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List of symbols

This is a non-complete list of acronyms, which only collects the most frequently used notations in
the text. Some notation specific to a given study will be introduced at the place of discussion, this
way allowing the multiple usage of the same symbols.

G graph
V set of nodes of a graph
E set of links of a graph; bursty train size

eu,v link between nodes u and v
N size, i.e., number of nodes in a network
M number of links in a network

wu,v; w weight of the link eu,v; link weight in general
Gv egocentric network of node v
Vv neighbour set of node v
Ev set of links in Gv

Gt temporal network
Et set of events (temporal events)

G[0,t] aggregated temporal network
D event graph

ED set of links in D
kv; k degree of node v; node degree in general

kin; kout in and out-degree of a node
〈k〉;z average degree
sv; s strength of node v; node strength in general

Cv clustering coefficient of a node v
C average local (or global) clustering coefficient



x

Ou,v; O overlap of link eu,v; link overlap in general
nu,v number of common neighbours of nodes u and v

ρ network density
P(x) Probability density function of a variable x
〈x〉 average value of variable x

γ degree distribution exponent
d(u,v) graph distance between nodes u and v
BC(u) betweenness centrality of node u

T observation time period
Aev,ac

i An attribute i of an event ev or action ac
Av

j A meta-data attribute of an individual v.
t; ti time; time of the ith event.

x(t); ev(ti) binary event sequence; sequence of event timings
τ inter-event time

τr residual time
α inter-event time distribution exponent

A(td); td autocorrelation function, delay time
γ autocorrelation exponent
β train size distribution exponent
ω event frequency
B bursty parameter

p(n) memory function
k, w sequence of degrees, weights, etc.
〈`〉 average path length
∆t maximum time between causal events
ai activity of node i
ϕ individual adoption threshold
Φ integer adoption threshold
φ average adoption threshold
r fraction of blocked nodes for adoption



1. Introduction, positioning and terminology

1.1 Introduction

The goal of this thesis is to summarise my scientific achievements since my PhD in 2009 and to
position these contributions on the scientific landscape. My scientific motivations have always been
curiosity driven and focusing on answers to the question “why?” (rather than to develop novel
methods or technologies only). This attitude may be rooted in my training in physics but certainly
resulted in a very heterogeneous scientific portfolio with projects and publications ranging between
and combining knowledge from several domains. However, these results all have a common ground
to address some aspects of human dynamics using computational methods and concepts rooted in
physics. It builds on the conventional results and recent developments of several fields and as such
it is truly interdisciplinary, which makes it difficult to fit into the traditional categories of academic
disciplines. However, I judge this scientific multi-pluralism as an advantage, as it provides a ground
for the recombination of knowledge of foreign disciplines to solve unconventional problems.

1.1.1 Scientific landscape

My thesis is naturally related to physics of complex system, which studies the emergence of
collective phenomena that arise from the interactions of entities in many-agent multivariate systems.
The emergence of collective behaviour has been historically studied in the framework of statistical
physics [329] of phase transitions and critical phenomena. My PhD landed within these fields as it
is mostly about phase-transitions of cooperative behaviour emerging in modelled physical systems
like in spin models, diffusion, or percolation phenomena [201, 193, 196, 197, 194]. Meanwhile,
collective phenomena occur not only within the realm of the physics of matter, but also in many
other areas, including biological, social, and economic systems. The global spreading of a pandemic,
the emergence of social movements, the collective migration of animals, the growth of tumours, or
the coordinated firing of neurons are all examples of interdependence and collective behaviour [327].
However, advances in these areas have been hampered by difficulties in collecting the vast amounts
of detailed data necessary for validating theories and developing quantitative approaches. Especially
in the social systems arena, the community has confronted the insurmountable obstacle of a lack of
data on human behaviour at multiple scales. Consequently, in many ways, it is currently easier to
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observe tiny bacteria or galaxies light years away than our fellow humans [363].
These foundational limitations are now being obliterated by the digital data revolution [260, 79].

Remarkably, every 1.2 years, more human-driven socioeconomic data are produced than during
all preceding years of human history combined. Finally, we are in the position to follow the
evolution of large real-world systems and detect the emergence of collective social behaviour “in
vivo”. This boom in data collection was induced by widely adopted new technologies, such as
mobile phones or online services, and was escorted by the development of new computational
designs. Recent availability of high performance computational resources, the advances in social
computation methods, and the advent of advanced machine learning and statistical data analysis
all contributed to the success of data-driven research of human behaviour. However, at the same
time, such studies highlight our limitations in knowledge about complexity itself and challenge us
on the foundational aspects (such as conceptual, theoretical, and modelling issues) that form the
basis of our understanding of complex systems.

In this context, network science has been assigned an increasingly relevant role in defining a
conceptual framework for the analysis of complex systems (as discussed in details in Section 1.2.1).
Network science is rooted in statistical physics and graph theory and it is concerned with structures
that map real entities and their interactions to graph nodes and links [370, 40, 18, 280] to describe
the architecture of complex systems. For a long time, this mathematical abstraction has contributed
to the understanding of real-world systems in physics, biology, chemistry, social sciences, and
economics. Recently, however, the enormous amounts of detailed data, electronically collected
and meticulously catalogued, which finally become available for scientific analysis and study,
led us to the discovery that most networks describing real world systems show the presence
of complex properties and heterogeneities, which cannot be neglected in their topological and
dynamical description. This has called for a major effort in developing the methodology to
characterise complex networks [278, 173, 108, 388, 226], to describe the observed structural and
temporal heterogeneities [18, 173, 39, 200], to capture the multilayer nature of connectedness [216],
to detect and measure emerging community structure [126], to identify the effects of spatial
embeddedness [46], and higher-order structural [384, 150, 49] and temporal [195, 218, 268, 223,
217] correlations determining the emerging network structure, etc. All these efforts have brought
us to a point where the science of complex networks has become advanced enough to help us
to disclose the deeper roles of complexity and gain understanding about the behaviour of very
complicated systems like global epidemic, transportation systems, the brain, or society.

Finally, we are able to tackle challenges, which were not addressable earlier due to lack of
data, but now they are possible through the quantitative observations of the social behaviour of
individuals and groups in global settings. These advancements called for the emergence of the
new field of computational social science (CSS) [234] with the aim to develop the methodology
for the quantitative description and modelling of social systems. Beyond topical relevance, any
question of CSS translates to computational problems, and many of them can be translated to
concepts developed in physics of complex systems. Moreover, CSS is based on methodologies
borrowed from conventional social sciences, cognitive and behavioural sciences, psychology,
statistics, physics, computer science, and network science. Direct applications of methodologies
from this broad set of disciplines were proofed to be successful at the outset, but at the same time
they inherited concepts, which potentially mislead the description of the systems in focus. This way,
for the quantitative description of human behaviour, the development of entirely new concepts were
called for, leading to the emergence of domains like computational economics, human dynamics,
social simulations, or computational linguistic, etc. Potentials of these advancements are not only
to enhance data-driven reasoning in explaining social phenomena [363] but to fuel a paradigm shift
to introduce social sciences as more quantitative fields.

Dynamical processes like information or infection spreading, the adoption dynamics of inno-
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vations, memes, fads, or opinions can be effectively studied through the adoption of the network
picture and methods from the physics of collective behaviour. Central question here is how the
structure of interactions effects the critical behaviour and phase transitions, commonly characteris-
ing such phenomena [43]. The theoretical description and synthetic modelling of these systems
have been earlier studied with tools borrowed from statistical physics, critical phenomena and
computational modelling, while data-driven modelling [317, 195] and statistical learning [127]
are recent promising directions to bring predictive modelling of dynamical processes closer to real
observations. It has been shown that several systems are crucially influenced by the heterogenous
number and strength of interactions as well as by the time-varying nature, multiplexity, and struc-
tural and temporal correlations of them. An approach from physics is naturally helpful to address
these problematics by quantitatively studying any collective social phenomena and in a broader
sense dynamical processes, which evolve on social networks and are driven by information (e.g.
influence, rumours, or memes) transmitted via social interactions.

Human dynamics [325], on one hand, concentrates on individuals in terms of their actions,
autonomous behaviour, mobility and migration, opinion formation, or spatio-temporal dynamics
in geographic or mental spaces, etc. However, even at this level of description, the ego1 in focus
is always embedded in a socio-economic environment, which cannot be ignored. On the other
hand, human dynamics is concerned also with dyadic and egocentric interaction dynamics to
unveil temporal patterns of interactions, mesoscopic group formation, inter and intra-community
dynamics in social networks. On the system level, it addresses the dynamical emergence of the
social networks and any global human dynamical phenomena, like patterns of collective motion,
emergence of collective movements, spreading of opinion, products or information, etc. This way,
it can be identified as a sub-field of computational social science even its general focus is somewhat
broader than to address sole social behaviour. It is also strongly entangled with network science,
physics of dynamical systems, data science, computational science and other fields mentioned
above.

Human dynamics as a field originates from direct observations of individual human be-
haviour [39, 148]. In this thesis, I propose a broader interpretation of the field, by considering not
only to directly study dynamical human behaviour, but also its consequences [200]. This way, I
include problems under this umbrella, which are conventionally associated to other fields, but their
understanding is crucially depending on some aspects of human dynamics.

1.1.2 Methodological challenges

The methodological steps in research of human dynamics basically follow the conventional episte-
mological structure common in physics and in natural sciences, but with innovative, topic relevant
techniques applied at each stages. Next, I give a short and certainly non-complete summary about
the methods, techniques and paradigms applied at each phases, to obtain generalisable and verifiable
knowledge from data-driven observations of human behaviour.

Data collection
Digital behavioural data has the advantage to record human behaviour in its own settings, in fine
details, potentially accompanied with spatial, temporal and demographic details, for millions of
individuals, without the common observational biases [79]. This way, it may provide statistically
more significant, variant, and better generalisable observations about human behaviour. This is
opposed to census data where individual details are aggregated, or to earlier designs of experimental
social studies where observations were typically made in artificial settings involving a handful of
participants. Digital behavioural and especially relational (network) data can be collected from

1Note that naming a person an individual or an ego are deemed equivalent in this thesis, as they may be conventional
in different terminologies, but they refer to the same, a person.
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various sources. Life-logs and individual tracking [113, 181, 334] relies on recent technologies
like mobile phones or radio-frequency IDs (RFID) [44, 252] to follow people with their consent.
Such projects provide temporally detailed records about a limited number of participants potentially
including their whereabouts, communication (email, mobile call, short messages, online social
networks,...), physical proximity, application usage, sleeping times, circadian patterns, just to
mention a few examples. Other great data sources are provided by the automatically collected com-
munication records for archiving or billing purposes, like emails [116] or records of mobile phone
communications [54]. Such data usually record temporally detailed lists of dyadic communication
actions of millions of anonymised users (e.g. customers of the same mobile provider), potentially
with their actual location and length of interaction, but certainly without any information about the
content of their communication. Typically they are accompanied with meta-data sets including
demographic and socio-economic details about the users. The recent popularity of online social
services contributed enormously to this digital data endeavour. Services like Facebook, Google,
Twitter, Spotify or gaming companies all record and store detailed personal and service usage
informations about their customers and use them for development, marketing and advertisement
purposes. At the same time, they share data via open APIs or data challenges, which in turn are
extremely useful for external developers and scientists [373, 282]. Finally, online collaborative
platforms [187] and archiving services [2] record relational data about professional interactions
like scientific collaborations or project developments. In addition, there are myriad other ways
to collect and access digital data valuable for research, and this list will ever expand due to the
emergence of new technologies and online services.

Some major disadvantages are also rooted in the data-driven approach to human behaviour.
First of all, such digital datasets are more like field experiments, they are not collected in a
controlled experimental setting and this way they are not reproducible at the finest level of details.
They are somewhat similar to astronomic observations, where despite recurrent patterns and
regularities, the observation of the Universe is unique at any point in time. Possible solutions
to these shortcomings are provided by the recent and more-and-more frequently used designs
of online social experiments [309], which are controllable, scalable, and relatively un-expensive.
Depending on the problem setting, they may employ unique experimental designs [76] or use
online survey platforms like Amazon Mechanical Turk [1, 69] or SurveyMonkey [9]. There
are also some demographic biases commonly characterising digital behavioural datasets. The
digital data collection about individuals is conditional to the usage of digital devices (like mobile
phones or computers) and communication services (email, online social networks, etc.). This
way some demographic groups like elderly people, ones living at rural areas, or people with
smaller income may appear under-represented in the data. However, due to the development of the
telecommunication infrastructure, the increasing availability of smart devices, and the ever seen
popularity of online services, these biases are vanishing even in developing countries, yet they are
necessary to be noted. Another disadvantage of the actual digital data practice has been raised
on the ethical side. The automatic collection of highly sensitive personal data and the potential
tracking and identification of people without their consent have been identified as major concerns.
Customers using free online services, unintentionally pay with their data, which in turn is used
and re-sold for marketing and other purposes. Recent developments in data ethic and personal
information treatment has been enforced by policy makers to put the rights to own data to the
hand of the customers, this way closing the ethical gap between practice and privacy [4]. However,
this also indicates challenges in research and development, to design appropriate standards of
data privacy and methods for data collection, which aggregate individual details on a necessary
level to avoid potential re-identification [102], but yet to contain valuable information for scientific
investigations.
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Observation and analysis
Hundreds years old methodologies provided by statistics were developed for the analysis of
conventional social and economic data, where the usual obstacle was the small sample size. Due to
this limitation advanced statistical models, measures of variance and confidence were developed to
be able to state something meaningful from small data and to identify biases [333]. These techniques
were inherited to the contemporary methods of statistical data analysis [290], where the sample size
is usually not the bottleneck anymore, but the heterogeneity of the observed quantities raises new
challenges. To extract information from large digital datasets, the new field of data mining [379]
grew out on the basis of statistics, machine learning, and data bases to identify patterns from
large data and transform them into understandable knowledge. The methodology of this field
circles around data retrieval, pre-processing, transformation, data mining, and interpretation and
aims to solve problems like anomaly detection, association learning, clustering and classification,
regression and inference.

Network analysis provides other tools, which were found useful to learn about the dynamics
of humans, embedded in a social, economical, geographical or abstract spaces [367]. Building
on tools originated from graph theory and statistical physics, network analysis operates with
measures characterising nodes and links, local and mesoscopic structures and the entire connected
network to identify locally and globally important vertices and relationships, assortative correlations,
communities, core-peripheral structures, and heterogeneous statistical characteristic of the structure,
and many others [278]. On the other hand, network analysis provides several ways to represent
relational data as network structures with increasing level of complexity. Beyond the simple static,
weighted and directed description of interactions, recently it grounded the methodology to take into
account the evolution of networks, the time-varying nature of interactions [173], the multiplexity of
links associated with several types [216, 55], the spatial embeddedness of nodes [46], or several
attributes assigned to nodes and links. In addition, randomised reference models [195, 134] provide
further analysis tools to identify significant structural and temporal patterns of interactions via the
controlled shuffling of the temporal and structural informations encoded in the network.

Modelling
Modelling systems of human dynamics borrowing concepts from statistical physics, complex
systems, machine learning, and computational social science, with the aim of better understanding
and predicting human behaviour. One can identify three main branches in this endeavour:

Statistical models are common in main stream empirical social science to detect statistically
significant correlations between a variable describing a social phenomenon and a variable thought
to explain it [172, 367]. This approach is originated in advanced statistical methods, however
recently, it applies technics borrowed from machine learning, data mining, and Bayesian learning.
The main advantages of this approach are to account for individual differences to identify groups
of egos with similar behaviour and to make statistical predictions even on the single ego level.
Moreover, these methods allow the detection of causal inferences in data [130], while crucially
they do not address mechanistic processes driving human behaviour. In this way they may help
to build hypothesis of social behaviour but they have limited capacities in proof-of-concept and
scenario-testing type of modelling.

Mechanistic models are based on concepts borrowed from physics, where egos are identified as
interacting entities with decisions driven by presumed mechanisms [172, 163]. They typically model
emergent behaviour whereby larger complex phenomena arise through interactions among smaller
or simpler entities such that the emergent system exhibits properties the smaller entities do not.
These generative processes are sometimes formalised into coupled dynamical differential equations
with analytical or numerical solutions, and emulated in the realm of social simulations [136] as
large-scale computer simulations where the stochastic nature of human behaviour is considered
by probabilities of possible decisions at the individual level. School examples are generative
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network models [61, 206] employing the minimal but sufficient set of microscopic mechanisms,
e.g. preferential attachment, memory, or reinforcement, which lead to some emerging property of
the global network structure, like heterogeneous degrees or community structure. These models can
consider social mechanisms influencing the decisions of egos, they intrinsically take into account
causal relationships in reasoning, and provide ways to understand emerging phenomena in social
systems [73]. On the other hand, they usually assume that egos are identical and statistically
equivalent entities (above the cognitive level) and can be characterised by their “average” behaviour.
This approach has been proofed to be successful to simulate system level behaviour, and it provides
an ideal test bed for hypothesis and scenario-testing. On the other hand, as it usually neglects
individual heterogeneities, thus it has limitation for a fine-grained description of a social system.

Data-driven models is a new branch in modelling social systems and co-evolving dynamical
processes [340, 195]. They integrate real-world data with synthetic models to concentrate on the
effect of selected mechanisms, while keeping the rest of the system as close to reality as possible.
Data can enter a synthetic model in several ways, e.g. by parameters determined from empirical
systems [340], by replacing some parts or the entire system with real data and only model the
effects of selected mechanisms [198], or even by replacing real entities in an observed population by
model agents to observe their simulated behaviour in a real setting [132, 72]. In addition, to better
understand simulated dynamical processes evolving on real networks , the effects of structural and
temporal correlations can be testified by using randomised reference models [134, 195, 218].

Although these three modelling paradigms have relevance on their own, they provide comple-
mentary advantages for better understanding. To understand, model, and predict social systems,
after observation it is crucial to ask the question “why?”. Using mechanistic and data-driven models
one can build and demonstrate hypothesis(es) by identifying the minimal set of causal mechanisms
leading to the emergent behaviour in focus. This knowledge may provide relevant information to
select features to train statistical models for prediction. Applying models alone from these three
paradigms would leave us (a) with self-serving mechanistic models with multiple hypothesises
explaining the same phenomena, and (b) with simple rules-of-thumb like black-box experiments
using statistical models.

Verification and validation

Verification and validation of models of human dynamics are difficult as social systems are far from
being deterministic and as such they do not provide any ’ground-truth’ (unlike systems in physics)
for formal evaluation of modelling results [158]. Nevertheless, various techniques exist to verify
results provided by models of one of the three approaches we discussed above. In case of statistical
learning, datasets are commonly divided for training and validation sets. After training a model on
the former one, verification standards are defined via the sensitivity (true positive) and specificity
(true negative) recalls from an independent validation set [290, 379]. These measures are able
to quantify the proportion of correctly recovered positive and negative attempts of the predicted
features even on the individual level and can help to identify deterministic independent features
for prediction. However, since they are simply considering the predicted output of a black-box
experiment they are unable to proof dependencies beyond the phenomenological level.

Verification of generative models is impossible on the level of single entities but on the
level of the emergent phenomena. This can be done by directly comparing the solution of the
model’s formal description to its simulated dynamics or stationary state [43], or by verifying the
emergence of some expected characters on the system level [278]. Data-driven models are typically
compared to real world observations, whether directly or by feeding the modelled process with
real parameters tp compare predictions to empirical outcomes [340]. Moreover, biases induced by
complex mechanisms can be verified by data-driven simulations by comparing their outcome to
corresponding simplified synthetic processes.
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Applications
Beyond scientific merit and understanding, human dynamics has far-reaching applications in several
domains. First of all results of statistical modelling provides functional knowledge for predictions
and inference of e.g. individual communications, mobility, or interactions patterns or online
and offline behavioural dynamics. More concrete applications and algorithmic solutions of data
mining results on human dynamics are usually disseminated on KDD conferences [8]. In terms of
generative and data-driven modelling applications are also manifold. The prediction and scenario
testing of crowd dynamics, cooperative behaviour, traffic congestion, public transportation, adoption
of products and services, or the forecast of global pandemic and diffusion of information, memes,
trends and opinion are only a few examples, which rely on data, observations, and modelling of
human dynamical systems.

This way, human dynamics as a field has an un-questionable and increasingly relevant role in
understanding human behaviour embedded in modern techno-social societies [363]. It contributes
to the application of the concepts of physics, outside of its conventional fields, and helps the
transformation of social sciences to become a more quantitative field. It pushes the frontier of
complex systems science in terms of better understanding collective phenomena, and computer
science through the advancement of data science and computation, and it fuels the paradigm shift
introduced by digital data in science, technology and several application domains.

1.1.3 Positioning and outline

As I explained in the introduction, my research is very heterogeneous and builds on several
disciplines. If I would need to summarise in short, I am a physicist trained network scientist who is
using methods from statistical physics, complex systems, and computer science to answer questions
about emergent phenomena in general, and more generally in human dynamics. My contributions
include theoretical works, methodological contributions, data collection, analysis and modelling
studies to push forward the fields of network science, physics of complex systems, data science
and computational social science. My research lands in the field of network science, which stems
from the roots of statistical physics and graph theory. On the fundamental side of physics, my
contributions are related to the physics of complex systems at large, to study network dynamics and
collective phenomena with the concepts of phase transitions and critical phenomena, dynamical
processes, percolation theory, computational physics and Monte Carlo methods and agent-based
modelling. On the applied side of physics my results contributes to modelling of biological and
social spreading processes, dynamical systems in terms of the structure and dynamics of human
interaction, socioeconomic, and mobility networks and ongoing dynamical processes.

Outline of the thesis
Although my works are at the intersection of various domains they all address emergent behaviour
in systems of human dynamics. Most of them can contribute to three main topics, which also
defines the overall structure of this thesis.

After this short introduction, in the remaining of the first Chapter I am going to introduce the
general definitions and concepts in complex networks, together with some theories and general
properties of social networks, which will be used throughout the whole thesis. After that I give
short summaries of various datasets what I used during the last years, and which are recurrent
in several studies discussed later. Following that there are three scientific chapters, each starting
with a short literature review followed by the summary of my contributions to these domains. In
Chapter 2, I discuss bursty dynamical systems, which is the first main topic of my contributions.
This Chapter builds on a set of studies, in which I proposed novel methodologies to characterise and
model heterogeneous temporal behaviour of individuals and once they are connected in a network
structure. The second main topic of my research is discussed in Chapter 3. There I summarise
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my theoretical and modelling contributions to the foundation of temporal networks. These works
circle around new theoretical methods to interpret and characterise temporal networks at the micro-,
meso-, and macroscopic scales. In addition, I propose the observations of various mechanisms and
two modelling frameworks to explain the emergent properties of temporal structures. In Chapter 4 I
address my works on dynamical processes evolving on static or temporal networks. These studies
investigate the structural and temporal correlations, which control emergent collective phenomena
like spreading processes. I will address simple contagion models on real and modelled temporal
networks, and complex contagion processes, especially the empirical observation and modelling of
social spreading phenomena. Finally, in Chapter 5 I will summarise my contributions and will draw
my motivations for the future.

1.2 General concepts and terminology
In this Section, I briefly introduce some general definitions and concepts, which will be used
throughout the whole thesis. All the definitions are related to complex networks, first introducing
general characteristics, while second some specific concepts, which concerns social networks. This
list of definitions, however, is far from being complete to give a thorough introduction to the field,
while some specific definitions will be introduced at the related Sections in the following Chapters.

1.2.1 Complex networks
Networks provide a way to map the architecture of complex systems by identifying interactions
between their interconnected components. A network is commonly interpreted as a graph defined
by a set G = (V,E). Here V defines the set of v ∈V nodes representing components, and E ⊆V ×V
is the set of eu,v = (u,v) ∈ E links, which indicate if two components u,v ∈V are interacting in the
system2. The cardinality of these two sets assign the size N = |V | and the number of links M = |E|
of the network. In their first approximation, networks are defined as simple graphs, thus they are
undirected (do not distinguish between links (u,v) and (v,u)), while assume no self-loops (v,v), or
multiple connections between the same pairs of nodes. On the other hand several extension of this
representation is possible. For example, if we assign an orientation to each link, i.e., we distinguish
between (u,v) and (v,u), we arrive to the definition of directed networks, while weighted networks,
defined as a triplet G = (V,E,w), assume a weight function w : (u,v)→ R, associating a number
(or another quality) to each link to capture, e.g., the interaction strength between connected entities.

Networks can be characterised on various topological scales. To describe them on the local
scale, i.e., at the level of nodes and links, we consider the Gv = (Vv,Ev) egocentric network of
each node v, which includes the central node, its first neighbours, and all links among them. At
this level the most important character of a network is the node degree. The degree kv of a node
v ∈V is the number of links it is incident to, or in other words its number of neighbours3. Formally
it can be defined as kv = ∑u∈V\{v} δ (u,v), where kv ∈ [0,N−1] and δ (u,v) = 1 if (u,v) ∈ E and
0 otherwise. Similarly, we can define the kin in-degree and kout out-degree of a node in directed
networks, counting the number of its incoming and outgoing links. In case of weighted networks, the
equivalent quantity is called the weighted degree or node strength, defined as sv = ∑u∈V\{v}w(u,v),
i.e. the sum of weights of adjacent links to a node v. Another important node characteristic is the
local clustering coefficient. It quantifies the local connectedness via counting the fraction of closed
triangles (i.e., three nodes connected by three links) in the egocentric network of a node v. Formally
it is defined as Cv =

2|{ev,w:v,w∈Vv,ev,w∈E}|
kv(kv−1) , where the denominator (kv(kv−1))/2 counts the maximum

2Note that several naming conventions of the same objects are accepted in different disciplines. Networks are also
called structures or simply graphs, nodes are equivalently named as sites, components or vertices, while links can be
called as edges or ties. In this thesis I treat equivalent the corresponding names.

3Note that although kv is a specific character of any node in V , later we may use the simpler notation k, which assigns
degree in general of a node in the network. Similar convention will be used for any other node property.
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number of connections between the neighbours of a node with degree kv. The local clustering
coefficient is conventionally used in social network research [370] where its network average
value, C = ∑v∈V Cv/N, characterises the average local connectedness of the structure. A similar
quantity can be defined for links, called the link overlap [155, 288], which measures the fraction
of common neighbours of connected nodes. It is formally introduced as Ou,v =

nu,v
(ku−1)+(kv−1)−nu,v

,
where nu,v = |{Vv∩Vu}| is the number of common neighbours of nodes u and v.

On the global scale, networks are commonly characterised by the distributions and statistical
means of different local quantities. In the following we define some of them for simple networks
(undirected with no loops and multiple links), but all measures can be generalised for more
complicated representations. The simplest global measure is network density, ρ = 2|E|

N(N−1) , which is
the fraction of present links as compared to the possible number of links in the network. A more
informative measure is the probability density function of node degrees, also called the degree
distribution, defined as P(k) = 1

N |{v ∈V,kv = k}|, and its mean 〈k〉= 1
N ∑v∈V kv called the average

degree. This distribution determines the probability that a randomly selected node in the network
has degree k, while its mean gives the average number of neighbours of a node. In real-world
networks, P(k) usually appears as a broad distribution with a long tail ranging over several orders
of magnitude [18], indicating present high degree heterogeneities. Such distribution are commonly
approximated with a power-law distribution scaling as P(k)∼ k−γ , with a characteristic exponent γ .
Although this approximation has been proven to be useful, the P(k) of several real-world networks
may be better fitted by other broad statistical distributions, like lognormal or stretched exponential,
as it is summarised in [82]. Note that several other characters of real world networks are distributed
heterogeneously, like link weights or node strengths, and can be similarly characterised. Global
clustering coefficient is another global scale measure, which quantifies the fraction of closed
triangles on the network level. It is defined as C = 3×|Triangles|

|Triplets| , where triplets are subgraphs of three
nodes connected by two links4. Note that the weighted average of the local clustering coefficient is
equivalent to the value of the global clustering coefficient.

Paths in networks are very important as they determine the possible routes of information
flow between nodes, and code the global connectedness of the structure. Two nodes, u and v, in
a network are connected by a path if there exist a sequence of links, (u,a),(a,b), . . . ,(x,y),(y,v),
which starts from u, ends at v, and each consecutive links share one common node. The length of a
path is the number of links in the corresponding sequence, while the distance d(u,v) between two
nodes is given by the length of the shortest path, i.e, the shortest sequence of links, which form
a path between them. Shortest paths can be used to define sensitive measures of centrality and
overall connectedness of a network. First of all, the average distance, 〈d〉= 1

N(N−1) ∑u,v∈V d(u,v),
captures the average number of steps required to pass information between any pairs of nodes.
Another measure is the network diameter, defined as maxu,v∈V d(u,v), gives the maximum of
any distances between any pairs of nodes. Betweenness centrality is a path based measure to
identify central nodes in the network, which lays on several shortest paths thus keeping the
structure connected, or controlling effectively information diffusing on the network. It is defined
as BC(v) = ∑v 6=s6=vinV

σu,v(s)
σu,v

, where σu,v is the number of shortest paths between nodes u and v,
while σu,v(s) is the number of those which run through node s. Existing paths also determine
the connected components of a network. A connected component contains a set of nodes, which
are all available from each other via paths in the network. The largest of them, called the giant
connected component (GCC) or the largest connected component (LCC), plays a special role as its
size characterise the overall connectedness of the network and determines the maximum size of any
macroscopic phenomena emergent in the system. The size of the second largest component (or the

4I do not distinguish in notation between the average local clustering coefficient and the global clustering coefficient.
As default, in this thesis C will refer to the former one if not noted otherwise.
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average size of components other than LCC) is also important in some cases. By varying the number
of links in the network, its connectedness can be interpreted as a percolation process [16] with a
phase transition point, where the size of the LCC (commonly identified as the order parameter)
vanishes and the size of the second LCC (identified as a susceptibility like character) shows a
singularity in the thermodynamical limit.

1.2.2 Social networks

As most of the works summarised in this thesis concentrate on social systems, it is useful to
introduce a non exhaustive list of some commonly accepted concepts and general characters of
social networks to help the reader. In social networks nodes are associated to individuals, while
edges represent social ties between them. Social networks are inherently dynamical on multiple
temporal scales, as people enter and leave the system and create and break social relationships,
and maintain them via rapid communication events. Social ties can be manifold by distinguishing
between family, friend, intimate, professional or service types of relationships. Such variety of
interactions can be represented via multilayer structures with layers associated to social ties of
different types. Social networks are also embedded in geographical space due to the whereabouts
of people, but some networks are better represented in a virtual space (like online) with abstract
metrics (like similarity in opinion or interest) defining alternative distance measures between egos.

One of the most important questions in social networks concerns social tie creation. The
propensity of two people to become acquaintances or friends may depend on several factors such as
co-habitation, common interest, socioeconomic status, age, gender, education level, or occupation,
etc. It has been argued in social theory that people who are more similar to each other tend to create
new relationships with a higher probability [262]. This selection mechanism [41], called in general
homophily, has been observed in several studies [77, 26, 237] and has far-reaching consequences
in the emergent network structure. The effects of homophily, however, are hardly distinguishable
from the consequences of another process called influence. This is a force mechanism where
connected people become more similar to each other via social or interpersonal influence [41].
This mechanism is arguably behind several macroscopic social phenomena like the spreading of
information and memes [37, 374], innovations and services [198, 26] or the emergence of collective
social movements [61, 152]. In some cases it is difficult to decide from simple data-driven
observations, whether similar people are connected due to homophilic preferences, or became
similar via social influence after building the relationship. This question sets one of the most
important challenges of computational social science as, depending on the dominant mechanism,
competing hypothesis has been set to explain social diffusion processes [26] (as we will discuss
later in Section 4.3.1 and 4.5).

Along homophilic preferences, a mechanism called triadic closure has been proposed [322, 307]
to be a determinant force behind link creation and the emergence of community structure in social
networks. Triadic closure is a property among three individuals such that if we observe already
two ties between them, with a high probability there is or going to be a third tie closing the open
triad to become a triangle. This property induces strongly connected local structures built up from
several triangles among people usually sharing some common property. Communities in general
are connected subgraphs of a network with nodes, which are denser connected with other nodes
of their own community than to the rest of the network. Communities can be mutually exclusive
partitions, or overlapping sets of nodes, they can be static or dynamic, uni-layer or multilayer, etc.
Their detection is an ongoing challenge with several methods and models proposed [126].

The strength of a social tie is a linear combination of the amount of time, emotional intensity,
intimacy, and reciprocal services, which characterise a social relationship. The strength of social
ties are commonly assumed whether being weak or strong and to be strongly correlated with the
network position of the actual tie, as argued by Granovetter [155, 153]. In his seminal paper [155] he
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suggests that weak ties are maintained via sparse interactions, bridging between tightly connected
communities keeping the network connected [288], and play important roles in disseminating
information globally [78, 76]. On the other hand strong ties, sustained by frequent communications,
are crucial in shaping the local connectivity of social networks. Due to triadic closure mechanisms
they are responsible for the emerging clustered topology [222, 228], and they exert to keep
information locally [195, 268].

However, even differentiating ties by strength one cannot simultaneously maintain a large
number of social relationships in a meaningful way. This has been argued by Dunbar who proposed
the social brain hypothesis based on an anthropological correlation between the social group size
and neocortex size of primates [110]. He argues that due to cognitive limitations of people, the
size of the egocentric network of an individual is also limited to be around 150. Although one
could assume that modern communication services and social platforms have helped to overcome
this constrain called the Dunbar’s Number, recent studies have observed a similar limit in number
of online friends, which after one cannot commit equally to every acquaintances but needs to
share attention [147]. Dunbar further developed his theory by introducing intimacy circles by
categorising acquaintances by their social tie strength, intimacy and importance to obtain a finer
grained structure of one’s egocentric network [111, 291].

1.3 Datasets

The central block of my research concerns the collection, curation and analysis of longitudinal
datasets recording the actions and interactions of large number of individuals. Most of these datasets
are temporally detailed, coupled with geographical informations and demographic details about
the anonymised participants. In the following Section I give short descriptions of some important
large datasets, which I used recurrently in several studies to make various observations, which will
be discussed later during the course of the thesis. Note that all unique IDs in any of the following
datasets were anonymised in advance by the providers without the involvement of the researchers,
thus individual re-identification of any participants were impossible from the data.

1.3.1 Data representation

Datasets on individual action dynamics usually come in a format of action sequences represented
in general as a set of events AC ⊂ T ×V (×∏i Aac

i ×LOC) where T assigns the set of discrete
time stamps bounded by the observed period and V is the set of individuals. Usually this tuple
is extended by Aac

i sets of different attributes ai ∈ Aac
i (like type of action, duration, cost, etc.)

of the actual activity, and some LOC location information. This way, e.g., one activity record
ac(t,v,a1,a2, . . . , locv) indicates that at time t ∈ T the user v ∈ V were active in doing a1 ∈ Aac

1
for a2 ∈ Aac

2 duration at locv ∈ LOC. Such datasets commonly arrive with some accompanying
meta-data sets in a general form of Av

j ⊂∏ j Av
j describing the attributes j of each user in v ∈ V

regarding different features Av
j, such as age, gender, home location, active period, etc.

Interaction sequences record temporal networks [173, 232] and usually come in an event
sequence format defined as EV ⊂ T ×V ×V (×∏i Aev

i ×LOC). This representation is very sim-
ilar to action sequences but it describes the interaction between (u,v) ∈ V ×V ordered (un-
ordered) pairs of entities performing a directed (undirected) interactions. E.g., in case of mo-
bile call communication events, which are typically called Call Detail Records (CDRs), are like
ev(t,vcaller,vcallee,duration,cost, loccaller) and come as long sequences describing all interactions
of every users of a mobile phone provider over several months with usually one-second resolution.
Using an event sequence and the corresponding meta-data set one can actually define a temporal
network (see Chapter 3), where directed interactions can be followed as function of time and space.
In addition, accompanying meta-data of users can be defined as a matching feature vector, which
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can take more complicated format as explained above, or can be even dynamical, as we will see
later. This interpretation is useful to follow the recurrent communication patterns of egos, and the
formation of their social ties as a function of time, space, and personal attributes.

Note that several datasets, dynamical or not, could be used to map the static network structure
of social interactions. I commonly used the standard adjacency list representation [278] of such
large networks, or streaming algorithms to process edge list representation of relational data.

1.3.2 Datasets in hand

DS1 - Mobile phone communication data

The datasets I investigated to most in several studies [182, 195, 203, 206, 218, 217, 223, 233,
250, 339, 351, 352, 354, 388] collects sequences of CDRs of mobile-phone calls (MPC) and short
messages (SMS) of a large set of individuals. These datasets were recorded by a single operator
with 20% market share in an undisclosed European country (ethic statement was issued by the
Northeastern University Institutional Review Board). I analysed several variants of these datasets,
which typically contained ∼ 633 million time stamped phone call and ∼ 209 million SMS events
recorded during 182 days with 1 second resolution between 6,2 million (4,8 million for SMS)
individuals who were connected via 16,8 million (10,3 million for SMS) social ties. In order to
take into account only true social interactions and avoid commercial communication, we used only
actions which were executed on links between users, who are at least once mutually connected each
other.

DS2 - Mobile communication/Credit record data

Another mobile phone data I extensively studied over the last years [246, 238, 237, 239] record
the temporal sequence of ∼ 8 billion call and SMS CDRs between ∼ 112 million anonymised
mobile phone users for 21 months in a Latin American country. The dataset was collected by a
single operator but other mobile phone users called by the customers of the provider, who were
not clients of the actual provider, also appear in the dataset with unique anonymised IDs. The
initially constructed static social network contained all users (whether clients or not of the actual
provider), while links were drawn between them if they interacted (via call or SMS) at least once
during the observation period. In order to filter out call services and other non-human actors from
the network, we recursively removed all nodes (and connected links) who appeared with either
in-degree kin = 0 or out-degree kout = 0. We repeated this procedure recursively until we received a
network where each user had kin,kout > 0, i.e. made at least one outgoing and received at least one
incoming communication events during the nearly 2 years of observation. After construction and
filtering the network remained with ∼ 82 million users connected by ∼ 1 billion links.

This mobile call dataset was coupled with another data provided by a Bank from the same
country. This data records financial details of ∼ 6 million people assigned with unique anonymised
identifiers over 8 months. Data records the time varying customer variables as the amount of debit
card purchases, purchase categories of purchased goods, monthly personal loans, and static user
attributes such as billing postal codes (zip code), the age and gender of customers. A subset of IDs
of the anonymised bank and mobile phone customers were matched5. This way of combining the
datasets allowed us to simultaneously observe the social structure and estimate economic status
of the connected individuals. The combined dataset contained ∼ 1 million people, all of them
assigned with communication events and detailed bank records, connected by ∼ 2 million links
into a single giant component.

5Note, that the matching, data hashing, and anonymisation procedure was carried out through direct communication
between the two providers (bank and mobile provider) without the involvement of the scientific partner.
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DS3 - Twitter data
In a project we collected a large data corpus from the online news and social networking service,
Twitter [174, 15, 245]. There, users can post and interact with messages, "tweets", restricted to
140 characters. Tweets may come with several types of metadata including information about
the author’s profile, the detected language, where and when the tweet was posted, mentions of
other users (denoted by the @ symbol) and hashtags (denoted by the # symbol) to assign topics,
etc. Specifically, we recorded 170 million tweets written in French, posted by 2.5 million users
in the timezones GMT and GMT+1 over three years (between July 2014 to May 2017). These
tweets were obtained via the Twitter powertrack API feeds provided by Datasift and Gnip with
an access rate varying between 15−25%. We used this dataset to obtain personal linguistic data
from the written text of each post and to infer the social network structure between users. Tweet
messages may be direct interactions between users via mentions by using the symbol (@username).
We took direct mutual mentions as proxies of social interactions and used them to identify social
ties between pairs of users. This constraint lead to a structure of 500,000 users and 2 million
undirected links. In addition, about 2% of tweets contained some location information regarding
either the tweet author’s self-provided position or the place from which the tweet was posted. Note
that in some other studies we collected another French Twitter dataset to observe social spreading
phenomena [103], while in some other projects [342, 352] we reported results based on the analysis
of another, yet very similar, Twitter dataset.

DS4 - Skype service adoption data
In a couple of projects I had the chance to access and analyse the social network of one of the largest
online communication services at the time, the Skype network. The centrepiece of this dataset is
the contact network, where nodes represent users and edges assign confirmed Skype connections.
A user’s contact list is composed of friends of mutually confirmed relationship assigned with two
time stamps indicating the moment the contact request was approved, and deleted if it happened
before the end of the observation period. In some studies we considered the temporal evolution
of this network [212], while in others [198, 199] we took its static representation, aggregated for
99 months between September 2003 and November 2011. The largest connected component of
this structure includes roughly 510 million users and 4.4 billion edges. In addition, this dataset
comes with time stamped purchase records of different Skype services. To study social contagion
processes, we followed how users purchase credits for calling phones. For each user, the dataset
includes the date when a user first adopted the paid product buy credit (first credit purchase, for
all purposes). We selected this service since its lifetime of 89 months is considerably long (it was
introduced in 2004), and it can be adopted by registered Skype users only. This way the aggregated
Skype network provided a complete description of the mediating social structure, which allowed us
to calculate the correct network and dynamical properties. To make additional observations, we
performed calculations on a second paid service called subscription, which was introduced in April
2008, lasts for over 42 months, and could also be adopted by registered Skype users only.

Other datasets
I addition there are several other datasets, which I analysed during my research to make data-driven
observations, design data-driven models or to train and verify model predictions. I used various
social interaction datasets recording emails [195, 202], Facebook wall posts [269], face-to-face
interactions [388], or sexual contacts [217]; individual tracking data of communication, mobility and
service usage records [195, 181]; collaboration datasets as scientific co-publication [351, 352] or
co-citations [180], business alliances [344], or the election of wikipedia editors [354]; transportation
datasets as air-traffic networks [217, 180] or public transportation systems in large cities [20]; or
even activity dynamics of firing neurons or earthquakes [202]. In addition, I conducted studies
where the focus was to collect a specific dataset in some special settings like face-to-face interactions
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in pre-schools, or age contact matrices of people during the COVID pandemic. These data collection
efforts will be summarised later together with the results of their analysis. All these datasets provided
the solid “observational” ground for my studies, which will be summarised in the following three
Chapters.



2. Bursty Human Dynamics

2.1 Introduction

Bursty behaviour is a temporal character of some dynamical systems, which alternate between
active periods with high frequency of events and long periods of inactivity. Dynamics characterised
by such large temporal fluctuations cannot be explained by the conventional picture using Poisson
processes assuming a single temporal scale, but rather can be the result of non-Poissonian dynamics
inducing strong temporal heterogeneities on various temporal scales1.

