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PREFACE

Quantum science has become one of the hottest topics of fundamental physics
research during the past two decades, and quantum optics evolved from a
specialized discipline from its origins in the 1960’s to one of the main motors of
this recent development. Therefore, I consider myself fortunate to have chosen
this field as early as in 2001, at the incentive of Zoltán Kurucz, a fellow member
of the Bolyai College, who at the time had just recently joined the group of
József Janszky at the Department of Crystal Physics andNonlinear Optics of the
Research Institute for Solid State Physics and Optics of the Hungarian Academy
of Sciences.

Prof. Janszky, whom I remember with gratitude, together with his group
helped me with my first steps in quantum optics and in the world of scientific
research that was so vividly represented by the community. This enabled me
to meet Peter Domokos, and under his supervision join the cavity quantum
electrodynamics group of Helmut Ritsch at the Institut fürTheoretische Physik,
Universität Innsbruck. During my work along the Budapest–Innsbruck axis,
that is, during my master (2002-2003) and PhD (2003-2007) theses, and my
postdoc years in the Ritsch group (2006-2010), I could relate to the interna-
tional cream of the field, both theoretical and experimental, that had already
accomplished amazing results in areas like quantum information, ion trapping,
and optical lattices.

The present thesis highlights parts of my activities between 2012 and 2022,
that is, the decade after my return from Innsbruck to Budapest. These years saw
the advent of hybrid and artificial quantum systems, which allow for previously
unattainable parameter regimes of light-matter interaction, that is the main
theme of this work. In 2016, a new era of experimental quantum optics research
started at theWigner Research Centre for Physics, with the potential to provide
renewed inspiration for physicists like me for decades to come.

I am grateful to all my colleagues and coauthors, but particularly to Helmut
Ritsch for his incessant positive attitude, his exemplary enthusiasm towards
everything that is physics, and for being part of Tyrol as my second home; and
most especially to Peter Domokos for his trust in me even during times when
my relationship with science was challenging, his ideas and enthusiasm, his
convivial working style, and his friendship.

For the two decades of being a professional researcher, I’ve been happy to
live a very complete life, for which I have primarily to thank my wife Viktória,
and my children Borbála (b. 2006), Anna (2009), Endre (2017), and Gellért
(2020).
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INTRODUCTION

1.1 quantum optics – a short history

Since quantummechanics originated from the study of a thermal gas of photons
in Planck’s work, the history of quantum optics (Cirac & Kimble, 2017; Gerry &
Knight, 2005; Fox, 2006; Bachor & Ralph, 2014) goes as far back as the origins
of that greater discipline. Although quantum optics was originally understood
to deal with phenomena that can be explained only by a quantum theory of
light (Loudon, 2001), in an extended sense its subject is light-matter interaction
in situations when one or both of these constituents is described quantum
mechanically – photons and/or atoms, to paraphrase Cohen-Tannoudji et al.
(1997) –, and very often it is the quantum character of the latter that has proved
more important. While quantum optics originated as a specialized discipline, it
went on to imbue several other fields of physics, and has eventually become one
of the main pillars of the recently-emerged quantum science and technology. By
today, some quantum optical systems have become the best controlled systems
ever produced by mankind.

In spite of the impact of the photon concept on early quantum theory, a
systematic account of quantum electrodynamics (QED) started out only in the
late 1940’s. Even more important for the theoretical foundations of quantum
optics, non-relativistic (a.k.a. molecular) quantum electrodynamics set off in
the seminal work of Power & Zienau (1959), and is still a theme today (cf. Part I
of the present thesis). The 1960’s brought about the birth of the theory of open
quantum systems – a special gift given by quantum optics to theoretical physics
at large – in the work of people like Lax, Senitzky, Haken, and Scully & Lamb1 1. Nobel prize 1955
(Carmichael, 1993).

But quantum optics is a strongly experiment-driven discipline, and the
first observations usually cited in this respect were those of Hanbury Brown
and Twiss, that inspired the theory of classical coherence in the 1950’s (Mandel
& Wolf, 1995). The question of the relationship to quantum coherence arose,
that lead to the quantum theory of optical coherence by Sudarshan, Glauber,2 2. Nobel prize 2005
and others. This allowed for describing the state of light in phase space, using
quasi-probability functions.

The invention of the maser and its optical analogue, the laser3 3. Nobel prize 1964 to Townes, Basow,
and Prokhorov

meant a
breakthrough in the experimental technology of quantum optics. Studies of
whether quantization plays any role in maser operation lead to the Jaynes-
Cummings model (Jaynes & Cummings, 1963), that is still one of the standard
models of quantum optics theory, and will play an important role in Part II of
the present thesis. Hopes that the light of a laser can be nonclassical proved to be
vain, as its state can inmost situations be well described by a coherent state with
somewhat fluctuating amplitude. Nonetheless, the laser allowed for producing
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nonclassical light indirectly, perhaps the most striking examples being photon
antibunching in single-atom resonance fluorescence, as predicted theoretically
by Carmichael and Walls (Walls, 1979), and demonstrated experimentally by
Kimble et al. (1977); and optical parametric processes pioneered by Louisell
and Yariv.

Bell’s inequalities (Bell, 1964) represent a significant advance in quantum
theory, since they allow for ruling out local hidden-variable theories. First
indications of their violation came from the field of quantum optics, in atomic
cascades (Freedman & Clauser, 1972; Aspect et al., 1982), and subsequently in a
photonic system by Ou &Mandel (1988).

Whereas quantum theory was originally applied to ensembles of particles
(cf. e.g. solid-state physics), over the decades quantum optics became proficient
in manipulating individual quantum systems. The first milestone on this front
was the achievement of the trapping of single ions in electromagnetic fields
separately by Dehmelt44. Nobel prize 1989 and Wineland.5

5. Nobel prize 2012
This allowed for an unprecedented

control over the atomic internal states first manifested in resolved sideband
cooling and the famous electron-shelving scheme. By today, quantum-coherent
manipulation of a single or a few trapped ion(s) is routine, and has even al-
lowed for quantum information processing in R. Blatt’s group, cf. e.g. Friis et al.
(2018). The group of Serge Haroche66. Nobel prize 2012 developed capabilities for manipulating
a system of individual Rydberg atoms coupled to microwave resonators on
the single-photon, single-atom level, demonstrating Rabi oscillations, time-
resolved decoherence, and quantum logic (Raimond et al., 2001). About a
decade later, a full quantum toolbox using single atoms trapped in high-finesse
optical microcavities was developed by the Rempe group (Reiserer & Rempe,
2015). The photonic front saw immense progress as well, quantum coherent
control for quantum cryptography having been achieved on the level of even a
single twin-photon pair in the Zeilinger group (Jennewein et al., 2000).

The development of laser cooling techniques,77. Nobel prize 1997 to Chu,
Cohen-Tannoudji, and Phillips

chiefly for gases of alkali
atoms, allowed for the preparation of cold (∼ 100 µK) atomic samples, a pre-
quel to the success-story of ultracold (≲ 1 µK) gases, which regime was first
achieved by evaporative cooling of alkali samples in magnetic traps to produce
Bose-Einstein condensation.88. Nobel prize 2001 to Cor-

nell, Ketterle, and Wieman
This meant that the level of control that ion traps

provided for single ions in the vibrational ground state of the trap was extended
to macroscopic samples of neutral atoms. Via a sufficiently controlled outcou-
pling of atoms, the BEC allowed for the production of the so-called atom laser,
a coherent state of a sequence of propagating atoms with beam-like properties
that can be controlled similarly to a laser (Bloch et al., 1999), and holds great
technological promises for atom interferometry. Another natural development
was the production of ultracold samples in optical lattices (Greiner et al., 2002),
where the demonstrated superfluid to Mott insulator phase transition has be-
come a commonly quoted prime example of quantum simulation à la Feynman
(1982), cf. also Bloch et al. (2012).

Among the many fields imbued by quantum optics, let us mention metrol-
ogy as a striking instance. Whereas atomic clocks have originated as microwave
devices using thermal atomic ensembles, the introduction of optical (laser
spectroscopy) techniques for state preparation and measurement in the late
1980’s could lead to more than an order of magnitude improvement in accu-
racy (Lombardi et al., 2007). The adoption of laser-cooled atomic samples (“Cs
fountain” clock) instead of thermal beams in the second half of the 1990’s re-
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sulted in an improvement of a similar degree. By today, the probing of certain
atomic transition frequencies by atomic clocks has become the most precise
measurement ever performed by mankind, a fact acknowledged in the new
“quantum” SI, introduced in May 2019, that endows the unit of time with even
higher significance than it had before, introducing it to the definition of even
the new, “atomic” unit of mass (Schlamminger, 2018). Lately, optical frequency
standards (Ludlow et al., 2015) have started to supersede microwave standards.
The “quantum-logic ion clock” (Schmidt et al., 2005) uses entanglement to cou-
ple the “spectroscopy” ion to an auxiliary “logic” ion to allow for more stillness
to the former by transferring manipulations to the latter. Optical lattice clocks
using ultracold samples of strontium are reaching stability at the 10−18 level
(Bloom et al., 2014). The adoption of squeezing has lead to sensitivities surpass-
ing the standard quantum limit in several situations in metrology (Polzik et al.,
1992; Hosten et al., 2016); and whereas the LIGO/VIRGO gravitational-wave
detectors used techniques inspired by the experimental technology of quantum
optics in mirror and resonator design from the outset (Abbott et al., 2016),
advanced LIGO also uses squeezed light for enhanced sensitivity (Caves, 1980;
Xiao et al., 1987; Aasi et al., 2013).

1.2 regimes of light-matter coupling

In free space, the coupling of the vacuum electromagnetic field to a two-level
atom leads to fundamental phenomena – Lamb shift and spontaneous emis-
sion –, whereas a populated mode “stimulates” the emission of an atom due
to bosonic enhancement. These processes have been known since Einstein’s
rate-equationmodel based on considerations of thermal equilibrium, that intro-
duced the famous A and B coefficients. Whereas the spontaneous emission rate
of an atomic transition in free space is determined by fundamental constants,
due to its dependence on the density of electromagnetic modes, it can be modi-
fied by boundary conditions, as found by Purcell (1946). An eminent way of
doing this is to place the atoms between mirrors or in cavities (Kleppner, 1981),
in a setting first realized experimentally by Goy et al. (1983) and Hulet et al.
(1985). The Purcell effect is commonly cited as the starting point of the field of
cavity quantum electrodynamics (CQED, cf. Haroche & Kleppner (1989)).

Spontaneous emission is, however, irreversible, so that excitation on the
single-quantum level is not controlled in the above phenomena. A paradigm
that came to the fore during the last two decades of the pastmillennium is strong
coupling between quantum systems. This means that excitation on the single-
or few-quanta level can be exchanged between the subsystems several times
before dissipative processes intervene to carry those quanta away, i.e. coherent
quantum dynamics between the constituents can be observed. Equivalently,
the modifications that the coupling makes in the energy spectrum of the free
constituents are well resolved.9

9. It would seem that e.g. the spin-
orbit coupling of the electron in a
hydrogen atom is strong under this
definition, since it leads to the well-
resolved fine structure; but in that case
the spin and the orbital motion are not
really two separate physical subsystems,
furthermore, the interaction cannot be
controlled.

The first realization of strong coupling came from the field of quantum
optics, in the 1990’s in CQED in the microwave domain, in the Haroche group.
In CQED the (single-atom) strong-coupling regime can be expressed quanti-
tatively by the inequality C ≫ 1, where the single-atom cooperativity10 10. For N atoms it can be shown quite

generally that the cooperativity scales
proportional to N , that is, the coupling
constant proportional to

√
N .

reads
C ≡ g2/(κ γ), where g is the atom-cavity coupling constant, κ is the cavity
field decay rate, and γ is the atomic spontaneous emission rate. From this for-
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mula it can be seen that attaining strong coupling in the optical domain is
much more difficult since due to the short wavelength very short cavity length
(10–100 µm) is needed.1111. Since κ ∝ L−1 and g ∝ L−1/2,

the cavity length L drops out from
the expression of C. However, since

g/γ ≪ 1 is itself a requirement of strong
coupling, the need for a short cavity
length can be seen from here as well.

Since the cavity length is short, photons are reflected
more often, therefore to obtain small κ extremely good mirrors are necessary
(with transmission coefficient ∼ 10−5). This said, the normal-mode splitting for
an atom in an optical cavity was observed already byThompson et al. (1992).
In the optical domain, where the mechanical effect of single photons on the
atomic motional state is significant, strong coupling can be exploited for en-
hanced, cavity cooling and trapping schemes (Horak et al., 1997; Maunz et al.,
2004). In the course of the last three decades, the strong-coupling regime of
CQED has lead to capabilities involving the internal atomic states that include
single-photon generation, atom-photon quantum state transfer, generation
of atom-photon entanglement, quantum memory, atom-atom quantum state
transfer, remote atom-atom entanglement, Bell-state measurement, quantum
teleportation, nondestructive photon detection, and atom-photon quantum
gate – eventually providing a full-fledged quantum interface between photons
and atoms (Reiserer & Rempe, 2015).

For a single electromagnetic resonator mode sustained by two mirrors
or in a cavity, the cooperativity on a given atomic transition depends only
on the mode waist, therefore, the use of cavities with small mode volumes is
essential for the realization of the strong coupling regime. Further increasing
the coupling is hence impracticable on this platform. We mention in passing
that a superstrong coupling regime of CQEDwas proposed byMeiser &Meystre
(2006), which is characterized by atom-field coupling strengths of the order
of the free spectral range of the cavity, resulting in a significant change in the
spatial mode structure of the light field.

The phonons of the normal modes of a chain of ions trapped in a linear
ion trap can be coupled by Raman transitions to the internal states, realizing
the strong-coupling regime with phonons instead of photons (Wineland, 2013).
Furthermore, strong coupling was realized in semiconductors (Khitrova et al.,
2006), and superconducting qubits also reached this regime by the early 2000’s
(Wallraff et al., 2004), an essential achievement for the development of the field
of circuit quantum electrodynamics (CCQED), that was to become one of the
main platforms of quantum information processing during the subsequent two
decades (Haroche et al., 2020).

The first decade of the new millenium saw the advent of a new, ultrastrong
coupling regime of light-matter interaction, first proposed by Ciuti et al. (2005).
This regime is characterized by the coupling strength reaching a sizable fraction
of the bare frequencies of the non-interacting constituents, and was found
achievable by these authors with intersubband cavity polaritons (Dupont et al.,
2003), leading to fundamental phenomena like two-mode squeezed vacuum for
a ground state, and the generation of correlated photon pairs in a phenomenon
reminiscent of the dynamical Casimir effect (Johansson et al., 2009; Wilson
et al., 2011). Several new capabilities and effects were predicted theoretically
in this regime, including the on-chip quantum simulation of the Jahn-Teller
model (Bourassa et al., 2009) and that of the environment-assisted quantum
transport in photosynthetic complexes (Mostame et al., 2012), a single photon
simultaneously and reversibly exciting several atoms (Garziano et al., 2016),
and advances in quantum information processing (Wang et al., 2012; Nataf &
Ciuti, 2011; Ashhab & Nori, 2010).
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Reaching the ultrastrong-coupling regime became an outstanding objective
in controlled laboratory systems where confined electromagnetic radiation
interacts with some kind of material degree of freedom, the most promising
platforms being

• superconducting quantum circuits (Devoret et al., 2007; Forn-Díaz et al.,
2010; Niemczyk et al., 2010),

• semiconductor quantumwells (Anappara et al., 2009; Günter et al., 2009;
Todorov et al., 2010; Scalari et al., 2012; Geiser et al., 2012; Hagenmüller
& Ciuti, 2012; Todorov & Sirtori, 2014; Todorov, 2015), and

• hybrid quantum systems (Schwartz et al., 2011; Wei et al., 2013; Cottet
et al., 2015).

1.3 the electric-dipole picture and the
dicke-hepp-lieb phase transition

The studies summarized in Part I were modivated by the Dicke-Hepp-Lieb
phase transition, colloquially denoted Dicke or superradiant phase transition.
The Dicke model describes an ensemble of two-level systems interacting with a
radiation mode:

HDicke = ωASz + ωM a†a + g (a + a†)Sx , (1.1a)

with ωM the angular frequency of the mode with boson operator a, ωA that of
the atomic transition with collective spin operators Sxyz, and g the coupling
strength. Proposed by Dicke (1954), cf. also Garraway (2011); Kirton et al. (2019),
the model describes collective emission of light from an ensemble of atoms,
predicting the so-called superradiant behavior: if the atoms are situated within
a fraction of a wavelength, the emitted amplitudes will interfere constructively,
leading to an amplitude proportional to N – the number of atoms –, or the
intensity to N2 (Benedict et al., 1996). Whereas superradiance was originally
thought of as a transient phenomenon (Gross & Haroche, 1982), Hepp & Lieb
(1973) discovered steady-state superradiance, which occurs when the atomic
ensemble is coupled to a single quantized mode, as in a cavity. In that work,
superradiance occurs as a thermal phase besides a normal one, the transition
between the two being a second-order thermal phase transition, cf. alsoWang&
Hioe (1973).The condition is that for large-enough atom-field coupling strength,
there exists a critical temperature where the transition occurs.

For historical accuracy, let us note that in these works the phase transition
was proved for the Tavis-Cummings model,12 12. The single-atom version of the Dicke

model is called (quantum) Rabi model
(Braak, 2011), whereas that of the Tavis-
Cummings model Jaynes-Cummings
model.

which is obtained from the Dicke
model on neglecting the excitation non-conserving (counter-rotating) terms
(Tavis & Cummings, 1968) – that is, the rotating-wave approximation:

HTavis-Cummings = ωASz + ωM a†a + g (a S+ + a† S−). (1.1b)

Subsequently, it was shown (Hioe, 1973; Carmichael et al., 1973; Duncan, 1974)
that the phase transition survives also in the originalDickemodel, the difference
being a factor of 2 in the critical coupling strength:

N g2c,DM = ωA ωM, N g2c,TCM =
ωA ωM

4
. (1.2)
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The thermal phase transition has a zero-temperature counterpart, which has
been further elaborated in a number of studies (Narducci et al., 1973; Hillery &
Mlodinow, 1985), also in connection with quantum chaos and entanglement
properties (Emary & Brandes, 2003b,a; Bužek et al., 2005; Castaños et al., 2011).

The Dicke phase transition is an astonishing theoretical possibility, since
it would mean that if we put a cold ensemble of atoms in a cavity and start to
reduce the mode volume then at some point light would appear quite sponta-
neously and abruptly in the cavity. To be sure, there are practical catches, the
most important being that according to Eq. (1.2) the criticality necessitates the
realization of the collective ultrastrong-coupling regime, “collective” meaning
that the coupling is enhanced by

√
N . Still, it must have been a relief for the

physics community when towards the end of the 1970’s papers started to appear
that professed to rule out even theoretically the superradiant phase transition
(Rzażewski et al., 1975; Knight et al., 1978; Birula & Rzażewski, 1979; Rzażewski
& Wódkiewicz, 1991; Nataf & Ciuti, 2010; Viehmann et al., 2011; Jaako et al.,
2016) – these are the so-called Dicke no-go theorems.

On one hand, it is important to emphasize that the no-go statements pertain
to the Dicke model in its original setting, that is, natural polarizable particles
(atoms/molecules) interacting with the electromagnetic field, since they touch
upon the derivation of the Dicke model from the a priori nonrelativistic QED
theory applied to these systems. As such, they do not concern any results derived
from the Dicke model itself (such as the phase transition) or the application of
the Dicke model in other settings, perhaps in a phenomenological way. Since
the models (1.1) are the simplest possible models that describe the interaction
of a saturable system with a harmonic oscillator mode, it is natural that it has
found applications in other fields. For example, the Lipkin-Meshkov-Glick
model originating from nuclear physics (Lipkin et al., 1965) is a very close
relative. Much more recently, an open-system version of the Dicke model has
been proposed to describe motional excitations of a Bose-Einstein condensate
in a CQED setting (Nagy et al., 2010), with the phase transition experimentally
demonstrated at ETH Zürich by Baumann et al. (2010). The realization of the
Dicke phase transition was proposed in a multilevel-atom scheme relying on
cavity-mediated Raman transitions by Dimer et al. (2007), a closely related
scheme having been realized very recently by Zhiqiang et al. (2017). It has more-
over been suggested that the Dicke phase transition can occur in adequately
designed CCQED and hybrid systems (Nataf & Ciuti, 2010; Ciuti & Nataf, 2012;
Lambert et al., 2016; Bamba et al., 2016; Zou et al., 2014).

On the other hand, the no-go statements are problematic even in their
original setting, most importantly because they rely on the a prioriHamiltonian
of the QED of nonrelativistic point charges:13

13. Some of the no-go statements
furthermore rely on a single-mode
approximation, that will be shown
inadequate in the context of the su-
perradiant phase transition in Part I.

H =∑
α

[pα − qαA(rα)]2

2mα
+
ε0
2 ∫ dV (∇U)2 +Hfield. (1.3)

The description of the interaction of dipolar matter with the electromagnetic
field based on this theory14

14. The reason why we consider this
Hamiltonian a priori is that it can
be derived from a Lagrangian that

assumes the simplest possible form of
light-matter interaction: ∫ dV j ⋅ A�.

is known to suffer from two problems on whose
account this theory is not a suitable foundation for the standard models of
quantum optics listed in Eq. (1.1):15

15. For a more precise formulation
of these problems cf. Section 2.2.
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• The canonical momentum of the charges differ from their kinetic one
by a term proportional to the vector potential at the particle’s position,
which leads to

– the infamous A-square term coupling all the modes and predicting
the spontaneous creation and annihilation of pairs of photons, and

– incoveniences when the particle’s motion is included in the descrip-
tion.

• There is an instantaneous (Coulomb) interaction between the particles,
which hinders the definition of atoms andmolecules that wewould like to
think about as independent entities held together by internal electrostatic
forces.

Partly in response to these problems, multipolar QED, the adequate foundation
of the nonrelativistic quantum electrodynamics of atoms and molecules was
worked out starting from the late 1950’s. It is based on a unitary transforma-
tion, the Power-Zienau-Woolley (PZW) transformation (Power & Zienau, 1959;
Atkins & Woolley, 1970; Woolley, 1971), leading to a theory where matter is
described by a polarization field, and the displacement replaces the electric field.
Though these notions call to mind macroscopic electrodynamics, the theory is
microscopic, and capable to describe an arbitrary ensemble of point charges
interacting with the electromagnetic field in vacuum.The PZW transformation
is defined in the Hamiltonian formalism, and is independent of the choice
of gauge, still, the relationship to gauge transformation was clarified (Wool-
ley, 1974; Chernyak &Mukamel, 1995) and the Lagrangian and Hamiltonian
descriptions were assessed (Woolley, 1975).

It has been a common belief in the field – suggested even by venerable text-
books – that the a priori picture and the PZW picture are equivalent, and the
choice between them is a matter of taste.This is true in the strictly mathematical
sense, since the two pictures are connected by canonical transformation, so
they must yield the same value for all physical observables. However, the equiv-
alence does not hold even in the theoretical physics sense, since both pictures
are utterly useless without further approximations. Even the long-wavelength
approximation that is fundamental in the description of atoms and molecules –
we cannot have a dynamical electromagnetic field on the intra-atomic scale if
we want well-defined atomic energy levels –16 16. It is interesting to note that whereas

macroscopic dipole antennas tend to
have sizes similar to the wavelength of
their emitted radiation, atoms are much
smaller than the wavelengths they emit,
which makes the long-wavelength
approximation possible. As we will
argue in Chapter 3, cf. Eq. (3.11), this
is due to the small value of the fine-
structure constant.

breaks the equivalence. In many
experimental configurations, a two-level (or few-levels) approximation for the
atoms (Barton, 1974) or a single-mode (or few-modes) approximation for the
field is invoked that also depend on the picture.

It is a strange moment in the history of the field that this discrepancy
lingered for several decades: the full-fledged adequate theory of atomic QED
on one hand, the Dicke no-go theorems based on the inadequate a priori theory
on the other. In a few instances, theDickemodel was tackled in the PZWpicture
(Emeljanov & Klimontovich, 1976; Kimura, 1981; Sivasubramanian et al., 2001),
but it was not until Keeling (2007) that the consequences of the discrepancy
were realized. He pointed out that complementing the Dicke model with terms
stemming from the A-square term as in the no-go theorem of Rzażewski et al.
(1975) is still not consistent because a further term of equal importance must be
taken into account: the instantaneous Coulomb interaction between the charges
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belonging to different atoms. His conclusion was that with this term included in
the model Hamiltonian, the criticality is restored. He found that by applying a
single-mode, two-level-atom truncated version of the PZW transformation on
thismodelHamiltonian, one exactly recovers the original Dickemodel, with the
modified interpretation that in this picture, the boson mode a corresponds not
to a singlemode of the transverse electric field, but that of the displacement field.
It is the displacement field that undergoes spontaneous symmetry breaking
which is shown to be due to atomic polarization only, the transverse electric field
– a gauge-invariant quantity – remaining zero also in the electric-dipole gauge. A
serious limitation of the approach of Keeling (2007), however, is that it is based
on a single-mode approximation, and not only for the electromagnetic field but
also for the polarization density, which is not adequate to describe point-like
dipoles. It also implies that in this approach, we in fact cannot distinguish
between electric field and displacement, anywhere in space.

In Part I we dissolve the above-described issues.1717. In the case of hybrid and artificial
systems, where the full microscopic

description of the system is untractable,
the question of the a priori description
and the status of the no-go statements
can remain an adequate one (Nataf &

Ciuti, 2010; Viehmann et al., 2011; Ciuti
& Nataf, 2012; Todorov & Sirtori, 2012,
2014; Todorov, 2014; Jaako et al., 2016).

• We generalize the PZW transformation for arbitrary confined geometries,
and emphasize that the standard models of quantum optics must be
derived from the multipolar Hamiltonian instead of the a priori one.

• The no-go statements are dissolved, moreover, we show that the super-
radiant phase in the Dicke model derived in the PZW picture yields a
mean field not only in the displacement, but also in the electric field.

• We dissolve the P-square problem by regularizing the PZW transfor-
mation to arrive at a picture where the atoms interact only when their
“intimacy zones” – about an order of magnitude larger than the natural
size of the atom – touch.

• In this picture, a natural limit on the possibility of ultrastrong coupling
between atomic matter and light presents itself. Based on this limit, we
claim that the superradiant phase transition is equivalent to condensation
(solidification or liquefaction).

• We calculate the depolarization shift of the phase transition point, and
find it to be three times the Dicke critical density. This shift is effected by
the contact interaction of the atoms when the intimacy zones touch.

1.4 the breakdown of photon blockade

Quantum phase transitions (QPT), both first- and second-order (Vojta, 2003)
have been at the forefront of physics research for half a century.The original idea
of QPTs as abrupt shifts in the (pure) ground state of closed quantum systems
as a function of some control parameter (Sachdev, 2011) appealed mostly to
condensedmatter physics. Dissipative phase transitions (DPT) occurring in the
(in general, mixed) steady state of open quantum systems (Capriotti et al., 2005;
Diehl et al., 2008; Nagy et al., 2010; Diehl et al., 2010; Kessler et al., 2012; Le Boité
et al., 2013; Marino & Diehl, 2016; Minganti et al., 2018; Hwang et al., 2018;
Gutiérrez-Jáuregui & Carmichael, 2018; Reiter et al., 2020; Soriente et al., 2021),
however, broadened the scope of phase transitions to encompass meso- and
later even microscopic systems, where the interaction with the environment
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essentially affects the system dynamics. A DPTwas first realized experimentally
in a Bose-Einstein condensate interacting with a single-mode optical cavity
field by Baumann et al. (2010), and they are increasingly relevant to today’s
quantum science and technology (Verstraete et al., 2009; Fernández-Lorenzo
& Porras, 2017; Fitzpatrick et al., 2017; Garbe et al., 2020).

In view of this success, it is remarkable that in recent years yet another phase-
transition paradigm could emerge, namely, first-order dissipative quantum
phase transitions. A first-order phase transition means that two phases can
coexist in a certain parameter region, like water and ice at 0 ○C for a certain
range of free energy. Coexistence of phases in the quantum steady state seems
paradoxical, since the steady-state plus normalization conditions for the density
operator constitute an inhomogeneous linear system of equations, that admits
only a single solution. That is, given the Liouvillian superoperator L for the
Markovian evolution of the system, there exists only a single normalized density
operator ρst that satisfies

Lρst = 0. (1.4)

The resolution is that a single density operator can accomodate the mixture of
two macroscopically distinct phases expressing also a ratio of the two compo-
nents. In the water analogy, at 0 ○C we could symbolically write

ρst = c ρwater + (1 − c) ρice, (1.5)

with c growing from 0 to 1 along increasing free energy.
Recently, first-order dissipative quantum phase transitions have been found

in various systems. One such platform is clustering of Rydberg atoms described
by Ising-type spin models (Ates et al., 2012; Marcuzzi et al., 2014; Overbeck
et al., 2017; Roscher et al., 2018; Samajdar et al., 2021; Myerson-Jain et al., 2022),
realized experimentally by Carr et al. (2013), Malossi et al. (2014), and Letscher
et al. (2017). Various other systems of ultracold atoms (Labouvie et al., 2016;
Ferri et al., 2021) and dissipative Dicke-like models (Gelhausen & Buchhold,
2018; Stitely et al., 2020) also exhibit signatures of a first-order DPT. Other
platforms include (arrays of) nonlinear photonic or polaritonicmodes (Le Boité
et al., 2013; Casteels et al., 2017; Debnath et al., 2017; Rodriguez et al., 2017;
Savona, 2017; Fink et al., 2018; Vicentini et al., 2018; Lang et al., 2020; Li et al.,
2022), exciton-polariton condensates (Hanai et al., 2019; Dagvadorj et al., 2021),
and circuit QED (Mavrogordatos et al., 2017; Brookes et al., 2021).

The Jaynes-Cummings (JC) model expressed by the Hamiltonian

HJC = ωM a†a + ωA σ† σ + g(a† σ + σ† a) + iη(a† e−iωt − a e iωt) , (1.6)

(here quoted together with driving for the purposes of Part II with η the drive
amplitude and ω the drive frequency) is one of the most important models
in quantum science (Larson & Mavrogordatos, 2021). It is a prototype of an-
harmonic spectrum in the strong-coupling regime, as demonstrated in cavity
(Brune et al., 1996) and circuit QED (Fink et al., 2008), and with quantum dots
in semiconductor microcavities (Kasprzak et al., 2010). This anharmonicity is
the basis of the photon blockade effect (Imamoḡlu et al., 1997), designated in
analogy with Coulomb blockade in e.g. quantum dots (recently, an analogous
effect has been observed with polaritons by Ohira et al. (2021)). Photon block-
ade means that an excitation cannot enter the JC system from a drive tuned to
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resonance with the empty resonator (or, a second excitation from a drive tuned
to resonance with one of the single-excitation levels), due to the distortion of
the spectrum via the coupling between the resonator and the two-level system.
This blockade is, however, not absolute, as it can be broken (Carmichael, 2015;
Dombi et al., 2015; Curtis et al., 2021; Pályi et al., 2012) by strong-enough driving
due to a combination of multi-photon events and photon-number increasing
quantum jumps, cf. Chapter 6. In an intermediary drive range, in the time
domain the system alternates between a blockaded, “dim” state, and a “bright”
state in which the blockade is broken, with the system residing in the high-
excitation, closely harmonic part of the spectrum. In phase space, this behavior
results in a bimodal steady-state distribution

ρst = c ρbright + (1 − c) ρdim, (1.7)

in analogy with Eq. (1.5), with c growing from 0 to 1 with increasing η.
Bistability in the time domain or bimodality in phase space is, however,

not sufficient for a first-order phase transition (Bonifacio et al., 1978). It is also
necessary that the two constituents in the mixture (1.7) corresponding to the
two states in the temporal bistable signal be macroscopically distinct as is the
case in Eq. (1.5). As has been shown theoretically by Carmichael (2015), cf. also
Chapter 6, the photon blockade breakdown (PBB) effect has such a regime, a
thermodynamic limit, where both the timescale and the amplitude of the bistable
signal goes to infinity, resulting in long-lived and macroscopically distinct dim
and bright phases. Remarkably, this thermodynamic limit is a strong-coupling
limit, defined as g →∞, and has nothing to do with the system size, the system
remaining the same Jaynes–Cummings system consisting of two microscopic
interacting subsystems.1818. This is the reason why this

phase transition has been dubbed 0-
dimensional by Carmichael (2015).

In this limit, the temporal bistability is replaced by
hysteresis, the state of the system being determined by the initial condition,
since switching to the other state entails infinite waiting time. The passage to
the thermodynamic limit, that is, the indefinite increase of g will be considered
a finite-size scaling in Chapter 6. In Chapter 7, we set out to model this limit
and scaling experimentally in a circuit QED system.

Since its inception, CCQED (Blais et al., 2021) has displayed amazing ca-
pabilities, as demonstrated by the feats of quantum computation performed
in arrays of such systems (Blais et al., 2020). But even single CCQED systems
have continued to display rich physics, including the observation of the Bloch-
Siegert shift by Pietikäinen et al. (2017), quantum-to-classical transition by
Pietikäinen et al. (2019), prediction of quantum jumps by Minev et al. (2019),
quantum accoustodynamics by Manenti et al. (2017), and tailored nonlinearity
by Vrajitoarea et al. (2020).

In Part II, we exhibit the photon blockade breakdown effect in its first-order
DPT and quantum aspects. In Chapter 6, we numerically study the finite-size
scaling, proposing an appropriate scaling of the system parameters in the
g →∞ thermodynamic limit. We determine finite-size scaling exponents of
the timescale and the drive strength. We display the role of the well-resolved
quantum-mechanical JC spectrum, and cascades of quantum jumps in the
blink ON/OFF events of the bistability.

In Chapter 7, experimental realizations of the PBB effect on CCQED plat-
forms are described, where we participated from the theoretical and numerical
side. The first experimental realization (cf. Section 7.2) was done in the Wallraff
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group at ETH Zürich with a coplanar resonator. Numerical modeling of their
results revealed that the transmon artificial atom (generally used as a qubit)
has to be described as a three-level system in order to capture some essential
characteristics of the experiment.

In Section 7.3, we approach the thermodynamic limit of PBB as a first-
order DPT by following the finite-size scaling over seven orders of magnitude
in the characteristic timescale of the bistable signal. The indefinitely strong-
coupling g/κ → ∞ limit (where κ is the resonator linewidth) is approached
by decreasing κ instead of increasing g. For the smallest κ values, the blinking
timescale reaches 6 s, which is at least four orders of magnitude higher than the
slowest timescale of the system (∼ [1 kHz]−1). We experimentally determine
the finite-size scaling exponent of the timescale. We sketch the phase diagram,
identifying the phase coexsistence region on the drive detuning – η plane.
Comparing the experimental results with full quantum-jump Monte Carlo
simulations and semiclassical calculations, we assess the role of higher-lying
transmon states and their phase diffusion.

