi(t) of the vehicles is considered to be available. Its role is to
consider that the stopping of a high speed vehicle results in larger energy loss,
compared to a vehicle with slow motion.

• Since there can be several hybrid and electric vehicles in the traffic system, their
energy loss can be reduced through the recuperation. Parameter ηi is the average
efficiency of the recuperation in the driveline. It represents that the energy loss of
hybrid and electric vehicles is smaller, compared to a conventional driveline with
internal combustion engine.

During the optimization problem of vehicle ordering, the sum of the quasi-kinetic
energy of the set must be maximized:

max
ω∈Ω

∑
i

Ei(t), (5.2)

where Ω is the set of all vehicles in the region of interest around the intersection. Since
several ω subset of the vehicles from Ω can be generated, it is necessary to order them
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according to
∑
i

Ei(t). Then, it is necessary to examine, whether the vehicles of ω are

able to be in cooperation. The result of the optimization is the maximum ω, in which the
cooperation is available.

Summarizing, the process of the speed profile design of the vehicles in the intersection
is the following:

1. determination of the region of interest around the intersection,

2. prediction of the speed profile of the human-driven vehicles,

3. determination of the quasi-kinetic energies of the vehicles,

4. ordering of the candidate subset of the cooperating vehicles,

5. selection of the maximum set of the cooperating vehicles through prediction and
optimization algorithms,

6. ordering and speed profile design of the vehicles, which are out of the set.

5.2 Formulation of the optimal speed profile design problem

The design of the speed profile for the automated vehicles requires the prediction of
the motion of human-driven vehicles and of automated vehicles. In the followings the
prediction processes of the vehicles are introduced.

Motion prediction of the human-driven vehicles

In the prediction process of the human-driven vehicles several assumptions are con-
sidered. First, it is assumed that automated vehicles has information on the speed and
the acceleration of human-driven vehicles (η̇, η̈) and about its actual distance from the
intersection eη. Second, human-driven vehicles accelerate evenly until it reaches the speed
limit. When a human-driven vehicle reaches the speed limit vref,j it does not accelerate fur-
ther, thus in the oncoming sections the predicted speeds of the vehicle are vref,j , . . . , vref,n.

The considered speed profile of the human-driven vehicles is as follows. The following
distance and acceleration equations describe the speed profile as

eη = η̇tacc +
vref,int − η̇

2
+ vref,int(tint − tacc), (5.3a)

η̈ =
vref,int − η̇

tacc
, (5.3b)

where vref,inf is the speed limitation on the route of the vehicle. tacc is the time of
the acceleration, while tint is the unexpired time until to reach the intersection. tint is
expressed from (5.3) as:

tint =
vref,int − η̇

η̈
+

1

vref,int

[
eη − η̇

vref,int − η̇

η̈
− (vref,int − η̇)2

2η̈

]
. (5.4)

Since time tint represents the critical situation, when the human-driven vehicle reaches
the intersection, this time value is considered at the computation of the automated vehicle
motion.
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Speed prediction of automated vehicles

Moreover, it is also required to provide a speed prediction method on the controlled
vehicles. The prediction is based on the proposed predicted algorithm, see Chapter 3.
The ϑ can be rewritten using (3.8) as:

ϑ =Wv2lead + (1−W )v2ref,0 −R1(1− Q̄−W )v2ref,0 +R1

n∑
i=1

γ̄iv
2
ref,i+

+R1(
2

m

n∑
i=1

siFdi,r

n∑
j=i

γ̄j) = R1ϑ̄+ v2ref,0(1−R1)(1−W ), (5.5)

where ϑ̄ contains the value of ϑ calculated with energy-efficient prediction weights Q̄, γ̄i.
From (3.9) the reference speed λ is calculated based on the predicted road information.

It shows that through Q and ϑ weight R1 plays an important role in the calculation of
the reference speed. Moreover, the predicted values of the weights γi also depend on R1,
see (3.16). From (3.7) and (3.8) the square of the reference speed ξ̇ is calculated in the
following form:

λ2 =R1ϑ̄+ v2ref,0(1−R1)(1−W ) + 2s1R1

(
1− Q̄−W

)
(ξ̈0 + gsinα) =

=R1

(
ϑ̄− 2s1(1− Q̄−W

)
+ v2ref,0(1−R1)(1−W ) =

=R1λ̄
2 + v2ref,0(1−R1)(1−W ) (5.6)

The predicted speed of the vehicle at section point n is formed as:

ξ̇2n = ξ̇20 +
2

m
s1Fl1 −

2

m
s1Fd1,o −

2

m

n∑
i=1

siFdi,r

= λ2(1− 2

m
s1T ) +

2

m
s1Fl1 −

2

m
s1A− 2

m

n∑
i=1

siFdi,r = R1N1 +N2. (5.7)

According to (5.7) the predicted speed at point n is independent of vref,n . For example
when R1 = 0 the predicted speed at point n must be vref,n. However, using (5.7), the
value ξ̇i depends only on the momentary speed limit vref,0, while future speeds vref,i do
not influence it. Based on (5.7) the defined reference speed at section point n must be
modified in the following way:

ξ̇2n = (R1N1 +N2)R1 + (1−R1)v
2
ref,n, (5.8)

which depends on the weight R1. In the formula N1 is independent of the section points
ahead, while N2 contains the road grade information of each section.

The aim of the speed prediction is to determine the position of the automated vehicle
in various times. The automated vehicle moves from point ξ0 to ξ1, whose distance is
s1 while the traveling time during this section is ∆t1. In the optimization method it is
assumed that although the acceleration of the vehicle may change in different intervals,
within an interval the acceleration value is constant. Thus, the traveling time in the
first interval is expressed as ∆t1 = 2s1/(ξ̇1 + λ), where λ and ξ̇1 are from equations
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(5.6) and (5.8), respectively. The traveling time between points ξ1 and ξ2 is expressed
similarly as ∆t2 = 2s2/(ξ̇2 + ξ̇1). Using the computed time values a vector is formed as
∆T =

[
∆t1 . . .∆tn

]T . Moreover, the positions of the section points are also arranged in
a vector form as Ξ =

[
ξ1 . . . ξn

]T .

Optimal speed profile design for automated vehicles

The optimization process is based on the modification of R1 weight of all automated
vehicles, which are in a candidate set of cooperating vehicles. The role of R1 is to guarantee
a balance between the energy optimal and the minimum traveling time motion profiles.
Similarly to the cruising strategy in the overtaking scenarios, it is necessary to find the
maximum R1 of each vehicles, by which their safety motion regarding to the further
vehicles in the intersection can be guaranteed.

However, in case of the intersection problem it is necessary to design R1 weight for
more automated vehicles simultaneously. Therefore, in the followings R1,i(t) represents
the performance weight of vehicle i in time t. Moreover, it is necessary to define an
objective function, by which the importance of automated vehicles can be scaled. The
previously defined Ei(t) can be a good choice, because that value has the same role. Thus,
the objective function of the optimization is

max
R1,i(t)∈[0;R1,max]

∑
i∈ω

Ei(t)R1,i(t), (5.9)

where R1,max is the upper limit of R1,i(t).
The objective of the optimization is constrained by some safety criteria, which guar-

antee the avoidance of the collision between the vehicles in set ω. Regarding to the
constraints a safety distance ssafety between the vehicles is predefined. The value ssafety
depends on the speed limits vref,i in the intersection and the number of the routes con-
nected to the intersection. The constraint between vehicle i and j represents the following.
If vehicle j reaches the intersection in the predicted time tj, then vehicle i must be out of
the intersection area at least the distance ssafety. The form of the constraints is defined
as

ei − ξi(tj) > ssafety, ∀i ̸= j, (5.10)

where i represents vehicle i and ei is the actual distance of vehicle i from the intersection.
ξi(tj) is the predicted distance of vehicle i from its actual position in time tj.

Thus, the optimization problem is formed as

max
R1,i(t)∈[0;R1,max]

∑
i∈ω

Ei(t)R1,i(t), (5.11)

such that
ei − ξi(tj) > ssafety, ∀i ̸= j.

The solution of the optimization problem (5.11) requires some prediction processes. It is
necessary to select candidate R1,j values for each vehicle j and to provide a prediction
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as follows. Using R1,j the vectors of the prediction for automated vehicle j Ξ, ∆T are
computed, see Section 5.2. Using ej actual distance of vehicle j from the intersection, tj
is computed as

tj = interp(Ξj,∆Tj, ej). (5.12)

Then, ξi(tj) can be determined for all vehicles i ̸= j. In case of automated vehicles Ξi

and ∆Ti are computed. Then, ξi(tj) is computed as

ξi(tj) = interp(∆Ti,Ξi, tj). (5.13)

In case of human-driven vehicles ξi(tj) is computed through the prediction of the motion
profile. Thus, the constraints regarding to vehicle j and i are computed using (5.10).

An example on the formulation of the optimization problem with three vehicles is
found in Appendix B.1.

5.3 Simulation results under multi-vehicle scenarios

The effectiveness of the proposed method through a simulation scenario with auto-
mated vehicles is illustrated. Further example on the interactions of human-driven and
automated vehicles is found in Appendix B.1.

In this scenario there are three automated vehicles with predictive cruise control, of
which positions and turning intentions are illustrated in Figure 5.2. Moreover, the speed
limit is 50 km/h on the network, but it is varied on two routes. Although the intersection is
considered to be flat, due to the varying speed limits the speed profile of the vehicles must
be optimized. In the example the mass of the vehicles are different, and their distance
from the middle of the intersection ξ0. The initial speeds of the vehicles are considered
to be equal to the speed limit, such as 50 km/h for Vehicle 1 and Vehicle 2, while it is 60
km/h for Vehicle 3.

60

30

Vehicle 1

m1 = 2532 kg

Vehicle 2

m2 = 1140 kg

Vehicle 3

m3 = 1530 kg

ξ0 = 35 m

ξ0 = 29 m

ξ0 = 20 m

Fig. 5.2: Scenario of the vehicles with their initial position
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The determination of the maximum set of cooperating vehicles is based on the energy
values of the vehicles, as proposed in Section 5.1. Considering ηi = 0 for all vehicles, the
energy values in t = 0 are E1(0) = 244 kJ, E2(0) = 109 kJ, E3(0) = 212 kJ. Therefore,
the ordering of the sets are for all vehicles are in cooperation: ω3 with 565 kJ, and if
two vehicles are in cooperation: ω2,1 (Vehicle 1 - Vehicle 3) with 456 kJ, ω2,2 (Vehicle 1
- Vehicle 2) with 353 kJ, ω2,3 (Vehicle 2 - Vehicle 3) with 321 kJ. If cooperation cannot
be reached, the values are ω1,1 (Vehicle 1) with 244 kJ, ω1,2 (Vehicle 3) with 212 kJ, ω1,3

(Vehicle 2) with 109 kJ.
The simulation resulted that Vehicle 3 is the first in the order of the intersection,

Vehicle 1 is the second, while Vehicle 2 is the last vehicle, see Figure 5.3. During the
simulation the safety distance is selected as ssafety = 3 m, which must be guaranteed in
all interactions.
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Fig. 5.3: Cruising of the automated vehicles in the intersection

The most important results of the simulations regarding to the predictive cruise control
strategy are found in Figure 5.4. The speed values of the vehicles are illustrated in Figure
5.4(a). It shows that the speed profile of Vehicle 3 is smoothly decreasing, while Vehicle
2 must be stopped to avoid the collision with Vehicle 1. The R1,i values are illustrated
in Figure 5.4(b). It shows that R1,3 has the maximum value during the simulation,
which means that Vehicle 3 is able to cruise with its minimum energy consumption.
However, R1,1 is reduced between 1.2s . . . 1.7s, which results in its increased acceleration
to guarantee the ssafety between Vehicle 1 - Vehicle 2. Vehicle 2 has the most varying R1,2

signal, as shown in Figure 5.4(b). Moreover, Figure 5.4(c) presents that W for Vehicle 2
must be modified at several times. It results in that in the most of the simulation time
ω3 can be reached, but in some time periods (e.g., 0.6s . . . 0.9s, 1.1s . . . 1.3s, 1.7s . . . 2.6s)
ω2,1 is the maximum set with the coordination of Vehicle 1 and Vehicle 3. Nevertheless,
the proposed strategy is able to guarantee the predefined safety distance between the
vehicles.

New result 5.3.1: The extension of the new energy-optimal motion profile design method
for the interaction of multiple automated vehicles has been provided. The coordination
of the automated vehicles in intersection scenarios through the extended optimization
problem has been solved, i.e., the ordering of the vehicles and the selection of their speed
profiles in a joint optimizations process have been formed. In the coordination of the
automated vehicles the motion of the human-driven vehicles in the intersection has been
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Fig. 5.4: Results of the simulation with three vehicles

incorporated.
References: [Gáspár and Németh, 2019, Németh and Gáspár, 2019, Németh and Gáspár,
2015a, Szilassy et al., 2019]
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6. LEARNING-BASED CONTROL DESIGN WITH GUARANTEES
FOR SAFETY CRITICAL INTERACTIONS

The goal of this chapter is to provide a coordinated control strategy for handling
automated vehicles in intersections scenarios. In the method of this chapter, the ordering
of vehicles and their speed profile computation in a reinforcement learning (RL) based
optimization task are incorporated.

The advantage of this method is its model-free property, which can provide solutions to
the problem of constraint formulation. Moreover, the training of the control agent through
high number of episodes is carried out, which can lead to improved performances. The
application of RL for the interactions of automated vehicles is found in [164, 31, 174]. A
deep RL method is applied to unsignalized intersections in [63]. It also provides analysis
to explore the ability of the system to learn active sensing behaviors and safe navigation
in the case of occlusions. [124] also presents a deep RL-based model that considers the
effectiveness of leading automated vehicles in mixed-autonomy traffic at a non-signalized
intersection. [167] offers a new approach to train of the intelligent agent that simulates
the behavior of an unmanned vehicle, based on the integration of reinforcement learning
and computer vision. Using full visual information about the road intersection obtained
from aerial photographs, it is studied automatic detection the relative positions of all road
agents with various architectures of deep neural networks.

In spite of promising achievements, most of the resulting neural-network-based agents
cannot provide guarantee on the collision avoidance of the vehicles. In this chapter the
RL problem is formed in a guaranteed framework, and thus, the collision of the vehicles
during their interaction can be avoided.

The design method with RL-based features strongly connects to the provided robust
LPV-based design framework in Section 2.3. In the method of Section 2.3 the goal is
to design the robust LPV controller, while the learning-based agent is considered to be
given. In the method of this section the RL-based agent must also be designed, while
another low-complexity robust control design on the problem of automated vehicles in
intersections is also provided. The scheme of the design framework with RL-based agent
in Figure 6.1 is illustrated. It contains a robust controller with output aK , the RL-based
agent with output aL. These signals are used for the computation of ∆ by a supervisor.
The signal ∆ is an addition to aK , which results in the control input of the vehicle a1.
Through ∆ the control input a1 is able to approximate aL, i.e., secondary performance
level can be improved, and similarly, primary (safety) performance requirements in the
computation of ∆ are involved. In this structure the parameters of the robust controller
and the RL-based agent are computed offline, while the actual value of ∆ in each steps is
computed online.
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vehicle - traffic

RL-based
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∆

Fig. 6.1: Scheme of guaranteed design framework with RL-based agent

6.1 Formulation of the supervisory strategy for the environment of
reinforcement learning

The goal of this section is to formulate collision-free motion of the vehicles in inter-
section scenarios. The formulation includes the longitudinal motion model of the vehicles
and the constraints on their motion to avoid collision.

The longitudinal motion of the vehicles is formulated through the simplified kinematics
of vehicles, such as

vi(k + 1) = vi(k) + Tai(k), (6.1a)

si(k + 1) = si(k) + Tvi(k) +
T 2

2
ai(k), (6.1b)

where i index represents the number of the vehicle, n is the number of vehicles, vi is
longitudinal velocity, si is longitudinal displacement. ai represents the longitudinal accel-
eration of the vehicle, which is handled as a control input command and T is the time step
of the discrete motion model. The longitudinal displacement is related to the center point
of the intersection and thus, it is defined as si = 0 for all i in the center point. The longi-
tudinal displacement of the approaching vehicle has negative value and the displacement
of the vehicle moving away has positive value.

