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1 BEVEZETÉS

A  fehérjék  mind  szerkezeti  mind  funkcionális  tulajdonságaikat  tekintve
hihetetlenül változatosak. Ugyanakkor ennek az elképeztő változatosságnak az alapját
egy  viszonylag  egyszerű  kémiai  felépítés  adja:  a  fehérjék  20  különböző  aminosav
egymáshoz  kapcsolódásával  kialakuló  láncmolekulák,  melyek  egyediségét  az
aminosavak  sorrendje,  az  aminosav  szekvencia  adja.  A  fehérjekutatás  egyik
legalapvetőbb kérdése,  hogy hogyan határozza  meg az aminosav sorrend a fehérjék
térszerkezetét  és  funkcióját.  Ennek a  kérdéskörnek  az  alapjait  több mint  ötven  éve
fektették le, többek között  Christian Anfinsen, a ribonukleáz refolding vizsgálatával,
Cyrus  Levinthal,  a  fehérje  feltekeredés,  a  folding,  alapvető  paradoxonának
megfogalmazásával, illetve John Kendrew az első fehérje, a mioglobin szerkezetének
meghatározásával  [1]. Bár az azóta eltelt időszakban jelentős előrelépések történtek a
szekvencia - szerkezet - és funkció összefüggésének megértésében, mind a mai napig
újabb és újabb dolgokat tanulunk a fehérjék sokszínűségéről. 

Az egyik alapvetően új irány a rendezetlen fehérjékhez kapcsolódik. A sokáig
általánosan  elfogadott  nézet  az  volt,  hogy  a  fehérjék  megfelelő  működéséhez
elengedhetetlen, hogy egy jól definiált szerkezettel rendelkezzenek. Ezt a paradigmát
írta át a rendezetlen fehérjék funkcionális fontosságának felismerése. Bár ez a jelenség
a kezdetekben jelentős  vitákat  váltott  ki  [2], a 2000-es évek kezdetétől  megindult  a
rendezetlen  fehérjék  szisztematikus  vizsgálata.  Ezekben  -  a  rendezetlen  fehérjék
kísérletes  vizsgálatának  nehézségei  miatt  -  döntő  szerep  jutott  a  bioinformatikai
megközelítéseknek.

Doktori értekezésemben a rendezetlen fehérjék bioinformatikai vizsgálata során
elért  eredményeit  foglaltam össze.  Közel  két évtizedes  tevékenységem során többek
között  új  bioinformatikai  eszközöket  fejlesztettem  ki,  melyekkel  felismerhetők  a
rendezetlen régiók illetve azok kötőhelyei az aminosav szekvenciából. A saját és mások
által  kifejlesztett  módszerek  alkalmazásával  elemeztem  a  rendezetlen  fehérjék
kölcsönhatási  tulajdonságait  és  betegségben  betöltött  szerepüket.  Összességében,
vizsgálataim alapvetően járultak hozzá ezen új fehérje osztály jobb megismeréséhez.
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2 IRODALMI ÁTTEKINTÉS

2.1 A fehérje rendezetlenség

Bár a klasszikus szerkezet-funkció paradigma szerint a fehérjék funkciójához
elengedhetetlen  a  jól  definiált  térszerkezet  megléte,  a  múlt  század  végére  egyre
nyilvánvalóbbá vált, hogy ez a kép nem teljes: nem minden biológiailag funkcionális
fehérje  vesz  fel  spontán  rendezett  szerkezetet,  ugyanakkor  ezek  a  fehérjék  illetve
fehérje szegmensek számos biológiai  folyamatban kulcsfontosságúak. Ezt  felismerve
vetette fel 1999-ben Jane Dyson és Peter Wright, hogy a szerkezet-funkció paradigmát
felül kell vizsgálni, és vezette be az eredendően szerkezet nélküli fehérjék (intrinsically
unstructured  proteins)  fogalmát  [3].  Ezzel  párhuzamosan  Keith  Dunker  és  kollégái
felismerték, hogy a röntgenszerkezet hiányzó szegmensei gyakran tartalmaznak olyan
funkcionális  elemeket,  amelyek  rendezetlenek  [4,5].  Ők  végezték  el  az  első
bioinformatikai elemzéseket is ezen a területen. Magyarországon Tompa Péter indította
el a rendezetlen fehérjék vizsgálatát  [6]. Sokáig vita volt arról, hogy hogyan nevezzék
el ezt az újfajta fehérje osztályt, végül az eredendően rendezetlen fehérje (intrinsically
disordered protein/IDP) elnevezés vált általánosabban elfogadottá [7].

Bár az ismert fehérje térszerkezetek egy statikus képet sugallnak, a rendezett
fehérjék  is  dinamikusak  és  ez  elengedhetetlen  a  funkciójukhoz  [8].  A  globuláris
szerkezet  tartalmazhat  rövidebb-hosszabb flexibilis,  illetve  rendezetlen  szegmenseket
is,  melyek  jellemzően  a  hurok  régiókban  illetve  a  szerkezet  terminális  részein
találhatók.  Azonban  a  globuláris  fehérjékre  alapvetően  jellemző  egy  egyensúlyi
szerkezet,  amely körül fluktuálnak  [7]. Ezzel szemben a rendezetlen fehérjéket  csak
egy, nagymértékben különböző konformációkat tartalmazó szerkezeti sokasággal lehet
jellemezni  [7,9].  Ennek  a  sokaságnak  a  részletes  tulajdonságai  nagyon  heterogének
lehetnek  [10].  Vannak  olyan  rendezetlen  fehérjék,  melyek  teljesen  véletlenszerűen,
random  coil-ként  viselkednek.  Számos  esetben  megfigyelhetőek  azonban  lokális
szerkezeti  preferenciák  vagy  hosszútávú  tranziens  kölcsönhatások.  A  rendezetlen
fehérjék  egy része  a  globuláris  fehérjék  kitekeredése  során  megfigyelt,  úgynevezett
olvadt gombóc (molten globule) állapothoz hasonlítható, melyet nagyobb mennyiségű
lokális szerkezeti elem és kompaktság jellemez a random coil állapothoz képest. Bár
vannak  teljesen  rendezett  vagy  teljesen  rendezetlen  fehérjék  is,  a  legtöbb  fehérje
mindkét  féle régiót tartalmaz.  Ezek szerkezeti  jellemzőit  befolyásolhatják egymással
való  kölcsönhatásaik,  a  sejten  belüli  környezeti  tényezők  (pl.  pH,  redox  potenciál,
hőmérséklet), poszttranszlációs módosítások, illetve más partnerrel való interakciók is
[11].

A rendezetlen  fehérjék  jellegzetes  molekuláris  tulajdonságai,  mint  például  a
megnövekedett  molekuláris  méret,  a  denaturált  állapotba  való  átmenet  hiánya,  a
periódikus másodlagos szerkezetek hiánya vagy a konformációs heterogenitás számos
kísérleti  módszerrel  megragadható  [12].  Indirekt  módon,  a  fehérje  térszerkezeteket
összegyűjtő  Protein  Data  Bank  (PDB)  adatbázis  is  szolgáltathat  bizonyítékot  a
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rendezetlenség jelenlétéről. Ez röntgenszerkezetek esetében a hiányzó elektronsűrűség,
NMR-szerkezetek esetében pedig a nagy szerkezeti variabilitás formájában jelentkezik.
A rendezetlen fehérjék konformációs preferenciáiról a legrészletesebb információ NMR
segítségével  nyerhető  [13–15].  A  konformációs  sokaság  teljeskörű  jellemzéséhez
azonban  többféle  technikára,  például  különböző  típusú  NMR-mérések  és  kisszögű
röntgen szórás kombinációjára van szükség, melyeket számítógépes számításokkal kell
kiegészíteni  a  modellalkotáshoz  [16].  Az  egyik  legjobban  ismert  és  jellemzett
rendezetlen  fehérje  a  p53  N-terminális  rendezetlen  részének  modellje  látható  az  1.
ábrán. A kapott modell jól mutatja az N-terminális részen a lehetséges konformációk
változatosságát és rámutat egy tranziens α-hélix jelenlétére is [17].

1.  ábra.  Az  N-terminális  rész  modellje  a  p53  tetramer  és  DNS  (lila  színnel  jelölve)
komplexében,  amit  NMR  spektroszkópia,  kisszögű  röntgenszórás,  molekuladinamikai
szimulációk kombinációjával határoztak meg [17].

2.2 Rendezetlen fehérjék funkcionális jellemzői

Az  eredendően  rendezetlen  fehérjék  alapvető  fontosságának  felismerése
drasztikusan  alakította  át  a  fehérjék  szerkezete  és  működése  közötti  összefüggésről
alkotott  elképzelésünket  [12].  Általánosságban  elmondható,  hogy  a  globuláris
fehérjékre olyan feladatokban van szükség, amelyek az aminosavak pontos orientációját
igénylik,  mint  például  az  enzimek  katalitikus  aktivitása  [18].  Ezzel  szemben  a
rendezetlen  régiók  a  bennük  rejlő  dinamikus  tulajdonságukat  és  a  plaszticitásukat
használják fel a működésük során [12,19].

Az ismert példák alapján a rendezetlen fehérjék funkcionális szempontból több
kategóriába  sorolhatók  [19,20] (2.  ábra).  Legjellegzetesebb  működési  módjuk  a
közvetlenül a rendezetlen állapotból eredő entrópikus lánc funkció. Ebbe a kategóriába
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tartoznak  például  a  linkerek,  amelyek  lehetővé  teszik  a  domének  egymáshoz
viszonyított  mozgását;  vagy  a  távtartók,  amelyek  a  funkcionális  modulok  közötti
távolság  szabályozásáért  felelősek.  A  rendezetlen  fehérjék  másik  tipikus  funkciója
molekuláris  felismerésből  ered,  melynek  során  specifikus  kötőpartnerekhez,  például
egy  másik  fehérjéhez,  RNS-hez  vagy  DNS-molekulához  kötődnek.  A  kölcsönhatás
eredményeképpen  befolyásolhatják  a  partner  molekulák  működését  vagy  nagyobb
komplexek  összeszerelődését.  A  rendezetlen  régiók  gyakran  célpontjai  különböző
poszttranszlációs módosításoknak (PTM). Nyújtott és hozzáférhető szerkezetük miatt
különösen  alkalmasak  kis  méretű  ligandumok,  például  ionok  és  szerves  vegyületek
tárolására vagy neutralizációjára. A rendezetlen szegmensek fontos szerepet játszhatnak
fehérje  és  RNS  chaperonok  működésében  is.  A  funkcionális  kategóriák  köre  a
közelmúltban új taggal bővült: ez egy rendkívül izgalmas jelenség, a fázisszeparáció
révén  kialakuló  biológiai  kondenzátumokhoz  kapcsolódik  és  az  ebben  részt  vevő
rendezetlen fehérjéket gyűjti össze [21].

2. ábra. A rendezetlen régiók összeköthetnek doméneket, ahol rugalmasságuk lehetővé teszi,
hogy a fehérje többféle konformációt vegyen fel; a bennük lévő lineáris motívumok fehérje
kölcsönhatásokat közvetíthetnek; az aminosavaik poszttranszlációs módosítása lehetővé teszi az
információ kódolását és dekódolását [22].

A  rendezetlen  fehérjékre  jellemző  konformációs  szabadság  nagyfokú
képlékenységgel jár együtt, ami lehetővé teszi a különböző partnerek felszínéhez való
igazodást  [23].  A  rendezetlen  fehérjék  gyakran  tartalmaznak  kompakt,  néhány
aminosavból  álló  rövid  lineáris  motívumokat,  melyek  specifikus  doménnel  való
kölcsönhatást  közvetítenek  [24].  Azonban  számos  rendezetlen  fehérje  hosszabb
szegmensen  keresztül  kötődik  [10].  A  partner  molekulával  való  kölcsönhatás
indukálhatja egy jól-definiált szerkezet kialakítását, az úgynevezett csatolt feltekeredés
és kötődés (coupled folding and binding) során [25]. Felvetették, hogy az ilyen típusú
kölcsönhatások  általában  gyenge,  de  specifikus  interakciót  tesznek  lehetővé  [3,26].
Ennek oka az, hogy a kölcsönhatás révén kialakuló entalpia nyereséggel összemérhető a
rendeződéssel  járó  entrópia  veszteség.  Azonban  a  kölcsönhatás  kinetikai  és
termodinamikai  paramétereit  befolyásolják  a  nem-kötött  állapotban  jelen  levő
szerkezeti preferenciák és a kötött állapotban is megmaradó szerkezeti heterogenitás, az
úgynevezett  bolyhosság/fuzziness  [27].  Összességében,  a  rendezetlen  fehérje
szegmensek által kialakított kölcsönhatások kinetikai és termodinamikai tulajdonságai
széles  skálán  mozognak  [28,29].  A  rendezetlen  fehérjék  nagy  sűrűségben
tartalmazhatnak  különböző  funkcionális  modulokat  és  poszttranszlációs  helyeket,
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melyek kombinációja révén molekuláris kapcsolók összetett hálózata alakulhat ki [30].
Ezek  a  tulajdonságok  különösen  előnyösek  különböző  szabályozó  és  jelátviteli
funkciókban,  melyek  a  sejt-  és  környezeti  jelzésekhez  való  gyors  alkalmazkodást
igényelnek [31].

Funkcionális  jelentőségük  felismerésével,  a  rendezetlen  fehérjék  vizsgálata
részévé vált a szerkezeti bioinformatikai kutatásoknak is. 

2.3 Szerkezet predikciós eljárások

A szerkezeti bioinformatikai kutatások fő fókusza sokág a globuláris fehérjék
térszerkezetének  predikciója  volt.  Ennek  kiindulópontja  az  ismert  térszerkezetek,
amiket a PDB adatbázis gyűjt össze [32]. A kísérletileg meghatározott, nagy felbontású
szerkezetek száma az adatbázis 1976-os elindítása óta jelentős mértékben emelkedett,
mára megközelíti a 200000-et. Azonban még ezek száma is elenyésző az ismert fehérje
szekvenciák robbanásszerű növekedéséhez képest. Ez még inkább felerősítette azt az
igényt,  hogy képesek legyünk megjósolni,  hogy milyen szerkezet  tartozik egy adott
fehérje szekvenciához. 

Az Anfinsen által megfogalmazott termodinamikai hipotézis szerint a fehérjék
háromdimenziós  szerkezetét  a Gibbs-féle  szabadenergia határozza  meg, és a normál
fiziológiás  körülmények  között  a  natív  szerkezet  a  legalacsonyabb,  vagy  az  egyik
legalacsonyabb  energiájú  állapotnak  felel  meg  [33,34].  A  szerkezet  kialakításában
számos  tényező  vesz  részt,  az  aminosavak  között  nagyszámú  van  der  Waals,
elektrosztatikus  kölcsönhatás,  hidrogénhíd  alakulhat  ki.  A  globuláris  szerkezet
kialakulásának fontos tényezője a hidrofób effektus, ami a vizes közegben az apoláros
aminosavak  eltemettettségét  eredményezi.  A  kölcsönhatások  eredményeképpen  egy
kompakt  szerkezet  alakul  ki,  ami  ellen  dolgozik  a  konformációs  entrópia,  ami  a
feltekeredés következtében jelentősen lecsökken. A globuláris fehérjék szerkezetének
stabilitásában  résztvevő  tényezők  modellezhetőek  fizikai  erőterekkel,  amelyekkel
feltérképezhető  a  fehérjék  energiafelszíne  számítógépes  szimulációkon  keresztül.
Azonban ezen megközelítés alapján továbbra is csak néhány kisebb fehérjék szerkezetét
sikerült modellezni [1]. A legtöbb esetben pontosabban és gyorsabban lehet szerkezeti
modellt  generálni  olyan  bioinformatikai  módszerekkel,  amelyek  csak  részben  vagy
egyáltalán nem használnak fizikai megközelítéseket. 

A legegyszerűbb predikciós módszerek nem magát a szerkezetet,  hanem csak
valamilyen  szerkezeti  tulajdonságot  próbáltak  meg  jósolni  közvetlenül  az  aminosav
szekvenciából, mint például másodlagos szerkezeti elemekben való előfordulás, torziós
szögek,  az  egyes  aminosavak  eltemetettsége/hozzáférhetősége  [35].  A  kezdeti
módszerek  egyszerű aminosav tulajdonságokon alapultak,  amiket  egyre komplexebb
statisztikai  modellek,  illetve  különböző  gépi  tanulásos  eljárások  (mesterséges
neuronhálózatok,  support  vector  machine-ok,  rejtett  Markov  modellek)  követtek.
Jelentős előrelépést értek el ezek a módszerek azáltal, hogy nem egyetlen szekvenciát
használtak  bemenetként,  hanem többszörös  szekvencia  illesztést  [36].  A módszerek
fejlődéséhez nagyban hozzájárult  az is, hogy egyre több adat áll rendelkezésünkre a
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módszerek betanításához a szekvencia és térszerkezeti adatok növekedésével [37]. 
A  fehérjeszerkezetek  számának  növekedésével  olyan  általános

szabályszerűségek  is  feltárásra  kerültek  melyek  szintén  kiaknázhatóak  a
szerkezetbecslésben.  Az  egyik  általános  megfigyelés  szerint  bizonyos  típusú  térbeli
kölcsönhatások gyakrabban fordulnak, mint ahogyan azt véletlenszerű eloszlás alapján
várni  lehet.  A  kölcsönhatások  megfigyelt  gyakorisága  energiaszerű  mennyiségekké
alakítható  a  Boltzmann-eloszlás  alapján  [38].  A  legegyszerűbb  formában  ezek  a
statisztikai  potenciálok  egy 20 x 20-as  mátrixban fejezhetők ki,  melynek értékei  az
egyes  aminosavpárok  közötti  kölcsönhatást  jellemzik.  A  kapott  energia  jellegű
mennyiségek nem feleltethetőek meg direkt fizikai tényezőknek és nem értelmezhetők
közvetlenül  szabadenergiaként.  Azonban  általában  felülmúlják  a  fizika  alapú
energiafüggvényeket  a  threading  (felfűzés)  eljárásban,  amelynek  célja  az  adott
szekvenciához tartozó  szerkezet  megtalálása  az ismert  szerkezetekre  felfűzve kapott
alternatív konformációk között, annak kedvedező energiája alapján [39]. A statisztikus
potenciálok  legkritikusabb  eleme  a  normalizáláshoz  használt  referenciaállapot  [40].
Ennek problémájára javasolt egy elegáns megoldást Ken Dill and Paul Thomas, ami
egy iteratív algoritmus alapján megkerüli  a referencia állapotra vonatkozó közvetlen
feltételezéseket  [41].  Összességében,  a  statisztikus  potenciálok  különböző  formái
rendkívül hasznosnak bizonyultak a szerkezetbecslés területein [42,43].

Az  évek  során  számos  módszert  fejlesztettek  ki  a  fehérje  szerkezetek
modellezésére  [44].  Ennek motorjává vált  a  kétévente  megrendezésre  kerülő CASP,
ami megalapozta a módszerek független értékelését és lehetőséget teremtett a terület
fejlődésének nyomon követésére  [45,46].  A probléma nehézsége szerint  a  szerkezet
predikciókat  két  csoportra  lehet  osztani  attól  függően,  hogy  létezik-e  a  célfehérje
szerkezetéhez hasonló ismert, úgynevezett templát szerkezet. Az első kategóriában már
viszonylag  korán  megbízható  minőségű  modelleket  lehetett  generálni,  homológia
modellezés vagy - távolabbi vagy indirekt kapcsolat esetén - a threading eljárás alapján.
Ezzel  szemben  a  templát  nélküli  célpontok  modellezésében  sokáig  csak  szerény
javulást  sikerült  elérni,  még  az  olyan  új  módszerek,  mint  a  fragmens  könyvtáron
alapuló szerkezet összeszerelés vagy a kontaktus predikciók alapján is [1,47]. Az elmúlt
években azonban gyökeresen átalakult a helyzet, elsősorban a számos területen áttörő
eredményeket elérő mélytanulásos eljárásoknak köszönhetően [48]. A legkiemelkedőbb
eredményt  a  Google  DeepMind cég által  bevezetett  AlphaFold2 módszere  érte  el  a
CASP14 során, elsőként produkálva a kísérletes módszerekkel összevethető minőségű
modelleket a térszerkezet predikciók teljes skáláján [49].
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2.4 Rendezetlen fehérjék adatbázisai

A  globuláris  fehérjékre  kidolgozott  predikciós  módszerek  fejlődésével
párhuzamosan indult  el  a rendezetlen fehérjék bioinformatikai  vizsgálata.  A korábbi
megközelítések  számos  módon  hatottak  a  rendezetlenség  predikciókra,  de  az  új
problémakör  lehetőséget  teremtett  eredeti  megközelítések  megalkotására  is.  Ezekhez
azonban szükség volt speciális adatszettekre is.