1.5 computational aspects

TheQuantum JumpMonte Carlo (or Monte Carlo Wave-Function – MCWF)19 19. The use of the term “wave function”
is not completely correct in this version
of the name because the method is
generally applicable for state vectors
and not only for those expanded in
space (which are the wave functions).
Nevertheless, we continue using this
customary acronym.

method has been around since at least the late 1980s, the notion of quantum
jumps being introduced in connection with intermittent fluorescence (Plenio
& Knight, 1998) in works like Diósi (1985) and Javanainen (1986). The first
versions of implementable algorithms were published in the early 1990s (Dum
et al., 1992; Dalibard et al., 1992). In a parallel development, another kind of
quantum trajectory methods, the Quantum State Diffusion has been worked
out by Gisin & Percival (1992).

The Quantum Jump method can be put forward with two distinct motiva-
tions:

As a computational tool to unravel the quantum master equation into a set
of quantum trajectories in order to reduce the dimensionality of the
numerical problem to make larger systems tractable. In this case, it is
not necessary to endow the individual trajectories with any physical
meaning.

As a physical model to reflect the behavior of single realizations of small quan-
tum systems. While quantum mechanics was originally conceived to
describe ensembles, with single ions in Paul traps (Cook & Kimble, 1985)
being the first examples it has in the last few decades become possible
to study single realizations. In this case, the individual trajectories can
be considered physical, and they will depend on the way the system is
observed, in accordance with the lore of quantum measurement.

While the benefit in terms of net computational resources as compared to direct
master equation simulation is not clear cut, since too many trajectories may
be needed for acceptable statistics (Breuer et al., 1997); in realistic situations
the system is often so big that even a single copy of the full density matrix
exceeds memory limits. Then, in the ergodic case, it is still a possible solution
to content oneself with finding the steady state via time averaging along a
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single long trajectory. Already a single electromagnetic mode coupled to a
few-level system (like in CQED) can easily fall into this category under realistic
conditions (Dombi et al., 2013, 2015), but in this way it was possible to study a
system consisting of two atoms coupled to a single mode (Vukics et al., 2007),
or two-modes (ring cavity) coupled to a single atom (Niedenzu et al., 2010).
Ergodicity could be utilized – although with heavy computational cost – even
in the situations presented in Part II, that is, for a system featuring two distinct
semiclassical attractors. Recently, quantum trajectories have been applied also in
quantummany body contexts (Daley, 2014; Kirton & Keeling, 2017), sometimes
together with tensor-network techniques.

Adaptive algorithms are very important in dynamical simulations as in
general there is no way to predict an optimal stepsize, which even varies along
the trajectory evolution. While in the case of deterministic problems (ordinary
differential equations – ODEs), seasoned robust generic algorithms exist, the
same is not true for stochastic problems (stochastic differential equations –
SDEs). Such dynamics and their numerical simulation have been intensively
researched during the last decades, numerous excellent papers and books can
be found in the literature giving conditions on strong and weak convergence,
stability, and also rates of convergence of the discretized solution (Buckwar
& Riedler, 2011; Buckwar et al., 2011; Clark & Cameron, 1980; Talay, 1994).
The simplest such method is the Euler-Maruyama scheme which is basically
the extension of the explicit Euler method well-known from the theory of
ODEs (for a more detailed description of the various numerical methods the
reader is referred to Kloeden et al. (2012)). As opposed to the deterministic case,
where the order of (global) convergence is 1, the order of strong convergence
in the case of the Euler-Maruyama method is only 1/2. Generally, no numerical
method based only on an approximation of the Brownianmotion can guarantee
an asymptotic convergence rate higher than that (Gaines & Lyons, 1997). For
higher orders of strong convergence (n/2 with n ≥ 2), the Itô-Taylor expansion
yields an answer, which involves approximation of Lévy areas, i.e. integrals of
Brownian motion. Unfortunately, due to the properties of the Itô integral, these
schemes are more complicated than their deterministic counterparts. Usually,
higher order methods are computationally very expensive, and in order to save
computational time, variable stepsize for lower order methods was introduced
and various results on convergence rate and the optimal choice of the stepsize
were published as well (Ilie et al., 2015).

These developments are not directly relevant to MCWF because it does not
consist of the integration of an SDE, but they may be utilized for Quantum State
Diffusion, which does have the form of an SDE – to our knowledge, higher-
ordermethods have not yet been tried in this case.TheMCWF can be described
as an SDE that consists of an ODE driven by a general Poisson-process.

In Chapter 9, we present a stepwise adaptive algorithm to simulate this
process that is by principle more robust than the popular implementation of
the MCWF method (Breuer & Petruccione, 1995; Homa & Diósi, 2017) that
we denote the “integrating method” in this thesis, and that is used e.g. in the
popular QuTiP package (Johansson et al., 2012, 2013). The increased robustness,
whose main reason is that the stepwise algorithm does not depend on an
algorithm for retrieving a past jump-time instant, comes at the cost of some
reduction of efficiency, which however we will argue to be marginal in most
usecases of interest. The algorithm here presented has been used in C++QED
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(cf. Chapter 10) since the inception of that framework, both the algorithm and
the framework having been originally developed for the demanding problem
of simulating motional quantum degrees of freedom expanded in momentum
space (Vukics et al., 2007, 2009; Niedenzu et al., 2010; Schulze et al., 2010;
Niedenzu et al., 2012; Sandner et al., 2013; Winterauer et al., 2015). In this field,
the robustness of our algorithm over the integrating one is especially expressed.

Apart from the parameters governing the precision of the ODE integra-
tion, the stochastic part of our algorithm is governed by the single additional
dimensionless parameter ∆p: the maximal allowed total jump probability per
step. Another aspect of Chapter 9 is a study of convergence of ensembles of
MCWF trajectories to the solution of the density operator as a function of this
parameter.This being also the most important a priori parameter of theMCWF
method, this convergence study is not specific to our algorithm, but pertains to
any possible implementation of the MCWF method, including the integrating
one.

In Chapter 10, we present theC++QED framework, and through this several
techniques and design patterns which are essential to this framework, but
should be applicable for the representation of composite quantum systems in
general.

C++QED addresses the following problem: somebody who writes simula-
tion code for a single quantum particle, mode, or spin today; tomorrow will
want to simulate two or ten such systems interacting with each other. They
want to reuse the code written for the single-system case, but this turns out
to be rather difficult for naïvely written code, due to the algebraic structure
of quantum mechanics. C++QED facilitates this task, providing a framework
for representing elementary physical systems (particle motional degrees of
freedom, harmonic oscillator modes, spins, etc.) in such a way that they can
be immediately used as constituents of composite systems as well. Dynamical
simulations (like with theMCWFmethod) of such, arbitrarily complex systems
can be performed with a set of tools provided by the framework.

Historically, C++QED originated from the simulation of systems in CQED
(hence the name of the framework). Its approach subsequently proved par-
ticularly useful in the wider context of quantum optics (Vukics et al., 2007,
2009; Niedenzu et al., 2010), as this field typically addresses systems composed
of several diverse “small” subsystems interacting with each other; but also in
atomic physics or quantum many-body physics (Vukics et al., 2007; Maschler
et al., 2008; Nagy et al., 2009).

The framework is capable of simulating fully quantum dynamics (Schrödin-
ger equation) of any system, provided its Hamiltonian is expressed in a finite
discrete basis, and open (Liouvillean) dynamics, if the Lindblad operators are
expressed in the same basis. Apart from this, the only limitation on the simu-
lated system is its dimensionality: with present-day hardware, a typical limit
is a few millions dimensions for state-vector, and a few thousands for density-
operator manipulations. Since at present C++QED does not offer any special
tools for addressing many-body problems, only “brute-force” calculations, this
limitation means that such problems cannot be pursued very far. In terms of
number of constituents, the largest system represented so far was ten qubits
interacting with a single electromagnetic mode (Dombi et al., 2013).

C++QED saw a first, prototype version developed between 2006–2008, a
purely object-oriented design, which was partially documented in Vukics &
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Ritsch (2007). The second version, defined by the multi-array concept and
compile-time algorithms, has been developed since 2008. By today it is quite
mature, robust, and trustworthy, having passed thousands of tests also in real-
life situations. It is an open-source project, hosted on GitHub20

20. http://github.com/vukics/cppqed
, and it builds

only on open-source libraries, such as the Boost library collection,21
21. http://www.boost.org

the GNU
Scientific Library,22

22. http://www.gnu.org/software/gsl
Blitz++,2323. http://github.com/blitzpp/blitz and the Eigen template library for linear alge-

bra.2424. http://eigen.tuxfamily.org
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2

THE ELECTRIC-DIPOLE PICTURE IN
ARBITRARY DOMAINS, AND A DICKE
COUNTER-NO-GO STATEMENT

2.1 synopsis

In this chapter we first (Section 2.2) develop a formalism for obtaining the
Power-Zienau-Wolley Hamiltonian and thence the electric-dipole picture of
the quantum electrodynamics of atoms in a domain of arbitrary topology. This
is an improvement over Power &Thirunamachandran (1982), which treatment
was valid for a simply connected region only.

Our treatment allows us to draw conclusions regarding the controversy
around the Dicke phase transition in a cavity. We are formulating a counter
no-go statement in Section 2.3.

The workings of our formalism will be exemplified by the simplest confined
geometry, the plane-parallel one (Fabry-Pérot resonator) in Appendix 2.A.

2.2 the general formalism

Consider a generic (possibly multiply connected) domain D in the three-
dimensional real space bounded by (possibly several disjunct) sufficiently
smooth surfaces ∂D, which are perfectly conducting. Overall, D is assumed
to be bounded. We have an arbitrary number of point charges coupled to the
electromagnetic field confined toD.

In the Coulomb gauge, defined by

∇ ⋅A = 0, (2.1)

the a pioriHamiltonian of the system reads (Weinberg, 2013):

H =∑
α

[pα − qαA(rα)]2

2mα
+
ε0
2 ∫
D

dV (∇U)2 +Hfield, (2.2a)

withU the scalar potential, pα the canonical momentum of particle α conjugate
to its position rα , and

Hfield =
ε0
2 ∫
D

dV [(Π
ε0
)
2
+ c2(∇ ×A)2], (2.2b)

with Π = ε0∂tA being the momentum conjugate to A.1

1. Since it is often missed, we note that
Π is only quasi-conjugate to A, as their
Poisson bracket is proportional not
to the identity, but the projectorR
introduced in Eq. (2.8). Hence, the
Hamiltonian (2.2a) is also only of a
quasi-Hamiltonian form, and to obtain
a real Hamiltonian function, the trans-
verse modes need to be invoked.

Since in this gauge
U is tied to the charges, the second term of Eq. (2.2a) is just the electrostatic
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(Coulomb) energy, while the particle-field interaction is described by a term
proportional to pα ⋅A(rα) in this context.

An important observation is that, unlike in free space, the condition (2.1)
does not fix the potentials completely. The remaining freedom of choosing
the potentials within the Coulomb gauge amounts to a freedom in choosing
different constant values for U on each of the connected components of ∂D,
which will result in various configurations of capacitor fields carried by U . Our
choice here will be to set

U ∣∂D = 0 and A × n∣∂D = 0. (2.3)

Together with Eq. (2.1), the latter condition makes up for the vector potential
satisfying both the electric and magnetic boundary conditions.22. The freedom of choosing the po-

tentials within the Coulomb gauge is
equivalent also to a freedom of fixing
how the inclusion of the cohomologi-
cal fields introduced later in Eq. (2.9),
is shared between the scalar or the
vector potential. With our fixing of
the potentials, what we attain is that

U ∈ dom(grad0) and A ∈ ker(div0),

that is, the electrostatic and radiative
parts of the dynamics take place in

the two distinct orthogonal subspaces
listed later in Eq. (2.10), the cohomo-
logical components of E (capacitor
fields) being attributed solely to A.
Note that the form of the Hamilto-

nian (1.3) depends on this decompo-
sition result, since this ensures that
there are separate electrostatic and
radiative terms in the Hamiltonian,
with no overlap between the two.

The electric-dipole approximation to this Hamiltonian can be obtained in
two steps.

1. (long-wavelength approximation) We assume that the individual point
charges form spatially separated, well-localized clusters, that is, atoms or
molecules. Then, instead of∑α there appears∑A∑α∈A. We neglect all
radiative effects on the intra-atomic scale, that is, we set A(rα) = A(rA),
where rA is the position of that atom Awhich incorporates the charge α.

2. We assume that the atoms have only electric dipole moment, that is, no
net charge and no further electric or magnetic moments.

Upon the first assumption, we split the electrostatic term into intra- and
inter-atomic parts, and take the intra-atomic part as identical to the one in free
space, under the assumption that the distance of atoms from the boundary is
much larger than the atomic radius. The electric-dipole order of the a priori
Hamiltonian then reads:

HED =∑
A
[HA − u pA ⋅A(rA) + vA2

(rA)

+ Vdipole-self
Coul (rA) +∑

B
Vdipole-dipole
Coul (rA−B)] +Hfield, (2.4a)

where u and v are constants composed of the mαs and qαs. The single-atom
Hamiltonian reads

HA = ∑
α∈A
(
pα2

2mα
+

qα
8πε0

∑
β∈A
β≠α

qβ
∣rα − rβ ∣

). (2.4b)

By this point it becomes apparent why the Coulomb gauge is a preferred choice
in the quantum electrodynamics of atoms: the static part of the field effective
within the charge clusters enables us to define Schrödinger-atoms with well-
defined level structures. In many cases of interest the interaction with the field
can be treated on a separate time/energy scale, so that the atoms retain their
identity. This is going to be the main theme of Chapter 3. Another interesting
gauge choice in molecular QED is the point- or Poincaré gauge, cf. Woolley
(1974) and Keller (2011).

It has been tempting to take the Hamiltonian (2.4) as the starting point
of cavity QED. However, this theory is fraught with the following problems,
which e.g. in quantum optics, limit its usefulness in many situations:
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1. The canonical momentum of the atoms does not equal their kinetical
momentum.

2. The A-square term couples all the modes and yields creation and annihi-
lation of pairs of photons.

3. There is an instantaneous electrostatic interaction between remote atoms
(Vdipole-dipole

Coul ) and an interaction of a single dipole with its own induced
surface charges (Vdipole-self

Coul ). The former is influenced, while the latter is
created by the presence of the boundaries, cf. Vukics & Domokos (2012).

In free space, these weaknesses are known to be dissolved by performing
the PZW transformation on the a pioriHamiltonian (1.3). Here, inspired by the
free-space procedure, we elevate this transformation onto a very general level,
which allows for an arbitrary domainD and boundaries ∂D, i.e. for a general
cavity QED scenario.

The transformation that we adopt is canonical, defined by the type-2 gener-
ating function

G2 ≡ ∫
D

dV A ⋅ (Π′ +RP) +∑
α
rα ⋅ p′α , (2.5a)

which yields a displacement of the momenta

Π =
δG2

δA
= Π′ +RP, (2.5b)

pα =
∂G2

∂rα
= p′α +

∂
∂rα ∫

D

dV A ⋅ P. (2.5c)

At this point, P is an arbitrary vector, andR is part of an orthogonal projector
decomposition of the identity,

Q +R = idL20 . (2.6)

Here, L20 is that subspace of L2(D,R3), the Hilbert space of square-integrable
vector fields, whose elements satisfy the normality boundary condition:

L20(D,R
3
) ≡ {v ∈ L2(D,R3

)∣v × n∣∂D = 0}, (2.7)

which is of course nothing else than the boundary condition on the electric
field (and hence the vector potential) at a perfectly conducting surface.

In order that the transformation (2.5) be canonical,Rmust be a projector
onto the divergence-free subspace of L20:

R ∶ L20 → ker(div0), (2.8)

because this ensures that A in Eq. (2.5a) can be treated as unconstrained. Here,
div0 (and curl0 below) are the divergence (and curl) operators over L2, with the
domain restricted to L20. The notation ‘ker’ refers to the kernel of the operator,
that is, the set of such vectors as are mapped onto zero by the operator. Hence,
both the Coulomb-gauge and the boundary conditions on A can be expressed
by the single condition thatRA = A.
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The crucial result for us to build upon here is the Helmholtz-Hodge decom-
position of L2 (Dautray & Lions, 1990; Binz & Alfred, 2010), which reads:

L2(D,R3
) =
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ker(curl0)

ran(grad0)⊕

ker(div)
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
H2 ⊕ ran(curl), (2.9)

where grad0 is the gradient operator over L
2(D,R) with its domain restricted

to such scalar fields v as vanish on the boundaries: v∣∂D = 0. The notation
‘ran’ refers to the range of the operator. In free space, (D = R3) ran(grad0) =
ker(curl0) (longitudinal fields) and ran(curl) = ker(div) (transverse fields)
holds, and the direct sum of the two makes up for the whole L2(R3,R3). For
general domains, however, the dimension ofH2 is non-zero. The elements of
H2 are called cohomological fields, and, when the electric field is in question,
also capacitor fields.3

3. The dimension ofH2 is equal to
the second Betti number ofD, that in
general enough circumstances in turn
equals the number of two-dimensional

holes in the domain. It is zero if and
only if ∂D is connected. In the case

of a perfect Fabry-Pérot resonator, for
instance (cf. Section 2.A), this subspace
is one dimensional, consisting only of
homogeneous fields parallel to the axis.

On the basis of Eq. (2.9), we can assert that

L20 = ran(grad0)⊕ ker(div0). (2.10)

From this equation, together with Eq. (2.8) it follows that in the decomposition
of the identity in Eq. (2.6), theQ projector must be defined as

Q ∶ L20 → ran(grad0), (2.11)

We recall that in free space Q and R4

4. Since the explicit form ofQ andR
is not needed for our derivation, we
merely note thatQ can be written as

(Qv)(r) = −∇ ∫
D

dV ′ (∇′ ⋅ v(r′))G(r, r′),

where G is the Dirichlet Green’s
function of the problem:

∆G(r, r′) ≡ δ(r−r′) withinD, and G∣∂D = 0,

whereasR can be expressed with the
full set of transverse modes (2.20) as

R =∑
λ
φλ ⊗ φλ .

project onto the longitudinal and
transverse components of vector fields, respectively.

The transformed Hamiltonian reads:

H′ =∑
α

1
2mα

⎡
⎢
⎢
⎢
⎢
⎣

p′α +
∂
∂rα ∫

D

dV A ⋅ P − qαA(rα)
⎤
⎥
⎥
⎥
⎥
⎦

2

+
ε0
2 ∫
D

dV (∇U)2 + ε0
2 ∫
D

dV [(Π
′ +RP
ε0

)

2

+ c2(∇ ×A)2]. (2.12)

So far, we have not specified P. Since according to Eq. (2.3) the scalar potential is
an element of the domain of grad0, Eq. (2.11) allows us to impose the following
condition on P:

ε0∇U =QP. (2.13)

Hence, on account of Eq. (2.6) the electrostatic term in the second term of
Eq. (2.12) and the term containingP2 in the third term combine to give 1

2ε0 ∫D dV P2.
Condition (2.13) is equivalent to5

5. To prove the equivalence, we
first prove (2.13))Ô⇒ (2.14):

−ρ = ε0∆U = ∇⋅QP = ∇⋅(Q+R)P = ∇⋅P,

where the first equality is the Pois-
son equation, the second is obtained
by applying the∇ operator on both
sides of Eq. (2.13), the third is on ac-

count of∇ ⋅ RP = 0, while the
fourth reflects Eq. (2.6). To prove
(2.14)Ô⇒ (2.13) we proceed as

0 = ∇⋅(ε0∇U − P) = ∇⋅(ε0∇U −QP),

where the first equality follows
from Eq. (2.14) and the Poisson
equation, while in the second we
applied again∇ ⋅ RP = 0. It fol-
lows that the vector in parenthesis
on the right-hand side is both in

ran(grad0) = ran(Q), and ker(div0),
which, on account of Eq. (2.10), can-
not be true but for the zero vector,
so that ε0∇U = QPmust hold.

∇ ⋅ P = −ρ, (2.14)

which motivates us to identify the vector field P, so far introduced on purely
mathematical grounds, with the physical notion of the polarization density.

Besides the condition (2.13), the following condition on the other orthogo-
nal component of P,

∂
∂rα ∫

D

dV A ⋅RP = qαA(rα), (2.15)
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would make the first term of H′ simplify. However, this condition cannot be
met exactly, since the left-hand side has zero curl with respect to rα , which is
not true for the right-hand side. Nevertheless, we show that within the electric-
dipole approximation to be performed in the next step, both conditions can be
satisfied.

At this point, let us summarize that under the condition (2.15), the Hamil-
tonian would have the form

H′ =∑
α

p′α
2

2mα
+

1
2ε0 ∫

D

dV P2 −
1
ε0 ∫
D

dV D ⋅ P +H′field, (2.16)

where the kinetic term manifests the coincidence of the canonical momentum
p′α with the kinetic momentum of particle α, eliminating problem (1) listed
after Eq. (2.4). We introduced the displacement fieldD ≡ ε0E + P, which, on
account of Π = ε0∂tA = −RE satisfies Π′ = −RD = −D.6 6. It is a source of confusion, but the

attentive reader will have realized that
despite the appearance of a displace-
ment field, we are still dealing with
microscopic electrodynamics, and all
this is really just a different way of de-
scribing the same things.

The second equality
holds because of Eq. (2.14) and Gauss’ law.H′field is formally equivalent to (2.2b),
the only difference being the transformed field momentum.

We now move from the description of point charges towards that of atoms
in this picture. The polarization field is∑APA, and since the atoms are spatially
separated,

∫
D

dV P2 =∑
A
∫
D

dV P2A, (2.17)

therefore the first two terms of Hamiltonian (2.16) give the internal energy of
the atoms. In the electric-dipole approximation of atoms

PA(r) = (∑
α∈A

qαrα)δ<(r − rA) ≡ dA δ<(r − rA), (2.18)

dA being the electric dipole moment of atom A. The function δ< behaves as a
delta function over a spatial scale that is larger than the size of the atoms, while
on the intra-atomic scale it is defined such that condition (2.14) be satisfied.7 7. Clearly, for a nonzero dipole moment,

the charges cannot be at exactly the
same position.

With this definition, condition (2.15) is met under our assumption that A(rα) =
A(rA).

With the two conditions being satisfied, we can proceed from Hamiltonian
(2.16) to obtain the electric-dipole Hamiltonian in this picture:

H′ED =∑
A
(H′A − dA ⋅

D(rA)
ε0
) +H′field, (2.19a)

where the single-atom Hamiltonian has the form:

H′A = ∑
α∈A

p′α
2

2mα
+

1
2ε0 ∫

supp(PA)

dV P2A. (2.19b)

In the second term, the domain of the integration can be restricted to the
support of PA, so that unless the atom is very close to any of the boundary
surfaces or other atoms, the single-atom Hamiltonian is not affected by the
presence of the boundaries or other atoms at all. Chapter 3 will have it as one of
its main themes how far this individualistic picture of atoms can hold, and what
are its consequences on the largest achievable atom-field coupling strength.
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The notion of an atom has not remained invariant under the PZW transfor-
mation, as the potential term in theHamiltonian (2.19b) is a priori very different
from what we are used to. In Section 3.2 we are discussing possible forms of the
polarization field, and their impact on the single-atom Hamiltonian, together
with regularization strategies in situations where such are needed. Here, we
will merely assume that a level-scheme similar to that of a Schrödinger-atom
can be defined also in the new single-atom Hamiltonian, and it is possible to
restrict such a scheme to simple level structures (two-level, lambda, etc.) in
the situations where this is possible for the single-atom Hamiltonian (2.4b).88. The resonances of the full interact-

ing system are of course at the same
frequencies regardless of the picture.
On the other hand, when truncat-
ing the system degrees of freedom

(e.g. atomic two-level approximation,
single-mode approximation for the
field, as in standard models of quan-

tum optics (1.1)), we obtain physically
different models in different pictures.

Importantly, the new Hamiltonian (2.19), is free from the problems listed above.
Here,

1. the canonical momentum coincides with the kinetic one

2. the awkward A-square term has disappeared, as have

3. the two Coulomb terms, describing atom-atom and atom-boundary
interaction.

In H′ED, the boundary enters only via the displacement fieldD, and the atoms
interact only in a manifestly retarded way, via the radiation field.

For quantizing the theory, we introduce the transverse modes as solutions
to the constraint vectorial Helmholtz equation:99. It can be proven that the set of the

transverse modes, that is, the eigenvec-
tors corresponding to non-negative
eigenvalues span ker(div0), and that

the subspace of zero-frequency modes
coincides withH2, that is, ωλ = 0 if
and only if φλ ∈ H2. Hence, on this

degenerate finite dimensional subspace
H2, an arbitrary basis can be chosen.

∇ ×∇ × φλ =
ω2
λ

c2
φλ , with∇ ⋅ φλ = 0 and φλ × n∣∂D = 0. (2.20)

The vector potential A can be expanded in terms of these (dimensionless)
modes:

A =∑
λ

√
ħ

2ε0Vωλ
(φλaλ + φ

∗
λa

†
λ), (2.21a)

where aλ is the annihilation operator of the corresponding mode, ωλ is its
frequency, and V is the volume of the domain. As noted above, in the PZW
picture the conjugate momentum is related toD simply as

D = −Π′ = i∑
λ

√
ħε0ωλ

2V
(φλaλ − φ

∗
λa

†
λ). (2.21b)

2.3 a dicke counter-no-go statement

We are now ready to systematically introduce the single-mode approximation,
which is fundamental to the standard models of cavity QED (1.1). Our analysis
has shown that even in the presence of boundaries, when the possibility of a
single-mode approximation arises at all, we still need the full mode expansion
(2.20) for the cancellation of the A-square and the dipole-dipole interaction
terms. Once this is done, in the new picture we can safely pick out one of the
modes φλ. This is at variance with the approaches of Knight et al. (1978) and
Keeling (2007). In fact, the single mode approximation is much more adequate
in the new picture by principle, since in the original picture, the A-square term
intercouples all the modes.

The standard models of quantum optics can be derived with the additional
assumption: the two-level approximation for the atoms. With this, the atomic
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ensemble can be treated as a spinN/2, with spin operators S±, Sx , etc.This yields
models like the Dicke and (with an additional rotating-wave approximation)
the Tavis-Cummings in the new picture, where the three terms correspond
one by one to the terms of the full microscopic Hamiltonian (2.19) in the same
order. The coupling coefficient in the new picture reads

gA(rA) =
√

ω@

2ħε0V
⟨0∣dA∣1⟩ ⋅ φ@(rA), (2.22)

where ∣0⟩ and ∣1⟩ denote the two atomic states. Note that it is proportional
to the square root of the frequency of the selected mode, in contrast to the
original picture, where the form (2.21a) of the vector potential gives a coupling
coefficient proportional to the inverse of the square root of the frequency.

The important point here is that no term of the Hamiltonian (2.19) had to
be neglected, so that the A-square – direct coupling between the modes – or P-
square problems – direct electrostatic coupling between the atoms – (Bamba &
Ogawa, 2014) do not appear in this treatment. This is in contrast to a treatment
based on the original picture, where Dicke no-go statements were formulated
based on the presence of the A-square term (Rzażewski et al., 1975; Nataf &
Ciuti, 2010), or on a single-mode description (Knight et al., 1978). Our analysis
in this chapter displays that these arguments are irrelevant when the Dicke
model is derived from the PZW picture, so that there is no such obstacle for
the Dicke phase transition to occur in a light-matter system. The consequences
of the P-square term will be further assessed in Chapters 3 and 4.

There remains to clarify the connection between the (purely transverse)
displacement field D and the transverse part of the electric field E�.10 10. In this paragraph, adapted from

Vukics & Domokos (2012), we assume
a quasi-free-space situation when the
dipoles are far from the boundaries,
so that we use the longitudinal and
transverse fields instead of the general
projectorsR andQ.

We
address the question whether a spontaneous mean field beyond the Dicke
critical point in a single mode ofD yields a field in E�, that is, true radiation,
or this spontaneous mean field can be accommodated purely by the P field, cf.
the relation

D = ε0E� + P�. (2.23)

Since every dipole P is surrounded by a cloud of P� and P∥ fields (of opposite
signs), both vanishing inverse cubically with increasing distance from the dipole
due to the relation P∥ = −ε0E∥ and that P� = −P∥(r) everywhere outside the
point-like dipoles, a mean field in a mode ofD (whose spatial distribution is
determined by the mode function alone) might be carried by P� only around
the dipoles, while far from the dipoles its carrier must be E�. This means that
the phase transition in the Dicke model that we obtain in the PZW picturemust
result in a spontaneous mean field in the gauge-invariant observable E�. These
considerations also show that a single mode of the field in the new picture
(where the modes expand the D field, cf. Eq. (2.21b)) are in general composed
of all the modes in the original picture.

2.a the fabry-pérot configuration

To exemplify the above general formalism, we consider one of the simplest
confined geometries, the perfect Fabry-Pérot cavity, that is, two parallel infinite
planes of perfect conductors in the x − y plane. Hence, the axis of the cavity
lies in the z direction. The left mirror is situated at z = 0, and the length of the
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Figure 2.1: The Fabry-Pérot configuration with a single dipole within the cavity together with
its image dipoles indicated in bleached colors.

cavity is L (cf. Fig. 2.1). In this case,

D = {r ∈ R3∣0 < z < L} and ∂D = {r ∈ R3∣z = 0 or z = L}. (2.24)

2.A.1 Radiative part of the field

The boundary conditions are:

ẑ × E = 0 = ẑ B at the mirrors, (2.25)

and the mode functions satisfying these read (Meschede et al., 1990):

φEk(r) ≡ k̂� × ẑ sin (knz) e
ik�r� , (2.26a)

φMk (r) ≡
1
k
(k� cos (knz) ẑ − ikn sin (knz) k̂�)e ik�r� . (2.26b)

They are designated transverse electric (TE) and magnetic (TM) modes, respec-
tively, with reference to the direction of the fields related to the k vector. We
have introduced

r ≡ zẑ + r�, k ≡ knẑ + k�, r�, k�� ẑ, kn ≡
nπ
L
. (2.27)

Note that the polarizations are fixed by the direction of k�, while in the case
of k� = 0 we are left with two sinusoidal modes of orthogonal polarization,
which can be chosen arbitrarily in the transverse direction of the cavity. The
dispersion relation reads:

ω2
k ≡ c

2
(k2n + k

2
�) ≡ c

2k2. (2.28)

Furthermore, the mode functions satisfy the transversality condition:

∇ ⋅ φE,M = 0. (2.29)

For kn = 0, the TE modes vanish identically, so that we are left with TM
modes only. The latter, if k� = 0 as well, describes a homogeneous field parallel
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to the axis, which is the only cohomological field configuration in the Fabry-
Pérot geometry. That is,

H2 = {φMk=0}. (2.30)

The projector on ker(div0) reads

R =∑
k
{φEk ⊗ φEk + φ

M
k ⊗ φMk } =

S
(2π)2 ∫ d2k� {

∞

∑
n=1

φEk ⊗ φEk +
∞

∑
n=0

φMk ⊗ φMk }.

(2.31)

2.A.2 Electrostatic part of the field

In this geometry, the electrostatic (Dirichlet) Green’s function can be easily
obtained in Descartes coordinates with the method of image charges, while in
cylindrical coordinates we quote the formula given in p. 109 of Gray &Mathews
(1966):11 11. This geometry is an exactly solvable

problem, since in addition to Green’s
function, the mode structure and the
dispersion relation are also known
exactly.

G(r, r′) = − 1
4π∑n

(
1

∣r − r′ − 2nLẑ∣
−

1
∣r − r′� + (z′ − 2nL)ẑ∣

)

= 2
∞

∫
0

dλ sinh (λ(L − z)) sinh (λz
′)

sinh (λL)
J0(λ
√
r2� − r′2� − 2r�r′� cos (ϕ − ϕ′)),

(2.32)

in the last line z ≥ z′, otherwise z and z′ has to be interchanged. It can be clearly
seen that G vanishes if either z or z′ equals 0 or L. The form in the first line is
the expression of the method of point charges.

* * *

Using the above forms, it can be shown explicitly that the completeness
relation (2.6) holds with the forms given in note 4. With moderate effort, this
relation can be reduced to the identity (22) of Vukics & Domokos (2012), that
was proved in that paper.
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3

REGULARIZATION OF THE THEORY
AND ITS IMPACT ON THE
POSSIBILITY OF ULTRASTRONG
COUPLING

3.1 synopsis

In this Chapter we survey the consequences of the description developed in
Chapter 2. We discuss possible forms of the polarization field, and show why
the P-square term appearing in Eq. (2.19b) can be a problem. We present an
alternative definition of the polarization field which gives a meaningful po-
tential term in the single-atom Hamiltonian and, at the same time, retains
the advantage that there is no direct electrostatic interaction between atoms
sufficiently apart. The proposed definition will allow for exploring the limits of
ultrastrong coupling between atomic matter and light.

We acknowledge that the definition of the PZW transformation has a
freedom: the choice of the transverse part of the polarization field. We identify
the restrictions this field has to meet, and define the transverse part of the
polarization field generated by spatially distinct, well-localized, neutral charge
clusters (atoms ormolecules).With this definition, the passage to themultipolar
picture is a class of transformations parametrized by a single wave-number-
cutoff parameter. We show how to define bounds for the cutoff wave number
on intuitive physical basis:

the lower bound comes from the required disappearance of theA-square term,
while

the upper bound from that the potential term in Hamiltonian (2.19b) be only
a slightly perturbed Coulomb potential.

With this appropriate choice, we arrive at a picture (regularized electric-
dipole – RED – picture) where the atoms interact exclusively via the radiation
modes of the electromagnetic field by means of photon emission and absorp-
tion processes. Since the instantaneous electrostatic dipole-dipole Coulomb
interaction between spatially distinct atoms is canceled, the atoms have well-
defined resonances regardless of the presence of other atoms. The necessary
requirement is that the atoms do not approach each other within the distance
corresponding to the cutoff; i.e., they all are surrounded by what we can call an
intimacy zone.

The RED picture is thus unsuited for describing molecule formation or
solidification. This is to be noted because our results indicate that the super-
radiant quantum phase transition accompanied by ferroelectric ordering of the
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Figure 3.1: Illustration of the Power form of the polarization field for a single point charge
reproduced from Cohen-Tannoudji et al. (1997) p. 281. The real charge distribution (a) is a
point charge qα at rα . It is equivalent (b) with the reference charge distribution (qα at O) plus
n dipoles qαrα/n. The Power form of the polarization field for this situation is obtained as the
limit n →∞.

atoms in the dipolar Hamiltonian (most simply in the Dicke model) blends into
that commonly observed phase transition, which is solidification. Nevertheless,
sufficiently far from the regime of molecule formation, the RED picture can be
used to evaluate the limitation of ultrastrong coupling within the Dicke and
related models.

3.2 possible forms of p and the single-atom
hamiltonian

In the previous chapter, we introduced the fieldP, as a replacement of the charge
density in describing the “matter” part of the system. To be more precise, the
polarization field describes not a charge density proper, but the displacement
of a charge density with respect to a reference charge density:11. In case of a non-trivial reference

charge density, the displacement
field is no longer purely transverse:

∇⋅D = ∇⋅{ε0E + P} = ρ−ρ+ρref = ρref ,

a relation familiar from macro-
scopic electrodynamics.