In the environment model of the intersection the automated ego vehicle is numbered
with 1. Thus, for example in the case of n = 5 in the environment the ego vehicle and
four surrounding vehicles are incorporated. The control input of the automated vehicles
is separated into two elements, as

a1(k) = aK(k) + ∆(k), (6.2)

where aK is the control input command of the robust longitudinal controller and ∆(k) is
the additional input from the supervisor in the model.

The purpose of the supervisor in the collision-free motion model is to select ∆(k) for
the automated ego vehicle with the following objectives and constraints.
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• The objective of the selection is to minimize the difference between the current
control input a1(k) and the output of the learning-based controller aL(k). The
aim of the minimization is to preserve the performance level of the learning-based
controller, if possible.

• Some of the vehicles can intercross their route in the intersection. Thus, intervention
with a1(k) must provide motion for the automated vehicle, with which the safe
distance ssafe between the automated vehicle and the further surrounding vehicles
with intercrossing routes can be guaranteed. Since the number of vehicles n can
be high, a limited number of surrounding vehicle motion must be simultaneously
considered, i.e. ns represents the number of vehicles which are incorporated in the
design process. It is a constraint in the selection of ∆.

• The velocity of the vehicles must be inside of a predefined range. The upper bound
of the range is defined by the speed limit vmax or the curvature of the intersection.
The lower bound is represented by the stopping of the vehicle. Thus, it is necessary
to select ∆ for all vehicles to keep velocities inside of the range. It is also a constraint
in the selection process.

The selection process of ∆ for the automated ego vehicle is formed as an optimization
problem as follows:

min
∆(k)

(
a1(k)− aL(k)

)2 (6.3a)

subject to
s1(k + 1)2 + sj(k + 1)2 ≥ s2safe, ∀j ∈ ns, (6.3b)

0 ≤ v1(k + 1) ≤ vmax, (6.3c)
∆ ∈ ∆, (6.3d)

where j represents the surrounding vehicles, whose motion can be in conflict with the
automated vehicle, i.e., their routes are intercrossed. ∆ represents the domain of the
optimization variable. In the optimization problem the kinematics of the vehicle motion
(6.1) is considered through the formulation of the constraints, the separation of the control
input (6.2) is involved in the objective function.

The objective (6.3a) is transformed using (6.2) as(
a1(k)− aL(k)

)2
=
(
aK(k) + ∆(k)− aL(k)

)2
=

= ∆(k)2 + 2f(k)∆(k) + (aK(k)
2 + aL(k)

2 − 2aL(k)aK(k)), (6.4)

where f vector is formed as f(k) = aK(k)−aL(k). Since (aK(k)
2+aL(k)

2−2aL(k)aK(k))
is independent of ∆(k), it is omitted in the rest of the optimization problem.

The constraint for collision avoidance (6.3b) is formed to achieve keeping ssafe between
the vehicles. The distance is measured in the sense of the longitudinal displacement of
the vehicles on their route. Geometrically, the quadratic constraints (6.3b) represent that
the trajectories of the automated vehicle s1 and the related surrounding vehicles must be
out of a circle. The radius of the circle is defined by ssafe, see Figure 6.2(a). For example,
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it there are two surrounding vehicles with the automated vehicle (e.g., see Figure 6.5),
the trajectories must be out of a sphere, whose radius is represented by ssafe, see Figure
6.2(b).

s1

sj

ssafe

[s1(k); sj(k)]

avoidable
region

(a) Constraint illustration
of a related pair

s1

sj

sl

[s1(k); sj(k); sl(k)]

ssafe

(b) Constraint illustration on an
example

sj

s1

[s1(k); sj(k)]

[sT 1,1(k); sT 1,j(k)]

[sT 2,1(k); sT 2,j(k)]

avoidable
region

sj

(c) Illustration of constraint approxima-
tion

Fig. 6.2: Geometrical illustration of the quadratic constraints

Although the circle perfectly describes the region of the state-space, which must be
avoided, it leads to a quadratic constraint in the optimization problem (6.3). Since the
optimization problem must be solved in each k time step during the motion of the vehicles,
the quadratic constraint can make the solution of the optimization more complex and it
can make the real-time solution more difficult. It motivates the transformation of the
quadratic constraints into linear constraints. In this paper it is performed through the
approximation of the avoidable regions of circles to the avoidable regions of half-planes.

The method of the approximation is illustrated in Figure 6.2(c). First, the tangent
lines to the circle from the actual state

[
s1(k) sj(k)

]T are assigned. The avoidable half-
plane is determined by the region between the tangent lines, i.e., the trajectories must be
out of it. Second, two linear inequality constraints are specified, which represent that the
trajectory of the state must be out of the avoidable half-plane, such as[

sT1,1(k)
sT1,j(k)

]T [
s1(k)
sj(k)

]
≤
[
sT1,1(k)
sT1,j(k)

]T [
s1(k + 1)
sj(k + 1)

]
, (6.5a)

or[
sT2,1(k)
sT2,j(k)

]T [
s1(k)
sj(k)

]
≥
[
sT2,1(k)
sT2,j(k)

]T [
s1(k + 1)
sj(k + 1)

]
, (6.5b)

where
[
sT1,1(k) sT1,j(k)

]
,
[
sT2,1(k) sT2,j(k)

]
are the tangent points on the circle in time

step k. Note that the linear constraints result in an outer approximation of the avoid-
able set. There are regions of the half-space which cannot be reached due to the linear
constraints, but they are out of the circle.

The longitudinal displacement of the automated vehicle at k+1 in (6.5) is transformed
to express the linear constraints in terms of ∆. The transformation is based on the motion
equation (6.1) and the relation of actuation separation (6.2). Moreover, the motions of
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surrounding vehicles for k + 1 with their actual velocity vj(k) are predicted, such as

s1(k + 1) = s1(k) + Tv1(k) +
T 2

2
aK(k) +

T 2

2
∆(k), (6.6a)

sj(k + 1) = sj(k) + Tvj(k), (6.6b)

which can be substituted into (6.5). It leads to the linear constraints[
sT1,1(k)
sT1,j(k)

]T [−Tv1(k)− T 2

2
aK(k)

−Tvj(k)

]
≤ T 2

2

[
sT1,1(k)

0

]T
∆(k), (6.7a)

or[
sT2,1(k)
sT2,j(k)

]T [−Tv1(k)− T 2

2
aK(k)

−Tvj(k)

]
≥ T 2

2

[
sT2,1(k)

0

]T
∆(k). (6.7b)

Figure 6.2(c) illustrates that the reachable set for the state
[
s1(k + 1) sj(k + 1)

]T is
non-convex, which means that (6.7) formulates disjunctive inequalities. However, each
constraint in (6.7) leads to convex reachable sets, which means that the optimization
problem can be divided, as it is proposed below.

Another constraint in the optimization (6.3) is on the velocity of the automated vehicle,
see (6.3c). In the case of this constraint vi(k + 1) is expressed in terms of ∆ using the
motion equation (6.1) and the relation of actuation division (6.2). The linear inequality
constraint is formed as

0 ≤ v1(k) + TaK(k) + T∆(k), (6.8a)
vmax ≥ v1(k) + TaK(k) + T∆(k), (6.8b)

which leads to [
−1
1

]
∆(k) ≤

[
v1(k)
T

+ aK(k)
vmax−v1(k)

T
− aK(k)

]
, (6.9)

where vmax is the maximum velocity of the automated vehicle. In an urban environment
it is determined by the velocity regulations and in the case of cornering manoeuvres at
the intersections the curvature to avoid skidding.

The last constraint in the optimization problem (6.3) is the limitation of the resulting
optimization variable, see (6.3d). The value of ∆ is limited by the bounds of a1(k), such
as amin, amax, which represent full braking and throttle. Since a1(k) is also influenced by
aK(k), the constraints on ∆(k) are formed as

amin − aK(k) ≤ ∆(k), (6.10a)
amax − aK(k) ≥ ∆(k), (6.10b)

which leads to the constraint[
−1
1

]
∆(k) ≤

[
aK(k)− amin

amax − aK(k)

]
. (6.11)
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The optimization task (6.3) using (6.4), (6.7), (6.9) and (6.11) is reformulated as

min
∆(k)

∆(k)2 + 2fT∆(k) (6.12a)

subject to[
−1
1

]
∆(k) ≤

[
v1(k)
T

+ aK(k)
vmax−v1(k)

T
− aK(k)

]
(6.12b)

and[
−1
1

]
∆(k) ≤

[
aK(k)− amin

amax − aK(k)

]
(6.12c)

and[
sT1,1(k)
sT1,j(k)

]T [−Tv1(k)− T 2

2
aK(k)

−Tvj(k)

]
≤ T 2

2

[
sT1,1(k)

0

]T
∆(k), ∀j ∈ ns (6.12d)

or[
sT2,1(k)
sT2,j(k)

]T [−Tv1(k)− T 2

2
aK(k)

−Tvj(k)

]
≥ T 2

2

[
sT2,1(k)

0

]T
∆(k), ∀j ∈ ns. (6.12e)

The quadratic optimization in (6.12) contains disjunctive inequalities. It means that
the optimization task for the solution can be reformulated to a mixed-integer optimization
problem [16]. In practice, the optimization problem (6.12) can be solved as a set of
quadratic optimization problems, which has only and conditions between the constraints.
Thus, in the case of ns number of surrounding vehicles 2ns number of distinct constrained
optimization problems can be formed. Since the objective functions for each problem is
the same, the global minimum solution with the comparison of their solutions can be
found. Finally, the solution is yielded by ∆(k), which leads to the minimum value of the
objective function, considering all of the optimization tasks. The optimization problem
during the motion of the automated vehicle is continuously solved.

6.2 Cruise control design with learning-based and robust control
methods

The intervention in the longitudinal dynamics of the automated vehicle in the inter-
section has high importance in achieving the required motion profile for time step k + 1.
The control input of the vehicle is composed by two elements, such as aK(k) and ∆(k),
see (6.2). The computation of ∆(k) in Section 6.1 has already been proposed. In this
section the design of the control intervention aK(k) is proposed.

The most important requirements for the controller are formed as follows.

• The control system must guarantee safe longitudinal motion for the vehicle, even if
aL has degradation or a fault scenario. The safe motion is guaranteed through aK
and ∆.

• The longitudinal controller must have robust characteristics, because a(k) ̸= aK(k),
if ∆(k) ̸= 0. Robustness must also be guaranteed in extreme vehicle dynamic
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scenarios. For example, if aK(k) suggests full throttle, but it has been overridden
by ∆(k) to be full braking. Similarly, robustness must be guaranteed if aK(k)
suggests full braking, but it has been overridden by ∆(k) to be full throttle.

• The control signal aK(k) must be computed to avoid the saturation of the control
actuation a(k). Since in the computation process the computation of aK(k) is prior
to ∆(k), the result of (6.12) is not considered in the computation of aK(k). Thus,
the role of the cruise controller is to guarantee amin ≤ aK(k) ≤ amax.

The design of the longitudinal controller is based on the simplified vehicle model
(6.1) with one state, such as the longitudinal velocity v1(k). The controller is formed
as a gain P for velocity tracking, whose input is the velocity error, see Figure 6.3. The
reference signal for the tracking is vref . The idea behind the formulation of the control
design as a tracking problem is as follows. The vehicle must adapt to the environment,
which determines the achievable velocity of the vehicle, e.g., through maximum speed
limits. The aim of the cruise control is to consider the regulations and the motion of
the further vehicles to achieve safe motion. The maximum speed limit information is
provided by vref (k) and information on the motion of the vehicles in the environment in
the computation of ∆(k) is included. Thus, through the selections of vref (k) and ∆(k)
the safe motion is guaranteed.

P

vref(k)∆(k)

T

z−1
v1(k)

aK(k)

Fig. 6.3: Closed-loop structure of the longitudinal control

The selection of P is determined by the requirement of the robustness for the controlled
system. In the presented structure ∆(k) is handled as a disturbance and the performance
of the systems is the minimization of the tracking error, such as |vref (k)− v1(k)|. Thus,
for the robustness issue, it is necessary to limit the impact of ∆(k) disturbance on the
performance. The robustness criterion is based on the small-gain theorem [173]. As a
consequence, the H∞ norm transfer function from ∆(k) on the velocity error must be
smaller than 1, which guarantees disturbance attenuation.

In the computation of the transfer function the maximum value of the ∆̄ = |∆(k)| is
also considered. The maximum is determined by the vehicle dynamic scenario, if ∆(k)
implies full throttle instead of full braking or full braking is implied instead of full throttle.
Thus, the value of ∆̄ is |amin| + |amax|. The transfer function from ∆i(k) to the velocity
error is

G(z) =
∆̄ T

z−1

1 + P ·T
z−1

. (6.13)
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The criterion on the selection of P is to guarantee ||G(z)||∞ < 1.
The constraint on the control input a1(k) is influenced by the limitation of the reference

signal. The reference velocity in Figure 6.3 represents the maximum speed limit vmax(k)
for the vehicle on the given road section. Nevertheless, it is necessary to provide a reference
velocity for the vehicle, with which the constraint on a(k) is kept. Thus, vref (k) is
computed as

vref (k) = v1(k) + min

(
amax

P
,max

(amin

P
, vmax − v1(k)

))
. (6.14)

The expression represents that the reference velocity can differ from that actual velocity
with a limited value. The value of P has a role in the computation of the reference signal.

Finally, the method of the selection of P is as follows. It is recommended to select the
value of P as high as possible, which can result in a fast operation of the tracking control.
However, the value of P is constrained by the robustness criterion, such as

max P, (6.15a)
subject to

||G(z)||∞ < 1. (6.15b)

The output of the robust longitudinal controller is aK(k), which is used in the com-
putation of the control input (6.2) and in the computation of ∆(k) (6.12).

6.2.1 Design of motion profile using reinforcement learning

In the previous sections a control strategy is formed with which the safe motion of
the automated vehicle in an intersection can be guaranteed. Nevertheless, in the design
problem of the vehicle motion there are economy aspects, which are recommended to
consider during the design process, i.e., it is recommended to minimize the control energy
of the vehicles. In this section the consideration of the economy performance in the design
process is proposed.

The goal of the design process is to find an agent which is able to generate the control
signal aL(k). The agent is trained through a reinforcement learning process. The structure
of the design process is illustrated in Figure 6.4. The model for the learning process
contains the optimization task (6.12) together with the result of the robust control design
(6.15). The model guarantees the avoidance of the collision in the intersection for every
aL(k) signal. Thus, during the training process of the agent in every episode the safety
performances are guaranteed and similarly, the economy performance is improved. The
output of the motion model is reward r(k), which is composed by a(k) and v1(k) as follows

r(k) = −Q1a
2
i (k) +Q2(s1(k)− s1(0)), (6.16)

where Q1 and Q2 positive values are design parameters, which scale the importance of
each term in r(k). The reward contains the control inputs in the vehicles a(k), which
represent the economy performance of the vehicles. If the reward contains only a(k), it
can result in unacceptably slow motion for the automated vehicle, because a(k) = 0 is the
best choice for the maximization of the reward. Thus, in the reward the traveled distance
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of the automated vehicle (s1(k) − s1(0)) is also incorporated, where s1(0) is the initial
position of the automated vehicle. The observation for the agent includes the position
of the automated vehicles s1(k) and of the surrounding vehicles sj(k) j ∈ ns and their
velocities v1(k), vj(k) j ∈ ns.

in intersection

motion model
of vehicles

reinforcement
learning

agent

aL(k)a1(k)
s1(k)

rewards1(k)
v1(k)
sj(k)
vj(k)

Fig. 6.4: Control structure in the learning process

The goal of the reinforcement learning process is to maximize reward (6.16) during
episodes. In this paper the training process through the deep deterministic policy gradient
(DDPG) is carried out, which is a model-free, online, off-policy reinforcement learning
method [89]. A DDPG agent is an actor-critic reinforcement learning agent that computes
an optimal policy that maximizes the long-term reward. In the method actor and critic
approximators are used. Both approximators use the observations, which are represented
by S. The purpose of the actor approximator µ(S) is to find the action A with aL(k),
which maximizes the long-term future reward. The role of the critic Q(S,A) is to find
the expected value of the long-term future reward for the task.