A  rendezetlenségre  vonatkozó  kísérletes  adatok  alapvetően  két  forrásból
származnak. Az egyik halmazt a PDB szerkezetekben azok a régiók jelentik, melyekhez
nem rendelhető  elektronsűrűség,  ezért  hiányoznak  a  megoldott  szerkezetből.  Ehhez
nagyon  hasonlóan  viselkednek  az  NMR  szerkezetekben  a  nagyobb  szerkezeti
variabilitás  alapján  kigyűjtött  szegmensek  [50].  A  PDB-ből  kigyűjtött  rendezetlen
szegmensek általában a fragmens terminális részén találhatóak, és viszonylag rövidebb
szakaszok (short disorder). A másik csoportot az egyéb kísérletes módszerrel igazolt
rendezetlen  szegmensek jelentik.  Ezek általában hosszabb szakaszok,  melyek fontos
biológiai  funkcióval  rendelkeznek  (long  disorder).  Ugyanakkor  ez  a  halmaz  sokáig
jóval kevesebb adatot tartalmazott, és zajosabb volt, mivel több kísérletes módszer sem
rendelkezik aminosav szintű felbontással. A kísérletesen igazolt  rendezetlen fehérjék
összegyűjtésére  hozta  létre  Keith  Dunker  a  DisProt  adatbázist  [51],  melynek
fenntartását 2017-ben Silvio Tosatto vette át  [21]. Az adatbázis folyamatosan bővül,
jelenleg  (2022 végén)  2469 fehérje  5568 régiójára  tartalmaz információt  [52].  Ezek
annotációjában több kutatócsoport, többek között a mi csoportunk is részt vett.

A rendezetlen  fehérjék vizsgálatának másik fő fókusza kölcsönhatásainak,  és
ezen  belül  is  az  általuk  kialakított  komplexek  szerkezetének  vizsgálata.  Azokat  a
rendezetlen  fehérje  szegmenseket  melyek  a  kötődés  határásra  rendezett  szerkezetet
vesznek fel szokás MoRF-nak (molecular recognition feature) is hívni [53]. Mohan és
kollégái ezeket a szerkezeteket különböző csoportba osztotta a kialakított másodlagos
szerkezetek típusa szerint, melyek között az α-hélixnek megfelelő konformációt felvevő
α-MoRF-ok voltak  a  leggyakoribbak  [54].  A DisProt  adatbázis  révén  lehetővé  vált
azoknak  a  szerkezeteknek  a  kigyűjtése,  amelyek  esetében  a  rendezetlen  státuszt
kísérleti  úton  igazolták  és  a  rendezetlen-rendezett  átmenetet  a  komplex  ismert
szerkezete támasztja alá  [55]. Ezek száma folyamatosan bővült, az általunk 2018-ban
létrehozott  DIBS  adatbázis  már  773  ilyen  példát  tartalmazott  [28].  Egy  hasonló
adatbázis,  az MFIB adatbázis középpontjában a kizárólag két vagy több rendezetlen
fehérje  között  kialakult  komplexek  állnak  [56].  A  kötött  állapotukban  is  jelentős
konformációs  heterogenitást  tartalmazó bolyhos komplexekre  a  FuzDB adatbázisban
gyűjtöttek  példákat  [57].  A  kísérletesen  igazolt  rövid  lineáris  motívumok  központi
adatbázisa az ELM [58]. A különböző adatbázisok megléte már önmagában mutatja a
rendezetlen fehérjék kölcsönhatásának a sokszínűségét. 

A  különböző  klasszifikációs  eljárások  kifejlesztéséhez  nagyon  fontosak  a
negatív példák is. A rendezetlenség predikciók esetén komplementer halmaznak a PDB
alapján  az  ismert  szerkezettel  rendelkező  régiókat  szokás  tekinteni.  Azonban  ezek
között  -  komplexek  formájában  -  rendezetlen  fehérjék  is  előfordulnak.  Mi  ezért
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speciálisan  monomer  szerkezetekből  álló  adatszetteket  használtunk  [59,60].  A
kötőrégiók predikciója esetén még nagyobb kihívást jelent a negatív halmaz definiálása
[61] és ez különösen igaz a rendezetlen kötőhelyek predikciójára.  Ebben az esetben
negatív példáknak tekinthetjük a globuláris fehérjéket általában, illetve a rendezetlen
fehérjék azon régióit, melyek nem vesznek részt közvetlenül kölcsönhatásban. Azonban
a rendezetlen fehérjék esetén, a kölcsönhatások jelentős része még nem ismert [62]. Az
ismert  rendezetlen  kötőrégiók  viszonylag  kis  száma,  és  a  megbízható  negatív
adathalmaz hiánya jelentős limitáló tényező, ami különösen a kezdetekben visszavetette
a specifikus módszerek kifejlesztést.

2.5 Rendezetlen fehérjék predikciója

  A  rendezetlen  fehérjék  kutatásának  egyik  alapkérdése,  hogy  mi  a  jelenség
biofizikai  alapja  és  ez  hogyan  van  kódolva  a  szekvenciában.  Ennek  vizsgálatához
kezdetben, a több száz globuláris fehérjéhez képest, csak néhány tucat rendezetlen régió
állt rendelkezésre. Azonban már ezek alapján is feltűnő volt a két csoport aminosav
összetétele  közötti  alapvető  különbség.  Aszerint,  hogy  egyes  aminosavak  inkább  a
rendezett  vagy  rendezetlen  szegmensekben  gyakoribbak,  megkülönböztethetünk
rendezettséget,  illetve  rendezetlenséget  elősegítő  aminosavakat  [63].  A  jelenlegi
DisProt  adatbázis  elemzése  szerint  a  prolin  és  a  glutaminsav  mutatja  a  legerősebb
rendezetlenséget  elősegítő  tendenciát,  melyet  a  szerin  és  az  aszparaginsav  követ  a
sorban  (3.  ábra)  [64].  Az  aminosav  összetételre  vonatkozó  alapvető  megfigyelések
alapján javasolta Vladimir Uversky, a rendezetlen fehérjékre az alacsony hidrofóbitás
és  a  magas  nettó  töltés  kombinációja  jellemző  [65].  Ezen  fehérjeosztály  másik
jellemzője, hogy gyakran fednek át alacsony komplexitású szekvenciákkal  [66]. Ezen
megfigyelés teljesen új értelmet nyert a biológiai kondenzátumok létrejöttében szerepet
játszó  fázisszeparáció  jelenségének  tükrében.  Ez  a  folyamat  ugyanis  gyakran  a
rendezetlen fehérjéken belüli alacsony komplexitású régiók által létrehozott multivalens
kölcsönhatások  révén  alakul  ki  [67].  Az  általános  tendenciák  mellett  azonban
megfigyeltek  kisebb  eltéréseket  is  a  szekvenciális  jellemzőkben,  például  a
rendezetlenség  meghatározásához  használt  kísérleti  körülményektől,  vagy  a
szegmensek hosszától függően [68]. Ennek alapján vetették fel, hogy a rendezetlenség -
heterogén  jellegének  megfelelően  -  különböző  ,,ízekkel’’  rendelkezik  [69].  Ennek
bizonyítékaként,  összefüggést  találtak  a  rendezetlen  fehérjék  szekvenciális  és
konformációs tulajdonságai között [70].
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3. ábra. A rendezetlen régiók aminosav gyakoriságának (fdis) relatív eltérése a rendezett régiók
aminosav gyakoriságától (ford) a DisProt adatbázis fehérjéin ([52]) számolva [64].

A  rendezett  és  rendezetlen  fehérjék  aminosav  összetételében  megfigyelt
alapvető eltérések arra utalnak, hogy nemcsak a szerkezet, hanem a rendezetlenség is
kódolva  van  a  szekvenciában,  és  ez  alapján  predikciós  módszerek  készíthetők.  Az
elmúlt körülbelül 20 év alatt több mint 100 rendezetlenség becslő módszert fejlesztettek
ki,  melyek  a  különböző  megközelítések  széles  skáláját  fedik  le  mögöttes  elv,
komplexitás,  szükséges  futási  idő  és  pontosság  tekintetében  is  [71–73].  A
legegyszerűbb  módszerek  egyszerű  aminosav  tulajdonsági  skálákon  alapulnak  (pl.
GlobPlot  [74], FoldUnfold  [75], TOP-IDP  [63]). Ezen módszerek fő előnye könnyű
értelmezhetőségük és egyszerű, gyors használhatóságuk. 

A rendezetlenség predikciós módszerek másik jelentős csoportja gépi tanuláson
alapul. Ezek a módszerek nagyban építettek a szerkezeti bioinformatikában korábban
bevezetett  megközelítésekre.  Többféle  algortimust  is  adaptáltak  a  rendezetlenség
predikcióra,  többek között  egyrétegű mesterséges neuron hálózatokat,  support vector
machine-okat,  random  forest  klasszifikációt.  A  gépi  tanulásos  módszerek  korábbi
generációjában szokásos módon, bemenetként kézzel összeválogatott tulajdonságok (pl.
aminosav-összetétel,  hidropátia, töltés és flexibilitás) szolgáltak egy adott szekvencia
ablakon  belül  [76].  A  másodlagos  szerkezet  predikciós  módszerek  nyomdokain
haladva, PSI-BLAST-ból származó evolúciós profilt is figyelembe vettek a predikció
során  [18].  Bár  az  evolúciós  információ  némi  előnyt  jelent  a  szekvencia-alapú
módszerekkel szemben, ennek ára a megnövekedett számítási erőforrás és idő. A gépi
tanuláson alapuló módszerek azonban általában kevésbé átlátható módon, alapvetően
fekete  dobozként  működnek,  és  érzékenyebbek  a  tanító  halmazban  esetlegesen
előforduló hibákra. A legújabb predikciós eljárások egyre inkább támaszkodnak fejlett
mélytanulási  technikákra  [77].  A  legújabb  eredmények  szerint,  a  térszerkezet
predikciókban áttörést elérő AlphaFold2 módszer a rendezetlenséget is kiválóan képes
előre jelezni a modellek megbízhatóságára kifejlesztett pLDDT érték alapján [78]. 
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A  rendezetlenség  predikciós  módszerek  hatékonyságának  összehasonlító
értékelésére és a terület fejlődésének nyomon követésére több nagyszabású vizsgálatot
is  végeztek  [71–73].  A  módszerek  teljesítménye  függ  a  kiértékeléshez  használt
adatbázistól  és  a  használt  metrikától  is.  A  leggyakrabban  használt  mérőszámok  az
átlagos  pontosság,  és  a  ROC  (Receiver  Operating  Characteristic/vevő  működési
jellemző)  görbe,  illetve  a  görbe  alatti  terület  (AUC).  Átmenetileg  a  rendezetlenség
predikció része volt a térszerkezet predikciós módszerek értékelésére létrehozott CASP
kezdeményezésnek,  ami  a  térszerkezet  predikciók értékelésénél  használt  szerkezetek
hiányzó  részein  alapultak  [79,80].  Néhány  év  után  megszűnt  ez  a  kategória,  a
rendezetlenségre  vonatozó  kellő  mennyiségű  adat  hiányában.  A  2021-ben  közzétett
Critical  Assessment  of  Intrinsic  Protein  Disorder  (CAID)  kísérlet  volt  az  eddigi
legnagyobb  kezdeményezés  a  rendezetlenség  predikció  értékelésére  [81].  Ebben  32
módszer  előrejelzési  pontosságát  és  futási  idejét  értékelték,  amihez  a  DisProt
adatbázisban újonnan annotált fehérjéit használták. 

2.6 Rendezetlen kötőhelyek predikciója

A  DisProt  adatbázisban  rendelkezésre  álló  adatok  azt  mutatják,  hogy  a
funkcionálisan  annotált  rendezetlen  régiók  leggyakoribb  funkciója  más
makromolekulákhoz való kötődés, ezen belül is elsősorban fehérje-fehérje kölcsönhatás
kialakítása.  Azonban az ismert rendezetlen kötőrégiók száma csak lassan növekszik.
Ezért nagy szükség van olyan módszerekre, melyek a szekvenciából képesek felismerni
a rendezetlen kötőhelyeket.  Korábban felvetették,  hogy bizonyos rendezetlen fehérje
predikciós  módszerek  esetén  a  kimeneti  profil  jelezheti  a  kötőrégiók  meglétét  [54].
Azonban  ez  a  megközelítés  csak  korlátozottan  használható.  A  jelenleg  elérhető
rendezetlen  kötőhely  predikciós  módszerek  kiindulópontjai  a  PDB  adatbázisból
kigyűjtött,  kísérletesen  is  igazolt  rendezetlen  fehérje  szegmensek,  amelyek  kötődés
során  rendeződnek.  A  komplex  kialakításában  részt  vevő  rendezetlen  szegmensek
szerkezeti és szekvenciális tulajdonságainak vizsgálatai alapján ezek a régiók számos
specifikus  tulajdonsággal  rendelkeznek  [82],  amelyek  kiaknázhatóak  a  predikciójuk
során.

Az egyik legelső próbálkozásként, a komplexben α-hélix konformációt kialakító
régiók felismerésére hoztak létre egy speciális módszert,  az α-MoRf prediktort  [83].
Azonban az első általános módszer rendezetlen kötőhelyek felismerésére az általunk
kifejlesztett  ANCHOR módszer  volt  [55].  Különböző gépi tanulásos  módszereket  is
használtak  a  kötődés  során  rendezetlen-rendezett  átmenetet  mutató  régiók
azonosítására. Ezek közül a MoRFCHiBi módszer a support vector machine technikát
használta, ami jól alkalmazható, ha a tanítás során csak viszonylag kis adathalmaz áll
rendelkezésre.  A  módszer  kombinálta  a  rendezetlenség  predikciót  a  helyi
szekvenciajellemzőkkel,  nagy  hangsúlyt  fektetve  arra,  hogy a  kötődő  szegmenseket
megkülönböztesse szekvenciális környezetüktől  [84]. Ennek társaként létrehoztak egy
olyan  módszert  is,  ami  az  evolúciós  információk  felhasználásával  javítja  tovább  a
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predikciókat  [85].  A  CAID kiértékelte  a  rendezetlen  kötőrégióik  jóslására  szolgáló
módszerek teljesítményét is, a DisProt kötőrégiókra vonatkozó annotációit  használva
teszthalmazként [81]. Ez az adathalmaz kevesebb mint 250 fehérje régiót tartalmazott,
azonban még ezek az annotációk is gyakran hiányosak illetve pontatlanok voltak. A
kategóriában mindössze tíz módszer szerepelt, és a probléma nehézsége a módszerek
viszonylag szerényebb teljesítményében is tükröződött. 

Az utóbbi időben több módszer is bővítette a rendezetlen fehérjék funkcionális
jellemzésére használható módszerek körét. Egy új módszer a bolyhos (fuzzy) fehérjék
kölcsönhatási  régiót  ismeri  fel  a  szekvenciából  [86].  A  DisoRDPbind  és  az  újabb
DeepDISOBind többszintű gépi tanulásos eljárás alapján jósol nemcsak fehérjekötő-,
hanem DNS és RNS kötő rendezetlen szegmenseket is  [87]. A DisoLipPred módszer
célja  a lipidet  kötő részek azonosítása a  rendezetlen fehérjéken belül  [88].  A linker
régiók egy másik alapvető kategóriát jelentenek a rendezetlen fehérjék funkcióin belül.
Ezek  felismerésére  specializálódott  a  DFLpred  és  az  APOD  módszek  [89,90].
Összességében, ez a terület kevésbé kiforrott a rendezetlenség predikciókhoz képest is.

2.7 A rendezetlen fehérjék általános jellemzése

Az  elmúlt  évek  erőfeszítései  ellenére  a  kísérletesen  jellemzett  rendezetlen
fehérjék  száma még  mindig  erősen limitált,  mivel  speciális  tulajdonságaik  nagyban
megnehezítik  részletes  vizsgálatukat.  Ugyan  történtek  erőfeszítések  a  rendezetlen
fehérjék  nagyskálás  feltérképezésére  [91,92],  ezek  egyelőre  nem  váltották  be  a
hozzájuk  fűzött  reményeket.  A  különböző  bioinformatikai  módszerek,  köztük  az
IUPred és  az ANCHOR, azonban lehetőséget  teremtenek a rendezetlenség  nagyobb
léptékű vizsgálatára. A rendezetlenség predikciós módszerek a szerkezet meghatározási
folyamat szerves részévé váltak, lehetővé téve a fehérje konstrukciók optimalizálását
[93].  A  rendezetlenségre  vonatkozó  információ  fontos  kiindulópontja  a  sötét
proteomhoz  tartozó  fehérjék  (olyan fehérjék,  melyek  nem modellezhetők  a  jelenleg
ismert szerkezetek alapján) jellemzésének is  [94]. Ezt felismerve, a fehérjék központi
adatbázisa, a Uniprot is közzétesz rendezetlenségre vonatkozó információt, az IUPred-
et is magában foglaló MobiDB-lite konszenzus módszer alapján  [95]. Ezek mellett az
alapvető  fontosságú  alkalmazások  mellett,  a  predikciós  módszerek  azt  is  lehetővé
tették, hogy betekintést nyerjünk a rendezetlen fehérjék általános tulajdonságaiba is.

A rendezetlenség általánosan elfogadottá válásához nagyban hozzájárult, hogy a
különböző genom szekvenciák által  kódolt  fehérjék vizsgálata  alapján széles körben
elterjedt jelenségről van szó. A legelső elemzés 34 genomot vizsgált a PONDR család
módszereivel, meghatározva a teljesen rendezetlen, illetve a legalább 30 (illetve 40 és
50) hosszú rendezetlen régiót tartalmazó fehérjék arányát [96]. A későbbiek során már
jóval több genomot vizsgáltak,  más eszközökkel is,  azonban az általános tendenciák
nem változtak. Eszerint a rendezetlen fehérjék az életfa minden ágán jelen vannak és
előfordulásuk  erősen  korellál  az  organizmusok  komplexitásával  [97,98].  A
DISOPRED2  módszer  alapján  a  hosszú  (>30  aminosav  hosszú)  rendezetlen
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szegmensek az archea fehérjék 2,0%-ában, az eubakteriális fehérjék 4,2%-ában és az
eukarióta  fehérjék 33,0%-ában fordul  elő  [18].  Az  E. coli és  az  S. cerevisiae teljes
proteomjának  elemzése  az  IUPred  programmal  hasonló  eredményekre  vezetett.
Eszerint, az élesztő-proteom lényegesen több rendezetlen szegmenst tartalmaz, mint az
E. coli,  a fehérjék ~50%-a,  illetve 15%-a tartalmazott  rendezetlen  szakaszokat  [99].
Érdekes módon a vírusfehérjék, különösen az RNS-vírusok fehérjéi között is gyakoriak
a rendezetlen  fehérjék  [100].  Például  a  SARS-CoV-2 vírusban a rendezetlen  régiók
fontos  szerepet  játszanak  a  vírusgenom  csomagolásában  [101].  Összességében,  a
fehérje  rendezetlenség  az  evolúció  fontos  találmánya  [102],  amely  bizonyos  típusú
funkciókban jelentős előnyöket biztosít a globuláris doménekkel szemben.