∇ ⋅ P = −ρ + ρref. (3.1)

A natural form of the polarization field is the Power form.2

2. This is a simplified account, for a
recent retelling of all the intricacies
of the full story, cf. Woolley (2020)

For a set of point-like
charges, it reads (cf. also Fig. 3.1):

P(r) =∑
α
qα(rα − r

(0)
α )

1

∫
0

du δ(r − r(0)α − u[rα − r
(0)
α ]), with (3.2a)

ρref(r) =∑
α
qα δ(r − r

(0)
α ), (3.2b)

In the case of neutral atoms, the most convenient choice for the reference
distribution is that all the charges belonging to a single atom be localized in the
nucleus of the atoms. (This leads to an identically zero reference distribution.)
Then,

P(r) =∑
A
∑
α∈A

qα(rα − rA)
1

∫
0

du δ(r − rA − u[rα − rA]), (3.3)

where rA is the position of the nucleus of atom A. Besides being intuitive,
this form has the advantage that it satisfies the separability condition (2.17)
exactly. However, it has the serious disadvantage that the P2 term, appearing
in the PZW Hamiltonian (2.16) or in the single-atom Hamiltonian (2.19b),
contains a distribution squared. Indeed it is a common belief that the A-square
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problem just resurfaces as the P-square problem in the PZW picture, and the
transformation doesn’t solve anything (Bamba & Ogawa, 2014).

Since Power & Zienau (1959), this problem was conventionally treated by
a procedure inspired by renormalization. Another possibility is to endow the
point charges with finite extension, considering them spheres or discs facing
the center of the corresponding atom, so that the infinitesimal filaments of
nonzero polarization in the form (3.2a) become finite tubes. This, however,
leads to an atom picture similar to quark confinement, hence fundamentally
deviating from the normal Schrödinger atom: in this case each electron would
interact only with the atomic center, but with a force that would grow linearly
with the distance from the center. Electrons would interact with each other
only when their corresponding tubes intersect.

In the following we give a straightforward regularization proceduce that
leads only to a perturbation of the Schrödinger atom.

3.3 quantum electrodynamics of atoms in
the multipolar picture

Let us rewrite the Hamiltonian in the multipolar picture (2.16) for the purposes
of this chapter as

H = HEM +Hkin +
1
2ε0 ∫ dV P2 −

1
ε0 ∫ dV P ⋅D, (3.4)

where HEM is the Hamiltonian of the free electric field, Hkin is the kinetic
energy of the atoms, andD is the (purely transverse) electric displacement field.
P is the polarization field, which plays a crucial role in this picture.This satisfies
the relation

∇ ⋅ P = −ρ, (3.5)

that connects the polarization field to the charges, however, since∇ ⋅P = ∇ ⋅P∥,
it relates only to the longitudinal component of the field.3 3. In contrast to Chapter 2, in this

chapter we are not concerned with
topological issues any more, so by
longitudinal we simply mean that the
field can be written as gradient of a
scalar field vanishing on the eventual
boundaries. Conversely, a transverse
field is divergence-free and normal to
the boundaries.

Equivalently:

P∥ = −ε0E∥, (3.6)

meaning that the part of the electric field which is attached to the charges and
follows their motion instantaneously (the so-called “near field”), is incorpo-
rated into the polarization field, that represents the material component of the
interacting system.

Besides P∥, the other orthogonal component of P is the transverse com-
ponent, P�, which is source-free and normal to the boundaries, that is, it can
either be written as curl of another vector field normal to the boundaries, or is
cohomological, cf. Eq. (2.9).We emphasize again that the transverse component
of the polarization field is not determined by the charges in such a direct way
as Eq. (3.5) for the longitudinal one. Instead, it has to obey a set of conditions
in order that the multipolar picture be really useful. The first comes from the
requirement of the “elimination of the A-square term” to electric-dipole order,
cf. Eq. (2.5c), that we expect from this picture:

∂
∂rα ∫ dV P� ⋅A = qα A(rA), ∀α ∈ A, (Cond. I)
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where rA is the position of that atom A to which the particle α with position rα
and charge qα , belongs. This makes the kinetic momentum coincide with the
canonical one up to a magnetic term – the so-called Röntgen term, cf. Section
IV.C.4.c in Cohen-Tannoudji et al. (1997) and Vukics et al. (2021) –, which we
neglect here.

The next condition is necessary for eliminating the electrostatic dipole-
dipole interaction between the atoms in this picture, which means that the
mediumcan be considered as independent atoms (elimination of cross-coupling
in the P-square term). It requires that PA, the polarization field corresponding
to any single atom A have finite support around the atomic position, so that
the full polarization can be written as P = ∑APA. The size of the support can
be a parameter that for instance will play an important role with our choice of
P� in Section 3.4. This fact of finite support we express here with the help of
the “long-wavelength” delta function as:

PA(r) ≃ dAδ<(r − rA). (Cond. II)

Through the example of our choice of P�, in Section 3.4 we will discuss why
and in what sense the equality is only approximate here. For the moment it
is sufficient that the field PA should describe a well-localized dipole when
regarded on a lengthscale much larger than the atomic size.

Under this last condition, and assuming the atoms distant enough from
each other that the supports of their respective PA fields do not overlap, the
third term of the Hamiltonian (3.4) – the potential term – can be written as per
atom:

U ≡
1
2ε0 ∫ dV P2 =

1
2ε0
∑
A
∫ dV P2A ≡∑

A
UA, (3.7)

which means that the only interaction between different atoms is the indirect
one via the displacement field D, that involves the emission and absorption
of photons, included in the Hamiltonian (3.4) by its last term. This leads us
to the final condition that P�A has to satisfy for each atom A. The potential
corresponding to atom A can be separated into parts generated by the longitu-
dinal and the transverse part of the polarization field, where the longitudinal
part can be identified – this follows from Eq. (3.6), cf. also Section I.B.5.a in
Cohen-Tannoudji et al. (1997) – as the Coulomb potential term:

UA =
1
2ε0 ∫ dV (P∥A)

2
+

1
2ε0 ∫ dV (P�A)

2
≡ UCoul

A + ∆UA. (3.8)

Then, the last condition is that the potential generated by the transverse part
be only a perturbation to the normal Coulomb potential, because we do not
want to upset atomic physics as it has been worked out over the last century
based in leading order on the electrons experiencing the Coulomb potential as
they orbit the nucleus.

∆UA is only a perturbation to UCoul
A . (Cond. III)

In Section 3.5, we exhibit the consequences of these conditions on the
possibility of ultrastrong coupling between atoms and the electromagnetic
field.
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3.4 appropriate choice of the transverse
polarization in dipole order

The following form for the transverse part of the polarization field we demon-
strate below to optimally fulfill the set conditions:

P�A(r) = δ
�
<(r − rA)dA, (3.9a)

where dA = ∑α∈A qαrα is the dipole moment of atom A, and we have used
the long-wavelength part of the transverse delta function, most conveniently
defined by a Lorentzian cutoff in k-space at the cutoff wavenumber kM:4 4. In Appendix 3.A we show that the

concrete form of the regularization
function, chosen in Eq. (3.9b) as a
Lorentzian for simplicity, is in fact
immaterial as to the physical conse-
quences of the obtained models, all that
matters is the size of the support of this
envelope, that we denote ℓ, with ℓ = k−1M
for our choice here.

δ̃
�

<(k) =
1

(2π)3/2
(idR3 −

k ○ k
k2
)

k2M
k2 + k2M

, (3.9b)

where we have assumed rA = 0 for the single atom A that we are going to
consider henceforth in this Section. Using the real-space form of this, we get
for r ≳ k−1M ≡ ℓ

P�A(r) =
γ(r)
4πr3

[
3 (r ⋅ dA) r

r2
− dA] , with γ(r) = 1−(1 + kMr +

k2Mr
2

2
) e−kMr .

(3.9c)
As it is apparent, this is just the electric field of a dipole, so that this choice

of P�A cancels the dipole order of the longitudinal component (3.6), outside a
distance ∼ ℓ. This makes that the support of PA = P

∥

A + P
�
A is indeed finite in

dipole order, that is, the atoms interact only in quadrupole order, which we
are neglecting here. Hence, (Cond. II) is fulfilled up to dipole order, which
we consider sufficient for our purposes here, and is in accordance with the
neglect of the Röntgen term above.5 5. This is because for a hydrogen-

like atom, both this term and the
quadrupole term of the electrostatic in-
teraction isO([a0kradiation]2), while the
dipole term would beO(a0kradiation),
a0 being the Bohr radius (cf. Sec-
tion 3.4.2), for which a0kradiation ≪ 1
holds.

This is the sense in which the equality in
(Cond. II) is fulfilled only approximately: up to dipole order and without a
region of radius ℓ around the atom.This latter is the intimacy region of an atom:
the interaction between different atoms simplifies substantially to the indirect
interaction mediated by the radiation field modes only if they do not penetrate
each other’s intimacy region.

This is also a point where our approachmanifestly deviates from the original
Power-Zineau-Woolley approach, since with Power’s original definition of the
polarization field (3.2a), it exactly vanishes outside of zero-measure regions
within the atom – on the other hand, (Cond. III) is impossible to fulfill with
that choice of the polarization field.

In our case, the cutoff wavenumber kM is not a renormalization parameter,
but parametrizes a class of allowed transformations. In the following, we use
the remaining two conditions (Cond. I) and (Cond. III) to define an interval
for kM.

3.4.1 Lower limit of cutoff

The lower limit comes from (Cond. I) as follows. Taking the free-space traveling-
wave expansion of the vector potentialA(r) = ∫ d3k∑є [αє(k) e ik⋅r + c.c.], and
substituting into the LHS of (Cond. I) with our choice of P� (3.9a), we obtain

∫ dV ∂P�

∂rα
A = qα ∫ d3k

k2M
k2 + k2M

∑
є
[αє(k) + c.c.] ≡ qαA<(0). (3.10)
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That is, if αє(k) ≈ 0 for k ≥ kM in the course of the dynamics, so that we can
write A<(0) = A(0), then (Cond. I) is fulfilled. Hence the lower limit for kM:

kM ≫ kradiation. (cutoff lower limit)

In simple terms, the atom has to be small compared to the wavelength of
populated modes, represented by k−1radiation. This is usually termed the dipole
approximation, or, more precisely, the long-wavelength approximation. In the
case of a hydrogen atom and optical frequencies, there are roughly 3 orders
of magnitude between the atomic size and the characteristic wavenumber
of the atomic transitions. This can be seen by expressing the characteristic
transition frequency with fundamental constants as ħωA =

3
8mec2α2, and using

mecα = ħ/a0 to obtain
kA =

3α
8

1
a0

, (3.11)

where α is the fine-structure constant, and kA determines the wavenumber of
the relevant resonant radiation modes (kradiation ∼ kA).

The long-wavelength approximation is an elementary requirement for atom
optics, because in this field we need well-defined atoms with level structures
determined by a static potential, and radiative effects on the atomic scale are
treated as mere perturbations.

3.4.2 Upper limit of cutoff

The upper limit comes from (Cond. III) as follows. With our choice of the
transverse polarization field (3.9a), we can take the potential resulting from
P� seriously as a physically significant potential. This is in contrast to Power’s
choice (3.2a), since in that case the “perturbation” is infinite and calls for renor-
malization. The finite and regular potential ∆UA in Eq. (3.8) resulting from the
proposed polarization field P� is

∆UA =
1
2ε0 ∫ d3k ∣P̃�A∣

2
=

k3M
24πε0

d2A. (3.12)

This potential term manifests that the atom is defined in the multipolar picture
differently from the one in the original picture, i.e., the canonical transformation
shifts the boundary between atom and field.

To keep our discussion as simple as possible, the effect of this potential
will be calculated in the example of the 1s state of the hydrogen atom by time-
independent perturbation theory. To be able to do quantum physics, the poten-
tial has to be treated as an operator acting on the Hilbert space of the atom’s
constituents. Here, this consists in considering the positions of the atomic
constituents appearing in dA as quantum operators. For the hydrogen atom,
d = e r, where r is the relative coordinate, so that the perturbing potential reads

∆Uhydrogen =
e2k3M
24πε0

r2. (3.13)

The 1s wave function of the electron is Ψ1s(r) = e−r/a0/ (
√
πa3/20 ), where a0 is

the Bohr radius. The first-order perturbation reads:

E(1)1s = ⟨1s∣∆Uhydrogen ∣1s⟩ =
e2k3M

24π2ε0a30 ∫ d3r r2e−
2r
a0 =

e2k3Ma
2
0

8πε0
. (3.14)

32



Figure 3.2: Visualization of the hierarchy of lengthscales: λA ≫ ℓ≫ a0 .

Let us compare this energy to the binding energy of the hydrogen atom, the
Rydberg energy. We find the following remarkably simple expression:

E(1)1s
Ry
= (kMa0)3 . (3.15)

Hence (Cond. III) is translated to an upper limit of the cutoff wavenumber as

k3M ≪ (a0)
−3. (cutoff upper limit)

The hierarchy of the lenghtscales appearing in this discussion is exhibited in
Fig. 3.2. The cubic power in this expression makes that e.g. a cutoff of kM ≈
1/(2 a0) already gives about 0.1 for the energy ratio (3.15). That is, an intimacy
region compressed to nearly the atomic size can be chosen without significantly
altering the usual Coulomb potential form of the atomic Hamilton operator.
We note that the Lamb shift is of the same order of magnitude as ∆UA (Power
& Zienau, 1959; Milonni, 1976), but it should be treated separately, since it
comes from the interaction with the vacuum field, that is, the last term of
Hamiltonian (3.4).

With the transverse polarization fulfilling all the conditions considered
above, the single-atom Hamiltonian in (2.19) assumes a familiar form to read

HA = ∑
α∈A

p2α
2mα

+UA. (3.16)
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3.5 the limits of coupling strength

We are now in the position of addressing the question what is the maximum
coupling strength achievable between the atomic medium and a radiation field
mode. The limitation arises from the requirement that the interatomic distance
in the many-atom ensemble must respect the intimacy region of the individual
atoms. For the collective coupling of atoms to light in the models (1.1), the
figure of merit pertaining to ultrastrong coupling is the ratio

F ≡
Ng2

ωωA
, (3.17)

where N is the number of atoms, ω is the frequency of a radiation mode, ωA is
the resonance frequency associated with a relevant electronic transition within
an atom, and g is the electric-dipole coupling constant.The coupling g depends
on the mode geometry and the oscillator strength of the atomic transition, cf.
Eq. (2.22):

g2 =
ω d2

2ħε0V
, (3.18)

whereV is themode volume and d is the dipolemoment of the atomic transition
along themode polarization. Note that the use of all themicroscopic parameters
(d, ωA, etc.) is justified here by the lack of cross-coupling in the “P-square term”
of Eq. (3.4): without electrostatic atom-atom interaction, the presence of other
atoms does not alter the atomic level structure.

The figure of merit can be expressed in two instructive forms. Firstly:

F =
N
V

λ3A
3
8π2

1
Q
, (3.19a)

where we use the quality factor of the atomic resonance Q ≡ ωA/γ with
γ = ω3

Ad
2/(6πε0c3) being the linewidth (half width at half maximum) and λA

the wavelength. This form expresses that the density N/V must be large to
compensate for the large quality factor of an atomic resonance in the denom-
inator (for alkali atoms this is ∼ 1.2 − 1.5 ⋅ 108). In order to get deeper insight
into scaling laws, we consider transitions between hydrogen-like ground and
excited states, and find the second form:

F =
N
V
16πa30 , (3.19b)

where a0 is the Bohr radius. That is, in order to have F ∼ 1/4, the atomic
medium should be so dense that one atom occurs per about 4 Bohr radius cube.
Let us make explicit the Dicke critical density

nD =
ħωε0
2d2

, (3.20)

that can be calculated from Eq. (3.17) by setting F = 1/4.66. In order to obtain a lower estimate
for the critical density, we are using

the smaller of the two expressions (1.2).
This density is noticeably close to the limit allowed by the maximum of

the cutoff parameter kM given by (cutoff upper limit), i.e., ℓ ≈ 2 a0, indicat-
ing an interatomic distance just around 4 Bohr radius. This means that we
can approach the critical-coupling point in the ultrastrong regime with an
ensemble of independent atoms. However, this happens at the density when
the intimacy regions of adjacent atoms touch. Further increasing the density,
the independent-atom model breaks down for two different sets of reasons:
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6Li Na K Rb Cs
Dicke critical density (3.20)
[1027/m3]

3.33 3.33 1.88 1.77 1.32

crystalline density @ room
temperature [1027/m3]

53.6 25.4 13 10.6 8.48

Table 3.1: Comparison of the Dicke critical density and crystalline density for different alkali
species. Atomic parameters from Steck (2021). The critical densities were calculated for
the D lines, as these have the strongest transition dipoles, just like in the case of a ground-
state hydrogen atom, the 1s-2p transition is the strongest. If we considered other transitions
from the ground state, the transition frequency would increase whereas the dipole moment
decrease, which would greatly increase the critical density. Hence, taking into account higher
excited states would give a small numerical correction to our present results, but nothing
qualitatively different.

Reasons within the RED picture: Electrostatic interactions between the atoms
become relevant, that in turn modify both atomic parameters appearing
in (3.20): the transition frequency, and the transition dipole. It is the
subject of Chapter 4 whether the criticality survives these modifications,
and if so, how much the critical density changes.

Reasons outside of the RED picture: At such a small atomic distance, the
overlap between the exponentially decaying electron wavefunctions
(∝ e−r/a0) belonging to different atoms becomes significant. Such a
delocalization of electronic orbits would lead to covalent bonding be-
tween atoms, which effect is definitely excluded from the RED picture, as
here the electrons do not experience the electrostatic potential of other
nuclei.The role of electron-orbit delocalization at such high densities can
be revealed by comparing the critical density 1.77 ⋅ 1027/m3 for Rubidium
to the crystalline density 11 ⋅ 1027/m3. We find similar correspondences
also for other species used in atom-optics experiments, cf. Table 3.1. Ex-
cept for 6Li, the two densities are within the same order of magnitude
for all species.

One can thus conjecture that the superradiant criticality blends into the
commonly known criticality of condensation (liquefaction or solidification/crys-
tallization, depending on the species). The superradiant phase transition is a
silhouette of condensation (cf. Fig. 3.3): as much a simplified picture as the
RED description is simplified compared to the full physics of the condensa-
tion process, the latter involving the quantized atomic motion, the static and
radiative multipoles, and exchange interactions.

Besides the similar magnitude of the densities, this claim can be supported
by two further distinct arguments.

A scaling argument. As it is apparent in Eq. (3.19b), in the RED picture, the
figure of merit depends only on atomic parameters, as the mode fre-
quency drops out from the expression of F (this would not happen in
the a priori picture). This means that the Dicke critical point (F = 1/4) is
determined by the Bohr radius (or, for alkali atoms, the corresponding
atomic size), a0. In an atom-picture based on the Coulomb potential,
which is scale-less, this is the only available atomic lengthscale, which
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Figure 3.3: The Dicke phase transition as a silhouette of solidification.

determines also the covalent-bond distance. As there is no free parame-
ter for nature to separately tune the Dicke critical and the solidification
point, the similarity of the two is not a mere coincidence.

An argument from the macroscopic nature of the transition. Due to the above
mentioned independence on the mode frequency, all the modes become
superradiant at the critical point, that is, the full electromagnetic field
participates in the transition.

3.a arbitrary regularizing envelope

In this appendix, we show that the concrete form of the regularization function
that in Eq. (3.9b) was chosen a Lorentzian is actually immaterial as to the
physical consequences of the obtained model of light-matter interaction. In the
process, we will have the opportunity to formalize more explicitly the definition
of the long-wavelength approximation, and to evaluate the remainder of the A-
square term. For the purposes of this derivation, let us rewrite the Hamiltonian
in multipolar picture in the following form:

H =∑
α

1
2mα
(pα +

∂
∂rα ∫ dV A ⋅ P − qαA(rα))

2

+
1
ε0 ∫ dV Π ⋅ P +

ε0
2 ∫ dV ( 1

ε02
Π2
+ c2[∇ ×A]2) +

1
2ε0 ∫ dV P2.

(3.21)

So far, we have argued that this Hamiltonian can be better suited for the
quantum electrodynamics of atoms than the original, for several reasons. How-
ever, it suffers from the presence of the last, the so-called P2 term, that contains
a distribution squared for the most straightforward choice of the polarization
field, which is Power’s choice (3.2a).

A solution to this problem discussed in the present chapter was based
on the fact that the transverse part of the polarization field P is not uniquely
defined. That is, while the longitudinal part (now written in k-space) is given
unambigously by the charges via the Coulomb interaction as

P∥(k)(= −ε0E∥(k)) =
i

(2π)
3
2

k
k2∑A

e−ik⋅rA ∑
α∈A

qα(e−ik⋅δrα − 1), (3.22a)
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the transverse part has a certain freedom. In contrast to Power’s choice, the
regularity of the transformation was imposed by choosing

P⊥(k) =
c(k)
(2π)

3
2
(I −

k ○ k
k2
)∑

A
dA e−ik⋅rA , (3.22b)

where we have introduced the regularizing function c(k), normalized as c(0) =
1 and vanishing with k → ∞. Here again, the label A for clusters of charges
(atoms) with dipole moment dA = ∑α∈A qαrα was introduced, while α ∈ A
labels the particles belonging to cluster A. The position of a cluster (center of
mass or atomic nucleus) is denoted by rA, while the relative positions of the
constituent particles by δrα = rα − rA. We encounter γ, the cutoff function
in real space, an example for which we have seen in Eq. (3.9c), through the
relation:

c(k) =
1
(2π)3 ∫ dV γ(r) e ik⋅r. (3.23)

This differs from normal Fourier transformation only in the normalizing pref-
actor 1/(2π)3/2, introduced for convenience.

With this choice, we can find the Hamiltonian for N identical atoms. Here
we restrict ourselves to hydrogen-like atoms with a core and a single electron
labeled by c and e, respectively, but the extension to the general case is straight-
forward. There appears an asymmetry between the treatment of rc,A and re ,A
because the former is identified with the position of the atom, and therefore it
enters the expression (3.22b) at two places, while re ,A only at one.

H =∑
A

1
2mc
{pc,A + q[Ã(rc,A) −A(rc,A)] + (dA ⋅∇)Ã(rc,A) + dA × [∇ × Ã(rc,A)]}

2

+∑
A

1
2me
{pe ,A − q[Ã(rc,A) −A(re ,A)]}

2
+

1
ε0
∑
A
dA ⋅ Π̃(rc,A)

+
ε0
2 ∫ dV ( 1

ε02
Π2
+ c2 [∇ ×A]2) +∑

A
(U∥A +U

⊥
A) + ∑

A≠B
(U∥A,B +U

⊥
A,B) ,

(3.24)

where Ã ≡ γ ⋆A and Π̃ ≡ γ ⋆Π (convolution). Of the static potentials

U∥A =
1
2ε0 ∫ dV (P∥A)

2
=

1
8πε0

∑
α,β∈A
α≠β

qα qβ
∣rα − rβ∣

(3.25a)

is the intra-atomic and

U∥A,B =
1
2ε0 ∫ dV P∥A ⋅ P

∥

B =
1

8πε0
∑

α∈A,β∈B

qα qβ
∣rα − rβ∣

(3.25b)

is the inter-atomic Coulomb potential while the terms stemming from the
perpendicular part of the P2 term read

U⊥A =
1
2ε0 ∫ dV (P⊥A)

2
=
q2r2

3ε0
Γ(0), (3.26a)

r being the position operator of the valence electron relative to the core, and

U⊥A,B =
1
2ε0 ∫ dV P⊥A ⋅ P

⊥
B =

1
2ε0

dAK(rA − rB)dB , (3.26b)
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where Γ ≡ γ ⋆ γ and this function is, just like γ, normalized to unity, i.e.

∫ dV Γ(r) = ∫ dV γ(r) = 1. (3.27)

Wehave also introduced thematrix (relying on the Parseval-Plancherel identity)

K(r) ≡ ∫ d3k c2(k)
(2π)3

(I −
k ○ k
k2
)e i k⋅r = ∫ d3k c2(k)

(2π)3
e i k⋅r

+∇ ○∇ ∫ d3k c2(k)
(2π)3

e i k⋅r

k2
= Γ(r) I −∇ ○∇ ∫ d3x′ Γ(r′)G(r − r′), (3.28)

with the electrostatic (Dirichlet) Green’s function

G(r) ≡ −
1

4π∣r∣
. (3.29)

The first term after the last equal sign in (3.28) is a (regularized) contact inter-
action, while the physical effect of the second term is that U⊥A,B knocks out the
dipole order from UA,B outside of the intimacy region of the atoms.77. Concerning K an interesting note

presents itself, that sheds more light on
the nature of the difference between

the a priori and the RED pictures. The
origin of U⊥ is certainly what we would

identify as radiation in the original
picture: indeed, this is the (dipole-

order) correction which cancels the
instantaneous interaction to yield a

fully retarded one. In the RED picture,
however, this has nothing to do with

radiation since it stems from P⊥, which
is a prescribed field, cf. Eq. (3.22b). It
is also worth mentioning that in the

RED picture, the van der Waals interac-
tion appears as a fourth-order photon-

scattering process mediated by the
radiation field, that is, it stems from the
second term of the Hamiltonian (2.19),
in much the same way as in the nor-

mal electric-dipole picture, cf. Section
II.F.2. of Cohen-Tannoudji et al. (1998).

The third and fourth terms in the first line of Eq. (3.24) are magnetic terms,
and the difference between the canonical and kinetic momenta in the new
picture is also a magnetic term (these are the so-called Röntgen terms, cf. Sec-
tion IV.C.4.c in Cohen-Tannoudji et al. (1997)). These terms are of the same
order as the electric quadrupole, and hence are neglected in the (regularized)
electric-dipole picture.

Let us denote the length scale which characterizes the size of the support
of Γ (and γ) in real space by ℓ. Notice that for those modes whose wavelengths
are much smaller than ℓ, we have Π̃ ∼ 0 ∼ Ã and consequently the coupling
of the atoms to such modes is the same as in the original Hamiltonian. On
the other hand, for modes with a wavelength much larger than the above
scale, we have the usual dipole coupling, because Π̃ ∼ Π and Ã ∼ A, i.e. γ
acts like a delta function on such scales. As a basic requisite of the theory, we
would like to ensure that the intra-atomic low-energy spectrum is negligibly
perturbed with respect to the Coulomb one (cf Eq. (3.26a)). It can be shown
that this requires ℓ≫ a0, where a0 determines the size of the atom given only
Coulomb interactions between core and electron (Bohr radius). As a second
simplification, we disregard the electromagnetic modes below a certain cutoff
wavelength λmin. The coupling to the remaining part of the spectrum should
be given by the usual dipole Hamiltonian. Taken together, the requirements
are given by

a0 ≪ ℓ≪ λmin (3.30)
and the (low-energy) Hamiltonian then approximately reads

H =∑
A

p2c,A
2mc
+∑

A
He ,A + ∑

A≠B
(U∥A,B +U

⊥
A,B) +

1
ε0
∑
A
dA ⋅Π(rc,A)

+
ε0
2 ∫ dV ( 1

ε02
Π2
+ c2 [∇ ×A]2) , (3.31a)

with the electronic Hamiltonian

He ,A =
p2e ,A
2me
+U∥A(re ,A) +U

⊥
A(re ,A). (3.31b)

This is just the theory obtained in the main text of this chapter, with the explicit
form of the γ envelope having disappeared from the expressions.
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4

DEPOLARIZATION SHIFT OF THE
SUPERRADIANT PHASE TRANSITION

4.1 synopsis

In Chapter 3, we have shown that in the RED picture, where no-go theorems are
irrelevant to the possibility of the Dicke phase transition, the different atoms
do not interact electrostatically – which is essential to the Dicke model –, as
long as their spatial separation is large enough for their intimacy regions not
to overlap.

On the other hand, it turned out that the inter-atomic distance characteris-
tic of the critical density obtained from the Dicke model is at the limit where
the atoms can no longer be treated as independent dipoles. That is, the superra-
diant criticality is achieved at an atom-gas density very close to the crystalline
density of the given atomic species. We could even conjecture that the superra-
diant phase transition is nothing else but the image of condensation: as much
simplified an image, as the framework of dipolar quantum electrodynamics
is simplified compared to the formidable quantum many-body problem of
interacting moving atoms in the quantized electromagnetic field, which should
be considered in order to grasp condensation with any pretense to fullness. Fur-
thermore, the description of the delocalization of electronic orbits (as occurs
in covalent bonding or bands in a solid) requires a refined description of the
higher-than-dipole multipolar terms and exchange interaction.

Nevertheless, the criticality alone and the onset of the phase transition
can be captured by a much simpler model, such as the dipolar Hamiltonian
with adiabatically separated atomic motion. The condition of spatially sepa-
rated atoms should be released, however, in order to investigate the radiative
properties of the ensemble at the high densities considered. In this regime,
the instantaneous – depolarizing – atom-atom interaction, whose range in the
RED picture is reduced to the atomic size scale, plays a substantial role, and
is expected to shift the critical point. The physical reason of this shift is clear:
assume that the atoms are spontaneously polarized along a given direction
in the superradiant phase. If they are allowed to approach each other on the
length scale of the atomic size – something they have to do close to and above
the critical coupling strength – the interaction of two dipoles pointing along
the same direction costs energy and disfavors the ordered configuration. The
study of this shift is the subject of the present chapter. We complement the
Dicke-model description of the dense atomic gas by incorporating the contact
terms – the leftover of the instantaneous atom-atom interaction in the RED
picture – accounting for the case of overlapping atoms and depolarization.
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4.2 regularized electric dipole picture

Let us summarize the basic expressions in the picture which has been shown
to be particularly suitable to describe the quantum electrodynamics of an opti-
cally dense cloud of N well-localized atoms. The RED picture can be obtained
from the a priori Hamiltonian by canonical transformation and the dipole
approximation. The Hamiltonian then reads

H =
N
∑
j=1
(
p2j
2m
+He, j) +U −

1
ε0

N
∑
j=1

d j ⋅D(r j) +HEM(D,B) , (4.1a)

where r j denotes the position of the atomic center of mass, p j the correspond-
ing momentum, and d j the atomic dipole moment. He, j denotes the internal
(electronic) Hamiltonian of atom j, which reflects the familiar Schrödinger
atom perturbed by QED effects. The last term is the free electromagnetic field
energy expressed in terms of the displacement instead of the electric field,

HEM =
ε0
2 ∫ dV ( 1

ε02
D2
+ c2B2). (4.1b)

In the lack of free charges – that is, charges not described by the set of dipoles
d j –, the displacement field is purely transverse:D = D⊥.

The coupling between field and the atoms is linear in the atomic dipole
moment and the displacement field. One of themainmerits of this picture is that
the interaction between atoms is vastly dominated by the indirect interaction
via the radiation field. The key point in the present chapter is, however, that we
take into account also the residual instantaneous inter-atomic potential U . In
the chosen picture, it is composed of two terms,

U =∑
i≠ j
(U∥i , j +U

⊥
i , j). (4.1c)

The first term, U∥i , j, is just the Coulomb interaction between the charges be-
longing to different atoms, while the second term, U⊥i , j, cancels the strongest,
dipole-dipole order of this instantaneous interaction outside a small region
around the atoms with radius ℓ (termed the atomic “intimacy zone”). Alto-
gether, the potentialU is thus much weaker than the bare Coulomb interaction
for separated atoms and is significant only to describe the contact interaction
when an atom penetrates another’s intimacy zone. The transverse part U⊥i , j
reads

U⊥i , j(ri j) =
1
2ε0

di K(ri j)d j , (4.2a)

where ri j = ri − r j and the matrix K is given by (cf. Eq. (3.28))

K(r) = Γ(r) I −∇ ○∇ ∫ dV ′ Γ(r′)G(r − r′), (4.2b)

withG the electrostatic (Dirichlet) Green’s function,∆G(r) = δ(r).The radially
symmetric Γ(r) is a regularizing (cutoff) function, it is normalized to unity,
has a supporting volume of ∼ ℓ3. The precise form of Γ(r) is immaterial. Cf.
Section 3.A for more details.

Let us recall again the assumptions which allow the minimal coupling
Hamiltonian to be transformed to the above form. One condition is that we
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consider only states where the internal energy of any given atom is low. Sec-
ondly, we apply an ultraviolet cutoff on the electromagnetic spectrum, that is,
we discard parts with wavelengths smaller than some λmin ≫ a0, where a0
determines the size of an atom in the ground state (this would be the Bohr
radius for hydrogen). And lastly, the length scale characterizing Γ(r) obeys

a0 ≪ ℓ≪ λmin. (4.3)

If we choose the cutoff wavelength to be of the order of the optical wave-
length corresponding to the given atomic species, then there exists a range of
values for ℓ, which satisfy the above chain of inequalities.1 1. As an illustration thereof, we can

quote the well-known relation for
hydrogen:

λA =
16π
3α

a0 ≃ 2000 a0 .
4.3 the electromagnetic and electronic

subsystem

4.3.1 Adiabatic elimination of center-of-mass motion

We simplify the model further by dropping the center-of-mass kinetic en-
ergy terms and regarding the atomic positions as time-independent (classical)
random variables instead. This may be viewed as a Born–Oppenheimer-type
approximation, which can be justified by considering the vastly different time
scales operative for the electromagnetic and electronic subsystems on the one
hand (characteristic timescale: inverse of linewidth ≈ 26ns for the D2 line
of Rb), and the center-of-mass motion on the other (characteristic timescale:
inverse of recoil frequency ≈ 130 µs for the D2 line of Rb). Furthermore, it is
not our ambition to follow the subsystem’s dynamics through all times. Instead,
our aim is to find the conditions under which the normal ground state of the
remaining subsystem first exhibits a dynamically unstable behavior, which point
we will interpret as the critical point of a phase transition. Our approach thus
differs from early ones (Hepp & Lieb, 1973; Wang & Hioe, 1973) in being based
explicitly on dynamical as opposed to thermodynamic considerations. In order
to extract the necessary information, at some point we too will need to resort
to statistical averaging over the external degrees of freedom.