There are a number of systems in Nature that evolve following non-Poissonian dynamics [200].
One example are earthquakes [92, 100, 36, 101, 326], in which the times of shocks occurring at a
given location show bursty temporal patterns, as illustrated in Fig. 2.1(a). Another example are
solar flares with bursty emergence induced by huge and rapid releases of energy [261, 375]. It
has been shown that the stochastic processes underlying these apparently different phenomena
show such universal properties that lead to the same distributions of event sizes, inter-event times,
and temporal clustering [101], which can be arguably modelled by the frame of self-organised
criticality (SOC) [35]. Burstiness is also seen in the contexts of neuronal systems where the
firing of a single neuron (as shown in Fig. 2.1(b)) or collective of neurons appears with such
dynamics [211]. Moreover, bursty patterns has been observed in ecology and animal dynamics
in the context of initiating conflicts [305], communication, foraging [328], predators waiting in
ambush [371], or the displacement of monkeys or mice [64, 275], which form complex self-similar
temporal patterns reproduced on multiple time scales very similarly to examples observed in human
behaviour. In addition, scale-invariant bursty temporal patterns have also been found in several
man-made systems, like written text, in which successive occurrences of the same word display
bursty patterns [22]. In case of engineering systems perhaps some of the best examples are in
the context of package-based traffic and wireless communication signals, which were found to

1Non-Poissonian bursty dynamics is in general characterised by the heterogeneous distribution of inter-event times
passing between the consecutive occurrences of a given type of event. In contrast, in a system with Poissonian dynamics,
inter-event times are distributed exponentially. However, many empirical inter-event time distributions are broad and
follow a log-normal, Weibull, or power-law form, implying that the underlying mechanisms behind them maybe different
than a Poisson process.
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evolve through non-Poissonian dynamics [80, 179, 236, 296]. Finally, financial markets, in which
non-Poissonian dynamics characterises time series of returns of financial assets, stock sales, order
books, and other transactions with dynamics studied in the realm of econophysics [256].

a)

b)

c)

Figure 2.1: (a) Sequence of earthquakes with magnitude larger than two at a single location (south of
Chishima Island, 8th–9th October 1994). (b) Firing sequence of a single neuron from a rat’s hippocampal.
(c) Outgoing mobile phone call sequence of an individual. The shorter the time between the consecutive
events are, the darker colour is coded. This figure was published in [202].

Bursty patterns have been found to characterise human dynamics in the timings of actions,
dyadic social interactions, or even in collective social phenomena. The first observations were
reported by Eckmann et al. [116] and by Barabási [39], who observed broad inter-event time
distributions with a power-law tail by analysing datasets of email correspondence. These seminal
papers initiated an avalanche of studies to observe, characterise, and model bursty phenomena
detected in a number of human activities. Various examples were found, like emails [116, 39],
letter correspondence [287], mobile phone calls and short messages [202] (like in Fig. 2.1(c)), web
browsing [105], printing [161], library loans [361], job submission to computers [219], and file
transfer in computer network [296], or even in arm movements of human subjects [87], just to
mention a few. In addition, further examples were identified at the group or societal level, such as
the emergence of causal temporal motifs [224], the evolution of mass demonstrations, revolutions,
global information cascades, and wars [62, 338].

All these new observations highlighted some shortcomings of earlier methods to characterise
human bursty dynamics and called for novel measures and models to gain deeper understanding
about the roots of bursty patterns in human behaviour. Several modelling frameworks of bursty
human dynamics have been proposed over the last years, which could be roughly classified into
three main groups based on the assumed underlying explanatory mechanisms. In his original
study, Barabási suggested that bursty activity patterns could be the consequence [39, 287, 361]
that people do not execute their “to-dos” in a random fashion but assign importance to each task at
hand. This induces intrinsic correlations between different tasks and results in bursty patterns of
completed activities, which can be effectively modelled by priority queues with different constraints.
Another direction was proposed by Malmgren et al. [255, 254] who argued that “human behaviour
is primarily driven by external factors such as circadian and weekly cycles, which introduces a set
of distinct characteristic time scales, thereby giving rise to heavy tails”. This approach assumes
no intrinsic correlations in human activities but models the dynamics as alternating homogeneous
and non-homogeneous Poisson processes. The third main modelling concept assumes strong
correlations between consecutive events and define non-Markovian dynamics by using memory
functions [360, 160], self-exciting point processes [259, 184], or reinforcement mechanisms [203,
365] in simulating bursty activity patterns. Finally, several other modelling ideas were suggested
assuming self-organised criticality [338], local structural correlations [274], some dynamical
process like random walk [144], contact process in extended Griffiths phases [286], or voter
model [124] to introduce heterogeneous temporal patterns at the individual or system levels.

Based on these advancements more far-reaching scientific questions have been addressed about
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the effects of non-Poissonian patterns of individuals on collective dynamical processes. First
question raised, whether they are ongoing or co-evolving with bursty actions and interactions.
An important example is diffusion processes on temporal networks where bursty dyadic interac-
tions may enhance or slow down the speed and/or control the emergence of globally spreading
process, like information diffusion, epidemics, or random walk [173]. Beyond the conventional
modelling and simulation techniques of such processes, data-driven models and random reference
systems [195, 268] were recently shown to be very successful in addressing such problematics.

I entered this field during my first postdoctoral period at Aalto University and worked with
several colleagues on various topics to observe, measure, and model bursty human behaviour, and to
better understand its consequences on the evolution of dynamical processes. On the methodological
level I had two main contributions: I proposed an entirely new measure to detect bursty temporal
correlations in heterogeneous signals [202] and, together with colleagues, a method to account for
the effects of circadian fluctuations to identify to what extent they are responsible for the emergence
of bursty patterns in human dynamics [182]. Using these techniques I conducted data-analysis
studies [212, 203] to observe and characterise bursty social link creation and maintenance, or the
bursty dynamics of recurrent higher order patterns in temporal networks [75]. I also developed
various models using reinforcement mechanisms to explain individual and dyadic correlated bursty
behaviour [202, 203]. We were among the firsts to use random reference models to identify the
effects of burstiness on spreading processes [195, 218] and to develop a generative temporal network
model with bursty interactions [352]. In addition, together with collaborators I recently published
a monograph book [200] to review the knowledge accumulated during the last ten years in this
domain.

In this Chapter, without aiming a complete overview of the field, I give a brief summary of
my main contributions to the area. After this introduction, I lay down some general concepts and
measures which I will rely on later during the Chapter. Then, I organise my description by first
introducing my methodological contributions, then observational studies, and modelling, and finally
I will conclude my understanding and contribution to the overall scientific landscape.

2.2 Characterisation of bursty phenomena
Dynamical systems can be described as time series of sequential observations [63] where timing of
an observation, denoted by t, can be either continuous or discrete. Since most datasets of human
dynamics we analyse have been recorded digitally, we will here focus on the case of discrete
timings. In this sense, the time series can be called an event sequence, where each event indicates
an observation with a particular character. In this series the ith event takes place at time ti with the
result of the observation zi describing the actual state of the system with a number, set of numbers,
etc2. At the simplest scenario, we assume that the system at a given time can be in two states only,
as being active and performing an event, or being inactive. The event sequence with n events can
be represented by an ordered list of event timings, i.e., ev(ti) = {t0, t1, · · · , tn−1}, where ti denotes
the timing of the ith event. Such dynamics (also called point processes) can be described in a form
of binary event sequences of x(t) that takes a value of 1 at time t = ti of events, or 0 otherwise.
Formally, for discrete timings, one can write the signal as x(t) = ∑n−1

i=0 δt,ti , where δ denotes the
Kronecker delta.

The Poisson process
The temporal Poisson process is a stochastic process, which is commonly used to model random
processes such as photon counting in astronomical observations [318], the arrival of customers
at a store, or packages at a router, just to mention a few examples. It evolves via completely

2Note that some events could occur in a time interval or with duration, like phone calls between individuals [173],
what we neglect in our description at the outset unless stated otherwise.
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independent events, thus it can be interpreted as a type of continuous-time Markov process. In a
Poisson process, the probability that n events occur within a bounded interval follows a Poisson
distribution P(n) = λ ne−λ

n! , where λ denotes the average number of events per interval, which is
equal to the variance of the distribution in this case. Since these stochastic processes consist of
completely independent events, they have served as reference models when studying bursty systems.
As we will see later, bursty temporal sequences emerge with fundamentally different dynamics
with strong temporal heterogeneities and temporal correlations. Any deviation in their dynamics
from the corresponding Poisson model can help us to indicate patterns induced by correlations or
other factors like memory effects.

Throughout the thesis we are going to refer to two types of Poisson processes. One is called the
homogeneous Poisson process, which is characterised by a constant event rate λ , while the other
type, called the non-homogeneous Poisson process, defined such that the event rate varies over time,
denoted by λ (t). For more precise definitions and discussion on the characters of Poisson processes
we suggest the reader to study the extended literature addressing this process, e.g., Ref. [156].

The inter-event time and residual time
The first and most important measure to characterise bursty temporal sequences is based on
the quantity called the inter-event time, τi ≡ ti− ti−1, defined as the time interval between two
consecutive events at times ti−1 and ti for i = 1, · · · ,n−1. For an event sequence of n≥ 2, we can
obtain the sequence of inter-event times, i.e., iet(τi) = {τ1, · · · ,τn−1}, and compute their probability
density function, i.e., the inter-event time distribution P(τ). For completely regular time series,
all inter-event times are the same and equal to the mean inter-event time, denoted by 〈τ〉, thus the
inter-event time distribution appears as:

P(τ) = δ (τ−〈τ〉), (2.1)

where δ (·) denotes the Dirac delta function. Here the standard deviation of inter-event times,
denoted by σ , is zero.

For the completely random and homogeneous Poisson process, it is easy to derive [156] that
the inter-event times are exponentially distributed as follows:

P(τ) =
1
〈τ〉e

−τ/〈τ〉, (2.2)

where σ = 〈τ〉 and the event rate is λ = 1/〈τ〉.
In many empirical processes inter-event time distributions have been observed to be broad

with heavy tails ranging over several magnitudes. In such bursty time series the fluctuations
characterised by σ are much larger than 〈τ〉, indicating that P(τ) is rather different from an
exponential distribution, as it would derive from Poisson dynamics. Bursty systems evolve through
events that are heterogeneously distributed in time and exhibit a broad P(τ), which can be fitted with
either power law, log-normal, or stretched exponential distributions, just to name a few candidates.
Most commonly, they can be approximated by a power-law distribution function with an exponential
cutoff, defined as

P(τ)'Cτ−αe−τ/τc , (2.3)

where C denotes a normalisation constant, α is the power-law exponent, and τc sets the position
of the exponential cutoff. The power-law scaling of P(τ) indicates the lack of any characteristic
time scale, but the presence of strong temporal fluctuations, characterised by the power-law
exponent α . Power-law distributions are also associated to the concepts of scale-invariance and
self-similarity [277] and deemed to have an important meaning, especially in terms of universality
classes in statistical physics [301].
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Figure 2.2: Schematic diagram of an event sequence, where each vertical line indicates the timing of an
event. The inter-event time τ is the time interval between two consecutive events. The residual time τr is the
time interval from a random moment (e.g., the timing annotated by the vertical arrow) to the next event. This
figure was published in [200].

Note that there is another similar quantity, called the residual time τr (also called the residual
waiting time), what we will use later during our discussion. It’s definition considers that the
observations of an event sequence always cover a finite period and usually begins at a random
moment of time. The time interval between the time of the observation and the first observed
event is the residual time τr. Its distribution and average can be derived from the corresponding
inter-event time distribution as

P(τr) =
1
〈τ〉

∫ ∞

τr

P(τ)dτ, 〈τr〉=
∫ ∞

0
τrP(τr)dτr =

〈τ2〉
2〈τ〉 . (2.4)

This result explains a phenomenon called the waiting-time paradox, which has important conse-
quences in dynamical processes evolving on bursty temporal systems as will be discussed later.

The burstiness parameter
The heterogeneity of the inter-event times can be quantified by a single measure introduced by
Goh and Barabási [146]. The burstiness parameter B is defined as the function of the coefficient of
variation (CV) of inter-event times r ≡ σ/〈τ〉 to measures temporal heterogeneity as follows:

B≡ r−1
r+1

=
σ −〈τ〉
σ + 〈τ〉 . (2.5)

Here B takes the value of −1 for regular time series with σ = 0, and it is equal to 0 for random,
Poissonian time series where σ = 〈τ〉. In case when the time series appears with more heterogeneous
inter-event times than a Poisson process, the burstiness parameter is positive (B > 0), while taking
the value of 1 only for extremely bursty cases with σ →∞. Note that this measure has been recently
shown to have some finite size effect, and an alternative measure has been introduced to account
for these shortcomings [213].

The autocorrelation function
The conventional way for detecting correlations in time series is to measure the autocorrelation
function. To define we use the representation of event sequences as binary signals x(t) and introduce
the delay time td , which sets a time lag between two observations of the signal x(t). Then the
autocorrelation function with delay time td is defined as follows:

A(td)≡
〈x(t)x(t + td)〉t −〈x(t)〉2t
〈x(t)2〉t −〈x(t)〉2t

, (2.6)

where 〈·〉t denotes the time average over the observation period [63]. In time series with temporal
correlations, A(td) typically decays as a power law:

A(td)∼ t−γ
d (2.7)

with decaying exponent γ . In addition, this measure can be related to the power spectrum or spectral
density of the signal x(t) as follows:

P(ω) =

∣∣∣∣∫ x(t)eiωtdt
∣∣∣∣2 = ∫ A(td)e−iωtd dtd , (2.8)
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which appears as the Fourier transform of autocorrelation function, indicating dominant ω event
frequencies present in the signal.

A(
t d)

td

α
α
α
α
α
α
α

P(
τ)

 , 
A(

t d)
, P

(E
)

P(τ)
A(td)
P(E)

τ , td , E

α
α
α
α
α
α
α

E

P(
E)

(a) (b) (c)

Figure 2.3: The characteristic functions calculated for heterogeneous independent signals. (a) P(τ), A(td)
and P(E) functions for α = 1.5. Solid line is a power-law function with the given α exponent value,
while dashed line denotes a a power-law function with an effective 0.5 exponent value. (b) A(td) effective
autocorrelation functions for various α exponents. Straight lines are denoting power-law functions with α
exponents satisfying the α + γ = 2 relation. (c) Corresponding P(E) distributions for various α exponents.
This figure was published in [202].

A scaling relation between the α inter-event time and the γ autocorrelation exponents has been
studied both analytically and numerically [251, 21, 357]. It has been shown that they relate as

α + γ = 2 for 1 < α ≤ 2,
α− γ = 2 for 2 < α ≤ 3.

(2.9)

This indicates that the power-law decaying autocorrelation function could be explained solely
by the inhomogeneous inter-event times and not by temporal correlations in the time series. In
fact, the observed autocorrelation functions measure not only correlations between events but also
between consecutive inter-event times of arbitrary length. Such correlations spuriously appear in
independent heterogeneous time series disallowing autocorrelation to be a proper measure of real
temporal correlations in bursty sequences. This is demonstrated in Fig. 2.3(a) where we built an
independent event sequence by sampling randomly inter-event times from a P(τ)∼ τ−α power-law
distribution with exponent α = 1.5 (blue symbols) and measured the A(td) autocorrelation function
in this uncorrelated signal. Due to the heterogeneity of the inter-event time distribution effective
positive correlations are indicated by the autocorrelation, which emerges with a power-law tail (red
symbols) even the sequence is independent. Fig. 2.3(b) demonstrates that the scaling exponent γ of
the emerging autocorrelation function is dependent on the α inter-event time distribution, in full
agreement with the relation suggested in Eq. 2.9.

2.2.1 The Bursty Train Size Distribution
This ambiguity to detect short term temporal correlations in bursty event sequences motivated
us to provide a new measure, which can decide evidently the presence of such dependencies,
independently from the shape of the inter-event time distribution. More precisely, we made the
qualitative observation that bursty events do not usually come in pairs but may form longer trains,
where consecutive events may be in a causal relation with each other. However, to detect such
bursty clusters in binary event sequence, x(t), first we have to identify those events which we
consider to be causally correlated. The smallest temporal scale at which correlations can emerge in
the dynamics is between consecutive events. If only x(t) is known, we can assume two consecutive
actions at ti and ti+1 to be related if they follow each other within a short time interval, ti+1− ti ≤ ∆t
[380, 349]. For events with the duration di this condition is slightly modified: ti+1− (ti +di)≤ ∆t.

This definition allows us to detect bursty periods, defined as a sequence of events where each
event follows the previous one within a time interval ∆t, as illustrated in Fig. 2.4. By counting
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Figure 2.4: Schematic diagram of an event sequence, where each vertical line indicates the timing of the
event. For a given time window ∆t, a bursty train is determined by a set of events separated by τ ≤ ∆t, while
events in different trains are separated by τ > ∆t. The number of events in each bursty train, i.e., bursty train
size, is denoted by E. This figure was published in [200].

the number of events, E, that belong to the same bursty period, we can calculate their distribution
P∆t(E). For a sequence of independent events, P∆t(E) is uniquely determined by ∆t and the
inter-event time distribution P(τ) as follows:

P∆t(E) =
(∫ ∆t

0
P(τ)dτ

)E−1(
1−

∫ ∆t

0
P(τ)dτ

)
≈ 1

Ec(∆t)
e−E/Ec(∆t) (2.10)

for E > 0. Here the integral F(∆t) =
∫ ∆t

0 P(τ)dτ defines the probability to draw an inter-event
time P(τ)≤ ∆t randomly from an arbitrary distribution P(τ), Ec(∆t)≡ 1

− lnF(∆t) is a constant, and
approximation appears due to the series expansion of the constant multiplicative term. The first
term on the l.h.s. of Eq.2.10 gives the probability that we draw an inter-event times P(τ) < ∆t
independently E−1 consecutive times, while the second term assigns that the Eth drawing gives
a P(τ) > ∆t therefore the evolving train size becomes exactly E. If the measured time window
is finite (∆t < ∞), which is always the case here, the integral

∫ ∆t
0 P(τ)dτ < 1 is a constant and

the asymptotic behaviour appears like in a general exponential form. Consequently, for any finite
independent event sequence the P∆t(E) distribution decays exponentially even if the inter-event
time distribution is fat-tailed. Deviations from this exponential behaviour indicate correlations in
the timing of the consecutive events.

Bursty sequences in human communication

To check the scaling behaviour of P∆t(E) in real systems we focused on outgoing events of
individuals in three selected communication datasets: (a) A mobile-call dataset from a European
operator (see DS1 in Section 1.3.2); (b) Text message records from the same dataset (also DS1);
and (c) Email communication sequences [116]. For each of these event sequences, the distribution
of inter-event times measured between outgoing events are shown in Fig.2.5 (left bottom panels)
and the estimated power-law exponent values are summarised in Table 2.1. The autocorrelation
functions, which were averaged over 1,000 randomly selected users with maximum time lag of
td = 106, indicate strong temporal correlation (as seen in Fig.2.5.a and b (right bottom panels) with
exponents in Table 2.1). The power-law behaviour in A(td) appears after a short period, denoting
the reaction time through the corresponding channel, and lasts up to 12 hours, capturing the natural
rhythm of human activities. For emails in Fig.2.5.c (right bottom panels) long term correlation
are detected up to 8 hours, which reflects the typical length of office hours (note that the dataset
includes internal email communication of a university staff).

The broad shape of P(τ) and A(td) functions confirm that human communication dynamics
is heterogeneous and displays non-trivial correlations up to finite time-scales. However, after
destroying event correlations by shuffling inter-event times in the interaction sequence of single
individuals (see a how to in Section 3.3) the autocorrelation function still shows slow power-law
like decay (empty symbols on bottom right panels) via spurious residual dependencies. This clearly
demonstrates the disability of A(τ) to characterise correlations for heterogeneous signals, just as
we have already seen for modelled signals. However as we have discussed earlier, the P∆t(E)
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Figure 2.5: The bursty train size distribution P∆t(E) with various time windows ∆t (main panels), the inter-
event time distribution P(τ) (left bottom panels), and autocorrelation functions A(td) (right bottom panels)
for different human communication datasets such as (a) Mobile phone call dataset: The scale-invariant
behaviour was characterised by power-law functions with exponent values γ ' 0.5, β ' 4.1, and α ' 0.7
(b) Short message sequences taking values γ ' 0.6, β ' 3.9 and α ' 0.7. (c) Email event sequence with
exponents γ ' 0.75, β ' 2.5 and α = 1.0. A gap in the tail of A(td) on figure (c) appears due to logarithmic
binning and slightly negative correlation values. Empty symbols assign the corresponding calculation results
on independent sequences. Vertical stripes called s, m, h and d are denoting seconds, minutes, hours and
days, respectively. This figure was published in [202].

α β γ ν
Mobile-call sequence 0.7 4.1 0.5 3.0
Short message sequence 0.7 3.9 0.6 2.8
Email sequence 1.0 2.5 0.75 1.3
Model 1.3 3.0 0.7 2.0

Table 2.1: Characteristic exponents of the (α) inter-event time distribution, (β ) bursty train size, (γ)
autocorrelation functions and ν memory functions calculated in different datasets and for the model study
(see Section 1.3.2). This table was published in [200]

distribution should indicate evidently the presence of short temporal correlations. Calculating this
distribution for various ∆t windows, we find that it depicts a scale invariant behaviour as

P(E)∼ E−β (2.11)

for each of the empirical event sequences as shown in the main panels of Fig.2.5. P∆t(E) evidently
indicates that there are strong temporal correlations in the empirical sequences as it is remarkably
different from the corresponding distributions calculated for independent sequences which, as
predicted by (2.10), appear with exponential decay (empty symbols on the main panels).

Exponential behaviour of P∆t(E) was also expected from results published in the literature
assuming human communication behaviour to be uncorrelated [255, 380, 24]. However, the
observed scaling behaviour of P∆t(E) offers a direct evidence of correlations in human dynamics,
which can arguably be responsible for the observed bursty dynamics. These correlations induce
long bursty trains in the event sequence rather than short bursts of independent events. In addition,
we have found that the scaling of the P∆t(E) distribution is quite robust against the choice of ∆t for
an extended regime of time-window sizes, or when it is computed for individuals or group people of
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similar activity level, or once the effects daily fluctuations are accounted for (for results see [202]).
Interestingly, in a subsequent study [75] we found similar correlated bursty trains of higher

order structures in temporal networks. Patterns like k-order hyperedges were emerging in long
correlated bursty trains in consecutive aggregation time windows recording face-to-face interactions
of people at different settings (school, workplace, hospital, conference etc.). Further we studied
the transition of different higher-order structures within bursty trains and observed that transitions
among different group sizes are more abrupt in settings delineated by planned and regular activities
(like workplace and hospitals) and more smooth in environments characterized by more spontaneous
contacts (like university campus or conferences).

Note that we observed long bursty event trains and similar scaling of their size in various natural
phenomena, like in earthquake sequences recorded at given locations [326, 390], or in the firing
patterns of single neurons recorded in rat’s hypocampal. Corresponding results are not shown here
but reported in [202].

2.3 Cyclic patterns in human dynamics
It is evident that humans follow intrinsic periodic patterns of circadian, weekly, and even longer
cycles [255, 182, 19]. Such cycles clearly contribute to the inhomogeneities of temporal patterns,
and they often result in an exponential cutoff to the inter-event time distributions. Identifying and
filtering out such cyclic patterns from a time series can reveal bursty behaviour of different origins
than those cycles [182]. In order to characterise such cyclic patterns, let us consider a time series,
i.e., the number of events at time t, denoted by x(t), for the entire period of 0≤ t < T . One may be
interested in a specific cycle, like daily or weekly ones, with period denoted by T	. Then, for a
given period of T	, the event rate with 0≤ t < T	 can be defined as

ρ(t)≡ T	
X

T/T	

∑
k=0

x(t + kT	), X ≡
∫ T

0
x(t)dt. (2.12)

Such cycles turn out to be also apparent in the inter-event time distributions P(τ). For example,
one finds peaks of P(τ) corresponding to multiples of one day in mobile phone communication as
can be seen in Fig. 2.5a and b lower left panels. Note that such periodicities could be characterised
by means of a power spectrum analysis in Eq. (2.8), however here we take another way.

Once such cycles are identified in terms of the event rate ρ(t), we can filter them by deseasoning
the time series [182]. First, we extend indefinitely the domain of ρ(t) by ρ(t + kT	) = ρ(t) with
an arbitrary integer k. Then using the identity of ρ(t)dt = ρ∗(t∗)dt∗ with the deseasoned event rate
of ρ∗(t∗) = 1, we can get the de-seasoned time t∗(t) as

t∗(t)≡
∫ t

0
ρ(t ′)dt ′. (2.13)

For the schematic example of the de-seasoning method, see Fig. 2.6a. In plain words, the
time is dilated (respectively contracted) at the moment of the high (respectively low) event rate
resulting an overally constant average event rate as shown in as demonstrated in Fig. 2.6b. Then the
de-seasoned event sequence of {t∗(ti)} is compared to the original event sequence of {ti} to see
how strong signature of burstiness or memory effects remained in the de-seasoned sequence. This
reveals whether the empirically observed temporal heterogeneities can (or cannot) be explained by
the intrinsic cyclic patterns, characterised in terms of the event rate. For example, one can measure
the burstiness parameter BT for both the original and the de-seasoned mobile phone call series as
shown in Fig. 2.6c using DS1 (see Section 1.3.2). Although the P(BT ) distribution slightly changes
after de-seasoning over a period T , it assigns that the majority of individual sequences remain with
positive bursty parameters.
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Figure 3. Burstiness BT as a function of the period T : (a) the average and the
standard deviation of BT obtained from the burstiness distribution in figure 2,
(b) burstiness from groups with the same strength and (c) burstiness from groups
with a broad range of strengths.

2.2. De-seasoning groups of individuals with the same strength

Here we analyze the group of individual users with the same strength, i.e. 3s ⌘ {i |si = s}. The
averaged event rate of a group is measured by merging individual event rates, precisely by
obtaining n3s (t) =

P
i23s

ni(t). Figure 4 shows the original and the rescaled event rates with
T = 1 day (left) and the original and the rescaled inter-event time distributions with various
periods of T (right) for groups with strengths s = 200, 400, 800 and 1600. The values of
burstiness decrease only slightly as T increases, but are smaller than those of the original
burstiness, as shown in figure 3(b).

The burstiness of groups of individuals with the same strength is larger than the average
values of individual burstiness from P(B) of the same strength. For example, B0 ⇡ 0.256 for
the group of strength s = 200 turns out to be larger than

R
P(B0)dB0 ⇡ 0.204. Regarding this

difference, we would like to note that the de-seasoning of individual event times by means of
the averaged event rate may cause systematic errors due to the different circadian and weekly
patterns between the individual and the group. To resolve this issue, various data clustering
methods, such as self-organizing maps, can be used to classify users’ activity patterns beyond
their strengths and then perform de-seasoning separately for the different groups.

2.3. De-seasoning groups of individuals with a broad range of strengths

For the larger-scale analysis, we consider the strength-dependent grouping of users, i.e. groups
of individual users with a broad range of strengths, denoted by 3m1,m2 ⌘ {i |m1 6 si < m2},
similarly to [19, 20]. The values of ms are determined in terms of the ratio to the maximum
strength smax = 7911; see table 1 for details of the groups. We determine the averaged event
rates of the groups and some of them are shown in the left column of figure 5. By means of the
event rates, we perform the de-seasoning to obtain the rescaled inter-event time distributions;
see the right column of figure 5. It is found that the values of burstiness initially decrease slightly
and then stay constant at relatively large values as T increases, as shown in figure 3(c). These
results again confirm our conclusion that de-seasoning the circadian and weekly patterns does
not wipe out the bursty behavior of human communication patterns.
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Figure 2. Distributions P(BT ) of the original and rescaled burstiness of
individual users with the same strength (left) and distributions P(1BT ) of the
difference in burstiness, defined as 1BT = BT � B0 (right). Individual users with
the strengths si = 200 (a), 400 (b), 800 (c) and 1600 (d) are analyzed. The
numbers of users are correspondingly 6397, 1746, 196 and 7.

si = 3197, the burstiness decays faster as T increases: B0 ⇡ 0.469, B7 ⇡ 0.254 and B28 ⇡ 0.219.
However, the values of B are overall larger than those of the less active user. The results imply
that de-seasoning the circadian and weekly patterns does not considerably affect the temporal
burstiness patterns of individuals. Finally, in a limiting case of T = Tf, since ni(t) has the value
of either 0 or 1, all ⌧ ⇤ are the same as T/si in equations (1) and (3), leading to BTf = �1.

Next, we obtain the distributions P(BT ) of original and rescaled values of the burstiness
of individual users with the same strength and the distributions P(1BT ) of the difference in
burstiness, defined as 1BT ⌘ BT � B0; see figure 2. The averages and the standard deviations
of burstiness distributions for different periods of T are plotted in figure 3(a). The more active
users have larger values of burstiness, while the values of burstiness of the more active users
decay faster (slower) than those of the less active users before (after) T = 7 days. The overall
behavior of the distributions shows that de-seasoning the circadian and weekly patterns does not
destroy the bursty behavior of most individual users irrespective of their strengths. In addition,
we find some exceptional users whose original values of burstiness are negative, indicating more
regular behavior than the Poisson process, and we also find a few individual users whose values
of burstiness have grown as a result of de-seasoning, i.e. 1BT > 0.

New Journal of Physics 14 (2012) 013055 (http://www.njp.org/)

6

 0

 0.02

 0.04

 0.06

 0.08

 0.1

-0.4 -0.2  0  0.2  0.4  0.6  0.8  1

P(
B

T
)

BT

(a)
original

T=1 day

28 days

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1  0  0.1  0.2

P(
∆B

T
)

∆BT

T=1 day

28 days

 0

 0.04

 0.08

 0.12

-0.4 -0.2  0  0.2  0.4  0.6  0.8  1

P(
B

T
)

BT

(b)
original

T=1 day

28 days

 0

 0.1

 0.2

 0.3

 0.4

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1  0  0.1  0.2

P(
∆B

T
)

∆BT

T=1 day

28 days

 0

 0.04

 0.08

 0.12

 0.16

-0.4 -0.2  0  0.2  0.4  0.6  0.8  1

P(
B

T
)

BT

(c)
original

T=1 day

28 days

 0

 0.1

 0.2

 0.3

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1  0  0.1  0.2

P(
∆B

T
)

∆BT

T=1 day

28 days

 0

 0.1

 0.2

 0.3

-0.4 -0.2  0  0.2  0.4  0.6  0.8  1

P(
B

T
)

BT

(d)
original

T=1 day

28 days

 0

 0.1

 0.2

 0.3

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1  0  0.1  0.2

P(
∆B

T
)

∆BT

T=1 day

28 days

Figure 2. Distributions P(BT ) of the original and rescaled burstiness of
individual users with the same strength (left) and distributions P(1BT ) of the
difference in burstiness, defined as 1BT = BT � B0 (right). Individual users with
the strengths si = 200 (a), 400 (b), 800 (c) and 1600 (d) are analyzed. The
numbers of users are correspondingly 6397, 1746, 196 and 7.

si = 3197, the burstiness decays faster as T increases: B0 ⇡ 0.469, B7 ⇡ 0.254 and B28 ⇡ 0.219.
However, the values of B are overall larger than those of the less active user. The results imply
that de-seasoning the circadian and weekly patterns does not considerably affect the temporal
burstiness patterns of individuals. Finally, in a limiting case of T = Tf, since ni(t) has the value
of either 0 or 1, all ⌧ ⇤ are the same as T/si in equations (1) and (3), leading to BTf = �1.

Next, we obtain the distributions P(BT ) of original and rescaled values of the burstiness
of individual users with the same strength and the distributions P(1BT ) of the difference in
burstiness, defined as 1BT ⌘ BT � B0; see figure 2. The averages and the standard deviations
of burstiness distributions for different periods of T are plotted in figure 3(a). The more active
users have larger values of burstiness, while the values of burstiness of the more active users
decay faster (slower) than those of the less active users before (after) T = 7 days. The overall
behavior of the distributions shows that de-seasoning the circadian and weekly patterns does not
destroy the bursty behavior of most individual users irrespective of their strengths. In addition,
we find some exceptional users whose original values of burstiness are negative, indicating more
regular behavior than the Poisson process, and we also find a few individual users whose values
of burstiness have grown as a result of de-seasoning, i.e. 1BT > 0.
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Figure 1. De-seasoning MPC patterns of individual users: the original and the
rescaled event rates with a period of T = 1 day (left) and the original and
the rescaled inter-event time distributions with various periods of T (right).
Individual users with the strength si = 200 (a), 400 (b), 800 (c), 1600 (d) and
3197 (e) are analyzed. The original inter-event time distribution of the whole
population is also plotted as a dashed curve for comparison.

The rescaled inter-event time distributions up to T = 28 days are compared with the
original distributions in the right column of figure 1. Note that the possible minimum value
of rescaled inter-event time is T/si . We find that the rescaled inter-event time distributions still
show heavy tails. For the user with strength 200, the burstiness decreases from the original
value of B0 ⇡ 0.202 to the value B7 ⇡ 0.174 (weekly pattern removed), then dropping further
to the value B28 ⇡ 0.104 (i.e. monthly pattern removed). For the most active user with strength
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Figure 1. De-seasoning MPC patterns of individual users: the original and the
rescaled event rates with a period of T = 1 day (left) and the original and
the rescaled inter-event time distributions with various periods of T (right).
Individual users with the strength si = 200 (a), 400 (b), 800 (c), 1600 (d) and
3197 (e) are analyzed. The original inter-event time distribution of the whole
population is also plotted as a dashed curve for comparison.

The rescaled inter-event time distributions up to T = 28 days are compared with the
original distributions in the right column of figure 1. Note that the possible minimum value
of rescaled inter-event time is T/si . We find that the rescaled inter-event time distributions still
show heavy tails. For the user with strength 200, the burstiness decreases from the original
value of B0 ⇡ 0.202 to the value B7 ⇡ 0.174 (weekly pattern removed), then dropping further
to the value B28 ⇡ 0.104 (i.e. monthly pattern removed). For the most active user with strength
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Figure 1. De-seasoning MPC patterns of individual users: the original and the
rescaled event rates with a period of T = 1 day (left) and the original and
the rescaled inter-event time distributions with various periods of T (right).
Individual users with the strength si = 200 (a), 400 (b), 800 (c), 1600 (d) and
3197 (e) are analyzed. The original inter-event time distribution of the whole
population is also plotted as a dashed curve for comparison.

The rescaled inter-event time distributions up to T = 28 days are compared with the
original distributions in the right column of figure 1. Note that the possible minimum value
of rescaled inter-event time is T/si . We find that the rescaled inter-event time distributions still
show heavy tails. For the user with strength 200, the burstiness decreases from the original
value of B0 ⇡ 0.202 to the value B7 ⇡ 0.174 (weekly pattern removed), then dropping further
to the value B28 ⇡ 0.104 (i.e. monthly pattern removed). For the most active user with strength
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Figure 1. De-seasoning MPC patterns of individual users: the original and the
rescaled event rates with a period of T = 1 day (left) and the original and
the rescaled inter-event time distributions with various periods of T (right).
Individual users with the strength si = 200 (a), 400 (b), 800 (c), 1600 (d) and
3197 (e) are analyzed. The original inter-event time distribution of the whole
population is also plotted as a dashed curve for comparison.

The rescaled inter-event time distributions up to T = 28 days are compared with the
original distributions in the right column of figure 1. Note that the possible minimum value
of rescaled inter-event time is T/si . We find that the rescaled inter-event time distributions still
show heavy tails. For the user with strength 200, the burstiness decreases from the original
value of B0 ⇡ 0.202 to the value B7 ⇡ 0.174 (weekly pattern removed), then dropping further
to the value B28 ⇡ 0.104 (i.e. monthly pattern removed). For the most active user with strength
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Figure 1. De-seasoning MPC patterns of individual users: the original and the
rescaled event rates with a period of T = 1 day (left) and the original and
the rescaled inter-event time distributions with various periods of T (right).
Individual users with the strength si = 200 (a), 400 (b), 800 (c), 1600 (d) and
3197 (e) are analyzed. The original inter-event time distribution of the whole
population is also plotted as a dashed curve for comparison.

The rescaled inter-event time distributions up to T = 28 days are compared with the
original distributions in the right column of figure 1. Note that the possible minimum value
of rescaled inter-event time is T/si . We find that the rescaled inter-event time distributions still
show heavy tails. For the user with strength 200, the burstiness decreases from the original
value of B0 ⇡ 0.202 to the value B7 ⇡ 0.174 (weekly pattern removed), then dropping further
to the value B28 ⇡ 0.104 (i.e. monthly pattern removed). For the most active user with strength
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Figure 2. Distributions P(BT ) of the original and rescaled burstiness of
individual users with the same strength (left) and distributions P(1BT ) of the
difference in burstiness, defined as 1BT = BT � B0 (right). Individual users with
the strengths si = 200 (a), 400 (b), 800 (c) and 1600 (d) are analyzed. The
numbers of users are correspondingly 6397, 1746, 196 and 7.

si = 3197, the burstiness decays faster as T increases: B0 ⇡ 0.469, B7 ⇡ 0.254 and B28 ⇡ 0.219.
However, the values of B are overall larger than those of the less active user. The results imply
that de-seasoning the circadian and weekly patterns does not considerably affect the temporal
burstiness patterns of individuals. Finally, in a limiting case of T = Tf, since ni(t) has the value
of either 0 or 1, all ⌧ ⇤ are the same as T/si in equations (1) and (3), leading to BTf = �1.

Next, we obtain the distributions P(BT ) of original and rescaled values of the burstiness
of individual users with the same strength and the distributions P(1BT ) of the difference in
burstiness, defined as 1BT ⌘ BT � B0; see figure 2. The averages and the standard deviations
of burstiness distributions for different periods of T are plotted in figure 3(a). The more active
users have larger values of burstiness, while the values of burstiness of the more active users
decay faster (slower) than those of the less active users before (after) T = 7 days. The overall
behavior of the distributions shows that de-seasoning the circadian and weekly patterns does not
destroy the bursty behavior of most individual users irrespective of their strengths. In addition,
we find some exceptional users whose original values of burstiness are negative, indicating more
regular behavior than the Poisson process, and we also find a few individual users whose values
of burstiness have grown as a result of de-seasoning, i.e. 1BT > 0.
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(c)

Figure 2.6: (a) An example of the de-seasoning method applied to a mobile call series of a user, with
T	 = 1 week. The top shows the first two weeks of the call series coloured in red (the first week) and blue
(the second week). Events for all weeks are collected in one week period to obtain the event rate ρ(t) for
0≤ t < T	. After de-seasoning, the events in each week are put back to their original slot. (b) The original
(blue) and de-seasoned (red) hourly event rate of communication for individuals with 200 calls. (c) The
distributions of BT bursty parameters of individual users with the same strength after de-seasoning over T	
period. This figure was prepared by HH. Jo and published in [182].

One can also obtain the de-seasoned inter-event time τ∗i corresponding to the original inter-event
time τi = ti− ti−1 as

τ∗i ≡ t∗(ti)− t∗(ti−1) =
∫ ti

ti−1

ρ(t ′)dt ′. (2.14)

This way the de-seasoned inter-event time distribution P(τ∗) can be compared to the original
inter-event time distribution P(τ). As shown in Fig. 2.7a-c, the inter-event time distributions for
the original and de-seasoned event sequences show almost the same shape for various values of
T	 and for individuals of various activity level. At the same time, it is evident from Fig. 2.7d-f,
that after de-seasoning the circadian and weekly peaks of ω event frequencies disappear from
the power spectra (for definition see Eq. 2.8), while its overall scaling remains very similar to
the original spectrum. All these results together imply that bursty human dynamics cannot be
exclusively explained by periodic circadian and weekly fluctuations, but it may have some other
intrinsic behavioural origins.

I have another set of works [195, 218], which provide new tools to understand the effects
and consequences of bursty interactions, through the introduction of random reference models of
temporal networks. These works will be addressed in Section 3.3 as they provide tools to analyse
temporal networks in general, not only bursty phenomena exclusively.

2.4 Observation of bursty phenomena
Bursty dynamics characterise human behaviour on the individual level and in turn may determine
the evolution of dyadic interactions or the emergence of macroscopic phenomena in the social
network. The dynamics of social networks can be discussed in terms of nodes, links, communities,
or at the collective level, and can be characterised at different temporal scale, as we will discuss
later in Chapter 3 on temporal networks. To address bursty dynamics of interactions, we distinguish
between two temporal scales of link dynamics, which can be assigned to rather different types of
behaviour. On one hand, we consider the slow dynamics of social link creation and decay, which
determines the evolution of the social network. As an example, think about student mates with
whom one may maintain a social relationship over years, which typically decay after graduation.
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Figure 1. De-seasoning MPC patterns of individual users: the original and the
rescaled event rates with a period of T = 1 day (left) and the original and
the rescaled inter-event time distributions with various periods of T (right).
Individual users with the strength si = 200 (a), 400 (b), 800 (c), 1600 (d) and
3197 (e) are analyzed. The original inter-event time distribution of the whole
population is also plotted as a dashed curve for comparison.

The rescaled inter-event time distributions up to T = 28 days are compared with the
original distributions in the right column of figure 1. Note that the possible minimum value
of rescaled inter-event time is T / si . We find that the rescaled inter-event time distributions still
show heavy tails. For the user with strength 200, the burstiness decreases from the original
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the rescaled inter-event time distributions with various periods of T (right).
Individual users with the strength si = 200 (a), 400 (b), 800 (c), 1600 (d) and
3197 (e) are analyzed. The original inter-event time distribution of the whole
population is also plotted as a dashed curve for comparison.

The rescaled inter-event time distributions up to T = 28 days are compared with the
original distributions in the right column of figure 1. Note that the possible minimum value
of rescaled inter-event time is T / si . We find that the rescaled inter-event time distributions still
show heavy tails. For the user with strength 200, the burstiness decreases from the original
value of B0 ≈ 0.202 to the value B7 ≈ 0.174 (weekly pattern removed), then dropping further
to the value B28 ≈ 0.104 (i.e. monthly pattern removed). For the most active user with strength
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Figure 6. Power spectra, P( f ) , of the original and the rescaled event rates with
various periods of T for individual users with strengths 200 (a) and 800 (b),
for groups with the same strengths of 200 (c) and 800 (d) and for the whole
population (e). The circadian and weekly peaks in the original power spectra are
successfully removed by de-seasoning in various ways.
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Figure 6. Power spectra, P( f ) , of the original and the rescaled event rates with
various periods of T for individual users with strengths 200 (a) and 800 (b),
for groups with the same strengths of 200 (c) and 800 (d) and for the whole
population (e). The circadian and weekly peaks in the original power spectra are
successfully removed by de-seasoning in various ways.
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(a) (c)(b)

(d) (e) (f)

Figure 2.7: (a-c) The original and de-seasoned inter-event times extracted from the individual call sequences
of mobile phone users. Dashed line assigns the P(τ) of the whole population. Rescaling were done for
periods of T = 1, 7, and 28 days. (e-f) Corresponding power-spectrum curves as the function ω event
frequencies with unites 1/min. Individual users with s = 400 (a, d), 800 (b, e), 1600 (c, f) number of calls
were analysed. This figure was prepared by HH. Jo and published in [182].

On the other hand, we consider temporal interactions appearing with a rapid pace on existing social
ties. These are for example calls, messages, or emails, which typically appear recurrently with high
frequency and short duration as compared to the lifetime of a social tie. Next, I summarise some
observational results we obtained on real social networks, published in [212, 203], to see whether
bursty characters appear in the interaction dynamics at these two temporal scales, and if yes, how
these bursty interactions are distributed in the egocentric network of an individual.