A  bioinformatikai  elemezésekkel  lehetett  jellemezni  a  rendezetlenséghez
kapcsolódó  specifikus  funkciókat  is.  A  génontológiai  annotációk  és  a  SwissProt
adatbázis kulcsszavainak elemzése hasonló eredményekre vezetett, és megerősítette a
rendezetlenség  fontos  szerepét  jelátviteli  és  szabályozó  folyamatokban  [18,103].  A
rendezetlenség  hiányával  leginkább  az  enzimkatalízishez  kapcsolódó  funkcionális
kulcsszavak korreláltak. Az újabb vizsgálatok szerint a rendezetlenséghez kapcsolódó
fő  funkcionális  kategóriák  a  differenciáció,  transzkripció  és  szabályozása,
spermatogenezis,  DNS  kondenzáció,  sejt  ciklus,  mRNS  processzálás  és  splicing,
mitózis és apoptózis  [104]. A rendezetlenség gyakori a sejtmag fehérjéi  között,  és a
membrán-nélküli  organmellumokban  is.  A  rendezetlen  fehérjék  megnövekedett
kölcsönhatási  potenciálja  megmutatkozott  fehérje  interakciós  hálózatok  vizsgálatán
keresztül  is  [105,106].  Az alternatív  splicing  révén  létrejövő  izoformák  rendezetlen
részei hozzájárulnak a kölcsönhatási hálózatok szövetspecifikus újrahuzalozásához is
[107].  Egy  fontos  eredmény  volt  annak  megmutatása,  hogy  a  rendezetlen  fehérjék
szintje szorosan szabályozott, transzkripciós, RNS- és fehérje szinten is [108]. 

A  rendezetlen  fehérjék  speciális  funkcionális  és  szerkezeti  tulajdonságai
evolúciós  tulajdonságaikban is  tükröződnek.  Általánosságban,  a rendezetlen  fehérjék
esetén  a  szerkezeti  megkötések  hiánya  nagyobb  evolúciós  változékonyságot  tesz
lehetővé,  ami  megmutatkozik  magasabb  evolúciós  rátájukban  is  [108,109].  A
részletesebb vizsgálatok  azonban ennél  árnyaltabb képet  mutattak,  három lehetséges
szcenáriót felvázolva  [110]. Az első esetben sem a rendezetlenség, sem a szekvencia
nem konzervált, ami a faj illetve kládspecifikus funkcionális modulok megjelenéséhez
társul. A második esetben a szekvencia nem konzervált, de a rendezetlenség megmarad.
Ugyanakkor a rendezetlen részeken a szekvencia illesztések miatti  nehézségek miatt
gyakran  rejtve  marad,  hogy  ezeken  belül  is  megjelenhetnek  egyéb  specifikus
molekuláris  jellemzők  amelyek  megőrződnek  az  evolúció  során,  például  lineáris
motívumok  kulcspozíciói,  vagy  poszttranszlációs  módosítások  helyei  [111].  A
harmadik szcenárió az, amikor a rendezetlen régiókra jól detektálható, szekvenciálisan
erős konzerváltság jellemző.  Ennek példájaként  több olyan lineáris  motívum ismert,
melyek  akár  az  összes  eukarióta  fajon  átívelő  konzerváltságot  mutat  [112],  de
találhatunk konzervált rendezetlen szegmenseket a PFAM szekvenciacsaládok között is
[113]. Ezeknek a konzervált rendezetlen szakaszoknak az egyik lehetséges funkciója a
DNS- és RNS-kötés, de több szomszédos és/vagy egymásba ágyazott lineáris motívum
is  alkothat  domén-méretű  evolúciósan  konzervált  funkcionális  modult  [110,114].
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Összességében,  a  rendezetlen  szegmensek  aminosavainak  esetében  az  evolúciós
kényszerek  ugyanolyan  erősek  lehetnek,  mint  a  globuláris  domének  funkcionális
pozíciói esetében, ami alátámasztja alapvető biológiai jelentőségüket. 

A  rendezetlen  fehérjék  funkcionális  jelentősége  alapján  feltételezhető,  hogy
hibás  működésük komoly  biológiai  következményekkel  jár  [115].  Ezt  a  kapcsolatot
erősítik egyedi példák is, például az α-szinuklein neurodegeneratív betegségekben, a
p53 a ráktípusok széles skáláján, vagy a CFTR fehérje a cisztikus fibrózis betegségben
betöltött szerepe [116]. Általánosabb szinten is, a rendezetlen fehérjék nagyobb arányát
figyelték  meg  a  rákhoz  kapcsolódó  fehérjék  között.  A  SwissProt  adatbázis  adatai
alapján a rákhoz társítható humán fehérjék 79%-a volt rendezetlen, szemben az összes
eukarióta  fehérje  47%-ával  [117].  Hasonló  eredményre  vezetett  egyéb  betegségek
vizsgálata  is  [118].  A  rák  és  a  rendezetlenség  közötti  kapcsolatot  erősítette  rák
különböző formáiban gyakori kromoszóma átrendeződések vizsgálata, melyek gyakran
érintenek rendezetlen régiókat [119]. A rendezetlen fehérjék nagyobb arányát figyelték
meg  a  dózisérzékeny  fehérjék  között  [120],  összhangban  azzal,  hogy a  rendezetlen
fehérjék, kölcsönhatási promiszkuitásuk és fázisszeparációban játszott szerepük miatt,
sokkal érzékenyebb lehetnek a fehérjeszint változására [120,121]. Megmutatták, hogy a
rákos mutációk előfordulhatnak rövid lineáris motívumokon belül [122], és leírtak egy
konkrét  esetet,  ahol  a  mutáció  révén  kiakalakult  új  kölcsönhatási  motívum vezetett
tumorigenezishez  [123]. Mindezen vizsgálatok ellenére,  néhány kivételtől  eltekintve,
még most sem ismerjük pontosan a rendezetlen fehérjék szerepét a rák kialakulásában.
Ennek a kapcsolatnak a feltérképezését új szintre emelheti a rák genom projektek révén
egyre nagyobb mértékben rendelkezésre álló mutációs adatok vizsgálata [124].
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3 CÉLKITŰZÉSEK

Kutatásom során alapvető célkitűzésem a rendezetlenség vizsgálatával kapcsolatosan új
bioinformatikai  eszközök  kifejlesztése  volt,  illetve  ezek  alkalmazása  a  rendezetlen
fehérjék  funkcionális  és  betegséggel  kapcsolatos  tulajdonságainak  jobb  megértése
érdekében.  Ezeket,  a közlemények időrendi  megjelenését  nagyjából  követve,  4 főbb
célkitűzésben foglaltam össze:

1. Rendezetlenség predikciós eljárás kifejlesztése egy újfajta energia becslő eljárás
alapján

a. Az  energiabecslő  eljárás  kifejlesztése  és  alkalmazása  rendezett  és
rendezetlen fehérje szekvenciák megkülönböztetésére

b. Az energiabecslés alapján a rendezetlenség predikcióra szolgáló IUPred
módszer kifejlesztése

c. Az IUPred módszer elérhetővé tétele webszerveren keresztül

2. A  rendezetlen  fehérjék  kölcsönhatásainak  jellemzése  az  interaktóm  és  a
komplexek szintjén

a. A  rendezetlenség  szerepének  vizsgálata  a  fehérje  kölcsönhatási
hálózatok központi fehérjéiben

b. A rendezetlen fehérje kölcsönhatások molekuláris alapelveinek feltárása
a  rendezetlen  és  rendezett  fehérjék  közötti  komplexek  szerkezetének
elemzése révén

3. Predikciós módszer kifejlesztése a rendezetlen kötőhelyek felismerésére
a. A  rendezetlen  kötőhelyek  predikciójára  szolgáló  ANCHOR  módszer

kifejlesztése
b. Az energiabecslésen alapuló IUPred és ANCHOR módszerek elérésének

biztosítása modern webszerver és programcsomag formájában

4. A rák és a rendezetlenség kapcsolatának vizsgálata mutációs adatok alapján
a. Különböző  mutációk  eloszlásának  vizsgálata  rendezett  és  rendezetlen

fehérje szegmensek között
b. A rákban gyakran mutálódó rendezetlen fehérje szegmensek azonosítása

és ezek funkcionális és rendszer-szintű tulajdonságainak elemzése
c. A rákban mutálódó rendezetlen fehérje szegmensek evolúció eredetének

vizsgálata
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4 MÓDSZEREK

 Kutatásaimhoz  a  szerkezeti  bioinformatika  széles  eszköztárát  használtam,
többek  között  szekvencia  illesztést  és  keresést,  illetve  különböző  szekvencia  alapú
predikciós  módszereket.  Nagyban támaszkodtam a fehérjék  központi  adatbázisára,  a
UniProt-ra [125], a fehérje térszerkezeti adatbázisra, a PDB-re [126], illetve különböző
rendezetlenséghez  kapcsolódó  adatbázisokra,  köztük  a  DisProt  adatbázisra  [52].  A
rendszerszintű  vizsgálatokhoz  elsősorban  GO  annotációkat  [127] és  fehérje-fehérje
kölcsönhatási adatbázisokat, például az IntAct [128] adatait használtam fel. A mutációs
adatokhoz a COSMIC adatbázist [129] és a UCSC Genome Browsert használtam [130].
Elemzéseinkhez alapvetőn saját készítésű programokat használtunk, melyeket C, Perl
és  PYTHON  nyelven  írtam  illetve  írtunk.  Eredményeim  jelentős  részét  képezi
predikciós módszerek kifejlesztése, aminek során nagy gondot fordítottam a megfelelő,
független adatokon történő tesztelésre. A predikciós módszerek alkalmazásával kapott
eredmények megerősítése érdekében gyakran alkalmaztam több különböző programot,
vagy  ezek  konszenzusát.  A  bioinformatikai  elemzések  során  kapott  általános
megfigyeléseket  igyekeztem  egyedi  példákon  és  irodalmi  adatokon  keresztül  is
alátámasztani. Fontos küldetésünknek tekintjük, hogy az általunk készített módszereket
és adatszetteket hozzáférhetővé tegyük a tudományos közösség számára is, ezért több
webszerver és adatbázis kifejlesztésében is részt vettünk, az itt közölt eredményeken
túlmenőleg is [28,52,131–133]. Az alkalmazott módszerek és eszközök részletes leírása
a csatolt közleményekben található. 
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5 EREDMÉNYEK

Az itt bemutatott eredmények majdnem húsz év munkássága során elért legfontosabb
eredményeit  foglalják  össze  a  rendezetlen  fehérjék  bioinformatikai  vizsgálatának
területén.  Ezek  alapjául  11  eredeti  közlemény  szolgált,  melyek  mindegyikében
meghatározó (első vagy utolsó) szerző voltam. Az egyes alfejezetek mögötti számok
jelölik a saját közlemények megfelelő hivatkozását.

5.1 Rendezetlenség predikció

5.1.1 Az energia becslő eljárás (1)

A  rendezetlenség  predikciók  kezdeti  időszakában  még  sok  bizonytalanság
övezte az újonnan felfedezett jelenséget, és viszonylag kisszámú, zajos halmaz állt csak
rendelkezésre  vizsgálatukhoz,  ami  nagyban  megnehezítette  megfelelő  predikciós
módszerek készítését. Éppen ezért megközelítésünk egyik nagy előnye volt, hogy mi a
globuláris fehérjék alapvető tulajdonságaiból indultunk ki. Ezeknek a szerkezeteknek a
létrejötte feltételezi a láncon belüli energetikailag kedvező kölcsönhatások kialakítását,
amelyek  összességében  képesek  kompenzálni  a  fehérje  feltekeredéssel  együtt  járó
entrópia veszteséget. Azonban nem minden aminosav szekvencia képes egy ilyen jól
definiált  szerkezet  kialakítására.  A mi alapvető feltételezésünk az volt,  hogy azok a
fehérjék, vagy fehérje szegmensek, amelyek olyan aminosavból állnak, amelyek nem
képesek  elegendő  energetikailag  kedvező  kölcsönhatás  kialakítására,  azok
rendezetlenek lesznek. 

Az energia értékeket ismert fehérje térszerkezetekből számoltuk durvaszemcsés/
alacsony  felbontású  megközelítést  használva,  ahol  az  egyes  aminosav  párokhoz
rendelünk kölcsönhatási értékeket. A párkölcsönhatási energia számoláshoz Thomas és
Dill  algoritmust  használtuk  [41]. A kapott  20x20-as energiamátrix értékei  jellemzik,
hogy mennyire szeret két aminosav kontaktust kialakítani az ismert térszerkezetekben.
Ezek  az  energia-jellegű  mennyiségek  általában  jól  leírják  az  olyan  alapvető
összefüggéseket,  mint  például  hogy  a  hidrofób  aminosavak  gyakrabban  alkotnak
kölcsönhatásokat  a  szerkezeten  belül,  vagy  hogy  az  azonosan  töltött  aminosavak
kontaktusa  energetikailag  kedvezőtlen.  Ezekről  a  tényezőkről  ismert  volt,  hogy
fontosak a rendezett  és  rendezetlen  fehérjék  megkülönböztetésében  [65].  Az eredeti
algoritmus alapján az energia értékeket újraszámoltuk egy, az eredetinél jóval nagyobb
adatbázison.  Ez  alapján  a  szerkezet  minden  pozíciójához  rendelhetünk  egy
párkölcsönhatási  energiát  az  aminosav  szekvencia  és  a  hozzá  tartozó  konformáció
függvényében,  összegezve  a  statisztikus  potenciál  mátrix  megfelelő  elemeit  a
kontaktusban lévő aminosavakra.

A  statisztikai  potenciálok  alkalmazása  során  a  számítások  mindig  egy
meghatározott  konformációra  vonatkoztak.  Azért,  hogy  túl  tudjunk  lépni  ezen  a
megkötésen,  kidolgoztunk  egy  energiabecslő  eljárást,  amely  közvetlenül  a
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szekvenciából  képes  meghatározni  egy adott  szekvenciához tartozó párkölcsönhatási
energiát. Az energiabecslő eljárás során azzal a durva feltételezéssel élünk, hogy egy
adott pozíció energiáját alapvetően az adott aminosav és a szekvenciális környezetében
lévő aminosavak típusa határozza meg. A feltételezésünk szerint,  hogy ha egy adott
fehérje  szekvenciája  olyan  aminosavakból  áll,  melyek  kedvezőbb  kölcsönhatásokat
tudnak kialakítani a szekvenciális környezetükben lévő más aminosavval, akkor annak
várhatóan kedvezőbb lesz az energiája. Matematikailag a legegyszerűbb formula, ami
ezt le tudja írni az egy kvadratikus kifejezés az aminosav összetételre nézve, aminek a
kulcsa egy 20x20-as energia prediktor mátrix. Ennek elemei kapcsolatot teremtenek az
aminosav  összetétel  vektor  tagjai  és  a  várható  energia  között  az  aminosav  típustól
függően.  Az  energia  prediktor  mátrix  elemeit  a  legkisebb  négyzetek  módszerével
határoztuk  meg,  minimalizálva  a  szerkezetből  számolt  energiák  és  a  szekvenciából
becsült energiák eltérését az adatbázisban lévő fehérjék összes pozícióját figyelembe
véve. 

A  szekvencia  és  az  energia  prediktor  mátrix  alapján  tetszőleges  fehérje
energiáját meg tudjuk becsülni. Megmutattuk, hogy az ismert szerkezettel rendelkező
fehérjék esetén a számolt és a becsült energiák jól korreláltak egymással (r2 érték 0.58,
korreláció 0.76) (4. ábra). Továbbá azt is igazoltuk, hogy fehérje szinten a rendezett
fehérjék becsült energiája általában kedvező (negatív) volt, ehhez képest a rendezetlen
fehérjékre az esetek döntő többségében magasabb energia volt jellemző (4. ábra). Ezek
az eredmények alátámasztották a feltételezést, hogy a rendezett és rendezetlen fehérjék
megkülönböztethetőek a becsült  párkölcsönhatási  energiájuk alapján,  és rámutatott  a
fehérje rendezetlenség fizika alapjára.

4. ábra. A globuláris fehérjék szerkezete alapján számolt és a szekvenciájuk alapján becsült
energiák  korrelációja  (bal).  A  becsült  energia  a  globuláris  (piros)  és  rendezetlen  (kék)
fehérjékre szekvenciahosszuk függvényében. Minden pont egy fehérjét jelöl.
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5.1.2 Az IUPred módszer (1)

Az  energiabecslő  eljárás  gyakorlati  használhatóságához  fontos  volt,  hogy
predikció pozíció specifikus legyen. Ennek érdekében kismértékben módosítottuk az
eljárást.  Mivel sok fehérje nem teljesen rendezett  vagy rendezetlen,  minden pozíciót
külön tekintettünk és az aminosav összetételt is külön számoltuk minden pozícióra, a 2-
100  szekvenciális  távolságban  lévő  aminosavat  figyelembe  véve,  ami  nagyjából
megfelel  egy átlagos domén méretnek.  Ezek alapján újraszámoltuk az energiabecslő
mátrixot is. Az így kapott energia értékeket simítottuk egy 21-es ablakkal. A globuláris
fehérjék eloszlásából meghatároztuk az 5%-os fals pozitív predikciós értéket, vagyis azt
az értéket, ahol a rendezett halmazból a pozíciók 5%-a rendelkezett ennél magasabb
becsült energia értékkel. Az ennél magasabb becsült energiával rendelkező pozíciókat
tekintettük rendezetlennek. A két eloszlás alapján a becsült  energia értékeket 0 és 1
közötti értékké konvertáltuk úgy, hogy a 0,5 feleljen meg a 5%-os fals pozitív értéknek.
Az itt leírt módszert IUPrednek neveztük el.

Az  IUPred  módszer  a  rendezetlen  fehérje  pozíciók  76%-át  jósolta  helyesen
rendezetlennek.  Az  általunk  végzett  tesztelés  megerősítést  nyert  számos  független
értékelés során is [72,134]. A módszer összességében mindössze 212 paraméterre épül
(a szimmetrikus energia prediktor mátrix 210 tagja, plusz a szekvenciális összetétel és a
simítás ablakmérete). A módszer egyik legfőbb erőssége, hogy a paraméterek pusztán
globuláris fehérje szerkezetekből lettek származtatva, rendezetlen fehérjékre vonatkozó
információk felhasználása nélkül. 

Az IUPred módszer kifejlesztésénél a fő cél a hosszabb, nagy valószínűséggel
biológiai funkcióval rendelkező rendezetlen szegmensek azonosítása volt.  Azonban a
módszer egyéb specifikus alkalmazásokat is lehetővé tesz, a paraméterek kismértékű
módosításával.  Az  egyik  ilyen  változat  az  úgynevezett  rövid  rendezetlen  régiók
azonosítására szolgál, mint amilyenek például a röntgen szerkezetekből hiányzó régiók.
Az  ilyen  szegmensek  azonosítására  csak  a  legfeljebb  25  aminosavra  lévő
aminosavakból álló szekvenciális környezetet vettük figyelembe, és ennek megfelelően
módosítottuk az energia predikciós mátrixot. Az általános megfigyelések szerint a rövid
rendezetlen régiók nagyobb valószínűséggel fordulnak elő a terminális régiókban, ezt
egy  új  taggal  vettük  figyelembe,  ami  megnöveli  a  rendezetlenségi  tendenciát  a
szekvencia  végeken.  Egy  másik  lehetséges  alkalmazási  terület  a  szerkezet
meghatározásnál a lehetséges targetek kiválasztása. Ennek során a nagyobb szerkezeti
egységek,  elsősorban  globuláris  domének  azonosítása  a  cél  a  predikciós  profilból.
Ehhez  először  azonosítjuk  a  tisztán  rendezetlen  és  rendezett  szegmenseket,  majd  a
szomszédos  régiókat  összevonjuk,  illetve  a  30  aminosavnál  rövidebb  globuláris
részeket figyelmen kívül hagyjuk.

Az IUPred módszer mind a mai napig az egyik legnépszerűbb rendezetlenség
predikciós módszer. Ennek oka abban kereshető, hogy gyorsan, viszonylag megbízható
predikciókat képes generálni. A módszer beépült számos egyéb web-szerverbe, például
PFAM, ELM és PDB adatbázisokba és részét képezi több konszenzus rendezetlenség
jósló módszernek is  [135]. Az elmúlt években számos új módszert fejlesztettek ki a
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rendezetlenség  jóslására,  ezek  azonban  általában  több nagyságrenddel  lassabbak,  és
ezáltal is csak kismértékű javulást lehet elérni [81,136].