4.3.2 Linearization of atomic excitation

Since we are interested in the stability of the normal ground state of the system,
we can confine the description to the lowest-lying excitations. Accordingly, we
can approximateHe, j by that of an isotropic harmonic oscillator with transition
frequency ωA

He, j = ħωA b†j ⋅b j . (4.4a)

Accordingly, the dipole moment of the jth atom we can write as

d j = d(b j + b†j), (4.4b)

with d > 0 being the transition dipole. This may be viewed as an effective
linearization of the theory close to the atomic ground state, i.e. we neglect the
nonlinearity of the atomic polarizability due to saturation.
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TheHamiltonian we will henceforth consider is then given by

H =
N
∑
j=1

ħωA b†j ⋅b j+
d2

2ε0

N
∑
i≠ j

qi u(ri j)q j−
d
2ε0
∑
ν
Aν

N
∑
j=1

q j ⋅φν(r j)+∑
ν
ħων a†νaν ,

(4.5)
and it can be expected to describe the electronic- and electromagnetic subsys-
tem for durations long enough for the purpose of revealing instability. Here we
use the quadratures

q j = b j + b†j , (4.6a)

and
Aν = −i(aν − a†ν). (4.6b)

The direct atom-atom coupling matrix u is given by

u(r) = K(r) +∇ ○∇ G(r). (4.7)

The second term represents the dipole order in the Coulomb interaction energy
U∥i , j, the higher multipolar orders being neglected in accordance with the
linearization in terms of the electronic degrees of freedom b j in Eq. (4.4).
The supporting volume of the matrix u is ℓ3. Finally, we mention that we
have introduced the set of transverse modes of the electromagnetic field φν
normalized as

∫ dV φν(r) ⋅ φν′(r) = 2ħων ε0 δν,ν′ . (4.8)

The Hamiltonian (4.5) differs from the usual single-mode Dicke Hamilto-
nian in several respects:

1. All field modes below an ultraviolet cutoff are retained.

2. The atomic-position-dependence of the coupling between the atomic
dipoles and the displacement field is taken into account.

3. The electronic degrees of freedom are represented by isotropic harmonic
oscillators (collective excitations).

4. Most importantly, the instantaneous contact interaction energy between
the atoms is accounted for (cf. second term). This term leads to depolar-
ization since it punishes the configuration of dipoles pointing along the
same direction.

In keeping with the emphasis on dynamics, we now investigate the solutions
to the equations of motion corresponding to the Hamiltonian (4.5), which read

q̈ j = − ω2
A q j −

2 d2ωA

ħε0

N
∑
i≠ j

u(r ji)qi −
d ωA

ħε0
∑
ν
Aνφν(r j) (4.9a)

Äν = − ω2
νAν −

d ων

ħε0

N
∑
j=1

q j ⋅φν(r j). (4.9b)
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4.3.3 Coarse graining approximation

We will now make use of the conditions (4.3) and imagine the total volume V
divided into disjoint cells δV(r) centered around the points labeled r, each cell
being much larger than the support ℓ of the regularization function Γ(r), but
much smaller than the cube of the minimal wavelength, that is

ℓ3 ≪ δV ≪ λ3min. (4.10)

Using the first inequality – which makes that the bulk of any two cells, even
if they are neighboring, do not interact, the support of the interaction being ℓ3
– we neglect the instantaneous interaction of dipoles which belong to different
cells. Thus in (4.9a), we restrict the second term to interaction between atoms
only in the same cell, that is

q̈ j = −ω2
Aq j −

2d2 ωA

ħε0
∑

rk∈δV(r)
k≠ j

u(r jk)qk −
d ωA

ħε0
∑
ν
Aνφν(r). (4.11)

In the last term, we used a long wavelength approximation based on the second
inequality in (4.10), which makes that the mode function varies slowly on the
lengthscale of a single cell.

In a similar spirit, in Eq. (4.9b) we may approximate

N
∑
j=1

q j ⋅φν(r j) ≃∑
r
n(r)q(r)⋅φν(r) δV(r), (4.12)

where we have introduced the cell-averaged generalized coordinate

q(r) =
1

δN(r) ∑
r j∈δV(r)

q j , (4.13a)

as well as the cell density

n(r) =
δN(r)
δV(r)

, (4.13b)

with δN(r) being the number of particles in the given cell. Later we will assume
δN(r)≫ 1 so that its statistical fluctuations be negligible.

4.4 dynamical instability in mean-field
approximation

It is at this point that we make use of statistical considerations and resort
to a mean-field type approximation. We shall restrict our attention to such
dynamical modes where for all j with r j ∈ δV(r) we can assume q j ≃ q(r). The
existence of such states requires that to a good approximation the sum

∑
rk∈δV(r)

k≠ j

u(r jk) (4.14)

be independent of the index j, i.e. the spatial configuration of dipoles surround-
ing any given one can be assumed to be identical on the scale ℓ set by the
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interaction, which is guaranteed if every dipole is interacting simultaneously
with a large number of others within the same cell. Adopting this hypothesis,
we may substitute for the sum in (4.11) its conditional expectation value

∑
rk∈δV(r)

k≠ j

u(r jk)qk → n q ∫ d3xk g(r jk)u(r jk), (4.15)

where g(r) denotes the radial distribution function of the atomic centers, which
we regard as a given. As a result we obtain

q̈ = −ω2
A(1 + ς)q −

d ωA

ħε0
∑
ν
Aνφν(r), (4.16a)

Äν = −ω2
νAν −

n d ων

ħε0
∑
r
q(r)⋅φν(r), (4.16b)

here the summation in the last term is over the cells, and we have neglected
the statistical fluctuations of δN . The contact interaction in the mean-field
approximation amounts to a density-dependent transition frequency shift ς,
which is given by

ς =
1
3
n
nD ∫ dV g(r) Tr{u(r)}. (4.17)

It is the linear system (4.16) that we subject to dynamical stability analy-
sis. Due to homogeneity of the system of equations, the homogeneous state
(q = 0, Aν = 0) is always a solution, but it may become unstable at a certain
critical parameter set. The stability analysis consists in finding the complex
eigenfrequencies (s) of the system, and looking for that point in the parameter
space when at least one of these eigenfrequencies start to have a positive real
part, signalling the appearance of an exponentially runaway solution (dynam-
ical instability). The point of our whole course here is that the critical point
of instability is identified with that of the phase transition. A runaway solu-
tion for at least one of the field amplitudes Aν is identified with the onset of
superradiance.

Owing to its linearity, the system (4.16) may be conveniently transformed
into algebraic equations by means of a Laplace transformation with the result
that

Aν(s) =
Jν(s)
Dν(s)

, (4.18)

where s denotes the complex frequency,

Dν(s) = 1 −
n
nD

ω2
νω2

A
[s2 + ω2

ν][s2 + ω2
A(1 + ς)]

, (4.19)

and Jν subsumes all terms containing the initial conditions. The eigenfrequen-
cies {sν} of the system are determined by the condition Dν(sν) = 0. One can
check that, without the frequency shift ς, the eigenfrequencies vanish just for
the density n = nD.

To proceed, we calculate the frequency shift ς from Eq. (4.7),

Tr{u(r)} = 3Γ(r) − ∫ dV ′ Γ(r′)∆G(r − r′) + ∆G = 2Γ(r) + δ(r), (4.20)
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Figure 4.1: Relationship between the characteristic length scales of the radial distribution
function g (solid red line) and the regularizing function Γ (dashed green line). The former,
overshooting the value 1 and oscillating on the short scale ∼ a0, is a generic form character-
istic of hard-core repulsive interparticle potentials, with a core size ∼ a0. (In the case of a
Lennard-Jones potential, the first peak may reach as high as 3.)

where, in the second line we have used the defining property of the Green’s
function: ∆G(r) = δ(r). We hence obtain

ς =
n
nD
(
2
3 ∫ d3x g(r)Γ(r) + 1

3
g(0)) . (4.21)

The second term in the parentheses stems from the dipole part of the Coulomb
interaction and does not in fact contribute because due to short range repulsion,
we certainly have g(0) = 0. To deal with the first term, we note that on the
scale given by ℓ, the ensemble of atoms may be regarded as spatially uniform,
because the scale on which the radial distribution function varies around unity
is clearly of the order of a0. The relationship between characteristic spatial
scales of g and Γ is sketched in Figure 4.1. Thus, due to (4.3), we can use the
normalization of Γ to conclude that

∫ d3x g(r)Γ(r) = 1 + O(a0/ℓ). (4.22)

Hence, to within the accuracy of the model,

ς =
2
3
n
nD

. (4.23)

It is important to notice that the precise form of Γ(r), which, as we have men-
tioned above, is immaterial with regard to the quality of the approximation
of the model, does not influence the eigenfrequencies of the system and thus
has no effect on the question of stability either. This is as it should be because
we associate dynamical instability with the occurrence of an observable phe-
nomenon, namely, a phase transition, and therefore no dependence on arbitrary
quantities can be tolerated.
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Figure 4.2: Behavior of the eigenvalues sν ,± for three different frequency ratios: ωA/ων =

0.8, 1, 1.2. The criticality is captured by the + branch becoming real positive at the critical
density nc = 3nD .

The eigenfrequencies of the system are found to be

s2ν,±
ωA ων

= − S(ωA,ων) ±

√

S(ωA,ων)2 + (
1
3
n
nD
− 1), with (4.24a)

S(ωA,ων) = [ω2
A(1 + ς) + ω

2
ν] /(2ωAων). (4.24b)

Hence we find for every mode index ν that as long as n < nc, where

nc = 3 nD, (4.25)

the RHS is negative, so there exist four imaginary eigenfrequencies, an upper
and a lower branch reflected on the origin, and the system is stable. As the
density increases, the lower branch sν,+ softens, that is, the two eigenfrequencies
sν,+ approach 0 along the imaginary axis, and depart along the real axis in
opposite directions. The point where they reach 0 is the critical point where
the homogeneous solution (q = 0, Aν = 0) becomes unstable. This occurs
at n = nc and the homogeneous solution is unstable for n > nc. This story is
illustrated in Fig. 4.2.

Therefore, we conclude that the model predicts a phase transition at a
critical density which is three times the Dicke critical density. The considerable
shift of the critical density stems from the depolarization effect due to the
contact interaction in the dense atomic gas.

In summary, let us emphasize again that in the course of our analysis of
the criticality in the RED Hamiltonian, we have retained all the modes of the
electromagnetic field. In the present picture, the Dicke critical density (3.20)
depends only on atomic parameters.22. The reason for this is that in the

present picture, the atom-mode cou-
pling coefficient g is proportional to the
square root of the mode frequency, and
hence the mode frequency drops out

from the expression of the critical cou-
pling. This is not the case in the original
picture, where the coupling coefficient
is proportional to the square root of
the inverse of the mode frequency.

This means that all the modes become
critical at the same point, that is, reaching the critical density of atoms, a super-
radiant field starts to build up in all the electromagnetic modes. In this sense,
the superradiant phase transition is a macroscopic effect in the RED Hamilto-
nian. The depolarization shift by a factor of 3 pushes the superradiant critical
density even closer to the condensed matter density, further supporting our
identification of the Dicke phase transition as a silhouette of the macroscopic
process of condensation.
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5

THESES, OUTLOOK, FURTHER
DEVELOPMENTS

Thesis I (Vukics et al., 2014) Relying on theHelmholtz-Hodge decomposition,
we have generalized the Power-Zienau-Woolley transformation for domains of
arbitrary topology, that is, the most general possible cavity quantum electro-
dynamics situation. We have shown that the elimination of the A-square term
and the intstantanous interaction between charge clusters known from the
free-space case holds in any such geometry as well. The single-mode standard
models of quantum optics (Dicke and Tavis-Cummings models) can hence
be obtained by a term-by-term mapping to the microscopic Hamiltonian. In
consequence, the basis of no-go argumentations concerning the Dicke phase
transition with atoms in electromagnetic fields dissolves. We have shown that
the Dicke model, when based on the PZW picture, predicts a mean field in
the gauge-invariant quantity of the transverse electric field in the superradiant
phase.

Thesis II (Vukics et al., 2015) We have proposed a form for the transverse po-
larization field of atomic/molecular media that removes the P-square problem
in the PZW picture – the problem of squares of delta functions appearing in
the single-particle Hamiltonian – without resorting to renormalization tech-
niques. This form entails a new parameter with the dimension of length, that
we have identified with the radius of an intimacy zone for the particles: outside
of the intimacy zones, the instantanous inter-particle dipole-dipole interaction
vanishes. We have identified the conditions that the transverse polarization
field has to fulfill, and on the basis of these conditions we have given lower and
upper bounds for the size of the intimacy zone, the former on the order of the
particle size, the later on the order of the wavelength.

Thesis III (Vukics et al., 2015) Assessing the critical particle density for alkali
atoms in the PZW picture, we have found that it is close to the condensation
density. We have found arguments in support of the claim that the Dicke
superradiant phase transition is a silhouette of themacroscopic phase transition
of condensation: the former is as much a simplified image of the latter as the
electric-dipole Hamiltonian is a simplifiedmodel with respect to the immensely
complex quantum many-body problem underlying condensation, involving
electromagnetic interactions in all multipole orders, delocalization of electronic
orbits, and particle motional degrees of freedom.

Thesis IV (Grießer et al., 2016) In a mean-field model, we have calculated
the depolarization shift of the superradiant phase transition, that is, the phase
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transition occurring in a Dicke-type model based on the regularized electric-
dipole Hamiltonian. This model differs from the Dicke model by the inclusion
of all the electromagnetic modes (since all of them become superradiant at the
same critical particle density), and of the short-range electrostatic interaction
between such particles as approach each other to the touching of the intimacy
zones. We have found that the extended – more realistic – model has a criti-
cal density at 3 times the Dicke critical density, pushing it even closer to the
condensation density.

;

Since our contribution to the field presented in this Part, several related review
papers have appeared: in ultrastrong coupling (Forn-Díaz et al., 2019; Le Boité,
2020; Peraca et al., 2020), in Dicke physics (Kirton et al., 2019), and in superra-
diant phase transitions (Larson & Irish, 2017). The ultrastrong coupling regime
is now considered divided into two sections, with

• “ultrastrong” proper referring to the case when g/ω ≳ 0.1, and

• the deep strong coupling regime, when g/ω ≳ 1.

The deep strong coupling regime has been experimentally realized very recently
with superconducting qubits by Yoshihara et al. (2017) and with electron cy-
clotron resonance by Bayer et al. (2017). Another recently emerged field very
promising in this respect is cavity magnonics (Flower et al., 2019), where a
coupling ratio g/ω ∼ 0.6 has been achieved by Golovchanskiy et al. (2021).

During the history of molecular QED, it has been suggested early on by
Woolley (1974) and Babiker & Loudon (1983) that the PZW transformation
can be formulated as a gauge transformation. Especially in the Lagrangian
theory it is easy to show that a transformation to the Poincaré gauge on the
Coulomb-gauge Lagrangian brings about a Lagrangian whose corresponding
Hamiltonian is formally equivalent to the PZW one. Up to this day there has
been a debate concerning gauge freedom/invariance (Garziano et al., 2020;
Settineri et al., 2021; Savasta et al., 2021), its breakdown (De Bernardis et al.,
2018), and gauge ambiguities (Di Stefano et al., 2019; Stokes & Nazir, 2019;
Rouse et al., 2021), partly in connection with ultrastrong coupling. Recently,
Rousseau & Felbacq (2017) even claimed that the PZW theory is inconsistent,
based on considerations of gauges.

The fact is that the PZW theory is completely gauge invariant, and the
equivalence with Poincaré gauge is only partial, which is especially transparent
in the Hamiltonian formulation. It can be derived from a fully gauge invariant
theory (Vukics et al., 2021), and the final Hamiltonian, containing only the
physical fields is also gauge invariant. The correctness of the theory was further
reasserted (Andrews et al., 2018; Woolley, 2020), together with its relevance
to quantum optics, quantum chemistry (Flick et al., 2017; Schäfer et al., 2020),
and resonance energy transfer (Salam, 2018).

It has been noted that the unitary equivalence between the a priori and
PZW pictures is broken when approximations are done to obtain the standard
models of quantum optics – the few-mode approximation for the field and
few-level approximation for the atoms –: the models do not describe the same
physics in the two pictures, and the difference gets especially pronounced on
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approaching ultrastrong coupling. Although the PZW picture was formulated
as the theory for the quantum interaction of the electromagnetic field with
atoms or molecules from the outset, and the term-by-term correspondence
was a very strong indication in this respect, it has remained a question in
which picture the quantum optical models perform better. Recently, it was
shown by De Bernardis et al. (2018) that in most situations the PZW picture is
preferable in approximating the full physics. Discussions of the impact of the A-
square term on the possibility of the superradiant phase transition nevertheless
continue to resurface up to this day (Andolina et al., 2019; Wang et al., 2020).

Despite the occasional controversies regarding the fundamental aspects the
field has continued to see great interest during the last few years. Ultrastrong
light-matter coupling was studied from the thermodynamic point of view by
Pilar et al. (2020) to find strong modifications of extensive thermodynamic
quantities. Ultrastrong coupling between plasmons of a nanorod array and
optical cavity photons was achieved at ambient conditions and without mag-
netic fields (Baranov et al., 2020), and vibrational ultrastrong coupling between
plasmons and phonons was demostrated using epsilon-near-zero nanocavities
(Yoo et al., 2021). A non-perturbative approach to the interaction of an electron
gas with a cavity field that is valid for all coupling strengths was worked out by
Ashida et al. (2021).

Non-classicality of the Dicke model has been studied in connection with
an excited-state quantum phase transition (Zhu et al., 2019), two-photon cor-
relations (Xu et al., 2020), and on hybrid lattices (Zhu et al., 2020). Whereas
earlier realizations of the Dicke superradiant phase transition relied on driven-
dissipative systems (Baumann et al., 2010; Nagy et al., 2011; Brennecke et al.,
2013), it has recently been suggested that it can be realized as an equilibrium
phase transition in a 2D electron gas coupled to a cavity in the presence of
Rashba spin-orbit coupling (Nataf et al., 2019), or as the paramagnetic-to-
ferromagnetic phase transition in a solid sample confined within a cavity
formed by metallic mirrors (Ashida et al., 2020). The phase diagram of an
extended Dicke model representing dipolar matter interacting with a cavity
mode was outlined using exact numerical methods (Schuler et al., 2020). Su-
perradiance with 10 qubits and subradiance with 8 qubits was demostrated in a
superconducting quantum circuit with variable coupling strength and qubit
number (Wang et al., 2020). Finally, metrological applications of the superradi-
ant phase transition were designed by Garbe et al. (2020), suggesting that the
divergent susceptibility close to the critical point can be exploited to achieve
arbitrarily high precision, a plus that must be counterweighed by the increasing
protocol duration due to critical slowing down.1 1. Literature review closed in October

2021
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PART II

THE BREAKDOWN OF PHOTON
BLOCKADE





6

THE BREAKDOWN OF PHOTON
BLOCKADE AS A FIRST-ORDER
DISSIPATIVE PHASE TRANSITION

6.1 synopsis

In this Chapter we study the photon-blockade breakdown (PBB) scheme in its
dissipative-phase-transition and quantum aspects.

For the PBB bistability to become a phase transition, an appropriate ther-
modynamic limit is needed, which is approached in a finite-size scaling from
a finite system. This abstract thermodynamic limit is the g →∞ limit, where
both the bistability timescale and the separation of the attractors becomemacro-
scopic. We construct an approriate finite-size scaling of the system parameters,
and numerically determine the finite-size scaling exponent of the timescale.
We assess the nonclassicality of the attractors, and identify the central role of
cascades of quantum jumps in the switching processes.1 1. Both the DPT and this latter feature

contrast the PBB bistability with the
bistable flourescence signal observed in
the electron-shelving scheme (Nagour-
ney et al., 1986; Bergquist et al., 1986),
where very long but still microscopic
timescales remain to determine the sig-
nal, and single quantum jumps switch
between the macroscopically separable
states.

The numerical studies presented in this Chapter took about half a year
on a virtual computational cluster in an OpenStack cloud environment (MTA
Cloud).

6.2 the photon-blockade-breakdown phase
transition in a nutshell

6.2.1 The driven-lossy Jaynes–Cummings model

The simplest possible system exhibiting the photon-blockade-breakdown ef-
fect is composed of a two-level system coupled to a harmonic oscillator. The
two-level system can be an atom or artificial atom, whereas the oscillator can
represent a single lossy mode of the radiation field or a longitudinal mode of
a stripline resonator. We describe this interaction within the driven Jaynes-
Cummings model, i.e., using the electric-dipole coupling and the rotating-wave
approximation (RWA), cf. Eq. (1.6).2 2. We note that due to the strong cou-

pling required for the PBB effect, we are
close to the validity limit of the RWA.
A quantum-to-classical transition in
a similar system without the conven-
tional rotating-wave approximation has
been reported in Pietikäinen et al. (2017,
2019).

Assuming resonance between the mode and the atom, i.e. ωM = ωA, and
going into a frame rotating at the drive frequency, one gets a formally time-
independent Hamiltonian,

H = −∆ (a†a + σ† σ) + ig (a† σ − σ† a) + iη (a† − a) , (6.1)

where the detuning ∆ = ω − ωM is a tunable parameter of the drive. The mode
is that of a high-finesse resonator and is subject to loss. Similarly, the two-
level system can have decay through spontaneous emission.3

3. In CCQED, cf. Chapter 7, the phase
noise of the atomic levels usually domi-
nates the population decay.These incoherent
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Figure 6.1: (a) In a quantum system consisting of a finite-level system strongly coupled to
a harmonic oscillator, the lower part of the spectrum is anharmonic, but there are always
higher-lying harmonic subsets of the spectrum. (b) The Jaynes-Cummings spectrum is a
prototype of this behaviour (this part of the figure is to scale). Panel (i): the anharmonic
part of the spectrum. An excitation tuned to a 1-photon transition misses the second rung
of the ladder by a significant amount. That tuned to a 2- and 3-photon transition, misses the
first rung and the first and second rung, respectively. Panel (ii): closely harmonic part of the
spectrum. An excitation tuned to the transition between ∣6,−⟩ and ∣7,−⟩ is closely resonant
also with the transition between ∣7,−⟩ and ∣8,−⟩ (the detuning is invisible on the figure’s
scale). As it is easy to verify from the formula (6.4), the difference in level-spacing for the ‘-’
manifold decays as n − 1/2

− (n + 1) − 1/2
≈ n − 3/2.

processes can be modelled by Liouvillian terms in the master equation

ρ̇ = −i[H, ρ]+κ (2aρa† − a†aρ − ρa†a)+γ (2σρσ† − σ†σρ − ρσ†σ) . (6.2)

In the rest of this chapter we will consider the case κ ≫ γ, most importantly
γ = 0. The mode relaxation parameter κ defines the microscopic timescale of
the problem.

6.2.2 The photon-blockade-breakdown effect

For weak drive strengths η≪ g, the excited eigenstates of the Hamiltonian are
close to the Jaynes-Cummings dressed states

∣n,±⟩ = 1
√
2
(∣g , n⟩ ± ∣e , n − 1⟩) (6.3)

with n = 1, 2, . . . , and the energy levels are

En,± = n ωM ±
√
ng . (6.4)

In the strong coupling regime g ≫ κ, the level shifts ±
√
n g with respect to the

bare frequencies exceed significantly the linewidth ∼ κ, so the system cannot
be excited out of the ground state ∣g , 0⟩ by a near-resonant driving ∆ ≈ 0. This
is the photon blockade effect.4

4. In the literature, the ‘photon block-
ade’ sometimes denotes the effect
when the first excited state with a
single photon can be excited reso-
nantly, but further excitations are

suppressed due to off-resonance. This
is analogous to the effect of Coulomb

blockade to some extent. Here we
use the term in a more general sense,
where the system is blocked in the
ground state, and no photons at all
can be transferred to the system.

Above a certain intensity of the driving, however, the system can be excited
via higher-order (multi-photon) transition processes into the higher-lying part
of the spectrum. Since one of the constituents is a harmonic oscillator, in the
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high-lying part there are harmonic subsets of the spectrum (cf. Fig. 6.1), ladders
of equidistant levels which can host a coherent state with large amplitude and
well-defined phase. Following a low-probability multi-photon transition into
this range of the spectrum, the system gets stabilized into such a semiclassical
trapping state by the competition of coherent driving and decay. Such an ex-
citation, i.e., the breakdown of the photon blockade takes place in the form of
a bistability. In a finite interval of the drive strength, the steady-state density
operator of the system is the mixture of the ‘dark’ and ‘bright’ phases, i.e., the
ground state and a highly excited coherent state of the oscillator (Carmichael,
2015; Dombi et al., 2015). As a main subject of our study, we will analyse this
solution of the density matrix in detail starting from the next section. Before-
hand, however, we try to capture the bistable behaviour in a corresponding
classical theory.

6.2.3 Classical phase diagram

Following Carmichael (2015), let us first look at what the Jaynes and Cummings
semiclassical (also known as ‘neoclassical’) equations can tell us. These are
obtained by taking expectation values in Heisenberg equations of motion (e.g.
α = ⟨a⟩) and factorizing the expectations of operator products to obtain a
closed set of nonlinear equations for the expectation values. Taking γ = 0, the
theory leads to the self-consistent equation (valid for ∆ < 0), cf. Section 7.B

∣α∣2

Nscale
= (

2η
g
)

2 ⎡
⎢
⎢
⎢
⎢
⎣

1 +
⎛

⎝

∆
κ
−

1
√
∆2κ2/g4 + ∣α∣2/Nscale

⎞

⎠

2⎤
⎥
⎥
⎥
⎥
⎦

−1

, (6.5)

where we introduced the parameter Nscale = g2/4κ2. This nonlinear equation
can afford different solution sets. The various domains are depicted in the
phase diagram in Fig. 6.2. Below the lower boundary, the phase is the photon
blockade regime, whereas above the higher boundary, the system is highly
excited. In between, Eq. (6.5) has multivalued solution indicating bistability.
The coordinates were chosen to be the tunable variables, i.e., the frequency
and amplitude of the driving, which can serve as control parameters of the
phase transition. Only the ∆ < 0 half-plane is shown, the positive-detuning
part being the same mirrored to the ∆ = 0 axis.

The neoclassical result suggests an appropriate thermodynamic limit à
la Carmichael (2015) and a corresponding scaling of system parameters. On
fixing the timescale to the microscopic one, κ = 1, we see that a characteris-
tic photon number is expected to scale as ∼ g2. Hence, the thermodynamic
(infinite-system) limit is the strong coupling limit g → ∞ (in contrast to
previously-reported thermodynamic or classical limiting cases of quantum
phase transitions in the Jaynes-Cummings and Rabi models (Hwang et al.,
2015; Hwang & Plenio, 2016; Larson & Irish, 2017; Hwang et al., 2018)). Simul-
taneously, the drive amplitude must also be scaled up. The first guess, cf. the
prefactor on the right hand side of Eq. (6.5), would be η →∞ such that η/g is
kept invariant. This is why the quantity η/g is used for the drive amplitude on
the vertical axis of the phase diagram. With this scaling, the lower boundary
of the bistability phase becomes indeed independent of g: the three curves
coincide perfectly. On the other hand, the upper boundaries reveal a further
dependence on g. That is, the solution sets of the neoclassical equations are
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Figure 6.2: Phase diagram of the neoclassical theory based on a numerical solution of the
transcendental Eq. (6.5) for three different values of the coupling constant g. The low bound-
aries closely overlap, the upper boundaries differ for the three values of g. As the numerics
becomes very unstable when approaching the far-off-resonance closing point of the bistability
region, the closing of the red curves on the left is inferred by extrapolation (dashed segments).
The common closing point on the right for all g values is the spontaneous dressed-state po-
larization critical point. The cyan star denotes the workpoint chosen in this paper: it is at this
detuning and around this drive strength that we are going to study the bistable solution for
several g values. Magenta dashed line: the inference (6.7) for the lower limit of the bistability
region.

not invariant under the transformation of g , η →∞ with η/g = const. Later,
in Section 6.4 we will identify the non-trivial scaling of η which leads to a
properly defined thermodynamic limit of the system. Nevertheless, since the
lower boundary of the neoclassical bistability domain is invariant, and also the
upper boundary does not vary strongly at ∆ = −5κ for the g values shown in
Fig. 6.2 and used in this paper, in the plots the drive strength η is given in units
of g.

Finally, let usmake two side remarks. Firstly, Gutiérrez-Jáuregui&Carmichael
(2018) pointed out that another possible scaling deducible from the mean-field
steady state equations is keeping∆/g = const.Thiswouldmake that in the phase
diagram Fig. 6.2, the upper limiting curves of the bistability domain would
coincide, but the lower ones would differ for different g values, cf. Fig. 6.3. So, at
this point the two scalings ∆/κ = const. and ∆/g = const. appear as equivalent
alternatives. It can be argued that our choice is more natural in the sense that
the detuning from a (bare) resonance is measured against the width of that
resonance.

Secondly, there is a critical point at η/g = 1/2 on resonance ∆ = 0, where
the lower and upper limits of the bistability region converge. It separates the
solution α = 0 with population inversion increasing from −1/2 to 0 from
the one with σz = 0 and increasing α as the drive strength η is increased
further. This result is in accordance with that of the full quantum treatment
which can be pursued to an analytical solution in the resonant case (Alsing
et al., 1992). It shows that the quasienergies coalesce in this critical point. This
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a) b)

Figure 6.3: Comparison of phase diagrams with two different scalings of the detuning: (a) ∆
scaled with g, and (b) with κ

critical behaviour was identified as the spontaneous dressed-state polarization
by Alsing & Carmichael (1991).

6.2.4 Bistability in the quantum solution and intuitive explanations

Numerical simulations of the full quantum problem defined by Eq. (6.2) con-
firm qualitatively the phase diagram based on the neoclassical equations. The
existence of a bistability regime close to resonance ∣∆∣≪ g has been confirmed
by Dombi et al. (2015) and Carmichael (2015). The stationary density-operator
solution of the master equation is then a statistical mixture of two states: the
‘dim’ state where the field is close to the vacuum and the atom is in the ground
state, and a ‘bright’ state which consists of a highly excited coherent state of the
field (and a completely saturated atom). On increasing the drive strength η at
a fixed detuning, the relative weight of the two components is continuously
varied such that the probability of the bright component goes from 0 to 1 in a
finite range of η (Fink et al., 2017). The steady state is hence a continuous func-
tion of the parameters, however, there is a ‘rift’ between the two components of
the mixture: these are classically discernible states.

The stability of the bright component for high-enough drive strength can be
understood intuitively as a balance of coherent drive and spontaneous decay in a
harmonic oscillator. The frequency separating adjacent dressed states ∣n + 1,−⟩
and ∣n,−⟩ is ωM − g(

√
n + 1 −

√
n) ≈ ωM − g/(2

√
n). In the limit of large

photon numbers n → N , this tends to a harmonic ladder in which the coherent
drive η and the decay κ compete to create a coherent state with amplitude

α =
η

κ − i (∆ + g
2
√
N
)
Ô⇒ N =

η2

κ2 + (∆ + g
2
√
N
)
2 , (6.6)

where the self-consistent equation for the photon number N was obtained by
taking the absolute value squared of the amplitude α.The smallest drive strength
for which this equation can be satisfied is in the case of ‘resonance’, i.e. when the
expression in the parentheses in the denominator vanishes: ∆ = −g/(2

√
N).

The self-consistent solution is then N = (η/κ)2, from which the minimum
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drive strength follows as
ηmin
g
≃

κ
2∣∆∣

. (6.7)

This law is drawn in the thick dashed magenta line in the phase diagram in
Fig. 6.2, and coincides quite accurately with the lower border of the classical
bistability domain. It is remarkable that the solution of a classical equation
obeys a law extracted from intuitive consideration of quantized energy levels.
On further increasing the drive strength, the photon number increases, thereby
leading to some detuning ∆ + g/(2

√
N) ≠ 0 in Eq. (6.6). However, there may

still be a self-consistent solution. Because the lower part of the harmonic ladder
is missing (that part of the spectrum being the anharmonic photon-blockading
part), there is no deterministic evolution into such a self-consistent solution.
Nevertheless, the displacement operator corresponding to coherent driving
contains multi-photon excitation processes, so the excitation into the near-
resonant regime with a self-consistent solution can take place in a probabilistic
manner.

The upper limit of the bistability domain cannot be determined from an
argument as simple as the above for the lower limit. The reason is that the more
we increase the drive strength η, the more the quasi-energy levels, i.e. the true
eigenvalues of the Hamiltonian (1.6), differ from the dressed levels of the η = 0
Jaynes-Cummings model, since they are getting dressed also by the coherent
drive (Alsing et al., 1992). However, the analytical form of the quasi-energy
levels in the finite-drive strength case is not known for ∆ ≠ 0, only for the case
of ∆ = 0. Nevertheless, it is clear that the appearance of an η-dependence of the
energy levels makes that the η/g scaling suggested by both Eqs. (6.5) and (6.6)
is disrupted for large η values.

6.3 the telegraph signal

Not only the classical phase diagram, but even the steady-state density operator
solution of the full quantum problem defined by Eq. (6.2) does not describe
all the relevant aspects of our phase transition. In the following we prove
by numerical simulation that the components of the mixture become robust
classical attractors in the thermodynamic limit. To this end, we need to unravel
the density operator into the time domain, so that we can extract the dwell
timescales, we can show their divergence, and we can determine the relevant
exponents. To this end, we use the quantum trajectories generated by the
Monte-Carlo wavefunctionmethod. In principle, the ensemble average of many
trajectories yields a density operator evolving in time towards the steady-state
one. However, in the ergodic case (which will be our assumption here), the
temporal averaging of the stochastic state vectors along a single long quantum
trajectory yields the same steady-state density operator.Therefore itmakes sense
to consider a trajectory as an actual evolution under continuous measurement
with an ideal photodetector.

Obviously, due to the large difference in the photon numbers, the compo-
nents of the mixture correspond to very distinct output signals. The photon
number is continuously monitored via the photons outcoupled into the κ
loss channel. The classical distinguishability of large photocurrent versus dark
counts amounts to a projection of the quantum state into only one of the com-
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Figure 6.4: Example trajectories showing the blinking behaviour with different g values
(color code is the same throughout). Parameters: ∆ = −5κ, η = g/4 (corresponding to the
cyan star in Fig. 6.2). The dotted lines in panels a) and d) represent the estimate g2/(2∆2

)

for the photon number, following from Eq. (6.6). Panel b) shows the phase of the field along
the green trajectory of panel a) (g = 50κ), assuming a coherent state. The dotted green
line is the field phase expected from Eq. (6.6), that is, the phase of the complex number
(κ − i [∆ + g/(2

√
N)])

−1
, substituting the bright-state photon number N = 50 that can be

read from panel a). We see that the coincidence with the simulated field phase in the ON
periods is very good. Panel c) displays the Mandel-Q parameter along the same trajectory,
exhibiting a larger nonclassicality for the OFF periods than the ON periods, which we will
discuss in Section 6.5. Throughout this chapter, the numerics was performed with C++QED:
a C++/Python framework for simulating open quantum dynamics, cf. Part III.