2.4.1 Bursty egocentric network evolution

First let’s concentrate on the evolution of egocentric networks by analysing creation and decay of
confirmed contacts in the online social-communication system of Skype [212]. As we have already
explained in Section 1.3.2, the DS4 dataset contains the time stamps of approval of each Skype
contacts (which can be regarded as times of link creation), and deletion of Skype contacts if it
happened before the end of the observation period. In addition, we consider time series indicating
the number of days in each month when the user connected to the Skype network, and also the
adoption time (first usage) of each free service [e.g. Skype-to-Skype (S2S) audio calls, video calls,
chat, etc.] together with time series indicating the number of days in each month when the user
used the given service.

To characterise the temporal evolution of contact lists, we first examine the sequences of edge
addition and deletion of each individual by calculating the distributions of inter-event times defined
as τa = ta

i+1− ta
i (resp. τd = td

i+1− td
i ) between consecutive additions (resp. deletions) events of the

same user. As demonstrated in Fig. 2.8a, these distributions are very heterogeneous both in case of
edge additions and edge deletions. They show rather similar scaling, which can be approximated
with a power-law function with exponent γ ' 0.85 and an exponential cutoff. This is an interesting
observation as one would expect rather different decision mechanisms behind adding and deleting a
contact as additions can be assumed to be driven by the desire or need to communicate or to signal
a social relation, while deletions are arguably driven by the desire not to be visible or accessible by
the deleted contact.

To identify temporal correlations between consecutive actions of link additions or deletions, we
locate bursty event trains and compute their size distributions using the methodology explained
in Section 2.2.1. More precisely, we analysed the edge modification sequences of each individual
and extracted the clusters of events of new edge addition and deletion (the trains) to record their
size Ea (resp. Ed). The fact that the P(Ea) (resp. P(Ed)) distribution in Fig.2.8 spans over orders of
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standardization with Discrete Wavelet Transform (Chaov-
alit et al. 1883). The clusters obtained with this alternative

method were different, but the above phenomenon can still

be observed (see supplementary materials).
To check the significance of this phenomenon we

compare the haiðtuÞi overall average curve to a similar

curve haiðtuÞir calculated for independent sequences. To

generate the null model sequences we apply a very similar
method as earlier. We take the activity values of each user

at each month, randomly shuffle them and redistribute

between users. This way the overall activity remains
unchanged and each user have a sequence of 12 data points

as before, but the correlations between activity peaks and

user time are destroyed. The resulting average activity
curve becomes flat evidently as it is demonstrated in Fig.

4a (blue line). Comparing the original and random curves
(red and blue lines in Fig.4a) it is straightforward that the

peak at early times, which is visible for the original curve,

is not observable for the null model curve, thus supporting
the significance of the correlation.

5 Correlations at later times

A single bursty peak at early time is not the characteristic
of every user. Less common motifs in Fig. 3 show that

principal bursts may emerge later or even in multiple times.

This observation indicates that events other than user reg-
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Figure 2.8: (a) Inter-event time distributions of edge addition (blue squares) and deletion (red circles) events
of users. The straight line indicates a power-law function with exponent α = 0.85. (b,c) Distribution of
number of events in bursty trains of (b) contact addition and (c) deletion of individuals. Distributions were
calculated with time window sizes ∆t = 1, 2, 4, 8, 16 and 32 days. Distributions for randomly shuffled
sequences (dashed line) were calculated with the same ∆t values. Straight lines indicate power-law functions
with exponents (b) β = 2.0 and (c) β = 1.8. This figure was prepared by R. Kikas and published in [212].

magnitude, for several ∆t values, confirming the presence of correlations between consecutive events
of edge additions (resp. deletions). This is even more apparent once we compare the empirical P(E)
functions to the equivalent distributions calculated for independent sequences where inter-event
times has been randomly shuffled. It puts into evidence that the actions of an individual are not
independent and that the evolution of egocentric networks is not only heterogeneous in time but
driven by intrinsic correlations. They lead to the presence of high activity bursty periods, where a
large number of edges are added or deleted, separated by long low activity intervals.
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Figure 2.9: Groups of contact
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〈s(tu)〉c days used Skype-to-
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ber, right axe is in days. This
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and published in [212].

So far we have observed that edge addition and deletion events of an individual are bursty
and clustered in time, yet we know less about when these bursty trains evolve during the lifetime
of a user. Do they appear in any time or there are typical activity patterns of edge additions or
maybe triggered by other user actions? To answer these questions, we compare the edge addition
sequences of individuals during the first year of their tu user time after their registration [212]. We
keep track the ai number of newly added edges of each node i in each month to obtain a discrete
ai(tu) sequence for each individual with tu = 1...12. To be able to compare sequences of users with
diverse overall intensity we applied the Symbolic Aggregate Approximation (SAX) method [249]
with alphabet size 10, while to detect groups of users with similar edge addition dynamics, we
applied the k-means clustering method on the activity sequences using euclidean distance. We
determined the optimal cluster number to be 44 by using the Elbow method. For the most populated
clusters, the average link addition activity curves, 〈ai(tu)〉k, are shown in Fig. 2.9 (red line). Looking
at the most common patterns it is straightforward that typically people perform their principal
(the largest and usually the only one) edge addition burst right after they join the network, a
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behaviour which is confirmed by other studies [131]. This is the time when they explore their social
acquaintances who have already joined the system, while later they add contacts just occasionally
with lower frequency. This behaviour and its significance has been demonstrated in [212] (results
not shown here). However, a single bursty peak at early time is not the characteristic of every
user. Less common motifs in Fig.2.9 show that principal bursty peaks may emerge later or even in
multiple times. This observation indicates that events other than user registration (e.g. adoption of
different services) may also trigger immediate changes in the egocentric network. Actually, we
found that the link addition dynamics is positively correlated (with coefficient r = 0.308137) with
the overall activity of users (shown with blue lines in Fig.2.9), what we measured as the average
number of connected days per month. Similarly, we found correlations with the activity of free
service usage (with coefficient r = 0.34608), shown as green lines. More importantly, we showed
that the probability of a user performing a link addition burst is strongly conditional to the adoption
of free and payed services, which explains the emergent later peaks in the link addition dynamics
(for further results see [212]).

2.4.2 Bursty communication in egocentric networks

In our second empirical study let’s move from the level of social tie evolution to the level of time
varying interactions in egocentric networks. Analysing interaction dynamics at this finer temporal
scale, at which social ties are actually maintained, is a key to the better understanding of the
evolution of egocentric networks and the emergent structural correlations in the social network
(as we will discuss in Chapter 3). As a demonstration, Fig. 2.10a illustrates mobile phone call
patterns in an egocentric network, where the overall activity of the ego (green row) and activities on
separated edges with three friends (orange rows) are presented. By looking at this picture we can
draw three important observations: (a) the communication dynamics of the central ego (green) is
evidently bursty with heterogeneous inter-event times and broad distribution (see Fig. 2.10d) with
exponent α = 0.7 (for SMS see [203]); (b) The amount of communication efforts is not evenly
distributed among ties (orange), but some ties carry the wast majority of interactions, while others
are maintained by only a few events. It assigns differences in terms of social tie strengths, arguably
associated to various level of intimacy as suggested by Dunbar [45], and leads to heterogeneous
link weight distributions on the network level; Finally, (c) correlated events form trains in bursty
periods. The distribution of trains in the egocentric network can be explained by two competing
hypothesises. On one hand, correlated event trains of the ego may evolve on single links (as seen
on the zoom shown on panel Fig. 2.10b), which suggests that bursty periods are actually induced
by dyadic interactions. On the other hand, as demonstrated in Fig. 2.10c, bursty communication
periods of an ego may involve multiple peers, suggesting that bursty patterns are potentially induced
by collective behaviour, the effort of a group e.g. to organise an event or to process information.
As next [203], our aim will be to empirically decide between these hypothesises by analysing DS1
mobile phone call and SMS datasets with the previously introduced characteristic methods of bursty
phenomena.

More precisely, we are going to use the P(E) bursty train size distribution to indicate how
trains are distributed in the egocentric topology. At first, let’s concentrate on ego-initiated events of
outgoing voice calls and SMS’. In case we consider entire event sequences of egos, which combines
all of their communications on any links, the P(E) distributions (shown for calls in Fig. 2.10b
with solid lines) appear approximately as a power-law function with exponent β = 4.2 (for SMS
not shown [203]). This behaviour is remarkably different from the scaling of the corresponding
reference distributions, where inter-event times were randomly shuffled over the whole data (see
exponential distributions with solid lines in Fig. 2.10b for calls). Based on this node centric view,
intuitively one would assume that correlated outgoing communications of an individual may serve
the information processing or organisation of a group [247, 118], resulting events grouped in trains
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Figure 2.10: (a) Overall activity of the ego (green) and its neighbours (e1, e2, e3). Darker colour scales with
call number per hour. (b,c) In- (red) and outgoing (blue) calls with length of the corresponding calls. (d)
P(E) distributions of outgoing calls of nodes towards all the neighbours (solid lines) and to single neighbours
(dashed lines) for various ∆t (in second) using the original and inter-event time shuffled (random) sequences.
Inset: inter-event time distributions between outgoing events of a user towards all neighbours (solid line)
and on a single link (dashed line). (e) The distribution and average of the ratio BN/E for each E train
size. Pointed, solid and dashed lines assign limiting cases of 1, 1/E, and 2/E. (f) Average be edge balance
calculated for trains with the same size for calls (orange circles) and SMS (brown squares). (g) Average
p(E) balance values for trains of the same size for calls (red circles) and SMS (blue squares). Corresponding
independent event trains are shown with yellow circles for calls and green squares for SMS. This figure was
published in [203].

directed towards several neighbours. Assuming this mechanism to be dominant, burstiness would
appear as the property of a single node or a group of individuals.

Surprisingly, the generic picture seems to be very different. If we assume that the correlated
events in trains are directed toward several neighbours, decoupling event trains on single edges
should induce an entirely different, less correlated statistics of bursts. However, this is not the case.
The P(E) distributions, detected on single edges (shown for calls in Fig. 2.10b with dashed lines),
are scaling very similarly and can be characterised by the same exponents as in the node centric
case. This suggests that trains of events usually evolve on single links rather among a larger group
of individuals. This picture is also supported by the statistics of temporal motifs [223], where motifs
involving two individuals are by far the most common ones. The same conclusion can be drawn by
counting the number of neighbours BN, whom an individual called in a bursty train of E events. If
a user communicates with only one neighbour during a period then the ratio BN/E = 1/E, or if
each call are directed toward different neighbours than BN/E = 1. The distributions of the BN/E
ratios for each E train size (shown in Fig. 2.10e for calls, for SMS not shown [203]) indicates that
on average only one or two people are called in a bursty train independent of its size.

Next let’s have a look at the direction of event trains. Are they balanced or contain events
dominantly initiated by one partner? Do voice calls and SMS’ are different from this point of view?
First, let’s calculate the overall communication balance over the entire observation period for each
edge e as be = max(NA,NB)/(NA +NB), where NA (NB) are the total number of calls from A to B
(B to A). Hence be can vary between 1/2 (completely balanced) and 1 (completely imbalanced,
dominated by one of the participants). We use this measure to compute the weighted average
communication balance of trains on single edges with size E evolving as:

bAll(E) = 〈be〉E =
∑e ne(E)be

∑e ne(E)
(2.15)

where ne(E) is the number of trains of length E on edge e. For SMS (brown squares in Fig.2.10.f)
bAll is converging to 1/2 for larger E sizes thus longer trains are more and more balanced in this
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case. This can be explained by the uni-directed information flow in case of SMS forcing mutual
discussions to be more balanced, as it has been also argued by Wu et al. [380]. However, this
constrain does not apply for the mobile calls (orange points in Fig.2.10.f) where information can
flow in both directions during a call. Here bAll reflects strongly unbalanced communication as it
increases towards 1 for trains with larger E.

However, the bAll(E) average overall balance does not reflect evidently the communication
balance evolving in single trains. Hence we define the communication balance within a train on
an edge e as pe(Em) = max(nA,nB)/(nA + nB). Here pe(Em) is the balance of the m−th train of
length Em on edge e connecting A and B, and nA (nB) denotes the number of events initiated by A
(resp. B) towards B (resp. A) in that train; Em = nA +nB. Averaging over trains of the same size
p(E) = 〈pe(Em)〉E gives an estimate for the average communication balance in trains of size E
(note that in this case different pe(Em) values can evolve even for trains on the same edge e). This
has to be compared to the reference case, where trains of a given size follow the overall balance be

of the actual link. This can be calculated as

pindep
e (Em = E) =

1
E

E

∑
i=0

(∣∣∣∣E2 − i
∣∣∣∣+ E

2

)
bi

e(1−be)
E−i
(

E
i

)
, (2.16)

where the first term after the summation weights the binomial distribution taking into account
that the imbalance can evolve in both directions, i.e., parallel or antiparallel to the imbalance of
the edge. As pindep

e (Em = E) depends only on be and E, the average can be taken as pindep(E) =
〈pindep

e (Em)〉E trains to get a reference estimate of and independent process.
Fig. 2.10.g shows p(E) and pindep(E) for both voice calls and SMS messages. Interestingly,

large difference is observed between p(E) and the corresponding pindep(E) measures. It suggests
that call trains (red points) are more unbalanced than one would expect from the overall communi-
cation balance of the link, caputured by the independent processes (yellow circles). At the same
time for SMS the contrary is true as trains (blue squares) are much more balanced than one would
derive from independent processes (green squares) reflecting the be balance of the corresponding
edges. This demonstrates real correlations between events of the same train and suggests different
correlated mechanisms behind call and SMS dynamics.

2.5 Models of bursty human phenomena
As we have already explained in the introduction of this Chapter (Section 2.1), there are three main
modelling frameworks, which have been proposed to explain the origin of bursty patterns in human
dynamics. One framework provides a variety of models using priority queues [39, 287, 361]; a
second one is based on the assumption that consecutive actions of individuals are independent
and can be modelled by Poisson processes with alternating time scales [255, 254]; while the third
direction assumes strong local correlations modelled by memory processes [360, 160], self-excited
point processes [259, 184], or reinforcement mechanisms [203, 365], etc. In the following, we
are going to discuss two models [203, 202], proposed by me and colleagues, which belongs to
the third modelling framework and employs reinforcement processes to model simultaneously
temporal heterogeneities, bursty trains, or communication balance. While these models aim to
explain phenomena observed on the individual or dyadic level, later in Section 3.3 we will discuss
other models [195, 218], which address the emergence and effects of bursty phenomena on the
collective level.

2.5.1 Model of individual bursty dynamics with event trains
According to the Decision Field Theory of psychology [71], each decision to perform a task can be
interpreted as a threshold phenomenon, as the stimulus of the task has to reach a given threshold
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level to be chosen from the enormously large number of possible actions. This theory lays behind
one possible interpretation of bursty behaviour, where the dynamics of an individual performing
events of one certain task, like writing emails or printing, goes through active and inactive periods.
An active state is initiated once the importance of the actual task overreach a certain level, which
after the person performs a bursty cascade of events, while otherwise doing something else which
in turn appears as long inactive periods in the actual observation. However, in active periods events
are not independent from each other but form long bursty trains as we have already demonstrated
in Section 2.2.1. Such dynamics can be explained by memory driven processes and modelled by
reinforcement mechanisms as we explain next [202].
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Figure 2.11: (a) The 1− p(n) complement of the memory function measured from the mobile call sequence
with ∆t = 600 second and fitted with the analytical curve defined in Eq. 2.17 with ν = 2.971. Grey symbols
are the original points, while black symbols denotes the same function after logarithmic binning. (b) The
P(E) distributions measured in real and in modelled event sequences together with a power-law function with
exponent derived from Eq. 2.17. (c) Transition probabilities of the reinforcement model with memory. (d)
Logarithmic binned P(τ) inter-event time distribution of the simulated process with a fitted exponent γ = 1.3.
(e) The average logarithmic binned autocorrelation function with a maximum lag tmax

d = 104 and fitted
exponent α = 0.7. (f) Logarithmic binned P(E) distributions of the synthetic sequence with window sizes
∆t = 1...1024 and fitted exponent β = 3.0. Simulation were averaged over 1000 independent realisations
with parameters µA = 0.3, µB = 5.0, ν = 2.0, π = 0.1 and T = 109. For the calculation we chose the
maximum inter-event time τmax = 105. This figure was published in [202].

The correlations taking place between consecutive bursty events can be interpreted as a memory
process, allowing us to calculate the p(n) probability that the individual will perform one more
event within a ∆t time frame after it executed n events previously in the actual train. This probability
can be written as p(n) = ∑∞

E=n+1 P(E)
∑∞

E=n P(E) , thus its functional form is entirely coded in the train size

distribution. If we assume that the actual train size distribution scales as P(E)∼ E−β (as already
discussed in Eq.2.11) the memory function appears as

p(n) =
(

n
n+1

)ν
where β = ν +1 (2.17)

scaling relation is expect to hold as derived in [202]. To demonstrate that Eq. 2.17 holds for
real systems, we measured the P(E) distribution for mobile calls in DS1 with ∆t = 600 seconds
and derived the corresponding p(n) function. In Fig.2.11.a we show the 1− p(n) complement of
the empirical memory function, with strong finite size effects (grey dots) and the same function
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after logarithmic binning (black dots) on which we fit the theoretical memory function defined
in Eq 2.17 using a non-linear least-squares method with only one free parameter, ν . As seen in
Fig.2.11.a, we find that the best fit (red line) offers an excellent agreement with the empirical data
with ν = 2.971±0.072. Using the above mentioned exponent relation, this way we can estimate
β ' 3.971, which is close to the empirical value β ' 4.1 already reported in Table 2.1 and Fig 2.5a.
To validate this approximation we generated bursty trains of 108 events by using the theoretical
memory function p(n) (defined in Eq. 2.17) with exponent ν = 2.971 and compared the scaling
of the generated P(E) distribution to the corresponding empirical result. Results in Fig.2.11.b
evidently demonstrate a good match between the simulated and empirical results, thus in turn they
validate the chosen analytical form for the memory function (for more results see [202]).

Reinforcement model of bursty dynamics

Based on the above observations, we assume that the activity of an individual performing a task
can be described with a two-state model, where a person can be in a normal state A, executing
independent events with longer inter-event times, or in an excited (bursty) state B, performing
correlated events with higher frequency. In this model we assume that inter-event times are
determined by a reinforcement process, which dictates that the longer the system waits after an
event, the larger the probability that it will keep waiting [331, 389]. Thus our two-state model
is strongly non-Markovian as the timing of its events depends on the current and past states of
the system. More precisely, given that our model system performed its last event τ time ago, the
probability that it will wait one time unit longer without performing the next event is given as

fA,B(τ) =
(

τ
τ +1

)µA,B

(2.18)

where µA and µB control the reinforcement dynamics and the characteristic inter-event times in
state A and B, respectively.

Finally, the model is defined as follows (for schematic demonstration see Fig.2.11.c, while an
algorithmic description see Alg. 1): first the system performs an event in a randomly chosen initial
state (line 2 in Alg. 1). If the last event was in the normal state A, it waits for a time induced by
fA(τ) (line 7), after which it switches to state B with probability π and performs an excited event
(line 9 and 10); or with probability 1−π stays in the normal state A and executes a new normal
event. In the excited state the inter-event time for the actual event comes from fB(τ) after which
the system executes one more excited event with a probability p(n) (see Eq. 2.17 and line 14 in
Alg. 1) that depends on the n number of excited events since the last normal event; otherwise it
switches back to a normal state with probability 1− p(n) (line 16).

The results of the simulated model process, summarised in Fig. 2.11 and Table 2.1, indicates
that the emergent inter-event time distribution appears with strong inhomogeneities (see Fig.2.11.d).
It can be approximated by a scale-free function with exponent α = 1.3, which satisfies the ex-
pected exponent relation α = µA + 1, similar to the one derived in Eq. 2.17. Beyond temporal
heterogeneities we detect emergent long temporal correlations reflected by the power-law tail of the
autocorrelation function (see Fig.2.11.e). It can be characterised by an exponent α = 0.7, which
also satisfies the relation α + γ = 2 (as discussed in Section 2.2 and [202, 357]). Finally, the P(E)
distribution appears with a fat-tail for each investigated window size ranging from ∆t = 1 to 210 (see
Fig.2.11.f), which can be characterised with an exponent β = 3.0 in agreement with the expected
relation in (Eq. 2.17). Note that the weak ∆t dependency of the simulated P(E) can be explained by
the merge of correlated long bursty trains and uncorrelated single events which is more common for
larger ∆t. Finally, once we fix the value of α and β , the emergent γ exponent satisfies the inequality
γ < α < β , observed in empirical data (see Table 2.1).
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Algorithm 1 Algorithmic description of the reinforcement model of bursty activity trains.

1: function BURSTY REINFORCEMENT MODEL

2: σ ← rand(A,B)
3: n = 1
4: time = 0
5: while time < T do
6: if σ == A then
7: time+= fA(τ)
8: if rand()< π then
9: σ ← B

10: n← 1
11: Out : (time,σ)
12: else if σ == B then
13: time+= fB(τ)
14: if rand()< p(n) then
15: n← n+1
16: else
17: σ ← A
18: Out : (time,σ)

2.5.2 Model of communication balance of dyadic event trains
In an extended model definition, introduced in [203], we further used the p(n) memory function
(in Eq. 2.17) to model the observed cases of communication balance in call and SMS sequences
as reported in Section 2.4.2. To introduce this new model let us first concentrate on voice calls.
One correlation we observed in Fig. 2.10.f was that longer event trains tend to be more unbalanced,
meaning that they are more dominated by events initiated by one of the callers. Keeping in mind
that mobile calls enable bidirectional information change, we assume that the observed unbalanced
communication in interaction trains reflects the difference in motivation between the communicating
partners. If there is a task to solve, which is more important for one party, it gives motivation for
him/her to repeate calls until the issue gets settled. This mechanisms can be incorporated into the
reinforcement process demonstrated in Fig.2.12.a, and can be summarised in the following way
(note that its algorithmic solution is somewhat similar to Alg. 1 thus we do not present it here): We
simulate bursty trains, which evolve on a link between a pair of individuals A and B. To initiate a
train with a probability equal to be we randomly select A or B who then perform one event towards
the other agent and we set the actual train size to n = 1. The decision about the next event is carried
out in two steps. First we decide with the probability in Eq.2.17 whether to perform one more event
in the train or initiate a new train otherwise. If the train should be continued the probabilities that
the next event is initiated by A or B are

pσ (n|σ1) =
n

n+1
or pσ (n|¬σ1) = 1− n

n+1
(2.19)

where σ ∈ {A,B}. Here pσ (n|σ1) denotes the probability that the nth event of the actual train is
performed by the same user who initiated the train at n = 1, while pσ (n|¬σ1) is the probability
that the other agent initiates the event. Consequently, the longer a train evolves, the larger is the
probability that the agent, who initiated the actual train, will initiate the next event. Eq.2.17 and
Eq.2.19 may capture the entangled mechanisms of reinforced motivation of an individual, which is
induced by the effort already invested in the actual series of calls to successfully solve a task with
the other partner.
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Figure 2.12: (a) Illustrative definition of the communication balance model, simulating events between
two nodes A and B. The dynamics and direction of the events are determined by probabilities p(n), pA(n)
and pB(n) defined in the text. (b) P(E) distributions of empirical call trains (red circles) with ∆t = 600s
on edges with 0.5≤ be < 0.55 and in corresponding model trains (black circles). The same functions are
shown for SMS trains (blue and yellow squares accordingly). (c) Balance values calculated for empirical call
(red circles) and SMS (blue squares) trains and in corresponding model processes (red and yellow symbols).
Balance values of independent trains are also shown (green triangles) calculated by using Eq.2.16 with
be = 1/2. This figure was published in [203].

In case of SMS sequences the mechanism for developing strong balance in bursty trains is
different. There, in single events information can pass only one way and consecutive events in a
train usually have reversed direction, possibly forming strongly balanced conversations. To simulate
this behaviour we use the above defined generative process but we select the direction of the actual
event differently. Here we assume that the direction of an event conditioned only on the orientation
of the previous event, and can be determined by the conditional probabilities

pσ (n|¬σn−1) =
n

n+1
, pσ (n|σn−1) = 1− n

n+1
(2.20)

where σ ∈ {A,B} and pσ (n|¬σn−1) denotes the probability to choose the opposite direction for the
nth event compared to the one in the (n−1)th step. Accordingly pσ (n|σn−1) denotes the probability
of choosing the same direction as the previous event. This way, the longer a train evolves, the larger
is the probability to revert the direction of consecutive events and consequently to generate more
balanced train.

The emergence of enhanced balance/imbalance in trains can be evidently checked on links
where the overall communication is completely balanced and the communication balance of trains
comes only from actual behavioural differences. To do so we set be = 1/2 and compare the modelled
results to averages calculated for similar empirical trains. To analyse real trains we select edges
from the mobile call network with overall balance 0.5≤ be < 0.55 (there are 115,277,534 calls
and 69,288,504 SMS on such links) and after detecting trains we calculate the corresponding P(E)
distribution and p(E) function (defined in Section 2.4.2). As expected and shown in Fig.2.12.b,
the size of call trains (red circles) detected with ∆t = 600s and SMS trains (blue squares) with
∆t = 300s are distributed broadly with characteristic exponents β = 4.6 and β = 3.5, accordingly.
Using these exponents as parameters we modelled event sequences to simulate calls and SMS
trains with the same number of events and corresponding ν exponents deduced from β according
to Eq.2.17. The P(E) size distributions of model call trains (black circles) and model SMS trains
(yellow squares) collapse surprisingly well on the corresponding empirical functions, as shown in
Fig.2.12.b.

At the same time, in Fig. 2.12.c the p(E) balance functions calculated for the limited event
sets on fully balanced links show surprisingly similar behaviour to the overall averages (seen
in Fig. 2.10.g). This demonstrates that even an overall balanced link, strong communication
imbalances appear due to local correlations within one bursty train. This is even more striking if
we compare the empirical P(E) curves to the corresponding independent one (green triangles in
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Fig.2.12.c) which was generated using Eq.2.16 with be = 1/2. Moreover, in Fig. 2.12, the average
p(E) balance functions emerging without parameters for model trains are in surprisingly good
agreement with the empirical observations. Consequently, the assumed mechanisms defined in
Eq. 2.19 and 2.20 are capturing rather accurately the salient features of the dynamics of directed
human communication through phone calls and SMS. The only discrepancy is for the p(E) values
of short SMS trains, where the empirical data show an even-odd effect, which is not reproduced
in the model. This indicates that possibly other mechanism may be present in the communication
sequence what are not considered in this modelling study.

2.6 Conclusions
In this Chapter, I summarised my most important results in one of my main research domains
on bursty human dynamics. After a brief overview of the field, first I introduced some basic
characteristic measures, some of them defined by me and colleagues, which are commonly used to
quantify heterogeneous patterns in human dynamics. Subsequently, I systematically walked through
a series of studies I published over the last years for the advanced characterisation, observation, and
modelling of bursty human dynamics.

Due to the diverse experiences, broad overview, and devoted interest towards this field, together
with Dr. Hang-Hyun Jo and Pr. Kimmo Kaski, we recently took the timely opportunity to write a
monograph book, entitled as ”Bursty Human Dynamics“, to review all relevant knowledge on the
field cumulated over the last decade. This book has been published by Springer in January 2018.

Finally note that some of my studies published on the system-level observations, modelling,
and effects of bursty dynamical patterns are not mentioned in this Chapter as they land close to
field of temporal networks, which is the topic of the coming Chapter.



3. Temporal Networks

3.1 Introduction

The success of Networks Science is built on the operational representation of complex systems as
graphs, which in turn can be quantified, observed, and modelled for the better understanding of
emerging phenomena [278]. From the early years of the field a common simplifying assumption
has been taken to neglect that real networks may evolve in time, and may consist of nodes and
links of different types. Although these approximations were obviously vague in various cases,
yet the static/monolayer network approach was extremely successful to obtain crucial knowledge
about several empirical systems. However, after a decade the field became advanced enough to
overcome these limitations and to develop the contemporary domains of temporal networks to
consider the dynamic nature of interactions [173, 258], and multilayer networks to take into account
the multiplicity of interaction types [216, 55]. These recent developments were fuelled by the
ever increasing network data available, which more-and-more commonly comes in the form of
time-stamped interaction sequences and/or with metadata recording details on nodes and links.
Advancements in data collection and data sharing together with the novel theoretical foundation
of these domains help us to break the glass ceiling of the static/monolayer network picture and
push us to think about networks as dynamical systems with various types of interactions and agents.
In this Chapter we concentrate on temporal networks as I mainly contributed to the theoretical,
methodological, and empirical foundation of this domain. First we lay down some general thoughts
on temporal networks, which after we will introduce a set of representations and characteristic
measures which are necessary to understand the body of this Chapter. Subsequently, we will discuss
four main directions of my contributions on to the system level characteristic, random reference
models, higher order representations and generative modelling of temporal networks.

3.1.1 Static vs. Temporal Networks

Most network structures are the results of some emergent phenomena, consequently they continu-
ously evolve in time, or dynamical evolution was necessary at some point of their existence. This
way, by only looking at the static description of their aggregated final or actual state we may obtain
limited understanding about their "morphogenesis" and emergent properties. A good example
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(a) (b) (c)

Figure 3.1: Dynamics of a mobile call network. Panels (a), and (b) show calls over 3 hours between people
in the same town at two different time stamps. Panel (c) presents the backgrounding weighted social network
structure, which was recorded by aggregating interactions evolved between people during 6 months. Node
size and colours describe the activity of users, while link width and colour represent weight. This figure was
published in [206].

is the commonly observed degree heterogeneity, which has been argued to emerge due to some
reinforcement mechanisms (preferential attachment, Matthew process, etc) driving the interaction
dynamics in a network [40]. Other examples are degree correlations, weight heterogeneities,
network communities, etc., which all can be observed in a static network as emergent properties,
due to mechanisms driving the underlying network dynamics at the first place. Temporal networks
contributes to their understanding by studying the network dynamics at the level of rapid recurrent
interactions between nodes [173]. As we will see later, this level of description can be used to iden-
tify important mechanisms and correlations between single events of interactions [195, 233, 206],
which leads to emergent heterogeneous properties on the aggregated scale (as demonstrated in
Fig. 3.1). Taking interactions as static links between nodes subsequently entails that information
can flow between the connected peers at any time [206]. This is evidently not true in many cases,
like in human communication networks [195, 217], where information can be passed between
nodes only at the time of interactions and only between the interacting nodes. This way, information
flow, and as a consequence the emergence of any macroscopic phenomena on networks, are limited
by the emerging time respecting paths determined by the the timing, direction, and ordering of
events [217]. This puts network analysis in a rather different perspective, as all characteristic
network properties, centrality measures, or structural properties become time dependent [388, 226].
On the other hand, better understanding of time respecting paths opens the door to more realistic
simulations of dynamical processes, like epidemic or information spreading, diffusion processes,
opinion dynamics, or synchronisation, which are actually crucially altered by the time-varying
nature of interactions (for further discussion on this matter see Section 3.5.2).

3.1.2 Time-scales of network dynamics

Taking an observer point of view, a network can dynamically evolve in various temporal scales
relative to the observation frequency [310]. The typical cases are demonstrated schematically in
Fig. 3.2, where we fix the observation frequency and vary the relative time-scales between two
extremes. On one end of this scale we find the so called quenched networks, which are invariant
in time or evolve on such a slow pace that appears to be invariant from the observer point of
view. Static networks are belonging in this category with frozen nodes and links, which are always
present in the structure. Once we consider that nodes and links may be created and deleted in the
network, but yet on a slower temporal scale as the observation, we arrive to the evolving network
picture [17]. Best examples for this representation are social networks where individuals may born
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Figure 3.2: Relative times-scales of network dynamics as compared to the time-scale of observations.

and die and social ties are created and broken but all being present for longer periods lasting for
several observations. Other examples are the internet, or other infrastructure networks. Once the
observation frequency closely matches the temporal scale on which the network is evolving we
arrive to temporal networks [173]. Here we consider rapid and potentially recurrent time-varying
interactions between nodes like emails or phone calls in social communication networks, or sexual
contact networks. Note that temporal networks contain all information provided by the other
network pictures evolving slower than the observation frequency. One can take first and last
observations of interactions between nodes to reconstruct the evolving network representation,
while aggregating interactions over time would give us the static network description of a time-
varying network [173]. However, we loose this advantage once the network is evolving faster
than we can observe. In this case observations provide snapshot networks, which aggregate the
structure of the time-varying network over short consecutive periods. If the time-scale difference is
still not too large, consecutive snapshots are not entirely independent from each other and can be
used as an approximate method to represent temporal networks. For a good example see Fig. 3.1.a
and b where two snapshots of a mobile phone call network is shown. On the other hand, once
the network is evolving on a way faster time-scale than we can observe we arrive to the annealed
network picture in which case consecutive observations of the network are weakly correlated or
entirely independent [284, 125]. Neural networks in the brain are good example for this case, where
imaging technologies have not reached yet the temporal (neither spatial) resolution necessary to
observe the precise electric signals running between neurons. Also note that the so called mean-field
approximation becomes valid in this extreme.

3.1.3 Representations of temporal networks

In order to study temporal networks we need to introduce a representation, which can be further
used to define general measures and which maps between a mathematical description and the
common data collection format of time-varying interactions. The most straightforward description,
which we will consistently use later on, is the event list (also called event-based) representation.
To introduce, let us consider a temporal network as a set Gt = (V,Et ,T ) defined as sets of vertices
v ∈ V , and edges defined as a set of events Et ⊂ V ×V × [0,T ] over a time period T . This way
a temporal network is described as a sequence of events, which in their simplest form appear as
triplets (u,v, t) indicating an interaction between nodes u and v at time t ∈ [0,T ]. Note that an
event can be directed or undirected depending on whether we consider V ×V as an ordered or
unordered set. Furthermore, this way of representation allows for both continuous and discrete time
description of temporal networks. As data commonly comes in a discrete time format, we chose
this as our default assumption and we consider events undirected if not mentioned otherwise. This
representation can be further extended by defining events as Et ⊂V ×V × [0,T ]×∏i Ae

i where Ae
i
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is a set of meta informations like duration, cost, or the location of participating nodes, which may
extend the description of each event depending on the actual data.

Several other representations of temporal networks has been provided over the last couple
of years [173, 258]. One represents temporal networks as a discrete time sequence of snapshot
networks captured by adjacency matrices A = {A(t)}. Each matrix A(t) = |V |× |V | aggregates
all events, which are present between nodes at time t. However, since the ordering of events
within one snapshot is not determined, this representation does not contain all information about
the original temporal structure, and the information loss depends on the relative time-scales of
the snapshot time window and the evolving network. Furthermore, the notion of duration in this
representation is not straightforward. If events have shorter duration than the sampling frequency
we may loose information again. Or in the contrary, if events have long duration, they appear as
multiple events in several consecutive time windows. Another recently proposed representation
is so called link streams of a temporal network [232]. This description aims to provide the most
general representation of dynamic networks by using stream graphs defined as a S = (V,W,E,T ),
where W being the set of temporal nodes W ⊂ V × [0,T ]. In case we assume that W is time
invariant, i.e., all nodes are present always, we receive the definition of link streams which provides
a similar description with the even list representation discussed above. As follows we are going to
mostly apply the even list representation, while in Section 3.4.2 we will propose a new lossless
representation of temporal networks as static weighted directed acyclic graphs.

3.1.4 Some characteristic measures of temporal networks
There are several ways to extend the definition of characteristic measures of static networks (e.g.
ones mentioned Section 1.2.1) for temporal structures. Here, without aiming a complete review,
we will summarise some concepts and metrics, which will be frequently used in the forthcoming
Chapters for the analysis of time-varying networks. For a more complete list of definitions we refer
the reader to recent review articles and books like [173, 258, 232].

Dynamical measures of characteristic metrics
The first thing to notice in case of temporal networks is that characterising metrics, like degree,
strength, weight, clustering coefficient, or centrality measures may vary in time. However, despite
their timely variance, their distributions or average values may reach stationary values. The most
straightforward way to capture their dynamics is via assuming a time aggregation process. There,
initially at t = 0, we have an empty graph with N nodes and take each event in a timely order
to build an aggregated static network G[0,t] = (V,E[0,t]). At time t this static structure will have
links induced by interactions appeared between [0, t] and can have link weights defined as the
number of interactions, the sum of event durations etc. Measuring the average or the distribution of
characteristic network metrics in the aggregated network G[0,t] as t→ T give us some information
about the evolution of the network and the emergence of its stationary properties [226]. Note
that in the limit t = T the representations G[0,T ] ≡ G are equivalent. There are several other
ways to measure general characteristics, like via the analysis of networks observed in consecutive
discrete aggregated snapshots. However, these methodologies are not discussed here as they are not
necessary for the understanding of the rest of the thesis.

Path-based measures
Some of the most important characters of temporal networks build on the concept of temporal paths
(also called time-respecting paths). Paths in temporal networks have rather different properties as
compared to static networks. Most importantly, they fully determine the outcome of any collective
phenomena as they constrain possible information flow between nodes. However, before we ground
the definition of temporal paths we need to introduce some other concepts related to event adjacency
and temporal walks. In the following we are going to use the event based representation of an
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undirected temporal networks, but all definitions are generalisable for other representations as well.
Event adjacency defines a directed relationships between events which are performed on

neighbouring links. More precisely, taking two events e1 = (vi,v j, t1) and e2 = (v j,vk, t2) from a
temporal network (with vi,v j,vk ∈V and t1, t2 ∈ T ), the event e1 is adjacent to event e2 if they share
at least one common node and t1 < t2. Next, let’s imagine a walker on the temporal network, which
can pass between nodes but only at the time of their interactions while respecting the ordering of
events, i.e., it can use only events from the future. Then, a temporal walk between two nodes v0
and vn is defined as a sequence of {(v0,v1, t1),(v1,v2, t2) . . .(vn−1,vn, tn)} of adjacent events, where
ti < ti+1 (0≤ i≤ n−1). In general, a temporal walk depends on the time t1 when it starts, it can
visit a node multiple times, and its length is defined as tn− t1. Furthermore, a temporal walk is
non-symmetric (even in an undirected temporal network), non-transitive, and cannot be infinitely
long (for further explanation of these properties see [258]). Subsequently, we can define the concept
of reachability, i.e., a node v j is reachable from a node vi if there exists a temporal walk from vi to
v j. We call a temporal walk between two nodes to be a temporal path if the walker visits one node
maximum once (thus no node is visited multiple times during the walk).

Finally, we introduce the concept of connected components in temporal networks, which is
different from the corresponding static network definition due to the non-symmetric property of
temporal paths. A connected component in a temporal network is a maximal set of nodes in which
each pair of nodes is temporally connected. Following this definition one can define weakly and
strongly connected components, but one needs to keep in mind that a node can participate in
multiple connected components depending on the temporal paths in which it participates. This way
connected components do not provide a well defined node-partitioning in temporal networks. In
terms of computation, the complexity to find all connected components in a temporal network is
an O(N2) problem compared to the static network solution with O(M) complexity. Finding all
temporal paths in a temporal network has been an NP-complete problem. However, in a recent
paper [217] we provided some better algorithmic solution what will discuss in Section 3.4.2, where
we will introduce a new, higher-order representation of temporal networks together with new
definitions of connected components.

3.2 System level characterisation

3.2.1 Aggregation time for social communication networks

After this brief introduction to temporal networks first we will discuss some results characterising
time-varying networks on the system level. As we have discussed earlier, temporal aggregation
of time-varying interactions provides a static, weighted network representation, which contains
no temporal informations, but codes the underlying structure. This aggregated structure may have
various heterogeneous properties and may emerge with communities and other consequences of
structural correlations. However, when taking a sequence of time-varying interactions it is not clear
how long one needs to aggregate in order to capture the most important static network properties.

Next, we address this question by monitoring and analysing the features of network structure
emerging from aggregation over different time intervals for an empirical data set of mobile phone
communication [226]. We are interested in the effects of the aggregation window on the structural
features of human communication networks that are known to display dynamics on multiple
overlapping time scales. The data comes in the form of a time-stamped sequence of mobile
telephone calls between anonymised customers of a Belgian mobile operator for a period of 6
months. Note that although it has been collected in another country, it is very similar to DS1 in
Section 1.3.2 (for more about the data see [226]).

The aggregated network possesses all structural heterogeneities typically characterising social
communication networks. It appears with a broad degree, weight and node strength distribution as
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reported in [226]. As a first approximation, let’s characterise its dynamics by simply measuring
the evolution of basic network characteristics. As shown in [226], the number of nodes or links,
the average node degree or link weight all increase monotonously in time without indicating any
characteristic time scale. Moreover, the interaction dynamics clearly displays the usual daily and
weekly pattern, and it appears bursty, indicated by the long tail of the distribution of inter-even
times measured between consecutive calls on individual edges.

0 10 20 30 40 50 60
t (days)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

hC
i

a)

0 10 20 30 40 50 60
t (days)

0.00

0.05

0.10

0.15

0.20

0.25

hO
i

b)

0 10 20 30 40 50 60
t (days)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

�C
�

a)

0 10 20 30 40 50 60
t (days)

0.00

0.05

0.10

0.15

0.20

0.25

�O
�

b)

0 10 20 30 40 50 60 70 80 90
W (days)

0.20

0.25

0.30

0.35

0.40

0.45

h�
i

(a) (b) (c)

a) t = 1 day

c) t = 4 weeks

b) t = 1 week

d) t = 6 months

a) t = 1 day

c) t = 4 weeks

b) t = 1 week

d) t = 6 months
5

FIG. 6: Series of aggregated networks with a growing aggre-
gation interval. The network aggregated here represents a
small subnetwork, obtained by picking individuals from a sin-
gle postal code. Links that participate in triangles in the final
6-month aggregated network are colored red, while the rest
are black.

The fact that the edges observed early on in the aggre-
gation process are related to the community structure is
also visible when monitoring the overlap [6] of the added
links. The overlap of a link connecting nodes i and j is
defined as

Oij = nij/ [(ki � 1) + (kj � 1)� nij ] , (2)

where nij is the number of common neighbours of i and
j, and ki and kj are their degrees. Thus the overlap
measures the fraction of common neighbours out of all
neighbours of the two connected nodes. Fig. 5figure.5 b)
displays the average final 6-month overlap of the added
links as a function of aggregation time. Here we have
calculated the overlap of each link in the final 6-month
aggregated network, and averaged over these values for
links that are added to the network at time t. It is seen
that the links that are added early on in the aggrega-
tion process have on average a higher overlap than those
added later; the final overlap is a decreasing function.
Hence, even when the aggregation times are short, the
networks capture features of the community structure of
the final aggregated networks. Interestingly, the overlap
also shows a strong circadian and weekly pattern – its
highest peaks correspond to the early morning when the
overall call rate is very low. Thus, if calls are made dur-
ing these hours, they are likely to be targeted towards
people in the strongest clusters of friends and family.
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In order to illustrate the network growth, we have vi-
sualized small subnetworks corresponding to di↵erent ag-
gregation times t (Fig. 6figure.6). Here, the subnetwork
has been obtained by selecting all individuals whose sub-
scriptions are associated with a certain postal code – this
method of sampling yields better results than e.g. snow-
ball sampling. Panels a) to d) of Fig. 6figure.6 show the
growth of the network, such that edges that participate
in triangles in the final 6-month aggregated network are
coloured red. For the shortest aggregation periods (pan-
els a and b), most of the added edges are in this set,
reflecting the above observations on the early appear-
ance of edges connected to communities and clusters. It
should be noted that not all community-internal edges
are discovered early on; rather, those links that appear
early are associated with communities with a high prob-
ability.