5.1.3 Az IUPred webszerver (2)

Az IUPred módszer sikeréhez az is nagymértékben hozzájárult, hogy könnyen
elérhetővé  tettük  webes  felületeken  és  programcsomag  formájában  is.  Az  IUPred
webszerver  eredeti  verziója  a  http://iupred.enzim.hu oldalon  volt  elérhető.  Magát  a
programot C programnyelven írtam, a webszervert pedig PHP nyelven készítettem el. A
webszerver bemenete egy fehérje szekvencia (FASTA formátumban, vagy csak a sima
szekvencia). A kimenet minden egyes pozícióban lévő aminosavhoz rendel egy értéket
ami jellemzi annak rendezetlenségre való hajlamát. Ez az érték 0 (teljesen rendezett) és
1 (teljesen rendezetlen) között lehet, általánosságban 0,5-ös érték felett tekintünk egy
aminosavat rendezetlennek. Három, kis mértékben eltérő paramétereket használó opció
közül  választhat  a  felhasználó  (hosszú,  rövid  és  rendezett  domén).  Az alapbeállítás
egyszerű  szöveges  (text)  kimenet,  de  a  grafikus  megjelenítés  is  választható.  Ezt  a
beadott szekvenciára a szerver azonnal legenerálja a JpGraph software (JpGraph, 2005)
program segítségével. Elkészítettem a programcsomag letölthető verzióját is.

5.2 A rendezetlen fehérjék kölcsönhatásainak jellemzése

5.2.1 A rendezetlenség szerepe a fehérje kölcsönhatási hálózatok központi
fehérjéiben (3)

Korábbi  megfigyelések  arra  utaltak,  hogy  a  rendezetlen  fehérjék  egyik  fő
funkciója fehérje-fehérje kölcsönhatások kialakítása. Számos olyan példa ismert, ahol a
rendezetlen fehérje szegmens felelős a kölcsönhatás kialakításáért, akár több különböző
partnerrel is. Felmerült a kérdés, hogy van-e összefüggés egy fehérje kölcsönhatásainak
száma  és  szekvenciális  tulajdonságai,  mint  például  fehérje  rendezetlenség,  vagy
alacsony komplexitású régiók megléte között. Munkánkban négy faj, a Saccharomyces

cerevisiae,  Drosophila  melanogaster,  Caenorhabditis  elegans  és  Homo  sapiens

publikusan elérhető fehérje interakciós hálózatára vonatkozó adatok alapján vizsgáltuk
szisztematikusan  ezt  a  kérdést.  A  fehérje  rendezetlenség  jellemzésére  az  IUPred
szoftvert használtuk. Emellett vizsgáltuk az alacsony komplexitású szegmensek (SEG
módszerrel [137]), illetve az ismétlődő szekvencia elemek meglétét [138]. 

A  fehérje  kölcsönhatási  hálózatok  általában  skálafüggetlen  viselkedést
mutatnak, ahol a partnerek száma, az úgynevezett fokszám eloszlás, hatványfüggvényt
követ  [139].  Az  ilyen  típusú  hálózatokban  a  legtöbb  csomópont  néhány  magas
fokszámú csomóponthoz (hubokhoz) kapcsolódik, amelyek központi szereppel bírnak a
hálózat  szerveződésében. A mi eredményeink is igazolták,  hogy a négy faj esetén a
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kölcsönhatási hálózat jól közelíti a skálafüggetlen a viselkedést, és hogy viszonylag kis
számú  fehérje  a  többihez  képest  jóval  több  partnerrel  rendelkezik.  Legfontosabb
eredményünk  az  volt,  hogy  megmutattuk,  hogy  ezen  központi  fehérjék  esetében
magasabb  volt  a  rendezetlen  aminosavak  száma  és  aránya  is.  Valamivel  kisebb
mértékben, de hasonló tendencia volt megfigyelhető az alacsony komplexitású, illetve
ismétlődő szekvencia elemek esetében is, illetve a hub fehérjék általában hosszabbak is
voltak.  Mivel a  központi  fehérjék  azonosítása nem egyértelmű,  kétfajta  definíciót  is
használtunk a hub fehérjék azonosítására, és megmutattuk, hogy ez az eredményeket
nem befolyásolja. Hasonló eredményekre jutott Haynes és szerzőtársai a PONDR VL-
XT rendezetlenség jósló módszerrel [106].

Eredményeink arra mutattak, hogy a kölcsönhatási hálózatokban lévő központi
fehérjék egyik meghatározó jellemzője a fehérje rendezetlenség. A hálózat biológiában
általánosan elfogadott  nézet  szerint  a  fehérje  kölcsönhatási  hálózatok skálafüggetlen
jellege génduplikáció és a preferenciális kapcsolódás eredménye [140,141]. Az általunk
javasolt  alternatív  magyarázat  a  biológiai  hálózatok  egy  kifinomultabb  evolúciós
modelljére épül. Eszerint a kölcsönhatási hálózatok evolúciója során előnyt jelentett az,
hogy egyes fehérjék növelni tudják képességüket más fehérjékkel való kölcsönhatásra
és ezáltal  a hálózat  szerveződéséhez  kapcsolódó funkciókra specializálódnak.  Ennek
egyik  mechanizmusa  a  fehérje  rendezetlenségre  épül.  A  rendezetlen  fehérjék
tulajdonságai,  például nyújtott konformációja, ami könnyen hozzáférhető a partnerek
számára,  illetve  flexibilitásuk  és  plaszticitásuk,  ami  lehetővé  teszi,  hogy
alkalmazkodjanak akár különböző partner molekula kötőfelszínéhez, hozzásegíti ezeket
a fehérjéket a nagyobb számú kölcsönhatás kialakításához [121].

5.2.2 A rendezetlen fehérje kölcsönhatások molekuláris alapelvei (4)

A fehérje  kölcsönhatások  molekuláris  alapelveinek  feltárása  alapvető
fontosságú  a  fehérjék  biológiai  funkciójának  megértéséhez,  melybe  betekintést
kaphatunk  kialakult  komplexek  térszerkezetének  vizsgálatával.  Ennek  megfelelően,
több  közleményben  is  elemezték  a  globuláris  fehérjék  kölcsönhatási  felszínének
tulajdonságait  [142–144]. Ezekben leírták, hogy általánosságban az interfész nagysága
1000Å2, a felszín többi részéhez képest magasabb hidrofóbicitással rendelkezik és több
esetben  megfigyelték  evolúciósan  konzervált  és  a  kölcsönhatási  energiája
szempontjából kulcsfontosságú pozíciók meglétét. Geometriai szempontból eltéréseket
találtak a különböző típusú komplexek között, mint például hetero- és homodimerek,
vagy enzim-inhibitor komplexek, amit összefüggésbe le hetett hozni eltérő funkcionális
szerepekkel. Nussinov és mktsi több különböző fehérje osztályt vizsgált, melyek között
voltak már rendezetlen fehérjék is, bár rendkívül kis számban  [145]. Megállapították,
hogy  az  egy  aminosavra  jutó  kölcsönhatási  felszín  nagyobb  a  rendezetlen  fehérjék
komplexeinél  és  hogy  a  hidrofób  aminosavak  nagyobb  aránya  kerül  eltemetésre  a
kölcsönhatás  során.  Hasonló eredményre jutott  Mohan és kollégái  [53],  ők azonban
olyan fehérje párok szerkezetét vizsgálták ahol az egyik lánc rövid volt (kevesebb mint
70 aminosav), ami nem jelentett garanciát a rendezetlenségre.

Munkánk  volt  az  első,  ami  direkt  módon  kísérletesen  igazolt  rendezetlen
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fehérjéken  alapult.  A  DisProt  adatbázis  [146] alapján  39  olyan  kísérletesen  igazolt
rendezetlen  fehérjét  gyűjtöttünk  össze,  aminek  ismert  volt  a  szerkezete  valamilyen
másik fehérjéhez kötődve.  Ezek interfészét  hasonlítottuk össze 72 globuláris  fehérje
komplex kölcsönhatási felszínével. Elemzésünk során azt találtuk, hogy bár a két fajta
komplex  esetén  a  kölcsönhatási  felszín  mérete  nem  tért  el  jelentősen,  rendezetlen
fehérjék  esetén  ez  jóval  nagyobb részét  képezte  a  felszínnek.  A globuláris  fehérjék
komplexeihez képest, a rendezetlen fehérjék interfészére magasabb hidrofóbicitás volt
jellemező,  relatív  és  abszolút  értelemben  is.  A  kölcsönhatások  tekintetében  is  a
hidrofób-hidrofób kölcsönhatások domináltak a poláros aminosavak kölcsönhatásaihoz
viszonyítva. A rendezetlen fehérje komplexeiben a két lánc között nagyobb számban
alakultak ki atomi kontaktusok, ami arra utal, a rendezetlen fehérje jobban tud idomulni
a  partner  fehérjéhez.  A  kölcsönhatás  két  módja  abban  is  különbözött,  hogy  a
rendezetlen  fehérjék  esetén  jellemzően  egyetlen  folytonos  szegmens  alakította  ki  a
kölcsönhatást.  Ezzel  szemben  a  globuláris  fehérjék  esetén  több,  a  folding  során
egymáshoz közel kerülő, de a szekvencia különböző részein lévő szegmens alakítja ki a
kölcsönható  felszínt.  A  molekuláris  eltérések  megmutatkoztak  a  kölcsönhatási
energiákban is. Az IUPred módszernél is használt statisztikus potenciállal számolva, a
rendezetlen  fehérjék  sokkal  több  stabilizáló  energiát  nyertek  a  intermolekuláris
kontaktusok  révén  mint  a  folding  során.  Összességében,  a  komplexek  két  osztálya
közötti  eltérések  arra  utalnak,  hogy  molekuláris  felismerés  alapelvei  eltérőek  a
rendezetlen fehérjék által kialakított kölcsönhatások esetében. 

5.3 A rendezetlen kötőhelyek predikciója 

5.3.1 Az ANCHOR módszer (5, 6)

A rendezetlen fehérjék komplexeinek speciális fiziko-kémiai és szegmentációs
tulajdonságai  előrevetítették,  hogy  a  rendezetlen  fehérjék  esetén  lehetséges  a
kölcsönhatásban résztvevő aminosavak predikciója a szekvenciából. Megközelítésünk
ezeket a speciális biofizikai tulajdonságokat próbálja megfogni a IUPred metódusban is
használt energiabecslő eljárás alapján. A rendezetlen kötőrégiók egyik fő jellemzője,
hogy  azok  egy  alapvetően  rendezetlen  részen  belül  találhatóak.  Ez  a  tulajdonság
közvetlenül jellemezhető az IUPred módszer alapján. A másik fő jellemzőjük, hogy bár
saját  szekvenciális  környezetükkel  nem,  de  speciális  globuláris  fehérjéhez  kötődve
kedvező kölcsönhatást tudnak kialakítani. Ennek modellezéséhez meghatározhatjuk azt
a becsült energiát, ami az adott aminosav a közvetlen szekvenciális környezetével tudna
létrehozni, illetve azt, ami egy átlagosan globuláris fehérjéhez kötődve tudna elérni. Az
általunk  kifejlesztett  módszer,  amit  ANCHOR-nak  neveztünk  el,  ezen  tényezők
kombinációja  alapján  jósol  rendezetlen  kötőhelyeket  a  szekvenciából.  A  módszer
továbbfejlesztett  változata,  az  ANCHOR2  kissé  eltérő  architektúrára  épült,  amiben
figyelembe  vettünk  egy  minimális  energia-nyereséget  és  átlagos  rendezetlenségi
tendenciát,  amellyel  egy  aminosavnak  rendelkeznie  kell  ahhoz,  hogy  rendezetlen
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kötőhely  legyen.  Ezek  révén  jobban  ki  tudtuk  szűrni  az  ANCHOR  predikciónál
előforduló  eseteket,  ahol  akkor  is  jósolt  rendezetlen  kötőhelyeket,  amikor  a
rendezetlenség  kritériuma  nem  teljesült,  de  az  energia  nyereség  nagy  volt.  A
paraméterek egy részének optimalizálásához már támaszkodhattunk a DIBS adatbázisra
is, mely nagyobb számban tartalmazott rendezetlen kötőhelyeket  [28]. Ugyanakkor a
paraméterek döntő többsége továbbra is a korábban kifejlesztett energiabecslő eljáráson
alapult.

Az ANCHOR módszer  a  globuláris  fehérjéken mért  5% fals  predikciós  ráta
mellett, 67%-os hatékonysággal tudta jósolni a rendezetlen kötőhelyek aminosavait, de
szegmens szinten a rendezetlen kötőhelyek 70%-át helyesen felismerte. Több más, gépi
tanuláson  alapuló  módszerrel  szemben,  mi  nem  tételeztük  fel,  hogy  a  rendezetlen
fehérjék  nem  annotált  része  nem  tartalmaz  rendezetlen  kötőhelyet.  Ugyanakkor
módszerünk a DisProt adatbázisban annotált rendezetlen fehérje szegmensek kevesebb,
mint 50%-át jósolta kötőhelynek, tehát az általános rendezetlen részektől is meg tudta
különböztetni  a  kötőhelyeket.  Megmutattuk,  hogy  a  módszer  hatékonyságát  nem
befolyásolja nagymértékben a kölcsönhatásban résztvevő aminosavak típusa, illetve a
szerkezetben felvett másodlagos szerkezet típusa sem. Hosszabb rendezetlen részeken
általában  nem  a  teljes  szegmenst,  csak  azoknak  egyes  részeit  ismeri  fel,  melyek
általában erősebb kölcsönhatást alakítanak ki. Az ANCHOR2 módszer jóval nagyobb
adatszetten  hasonló  eredményt  ért  el:  64%-os  hatékonysággal  tudta  jósolni  a
rendezetlen  kötőhelyek  aminosavait,  de  szegmens  szinten  a  rendezetlen  kötőhelyek
72%-át ismerte fel helyesen. 

A  rendezetlenség  predikciós  módszerekhez  képest  szerényebb  eredmények
ellenére, az ANCHOR és ANCHOR2 módszerek a rendezetlen fehérjék funkcionális
helyeinek jellemzésének alapvető eszközeivé váltak  [107,115].  Ezt  igazolta  a  CAID
értékelés eredménye is, ahol a független adatokon az ANCHOR módszer bizonyult a
legjobbnak a rendezetlen kötőrégiók azonosításában [81] (5. ábra). 
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Figure 5. CAID eredménye a rendezetlen kötőhelyek predikciójára. A rendezetlen kötőrégiók
predikciójának  kategóriájában  az  ANCHOR2  és  ANCHOR  módszerek  bizonyultak  a
legjobbnak [81] .

5.3.2 Az energiabecslő eljáráson alapuló módszerek webszervere (6, 7, 8)

2017-ben a szervert átköltöztettük az ELTÉ-re, és elkészítettük a webszerverek
új  verzióját,  az  IUPred2A-t  (6).  Ebben  egyesítettük  az  energiabecslésen  alapuló
módszereink  -  az  IUPred és  az ANCHOR -  elérését.  Az ANCHOR szerver  eredeti
verziójához, ami az http://anchor.enzim.hu oldalon volt elérhető, alapvetően az IUPred
szerver esetében használt  programokat szabtuk át,  mind a bemenet,  mind a kimenet
kezelését tekintve (7). Az új verzióban az egyik fő változás, hogy a korábbi C, illetve
Perl programnyelvek helyett  áttértünk a PYTHON program nyelvre.  Míg az IUPred
programban  csak  egy  kisebb  hibajavítást  tettünk,  az  ANCHOR programot  teljesen
átdolgoztuk, és az új ANCHOR2 verziót tettük elérhetővé. A web szervert egy további
opcióval bővítettük, ami lehetővé tette redox-érzékeny rendezetlen régiók szekvencia
alapú predikcióját  is  (6).  A web szervert  a Django keretrendszerben fejlesztettük,  a
vizualizációhoz  a  Bokeh  PYTHON  könyvtárat  használtuk.  A  fejlesztések  révén  az
IUPred2A egy  modern  megjelenésű,  dinamikus  web  szerver  lett,  ami  támogatja  az
összes jelenleg használatos web-böngészőt.
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Figure 6. Az IUPred3 webszer bemeneti oldala (felül) és a predikciós kimenet a humán p53
fehérjére (UniProt azonosító: P04637) különböző annotációk ábrázolásával együtt (alul).

Új  funkció  volt,  hogy  a  bemenetet  nemcsak  szekvencia  alapján,  hanem
közvetlenül  a  Uniprot  azonosító  alapján  is  meg  lehet  adni.  A  bemeneti  oldalon  a
felhasználó  választhat  a  különböző  predikciós  opciók  között,  beleértve  az  IUPred
különböző  változatait  és  az  ANCHOR módszert.  Mindkét  esetben  a  profil  minden
egyes  pozícióhoz  hozzárendel  egy  0  és  1  közötti  értéket,  ami  jellemzi  annak  a
valószínűségét, hogy az adott aminosav rendezetlen illetve rendezetlen kötőhely része-
e.  A  javasolt  küszöbérték  0,5,  e  feletti  pozíciókat  tekintjük  rendezetlennek,  illetve
rendezetlen  kötőhelynek.  Az ANCHOR esetében  a  kimenetnél  az  IUPred profilt  is
feltüntettük. A predikciókat grafikus formában jeleníti meg a webszerver, de a vizuális
megjelenítés mellett a predikciók letölthetők text és json formátumban is. A Uniprot
adatbázissal  való  integráció  révén  további  információk  is  megjelenítésre  kerülnek,
többek  között  PFAM annotációk,  poszttranszlációs  módosítások,  illetve  kísérletesen
igazolt  rendezetlen  régiók  és  kötőhelyek.  Ezek  hasznosak  lehetnek  a  predikciós
eredmények  értelmezésében  (6.  ábra).  A  IUPred  szerver  legújabb  verziójában
bevezettünk simítási opciókat, illetve implementáltunk egy megjelenítőt, amelyben az
adott szekvenciához tartozó szekvencia illesztés és a predikciós profil összekapcsoltan
tanulmányozható eukarióta modell organizmusokban (8). A szerver legújabb verziója
https://iupred.elte.hu illetve https://iupred3.elte.hu oldalakon érhető el. 
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5.4 A rendezetlenség és a rák kapcsolata

5.4.1 A rendezetlenség biológiai kockázata (9)

Az  egyedi  példák  és  általános  elemzések  megalapozták  a  rák  és  a
rendezetlenség  közötti  kapcsolatot.  Ezek  alapján  felmerült,  hogy  a  rendezetlenség
egyfajta  biológiai  kockázatot  jelent  [12,118].  A  rendezetlenség  jósló  módszerek
megjelenése  és  a  különböző szekvencia  variációs  adatok  robbanásszerű  növekedése
lehetővé tette ennek a kérdésnek a részletesebb vizsgálatát. Munkánkban elsők között
elemeztük, hogy hogyan befolyásolják a fehérjék szerkezeti tulajdonságai a mutációk
eloszlását.

Első  lépésként  különböző  adatbázisokból  gyűjtöttünk  össze  gyakori
polimorfizmusokat,  betegséggel  kapcsolatos  mutációkat  illetve rákos mutációkat.  Az
összegyűjtött pontmutációkat a fehérje szekvenciákra vetítve vizsgáltuk ezek eloszlását
az  IUPred  és  egyéb  rendezetlenség  predikciós  módszerek  felhasználásával.  Ennek
alapján kiszámoltuk a rendezett és rendezetlen részekre eső mutációk számát, és ezeket
összevetettük a várható mutációk számával,  azt feltételezve,  hogy azok egyenletesen
oszlanak  el  a  fehérje  mentén.  Eredményeink  azt  mutatták,  hogy  a  neutrális
polimorfizmusok gyakoribbak voltak a rendezetlen  részeken, ezzel  szemben a rákos
mutációk sokkal inkább a rendezett részekre estek. Ez a tendencia sokkal erősebbnek
mutatkozott  azoknál  az  adatbázisoknál,  melyekben  a  tradicionális  biokémiai
módszerekkel  azonosított  rákos  mutációk  domináltak  (SwissProt  cancer,  COSMIC
census  adatbázisok).  A rák genom projektekből  származó adatok esetén  ettől  eltérő
eredményt  kaptunk,  itt  a  mutációk  kismértékben  a  rendezetlen  részeket  preferálták.
Feltételezésünk  szerint  ez  a  véletlenszerűen  megjelenő,  úgynevezett  potyautas
(passenger)  mutációk  előfordulására  vezethető  vissza.  Ezt  igazolta,  hogy  ha  a
véletlenszerű  mutációk  megjelenésénél  figyelembe  vettük  a  polimorfizmusok  nem
egyenletes eloszlását, már minden esetben egyhangúan és statisztikailag szignifikánsan
a  rendezett  részeken  voltak  a  rákos  mutációk  túlsúlyban.  A  mutációk  eloszlását
megvizsgáltuk  a  rendezetlen  kötőrégiókban  is  az  ANCHOR  módszerünk
felhasználásával. A kötőrégiók alapvetően a rendezetlen régiókhoz hasonló tendenciát
mutattak, a neutrális polimorfizmusok túl-, a rákos mutációk alul voltak reprezentálva
bennük. Azonban esetükben az eltérés a globuláris részektől kisebb volt a kötőrégiónak
nem  jósolt  rendezetlen  szegmensekhez  képest,  ami  összhangban  áll  nagyobb
funkcionális szerepükkel. 