The result of the training process is an agent whose output is aL(k). In the control
process of the automated vehicle the agent works together with the control strategy (6.12).
As a result, the collision avoidance of the vehicles in the intersection is guaranteed and
similarly, the economy performance of the vehicles is improved.

6.3 Simulation scenarios in multi-vehicle context

Comparative simulation examples are shown to illustrate the effectiveness of the de-
signed controller. In the rest of this section, the first and the second examples show
simplified scenarios, in which three vehicles are in the intersection. The further analysis
on the three vehicle scenario under varying traffic environments, i.e., depending on the
initial velocities and positions of the vehicles, are found in Appendix B.2. Moreover, in
Appendix B.2 a complex scenario seven vehicles is found. In all of these simulations, the
closest ns = 3 vehicles in the constraints of the optimization tasks are incorporated in.

The RL-based agent is trained through 500 simulation scenarios, in which the number
of vehicles, their initial velocities and positions are selected randomly, i.e., the vehicle
number is varied between 1 and 7, the initial positions are selected between −20m. . .−40m
and the initial velocities are varied between 10 km/h . . . 50 km/h. In the learning process
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of the neural networks the following structures have been trained. The actor network has
8 neurons in the input layer, 3 fully connected layers with 48 neurons and Rectified Linear
Unit (ReLU) functions in each layer and 1 neuron with hyperbolic tangent functions in
the output layer. The critical network has the same structure. In the structure and
parameter selection of the neural networks the k-fold cross-validation technique [51] and
a hidden-layer number optimization process [166] can be used. The sampling time in each
episode is selected as T = 0.05s. The terms in the reward function are considered with
the same design parameters, such as Q1 = −0.1, Q2 = 10. The training process has been
performed through Matlab 2020a Reinforcement Learning Toolbox [101] on Intel i7 CPU.

In the simplified examples, the first and second scenarios are illustrated in Figure 6.5.
In these cases Vehicle 1 is the ego vehicle, Vehicle 2 and Vehicle 3 are the surrounding
vehicles on the perpendicular road section. Both surrounding vehicles cross the route of
Vehicle 1, which results in a conflict situation. In the first scenario the following initial
conditions are set: s1 = −40 m, s2 = −36 m, s3 = −41 m and all of the vehicles have
50 km/h initial velocity. In the second scenario Vehicle 3 has different settings, while the
further vehicles have the same initial conditions, i.e., s2 = −48 m and v2 = 30 km/h.
The safe distance is set to ssafe = 8 m.

Fig. 6.5: Illustration on the simplified intersection scenarios

The results of the simplified scenarios are found in Figure 6.6. Figures 6.6(a),(b) show
that the automated ego vehicle is able to guarantee keeping ssafe. Nevertheless, in the two
scenarios the ordering of the vehicles in the intersection is different. Since in scenario 1
the surrounding vehicles have increased velocity, the automated vehicle decides to reduce
its velocity to 18 km/h and allows the surrounding vehicles with right of way to enter the
intersection. But, in scenario 2 the automated vehicle has enough time to go through the
intersection before Vehicle 3 enters it. Thus, in this case v1 can be increased after Vehicle
2 leaves the intersection, see Figure 6.6(d). The differences in the motion of Vehicle 1
also influence the trajectories in Figure 6.6(a),(b). Moreover, the control input signals for
each scenarios are found in Figure 6.6(e),(f). In case of scenario 2 the acceleration of the
ego vehicle is increased to 3m/s2 in 2.6s to avoid the collision with Vehicle 2, while in
scenario 1 the acceleration is increased later in 3s by a lower value.

New result 6.3.1: A novel energy-optimal motion profile design method for intersection
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Fig. 6.6: Signals of the simplified scenarios

scenarios of automated vehicles in a performance guaranteed structure has been provided.
The developed design framework contains three elements, such as a robust cruise control, a
supervisor and a reinforcement-learning-based agent. The role of the robust cruise control
in cooperation with the supervisor is to provide guarantee on the collision avoidance with
the further vehicles in the intersection. The learning-based agent improves economy and
time performances of the vehicle. In the novel control structure the advantages of the
robust control, i.e., the performance guarantees, and the benefits of the learning-based
methods, i.e., the improved performance level are combined.
References: [Németh and Gáspár, 2021b, Németh and Gáspár, 2021a, Németh et al.,
2018b]
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7. RELATIONSHIP BETWEEN THE TRAFFIC FLOW AND THE
CRUISE CONTROL FROM THE MACROSCOPIC POINT OF VIEW

Research on automated vehicles goes beyond vehicle control, i.e., high number of au-
tomated vehicles can have impact on the dynamics of entire traffic flow. Due to the
strict rules of the vehicle control, e.g., keeping speed limits, the speed profile of the auto-
mated vehicle can differ from the speed profile of the human-driven vehicles [13]. In case
of a mixed traffic, which contains human-driven and automated vehicles simultaneously,
the ratio of automated vehicles and their settings influence the motion of human-driven
vehicles [148, 98]. In the rest of this thesis, the analysis of this relationship through
simulation-based and set-based approaches is carried out. Moreover, the formed relation-
ships in the control design of automated vehicles and in the control design for improving
traffic flow are involved.

Modeling and analysis of the mixed traffic, in which automated controlled vehicles and
conventional uncontrolled vehicles are traveling together, require novel methodologies.
The traffic flow model, which was characterized by the automated vehicles, was proposed
by [84]. The analysis of the traffic-flow, in which semi-automated and automated vehicles
were traveling together with human-driven vehicles were proposed by [132, 155]. Since the
semi-automated vehicles supported a smooth traffic flow through their filtering effects,
a control law was proposed by [23]. Similar results in the field of mixed traffic were
achieved by [169]. The cooperative cruise control of multiple cars in mixed traffic, in which
the motion of the conventional uncontrolled vehicles was considered as the continuous
approximation of hybrid dynamical systems was examined by [32]. That paper illustrated,
the cooperative control was able to improve the overall stability. Similarly, the connection
of the cruise controlled vehicles was able to improve the string stability through the
prevention of shockwave formation and propagation as presented by [143]. The mixed
traffic was also modeled and examined from the aspect of the vehicle clusters. A method
which was able to predict the distribution of the small clusters in the mixed traffic was
proposed by [67]. Based on this information the effect of the vehicles with cruise control
on the mixed traffic was examined. However, in several cases the traffic flow signals were
not measured directly, see e.g., [68]. A method for the estimation of the total density and
flow of vehicles for mixed traffic based on the Kalman filtering was proposed by [15]. The
results were also used for the analysis and control of the vehicles in the traffic.

This chapter analyzes the impact of automated vehicles with energy-optimal cruise
control strategy on the traffic flow. Since the speed profile of the proposed energy-optimal
cruise control in Chapter 3 may differ from that of human-driven vehicles, the modeling
and control of mixed traffic flow is a hot research topic. In this thesis an analysis method
based on high-fidelity macroscopic simulations is applied, in which three parameters con-
cerning to the cruise control and to the traffic flow are taken into consideration. Through
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the contributions of the analysis, the proposed energy-optimal cruise control is extended
for creating a balance between traffic flow and energy-efficient cruising. Thus, the pro-
posed method guarantees an energy-efficient motion for automated vehicles in the traffic,
while an extreme reduction of the traffic speed can be avoided.

7.1 Analysis of the predictive cruise control in the traffic

In the research the traffic model and the measurements of a test network are built in
the VISSIM microscopic traffic simulation system. In the demonstration example, a 20
km-long 3-lane segment of the Hungarian M1 highway between Budapest and Tatabánya
is modeled in VISSIM, in which the terrain characteristics (see Figure 7.1) and the speed
limits are taken into consideration. The speed limit on the section is 130 km/h, although
there is a 90 km/h limitation between 5.6 km . . . 8.5 km segments. Using this model
several simulations with different traffic densities are performed. Moreover, traffic contains
a significant number of automated vehicles, in which the energy-optimal optimization
method have been built in. The further vehicles in the mixed traffic are conventional
vehicles, i.e., in this context conventional vehicle means human-driven vehicles with trying
to keep constant maximum speed.
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Fig. 7.1: Terrain characteristics of the highway section

During the research several traffic simulations are performed to analyze the impact of
the automated vehicles with energy-optimal cruise control on the entire traffic. In these
simulations the effects of three parameters are examined through their variations, such as

• qin: the inflow of the vehicles on the highway section,

• κ: the ratio of automated vehicles in the traffic,

• R1,max: the upper limit of the energy-efficient parameter in the speed profile opti-
mization.

In the following the most representative scenarios are presented. The scenarios and the
impacts of the controlled vehicles are interpreted, while the numerical results are sum-
marized in Table 7.1. The aims of the analysis are to examine the average speed and the
traction forces of the vehicles depending on qin, κ, R1,max.

The first scenario is proposed in Figure 7.2. In this case the selected parameters are
qin = 3000 veh/h, R1,max = 0.7 and κ = 1%. It means that a low number of automated
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Tab. 7.1: Results of the analyses

qin κ[%] R1,max
Mean of force [N ] Traveling Average

conventional automated overall time [s] speed [km/h]
3000 1 0.7 678.1 622.1 677.5 608.3 118.4
3000 20 0.7 676.2 629.4 666.8 609.9 118.1
3000 50 0.7 673.4 630.4 651.9 610.0 118.0
5000 20 0.7 662.8 623.8 566.1 627.3 114.8
3000 20 0.9 674.8 598.7 659.6 613.5 117.4
3000 50 0.9 667.4 598.9 633.2 622.4 115.7

vehicles are on the highway. Consequently, the impact of the automated vehicles on
the entire traffic flow is negligible. Thus, the average speed of the traffic is close to its
maximum 130 km/h, see Figure 7.2(a). However, in the outer lane the speed is slightly
reduced, because the slowest cruise-controlled vehicles are all in this lane. It means that a
small κ value has a very slight impact on the traffic flow. The average traction forces of the
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Fig. 7.2: Scenario 1: qin = 3000 veh/h, κ = 1%, R1,max = 0.7

conventional and the automated vehicles are illustrated in Figure 7.2(b). Since the motions
of the automated vehicles are not disturbed by each other or the conventional vehicles,
they can achieve their optimal speed. This optimal speed results in force reduction on
the entire route, which means that the average traction force is decreased by 8.6%.

In the second scenario the ratio of the automated vehicles is increased to κ = 20%.
In this case the automated vehicles have high impact on the traffic flow. Figure 7.3(a)
shows that the average speed in the lanes significantly varies, see e.g., in the section
between 13− 20 km. As a result of the increased κ, not all of the automated vehicles are
able to realize their speed trajectory. Furthermore, the speed profiles of the conventional
vehicles are also influenced by the automated vehicles. The effect of the higher κ on the
traction forces is illustrated in Figure 7.3(b). It can be seen that the traction forces of
the automated vehicles are closer to those of the conventional vehicles. Thus, due to the
increased traffic, not all of the automated vehicles are able to guarantee the fuel-economy
motion. Furthermore, the traction force of the conventional vehicles slightly decreases.
Thus, in this scenario the automated vehicles have a low impact on the traffic flow: the
speed profile and the traction force of the vehicles without energy-optimal cruise control
are not modified significantly.

In the third simulation scenario κ is increased to 50%, which has a high impact on
the traffic flow. The results of the this scenario are presented in Figure 7.4. The energy-
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Fig. 7.3: Scenario 2: qin = 3000 veh/h, κ = 20%, R1,max = 0.7

optimal speed profile is forced upon the conventional vehicles in all lanes, see Figure
7.4(a). As a result the average traction force in the traffic flow decreases, as shown in
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Fig. 7.4: Scenario 3: qin = 3000 veh/h, κ = 50%, R1 = 0.7

Figure 7.4(b). This scenario illustrates that the energy consumption of the traffic flow
can be influenced by using a high κ ratio. Comparing the results to the first scenario,
which contains 99% conventional vehicles, the average traction force of the conventional
vehicles decreases from 678.1N to 673.4N .

In the fourth scenario the impact of qin on the traffic flow is illustrated. It means
that the inflow increases to qin = 5000 veh/h value, which represents rush hour traffic.
Figure 7.5 presents the results of this scenario. The result of the rush hour traffic is the
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Fig. 7.5: Scenario 4: qin = 5000 veh/h, κ = 20%, R1,max = 0.7

adaptation of the automated and the conventional vehicles to each other. Since the motion
of the automated vehicles is closer to the conventional vehicles, it leads to a slight increase
in their traction force, compared to the similar scenario with qin = 3000 veh/h. Moreover,
the motion of the conventional vehicles also varies, which results in their force reduction
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by 2.3% compared to qin = 3000 veh/h. Thus, in heavier traffic the energy-optimal cruise
control has a significant impact on all the vehicles in terms of force requirement.

The last scenarios presents the impact of R1,max increase on the traffic speed and the
average traction force, see Figure 7.6 and Figure 7.7. Due to the increased optimization
parameter the energy-efficiency in the motion of the automated vehicles has a priority. As
a consequence the average speed of the vehicles in the outer lane significantly decreases,
compared to the results of the second and third scenarios,see Figure 7.6(a) and Figure
7.7(a). However, in the other lanes the average speed is close to the scenario with the
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Fig. 7.6: Scenario 5: qin = 3000 veh/h, κ = 20%, R1,max = 0.9

parameter R1,max = 0.7. Thus, most of the automated vehicles move into the outer lane.
As a consequence of these scenarios, the traction forces of the automated vehicles are
smaller, and they have slight impact on the traction force of the conventional vehicles, as
presented in the numerical values of Table 7.1. Thus, the increase in R1,max results in a
low energy consumption reduction for the entire traffic.
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Fig. 7.7: Scenario 6: qin = 3000 veh/h, κ = 50%, R1,max = 0.9

The force, traveling time and average speed requirements are summarized in Table
7.1. It shows the mean forces of the conventional and the automated vehicles, and their
differences are also presented. The following conclusions on the traction forces based on
the simulations are drawn:

• The increase in the traffic flow qin can lead to the reduction of the traction forces of
the conventional and the automated vehicles simultaneously. However, it increases
the traveling time of the vehicles due to the dense traffic.

• If the ratio of the automated vehicles increases, it is slightly disadvantageous for
the motion of the automated vehicles, but it improves the force reduction of the
conventional vehicles.
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92 7. Relationship between the traffic flow and the cruise control from the macroscopic point of view

• The increase in the R1,max leads to the significant reduction of the automated vehicle
traction forces, and it has high impact on the conventional vehicles.

7.2 Improvement of the energy-optimal cruise control with the results of
the traffic flow analysis

Previously the effects of three parameters on the traffic flow have been examined. It
has been demonstrated that ratio κ of automated vehicles in the traffic flow has significant
impact on the energy consumption of all the vehicles. The weight R1 reduces the traction
force of the automated vehicles substantially, and modifies the average speed of the traffic
flow. Moreover, the increase of the traffic volume qin results in the reduction of the traffic
speed and the traction force simultaneously.

Since parameters qin, κ and R1 have impacts on traffic speed and on traction force, an
appropriate speed profile design for the automated vehicles must be found. In a real traffic
scenario the measurement of qin and the information about κ are available. Furthermore,
the weight R1 in the energy-optimal cruise control is a parameter, whose setting has
impact on the entire traffic flow. With an appropriate choice of R1 the energy efficiency
and the average speed of the traffic flow can be improved. In the following a strategy for
the selection of R1 is proposed, by which the effect of the energy-optimal cruise control
on the traffic flow is considered.

The core of the strategy is based on the design of R1,max. This parameter has a
relevance in the design of R1. It means that R1,max determines the maximum value of R1.
In the optimization R1,max is an upper bound of the optimization variable R1. Since the
weight R1 has a high impact on the traffic flow (see Figure 7.6), the bound R1,max is also
important in the limitation of the traffic flow speed reduction.

In the R1,max selection strategy the information about qin and κ are involved.

• Through the appropriate selection of R1,max the disadvantageous effect of the high
qin on the traffic speed can be reduced, see Figure 7.5. If the R1 weight is reduced
in rush hour traffic, the speed profile of the automated vehicle is closer to that of
the conventional vehicle. As a result, the adaptation of the automated vehicles to
the conventional vehicles leads to an increase in the traffic speed.