Behaviour of statistical distributions

Above, it was seen that even for fairly long aggregation
intervals, the average degree of the aggregated networks
still keeps increasing as a function of the interval length.
Likewise, because of how the aggregation process is de-
fined, the average weight necessarily keeps on growing
as well. Next, we turn to the statistical distributions of
these quantities, and ask when they become descriptive of
the underlying network. Evidently, as the averages keep
increasing with the aggregation interval length, the prob-
ability density distributions of degrees and weights also
change and shift towards higher degrees/weights. How-
ever, for such distributions to be meaningful descriptors
of network structure, their underlying forms should for
long enough intervals become stationary and depend only
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Figure 3.3: (a) The average fraction of links f common to consecutive aggregation windows of duration W .
(b) Global clustering coefficient and (c) average final overlap of added edges as a function of aggregation
time, for the first 2 months. This figure was prepared by G. Krings and published in [226].

Further observations suggest that links in a social network appear with various time span. While
some of them are stable and remain active for prolonged periods of time, others exist or can be
detected only within limited time periods. In reflection, the aggregation window length should
obtain a representative, “backbone” networks that capture the stablest connections in the system?
Thus, we compare the similarity of networks aggregated for different periods of time when the
observation period is divided into multiple consecutive aggregation windows. We then calculate the
similarity σ of two consecutive networks G1 = (V1,E1) and G2 = (V2,E2) as

σ(G1,G2) =
|E1∩E2|
|E1∪E2|

, (3.1)

such that σ = 1 if the networks are the same, and σ = 0 if they share no links. In Fig. 3.3a, the
average similarity σ , computed for different durations W , indicates small similarity if the windows
are very short, as the networks are very sparse with only a few common links. Then, the similarity
increases with increasing window duration, reaching a maximum at ∼ 30 days; subsequently,
the similarity begins to decrease slowly as the aggregation process captures more and more of
spuriously appearing very weak ties or random links.

To better understand the network evolution it is important to learn about the characteristics
of links that emerge early on in the process. As we have already discussed in Section 1.2.2, the
Granovetter hypothesis suggests that link weights correlate with the network topology such that high-
weight links are associated with dense network neighbourhoods, whereas low-weight links connect
such neighbourhoods. This is directly related to the presence of community structure [126] in
social networks; links within communities are stronger and have higher-than-average weights [339].
For the network aggregation, this means that clusters and communities are likely to appear early
on in the process. In order to investigate this effect, we measure the evolution of the global
clustering coefficient C(t) and the average final overlap values 〈O〉(t) of added links (both defined
in Section 1.2.1) as the function of aggregation time. As seen in Fig. 3.3b, the clustering coefficient
does indeed increase initially rapidly, and then decreases after a peak at around t = 9 days. This
decrease can be attributed to the weak links observed later in the process: those links contribute
less frequently to triangles. For the case of the average overlap in Fig. 3.3c, the early observed links
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have on average a higher overlap than those added later; the final overlap is a decreasing function.
Hence, even when the aggregation times are short, the networks capture features of the community
structure of the final aggregated networks. Interestingly, the overlap also shows a strong circadian
and weekly pattern – its highest peaks correspond to the early morning when the overall call rate is
very low. Thus, if calls are made during these hours, they are likely to be targeted towards people
in the strongest clusters of friends and family.

In order to illustrate the network growth, we have visualised small subnetworks corresponding
to different aggregation times t of people from a single town (see Fig. 3.4). Panels a) to d) of
Fig. 3.4 show that at the early times of the observation, those edges appear mostly which participate
in triangles in the final aggregated network (coloured in red). These edges are the ones forming
communities and clusters. On the other hand, not all intra-community edges are discovered early
on; rather, those links that appear early are associated with communities with a high probability.
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FIG. 6: Series of aggregated networks with a growing aggre-
gation interval. The network aggregated here represents a
small subnetwork, obtained by picking individuals from a sin-
gle postal code. Links that participate in triangles in the final
6-month aggregated network are colored red, while the rest
are black.

The fact that the edges observed early on in the aggre-
gation process are related to the community structure is
also visible when monitoring the overlap [6] of the added
links. The overlap of a link connecting nodes i and j is
defined as

Oij = nij/ [(ki � 1) + (kj � 1)� nij ] , (2)

where nij is the number of common neighbours of i and
j, and ki and kj are their degrees. Thus the overlap
measures the fraction of common neighbours out of all
neighbours of the two connected nodes. Fig. 5figure.5 b)
displays the average final 6-month overlap of the added
links as a function of aggregation time. Here we have
calculated the overlap of each link in the final 6-month
aggregated network, and averaged over these values for
links that are added to the network at time t. It is seen
that the links that are added early on in the aggrega-
tion process have on average a higher overlap than those
added later; the final overlap is a decreasing function.
Hence, even when the aggregation times are short, the
networks capture features of the community structure of
the final aggregated networks. Interestingly, the overlap
also shows a strong circadian and weekly pattern – its
highest peaks correspond to the early morning when the
overall call rate is very low. Thus, if calls are made dur-
ing these hours, they are likely to be targeted towards
people in the strongest clusters of friends and family.
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In order to illustrate the network growth, we have vi-
sualized small subnetworks corresponding to di↵erent ag-
gregation times t (Fig. 6figure.6). Here, the subnetwork
has been obtained by selecting all individuals whose sub-
scriptions are associated with a certain postal code – this
method of sampling yields better results than e.g. snow-
ball sampling. Panels a) to d) of Fig. 6figure.6 show the
growth of the network, such that edges that participate
in triangles in the final 6-month aggregated network are
coloured red. For the shortest aggregation periods (pan-
els a and b), most of the added edges are in this set,
reflecting the above observations on the early appear-
ance of edges connected to communities and clusters. It
should be noted that not all community-internal edges
are discovered early on; rather, those links that appear
early are associated with communities with a high prob-
ability.

Behaviour of statistical distributions

Above, it was seen that even for fairly long aggregation
intervals, the average degree of the aggregated networks
still keeps increasing as a function of the interval length.
Likewise, because of how the aggregation process is de-
fined, the average weight necessarily keeps on growing
as well. Next, we turn to the statistical distributions of
these quantities, and ask when they become descriptive of
the underlying network. Evidently, as the averages keep
increasing with the aggregation interval length, the prob-
ability density distributions of degrees and weights also
change and shift towards higher degrees/weights. How-
ever, for such distributions to be meaningful descriptors
of network structure, their underlying forms should for
long enough intervals become stationary and depend only
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Figure 3.4: Series of aggregated networks with a growing aggregation interval. Networks here represent
small subnetworks of individuals from a single postal code. Links that participate in triangles in the final
6-month aggregated network are coloured red, while the rest are black. This figure was prepared by G.
Krings and published in [226].

Further investigating the statistical distributions of node degrees and link weights, we observed
(not shown here but presented in [226]) that after a short initial transition period, sufficient amount
of data has been collected to correctly estimate the stationary degree distribution of the network,
and the shape of the distribution remains similar for longer intervals longer than 3 weeks. The
weight distribution displays a slightly slower convergence, and is still slowly changing even for
aggregation intervals of around 3 weeks.

3.2.2 Entropy of Dynamical Social Networks
To characterise temporal networks on the system level we turn to a more complex measure capturing
the entropy of time-varying information coded in the interaction dynamics of individuals. Network
entropy has been earlier introduced for static networks [116, 52, 23], but its first definition for
temporal networks was proposed by us in [388]. We have seen through several earlier examples
that human activities are commonly bursty and not Poissonian and modulated by periodic daily
(circadian) or weakly patterns. To understand the convoluted effects of these characters, our
question here is: How much can humans intentionally change the statistics of social interactions
and the level of information encoded in the dynamics of their social networks? To answer this
question, through the analysis of a mobile phone-call network (DS1 in Section 1.3.2), we show that
the entropy of dynamical networks is able to quantify the information encoded in the dynamics of
time-varying interactions.

The entropy measure
Here we introduce the entropy of dynamical social networks as a measure of information encoded in
their dynamics [388]. We assume to have a quenched network G formed by N agents and we allow
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a dynamics of interactions on this network. If two agents i, j are linked in the network they interact
at each given time giving rise to the time-varying network. In the network G, agents i1, i2, . . . in can
interact in a group of size n. Therefore at any given time the static network G will be partitioned in
connected components or groups of interacting agents as shown in Fig 3.5a or b. In order to indicate
that an interaction is occurring at time t in the group of agents i1, i2, . . . , in and that these agents
are not interacting with other agents, we write gi1,i2,...,in(t) = 1 otherwise we put gi1,i2,...,in(t) = 0.
Therefore each agent is interacting with one group of size n > 1 or non interacting (interacting with
a group of size n = 1). Consequently at any given time, the condition

∑
G=(i,i2,...,in)|i∈G

gi,i2,...,in(t) = 1. (3.2)

has to be valid, where we indicate with G an arbitrary connected subgraph of G. The history
St of the dynamical social network is given by St = {gi1,i2,...,in(t

′)∀t ′ < t}. If we indicated by
p(gi1,i2,...,in(t) = 1|St) the probability that gi1,i2,...,in(t) = 1 given the story St , the likelihood that at
time t the dynamical networks has a group configuration gi1,i2,...,in(t) is given by

L = ∏
G

p(gi1,i2,...,in(t) = 1|St)
gi1 ,i2,...,in (t) (3.3)
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Figure 3.5: The dynamical social networks are composed by different dynamically changing groups of
interacting agents. In panel (a) we allow only for groups of size one or two as it typically happens in mobile
phone communication. In panel (b) we allow for groups of any size as in face-to-face interactions. (c)
Mean-field evaluation of the entropy of the dynamical social networks of phone calls communication in a
typical week-day. In the nights the social dynamical network is more predictable. This figure was published
in [388].

The entropy S characterises the logarithm of the typical number of different group configurations
that can be expected in the dynamical network model at time t and is given by S =−〈logL 〉|St

that we can explicitly express as

S =−∑
G

p(gi1,i2,...,in(t) = 1|St) log p(gi1,i2,...,in(t) = 1|St). (3.4)

According to the information theory results [93], if the entropy is vanishing, i.e. S = 0 the network
dynamics is regular and perfectly predictable, while if the entropy is larger, the number of future
possible configurations is growing and the system is less predictable. In general, we have to
allow the possible formation of groups of any size. However, if we model the mobile phone
communication, we need to allow only for pairwise interactions. Therefore, if we define the
adjacency matrix of the network G as the matrix ai j, the log likelihood takes the very simple
expression given by

L =∏
i

p(gi(t) = 1|St)
gi(t) ∏

i j|ai j=1
p(gi j(t) = 1|St)

gi j(t) with gi(t)+∑
j

ai jgi j(t) = 1, (3.5)
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for every time t. The entropy is then given by

S =−∑
i

p(gi(t) = 1|St) log p(gi(t) = 1|St)−∑
i j

ai j p(gi j(t) = 1|St) log p(gi j(t) = 1|St).

Social dynamics and entropy of phone call interactions
For demonstration we have analysed the mobile phone-call sequences recorded in DS1. For the
entropy calculation we selected 562,337 users who executed at least one call per a day during a
week period and we have studied how the entropy of this dynamical network is affected by circadian
rhythms. We assigned to each agent i = 1,2 a number ni = 1,2 indicating the size of the group
where she belongs. If an agent i had coordination number ni = 1 she is isolated, and if ni = 2
she was interacting with a group of n = 2 agents. We also assigned to each agent i the variable ti
indicating the last time at which the coordination number ni has changed. If we neglect the feature
of the nodes, the most simple transition probabilities that includes for some memory effects present
in the data, is given by a probability pn = pn(τ, t) for an agent in state n at time t to change her
state given that she has been in her current state for a duration τ = t− ti.

We have estimated the probability pn(τ, t) in a typical week-day. Using the data on the
probabilities pn(τ, t) we have calculated the entropy, estimated by a mean-field evaluation (for
more on this see [388]) of the dynamical network as a function of time in a typical week-day. The
entropy of the dynamical social network is reported in Fig. 3.5c. It significantly changes during the
day describing the fact that the predictability of the phone-call networks change as a function of
time. In fact, as if the entropy of the dynamical network is smaller and the network is in a more
predictable state.

3.3 Random Reference Models
Human actions and interactions are driven by various intrinsic decision mechanisms and influenced
by several environmental factors. As the consequence of these convoluted processes various
correlations appear at the phenomenological level, which in turn characterise the structure and
dynamics of the emerging temporal network. Differentiation of these correlations is not only
important to identify and understand the mechanisms underlying the network evolution, but because
they have important consequences on the ongoing dynamics processes like in case of spreading
phenomena. Spreading processes are relevant for a number of fields and applications ranging
from epidemiology of biological viruses to the dynamics of social processes, such as opinion
dynamics and information transmission [43]. While certain static characteristics of complex
networks work to enhance spreading, such as the small-world or the scale-free properties, it has
been shown that the temporal characteristics of links may slow spreading down [362, 195, 217, 268].
These results indicate that dynamical processes cannot necessarily take advantage of topologically
characters [292] but they are determined by the combination of structural and temporal characters
of the underpinning temporal network.

For static networks, a common way to assess the significance of chosen topological features
is to compare their abundance or characteristics against some reference model where the network
is randomised. This approach has also been applied in assessing the importance of such features
for dynamical processes. The most widely applied reference model is the configuration network
model [270], where the links of the original network are rewired pairwise randomly. This reference
model preserves the original degree sequence but yields networks that are as random as the degree
sequence allows. Then, one can assess the significance of topological characteristics of the empirical
graph, e.g. by measuring the extent to which the dynamics of some processes differ when they take
place on the original networks or the reference ensemble.

Our aim in this Section is to introduce random reference models (RRMs) for temporal networks.
In this case, the original event sequences are randomised or randomly reshuffled to remove time-
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domain structure and correlations [195, 218, 268, 169, 134]. Thus a reference model for an
empirical event sequence is a maximally random (micro-canonical) ensemble of event sequences,
for which some predefined set of properties are the same as for the empirical sequence. There are
various kinds of temporal correlations such like burstiness, causal events, or circadian fluctuations,
etc., and thus no single, general-purpose reference model (a ‘temporal configuration model’) can be
designed. Rather, by applying appropriate reference models, one may switch off correlations of
selected types in order to understand their contribution to the observed properties. Here, we will
briefly introduce the methodological concept, a canonical naming convention and a hierarchical
organisation of RRMs [134] and will apply some of these models on an empirical temporal
network to demonstrate their potential in identifying important structural and temporal correlations
controlling spreading dynamics [195, 218].

3.3.1 Naming and and organisation of RRMs
One can think about random reference models as constrained shuffling methods of interaction
sequences, where some property of the original temporal network is retained, otherwise the
shuffled sequence is maximally random. Equivalently, such methods sample uniformly from
the micro-canonical ensemble of all networks, which have a given set of features constrained
to the same value as that of the original data, but have maximum entropy otherwise [218]1.
Consequently, a RRM is determined by the temporal network and a set of selected constrains,
which can be related to temporal, structural, or environmental properties, or can be specific to the
actual representation of the network. The sequence t of interaction times, the sequence of k node
degrees, or the p(w) distribution of number of interactions on single links are all good examples
for such constraints, which in turn can be used for naming RRMs. For example, the simple random
reference model, P[E], constrains only the total number of events E in the network, and permutes
all the instantaneous events at random otherwise. On the other hand RRMs can be defined by
constraining on multiple characters, or via the intersection of multiple ways of shuffling. The
P[w, t] ’time-shuffling’ RRM, randomly permutes the timestamps t of all events, while keeping
the participating nodes of the events fixed. Completely equivalently, we may define the timestamp
shuffling by constraining the timestamps t and permuting the pairs of interacting nodes among
events. Due to the indistinguishability of networks obtained through permutation of event indices
or times, both are equivalent to conserving number of interactions on each link w and the global
sequence of interaction times t. This framework enables us to build a taxonomy of existing RRMs,
which lists their effects on important temporal network features and (partially) orders them by the
amount of features they constrain. This hierarchy allows to apply RRMs so that the fixed features
of the original data are systematically reduced. Without going into details, we refer the interested
reader to our recent article [134], where we categorically list all identified constrains, and formally
introduce the naming convention and a hierarchical organisation of simple and combined RRMs.

3.3.2 Modelling concept and demonstration of RRMs
As it has been discussed in Section 1.1.2, random reference models are school examples of
data-driven modelling, where real-world data and synthetic models are combined for a realistic
simulation of a given phenomenon. In this case, taken a real temporal network and its randomly
shuffled variates, synthetic dynamical processes are simulated on the top of them to understand how
much structural and temporal correlations, present in the network, influence the unfolding of the
synthetic dynamical process. To answer this question, we assume that taken some initial conditions
for the process, information (infection, influence, etc.) in the temporal network can pass between

1Note, that it is possible to define grand canonical ensembles of temporal networks, but as most of the published
methods (including the ones discussed in this Chapter) fall within the micro-canonical definition, we limit our discussion
to these cases.
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nodes only at the times of their interactions and in a direction respecting the orientation of the
actual event (if not noted otherwise). This way the initial conditions and the order of interactions
determine the possible time respecting paths, which along the information can be transmitted, and in
turn the final outcome of the dynamical process. To carry out such data-driven model experiments
we follow general algorithmic recipe:

1. Take a temporal network.
2. Carry out a large number of simulations of a dynamical process on the temporal network

with given initial conditions until it reaches a pre-defined equilibrium state.
3. Compute average quantities characterising the dynamics and final outcome of the dynamical

process.
4. Apply a selected RRM on the temporal network to eliminate the effects of selected correla-

tions and repeat points 2-3.
5. Compare the average outcome of the dynamical processes simulated on the original network

and its RRMs to draw conclusions.
For demonstration [195, 218], as a temporal network we use here a six months long sequence of

mobile-phone call interactions (DS1 in Section 1.3.2), and as a synthetic process we use one of the
simplest dynamical model, the Susceptible-Infected (SI) process, which is to simulate information
or infection spreading on networks [43]. This model assigns one of two mutually exclusive states,
susceptible (S) or infected (I), to each node in the network and assumes that initially every node are
susceptible expect one infected seed, which is chosen randomly at the beginning of the process.
During the process, a susceptible node can become infected with a rate β (or probability per unit
time step) at the time when it interacts with an infected node2. In the coming simulations we
use a deterministic SI process with β = 1 and neglect the direction of events, which means that a
susceptible node necessarily becomes infected once interacting with an infected node. We initiate
the process by setting infected a single randomly selected node at a randomly selected time, and
simulate the process until every node get infected, i.e, when the rate of infected nodes i(t) = I(t)/N
reaches 1. Since the seeding time of the SI process is randomly chosen, it is possible that the
process reaches the last event in the event sequence before every node gets infected. In this case we
apply a periodic temporal boundary condition, or in other words, we continue the process from the
beginning of the event sequence. This method evidently introduces some invalid time-respecting
paths [292] connecting events from the end of the sequence to ones in the beginning, but as we
demonstrated, this change marginally the overall dynamics of the process [218]. To obtain a
statistical characterisation of the dynamics we measure the average infection rate 〈i(t)〉 and the
P(t f ) distribution of full prevalence time, which fluctuates due to the random initial conditions of
the 103 independent simulations.

Simulations of the SI process on the original event sequence unfold in a surprisingly slow
dynamics and takes on average ∼ 700 days to reach every node in the network. This is even more
puzzling as the underlying static network structure exhibits a small-world property, thus the average
shortest paths between the ∼ 4.5M nodes is around 〈`〉 = 12.31. Consequently, the spreading
process on the temporal network deviates from the ideal structural paths and follow time-respecting
paths determined by the ordering of the time-varying interactions. Such slow spreading dynamics is
not un-precedential in real life. Spreading of pandemics, electronic viruses, and information, follow
their own pathways, which are not necessarily topologically efficient and, could be surprisingly
slow, e.g., new infections are reported years after the emergence of a new computer virus or the
introduction of an antivirus. The observed slow dynamics may be caused by the combined effects
of several structural and temporal characters. First of all, static topological characteristics such
as prominent community structure (C) have been shown to give rise to considerable decelerating

2Note, that we are going to discuss in details this and other model processes in Section 4.3, where we focus on the
unfolding and critical behaviour of various dynamical processes on static and temporal network.
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Figure 3.6: (a) Fraction of infected nodes 〈i(t)/N〉 as a function of time for the original event sequence and
null models. (b) Distribution of full prevalence times P(t f ) due to randomness in initial conditions. This
figure was published in [195].

effects on spreading speed [295, 114], while a fat-tailed degree distribution has been shown to be
an accelerating property [343]. Second, in weighted networks, the relationship between weights
and topology (W) provides an additional source of possible influence on the spreading dynamics.
In particular for social networks it is known that links within communities are strong, while links
between them are weaker [273] - such Granovetterian structure enhances the trapping effect by the
communities, leading to further slowing down of spreading [295, 273]. Third, temporal characters
like the daily activity cycle (D), the bursty character (B) of interactions and the causal correlations
between adjacent interactions (E) (for definition see Section 3.1.4) of the same person may give rise
to important temporal inhomogeneities, which in turn influence the speed of spreading dynamics.
Next, we introduce some RRMs which remove these effects in a controlled fashion to identify
which of them cause the observed slow dynamics.

P[w, pL (Θ)] - Equal-weight link-sequence shuffled model
Whole event sequences with time stamps (timelines) are randomly exchanged between links that
have the same weights, i.e. numbers of events. Timing correlations between adjacent links are
destroyed. While temporal characteristics of link event sequences are retained, any correlations
between them and the topology are lost. All other temporal and structural correlations are retained.
In other words, we constrain our shuffling on the w number of events (weights) on links, and the
pL (Θ) distribution of timelines in the static structure L .

P[L , pL (Θ)] - Link-sequence shuffled model
As above, but sequences are exchanged between links of any weight. Thus, weight-topology
correlations are destroyed, while keeping the L static structure and the pL (Θ) distribution of
timelines.

P[w, t] - Time shuffled model
The time stamps of the whole event sequence are randomly reshuffled. Thus all temporal correlations
with the exception of network-level frequency envelope (for calls, the daily pattern) are destroyed,
while the t event times and topological features like the w weight sequence are retained.

P[Iλ ,k, p(w), t] - Configuration network model
The original aggregated network is rewired according to the configuration network model, where
the degree distribution k of the nodes and connectedness Iλ are maintained but the topology is
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uncorrelated. Then, original single-link event sequences are randomly placed on the links thus
the overall weight distribution p(w) remains unchanged, and time shuffling as above is performed
keeping the event times t unaltered. All other temporal correlations, except seasonalities like the
daily cycle, are destroyed.

Name Description D C W B E 〈t20%〉
Original Empirical event sequence X X X X X 38.24± .74
P[w, pL (Θ)] Equal-weight link-sequence shuffling X X X X 41.20± .83
P[L , pL (Θ)] Link-sequence shuffling X X X 30.67± .55
P[w, t] Time shuffling X X X 26.48± .52
P[Iλ ,k, p(w), t] Configuration network model X 17.23± .22

Table 3.1: Correlations retained in different null models. D: daily pattern, C: community structure, W:
weight-topology correlations, B: bursty single-edge dynamics, E: correlations between adjacent events.
Average times to reach 20% prevalence with the error of the mean values. This table was published in [195].

In our analysis of the results, first we focus on the two temporal reference models that remove
temporal correlations while leaving the static network intact (equal-weight link-sequence shuffled
and time shuffled). Fig.3.6a shows that the spreading dynamics for those event sequences that
contain bursts (the original and equal-weight link-sequence shuffled sequences) are slower than
those for the reference model from which burstiness has been removed (sequences from the time
shuffled model). This clearly indicates that burstiness of the event sequences slows down the
spreading process significantly. Further, the dynamics for the original sequence and equal-weight
link-sequence shuffled model closely resemble each other. This similarity means that event-event
correlations have only a small influence on the speed of spreading and it causes even a small
acceleration for the process in early times. This can be explained by the emergence of rapid
chains of causal events, which helps information spreading locally. However, when looking at
the distributions of the full prevalence times t f , shown in Fig.3.6b, it is seen that for long times,
event-event correlations somewhat slow down the process.

Next, we turn to those reference models that modify structural features of the static aggregated
network. We find that when the network topology is retained but weight-topology correlations are
removed with the link-sequence shuffled reference model, the spreading significantly speeds up
compared to the original. This is because the reference model removes the known Granovetterian
weight-topology correlations where weak links connecting dense communities of nodes act as
bottlenecks. In addition, if topological correlations such as the community structure are removed
with the configuration model, the dynamics of spreading becomes even faster.

Finally, we cross-compare the relative importance for the structural and temporal correlations
in the call sequence on the spreading speed. As seen in Fig.3.6a, the spreading dynamics for the
time-shuffled model where weight-topology correlations are retained but the bursts are destroyed
is faster compared to that for the link-sequence shuffled model, where bursts are retained but
weight-topology correlations are destroyed. Consequently, burstiness of events on individual links
plays a more important role than weight-topology correlations in slowing down the spreading
dynamics.

The same conclusions can be drawn once we quantify the slowing down effects by measuring
the average times 〈t20%〉 to reach 20% prevalence (see Table 3.1). The difference between the
original and the fastest model is ∼ 21 days, i.e., a factor 2. Similarly for the 100% prevalence this
factor also 2 (∼ 342 days), showing that the effects of correlations are consistent for the duration
of the whole process and for individual runs. As for the effect of the random initial conditions,
the small error of mean values in Table 3.1 show that the mean curves in Fig.3.6a characterise the
overall behaviour well. The effect of initial conditions are demonstrated in Fig.3.6b, where the
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distributions are clearly separable at full prevalence.
As a conclusion we can draw that the bursty non-Poissonian dynamics and the Granovetterian

weight-topology correlations are the dominating characters which slow down the spreading dy-
namics, while other correlations like the community structure or causal event correlations play less
important roles. Further, in the related studies [195, 218] we showed that non-Poissonian bursts,
evidenced by fat tailed P(τ) inter-event time distributions, are consistently characterising all activity
groups of people. Actually we derived that the decelerating effects of burstiness is coupled with
the second moment of P(τ), leading to the extremely slow dynamics in strongly bursty systems
like mobile-phone communication sequences. In addition we found that, interestingly, circadian
patterns have negligible effects in influencing the speed of information spreading.

In this Section we briefly introduced the concept and a taxonomy of random reference models
and through a data-driven modelling study we demonstrated their potential in characterising
temporal networks and ongoing dynamical processes at the system level. As a next challenge we
turn our focus on causal correlations between events to see how they lead to the emergence of
mezoscopic temporal motifs and to long time-respecting paths in the temporal network.

3.4 Higher order representations

So far we looked at temporal networks as a sequence (or snapshots) of events, which connect two
nodes in the network at a given time. Such first order representations have been proven to be useful
to characterise temporal structures and ongoing processes but they make it difficult to study the
non-Markovian character of temporal networks where events are not necessarily independent from
each other. Such correlations, like causal relationships between adjacent events, potentially explain
phenomena like bursty interaction patterns [320], temporal motifs [217] and the emergence of long
time-respecting paths [217], but can be explanative for the emergence of homophilic motifs of
correlated interactions of similar individuals [224]. They can be effectively studied by higher-order
representations of temporal structures, where conceptually we identify events (or set of events) as
nodes and connect them with a directed link respecting the timely order of the connected events, if
they are adjacent at the given order of representation. Such way of description is not only important
to study social interactions, but they are central in transportation networks [382], in predicting
human mobility [297], or potentially in gene-regulation, or neural networks, just to mention a few
examples.

In the following we are going to discuss two methods proposed by us over the last years for
higher-order representation of temporal networks. One provides a mesoscopic level description to
identify recurrent isomorphic temporal motifs [223, 224], while the other provides a representation
at macroscopic scale of the whole temporal structure by mapping all temporal paths simultaneously
at once [217]. For simplicity, we assume that nodes in the network cannot participate simultaneously
in multiple events, and that events have no duration (although both methods can be easily generalised
in this sense). Also note that the investigations of non-dyadic interactions may lead to the recent
fields of simplicial complexes [381, 300] and hyper-graphs [185], which are out of the scope of the
present thesis.

3.4.1 Temporal motifs
Static motifs are classes of connected isomorphic subgraphs, which appear with a significantly
higher frequency in a real structure rather than by chance in a random reference model. Such motifs
can be identified as the mesoscopic building blocks of a static network, and more importantly, they
can be assigned to special functionality [266]. Analogous definition of motifs in temporal network
is a non-trivial problem as it requires the extension of the definition of connectedness, which in
case should intuitively include time, and isomorphism, which should respect structural and order
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equivalence between sets of adjacent events [223, 224]. As an example, in a social communication
network one might detect an event sequence where Alice calls Bob, who then calls Carol and
Dave. A similar sequence might be frequently observed to take place between the same people, or
between other sets of four individuals. All these sequences are members of the same class, which
we call a temporal motif. Other example can be found in genetic regulation data, where the event
sequence would correspond to regulatory interactions switching on and off as the intercellular
system performs its function. Beyond providing insight into the operation of the system under
study, temporal motifs allow the study of similarities and differences of temporal networks, as
originally proposed for static motifs in [266]. In addition they may help in building models of
network evolution [228].

Definition of temporal motifs
Following the logic of static network motifs [266], temporal motifs [223, 224] are defined as
temporally connected isomorphic temporal subgraphs of causally correlated events. Their definition
relies solely on a sequence of directed interactions e = (u,v, t) to identify causally correlated sets
of adjacent events (already introduced in Section 3.1.4), while neglecting any information on the
nature/type/content of interactions (which is usually not available anyway). Consequently, their
definition is limited to structural and temporal informations to decide about two adjacent events
to be causal. One realistic assumption suggests that two adjacent events happening within a ∆t
time window can be considered causal if the selected time window is sufficiently small. This
time window may represent the memory length of a person to remember some information, or
the infectious period of an infected agent, or the time one is willing to wait for a connection at
an airport. Taking this assumption, we consider two events ∆t-adjacent if they have at least one
node in common and the time difference between the end of the first event and the beginning of
the second event is no longer than ∆t. Equivalently, two events are ∆t-connected if there exists a
sequence of events ei = ek0ek1 . . .ekn = e j such that all pairs of consecutive events are ∆t-adjacent.

Et = {e1, . . . , e6}

E⇤,max
t = {e1, e2, e3}

E⇤,max
t = {e4, e5, e6}

E⇤
t = {e1, e2} E⇤

t = {e2, e3}

E⇤
t = {e5, e6}E⇤

t = {e4, e5}

(b) Maximal subgraphs (c) Valid subgraphs in maximal subgraphs (d) Invalid subgraphs

(a) Temporal network

Figure 3.7: (a) An example temporal network with event list Et of six events. With ∆t=40 there are two
maximal subgraphs, shown in (b). (c) Valid subgraphs contained in the maximal subgraph in (b). In addition
to these the maximal subgraph itself and all unit subgraphs are valid subgraphs. (c) Event sets that are
contained in (b) but are not valid subgraphs: the upper one because it does not include all consecutive
∆t-connected events, and the lower one because it is not ∆t-connected. This paper was published in [224]
and partially prepared by L. Kovanen.

Using these definitions, a connected temporal subgraph consists of a set of events such that all
pairs of events in it are ∆t-connected. This ensures that subgraphs are connected both topologically
and temporally. While this definition could already be used as a basis for temporal motifs, it suffers
from the same shortcoming as its static cousin: in some simple cases the number of connected
subgraphs explodes. For example an n-star, where all events take place within ∆t, contains

(n
k

)
connected temporal subgraphs with k events, which would make the resulting motif statistics
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difficult to interpret in any intuitive fashion.
One alternative to resolve this shortcoming is to consider only those connected subgraphs where

all ∆t-connected events of each node are consecutive. This not only solves the problem with the
n-star (we now get n− k+1 subgraphs with k events) but also offers an intuitive interpretation:
each subgraph takes into account all relevant events for each node within the time span covered
for that node, in the sense that no events can be skipped (as demonstrated in Fig. 3.7c). We call
connected subgraphs that satisfy this requirement valid temporal subgraphs and denote them by E∗t .
For every event ei there is a unique maximal subgraph E∗,max

t that contains ei and in which all event
pairs are still ∆t-connected (as shown in Fig. 3.7b). Note that a maximal subgraph is always a valid
subgraph.

Temporal motifs are now defined as classes of isomorphic valid subgraphs, where the isomor-
phism also includes the similarity of the temporal order of events. Accordingly, two temporal
subgraphs are isomorphic if they are topologically equivalent and the order of their events is
identical. If a temporal motif is based on a maximal subgraph, we call it a maximal motif.

Identification of temporal motifs
Because maximal subgraphs are temporally separated from all other events by at least time ∆t, all
subgraphs are fully contained in some maximal subgraph. Based on this observation, the process to
identify all temporal motifs in a given event set Et can be separated into three steps:

1. Find all maximal connected subgraphs E∗,max
t .

2. Find all valid subgraphs E∗t ⊆ E∗,max
t .

3. Identify the motif corresponding to E∗t .
In step 1, to find the maximal subgraph which the event ei belongs to, we start from ei and

iterate forward and backward in time to find all ∆t-adjacent events; this process is then repeated
recursively with all new events encountered. Assuming the ∆t-adjacent events can be found in
constant time, the time complexity of this step is O(|E∗,max

t |). Since the same maximal set is
discovered starting from any event in it, the total time complexity of this part is O(|Et |).

Et = {e1, . . . , e6}

E⇤,max
t = {e1, e2, e3}

E⇤,max
t = {e4, e5, e6}

E⇤
t = {e1, e2} E⇤

t = {e2, e3}

E⇤
t = {e5, e6}E⇤

t = {e4, e5}

(b) Maximal subgraphs (c) Valid subgraphs in maximal subgraphs (d) Invalid subgraphs

(a) Temporal network

(a) (b) (c) (d) 

Figure 3.8: Illustration of the algorithm for identifying temporal motifs. (a) A valid subgraph E∗t with three
events. (b) A vertex is created for each event and edges are added to connect them to the corresponding
nodes. Colours are used to distinguish between the two types of vertices; the labels of the event vertices are
arbitrary. (c) Directed edges are created between event vertices to denote their order. A canonical labelling is
then calculated for this graph; all temporal subgraphs that are isomorphic at this stage will yield the same
canonical labelling. (d) A concise presentation for the temporal motif. The numbers next to edges denote
the order of the events. Note that the numbers are always on the side of the arrow heads. This paper was
published in [224] and partially prepared by L. Kovanen

To solve step 2, consider the following theorem [223, 224]:

Theorem 3.4.1 Let G(E∗,max
t ) be an undirected graph that has a vertex for each event in E∗,max

t
and every vertex is connected to the next and previous ∆t-adjacent event of both nodes in that
event (there are at most four such events). Then every valid subgraph contained in E∗,max

t
corresponds to a connected subgraph of G(E∗,max

t ).

Proof. Consider a valid subgraph E∗t ⊆ E∗,max
t and the corresponding vertex set in G. Because all

event pairs in E∗t are ∆t-connected and the events of every node are consecutive, there is at least
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one path between all vertex pairs in this set. Therefore there is at least one connected subgraph of
G that corresponds to E∗t . �

Now each valid subgraph contained in E∗,max
t corresponds to some connected vertex set of G,

and the problem of finding all valid temporal subgraphs reduces to identifying all induced subgraphs
of G and checking that the events of each node are consecutive. The pseudo-code for identifying
vertex sets of induced subgraphs is given in Algorithm 2 (the code assumes that nodes are labeled
with integers from 1 to |V |). In function FINDINDUCEDSUBGRAPHS we first start |V | search trees
so that the tree initialised with node i will include all sets where i is the smallest node. The nodes
in the set V− are excluded from that search tree; initially this set contains all nodes smaller than i.
The set V+ includes the nodes where the search can progress, initially all neighbours larger than i.
Because each search tree finds only sets where i is the smallest node, they are necessarily distinct.
Now we need to make sure they are complete.

The function SUBFIND first adds the current set to be returned (line 10) and grows then sets
recursively. The set V− is updated to exclude nodes smaller than i; thus each subtree has a different
smallest node (from those in V+) and the subtrees are again distinct. The set V+ contains nodes
where the search may progress: previously allowed nodes larger than i, or neighbours of i not yet
excluded.

Algorithm 2 Find the vertex sets of all induced, connected subgraphs of a given graph. The parameter nmax
can be used to limit the size of the vertex sets returned. We use N(i) to denote the neighbours of node i.

Require: G = (V,L) is an undirected graph.

1: function FINDINDUCEDSUBGRAPHS(G, nmax)
2: Sall← /0
3: for i in V do
4: S←{i}
5: V−←{ j ∈V | j ≤ i}
6: V+←{ j ∈ N(i) | j > i}
7: SUBFIND(G, nmax, Sall, S, V−, V+)
8: return Sall

9: function SUBFIND(G, nmax, Sall, Scurr, V−, V+)
10: Sall← Sall∪S
11: if |S|= nmax then return
12: for i in V+ do
13: S∗← S∪{i}
14: V ∗−←V−∪{ j ∈V+ | j ≤ i}
15: V ∗+←{ j ∈V+ | j > i}\{ j ∈ N(i) | j 6∈V ∗−}
16: SUBFIND(G, nmax, Sall, S∗, V ∗−, V ∗+)

Because the subtrees are distinct at each step, the algorithm will return each set at most once. To
see that it returns all possible connected set, consider how we could arrive at an arbitrary connected
set S. The search path is rooted at i1 = minS. Let Sk, k ≤ |S|, be the set of elements added at depth
k. Because S is connected, there is at least one node in S\Sk that is a neighbour of some node in Sk.
The only way the construction can fail is if for some k there is a node i∗ ∈ S\Sk that has already
been excluded, i.e. it is in V−. It is not possible that i∗ was excluded in the beginning—the tree was
rooted at i1 ≤ i∗ and only nodes smaller than i1 were excluded—so it must have happened during
the search. But if i∗ was added to V− it means that it was in V+ but some larger node of S was added
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instead, which is a contradiction—in the subtree leading to S we would have added i∗. Hence no
node i∗ can exist and the construction can always proceed until S is obtained.

Finally for step 3, identifying the motif for subgraph E∗t requires solving the isomorphism
problem such that we also include information about the order of the events. One can do this by
mapping all relevant information into a directed and coloured graph as illustrated in Fig 3.8, for
which the isomorphism can be readily solved with existing algorithms. In practice we calculate for
this graph its canonical form, a labelling of vertices that is identical for all isomorphic graphs, so
that we can easily tell if two valid subgraphs correspond to the same motif. Finding the canonical
form is a non-trivial task, but many efficient algorithms have been developed for this purpose; one
is called bliss and is described in [186].

As a final step, to make temporal motifs more accessible we convert the information about
the order of events back into plain integers. The above described converting procedure is visu-
ally demonstrated in Fig. 3.8 where panel Fig. 3.8d shows a concise presentation of the motif
corresponding to the original temporal subgraph in panel Fig. 3.8a.

Temporal motifs in communication networks

To demonstrate our method on a large-scale temporal network, we identify temporal motifs in a
mobile-phone call network (a variant of DS1 described in Section 1.3.2), which consists of 320
million mobile phone calls between nearly 9 million customers. We chose the time window to
be ∆t = 10 minutes, thus keeping the 35% of events which are ∆t-adjacent to at least one other
event. As a reference system, to quantify the significance of the observed motifs, we used the
time-shuffled RRM (P[w, t] in Section 3.3). Measures in the reference system have been averaged
over five independent runs.

J.Stat.M
ech.(2011)P11005

Temporal motifs in time-dependent networks

Figure 4. The four most common (on the left) and least common (on the right)
motifs in (a) the empirical data, (b) unbiased time-shu ffled reference and (c) the
biased reference with bias strength m = 32. The values below each motif denote
the total count and, in parenthesis, the fraction out of all motifs with three events.

lower—only 8 .6% of events are ∆ t-adjacent to some other event—but the two cases still
appear qualitatively similar. The most commo n motifs illustrate the bursty nature of the
mobile phone data, while the least common motifs are triangles even though triangles are
often considered to be the building blocks of social networks. The distribution of different
motifs is more balanced in the reference: in the empirical data the most common three-
event motif makes up 27 % of all three-event motifs, but only 6.3% in the time-shuffled
reference.

To make the comparison more interesting, we add a bias to the time-shuffling that
favours shorter inter-event times and therefore increases the number of motifs. The
shuffling is done using Markov chain Monte Carlo sampling, which is also necessary to
enforce the condition that each user is involved in at most one event at a time. In the
unbiased case each step consists of selecting two events uniformly at random,ei and ej ,
and switching their times if this does not result in overlapping events for any of the (at
most) four nodes involved. To create a single randomized reference we make 5|E | such
switches, which equals on average 1 0 switches per event.

To introduce a bias, instead of picking only two events at each step we randomly select
one target eventei and m ≥ 1 candidates, (ej 1 , . . . , e j m ), and then make a switch with the
candidate that places ei closest to its new adjacent events. To measure this closeness we
use the geometric average of time differences to the temporally closest adjacent events6 .
The parameter m controls the bias strength: the more candidates there are, the more likely
we are to find one close toei . Setting m = 1 gives the normal unbiased randomization.

Figure 4 (c) shows the most and least common motifs in the biased reference with
m = 32. This reference naturally has higher m otif counts than the unbiased reference,
but the total number of three-event motifs is still only 60 % of that of the empirical data.
Perhaps surprisingly, the least common motifis now twice as common as in the empirical
data. In the empirical data this motifis unco mmon partly because the events take place in

6 As we are only interested in the order of these averages and not their exact values, comparing geometric averages
is equal to comparing the arithmetic average oflogarithms of time di fferences. This puts more importance on
small time di fferences than plain arithmetic average.
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Figure 5. The two di fferent kinds of directed triangle motifs with three events.
Both groups have been ordered by count in the empirical data that are also shown
below the motifs. All motifs in (a), as well as those two in (b), di ffer only in the
order of events.

a non-causal order, whereas the order has little significance in the reference. Furthermore,
because this kind of subgraph takes place primarily due to correlations, it is likely that
the nodes have other events at approximately the same time. If these events take place
between those in the triangle, the subgraph would no longer be valid (see lower subgraph
in figure 1(e)). In the references the maximal subgraphs are smaller, which makes it less
likely that such interfering events would destroy the validity. The bias makes triangles
more common while keeping the maximal subgraphs small, and therefore the triangles are
more often valid.

As a further example clarifying this point, we present in figure 5 all motifs based on
the different directed triangles with three events. The six motifs in figure 5(a) would be
equally common in the time-shuffled reference, but in the empirical data we observe a
four-fold difference between the most and least common triangles. There are two factors
that explain this: burstiness and causality . Burstiness appears in the fact that in the four
most common motifs the two calls made byC are consecutive;in the two least common
motifs they are not. Causality is most apparent when comparing the most and the least
common motif. In the most common motif the caller of the second call (C) knows about
the first call (because he made it himself), and the caller of the third call (B) could know
about both previous calls. In the least common motif the caller of the second call (B)
cannot know about the first one, and the caller of the third call (C) cannot know about
the call made by B. The most common motifis both bursty and causal, while the least
common is neither.

Causality is also an obvious explanation for the counts in figure 5(b): the triangle
where events could cause one another is three times as common as the other one. Note
that these two motifs are time-reversals of each other, i.e. if the time were reversed, each
motif of the first kind would turn i nto the second, and vice versa.