Elemzésünk  arra  is  rávilágított,  hogy  a  rákkal  kapcsolatba  hozott  fehérjék
átlagosan  hosszabbak,  több bennük a  rendezetlenség,  több kölcsönhatásban  vesznek
részt  és  speciális  funkciók  kapcsolódnak  hozzájuk.  Azonban  ezek  a  tulajdonságok
egymással  is  korrelálnak.  A  különböző  tényezők  között  kölcsönös  információt
számoltunk,  és  megmutattuk,  hogy  a  rendezetlenség  és  a  rákos  mutációk  közötti
kapcsolat indirekt,  a funkción keresztül  jön létre.  A leggyakrabban mutálódó példák
vizsgálata  alapján,  a  p53  vagy  a  PTEN  viselkedése  összhangban  van  az  általános
trenddel. Bár a rendezetlen szegmensek alapvető funkcionális szerepet játszanak ezen
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fehérjék  működésében,  a  rákos  mutációk  jellemzően  a  rendezett  részre  esnek.
Ugyanakkor találhatóak olyan példák is, ahol a mutációk döntő része rendezetlen részre
esik. Ilyen például a β-catenin, vagy az APC fehérje. Hasonló példák azonosítása révén
további betekintést nyerhetünk a rendezetlenség és a rák kapcsolatáról. 

5.4.2 Rákban gyakran mutálódó rendezetlen szegmensek (10)

A rák genom projektet adatainak az értelmezését nagyban megnehezíti, hogy a
katalogizált  mutációk  döntő  többsége  csak  véletlenszerűen  előforduló  potyautas
mutáció,  melyek  gyakoribbak  a  rendezetlen  részeken  [147].  A  rák  kialakulásában
irányító szereppel bíró, ún. irányító/driver mutációk egyik legegyértelműbb jele, hogy
több  minta  összesítése  esetén  a  mutációk  feldúsulnak  a  genom  meghatározott
szakaszán. Ez alapján több módszert is kidolgoztak rák gének azonosítására [148]. Az
általunk fejlesztett iSiMPre módszer a meglévő eljárásokhoz hasonló eredményt ér el a
driver  gének  megtalálásában,  de  lehetővé  teszi  a  szignifikánsan  mutálódó  régiók
azonosítását is, függetlenül azok méretétől vagy típusától [149]. 

Munkánk során a COSMIC adatbázist használtuk kiindulásként [129]. Az ebből
összegyűjtött  mutációkat  rávetítettük  a  fehérje  szekvenciákra,  és  azonosítottuk  a
szignifikánsan  mutálódott  régiókat  az  iSiMPre  módszerrel.  A  kapott  régiókat
klasszifikáltuk  rendezetlenség  szerint,  ehhez  figyelembe  vettünk  kísérletes
eredményeket,  a  domén  annotációkat  és  a  rendezetlenség  profilt.  Összesen  145
fehérjében találtunk 225 szignifikánsan mutálódott régiót magas szignifikancia szinttel
(10e-6).  Ezek  közül  47  esett  rendezetlen  régióra,  ami  kevesebb,  mint  amit  a
rendezetlenség előfordulása alapján vártunk (kb. 30%). Ez összhangban van korábbi
eredményünkkel, mely szerint a rákos mutációk a rendezett részeken gyakoribbak. A
legtöbb  esetben  a  szignifikánsan  mutálódó  régió  tartalmazta  az  adott  fehérjére  eső
mutációk nagy részét, ami vagy tisztán rendezett vagy rendezetlen résszel fedett át. A
találataink rákban betöltött fontos szerepét irodalmi adatok is igazolták. A rendezetlen
rákos  irányító  gének  további  tulajdonságait  is  elemeztük  molekuláris  és  rendszer
szinten.

A rendezetlen irányító fehérjék legnagyobb csoportja rövid lineáris motívumok
általi  kölcsönhatások  kialakításában  vesz  részt,  és  a  mutációk  olyan  pozíciókat
érintenek,  amelyek  kulcsfontosságúak  a  molekuláris  felismerésben  vagy  annak
poszttranszlációs  módosítás  általi  szabályozásában.  Azonban  a  rákos  mutációs
feldúsulása  alapján  egyéb  típusú  funkcionális  modulok  is  fontosak  lehetnek  a  rák
szempontjából,  például autoregulációs helyek, linker régiók vagy DNS és RNS kötő
részek  (7.  ábra).  Bár  az  azonosított  példák  sokfélék,  közös  bennünk,  hogy
funkciójukhoz  a  rendezetlenség  által  biztosított  dinamikus  szerkezeti  tulajdonság
alapvetően fontos. A rendezett rákos írányító fehérjékhez képest nemcsak molekuláris
mechanizmus  tekintetében  van  eltérés,  hanem  biológiai  funkció  vonatkozásában  is.
Ebből a szempontból kiemelkedik a fehérje degradációs rendszer, amely jellemzően a
rendezetlen fehérje részeken keresztül mutálódik, például degron motívumokat érintve

30

               dosztanyi.zsuzsanna_45_22



[150]. A rendezetlen rákos irányító fehérjék központi szereppel bírnak a kölcsönhatási
és jelátviteli hálózatokban, és perturbációjuk érintheti az ismert rákos ismertetőjegyek
(cancer hallmark) [151] mindegyikét. A legtöbb betegminta tartalmazott mind rendezett
mind  rendezetlen  részre  eső  mutációkat.  Azonban  azon  minták  esetében,  ahol
rendezetlen  részre  eső  mutációk  dominálnak,  jóval  kisebb  az  esélye  hogy létezik  a
kezelésre jelenleg elérhető gyógyszermolekula. Ez jól mutatja, hogy nagy igény lenne
olyan  új  megközelítésre,  melyek  révén  a  rendezetlen  fehérjék  is  targetálhatóak
lennének.

7. ábra. A rákban gyakran mutálódott rendezetlen fehérjék kategorizálása a funkcionális modul
(lineáris  motívum/PTM,  autoregulációs  hely,  linker,  DNS-RNS  kötés,  rendezetlen  domén)
típusa és rákban betöltött szerepük (tumorszupresszor, onkogén, illetve kontextus-függő módon
mindkét viselkedést mutató) alapján. 

5.4.3 A rákban mutálódó rendezetlen régiók evolúciós eredete (11)

 
A  rendezetlen  fehérjék  sajátos  szerkezeti  és  funkcionális  tulajdonságokkal
rendelkeznek,  és  ez  evolúciós  tulajdonságaikban  is  tükröződik.  A  több  szerkezeti
megkötöttséggel rendelkező rendezett fehérjékhez képest általánosságban a rendezetlen
fehérjék viszonylag friss evolúciós találmányok és szekvenciájuk nagyobb variabilitást
mutat  [152].  Azonban  a  bennük  található  funkcionálisan  fontosan  régiók  erősen

31

               dosztanyi.zsuzsanna_45_22



konzerváltak is lehetnek. Ezért felmerült a kérdés, hogy evolúciós eredetüket tekintve,
mi a jellemző a rákban szignifikánsan mutálódott  rendezetlen fehérje  szegmensekre.
Vizsgálatunkhoz  a filosztratigráfiás  eljárást  használtuk,  amely  visszavezeti  az  egyes
gének  eredetét  makorevolúciós  átmenetekhez  [153].  Korábbi  vizsgálatok  alapján  a
legtöbb  rák  gén  megjelenése  a  többsejtű  állatvilág  megjelenéshez  kapcsolódik,  de
vannak még ősibb, az egysejtű élőlények szintjére visszavezethető gének is [153]. Ezek
az  ősibb  esetek  általában  gondoskodó  (caretaker)  funkcióval  bírnak,  jellemzően  a
genom stabilitás biztosításában vesznek részt. A többsejtűség megjelenéséhez köthető
példákra általában kapuőrző (gatekeeper) funkció köthető, melyek a sejt differenciáció,
növekedés és sejthalál megfelelő működését biztosítja [154]. 

A korábbi vizsgálatok a teljes szekvencia szintjén történtek, amiben általában a
fehérjék  legkonzeráltabb  régiói,  a  domének  domináltak.  Vizsgáltunk  egyik  fő
újdonsága  az  volt,  hogy  mi  nem a  teljes  fehérjére,  hanem annak  a  mutációk  által
kitüntetett régiójára koncentráltunk. Meglepő módon, a rákban mutálódott rendezetlen
fehérje régiók is ősi eredetűek voltak, a régiók többsége a legkorábbi többsejtű állatok
szintjére  volt  visszavezethető.  A  legfiatalabb  példa  a  CD79B  fehérje  volt,  ami  az
immunrendszer  egyéb  fehérjéihez  hasonlóan,  a  gerincesek  szintjéhez  volt  köthető.
Néhány esetben jóval ősibb evolúciós eredetet találtunk. Ennek egyik példája az MLH1
fehérje, ami az össze nem illő bázispárok javításban játszik kulcsszerepet.  A fehérje
közepén található linker régiója jól ismert, azonban mi ezen belül azonosítottunk egy
nagy konzerváltságot mutató funkcionális  helyet,  ami a rák szempontjából is fontos,
azonban funkciója egészen a közelmúltig nem volt ismert [155]. Több olyan példával is
találkoztunk, ahol a mutálódott régió a géncsalád eredetéhez képest később jelent meg.
Létrejöttükben azonban nem gén-duplikácót követő neofunkcionalizáció volt a döntő
mechanizmus, hanem nagy valószínűséggel ezek a rendezetlen részek de-novo jöttek
létre.  A  rendezetlen  régiók  funkcionalitásának  fontosságát  támasztja  alá,  hogy
megjelenésüket  követően  gyorsan  rögzülnek,  és  a  fehérje  család  tagjainak  további
duplikációja  során  megőrződnek.  Fehérje  szinten  azonban,  az  evolúció  tovább
folytatódhat, megjelenhetnek újabb funkcionális modulok. Erre a példa a VHL fehérje,
ami  egy  új  N-terminális  régióval  bővült,  vagy  a  humán  specifikus  szekvencia
változások  az  ESR1  fehérje  szabályozó  funkciót  betöltő  régiójában.  Elemzésünk
világosabb képet adott a fehérjék kulcsfontosságú szabályozó elemeinek kialakulásáról,
és felhívja a figyelmet a moduláris szerveződésének figyelembevételének fontosságára
a fehérjék evolúciós eredetének vizsgálata során. Emellett újabb bizonyítékot adott arra
vonatkozólag, hogy a rendezetlen fehérjék fontos evolúciós találmányok. 
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6 KONKLÚZIÓ

A  rendezetlen  fehérjék  kutatása  hatalmas  fejlődésen  ment  keresztül  az  elmúlt  két
évtizedben,  aminek  eredményeképpen  a  rendezetlenség-funkció  paradigma  ma  már
szerves  részévé  vált  a  molekuláris  biológiai  kutatásoknak.  Az  egyedi  fehérjék
vizsgálata  mellett  ebben  a  bioinformatikai  vizsgálatok  is  fontos  szerepet  játszottak.
Ehhez  alapvetően  járultak  hozzá  az  általam  kifejlesztett  predikciós  módszerek  és
elemzések.  A további kutatások egyik fő fókusza rendezetlen fehérjék konformációs
sokaságának  részletes  jellemzése.  Szintén  fontos  feladat  kölcsönhatásaik
feltérképezése,  ezen  belül  is  új,  lineáris  motívumok által  közvetített  kölcsönhatások
azonosítása, ami jelenlegi kutatásainknak is az egyik fő fókusza. Izgalmas új terület a
rendezetlen  fehérjék  és  a  fázisszeparáció  kapcsolatának  vizsgálata.  A  betegségben
betöltött  szerepük  felismerése  nyomán  felmerült  az  igény  olyan  újfajta
gyógyszermolekulák  kifejlesztésére,  melyek  specifikusan  rendezetlen  fehérjéket
céloznak meg. Ezen kérdések vizsgálatához új bioinformatikai megközelítésekre van
szükség. Ezekben már várhatóan a fehérje térszerkezet predikciókban hatalmas áttörést
hozó mélytanulásos módszerek is döntő szerepet fognak játszani. 
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7 TÉZISEK

1. Kifejlesztettem egy újszerű energiabecslő eljárást, ami képes megbecsülni egy
adott fehérjeszekvencia kompakt állapotához tartozó párkölcsönhatási energiát.
Az energiabecslés  alapján  megmutattam, hogy a rendezetlen  fehérjék becsült
energiája  kedvezőtlenebb,  mint  a  rendezett  fehérjéké,  ami  rámutatott  a
rendezetlenség fizikai alapjára is. 

2. Az  energiabecslő  eljárás  felhasználásával  kidolgoztam  az  IUPred  módszert,
amely pozíció specifikusan jósol rendezetlenséget az aminosav szekvenciából. 

3. Az IUPred módszert elérhetővé tettem webszerveren keresztül.

4. Rámutattam, hogy a fehérje kölcsönhatási hálózatok központi csomópontjaiban
nagyobb arányban fordulnak elő rendezetlen fehérjék.

5. Összeállítottam  egy,  a  rendezetlen  fehérjék  komplexeinek  szerkezetét
tartalmazó  adatszettet  és  összevetettem  ezen  komplexek  tulajdonságait
globuláris  fehérjék  komplexeinek  jellemzőivel.  Ez  alapján  feltártam  a
rendezetlen fehérje komplexek alapvető szerkezeti sajátosságait.

6. Az energiabecslő eljárás alapján kifejlesztettem egy új módszert,  amellyel  az
aminosav szekvenciából jósolhatóak azok a rendezetlen szegmensek, amelyek
más fehérjékhez kötődnek és eközben rendezett szerkezetet alakítanak ki. 

7. Az  energiebecslésen  alapuló  szekvencia  predikciós  módszereimet  elérhetővé
tettem modernizált formában webszerverként és letölthető programcsomagként
is.

8. Mutációk  vizsgálata  alapján  megmutattam,  hogy  a  rendezetlen  fehérje
szegmenseken gyakoribbak a neutrális polimorfizmusok, de ritkábbak bennük a
rákos mutációk a globuláris részekhez képest.

9. Azonosítottam  olyan  rendezetlen  fehérje  szegmenseket,  amelyek  nagyszámú
rákos mutációt tartalmaztak, és ez alapján várhatóan aktív szerepet játszanak a
rák kialakulásában. Elemeztem ezek jellemzőit funkcionális és rendszer szinten.

10. Evolúciós vizsgálatok alapján rámutattam arra, hogy bár a rendezetlen fehérjék
általában  kevésbé  konzerváltak,  a  rákban  mutálódó  példák  nagymértékű
evolúciós konzerváltságot mutattak.
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The structural stability of a protein requires a large number of interresidue
interactions. The energetic contribution of these can be approximated by
low-resolution force fields extracted from known structures, based on
observed amino acid pairing frequencies. The summation of such energies,
however, cannot be carried out for proteins whose structure is not known
or for intrinsically unstructured proteins. To overcome these limitations,
we present a novel method for estimating the total pairwise interaction
energy, based on a quadratic form in the amino acid composition of the
protein. This approach is validated by the good correlation of the estimated
and actual energies of proteins of known structure and by a clear
separation of folded and disordered proteins in the energy space it defines.
As the novel algorithm has not been trained on unstructured proteins, it
substantiates the concept of protein disorder, i.e. that the inability to form a
well-defined 3D structure is an intrinsic property of many proteins and
protein domains. This property is encoded in their sequence, because their
biased amino acid composition does not allow sufficient stabilizing
interactions to form. By limiting the calculation to a predefined sequential
neighborhood, the algorithm was turned into a position-specific scoring
scheme that characterizes the tendency of a given amino acid to fall into
an ordered or disordered region. This application we term IUPred and
compare its performance with three generally accepted predictors, PONDR
VL3H, DISOPRED2 and GlobPlot on a database of disordered proteins.

q 2005 Elsevier Ltd. All rights reserved.

Keywords: intrinsically unstructured proteins; prediction of disordered
proteins; low-resolution force fields; interresidue interactions; foldability*Corresponding author

Introduction

Intrinsically unstructured/disordered proteins/
domains (IUPs), such as p21,1 the N-terminal
domain of p532 or the transactivator domain of
CREB,3 exist in a largely disordered structural state,
yet they carry out basic cellular functions.4–7 Their
existence defies the classical structure–function
paradigm, founded on the tenet that a well-defined
3D structure is the prerequisite of protein function.
The importance of protein disorder, nevertheless,
is underlined by its prevalence in various
proteomes8,9 and by its correlation with basic

functional modes, such as signal transduction and
transcriptional regulation.9,10

The identification of IUPs thus far proceeded by
collecting scattered data obtained with a range of
experimental techniques. As a result, available
datasets are rather limited in size and are hetero-
geneous in terms of experimental conditions,
techniques and interpretation of data. They also
lack consistency, due to the absence of clear
conceptual and operational definition(s) of struc-
tural disorder. All these result in false positive and
false negative classifications, i.e. the inclusion of
ordered segments in disorder databases and the
exclusion (and inclusion in ordered reference
databases) of disordered proteins/segments.
Furthermore, the databases are also biased due to
the overrepresentation of a few experimental
techniques, such as X-ray crystallography, NMR

0022-2836/$ - see front matter q 2005 Elsevier Ltd. All rights reserved.

Abbreviation used: IUP, unstructured/disordered
proteins/domains.
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and CD. As each technique probes different aspects
of protein structure, they do not necessarily
correctly identify disorder. For example, loopy
proteins, which have no repetitive secondary
structure,11 would appear disordered by CD but
ordered by the other techniques. With NMR,
disorder often is concluded from poor signal
dispersion, which does not distinguish between
random coils and molten globules of high potential
to fold in the presence of a partner. In X-ray
crystallography, crystal packing may enforce cer-
tain disordered regions to become ordered, and
disordered binding segments are often crystallized
in complex with their partner and are classified
ordered despite their lack of structure in isolation.
In addition, wobbly domains would appear dis-
ordered, despite their intrinsic structural order. In
consequence, predictors trained on these datasets
for assessing disorder5,9 reflect these uncertainties.

The basis of predicting protein disorder is the
difference in sequence characteristics between
folded and disordered proteins. Typically, IUPs
exhibit a strong bias in their amino acid compo-
sition and even a reduced alphabet is able to
recognize them at the level of complete sequences.12

Other results indicate, however, that there are
differences in sequence properties among different
types of disordered proteins.13 Various factors have
been suggested to be important in terms of protein
disorder, including flexibility, aromatic content,14

secondary structure preferences15 and various
scales associated with hydrophobicity.14,16 Beside
low mean hydrophobicity, high net charge was also
suggested to contribute to disorder.17 All these
different analyses, though, hint that the amino acid
composition of IUPs results in their inability to fold
due to the depletion of typically buried amino acid
residues and enrichment of typically exposed
amino acid residues,5 which implies that globular
proteins have specific sequences with the potential
to form a sufficiently large number of favorable
interactions, whereas IUPs do not. Here, we attempt
to put this inference on a quantitative footing by
taking an energetics point of view. On this ground,
the sequences encoding for globular proteins and
IUPs can be distinguished.