• The ratio κ has a high impact on the traffic, see Figure 7.4. If κ is high, the
average speed of the entire traffic decreases. Although it results in an energy saving
traffic flow, the motion of the conventional vehicle can be significantly inhibited.
Therefore, it is recommended to limit R1,max to avoid the disadvantageous effect of
the high κ values.

The assumptions of qin and κ are formulated in a function, such as:

R1,max = f(qin, κ) (7.1)

where f is an appropriately chosen function. f may depend on the current road section and
the traffic requirements. For example, there are some road sections where the fast motion
of the vehicles is more important than saving energy. In this case f must be chosen as a
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function with low values. A typical form of the function f(qin, κ), derived from the results
of the analysis, is illustrated in Figure 7.8. The function indicates that at low κ and N
values the high R1,max value is preferred, which results in saving energy. If κ or qin values
increase, f is reduced. However, the inequality R1,max > 0, ∀κ,N must be guaranteed to
improve the energy efficiency of the traffic flow.
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Fig. 7.8: Typical form of f(qin, κ) function

7.3 Illustration on the improved energy-optimal cruise control

In this section the enhancement of the traffic flow based on the improved energy-
optimal cruise control strategy is illustrated. A traffic simulation scenario is presented in
which the traffic volume along the highway section varies. The aim of the demonstration
is to show that the automated vehicles are able to adapt to the variation of q. Thus, the
energy efficiency of the entire traffic flow is improved.

The simulation scenario contains the analyzed 20km section of the Hungarian M1
highway, see Figure 7.9. At the 2km point of this highway section an entrance ramp
is found, where vehicles merge into the highway. Furthermore, at 4km an exit ramp is
located. It results in an increased traffic on the section 2 . . . 4km of the highway. Since q

0 km 2 km 4 km 20 km

Fig. 7.9: Traffic flow on the highway section

increases, R1,max of the energy-optimal cruise control must be reduced, see the control rule
in Figure 7.8. Thus the relationship between q and R1,max by a second-order polynomial
is defined, see Figure 7.10. It guarantees that the maximum of R1 is reduced at increasing
traffic volume.
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In this section three scenarios are presented. In the first case R1,max = 0.7, which
means that the faster motion of the vehicles is preferred. The second scenario R1,max = 0.9
prefers the energy-efficient cruising, while in the third case R1,max is varied. The ratio of
the automated vehicles in the traffic flow is constant κ = 20%. Figure 7.11(a) presents
the volume of the traffic for all simulations. It demonstrates the effect of the entrance
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Fig. 7.11: Volume and R1,max values through the simulations

and exit ramps, see the values of q in the 2 . . . 4km section. As a result of the ramps, the
traffic volume increases significantly in a short section, which may have impact on the
average speed of the traffic. Therefore, in the third simulation scenario the value of R1,max

is varied based on the relationship in Figure 7.10. As a result, R1,max is reduced to 0.7
between 2 . . . 4km. It means that in this 2km long section the priority of energy-efficient
cruising is modified to faster motion.

Figure 7.12 presents the average speeds in the lanes, in which automated vehicles
have different R1,max strategies. If R1,max = 0.7 is set, automated vehicles have a limited
effect on the traffic. In this case the average speed values are close to the maximum
speed limit in all lanes. However, at the second strategy, R1,max has a high impact on the
average speed, e.g., in the section 14 . . . 20 km. In this case the speed of the vehicle varies
significantly based on the forthcoming road terrain characteristics, speed limits and the
current traffic volume. Between the entrance and the exit ramps the speed of the vehicles
is unnecessary decreased, which is disadvantageous from the aspect of the traffic flow.
The varying R1,max solution in the third scenario combines the advantages of the two
solutions: it guarantees a fast speed on rush hour traffic section, while the energy saving
speed profile is realized on the further sections, see all of the lanes in Figure 7.12. In
this scenario the R1,max is varied as Figure 7.11(b) shows. For example, in Figure 7.12(a)
the speed profile of the improved energy-optimal cruise control strategy is equal to the
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Fig. 7.12: Average speed of the vehicles

speed in the constant R1,max = 0.9 scenario, except in the section 2 . . . 4km, where the
speed profile is close to the constant R1,max = 0.7 strategy. Thus, it is possible to avoid
the unnecessary deceleration in the rush hour traffic section, while the benefits of the
energy-optimal cruise control are achieved.

The similar conclusions are drawn in the examination of the traction forces, see Figure
7.13. In these figures the green points are related to the traction forces of the conven-
tional vehicles, while the red points are connected to the automated vehicles. Figure
7.13(c) shows that the force values in the section 2 . . . 4km are close to the R1,max = 0.7
strategy (Figure 7.13(a)), while in the further sections the forces are equal to those in
the second strategy, see Figure 7.13(b). This conclusion is reinforced by the section be-
tween 14km and 20km points, where the similarity between the combined R1,max and
the constant R1,max = 0.9 strategy is demonstrated. Thus, the varying R1,max is able to
guarantee reduced traction forces, while the average speed of the traffic is not degraded.
The numerical results of the simulations are found in Table 7.2. It proposes that in the
R1,max = 0.9 strategy the mean forces are smaller than in the first scenario R1,max = 0.7.
In the case of the varied R1,max scenario, the mean force of the automated vehicles is
between the results of the constant scenarios, while the value for the conventional vehi-
cles is slightly higher than the result of the R1,max = 0.7. It is the consequence of the
varying speed of automated vehicles, which results in the accelerating and decelerating
motion of the conventional vehicles in the section 2 . . . 4km, increasing the traction force.
However, the strategy of the R1,max variation leads to the overall reduction of the mean
forces compared to the R1,max = 0.7 strategy. Moreover, comparing the results to the
negligible number of automated vehicles in the traffic flow (scenario κ = 1%) the benefits
are more significant, see Table 7.2. Through the use of the energy-optimal cruise control
strategy the force saving of the overall traffic is 2.2%. Thus, the proposed energy-optimal
cruise control strategy can be effective in the traffic flow, where automated vehicles are
in minority.

New result 7.3.1: Analysis method on the impact of automated vehicles with energy-

               dc_1992_22



96 7. Relationship between the traffic flow and the cruise control from the macroscopic point of view

0 2 4 6 8 10 12 14 16 18 20
−500

0

500

1000

1500

2000

Station (km)

F
or

ce
 (

N
)

 

 

look−ahead
w/o look−ahead

(a) R1,max = 0.7
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(b) R1,max = 0.9
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Fig. 7.13: Traction force of the vehicles

Tab. 7.2: Results of the simulations

κ[%] R1,max
Mean of force [N ] Traveling Average

conventional automated overall time [s] speed [km/h]
20 0.7 675.5 629.0 666.2 611.8 117.8
20 0.9 673.3 598.7 658.4 612.0 117.6
20 varied 676.5 604.7 662.1 611.9 117.7
1 0.7 677.7 621.8 677.1 609.1 118.2

optimal cruise control on the time-domain properties of the traffic flow has been provided.
Through the analysis of high-fidelity simulation scenarios the following contributions have
been formed. The selection of design parameter on energy-optimal motion for automated
vehicles has impact on the energy consumption of all vehicles in the traffic network. In-
creasing ratio of automated vehicles has increased advantage on the energy consumption
of all vehicles. Moreover, this advantageous impact at increased traffic flow is more sig-
nificant. Through the contributions a strategy for the parameter selection of the energy-
optimal cruise control has been formed and thus, a balance between the energy, time
performances of the individual automated vehicles and the traffic flow maximization per-
formance has been achieved.
References: [Németh and Gáspár, 2017, Németh et al., 2019a, Bede et al., 2017a, Bede
et al., 2017b, Németh et al., 2016b, Németh and Gáspár, 2016, Németh and Gáspár,
2015b, Németh et al., 2022b]
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8. SET-BASED ANALYSIS AND CONTROL FOR THE TRAFFIC
FLOW WITH AUTOMATED VEHICLES

Relationships between the motion and control of automated vehicles and the dynamics
of traffic flow have impact on both systems, i.e., automated vehicles and traffic control sys-
tems. The relationships have been formed through simulation-based tools in the previous
chapter, and the contributions in the design of energy-optimal cruise control of automated
vehicles have been incorporated. In this chapter the relationship has been examined from
another viewpoint, which is the view of macroscopic traffic dynamics. Due to the non-
linear characteristic of the traffic flow dynamics [9], Sum-of-Squares (SOS) programming
tool for the analysis of polynomial systems has been used.

In SOS programming the problem of finding feasible solutions to polynomial inequal-
ities is transformed into semi-definite optimization task. Important theorems in SOS
programming, such as the application of Positivstellensatz, were proposed in [117]. In
this way the convex optimization methods can be used to find appropriate polynomials
for the SOS problem. The approximation of nonnegative polynomials by a sequence of
SOS was presented in [82]. The SOS polynomials incorporate the original nonnegative
polynomials in an explicit form. [122] showed sufficient conditions for the solutions to non-
linear control problems, which were formulated in terms of state dependent Linear Matrix
Inequalities (LMI). In the method the semidefinite programming relaxations based on the
SOS decomposition were then used to efficiently solve such inequalities. The application
of the SOS decomposition technique to non-polynomial system analysis was summarized
in [115]. [66] introduced the application of SOS programming to several control problems,
e.g., reachable set computation and control design algorithms. A local stability analysis
of polynomial systems and an iterative computation method for their region of attrac-
tion were presented in [145]. In [134] the SOS method was applied to two non-convex
problems, for example polynomial semi-definite programming and the fixed-order H2 syn-
thesis problem. In [142] the performance analysis of polynomial systems was presented,
by which sufficient conditions were provided for bounds on reachable sets and L2 gain
of nonlinear systems subject to norm-bounded disturbance inputs. Robust performance
in polynomial control systems was analyzed in [150]. This method considered the effects
of neglected dynamics and parametric uncertainties. Numerical computation problems of
convex programming based on the SOS method in practical applications were analyzed
in [95]. As a new result the maximum Controlled Invariant Sets of polynomial control
systems were calculated in [78].

The fundamental definitions and theorems for the set-based analysis of traffic flow
dynamics are found in Appendix C.1. First, in this chapter the formulation of finding
maximum Controlled Invariant Set using SOS programming is proposed. Second, it has
been applied for the stability analysis of traffic flow dynamics. Third, the resulted con-
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98 8. Set-based analysis and control for the traffic flow with automated vehicles

tributions of the analysis in the synthesis method of control on mixed traffic flow are
incorporated.

8.1 Formulation of the of set-based analysis methods for discrete-time
systems

In case of road traffic systems the representation of its flow dynamics is conventionally
formulated through discrete time relationships. Therefore, in the followings the SOS-
based computation method of Controlled Invariant Sets is reformulated to discrete time
systems. The fundamental definitions and theorems are found in Appendix C.1. The goal
of the analysis is to determine the maximum inflow qin,max(k), at which the stability of
the system can be preserved, i.e., congestion of the network can be avoided. The analysis
problem leads to an optimization process, in which the umax(ρ(k)) = qin,max(k) function
must be found, where ρ represents scheduling variable.

The state space representation of the system with umax(ρ(k)) is given in the following
form:

x(k + 1) = f(ρ(k), x(k)) + gumax(ρ(k)), (8.1)
where f(ρ, x(k)) is a matrix, which incorporates smooth polynomial functions and f(ρ, 0) =
0.

The local stability of the nonlinear system at the origin is guaranteed by the existence
of the Control Lyapunov Function of the system [141]. It is rewritten to discrete-time
case as:

Definition 1: A smooth, proper and positive-definite function V : Rn → R is a Control
Lyapunov Function for the system (8.1) if

∆V(ρ(k), x(k))

∣∣∣∣
u(k)=umax(ρ(k))

< 0 (8.2)

for each x(k) ̸= 0 and umax(ρ(k)) ≥ 0, V(ρ(k), 0) = 0 for all ρ.

The parameter-dependent Control Lyapunov Function is chosen in the next form:

V(ρ(k), x(k)) = V (x(k)) · b(ρ(k)), (8.3)

where b(ρ(k)) is an intuitively chosen ρ dependent basis function. The difference in the
condition (8.2) is expanded using (8.3):

∆V(ρ(k), x(k)) = V(x(k + 1), ρ(k))− V(x(k), ρ(k)) + V(x(k), ρ(k + 1))− V(x(k), ρ(k)) =

= (V (x(k + 1))− V (x(k))) · b(ρ(k)) + (b(ρ(k + 1))− b(ρ(k))) · V (x(k)) =

= ∆V (x(k)) · b(ρ(k)) + ∆b(ρ(k)) · V (x(k)), (8.4)

During the decomposition of x(k) and ρ(k) in the Control Lyapunov Function, the
original difference ∆V(ρ(k), x(k)) is separated to ∆V (x(k)) and ∆b(ρ(k)). The difference
∆V (x(k)) using (8.1) is computed as:

∆V (x(k)) = V (f(ρ(k), x(k)) + gu(k))− V (x(k)) (8.5)
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Considering function umax(ρ(k)) in (8.5):

∆V (x(k))

∣∣∣∣
u(k)=umax(ρ(k))

= V (f(ρ(k), x(k)) + gumax(ρ(k)))− V (x(k)). (8.6)

The difference ∆b(ρ(k)) depends on the formulation of basis function b(ρ(k)). In the
further computation the upper limit on ∆b(ρ(k)) is used, such as: ν ≥ |∆b(ρ(k))|, see
[160]. The upper limit is chosen according to the dynamic features of the traffic system.

The local stability criterion (8.2) determines the set of the states x, which are stable
and yields that x∞ < ∞, if umax is applied. This set is bounded by the Controlled
Invariant Set, defined in the following way:

V(ρ(k), x(k)) = 1. (8.7)

For practical reasons the equality definition (8.7) is substituted for by two inequality
conditions:

1− ε ≤ V(ρ(k), x(k)) ≤ 1, (8.8)

where ε > 0 is an infinitesimally small number.
Further constraints on the stabilization (8.2) are the validity ranges of the scheduling

variable ρ and the state x. The choice of the basis function b(ρ(k)) is valid in a range

ρmin ≤ ρ(k) ≤ ρmax, (8.9)

where ρmin and ρmax are the bounds of the scheduling variable. Moreover, the solution of
the urban network gating must be found at the constraint:

0 ≤ x(k), (8.10)

which represents that the number of vehicles in the network is positive or zero.
The local stability condition (8.2) is constrained by the Controlled Invariant Set (8.8),

the constraints of the scheduling variable (8.9) and the states (8.10). The stability problem
with the constraints is transformed into a set emptiness conditions:{

(V (f(ρ(k), x(k)) + gumax(ρ(k)))− V (x(k))) · b(ρ(k)) + ν · V (x(k)) ≥ 0,

(V (f(ρ(k), x(k)) + gumax(ρ(k)))− V (x(k))) · b(ρ(k)) + ν · V (x(k)) ̸= 0,

V (x(k)) · b(ρ(k))− (1− ε) ≥ 0, 1− V (x(k)) · b(ρ(k)) ≥ 0,

{ρ(k)− ρmin ≥ 0, x(k) ≥ 0, ρmax − ρ(k) ≥ 0,

}
= ∅. (8.11)

Using generalized S-Procedure, the set emptiness condition (8.11) is transformed into
an SOS condition. The optimization problem is to find an umax(ρ(k)) solution and feasible
V(ρ(k), x(k)) for the following task:

max umax(ρ(k)) (8.12)
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over s1, s2, s3, s4, s5 ∈ Σn; V (x(k)), b(ρ(k)) ∈ Rn

such that

−
(
(V (f(ρ(k), x(k)) + gumax(ρ(k)))− V (x(k))) · b(ρ(k)) + ν · V (x(k))

)
−

− s1

(
V (x(k)) · b(ρ(k))− (1− ε)

)
− s2

(
1− V (x(k)) · b(ρ(k))

)
− s3x(k)−

− s4 (ρ(k)− ρmin)− s5 (ρmax − ρ(k)) ∈ Σn. (8.13)

New result 8.1.1: New analysis method for the inner-approximation of controlled invari-
ant sets of discrete-time polynomial systems has been provided. The approximation has
been formed as a maximization problem, which is constrained through Sum-of-Squares
relations. The result of the maximization is a control Lyapunov function, whose level set
results in the approximation of the Maximum Controlled Invariant Set.
References: [Gáspár and Németh, 2019, Németh et al., 2016d, Németh et al., 2016d,
Németh et al., 2016c, Németh et al., 2015a]

8.2 Set-based analysis for the design of highway traffic control

The modeling of traffic dynamics in highway systems is based on the law of conserva-
tion. The relationship contains the sum of inflows and the outflows for a given highway
segment i. The traffic density ρi [veh/km] is expressed in the following way:

ρi(k + 1) = ρi(k) +
T

Li

[qi−1(k)− qi(k) + ri(k)− si(k)] , (8.14)

where k denotes the index of the discrete time step, T is the discrete sample time, L if
the length of the segment, qi [veh/h] and qi−1 [veh/h] denote the inflow of the traffic in
segments i and i − 1, ri [veh/h] and si [veh/h] are the sum of ramp inflow and outflow
values, respectively. In (8.14) the inflow qi−1(k) and the ramp outflow si(k) are measured
disturbance values, while ri(k) is a controlled ramp metering inflow, which is also known
[116]. The outflow qi(k) of segment i incorporates the core of the traffic dynamics and
depends on several factors, see e.g., [105, 152]. In the following qi(k) is formulated ac-
cording to the fundamental relationship [9], which is generally derived through historic
measurements [46], such as

qi(k) = F(ρi(k)). (8.15)

Note that qi(k) is not only the outflow of segment i, but it is also the inflow of segment
i + 1. Although qi(k) is measured as the inflow of segment i + 1, in the modeling it is
required to consider it through the formula (8.15) to receive signals from the dynamics of
the traffic flow.