Figures 6(a) and (b) show the number of maximal motifs of different size for different
values of ∆ t, measured either by the number of nodes or by the number of events in the
motifs. The distributions are broad for a ll time windows, and those with larger ∆ t are
naturally broader. Figures 6(c) and (d) show the fraction of events in maximal motifs
of different size. Comparing the distributions with ∆ t = 1200 and 2400 suggests that
between these values a giant temporal component is beginning to form. The distribution
with ∆ t = 1200 is very close to a power-law, as both the density and cumulative
distributions are straight lines. When ∆ t = 2400 the number of events contained in
very large maximal motifs is starting to grow. Increasing the time window further beyond
∆ t = 4800 would at some point give birth to a giant temporal component:a large fraction
of events would become∆ t-connected.
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Figure 3.9: (a,b)The four most common (on the left) and least common (on the right) motifs in (a) the
empirical data, and (b) unbiased time-shuffled random reference model. The values below each motif denote
the total count and, in parenthesis, the fraction out of all motifs with three events. (c,d) The two different
kinds of directed triangle motifs with three events. Both groups have been ordered by count in the empirical
data that are also shown below the motifs. All motifs in (c), as well as those two in (d), differ only in the
order of events. This paper was published in [223] and partially prepared by L. Kovanen

Fig. 3.9a shows the four most and least common three-event temporal motifs (there are 68
three-event motifs in total) in the data, and Fig. 3.9b depicts the same in the time shuffled reference.
Unsurprisingly, the number of non-trivial motifs in the reference is lower (only 8.6% of events
are ∆t-adjacent to some other event) but the two cases still appear qualitatively similar. The most
common motifs illustrate the bursty nature of the mobile phone data, while the least common motifs
are triangles even though triangles are often considered to be the building blocks of social networks.
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The distribution of different motifs is more balanced in the reference: in the empirical data the
most common three-event motif makes up 27% of all three-event motifs, but only 6.3% in the
time-shuffled reference.

As a further example clarifying this point, we present in Fig. 3.9c and d all motifs based on
the different directed triangles with three events. The six motifs in Fig. 3.9c would be equally
common in the time-shuffled reference, but in the empirical data we observe a four-fold difference
between the most and least common triangles. There are two factors that explain this: burstiness
and causality. Burstiness appears in the fact that in the four most common motifs the two calls
made by C are consecutive; in the two least common motifs they are not. Causality is most apparent
when comparing the most and the least common motifs. In the most common motif the caller of the
second call (C) knows about the first call (because he made it herself), and the caller of the third
call (B) could know about both previous calls. In the least common motif the caller of the second
call (B) cannot know about the first one, and the caller of the third call (C) cannot know about the
call made by B. The most common motif is both bursty and causal, while the least common is
neither. Causality is also an obvious explanation for the counts in Fig. 3.9d: the triangle where
events could cause one another is three times as common as the one where events are independent.

Temporal motifs rely on the higher-order representation of temporal networks as their definition
is built on ∆t-adjacent events. Although this mesoscopic level characterisation of temporal networks
is very informative and useful to identify frequently appearing patterns in the tissue of temporal
networks, it is far from providing a complete description of the higher-order structure of the network.
In the coming Section we aim to progress in this direction by using adjacent events for a complete
and information lossless representation of temporal networks.

3.4.2 Weighted event graphs
Temporal paths in temporal networks are outmost important as they determine the evolving structure
of a temporal network and the way any collective phenomena can unfold on its fabric. As we
discussed in Section 3.1.4, finding all shortest paths in a temporal network between any nodes
at any time is an NP-complete problem by using conventional path detection algorithms [91]. A
faster way would be to compute paths for a range of values, taking use of redundancy, while even
better methods can be designed by using higher-order representations of temporal networks. In this
Section, using the concept of event-adjacency, we introduce an information lossless representation
of temporal networks. This way of description transforms temporal structures to weighted static
graphs, which encodes all temporal and structural informations at once and maps simultaneously
all time-respecting paths, with the advantage to be analysed as a static network. Beyond its most
general definition, it is capable to constrain on the detection of all ∆t-connected temporal paths,
which are outmost important in case of limited waiting time process.

Processes with limited waiting times at nodes are particularly sensitive to broad distributions
of inter-contact times; the longest inter-contact times may stop the process. Such processes
include variants of epidemiological models with recovery mechanism, like Susceptible-Infectious-
Recovered (SIR) and Susceptible-Infectious-Susceptible (SIS) models (for definition see Sec-
tion 4.4.1)[176, 268, 311, 171], where nodes only remain infectious for finite periods. Other
examples include social contagion [98, 73], ad-hoc message passing by mobile agents [348], and
passenger routing [276]. In these processes, the spreading agent must be transmitted onward from a
node within some time ∆t or the process stops. This waiting time limit can be directly incorporated
into time-respecting paths by requiring that their successive contacts are separated by no more than
∆t units of time.

Weighted event graphs [217] are static, weighted, and directed acyclic graphs (DAGs) that
encapsulate the complete set of ∆t-constrained time-respecting paths for all values of ∆t simul-
taneously. The subset of paths corresponding to a specific value of ∆t can be quickly extracted
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from the weighted event graph by simply thresholding it. Weighted event graphs can be viewed
as a temporal-network extension of the line-graph representation of static networks. There is
some similarity with the approach of Scholtes et al. [320] that maps two-event sequences onto
aggregated second-order networks, and with that of Mellor [263] where an unweighted event graph
is constructed from pairs of temporally closest events. Our approach [217] builds on concepts
introduced in [29, 28].

Definition of weighted event graphs
Let us consider a temporal network Gt = (V,Et ,T ) as we defined in Section 3.1.3 (and demonstrated
in Fig. 3.10a) with no self-edges or simultaneous events. The weighted event graph representation
of Gt is defined as the graph D = (Et ,ED,w) where the set of nodes Et is the set of events in Gt

and the edges eD ∈ ED represent the adjacency of the events eD = e→ e′ with weights defined as
temporal distances w(eD) = t ′− t (see Fig. 3.10b). That is, D is a directed acyclic graph with links
weighted with temporal distances, contains all time-respecting paths in Gt . For paths with a waiting
time limit ∆t, we get the subgraph D∆t by thresholding D so that only links with w≤ ∆t are retained
(see Fig. 3.10c).
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Figure 3.10: Constructing and thresholding the weighted event graph. a) The time line of a temporal
network with four nodes v1− v4 and five events e1− e5. b) The weighted event graph representation of the
temporal network. c) The thresholded event graph, containing only pairs of events with a maximum time
difference of ∆t = 2. This figure was published in [217] and partially prepared by J. Saramäki.

Constructing the weighted event graph representation D = (Et ,ED,w) of a temporal network
can be done efficiently by noting that the edges in ED can be listed by inspecting the sequence of
events around each node v ∈V separately (as described in Algorithm 3). For some data sets the
full weighted event graph D might be large, and it is convenient to construct D∆tmax that can, for
example, be later used to sweep through all values ∆t < ∆tmax.

For each node in the temporal network v ∈V we can build a time-ordered sequence of events
{e1, . . . ,ek} in which v participates. In the case where there are no durations we can then simply
iterate over each event ei, and for each of them search forward in the ordered event sequence until
we find an event e j for which t j− ti ≤ ∆tmax. We then add a link ei→ e j at each step of this process
until the event e j that is too far from the starting event ei is found. (Note that some ∆t adjacencies
are found twice.) Creating the event sequences and sorting them can be done in O(|E| log |E|) time,
and as each step of the algorithm produces a single link (with possibility of some links being visited
twice) the algorithm runs in total O(|E| log |E|+ |ED|) time. Including the durations of events only
requires a small adjustment to this algorithm.

The ∆t-thresholded event graph D∆t is a superposition of the time-respecting paths that a
∆t-limited spreading process can follow. Therefore, its structure tells if the process can percolate
the network. A closer look at the problem reveals that here, the concept of percolation is more
complex than for static networks. The components of D∆t are directed, (even if the events of G
are undirected). There are only weakly connected components–there are no strongly connected
components because D∆t is by definition acyclic. Each event graph node has an in-component and
out-component that contain events on up- and downstream temporal paths; these components may
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Algorithm 3 Weighted event graph edges for a node [217].
1: function D(v,{e1, . . . ,ek})
2: for i← 1 to k do
3: j← i+1
4: while t j− ti ≤ ∆tmax and j ≤ k do
5: Output: ei→ e j

6: j← j+1

overlap for different event graph nodes [283]. In the following, we will limit our analysis to weakly
connected components because of their uniqueness in D∆t .

Temporal network percolation
In percolation analysis, the relative size of the largest connected component is defined as the order
parameter. Here, there are three ways of measuring the size of a component of D∆t . (1) One can
count the number of event graph nodes SEt (E

′) = |E ′| in a connected component E ′ ⊆ Et of D∆t .
This gives an upper bound for the number of events on the time-respecting paths that a spreading
process can follow if it includes an event from that component. (2) One can count the number of
temporal-network nodes SG(E ′) = |

⋃
(u,v,t)∈E ′(u∪v)| that are covered by the event graph component

E ′. This is an upper bound for the number of temporal-network nodes that any spreading process
can reach via the component’s time-respecting paths. Note that a temporal-network node can belong
to multiple event-graph components; this can result in multiple giant components that cover most
nodes but are separated in time. (3) One can measure the lifetime of the event graph component
SLT (E ′) = (max(u,v,t)∈E ′ t−min(u,v,t)∈E ′ t). This is an upper bound for the lifetime of any spreading
process on the component. Note that there can be many co-existing components with long (or
infinite) lifetimes; frequent and sustained contacts between a small number of nodes can already
induce such components.

With these measures, we can define the order parameter as the relative size of the largest
connected component,

ρ∗(D∆t) =
1

N∗
max
nS∗ 6=0

S∗, (3.6)

where nS∗ is the number of components of size S∗ for the chosen definition of size ∗ ∈ {Et ,G,LT},
and N∗ is the maximum possible value that S∗ can get as a single component, i.e., NE = |Et |,
NG = |V |, and NLT = T . In conventional percolation analysis, the average size of the other
connected components is a quantity of interest that is equivalent to magnetic susceptibility. It can
be introduced for the S∗(E ′) event graph components in D∆t as

χ∗(D∆t) =
1

N∗
∑

S∗<maxS∗

nS∗S
2
∗. (3.7)

One would expect this quantity to have a maximum at the critical ∆tc, where the percolating
connected component emerges in the event graph; in the thermodynamic limit this maximum would
become a singularity. However, this quantity might behave differently for SG(E ′) and SLT (E ′)
components due to ∑nS∗ not being a conserved quantity, and because of the possible multiplicity of
giant components in these representations.

Note the link to directed percolation [168], where there are two correlation lengths, temporal
and spatial, characterising correlations parallel and perpendicular to the directed lattice. In our
case, the arrow of time defines the direction, ρE gives the probability that a randomly selected
event in Dδ t belongs to a structurally percolating infinite cluster, while ρLT is the typical temporal
correlation length for a given δ t. However, these correspond to two different order parameters, as
the largest and most long-lived components might not be the same.
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Weighted event graphs of modelled temporal networks
To explore how ∆t controls temporal-network connectivity, we introduce a simple toy model. We
define an ensemble of temporal networks Gp,r(n,k,λ ) where the topology is that of an Erdős-Rényi
(E-R) random graph with n nodes and average degree k, and events are generated on each link by a
Poisson process with λ events per link on average. We set the observation period T long enough so
that ∆t� T and λ � T .

In this model, there is a transition from the disconnected to the connected phase when the
independent Poissonian events become ∆t-adjacent and form a giant weakly connected component
in D∆t . In terms of degree, a lower bound for this critical point can be estimated as the point where
the average out-degree of the event graph becomes 〈kout

D∆t
〉 = 1. In the underlying E-R network,

each edge is adjacent to 2(k−1)+1 edges (including the edge itself), and therefore the average
out-degree of D∆t is 〈kout

D∆t
〉 = λ∆t [2(k−1)+1]. The condition for the critical point can then be

written as

kc =
(λ∆t)−1−1

2
+1 and ∆tc =

1
λ (2k−1)

. (3.8)

This theoretical line ∆tc(k) is shown together with simulated results in Fig.3.11a, with the
number of events determining the relative size of the largest component, ρE . ∆tc(k) separates
the simulated percolating and non-percolating regimes well. Fig.3.11.b and c show the relative
largest component sizes in terms of temporal-network nodes (ρG) and component lifetime (ρLT );
a percolation transition appears to take place near the theoretical line ∆tc(k) for the number of
events from Eq. 3.8. Note generally, the phase transition lines for events, nodes, and lifetime can be
different.

Let us investigate the model’s critical behaviour in detail, fixing the average degree to k = 9.
This makes the thresholded event graph D∆t dense enough for the mean-field (MF) approach; the MF
approximation works well for regular lattices above the critical dimension dc = 5 [168]. We locate
the critical point with two methods. First, when the system reaches a stationary state where the order
parameter becomes time-invariant beyond fluctuations, the scaling relation max(SE)∼ |D∆t |β is
expected to hold around the critical point ∆tc, where |D∆t | is the size of the thresholded event graph
in events, and β is the critical exponent of the order parameter. We measured this relation for several
system sizes and values of ∆t and found a power-law scaling of SE(|D∆t |) around ∆tc ' 0.087 with
the exponent β ' 0.75 (see Fig.3.11d). This point is shown as a circle in Fig.3.11a; it is above
the analytical estimate, which provides the lower bound for the critical point. Note that for the
directed-percolation university class, the MF solution suggests βMF = 1.

The second way of determining the critical point is to calculate the ratios

r(∆t,N) = ρE(∆t,N)/ρE(∆t,N/2) (3.9)

for varying N [201]. These curves should cross around the critical point ∆tc where r(∆tc,N) = 2−x,
and x is related to the finite-size scaling exponent. In Fig.3.11g, they indeed cross close to ∆tc '
0.087 with r(∆t)' 0.82 suggesting an exponent x' 0.2863, should be compared to β/2' 0.375.

Finite-size scaling in networks is naturally related to the network volume N (number of nodes)
instead of a linear size scale `, which usually cannot be defined. Assuming that N↔ `d , one can
derive finite-size scaling functions, which are expected to hold in the conventional mean-field
regime d > dc, or for dense networks. This leads to a finite-size scaling function of the order
parameter:

ρE(∆t,N)∼ N−β/dν∗ ρ̃E(N1/dν∗(∆t−∆tc)), (3.10)

where ν∗ = 2/d is the finite-size scaling exponent (of linear size), which depends on the dimension
d. If d < dc it is the spatial correlation length exponent, and above the critical dimension dc = 5 it
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Figure 3.11: Phase diagrams for the random temporal network model as a function of the average network
degree k and the maximum waiting time between events, ∆t. The colour maps show the (ensemble-averaged)
relative size ρ∗(k,∆t) of the giant weakly connected components, measured as (a) the number of events
in the event graph components SE , (b) the number of temporal-network nodes that the largest event graph
component covers, and (c) the lifetime of the event graph component SLT . The solid line in (a) (dashed lines
in (b) and (c)) is the analytic estimate of Eq.3.8. The circle in the upper left corner shows the critical point for
k = 9 determined as explained in the text. (d) Scaling of max(SE), the size of the largest weakly connected
component in D∆t , with the size of D∆t measured in number of event-nodes |D∆t | = |E|, for different ∆t.
The dashed line assigns the critical ∆tc = 0.87. (e) The order parameter ρE(∆t) for different network sizes
N = |V |. (f) Same as (e) after finite-size scaling using the function defined in Eq.3.10. (g) The ratios
r(∆t,N) crossing at ∆tc. (h) Susceptibility curves χE(∆t) for different sizes. (i) Same as (h) after finite-size
scaling using the function defined in Eq.3.11. Dashed lines in labels (i), (g), and (h) show the critical point
determined in (d). Computations for (a-c) are with network size |V | = 2048 over for T = 512 time units
with an event rate of λ = 1 averaged over 10 realisations. Results for (d-i) have the same parameters but are
averaged over 100 realisations and may differ in size. This figure was published in [217].

takes the value ν∗ = 2/dc [201]. At the same time a similar scaling function is expected to hold for
susceptibility:

χE(∆t,N)∼ Nγ/dν∗ χ̃E(N1/dν∗(∆t−∆tc)), (3.11)

where γ is the mean cluster-size exponent. From the definition of χE (in Eq.3.7) and the scaling
of ρ(∆t,N) at ∆tc we can derive the simple exponent relation γ/(dν∗) = 1− β/(dν∗), where
ν∗= 2/d, d = dc = 4 and β ' 0.75, which gives us a value γ ' 1.25 (which is slightly different
from the directed-percolation MF value of γMF = 1.0).

To check whether the predicted finite-size scaling behaviour holds around the critical point,
we took the simulated ρE(∆t,N) and χE(∆t,N) measured for various N (see Fig.3.11e and h
respectively). Using the scaling functions in Eq.3.10 and Eq.3.11 with the determined exponents,
we scaled the order parameter and susceptibility as a function of (∆t−∆tc). The expected scaling
behaviour appears for both quantities close to the critical point (Fig.3.11.f and i).

Finally, we carried out a percolation analysis on three empirical temporal networks, a mobile-
phone call networks (DS1 in Section 1.3.2), in a sexual contact network [311], and an air trans-
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portation network [12] (detailed results are not reported here but in [217]). This analysis showed
that these empirical systems goes through similar percolation transitions as we demonstrated for
the toy-model. The percolation point ∆tc is identifiable in each cases, with ∆tc ∼ 4 h 20 min for
the calls, ∆tc ∼ 7 d for the sexual-interaction network, and ∼ 20 minutes for the transportation
network. A spreading agent has to survive at least this long at a node to percolate the network, or in
case of transportation, this time-scale corresponds the minimum time required to change flights
at an airport. In addition, scale-invariant distributions of structurally and temporally connected
components verify the located critical points in each system.

Directed percolation of temporal networks

During the our earlier analysis of weighted event graphs we always considered its weakly connected
components. This structure represented the superposition of all connected time-respecting paths in
a temporal network, but without taking account precisely the in- and out-components of each node
at different times, but operating with their union instead. This way weakly connected components
provided us an upper estimate of any macroscopic phenomena emerging on the network and
signaled a percolation like phase transition as the function of ∆t. Yet this way of description is
limited and not appropriate to precisely answer the question, whether temporal networks can be
interpreted as directed percolation processes. In a recent set of studies we addressed this challenging
question in multiple steps.

First, in [31], we took a complementary approach to the Newman-Ziff algorithm and develop a
method to make accurate estimates of the sizes of source and influence sets of every single event
in a temporal network, given an arbitrary ∆t. We rely on the DAG character of the event graph
representation, which allows us to convert our temporal reachability problem to a DAG reachability
problem, a.k.a., the graph-theoretical challenge to estimate transitive closure sizes [83]. Relying on
already developed probabilistic counting methods [165], we devised an algorithm, which estimates
the global reachability for each event even in extremely large temporal networks with hundreds of
millions of events. Further, using this approach, we could effectively identify with high probability
events with the largest out- (and in-) components in massive temporal networks.

Second, in [33] we studied simple models of temporal networks to show a mapping between
their reachability phase transition and directed percolation. Using an event graph reduction tech-
nique proposed by Mellor [263], and our out-component size estimation method, we introduced the
precise definition of basic thermodynamic quantities for temporal networks. The control parameter,
similar to our earlier studies was identified as ∆t, the order parameter was measured as the size (in
terns if nodes and events) and length of the ∆t-limited waiting-time reachability set starting from a
random event. Further, in parallel to directed percolation, we defined the survival probability P(t) as
the probability of an existing path from a randomly selected initial source event at t0 to an event after
time t0 + t. We also defined particle density ρ(t) as the fraction of infected nodes at time t. Finally,
by incorporated the effects of an external field h to this scenario as the spontaneous emergence of
sources of infection modeled as an independent Poisson point process. This way we arrived to a
more accurate definition of temporal network susceptibility measure ξ (τ,h) = ∂

∂h ρ(τ,h), as the
function of τ , indicating distance from the critical point. Relying on a mean-field approach and
finite-size scaling techniques, we successfully demonstrated that the examined model temporal
network recovers the directed percolation critical exponents (β , ν‖, ν⊥, and γ) around a phase
transition point at ∆tc, mapping it to the directed percolation universality class. In addition, we also
observed similar phase transitions in real systems, without the goal of identifying any match of
critical exponents.

Third, in [32], we demonstrated that this mapping is robust for a larger set of temporal networks
with structural and temporal heterogeneities.
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3.5 Generative models of temporal networks

Since the birth of network science, generative modelling is the most important and frequently
used modelling technique to understand the emergent properties of complex networks. Such
models are overall useful to identify and to test underlying mechanisms, which lead to features
characterising real network features. School examples are preferential attachment, which lead to
degree heterogeneities, or triadic closure, which can explain the emergence of community structure
in networks. However, although simulations of generative models are necessary dynamical, usually
the final emergent aggregated structure has been taken as a result and used further as a static
structure. Only recently, some new mechanistic modelling techniques have been proposed to
simulate temporal networks, where beyond the emergent structural properties, the dynamical
features of interactions are also taken into account. It has been recognised, that this finest level of
description of networks is necessary for the deeper understanding of emergent global structural
and temporal properties, as after all they are the consequences of individual decision mechanisms
driving single interactions between people.

In the following we are going to study one promising direction for the generative modelling of
temporal networks. We will introduce the basic concept of activity-driven network models and will
discuss various ways to extend this framework with decision mechanisms, which lead to more and
more realistic models of temporal networks.

3.5.1 Activity-driven network model

The modelling framework of activity-driven networks (ADN) has been first proposed by Perra et
al. for the agent-based simulation of time-varying networks [299]. This model builds on a single
assumption that people are not active with the same pace but there are individual differences in
the number of interactions one participates due to differences in personality, age, sociability, etc.
Such variation has been found in social systems, where communication frequencies were shown to
vary from people-to-people over several orders of magnitudes in a larger population. In the ADN
framework these variations are introduced a-priory through a quantity called the activity potential
xi associated to each N number of nodes in the network with values sampled from an arbitrary
distribution F(xi). Note that xi ∈ [ε,1] is defined with lower bound assuming a minimum activity
level ε . The activity potential is a time-invariant function characterising the activity level of agents
by determining their ai = ηxi probability to participate in an interaction per a unit time. Here η
is a time rescaling factor assuring the average number of active nodes per unit time to be η〈x〉N.
Built on these definitions, the ADN model is introduced as an iterative process evolving through
global time-steps of ∆t length, in which on average each node is updated once. More precisely,
the generative network process is defined by taking N disconnected vertices at each discrete time
step t and activate each vertex with probability ai∆t. Once a node is active it generates m links
(temporal events) that are connected to randomly selected vertices. Finally, in the end of each
iteration step, all links are deleted and the next iteration starts again with a disconnected set of
nodes. This algorithm is summarised in Alg.4, where we only save the generated events instead of
updating the actual network.

Algorithm 4 Activity-driven network
1: function ADN(G = (V,E = /0,a(i)),T,∆t)
2: for t← 1 to T do
3: for N randomly selected nodes i ∈V do
4: if rand()≤ ai∆t then
5: for m randomly selected nodes j ∈V \ i do
6: Output: event(t, i, j)
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As Perra et al. explains [299], one can easily realise that the ADN model generates a sequence
of random structures. Moreover, if we aggregate these structures over time, the nodes’ degree
in the aggregated network structure will intuitively depend on their activity potential. Actually
there are two mechanisms which can increase the aggregated degree of a node. On one hand, it
can be increased by new neighbours contacted by the node. Since at each time step t ∈ T , a node
with activity potential ai selects m other nodes randomly for interaction, this out-degree can be
computed by making an analogy to the Polya urns problem: it will be equal to the number of
different balls extracted from a urn with N balls, performing T mai extractions [253]. On the other
hand, the degree of a node can be increased by incoming interactions of other active nodes. After
some simple calculations (for details see [299]), these two terms can be written as:

kT (i) = kout
T (i)+ kin

T (i) = N(1− e−T mai/N)+T mη〈x〉e−T mai/N ∼ N(1− e−T mηxi/N) (3.12)

in the limit of large N and small T/N. Based on this calculation and by using some further
approximation we can show that the emerging degree distributions for early times, where k/N is
small, appears as

PT (k)∼
1

T mη
F
[

k
T mη

]
, (3.13)

which indicates that the functional form of the aggregated degree distribution will emerge with the
same scaling form as the activity distribution.

This model is very simple and far from being realistic as it produces a sequence of random
structures, with an emerging degree distribution trivially the consequence of a parameter of the
model. In its simplest form, it does not reproduce common emerging properties of real social
networks like link weight heterogeneities, community structure, weight-topological correlations, or
burstiness. On the other hand it has the potential to serve as the reference model and the starting point
for more realistic network models with integrated microscopic decision mechanisms inducing more
realistic network or dynamical characters. As we will see later, there are miriad ways to extend the
general ADN model and to use it for hypothesis testing on emerging network features or their effects
on dynamical processes. At the same time, ADNs model temporal networks, thus they provide an
ideal way to study the importance of multiple temporal scales [310], and dynamical or structural
features of interactions on ongoing diffusion, epidemics, opinion formation, complex contagion, etc.
processes, just to mention a few examples. I had contributions to extend the general ADN models
in two directions, whether by addressing various structural mechanisms [206, 351, 233, 344], or
by mechanisms driving the dynamics of dyadic interactions [352]. In the following Section, I will
summarise some of these studies to familiarise the reader with the concept and potential of this
modelling framework.

3.5.2 Memory processes in egocentric network formation
In the activity-driven framework we have considered only memoryless generative processes so far.
At each time step, nodes select their partners with a uniform probability. The model thus neglects
the heterogeneous nature of individuals’ social interactions, which is a common character of real
social systems where egos may have strong and weak ties. The heterogeneity of social ties is a key
ingredient of the social structure and plays a crucial role on diffusion processes [288]. Our goal
here is to understand the mechanism driving their formation, explicitly considering the network’s
time-varying nature.

In our analysis [206], we focus on a prototypical large-scale mobile phone call network (DS1 in
Section 1.3.2), which structure is characterised by heavy-tailed degree k, link weight w - defined here
as the number of call between people, and activity rate a distributions - defined as the probability of
any given node to be involved in an interaction at each unit time (see Fig. 3.12a-c respectively).
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(g)
(h)

Figure 3.12: Panels (a), and (d) plot the degree distributions; panels (b), and (e) plot the weight distributions;
and panels (c), and (f) plot the activity distributions of the empirical and modelled networks (respectively).
Grey symbols are the original while coloured symbols are the corresponding logarithmic binned distributions.
In panels (d-f) solid lines assign distributions induced by the reinforced process, while dashed lines are
due to the memoryless process. Model calculations were parameterised as N = 106, ε = 10−4 and T = 104.
Panel (g) plots the pk(n) probability functions calculated for different degree groups in the MPC network. In
the inset (h), symbols show the averaged pk(n) for groups of nodes with degrees between the corresponding
kmin...k2

min−1 values. Continuous lines are the fitted functions of Eq.4.3 with c parameter values showed in
the legend. The main panel depicts the same functions after rescaling them using Eq.3.15. The continuous
line describes the analytical curve of Eq.3.15. This figure was published in [206].

Our goal first is to identify the mechanisms driving the dynamics of single interactions of the
egocentric networks (egonets) and which is responsible for the emergent heterogeneities. We will
demonstrate that memory processes characterising each agent plays a crucial role here, which can
be incorporated in the ADN model via a simple non-Markovian reinforcing mechanism, that allows
to reproduce with great accuracy the empirical data.

Egocentric network dynamics.

As we briefly discussed in Section 1.2.2, social networks are characterised by two types of links.
The first class describes strong ties that identify time repeated and frequent interactions among
specific couples of agents. The second class characterises weak ties among agents that are activated
only occasionally. It is natural to assume that when observing interactions, strong ties are the first to
appear in the system, while weak ties are incrementally added to the egonet of each agent, as it has
been demonstrated in [226]. To quantify this hypothesis in observations, we observe the interaction
(call) dynamics of egos and measure the probability, p(n), that their next communication event will
establish a new (n+1)th link, or will be a repeated interaction on one of their n already observed
social ties3. We calculate these probabilities in the MPC dataset averaging them for users with the
same degree k at the end of the observation time. We therefore measure the quantity pk(n) for the
egonets with the same degree k and n≤ k. The empirical pk(n) functions for different degree groups
are shown in Fig.3.12g inset (coloured symbols). Interestingly, the probabilities are decreasing
with n for each degree class indicating a slowing down in the egocentric network evolution. The
larger the egocentric network, the smaller the probability that the next communication will be with
someone who was not contacted before. In other words, agents have memory to remember their
social ties and they tend to repeat interactions on them.

The empirical growth of the egonet can be captured by a simple mechanism. We find that the
probability that a node, characterised by a social circle of size n, will establish a new tie is well

3Note, that here and later in the Section, n is equivalent with the degree k of a node at a given time t. We distinguish
between these notation to avoid confusion between the static degree k (here when t = T ) and the evolving degree n (at
time t) of a node.
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Figure 3.13: Emergent structure and rumour spreading processes in (a) ML and (b) RP activity-driven
networks. Node colours describe their states as ignorant (blue), spreader (red) and stifler (yellow). Node
sizes, colour, and width of edges represent the corresponding degrees and weights. The parameters of the
simulations are the same for the two processes: N = 300, T = 900, λ = 1.0, and α = 0.6. The processes
were initiated from a single seed with maximum strength. In panel (c) we show the sizes of the largest
connected components (LCC) as a function of time for time aggregated ML and RP networks. Simulations
were run with the same parameters considering N = 105 nodes. This figure was published in [206].

fitted by the expression :

p(n) = 1− n
n+ c

=
c

n+ c
. (3.14)

Analogously, the probability of having an interaction with someone who is already in the egocentric
network is n/(n+ c). Here c is an offset constant depending on the degree class considered. By
fitting the function in Eq.4.3 on the empirical data (solid lines in Fig.3.13g inset) we can determine
the corresponding constant c for each degree group and using them rescale the empirical pk(n)
functions as

pk(n/c) = 1/(n/c+1). (3.15)

This rescaling collapse the data points of different degree groups on a single curve (see Fig.3.12g
main panel), which suggests that the same mechanism is driving the evolution of the egonets of all
individuals independently of their final number of connections.

Next question, how can we integrate such a mechanism into the ADN model to test its effect on
the emerging structure. Inspired by the observations in the MCP dataset, we impose a reinforcement
mechanism in the ADN model definition by extending it in two ways. First, we assume that nodes
have memory, in other words they remember the set of other nodes they have been in contact during
the course of the simulation. Second, we assume that when a node, with n previously established
social ties, becomes active in an iteration step it can make two kinds of actions: (a) it will contact
randomly a new node with probability p(n) = c/(n+c), or (b) with probability 1− p(n) = n/(n+c)
it will interact with a node already contacted, thus reinforcing earlier established social ties. In
this case, the selection is done randomly among the n actual neighbours. This model, that in the
following we will denote as RP (reinforcement process), is non-Markovian as memory is explicitly
introduced in the ego network dynamics. For the moment we fix c = 1 for all the nodes while we
will generalise our model later [351].

A side by side comparison of the time-aggregated representations of networks generated by
the memoryless (ML) and reinforced process (RP) models (using the same parameters) is shown
in Fig.3.13-a and b (where colours should be disregarded for the moment). In both cases we
assumed that the distribution of the activity potential followed a power-law F(x)∼ x−ν , with an
exponent value ν = 2.8 matching the observed MPC value. As a consequence, in case of the ML
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dynamics (Fig.3.13a), we obtained an aggregated network with a degree distribution P(k) ∝ k−γ

where γ = ν and a weight distribution decaying exponentially [299, 330]. This is also confirmed by
large scale simulation results reported in Fig.3.12d and e (dashed lines). In case of the RP dynamics
(Fig.3.13.b), the memory process induces a considerably different structure. These effects are
quantified in Fig.3.12d, e, and f (solid lines). We observe a degree distribution that is heavy-tailed
but more skewed in the RP model than the ML (νRP > νML). This distribution is qualitatively
matching better the corresponding empirical measure in Fig.3.12a. Furthermore, the RP model
generates heterogeneous weight distributions (see Fig.3.12e solid line) capturing extremely well
real data (see Fig.3.12b). This is not the case in the ML model where the absence of memory
induces exponential weight distributions far from reality (see Fig.3.12e dashed line). The RP
dynamics not only induces realistic heterogeneities in the network structure, but also controls the
evolution of the macroscopic network components. Indeed, due to the reinforcement mechanism,
the largest connected component (LCC) in RP networks grows considerably slower than in the case
of ML models (for illustration see Fig.3.13.c). This is an important feature because dynamical
process evolving on time-varying networks will progress with a time-scale that cannot be smaller
than the LCC growth time-scale. As consequence, any dynamical phenomena taking place on
time-varying networks with memory will evolve at a slower rate than in memoryless time-varying
networks.

3.5.3 Individual heterogeneities in social capacity

In the definition of the memory driven ADN model we took some assumptions for simplicity, which
limited our model to account for differences potentially characterising individuals. First of all
we assumed that the scaling constant in Eq. 4.3 is a constant value for everyone. This constant
determine the intrinsic characteristic limit of an ego to maintain multiple ties, thus it may vary
from a person to another. At the same time we assumed that speed of exploration of new friends
is entirely coded in the activity potential of people. Recent findings demonstrate, that this ability
may vary strongly between people depending whether they are more like social explorers or social
keepers [267]. Such variance can be easily incorporated in our memory function as:

pb(n) =
(

1+
n
cb

)−βb

(3.16)

where βb modulates the tendency to explore new connections. Just as earlier, here we assign nodes
to degree classes b containing actors with statistically equivalent characteristics, i.e. nodes that
engaged a similar number of interactions and that feature a comparable cumulative degree in the
observation period. We have shown in [351] that this functional form fits very well on memory
functions measured in several empirical temporal networks like Twitter mention interactions (TWT),
scientific co-publications (PRA, PRB, PRL), or in case of mobile phone call (MPC) interactions.
Moreover, we found that the βb parameter of the pb(n) functions appears highly invariant over
various final degree groups. One exception was the MPC network, where some variance and
negative correlations have been found.

By leveraging on this result we can define a variation of the memory driven ADN model
by implementing pb(n) in the decision process. Moreover, for this model it is possible to write
explicitly the Master Equation (ME) describing the evolution of the probability distribution Pi(n, t)
that a node i has degree n at time t:
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Pi(n, t +1) = Pi(n−1, t)
[

ai pi(n−1)+∑
j�i

a j ∑
n j

p j(n j)

(N−n j)
Pj(n j, t)

]
+

Pi(n,t)
[

ai[1− pi(n)]+∑
j�i

a j ∑
n j

(
1− p j(n j)

(N−n j)

)
Pj(n j, t)

]
+Pi(n, t)

[
1−∑

j
a j

]
. (3.17)

In the above equation the sums in j ∼ i and j � i run over the nodes already contacted and
not yet contacted by i, respectively. n j describes the degree of each node j. Moreover, we work
in the a� 1 limit, so that we assume that only one node is active for each evolution step. The
first two terms on the right hand side of Eq.3.17 account for the increment of the number of nodes
having degree n−1. The former occurs when node i having degree n−1 gets active and contacts
a new node with probability ai pi(n). On the other hand the latter one is effective when node
i gets contacted by node j of degree n j (that never got in contact with i before) that activates
and attaches to node i with probability a j p j(n j)/(N− n j). In the latter, the 1/(N− n j) factor
accounts for the probability of j to exactly select node i amongst the N−n j nodes outside of the
j’s neighbourhood of size n j. Likewise, the third and fourth terms of the r.h.s. of the equation
account for the conservation of the number of nodes of degree n. This is achieved either when
node i gets active and contacts one of its neighbours with probability ai(1− pi(n)), or when i gets
contacted by one of its neighbours. The last term of Eq. 3.17 accounts for the possibility in which
no node gets active in the current evolution time step, thus conserving the Pi(n, t). Given the a� 1
approximation this term reads ∏ j(1−ai)' 1−∑ j a j.

In case the network is characterised by a single exponent β , in the large time and degree
1� n� N limits (so that n can be approximated by a continuous variable and N− k ≈ N), the
probability distribution Pi(n−1, t) can be obtained explicitly as

Pi(n, t) = Aexp

−
(

n−B(ai,ci)t
1

1+β
)2

Ct
1

1+β

, (3.18)

where A is a normalisation constant, C a constant and B(ai,ci) a multiplicative factor of the t1/(1+β )

term that depends on the activity ai and ci of the considered agent ai (for further details see [351]).
From Eq. 3.18 we can determine the evolution in time of the average degree 〈n(a, t)〉 of nodes
belonging to a given activity class as:

〈n(a, t)〉 ∝ (at)
1

1+β . (3.19)

The growth of the system is thus modulated by the parameter β that sets the strength of the
reinforcement of ties. The validity of Eq. 3.19 is demonstrate in Fig. 3.14a-d, where the average
degree evolution is shown for various activity groups in different empirical datasets, together with
analytical predictions. Note that in the limit β = 0 the growth would be linear and in the opposite
limit β → ∞ each node would create, and constantly reinforce, just one tie, i.e. the first established.
Furthermore, Eq. (3.19) connects, at a given time t, the actual degree n and the activity a of a given
node, as n ∝ a

1
1+β . Thus, given any specific activity distribution F(a), we can infer the functional

form of the degree distribution P(n) by substituting a→ n1+β , finding:

P(n)dn ∝ F(n(1+β ))nβ dn. (3.20)

This prediction is demonstrated on empirical data in Fig. 3.14e-h. It is important stressing that the
analytical framework is not limited to a specific functional form of the activity. Indeed, with an
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Figure 3.14: The rescaled 〈n(at)〉 curves for selected nodes classes belonging to the (a) PRB , (b) PRL, (c)
TWT, and (d) MPN datasets. The time of the original data (symbols) is rescaled with the activity value t→ at.
We also show the fitting curve 〈n(t)〉 ∝ t1/1+β (blue solid lines) and the expected asymptotic behaviour
(black dashed lines). In the MPN case (d) we fit using β = βmin = 1.2. (e-h) The degree distribution P(n)
for the (e) PRB, (f) PRL, (g) PRA, and (h) TMN datasets. The predicted functional form of P(n) found in
Eq. (3.20) is shown for comparison (red solid lines). We show the data starting from the lower bound of the
degree distribution, including in the plot all the statistically significant measures of the probability density
function P(n). This figure was prepared by E. Ubaldi and published in [351].

arbitrary functional form of F(a), Eq. (3.19) gives us the possibility to predict the behaviour and
parameters of the corresponding degree distribution (for demonstration see [351]).

In case of different values of β in the system complicates the model beyond analytical tractabil-
ity. Nevertheless, we find that the leading term of the evolving average degree can be described by
introducing a simplified model, where the minimum β value observed in the ensemble [351].

3.5.4 Dyadic closure and node removal mechanisms
Building on the model with the simple memory process we discussed in Section 3.5.2, here we
further introduce three mechanisms, which are assumed to shape social networks [233]. They
arguably lay behind the emergence of several realistic characters like the community structure,
weight-topological correlations, and the stationary evolution of the temporal network structure.

We consider two dyadic closure mechanisms [233], one called cyclic closure, responsible for
triangle formation in social networks, it shapes the social structure at mesoscopic scale, and it leads
to the emergence of communities [162]. The other mechanism called focal closure, on the other
hand, is independent of network structure and represents the formation of ties between individuals
with shared attributes or interests. It is driven by the propensity to seek cognitive balance between
connected egos [164, 155] as suggested by earlier theories in sociology [323, 308]. An applicative
definition of cyclic and focal closure in general is given by Kumpula et al. [228, 227], who modelled
cyclic closure as biased local search, as contrary to focal closure, which is modelled as an unbiased
global random search. Finally, the third ingredient of the model is a node removal process, which
ensures the network to reach an equilibrium state where its overall characteristics become invariant
of time.

We introduce these mechanisms in the memory-driven ADN model by first, at each iteration
step, deleting nodes with probability pd . To keep the network size constant, for each deleted node,
we add a new disconnected node to the network in the next iteration step. If a node is not deleted,
we let it to follow the memory driven activation process but when it repeats an interaction on an
existing link, instead of completely randomly, it selects one of its neighbours j with probability
pw

i j = wt
i j/∑k∈V i

t
wt

ik weighted by the number of their past interactions. The two nodes then interact
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and increase their link weight wt
i j by δ , a parameter which mimics a social reinforcement process.

On the other hand, if the node decides to form a new link, it may follow different strategies. In
all cases, the new tie will initially have unit weight wt = 1. If the degree of the focal node is 0, it
randomly picks another node from the entire network j (focal closure) and forms a tie. Otherwise,
it attempts to create a new link with a triadic closure mechanism. First, it chooses one of its
neighbours j randomly with a weighted probability pw

i j. If j has no other neighbours than i, node
i looks for another random node to interact with (focal closure) and forms a link. Otherwise, it
looks for a random neighbour k of j (i 6= k) with a weighted probability pw

jk. If k is not an already
existing neighbour of i (k /∈V i

t ), the two nodes interact with probability p∆, and close the triad by
forming a link (cyclic closure). Otherwise, with probability 1− p∆, node i follows the focal closure
strategy and instead forms a link with a randomly selected node (other than j and k). Finally, if k
is already a neighbour of i, that is k ∈V i

t , the two nodes interact and increase the weight of their
existing link by δ (reinforcement process). At the end of each iteration step, all nodes finish their
active interactions but remember their already connected neighbours j ∈V i

t and the weight wt
i j of

interactions with each of them. For a pseudocode of the algorithm see [233].
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Figure 3.15: The evolution of (a) the average degree 〈k〉(t) and (b) clustering coefficient C as the function
of time and deletion probability pd (for exact values, see legend). Panel (c) and (d) depicts the P(k) degree
and P(w) weight distributions (respectively) of model networks with varying δ values. Panel (e) shows the
dependence of the average local clustering coefficient C on the parameter δ , while emerging weight-topology
correlations are shown in panel (f) as the function of the same parameter measured as the average overlap
〈O〉 vs the cumulative tie strength Psum(w) in modelled networks. Black circles and dashed lines denote the
corresponding empirical MPC measures. This figure was published in [233].

In addition to the activity-driven model parameters whose values are fixed (η = 1, ε = 10−3,
∆t = 1 and γ = 2.8), our model has three intensive parameters, p∆, pd , and δ . By varying them,
one can simulate a rich variety of time-varying networks with several emergent structural properties
and correlations. In the following, we explore how the properties of the emerging network structure
depend on time and on the intensive parameters, and whether these properties match empirical
observations. As a real reference network we use an aggregated representation of a mobile phone
communication network (DS1 in Section 1.3.2), with characters shown as black dashed lines or
empty circles in Fig. 3.15. In the following, model networks were generated via simulations
with N = 10,000 nodes (if not noted otherwise), and results were averaged over 100 independent
realisations. We measured network characteristics by considering links that are actually present in
the network, i.e. we disregarded links of removed nodes.