For globular proteins, the contribution of inter-
residue interactions to total energy is often approxi-
mated by low-resolution force fields, or statistical
potentials, energy-like quantities derived from
globular proteins based on the observed amino
acid pairing frequencies.18,19 In deriving the actual
potentials, different principles have been
applied.18,20–23 The resulting empirical energy
functions are well suited to assess the quality of
structural models24 and have been used for fold
recognition or threading,25,26 but also in docking,27

ab initio folding,28 or predicting protein stability.29

Their success in a wide range of applications
suggests the existence of a common set of inter-
actions, simultaneously favored in all native, as
opposed to alternate, structures.

Our current formulation derives from the general

view that the primary structure of a globular
protein determines its native conformation, and
therefore its energy, which corresponds to the
global minimum in conformational space. This
energy represents the lowest level attainable by
the sequence at the optimum of interresidue
interactions. In this work, we introduce a novel
approach to predict this optimum energy inde-
pendently of a presumed structure. By applying
this principle to a predefined sequential neighbor-
hood of a particular amino acid in a sequence, this
approach can be turned into a position-specific
scoring scheme for disorder, termed IUPred. As
IUPred has not been trained on potentially
erroneous data, its unbiased assessment of the
structural status of an unknown sequence/segment
is of confirmatory value.

Theory

Estimation of the pairwise energy from amino
acid composition

The pairwise energy of a protein in its native state
is the function of its conformation as well as its
amino acid sequence. The total energy can be
calculated by taking all contacts in the protein,
and weighting them by the corresponding inter-
action energy. In our model, the energy depends
only on amino acid types, as specified by a 20 by 20
interaction matrix, M (see Table 1). The pairwise
energy content can be written as:

EZ
X

20

ijZ1

MijCij

where Mij is the interaction energy between amino
acid types i and j, and Cij is the number of
interactions between residues of types i and j in
the given conformation.

We approximate E/L, the total energy per amino
acid, by means of the protein’s amino acid
composition. Without considering the actual con-
formation, we rely on statistics collected from a
database of globular proteins. The rationale behind
this approach is that the energy contribution of a
residue depends not only on its amino acid type,
but also on its potential partners in the sequence.
We assume that if the sequence contains more
amino acid residues that can form favorable
contacts with the given residue, its expected energy
contribution is more favorable. The simplest for-
mula which describes this relationship is a quad-
ratic expression in the amino acid composition.

Let Ni denote the number of amino acid residues
of type i in the sequence and niZNi/L its frequency.
The energy per amino acid is approximated by:

Eestimated

L
Z

X

20

ij

niPijnj

where P is the energy predictor matrix, which tells
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Table 1. M matrix

A C D E F G H I K L M N P Q R S T V W Y

A K0.20 K0.44 0.16 0.26 K0.46 K0.26 0.50 K0.57 0.10 K0.36 K0.22 0.07 0.14 0.01 0.20 K0.09 K0.05 K0.42 0.05 K0.50
C K0.44 K2.99 0.21 0.19 K0.88 K0.34 K1.11 K0.36 K0.09 K0.53 K0.43 K0.52 K0.14 K0.43 K0.24 0.13 K0.22 K0.62 0.24 K0.79
D 0.16 0.21 0.17 0.55 0.38 0.35 K0.23 0.44 K0.39 0.28 0.35 K0.02 1.03 0.49 K0.37 0.19 K0.12 0.69 0.04 0.43
E 0.26 0.19 0.55 0.60 0.55 0.65 0.18 0.37 K0.47 0.33 0.29 0.01 0.69 0.04 K0.52 0.18 0.37 0.39 0.03 0.17
F K0.46 K0.88 0.38 0.55 K0.94 0.17 K0.40 K0.88 0.01 K1.08 K0.78 0.22 0.20 0.26 K0.19 K0.22 0.02 K1.15 K0.60 K0.88
G K0.26 K0.34 0.35 0.65 0.17 K0.12 0.18 0.24 0.19 0.24 0.02 K0.04 0.60 0.46 0.50 0.28 0.28 0.27 0.51 K0.35
H 0.50 K1.11 K0.23 0.18 K0.40 0.18 0.42 K0.00 0.79 K0.24 K0.07 0.20 0.25 0.69 0.24 0.21 0.11 0.16 K0.85 K0.26
I K0.57 K0.36 0.44 0.37 K0.88 0.24 K0.00 K1.16 0.15 K1.25 K0.58 K0.09 0.36 K0.08 0.14 0.32 K0.27 K1.06 K0.68 K0.85
K 0.10 K0.09 K0.39 K0.47 0.01 0.19 0.79 0.15 0.42 0.13 0.48 0.26 0.50 0.15 0.53 0.10 K0.19 0.10 0.10 0.04
L K0.36 K0.53 0.28 0.33 K1.08 0.24 K0.24 K1.25 0.13 K1.10 K0.50 0.21 0.42 K0.01 K0.07 0.17 0.07 K0.97 K0.95 K0.63
M K0.22 K0.43 0.35 0.29 K0.78 0.02 K0.07 K0.58 0.48 K0.50 K0.74 0.32 0.01 0.26 0.15 0.48 0.16 K0.73 K0.56 K1.02
N 0.07 K0.52 K0.02 0.01 0.22 K0.04 0.20 K0.09 0.26 0.21 0.32 0.14 0.27 0.37 0.13 0.15 0.10 0.40 K0.12 0.32
P 0.14 K0.14 1.03 0.69 0.20 0.60 0.25 0.36 0.50 0.42 0.01 0.27 0.27 1.02 0.47 0.54 0.88 K0.02 K0.37 K0.12
Q 0.01 K0.43 0.49 0.04 0.26 0.46 0.69 K0.08 0.15 K0.01 0.26 0.37 1.02 K0.12 0.24 0.29 0.04 K0.11 0.18 0.11
R 0.20 K0.24 K0.37 K0.52 K0.19 0.50 0.24 0.14 0.53 K0.07 0.15 0.13 0.47 0.24 0.17 0.27 0.45 0.01 K0.73 0.01
S K0.09 0.13 0.19 0.18 K0.22 0.28 0.21 0.32 0.10 0.17 0.48 0.15 0.54 0.29 0.27 K0.06 0.08 0.12 K0.22 K0.14
T K0.05 K0.22 K0.12 0.37 0.02 0.28 0.11 K0.27 K0.19 0.07 0.16 0.10 0.88 0.04 0.45 0.08 K0.03 K0.01 0.11 K0.32
V K0.42 K0.62 0.69 0.39 K1.15 0.27 0.16 K1.06 0.10 K0.97 K0.73 0.40 K0.02 K0.11 0.01 0.12 K0.01 K0.89 K0.56 K0.71
W 0.05 0.24 0.04 0.03 K0.60 0.51 K0.85 K0.68 0.10 K0.95 K0.56 K0.12 K0.37 0.18 K0.73 K0.22 0.11 K0.56 K0.05 K1.41
Y K0.50 K0.79 0.43 0.17 K0.88 K0.35 K0.26 K0.85 0.04 K0.63 K1.02 0.32 K0.12 0.11 0.01 K0.14 K0.32 K0.71 K1.41 K0.76

Contact potential derived from 785 proteins using the approach of Thomas & Dill.20
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how the energy of amino acid i depends on the jth
element of the amino acid composition vector. The
parameters Pij, applicable for all proteins, are
determined by least-squares fitting using globular
proteins. The fitting was carried out by treating each
amino acid type and the corresponding row in
matrix P separately, to ensure that the energetic
contribution is well approximated for all amino acid
types. Using the additivity of the energy of pairwise
interactions, we dissect the total energy of the kth
protein into amino acid specific contributions
Ek
ZSeki , where eki is the energy of all amino acid

residues type i interacting with all other amino acid
residues in the sequence. The eki depends on the
number of contacts this residue makes with other
amino acid residues of type j in the sequence.

eki ðcalculatedÞZ
X

20

jZ1

MijC
k
ij

This quantity is approximated by the expression:

eki ðestimatedÞZNk
i

X

20

jZ1

Pijn
k
j

The parameters of the corresponding row of
matrix P are obtained by minimizing the function

ZiZ

X

k

ðeki KNk
i

X

20

jZ1

Pijn
k
j Þ
2

Letting vZi/vPijZ0 for all Pij leads to a set of
linear equations which are solved for each amino
acid type by using the GSL scientific library. Only
the symmetrical part of the matrix is considered, as
the anti-symmetrical part is cancelled out in
quadratic forms. The resulting P is given in Table 2.

Results

Comparison of estimated and calculated
energies for globular proteins

The validity of the energy predictor matrix was
checked by comparing the energies calculated from
amino acid interactions of proteins with a known
structure to the energies estimated from their amino
acid compositions. The fitting was carried out using
674 proteins from the Glob_list (for the definition of
this and other databases, see Materials and
Methods), omitting those with high cysteine content
(above 9%) as they had unusually favorable energy
because of cystine pairs. The calculated energy is
given in an arbitrary energy unit [aeu], with more
negative values indicating more favorable inter-
actions. Figure 1 shows that there is a clear linear
relationship between calculated and estimated
energies. The goodness of fit can be characterized
by a correlation coefficient and the r2 value:
r2Z1KSSreg=SStot, where SStot and SSreg are the
sums of the squares of distances from the mean of
the calculated energies, and of estimated and T
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b
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calculated energies, respectively. The value of r2 can
be between 0, where the average is used as an
estimate, and 1, which is the ideal case. It describes
how well the variance in the original data is
explained by the fitted model using the least-
squares approximation. In our case, the r2 value
was 0.58, and the correlation coefficient was 0.76.
Both values indicate a reasonable level of agreement
between the estimated and calculated energies.

Pairwise energy content for globular proteins and
IUPs

Figure 2 shows the estimated energies for
globular proteins and IUPs as a function of their
length. For the globular proteins of Filt_Glob_list
the average energy is K0.81 [aeu]. The estimated
energies of IUPs in IUP_list are less favorable, with
an average of K0.07 [aeu]. The separation between
the two sets becomes more pronounced for longer
sequences, while there is some overlap for shorter
sequences. Based on the P-value of 2.2!10K16

obtained using the Wilcoxon rank sum test, we
can reject the hypothesis that the two sets of
energies are from the same distributions. Overall,
the difference substantiates our assumption that the
pairwise energy content is less favorable for IUPs
than for globular proteins.

A corollary to this separation is that the estimated
energy content may also distinguish partially

ordered IUPs, i.e. molten globules and pre-molten
globules, from fully disordered (coil-like) proteins,
because the former are expected to have more
energetically favorable interactions. To test this
assumption, 55 coil-like and 52 pre-molten globule-
like proteins have been taken from Table 1 in the
work done by Uversky,30 and their total energy
content has been estimated. These datasets, which
partially overlap with IUP_list, show a 0.3 [aeu]
separation in the average energy content (data not
shown). Thus, our approach is able to assess the
energetic consequence of the subtle structural
differences between fully and partially disordered
proteins.

Decomposition

So far, the quadratic form for the estimated
energy has been given in the natural coordinate
system, each axis corresponding to one amino acid.
Now we rotate the coordinate system into the one
defined by the eigenvectors of the P matrix, in
which the expression for the estimated energy is
reduced to the diagonal form:

EðestimatedÞZ l1p
2
1 Cl2p

2
2/Cl20p

2
20

Here li is the ith eigenvalue corresponding to the
vi eigenvector, and pi is the corresponding coordi-
nate of the amino acid composition vector (n) in the
new coordinate system, calculated as a scalar

Figure 2. Estimated pairwise interaction energies of
globular proteins and IUPs. The total pairwise interaction
energy of 559 globular proteins in Filt_Glob_list (red C)
and 129 disordered proteins in IUP_list (blue !) was
estimated from their amino acid composition and plotted
as a function of their length. Values more negative
represent more stabilization due to pairwise amino acid
interactions. The average pairwise interaction energy of
globular proteins and IUPs are K0.81 and K0.07 [aeu],
respectively.

Figure 1. Correlation of estimated and calculated total
interaction energies of globular proteins. The total
pairwise interaction energy of 674 globular proteins
from Glob_list (omitting proteins with high cysteine
content), was estimated from their amino acid compo-
sitions by a method based on a quadratic formula in the
amino acid composition and are shown as a function of
the actual energies calculated from their known 3D
structures. The energies are in arbitrary energy units, as
defined in the text. The broken line represents perfect
agreement between the estimated and calculated energy
values.
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product, piZ
�
n

�
vi. Since pi

2 is non-negative, terms
corresponding to positive/negative eigenvalues
give a positive/negative contribution to the esti-
mated energy. Some of the individual eigenvectors
can be directly interpreted in terms of physico-
chemical factors and linked to stabilization or
destabilization depending on its sign. Figure 3
shows the two largest negative (stabilizing) and
three largest positive (destabilizing) eigenvectors.
We find hydrophobicity (Figure 3(a)) and cysteine
content (Figure 3(b)) as dominant factors in
stabilization. The vector with the highest eigen-
value is closest to the Sweet–Eisenberg empirical
hydrophobicity scale (correlation coefficient: 0.94)
among more than 400 different amino acid pro-
pensities collected in the AAIndex database.31

Interestingly, the same scale among hydro-
phobicities was found to be the best for discriminat-
ing structured proteins from IUPs in a systematic
search among 265 amino acid properties.16 Of
particular relevance to our assessment of the
determinants of protein disorder, the Sweet–
Eisenberg scale is based on amino acid replace-
ability, which correlates with the tendency of side-
chains to be buried or exposed in protein crystal
structures.32 As for the destabilizing factors, there is
no obvious interpretation of the factor with the

largest positive eigenvalue (Figure 3(c)), whereas
the next two suggest that the abundance of
structure-breaking amino acid residues like Pro,
Asn, and Gly (Figure 3(d)) or high net charge
(Figure 3(e)) leads to destabilization. It should be
made clear, though, that these features are not
incorporated in the predictor, but they can be
extracted due to their importance in supporting
energetically favorable/unfavorable structural
states. The intriguing point is that they show good
correlation with features used in previous
approaches, which are knowledge-based in terms
of protein disorder.14,16,17

Besides the angles between the vectors, all pi
values depend also on the norm of the amino acid
composition vector NORMZ

P20
iZ1 n

2
iZ

P20
iZ1 p

2
i

� �

.
This norm takes its minimum value (0.223) for
sequences with equal amino acid frequencies, and
largest (1.0) when the sequence is composed of a
single amino acid. For globular proteins, it varies
between 0.23 and 0.39. There are 24 sequences with
their norm above 0.35 in the IUP sets, including
16 out of 17 sequences that have at least 50% of
residues predicted to have low complexity by the
SEG program.33 Thus, the norm is also a measure of
the complexity of the sequence, incorporated into
the estimated energy as a scaling factor. According
to our model, a low complexity sequence is not
necessarily disordered, if its amino acid compo-
sition is dominated by stabilizing factors, allowing
the formation of favorable contacts. On the other
hand, sequences with the least favorable energy are
of low complexity as well, as a result of the
dominance of one or a few amino acid types that
have unfavorable interaction energies for each
relation.

The estimated pairwise energy predicts protein
disorder

Based on the significant separation between the
estimated pairwise energies of globular and experi-
mentally verified intrinsically unstructured
proteins, this approach can be turned into a method
to predict protein disorder. For this purpose it is
more appropriate to consider the local sequential
neighborhood only, since many proteins are not
fully ordered or disordered. Thus, the original
matrix P, derived at the level of global sequences,
was recalculated by treating each position separ-
ately, and taking into account only its predefined
neighborhood in sequence. The energy and amino
acid composition for each position was calculated
only by considering interaction partners 2–100
residues apart. The choice of this range represents
a trade-off between the intention of covering most
structured domains, but separating distinct
domains in multi-domain proteins. This procedure
yields an estimated energy at position p of type i:

e
p
i Z

X

20

jZ1

P
p
ijn

p
j

Figure 3.Decomposition of the energy predictor matrix
to eigenvalues representing stabilizing and destabilizing
interactions. The energy predictor matrix P, was decom-
posed into (a) and (b) negative and (c)–(e) positive
eigenvectors. Their corresponding eigenvalues specifying
the weights in the energy function are: (a) K52, (b) K40,
(c) 24, (d) 13 and (e) 10 (cf. Decomposition). These vectors
represent stabilizing and destabilizing contributions to
the total pairwise energy content, and can be rationalized
in terms of simple physical principles, such as (a)
hydrophobicity, (b) cysteine abundance, (d) structure-
breaking amino acid residues and (e) net charge of the
protein.
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where Pp is the position-specific energy predictor
matrix. The position-specific estimations of energies
were averaged over a window of 21 residues. This
method for the prediction of protein disorder is
termed IUPred.

By using IUPred, the distribution of scores for
globular proteins and IUPs is as shown in Figure 4.
The clear separation between the two sets is also
apparent at the level of individual positions. From
the distribution of globular proteins we determined
a threshold where 5% of their positions were
predicted as being disordered, similar to the
prediction made by Ward et al.9 This value was
K0.2 [aeu]: positions with energy content above
this cutoff value were predicted to be disordered,
whereas positions below were considered as being
ordered. Using this limit, 76% of positions of IUPs
were predicted to be disordered. These deviations

from complete order or disorder are fully accep-
table, due to potentially disordered regions in
globular proteins in solution observed to be ordered
in the solid state, and the existence of significant
residual structure in many IUPs.6,7,34,35

To see how the choice of the empirical force field
affects the predictive power of IUPred, various 20
by 20 M scoring matrices were tested. For each M
matrix the corresponding P matrix was derived as
desribed in Theory and used for the prediction.
We set the threshold to give 5% false positive
predictions on the Filt_Glob_list, and calculated the
sensitivity of the method as the percentage of
predicted disorder on the IUP_list for each inter-
action matrix (Table 3). The approach of Thomas &
Dill20 yields matrices superior to others, with the
much larger dataset bringing about an improve-
ment of almost 3%. The matrix used by Tobi et al.21

performed comparably to the original one of
Thomas & Dill in predicting disorder, but the
other two showed much less ability to discriminate
order from disorder.

Cross-validation of the method

In order to test the ability of our method to
generalize on previously unseen data, we carried
out a tenfold cross-validation. Glob_list was
divided into ten random subsets. One was put
aside, and proteins from the remaining nine were
used to calculate matrices M and P, and the cutoff
value. This procedure was repeated ten times, and
the goodness of fit and the amount of disorder were
predicted for the proteins not used in training. It is
worth noting that no cross-validation is required for
IUPs, as these proteins were not included in any
way in the training process.
Over the ten sets, the average of the correlation

coefficient was 0.783G0.006 and the r2 value was
0.600G0.070, compared with the values obtained
for the full set, 0.786 and 0.604, respectively. Both
values indicate a similar goodness of fit for globular
proteins, independently of whether they were
included in the training set. The amount of
predicted disorder varied between 3.4% and 6.9%,
with the average of 4.96(G0.97)% for the training
sets, compared to 5.0% for the full set.

Table 3. Comparison of different scoring matrices

Interaction matrix Number of training proteins
Predicted disorder on IUP set (%)

(true positives)

Thomas–Dill extended training set 785 75.95
Thomas–Dill20 37 73.25
Tobi et al.21 572 73.09
Mirny–Shakhnovich22 104 64.63
Miyazawa–Jernigan23 251/1661 63.64

The performance of different interaction matrices in predicting disorder and the number of proteins used to derive them. The
Miyazawa–Jernigan matrix was trained on 1661 proteins including homologs, effectively representing 251 families.

Figure 4. Estimated position-specific pairwise energies
of globular proteins and IUPs. The distribution of
estimated position-specific pairwise energy scores is
shown, calculated by considering the amino acid compo-
sition limited to a sequential neighborhood of G100
residues and smoothed over 21 residues. The application,
termed IUPred, was applied to the Filt_Glob_list (C) and
the IUP_list (!), and the frequency of residues was
plotted against their local energy content. A threshold of
K0.2 [aeu] provides the best separation of individual
positions between these two structural classes.
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Comparison of different methods of disorder
prediction

Database of disordered proteins

We compared IUPred to three widely used
methods for predicting disorder, which differ not
just methodologically but also conceptually due to
different definitions of disorder. GlobPlot is a
simple propensity-based approach evaluating the
tendency of residues to be in a regular secondary
structure. PONDR VL3H36 was trained to dis-
tinguish experimentally verified disordered
proteins from globular proteins by various machine
learning approaches. In developing DISOPRED,9

the definition of disorder was restrained to regions
missing from X-ray structures and a support vector
machine was trained to specifically recognize these.
In contrast, IUPred assigns order/disorder status to
residues on the basis of their ability to form
favorable pairwise contacts.