The function F(ρi(k)) is formed in a polynomial form, which is fitted to the historic
traffic flow data. Since in the mixed traffic flow automated and human-driven vehicles are
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traveling together, the ratio of automated vehicles κ and their energy-efficient parameter
R1,i must be considered

F(ρi(k), R1,i, κ) =
n∑

j=1

cj(R1,i, κ)ρi(k)
j, (8.16)

where the coefficients in the polynomials are formed as cj(R1,i, κ) =
m∑
l=1

(
dlR

l
1,iκ

l
)

with

constant dl values. The mixed traffic model using (8.14) and (8.16) is as follows:

ρi(k + 1) =ρi(k) +
T

Li

[−F(ρi(k), R1,i, κ) + qi−1(k) + ri(k)− si(k)] (8.17)

Since highways contain several ramps, it is also required to model the dynamics of the
queue on the controlled gates. The length of the queues can be calculated through the
following linear relationship, see [36]:

li(k + 1) = li(k) + T (ri,dem(k)− ri(k)) , (8.18)

where li in the units of vehicle denotes the queue length, ri is the control input [veh/h]
and the demand is ri,dem.

Based on the mixed traffic model and considering the effects of κ and R1,i parameters,
the stability of the traffic system will be analyzed. The examination is based on the Sum-
of-Squares method, in which the polynomial characteristics of the fundamental diagram
(8.16) can be incorporated [Németh et al., 2015]. One of the purposes of the analysis it to
calculate the maximum inflows ri and qi−1 function of R1,i and κ, with which the stability
of the traffic flow can be guaranteed.

Using (8.17) the state space representation of the mixed-traffic system is the following
form:

x(k + 1) = f(R1,i(k), x(k)) + g1umax(R1,i(k), κ(k)) + g2d(k), (8.19)

where x(k) = ρi(k) is the state of the system, f(R1,i(k), x(k)) is a matrix, which incorpo-
rates smooth polynomial functions and its initial value is f(R1,i, 0) = 0. umax(R1,i(k), κ(k))
is the function of the maximum controlled inflow ri(k) and di(k) = qi−1(k)−si(k) includes
the measured disturbances of the system.

The stability analysis is based on the computation of the controlled invariant set using
the Sum-of-Squares (SOS) programming method [145]. The parameter-dependent Control
Lyapunov Function is chosen in the following form:

V(R1,i(k), κ(k), x(k)) = V (x(k)) · b(R1,i(k), κ(k)), (8.20)

where b(R1,i(k), κ(k)) is an intuitively chosen parameter-dependent basis function, whose
form can depend on the analysis problem [71]. The existence of V(R1,i(k), κ(k), x(k)) is
transformed into set-emptiness conditions. Moreover, the domains of R1,min ≤ R1,i(k) ≤
R1,max and κmin ≤ κ(k) ≤ κmax are also formulated in the set-emptiness conditions. Using
the generalized S-Procedure [65] the set-emptiness conditions can be transformed into the
SOS existence problem, see [Németh et al., 2015].
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As a result, an optimization problem is derived, in which the SOS conditions must
be guaranteed. The optimization problem is to find an umax(R1,i(k), κ(k)) solution and
feasible V(R1,i(k), κ(k), x(k)) for the following task:

max umax(R1,i(k), κ(k)) (8.21)

over s1...7 ∈ Σn; V (x(k)), b(R1,i(k), κ(k)) ∈ Rn

such that

−
(
(V (f(R1,i(k), κ(k), x(k)) + gumax(R1,i(k), κ(k)))−

− V (x(k))) · b(R1,i(k), κ(k)) + ν · V (x(k))

)
−

− s1

(
V (x(k)) · b(R1,i(k), κ(k))− (1− ε)

)
−

− s2

(
1− V (x(k)) · b(R1,i(k), κ(k))

)
− s3x(k)−

− s4 (R1,i(k)−R1,min)− s5 (R1,max −R1,i(k))−
− s6 (κ(k)− κmin)− s7 (κmax − κ(k)) ∈ Σn. (8.22)

The result of the optimization (8.21) defines the maximum Controlled Invariant Set, in
which the system is stable with the function umax(R1,i(k), κ(k)). Thus, for the stability
of the system the following inequality must be guaranteed:

qi−1(k) + ri(k)− si(k) ≤ umax(R1,i(k), κ(k)). (8.23)

The parameters of traffic flow dynamics for the computation of stability domain
through VISSIM simulations are tuned. The maximum inflow umax of the system de-
pending on κ and R1,i is illustrated in Figure 8.1, see [Németh et al., 2017]. It is shown
that increases in R1,i and κ reduce the maximum number of vehicles of the traffic flow
umax. Consequently, in the control design it is necessary to find an appropriate coordina-
tion between the stability margin of the traffic system and energy-optimal cruising of the
individual vehicles.

New result 8.2.1: A novel method for modeling the dynamics of the traffic flow with the
consideration of automated and human-driven vehicles, as a polynomial system has been
developed. The new approximation method of the controlled invariant set for the traffic
flow has been applied, with which the stable and controllable regions of the state-space
have been determined. A stability criteria for the control of the traffic flow with the
consideration of the approximation results has been formed.
References: [Gáspár and Németh, 2019, Németh et al., 2016d, Németh et al., 2016d,
Németh et al., 2016c, Németh et al., 2015a]

8.3 Predictive coordination strategy for automated vehicles in traffic

In the rest of this chapter the results of the stability analysis in the control strategy
of the traffic system are incorporated. A synthesis method for ramp metering through
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Fig. 8.1: Example on the result of the stability analysis

Model Predictive Control (MPC) design technique is proposed, in which the inequality
on the stability as a constraint is built-in. The aim of the MPC design is to consider the
prediction of the traffic flow in the design, see e.g., its application to urban traffic systems
in [147, 44].

The control design of the highway is based on the the model of the traffic flow (8.17)
and the queue dynamics (8.18). In the control-oriented traffic model the nonlinear dy-
namics (8.17) is linearized around ρi = 0. Consequently, the traffic model is valid to the
maximum of the traffic density ρmax. The mixed traffic flow model is as follows:

ρi(k + 1) = ρi(k) +
T

L
(−α(R1,i, κ)ρ(k) + q(k) + r(k)− s(k)) , (8.24)

where α(R1,i, κ) is the slope of the fundamental diagram in ρi = 0. The equation of one
highway section is formed as[

ρi(k + 1)
li(k + 1)

]
=

[
1− α(R1,i, κ) 0

0 1

] [
ρi(k)
li(k)

]
+

[
T
L

0
0 T

] [
q(k)− s(k)

rd

]
+

[
T
L

−T

]
ri(k), (8.25)

By defining the state vector of one highway section xi(k) =
[
ρi(k) li(k)

]T the state-space
representation can be formed. Then all the highway sections f are taken into consideration
in order to compress the result in the following matrix form:

x(k + 1) = A(R1,i(k), κ(k))x(k) + B1w(k) + B2u(k), (8.26)

where x(k) =
[
x1(k) x2(k) . . . xf (k)

]T is the state vector, w(k) is the disturbance and
u(k) =

[
r1(k) r2(k) . . . rf (k)

]T is the control input vector. In the following, A(R1,i, κ)
simplified denotion will be used instead of A(R1,i(k), κ(k)).

In the traffic control problem two main performances are defined.
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• The total travel distance must be maximized in order to guarantee the maximum
outflow of the highway section. In order to achieve this requirement, the maximum
critical traffic density of the highway section ρcrit,i is introduced and the following
tracking criterion is defined:

z1,i(k) = ρi(k)− ρcrit,i(k), |z1| → min. (8.27)

Note that ρcrit,i is the reference value in this performance specification.

• The length of the queue on the controlled ramp metering must be reduced to mini-
mize the waiting time of the vehicles:

z2,i(k) = li(k), |z2| → min. (8.28)

Since in the control design all of the highway sections are handled together, the perfor-
mances of the sections are compressed to a vector

z(k) =
[
z1,1 z2,1 z1,2 z2,2 . . . z1,f z2,f

]T
. (8.29)

Since the traffic has relatively slow dynamics, the optimal selection of the current
control input has high importance. The expected traffic dynamics or the expected changes
in the traffic flow must be incorporated into the control design. Moreover, in the control
design constraints must be taken into consideration, e.g., the control inputs ri ≥ 0.
Consequently, MPC is applied to design the appropriate control interventions.

The MPC problem is described in a finite time horizon n · T ahead. The performance
in the given horizon is calculated in the following way

Z =


C
CA
CA2

...
CAn

 x(k)−


zref (k)

zref (k + 1)
...

zref (k + n)

+


0 0 · · · 0

CB1 0 · · · 0
CAB1 CB1 · · · 0

... ... . . . ...
CAn−1B1 CAn−2B1 · · · CB1




w(k)
w(k + 1)

...
w(k + n)

+

+


0 0 · · · 0

CB2 0 · · · 0
CAB2 CB2 · · · 0

... ... . . . ...
CAn−1B2 CAn−2B2 · · · CB2




u(k)
u(k + 1)

...
u(k + n)

 . (8.30)

Based on the reference values ρcrit,i(j) in (8.27) the reference signals zref (j), j ∈ {k, k+n}
are defined. The performance in the given horizon in a compact form is as follows:

Z = C −R+ B1W + B2U, (8.31)

where C contains the current states of the system, R contains the reference values, W
contains the disturbance values, U contains the control input values. Note that both W
and U also contain the forthcoming disturbances and control inputs, respectively.
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In the general MPC design the following cost function is minimized:

J(U) =
1

2

n∑
i=1

ZT (U)QZ(U) + UTRU, (8.32)

where Q and R are weighting matrices. Substituting (8.31) into the function (8.32), the
cost function is transformed as

J(U) =
1

2
UT (BT

2 QB2 +R)U + (CTQB2 +RTQB2 +W TB1QB2)U + ε

=
1

2
UTϕU + βTU + ε, (8.33)

where ε consists of all the constant components. Since ε is independent of the effect of U
on J(U), it can be omitted from the optimization problem.

Since J(U) contains the forthcoming disturbances and only the current values are
measured, the additional elements of W must be estimated. Several methods have been
worked out to provide information about the future traffic flow, see e.g., [69]. For example,
a deep learning approach based on big data was presented in [99] , a statistics and neural
networks were used in [110], while an adaptive Kalman filter approach was proposed by
[50].

The minimization of the cost function J(U) also guarantees the performances (8.29).
However, the cost function itself does not guarantee the stability of the system. Thus,
constrains are built inthe MPC optimization problem by using the results of the SOS-
based stability analysis. The SOS analysis results in an inequality (8.23), which must be
guaranteed to provide stability.

Moreover, the states of the system ρi(k) and li(k) must be positive, which is a further
constraint on the MPC problem:

x(k) ≥ 0, (8.34)

for all 1 ≤ k ≤ n time steps.
Finally, from (8.23), (8.33), and (8.34) the MPC control design problem is formed in

the following way:

min
u(k)...u(k+n)

1

2
UTϕU + βTU (8.35)

such that

umax(R1,i(k), κ) ≥ qi−1(k) + ri(k)− si(k), ∀i, k
x(k) ≥ 0, ∀k

U ∈ U, (8.36)

where U contains the achievable control inputs. The MPC problem can be solved using
standard quadratic programming methods, e.g., [47, 136]. The result of the computation
(8.35) is a series of control inputs on the horizon T · n. The control inputs are computed
online during the cruising of the vehicle.
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Since the entire traffic system the energy-efficient parameter R1 has important role,
its intervention possibility is also built into the control design. The selection of R1,i

in each section is important not only in the force/energy requirement of the vehicles,
but also in the dynamics and stability of the traffic system, see (8.17) and (8.23). This
parameter is incorporated in the MPC problem through the constraints, see (8.36). Figure
8.2 illustrates the effect of R1,i on the fundamental diagram. It is shown the relationship
between R1,i and the outflow of the traffic system qi(k). If R1,i is reduced, qi(k) increases.
Since outflow qi(k) significantly influences ρi(k) and li(k), the parameter R1,i has effects
on the state of the system xi(k).
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Fig. 8.2: Dependence of fundamental diagram on R1,i at κ = 30%

In the coordinated control strategy with the MPC-based control design, the selection
of R1,i is proposed. Considering the inflows qi−1(k), ri(k), si(k) and the length of the queue
of the controlled ramp metering li(k), the energy-efficient parameter R1,i is computed for
each section. Depending on the ramp metering two different scenarios are distinguished:

1./ If the highway section i is controlled by the ramp metering ri, then R1,i must depend
on li. If li increases significantly then R1,i must be reduced to guarantee larger traffic
flow on this section. However, the increased flow results in increased ri, with which
the length of queue is reduced, see (8.18). Consequently, the parameter R1,i must
be selected as the function of li according to Figure 8.3. Here li,min and li,max are
design parameters.

2./ If the highway section i does not include any controlled ramp metering ri(k), then
R1,i must depend on the inflows and outflows. In this case it is necessary to avoid
the instability of the system while the maximum R1,i is selected. From the SOS
programing method the maximum traffic flow umax(R1,i(k), κ(k)) is calculated using
(8.21). Exploiting the experience illustrated in Figures 8.1, the maximum traffic flow
can be expressed by the following form:

umax(R1,i(k), κ(k)) = u0
max − u1

maxR1,i(k)κ(k), (8.37)
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R1,i

lili,min li,max

R1,i,max

R1,i,min

Fig. 8.3: Effect of li(k) on R1,i(k)

where u0
max and u1

max are selected constants, while R1,i(k) and κ(k) are functions of
k. Since ri(k) = 0, in the upper limit of (8.23) can be transformed into the following
form:

u0
max − u1

maxR1,i(k)κ(k) = qi−1(k)− si(k), (8.38)

and R1,i(k) is selected as follows:

R1,i(k) = min

(
1,max

(
u0
max − qi−1(k) + si(k)

u1
maxκ(k)

, 0

))
, (8.39)

Based on the above scenarios, in the coordinated control strategy first the current R1,i

values are computed for each section and second the MPC problem (8.35) is solved to
achieve the optimal control inputs ri(k).

Simulation example on coordination of automated vehicles

Finally, the efficiency of the traffic control strategy is illustrated through a simulation
example, which is performed in the high fidelity microscopic traffic software VISSIM. The
purpose of the example is to show that the MPC-based coordinated strategy is able to
control the highway ramps and the energy-efficient parameter of the vehicles guarantees
the performances of the traffic system.