The simulated networks are inherently temporal thus they generate time-varying interactions
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Figure 3.16: Demonstration of the emerging structure in the time-varying network model. Panels (a-c)
depict simulated networks with fixed δ = 1 and varying p∆ = 0.5, 0.9, and 0.995 (pd = 4e−5, 2e−5, and
1.04e−5) respectively. Each panel depicts the actual structure of a network with N = 500, in its stationary
state. Links are coloured according to their weight (darker link colour = stronger link weight). This figure
was published in [233].

and an evolving network structure. To explore their evolution, we measured their 〈k〉(t) average
degree and the C(t) average local clustering coefficient as functions of time. Since each process
starts from a set of disconnected agents, and hence all measured properties are trivially zero at
time t = 0. However, as time goes by and ties are formed via temporal interactions, 〈k〉(t) increases
until the network reaches a stationary state with constant 〈k〉(t). The time which takes to reach
this equilibrium state strongly depends on the node deletion probability pd as shown in Fig. 3.15a.
The same is true for the clustering coefficient (see Fig. 3.15b), however before its equilibrium, it
increases due to triangles introduced in the beginning of the process, and then it decreases once ties
are formed and new interactions appear only as reinforcement or by creating random links. Such
ties decrease the relative density of triangles until the clustering coefficient reaches a stationary
value.

Next we see how the emerging structure depends on the reinforcement parameter δ . We fix
p∆ = 1 and pd = 5×10−5 and vary δ between 0 and 2, while measuring network properties in the
stationary state. As we see in Fig. 3.15c and d the network emerges with heterogeneous degree
and weight distributions, which relatively well approximate the empirical distributions (shown with
black empty circles). They appear with a tail robust against δ but they are shifted, especially P(w),
assigning that the average weight naturally depends on the strength of reinforcement.

At the same time cyclic closure mechanism dominantly control the emergence of triangles and
cluster in the network. This is shown in Fig. 3.15e (where we set δ = 1), where by increasing p∆,
cyclic closure becomes more dominant, reflected by the steep increase of clustering. Several of the
depicted C(p∆) curves cross the empirical value, indicating that various sets of parameters (p∆ and
pd as well) are eligible to yield networks with realistic clustering value. In addition, we measured
weight-topology correlations to check if the emerging model networks recover the Granovetterian
weak-tie structure (for more on this theorem see Section 1.2.2). More precisely, we computed
the average link overlap 〈O〉 (for definition see Section 1.2.1) as the function of the cumulative
tie strength Pcum(w) [288]. In the MPC network, this quantities are positively correlated (black
circles in Fig.3.15f) in accordance with earlier observations [288]. Interestingly, such correlations
spontaneously emerges in the modelled networks for any positive values of p∆ (see Fig. 3.16f) or δ
(not shown here [233]). For larger p∆, this function remains positive and shifted upward as more
triangles evolve. More importantly, the combined effects of these two mechanisms, cyclic closure
and reinforcement, lead to the emergence of a community like structure in the modelled aggregated
network. It is demonstrated in Fig. 3.16a-c where we plot aggregated structures for increasing p∆
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(left to right). When p∆ is small, the network structure is like a densely connected random structure,
but with heterogeneous weights due to the present reinforcement process (δ = 1). On the other
hand, by increasing p∆, communities emerge simultaneously with strong ties inside communities,
and weak ties between them (darker link colour = stronger link weight). The cyclic closure alone
would not be eligible for the emergence of such communities and the Granovetterian picture, as
although the clustering of the network wold be large, no strong ties would bias the link creation
process and the network would appear rather homogeneous on the mesoscopic scale [233].

∗ ∗ ∗

Demonstrated by studies summarised above, activity driven network models have a large
potential to define mechanistic models of temporal networks with realistic emerging features.
They provide an ideal testbed for identifying the role of microscopic mechanisms in the network
formation, and their effects on the final outcome of dynamical processes. This summary already
demonstrated the capacities of this framework, thus for the sake of concise description, I decided to
excluded two published works of mine from the discussion.

One [344] addresses the role of endogenous and exogenous link creation mechanisms in
cross-country and cross-sectoral R&D company alliance networks. The extended ADN model
is able to reproduce a number of micro-level measures, including the degree distributions, local
clustering, path length, component sizes, and the emergence of alliance clusters. Furthermore, by
estimating the link probabilities towards newcomers and established firms from the data, we find
that endogenous mechanisms are predominant over the exogenous ones in the network formation,
thus quantifying the importance of existing structures in selecting partner firms.

The other study [352] extends the ADN framework by considering strategies what individuals
adopt when selecting between new or old social ties (similar to the model described in Section 3.5.3),
and the bursty nature of the social activity setting the pace of these choices. In this paper we studied
the non-trivial interplay of these two, structural and dynamical, characters and found that the
effects of burstiness might be suppressed when individuals exhibit a strong preference towards
previously activated ties. These modelling results provides a principled method to classify the
temporal features of real networks, and thus yield new insights to elucidate the effects of social
dynamics on spreading processes.

3.6 Conclusions
In this Chapter we focused on my contributions to the theoretical and methodological foundation
of the field of temporal networks. Beyond the discussion of my overall view and interpretation of
this way of description, we walked through several results addressing the representation, macro-,
meso- and microscopic level description of temporal networks, while we also introduced several
techniques for their data-driven analysis and modelling, applying random-reference and mechanistic
modelling paradigms. For the sake of completeness it worth to mention our recent work on temporal
network embedding [346], which aimed to identify network nodes and times with similar outgoing
reachability sets, thus potentially inducing similar epidemic outcomes seeded from them.

In this chapters, however, we have not addressed another important aspects of (static or time-
varying) networks: their effects on ongoing dynamical processes. Such questions will be central in
the coming Chapter where we will study collective social phenomena and aim to understand how
structural and dynamical characters of networks influence the unfolding of processes modelling
social or epidemic spreading.



4. Collective phenomena on networks

4.1 Introduction

Collective phenomena emerge in various ways in complex systems. Assuming a network description,
they can appear as cooperative patterns in the structure or the dynamics of interactions, as we just
discussed in the previous two Chapters. On the other hand, cooperative phenomena may appear as
collective states of nodes in a network. Such patterns may strongly depend on the underpinning
structure or could even alter the network formation, this way leading to correlated patterns between
the states and interactions of agents. In this Chapter, we are going to focus on the observations and
modelling of such phenomena emerging on networks.

During this discussion we are going to move along several dimensions characterising collective
processes. First of all, one dimension may consider the coupling between the phenomena and the
underlying network. If the system exhibits one-directional coupling, only the evolving process is
influenced by the (static/temporal/multiplex) structure, while the network evolves without being
altered by the ongoing phenomena. Good examples are epidemic processes in case patients are
not aware of their infection, thus they continue their interaction practise and propagate further the
actual disease without intervention [43]. On the other hand, if the system is characterised by mutual
coupling, node states and interactions influence each other, which leads to adaptive systems with
correlations between the phenomena and the network structure. This type of symmetry arguably
lays behind the indistinguishability problem of social influence and homophily [262, 26], where
one cannot decide whether two connected individuals in a social network are similar because they
influenced each other after connection (social influence), or they became connected because they
were similar at the outset (homophily). These effects commonly trouble the observation of social
spreading phenomena, as we will discuss in the coming Chapter.

Another imaginary dimension may consider the ways of observing a system. While arguably
all emerging phenomena in complex systems are the results of some dynamical process, sometimes
data do not allow to follow their emergence via dynamic observations, but to make only static
observations on their actual state. While in the former case a possible diachronic analysis may lead
to deeper insight about the driving mechanisms (e.g. in case of epidemic spreading), in the latter
case observations are limited to the detection of correlations in static informations.
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Finally, we may distinguish between different modelling techniques we choose to explain the
observed phenomena. One way involves statistical methods, which help us to identify various
hidden dependencies. On the other way, we will discuss agent-based models of dynamical processes.
Various such processes were proposed to model complex emerging behaviour, e.g. random walks
for diffusion, sandpile models for self organised critical systems, or coupled oscillators for synchro-
nisation processes, just to mention a few. Here we will mostly concentrate on spreading phenomena,
thus we will limit our discussion to two generic modelling frameworks. On one hand, we will
discuss models of simple contagion processes, arguably describing epidemic like spreading [43],
while on the other hand we will also develop models of complex contagion processes, commonly
assumed behind social spreading phenomena [78].

The following Chapter is organised via these axes to explore some relation between social
networks and ongoing social phenomena. First we will discuss empirical studies based on static
or dynamic observations of collective behaviour, and subsequently we will summarise modelling
results exploring the critical behaviour and dynamics of simple and complex contagion processes.

4.2 Static observations of collective social phenomena
The un-precedent availability and amount of digital data, recording traces of human behaviour,
opened the gate for the quantitative analysis of various social phenomena. Due to these devel-
opments it recently became possible (a) to verify earlier social hypothesis, which were taken as
granted in the scientific community, but has never been observed quantitatively, (b) to generalise
earlier observations made in small-scale experiments usually on a non-representative groups of
individuals, and (c) to observe new aspects of human behaviour to build novel hypothesises. Evi-
dently, independently of the method, all such behavioural studies should consider the dynamical
aspects of the observed phenomena, however, this is not always the case. Eventually, sometimes it
is disregarded for simplicity, or the data records a horizontal view of a social system, involving a
large population, but only capturing the state of the system at a given time point.

I have several contributions, which relied on the static observations and analysis of social
phenomena. However most of these studies land in the field of socioeconomic networks, which fall
somewhat far from a physics description thus I opted to exclude them from this Thesis. They cover
several aspects of individual observations and effect of socioeconomic inequalities that characterize
any society. First, some are built on directly observed socioeconomic networks, where economic
indicators are directly observed for people connected in a social network, like in case of DS2
(for description see Section 1.3.2 where such network is built through the combination of a bank
record and a mobile communication dataset. Other studies of mine focus on socioeconomic status
inference [245, 244, 14, 137] using remotely sensed satellite images and online data in developed
and developing countries. Their common goal is to build socioeconomic maps with high spatial
resolution from alternative data sources, this way replacing expensive Census data, especially in
developing countries where they are rarely collected. Our methods, as many other in this field,
apply deep neural networks to solve this inference problem from extremely large datasets.

Using high resolution socioeconomic maps we coupled them with behavioral information of
individuals, such as their social networks [237, 56], linguistic patterns [15], purchase habits [238,
239], or mobility [56, 167]. Commonly, they are investigating socioeconomic stratification patterns
indicating segregation in these many aspects of human behavior. On the social network level they
appear as assortative contact patterns demonstrating that people of a given socioeconomic class
prefer to interact with other from the same or similar classes. This phenomena is reflected by other
behavioural aspects too, where shopping patterns or even mobility mixing patterns show the same
stratified pattern.

∗ ∗ ∗
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Finally, note that I have some further contributions related to static analysis of collective social
phenomena, which are neither discussed in details here. In one paper [246] we investigate the
behavioural differences between mobile phone customers with prepaid and postpaid subscriptions.
Our study reveals that (a) postpaid customers are more active in terms of service usage and (b)
connections between customers of the same subscription type are much more frequent than those
between customers of different subscription types. In another study [269] we address, on a sample
of 2.3 million individuals, how Facebook users consumed different information at the edge of
political discussion and news during an Italian electoral competition.

4.3 Dynamic observations of social spreading phenomena

In this Section we are going to summarise empirical studies reporting observations about the
dynamics of social contagion phenomena. Social contagion evolves over networks of interconnected
individuals, where links associated with social ties transferring influence between peers [73].
Several earlier studies aimed to identify the dominant mechanisms at play in such processes
[313, 152, 319, 27]. One key element, termed behavioural threshold by Granovetter [152], is defined
as “the number or proportion of others who must make one decision before a given actor does so”.
Following this idea, various network models have been introduced [368, 359, 369, 264, 189] to
understand threshold-driven spreading processes, commonly known as complex contagion [78].
Although these models are related to a larger set of collective dynamics, they are particularly
different from simple contagion where the exposure of nodes is driven by independent contagion
stimuli and one infected neighbour is always sufficient to expose a susceptible node [48, 43, 166].
During the last ten years several studies contributed to the foundation of complex contagion
[368, 30, 141, 314, 37, 324], and in addition online experiments were carried out to provide
empirical evidence about the effect of social influence [76, 77]. Beyond the conventional threshold
mechanism, the effect of homophily [26, 37, 335] and the role of external media influence [345]
were also investigated recently.

Most of my work on dynamical social phenomena are related to the analysis of social contagion
processes, with observations in large online social systems like Skype or Twitter. As it follows, we
will discuss empirical observations reported in [198, 199, 174] and identify mechanisms, which
arguably play central role in the adoption dynamics of online services or information. Subsequently,
in Section 4.5, we will incorporate the identified mechanisms into predictive dynamical models of
complex contagion processes.

4.3.1 Complex contagion process in spreading of online innovation

The propagation of innovations takes place in a social network [48, 345, 289, 26] and is driven
by the entanglement of individuals’ decision-making processes [306] as well as by the influence
of media and social interactions [313]. Although the effects of network structure on contagion
processes have recently been shown to be important [43], knowledge about the social network
itself is rather limited since its structure and dynamics usually remain hidden. In this respect the
digital age has opened up unprecedented opportunities, as online social networks and Voice over
Internet Protocol services record detailed information of the connections and activities of their
users. These services partially decode the underlying social structure by acting as proxies for the
network of real social ties between individuals, and also provide accurate records of the users’
adoption behaviour. In this way the different sources of influence on the decisions of an individual
immersed in a perpetually changing environment of social interactions become traceable.

In this project [198] we studied one of today’s largest online communication services, the Skype
network, with over 300 million monthly connected users. Data covers the history of individuals
that have adopted Skype from September 2003 until March 2011 (i.e. 2738 days), including
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registration events and contact network evolution for every registered user around the world. For
our investigation we selected user accounts with an identified country of registration and considered
only their mutually confirmed connections, both within the country and abroad. To receive the best
estimation of node degrees in the underlying social network, we integrated the evolving Skype
network for the whole available period and count the number of confirmed relationships per node
(including international ties). The adoption dynamics of a given country can be directly observed
by assigning times of adoption (ta) and termination (tt) to all the accounts. These are respectively
defined as the dates of registration and last activity (as regards to any of the services) in Skype.
Explicitly, we identified any account as terminated if its last activity happened earlier than one year
prior to the end of the observation period. In this way we were able to build a complete adoption
and termination history of Skype for 2373 days.
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Figure 4.1: Empirical rates and probabilities for Switzerland. (a) Thin curves denote empirical rates of
adoption [Ra(t)], termination [Rt(t)], and net adoption [Rn(t)], while symbols are their corresponding binned
values. A binned data point in [2T,3T ] has been removed due to systematic bias in Rt(t) caused by a
major software update during this period. A shaded (white) area indicates the training (predicted) period
for the theoretical fit of our model, drawn as thick lines with the same colours as the empirical rates. (b)
Probabilities of spontaneous [πa(t)] and peer-pressure [πp(t)] adoption per unit time. (c) Average conditional
probability of adoption as a function of the fraction of adopting neighbours n, measured in the original data
[π(n), solid circles] and in the shuffled data corresponding to the null model [prand(n), open circles]. Inset
shows the unbiased difference ∆π(n) = π(n)−πrand(n) (symbols) and a fitted linear function (continuous
line). (d) Probabilities of overall termination [π−(t)], and of spontaneous [π−a (t)] and peer-pressure [π−p (t)]
termination per unit time. The inset depicts a zoom from time 2T onwards. T , r and c are arbitrary linear
scaling constants, with time dimensions for T . Black lines in panels (b), (d) are fitted constants. This figure
was published in [198].

The adoption dynamics

The spreading of the online service (in this case the adoption of the Skype free service) is de-
termined by competing processes of adoption and termination, measured by the evolution of the
corresponding rates Ra(t) and Rt(t) of all users that adopt or terminate the service in a given
time window ∆t (Fig. 4.1.a). These simple rate functions already disclose interesting features of
the adoption dynamics, since their overall growth signals continuously accelerating processes of
adoption and termination. Yet the actual time evolution of spreading service is better characterised
by the net adoption rate Rn(t) = Ra(t)−Rt(t).
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Mechanisms of adoption
Opening a user account constitutes a single event in the decision-making process of an individual
that is triggered by either spontaneous decisions, the influence of media or by the social environment
[368, 26]. On the other hand, users may terminate their accounts for several reasons including
vanishing demand or dissatisfaction, by switching to another product permanently, or by simply
abandoning the service with a chance of re-adoption (e.g. due to loss of password or intention for
lower monitoring). An analysis of the evolving network structure around a given user can help us
to detect some of these scenarios, by observing whether an ego adopted or terminated the product
before any of its neighbours did; or else followed the decisions previously made by a fraction
of them. In this way we can label the performed action as either spontaneous or driven by peer
pressure.

To define the related measures we consider the underlying social network as static, meaning
that its evolution requires a much larger temporal scale than the adoption process itself. This static
structure is defined as the aggregated social network of Skype at the end of the recorded period,
and provides a lower estimate for the total number of friends of each individual. Moreover, we
assume that the maximum size of the static social network is the number I of internet users in a
given country at the end of the observation period (2011) [10], and thus define I−Na(t) as the
population that has not yet adopted Skype at time t.

Under these assumptions, the probabilities per unit time that a user adopts either spontaneously
or due to peer pressure are defined as,

πa(t) =
#ad(t +∆t|SF = 0)

I−Na(t)
, and πp(t) =

#ad(t +∆t|SF 6= 0)
I−Na(t)

, (4.1)

where #ad(t +∆t|SF = 0) [#ad(t +∆t|SF 6= 0)] is the number of users who adopt the service in a
time window ∆t, under the condition that their number of adopting neighbours at time t is SF = 0
(SF 6= 0). In a similar fashion, the probabilities per unit time that a user terminates the service
either spontaneously or due to peer pressure are,

π−a (t) =
#tr(t +∆t,T F = 0)

Na(t)
, and π−p (t) =

#tr(t +∆t,T F 6= 0)
Na(t)

, (4.2)

where T F stands for the number of neighbours of a user that have terminated usage up to time t
(for a discussion on the restrictions of these empirical quantities see [198]).

The data shows that after an initial, transient period, the rate of spontaneous adoption πa(t) (Fig.
4.1b) and the rate of termination p−(t) = π−a (t)+π−p (t) (Fig. 4.1d) become constant apart from
small fluctuations. The same holds separately for the rates of spontaneous [π−a (t)] and peer-pressure
[π−p (t)] termination. The time invariance of these rates is an obvious assumption for most biological
epidemics, which, however, has never been empirically shown before in the case of social contagion
phenomena, despite its wide use [364, 73].

When the ego is not the first adopter among neighbours, the rate πp(t) of adoption via peer
pressure is not constant but increases with time (Fig. 4.1b). This is arguably due to social influence
arising from the user’s social circle. An appropriate way to quantify such effects is to measure the
conditional probability π(n) of adoption provided that a fraction n of the ego’s neighbours have
adopted the product before as

π(n) =
#ad(n)

N−∑m<n
m=0 #ad(m)

. (4.3)

Here the numerator counts the number of users with a fraction n of adopter friends at the time of
adoption, while the denominator is the number of people with a larger or equal fraction m≥ n, i.e.
all individuals who had the chance to adopt Skype while having a fraction n of adopter neighbours.
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We observe that the probability π(n) is monotonically increasing (Fig. 4.1c), an empirical finding
in agreement with the assumptions of several threshold models for epidemic spreading and social
dynamics [368, 107, 220, 337]. However, since we cannot see the entire social network (only the
part uncovered by the Skype graph), this probability is biased as n→ 1. To estimate such bias,
we build a reference null model by shuffling the adoption times of all accounts and measuring the
corresponding conditional probability prand(n) for this system. The shuffling procedure removes the
effect of social influence but conserves the adoption rates and keeps the social structure unchanged.
In other words, the reference probability is biased in the same way as the original measurement,
but is not driven by social influence as all such correlations have been removed by the shuffling.
Consequently, the difference ∆π(n) = π(n)−πrand(n) quantifies the effect of social influence in
the adoption process (inset of Fig. 4.1c): ∆π(n) increases approximately in a linear fashion with
the fraction of adopting neighbours. This observation is in agreement with previous studies where
a similar scaling of social influence has been recognised through small scale experiments [76],
data-driven observations [37], and modelling [107, 106].

Thus based on these observations, for modelling purposes we can summarise that the behaviour
of an agent can be characterised by four elementary processes: (a) Spontaneous adoption, influenced
by individual factors or external media independently of the social network. This is certainly the
dominant mechanism for agents with no neighbours at the time of adoption. (b) Peer-pressure
adoption, an intrinsic social effect implemented here by making use of the observed linear scaling
of the probability π(n). (c) Temporary termination, describing the case in which agents stop
usage with a chance of re-adoption. (d) Permanent termination, when users abandon the service
altogether.

4.3.2 Local cascades induced global contagion

Behavioural cascades are rare but potentially stupendous social spreading phenomena, where
collective patterns of exposure emerge as a consequence of small initial perturbations [199]. Some
examples are the rapid emergence of political and grass-root movements [149, 61, 117], fast
spreading of information [109, 157, 38, 369, 159, 243, 242, 143] or behavioural patterns [128], etc.
The characterisation [143, 60, 138, 67, 135] and modelling [368, 324, 141] of such processes have
received plenty of attention and provide some basic understanding of the conditions and structure
of empirical and synthetic cascades on various types of networks [383, 191, 29]. However, these
studies commonly fail in addressing the temporal dynamics of the emerging cascades, which may
vary considerably between different cases of social contagion. Moreover, they have not answered
why real-world cascades can evolve through various dynamic pathways ranging from slow to rapid
patterning, especially in systems where the threshold mechanisms play a role and social phenomena
spread globally. Besides the case of rapid cascading mentioned above, an example of the other
extreme is the propagation of products in social networks [48], where adoption evolves gradually
even if it is driven by threshold mechanisms and may cover a large fraction of the total population
[198]. This behaviour characterises the adoption of online services such as Facebook, Twitter,
LinkedIn and Skype (Fig.4.2a), since their yearly maximum relative growth of cumulative adoption
[376] (which is the maximum of the yearly adoption rate normalised by the final observed adoption
number of a given service) is lower than in the case of rapid cascades as suggested e.g. by the Watts
threshold model.

To fill this gap in the modelling of social diffusion, we analyse and model real-world examples
of social contagion phenomena. We follow the adoption dynamics of the Skype paid service “buy
credit” for 89 months since 2004, which evolves over the social network of one of the largest
voice over internet providers in the world. Data includes the time of first payment of each user,
an individual and conscious action that tracks adoption behaviour. In contrast to other empirical
studies where incomplete knowledge about the underlying social network leads to unavoidable
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bias [198], in this study, we use the largest connected component of the aggregated free Skype
service as the underlying structure, where nodes are Skype users and links confirmed contacts
between them. This is a good approximation since it maps all connections in the Skype social
network without sampling, and the paid service is only available for individuals already enrolled in
the Skype network. Also note that the service adoption process evolves in a considerably faster
time-scale than the underpinning social network. This way applying a time-scale separation, and
considering the network to be static, may provide a good first approximation here. The underlying
structure is an aggregate from September 2003 to November 2011 (i.e. over 99 months) and
contains roughly 4.4 billion links and 510 million registered users worldwide [272]. The data is
fully anonymised and considers only confirmed connections between users (for more on the data
see DS4 in Section 1.3.2).
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Figure 4.2: Structure and dynamics of online service adoption. (a) Yearly maximum relative growth rate
(RGR) of cumulative adoption [199] for several online social-communication services [378], including three
Skype paid services (s1 - "subscription", s2 - "voicemail", and s3 - "buy credit"). The red bar corresponds to
a rapid cascade of adoption suggested by the Watts threshold (WT) model, while the green bar is the model
prediction for Skype s3. (b-c) Snowball sample of the Skype social network (grey links) with nodes and
links coloured according to their adoption state: multiple innovators (green nodes), induced small vulnerable
trees (red nodes and links), and the triggered connected stable cluster (blue nodes and links). (d) Degree
distribution P(k) of the Skype network (grey/blue circles for raw/binned data) on double log-scale with
arbitrary base n. P(k) is fitted by a lognormal distribution with parameters µD = 1.2 and σD = 1.39, and
average z = 8.56 (red line). (e) Distribution P(Φk) of integer thresholds Φk for several degree groups in
Skype s3 (inset). By using P(Φk,k) = kP(Φk/k), these curves collapse to a master curve approximated
by a lognormal function (dashed line in main panel) with parameters µT =−2 and σT = 1, as constrained
by the average threshold w = 0.19. (f) Adoption rate of innovators [Ri(t)], vulnerable nodes [Rv(t)], and
stable nodes [Rs(t)], as well as net service adoption rate [R(t)]. Rates are measured with a 1-month time
window, while q and τ are arbitrary constants. The shaded area indicates the regime where innovators adopt
approximately with constant rate. This figure was published in [199].

Watts cascade conditions

In his seminal paper about threshold dynamics, Watts [368] classified nodes into three categories
based on the necessary social influence they needed for adoption. He assumed that each node
has an individual threshold ϕ ∈ [0,1] drawn from a distribution P(ϕ) with average φ = 〈ϕ〉. This
threshold determines the minimum fraction of exposed neighbours that triggers adoption and
captures the resistance of an individual against engaging in spreading behaviour. He identified
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innovator nodes that spontaneously change state to 1, thus starting the process. Such nodes have a
trivial threshold ϕ = 0. Then there are nodes with threshold 0 < ϕ ≤ 1/k, called vulnerable, which
need one adopting neighbour before their own adoption. Finally, there are more resilient nodes with
threshold ϕ > 1/k, denoted as stable, referring to individuals in need of strong social influence to
follow the actions of their acquaintances. Watts suggested [368] that a small perturbations (like the
spontaneous adoption of a single seed node) can trigger global cascading patterns, however, their
emergence is subject to the so-called cascade condition: the innovator seed has to be linked to a
percolating vulnerable cluster, which adopts immediately afterwards and further triggers a global
cascade (i.e. a set of adopters larger than a fixed fraction of the finite network). In addition, while
models with more sophisticated social influence function can be introduced [231, 107, 198] the
original linear-threshold assumption proposed by Watts and Granovetter seems to be sufficient to
interpret our observations.

Heterogeneous thresholds and slow adoption dynamics
Degree and threshold heterogeneities are indeed present in the social network of Skype. The degree
distribution P(k) is well approximated by a lognormal function

P(k) ∝ k−1e−(lnk−µD)
2/(2σ2

D) where k ≥ kmin (4.4)

with parameters µD = 1.2, σD = 1.39 and kmin = 1 (Fig. 4.2d), giving an average degree z = 8.56.
Moreover, at the time of adoption we can measure the threshold ϕ = Φk/k of a user by counting the
number Φk of its neighbours who have adopted the service earlier. We then group users by degree
and calculate the distribution P(Φk) of the integer threshold Φk [138] (Fig. 4.2e). By using the
scaling relation P(Φk,k) = kP(Φk/k) all distributions collapse to a master curve well approximated
by a lognormal function

P(ϕ) ∝ ϕ−1e−(lnϕ−µT )
2/(2σ2

T ), (4.5)

with parameters µT = −2 and σT = 1 as constrained by the average threshold w = 0.19 (as
explained in [199]). These empirical observations, in addition to the broad degree distribution,
provide quantitative evidence about the heterogeneous nature of adoption thresholds.

Since we know the complete structure of the online social network, as well as the first time
of service usage for all adopters, we can follow the temporal evolution of the adoption dynamics.
By counting the number of adopting neighbours of an ego, we identify innovators (Φk = 0), and
vulnerable (Φk = 1) or stable (Φk > 1) nodes. The adoption rates for these categories behave rather
differently from previous suggestions [368] (Fig. 4.2f). First, there is not only one seed but an
increasing fraction of innovators in the system who, after an initial period, adopt approximately at
a constant rate. Second, vulnerable nodes adopt approximately with the same rate as innovators
suggesting a strong correlation between these types of adoption. This stationary behaviour is rather
surprising as environmental effects, like competition or marketing campaigns, potentially influence
the adoption dynamics. On the other hand, the overall adoption process accelerates due to the
increasing rate of stable adoptions induced by social influence. At the same time a giant adoption
cluster grows and percolates through the whole network. Despite of this expansion dynamics and
connected structure of the service adoption cluster, the service reaches less than 6% of the total
number of active Skype users over a period of 7 years [272]. Therefore we ask whether one can
refer to these adoption clusters as cascades. They are not triggered by a small perturbation but
induced by several innovators; their evolution is not instantaneous but ranges through several years;
and although they involve millions of individuals, they reach only a reduced fraction of the whole
network. To answer this question, in Section 4.5 we will incorporate the above mentioned features
into a dynamical threshold model [316, 199] with a growing group of innovators and investigate
their effects on the evolution of global social adoption. Note that although we cannot follow the
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direct pathways of social influence, we performed a null model study to demonstrate at the system
level that social influence is present and dominates the contagion process, as compared to effects of
homophily (for results see [199]).

4.3.3 Social experiments and behavioral data collection
Large automatically recorded datasets, like the one provided by Skype, serve as important sources
for behavioral observations. They allow the representative observations of very large populations as
they are collected without intervention as system logs or for billing purposes. Due to these settings,
they have minimum observational bias that would alter the behavior of the observed individuals.
On the other hand, as their collection is automatized, they provide less flexibility to design problem
specific data collection. More adequate solutions, to make observations tailored to answer a specific
scientific question, are provided by social experiments or survey studies. In this Section we briefly
introduce two projects that we carried out recently in these directions. In one we aim to observe
the social and language development of children in a pre-school setting. This is longitudinal and
large-scale social experiment is one of the largest of its kind in the field of sociolinguistic. The
other data collection effort aim to follow the behavioral changes of people in Hungary during the
COVID-19 pandemic. It has been carried out as a continuous online and a sequence of offline
survey data collection campaigns, providing the longest dynamical observation of age stratified
contact matrices that has been reported so far. These two projects are not closely related to the
physical description of social behavior, yet they are related to the overall scope of the thesis on
computational human dynamics, thus I decided to introduce them briefly.

DyLNet - Longitudinal data collection to follow social network and language develop-
ment dynamics at preschool
The aim of the DyLNet project 1 [3] is to observe and characterize the relations between child
socialization and oral language learning during the preschool period. This was done by means of
an innovative multidisciplinary approach that combines work in the fields of language acquisition,
sociolinguistics and network science. The data collection was carried out as a large-scale longitudi-
nal social experiment, where a complete preschool in France was followed, including children from
three different grades as well as their teachers and assistants. During the experiment we collected
the proximity interactions of about 200 participants (circa 170 preschoolers and 30 adults in charge)
in every 5 seconds using autonomous Radio Frequency Identification (RFID) Wireless Proximity
Sensors, which were (for a large part) equipped with directional microphones allowing to record
continuously the oral interactions of participants too.

More precisely, we collected four different types of datasets during the DyLNet project [96].
The main dataset focuses on the dynamical recording of social and oral interactions as transactional
and vocal data. These data were collected autonomously using badges installed on children and
school staff at the preschool. Additionally, we tracked the information about the school class level
of each child during the observation period together with their teachers and assistants. Meanwhile,
ground truth (GT) data were collected with the purpose of understanding how distance and relative
orientation between a pair of badges influence the Received Signal Strength Indicator (RSSI) of
recorded signals. GT data were also essential for training Machine Learning models to classify
signal sequences as social interactions to reconstruct their meaningful interactions as temporal
networks [97]. In addition, the main data collection was accompanied with survey campaigns. A
first type of survey consisted in asking parents to provide information about the socio-demographic,

1The DyLNet project including experimental design, subject recruitment, data collection and processing, data
handling, storing and sharing, privacy protection, and all aspects of the involvement of underage children were screened
and approved by the ethics committee of INRIA (National Institute for Research in Digital Science and Technology)
(favorable opinion, reference 2017-014, IRB00013144) as well as by the Data Protection Officer of the Université
Grenoble Alpes (favorable opinion, reference CIL-UGA-2017-0980683).
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cultural, educational, and occupational background of the family and the daily out-of-school
activities of participating children. In addition, a language survey using vocabulary and syntactic
skills assessment methods was performed with all participating children once a year throughout
the project to follow their linguistic development. During the observation period, we followed the
interactions among preschoolers and school staff for one week each month (among the 10 months
of the academic year), for three years of data collections.

MASZK - COVID-19 Hungarian Data Provider Questionnaire
In the early days of March 2020, as the COVID-19 pandemic started to unfold in Hungary, scientists
from diverse fields were requested to develop country specific epidemic models. However, soon it
turned out that for the realistic parametrization of these models one of the largest challenges was
to follow the change of behavior of people in aspects relevant to the transmission of the actual
epidemic. Although this effort was supported by a never seen initiative, in which mobile phone
providers and health authorities shared their data to help realistic data-driven modelling approaches,
one important data was missing from the very beginning: the spatially and demographically detailed
mixing patterns of the population’s different age groups. Although estimated [304] contact matrices
were available for Hungary from earlier periods, the actual challenge was to continuously monitor
the changes in contact patterns and to measure the societal responses - like social distancing or
self-protection - to the COVID-19 related nationwide regulations. The Hungarian Data Provider
Questionnaire ("Magyar Adatszolgáltató Kérdőív" - MASZK) [204, 5] was developed for these
purposes2. The voluntary and anonymous online survey (designed by scientists and software
engineers [6]), is part of a larger project aiming to observe and model the unfolding COVID-19
pandemic in Hungary [315, 298]. Beyond collecting static information about the respondents’
demography, domicile, education level, or family structure, the primary goal of the questionnaire
was to dynamically monitor the daily changes in the contact pattern of people in order to calculate the
age contact matrices in real time. Additionally, dynamic data was collected about the respondents’
employment status, working conditions, physical and mental well-being, vaccination acceptance
and vaccine preference, and their compliance with other recommended or mandatory self-protection
measures during the months of emergency state and beyond. This rolling anonymous online data
collection campaign is ongoing up to date (Spring 2022) and reached over 2.3% of the population
in Hungary recording over 480,000 questionnaires from more than 232,000 individuals, mounting
up to the largest data ever collected for this purpose, to our knowledge.

However, as participation was voluntary, just as any data collected in similar ways, the obtained
dataset was not representative for the population of Hungary. To estimate the level and dimensions
of unrepresentativity, and to have generalizable results, we performed parallel data collection
campaigns based on the same questionnaire, but conducted on a smaller representative sample of
1,000−1,500 people with CATI (computer assisted telephone interviewing) survey methodology
in each month from the beginning of the pandemic. This results in 22 representative data collection
campaigns up today. Through the combined analysis of the online and offline data, we evaluated the
results of the large online survey and identified its most severe non-representative biases. To account
for these biases, we developed a pipeline using iterative proportional fitting[53] to weight the non-
representative data in order to provide more representative contact matrices. Our method [221]
supports the more realistic measurement of age contact matrices of a whole population while
keeping the advantages (like cost-efficiency, scalability and detailed dynamics) of the online data
collection.

On one hand, the representative contact matrices and the weighted online data were used for
weekly updates of the official model predictions of the actual pandemic situation. On the other

2The data collection was fully complying with the actual European and Hungarian privacy data regulations and was
approved by the Hungarian National Authority for Data Protection and Freedom of Information [7], and also by the
Health Science Council Scientific and Research Ethics Committee (resolution number IV/3073- 1 /2021/EKU).
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hand, they were exploited for scientific purposes. In a recent study we demonstrated [57] how
online data sources can be used as an alternative surveillance system to follow the development
of the basic reproduction number during the pandemic. From the analysis of the representative
questionnaire [229] we also concluded how the availability and free choice between various vaccine
types in Hungary effected the success of the vaccination campaign in different socio-demographic
groups. We published a chapter in a White Book on vaccination attitudes in Hungary [248] and
finally I co-authored an opinion paper [341] about the socioeconomic divide in the computational
modelling of infectious diseases.

∗ ∗ ∗

Finally note that I have some further contributions related to the dynamic analysis of collective
social phenomena, not discussed in details here. In one study [174] we analysed a Twitter corpus
(DS3 in Section 1.3.2) and quantified dynamic similarities between users by considering the
evolving set of their common friends and the set of their commonly shared hashtags in order to
predict the evolution of mention links among them. We showed that these similarity measures are
correlated among connected people and that the combination of contextual and local structural
features provides better predictions as compared to cases where they are considered separately.

In a project [103, 104] we collected a specific Twitter dataset to observe the effects of repeated
and diversified influence mechanisms my quantifying Information susceptibility and Adoption
thresholds of Twitter users. We track the timeline order of potential influence and adopting hashtags
and retweets in a specific Twitter dataset, which contains the posts’ dynamics of thousands of seed
users and their entire followee networks of over a million of other customers. We show that users
adopt retweets easier than hashtags, and we find both metrics to be heterogeneously distributed,
correlated, and dependent on the topics and aggregation level of social influence.We show that
users adopt retweets easier than hashtags, and find that new influencing neighbours can effectively
trigger adoptions. Our results may inform better models of adoption processes leading to a deeper
empirical understanding of simple and complex contagion.

In another work [20] we studied multimodal transportation systems, with several coexisting
services like bus, tram, and metro of several French municipal areas. Transportation systems can
commonly be represented as time-resolved multilayer networks where the different transportation
modes connecting the same set of nodes are associated to distinct network layers. In this study,
we provided a novel user-based representation of public transportation systems, which combines
representations, accounting for the presence of multiple lines and reducing the effect of spatial
embeddedness, while considering the total travel time, its variability across the schedule, and taking
into account the number of transfers necessary. After the adjustment of earlier techniques to the
novel representation framework, using non-negative matrix factorisation, we identified hidden
patterns of privileged connections linking places at a given distance with the fastest multimodal
transportation connections. We also studied their efficiency as compared to the commuting flow.

4.4 Modelling simple spreading phenomena
A simplified mathematical description of spreading processes is proposed by compartment models,
which commonly assume that at a given time a node can be in one of many mutually exclusive
states and can be dynamically transferred between these states following some stochastic or
deterministic rules. Based on the compartmental states and the transition rules we distinguish
between simple [43] and complex contagion processes [314, 78] modelling epidemic type of
spreading in the former case, while social contagion in the latter. Discussion of my contributions
to modelling simple [250, 205, 342, 386] and complex [198, 316, 199, 354] contagion will be the
subject of this Section. Our central questions will be to understand the structural effects of temporal
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and static networks on spreading processes using synthetic and data-driven models, and to define
methods to characterise the underlying network structure sampled by spreading processes.

4.4.1 Simple contagion processes
The spread of infectious diseases are common examples of simple contagion, which can be well
described by compartment models of reaction-diffusion processes [209, 43]. In such models one
takes N nodes, all of which can be in multiple but mutually exclusive states. One commonly used
model family of simple spreading processes assumes that nodes can be susceptible (S), infected
(I), or recovered/removed (R) and can transfer between these states in consecutive iteration steps
via probabilistic rates. If in a given time step a node is susceptible and interacting with an infected
other (reaction), in the next iteration step it can become infected (diffusion) with a rate β (described

by the spreading scheme S+ I
β−→ 2I). Assuming only these two possible states and a single way

of transition we obtain the definition of the well known Susceptible-Infected (SI) model. On the
other hand, if we allow for an infected node to spontaneously transfer with a given rate µ into
other states, we can get more complicated model definitions. In case an infected node can recover
(I

µ−→ R) and reach a state from which it never get infected again, we arrive to the definition of
the Susceptible-Infected-Recovered model. Otherwise, if it can transfer back to state S (I

µ−→ S)
and became susceptible again for infection, we arrive to the definition of the Susceptible-Infected-
Susceptible (SIS) model. Schematic summary of states and transitions scheme of these models are
summarised in Fig. 4.3. Although the mathematical definition of such models are very similar, they
display rather different critical behaviour when transitioning between phases of vanishing or global
contagion [43].

β μ

μ
R

SI SIS SIR
S+ I β 2I S+ I β 2I S+ I β 2I

I μ S I μ R

S I

Figure 4.3: Schematic summary of compartment models of epidemic spreading.

Compartment models of spreading processes were originally defined for unstructured popu-
lations assuming homogeneous mixing, i.e., where every node interacts with any other nodes in
each iteration. In this case, solutions for the dynamics of compartment sizes were proposed by the
dynamical mean-field approach. However, over the last decades this framework has been success-
fully extended for structured populations, where a network structure is used to code the possible
interactions between nodes. Solution in this case was built on a degree decomposition method [293],
which introduces classes of statistically equivalent nodes of degree k in the description. This idea
lead to the seminal result that degree heterogeneities decrease the critical point of epidemics leading
to a vanishing infection threshold in scale-free networks with degree exponent γ ≤ 3.

One common assumption in the majority of related works is to consider a time-scale separation
between the changes in network structures, τG, and the contagion process τP (for a discussion on
temporal scales see Section 3.1.2). Indeed, spreading processes have been typically considered
to take place in either static (τP � τG) or annealed (τP � τG) networks, where links are not
evolving but present always or they evolve so rapidly that in turn they allow the infection to
pass between nodes at any time. While these approximations can be used to study a range of
processes such as the spreading of some diseases in contact networks or the propagation of energy
in power grids they fail to describe many other phenomena in which the two timescales are
comparable [195, 268, 311, 271, 332, 218, 206, 205, 310, 320, 191, 358].

In these cases epidemics may strongly depend on the dynamics of the network, as infections
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can be transferred between nodes only at the time of their interactions. Spreading of ideas, memes,
information and some type of diseases the diffusion processes can take place in such time-varying
networks and their modelling needs to consider the interplay between the two simultaneously
unfolding dynamics. These new directions land temporal networks in the focus of epidemic
modelling [358, 250] and set a new direction in their investigations called temporal network
epidemiology [257].

Several other characters of networks have been considered for ever more realistic modelling
of epidemic spreading including multi-layer description of social interactions and mobility pat-
terns [151, 387], or meta-population networks [88, 89, 342] to capture human mobility patterns at
multiple scales. In the coming Section I am going to summarise some of my contributions in this
direction, addressing how to effectively control epidemic spreading on temporal networks [250].
As another example for the usefulness of simple spreading processes, we will also introduce a
new centrality measure based on deterministic SI processes to identify important links to impede
epidemic outbreaks [386]. Finally we will shortly summarise our other works addressing how epi-
demic spreading is influenced by effects of contact memory [206] or emerging communities [233]
in temporal networks and discuss how the super-linear scaling of contact densities with city sizes
influences the outcome of meta-population models of spreading [342].

4.4.2 Controlling contagion processes in time-varying networks

Control strategies of contagion processes is a central question in network epidemiology and
in information spreading [86, 294]. The aim here is to identify the minimum set of nodes (or
links), which removal would maximally decrease the probability of the emergence of global
spreading on one hand, or to reach maximal involvement once initiate spreading from these
sites. Spreading processes evolving on networks are influenced by a set of network features. In
particular, heterogeneity observed in the distribution of networks’ metrics, like the number of
connections per node, degree, and the intensity of contacts, or weights have been shown to be
critical. These quantities follow distributions characterised by heavy-tails, which imply the absence
of characteristic scales and the presence of large fluctuations with respect to the average [363].
Other influencing factors identified are higher-order organisation of connectivity patterns associated
to the presence of clusters/communities [278, 126].