To make a realistic comparison of these methods
(Table 4), their cutoff values were set so that they
yielded the same percentage (5%) of false positive
predictions (predicted disordered when in fact
ordered) on Filt_Glob_list. The agreement between
pairs of predictions were also calculated: two
predictions were said to agree when both predicted
order or disorder for a given position, and the
numbers of agreements were normalized by the
total number of positions (Table 5). As GlobPlot was
not intended as a per position prediction method, it

was included as a simple control to evaluate the
performance of a propensity-based approach.
Although the performance of the other methods,
IUPred, PONDR VL3H and DISOPRED2, is com-
parable, there are some clear differences among
them. IUPred predicted the largest amount of
disorder, followed by PONDR VL3H; DISOPRED2
tended to predict the most order at the same level of
false prediction rate. These differences are also
apparent in the ROC curve, giving the false positive
rate against true positive rate for these three
methods (Figure 5). Except for very low level of
false prediction rate, IUPred achieves the highest
true positive rate. Intriguingly, in pairwise com-
parisons the three methods are very similar, each of
them agreeing with the other two on about three-
quarters of positions (Table 5).

The goal of this comparison was to assess the
performance of IUPred in terms of predicting long
disordered regions; however, it cannot be regarded
as a complete benchmarking. The test set for
disorder was rather small (only 129 proteins), and
there could be a significant amount of local order
included in this set that the various methods would
treat differently. DISOPRED2 was specifically
designed to predict short disordered regions in
the context of globally ordered proteins, and its
performance is expected to be higher on these
datasets. Furthermore, some parameters (e.g. win-
dow size) could also influence the performance of
the methods (VL3H, GlobPlot). Despite these
limitations, the results clearly show that IUPred

Table 4. Performance of disorder prediction methods

Method True positive rate False positive rate

All positions
(%)

Normalized positions
(%)

All positions
(%)

Normalized positions
(%)

IUPred 76.33 67.91 5.33 5.54
PONDR VL3H 66.29 60.74 5.02 7.84
DISOPRED2 63.39 49.08 5.02 6.87
GlobPlot 32.97 30.42 18.07 19.72

Comparison of IUPred, PONDRVL3H, DISOPRED2 and GlobPlot on IUP_list and Filt_Glob_list. The true positive rate was calculated
as the percentage of residues predicted as disordered on the IUP_list (sensitivity), while setting the false positive rate (percentage of
predicted disordered residues on the Filt_Glob_set), also called specificity, to 5%, or the closest possible value (in the case of GlobPlot).
These values are given averaged over all positions, and normalized by the length of the protein. This normalization weights each
fragment/protein equally, independently of its length. Predictions by PONDRVL3Hwere collected from the server at http://www.ist.
temple.edu/disprot/predictor.php using the default parameter (window sizeZ1), while DISOPRED2 was downloaded from http://
bioinf.cs.ucl.ac.uk/disopred/ and run locally. GlobPlot was also run locally, but with the web server’s parameters and taking the CASP-
like output (http://GlobPlot.embl.de/).

Table 5. Similarity between disorder prediction methods

Method Agreement (%)

IUPred PONDR VL3H DISOPRED2 GlobPlot

IUPred 100 91.61 91.97 80.76
PONDR VL3H 76.60 100 92.26 79.24
DISOPRED2 77.19 77.05 100 79.91
GlobPlot 48.07 47.84 51.31 100

The similarity between pairs of methods was calculated as the number of agreements over all positions in IUP_list (lower triangle) and
in Filt_Glob_list (upper triangle). Predictions were collected as given in the legend to Table 4.
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is a competent predictor of protein disorder. This is
achieved by considering only globular proteins
during the training, without using any information
on intrinsically unstructured proteins.

Examples of individual proteins

As a further means of comparison we present the
analysis of four representative proteins, with the
prediction output of the position-specific predictors
IUPred, PONDRVL3H and DISOPRED2 (Figure 6).
The proteins were selected because a good deal of
structural information is available on the extent and
mode of their disorder. p53 (Figure 6(a)) is a tumor
suppressor transcription factor, the structural dis-
order of which has been convincingly demonstrated
for the N-terminal (1–93) and C-terminal (363–393)
domains.2,37 FlgM, or anti-sigma-28 factor
(Figure 6(b)), is one of the first proteins to be
identified as intrinsically unstructured along its
entire length.38 Its C-terminal half, with residues
60–73 and 83–90 in particular, show some a-helical
preference in solution,39 possibly relevant to the
physiological function of this protein.40 PKI-alpha
(Figure 6(c)), a heat-resistant inhibitor of cAMP-
dependent protein kinase, is also disordered along
its entire length41 with its inhibitory segment (1–13)
and nuclear export signal (35–47) tending to adopt
an a-helical structure in the unbound state.42

Microtubule-associated protein tau (Figure 6(d))
belongs to a family of heat-stable MAPs (also
including MAP2 and MAP4), which are disordered
along their entire length and bind microtubules via
a C-terminal microtubule-binding domain.43

The plots by the three methods agree reasonably

well, with some differences. DISOPRED2 tends to
predict more order than either IUPred or PONDR
VL3H, even at places where experimental
evidence is for a largely disordered state, such as
the N-terminal domain of p53 and PKI-alpha or the
C-terminal region of FlgM. Interestingly, these
regions show some tendency to be transiently
ordered, as stated above. This local preference for
order is probably captured by IUPred and PONDR,
as witnessed by the value of their disorder score
approaching or even crossing the threshold. The
noted tendency of the C-terminal region of tau to be
ordered is also worthy of note in light of its
interaction with microtubules; this might occur via
preformed structural elements, as demonstrated to
be a general feature of IUPs.35 These examples
further illustrate the similarities and differences
among the three prediction methods, with IUPred
predicting the most disorder for fully or largely
disordered proteins, and DISOPRED2 predicting
the least. In addition, by looking at these examples,
it is advisable to treat regions of disagreement
among the predictors with caution and consider
them as potential recognition sites.

Figure 6. Comparison of IUPred with two other
predictors of disorder. IUPred scoring (red) is compared
with PONDR VL3H (green) and DISOPRED2 (blue) for
(a) p53, (b) FlgM, (c) PKI-alpha and (d) MAP tau. The
energy values of IUPred were normalized to fall between
[0,1]. Thin horizontal lines of the appropriate color
represent threshold values, above which the score is
characteristic of disorder (0.5 for IUPred and PONDR and
0.086 for DISOPRED2, the default values in the latter two
cases). Below the scores, the region experimentally shown
to be disordered (thick red line) or structured in itself or in
the presence of a binding partner (thick black line) is
indicated.

Figure 5. ROC curve for IUPred, PONDR VL3H, and
DISOPRED2. Receiver operator characteristic (ROC)
curve for IUPred (continuous), PONDR VL3H (broken)
and DISOPRED2 (short broken). The true positive rate
was calculated as the percentage of residues predicted as
disordered on the IUP_list (sensitivity), the false positive
rate is the percentage of predicted disordered residues on
the Filt_Glob_set, also called specificity.
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Discussion

The growing number of examples of IUPs has
encouraged us to revisit the issue of the foldability
of polypeptide chains. In order to understand the
differences between IUPs and folded proteins
better, we estimated the pairwise energy content
of proteins in their native structural state by a
quadratic form involving the amino acid compo-
sition vector and the energy predictor matrix. The
parameters of the matrix were derived by least-
squares fitting using globular proteins of known
structure, which also allowed the goodness of the
estimation to be tested. The robustness of this
approach is quite surprising, considering that every
protein structure is an intricate architecture of a
multitude of interresidue contacts. We did not
attempt to predict the exact pattern of these
interactions, i.e. the structure, in detail, rather the
compatibility of a given polypeptide with the
formation of sufficient favorable interactions, as
observed in globular proteins.

The success of our approach underlines some
common, fundamental properties of sequences
with stable folded structures. The native structure
of folded proteins corresponds to a pronounced
energy minimum, with no other conformations
having comparable energy.44,45 Ensuring this
energetic separation demands the native structure
to efficiently use the interactions compatible with
the given sequence. As the maximum capacity for
each amino acid to participate in these interactions
is limited by its chemical nature, the amino acid
composition can be related to the total interaction
energy pertaining to the most favorable interaction
pattern among all residues present in a protein. The
effectiveness of our model in estimating the pair-
wise energy content can be attributed to folded
structures being close to the optimal energy level
allowed by the amino acid residues in the sequence.

The energy per residue of stably folded proteins
falls into a quite narrow range, dominated by
favorable interactions; the total pairwise energy
estimated by our approach is consistent with this
energy range. In contrast, the predicted energy of
IUPs is higher. An important conceptual point is
that a polypeptide with an amino acid composition
compatible with a folded structure does not
necessarily have a unique structure. This can be
easily demonstrated by considering the random
permutation of sequences of folded proteins.
Although we predict the same energy for the
myriad of sequences compatible with a particular
amino acid composition, for most of themwe expect
no corresponding unique structure. Similarly, we
predict globular-like energy for truncated domains
or proteins, although these sequences are not likely
to fold on their own. Nonetheless, these poly-
peptides are not IUPs either, since they exhibit some
tendency to form contacts. The way around this
dilemma in the present approach is that it predicts
the optimum of energy, which is not generally
achievable by a random sequence. Folded

structures, however, are realized by highly evolved
sequences, compatible with these energies. IUP
sequences are also special, selected by evolution to
avoid the formation of favorable contacts in any
conformation. The finding that the estimated total
interaction energy reproduces the basic difference
between structured and disordered proteins
basically underlines the concept of protein disorder,
i.e. that the lack of a well-defined 3D structure is an
intrinsic property of certain evolved proteins.

Our ability to reproduce these special features
depends on using the right potentials for approach-
ing the actual interaction energies. The goodness of
such extracted potentials is usually tested by their
ability to identify the native structure as the lowest
energy state among all the proteins in a dataset. The
particular approach, proposed by Thomas & Dill,20

relies on the Boltzmann relation to extract energy-
like quantities from amino acid pairing frequencies,
but relative to a reference state obtained through an
iterative protocol to reflect the predicted ensemble
of interactions. This approach aims not only at
discriminating the native structure from decoys but
also at giving the ratios of the interaction energies
correctly. Thus, these potentials are the closest to
reproducing the true energies that drive amino acid
residues to form, or avoid, contacts. This could
explain why the Thomas–Dill matrix outperformed
other matrices in estimating the pairwise energy
content of disordered proteins.

In the light of this special property of the
underlying interaction matrix, we can also interpret
the unexpected finding that the average energy
level of IUPs is very close to zero, i.e. stabilizing and
destabilizing interactions cancel. Although the
absolute energy values were arbitrary, this finding
is invariant to scaling, thus this energetic neutrality
is a genuine property of disordered proteins. At the
level of individual proteins, this neutrality may
result from an overall lack of long-range inter-
actions, but also from the balance of local organiz-
ation and long-distance repulsion. For some IUPs,
however, the balance appears to be set off towards
net stabilization. Indeed, the predicted pairwise
energy content of proteins with a molten-globule
type of disorder30 on average is more favorable
compared to coil-like disordered proteins. It will be
interesting to see how such individual structural
features correlate with function.

As seen, our approach provides a realistic
approximation of structural interaction energy of
proteins, enabling the prediction of intrinsic struc-
tural disorder. This idea of the importance of
interaction capacity has also been raised recently
by work in which the average number of contacts
per residue was used as an indicator of disorder.46

Our quadratic formula combined with the energy
predictor matrix captures the energetic aspect of
this observation. By limiting the calculation to a
predefined sequential neighborhood, it yields a
position-specific score characteristic of the tendency
of a given amino acid to fall into a structurally
ordered or disordered region. This application we
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term IUPred and intend to make it publicly
available via the Internet. The logic of IUPred differs
from previous prediction algorithms, which were
trained on disordered proteins/segments. As
already alluded to, these approaches mostly suffer
from inconsistencies in the underlying databases,
i.e. the inclusion of sequences of intrinsic order
classified as disordered and sequences of intrinsic
disorder classified as ordered. As IUPred was not
trained on such data, its unbiased assessment of the
structural status of an unknown sequence/segment
is of confirmatory value. We have tested this
conclusion by comparing IUPred with generally
accepted predictors, PONDR VL3H, DISOPRED2
and GlobPlot, on disordered databases and by
examining predictors on individual proteins.
Although predictions were similar with the IUP
dataset, IUPred predicted the most disorder and
agreed best with experimental data (Table 4).

Decomposition of the energy matrix connects our
model to previous attempts to predict IUPs by using
simple physico-chemical properties of proteins.
Some of the eigenvectors with the largest eigen-
values showed strong correlations with physico-
chemical parameters, such as hydrophobicity,
cysteine content, structure-breaking properties
and net charge (Figure 3). Two of these, hydro-
phobicity and net charge have been used in the
Uversky plot to separate globular proteins and
IUPs,17 and the importance of structure-breaking
amino acid residues has also been noted.5,6 We
found that the eigenvector with the highest eigen-
value matches the Sweet–Eisenberg hydrophobicity
scale32 the best, in accordance with a previous
analysis of amino acid factors discriminating
structured proteins and IUPs.16 This concurrence
vindicates our approach, as it does not rely on prior
experimental data on IUPs, still it automatically
finds and combines the properties that are import-
ant for this task. Our predictor combines these
factors in a quadratic function, which distinguishes
it from previous, propensity-based linear predic-
tors.13–15,46 As a result of the higher-order statistics,
the contribution of a given amino acid to disorder/
order discrimination is context-dependent, i.e. it
depends on the amino acid type as well on the
amino acid composition of the sequential neighbor-
hood of the given residue. For example, the
contribution of Lys would be different if it is
surrounded by other positive charges, implying an
increase in the probability of unfavourable inter-
actions, than if it is surrounded by negatively
charged residues. This is in accordance with high
net charge, and not simply the total charge, being
one of the key determinants of disorder.17 This
interdependence of residues is manifest in the
appearance of flavors of disorder.13

In summary, our model estimates the pairwise
energy of proteins from their amino acid compo-
sitions. This allows us to test sequences for
foldability, even in the absence of a structural
model. By sequentially limiting the calculation,
it serves as a predictor of protein disorder. By

applying this scheme for IUPs, we showed that
these proteins have a special amino acid compo-
sition, which, independently of the actual sequence,
does not allow the formation of sufficient favorable
contacts expected for folded proteins. Given the
heterogeneity and ambiguity of experimental tech-
niques used to demonstrate the lack of structure so
far, a key inference from our studies is that IUPs
share a common property that distinguishes them
from the class of folded proteins.

Materials and Methods

Databases

For the purpose of parameter fitting, the September
2001 release of the PDB-select database47 with !25%
sequence identity cutoff was used. Entries with resolution
worse than 2.5 Å, with chain breaks or with Ca atoms
only, were omitted; the resulting dataset contained 953
protein chains. During the force field optimization, we
considered the native structure for non-transmembrane
sequences with length between 40 and 350, reducing the
number of proteins to 785 (Glob_list), but all structures
were used as a skeleton to generate decoys.
In principle, this list could also contain IUPs, e.g. as part

of multichain complexes. For the purpose of testing we
created a filtered list of globular proteins with the aim to
eliminate the potentially dubious cases. A newer release
of PDB-select (April 2002) was used, and all entries
involving multiple chains, transmembrane segments, or
the binding of nucleic acid residues, heme, or metal ions
were omitted, resulting in 559 proteins (Filt_Glob_list).
The two lists (Glob_list and Filt_Glob_list) are given in the
Supplementary Data (Tables S1 and S2).
The IUP dataset (IUP_list) contained 129 proteins and

protein segments with experimentally verified disordered
status. The complete list is given in the Supplementary
Data (Table S3). The total number of residues in this set is
26,794.

Force field optimization

A coarse-grained approach was used to describe the
interactions between residues. Amino acid residues were
treated as single interaction centers located at their Cb

atom (virtual Cb in the case of Gly). The low-resolution
energy of contacts between different amino acid residues,
expressed in the form of a 20 by 20 matrix, was calculated
from the observed frequencies of amino acid pairs. The
interaction matrix was calculated by the iterative algor-
ithm proposed by Thomas & Dill,20 but on 785 proteins
(Glob_list) instead of the original 37. The resulting matrix
M is given in Table 1.
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ABSTRACT

Summary: Intrinsically unstructured/disordered proteins and domains

(IUPs) lack a well-defined three-dimensional structure under native

conditions. The IUPred server presents a novel algorithm for predicting

such regions from amino acid sequences by estimating their total pair-

wise interresidue interaction energy, based on the assumption that IUP

sequences do not fold due to their inability to form sufficient stabilizing

interresidue interactions. Optional to the prediction are built-in para-

meter sets optimized for predicting short or long disordered regions

and structured domains.

Availability: The IUPred server is available for academic users at

http://iupred.enzim.hu

Contact: zsuzsa@enzim.hu

INTRODUCTION

Instrinsically unstructured proteins exist as an ensemble of altern-

ative conformations, in contrast to folded, globular proteins that

have unique native structure. Significant fraction of known gen-

omes encode for proteins with regions of disordered structure. In

some eukaryotic genomes >20% of the coded residues are predicted

as disordered (Dunker et al., 2000; Ward et al., 2004a). In many

cases a protein is fully disordered, while in many other cases there

are long disordered segments in otherwise ordered, folded proteins

(Tompa, 2002; Dyson and Wright, 2005). Despite their lack of a well-

defined globular structure, these proteins carry out basic functions

(Iakoucheva et al., 2002; Ward et al., 2004a), mostly associated with

signal transduction, cell-cycle regulation and transcription. Several

methods have been developed to predict the disordered character

from amino acid sequences. Some are based on the special amino

acid composition of fully disordered proteins, i.e. the abundance of

hydrophilic residues and a high net charge (Uversky et al., 2000;

Vucetic et al., 2003), whereas others use various machine learning

approaches trained on specific datasets (Obradovic et al., 2003; Ward

et al., 2004a; Linding et al., 2003b). Recently, it was suggested that

these sequences do not have the capacity to properly wrap backbone

hydrogen bonds (Fernandez and Berry, 2004), which has also been

shown to be important for protein stability.

BACKGROUND

Our method is footed on the physical explanation of the

ordered/disordered nature of proteins. Globular proteins make a large

∗To whom correspondence should be addressed.

number of interresidue interactions, providing the stabilizing energy

to overcome the entropy loss during folding (Garbuzynskiy et al.,

2004). In contrast, intrinsically unstructured/disordered proteins and

domains (IUPs) have special sequences that do not have the capacity

to form sufficient interresidue interactions. To discriminate between

ordered and disordered regions in proteins, we have developed a

new approach that estimates the potential of polypeptides to form

such stabilizing contacts by using a statistical interaction poten-

tial (Thomas and Dill, 1996; Dosztányi et al., 2005). It was shown

that the sum of interaction energies can be estimated by a quadratic

expression in the amino acid composition, which takes into account

that the contribution of an amino acid to order/disorder depends not

only on its own chemical type, but also on its potential interaction

partners (Dosztányi et al., 2005).

The calculation involves a 20 × 20 energy predictor matrix, para-

meterized by a statistical method to approach the expected pairwise

energy of globular proteins of known structure. Comparing globular

proteins and disordered ones, a clear separation of their energy con-

tent is found (Dosztányi et al., 2005). As no training on disordered

proteins is involved, this distinction underlines that the lack of a

well-defined three-dimensional structure is an intrinsic property of

certain evolved proteins. This approach was turned into a position-

specific method to predict protein disorder by considering only the

local sequential environment of residues within 2–100 residues in

either direction. The score is then smoothed over a window-size

of 21. This prediction method (IUPred), when tested on datasets

of globular proteins and long disordered protein segments, showed

improved performance over some other widely used methods, such as

DISOPRED2 (Ward et al., 2004a,b) and PONDR VL3H (Obradovic

et al., 2003).