ON value a
blink-on rate µ = ( dwell time in OFF period )−1
blink-off rate λ = ( dwell time in ON period )−1
filling factor F =

µ
µ+λ

expectation value ⟨X⟩ = aµ
µ+λ

variance var{X} = a2 µλ
(µ+λ)2

temporal correlation ⟨X(t), X(t′)⟩ = e−(µ+λ) ∣t−t
′
∣ var{X}

characteristic timescale τ = (µ + λ)−1

Table 6.1: Characteristics of the telegraph process in the random variable X in the special case
when the OFF value is 0.
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ponents at a time. This is shown in Fig. 6.4, where the instantaneous photon
number along quantum trajectories is plotted for various coupling strengths g.
The bright and dark periods alternate sharply in the form of a telegraph signal.
Detailed analysis of the statistical data shows that the presented signals are
indeed very accurately (even to the limit of numerical accuracy) described by
a telegraph process.55. In particular, what we do is to define

a binary signal from the somewhat
noisy trajectories whose model is de-
picted in Fig. 6.4, simply by assigning
the value 1 to the time instants where

the photon number is higher than
half of the temporal average and 0
to the others. On this binary signal
X(t) we verify the fulfillment of the
relation var{X} = ⟨X⟩ (1 − ⟨X⟩),
that is characteristic of the tele-
graph process (cf. Table 6.1). We

find agreement up to 10−14 precision.

This means that such trajectories have essentially three
parameters: the amplitude of the bright period and the rates of blink-on and
-off, µ and λ, respectively, since a telegraph process is nothing else than the
composition of two temporal Poisson processes with exponential waiting-time
distribution. Hence, the waiting time for a blink-on (the inverse of the blink-
on rate µ) equals the dwell time in the dim period, the same being true for
blink-off and the bright period. The characteristics of the telegraph process are
summarized in Table 6.1.

The trajectories for different coupling constants g in Fig. 6.4 are generated
using the drive strength η/g = 1/4 kept invariant, while fixing the detuning
∆ = −5κ. Hence all these curves correspond to the single point denoted with
the cyan star in the phase diagram Fig. 6.2 within the bistability domain. The
photon number increases with increasing g.The numerics shows that the bright
state has the photon number N ≈ g2/(2∆2), the corresponding dotted straight
lines fitting nicely on the noisy numerical record. This N is twice the photon
number at the lower boundary of the bistability range of the neoclassical theory.
Interestingly, this analytical estimate satisfies the simple classical relation (6.6)
with high accuracy, which suggests that the intuitive picture of near-resonantly
driving an equidistant ladder holds even at such drive strength far above the
lower boundary of the bistability domain. The same is suggested by Fig. 6.4(b),
where the field phase is plotted togetherwith an estimate from the sameEq. (6.6),
once more to yield excellent agreement (cf. the figure caption for details).

Since Nscale ∝ g2, the photon number measured in units of Nscale proves to
be invariant for the different curves. On the other hand, the dwell times in the
attractor states increase significantly with increasing g. This reveals that there
is a thermodynamic limit in which the phases become robust, the telegraph
signal disappears, to be replaced by a hysteresis-like behaviour in a genuine
first-order phase transition.

Figure 6.4(d) shows that the addition of a small amount of atomic decay
(γ = 0.01κ) does not lead to a qualitative change of the conclusions above. The
photon number of the ON period remains the same as with γ = 0, however,
atomic decay does noticeably decrease the dwell time in this attractor.

6.4 filling factor and the scaling of the
drive strength

In the bimodal steady-state density operator, the weights of the components
vary through the bistability domain, in particular, on increasing the drive
strength the ‘dim’ state component vanishes gradually in favour of the ‘bright’
state. In the time domain, the telegraph signal manifests this form of transition
through the variation of the filling factor which is theoretically F = µ

µ+λ . The
trajectories in Fig. 6.4 show that the filling factor varies for the telegraph signals
with different g. This is confirmed in Fig. 6.5. Panel (a) shows the monotonous
increase of F as a function of η/g for a set of g values. The curves are shifted
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Figure 6.5: Filling factor of the bright periods (cf. Table 6.1) as a function of η/g and g/κ
without (panels a and b) and with a small (panels c and d) atomic decay γ = 0.01κ. Color
code is the same in the upper and lower row. Panel a): the dotted lines indicate linear fits in
order to determine η∗, the drive strength leading to half filling. The value of η∗ is indicated
for the coupling strength g = 70κ.

with respect to each other.This dependence is made explicit in panel (b), where
g is varied while η/g is kept at various fixed values. The filling factor is constant
in the range of smaller g values, whereas F decreases in the range of larger
coupling strengths. For example, the green line represents a closely constant
filling factor around 2/3 up to g ≈ 50κ, but if g is increased further, the filling
factor drops.6 6. The reason why the curves span

different ranges in panels (a) and (b) is
that we needed to use different ranges
of η for different g values in order to
find the value of η∗.

It follows then that the scaling of the drive strength η such that η/g is kept
invariant does not preserve the self-similarity of the telegraph signal. Scaling to
the thermodynamic limit means that the system keeps a self-similar behaviour,
only scaled up in time and brightness of the ON state. Since the latter two scale
with the single parameter g, there is the parameter η left at our disposal to
ensure self-similarity during the upscale, which, in the case of such a simple
process as the telegraph one, cannot mean anything else than keeping the filling
factor constant. As the most obvious choice, we pick the case when the filling
factor is 0.5.

Since the concept of self-similarity is a difficult one in the present context,
let us employ amore pictorial explanation. Upscalingmeans that we are looking
on the system’s time evolution through a telescope that via the turn of a single
knob (here, increasing g, the single scaling parameter), increases its angle of
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Figure 6.6: The drive strength η∗ leading to half filling of the telegraph signal as a function of
g, i.e., the equal mixture of the two phases in the steady-state density matrix. Solid red curves
represent the phase boundaries of the bistability domain from the classical theory.

view both in time and photon number,77. The increase in these two dimen-
sions is not necessarily at the same
rate, e.g. here the the photon num-
ber increases under the fairly obvi-

ous rule g2, while the timescale as gν ,
where ν is one of the finite-size scal-
ing exponents that we want to find.

but keeps projecting the image on
the same ocular area. (Hence, it has an increasingly coarse resolution both in
time and photon number.) This is like the “zoom” functionality on modern
camera objectives. It is very important that we are aiming at a single-parameter
scaling theory, that is, we have to find a rule for how to change the other
parameters of the system (here, only η) as a function of the scaling parameter
g during the upscale, i.e. how to “scale η with g”. The rule that defines such
a one-dimensional manifold in the parameter space as the upscale orbit is:
self-similarity. Self-similarity means that we require the image of the system’s
time evolution on the ocular of the telescope to remain the same during this
procedure. In the case of such a simple process as the telegraph signal, the filling
factor is the single parameter that determines the image in such a telescope.
Hence, the preservation of self-similarity means that we are keeping the filling
factor constant (namely 0.5) during the upscaling.

Therefore, in order to determine the correct scaling of η in the thermody-
namic limit, we have to find the drive strength for each g value (denoted η∗(g)
in the following) that leads to half filling. Looking at Fig. 6.5(a), we observe
that an approximate linear interpolation (linear fit) captures appropriately the
behaviour of the F(η) curves for the different g values in the range of interest.
Hence, we use such an interpolation to determine η∗(g). As an example, in
the plot we show for the red curve (g = 70κ) the corresponding η∗. In Fig. 6.6,
we plot the function η∗(g), embedded in the bistability domain that we have
calculated similarly to Fig. 6.2. With this numerical result we defined the ap-
propriate finite size scaling. As it turns out, a linear fit reproduces quite exactly
the behaviour of η∗ for g ≳ 50κ, which indicates that the correct scaling of the
drive strength in the thermodynamic limit is η ∼ g2.8

8. It is possible that if we had in-
cluded ∆ in the scaling as suggested by
Gutiérrez-Jáuregui & Carmichael (2018)
(∆/g = const.), then the η/g = const.

scaling would have been sufficient
to preserve self-similarity. However,
to answer this question rigorously,
we would need to repeat the whole
numerical work for that scaling also.
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Figure 6.7: The characteristic timescale of the bistable blinking process given by the inverse of
µ + λ. The points in panel a) correspond to the values of η∗ for the different g values where
half-filling of the telegraph signal is achieved. In panel b), the solid red curve designates the
timescale at η∗ as a function of g, that is, the timescale in the correct finite-size scaling when
the telegraph process is kept at half filling during the passage to the thermodynamic limit.
The dotted line shows a log-log linear fit on the values leaving out g = 100κ. The exponent
resulting from the fit is roughly 2.2. Panels c) and d): timescale with finite atomic decay
γ = 0.01κ.

6.5 dwell times

6.5.1 Characteristic timescale of the telegraph signal

Figure 6.7 presents the characteristic timescale of the bistable blinking process.
This is defined as the inverse of the sumof blinking rates µ+λ, which is extracted
from an exponential fit on the numerically calculated temporal self-correlation
of the signal (cf. Table 6.1). We use the unit of κ so that the large difference
is manifested in the figure: the characteristic times are orders of magnitude
above the microscopic timescale κ−1. On increasing the drive strength η in the
presented range, the average dwell time decreases because of the increase of the
rate µ of blink-on, in conjunction with the increase of the filling factor. Points
represent the values of η∗ where the telegraph signal has half-filling.

From the point of view of the thermodynamic limit, the dependence of the
characteristic timescale on g is the most relevant (Fig. 6.7(b)). We show the
increasing timescale over two orders of magnitude of the coupling constant g
for various values of η/g. This g range is given by computational limitations,
nevertheless, it is enough to demonstrate the power-law scaling of the increase
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Figure 6.8: Waiting time for blink-on (µ−1) and blink-off (λ−1). Inset: λ values averaged over η
as a function of g, with an exponential fit with exponent 2.

of the timescale and to determine the exponent. To obey the correct self-similar
scaling detailed in Section 6.4, we have to find the timescale for the drive
strength η∗(g) for the different g values. To this end, we again use a linear fit
on the curves of η-dependence, which captures the behavior quite correctly
(cf. dotted lines in the panel (a), with the η∗ values depicted with big dots
of the corresponding colour). The timescale change under finite-size scaling
τ (g , η∗(g)) is shown in the thick, solid, red line in Fig. 6.7(b). A linear fit
in the log-log scale leads to the numerical estimate of 2.2 for the finite-size
scaling exponent of the characteristic time. The point g = 100κ was omitted
from the fitting because the dwell times were systematically underestimated
due to truncation of the trajectories for the long but finite simulation time.

Figure 6.8 is devoted to the numerical analysis of the rates of blink-on
and -off, µ and λ, respectively, which sheds light on the physical processes
leading to switching between the robust classical attractor states in the finite-size
system.These are calculated from combining the above-discussed characteristic
timescale with the filling factor. For both rates, the increase of g implies a
reduction, in agreement with the expectedly growing stability of phases on
approaching the thermodynamic limit.

6.5.2 Blink-off process

The downward process is initiated by a single photon loss (detection) event.
This is because there is a chance that the state residing in the ladder ∣n,−⟩ gets
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projected into the ladder ∣n,+⟩ under such an event (Carmichael, 2015), since

a ∣n,±⟩ =
√
n +
√
n − 1

2
∣n − 1,±⟩ +

√
n −
√
n − 1

2
∣n − 1,∓⟩

≈
√
n ∣n − 1,±⟩ + 1

4
√
n
∣n − 1,∓⟩ . (6.8)

Once such a jump occurs, there is a downward cascade of photon escapes,
because while our (red-detuned) drive was closely resonant with the high-lying
part of the ∣n,−⟩ ladder, resulting in an approximately coherent state in this
part, it is off-resonant with the ∣n,+⟩ ladder (which would be resonant with
the drive blue-detuned with the same amount), so on this ladder there is no
drive to compensate the photon loss. The passage downward consists of a quick
cascade of many jumps amounting to an exponential decay.

Although a single ladder-switching quantum jump initiates the blink-off,
the likelihood of such a rare jump vanishes completely in the g ,N →∞ ther-
modynamic limit. The rate of ladder switching scales as κ/N ,9 9. From Eq. (6.8), the total jump rate

scales as κN , while the probability of a
ladder switch to occur within a jump is
∝ 1/N 2

and as we saw
above, the bright-state photon number scales as g2 in the thermodynamic limit.
This suggests the exponent 2 for the finite-size scaling of the blink-off timescale,
which is verified in the inset of Fig. 6.8 to very good accuracy. This downward
jump rate λ is largely independent of η, that only slightly influences the photon
number in the bright phase.

6.5.3 Blink-on process

On the other hand, the switching from the dim to the bright phase is induced
by the external driving and thus is sensitive to η, as can be seen in the left panel
of Fig. 6.8. The upward process is suppressed by the off-resonance of low-lying
quasi-energy levels (anharmonic part of the spectrum). Therefore, it is easy
to understand that the larger the coupling g, the larger the shift of the levels
from resonance and the smaller the blink-on rate. In the dim phase, the state
of the bosonic mode is close to the vacuum, however, there must be a small
deviation from that due to the driving.The state is a non-classical superposition
with positive Mandel-Q parameter (super-Poissonian photon statistics). The
Mandel-Q parameter measuring the nonclassicality of the field state reads

Q =
var(a†a) − ⟨a†a⟩

⟨a†a⟩
, (6.9)

where the averaging can be performed either as a quantum average on the actual
state vector of the field to reflect the nonclassicality at a given time instant, or
also over time.The Q parameter is zero for a classical field state (coherent state).
In Fig. 6.4(c), Q is calculated as a time-dependent quantum average, and we
observe that the nonclassicality is stronger in the dim phase than in the bright
one. This is consistent with our picture that the bright phase consists of an
approximately coherent state on the manifold ∣n,−⟩.

The state in the dim period has the property that the projection of the
wavefunction after a photon detection increases the weight of a high-excitation
component.10

10. It is straightforward to show that for
pure states of a mode, the positivity of
the Mandel-Q parameter, which is what
we have in the dim phase, is equivalent
to the nonclassical situation that a
photon escape from the mode increases
its photon number. Assuming that the
state of the mode before a quantum
jump is ∣Ψ⟩, a photon escape results in
the state

∣Ψ′⟩ = a ∣Ψ⟩ /
√
⟨N⟩

with photon number:

⟨N⟩′ = ⟨Ψ∣ a†a†a a ∣Ψ⟩ / ⟨N⟩

= ⟨Ψ∣ (a†a a†a − a†a) ∣Ψ⟩ / ⟨N⟩
= ⟨N 2

⟩ / ⟨N⟩ − 1.

The condition for a non-intuitive
(photon-number-increasing) jump
reads:

⟨N⟩′ > ⟨N⟩ .
This inequality is equivalent to the
inequality

Q = (⟨N 2
⟩ − ⟨N⟩2 − ⟨N⟩)/ ⟨N⟩ > 0.

While in the dim state there is a negligible amount of excited
photon component generated by the η driving, triggered by a single quantum
jump (which is very rare on account of the very low dim-state photon number),
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Figure 6.9: Mandel-Q parameter of the field averaged over time in the dim periods.

it can grow in an exponential runaway process for subsequent photon detections.
So the blink-on also takes place in the form of a cascade of quantum jumps.

In Fig. 6.9, we plot the field Q parameter averaged over time, but only in
the dim periods.1111. Note that a time average of the

Mandel-Q calculated for the instan-
taneous pure states of trajectories

does not reproduce the Q of the time-
averaged density operator, since the

dependence of Q on the density opera-
tor is not linear. The aim of our usage is
to substantiate that the quantum state
of the mode in the dim periods is of

the form (6.10), where a photon escape
increases the photon number of the mode.

The overall trend is that the nonclassicality of the field in the
dim phase increases both with increasing η and g, and the dependence flattens
out for large g at a value close to 1. Hence, the dim phase remains nonclassical
also in the thermodynamic limit.

Let us try to model the dim state of the field in the following form:

∣Ψ⟩ =
√
1 − ε2 ∣0⟩ + ε ∣φ⟩ , (6.10)

where ε is a small number and ∣φ⟩ is a state orthogonal to the vacuum state.The
photon count rate κ⟨a†a⟩ = κ ε2 Nφ can be made very small with ε → 0, where
Nφ = ⟨φ∣a†a∣φ⟩ is the mean photon number associated with the component
∣φ⟩ superposed on the vacuum. At the same time, the Mandel-Q parameter
of the state (6.10) is found to be independent of ε in the limit ε≪ 1: one finds
QΨ = Qφ + Nφ. That is, it depends only on the properties of the state ∣φ⟩. Note
that (i) Nφ > 1 because the vacuum component is missing from photon number
expansion of ∣φ⟩, and (ii) the Mandel-Q parameter is always limited below 1 in
Fig. 6.9. These two observations imply that the state ∣φ⟩ is a nonclassical state
with negative Mandel-Q factor.

6.5.4 Cascades of quantum jumps switch between attractors

A study of the photon-number evolution along a single trajectory together
with sufficiently resolved quantum jump events confirms the above picture
both for the blink-on and -off events, cf. Fig. 6.10. In panel (a) we see that a
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(a) (b) (c)

Figure 6.10: Photon-escape quantum jumps (blue) and the evolution of instantaneous photon-
number expectation values (red) during blink-on and -off events. Green arrows indicate the
photon escapes that trigger the switching events. The time-resolved depictions of quantum
jumps are histograms with bin sizes 0.01/κ for (a) and 0.001/κ for (b,c).

single photon escape (marked with the green arrow) triggers a shootup of the
photon number from the dim state, in accordance with the super-Poissonian
photon statistics of the dim state. However, in this event the surge is not strong
enough to break the blockade. Panel (b) depicts a successful breakthrough
event where we also see that the buildup of the full bright-state photon number
incurs a probabilistic cascade of quantum jump events. In panel (c) also a single
quantum jump triggers the collapse of the bright state (green arrow at the
sudden drop of photon number), followed by a normal ringdown of the photon
number with rate κ, involving several further photon escapes. This proves our
above claim that the telegraph signal observed here differs essentially from
the electron-shelving scheme: though there is a trigger single-photon escape
(quantum jump), the switch between the dim and bright phases is driven by a
cascade of quantum jumps.

The physics of the entire cycle of the bistable switching in the time domain
is summarized on Fig. 6.11.

6.6 the role of atomic decay

The condition γ = 0 is essential in the neoclassical theory, since the derivation
of the transcendental Eq. (6.5) relies heavily on the fact that the length of atomic
pseudo-spin is conserved, ⟨σx⟩2 + ⟨σy⟩2 + ⟨σz⟩2 = 3/4. Allowing γ ≠ 0 hence
leads to qualitatively different behaviour since this conservation law is broken.

Yet, for very small γ values, the behavior of the full quantum model does
not seem to be qualitatively affected: as we have shown in the course of this
chapter in passing, the photon-blockade-breakdown effect can be observed in
the case of a finite but small γ.

The effect of an atomic decay in the bright state, i.e., on a high-lying coherent
state can be assessed similarly to the above:

σ ∣n,±⟩ = 1
√
2
(∣n − 1,±⟩ + ∣n − 1,∓⟩) . (6.11)

This means that in the event of an atomic decay, there is a 1/2 probability of
a ladder switch. Hence, a γ on the order of κ would wipe out the bistability,
since a blink-on would immediately be followed by a collapse of the bright state.
The bistability manifests itself most clearly when γ = 0, the case that we most
concentrated on.
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Figure 6.11: The cycle of the bistable switching from left to right: 1) The dim state with most of
the population in state ∣0⟩, and some tunnelled over the nonlinearity barrier to higher parts
of the ladder to create the superposition state (6.10). 2) A single (very rare) photon-escape
event erases the ∣0⟩ component of the dim state to result in a state situated in the closely-
harmonic part of the ladder. 3) The pump resonant with the ‘+’ manifold creates a closely
coherent state. 4) A rare ladder-switching quantum jump event (6.8) transfers the state to
the off-resonant ‘-’ manifold, whence it decays due to the lack of resonant driving to the dim
state.

If γ ≪ κ, which case we exposed in passing in Figs. 6.4, 6.5 and 6.7, the
atomic decay emerges as a competing timescale for high-enough bright-state
photon numbers, resulting overall in smaller characteristic times and filling
factors. With respect to the phase transition, the system is relevant only as long
as the microscopic timescale of spontaneous emission is longer and thus is
dominated by the shorter macroscopic timescale τ of the phase stability.
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7

EXPERIMENTAL REALIZATIONS

7.1 synopsis

In order to obtain well-resolved attractors of the switching behavior in the
time domain, we need a high degree of anharmonicity in the lower part of
the Jaynes-Cummings ladder, that is, very strong coupling between the mode
and the two-level system. Whereas the necessary coupling strength doesn’t
seem achievable with (a single or a few) natural atoms in optical resonators, it
has become feasible with superconducting quantum electronic circuits, that
is, in the field of circuit quantum electrodynamics (CCQED), which offers
large dipole coupling strengths (Fink et al., 2009) and long coherence times for
multiple superconducting artificial atoms embedded in high-quality bulk or
on-chip microwave cavities (Blais et al., 2021).

The realization of the photon-blockade-breakdown phase transition on this
platform is the theme of the present chapter. The first experimental realization
(Section 7.2) took place in the Wallraff group (Quantum Device Lab, ETH
Zürich) in 2015–2016, whereas the experimental modelling of the finite-size
scaling to the thermodynamic limit (Section 7.3) in the Fink group (Quantum
Integrated Devices, IST Autria) in 2019-2021.

7.2 the first experimental realization of
the photon-blockade breakdown

One platform that has becomewidespread in realizing finite-level systems (most
notably, qubits in superconducting quantum computers) is the capacitively
shunted superconducting charge qubit, a.k.a. transmon qubit (Koch et al., 2007;
Paik et al., 2011). The experimental device and setup used for the results of
this Section is similar to the one in Mlynek et al. (2012) and consists of three
frequency-tunable transmons positioned at the anti-nodes of the first harmonic
voltage standing wave resonance of a coplanar superconducting resonator at
frequency ωM/(2π) = 7.024GHz, see Fig. 7.1(a).

7.2.1 Description of the transmon-resonator system

The transmon is characterized, on the plus side, by a flat charge dispersion, but,
on the minus side, also by a limited absolute anharmonicity of

∆an ≡ ωfe − ωeg ≃ −EC/ħ (7.1)

Here, ∣g⟩, ∣e⟩ and ∣ f ⟩ are the first three levels of the artificial atom, see Fig. 7.1(b)
which all take important parts in the dynamics of the presented experiments.

69



Figure 7.1: (a) Scheme of the driven coplanar waveguide resonator (blue) coupled to up to 3
transmon artificial atoms (green). An external drive (red) is applied via the input capacitor,
and the coherent transmission is detected via the output capacitor. (b) Level scheme of one
artificial atom indicating the parameters of Hamiltonian (7.9).

EC/h = (459, 359, 358)MHz are the charging energies and

g1/(2π) = (−52.7, 55.4, 55.8)MHz (7.2)

the single-photon ∣g⟩ → ∣e⟩ transition to resonator coupling strengths of the
atoms 1, 2 and 3. Similar to a harmonic oscillator, the coupling strength of the
second excited level can be approximated (Koch et al., 2007) as g2 ≃

√
2g1. Using

externally applied and locally concentrated magnetic fields one can control
the flux Φ through the individual transmon SQUID loops and change their
Josephson energy EJ(Φ). This allows to independently control the transmons’
transition energies ħωeg ≃

√
8ECEJ(Φ)−EC, and in particular to tune them in

and out of resonance with the microwave resonator. For the most part of this
Section we study the situation where two of the three artificial atoms are far
detuned (ωeg ≪ ωM) and thus effectively not interacting with the microwave
resonator.

The Hamiltonian and Liouvillian of the system are discussed in detail
in Section 7.A. In the present Section, we consider the resonant case, that is,
when both the mode and the drive have the same frequency as the ∣g⟩ → ∣e⟩
transition, as displayed in Fig. 7.1(b).The resonator is characterized by a FWHM
linewidth of κ/π = 0.47MHz. The resonator decay is the main decay channel
of the system, since the estimated transmon dephasing and depolarization rates
satisfy

κ ≫ γϕ ≫ γ1, (7.3)

the second inequality being a general characteristic of the transmon. Since g1
and g2 are much larger than the decay rates, we expect a well-resolved spectrum
of the interacting system. Without the third transmon level ∣ f ⟩ (setting g2 = 0
formally), we would get back to the situation described in Chapter 6, which
favors the photon-blockade dim state up to large drive strengths.

7.2.2 The case of a weakly coupled third level

Assume now that the ∣e⟩ → ∣ f ⟩ transition is only very weakly coupled to the
resonator, that is 0 ≠ g2 ≪ g1. The Jaynes-Cummings spectrum for the two-
level system ∣g⟩ and ∣e⟩ is then only slightly perturbed and the dressed states
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∣±, n⟩ can be easily identified in the full spectrum, cf. Fig. 7.2(a). The ground
state is the ∣g , 0⟩ state and the first excited state manifold is ∣±, 1⟩ exhibiting the
vacuum Rabi splitting 2g1. Starting from the second excited manifold, there
is a third level in each manifold in which the dominant component is the ∣ f ⟩
state due to the small coupling g2 ≪ g1. Therefore, this additional manifold
∣ f , n⟩ forms a closely equidistant ladder resonant with the photon frequency ω,
which is capable of eliminating the photon-blockade effect via the following
mechanism.

The off-resonant states ∣±, 2⟩ get weakly populated by two-photon tran-
sitions, and a small fraction of this anyway small population leaks into this
harmonic part of the spectrum, which is then resonantly driven within the man-
ifold ∣ f , n⟩. This component of the wavefunction is thus coherently displaced
in the photon mode on the timescale of κ−1. The displacement is counteracted
by resonator loss and leads to a steady state, which is a coherent state with an
amplitude η/κ and phase locked to the phase of the driving field. Just like in
optical pumping, the total state of the system is gradually pumped into this
trapping state. The bottleneck formed by the initial two-photon transition and
the weak ∣±, 2⟩→ ∣ f , 0⟩ coupling only increases the time it takes for the system
to be pumped into this trapping state. The three-level atom in a resonator with
the third level weakly coupled to the other two leads thus to a steady-state bright
transmission identical to that of a resonantly driven empty mode. Paradoxically,
an infinitesimally coupled ∣ f ⟩ state destroys the photon-blockade effect – but
leads to infinite relaxation time.

7.2.3 Increasing the coupling of the third level

When the coupling g2 is increased to g1 ≲ g2 the atomic state ∣ f ⟩ hydridizes
significantly with the other states ∣g⟩, ∣e⟩. The two atomic transitions coupled
to the mode form a spectrum which can be sufficiently anharmonic in the
low-excitation part, as shown in Fig. 7.2(b), so that the system is blocked into
the dim state up to high driving strengths at resonant driving ∆ = 0.

Figure 7.3(a) presents a histogram of the calculated transmitted field in-
tensity as a function of g2 in the range between the two limiting cases, g2 = 0
and g1 ≲ g2. As expected, small g2 gives rise to a full transmission of the reso-
nant driving power, the photon number fluctuates around the mean ⟨a†a⟩ ≈
(η/κ)2 = 700. Larger fluctuations and the residual population in the low pho-
ton states, close to the origin g2 ≈ 0 of the plot, is merely an effect of the finite
simulation time. On the other hand, it is also confirmed that the three-level
atom with g2 > g1 switches off the transmission, i.e., it restores the photon
blockade. The histogram is prepared from the ensemble of intensity values
recorded at many randomly chosen instants while the system is in steady state.
Just like in Chapter 6, the numerical simulations were performed using the
C++QED framework, cf. Part III. The photon-mode basis was truncated at
the Fock state n = 3600 and it took several weeks to generate a histogram at a
single value of g2/g1 by sampling a 0.5ms long trajectory at every µs.

The important feature of the histogram in Fig. 7.3(a) is the transition domain
manifested by a bimodal distribution of intensities. Experimentally we are
exactly in the center of this transition regime with g2/g1 ≃

√
2.
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Figure 7.2: (a) The spectrum of the coupled atom-resonator system with the third atomic state
∣ f ⟩ only weakly coupled to the middle one ∣e⟩, that is, g2 ≪ g1. In (a) the ∣±, n⟩ denote the
usual two-level-atom Jaynes-Cummings model dressed states combining ∣g , n + 1⟩ and ∣e , n⟩.
For the definition of ∆an , cf. Eq. (7.1). (b) The spectrum of the coupled atom-resonator system
with the experimental parameters g2 ≃

√
2g1. In (b) the multiplets ∣{−, 0,+}, n⟩ correspond

to the eigenstates of the Hamiltonian (7.8) in the n-excitation manifold. δ represents the
mismatch of ω with respect to the transition frequency between the states ∣0, 3⟩ and ∣0, 4⟩,
which is an order of magnitude larger than the linewidth.

7.2.4 The spectrum for different input powers

Figure 7.3(b) presents measured spectra for different input probe powers varied
over 4 orders of magnitude where all 3 transmons are in resonance with the
mode. Here Pin refers to the input power at the resonator input and Pout refers to
the digitizer input at room temperature. At low input powers corresponding to
much less than a single intra-resonator photon on average, we observe the well
known splitting of the coupled multi-qubit single-photon state as in Agarwal
(1984). Here we observe no additional resonances which validate that the system
is initialized in its quantum ground state rather than a thermal state (Fink et al.,
2009).

At intermediate powers we observe a rich structure in the transmission
spectrum, which is determined by multi-qubit multi-photon transitions. The
power broadening of the multi-photon resonances can be observed. The situa-
tion is even more complicated due to the additional transmon levels which lead
to an asymmetry of the observed spectra (Fink et al., 2008; Bishop et al., 2009).
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Figure 7.3: (a) Simulated histogram of the output intensity as a function of the coupling
constant g2 for η/(2π) = 6.4MHz with red representing high probability and blue indicating
zero probablility. (b) Measured spectra for input powers from Pin = 0.44 × 10−18W (blue)
to 25 × 10−15W (red) with all 3 atoms in resonance with the mode. Pin and Pout refer to the
resonator input power and digitizer input power respectively. For better visibility the shown
spectra are offset by 1.6nW from each other. The sharp transmission peak shown in the inset
appears stochastically. In this particular measurement (orange line at 4.4 fW input power) we
observe only two frequency points with small but finite switching probability and we sample
over multiple switching events resulting in a certain mean detected power. At lower drive
power no transmission is observed (no switching). At higher drive powers the transmission
peak approaches the resonator linewidth and scales linearly with input power (no switching
again). (c) Measured histogram of the detected power as a function of the resonator input
power for a single transmon (density plot). The most likely photon numbers (line plots) are
extracted from this measurement (red) and two similar measurements taken with 2 (orange)
and 3 qubits (green) in resonance with the mode. Simulation results for the single qubit case
are shown with connected black symbols for comparison. The dashed line is for reference and
represents the response of the empty resonator with ⟨a†a⟩ = (η/κ)2 .
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Figure 7.4: (a) Measured Q-function of the vacuum field for very low drive power η/(2π) =
1.4MHz in the photon blockade regime (left) and Gaussian fit along the two field quadratures
X and P. The fit reveals a thermal state due to the added amplifier noise with nadd = 28.1. (b)
The waterfall plot shows line cuts of the measured Q-functions where X = 0 as the drive
strength is increased from η/(2π) = 1.4 → 11MHz for a single transmon in resonance
with the mode (left). A vertical offset of 0.05 between the line plots has been used for better
visibility. The complete Q function for the critical drive strength η/(2π) = 7.1MHz, which is
indicated by the dashed black line on the left. (c) The same measurement for transmons 1 and
2 in resonance and the critical drive strength η/(2π) = 6.8MHz. (d) The same for transmons
1, 2 and 3 in resonance and the critical drive strength η/(2π) = 7.7MHz. (e)-(g) The real-time
single-shot record of the transmitted output field amplitude and phase for one (e), two (f) and
three (g) atoms in resonance with the mode.

More importantly however, the frequency region around the bare resonator
frequency remains dim over a large range of input powers.

At a certain power, corresponding to about 500 intra-resonator photons,
we observe a sudden narrow transmission peak at the bare resonator frequency.
This transmission peak is observed to be switching stochastically for a certain
range of constant input powers. At much higher input powers the spectrum
resembles that of an empty resonator without atoms. This transition to the
classical regime has been studied in the dispersive limit with coherent drive
where the photon number is ∼ 105 by Reed et al. (2010), as well as in the resonant
case with broadband thermal radiation (Fink et al., 2010).

In order to resolve the dynamics of the process leading to the sharp transmis-
sion peak, we record the resonator transmission at the bare resonator frequency
for 60 different input powers. In each case we measure a single-shot real-time-
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record of both field quadratures and repeat these measurements for one, two
and three transmons in resonance with the resonator mode. Experimentally
the transmitted tone is amplified with a commercial HEMT amplifier, down-
converted with an IQ mixer and digitized with a time-resolution of 40ns for a
total time of 1.6ms. This corresponds to a filter bandwidth of 25MHz, much
smaller than the vacuum Rabi splitting and small enough to filter out most low
lying and comparably low power multi-photon transitions. The density plot
shown in Fig. 7.3(c) shows the likelihood to detect a particular output power as
a function of a large range of input powers, carefully mapping out the transition
from the dim to the bright multi-photon phase of the system.

7.2.5 The steady-state density operator and behavior in the time domain

Themeasured histogramclearly shows an input power region between 4.5–7.5 fW
with two distinct solutions. For smaller powers we observe no transmission
(photon blockade) and for higher powers the resonator transmission scales
linearly with the input power (this is close to the empty-resonator solution).
The red line-plot indicates the most likely output power for this measurement
and agrees very well with the simulated results shown in black. The simulation
results are based on independently measured parameters, see also Mlynek et al.
(2012), and provide a calibration for the drive amplitude η shown on the top
horizontal axis of Fig. 7.3(c) and the mean intra-resonator photon number
⟨a†a⟩ shown on the right hand vertical axis. The total attenuation of 86dB
agrees with our expectations based on independent measurements and is suffi-
cient to protect the resonator from room temperature thermal radiation. The
orange and green lines show the results of identical measurements with two and
three atoms in resonance with the mode. The characteristic switching power is
slightly shifted, but the single- and multi-atom cases appear very similar.

A full characterization of the steady-state of the resonator field can be given
by the Husimi Q quasiprobability distribution, see Fig. 7.4. For small drive
strength the system is in the photon blockade regime and the Q function is
that of the vacuum state. Due to the added noise of the amplifier chain we
expect a convolution of the Q-function vacuum state with a thermal state and
a Gaussian fit to the measured distribution (cf. Fig. 7.4a) yields an added noise
photon number of 28.1 as referenced to the resonator output. This corresponds
to a total system noise temperature of 9.5K, in line with our expectations due
to losses in the output line and the noise specifications of the used amplifiers.

Figure 7.4(b–d) show the experimental results for one, two and three atoms
in resonance, respectively. The waterfall plots explicitly show the photon block-
ade breaking transition indicated by the sudden change of the Q function peak
position as the drive power is increased from low (blue) to high drive strength
(red). The right hand plots depict the entire Q function within the bistability
region, i.e. for the data sets marked by dashed black lines on their left. In all
three cases the Q function shows a clear bimodal structure with two solutions.
Due to the large intra-resonator photon number in the bimodal switching
regime of ∼ 500 − 700, we can clearly resolve the double-peaked Q-function
demonstrating the mixture of the vacuum state and the highly excited state
with well-defined amplitude and phase.