In the simulation example, a 20km long section of the highway M1 between Budapest
and Vienna is demonstrated. The highway section is divided into 5 segments, and it
contains two controlled on-ramps and one off-ramp, see Figure 8.4. During the simulation
it is necessary to minimize the lengths of the queues on the on-ramps, while the traffic
flow and the energy-saving of the vehicles are maximized.

q0 q1 q2 q3 q4
q5

r1,dem r4,dem

s3

ρ1 ρ2 ρ3 ρ4 ρ5

l1 l4

r1 r4

R1,1 R1,2 R1,3 R1,4 R1,5

Fig. 8.4: Simulation scenario in the first example

The simulation parameter is T = 30 sec sampling time in the prediction with n = 12
points, which leads to a total of 6 min prediction horizon. However, T = 30 sec is too
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small sampling time for the intervention in the traffic control system, thus T = 120 sec is
selected with n = 3 points for the control horizon [44]. Since the control input is computed
as a flow value, it is transformed into green time with a 120 sec cycle. Moreover, in the
simulation κ = 20% value along the highway is considered.

0 1 2 3 4
0

5

10

15

20

25

30

35

Time (h)

ρ
 (

v
e

h
/k

m
)

 

 

ρ
1

ρ
2

ρ
3

ρ
4

ρ
5

(a) Traffic density

0 1 2 3 4
0

500

1000

1500

2000

2500

3000

Time (h)

q
 (

v
e

h
/h

)

 

 

q
0

q
1

q
2

q
3

q
4

(b) qi−1 inflow of the sections

0 1 2 3 4
0

500

1000

1500

2000

Time (h)

r i (
v
e

h
/h

)

 

 

r
1

r
4

(c) Ramp control inflow

0 1 2 3 4

0

0.2

0.4

0.6

0.8

1

Time (h)

R
1

 

 

R1

R2

R3

R4

R5

(d) Look-ahead parameter R1,i

0 1 2 3 4

0

2

4

6

8

10

12

14

16

18

20

Time (h)

l i

 

 

l
1

l
4

(e) Queue length on the controlled gates

Fig. 8.5: Results of the VISSIM simulation in the first example

The results of the simulation are shown in Figure 8.5. The simulation shows increasing
traffic, whose maximum is approximately 3 hours, see the density and the flow values at
Figures 8.5(a),(b). The critical density of the traffic is ρcrit = 25 veh/km, whose tracking
influences the ramps, see Figure 8.5(c). The efficiency of the prediction can be seen in the
dynamics of the ri intervention. For example at time 2.4 h the value of r1 significantly
decreases, because q0 increases in the future rapidly. However, ρ1 is approximately 15
veh/km in t = 2.4 h.

The variation in economy parameters and the lengths of the queues are illustrated
in Figure 8.5(d) and Figure 8.5(e), respectively. The effect of the queue length on R1,i

values is shown in the figures. When the queue length increases, the parameters Ri,1

decreases simultaneously, see the signals of l1, l4 and R1,1, R1,4. Moreover, R1,2, R1,3, R1,5

are selected to avoid the instability of the traffic and improve the flow capacity, e.g., at
rush hour traffic their values decrease, see between 2.6 . . . 3.5 h.

Further example on the coordination strategy is found in Appendix C.2.

New result 8.3.1: A predictive control strategy for the coordination of the motion of
automated vehicles and the ramp metering of traffic network has been provided. In the
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new control synthesis method the varying characteristics of the traffic flow, depending
on the ratio of the automated vehicles, has been incorporated. Moreover, the provided
stability criteria as a constraint in the predictive control has been involved. As a result,
the provided control strategy guarantees the coordination of the individual vehicle motion
and the traffic flow maximization on the global level.
References: [Németh et al., 2017, Németh et al., 2015, Németh and Gáspár, 2019, Németh
et al., 2018a, Németh et al., 2022a]
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9. CONCLUSIONS AND FUTURE PROJECTS

Through the proposed novel integration of learning-based and model-based methods
several control problems of automated vehicles, especially their coordination with trans-
portation systems, can be solved. Nevertheless, the results lay the path for forthcoming
research due to the further open problems and to the limitations of the achieved solu-
tions. In the rest of this dissertation, the new scientific results and the future challenges
are summarized.

9.1 New scientific results

Thesis 1. Robust design structures for performance guaranteed control sys-
tems

In this dissertation design frameworks for control systems with learning-based agents
have been provided. The importance of the frameworks is the design of control systems
with guarantees on selected performances. In the context of automated vehicles, through
the proposed frameworks, safe and collision-free motion for the vehicles under complex
traffic scenarios is guaranteed.

(a) A robust control design framework for systems with learning-based agent in the
reference signal generation has been provided. The result of the method is a supervisory
control system, with which requirements on selected performances are guaranteed. The
design of the robust control is based on the H∞ method, in which the variation of the
reference signal as a disturbance has been incorporated.

For more details see Section 2.2 and [Németh and Gáspár, 2021, Németh et al., 2020,
Németh and Gáspár, 2020, Németh et al., 2021b, Fényes et al., 2021b]

(b) A robust control design framework for systems with learning-based agent in the
control loop has been provided, with which requirements on selected performances are
guaranteed. The novel framework contains two main elements, i.e., the supervisor and
the robust controller. The role of the supervisor is to decide on the actual control input,
which is based on the comparison of the outputs of the learning-based agent and the
robust controller. The algorithm of the supervisor is formed as a constrained quadratic
optimization problem. The design of the robust controller based on the Linear Parameter-
Varying (LPV) method, in which the difference between the outputs of the learning-based
agent and the robust controller through a scheduling variable and a measured disturbance
is considered.

For more details see Section 2.3 and [Németh and Gáspár, 2021, Németh and Gáspár,
2021c, Németh, 2021, Gáspár and Németh, 2016, Németh, 2019]
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Thesis 2. Energy-optimal motion profile design for automated vehicles

A novel method for achieving energy-optimal motion profile for automated vehicles has
been provided. The importance of the proposed method is in its structure, i.e., various
types of forthcoming road and traffic information are incorporated. Furthermore, due
to its structure the motion profile design for automated vehicles under various traffic
situations is carried out, e.g., cruising on highway, following surrounding vehicles, motion
in intersections or optimal speed profile design for overtaking scenarios.

(a) A prediction method for the speed profile design of automated vehicles has been
developed. In the provided new method several pieces of information on the forthcoming
road section, i.e., terrain characteristics, speed limitations, traffic information and motion
of the surrounding vehicles, are incorporated.

For more details see Section 3.1 and [Gáspár and Németh, 2019, Németh et al., 2013a,
Gáspár and Németh, 2015, Gáspár and Németh, 2014b]

(b) A new, advanced, energy-optimal solution on the multi-criteria motion profile
design problem for automated vehicles has been provided. The method is based on a
constrained quadratic optimization, with which the balance between energy consumption
and traveling time is achieved. The speed profile computation in the control architecture
from the cruise control is separated, which provides increased variability in the implemen-
tation of the method. The new energy-optimal method of the motion profile design for
automated vehicles in simulation and in test vehicle environment has been implemented.
The results of the implementations show that the developed design method improves
energy and time performances of the automated vehicle motion effectively, under real
circumstances.

For more details see Section 3.2, Section 3.3 and [Gáspár and Németh, 2019, Németh
and Gáspár, 2014, Németh and Gáspár, 2015b, Gáspár and Németh, 2014a, Soumelidis
et al., 2018]

(c) An energy-optimal motion profile with the consideration of forthcoming road and
traffic information in a performance guaranteed structure has been designed. The provided
new advanced control strategy guarantees safety performance requirements for the vehicle,
i.e., keeping safe distance and speed limitations, even if the communicated measured
signals are degraded.

For more details see Chapter 4 and [Németh and Gáspár, 2021, Németh et al., 2021c,
Németh et al., 2021a]

Thesis 3. Control design for safety critical interactions of automated vehicles

As a contribution of this dissertation, the proposed control design frameworks and
motion profile methods for handling safety critical interactions of automated vehicles have
been transformed. The complex multi-vehicle coordinated control problem of cruising
vehicles in individual intersections with two novel methods under various scenarios has
been solved. In the control solutions the presence of human-driven vehicles in the traffic
scenario have been involved.

(a) The extension of the new energy-optimal motion profile design method for the
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interaction of multiple automated vehicles has been provided. The coordination of the
automated vehicles in intersection scenarios through the extended optimization problem
has been solved, i.e., the ordering of the vehicles and the selection of their speed profiles
in a joint optimizations process have been formed. In the coordination of the automated
vehicles the motion of the human-driven vehicles in the intersection has been incorporated.

For more details see Chapter 5 and [Gáspár and Németh, 2019, Németh and Gáspár,
2019, Németh and Gáspár, 2015a, Szilassy et al., 2019]

(b) A novel energy-optimal motion profile design method for intersection scenarios
of automated vehicles in a performance guaranteed structure has been provided. The
developed design framework contains three elements, such as a robust cruise control, a
supervisor and a reinforcement-learning-based agent. The role of the robust cruise control
in cooperation with the supervisor is to provide guarantee on the collision avoidance with
the further vehicles in the intersection. The learning-based agent improves economy and
time performances of the vehicle. In the novel control structure the advantages of the
robust control, i.e., the performance guarantees, and the benefits of the learning-based
methods, i.e., the improved performance level are combined.

For more details see Chapter 6 and [Németh and Gáspár, 2021b, Németh and Gáspár,
2021a, Németh et al., 2018b]

Thesis 4. Analysis and synthesis methods for automated vehicles in traffic
The extension of the provided enhanced control design methods for the coordination of

automated vehicles in macroscopic traffic context has been developed. Simulation-based
and polynomial analysis methods for exploring the impact of automated vehicles on the
traffic flow have been elaborated. The results of the analysis in the control synthesis for
improving macroscopic traffic performances have been incorporated.

(a) An analysis method on the impact of automated vehicles with energy-optimal
cruise control on the time-domain properties of the traffic flow has been provided. Through
the analysis of high-fidelity simulation scenarios the following contributions have been
formed. The selection of design parameter on energy-optimal motion for automated vehi-
cles has impact on the energy consumption of all vehicles in the traffic network. Increasing
ratio of automated vehicles has increased advantage on the energy consumption of all ve-
hicles. Moreover, this advantageous impact at increased traffic flow is more significant.
Through the contributions a strategy for the parameter selection of the energy-optimal
cruise control has been formed and thus, a balance between the energy, time performances
of the individual automated vehicles and the traffic flow maximization performance has
been achieved.

For more details see Chapter 7 and [Németh and Gáspár, 2017, Németh et al., 2019a,
Bede et al., 2017a, Bede et al., 2017b, Németh et al., 2016b, Németh and Gáspár, 2016,
Németh and Gáspár, 2015b, Németh et al., 2022b]

(b) A new analysis method for the inner-approximation of controlled invariant sets of
discrete-time polynomial systems has been provided. The approximation has been formed
as a maximization problem, which is constrained through Sum-of-Squares relations. The
result of the maximization is a control Lyapunov function, whose level set results in the
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approximation of the Maximum Controlled Invariant Set. A novel method for modeling
the dynamics of the traffic flow with the consideration of automated and human-driven
vehicles, as a polynomial system has been developed. The new approximation method of
the controlled invariant set for the traffic flow has been applied, with which the stable and
controllable regions of the state-space have been determined. A stability criterion for the
control of the traffic flow with the consideration of the approximation results have been
formed.

For more details see Section 8.1, Section 8.2 and [Gáspár and Németh, 2019, Németh
et al., 2016d, Németh et al., 2016d, Németh et al., 2016c, Németh et al., 2015a]

(c) A predictive control strategy for the coordination of the motion of automated
vehicles and the ramp metering of traffic network has been provided. In the new control
synthesis method, the varying characteristics of the traffic flow, depending on the ratio of
the automated vehicles, have been incorporated. Moreover, the provided stability criteria
as a constraint in the predictive control has been involved. As a result, the provided
control strategy guarantees the coordination of the individual vehicle motion and the
traffic flow maximization on the global level.

For more details see Section 8.3 and [Németh et al., 2017, Németh et al., 2015, Németh
and Gáspár, 2019, Németh et al., 2018a, Németh et al., 2022a]

9.2 Future challenges and research plans

In the following, three important future challenges which require the continuation of
research with the proposed methods will emerge.

The first future challenge is to find connections with implementation and the realiza-
tion of the proposed methods on clouds. The use of cloud technologies is motivated by
the high amount information about the vehicle and traffic control systems, which must
be processed, stored and used for control purposes.

A recent hot topic of mobile robot control is cloud-aided learning. There are a high
number of cloud robotics solutions, which can vary with tools and technologies used in the
build-up of such systems [38]. The aim of clouds for mobile robots is to use a centralized
server for performing high complexity computation process, whose realization requires the
optimization of data transfer on the network [33]. One of the purpose of learning feature on
the cloud is to provide optimal resource allocation, e.g., [93] proposes a resource allocation
scheme based on reinforcement learning. A further solution is to utilize the computational
capability of the robot, and simultaneously, to consider the latency and CPU availability,
which through a RL-based deep Q-network can be achieved [119]. Another purpose of
applying learning-based approaches for clouds is the high computation capability of the
cloud server [88]. Typical example on the application is route planning, where comfort-
based [87] and safety-based [86] route planning approaches on the cloud with access to
real-time information on the environment are implemented. Another example is real-time
computation of a stochastic model predictive control intervention for a suspension system
[49].

The proposed methods of this dissertation provide frameworks with which safety
performance requirements on cloud-aided automated vehicle control can be guaranteed.
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Through these methods some crucial problems of design [54, 8] and verification [58, 151]
can be avoided. The proposed hierarchical frameworks provide an efficient separation of
the control system for robust vehicle-level control and for learning-based control in the
cloud. The advantage of the solution is that the safe performance specifications even at
the degradation of the communication in the network can be guaranteed, see e.g., [Németh
et al., 2021c].

The second challenge is related to the practical application of learning-based methods
in automated vehicles. The industrial implementation of learning-based, e.g., neural-
network-based approaches in automated vehicles requires the provision of systematical
methods for verification and validation purposes.

Some properties of neural-network-based systems, e.g., observability [4] can be exam-
ined, but the analysis of their highly nonlinear dynamics are difficult. A possible way for
achieving guarantees is the using of Hamilton-Jacobi reachability methods, which work
in conjunction with an arbitrary learning algorithm [43]. It leads to a least restrictive,
safety-preserving control law, which intervenes only when the computed safety guarantees
require it, or confidence in the computed guarantees decays in light of new observations.
Another answer to the problem of guarantees is the use of Satisfiability Modulo Theory,
i.e., an automated verification framework for feed-forward multi-layer neural networks is
proposed by [59]. It is proved that the solution of a two-player turn-based game in a
predefined form can guarantee the robustness of neural networks [163]. Similarly, in [48]
a method for automatically identifying safe regions of the input space is proposed, which
is robust against adversarial perturbations within the network. Moreover, another way
for the verification of the neural networks is based on the use of realization theory. For
example, [39] proposed that the input-output behavior of a continuous-time recurrent
neural network can be represented by a rational or polynomial non-linear system. The
resulted nonlinear system can be used for the analysis of the neural network.

The proposed design framework of the dissertation incorporates the core of a veri-
fication method. The verification is based on the idea behind the design framework of
Section 2.3, i.e., methods for the verification of the model-based part of control system
exist. Thus, the verification can be performed through safe scenarios, when the interven-
tion of the model-based control is highlighted. It must be extended with the verification
of the unconventional part of the control system, with which the maximum performance
level of the control system can be verified. For feed-forward neural-network- based con-
trol systems an own method using the scenario approach has already been proposed, see
[Lelkó et al., 2021a, Lelkó et al., 2021b].

The third challenge is related to the interpretation of automated vehicle control sys-
tems with artificial intelligence in a broader context, which poses social, political, and
ethical challenges [125]. Most of the problems are related to human-machine interactions
and to human resources, which are influenced by the level of automation.

Due to various challenges, in the last years the engineering research field has shown
increasing interest in the ethical consequences of innovation [103]. One of the most fa-
mous research is Moral Machine for analyzing moral preferences and their dependence on
individual, cultural and demographic characters, see [10] and the critique on the approach
[45]. Another concept is to build some ethical considerations in a MPC structure of the
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automate vehicle control [149], i.e., deontology motivates the development of constraints
and through consequentialism the objective function is formed. The motion of automated
vehicles in a traffic level context with selfish or altruistic characters can also be described
[72]. The character of the vehicle through the setting of the automated control can be set.
Another approach of the automated driving is imitation learning [19], where the goal of
creating a neural network is to approximate human driving style. Although it can provide
an effective solution on the driving task, it poses the problem of preliminary decision on
the acceptability of a human driving intervention. The decision requires an a priory rule,
which can also require ethical considerations. The ethical challenges of automated vehi-
cles from philosophical [90, 21, 156] and theological sides [Németh, 2022], [6] have also
been examined.