The understanding of these properties and their effects on spreading phenomena has spurred the
creation of strategies aimed at controlling or promoting diffusion processes. These can be classified
in two main categories [366]. On one hand we can devise global strategies that rely on the full
knowledge of the network structure, while on the other hand we can define local strategies, which
relax this, often unrealistic assumption. In order to better understand the problem setting, let us
imagine that we want to protect a network of computers against the spreading of malwares. The
problem is to find a way to immunise a fraction p of nodes to effectively protect the entire network.
Each prescription for the selection of this fraction constitutes what we call a strategy. To this end,
global strategies use centrality measures such as degree, k-core, betweenness and PageRank to rank
the importance of each node [43, 278, 215, 294], while local strategies instead infer the role of
nodes by local explorations and samples [86].

Here we investigate the effect of time-varying connectivity patterns on contagion control
strategies by considering the specific class of activity driven network models [299]. In particular,
we consider the susceptible-infected-susceptible (SIS) model [209] and derive analytically its
critical immunisation threshold in case of three different control strategies. We also validate
qualitatively the findings obtained in synthetic networks by studying the effect of each strategy in a
large-scale mobile telephone call dataset.
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Controlling contagion processes in activity-driven networks
A closed formula for the epidemic threshold of a SIS epidemic process unfolding on any time-
varying network has been derived [303]. In this approach the network is considered as a sequence
of adjacency matrices A1,A2, . . . ,AT and has been shown that a disease cannot spread in the system
if λ∏i Si < 1, where Si = (1−µ)I+αAi, and α is the transmission rate per contact. In other words,
the disease will die out if the largest eigenvalue of the system-matrix S = ∏i Si is smaller than one.
This result have been recently confirmed with a different approach [358].

In case of activity-driven networks (for definition see Section 3.5), a solution for the SIS model
can be obtained by using the homogeneous mean-field theory (discussed for degree decomposition
in Section 4.4.1). However, here instead of degrees, we group nodes according to their activity
assuming that nodes in the same class are statistically equivalent. At the mean-field level, the
spreading process can be described by the number of infected individuals in the class of activity a
at time t, i.e., It

a. Following Ref. [299], the number of infected individuals of class a at time t +1 is
given by:

It+1
a = It

a−µIt
a +αm(Na− It

a)a
∫

da′
It
a′

N
+αm(Na− It

a)
∫

da′
It
a′a
′

N
, (4.6)

where Na is the total number of individuals with activity rate a (which is constant over time). Each
term in the Eq. 4.6 has a clear physical interpretation. In fact, the number of infected nodes in
the class a at time t + 1 is given by: the number of infected nodes in this class at time t (first
term), minus the number of nodes that recover and going back to the class Sa (second term), plus
the number of infected individuals generated when nodes in the class St

a = Na− It
a are active and

connect with infected nodes in the other activity classes (third term), plus the number of infected
nodes generated when nodes in the class St

a are linked by active infected nodes in other activity
classes. After finding the solution (not shown here [250]), and considering per capita spreading rate
β = α〈k〉 we can write the threshold for the SIS process, ξ SIS, as:

β
µ
≥ ξ SIS ≡ 2〈a〉

〈a〉+
√
〈a2〉

. (4.7)

In other words, the epidemic threshold is a function of the first and second moment of the activity
distribution. Due to the co-evolution of the network structure and the spreading processes, the
threshold is not depending on time-aggregated metrics such as the degree. It is defined by the
interplay between the timescale of the contagion process and the convolution of the network
timescales encoded in the moments of the activity distribution.

Let’s now study different immunisation strategies. Following Ref. [250] and earlier works on
controlling annealed and static networks [294, 86], we will consider three main strategies: random,
global and local. In all the cases, we introduce a fraction p of nodes as immunised. To account for
this new class of removed nodes, we introduce a new compartment, R, in the classic SIS scheme.
Thus, the Eq. (4.6) becomes:

It+1
a = It

a−µIt
a +αm(Na− It

a−Rt
a)a
∫

da′
It
a′

N
+αm(Na− It

a−Rt
a)
∫

da′
It
a′a
′

N
. (4.8)

First, let us consider the random strategy (RS) in which a fraction p of nodes is immunised with
a uniform probability (see Fig. 4.4a) [250]. In this case, the system of equations describing the
dynamic process in activity-driven networks can be obtained by setting Ra = pNa. The epidemic
threshold condition changes as

β
µ
≥ ξ RS ≡ 1

1− p
2〈a〉

〈a〉+
√
〈a2〉

=
ξ SIS

1− p
. (4.9)
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As expected, when a fraction p of nodes is randomly immunised/removed, the epidemic thresh-
old can be written as the threshold with no intervention, ξ SIS, rescaled by the number of nodes
still available to the spreading process. Another important quantity is the critical value of immu-
nised/removed nodes, pc, necessary to halt the contagion process. This quantity is a function of the
network’s structure and the specific features of the contagion process. The explicit value of pc can
be obtained by inverting Eq. 4.9. In Fig. 4.4a, we plot pc as a function of β/µ keeping fixed the
statistical properties underlying network. The phase space of the diffusion process is divided into
two different regions separated by the red solid line that represents pc as derived by Eq. 4.9. In the
region below the curve, the spreading process will take over, p < pc, however, in the region above
the curve, the fraction of removed/immunised nodes is enough to completely stop the diffusion
process, p≥ pc. To further assess the efficiency of the immunisation strategy in Fig. 4.4d (green
triangles), we plot, as a function of the density of removed/immunised nodes p, the ratio Ip

∞/I0
∞

where I0
∞ is the asymptotic density of infected nodes when no-intervention is implemented. As

shown clearly in the figure, the random strategy allows a reduction in the fraction of infected nodes
just for large values of p.

Figure 4.4: Panels a, b, and c show the phase space of an SIS process under random, targeted, and egocentric
control strategy, respectively. Considering N = 104, m= 3, ε = 10−3, activity distributed as F(a)∼ a−2.2, we
plot I∞ as a function of β/µ and p. Red curves represent the critical value pc. Panel d shows the comparison
of the stationary state of a SIS model with and without control strategy, Ip

∞/I0
∞, as a function of p when

β/µ = 0.81. In green triangles, we consider the random strategy, in blue diamonds the targeted strategy,
and in orange circles the egocentric strategy. Panel e shows the same results obtained on a real mobile call
network. Every simulations was initiated with 1% infected seed, executed 102 times for T = 104 step with
β/µ = 2.5. Each step was integrated for 6×102 seconds, and periodic temporal boundary condition was
applied. This figure was prepared by S. Liu and was published in [250].

In networks with heavy-tailed degree distributions, targeting nodes with high degree centrality
performs more efficiently than random strategies [43, 85]. Analogously, in activity driven networks,
effective strategies shall target high activity nodes. For this reason, we rank nodes in decreasing
order of activity and immunising/removing the top ranking pN nodes, and obtain the phase space
shown in Fig. 4.4b. This method is equivalent to fix a value ac so that any node with activity a≥ ac

is immune to the contagion process. Also, for this scheme, it is possible to derive the analytic
expression for the epidemic threshold [250]:

β
µ
≥ ξ T S ≡ 2〈a〉

〈a〉c +
√

(1− p)〈a2〉c
, (4.10)

where ξ T S indicates the threshold for the targeted control strategy. In this case it is not possible
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to derive explicitly pc, however, it can be easily evaluated numerically by solving the equation
ξ T S−β/µ = 0 for different values of β/µ . In Fig. 4.4b, we show pc (red line) as a function of
β/µ . From there it is evident that the immunising/removing a very small fraction of the most active
nodes is enough to stop the contagion process, as also confirmed in Fig. 4.4d (blue diamonds). The
extreme efficiency of this strategy is due to the crucial role of high activity nodes in the spreading
process. Immunising just the top 1% of nodes is enough to halt the disease.

Unfortunately, the network-wide knowledge required to implement targeted control strategies is
generally not available [86]. In the case of evolving networks, this issue is even more pronounced
as node’s characterisation depends on how long it is possible to observe the network dynamics. To
solve this problem we propose a local sampling strategy where first we select randomly a w fraction
of nodes act as “probes". During an observation time T , we monitor their egocentric network
generated by their interactions, which after we select randomly a node in the observed egocentric
network of each probe to immunise/remove it. For the sake of comparison with the previous control
strategies, we start the epidemic after a p fraction of node have been immunised (for further notes
on how to determine p from w see [250]). In case of this egocentric sampling scheme, after some
analytical considerations, the epidemic threshold can be expressed as

β
µ
≥ ξ ESS ≡ 2〈a〉

ΨT
1 +

√
ΨT

0 ΨT
2

, (4.11)

where we define ΨT
n =

∫
da an(1−Pa)

T F(a). This last integral is a function of the observing time
window T , the probability of immunisation/removal of each class, and the activity distribution. We
evaluate each Ψ term through numerical integration with results shown in Fig. 4.4c, which make
clear that this strategy is much more efficient than the random one, although not as performant as
the targeted scheme but with the advantage to rely only on local information. The efficiency of the
ES strategy is due to the ability to reach active nodes by a local exploration done observing the
systems for few time steps.

Real world time-varying networks add a number of complications to the simplified picture
offered by activity driven networks. Indeed, they exhibit correlations among nodes, persistency
of links, and burstiness of the activity pattern, as we have discussed it earlier. In order to see
whether the above derived mean-field framework provides a good approximation in real world
datasets we considered a mobile phone call network (a sample of DS1 in Section 1.3.2), consisting
of 93,190 connected phone users of a single city involved in almost five million calls over 120
days. Remarkably, as reported in [250] and shown in Fig.4.4e, we found a very good qualitative
agreement between what is observed in real time-varying systems and the analytical results obtained
in activity driven networks.

4.4.3 Link transmission centrality in large-scale social networks
Next we discuss another example of simple contagion processes to demonstrate how they can be
used to design effective centrality measures in networks [386]. Centrality measures of nodes or links
generally rely on local and/or global structural information. Measures using local information, like
the node degree or link overlap, are computed efficiently as they only require knowledge about the
neighbours of a given node or link. On the other hand, these measures cannot provide information
on which nodes or links play global roles in the network structure. On the contrary, centrality
measures based on global information about the network structure, like betweenness and closeness
centrality [129, 50], Katz centrality [207], k-shell index [58, 215], subgraph centrality [121] and
induced centrality measures [122] may better characterise the overall importance of a node or
link. Unfortunately, although effective algorithms for approximating these quantities have recently
been proposed [65, 119], estimating these measures in large scale networks is still computationally
challenging.
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While global centrality measures have been very successful in identifying structurally important
nodes or links in networks, it has been argued [59] that they do not evidently identify nodes or links
with a key role in dynamical processes. Other centrality metrics, which directly use dynamical
processes to assign importance, such as PageRank [66], eigenvector centrality [240], or accessibility
[347], were found to be more successful in this sense. However, these measures are based on
random diffusion processes, and as such they do not fully capture the basic mechanisms behind
contagion mediated spreading phenomena. In this Section we define a new link centrality measure,
transmission centrality, tailored to identify the role of nodes and links in controlling contagion
phenomena. The transmission centrality measures the average number of nodes who are reached
through each link during the spreading of a stochastic contagion process. This provides a direct
measure of the centrality of the link in hindering or facilitating the contagion process.

Transmission centrality
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Figure 4.5: Calculation of transmission centrality of links. (a) A network with a randomly selected seed
node; (b) the branching tree rooted from the initial seed (root and edges in the tree are coloured in red);
(c) for each leaf edge in the branching tree increase the counter by 1; (d)-(f) remove leafs and increase the
counter of their ascendant by the counter of the removed leafs. (g) Correlation heat-map plot between the Co

tr
exact and approximated Ctr transmission centrality values of the FB network. Approximate measures were
initiated from 5000 seeds and unbiased in d = 3 distance. This figure was prepared by Q. Zhang and was
published in [386].

Transmission centrality [386] aims to measure for each link in a network its influence in
disseminating some globally spreading information. More precisely it measures the number of
nodes who received information during a diffusion process through a given link. Its definition
intrinsically assumes a diffusion process to unfold on a network structure. In our definition we
use the simplest possible information spreading process, the Susceptible-Infected (SI) model (for
definition see Section 4.4.1 and [43]), however this can be replaced by any other diffusion process.
The SI process is controlled by the parameter β , which scales the speed of information/infection
spreading. If it is β = 1 (like in our case by default), it corresponds to the fastest possible
information diffusion process determining the shortest diffusion routes between the seed and any
other node in the network. In our case, we initiate the SI spreading process from a random seeds and
simulate the process with a modified breath-first-search algorithm [91, 386]. Using this algorithmic
solution one can record the branching tree GBT = (VBT ,EBT ) of the process by keeping track of the
direct ascendant of each node from which it received the information. Exploiting the structure of
the actual branching tree, transmission centrality is formally defined as

Ctr(u,v) =

{
max(|desc(u)|, |desc(v)|), if (u,v) ∈ EBT ,

0, otherwise
(4.12)
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where |desc(i)| denotes the number of descendant nodes of node i in the branching tree of the actual
spreading.

The branching tree GBT , which is a subgraph of G, encodes the diffusion paths that the
information takes to reach the vertices of the network. Using its structure we can easily measure
the actual Ctr value of each link by performing a second step of calculation based on the river-basin
algorithm [312]. In practice, taking the initial seed s as the root of GBT , and starting from the leafs
of the branching tree, we can count the number of descendant nodes of each link, i.e., who received
the information via the actual link. The algorithm is summarised in Alg.5, illustrated in Fig.4.5 and
works as follows:

Algorithm 5 Transmission centrality
Require: G = (V,E) and GBT = (VBT ,EBT )
Ensure: Ctr dictionary of transmission centrality values

1: Ctr = dict()
2: for (u,v) ∈ G.E do
3: Ctr((u,v)) = 0 // set counter to zero for each link
4: while GBT .EBT 6= /0 do
5: for v ∈ GBT .VBT do
6: if kv == 1 then
7: p = asc(v) // parent node of v
8: gp = asc(p) // grandparent node of v
9: Ctr((v, p)) =Ctr((v, p))+1

10: Ctr((p,gp)) =Ctr((p,gp))+Ctr((v, p))
11: GBT .EBT ←− GBT .EBT −{(v, p)}
12: GBT .VBT ←− GBT .VBT −{v}

First we define a dictionary Ctr, which associates a counter to each link (i, j) ∈G.E, that we set
to zero initially (lines 1-3 in Alg.5). Then we do the following for every node v ∈ GBT .VBT , which
appears with degree kv = 1 in GBT :

(i) Increase by one the counter Ctr((v, p)) of the (leaf) edge e f = (v, p) ∈ GBT .EBT , which
connects v to its parent node p = ascBT (v) in GBT .VBT (line 9 in Alg.5).

(ii) Increase by Ctr((v, p)) the counter Ctr((p,gp)) of its ascendant edge ascBT (e f ) = (p,gp),
where gp = asc(p) is the grandparent node of v in GBT .VBT (line 10 in Alg.5).

(iii) Remove v from GBT .VBT and e f from GBT .EBT (line 11 and 12 in Alg.5). The final transmis-
sion transmission centrality value of the actual link e f = (v, p) is stored in Ctr((v, p)).

By repeating (a)-(c) for each appearing leaf edge we assign a non-zero value for each link in the
branching tree as it is demonstrated in Fig.4.5.c-f.

The transmission centrality of a link can take values between 0 (for links, which are not in
the branching tree) and (N−1) (e.g. in the case the seed is propagating information via a single
link). Its actual value depends on the choice of the seed node and on the structure of the branching
tree determined by the diffusion process. In this way centrality values of the same link may vary
from one realisation to another. To eliminate the effects of such fluctuations, the final definition of
transmission centrality of links is taken as the average centrality value for each link computed over
processes initiated from every node in the network (for a algorithmic definition see [386]). Note
that from now on Ctr always assigns an average quantity if not stated otherwise.

Heuristic calculation of transmission centrality
One iteration to measure Ctr performs with O(|E|) time complexity, thus in the case when we initiate
its calculation from every node v ∈V , its overall complexity is O(|V ||E|). It is however possible to
define a heuristic estimate of transmission centrality at a considerably small computational cost.
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As the branching trees of different realisations may largely overlap, a relatively small number of
independent realisations, initiated from a reduced set of randomly selected seeds, could provide a
good approximation.

Link transmission centrality initiated from a single node provides a locally biased measure as it
assigns higher values to links closer to the actual seed. This bias is averaged out if we initiate the
spreading process from every node in the network, but in case of a limited number of seeds it has
some residual effects. One way to eliminate this residual bias is by assigning zero centrality values
to links connecting nodes closer than a distance d to the actual seed. The best value of d depends
on the network; however this can be estimated via parameter scanning, as demonstrated in [386].

To illustrate the computation of the heuristic estimate, we use a Facebook network with 20,244
nodes and 70,132 edges [386] and compute the average transmission centrality for each link via
the exact method by initiating an SI process from each node, and the heuristic method where we
initiate processes from 5000 random seeds (i.e. ∼ 25% of all nodes). Further we eliminate biases
in distance d = 3 around each seed. In Fig. 4.5g we present a heat-map plot about the correlation
between the exact (assigned as Co

tr here) and the approximated (assigned as Ctr) centrality values
of each link. It is evident that there is a strong correlation between these values, quantified by
an r = 0.96 (p < 10−6) Pearson correlation coefficient. Consequently, this unbiased sampling
method can provide very close approximations to the exact transmission centrality values, while
considerably reducing the computational cost (∼ 75% in this case).

Due to its advantage to locate central link laying on multiple shortest paths, transmission
centrality is very efficient in identifying weak links transmitting information between communities,
and which in turn control dynamical processes. In [386] we performed an extensive study to find
the best combined tie strength measure, to propose the best link control strategy to impede SIR
epidemic spreading. As a result we found that ordering links first by their overlap, and then ordering
links having the same overlap values by their transmission centrality provides an efficient method
to identify the weakest ties. It is demonstrated there that in some cases the control of only the 30%
of the identified weakest links may lead to 90% of reduction of infection size.

Transmission centrality can be generalised in various ways. First, it can be easily defined as
a node centrality metric by counting for each node the number of their descendant nodes in the
branching tree. Moreover it can be extended for directed and/or weighted networks by restricting
the SI process to respect the direction of links during spreading or by scaling the transmission rate
with the normalised weight of links. In addition, for an SI process one can explore central links
in the case when the process does not diffuse along the shortest paths. By taking β < 1, longer
spreading paths become plausible allowing the inference of links, which are central in any scenario.
Transmission centrality can be easily defined for temporal networks [173] as well. Finally, note that
transmission centrality as a path based measure is not equivalent but closely related to betweenness
centrality. However, while betweenness centrality considers all shortest paths between every pairs
of nodes, transmission centrality takes only a single one from the potentially many others. This is
especially true when β = 1, when the SI process is fully deterministic inducing somewhat different
but closely matching values with the corresponding betweenness measure, on a considerably lower
computational cost.

4.4.4 Switchover phenomenon induced by epidemic seeding on geometric networks

The COVID-19 pandemic highlighted several aspects of real epidemic processes, which were not
not in primary focus in earlier studies. Among other, biological, social-behavioral or environmental
conditions, the size and location of the seed population where an epidemic is seeded was identified
as an important factors that influence the final outcome of the epidemic [265, 89, 25, 214, 95, 133].
Earlier studies suggested, that if the epidemic strikes first at an isolated place with low population
density and few local transportation connections, it may become rapidly extinct without causing a
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Figure 4.6: Data-driven observations of the switchover phenomenon. (a) Commuting network map
of Hungary with settlements larger than 1000 inhabitants and commuting links with more than
25 travelers depicted. Central Hungary (called Center) is highlighted with red. (b) Distribution
of per capita infection probabilities in settlements of different sizes at different observation times
(in weeks). (c) Simulation results on the real commuting network of Hungary and its three
homogenized versions as explained in the main text. Each data point is an average computed from
150 independent simulations, shown with 81% confidence interval. For each of them, initially
s = 97 settlements are selected according to one of the seeding scenarios (central or uniform). Then,
we infect i0 = 0.0005 fraction of the 107 agents in the total population, and we distribute these
agents in the s settlements uniformly at random, irrespective of the size of the settlements.

major breakout. The dynamics can be entirely different if the epidemic starts from a well connected,
more populated place where it can survive and spread to the rest of the population more easily. In a
study [285] we challenge this intuition and show that seeding an epidemic from the most tightly
connected core of a network does not always lead to a larger epidemic in the long run, in terms
of the number of final infected people: If the disease transmits easily, seeding the spreading from
nodes selected uniformly at random from the network could reach a larger population.

Empirical observations

The global and local mobility of people are among the most important driving factors behind the
spatial spread of most diseases [225, 34, 336]. How people commute locally or travel between
cities and countries can be well represented by mobility networks. Concentrating on Hungary,
we consider a spatial mobility network (see Fig. 4.6a) describing the average number of daily
commuters, who travel to work and school between 1398 settlements with populations larger than
1000 inhabitants according to the 2016 Hungarian micro-census [11]. At the same time, from
epidemic data we could follow the daily number of new COVID-19 infection cases in each of these
settlements to explore their spatiotemporal distribution in this geometric network.

The first wave of the COVID-19 pandemic started in March 2020 in Hungary. As in many
countries, the disease arrived to the country via international air-travel and first landed in larger
cities [315, 204, 123, 188] resulting in outbreaks clumped around highly populated areas. This
is evident from Fig. 4.6b, where the per-capita infection probability at the beginning of the first
wave (week 1) indicates that infection cases were concentrated in cities with the largest populations.
Interestingly, this concentration marked the whole 1st wave as even at its peak (week 6 in Fig. 4.6b),
most of the infected cases were concentrated in the largest populations, i.e. the capital. On the
other hand, at the beginning of the second wave (at the end of August 2020 in Hungary) new
infected cases were distributed more homogeneously all around the country. This can be seen from
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Fig. 4.6b where the corresponding probability distribution (week 25) is more stretched towards
smaller population, as compared to week 1 or 6. This homogenization of infected cases continued
during the unfolding of the second wave leading to a fully uniform distribution – corresponding to
population densities – at the peak (W38 in Fig. 4.6b). Surprisingly, the first wave that started from
the most tightly connected, central, and largest populations led to significantly smaller number of
infections as compared to the second wave, that reached an order of magnitude more people, even
though it was initiated from more uniformly distributed populations of the network.

Simulation results
To better understand this phenomenon we build a metapopulation network [88] using the spatial
commuting network of Hungary [11]. In such a network we consider n nodes, which represent
populations of individuals (which we also call towns or settlements from now on), connected by
weighted edges, encoding the number of people traveling between them. On this network we simu-
late one of the most basic models for an epidemic spreading [43], an SIR process (for definition see
Section 4.4.1). In an SIR model on a metapopulation network, the epidemic evolves in two phases
in each iteration. During the reaction phase, individuals inside each town mix homogeneously and
infect each other following the spreading scheme parametrised with β transmission and µ recovery
rates, as explained in Figture 4.3. Subsequently, during the diffusion phase, individuals (possibly
infected) are selected with probability pm to move to neighboring nodes in the metapopulation
network, this way migrating the epidemic to other towns (for a more formal definition see [285]).
Note that the epidemic dynamic is often characterised by the basic reproduction number, as defined
as the average number of people infected by one ill person in a fully susceptible town (R0 = β/µ).

To capture the observed structural distinction of the central towns in case of the spatial commut-
ing network of Hungary, we identify a central node set C , containing the districts of Budapest and
its suburbs (red nodes in Fig. 4.6a), which represent about the 30% of the total population of the
country [13]. While this definition of C relies on the specific urban structure of Hungary, we could
find more general definitions for C , that are based solely on the network structure. The simplest
formal definition would be to take a prescribed number of nodes with the highest degrees. We could
also use the core of the network for this purpose, which is obtained by repeatedly deleting all nodes
with the lowest degrees as long as only nodes with prescribed degrees remain.

Once selected C , we consider two initial conditions to seed the SIR process in the metapopula-
tion network, starting the spreading from the same number of towns and individuals in both cases.
In one case, we choose s (< |C | � n) number of towns selected randomly from the C central
set, while in the other case we choose s towns uniformly at random from the whole network. To
initiate the spreading, we infect a small i0 fraction of the total population selected uniformly at
random from the chosen s towns, irrespective of their size. This way, for both seeding strategies
(centralized or uniform), each seeded town is infected on average with the same number of agents
(i0/s fraction of the total population). To observe the relative effects of the two seeding scenarios,
we look at the experimental pandemic size ratio fG(R0,s), that we define as the ratio of average
final infection sizes of epidemic processes seeded from central or uniformly randomly selected
towns. Interestingly, as shown in Fig. 4.6c (dark blue line), we find fG(R0,s)> 1 for small R0 ' 1,
which means that the epidemics seeded from the C central set leads to larger outbreaks. However,
as we increase R0, the fraction fG(R0,s) falls under 1, thus seeding from uniformly random selected
towns over the whole country induces a larger outbreak. This switchover phenomenon appears in
the slightly super-critical regime, where R0 is not too large, and where the epidemic never reaches
the total population. Instead, due to network effects, it stays clustered around the seeded towns
until it dies out. The differences in the infected cluster sizes induced by the two seeding scenarios
lead to the observed switchover phenomenon in this regime. On the other hand, if R0 grows larger,
the difference between these seeding scenarios vanishes as the epidemic reaches essentially the
whole population in each case.
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These observations demonstrate the existence of the switchover phenomenon on a metapopu-
lation model parametrised by the Hungarian commuting network, which is a spatially embedded
geometric network (see Fig. 4.6a for Hungary) featuring various structural heterogeneities. To
identify which underlying network characteristics are the most important to play a role to induce
the observed switchover phenomenon, we use random reference network models [279]. We ho-
mogenize the network in different ways to remove certain structural heterogeneities, and compare
the outcome of the experimental pandemic size ratio of simulated spreading processes on the
randomized structures to our observations on the empirical network (see blue dotted curve in
Fig 4.6c). First, to reduce the effects of weight heterogeneities (capturing the variation of number of
commuters between pairs of towns), we reset edge weights to the mean weight of all outgoing edges
of each node (see green diamond curve in Fig 4.6c). Although this way of homogenization changes
somewhat the pandemic size ratio function, it does not have dramatic effects on the observed
phenomena. Second, to remove the effects of heterogeneous town sizes and the varying number
of commuting individuals from different settlements, we set each town’s population to the system
average (N =6581) and choose the fraction of commuters to be the same (i.e. to pm = 0.001) for
each town. Interestingly, this way of homogenization makes the switchover phenomenon even
stronger (see red squared curve in Fig 4.6c). Finally, we re-shuffle the ends of network links using
the configuration network model [279]. This removes any structural correlations from the network
beyond degree heterogeneity, including geometric effects such as long distance connections, the
central-periphery structure, structural hierarchy, and locally dense sub-graphs. Due to this shuffling
process the switchover phenomenon disappears, or becomes too small to be observed (see yellow
triangle curve in Fig 4.6c), indicating that geometric correlations play a central role behind its
emergence.

Epidemics and percolation on metapopulation networks

The pandemic size (i.e. the final number of recovered individuals) of a SIR model with deterministic,
unit recovery time (e.g. a day) on a (non-meta) network G has a useful connection with the
commonly used simple mathematical framework of bond percolation. In such a SIR model, every
edge of the network G transmits the disease at most once, when one endpoint is infected but the
other is still susceptible. Equivalently, one may decide about every edge in advance, independently
with probability p, whether it will do so. This is called retaining the edge, and p is then the retention
probability of the model. The retained edges form the percolated random subgraph Gp of G. If a
set S of nodes is selected as infected seeds in the network, then the epidemic will spread exactly
over the connected components (also called clusters) of Gp that contain at least one node of S.

Metapopulation models are more difficult to treat mathematically, but a fundamental result by
[47, 90] connects the behavior of SIR on metapopulation models to bond percolation. Following
their arguments, once a large outbreak occurs in a town A, the proportion of infected people within
the town concentrates around some r∞ ∈ (0,1) (called local outbreak ratio). Infected people during
the local pandemic carry the infection to a neighboring town B and cause a large outbreak there
with a certain – computable – probability:

pAB = 1− exp

−N pmwABr∞

(
1− 1

R0

)
µ

 , (4.13)

where N is the size of each population. Note that the dependence on A and B can be neglected if
we assume an unweighted network. Since herd immunity is reached in each town after the first
large local epidemic outbreak of size r∞N, later infections to a town are no longer able to cause
macroscopically visible outbreaks. Therefore, after time-rescaling, the towns themselves go through
an S→ I→ R progression with unit recovery times and infection probability p. Consequently, the
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metapopulation model can be approximated by a simple SIR model on the network of towns, and
in turn with a bond percolation process with retention probability p.

The connection between metapopulation models and bond percolation allows us to understand
the switchover phenomenon of the pandemic size ratio using a theoretical analysis of percolation
cluster sizes, which show a remarkable phase transition in the edge retention probability p around
a critical point pc.

Beyond percolation cluster sizes, we also need to understand how the different seedings (central
or uniform) interact with the clusters to explain the switchover phenomenon of the pandemic size
ratio. In [285] we define two approaches to establish theoretically the observed phenomenon. In
the weak switchover phenonema we require that there exists a seed count s≤ n and link-retention
probabilities 0 < p1, p2 < 1 with

fG(p1,s)> 1+ c, and fG(p2,s)< 1− c, (4.14)

for some constant c that might depend on the network size. Meanwhile, in the strong switchover
phenomenon, we require that the constant c does not depend on the network size n.

For simplicity, instead of assuming a geometric network structure, we borrow concepts from
a simpler conventional network model, called Stochastic Block Model (SBM), to observe the
strong switchover phenomenon. The SBM is able to mimic the central and rural areas of a town
network, since it contains a ‘hidden geometry’. Using this structure we were able to proof that in the
Stochastic Block Model with appropriately scaled parameters and sn = Θ(n) the strong switchover
phenomenon happens. In addition, we could proof the existence of the weak switchover in case of
the ageometric configuration model, already observed experimentally in Fig. 4.6c.

For geometric networks with various node degree distributions, critical exponents have been
already proposed earlier [281, 84], with some of them proven rigorously for several types of
network structures. Based on these results, we also demonstrated that, after appropriate scaling, the
pandemic size ratio fG of the configuration model converges to a two-dimensional limit function,
which can be precisely determined [285].

Without detailed proofs, the reasons behind the emergence of the switchover phenomenon can
be accounted to the overlapping percolation clusters that seeds could induce initiated from given
populations. If the system is in the slightly super-critical regime, multiple seeds which are located in
the largest and best connected populations will induce outbreaks that may reach largely overlapping
sets of individuals. Thus these outbreaks will disturb each other due to the large overlap of their
percolation clusters, which in turn will disadvantage the overall epidemic process. On the contrary,
when the same epidemic starts from seeds homogeneously distributed in any population (likely
from the periphery of the network), the induced percolation clusters will overlap to a smaller extent.
At the same time they will reach the largest populations in a few iterations due to the hierarchical
structure exhibiting a small-world property. This way in addition to the less overlapping potentially
infected population they will have the same advantage that central seeding strategy could offer.
Consequently, they could induce larger infected populations under the same epidemic conditions,
when the spreading process is slightly above its critical point.

In summary, in this study we were interested in the long-term behavior of spreading processes
and showed that the relative danger of infecting a larger population when starting the process from
the core or uniformly at random in a network has a non-monotonous dependency on R0. We explored
an entirely new switchover phenomenon and demonstrated them on real and synthetic networks
via numerical simulations. We provided a rigorous proof for the existence of this phenomenon on
a large set of random graphs, while we are confident that our theory can be extended for a more
general set of graphs, which resembles certain structural constraints. Importantly, we identified the
spatial geometry of the underlying structure as an important amplifying factor of the switchover
phenomenon. Beyond scientific merit, our results may contribute to the better designs of epidemic
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forecasts and intervention strategies in a country during an ongoing pandemic. We highlight the
importance to follow not only the rate but also the spatial distribution of new infection cases of a
spreading disease or its variants during the early phase of an epidemic.

∗ ∗ ∗

In addition to the above studies me and colleagues published several other contributions
addressing simple contagion processes on networks. In one line of research [342] we studied
the dynamics of reaction-diffusion processes (in particular the spreading of SIR processes) on
heterogeneous meta-population networks where interaction rates scale with subpopulation sizes.
We presented a new empirical evidence, based on the analysis of the interactions of 13 million
users on Twitter, about the scaling of human interactions with population size. We found that
they scale super-linearly with an exponent γ ranging between 1.11 and 1.21, as observed in recent
studies based on mobile phone data. We integrated these observations into a reaction-diffusion
meta-population framework and provided an explicit analytical expression for the global invasion
threshold. Interestingly, we found that the super-linear scaling of human contacts facilitate the
spreading dynamics. This behaviour is enhanced by increasing heterogeneities in the mobility flows
coupling the subpopulations. Our results show that the scaling properties of human interactions can
significantly affect dynamical processes mediated by human contacts such as the spread of diseases,
ideas and behavioural patterns.

In some other works, we studied simple contagion processes evolving on temporal networks.
In one set of works [195, 218] we focused on data-driven simulations of information diffusion on
random reference models of temporal networks (as already discussed in Section 3.3) to identify
relevant structural and temporal correlations which influence the dynamics of the process. In
this case we used deterministic SI spreading (with β = 1) as a stereotypic model for information
diffusion and showed that bursty temporal heterogeneities in contact dynamics and Granovetterian
weight-topology correlations are mostly responsible for the observed slow spreading dynamics.
In another line of works, we studied the effects of contact memory and communities on rumour
and information spreading processes evolving on synthetic temporal networks simulated by the
activity-driven network model. In one case, as we discussed in Section 3.5.2 and in [206], we
incorporated a simple statistical law that characterises memory in the temporal evolution of users’
egocentric networks. We encoded this mechanism in a reinforcement process defining a time-
varying network model that exhibits the emergence of strong and weak ties. On this network we
studied the effects of time-varying and heterogeneous interactions on the classic rumour spreading
model in both synthetic, and real-world networks. The model used here was the Delay-Kendall
model [99], which is very similar to an SIR spreading, except that transition to a removed (stifler)
state is not spontaneous but due to some interaction with other infected or removed nodes. We
observe that strong ties severely inhibit information diffusion by confining the spreading process
among agents with recurrent communication patterns. This provided the counterintuitive evidence
that strong ties may have a negative role in the spreading of information across networks.

4.5 Modelling complex spreading phenomena
There are remarkable analogies between the social contagion of information, behavioural patterns
or innovation and some physical or epidemic spreading processes, where global phenomena emerge
through the diffusion of microscopic states [43, 115, 145, 178]. All evolve in networks with
nodes characterised by relevant state variables, and links that represent direct interactions between
nodes. In biological systems epidemics are driven by binary interactions that lead to the emergence
of simple contagion phenomena [43], as we discussed before in Section 4.4.1. On the other
hand, social diffusion processes are usually characterised by complex contagion mechanisms,
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where node states are determined by comparing individual thresholds with all neighbour states
[115, 198, 368, 372, 78]. This property, capturing the effect of peer pressure and commonly
assumed in social spreading phenomena [154, 76], has consequences on the dynamics and the final
outcome of the social contagion process. Moreover, the theoretical approach to these systems has
much in common [43, 368, 141], which greatly helps us to understand their behaviour. However,
as we have already denoted in Section 4.3, real world observations of social spreading processes
suggest significantly different picture as drawn from their modelling. In the following I am going
to present a series of studies we published to introduce a framework based on the original model
design of Watts [368] and the formalism known as the approximate mean-field equations introduced
by Gleeson [139, 140]. Our aim with these contributions [198, 316, 199, 354, 355] was to extend
and re-define a threshold driven modelling framework, to better capture the dynamics of social
contagion and its dependences on structural heterogeneities.

4.5.1 Complex contagion processes

Models employing threshold mechanisms mostly focus on cascading phenomena where, under
some circumstances, a macroscopic fraction of nodes in the network is converted rapidly due to
microscopic perturbations. This approach is motivated by earlier social theories [154, 319] and
has been implemented by Watts in an elegant model of cascading behaviour [368]. Watts showed
that a global cascade (occupying a macroscopic fraction of the network and induced by local
perturbations) can occur due to the interplay between network structure and individual thresholds
(as briefly discussed in Section 4.3.2). He further identified the phase with a non-zero probability
of global cascades in the space (φ ,z) of the average threshold φ of nodes and the average degree z
of the network.

Watts’ threshold model [368] is defined on networks where nodes are associated to a state and
can observe the state of their network neighbours at any time during the process. All nodes are
initially in a susceptible state 0, except for a single adopter seed in state 1. The process evolves as
each node with degree k changes its state from 0 to 1 if a fraction ϕ of its neighbours have adopted
before (as demonstrated in Fig. 4.7). Since nodes cannot change their state after exposure, the
system evolves towards a state where no further adoptions are possible. The emergence of a global
cascade depends on the degree distribution P(k) of the network, the distribution P(ϕ) of individual
thresholds, and the initial seed. As we have already discussed in Section 4.3.2, the condition for a
global cascade is the existence of a percolating component of vulnerable nodes with thresholds
0 < ϕ ≤ 1/k (who need one adopting neighbour before exposure) connected to the innovator seed
with threshold ϕ = 0. This percolating vulnerable tree is quickly converted after adoption of the
seed and may trigger further adoption of stable nodes with thresholds ϕ > 1/k (who need more
than one adopting neighbour to adopt). Assuming an Erdős-Rényi (ER) random network [120]
and a single adopter seed, there is a phase boundary in (φ ,z)-space encompassing a regime where
global cascades occur. The properties of this cascading regime have been investigated for the
case of heterogeneous thresholds, different network topologies [368, 141], and variable seed size
[138, 324].
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Figure 4.7: Schematic summary of (non-)adopter types and threshold driven transitions in complex contagion
processes. Colours assign states of nodes as white-susceptible, blue-adopter and orange-blocked.
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While the relevance of the Watts’ model is indisputable [368, 141, 369, 140, 139, 138, 383,
324], its limitations become clear from real social spreading data. The Watts model focuses on
the (instantaneous) emergence of global cascades triggered by single local perturbations, while
there are empirical examples where threshold mechanisms do play a role yet global adoption
phenomena emerge through other scenarios (for examples see Fig. 4.2a). Contrary, the Watts
criterion for macroscopic adoption is purely deterministic, coded in the network structure, threshold
distribution and perturbation site – it does not concern time, which is clearly a feature of empirical
stochastic processes of adoption spreading. To resolve this shortcoming, we extend the conventional
Watts model with empirically motivated mechanisms (some already reported in Section 4.3.2) to
see whether they are eligible to explain the observed dynamical scenarios of social contagion
phenomena.

Empirical studies support the intuition that some individuals in the social network may refuse
to adopt technological innovations for various reasons – due to another favourite product, aversion
towards a firm, or some criticism on principle [199]. Such individuals will never be exposed,
irrespective of the state of their neighbours [385], thus their threshold can be regarded as ϕ = ∞ (as
demonstrated in Fig.4.7). To consider this behavioural pattern we introduce a third state of nodes
who are blocked (immunised) to participate in the spreading process. We block the adoption of a
fraction r of randomly selected nodes in the network, who in turn do count when their neighbours
consider the decision to adopt, and thus will make it harder for neighbours to fulfil the threshold
criterion. While blocked nodes hinder the spreading process, there are reasons other than social
influence that could motivate individuals to adopt a social pattern, like external influence from mass
media. This spontaneous adoption has been studied theoretically by introducing a given density of
adopters at the outset of the Watts model [324]. However, spontaneous adopters may get active at
any time during a real social contagion. Thus we include a stochastic dynamics where a susceptible
node may become adopter with rate p at any time, irrespective of the status of its neighbours. This
assumption is based on our observations reported in Section 4.3.2 and [199], where after an initial
period, innovators adopted a service with an approximately constant rate.

Considering both extensions, we have a threshold-driven dynamics with three node states:
blocked, susceptible and adopter (Fig.4.7). At the outset, all nodes are susceptible except for a
fraction r that remains blocked. At each time step of the simulation, a randomly selected susceptible
node i adopts spontaneously with probability p, otherwise it adopts if at least a fraction ϕ of its
neighbours has already adopted. If r = 0 and p > 0 all nodes will eventually adopt (Fig.4.8c),
following a kinetics reminiscent of the approach to a unique ground state in a physics system. On
the other hand, if we introduce quenched randomness and stochastic perturbations (r, p > 0), our
model allows various temporal regimes and a transition from rapid to slow spreading dynamics.

4.5.2 Dynamical threshold model with immune nodes

Our threshold model can be studied analytically by extending the framework of approximate master
equations (AMEs) for monotone binary-state dynamics developed by Gleeson [140, 139, 138],
where the transition rate between susceptible and adoption states only depends on the number m of
neighbours that have already adopted. We describe a node by the property vector k = (k,c), where
k = k0,k1, . . .kM−1 is its degree and c = 0,1, . . . ,M its type, i.e. c = 0 is the type of the fraction r
of immune nodes, while c 6= 0 is the type of all non-immune nodes that have threshold ϕc. In this
way, P(ϕ) is substituted by the discrete distribution of types P(c) (for c > 0). The integer M is the
maximum number of degrees (or non-zero types) considered in the AME framework, which can be
increased to improve the accuracy of the analytical approximation at the expense of speed in its
numerical computation.

We characterise the static social network by the extended distribution P(k), where P(k) = rP(k)
for c = 0 and P(k) = (1− r)P(k)P(c) for c > 0. Non-immune and susceptible nodes with property
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vector k adopt spontaneously with a constant rate p, otherwise they adopt only if a fraction ϕc of
their k neighbours has adopted before. These rules are condensed into the probability Fk,mdt that a
node will adopt within a small time interval dt, given that m of its neighbours are already adopters,

Fk,m =

{
pr if m < kϕc

1 if m≥ kϕc
, ∀m and k,c 6= 0, (4.15)

with F(k,0),m = 0 ∀k,m and F(0,c),0 = pr ∀c 6= 0 (for immune and isolated nodes, respectively). The
rescaled rate pr = p/(1− r) (with pr = 1 for p > 1− r) is necessary if we wish to obtain a rate p
of innovators for early times of the dynamics, regardless of the value of r.