Fig. 7.4(e-g) display the bistable behavior in the time domain, showing a
general picture similar to the numerically generated trajectories in Fig. 6.4.
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Figure 7.5: (a) Schematics of the experimental device for modeling the thermodynamic limit.
It consists of a superconducting transmon qubit fabricated on a silicon substrate that is
placed at the antinode of the fundamental mode of a 3D copper cavity. The cavity has fixed
length (salmon) and an in-situ variable length pin coupler port (blue). (b) Measured cavity
transmission spectra with the qubit far detuned for different coupler positions (color coded)
together with Lorentzian fits (dashed) and the extracted κ/2π values, cf. Eq. (7.4).

Whereas the bright states are characterized by a fixed-phase resonator field, the
phase of the dim state is completely chaotic in the experiment due to technical
noise.

7.3 modeling the thermodynamic limit
experimentally

The basic idea of the experimental approach of the thermodynamic limit is
that the finite-size scaling parameter g/κ (cf. Chapter 6, in particular Fig. 6.7b)
is increased not by increasing g, which is not possible in CCQED, but by
decreasing κ. This procedure has the inherent limitation that when κ reaches
the order of magnitude of the transmon relaxation rates, then the transmon
decay channels start to significantly impact the dynamics, as was demonstrated
for γ in Chapter 6. However, the transmon used in this experiment is of such
high quality, that it will be possible to follow the scaling of the characteristic
timescale to the thermodynamic limit over seven orders of magnitude (well
into the order of several seconds!) before hitting this limitation.

In order to be able to change κ in situ, i.e., without removing the device from
the dilution refrigerator, here a 3D microwave resonator is used in contrast to
the previous Section. Whereas the studies in Section 7.2 were based on archive
data after the dismantling of the experiment, here the device was specifically
designed for the purpose of studying the finite-size scaling of PBB, so that the
synergy between theory and experiment could be much stronger.

The numerical studies presented in this Section took about a full year on
a virtual computational cluster in an OpenStack cloud environment (MTA
Cloud).
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7.3.1 The experimental system

The experimental setting incorporates a transmon qubit placed at the anti-node
of the standing wave of a 3D copper-cavity, as shown in Fig. 7.5(a), that can be
flux-tuned by applying a B-field via a millimeter-sized superconducting bias
coil mounted at the outside cavity wall. The transmon qubit has a maximum
Josephson energy EJ,max/h ≈ 48GHz, charging energy EC/h ≈ 382MHz and a
resulting maximum transition frequency between its ground and first excited
states of ωA/2π ≈ 12.166GHz. When the transmon ground to first excited state
transition is tuned in resonance with the cavity mode at ωR/2π ≈ 10.4725GHz,
the directly measured coupling strength between the single photon and the
qubit transition is as high as g/2π = 344MHz, which is only about a factor
of 3 below the ultrastrong coupling regime, cf. Chapter 5. The relatively high
absolute anharmonicity between subsequent transmon state transitions is α/h ≈
−418MHz at this flux bias position.

The cavity has two ports, of which the input pin coupler position is fixed
with an external coupling strength of κfixed/2π ≈ 500kHz. The output coupler
is attached to a cryogenic piezo nano-positioner, which allows to adjust the
pin length extending into the cavity. With this tunable coupler the coupling
strength can be varied in situ in a wide range κvary/2π ≈ 20 kHz− 30MHz.The
internal cavity loss at low temperature is κint/2π ≈ 600kHz, which is achieved
by electro-polishing of the high conductivity copper surface before cooldown
to 10 mK in a dilution refrigerator.

All four scattering parameters are measured with a vector network analyzer
to calibrate the measurement setup and the cavity properties when the qubit
is far detuned from the cavity resonance. Figure 7.5(b) shows transmission
measurements fitted with the scattering parameter S21 derived from the input-
output theory of an open quantum system (Gardiner & Collett, 1985):

S21 =
√κfixedκvary

κ/2 − i(ω − ωR)
. (7.4)

From these fits, we extract all loss rates that add up to the total cavity linewidth
κ = κfixed + κvary + κint also indicated in Fig. 7.5(b).

Time-domain characterization measurements confirm that the qubit is
Purcell-limited and homogeneously broadened at the flux sweet spot (Houck
et al., 2008), where the measured coherence times are T1 ≈ 0.5µs and T2 ≈
1µs. When the qubit frequency is tuned far below the resonator frequency
ωA/2π ≈ 6.083GHz by applying an external magnetic field, the measured
coherence times are T1 ≈ 18.14µs and T2 ≈ 0.496µs, which we attribute to a
higher Purcell limit due to the larger detuning as well as a drastically increased
flux noise sensitivity. On resonance ωA = ωR, where the following experiments
were performed, the energy relaxation is therefore fully dominated by cavity
losses. The measured vacuum Rabi peak linewidth changes with and without
the qubit in resonance are in agreement with a small amount of flux noise
induced dephasing expected at that flux bias position.

In Section 7.2 the third transmon level was shown to play an important role
in the dynamics. Here, due to the much (∼ 6 times) increased coupling strength,
but transmon anharmonicity remaining similar, even higher transmon levels
come into play.
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Figure 7.6: Observation of photon blockade breakdown at g/κ ≈ 39. (a) The Jaynes-
Cummings ladder for a three-level atom illustrating the PBB effect in the frequency domain:
single-photon (blue) and multi-photon (salmon) transitions are indicated according to the
measured spectrum at the Rabi-split frequencies and near resonance, respectively. (b) Mea-
sured transmission spectra at strong resonant coupling at applied external drive strengths
1.05MHz and 167.01MHz, where the vacuum Rabi spectrum and a sharp peak appearing
close to the cavity mode frequency are observed, respectively. (c) Bistability in the time do-
main, with dwell times in the OFF and ON states. (d-f) Measured histograms in quadrature
space – proportional to Q functions convolved with amplifier noise with added noise photons
namp ≈ 9.2, for the dim phase at η/2π = 105MHz, for the bistable phase at intermediate drive
strength 167MHz, and for the bright state at higher drive strength 210MHz, respectively. (g)
Histograms of output power arranged vertically in color code as a function of input power,
with the bistability region indicated by histograms with two maxima. The maxima indicated
by circles trace out a typical bistability curve, cf. Fig. 7.10 in the appendix. (h) Dwell times in
the dim (toff) and bright states (ton) as functions of η, with the dwell-time and drive ampli-
tude corresponding to half-filling (toff = ton) indicated with asterisk.
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7.3.2 Results

Fig. 7.6 summarizes the observation of the effect in the just described exper-
imental setup in (a-b) the frequency and (c) the time domain, (d-f) in the
language of the Q-function, and (g) as a bistability curve. Panel (h) displays
how the half-filling drive amplitude η∗ is determined, cf. also Section 6.4.

The modeling of the upscaling to the thermodynamic limit together with
the determination of the scaling exponents is summarized in Fig. 7.7. We note
that all the measured exponents differ significantly from the simulated ones in
Chapter 6. The scaling law ∣α∣2 ∝ (g/κ)2 came from the 2-level neoclassical
theory, cf. Eq. (6.5). Therefore, a deviation from that can come from even
the presence of the other transmon levels. In Section 6.5.2, the blink-off rate
could be calculated from the rate of ladder-switching quantum jumps, and
was found to be proportional to κ/∣α∣2, so the waiting time for a blink-off is
∣α∣2/κ, therefore it scales as g2/κ3.1 1. In the simulation, cf. Fig. 6.7, we

measured the timescale-exponent
(κτ) ∝ (g/κ)2.2, which is very close to
this.

The deviation from this in the experiment
can be due to the counter-rotating terms and the hybridized decay channels,
which together make that the blinking mechanism is different from the simple
Jaynes-Cummings case that we had in the theory chapter.

Fig. 7.7(b-d) displays simulation results that have been obtained with the
C++QED framework. The details of the simulation are similar to Chapter 6
and Section 7.2, cf. also Section 7.A and Part III. Here, in the simulation we
probe different numbers of levels for the transmon, and try different models
for the dephasing of the higher transmon levels. It is clear from all the panes
(b-d) that the more transmon levels we include, the better the simulation
data fits the experiment. Even higher levels of the transmon seem to play an
important role than the third level as in Section 7.2. This can be attributed to
the stronger coupling – which coupling in the case of the transmon moreover
increases for transitions between higher-lying transmon levels, cf. Eq. (7.7) –,
that compensates for the increased detuning of these higher levels.

For the dephasing of higher-lying transmon levels, with dephasing rate
γϕ = 2π[ 1T2 −

1
2T1 ], three different models have been tried: (1) γϕ = 0 for a

baseline, (2) γϕ increasing linearly with level ordinal, and (3) γϕ increasing
proportionally to the charge dispersion (Bishop et al., 2009) – a much quicker-
than-linear increase. Results from this latter are not shown here because the
trajectories are qualitatively different from the experimental ones. The general
tendency deducible from the figure is that increasing the number of transmon
levels improves the correspondence between simulation and experiment, and
so does the inclusion of γϕ. This is especially prominent in the η (or, photon-
number) scale, cf. Fig. 7.7(c-d).

Regarding the exponents, the simulation data hint at a similar picture we
outlined above: the exponent of the photon number seems to depend on the
number of transmon levels, whereas that of the dwell time is independent of
this, and closely reproduces the exponent obtained in Chapter 6. That is, the
exponent of the timescale is more robust, as it depends only on such traits of
the model (rotating-wave approximation and bare subsystem decay channels)
as are more fundamental than the number of levels.
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80



6 4 2 0 2 4 6
0.06

0.1

0.2

0.3

0.4

(a) (b)

(c) (d)

1.5

1.0

0.5

A
m
pl
itu
de
(m
V
)

0 500 1000 1500
time (ms)

(e)

(f)

(g)

(h)

η/g = 0.246

η/g = 0.252

η/g = 0.336

η/g= 0.34

Δ/κ

η*/g

η/
g

-6 -4 -2 0 2 4 6
Δ/κ

10-2

10-3

10-4

10-5

10-6

10-7

t*
dw
el
l(
s)

Bright
Phase

Dim Phase
Bistable
Phase

-60 -30 0 30 60
Δ/κ

10-1

10-2

10-3

η/
g

Bright Phase

Bistable Phase

Dim Phase

10-1

10-2

10-3

η/
g

-30 -20 -10 0 10 20 30

Bright Phase

Bistable Phase

Dim Phase

Δ/κ

0.0

1.5

1.0

0.5

0.0

1.5

1.0

0.5

0.0

1.5

1.0

0.5

0.0

Figure 7.8: The phase diagram at g/κ ≈ 132. Phase diagram on the ∆–η plane obtained from
semiclassical (Maxwell-Bloch) equations for (a) two and (b) three transmon levels with values
for the parameters γ1 and γphi according to the experiment. In panel (b), the noisy lower
boundary of the bistable phase results from numerics. (c) Phase diagram obtained from the
experimental data. (d) Experimental dwell time at half filling as a function of the detuning of
the drive. (e)-(h) shows the experimentally observed telegraph signals at different η values at
∆ = 0 in order to determine the boundaries of the bistability region. In this particular case,
the bistability region can be observed within the range of η from 85.6 till 115.5 MHz.

7.3.3 The phase diagram

Finally, the phase diagram of the process has been sketched experimentally at
one of the closest points to the phase transition we can have, one of the highest
values of the finite-size scaling parameter: g/κ = 132.3. For this, we introduce a
further parameter: ∆, the detuning of the drive from the resonance of the bare
subsystems:

∆ ≡ ω − ωA = ω − ωR. (7.5)

Phase diagrams on the ∆–η plane as calculated from the semiclassical theory
(for details, see Section 7.B) are displayed in Fig. 7.8(a,b) for a 2- and a 3-level
transmon, respectively. On panel (c), the experimentally measured phase di-
agram is displayed. On pane (d), the experimental dwell time is shown as
a function of the new parameter ∆, exhibiting a drop of about 5 orders of
magnitude between resonance and ∆ = ±6κ.

Comparing the phase diagrams (a-c), one can see that the semiclassical
2-level case completely fails to capture the essential features of the experiment.
The 3-level case is qualitatively better especially in the upper limiting curve of
the bistability region, as it reproduces the overall resonance-like dependence
on the detuning, and the asymmetry with respect to the ∆ = 0 line. However,
the shape of the lower limiting curve is not correctly captured by this theory.
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In fact, the 3-level semiclassical theory is unable to reproduce the finite dim
phase around resonance that we observe experimentally.

This comparison with the semiclassical theory underlines that the well-
resolved spectrum of the strongly coupled transmon-resonator system with
more than two transmon levels plays an essential role in this experiment.

7.a the full quantum model for multilevel
transmons

The basic Hamiltonian for a multi-level system interacting with a driven mode
reads (ħ = 1):

H =∑
u
[hu ∣u⟩ ⟨u∣ + i(gu+1 a ∣u + 1⟩ ⟨u∣ − h.c.)]+ωM a†a+i (η e−iωt a† − h.c.).

(7.6)
Here, u indexes the transmon levels, and we assume that only transitions be-
tween adjacent levels couple to the mode, with coupling coefficient gu+1. The
hus are the bare transmon energies, ωM is the bare mode frequency, and η and
ω are the drive amplitude and frequency, respectively.

The Hamiltonian is written in the rotating-wave approximation. This is
justified as long as the coupling strength does not reach the Bloch-Siegert
regime of ultrastrong coupling, meaning 10 g1 ≲ h,ωM (Forn-Díaz et al., 2019),
which holds for the experimental systems studied in this Chapter. For the
coupling coefficients we use the standard relation for transmons

gu+1 =
√
u + 1 g1. (7.7)

For a comprehensive theory of the transmon cf. Bishop (2010); Blais et al. (2021);
Schreier et al. (2008)

Transforming to the frame rotating with ω, we obtain a time-independent
Hamiltonian with ∆ ≡ ω − ωM:

H =∑
u
[(hu − u ω) ∣u⟩ ⟨u∣ + i(gu+1 a ∣u + 1⟩ ⟨u∣ − h.c.)]−∆ a†a+i (η a† − h.c.).

(7.8)
Here, putting h0 = 0, and assuming the 0–1 transition resonant with the mode
(h1 = ωM), we obtain a simple form for the bare transmon Hamiltonian, which
we list for the first 3 levels:

Htransmon = −∆ ∣1⟩ ⟨1∣−(2∆ − ∆an) ∣2⟩ ⟨2∣+contribution of higher levels, (7.9)

where ∆an ≡ h2 − 2 h1 is the anharmonicity of the third level, which is related
to the charging energy.

Let us turn to dissipation, which we describe with the Liouvillian

Lρ =∑
i
(Li ρ L†i −

1
2
{L†i Li , ρ}) ≡ (Lmode +Lrelax +Ldephase) ρ (7.10)

Let us look at the three kinds of dissipative channels in detail:

Resonator decay, Lcav This is described by the jumpoperators L− =
√
2 (nth + 1) κ a

and L+ =
√2 nth κ a†. Here nth is the number of thermal photons, which

can be neglected in our system, so the second kind of quantum jumps
(absorption of thermal photons) does not exist.
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Energy relaxation of the transmon, Lrelax In analogy with the coupling to
the resonator mode, we assume that this occurs only as transitions be-
tween adjacent levels. It is described by the jump operators Lu+1→u =
√γu+1→u ∣u⟩ ⟨u + 1∣. In the simulation, we take γu+1→u equal for all levels,
and we identify it with γ1 in cQED.

Dephasing of the transmon, Ldephase This is also defined separately for all
transmon levels, and its jump operator for level v is

Lϕ,v =
√
γϕ,v(∑

u≠v
∣u⟩ ⟨u∣ − ∣v⟩ ⟨v∣) =

√
γϕ,v(1 − 2 ∣v⟩ ⟨v∣),

so it simply flips the phase of level v by π. Modeling the behavior of the
dephasing for different transmon levels is nontrivial. We consider three
possibilities:

1. γϕ,v = 0 for all v. This is only to get a theoretical baseline of
dephasing-free behavior.

2. Linear growth as γϕ,v = v γϕ,v=1, where the dephasing γϕ,v=1 =
2π×6.25 kHz in the experiment according to the above convention
of γϕ.

3. Dephasing proportional to the charge dispersion of the transmon
levels (Bishop et al., 2009).

Example trajectories for the three possibilities are displayed in Fig. 7.9. It is
apparent thatmodel 3 leads to very noisy trajectories that do not reproduce qual-
itatively the experimentally observed behavior of stabilized attractors.Therefore,
we omitted this possibility from the quantitative comparison presented in the
main text.

In the simulation, for each physical parameter set, several trajectories are
run with different random number generator seeds. Relying on the assumption
of ergodicity, these trajectories are concatenated for a single long trajectory
for each parameter set, which is then used for dwell-time statistics. Since each
trajectory is started from the ground state, this method has a bias toward the
dim state (breaching of ergodicity), which is the stronger, the larger the blinking
time with respect to the simulation time.

The full quantum simulations were implemented within the C++QED
simulation framework, cf. Part III, and took about a year on a 64-core virtual
cluster definedwithin anOpenStackCloud environment (http://science-cloud.
hu/).

7.b semiclassical theory for a multilevel
transmon

From the master equation ρ̇ = [H, ρ]/(iħ) +Lρ we can derive equations for
the expectation values of the operators a and σuv = ∣u⟩ ⟨v∣. In the case of a
two-level system, this simply reproduces the Maxwell-Bloch equations, with
the added complication of the qubit dephasing. Here, we list the equations for
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Figure 7.9: Example trajectories for the three possibilities for modelling charge dispersion for
higher transmon levels enumerated in the text (labelled here “noPhi”, “linearPhi”, and “full-
Phi”, respectively). All other parameters are identical for the three trajectories. It is apparent
that the “fullPhi” case leads to qualitatively incorrect results with very strong noise and vague,
only partially stabilized attractors.

a three-level transmon, which still leads to an algebraically tractable scheme.
In this case, 6 equations are needed for a complete system:

α̇ = (i∆ − κ)α + η − g1 sge − g2 se f (7.11a)
ṡge = (i∆ − γ1) sge − g1 (see − sg g) α − g2 sg f α∗ (7.11b)
ṡg g = γ1 see − 2g1Re{α∗ sge} (7.11c)
ṡe f = (i[∆ − ∆ f ] − [γ1 + 4(γϕ,1 + γϕ,2)]) se f + g2 (see − s f f )α + g1 α∗ sg f

(7.11d)
ṡee = 2 g1Re{α∗ sge} − 2 g2Re{α∗ se f } − γ1 see + γ1 s f f (7.11e)
ṡg f = (i[2∆ − ∆ f ] − [γ1 + 4γϕ,2]) sg f − g1 α se f + g2 α sge (7.11f)

Here α = ⟨a⟩, and suv = ⟨σuv⟩. The system is completed with the completeness
relation sg g + see + s f f = 1. We are interested in the steady state, which can
be obtained by zeroing the left hand side of the equations, that leads to an
inhomogeneous nonlinear set of equations.

We do not need to solve the full set of equations. Instead, we can obtain a
single implicit equation for only the intensity ∣α∣2 as follows. First we define
the complex dispersive shift

Σ(∣α∣2) = −
g1 sge + g2 se f

α
, (7.12)

second from Eq. (7.11a) in steady-state we express α explicitly. As we will show
below, Σ depends only on powers of ∣α∣2, and not on other combinations of α
and α∗. Therefore, the equation for the intensity can be written as

∣α∣2 =
∣η∣2

∣Σ(∣α∣2) + (i∆ − κ)∣2
(7.13)
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Figure 7.10: Typical bistability curve for the intensity as a function of the drive amplitude at
the real system parameters and detuning ∆/(2π) = 10MHz. The bistable region is in fact
signalled by a threefold (with some parameters even fivefold) solution, but the branch plotted
in dashed line is non-physical, since the intensity decreases with increasing drive power. The
empty-cavity solution is plotted for zero detuning, and we can observe that the solution curve
concurs with it in the bright state, the difference being due to finite detuning.

What we have to show for the validity of Eq. (7.13) is that the solutions of
sge and se f have the form of an ∣α∣2-dependent expression multiplied by α. The
polarizations can be expressed as functions of the populations multiplied with
α from Eqs. (7.11b), (7.11d) and (7.11f) in steady state. When these solutions
are substituted into the steady-state population equations (7.11c) and (7.11e),
the factor α in the solutions together with α∗ in those equations give an ∣α∣2.
Hence, the populations can be expressed from these equations as functions
only of the intensity, and when these are substituted back into the solutions of
the polarizations, we obtain the necessary form for these latter.

A typical solution of Eq. (7.13) exhibiting bistability is displayed in Fig. 7.10.
The semiclassical theory is inferior to the full quantum-trajectory solution
described in Section 7.A in at least two respects:

1. Dealing with (possibly multi-valued) steady state solutions, it does not
provide information on timescales.

2. Whereas the set of three complex polarizations and two populations in
Eq. (7.11) give a complete picture of the transmon in itself, the mode
is represented only by a single amplitude. This means that the theory
cannot account for nonclassical states of the mode and transmon-mode
entanglement.
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8

THESES, OUTLOOK

Thesis V (Vukics et al., 2019) We have formulated a paradigm of first-order
dissipative phase transitions (DPT). According to this paradigm, a first-order
DPT does not contradict the requirement that a dissipative quantum system
governed by Liouvillian evolution has a unique steady-state density operator for
all values of external parameters. The property of first-order phase transitions
that several phases can coexist in certain domains of the parameter space holds
in the dissipative quantum case without the need for a multi-valued solution for
the steady-state density operator.The key to this is that a single density operator
can accomodate multiple coexsisting phases as a mixture of macroscopically
distinct states. However, the steady-state density operator in itself does not give
information about the stability of phases, or non-equilibrium phenomena, such
as hysteresis. To access such effects, we have invoked the temporal unraveling
of the steady-state density operator in the language of quantum trajectories.
Quantum trajectories enable the study of bistabilities developing into first-
order dissipative quantum phase transitions in a thermodynamic limit where
the macroscopically distinct attractors become stable phases, and the system
exhibits perfect hysteresis in the coexistence domain.

Thesis VI (Vukics et al., 2019) As a prime example of the paradigm described
inThesis V, we considered the photon-blockade-breakdown phase transition,
which occurs in the driven-dissipative Jaynes-Cummings model with strong
coupling between the two-level system and the harmonic oscillator. For a
certain range of drive strength, the stationary solution in the time domain
corresponds to a bistability of classically distinguishable states. By unraveling
the stationary solution into quantum trajectories, we resolved the nature of
coexistence of phases: the temporal bistability is a finite-size precursor of what
in the thermodynamic limit is a first-order dissipative quantumphase transition.
Contrary to formerly known quantum phase transitions in the Rabi or Jaynes-
Cummings models, here the thermodynamic limit is a strong-coupling limit,
where the system remains the same bipartite microscopic quantum system,
but both the bistability timescale and the separation of the attractors becomes
macroscopic. We constructed an appropriate scaling of the system parameters
such that the bistable telegraph signal remains self-similar along the passage
to the thermodynamic limit, and calculated the finite-size scaling exponents
numerically. The numerical studies took half a year in a cloud-based 64-core
computational cluster.

Thesis VII (Vukics et al., 2019) We have demonstrated that the photon-
blockade breakdown is an inherently quantum effect. This remains true even in
the thermodynamic limit, i.e. the thermodynamic limit is not a classical limit.
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This is because the well-resolved discrete spectrum of an interacting bipartite
(atom-mode) quantum system is essential for the effect since the two attractors
(phases) live in different regions of this spectrum. In the thermodynamic limit
it is the increased anharmonicity of the spectrum due to the increased coupling
which accounts for the increasing stability of the attractors. The dim phase is a
significantly non-classical state with the property that photon escapes increase
the photon number in the mode (super-Poissonian photon statistics). We have
demonstrated that blink-on and -off processes are triggered by cascades of
quantum jumps. We have shown that depolarization and dephasing of the
atomic transition is detrimental for long-living attractors.

Thesis VIII (Fink et al., 2017; Sett et al., 2022) The photon-blockade break-
down effect has been demonstrated in circuit cavity quantum electrodynamics
systems with transmons. The spectral, time-domain, and quasi-probability-
distribution signatures of the bistability have been directly observed. We have
shown that the necessary coupling strength is so high that the anharmonicity
of the transmon is not sufficient for it to act as a qubit: higher-lying transmon
levels enter the dynamics, with essential modifications to the spectrum and
hence the parameter domains where the effect is accessible. The thermody-
namic limit has been modeled experimentally by modifying the resonator loss
rate while keeping the coupling strength constant. The finite-size scaling of
the characteristic timescale has hence been followed over seven orders of mag-
nitude. The phase diagram on the detuning – drive strength plane has been
determined experimentally, and found to exhibit qualitative differences from a
semiclassically calculated phase diagram. The numerical studies supporting
the experiment took a full year in a cloud-based 64-core computational cluster.

;

Since Part II of the thesis contains the most recent results, in contrast to Chap-
ters 5 and 11, here there is no need for a literature review of “further develop-
ments”. A review of recent literature can be found in Section 1.4. Rather, we
give an outlook below.

The comparison of our simulation data with the experimental results, espe-
cially in Section 7.3, where the simulation data doesn’t depend on any fitting
parameters, suggests that the fully quantum modelling of the transmon needs
to be refined. Even though the ultrastrong coupling (Bloch-Siegert) regime
is not reached, we can suspect that what we observe is the breakdown of the
conventional modelling of the qubit-mode system with the Jaynes-Cummings
model and the separate qubit and mode dissipation channels. The modelling
can be improved in both of these aspects:

Coherent evolution the rotating-wave approximation is expected to break
down in the ultrastrong-coupling regime, so that the Jaynes-Cummings
model needs to be supplemented. We note that the Bloch-Siegert shift
has recently been observed in circuit QED by Pietikäinen et al. (2017).

Incoherent evolution the standard quantum optics master equation Eq. (7.10)
neglects the qubit-mode interaction in its treatment of the coupling to
the environment. This assumption has been shown to break down in the
ultrastrong-coupling regime (Beaudoin et al., 2011).
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The photon blockade breakdown bistability represents an important first
step towards exploring quantum criticality in the many-photon / high-drive-
power regime. A detailed understanding of quantum phase transitions in circuit
QED could play an important role for the controlled simulation and stabiliza-
tion of peculiar phases of finite size open quantum systems. In the future, one
could study entanglement and the details of the time dynamics using auto-
correlation measurements (Lang et al., 2011). With better qubit coherence times
and quantum limited amplifiers, phase multi-stability (Delanty et al., 2011) and
squeezing (Peano &Thorwart, 2010) may be realizable.

Besides its fundamental interest as a quantum-classical phase transition,
the PBB bistability / first-order DPT also promises applications. Since single
quantum jumps were shown to trigger the switching from the (nonclassical)
dim state to the (closely classical) bright state, cf. Fig. 6.10, our system can be
considered as a quantum-jump amplifier, where ultimately a macroscopic mi-
crowave device (outside the fridge) is getting switched bymicroscopic quantum
events (inside the fridge). An interesting prospect is controlling the switching
behavior, that can be envisaged either in a parametric way, but preferably with
another strongly coupled quantum system. In the latter case the bistability can
act as a readout device with high signal-to-noise ratio, for ultra low power
signal processing in photonics (Kerckhoff et al., 2011) or classical frontend-
processing for quantum computers (Andersen & Mølmer, 2015). The capability
of preparing the system on the verge of a phase switching could make it appli-
cable in quantum metrology/sensing, in line with the arising paradigm for the
application of (first-order) QPTs/DPTs (Fernández-Lorenzo & Porras, 2017;
Raghunandan et al., 2018; Yang & Jacob, 2019; Heugel et al., 2019).

Finally, we note that in the cold-atom cavity QED laboratory at the Wigner
Research Centre for Physics started in 2016, an effect dubbed “transmission
blockade breakdown” (TBB) has been observed by Clark et al. (2021) that can
be regarded as a many-body counterpart of PBB. Here also, an abrupt transition
occurs between a “dim” and a “bright” phase of the cavity field, where the former
is caused by dispersive interaction with the atoms in one of the states of the
ground-state hyperfine manifold of rubidium-87, cf. Fig. 8.1.
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Figure 8.1: Schematic representation of the transmission blockade breakdown phase transi-
tion. Atoms can be in (a) ‘red’ or (c) ‘green’ states, blocking or permitting the light transmis-
sion through the cavity, respectively. In the transition domain (b), the atoms are in a mixture
of these states. Upper level schemes show the cavity mode frequency with respect to the an-
gular frequency of the pump laser, ω and in panel (d), red and green states are identified with
the hyperfine states of 87Rb (only a part of the 52S3/2 ↔ 52P5/2 structure is shown). Far-off-
resonance σ−-polarized light provides an excitation path that assists the escape of the atoms
from the blockading state, ∣g⟩ to the F = 1 manifold of the electronic ground state. Atoms
are first weakly excited to an intermediary state, ∣i⟩ = ∣F = 2,mF = 1⟩, before spontaneously
decaying to the manifold which is optically dark with respect to the cavity mode. The time
evolution of the transmitted intensity is plotted in (e), exhibiting the switch from blockaded
to transparent phase around 100 ms after turning on the cavity drive. It is expressed in units
of cavity photon number deduced from the detected photon flux. The transition is accompa-
nied by the increase in cavity field fluctuations, represented in (f), in terms of thermal photon
numbers extracted from the statistics of the transmitted light.

90



PART III

COMPUTATIONAL ASPECTS





9

A ROBUST ADAPTIVE
QUANTUM-JUMP MONTE CARLO
METHOD

9.1 synopsis

In this chapter we first describe the original MCWF algorithm and its issues
that we set out to address with our adaptive algorithm. The latter is described
in detail in Section 9.3. Section 9.4 is devoted to the numerical study of the
convergence of ensembles of trajectories computed by our adaptive algorithm to
the solution of the master equation. We will see (Section 9.4.1) that the problem
of a finite-temperature harmonic oscillator mode driven purely by photon
exchange with the bath is the most demanding of the simple generic examples,
due to a kind of bosonic enhancement of the noise. In the case of a nontrivial
Hamiltonian (Section 9.4.2), a contention between the ODE stepsize-control
heuristic and our superimposed heuristic of jump-probability control takes
place. In Section 9.5, we compare our algorithm to the integrating algorithm
(Breuer&Petruccione, 1995;Homa&Diósi, 2017) ofMCWFevolution, showing
some realistic usecases that favor our method (Section 9.5.1). Finally, we share
some insights about sampling and time averaging (Section 9.6).

9.2 primordial mcwf and its critique

The MCWF method aims at unravelling a master equation into a statistical
ensemble of stochastic quantum trajectories, whose initial condition is a corre-
sponding ensemble of state vectors that appropriately samples the initial density
operator. Besides being a useful theoretical tool for reducing the dimensionality
of the numerical problem, it furthermore reflects the – physically unrealistic –
situation when an experimenter is in full control of any single copy (realization,
experimental run) of the physical system, both in terms of controlling possible
pure-state initial conditions and observing all the possible quantum jumps (e.g.
photon decays) the system undergoes over time.

A master equation in the Born-Markov approximation in the most general
– so-called Lindblad – form reads:

ρ̇ =
1
iħ
[H, ρ] +∑

m
(JmρJ†m −

1
2
{J†m Jm , ρ}) ≡ 2Re{

HnH

iħ
ρ} +∑

m
JmρJ†m ,

(9.1a)
where with the second equality we have defined the non-Hermitian “Hamilto-
nian”

HnH ≡ H −
iħ
2 ∑m

J†m Jm . (9.1b)
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The Jm operators are called quantum jump – or Lindblad, or reset, or collapse
– operators, and their maximum number is one less than the square of the
dimension of the physical system (Manzano, 2020).

The state-vector initial condition ∣Ψ(0)⟩ of a single trajectory is taken from
an ensemble that appropriately samples the initial density operator ρ(0) (in
general, we need many state vectors from this ensemble and many trajectories
for each state-vector initial condition). In its original form, theMCWF algorithm
to evolve ∣Ψ(t)⟩ to ∣Ψ(t + δt)⟩ can be listed as follows.

1. The state vector is evolved according to the nonunitary dynamics

iħ
d ∣Ψ⟩
dt
= HnH ∣Ψ⟩ . (9.2a)

In the next derivations we will neglect the terms including (δt)2 and
higher powers. Then

∣ΨnH(t + δt)⟩ = (1 −
iHnH δt

ħ
) ∣Ψ(t)⟩ . (9.2b)

SinceHnH is non-Hermitian, this new state vector is not normalised.The
square of its norm reads

⟨ΨnH(t + δt)∣ΨnH(t + δt)⟩

= ⟨Ψ(t)∣ (1 +
iH†

nH δt
ħ
)(1 − iHnH δt

ħ
) ∣Ψ(t)⟩ ≡ 1 − δp, (9.2c)

where δp reads

δp = δt
i
ħ
⟨Ψ(t)∣HnH −H†

nH ∣Ψ(t)⟩ ≡∑
m
δpm ,

with δpm = δt ⟨Ψ(t)∣ J†m Jm ∣Ψ(t)⟩ ≥ 0. (9.2d)

Note that the timestep δt should be small enough that this first-order
calculation be valid. Finding the appropriate δt is the main theme of this
chapter. In particular, we require that

δp≪ 1. (9.3)

This is important in order that the probability of two jumps occuring in
the same timestep be negligible. The primordial MCWF algorithm is
first order in the sense that it cannot deal correctly with events like this.
Higher order MCWF algorithms have been developed by Steinbach et al.
(1995), but they require a combinatorically increasing number of jump
operators in order to account correctly for every possible multi-jump
event.

2. A possible quantum jump with total probability δp. For the physical
interpretation of such a jump, cf. Dum et al. (1992) and Dalibard et al.
(1992). Choose a randomnumber r between 0 and 1, and if δp < r –which
should mostly be the case – no jump occurs and for the new normalised
state vector at t + δt take

∣Ψ(t + δt)⟩ ∣
no jump

=
∣ΨnH(t + δt)⟩
√
1 − δp

. (9.4)
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If r < δp, on the other hand, a quantum jump occurs, and the new
normalised state vector is chosen from among the different state vectors
Jm ∣Ψ(t)⟩ with probability distribution Πm = δpm/δp:

∣Ψ(t + δt)⟩ ∣
mth jump

=
√
δt

Jm ∣Ψ(t)⟩
√
δpm

. (9.5)

These steps can be easily shown to reproduce themaster-equation evolution
to first order in δt. Let us consider the delta of a state-vector diad on a single
trajectory:

ρ1traj(t + δt) = ∣Ψ(t + δt)⟩ ⟨Ψ(t + δt)∣

= (1 − δp) ∣Ψ(t + δt)⟩ ⟨Ψ(t + δt)∣ ∣
no jump

+∑
m
δpm ∣Ψ(t + δt)⟩ ⟨Ψ(t + δt)∣ ∣

mth jump

= ∣ΨnH(t + δt)⟩ ⟨ΨnH(t + δt)∣ + δt∑
m

Jm ∣Ψ(t)⟩ ⟨Ψ(t)∣ J†m

= (1 − iHnH δt
ħ
) ∣Ψ(t)⟩ ⟨Ψ(t)∣ (1 +

iH†
nH δt
ħ
) + δt∑

m
Jm ρ1traj(t) J†m

= ρ1traj(t)+δt(
HnH

iħ
ρ1traj(t) − ρ1traj(t)

H†
nH
iħ
)+δt∑

m
Jm ρ1traj(t) J†m+O(δt

2
) ∎

(9.6)

This derivation displays that the first term in the rightmost part of Eq. (9.1)
describes the no-jump evolution. It is a non-Hermitian evolution, because an
open system is open not only at the moments of jumps, but always: the no-jump
periods also leak information about the system. Hence, the no-jump evolution
in general cannot remain Hermitian. Conversely, the second term in the same
part of Eq. (9.1) alone is responsible for the quantum jumps.