The role of the proposed design framework to handle the challenges in broader context
is to improve trust in the control system. Through the achieved performance guarantees
the safety level of the vehicle is increased. Its reason is that the unwanted control actuation
and decision of the learning-based agent through the supervisory concept can be avoided.
Similarly, the benefits of the learning-based solutions can improve the performance level,
and thus, the risk of accidents can be reduced.
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A. ILLUSTRATIONS ON ENERGY-OPTIMAL CRUISE CONTROL

A.1 Illustration on the operation of energy-optimal cruise control

Analysis of energy-optimal cruise control in a motorway

The effectiveness of the proposed speed profile selection method on a simulation ex-
ample of a transportation route with real data is analyzed. The terrain characteristics
and geographical information are those of the M1 Hungarian highway between Tatabánya
and Budapest in a 56-km-long section. In the simulation a typical F-Class truck travels
along the 56 km route. The mass of the 6–gear truck is 2023 kg and its engine power
is 300kW (402hp). The regulated maximal velocity is 130 km/h, but the road section
contains other speed limits (e.g., 80 km/h or 100 km/h), and the road section also con-
tains hilly parts. Thus, it is an acceptable route for the analysis of road conditions, i.e.,
inclinations and speed limits. Publicly accessible up-to-date geographical/navigational
databases and visualisation programs, such as Google Earth and Google Maps, are used
for the experiment.

Figure A.1(a) shows the altitude of the road along the way. It shows that the chosen
motorway contains several uphill and downhill sections. In this example two different
controllers are compared. The first is the proposed controller, which considers the road
conditions such as inclinations and speed limits and is illustrated by solid line in the
figures, while the second controller is a conventional ACC system, which ignores this
information and is illustrated by dashed line. Figure A.1(b) shows the velocity of the
vehicle with speed limits in both cases. The conventional ACC system tracks the prede-
fined velocity speed limits as accurately as possible and the tracking error is minimal. In
the proposed method the velocity of the vehicle is determined by the speed limits and
simultaneously it takes the road inclinations into consideration according to the optimal
requirement. In the sections of road inclinations the average relative difference between
the actual velocity and the speed limit is 8% in the proposed method.

Figure A.1(c) shows the required longitudinal force. The high-precision tracking of the
predefined velocities in the conventional ACC system often requires extremely high forces
with abrupt changes in the signals. Since the proposed method uses the road inclinations
and speed limits in advance in the optimization method, the truck is able to travel along
the road with smaller actuation. The actual physical control inputs of the brake cylinder
pressure and the throttle are illustrated in Figure A.1(d) and Figure A.1(f), respectively.
In the conventional ACC system the engine speed is within smaller bounds than in the
proposed controller as Figure A.1(e) shows.

As a result of the road conditions less energy is required during the journey in the
proposed control method, see Figures A.1(g) and A.1(h). The proposed method requires
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Fig. A.1: Real data motorway simulation

               dc_1992_22



A.1. Illustration on the operation of energy-optimal cruise control 149

smaller energy (47.2MJ) than the conventional method (55.6MJ), and the energy saving
is 8.4 MJ , which is 15.1%. Approximately half of this value is realized by the driveline
system (51.4%). The fuel consumption can also be calculated by using the following
equation: V = (Fl1ξ̇0)/(ηLhρfuel) where η = 0.25 is the efficiency of the driveline system,
Lh = 47.3 MJ/kg is the heat of combustion and ρfuel = 730kg/m3 is the density of
petrol. The fuel consumption of the conventional system is 6.44 l while that of the
proposed method is 5.47 l, which results in 0.97 l reduction in fuel consumption in the
analyzed 56 km length section. But, the difference in the duration is only 2 minutes.

Comparison of the method with dynamic programming

The results of the proposed predictive cruise control is compared with the result of
a dynamic programming method through a simulation scenario. In the example the
vehicle must be driven on a 10 km long segment of the Hungarian M1 highway between
Budapest and Tatabánya, see Figure A.2. In case of the dynamic programming algorithm
the following criteria must be guaranteed

• The speed limitation is 130 km/h on the highway, and the maximum reduction of
the vehicle speed is 20%, which results in 105 km/h minimum speed.

• The maximum speed of the vehicle allowed to be maximum 1.5% higher, which
results in 132 km/h.

• The vehicle must reach the maximum speed limit at the end of the highway section.

During the computation of the optimum speed profile the 10 km long section is divided into
200 equidistant sections with 50 m lengths. The goal of the optimization is to guarantee
the minimization of the longitudinal control forces Fl,i for the sum of the segments i

min
Fl,1...Fl,200

200∑
i=1

|Fl,i|, (A.1)

such that the previous criteria and the longitudinal dynamics of the vehicle (see Section
3.1) are guaranteed.
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Fig. A.2: Altitude of the highway segment

The results of the dynamic programming, such as the speed profile and the control
force are presented in Figure A.3.It can be seen that the resulted speed profile and force
characteristics fits to the uphill/downhill sections of the highway (see Figure A.2), by
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which the acceleration and deceleration effects of the highway are utilized. The speed
profile in Figure A.3(a) shows that in the section 3000 . . . 7000 km the speed profile is
significantly influenced by the terrain characteristics. For example at 4000 m there is
valley, which results in the local minimum of the speed. Moreover, the longitudinal force
is continuously reduced before the section point 4000 m, while the increased speed is
advantageous for the uphill section of the exit of the valley.
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Fig. A.3: Results of the dynamic programming

Figure A.4 illustrates the result of the proposed predictive cruise control with different
look-ahead horizon length L. Due to the long highway section the horizon significantly
influences the speed profile of the vehicle. Although the optimization task of the dynamic
programming (A.1) with its constraints slightly differs from the proposed predictive cruise
control strategy, it provides a good benchmark for the evaluation of the method. In case
of short horizon (500 . . . 2000 m) the speed of the vehicles often reaches the speed limit
130 km/h, while at long horizon scenarios (5000 . . . 10000 m) the variation of the terrain
characteristics has higher impact on the speed profile. Moreover, with increasing horizons
the speed profiles approximate the result of the dynamic programming. In case of the
control forces the similar tendency can be found, see Figure A.4. Thus, the proposed
predictive cruise control method provides an appropriate approximation of the dynamic
programming.
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Fig. A.4: Results of the proposed predictive cruise control

The energy consumption values in the various methods are illustrated in Figure A.5.
It shows that the energy consumption at the predictive cruise control is approximately un-
changeable at L > 3000 m. Thus, it is enough to consider information from 3000 . . . 4000
m ahead of the vehicle. Moreover, the comparison of the global optimal dynamic program-
ming and the predictive cruise control demonstrates that the proposed method provides
a good approximation in the results of the energy consumption. The predictive cruise
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control results in only 7% energy increase during the simulation at L = 3000 m. However,
the huge advantage of the predictive cruise control is the reduction of the computation
effort, regarding to the dynamic programming.
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Fig. A.5: Energy consumption depending on the horizon length

A.2 Simulation examples on the operation of enhanced cruise control

Overtaking scenario with degradation in the communication

This simulation example presents a lane change scenario, in which the automated
vehicle in the inner lane of a two-lane road overtakes a slower vehicle. There is also a
preceding vehicle in the inner lane, which has higher speed, compared to the automated
vehicle. In this situation the automated vehicle cannot change lane due to the overtaken
vehicle, which is in the outer lane. Moreover, the vehicles in the inner lane also cannot be
forced to reduce their speed, which means that the automated vehicle must be accelerated.
The goal of the cruise control is to minimize the control force of the automated vehicle,
while the safe distance between the vehicles is guaranteed.

In the example three scenarios are illustrated. In all scenarios the automated vehicle
has information about the longitudinal acceleration, speed and position of the preceding
vehicle through V2V communication, which is used in the predicted cruise control system
to compute R. In ScenarioA the time delay in the communication is 0.05s, which is
considered to be the nominal time delay value, while in ScenarioB and in ScenarioC the
V2V communication has a degradation in the time delay, which is increased to 0.5s. In
ScenarioA and in ScenarioB the automated vehicle uses the presented predictive cruise
control (u ≡ uP ), while in ScenarioC the enhanced cruise control structure is in the loop,
which also uses on-board distance measurement about the distance between the vehicles.
The purpose of the simulation examples is to illustrate that the proposed enhanced cruise
control method is able to guarantee the safe distance, even if the V2V communication
delay is degraded.

Figure A.6(a) shows vehicle speed and Figure A.6(b) illustrates the distance between
the vehicles in each scenarios. In ScenarioA the predictive cruise control is able to guaran-
tee the safe distance 20m, which is resulted by the increase of its speed to 100km/h. The
increase of the speed is resulted by the reduction of R (Figure A.6(c)), which is computed
based on the reduction of the predicted distances, see e.g. section 0 . . . 200m of ScenarioA
in Figure A.6(d). It induces sharp increase in uP , see Figure A.6(e). Thus, the predicted
cruise control is able to guarantee the safe distance, if the signals in the communication
have low time delay value.

               dc_1992_22



152 A. Illustrations on energy-optimal cruise control

If time delay is increased, the predictions of the distances in ScenarioB significantly
differ from the predictions in ScenarioA, see Figure A.6(d). Due to the increased time
delay the preceding vehicle is predicted to have significantly smaller acceleration, which
means that the automated vehicle focuses on the minimization of the control force. The
increased R (Figure A.6(c)) leads to reduced uP (Figure A.6(e)), which results in reduced
speed profile (Figure A.6(a)). Consequently, the safe distance between the vehicles is
not kept (Figure A.6(b)), which can force the preceding vehicle to unwanted braking
intervention.

The resulted speed profile in ScenarioC is illustrated in Figure A.6(a). Since the
supervisor uses the onboard measurement about the distance between the vehicles, the
reduction in ξ0 − η0 is perceived. It leads to the reduction of ρP and ∆P , with which the
tracking of vref,0 is highlighted. The resulted control signal u of ScenarioC (Figure A.6(f))
is close to the uP of ScenarioA, which results in keeping safe distance (Figure A.6(b)).
Thus, the energy-optimal cruise control system is able to guarantee safe distance, even if
the time delay in the communication is significantly increased.

Impact of computational issues on performances

In this simulation example the impact of the computational issues on the performance
of keeping speed in a predefined range is illustrated. In the predicted cruise control a
filtering on λ through a first-order filter 1

s/Tf+1
is used, where Tf is the time constant,

which is modified in different scenarios. In ScenarioA the filter smooths λ with Tf = 1.5s,
which results in slight variation of the vehicle speed and reduced ξ̈0. In ScenarioB and
ScenarioC the filter has lower smoothing impact with Tf = 0.27s, which can result
in the sharp variation of ξ̈0. Since ξ̈0 is measured for the computation of λ (3.9), the
acceleration signal is in feedback loop of the predictive cruise control. Therefore, the
smoothing of λ has a high impact on the resulted control input uP , as it has been analyzed
in [Németh and Gáspár, 2015b]. Sharp λ can result oscillation in uP , which can lead to
significantly reduced performance in keeping speed in the limited range. In ScenarioA
and in ScenarioB the automated vehicle uses the predictive cruise control (u ≡ uP ), while
in ScenarioC the enhanced cruise control structure is in the loop.

Figure A.7(a) illustrates the altitude of the road, which is a short section of the
highway M1. In the example the prediction horizon is 1000m long. The value of vref,0
is 130km/h and the bounds of the range are vmin,0 = 100km/h, vmax,0 = 135km/h. Due
to the uphill and downhill sections the speed of the vehicle is varied to achieve minimum
control intervention. The speeds of the vehicle in the three scenarios are shown in Figure
A.7(b). In case of ScenarioA the predictive cruise control is able to guarantee the primary
performance (4.2), the control intervention uP is shown in Figure A.7(c). In contrast, in
ScenarioB uP has significant oscillation, which leads to the violation of the primary
performance, see Figure A.7(b),(d). Using the enhanced cruise control (ScenarioC), the
violation of the performance can be avoided, even if Tf = 0.27s, see Figure A.7(b). The
u control signal is presented in Figure A.7(e), which is significantly smoother than uP

in ScenarioB. The reduction of the oscillation is achieved by ρP ,∆P , see the signals in
Figure A.7(f),(g). Thus, the proposed enhanced cruise control system is able to guarantee
keeping speed in the predefined range, even if the predicted cruise control has performance
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Fig. A.6: Simulations in overtaking scenario

loss due to computational problems.
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B. ILLUSTRATIONS ON INTERACTIONS OF MULTIPLE
AUTOMATED VEHICLES

B.1 Illustration on the interaction of human-driven and autonomous
vehicles

Example on the formulation of quasi-kinetic energy function

As an example regarding to Section 5.2, in case of three automated vehicles the fol-
lowing constraints for the formulation of quasi-kinetic energy are determined:

• j = 1 : For a selected value of R1,1 the vectors Ξ1,∆Ti are computed, which results
in t1 using the measurement e1, see (5.12). Moreover, (5.8) results in ξ2(t1), ξ3(t1)
through the computation of ∆T2,∆T3,Ξ2,Ξ3. The constraints are e2 − ξ2(t1) >
ssafety and e3 − ξ3(t1) > ssafety.

• j = 2 : Similarly, in case of a given R1,2 the value of t2 is computed. It results in
the constraints e1 − ξ1(t2) > ssafety and e3 − ξ3(t2) > ssafety.

• j = 3 : Finally R1,3 leads to the computation of t3, which results in the constraints
e1 − ξ1(t3) > ssafety and e2 − ξ2(t3) > ssafety.

Thus, the optimization problem in this example is formed as

max
R1,i(t)∈[0;R1,max]

3∑
i=1

Ei(t)R1,i(t), (B.1)

such that
e2 − ξ2(t1) > ssafety, e3 − ξ3(t1) > ssafety,

e1 − ξ1(t2) > ssafety, e3 − ξ3(t2) > ssafety,

e1 − ξ1(t3) > ssafety, e2 − ξ2(t3) > ssafety.

Simulation example on the interactions of vehicles

The simulation scenario contains two vehicles, in which three simulation cases are
performed by the CarSim vehicle dynamic software. The different cases are distinguished
through the initial position of the automated vehicle. In these simulations the human-
driven vehicle is on the primary route, while the automated vehicle with predictive cruise
control in on the non-primary route. Note that in case of pure automated vehicles it is
insufficient to define hierarchy among the routes, but in case of mixed traffic scenarios the
presence of human driver requests the rules. Moreover, the safety distance is increased to
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ssafety = 20 m to create the confidence for the human participant. It is visualized by the
cone in front of the automated vehicle.

In all simulation cases the conventional vehicle has the same initial speed and posi-
tion. Thus, tint = 8.5 s in all simulations. The difference between the three cases is the
initial position of the controlled vehicle. In Case 1 the automated vehicle is initially 90
m from the intersection, while in Case 2 the distance is 110 m, at Case 3 it increased to
150 m. Figure B.1 shows the time moment tint, when the conventional vehicle reaches
the intersection. In Case 1 the cooperation between the vehicles is possible, which means
that the automated vehicle reaches the intersection first, see Figure B.1(a). Figure B.1(b)
illustrates Case 2, when the cooperation is impossible and the speed of the automated
vehicles must significantly be reduced. However, it can be seen that the conflict in the
intersection is avoided and the safety cruising is guaranteed. Case 3 demonstrates the
result, when criterion the maximum set of the cooperation incorporates in also both vehi-
cles. Although, the human-driven vehicle reaches the intersection first, and the automated
vehicle secondly, as illustrated in Figure B.1(c).

(a) Scenario Veh1 (b) Scenario Veh2

(c) Scenario Veh3

Fig. B.1: Vehicles in the intersection (automated vehicle: red, human-driven vehicle: green)

The numerical results of the simulation cases are presented in Figure B.2. The speed
of the vehicles can be seen in Figure B.2(a). Speed of controlled vehicle in Case 1 is
increased to reach the intersection rapidly, while in Case 3 the speed is slightly reduced.
Their reasons are the different selection of R1 weights, which is illustrated in Figure B.2(b).
R1 of Case 3 is continuously on the maximum R1,max = 1, while R1 in Case 1 is slightly
reduced. In both cases the motion of the vehicles can be considered as energy-optimal
through the coordination, but in Case 3 the energy consumption is reduced.