The dynamics of adoption is well described by an AME for the fraction sk,m(t) of k-nodes that
are susceptible at time t and have m = 0, . . . ,k adopting neighbours [302, 140, 139],

ṡk,m =−Fk,msk,m−βs(k−m)sk,m +βs(k−m+1)sk,m−1, (4.16)

where

βs(t) =
∑k P(k)∑m(k−m)Fk,msk,m(t)

∑k P(k)∑m(k−m)sk,m(t)
, (4.17)

and the sum is over all the degrees and types, i.e. ∑k •= ∑k ∑c •. To reduce the dimensionality of
Eq. (4.16), we consider the ansatz

sk,m(t) = Bk,m[ν(t)]e−prt for m < kϕc and c 6= 0, (4.18)

with ν(t) the probability that a randomly-chosen neighbour of a susceptible node is an adopter.
Introducing the ansatz of Eq. (4.18) into the AME system of Eq. (4.16) leads to the condition

ν̇ = βs(1−ν). With some algebra, the AMEs for our dynamical threshold model are reduced to
the pair of ordinary differential equations

ρ̇ = h(ν , t)−ρ, (4.19a)

ν̇ = g(ν , t)−ν , (4.19b)

where ρ(t) = 1−∑k P(k)∑m sk,m(t) is the fraction of adopters in the network, and the initial
conditions are ρ(0) = ν(0) = 0. Here,

h = (1− r)
[

ft +(1− ft) ∑
k|c6=0

P(k)P(c) ∑
m≥kϕc

Bk,m(ν)
]
, (4.20)

and

g = (1− r)
[

ft +(1− ft) ∑
k|c6=0

k
z

P(k)P(c) ∑
m≥kϕc

Bk−1,m(ν)
]
, (4.21)

where ft = 1− (1− pr)e−prt , and Bk,m(ν) =
(k

m

)
νm(1−ν)k−m is the binomial distribution. The

fraction of adopters ρ is then obtained by solving Eq. (4.24) numerically. Since the susceptible
nodes adopt spontaneously with rate p, the fraction of innovators ρ0(t) in the network is given by

ρ0(t) = pr

∫ t

0
[1− r−ρ(τ)]dτ. (4.22)

We may also implement the model numerically via a Monte Carlo simulation in a network of
size N, with a log-normal degree distribution and a log-normal threshold distribution as observed
empirically in the case of Skype (see Section 4.3.2). Hence, we can explore the behaviour of the



96 Chapter 4. Collective phenomena on networks

fractions of adopters and innovators in the network, ρ and ρ0, as a function of z, φ , p and r, both in
the numerical simulation and in the theoretical approximation given by Eqs. (4.24) and (4.22). For
p > 0 some nodes adopt spontaneously as time passes by, leading to a frozen state characterised by
the final fraction of adopters ρ(∞) = 1− r. However, the time needed to reach such a state depends
heavily on the distribution of degrees and thresholds, as indicated by a region of large adoption
(ρ ≈ 1− r) that grows in (φ ,z)-space with time (contour lines in Fig. 4.8a). If we fix the time in
the dynamics and vary the fraction of immune nodes instead, this region shrinks as r increases
(contour lines in Fig. 4.8b). In other words, the set of networks (defined by their average degree
and threshold) that allow the spread of adoption is larger at later times in the dynamics, or when the
fraction of immune nodes is small. When both t and r are fixed, the normalised fraction of adopters
ρ/(1− r) gradually decreases for less connected networks with larger thresholds (surface plot in
Fig. 4.8a and b).

(a) (b)

(c) (d)

(a) (b)

(c) (d)

(a) (b) (e) (g)

(c) (d) (f)

(h)

φ φ

Figure 4.8: (a-b) Surface plot of the normalised fraction of adopters ρ/(1− r) in (φ ,z)-space, for r = 0.73
and t = 89. Contour lines signal the parameter values for which 20% of non-immune nodes have adopted, for
fixed r and varying time (a), and for fixed time and varying r (b). The continuous contour line and dot indicate
parameter values of the last observation of Skype s3. A regime of maximal adoption (ρ ≈ 1− r) grows as
time goes by, and shrinks for larger r. (c) Time series of the fraction of adopters ρ for fixed p = 0.00019
and varying r (main), and for fixed r = 0 and varying p (inset). These curves are well approximated by the
solution of Eq. (4.24) for k0 = 3, kM−1 = 150 and M = 25 (dashed lines). The dynamics is clearly faster for
larger p values. As r increases, the system enters a regime where the dynamics is slowed down and adopters
are mostly innovators. (d) Final fraction of innovators ρ0,∞ and the time tc when 50% of non-immune nodes
have adopted as a function of r, both simulated and theoretical. The crossover to a regime of slow adoption
is characterised by a maximal fraction of innovators and time tc. Unless otherwise stated, p = 0.00019 and
we use N = 104, µD = 1.09, σD = 1.39, kmin = 1, µT =−2, and σT = 1 to obtain z = 8.56 and φ = 0.19 as
in Skype s3. The difference in µD between data and model is due to finite-size effects. Numerical results are
averaged over 102 (a-b) and 103 (c-d) realisations. This figure was prepared by G. Iñiguez and was published
in [199].

Both numerical simulations and analytical approximations show how the dynamics of spreading
changes by introducing immune individuals in the social network. For r ≈ 0, the adoption cascade
appears sooner for larger p, since this parameter regulates how quickly we reach the critical
fraction of innovators necessary to trigger a cascade of fast adoption throughout all susceptible
nodes (Fig. 4.8c, inset). Yet as we increase r above a critical value rc (and thus introduce random
quenching), the system enters a regime where rapid cascades disappear and adoption is slowed
down, since stable nodes have more immune neighbours and it is difficult to fulfil their threshold
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condition. The crossover between these fast and slow regimes is gradual, as seen in the shape of
ρ for increasing r (Fig. 4.8c, main panel). We may identify rc in various ways: by the maximum
in both the final fraction of innovators ρ0,∞ = ρ0(∞) and the critical time tc when ρ = (1− r)/2
(Fig. 4.8d), or as the r value where the inflection point in ρ disappears. These measures indicate
rc ≈ 0.8 for parameter values calibrated with Skype data. All global properties of the dynamics (like
the functional dependence of ρ and ρ0) are very well approximated by the solution of Eqs. (4.24)
and (4.22) (dashed lines in Fig. 4.8c and d). Indeed, the AME framework is able to capture the
shape of the ρ time series, the crossover between regimes of fast and slow adoption, as well as the
maximum in ρ0,∞ and tc.

Thus with our new model extensions we have shown, that outside of the cascading regime
of the Watts model, there is possibility of global contagion mediated by spontaneous adopters.
However, the speed of spreading depends strongly on the density of blocked or immune nodes.
For a small fraction r of blocked nodes, few spontaneous adopters enable the formation of large
clusters by initiating cascades. For large r, spreading slows down as it is dominated by spontaneous
adopters as suggested by the empirical observations in Section 4.3.2. This way, our intrinsically
dynamic model shows a novel percolation transition of induced clusters and is able to describe
various scenarios of real social contagion as well as the crossover between them.

Model verification via data-driven simulations
After we defined our dynamical threshold model, let’s return back to our empirical observations
on the spreading of Skype services reported in Section 4.3.2. As demonstrated above, our model
provides insight on the role of innovators and immune nodes in controlling the speed of the adoption
process. However, in empirical datasets information about the fraction of non-adopters is usually
not available, which makes it difficult to predict the future dynamics of service adoption. Here we
use our modelling framework to perform data-driven simulations for two reasons: (a) to estimate
the fraction r of immune nodes in the real system; and (b) to validate our modelling as compared to
real data.

To set up our data-driven simulations we use the Skype data to directly determine all model
parameters, apart from the fraction r of immune nodes. As we already discussed in Section 4.3.2, the
best approximation of the degree distribution of the real network is a log-normal function (Eq. 4.4)
with parameters µD = 1.2, σD = 1.39, minimum degree kmin = 1 and average degree z = 8.56. To
account for finite-size effects in the model results for low N, we decrease µD slightly to obtain the
same value of z as in the real network. We also observe in Fig. 4.2e that the threshold distribution
of each degree group collapses into a master curve after normalisation by using the scaling relation
P(Φk,k) = kP(Φk/k). This master curve can be well-approximated by the log-normal distribution
shown in Eq. 4.5, with parameters µT =−2 and σT = 1 as determined by the empirical average
threshold φ = 0.19 and standard deviation 0.233. We estimate a rate of innovators p = 0.00019 by
fitting a constant function to Ri(t) for t > 2τ (Fig. 4.2f). The fit to p also matches the time-scale of
a Monte Carlo iteration in the model to 1 month. To model the observed dynamics and explore the
effect of immune nodes, we use a configuration-model network [278] with log-normal degree and
threshold distributions and p as the constant rate of innovators, all determined from the empirical
data. Model results in Fig. 4.9 are averaged over 100 networks of size N = 105 (106) after T = 89
iterations, matching the length of the observation period in Skype.

As a function of r, the underlying and adoption networks pass through three percolation-type
phase transitions. First, the appearance of immune nodes (for increasing r) can be considered as a
removal process of nodes available for adoption from the underlying network structure. After the
appearance of a critical fraction of immune nodes, rnet

c , the effective network structure available
for adoption will be fragmented and will consist of small components only, limiting the size of the
largest adoption cluster possible. Second, r also controls the size of the emergent adoption cascades
evolving on top of the network structure. While for small r the adoption network is connected into
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(a) (b)
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Figure 4.9: (a) Average size of the largest (LC) and 2nd largest (LC2nd) components of the model network
(‘Net’), adoption network (‘Casc’), stable network (‘Stab’), and induced vulnerable trees (‘Vuln’) as a
function of r. Dashed lines show the observed relative size of the real LC of the adopter network in 2011 and
the predicted r value. (b) Distribution P(d) of depths of induced vulnerable trees in both data and model for
several r values, showing a good fit with the data for r = 0.73. The difference in the tail is due to finite-size
effects. (c) Correlation 〈sv〉(k) between innovator degree and average size of vulnerable trees in both data
and model with the same r values as in (b). Calculations were carried out on networks with size N = 106 and
were averaged over 102 realisations. This figure was published in [199].

a large component, for larger r cascades cannot evolve since there are not enough nodes to fulfil the
threshold condition of susceptible stable nodes, even if the underlying network is still connected.
The transition point between these two phases of the adoption network is located at rcasc

c ≤ rnet
c ,

limited from above by the critical point rnet
c . Finally, we observe from the empirical data and model

results that the adoption network is held together by a large connected component of stable nodes.
Consequently, for increasing r the stable adoption network goes through a percolation transition as
well, with a critical point rstab

c ≤ rcasc
c ≤ rnet

c .
To characterise these percolation phase transitions we compute the average size of the largest

(LC) and second largest (LC2nd) connected components (Fig. 4.9). We measure these quantities
for the underlying network, and for the stable, vulnerable and global adoption networks, as a
function of the fraction of immune nodes r. After T = 89 iterations (matching the length of the
real observation period), we identify three regimes of the dynamics: if 0 < r < 0.6 (dark-shaded
area) the spreading process is very rapid and evolves as a global cascade, which reaches most of
the nodes of the shrinking susceptible network in a few iteration steps. About 10% of adopters
are connected in a percolating stable cluster, while vulnerable components remain very small in
accordance with empirical observations. In the crossover regime 0.6 < r < 0.8 (light-shaded area),
the adoption process slows down considerably (Fig. 4.9, upper panel), as stable adoptions become
less likely due to the quenching effect of immune nodes. The adoption process becomes the slowest
at rstab

c = 0.8 when the percolating stable cluster falls apart, as demonstrated by a peak in the
corresponding LC2nd curve in Fig. 4.9 (diamonds in lower panel). Finally, around rcasc

c = 0.9 the
adoption network becomes fragmented and no global cascade takes place. Since the underlying
network has a broad degree distribution, it is robust against random node removal processes [278].
That is why its critical percolation point rnet

c appears after 95% or more nodes are immune. Note
that similar calculations for another service have been presented [199] with qualitatively the same
results, but with the crossover regime shifted towards larger r due to different parameter values of
the model process.

We can use these calculations to estimate the only unknown parameter, namely the fraction
r of immune nodes in Skype, by matching the relative size of the largest component (LCNet)
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between real and model adoption networks at time T . Empirically, this value is the relative size
sLC

a ' 0.043 (for more details see [199]). Matching this relative size with the simulation results (see
the observation line in Fig. 4.9a upper panel), we find that it corresponds to remp = 0.73 (prediction
line in Fig. 4.9a), suggesting that the real adoption process lies in the crossover regime. In other
words, large adoption cascades could potentially evolve in Skype but with reduced speed, as 73%
of users might not be interested in adopting a service within the network.

To test the validity of the predicted remp value we perform three different calculations. First
we measure the maximum relative growth rate of cumulative adoptions and find a good match
between model and data (see Skype s3 and Model Skype s3 in Fig. 4.2a). In other words, the model
correctly estimates the speed of the adoption process. Second, we measure the distribution P(d) of
the depths of induced vulnerable trees (Fig. 4.9b). Vulnerable trees evolve with a shallow structure
in the empirical and model processes. After measuring the distribution P(d) for various r values
below, above and at remp, we find that the distribution corresponding to the predicted remp value fits
the best with the empirical data. Finally, in order to verify earlier theoretical suggestions [324], we
look at the correlation 〈sv〉(k) between the degree of innovators and the average size of vulnerable
trees induced by them (Fig. 4.9c). Similar to the distribution P(d), we perform this measurement
on the real data and in the model for r = 0.6 and 0.9, as well as for the predicted value remp = 0.73.
We find a strong positive correlation in the data, explained partially by degree heterogeneities
in the underlying social network, but surprisingly well emulated by the model as well. More
importantly, although this quantity appears to scale with r, the estimated r value fits the empirical
data remarkably well, thus validating our estimation method for r based on a matching of relative
component sizes.

4.5.3 Threshold driven contagion on weighted networks

Weighted networks provide meaningful representations of the architecture of a large number of
complex systems where weights capture the strength of interactions between connected entities.
This way, weights can help to differentiate between links of varying importance, influence, and role,
which may play crucial roles in dynamical processes evolving on networks. In threshold models
on networks, links are usually considered unweighted, such that the stimuli or influence arriving
from each neighbour contributes equally to reaching the behavioural threshold. Although this
assumption simplifies their modelling, it does not lead to an accurate representation of real world
dynamics. For example, in neural systems synaptic connections have weights that quantify the
strength of incoming stimuli, and contribute unequally in bringing neurons to an excited state, as
recognised recently in models of neural population dynamics [177]. In social systems link weights
are associated with tie strengths that quantify the social influence that individuals have on their peers.
Measurement of tie strength is a long standing challenge, but it is generally accepted that social
ties are not equal, as some are more influential than others on one’s decision making. Surprisingly,
apart from some recent studies [210, 175, 94], weights have been commonly overlooked in models
of threshold driven phenomena. In the next Section, we summarise our work on threshold driven
contagion on weighted networks. This study is a natural extension of our previously discussed
dynamical threshold model, but it sheds the light on more exotic, not yet observed dynamical
behaviour. Results have been published originally in [354], while here we present the essence of
our findings only.

To study threshold driven dynamical processes over weighted networks we build on the model
defined in the previous Section and in [316, 199]. Following its standard formulation [368, 324,
316, 199], we define a monotone binary-state dynamics over a weighted, undirected network where
edge weights w > 0 are continuous variables drawn from the distribution P(w). The edge weight
wi j represents the capacity of connected nodes i and j to influence each other. Accordingly, the
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node strength qk(i) = ∑k
j=1 wi j is the total influence what node i receives from its k neighbours.

However, influence may vary from neighbour to neighbour. We implement this idea by defining
the partial strength qm(i) = ∑m

j=1 wi j associated with the influence of the m infected neighbours
on node i (where 0≤ m≤ k). If the condition qm ≥ ϕqk is fulfilled, node i becomes infected and
remains so indefinitely. For simplicity we assume that all nodes have the same threshold φ = ϕ ,
just as in many other studies [368, 324].

Similar as earlier, we build our analytical description on Gleeson’s approximate master equation
formalism for stochastic binary-state dynamics [302, 140, 138, 139]. In order to extend this
formalism to weighted networks, we discretise P(w) and assume only n possible weight types w j,
such that all distinct weights in the network are contained in the weight vector w = (w1, . . . ,wn)

T.
Then, a node in class (k,m) has k j links with weight w j and m j = 0, . . . ,k j infected neighbours
across these links, such that k = ∑n

j=1 k j and m = ∑n
j=1 m j. Furthermore, we can define a degree

vector k = (k1, . . . ,kn)
T and a partial degree vector m = (m1, . . . ,mn)

T, generalising the strength
and partial strength to qk = k ·w and qm = m ·w, respectively. Nodes in class (k,m) have identical
strengths and partial strengths, and follow the same pair of rate equations for the fraction sk,m(t)
(resp. ik,m(t)) of k-nodes that are susceptible (resp. infected) at time t and have partial degree
vector m.

In our threshold driven model, a susceptible node can become infected in two ways, either
spontaneously with rate p, or if its weighted threshold φ is reached. As such, the infection rate of
susceptible nodes in class (k,m) is

Fk,mk =

{
p qm < φqk

1 qm ≥ φqk
, k > 0, (4.23)

with F0,0 = p. The stepwise nature of Fk,mk allows us to map the rate equations for sk,m and
ik,m to a reduced-dimension system, as has been done earlier in Eq.4.24 for unweighted complex
contagion [316, 199]. Namely, if we consider as aggregated variables the density ρ(t) of infected
nodes and the probability ν j(t) that a randomly chosen neighbour (across a j-type edge) of a
susceptible node is infected, then the description of the dynamics can be reduced to the system of
n+1 equations

ν̇ j = g j(ν , t)−ν j, (4.24a)

ρ̇ = h(ν , t)−ρ, (4.24b)

where ν = (ν1, . . . ,νn)
T is the vector of probabilities ν j for all weight types, and g j(ν , t) and h(ν , t)

are functions of binomial terms.

Regular networks with bimodal weights
To study the dynamics of our model we first consider a simple structure, the configuration-model
k-regular network, with k = 7. Edge weights are sampled from a bimodal distribution with n = 2
values, denoted strong (w1) and weak (w2). The weight distribution is characterised by its average
µ , standard deviation σ ≥ 0, and the fraction δ of links that are strong. Thus, weights take the
values w1 = µ +σ

√
(1−δ )/δ and w2 = µ−σ

√
δ/(1−δ ). The parameter δ contributes to the

skewness of P(w), initially fixed to the symmetric case δ = 0.5. The parameter σ interpolates
weight heterogeneity between the homogeneous case of an unweighted network (σ = 0), and the
most heterogeneous case of a diluted network (σ = µ

√
(1−δ )/δ ), where only strong links have

influence and the weak are functionally absent. After fixing the spontaneous infection rate p and
skewness δ , our model has only two parameters, σ and φ . To characterise the speed of dynamics
we introduce the quantity ta, the time when infection density reaches a set value (ρ = 0.75), called
the absolute time of cascade emergence. We measure ta via numerical simulations of the (σ ,φ)-
parameter space, which shows unexpected dependencies on both parameters. On one hand, for
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Figure 4.10: Relative time of threshold driven cascades on weighted networks. (a) Relative time tr of
cascade emergence on (σ ,φ)-parameter space, simulated over k-regular regular networks (k = 7) with µ = 1,
δ = 0.5, p = 2× 10−4, N = 104 and averaged over 25 realisations. (b-c) Selected regions of parameter
space in (a), where tr is instead calculated from the numerical solution of the AME systems in Eq. 4.24.
Boundaries are obtained from a combinatorial argument [354] for various (k,m) classes. (d-f) Effect of
skewed weight distributions on cascade evolution. (d) Infection density ρ(t) on k-regular networks (k = 7)
and a bimodal weight distribution with µ = 3 and δ = 0.2, both for unweighted (σ = 0) and heterogeneous
(σ > 0) cases. (d-e) Fractions of strong (w1) and weak (w2) links connecting two infected nodes in the
bulk of the infected component [EII(t), b] and susceptible and infected nodes on its surface [ESI(t), c] in
the heterogeneous spreading scenario of (a). Simulations (symbols) are averaged over 25 realisations with
p = 2×10−4 and N = 104, and compared with the corresponding AME solutions (lines). Dashed lines are
the expected fractions of weak and strong links as determined by δ , and the vertical line shows the inflection
point of ρ in the heterogeneous case of (a), which coincides with a turning point of EII in (b). This figure
was prepared by S. Unicomb and was published in [354].

fixed σ and increasing φ the dynamics slows down, since nodes with higher thresholds require
more infected neighbours to become infected. On the other, for fixed φ the dynamics depends
non-monotonously on σ , where cascades may evolve either faster or slower as we increase weight
heterogeneity, relative to the unweighted case (σ = 0).

To better characterize the dynamics, first we concentrate on the σ dependency by calculating
tr = [ta(0,φ)− ta(σ ,φ)]/ta(0,φ), the time of cascade emergence relative to the unweighted case
with the same φ value. (Fig. 4.10a). The relative time tr will be positive if the weighted process
evolves faster than the unweighted case, zero if they evolve at the same speed, and negative if slower
than the unweighted case. The (σ ,φ)-parameter space for tr is highly structured and driven by
competing effects of key (k,m) classes, which either reduce or enhance the speed of the spreading
process as compared to the unweighted case. We also explore the corresponding numerical solution
of the AME systems in Eq. 4.24, as well as an independent combinatorial solution [354] for the
boundaries between regions of low and high cascade speed (Fig. 4.10b-c). Both the AME and
combinatorial solutions perfectly recover the parameter space obtained by simulations. To further
explore how weight heterogeneities produce slow or fast cascades, we partition the system according
to the number m of infected neighbours required for infection, and measure the aggregated infection
rate Fk,m(t) = ∑k,m P(k)Fk,msk,m(t)/∑k,m P(k)sk,m(t) and other determinant quantities in several
spreading scenarios (Fig. 4.10d-e).

In the neutral scenario, all (k,m) classes of the weighted network share the same dynamics
as the corresponding (k,m) class in an unweighted network, so Fk,m = p or 1 and weights have
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no impact on contagion, meaning tr = 0. In a decelerative scenario like φ = 0.25 and σ = 0.3
(Fig. 4.10d), Fk,m for any m is equal to its unweighted counterpart, except for the m = 2 class.
Here, the adoption rate is 1 in the unweighted case but strongly suppressed in the weighted case,
thus decreasing the overall spreading speed. For an accelerative scenario, like φ = 0.25 and
σ = 0.7, competing effects from several (k,m) classes combine to determine the overall dynamics
(Fig. 4.10e). The rate Fk,m for m = 2, . . . ,4 is lower than 1 which is a decelerative effect (as in the
previous case), but the rate Fk,1, which is equal to p in the unweighted case, is significantly larger
than p here. Since at the early stages of contagion the number of nodes in class m = 1 is larger than
in any other class with m > 1, spreading evolves rapidly to an early cascade. It should be noted that
competition between the accelerative and decelerative effects of the weight distribution is one of the
defining characteristics of threshold driven contagion on weighted networks. It is this competition
that leads to the interference patterns evident in Fig. 4.10a.

Up until now we have considered the symmetric case δ = 0.5 with equal numbers of strong and
weak links. However, by skewing the weight distribution we observe an additional effect of weight
heterogeneities on the spreading behaviour. When δ = 0.2 the extent of the cascade decreases
for large σ with respect to the unweighted case (Fig. 4.10d). In this case, despite their sparsity,
strong links again drive the contagion, but are soon exhausted causing spreading to slow down
and continue via spontaneous or infrequent threshold driven infections over weak ties (Fig. 4.10e).
Indeed, strong links dominate the bulk of the infected component, but disappear quickly from
its surface (Fig. 4.10f). These so-called partial cascades, which do not infect the whole system
through the cascade, are associated with skewness and a sufficiently large standard deviation in the
weight distribution and are reminiscent of the slow spreading caused by immune nodes, as well as
low connectivity networks in unweighted complex contagion [316, 199, 368]. Overall, we identify
non-monotonous spreading behaviour and partial cascades as the main consequences of weight
heterogeneities in threshold driven contagion.

Although regular networks and bimodal weights are useful in characterising the qualitative
impact of weights on contagion, they are rather unrealistic since real complex networks commonly
appear with broad degree and weight distributions [42]. For this reason we further explored (not
shown here [354]) the effects of heterogeneous degree and weight distributions on the threshold
driven contagion. Interestingly, it turned out that the observed non-monotonous dependency of
cascade time is robust against such heterogeneities, and were found even in case of data-driven
simulations, where the contagion was iterated on real weighted networks.

To summarise, in this study we explored weighted networks with increasing complexity, from
configuration-model structures with bimodal or lognormal weights, to real world networks with
broad degree and weight distributions. We showed that threshold driven contagion depends non-
monotonously on weight heterogeneity, creating slow or fast cascades relative to the equivalent
unweighted spreading process. Via numerical simulations, master equations and combinatorial
arguments, we found that this effect is the result of competing configurations of degree, weight, and
infected neighbours that slow down or speed up contagion. We also observed that an imbalance in
the amount of large and small weights leads to partial cascades, and smoother temporal patterns
of spreading than those in unweighted networks. By analysing a range of degree and weight
configurations, we show that these features are systemic and thus may drive a variety of real world
contagion phenomena.

4.5.4 Threshold driven contagion on multiplex networks

In earlier studies of complex contagion [152, 368, 316, 189, 316], cascades were predicted in
single layer sparse networks. In these structures nodes typically have smaller degrees making them
easier to reach the necessary threshold of relative neighbor influence to join a spreading cascade.
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In empirical social networks, however, individuals can maintain hundreds of ties [147, 112],
with interaction strength varying across social contexts [183, 354, 70], yet still exhibit frequent
system-wide cascades of social contagion [199, 109, 142]. To address this puzzle we incorporated
additional relevant features motivated from empirical social networks into our earlier defined
threshold model [354]. We consider that edges in a social network to vary in “quality” [155,
208], usually associated with the intimacy or perceived importance of a relationship between
individuals [391], and scale with the strength of interpersonal influence [81, 350]. Heterogeneity
in tie quality is well modeled by multiplex structures [216, 55], particularly in case of social
contagion [383, 68, 235, 392]. In multiplex models of social networks, individual layers represent
the social context of a relationship (e.g. kinship, acquaintance), allowing us to classify ties
by social closeness, as recognised by Dunbar’s intimacy circle theory [391] (for more details
see 1.2.2). According to this theory ego networks comprise a small but high-intimacy circle of
close relationships, like family and long term friends, followed by large but low-intimacy circles of
distant friends and acquaintances.

Motivated by these observations, we defined in [356] a contagion as a binary-state dynamics
over a weighted, undirected multiplex network of N nodes connected throughout M layers (see
for schematic demonstration 4.11a-d). A node represents an individual u, and layer i the social
context in which individuals interact, 1 ≤ i ≤M. The degree of u in each layer i takes discrete
values ki = 0, . . . ,N−1 according to the degree distribution Pi(k). Edge weights wi(u,v) follow
the continuous distribution Pi(w) and capture the total capacity of nodes u and v to influence each
other via layer i. The network allows for layer overlap [74] as nodes may be connected in multiple
layers, modelling individuals who share several social contexts (see 4.11c). For simplicity, we
assume that node degree is independent across layers, and that degree and weight distributions
Pi(k) and Pi(w) differ by layer explicitly in their means zi = ∑k kPi(k) and wi =

∫
wPi(w)dw, but

otherwise retaining their functional form. In order to reproduce the hierarchical organisation of
edges suggested by intimacy circle theory [391], we assume that the mean degree zi and weight wi

scale with layer index i as

zi+1 = δzzi and wi+1 = δwwi, (4.25)

with δz ≥ 1 and δw ≤ 1. In other words, ego networks comprise a small number of high-intimacy
neighbours [4.11(a)] and a larger number of low-intimacy neighbours (see 4.11(b)). For more
details on the model setting see [356].

Since nodes must be either connected or disconnected via each of the M network layers, their
interaction is characterised by one of 2M−1 resultant edge types (see 4.11(d)), disregarding nodes
disconnected in all layers, and indexing by j such that 1≤ j ≤ 2M−1. Node configuration is thus
described by the number of neighbours k j and infected neighbours m j across edges of type j, with
0≤ m j ≤ k j. We store k j and m j in the degree vector k and partial degree vector m, respectively
(of dimension 2M−1). Note that we consistently index layer by i and resultant edge type by j.

The threshold rule proposed by Watts [368] can be extended to multiplex networks in several
ways. Denoting the set of neighbours of node u in layer i by Ni(u), the total influence upon u
in layer i is qki = ∑v∈Ni(u) wi(u,v). Restricted to infected neighbours, Ni(u)|I , this gives qmi =

∑v∈Ni(u)|I wi(u,v). In one variant of the threshold rule, that we call weighted sum, rule nodes
perceive influence in aggregate, summed over layers and adopt with respect to a single threshold if
qm ≥ φqk, where qk = ∑i qki and qm = ∑i qmi . Note that we studied two other threshold rules, called
multiplex AND and multiplex OR, with results reported in [356].

Similar to the methodology discussed in Section 4.5.3, we solve our model using the approxi-
mate master equation formalism [139, 140, 316, 199, 354]. Just as in case of weighted networks
discussed earlier, we derive the density of infected nodes ρ and the average probability ν j that a
j-type neighbor of a susceptible node is infected at time t in a similar reduced form as shown in
Eq. 4.24a and b (resp.).
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Figure 4.11: (a-b) Egocentric view of multiplex structure with M = 2 layers, where edge density
increases (δz > 1) and edge weight decreases (δw < 1) in each layer i. (c) Egocentric network
overlap between layers. (d) Emergent edge types in the overlapping network. In the multiplex, the
central node has degree vector k = (2,8,1)T , encoding layer overlap. (e-g) Emergence of a high-z
cascading phase in (φ ,z)-space for the weighted sum rule, for log-normal degree distribution with
fixed δz = 50, γ = 0.5 and decreasing δw. The standard deviation of the LN distribution is σki = 2zi.
MC simulations provide the relative frequency fg of global cascades, after 103 instances of single
node perturbation, in a configuration-model multiplex with N = 106. In (e) we recover the classic
Watts phase diagram (δw = 1). The constraint 〈w〉= 1 means w = (1,1)T , (6,0.9)T and (11,0.8)T ,
from (e) to (g). The outer contour (dash-double dotted white line) in (g) shows the case δw→ 0
[δw = 10−3]. Dash-dotted red lines show agreement with linear stability analysis prediction.

A numerical solution of these equations (in [354]) provides the dynamical evolution of the
system, while a linear stability analysis identifies the region in the (φ ,z)-space, which allow global
cascades (indicated as dash-dotted lines in Figs. 4.11e. We derive a global cascade condition via the
Jacobian matrix J corresponding to 4.24, evaluated at the fixed point ν∗ = 0 to study the response
of the network to an infinitesimal perturbation, or single infected seed. Using this method we
compute the relative frequency fg of global cascades from Monte Carlo simulations, as shown in
Fig. 4.11e-g.

Surprisingly, the weighted sum rule leads to a high-z cascading phase, and thus to a re-entrant
phase transitions for constant φ , in an M = 2 layer multiplex with a log-normal degree distribution
in each layer as shown in 4.11g (for details see [356]). In two layers, we define layer overlap as
γ = |E1∩E2|/|E1|, where Ei is the edge set in layer i = 1,2 (|E1|< |E2|). We can increase weight
heterogeneity by decreasing the weight scaling factor δw, resulting in a second cascading regime.

According to the Watts cascade model, in a single layer network cascading phase appears in
(φ ,z)-space when vulnerable nodes form a percolating cluster and the network is sparse. On the
other hand, for large z results in most nodes being stable against neighbor infection, and cascades
becoming exponentially rare. However, under the weighted sum rule, weight heterogeneity allows
one high-influence infected neighbor to dominate a node’s total received influence if remaining
neighbours have low influence. Crucially, such configurations are abundant when the conditions
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δz > 1 and δw < 1 are satisfied simultaneously, resulting in a percolating vulnerable cluster at high
z. In other words, in the low-z phase, cascades are mediated by the connectivity of the weak layer,
since the strong layer is too sparse to percolate. In the high-z phase, strong edges percolate and
determine the stability of adjacent nodes that are otherwise stable to the dense weak layer.

As reported in [356], similar phenomena appears for the other thresholds too, even in empirical
multilayer structures exported from Twitter. Moreover the number of re-entrant phase transitions
are determined by the number of layers in the network.

4.5.5 Threshold driven contagion on temporal networks

In a recent study [353] we extended further our understanding of complex contagion processes
on temporal networks and the effect of link burstiness on the final spreading outcome. Threshold
driven dynamics over static networks have been extensively studied both empirically [199] and
theoretically [368, 138, 199, 354, 356], but analysis of their behaviour on temporal networks
is so far limited to a small number of empirical studies [192, 190, 337, 29]. Using random
reference models of temporal networks, it has been shown that when infection is driven by the
fraction of infected neighbours, rather than their absolute number, bursty interactions may lead
to deceleration [192, 190, 29]. In contrast, if the threshold measure of influence is absolute,
burstiness may have an accelerative effect [192]. Acceleration has been also observed in case of
history-dependent contagion [337].

Another aspects of information diffusion in social and economic settings are the limits inherent
to our social and cognitive capacities, namely that we have finite attention. A mechanism that
has emerged to deal with these limitations is ephemeral content [51, 321] that disappears after a
specified amount of time, in principle concentrating the attention of viewers. In contrast, persistent
content is not explicitly erased, but due to cognitive limits and competing content, gradually
decreases in visibility.

In [353], we propose an analytical framework to systematically describe the relationship
between the diffusion of information, bursty temporal interactions, and inherent limits to our
attention and memory, thus providing the theoretical foundation necessary to shed light on the role
of burstiness in generic diffusion processes, including simple and complex contagion models of
physical, biological and social phenomena.

More precisely, we incorporate the most widely documented features of temporal interactions
into a framework of binary state dynamics and benchmark its behaviour with standard models
of threshold driven and epidemic spreading. Although stochastic bursty interactions are likely
emergent phenomena [39, 361], their dynamics are well approximated by renewal processes [377].
Temporal heterogeneity in network interactions can then be characterised by the variability in inter-
event times τ , the time between consecutive events on a given edge, parameterised by the inter-event
time distribution P(τ), while other features of the temporal network are considered maximally
random. Renewal processes represent the simplest model of bursty, non-Markovian dynamics, and
a departure from the memoryless assumption implicit in Poisson processes. Nevertheless, we are
able to show that such a system can be accurately captured by a modified version of the approximate
master equation (AME) formalism, which is essentially memoryless, implying the existence of
a purely Markovian system with almost identical behaviour. We show both analytically and
numerically that bursty temporal interactions give rise to a percolation transition in the connectivity
of the temporal network, separating phases of slow and rapid dynamics for both epidemic and
threshold models of information diffusion. We find that diffusion dynamics are sensitive to the
choice of inter-event time distribution, particularly in regard to its skewness, and we demonstrate a
data collapse across distributions when controlling for this effect.

∗ ∗ ∗
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Finally, in a separate work [199], we proposed another model of complex contagion phenomena,
which build on an SIR model scheme, but relying on the observations reported in Section 4.3.1. It
extends the model with a linearly increasing influence of adoption with the fraction of adopting
neighbours.

4.6 Conclusion
This Chapter focused on my and my co-authors contributions on the observation and modelling of
collective social phenomena. After a brief introduction I summarised selected studies on static and
dynamic observations of collective behaviour, together with statistical and mechanistic models built
on the obtained observations. I payed special focus on spreading processes, by walking through
studies considering simple and complex contagion phenomena. My aim in this Chapter was to
give an overview about my motivations and main contributions to the understanding of collective
social behaviour. This way I decided to exclude several papers from the detailed discussion, but
mentioning them in short summaries in the end of each Section.



5. Discussion

5.1 Perspectives

The potential future of my research and my field can be discussed at different time-scales. Here I
am going to describe some immediate and midterm directions related to my own research, while I
will also synthesise my view on the long-term future potentials of my associated fields.

5.1.1 Future directions of my research

With my collaborators we have continued several research lines summarised in this Thesis, while
we also initiated new spin-off directions based on recent ideas and developments. Next I shortly
describe the most promising angles.

Operative and fundamental COVID-19 research

Since March 2020, from the very beginning of the COVID-19 pandemic in Hungary I got involved
in the mathematical modelling force-team developing predictive epidemic models for decision
makers. Within this larger operations I have been the responsible for a longitudinal data collection
effort aiming to record age stratified contact matrices dynamically using online and representative
phone survey methods. While the phone survey data collection records the answers of 1000−1500
respondents, the online questionnaire reached over 230,000 people responding more than 480,000
times [204]. We exploited this data collection infrastructure to collect dynamical data on behavioural
changes related to the actual pandemic regarding vaccination and self-protection attitudes, danger
awareness and perception, socioeconomic status, work conditions, mobility etc. Using this data
I started several new research directions with colleagues from various fields. Example are the
development of age stratified contact matrices reconstruction methods [221], the study of switchover
phenomena on metapopulation networks [285], or a study disclosing vaccination preferences in
Hungary [229]. On the longer term I plan to study distance dependent awareness modelling and its
effect on epidemic processes and also metapopulation models of epidemic incorporating not only
age but sociodemographically and economically stratified contact matrices.
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Social experiments
Together with some socio-linguist colleagues we recently completed a large-scale social experi-
ment [97], where we collect social and verbal interactions of children between age in 3 and 6. Our
experiment employs RFID sensors, which are capable of recording face-to-face interactions and
speech at the same time, and is accompanied with frequent questionnaires about the socioeconomic
background and linguistic development of the participants. This project was running over three
years by recording one week of data every months with the involvement of 110 children. Our
scientific goal is to understand the emergent consensus on the usage of standard patterns of French
language as the function of the social network, time, linguistic and socioeconomic background.

Data for Good
In another line of research we continue to analyse large-scale datasets recording the social networks
and sociodemographic, location, and linguistic characters of individuals using data from online
social systems, mobile communication, and satellites, and census. Our overall goal is to better
understand the emergence of socioeconomic inequalities, limited social mobility, linguistic variance,
and to infer average socioeconomic status at any level of granularity. I have several results in this
direction, which were only mentioned in this thesis in Section 4.2, yet this is one of the main
directions I would like to explore in the future.

Higher order correlations in networks
The study on weighted event graph representation of temporal networks we reported in Section 3.4.2
is only a first step in this direction. As a next step we are working on its extension to explore
higher-order temporal-structural patterns, to more precisely model spreading processes on temporal
networks, to identify large-scale temporal motifs, to define computationally cheap methods to
calculate temporal network centralities, and to use this way of representation in systems where
temporal interactions are important like in neural networks, transportation, or communication
networks.

Rich datasets describing the actions and interactions of individuals provide outstanding sources
of information and knowledge and fuel a wide spectrum of data-driven numerical simulations of
dynamical processes. Data alone, however, even in huge amounts, do not easily transform into
knowledge or predictive models. The rich and diverse information they contain raises crucial
challenges concerning their analysis, representation and interpretation, the extraction of meaningful
structures, and their integration into data-driven models. In a recent project we aim to build a
methodological framework to reduce networked data complexity, while preserving its richness, by
working at intermediate scales (“mesoscales”). Our objective is to reach a theoretical understanding
and representation of rich and complex networked datasets for their use in predictive data-driven
models.

In other exploratory projects we develop unsupervised learning approaches to build network
embeddings (a) for static networks to infer correlations/patterns between node features and the
mesoscopic structure of networks [241], and (b) for temporal networks to find correlations between
events and infected populations induced by a spreading initiated from the actual event.

Modelling collective phenomena
In terms of social contagion phenomena one of my oldest personal puzzle is related to the phe-
nomenological differences between simple and complex contagion processes. At the observation
level these two processes appear very similar in real settings thus it is difficult to identify which
of them is driving the actual spreading process. As both simple and complex mechanisms are
arguably present simultaneously for a single social contagion process, beyond the identification of
one or the other, it is important to decide which one plays a dominant role during the adoption of a
single individual. Solving this problem would (a) close a long lasting debate about the dominant
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mechanisms driving social contagion and (b) would bring us closer to understand the role of social
influence during decision making, which would contribute to another historic open question about
the role of influence vs. homophily in network formation.

5.1.2 Perspectives of my associated fields

Social physics and computational social science builds on decades of knowledge accumulated in
conventional social sciences, but as a separate field it is relatively young [234]. First of all, its
innovation is methodological as it relies on large and automatically collected behavioural data
and novel experimental opportunities provided by the digital age. This new era just started and
delivers new datasets, collection methods and challenges in a rapid pace. These developments fuel
quantitative studies of social systems to identify mechanisms and emergent patterns in individual and
social behaviour, with the promise of better understanding and predictability of human behaviour.

All three research domains I discussed in this Thesis have some relevance in these challenges,
however, they are at different phases of their developments. The observation of bursty human
behaviour is relatively recent [39], but was followed by a very intense period of investigations [200],
which brought us to the point that its first-order characterisation is well developed. New questions
in this direction are related to higher-order temporal and structural correlations [320, 230, 217, 49],
which would bring us closer to understand the possible explanations and various consequences of
such behavioural patterns. Temporal networks is a field which was also fuelled by the emergence
of recently collected datasets recording time-varying interactions of entities on a high temporal
resolution. This field has reached its first milestones [173, 170] but still offers several open
theoretical and methodological challenges. Most interesting questions to answer are related to
a more formal foundation of the representation, analytical tools and computability of temporal
networks, in addition to the development of mathematically treatable network models. In addition,
coupled dynamics of networks and processes are also very much un-understood. Due to the broad
relevance of temporal networks in several fields, in my opinion, this field will remain in the centre
of network science for a long period. Finally, the observation and modelling of the emergence of
collective phenomena is a historic challenge, with some recent developments, which introduce even
more realistic data-driven prediction of collective processes. The observation of global information
diffusion and formation of collective opinion, the precise data-driven simulations of epidemic
processes, or the observation and prediction of the mobility of millions are all promising advances
which will carry this field on to explore and explain more complex phenomena.

5.2 Conclusions

While writing this Thesis I had two main goals in mind. On one hand, I wanted to write a concise
summary of my most interesting scientific contributions, and on the other hand, I aimed to provide
and up-to-date view and perspectives about my field. Due to my training and scientific interests,
this Thesis emerged as an interdisciplinary work discussing topics and methods associated to
physics, computer science, statistics, applied mathematics and computational social science. As a
consequence, it is not easy to read with an approach from a single discipline. To help the reader on
this end, beyond the technical in-depth discussion of the actual methodologies and findings, I was
trying to design a line of description, which is accessible for a broader audience. Despite the diverse
subjects of my works, I needed to identify a common ground bringing them all together under the
hood of a single thesis. As an outcome, I entitled my thesis as computational human dynamics,
which precisely captured the common denominator of all my contributions. In accordance, I
consciously built all my reasoning and motivations on examples borrowed from social phenomena.
On the other, some of my methodological work may be relevant in other fields as neural science or
system biology, what I emphasised on the run.
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I started my dissertation with an introduction to position the reader on the landscape of my
field, open up actual challenges, and to put in perspective my contributions. To purposefully ground
the terminology used throughout the whole dissertation, I briefly introduced the reader to the basic
concepts of complex networks and to the characteristics and theories of social networks. To avoid re-
dundant descriptions and confusing cross-referencing, I described various datasets, which had been
used on multiple occasions in the reported studies. Subsequently, I summarised my contributions in
three scientific domains. First, I concentrated on the bursty, heterogeneous temporal characters of
individual human dynamics. Recently written a book on this topic, I had the advantage to easily
provide an overall view on this field, and to introduce my contributions about the observations,
characterisation and modelling of bursty phenomena. Next, I concentrated on my works related
to temporal networks. This Chapter synthesises my publications I co-authored over the last years
on various novel methods for the representation, characterisation, and modelling of time-varying
structures. Our contributions range from system level characterisation and random reference models
to the detection of higher-order correlations and the development of activity-driven generative
network models of temporal networks. Finally, as a third area of my contributions, I discussed
my work on the data-driven observations and modelling of collective social phenomena. First I
summarised studies on the static and dynamical observations of emergent patterns of collective
processes. Partially building on these observations, I subsequently discussed the modelling of
simple and contagion phenomena, to understand how to control them on temporal structure, how to
predict their dynamical emergence on society-large networks with various heterogeneous characters.

This Thesis was written for the purpose of obtaining the degree of Doctor of Science of the
Hungarian Academy of Sciences. However, it was meant for something more than being simply a
summary of my contributions. I wrote it as a research statement and a milestone (for myself) to
summarise my past achievements, to clarify my actual position, and to help building plans for my
future research. I hope that some others will also find this synthesis useful and motivating to find
new ideas to solve and to explore paths towards a more comprehensive understanding the world
around.
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