This algorithm has several issues:

1. The no-jump evolution reduces to the Euler method of ODE evolution,
which is inadequate for all but the most trivial problems.

2. The quantum jump takes finite time, since in a timestep δt, we either
make an ODE step, or perform a jump. This is because in the right-hand
side of Eq. (9.5), we use the unevolved state vector. Whether a jump
should take a finite time has been discussed in the literature – cf. e.g.
Plenio &Knight (1998) Sec. IV.C –, but here we present a strong argument
that it should not.
Let us consider a decaying harmonic-oscillator mode started from a
coherent state. If we allowed jumps to take a finite time, then a single
trajectory would deviate from the solution of the master equation as
displayed in Fig. 9.1 (cf. the figure caption for detailed explanation). Since
coherent states are (the most) classical states, we do not want to allow
such a deviation, since physically a classical evolution is expected for a
single trajectory as well as for the master equation or any sub-ensembles.

3. Timestep is not adaptive.This is a problem already inODE, but inMCWF
it creates the additional problem that the satisfaction of the condition
Eq. (9.3) remains uncontrolled.
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Figure 9.1: Cartoon of the evolution of the photon number in a single decaying harmonic-
oscillator mode started from a coherent state. Since the coherent state is an eigenstate of
the jump operator (cf. Section 9.4 with nTh = 0 for the mathematical scenery of this situa-
tion), the state remains coherent throughout, only with decaying amplitude. The blue line
represents the correct solution obtained from the master equation. The red line is a single
trajectory in the case when we allow jumps to take finite time. In this case, every jump in-
troduces a temporal shift equal to the actual timestep with respect to the correct solution
because the state is unchanged under a jump, the coherent state being eigenstate to the jump
operator. Of course, in the timestep → 0 limit, the correct behavior is recovered, however, a
systematic error is introduced with finite stepsize by the incorrect treatment of jumps.

9.3 stepwise adaptive mcwf

While the integrating algorithm of MCWF evolution sidesteps these issues
thanks to its peculiar treatment of jumps (cf. Section 9.5), we aimed at a stepwise
adaptive algorithm that rectifies them. By ‘stepwise’ wemean that the possibility
of one of the quantum jumps to occur is accounted for in each timestep.

1. Instead of the 1st order Euler ODE step, we use a higher order adaptive
method.11. A general-purpose choice used also

in this chapter is the Runge-Kutta Cash-
Karp stepper, which is fifth order with
embedded fourth order error estimator.

Regarding timestep control, such a routine expects a timestep
δttry, which is the timestep to try in the actual step, and yields

a) δtdid, the timestep actually performed

b) δtnext, which is the timestep to try in the next step

When used sequentially, δttry is always equated to the δtnext obtained in
the previous step. It is important that

δtdid ≤ δttry, (9.7)

that is, the stepper is not allowed to overshoot the suggestion obtained
from the step before, while δtnext can be bigger than δtdid, providing a
mechanism for increasing the timestep.
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2. ODE evolution is not optional during a timestep (this follows partly from
item 1), but an ODE step is always taken, and at the end of that step, it is
decided whether or not a quantum jump is taken in addition in the same
timestep. The jump itself is instantaneous.

3. Timestep is naturally adaptive stemming from item 1, so we need to
control the fulfillment of condition (9.3). For this, we introduce a new
parameter ∆p of the algorithm representing the maximum allowed total
jump probability in a timestep. Clearly, we expect the algorithm to work
correctly if

∆p≪ 1. (9.8)

The behavior of MCWF as a function of ∆p is the main theme of the
remainder of this chapter.

Our adaptive algorithm can then be summed up in the form of a flowchart
as in Fig. 9.2. Superposed on the ODE stepsize-control heuristic, we use a
two-layer heuristic: upon calculating the jump rates after the HnH evolution,

1. the timestep guess fed back to the ODE stepper at the beginning of the
next step is abridged by ∆p-control as:

δtnext ≤
∆p
rtot

, (9.9)

where rtot = ∑m rm is the total jump rate. The problem here is that a
∆p-overshot is handled only in the next step.

2. if it is found that the total accumulated probability in the given step is too
high, i.e. rtot δtdid > ∆p′, with some ∆p′ > ∆p, then the step is rejected
and we go back to the beginning of the given step by restoring the state
vector to a copy cached at time t. In general, the internal state of the
ODE stepper needs to be cached and restored as well. The next step is
tried with timestep reduced as

δtnext =
∆p
rtot

, (9.10)

Layer 2, introduced as a safety measure, requires additional resources (al-
though usually negligible compared to the several copies of the state vector the
ODE stepper has to store internally during a step), and our experience is that
its usefulness is very difficult to quantify in real-life situations. Hence, in the
following we will only study the effects of the 1st layer of control, and switch off
the 2nd one (this can always be done by choosing a very large ∆p′ value).

One last important difference of our algorithm compared to the original
must be noted: we perform an exact renormalization of the state vector just
before calculating the jump rates. Keeping the norm constant can be a very
strong stabilizing condition for the ODE evolution, in certain problems that
we will discuss in Section 9.5.1. In these problems, experience has shown that
the exact renormalization can stabilize an otherwise unstable ODE evolution,
or make an otherwise very small timestep bigger. The need for exact renormal-
ization in this sense means that the integrating method, which lets the norm
evolve freely and monitors its value to determine the jumps is hindered.
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Figure 9.2: Flowchart describing a single step of our adaptive MCWF algorithm. Besides the
physical parameters and those governing the ODE evolution, the parameters of the algorithm
are ∆t, ∆p, and ∆p′. The two-layer control makes sense only if ∆p′ > ∆p.
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It is easy to verify that the first-order-in-δt derivation of themaster-equation
evolution presented in Eq. (9.6) is unchanged by our modifications to the algo-
rithm, which remains of order 0.5 despite the fact that the order of the ODE
stepper can be higher. This is because the handling of the quantum jumps is
essentially unchanged: we allow at most one jump per timestep.

For each timestep, we define a maximum time that the stepper is allowed
to reach.This is important in order to define time instants during the trajectory
at which the trajectory is sure to stop. These are defined as

sampling times ≡ u ∆t with u ∈ N. (9.11)

Hence, at these points all the trajectories of an ensemble can be brought to-
gether e.g. for ensemble averaging (due to adaptive stepping, the trajectories
have different times after fixed number of steps). As we shall see below, ∆t is
an important parameter that in principle pertains to the convergence of the
method.

9.4 convergence

To study the convergence properties of the adaptive MCWF as a function of ∆p,
we choose a very simple system: a single harmonic-oscillator mode interacting
with a finite-temperature reservoir. If a denotes the annihilation operator of
the mode excitations, the jump operators read:

J0 =
√
2κ(nTh + 1) a (photon emission), (9.12a)

J1 =
√
2κ nTh a† (photon absorption). (9.12b)

We set the timescale such that κ = 1.
The mode can be driven by a coherent drive, that we will consider res-

onant with the mode frequency, in which case we find a time-independent
Hamiltonian in the frame rotating with the frequency of the drive:

H = iħ η (a† − a), (9.13)

where η is the Rabi frequency of the drive. The non-Hermitian Hamiltonian
reads:

HnH = −iħ κ(2nTh + 1) a†a + iħ η (a† − a). (9.14)

The coherent drive tends to impose a coherent steady state even on a single
trajectory, which is stabilized also by the photon emission (eigenstate of J0),
the photon absorption being the only mechanism acting against it.

9.4.1 Pure ∆p-control

Let us first study the case of η = 0 and Fock-state initial condition, which
is the most demanding of simple examples. One reason for this is that in
the lack of coherent driving, the just discussed stabilization mechanism on
a single trajectory is absent. The other reason is a manifestation of bosonic
enhancement: the photon exchange with the reservoir is the more intense,
the larger the photon number the mode already has. Therefore, the photon
number along a single trajectory fluctuates wildly, with cascading absorptions

99



0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

κt

0

2

4

6

8

10

12

14

16

ph
ot

on
 n

um
be

r

nTraj
master
1
10
100
1000
10000

Figure 9.3: A typical picture of convergence of the MCWF solution to that of the master
equation (midline of the yellow stripe) as a function of the number of trajectories. A single
trajectory fluctuates wildly, without any appreciable relaxation of the initial state to the steady
one. Even with 103 trajectories we see significant deviations, but the average of 104 trajectories
fits nicely. Parameters: nTh = 5, ∣Ψ(0)⟩ = ∣10⟩, ∆p = 0.1, ∆t = 0.05.

and emissions. To illustrate this, and give the reader a taste about the number of
trajectories needed for acceptable convergence, we display the time evolution
of the average photon number over trajectory ensembles of various sizes in
Fig. 9.3. Here, nTh = 5 and ∣Ψ(0)⟩ = ∣10⟩, so that the photon number along
the master-equation evolution stays in the interval between 5 and 10. Yet, in
ensembles on the order of one million trajectories, we have encountered single
trajectories that overshoot a Fock-state cutoff of 200!

The lack of driving and the Fock-state initial condition means that the
MCWF method is drastically simplified to a classical Markov chain in Fock
space, since in this case the mode state will remain a number state throughout
the evolution. The process could be treated exactly by using random numbers
with exponential distribution for the waiting time till the next jump, and simply
hopping from one jump to the next in time. However, when regarded as a
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Figure 9.4: Same parameters as in Fig. 9.3, but with varying ∆p. The midline of the yellow
stripe is the line 1

√
number of trajectories

, which coincides with a linear fit (in log-log scale) on the
curve for ∆p = 0.02. The three features to be noted in the Figure are: (1) the general trend of
bettered convergence with decreasing ∆p; (2) the flattening out of the curves with increasing
number of trajectories, which occurs at the larger number of trajectories, the smaller ∆p we
have; (3) the critical behavior at ∆pc = 0.5 (the curve for ∆p = 0.61 virtually coincides with
the one at 0.5!), below which there is a sharp drop in the deviation. The inset exposes the
flattening-out behavior on a more suitable scale. These three features are explained in the text.
To avoid misunderstandings, we note that here and throughout this chapter, we use artificially
big values of ∆p in order to magnify the effect of finite ∆p for the purpose of presentation. In
practice, we use values on the order of 10−2 .

special case of our adaptive algorithm with the superimposed criterion of
equally distributed sampling times, the behavior becomes nontrivial.

Our main result is displayed in Fig. 9.4. Here we plot the deviation of
trajectory ensembles from the exact (master-equation) solution as a function
of the size of the ensemble. The deviation is measured by

deviation( f , g) ≡ 2∥ f − g∥
∥∣ f ∣ + ∣g∣∥

, with ∥ f ∥ ≡
T

∫
0

dt ∣ f (t)∣, (9.15)

where f and g are functions of time over the interval [0, T], these are the
expectation values of the physical quantities along the trajectory.

The general trend that a decreasing ∆p betters the convergence is obvious,
although we observe a striking critical behavior at ∆pc = 0.5: for larger ∆p
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values, the curve flattens out to a relatively high value with increasing number
of trajectories and the curve already at ∆p = 0.61 is virtually indistinguishable
from the limiting curve at ∆pc. On the other hand, for values smaller than the
critical, the ∆p-dependence can be captured only with a number of trajectories
on the order of hundreds of thousands: the larger ∆p, the smaller the number
of trajectories for which the curves start to flatten out.

The MCWF method has two layers of errors. The first layer comes from
discretization: the jumps can happen only at the endpoints of the timesteps. It
is easy to see that the probability of a single jump happening evaluated at the
end of the timestep is always smaller than what would come from the exact
exponential waiting-time distribution, so that due to discretization the number
of jumps gets smaller than the exact value. The second layer comes from the
missed multi-jump events due to the first-order nature of the method, which
also amounts to a smaller number of jumps than what we would have on an
exact jump trajectory. As exposed in Section 9.B, both these kinds of error scale
with the square of an average timestep, which in turn scales with ∆p2.

The fact that the lower∆p-curves in Fig. 9.4 follow a line const.√
number of trajectories

(where the constant happens to be 1 within the errorbars of a least-square fit)
up to a certain limiting number of trajectories, is a manifestation of the law of
large numbers, given that the trajectories are independent. So what we observe
in this region is the statistical error of averaging a finite set of independent
trajectories. The flattening-out as a function of the trajectory number starts
when this statistical error reaches the same order of magnitude as the intrinsic
error of the method explained above, which of course happens with the larger
number of trajectories, the smaller ∆p we use. However, even though our
statistics is large, we do not seem to be able to verify the ∆p2-dependence of
the intrinsic error in the figure.

Let us return to the critical behavior, which is further exposed in Fig. 9.5,
where we plot certain average characteristics of the trajectories as a function
of ∆p, the criticality being present in each. On panel (f), we can see that for
∆p > ∆pc, the method even misses the correct number of average jumps, and
even the difference between the two kinds of jumps is rendered incorrectly.
(This latter is obtained trivially: since the system starts form the 10-photon
state, and the steady state is the 5-photon state [= nTh], the average difference
should be 5.) It should be noted that the number of MCWF steps continues
its steep increase for subcritical ∆p values (cf. panel [e]), while the quality of
convergence doesn’t increase appreciably (cf. panel [a]).

The “smoking-gun evidence” for the cause of the critical behavior is pre-
sented by the green lines on all panels and by panels (b,c):

The green lines While in Fig. 9.5, the sampling time ∆t = 0.05, for the green
lines we chose ∆t = 0.25, and see that the criticality disappears with this
choice.

Panel (b) The timestep averaged over the trajectory drops sharply at the critical
point.

Panel (c) The possibility of taking full ∆t steps ceases at the critical point
(curve drops to exactly 0 for ∆p < ∆pc).
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Figure 9.5: Important characteristics of MCWF evolution as a function of ∆p with same
parameters as in Fig. 9.4. The discontinuity observed on the panels is explained in detail in
the text. For the green lines, ∆t = 0.25, and they are plotted in order to show the behavior
without discontinuity. In panel (f), the green line represent the mean of the two kinds of
jumps. The average timestep on panel (b) and the correlation between the stepsize and
the photon number in panel (d) are taken along a trajectory and over the full ensemble of
trajectories as well.
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In conclusion, the criticality depends strongly on ∆t, being related with the
possibility of taking full ∆t steps. Let us explain: In our present case, when the
timestep is controlled purely by the relation Eq. (9.10), we can determine the
condition for the system to be able to take a full ∆t step when in the Fock state
n:

∆t ≤ ∆p
rtot(n)

=
∆p

2κ[(nTh + 1) n + nTh(n + 1)]
=

∆p
2κ[(2nTh + 1) n + nTh]

.

(9.16)
This gives a critical ∆p value for each Fock state for the case when the equality
sets in:

∆pc(n) = 2κ ∆t [(2nTh + 1) n + nTh]. (9.17)

The smallest ∆p value given by this is for n = 0, which gives us the value of the
critical point observed in the figure as:

∆pc = ∆pc(0) = 2κ nTh ∆t, (9.18)

equaling 0.5 for the parameters used in Figs. 9.3 to 9.5. Why does the cessation
of the possibility of taking full ∆t steps cause a drop in the average timestep and
a feature also in the other characteristics plotted in Fig. 9.5? Assume the system
has just undergone a sampling at time u ∆t with some u ∈ N, and it is in the
0th Fock state at this instant. Then, for supercritical ∆p, it will directly jump
to the next sampling time instant (u + 1)∆t, while for a ∆p value just below
∆pc, it will take a step just short of this next sampling time instant, so that it
needs to take a very small step to finish the full ∆t interval. It is the appearance
of such small fragmentary steps that make the average timestep drop at the
critical point.

The drop in the deviation of an ensemble of trajectories from the master-
equation solution can also be explained from the drop seen in panel (b). In fact,
the quality of convergence of the MCWF depends not directly on ∆p, but on
the average stepsize: the smaller the timestep, the less probable we miss jumps
via two-jumps-per-timestep events, hence, the better our (first-order) MCWF
is. The dependence on ∆p is only via the dependence on the timestep.

The sharp feature in panel (d) at ∆pc can also be explained. Generally, the
higher the photon number, the smaller steps we have to take, so that overall,
the timestep-photonnumber correlation must be negative, which is what we
see. The lower the ∆p, the stricter the stepsize control, so that the correlation
with the photon number should increase in modulus, that is actually the case
for ∆p > ∆pc. At the critical value, the small fragmentary steps appear, whose
size is largely independent of the photon number, hence the sudden drop in
the modulus of the correlation.

On changing parameters, the above picture of the criticality is confirmed.
First of all, the green lines in Fig. 9.5 represent the case ∆t = 0.25, where the
criticality disappears because ∆pc > 1 according to Eq. (9.17). In Fig. 9.6 we
present three further cases: for ∆t = 0.05 as above, but nTh = 4 and 6 the critical
point is given as 0.4 and 0.6; while in the case of ∆t = 0.015625 and nTh = 5,
Eq. (9.17) even predicts two critical points below 1, since ∆pc(0) = 0.15625 and
∆pc(1) = 0.5. These predictions are confirmed by the figure.

104



0.2 0.4 0.6 0.8 1.0

Δp

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016
A

ve
ra

ge
 ti

m
es

te
p

nTh = 4, t = 0.05
nTh = 6, t = 0.05
nTh = 5, t = 0.015625

Figure 9.6: Behavior of the stepsize as a function of ∆p for three sets of parameters. The
criticality (which is even doubled for the green line) follows the prediction of Eq. (9.17).

9.4.2 Contention with ODE-control

Let us look at how the above picture is modified if the mode is driven coher-
ently with amplitude η, that is, the Hamiltonian (9.13) is nontrivial, meaning a
nontrivial ODE evolution with its own internal stepsize control. This control
will contend with our superimposed ∆p-control.2

2. For the sake of clarity, we remark that
a priori, jumps never come without a
Hamiltonian to reckon with in the form
of the non-Hermitian part, cf. Eq. (9.1b).
Furthermore, this part scales with
system parameters and state in the same
way as the total jump probability. In
the case when this “obligatory” part of
HnH is diagonal in the working basis, it
can be treated with an exact propagator
(this is what C++QED does), so that
it does not burden the ODE stepper.
In the case studied in Section 9.4.1,
when the state remains a Fock state all
along, this term moreover amounts to
nothing more than a trivial norm factor,
which anyway disappears during the
renormalization after each timestep. So
in this case it is possible to completely
disregard this “coherent” part of the
evolution. In more involved uses, when
the working basis cannot be chosen
in such a way that the non-Hermitian
part be diagonal, the ODE-control will
dominate the timestep control due to
the just mentioned scaling argument,
and the superimposed ∆p-control will
intervene only at exceptional moments.
The same is true when other parts
of the Hamiltonian have the largest
characteristic frequencies.

In many situations of physical interest, a generic behavior that was noticed
already in (Vukics et al., 2005) is that off-diagonal elements of the density
matrix converge slower than diagonal ones. In the present case this makes
that the phase of the field converges worse than the amplitude, which we have
found difficult to prove in a clear-cut way. A possible physical interpretation of
this behavior could be that the photon loss measures the photon number. This
suggests that a homodyne detection could result in opposite behavior, however,
this we could not prove either in a distilled way.

In Fig. 9.7(a) we display the average timestep as a function of ∆p with
three different values of η. The dashed lines are predictions based on Eq. (9.10)
assuming pure ∆p-control:

δt∆p-controlled = ∆p
1
rtot
= ∆p 1

2κ((2nTh + 1)a†a + nTh)
, (9.19)

where the overline means averaging over time along one trajectory and averag-
ing over (an ensemble of 2 ⋅ 104) trajectories as well.

The main message of the figure is that for small ∆p, ∆p-control dominates,
so that the curves overlap with ∆p-controlled timestep, while for increasing ∆p,
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Figure 9.7: The behavior of the algorithm as witnessed by the average timestep in the case of
nontrivial coherent evolution. Same physical system and parameters as in Fig. 9.4, but with
finite driving amplitude η. In panel (a), the dashed lines are predictions from Eq. (9.19), with
the same color code as for the solid lines.
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ODE-control takes over, so that the curves flatten out, the timestep becoming
independent of ∆p. ODE-control depends on the largest frequency present in
the system, the resulting stepsize scaling with the inverse of this frequency.This
means that this control is the stricter, the larger the frequencies present in the
system.This is the reason why the larger the η, the lower the ∆p value at which
the curves start to flatten out. For the same reason, the stepsizes are generally
smaller for increasing η.

For large enough η values, pure ODE-control is established, as exhibited in
panel (b) of the same figure. Here we plot the dependence of the timestep on ∣η∣
for a rather large ∆p value. We observe that the curve asymptotically coincides
with the dashed one which represents a∝ ∣η∣−2 decrease. The reason for this
is that in this simple case, the largest frequency in the system scales with η2,
since in the Hamiltonian (9.13), the mode amplitude is also proportional to η.

9.5 comparison with the integrating
method of mcwf evolution

In the implementation of the MCWF method, there is another main stream,
which we will refer to as “integrating” in contrast to our (adaptive) “stepwise”
method. In this algorithm, the norm of the state vector is let to decrease under
the evolution by HnH. A random number r ∈ [0, 1) is drawn at the beginning,
and as the state-vector norm reaches this number, a jump is introduced. At
this point, the distribution of jumps pm is calculated, and the nth jump is
performed where n is the smallest integer satisfying ∑n

i=1 pi ≥ r. It can be
shown that the norm-loss equals the accumulated jump probability (hence
the name “integrating method”) under a very general set of conditions. The
workings of the method together with the typical error that it involves are
illustrated in Fig. 9.8. One needs to define a set of sampling times tn where
the norm will be compared against r. It is a non-trivial issue what is a good
sampling interval. The source of the error of the method is that when we notice
that the norm has shrunken below r at time tn, then we are already after the
real time instant of the jump. Therefore, we need a mechanism to retrieve the
jump time instant together with the state of the system at that time in order to
perform the jump. When using linear interpolation, the error will be ∣t@ − t∗∣,
which somehow scales with the sampling time interval.

One of the advantages of the method is that it enables the use of multistep
methods for the ODE evolution part, although the multistepper has to be exited
now and again to check the norm of the state vector, and eventually retrieve
the jump time instant and perform the jumps.

The mcsolve routine of QuTiP (Johansson et al., 2012, 2013), uses the
integrating method, the jump time within a supplied norm tolerance being
retrieved by bisection root-finding combined with linearization (Paul Nation,
private communication). The parameters of this algorithm are the norm toler-
ance (default: 0.001) and the number of maximum iterations of the root-finding
algorithm (default: 5).

Our stepwise method is more conservative, conceptually simpler and more
robust in the sense that it does not rely on a heuristic for retrieving the jump
time instance, hence it is immune against failures of such a heuristic (for which
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Figure 9.8: Cartoon illustrating the workings of the integrating method. tns are the sampling
time instants when the state-vector norm is compared against the previously drawn random
number r. t@ would be the time instant of the jump according to the real evolution of the
norm, while t∗ is the jump time instant retrieved by the algorithm when using the most
primitive retrieval method: linear interpolation.

there are specific error messages in QuTiP).33. According to the developers (Paul
Nation, private communication), in
all the usecases encountered so far,

the jump time was found within the
default tolerance in at most 3 iterations.

However this comes at the price
of a certain reduction of performance, which is twofold:

1. The stepsize is bounded in each timestep due to the ∆p-criterion, while
in the integrating method it is solely the ODE stepper which controls
the stepsize. This difference, however, disappears in the case when the
ODE-control dominates the timestep-control, which in our experience
is the case in most real-life situations (cf. Section 9.4.2).

2. The jump probabilities have to be evaluated in each timestep, instead of
just calculating the norm. This overhead on the other hand can become
negligible if the evaluation of the Hamiltonian (which is done several
times per step within the ODE solver) is significantly more expensive,
which is the case in most real-life examples we encountered so far.

Let us make two more notes of comparison favoring our method.

1. The integrating method requires more parameters for controlling the
error of the MCWF, since besides the norm tolerance, further parame-
ters are required for the routine dedicated to retrieve the time instance
of the jump (e.g. number of iterations). Furthermore, the parameters
controlling the specific error of the first-order MCWF are intertwined
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Figure 9.9: Comparison of the convergence of our adaptive stepwise algorithm with two
different ∆ps and the integrating algorithm as implemented in QuTiP with two different
sets of precision parameters. The physical system is the same as in Section 9.4.2, with same
parameters as in Fig. 9.7. The yellow stripe is the same as in Fig. 9.4.

with the parameters controlling the sampling, since the larger the sam-
pling intervals, the larger the overshoot of the real jump moment. This is
in contrast to our single parameter ∆p, and our stepsize control which
is done either by the ODE stepper, or by the ∆p condition, depending
on which one is stricter. In our method it is also easy to estimate the
maximum probability of two jumps occuring in a single time step, since
assuming ∆p≪ 1, this is given by ∆p2.

2. The possibility of exactly renormalizing the state vector after each ODE
step is lost in the integrating method. This is an important stabilizing
means of the method (cf. Section 9.5.1), which is available in our algo-
rithm.4 4. On a final note: the concept of a

single adaptive step is well-defined
in our case due to the possibility of
jumps being immediately accounted
for in each step, making our algorithm
compatible with higher-level trajectory
drivers.

Having said all this, the convergence properties of the two methods are
similar when respective appropriate parameters are chosen, as illustrated on
the example of the coherently driven mode interacting with a thermal bath
in Fig. 9.9. As we see, the “flattening out” behavior also appears in the case of
the integrating method. Note that this method is also sensitive to the issue of
double jumps, being also first order in this sense: it will miss such events when
two jumps would occur within the time interval corresponding to the given
norm tolerance.
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9.5.1 Example usecases favoring the stepwise method

Moving-particle cavity QED Let us consider a particle of mass m with a
one-dimensional motional degree of freedom. We consider periodic boundary
condition in space, meaning that the particle momentum is discretized with
intervals ∆k, so that it is possible to define a dimensionless “wave-number
operator” for the particleK = p/(ħ∆k), that has integer spectrum.The particle
is moving in a single-cosine-mode optical field with wave number K that is an
integer multiple of ∆k. The Hamiltonian then reads:

H = ħωrecK2
+ V cos2 (Kx), (9.20)

where the recoil frequency is defined as ωrec = ħ∆k2/(2m), and V is an energy
scale representing the coupling between the mode and the particle. This is
a numerically demanding problem because of the quadratic increase of the
characteristic frequencies of the different components in particle wave-number
space. The quadratic increase makes that very separate timescales appear in
the simulation, resulting in very small timesteps compared to the necessary
simulation time. (In general, the simulation time scales with the slowest, while
the timestep with the fastest timescale.) This situation can be improved by
transforming into an interaction picture defined by the kinetic part of the
Hamiltonian:

HI =
V
2
[e4iωrec(K−K/∆k)te−2iKx + e−4iωrec(K+K/∆k)te2iKx], (9.21)

the gain by this being that the characteristic frequency now increases only
linearly withK. This can lead to an increase by a few orders of magnitude in
the timestep. However, the still large frequencies in the now explicitly time-
dependent Hamiltonian can lead to instabilities in the ODE stepper. We have
found that an exact renormalization of the state vector after each ODE step
resolves this issue.This approach has been usedwith success in several situations
(Vukics et al., 2005; Vukics & Domokos, 2005; Vukics et al., 2007, 2009; Schulze
et al., 2010; Niedenzu et al., 2010, 2012; Sandner et al., 2013; Winterauer et al.,
2015).

Non-unitary interaction picture In many situations it is worthwhile to use
not only a traditional interaction picture, but an exact propagator obtained by
exponentializing the full diagonal part of the non-Hermitian Hamiltonian, that
is, a non-unitary interaction picture. Consider Eq. (9.14), but with off-resonant
driving with detuning δ:

HnH = −ħ[iκ(2nTh + 1) + δ]a†a + iħ η (a† − a). (9.22)

Here, if we pass to a traditional interaction picture

HnH,I = −ħiκ(2nTh + 1)a†a + iħ η (e−iδt a† − e iδt a), (9.23)

then a term contributing high frequencies with growing excitation number
remains in the form of the non-Hermitian term. It can be significantly more
advantageous to eliminate this as well:

HnH,nU = iħ η (e[κ(2nTh+1)−iδ]t a† − e[−κ(2nTh+1)+iδ]t a). (9.24)
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We see that the frequency depending linearly on the excitation number has
disappeared, which again can lead to a substantial increase in the timestep.
The downside is that there appeared explicitly time-dependent terms, some
of which grow while others decrease exponentially in time. This can again
lead to instabilities in the ODE stepper. Here again, we have found that these
instabilities are removed by an exact renormalization of the state vector after
each ODE step. This approach has been used with success in several situations
(Dombi et al., 2013, 2015; Fink et al., 2017).

The necessity of renormalization after each ODE step in the two situations
shown in this section has the consequence that the integrating method cannot
be used, since the norm remains 1 during the whole evolution.

9.6 a note on sampling and time averaging

Because of the adaptive nature of the trajectories, there are two possibilities for
sampling along the evolution of a single trajectory: one can either sample (1) in
equal time intervals or (2) in equal number of steps. Sampling method (2) is
better suited for following the physics of the problem along a single trajectory,
since at those times where a lot of dynamics takes place, the stepsize control
will choose smaller timesteps resulting in more samples than in calmer times.
Moreover, it is only with method (2) that the sampling does not influence the
trajectory simulation in the way we saw in Section 9.4.1.

In this connection, it is important to note that when using a single long
trajectory for finding steady-state results as time averages, then with sampling
method (2) the time average must be calculated with weighing with the stepsize:

O
(2)
=
∑m∈[sampling steps] δt(m) ⟨O⟩ (m)
∑m∈[sampling steps] δt(m)

, (9.25a)

whereO is an observable and δt(m) is the timestep done in themth step.This is
because states are correlated with stepsize (cf. Fig. 9.5(d)) and hence the density
of samples, so that states resulting in smaller stepsize (e.g., states with higher
photon numbers in the example of Section 9.4.1) will be overrepresented among
the samples. On the other hand, with sampling method (1), stepsize-weighing
must not be used:

O
(1)
=
∑t i∈[sampling times] ⟨O⟩ (ti)
(number of sampling times)

, (9.25b)

where the sampling times are equally distributed in time. Confusion in this
respect can result in gross misestimates of steady-state values!

9.a code availability

The algorithm presented here is available as the
1 quantumtrajectory::MCWF_Trajectory

class inC++QED, cf. Chapter 10. In particular, all the simulations presented here
can be reproduced using the PumpedLossyMode_C++QED script available
in the framework’s distribution. A sample command line simulating a single
trajectory may read:
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PumpedLossyMode_C++QED –dpLimit 0.1 –seed 1000 –cutoff 2000 –nTh 5

(the parameter∆p is calleddpLimit in the framework, for historical reasons).

9.b quantification of the error

In this appendix, we give a simple quantification of the behavior of the error in
Fig. 9.4.

Let us introduce some notation. Let X(t) denote the photon-number as
a stochastic process. In the simplest case exhibited in Section 9.4.1, when the
mode is driven solely by the interaction with the thermal bath, X(t) is a birth-
death process with generator

qnm =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

λn if m = n + 1
−λn − µn if m = n
µn if m = n − 1
0 otherwise.

(9.26)

where λn = 2κ(n + 1)nth and µn = 2κ(nth + 1)n.The theory of such processes
is well developed, and it is known that the process X is fully determined by
its state space and its generator, furthermore one can easily determine the
stationary state (if it exists), the distribution of waiting times, the probability of
extinction, etc.

Let Y(t) denote the discretized model. In this simple case Y(t) is also a
stochastic process, in particular a discrete-timeMarkov chain, but with different
transition probabilities. Since the rate of transition is fixed between jumps, so
is the timestep δt. Here the transition matrix is given by

pnm = P[Y(t + δt) = m ∣Y(t) = n] =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

λnδt if m = n + 1
1 − (λn + µn)δt if m = n
µnδt if m = n − 1
0 otherwise.

(9.27)
Note that this matrix is a valid transition matrix if and only if (λn + µn) δt ≤
1, furthermore that Y(t) is a time-discretized version of X(t). In order to
understand the relaxation of the curves in the figures let us examine the quantity

E[X(t + δt) − Y(t + δt) ∣X(t) = Y(t) = n], (9.28)

that is, the difference of the mean of the real trajectories and that of the approx-
imated ones at one timestep away from t, given that the trajectories coincide at
time t. The expected value of Y is given by

E[Y(t + δt) ∣Y(t) = n] = n + (λn − µn) δt, (9.29)

while that of X needs a little bit more effort to calculate. First we will show that

P[∣X(t + δt) − n∣ ≥ 3 ∣X(t) = n] = O(δt3). (9.30)
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It is known that the waiting times between two jumps of a continuous-time
Markov chain are exponentially distributed and independent random variables.
Consider some independent, exponentially distributed random variables Tj , j =
1, 2, 3 with parameters γ j , j = 1, 2, 3. Then

P(T1 + T2 + T3 < δt)

=
γ1γ2γ3
γ1 − γ2

⎡
⎢
⎢
⎢
⎢
⎣

1
γ2 (1 − e

−γ2δt) − 1
γ3 (1 − e

−γ3δt)

γ3 − γ2
−

1
γ1 (1 − e

−γ1δt) − 1
γ3 (1 − e

−γ3δt)

γ3 − γ1

⎤
⎥
⎥
⎥
⎥
⎦

= O(δt3),

(9.31)

which means that the probability of a continuous time Markov chain jumping
at least three times in an interval of length δt is O(δt3), thus

E[X(t + δt) ∣X(t) = n] =∑
m
mP[X(t + δt) = m ∣X(t) = n]

= ∑
m ∶ ∣m−n∣≤2

mP[X(t + δt) = m ∣X(t) = n] + O(δt3). (9.32)

Hence, for an at-most-second-order-in-δt calculation of the expectation, we
only need to calculate the probabilities

P[X(t + δt) = m, in at most 2 jumps ∣X(t) = n], with m = n, n±1, n±2.
(9.33)

These are found to read

P[X(t + δt) = n, #jumps ≤ 2 ∣X(t) = n]

= e−qnδt +
λn µn+1
qn − qn+1

(
e−qnδt − e−qn+1δt

qn − qn+1
− δt e−qnδt)

+
µn λn−1
qn − qn−1

(
e−qnδt − e−qn−1δt

qn − qn−1
− δt e−qnδt)

= 1 − qnδt +
(qnδt)2

2
+
λn µn+1 + λn−1 µn

2
δt2 + O(δt3), (9.34a)

P[X(t + δt) = n + 1, #jumps ≤ 2 ∣X(t) = n]

=
λn

qn+1 − qn
(e−qnδt − e−qn+1δt) = λnδt −

λn
2
(qn + qn+1)δt2 + O(δt3),

(9.34b)

P[X(t + δt) = n − 1, #jumps ≤ 2 ∣X(t) = n]

=
µn

qn−1 − qn
(e−qnδt − e−qn−1δt) = µnδt −

µn
2
(qn + qn−1)δt2 + O(δt3),

(9.34c)

P[X(t + δt) = n + 2, #jumps ≤ 2 ∣X(t) = n]

=
λnλn+1

qn+2 − qn+1
(
e−qnδt − e−qn+1δt

qn+1 − qn
−
e−qnδt − e−qn+2δt

qn+2 − qn
) =

1
2
λnλn+1δt2+O(δt3),

(9.34d)
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P[X(t + δt) = n − 2, #jumps ≤ 2 ∣X(t) = n]

=
µnµn−1

qn−2 − qn−1
(
e−qnδt − e−qn−1δt

qn−1 − qn
−
e−qnδt − e−qn−2δt

qn−2 − qn
) =

1
2
µnµn−1δt2+O(δt3),

(9.34e)

from which we obtain

E[X(t + δt) − Y(t + δt) ∣X(t) = Y(t) = n]

=
δt2

2
(q2n + λnµn+1 + λn−1µn + (n + 1)λn(qn + qn+1)

+ (n − 1)µn(qn + qn−1) + (n + 2)λnλn+1 + (n − 2)µnµn−1)

∼ ∆p2, (9.35)

where the last relation is due to Eq. (9.10).This implies that as soon as 1
number of trajectories

is comparable to ∆p2, the error does not decrease by increasing the number of
trajectories, a phenomenon observed in Figs. 9.4 and 9.9. We also remark that
Eq. (9.35) shows the local error of the means. In the case of fixed timestep, the
global error can grow up to O(δt) as well.
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10

C++QED: A FRAMEWORK FOR
SIMULATING OPEN QUANTUM
DYNAMICS

10.1 synopsis

C++QED grew out of my PhD work, where I simulated the quantum motion
of atoms in cavity fields with ad hoc C codes, cf. Vukics et al. (2005); Vukics
& Domokos (2005). I realised that there is a lot of know-how hidden in these
codes that in a few years would become unavailable even for myself. Hence, I
decided to make this know-how available for a wider community in the form
of a C++ application-programming framework. C++ has proved a good choice
as

• it is known to be an ideal tool for expressing complex structures, due to
its multiparadigm nature;

• it is a fast language due to its being essentially C deep down;

• it has good library support due to its having been one of themost popular
languages in software industry for decades;

• and it has convenient toolchains available on Linux systems used in most
high-performance-computing scenarios.