In Case 2 the situation in the intersection differs from the previous cases. Until
the station point −70m the maximum set of coordination contains both vehicles. It is
predicted that the automated vehicle is able to reach the intersection first, which results
in the significant reduction of R1 and the vehicle speed is increased, see Figure B.2(a)-

               dc_1992_22



B.2. Examples on learning-based control design for safety-critical interactions 157

(b). However, after −70m the prediction is modified, which means that the coordination
cannot be guaranteed. This change is induced by the speed increase of the human-driven
vehicle, which is predicted in all computation steps, see Figure B.2(d). Thus, after the
point −70m the W is activated, as depicted in Figure B.2(c).

B.2 Examples on learning-based control design for safety-critical
interactions

In the next simulation examples it is illustrated that the proposed algorithm provides
safe motion for the automated vehicle in various scenarios. The intersection scenario is
illustrated in Figure B.3, where vehicle 1 represents the automated vehicle and the further
vehicles are the surrounding vehicles. In the next four simulations the initial positions and
velocity values of the vehicles are varied, and thus, varying ordering in the intersection
is yielded. In all of the simulations vehicle 1 has conflicts with the surrounding vehicles
because of their route crossing. The goal of the simulations are to show that the automated
vehicle is able to adapt to various traffic scenarios and the proposed optimization (6.12)
together with the reinforcement learning is efficient. The initial position and velocity
values of the scenarios are listed in Table B.1.

initial condition scenario 3a scenario 3b scenario 3c scenario 3d
s1(0) -8 m -25 m -26 m -30 m
s2(0) -20 m -10 m -20 m -10 m
s3(0) -30 m -30 m -8 m -25 m
s4(0) -25 m -8 m -25 m -8 m
s5(0) -35 m -35 m -45 m -30 m
v1(0) 50 km/h 50 km/h 40 km/h 35 km/h
v2(0) 50 km/h 50 km/h 50 km/h 50 km/h
v3(0) 35 km/h 35 km/h 50 km/h 50 km/h
v4(0) 50 km/h 50 km/h 50 km/h 50 km/h
v5(0) 45 km/h 45 km/h 40 km/h 45 km/h

Tab. B.1: Initial conditions for scenario 3

Figure B.4 shows the results of each scenarios in the third simulation setup, related to
Figure B.3. Figure B.4(a) illustrates the trajectories of scenario 3a, where vehicle 1 can
go through the intersections first. Thus, the velocity of vehicle 1 is set to the constant
maximum 50 km/h, with which the avoidance of the collision is guaranteed, see Figure
B.4(b) and the related control inputs in Figure B.4(c). In scenario 3b the automated
vehicle is further from the intersection at the beginning of the simulation, see Table B.1.
Thus, it is not possible to go through the intersection first and therefore, vehicle 1 is the
third in the ordering, see the trajectories in Figure B.4(d). v1 is slightly reduced before
2 s to guarantee the safe distance. Figure B.4(f) shows that u is close to uL during the
entire simulation, which means that the learning process and the optimization (6.12) are
efficient. In scenario 3c the vehicle has reduced velocity related to the surrounding vehicles
and thus, it has fourth ordering in the intersection (see Figure B.4(g)). Guaranteeing
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Fig. B.2: Simulation results with two vehicles in a mixed traffic

safety distance the velocity is reduced and at 5 s the the maximum velocity is achieved,
see Figure B.4(h). Although u is close to uL, it is necessary to modify it to avoid the
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Fig. B.3: Illustration on the intersection scenario with 5 vehicles

collision, e.g., between 1.5s . . . 3.8s (Figure B.4(i)). Figure B.4(j) shows the trajectories
of scenario 3d, where vehicle 1 is the last in the ordering. Its reason is that the initial
velocity is smaller than in scenario 3c, see Figure B.4(k). Since for vehicle 5 the priority
must be guaranteed, vehicle 1 must accelerate with a reduced value between 2s . . . 6s,
see the velocity profile in Figure B.4(k) and the acceleration command in Figure B.4(l).
Nevertheless, u can be selected to be close to uL, which can provide improved level on the
economy performance, while the safety performance are simultaneously guaranteed.

Finally, the operation of the designed automated vehicle control system in a complex
simulation scenario in urban context is analyzed. In the example 7 vehicles take part, i.e.,
the automated vehicle and 6 further surrounding human-driven vehicles. The illustration
of the fourth scenario is found in Figure B.5. In this scenario the automated ego vehicle
is illustrated as vehicle 1. In the example all of the further vehicles are in conflict with
vehicle 1, which means that the signals of vehicle 2 . . . vehicle 7 are used during the design
of the control input a. The initial positions and velocity values are as follows: s1 = −34
m, s2 = −25 m, s3 = −4 m, s4 = −30 m, s5 = −75 m, s6 = −102 m, s7 = −128 m and
v1 = 50 km/h, v2 = 50 km/h, v3 = 40 km/h, v4 = 50 km/h, v5 = 50 km/h, v6 = 40
km/h, v7 = 50 km/h. In the scenario ns = 3 number of surrounding vehicles during the
solution of the optimization problem are considered.

Some scenes on scenario 4 can be found in Figure B.6. Figure B.6(a) shows that vehicle
2 and vehicle 3 have already left the intersection and vehicle 4 is in the intersection for
performing left turn. Since vehicle 2. . .vehicle 4 are closer to the intersection than vehicle
1, the ego vehicle must reduce its velocity to give way, see Figure B.7(b). It is yielded by
the actuation, see the acceleration command u in Figure B.7(c). Moreover, after vehicle
4 leaves the intersection, vehicle 5 arrives at 50 km/h velocity, see Figure B.6(b). Due to
the reduced velocity of vehicle 1 it is not possible to go through between vehicle 4 and
vehicle 5 and thus, vehicle 1 is stopped. Figure B.6(c) shows when vehicle 5 leaves the
intersection, the velocity of vehicle 1 is increased to go through the intersection before
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(f) Control input - scenario 3b
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(g) Trajectories - scenario 3c
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(j) Trajectories - scenario 3d
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(l) Control input - scenario 3d

Fig. B.4: Signals of third scenarios

vehicle 6 and vehicle 7 arrive (Figure B.6(d)).
Figure B.7 shows an insight into the operation of the control system. Figure B.7(a)

illustrates the trajectories of the vehicles and the avoidable region. The illustration shows
that all of the trajectories are outside of the avoidable region and thus, the safety con-
straint on the motion of the automated vehicle can be guaranteed. Figure B.7(b) shows
the distances between vehicle 1 and the closest ns = 3 vehicles, where d1 is related to
the distance between vehicle 1 and the closest vehicle and d3 is related to the distance
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Fig. B.5: Illustration on the complex intersection scenario

(a) Vehicle 4 turns left (b) Vehicle 5 enters into the intersection

(c) Vehicle 1 starts to enter into the intersection (d) Vehicle 1 leaves the intersection

Fig. B.6: Illustration of the complex fourth scenario

between vehicle 1 and the third closest vehicle. Note that the vehicles in ns vary during
the simulation, e.g., directly before t = 4 s distance d1 is related to s1 - s4, d2 is related
s1 - s5 and d3 is related to s1 - s6, while directly after t = 4 s d1 is related to s1 - s5, d2
is related s1 - s6 and d3 is related to s1 - s7. If there are less than three closest vehicles,
virtual vehicles with constant 100 m position are defined, see e.g., d3 after 5.5 s. Figure
B.7(b) shows that all of the distances are above ssafe = 8 m during the entire simulation,
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independently from the selection of the closest vehicle. It is yielded by the control input
u, which is illustrated in Figure B.7(d). Figure B.7(d) also shows the further inputs, such
as uK and uL. Since the role of uK is to provide velocity tracking, its value is 3 m/s2

constantly, because v1 < 50 km/h during the entire simulation, except the initial velocity.
The role of uL is to provide a vehicle motion, with which the reward function is maxi-
mized, such as energy consumption is minimized and the traveled distance of the vehicle
is maximized. However, none of the control inputs uK and uL are acceptable, because the
safety constraints are not guaranteed. Thus, uK is modified through ∆, which results in
the control input signal u. The maximum deceleration of the vehicle before 5.5s guaran-
tees the avoidance of collision with vehicle 2. . .vehicle 5 and the maximum acceleration
between 5.5s . . . 8s guarantees the avoidance of the collision with vehicle 6 and vehicle
7. After 8s the conflict between the vehicles ceases and thus, vehicle 1 can move with
u = uL to minimize the objective in (6.12) to zero. As a result the velocity of vehicle
1 is slightly increased after 8s, see Figure B.7(c). Moreover, Figure B.7(c) presents that
the difference between vref and v1 is very small, which illustrates the effectiveness of the
designed robust cruise control.
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Fig. B.7: Signals of the complex fourth scenario
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The simulation examples have shown that the proposed control algorithm is able to
guarantee the safe motion of the automated vehicle, i.e., the collisions in the intersection
are avoided. The contribution of the complex scenario is that the automated vehicle is
able to handle the presence of increased number of vehicles in the intersection.
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C. ILLUSTRATIONS ON AUTOMATED VEHICLES IN TRAFFIC

C.1 Fundamentals for set-based analysis

The following definitions and theorems are some essential fundamentals for SOS pro-
gramming [66]. Let R denote the real numbers and Zn

+ denote the set of nonnegative
integers. The basic elements of the method are polynomials and SOS as defined below:

Definition 2: A Polynomial f in n variables is a finite linear combination of the func-
tions mα(x) := xα = xα1

1 xα2
2 · · · xαn

n for α ∈ Zn
+, degmα =

∑n
i=1 αi:

f :=
∑
α

cαmα =
∑
α

cαx
α (C.1)

with cα ∈ R. Define Rn to be the set of all polynomials in n variables. The degree of f is
defined as f := maxα degmα.

Definition 3: The set of SOS polynomials in n variables is defined as:

Σn :=

{
p ∈ Rn p =

t∑
i=1

f 2
i , fi ∈ Rn, i = 1, . . . , t

}
(C.2)

for some t < ∞.

A central theorem of SOS programming is Positivstellensatz. By the application of
this theorem the set emptiness constraints of an optimization task can be transformed
into SOS feasibility problems.

Theorem 1: Positivstellensatz Given polynomials {f1, . . . , fr}, {g1, . . . , gt} and
{h1, . . . , hu} in Rn, the following are equivalent:

1. The set  x ∈ Rn

f1(x) ≥ 0, . . . , fr(x) ≥ 0
g1(x) ̸= 0, . . . , gt(x) ̸= 0
h1(x) = 0, . . . , hu(x) = 0

 (C.3)

is empty.

2. There exists polynomials f ∈ P(f1, . . . , fr) (P is multiplicative convex cone), g ∈
M(g1, . . . , gt) (M is multiplicative monoid), h ∈ I(h1, . . . , hu) (I is ideal) such that

f + g2 + h = 0. (C.4)
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The multiplicative monoid and the cone are defined as follows.

Definition 4: Multiplicative monoid Given g1, . . . , gt ∈ Rn, the Multiplicative Monoid
generated by gj is the set of all finite products of gj, including the empty product, defined
to be 1. It is denoted as M(g1, . . . , gt). For completeness define M(ϕ) = 1.

Definition 5: Cone Given {f1, . . . , fs} ∈ R, the cone is generated by fi is

P(f1, . . . , fs) =

{
s0 +

∑
sibi|si ∈

∑
n

, bi ∈ M(f1, . . . , fs)

}
.

For completeness note that ϕ =
∑

n.

In the practical application of the Positivstellensatz some assumptions are considered.
For example, g = p0 ∈ M(p0) and f = −qp0 −

∑n
i=1 sip0pi, q ∈

∑
n, pi ∈ Rn, h = 0 are

defined. Since q and si are SOS, f ∈ P(p1, . . . , pm,−p0). Therefore

f + g2 + h = −qp0 −
n∑

i=1

sip0pi + p20 = −

(
p0 −

m∑
i=1

sipi

)
p0 −

n∑
i=1

sip0pi + p20 = 0 (C.5)

It leads to the generalized S-Procedure, which is formed as follows, see [65].

Theorem 2: Generalized S-procedure Given symmetric matrices {pi}mi=0 ∈ Rn. If
there exist nonnegative scalars {si}mi=1 ∈ Σn such that

p0 −
m∑
i=1

sipi ≽ q (C.6)

with q ∈ Σn, then
m⋂
i=1

{x ∈ Rn pi(x) ≥ 0} ⊆ {x ∈ Rn p0(x) ≥ 0} . (C.7)

The related set emptiness question asks if

W := {x ∈ Rn p1(x) ≥ 0, . . . , pm(x) ≥ 0,−p0(x) ≥ 0, p0(x) ̸= 0} (C.8)

is empty.

Moreover, there is an important connection between SOS programming and LMI prob-
lems, which was proved by [117].

Theorem 3: LMI feasibility problem Given a finite set

{pi}mi=0 ∈ Rn,

the existence of {ai}mi=0 ∈ Rn such that

p0 +
m∑
i=1

aipi ∈ Σn (C.9)

is an LMI feasibility problem.
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C.2 Illustration on the predictive coordination strategy

In this simulation example a 20km long section of the highway M1 between Budapest
and Vienna is also demonstrated. The highway section is divided into 5 segments, and it
contains two controlled on-ramps and one off-ramp, see Figure C.1. During the simulation
it is necessary to minimize the lengths of the queues on the on-ramps, while the traffic
flow and the energy-saving of the vehicles are maximized.

q0
q2q1 q4q3

q5

r2,dem r3,dem

s4

ρ2ρ1 ρ4ρ3 ρ5

l2 l3

r2 r3

R1,2R1,1 R1,4R1,3 R1,5

Fig. C.1: Simulation scenario in the second example

The simulation parameter is T = 30 sec sampling time in the prediction with n = 12
points, which leads to a total of 6 min prediction horizon. However, T = 30 sec is too
small sampling time for the intervention in the traffic control system, thus T = 120 sec is
selected with n = 3 points for the control horizon [44]. Since the control input is computed
as a flow value, it is transformed into green time with a 120 sec cycle. Moreover, in the
simulation κ = 10% and κ = 30% values along the highway are considered. During the
simulation the signals in w(k) are considered.

The results of the simulation in case of low rate of look-ahead vehicles κ = 10%
are shown in Figure C.2. The simulation shows a scenario between two rush traffic
peaks, whose maximum is approximately at 1.7 hours, see the density and the flow values
at Figures C.2(a)-(b). Due to the reduction of the inflows q0 and r2,dem, r3,dem, s4, the
controller is able to increase the controlled inflow ri, while the stability of the system
is preserved, see Figure C.2(c)-(d). Since r2, r3 values are increased, the length of the
queues in the controlled gates can be reduced and the look-ahead parameter is increased,
see Figure C.2(e)-(f).

Another simulation scenario for κ = 30% is presented in Figure C.3. The results show
the efficiency of the control strategy, because the intervention of r2, r3 and R1,i are able to
adapt to the change of the vehicle rate. The stability constraint of the system is formed
as umax(R1,i(k), κ(k)) = 2023 − 492κ(k)R1,i(k), which means that κ and R1,i cannot be
increased simultaneously to avoid the limitation of flow. The impact of the increase in κ
is shown around the time 2h, where R1,3 cannot be increased to the maximum value in
κ = 30% scenario, while in κ = 10% scenario R1,3 = 1. Thus, the queue length is higher
at κ = 30%, as shown in Figure C.3(f).

Summarizing, the simulation examples show that the control strategy is able to guar-
antee the stability of the traffic flow and the control of the energy-efficient look-ahead
vehicles. In the strategy the inflow of the traffic system and the look-ahead parame-
ter of the individual vehicles are coordinated. The control strategy is able to adapt to
the variation in the traffic signals, such as the inflow disturbances and the ratio of the
energy-efficient vehicles.
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Fig. C.2: Results of the VISSIM simulation at κ = 10%
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Fig. C.3: Results of the VISSIM simulation at κ = 30%
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