In this Chapter, I sketch the basic idea, the structure, and a very little of the
implementation of the framework. I present a design pattern relying on the
multi-array concept that should be generic for the representation of composite
quantum systems, and some further patterns of how high-level computing can
be utilized in scientific computing, in physics, and, in particular, in simulations
of small (open) quantum systems.

10.2 basic specification

The framework provides two types of building blocks for composite quantum
systems:

1. elementary free subsystems, where “free” means that the system has only
one quantum number;

2. interactions between such free systems.

Time-evolution drivers are provided for systems composed of these elements:
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1. Full master-equation solution for the density operator of the system, cf.
Eq. (9.1). Given that the system is represented on a discrete Hilbert space,
this is a simple adaptive-stepsize ordinary differential equation (ODE)
evolution, whose dimension is the square of the dimension of the system
Hilbert space.

2. Monte Carlo wave-function (MCWF) trajectory for a stochastic state
vector of the system, with the adaptive algorithm discussed in Chapter 9.
This reproduces the Schrödinger-equation evolution in the case when
the system is closed.

3. Ensemble of MCWF trajectories. Here, the trajectories are all evolved to
certain time instants, cf. Eq. (9.11), at which points the approximate den-
sity operator of the system is assembled from the ensemble of stochastic
state vectors:

ρensemble(t) =
1

number of trajectories
∑

i∈{set of trajectories}
∣Ψi(t)⟩ ⟨Ψi(t)∣ .

(10.1)
This density operator is then used to gain information about the state
of the system, in exactly the same way as if it was obtained from a full
master-equation solution.

Thesemodules together provide a high-level C++ application-programming
interface. Normally, they are assembled in high-level C++ programs (which we
will refer to as scripts throughout), which specify the system and what to do
with it. Example scripts will be given in Section 10.4. Hence, in normal usage to
each physical system there corresponds a program which uses the framework
as a library.

The framework strives to facilitate the implementation of new building
blocks.There are classes representing quantum operators with their appropriate
algebra, so that e.g. to express the Hamiltonian of the paradigmatic Jaynes-
Cummings interaction

H
iħ
= g∗σa† − h.c. (10.2)

it is possible to write
1 tridiagMinusHC(conj(g)*sigmaop()*aop(mode).dagger()).

An important principle in the design and implementation of the framework
was that all information which is available at compile time, should be processed
at compile time. This leads to optimal separation between the two types of
information, the information available at compile time and the information
becoming available only at runtime, and allows for maximal exploitation of
compile time. Normally, a script compiled once will be used many times for
data collection.

The idea of composing systems out of elementary building blocks would
fail if too many building blocks were required for realistic systems. Experience
shows, however, that for a given problem domain, only a few such blocks are
required for building arbitrarily complex systems in the domain. Furthermore,
every such block has a clear physical meaning. The example of polarizable
particles moving in optical (cavity or free) fields was presented in Sec. 5 in
Vukics & Ritsch (2007).
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Figure 10.1: (a) General scheme of compiled computer languages, (b) how it maps on the
framework, and (c) to a concrete example within the framework (cf. Fig. 10.3(a)).

10.2.1 Compile-time algorithms

In compiled computer languages, as sketched in Fig. 10.1, source code goes
through two stages to produce output:1 1. In contrast, in interpreted languages

like Python and JavaScript, these two
stages are fused.1. the compilation resulting in an executable (binary) code and

2. the actual execution producing the data.

Usually, calculations are performed during stage 2 only, but C++ provides
tools2 2. Before C++14, the tool was template

metaprogramming (TMP), cf. Abra-
hams & Gurtovoy (2004), whose basic
operands are the C++ types.

to abritrarily process information available in stage 1 as well. Hence,
compilation is useful not only for performing optimizations, but it is possible
to shift calculations from stage 2 to here.

Let us see how compile-time algorithms come about in the definition of
composite quantum systems. Such systems have several quantum numbers,
and their state vector is most conveniently represented by an entity having as
many indices.3 3. This is referred to as the ‘rank’ or

‘arity’ of the system or state vector:
unary, binary, ternary, quaternary, etc.

Consider the following two possibilities:

1. The rank of the system is an information that becomes available only at
runtime.4 4. This is the case in the QuTiP Python

package (Johansson et al., 2012, 2013).
2. Or, it is an information available already at compile time, the way it is

treated in C++QED.

If we have two state vectors of different arity Ψ(rank1) and Ψ(rank2), then in the
first case they have to be represented by entities of the same type, while in the
second case they can be different types.Therefore, a nonsensical expression like

Ψ(rank1) +Ψ(rank2)

causes a probably fatal error in the first case, which can be detected only at
runtime, possibly after a lot of calculations. In the second case, however, such
an expression can be a grammar error prohibiting compilation. Furthermore,
for indexing such a state vector, in the first case a runtime loop is needed, which
is not necessary in the second case, where this loop can be unravelled at compile
time.

In C++QED, since a script corresponds to a given physical system, the lay-
out of the system is known at the time we compile the script, so that its arity is
naturally also known. This then implies a lot of further compile-time calcula-
tions (cf. Section 10.5.1). Furthermore, many errors related to inconsistencies
in the system layout can also be detected at compile time.

Very roughly, we can think about C++QED scripts as C++ programs which
exploit the compile-time metaprogramming machinery of C++, to generate
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Figure 10.2: Tracts of the framework and their relationships. We display only a rudimentary
list of classes, with no pretension to completeness.

(lower-level) C++ programs in such a way that in the resulting executable all
compile-time information is encoded to yield a maximally effective and safe
application for the given physical system.

In C++QED, compile-time resource requirement scales with the complexity
of the simulated system, while runtime resource requirement scales with the
total dimensionality. Hence, compile time can be best exploitedwhen the system
is composed of a lot of subsystems, all with low dimensionality. As an example,
we might think of several qubits with complex interactions. For benchmarks cf.
Vukics (2012).

10.3 structure

The structure of the framework is sketched in Fig. 10.2. This structure is re-
flected on the build system, dependencies being strictly defined and observed
throughout.
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The very core is composed of the following namespaces:

quantumdata defines data structures. It is completely autonomous, not de-
pending on the rest of the framework, but all the rest directly or indirectly
depends on it.

structure defines such interfaces as quantum systems must or may present
towards time-evolution drivers (or other clients). E.g. every systemmust
be derived from the abstract interface class QuantumSystem to be us-
able with the time-evolution drivers. A system may derive e.g. from
Hamiltonian, if its dynamics has a Hamiltonian part.

quantumtrajectory defines the time-evolution drivers.

The quantumoperator namespace constitutes a separate tract defining
classes for representing special operator structures to facilitate the implementa-
tion of new elements. So far, tridiagonal and sparse matrices have been imple-
mented: these cover most of the usecases in quantum optics.

The Composite class represents a quantum system with arbitrary complex-
ity, that consists of a number of free constituents and a number of interactions
with arbitrary arity between them.The class keeps track of all these constituents
and what state-vector slices they need to operate on, as will be explained below.5 5. BinarySystem is just a separate

implementation for the frequent special
case of composite systems composed
only of two free elements with a single
binary interaction between them.

Elements come in two brands: in this tract free elements are independent,
while interactions depend on frees. Most free and interaction elements are
implemented with the help of special operator structures, so that their imple-
mentation depends on the quantumoperator tract. Both brands of elements
derive from at least one of the classes in namespace structure.

10.4 high-level usage

In the following, we give a flavor of how the concept of C++QED works in prac-
tice in the highest level interface. The highest level is a C++ program, which
we call a script throughout. The framework is capable of saving (serializing/-
marshalling) the full binary state of a trajectory, including that of the ODE
stepper and random number generator (RNG), so that it is possible to resume
any trajectory as if an interruption has not happened.

A script creates an executable which defines and simulates a system of
a particular layout. All information pertaining to the layout of the system is
processed at compile time. A script is composed of a part in which the system
is specified, and another in which we do something with the system (simulate
its time evolution).6 6. In this Section, the examples are

taken from the field of (moving-
particle) cavity QED, cf. Vukics &
Ritsch (2007) for more information
about the appearing physical elements.

10.4.1 An elementary example

The simplest case is a free system alone. Consider a lossy resonatormode, which
may be driven (“pumped”) with a laser. This is the same system discussed in
Section 9.4, with nTh = 0. We begin with defining the system, which is trivial
in this case:

1 PumpedLossyMode mode{delta,kappa,eta,cutoff};
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where cutoff is the cutoff of the mode Fock space.
Suppose we want to simulate a single MCWF trajectory. The system is

started from a pure initial state, specified as
1 quantumdata::StateVector<1> psi{mode::coherent(alpha,cutoff)};

that is, the mode is in a coherent state ∣α⟩. StateVector<1>means that it is a
state vector of a unary system. Next, we define our MCWF_Trajectory:

1 quantumtrajectory::MCWF_Trajectory<1> trajectory{psi,mode,...};

Thefirst two parameters are clear, but we omit a lot more parameters, pertaining
to the ODE stepper, the RNG, etc.

The trajectory can be run with
1 run(trajectory,time,dt);

This will evolve the trajectory for time, and display information about the
state of the system after every time interval dt. The set of information (usually
a set of quantum expectation values) displayed is defined by the system.77. There is another version, where

the number of (adaptive) timesteps
between two displays can be spec-
ified. This is usually more suited
to the physics of the problem,

since the timesteps will be small
when many things are happen-
ing, and this is when we want

more output, too, cf. Section 9.6.

In the above, the necessary parameters must be previously defined some-
where. Parameters can come from several sources, but the most useful alterna-
tive especially in supercomputing environments is a command-line interface
(CLI). This allows for a fine-grained control over what parameters the user
wants to accept as default and what she wants to override. In the framework,
this looks like:

1 #include "EvolutionHigh.h"
2 #include "Mode.h"
3
4 int main(int argc, char* argv[])
5 {
6 ParameterTable p;
7
8 evolution::Pars pe{p}; // time-evolution parameters
9 mode::ParsPumpedLossy pm{p}; // mode parameters
10
11 pe.evol=EM_MASTER; pm.cutoff=30;
12 // ... other default values may follow
13
14 update(p,argc,argv,"--"); // Parsing the command line
15
16 // ****** ****** ****** ****** ****** ******
17
18 evolve(init(pm),make(pm,QMP_UIP),pe);
19 }

ParameterTable in line 6 is the module realizing the CLI by storing all the
parameters of the problem, and allowing them to be manipulated from the
command line. We instantiate the actual parameters for the time-evolution
driver(s) in line 8 and the mode in line 9. The command line is parsed by the
update function in line 14. Line 18 does all the rest. It is here that we instantiate
our mode, selecting the best ...Mode class corresponding to the parameters.8

8. A mode can be driven or not, lossy or
conservative, finite or zero temperature,

and it can be represented in several
quantum mechanical pictures. Each

of these possibilities is represented by
a class. E.g. if κ = 0, and η = 0, then
we will have a Mode; if η is nonzero, a
PumpedMode; and if both are nonzero,

a PumpedLossyMode. The signifi-
cance of this is that e.g. if the mode is
not lossy, then it is not that the prob-
ability of a quantum jump will be cal-
culated and found zero, but rather the
possibility of a quantum jump will not
even be considered during time evo-

lution, which speeds the evolution up.

An example command line may read:
1 PumpedLossyModeScript --evol master --eps 1e-12 --dc 100 --

deltaC -10 --cutoff 20 --eta "(2,-1)"...
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10.4.2 Example: a binary system

Assume a two-level atom (qbit) interacting with a single cavity mode via the
Jaynes-Cummings interaction (10.2). Both the qbit and themodemay be driven,
lossy, or both.

Such a system can be represented by the BinarySystem class, that can be
constructed like

1 auto sys=binary::make(jaynescummings::make(qbit::make(pb,qmp),
2 mode::make(pm,qmp),
3 pjc));

where pb, pm, and pjc are parameter objects that can be constructed similarly
to the above.

In the case of a binary system, the complete layout of the system can be fig-
ured out from the single interaction element – and this is trivial. BinarySystem
is a simplified version of Composite (cf. Section 10.4.3). Both are quite pow-
erful modules, whose design reflects the basic idea behind the framework.
BinarySystem internally handles all the loops and slicing necessary to calcu-
late the effect of the Hamiltonian of the qbit component if it is part of a binary
system (cf. Section 10.5.1). It acts and feels like any other system, like Mode
itself, with the difference that the latter has only one quantum number, while
BinarySystem has two.

Such a system can be evolved in the same way we saw above:
1 evolve(qbit::state0()*mode::coherent(alpha,cutoff),sys,pe);

where we chose to specify a concrete initial condition.
Henceforth, usage is the same as we have seen in the mode example.

BinarySystem will reach into its constituents for the informations to display
(the quantum expectation values), supplying either with the corresponding
reduced density operator (cf. Section 10.5.2), which contains all information
about the state of the subsystem.

10.4.3 More complex examples

If there are more than two free subsystems, the system can be much more
complex. The number of possible interactions rises combinatorically with the
number of free constituents. This is the situation where the full potential of
C++QED is displayed.

Assume a system with a particle moving along the axis of a ring cavity, and
interacting with two counterpropagating running-wave modes of the cavity
(Niedenzu et al., 2010). Bothmodes are lossy, and one is also driven.This system
consists of three subsystems, a particle9 9. More precisely: a one-dimensional

motional degree of freedom.
and the two modes. There are three

interactions:

(1-2) The particle can absorb a photon from either of the modes and emit it
in a stimulated way into the same mode.This yields dipole force for the
particle and a corresponding light shift for the mode. It is implemented
by the interaction element ParticleAlongCavity.

(3) The particle can emit the photon absorbed from one of the modes into
the other mode. This yields a ternary interaction between all the free
subsystems, implemented by the interaction element ParticleTwoModes
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(a)

(b)

Figure 10.3: The network of interactions defining the system for (a) the ring-cavity example
and (b) the self-organization example.
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The system can be layed out as a simple network, as displayed in Fig. 10.3(a).
The Compositemodule of the framework is designed to directly represent such
a network. Assume the following definitions are in effect:

1 // Construct Frees
2 Particle part {...};
3 LossyMode plus {...};
4 PumpedLossyMode minus{...};
5 // Construct Interactions
6 ParticleAlongCavity iaP{plus ,part,...,MFT_PLUS };
7 ParticleAlongCavity iaM{minus,part,...,MFT_MINUS};
8 ParticleTwoModes ia3{plus,minus,part,...};

(Here, MFTmeans the type of the mode function, and PLUS and MINUS signify
that they are counterpropagating running-wave modes.) Then, the system is
created by a maker function for Composite with a helper class denoted _:

1 composite::make(_<1,0> {iaP},
2 _<2,0> {iaM},
3 _<1,2,0>{ia3});

What we are expressing here e.g. with the specification _<1,2,0>(ia3) is that
the 0th leg of the interaction element ParticleTwoModes, which is the mode
plus, is the 1st in our row of free subsystems in the network in Fig. 10.3(a). The
1st leg, the mode minus is the 2nd in the row; and the 2nd leg, the particle is the
0th in the row of frees. The legs of interaction elements cannot be interchanged,
andwe also have to be consistentwith our preconceived order of free subsystems
throughout. Clearly, the three _ objects contain all the information needed by
the framework to figure out the full layout of the system. Any inconsistencies
in the layout will result in a compile-time or runtime error, depending on when
the information becomes available.

To end this Section, we display one more example. This exhibits a last
feature reflecting a basic principle of quantum physics: if two systems are
identical, they are indistinguishable. In C++QED, this means that a single object
is enough to represent them. Consider two identical pumped particles moving
in a direction orthogonal to the axis of a cavity sustaining a single lossy mode
(Vukics et al., 2007). The layout of the system is displayed in Fig. 10.3(b). The
core of a corresponding script may read:

1 LossyMode mode{pm}; // Free0
2 PumpedParticle part{pp}; // Free1,2 - only one instant
3
4 ParticleOrthogonalToCavity ia{mode,part,ppc}; // only one instant
5
6 evolve(init(pm)*coherent(pp)*coherent(pp),
7 composite::make(_<0,1>{ia},
8 _<0,2>{ia},
9 _<1,2>{IdenticalParticles<2>{part,...}}),
10 pe);

10.5 fundamental data structures

10.5.1 State vectors as multi-arrays

We first introduce basic definitions in the algebra of composite quantum sys-
tems. Here, the state vector of the system is an element of a Hilbert spaceH
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which is the direct product of elementary Hilbert spacesHis:

H =⊗
i
Hi , (10.3a)

∣ι⟩ ∈H, (10.3b)
∣ιi⟩ ∈Hi , (10.3c)
∣ι⟩ =⊗

i
∣ιi⟩ ≡ ∣ι0, ι1, . . .⟩ , (10.3d)

so that ∣ι⟩ and ∣ιi⟩ are basis vectors inH andHi , respectively. The number of
elementary Hilbert spaces is the arity of the system.

Through an example, we define slicing. Assume a state vector:

∣Ψ⟩ ≡∑
ι
Ψι ∣ι⟩ ∈H, (10.4a)

then a state-vector slice is a state vector in the Hilbert space of a subsystem:

∣Ψ⟨1,3,6,7,9⟩(ι0, ι2, ι4, ι5, ι8, ι10, . . . )⟩ ≡ ∑
ι1 ,ι3 ,ι6 ,ι7 ,ι9

Ψι ∣ι1, ι3, ι6, ι7, ι9⟩ ∈ ⊗
i=1,3,6,7,9

Hi .

(10.4b)
Such a state-vector slice is defined by the retained axes ⟨1, 3, 6, 7, 9⟩, which define
the subsystem, and the dummy indices (ι0, ι2, ι4, ι5, ι8, ι10, . . . ). In situations
when slicing occurs in the framework, the set of retained axes is an information
available at compile time, while the set of dummy indices is an information
becoming available only at runtime.

Slicing is recursive: a state-vector slice behaves as a state vector, only with a
lower rank, and it can even be further sliced. It is in particular true that

⟨ι∣Ψ⟩ = ⟨ι1, ι3, ι6, ι7, ι9∣Ψ⟨1,3,6,7,9⟩(ι0, ι2, ι4, ι5, ι8, ι10, . . . )⟩ . (10.5)

Through an example, we define operator broadcasting.1010. Slicing and broadcasting
have become standard termi-

nology in multi-array libraries,
like the NumPy Python package.

Assume a linear
operator:

A ≡∑
k
Ak,3⊗Ak,6⊗Ak,1⊗Ak,9⊗Ak,7 ∈ L(H3 ⊗H6 ⊗H1 ⊗H9 ⊗H7), (10.6a)

A⟨3,6,1,9,7⟩(H)
≡∑

k
(I0 ⊗ Ak,1 ⊗ I2 ⊗ Ak,3 ⊗ I4 ⊗ I5 ⊗ Ak,6 ⊗ Ak,7 ⊗ I8 ⊗ Ak,9 ⊗ I10 . . . )

∈ L(H). (10.6b)

When the numbers in the angular brackets are permutations of a sequence
of ordinals, this corresponds only to a permutation of the underlying elemen-
tary Hilbert spaces. Matrix elements of the broadcasted operator can then be
calculated by acting with the (possibly permutated) original operator on an
appropriate vector slice:

⟨ι∣A⟨3,6,1,9,7⟩(H) ∣Ψ⟩ = ⟨ι1, ι3, ι6, ι7, ι9∣A⟨1,2,0,4,3⟩ ∣Ψ⟨1,3,6,7,9⟩(ι0, ι2, ι4, ι5, ι8, ι10, . . . )⟩ .
(10.7)

Due to the recursivity of slicing, the state vector of a composite quantum
system is most conveniently represented computationally by a multi-array of
complex numbers. The multi-array concept can be defined as: the possibility of
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1. indexing the array with as many indices as the rank of the array;

2. slicing the array in a recursive way: any slice also behaves as amulti-array;

3. creating views (both constant and non-constant) of the array without
actually touching the storage in memory. Any view again behaves as a
multi-array.

Our principal tool to work with state vectors is a range that contains the
slices of amulti-array corresponding to all possible combinations of the retained
indices:

1 template<int... RetainedAxes, typename MultiArray>
2 auto slicesRange(MultiArray);

Slice iteration is at the heart of the framework, as it is indispensable to im-
plement composite quantum systems. Quite generally, by iterating through
the slices corresponding to all the combinations of indices not belonging to
the given subsystem (dummy indices), it can be used to implement operator
broadcasting. Sticking to the example of Eq. (10.7), assume that the function

1 void actWithA(StateVector<5>&);

implements the action of operator A on a state vector of rank 5.Then the action
on the extended Hilbert space can be calculated as

1 void broadcastA_to11Dims(StateVector<11>& psi)
2 {
3 for_each(slicesRange<3,6,1,9,7>(psi),actWithA);
4 }

Observe the one-to-one correspondance between this piece of code and the
entities in Eq. (10.7).

At this point, it becomes apparent how compile-time algorithms come
about in the framework. Here we need to calculate the “permutated operator”
A⟨1,2,0,4,3⟩ at compile time. Rather than touching the operators defined as func-
tions, this permutation is done on the multi-array, resulting in a multi-array
view with permutated indices, so that we do not need to actually move data
around. This example shows that the use of multi-arrays and compile-time
algorithms go hand-in-hand in our problem.

10.5.2 Lazy density operator

In a quantum-simulation framework, clients should be able to write code for
calculating quantum expectation values from quantumdata, independently
of whether this data is represented by state vectors or density operators, in
orthogonal or non-orthogonal bases. One obvious solution is relying on the
formula

⟨A⟩ = Tr{Aρ} (10.8)

(A being an observable and ρ the density operator of the system), to write code
only for the density-operator case, and fall back to this in the state-vector case
as well, by calculating a dyad from the state vector. However, this is wasteful
since usually not all the matrix elements of ρ are needed for calculating the
expectation value. Furthermore, for large dimensionality, this solution may
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become unaffordable in terms of memory: for large systems, we may afford to
store ∣Ψ⟩, but not ∣Ψ⟩ ⟨Ψ∣.

The solution adopted for this problem in the framework is represented
by the class LazyDensityOperator. This class provides a common interface
for all the four kinds of quantumdata to calculate quantum expectation val-
ues from their data: state vector or density operator, in orthogonal or non-
orthogonal bases.11

11. In the case of non-orthogonal bases,
we adopt the covariant-contravariant

formalism, and provide services
for “pulling” indices. An impor-

tant usecase in quantum optics is a
set of coherent states as an approx-
imately complete basis for a mode
in a certain segment of its Hilbert

space (Krämer & Ritsch, 2012).

Here, “laziness” means that in the case of state vectors only
those elements of the density operator are calculated that are actually asked
for. LazyDensityOperator is an abstract interface, which gets implemented
by classes like StateVector, DensityOperator, and their non-orthogonal
counterparts.

The semantics of LazyDensityOperator can be understood through the
following examples:

Unary system Assume a mode represented in Fock basis with ladder operator
a. To calculate the quantum expectation value

⟨a2⟩ = Tr{a2ρ} =∑
i

√
i(i − 1) ρi;i−2, (10.9)

one can write the following function:

1 auto calculateASqr(const LazyDensityOperator<1>& m)
2 {
3 complex res;
4 for (int i=2; i<m.getTotalDimension(); ++i)
5 res+=sqrt(i*(i-1))*m(i,i-2);
6 return res;
7 }

Binary system Assume two modes represented in Fock bases with ladder-
operators a and b, respectively. To calculate the quantum expectation
value

⟨a†b⟩ = Tr{a†bρ} =∑
i , j

√
(i + 1) j ρ(i , j);(i+1, j−1), (10.10)

one can write the following function:

1 auto calculateADaggerB(const LazyDensityOperator<2>& m)
2 {
3 const auto dim{m.getDimensions()};
4
5 complex res;
6 for (int i=0; i<dim[0]-1; ++i) for (int j=1; j<dim[1]; ++j)
7 res+=sqrt((i+1)*j)*m({i,j},{i+1,j-1});
8 return res;
9 }

We note that analogously to state vectors, LazyDensityOperator must
also be sliced because for calculating quantum expectation values of subsystem-
observables (e.g. in composite systems), the partial-trace density operator is
needed. For the partial trace, however, only such elements of the full density
operator are needed, as are diagonal in the dummy indices.
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10.a defining multi-level quantum systems

In this Appendix, we sketch a generic element of C++QED, which provides a
framework for representing multi-level quantum systems, e.g. atoms or ions of
arbitrary level structure. Coherent driving, loss, and interaction with harmonic-
oscillator modes can also be defined. The framework is defined in the header
files

• elements/frees/MultiLevel.h and

• elements/interactions/MLJC.h,

the latter acronym standing formulti-level Jaynes-Cummings.
An N-level system is characterized by a set of basis vectors

∣i⟩ , i = 0 . . .N − 1. (10.11)

Coherent driving – e.g. with laser light – of a transition between two levels i
and j is described by the Hamiltonian:

Hdriving i− j ∝ ηi j ∣ j⟩ ⟨i∣ − h.c., (10.12)
Hcoupling i− j ∝ gi j a ∣ j⟩ ⟨i∣ − h.c., (10.13)

where in the second line the external driving has been replaced by a harmonic-
oscillator mode with ladder operator a, resulting in a Jaynes-Cummings cou-
pling. (This corresponds to the situation when a driving laser is replaced by
a cavity mode.) Decay of level j to level i can be described by the Lindblad
operator

J j→i =
√
2γi j ∣i⟩ ⟨ j∣ , (10.14)

where γi j is the decay rate.
The MultiLevel framework in C++QED is designed in such a way that

a set of drivings, couplings to harmonic-oscillator modes, and decays can be
defined at compile time as lists of pairs of i and j levels. From these lists, the
framework assembles the Hamiltonian of the system at compile time as a sum
of terms like (10.12) and (10.13), and the Lindblad operators as a set of operators
like (10.14). Then, the values of parameters like ηi j, gi j, and γi j for all the pairs
such defined can be specified at runtime. The rationale of this arrangement is
that such pairs of levels as are never expected to be driven or coupled (or lossy),
will not pollute the Hamiltonian with terms which would turn out to be zero
at runtime. (Or, if the pair is not specified in the list of decays, it will not be
considered when trying for quantum jumps.)

The script scripts/Ca40InCavity.cc demonstrates the syntax and usage.
This script represents a 40Ca+ ion interacting with a cavity mode as described
e.g. in Barros et al. (2009). In this case, the 42S1/2, 32D3/2, and 42P1/2 levels of the
ion constitute an eight-level system, with two driven transitions, six transitions
coupled to the cavity mode, and ten decaying transitions.

Another important usecase is circuit quantum electrodynamics with trans-
mons, where the strong coupling to the resonator and the insufficient nonlin-
earity of the transmon means that one must take into account more than two
transmon levels, making it a multilevel system, cf. Chapter 7.
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11

THESES, OUTLOOK, FURTHER
DEVELOPMENTS

Thesis IX (Kornyik & Vukics, 2019) We have developed a stepwise adaptive
MCWF algorithm controlled by a single specific parameter: the maximum al-
lowed total jump probability per timestep,∆p.We have studied the convergence
behavior of the MCWF method depending on this parameter. We have found
that the dependence of the deviation of the MCWF from the exact solution
proportional to the square root of the inverse of the number of trajectories
flattens out, which happens at the larger number of trajectories, the smaller the
∆p. This behavior we attributed to the inherent errors of the first order MCWF
method, namely

1. time discretization and

2. missing multi-jump events,

both of which are O(δt2) errors, meaning that they scale as ∆p2. We have
found and characterized a discontinuous behavior of the method as a function
of ∆p in the pure ∆p-controlled regime, which we have attributed to the way
the trajectories are sampled in time. This a showcase of how sampling can
modify the behavior of trajectories through influencing the stepsize, which at
the same time displays the role of the average stepsize as the real regulator of
MCWF convergence. In the case when a non-trivial Hamiltonian is present,
we have characterized the contention between ∆p- and ODE-control, finding
that ODE-control will take over when those characteristic frequencies of the
system that do not participate in the loss increase.The takeover of ODE-control
is signalled by that the average timestep becomes determined by the largest
non-loss-related characteristic frequency of the system, becoming independent
of ∆p.

Thesis X (Vukics, 2012; Sandner & Vukics, 2014) We have developed and
maintained C++QED: a C++ framework for simulating open quantum dynam-
ics. The design is based on leveraging the multi-array concept for representing
the quantum state (state vector or density operator) of composite quantum
systems. The knowledge of the arity of the system at compile time entails the
utilization of compile-time algorithms for processing the layout of composite
quantum systems at compile time, hence cutting on runtime. The framework
provides a high-level interface where users can compose arbitrarily complex
interacting composite quantum systems from elementary free subsystems – e.g.
harmonic-oscillator modes, qubits, particle motional degrees of freedom –, and
interactions between them – e.g. Jaynes-Cummings, x-x interaction. C++QED
provides a separate framework for defining multi-level systems (e.g. for atoms
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of complex level structure) with an arbitrary set of drivings, couplings to elec-
tromagnetic modes, and radiative losses assembled at compile time. During
its history of more than a decade, C++QED has formed the basis of about
20 research papers, and has proved particularly useful in supercomputing
environments.

;

The formalism for describing open quantum systems is seeing refinements up
to this day. The connection between strong symmetries and conservation laws
on individual trajectories was clarified by Munoz et al. (2019), while in the
case of a weak symmetry of the Liouvillean, it was shown how a symmetric
Hamiltonian and jump operators connecting only the symmetry eigenspaces
with a fixed eigenvalue ratio can be constructed to simplify evolution on a
single trajectory (Macieszczak & Rose, 2021). An important recent paradigm
is time-delayed quantum coherent feedback (Grimsmo, 2015): in cascaded
quantum systems with the growth of the network it becomes increasingly
important to account for the situation when an output field of one of the
subsystems influences one of its inputs at a later time. Quantum trajectory
methods to deal with this situation have been developed during recent years
(Német, 2019; Crowder et al., 2020). Simulation methods for open quantum
many-body systems incorporating also quantum trajectories have seen great
progress during the last decade (Weimer et al., 2021). Recently, a “numerically
exact” treatment of many-body self-organization in a cavity became possible
(Halati et al., 2020).

On the mathematical-physics front, quantum trajectories were extended
to the case of arbitrary system-environment coupling by Donvil & Muratore-
Ginanneschi (2021), exhibiting interference of distinct realizations of quan-
tum trajectories in the strong-coupling case. In numerical analysis, structure-
preserving numerical schemes were developed by Cao & Lu (2021), taking
advantage on special algebraic properties of Lindblad master equations.11. Literature review

closed in October 2021 Regarding implementations, whereas around the inception of the C++QED
framework the main simulation tool for open quantum systems used by quan-
tum opticians was the rather inefficient Matlab Quantum Optics Toolbox (Tan,
1999), during the past decade two new tools appeared: the very popular QuTiP
in Python (Johansson et al., 2012, 2013), and QuantumOptics.jl (Krämer et al.,
2018) in Julia, a new numerical language. Whereas interpreted languages can-
not be as fast as compiled ones by principle, the borderline between these two
categories is becoming elusive with the just-in-time-compilation paradigm of
Julia. Due partly to their languages, QuTiP and QuantumOptics.jl are tuned
towards usage at the console, while C++QED is especially useful for batch usage
in supercomputing environments.

Finally, some remarks about the future of the C++QED framework. One
drawback of C++ for scientific applications has been the very scanty numerics
in the standard library, and, what is particularly problematic for our application
is that it still lacks a standard multiarray type.22. Contrast this with FORTRAN

that has featured a built-in multi-
array type from the very be-

ginning, or Python, where the
ndarray type of the NumPy li-

brary has become a de facto standard.

As long as we are stuck with the
Blitz library, we cannot fully embrace modern techniques. Nevertheless, the
tri-annual updates to the language starting with C++11 have greatly enhanced
its overall usability, and allowed us to express especially our compile-time
structures in much more straightforward ways than the esotheric solutions
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we needed to resort to when we started with C++03 in 2006. The upcoming
C++23 will even include a multi-array infrastructure. A great challenge facing
C++QED is the exploitation of heterogeneous architectures – graphical process-
ing units (GPU), field-programmable gate arrays (FPGA), and eventually even
quantum processors – that has become a mainstream in scientific computing
during the last decade. Recent editions of the C++ standard provide several
tools to facilitate deployment to these platforms. All in all, despite being more
than a decade old, we can expect C++QED to see a bright future, where cleaner
and more accessible structures and applicability in heterogeneous computa-
tional environments make it a tool of choice for a wider audience of quantum
scientists.
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