THE IUPred SERVER

The web server takes a single amino acid sequence as an input and

calculates the pairwise energy profile along the sequence. The energy

values are then transformed into a probabilistic score ranging from

0 (complete order) to 1 (complete disorder). Residues with a score

above 0.5 can be regarded as disordered. Optional is the predic-

tion of long disorder, short disorder, and structured domains, each

using slightly different parameters. The main profile of our server

is to predict context-independent global disorder that encompasses

at least 30 consecutive residues of predicted disorder. A different

set of parameters is suited for predicting short, probably context-

dependent, disordered regions such as missing residues in the X-ray

© The Author 2005. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oupjournals.org 3433

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
io

in
fo

rm
a
tic

s
/a

rtic
le

/2
1
/1

6
/3

4
3
3
/2

1
5
9
1
9
 b

y
 E

ö
tv

ö
s
 L

o
rá

n
d
 U

n
iv

e
rs

ity
 L

ib
ra

ry
 u

s
e
r o

n
 0

2
 J

a
n
u
a
ry

 2
0
2
3

               dosztanyi.zsuzsanna_45_22



Z.Dosztányi et al.

structure of an otherwise globular protein. For this application the

sequential neighborhood of only 25 residues is considered. As chain

termini of globular proteins are often disordered in X-ray structures,

this is taken into account by an end-adjustment parameter that favors

disorder prediction at the ends.

The dependable identification of ordered regions is a crucial step

in target selection for structural studies and structural genomics pro-

jects (Linding et al., 2003a). Finding putative structured domains

suitable for stucture determination is another potential application

of this server. In this case the algorithm takes the energy profile and

finds continuous regions confidently predicted ordered. Neighboring

regions close to each other are merged, while regions shorter than

the minimal domain size of at least 30 residues are ignored. When

this prediction type is selected, the region(s) predicted to correspond

to structured/globular domains are returned.

The core program to calculate the pairwise energy profile and dis-

order probability is written in C, the web server is written in PHP.

The calculation of the energy profile is based on single sequence,

without time-consuming alignment calculations. To further facilitate

the easy accessibility for scripting, a simple text output is generated

on default. However, the user can also request a graphical output.

The plot shows the disorder tendency of each residue along the

sequence. The plot is generated by the JpGraph software (JpGraph,

2005, http://www.aditus.nu/jpgraph/) on the fly, without storing the

graphical images on the local machine. When the prediction type of

structured domains is selected, these are highlighted on the plot by

thick lines. For long sequences, the graph is shown for fragments of

user-defined fixed length, 500 on default.
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Protein interaction networks display approximate scale-free topology, in which hub proteins that interact

with a large number of other proteins determine the overall organization of the network. In this study,

we aim to determine whether hubs are distinguishable from other networked proteins by specific

sequence features. Proteins of different connectednesses were compared in the interaction networks

of Saccharomyces cerevisiae, Drosophila melanogaster, Caenorhabditis elegans, and Homo sapiens

with respect to the distribution of predicted structural disorder, sequence repeats, low complexity

regions, and chain length. Highly connected proteins (“hub proteins”) contained significantly more of,

and greater proportion of, these sequence features and tended to be longer overall as compared to

less connected proteins. These sequence features provide two different functional means for realizing

multiple interactions: (1) extended interaction surface and (2) flexibility and adaptability, providing a

mechanism for the same region to bind distinct partners. Our view contradicts the prevailing view that

scaling in protein interactomes arose from gene duplication and preferential attachment of equivalent

proteins. We propose an alternative evolutionary network specialization process, in which certain

components of the protein interactome improved their fitness for binding by becoming longer or

accruing regions of disorder and/or internal repeats and have therefore become specialized in network

organization.

Keywords: disordered protein • unstructured protein • protein-protein interaction • interaction network • hub protein

Introduction

Protein function at the cellular level has a significant

contextual component determined by the multitude of interac-

tions among proteins in the living cell. Therefore, a primary

focus of post-genomic molecular biology has been to catalog

and interpret all the interactions of the proteome. As a result

of large-scale proteomic efforts, significant progress has been

made. Interaction network data have been generated for several

organisms, including Saccharomyces cerevisiae (S. cerevisiae),1

Drosophila melanogaster (D. melanogaster),2 Caenorhabditis

elegans (C. elegans),3 and Homo sapiens (H. sapiens).4 Although

these distinct interactomes differ in many details, all seem to

display a scale-free topology, or at least an approximation

thereof,5 characterized by a power-law distribution of the

degree of connectivity.6-8 In such networks, most proteins (the

network nodes) are connected to relatively fewer, highly

connected proteins (the hubs). These hub proteins play es-

sential roles in organizing the network. The presence of hubs

explains the salient features of biological networks such as

robustness, because random removal of nodes is much better

tolerated in a scale-free network than in a random network.

This robustness resulting from the scale-free topology is of

prime importance in cell survival.8

Because protein interactomes share the scale-free topology

with many other networks in nature, it has been suggested that

their emergence has been governed by the same underlying

principles, i.e., steady and random growth and preferential

attachment to already highly connected nodes.6 While this

random-growth (gene-duplication) model agrees with a variety

of considerations and observations,9,10 it oversimplifies the

biology of protein interactions. In particular, this model does

not consider differences among proteins nor the potential of

proteins to adapt their interaction capacity to their specialized

functions through molecular evolution. In fact, recently it has

been formally demonstrated that scale-free topology in protein

interactomes can arise from varying fitness values of nodes11

and can be explained by simple genetic events, without

assuming a selective pressure on network topology itself.12

Furthermore, it has been suggested that the large interaction

capacity of hubs might be directly manifested in discernible
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physicochemical feature(s).9 Our goal in this study is to explore

whether hub proteins are enriched in features such as intrinsic

structural disorder and sequence repeats.

Recently, it has become clear that a large fraction of

eukaryotic proteins lack a well-defined 3D structure, but

manifest their functions in an intrinsically unstructured or

disordered state.13-19 Computational studies have shown that

this feature increases with the increasing complexity of the

organisms and prevails in regulatory and signal-transduction

proteins.20,21 This structural state confers important functional

features, such as increased interaction capacity,22-24 enhanced

association rates,25-27 and adaptability to different partners.28,29

Apparently, these features are of potential benefit in functions

realized in protein interaction networks, as suggested previ-

ously.30,31 In fact, disorder has been noted to contribute to hub

characteristics in several ways, where hubs may be mostly

disordered, partially disordered, or ordered (i.e. highly struc-

tured), but interacting with disordered partners.31 Disordered

proteins or segments are often generated by the expansion of

internal repeat regions32 and often concomitantly exhibit low-

complexity amino acid compositions.33,34 Internal repeat re-

gions can also encode for recurring structural elements in

ordered proteins, whose presence could lead to generation of

novel proteins or functional variants.35 Whether disordered or

ordered, sequence repeats might afford proteins enhanced

evolutionary prospects due to an enlarged available surface

area, which predisposes them for functioning via protein-

protein interactions.35 Since many disordered regions do not

contain the salient sequence features of low complexity or

repeats,36 and low complexity does not represent an absolute

discriminator for order and disorder,36 disorder prediction is

needed to indicate the lack of specific 3D structure in the

absence of ligands and partners.16-19 In fact, because of the

significant difference in the various attributes of sequences

encoding for disordered and ordered proteins, prediction of

intrinsic disorder in proteins can play a crucial role in the

comparison and analysis of different proteomes.21,37

Motivated by these implications, we have used bioinformat-

ics methods to predict protein disorder, sequence repeats, and

segments of low complexity in the interaction networks of S.

cerevisiae (YEAST), D. melanogaster (FLY), C. elegans (WORM),

and H. sapiens (HUMAN). In this study, we found that hub

proteins tend to be larger and contain significantly longer and

more frequent regions of these sequence features, which

indicate such features as the structural basis for the large

interaction capacity of hub proteins. Our extensive global

analysis and findings provide strong evidence supporting the

generalization of recent observations regarding the importance

of disorder for a few hub proteins31 and also for a highly

restricted interactome dataset.38 In more general terms, our

observations challenge the simplistic view that the evolution

of scale-free behavior by random growth leads to preferential

attachment.6 We offer a more dynamic and realistic evolution-

ary perspective, in which network specialization is primarily

accomplished via evolution of hub proteins through the accrual

of “hub-friendly” sequence features.

Materials and Methods

Sequence Features. Proteins were analyzed for four se-

quence features: length, regions of predicted protein disorder,

low complexity, and sequence repeats. Sequences were down-

loaded from GenBank and were studied using the programs

available via the Internet as follows: protein disorder, IU-

Pred39,40 available at http://iupred.enzim.hu/; low complexity,

SEG33 downloaded from the ftp site ftp://ftp.ncbi.nlm.nih.gov/

pub/seg/; and sequence repeats, internal repeat finder41 avail-

able at http://nihserver.mbi.ucla.edu/Repeats/. Disorder and

low complexity could be assigned to residues, from which the

percentage of the sequence covered could be calculated. In the

case of repeats, however, the program returns only an estima-

tion of the repeat number and repeat length, from which

percentage coverage, instead of the actual location of the repeat

region, could be calculated. Various combinations of these

properties, calculated for each protein as the maximum

percentage of the properties, were also analyzed.

Datasets. The list of all protein-protein interactions of yeast

(YEAST) was downloaded from the BIND database (2004

November release). A “core dataset” of the interactome is also

defined as the subset of interactions observed by several

different large- or small-scale experiments, or confirmed by

studies on paralogues. This YEAST_CORE dataset was down-

loaded from the DIP database.42 The C. elegans interactions

(WORM) were also taken from BIND.3 The Drosophila inter-

actome (FLY) was downloaded from the CuraGen database at

http://www.curagen.com/.2 The interaction file also specifies

a reliability score for each interaction. The subset of the

“confident interactions” (FLY_CONF) was also separately ana-

lyzed. The data for human interacting proteins (HUMAN) were

downloaded from human protein reference database http://

www.hprd.org/.4 The major features of the datasets are shown

in Table 1.

Hub proteins (HUBs) were defined in two different ways. On

one hand, we applied a fixed cutoff, when proteins with five

or more interactions were defined as candidate hubs, similarily

to a previous work.38 On the other hand, because hub function

is a system property and it cannot be appropriately defined at

the level of individual proteins, we also applied a floating cutoff

definition, in which a unique cutoff was set for each interac-

tome depending on the dataset. In this case, hub proteins were

Table 1. Selected Properties of the Databasesa

YEAST YEAST_CORE WORM FLY FLY•CONF HUMAN

Interactionsa 10741 6600 3992 20433 4733 25207
proteinsb 4358 2640 2616 7003 4646 7560
proteins in IC_1c 1578 793 1527 2282 2569 1997
sequences in genomed 6357 6357 19957 18484 18484 32035
no. of HUBS (cutoff)e 766 (5) 141 (5) 282 (5) 1910 (5) 213 (5) 2329 (5)
no. of HUBS (cutoff)f 398 (9) 228 (12) 229 (6) 651 (15) 360 (4) 721 (14)
maximum interactiong 288 111 187 175 40 188

a The table shows the total number of interactions (a), the total number interacting proteins (b), the number of proteins with one interaction (c), the
number of sequences in the genomes (d), the number of HUB proteins (the cutoff value used to define HUB proteins) with fixed cutoff (e), the number of HUB
proteins (the cutoff value used to define HUB proteins) with floating cutoff (f), and the maximum interaction of a single protein (g) for the various datasets
used.
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defined as the top 10% of proteins with the highest number of

interacting partners (cf. Table 1, Figure 1). The properties of

hub proteins were compared to two reference datasets. IC_1

contains proteins with exactly one interaction. The other

reference dataset was RAN, a random sample of genome

sequences. To generate RAN, the appropriate genome se-

quences were downloaded from the COGENT database at

http://cgg.ebi.ac.uk/services/cogent/info.html. Due to com-

putational considerations, a maximum of 10 000 proteins,

representative of the whole genomes, were randomly selected

and their sequence features were individually determined. We

chose to compare hub proteins to these reference datasets

primarily because of the above-mentioned uncertainty in hub

definition. Due to this, the dataset complementary to hubs at

any chosen cutoff value will also contain proteins that behave

as hubs themselves, which will compromise the statistical

difference between hubs and nonhubs. Comparing two distinct

reference datasets, RAN, which statistically represents the whole

interactome and thus contains hubs, and IC_1, which by

definition does not, are expected to provide the information

necessary to resolve this dilemma.

Statistical Approaches. For each sequence, the total number

or proportion of residues with a given feature was determined.

Beside the average of these values, their distributions were also

analyzed, to obtain a more detailed picture. The range of the

values was divided into five bins so that roughly equal portions

of RAN sequences fell into each bin. Since occasionally more

than one-fifth of proteins lack disorder/low complexity/repeats,

the first bin can cover more than 20% of proteins, whereby

the remaining proteins could then be divided into four equal

bins. Nevertheless, these unequal bins with similar number of

data points give statistically more reliable results than bins of

equal width, where the first bin would contain most data points

and the last bin only a few.

The distribution of properties was compared between HUB,

IC_1, and RAN proteins (for definition and explanation, see

Datasets). The statistical significance of the differences was also

assessed. The basic assumption was that deviations arise

because of limited sample size. This was estimated by scooping

into the reference dataset, selecting as many random proteins

as HUB contained, and repeating this procedure 5000 times.

These random samples were then used to calculate the

standard deviation of the percentage of proteins falling into

the given bin. The deviation was also approximated with the

square root of the actual data points in the given bin. This

estimation gave very similar results (not shown).

Given the distribution of the percentage of hub proteins and

the reference proteins (IC_1 or RAN) in each bin and their

deviations, the likelihood that they derive from the same

distribution can also be estimated using ø2 statistics: ø2
) Σ(ai

- bi)2/(2 × devi
2). For each i bin, ai and bi is the percentage of

proteins falling in the given bin for HUB proteins and for

proteins in the reference set, respectively, and devi is the

standard deviation of the percentage of proteins in the bin,

calculated from the 5000 random samples taken from the

reference set, and used for both sets. By virtue of this value,

we can test the hypothesis that the two distributions are not

the same. If this value exceeds 13.3 (using 4 as the degrees of

freedom), the two distributions are different at a confidence

level of 99%.

Results

Connectivity of the Interactomes Studied. The scale-free

topology of interaction networks is primarily manifested in a

power-law distribution of the degree of connectivity. Different

interactomes, however, have been determined by different

experimental techniques and vary in coverage, which may affect

their global topological features.5 For a comparison of the actual

databases used herein (Table 1), Figure 1 shows the percentage

of proteins versus their numbers of interactions on a log-log

scale. The YEAST and WORM data follow most closely the linear

relationship expected, but the other datasets deviate signifi-

cantly from a straight line, as already noted.2,5 Despite the

deviation from strict linearity, however, the data are amenable

to our proposed analyses, with a relatively small fraction of

proteins having large numbers of interactions.

Sequence Features in Hubs and Nonhubs, and the Effect

of Cutoff Choice. Four sequence features (sequence size and

the number of residues with either of the three sequence

attributes: structural disorder, sequence repeats, and low

complexity) have been compared between hubs and nonhubs

by calculating the differences between the averages for hubs

proteins (HUB) and proteins with exactly one interaction (IC_1)

and a random sample of genome sequences (RAN), for all four

species (Table 2). The mean and standard deviation values

show that hubs are signicantly longer, and contain more of,

and a greater proportion of, structural disorder, sequence

repeats, and low complexity than nonhubs. Hubs in this

experiment have been defined by a fixed cutoff of five or more

interaction partners. These comparisons show that the length

of the protein and disorder are the strongest discriminators of

hubs from reference proteins, with repeats and low complexity

displaying smaller, but still significant, differences. Worth

noting is the unusual behavior of the WORM database, where

IC_1 proteins also seem to be biased. A further point is that

these data allow an insight into the evolution of hub function.

Comparing the four species, hubs appear to have gained mostly

in length and disorder, with a smaller incerase in the other two

features. Thus, these four features not only characterize hubs

today, they also have contributed to the evolution of hub

function and the increase in complexity of protein interacto-

mes.

Figure 1. Degree of connectivity in the interaction databases.

The percentage of proteins with interacting partners above the

given cutoff value is shown for YEAST (red squares), FLY (blue

triangles), WORM (brown diamonds), and HUMAN (green x)

databases on a log-log scale. The filled symbols correspond to

confident/core interactions. A power-law distribution assumes a

linear relationship.
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The literature offers no clue regarding the specification of

the boundary between hubs and nonhubs; indeed, the concept

of being a hub is qualitative rather than quantitative. Since the

choice of the cutoff could affect the above results, an experi-

ment was carried out to examine this uncertainty. Figure 2

shows the results of how the mean of the difference between

hubs and random sample of proteins changes with the cutoff

value. The mean for hub proteins is higher than the average

for RAN and tends to increase with increasing cutoff values up

to very large values with the exception of HUMAN, which shows

a diminution of the difference with high values. The reason

for this deviation is not apparent but may be related to the

distinction that most of the data in the human interactome4

have come from curated individual observations, whereas the

other three datasets have been generated from high-throughput

studies. Of course, as the boundary value increases, the number

of hub proteins decreases, which increases the standard

deviation and impairs the estimation of the significance of the

difference. Nevertheless, these data support the overall conclu-

sion that hubs have discernible structural characteristics that

do not depend on hub definition, i.e., on the choice of the

cutoff value.

Characterizing Hubs by Applying a Floating Cutoff Defini-

tion. Here we further address the point that hub function is a

system property and cannot be exactly defined at the level of

the individual proteins. Furthermore, various interactomes have

been determined by different techniques, which are of different

sensitivity and may not provide the same information even on

the very same protein. We therefore also adopted an alternative

definition using a floating cutoff definition in which hub

proteins were considered as the top 10% of proteins sorted

according to the number of interaction partners. This defines

hubs in terms of their relation to the entire interactome and

thereby increases the statistical power of our analysis.

For the four species, the occurrence of the four attributes in

hubs has been compared to that in IC_1 and RAN, by dividing

the range of values obtained into five bins so that roughly an

equal portion of RAN sequences fell into each bin (for details,

see Statistical Approaches). The results are shown in Figure 3.

In practically all the cases, hub proteins are underrepresented

in the first or first two bins and are overrepresented in the last

or last two bins. In other words, hubs tend to have more

disorder, more sequence repeats, or more low complexity

regions than nonhubs. The trend is similar for the sizes of

proteins: the polypeptide chains of hubs are significantly

longer than those of nonhubs, with the possible exception of

Drosophila, in which case there is an excess of hubs with

medium lengths (centered at around 400 and 500 amino acids).

A concise description of all these comparisons is given in

Table 3. Here, the difference between the distributions of

sequence features and the total length of hubs and both

random genome samples and proteins with exactly one inter-

action is determined. The difference is characterized by a ø2

value and the corresponding probability that the two sets of

data are of different distributions. Hubs and the reference

datasets significantly differ in practically all features for all the

Table 2. Number of Residues and Proportion with Sequence Features of Hubs in Four Interactomes with Fixed Cutoffa

IC_1 RAN

datasets property HUB average average SD average SD

Average Number of Residues
YEAST disorder 143.69 87.38 5.09 92.11 5.45
YEAST lc 45.20 32.86 1.79 34.35 1.93
YEAST repeat 23.44 14.52 2.43 17.84 2.94
YEAST length 532.61 430.23 12.01 469.72 13.61
WORM disorder 140.34 144.09 12.82 77.94 9.54
WORM lc 49.28 47.66 3.90 33.62 3.43
WORM repeat 49.20 61.20 14.14 36.65 10.39
WORM length 494.90 506.24 26.00 436.73 22.87
FLY disorder 174.55 144.07 5.37 163.40 6.30
FLY lc 68.90 57.95 2.20 65.65 2.55
FLY repeat 43.22 38.43 3.35 42.75 3.58
FLY length 482.66 507.85 10.06 541.08 11.45
HUMAN disorder 203.34 168.29 5.91 119.14 4.22
HUMAN lc 70.22 59.76 1.70 43.76 1.42
HUMAN repeat 94.51 72.45 5.60 56.48 3.73
HUMAN length 698.33 621.82 11.40 467.36 8.99

Proportion of Residues
YEAST disorder 0.2460 0.1532 0.0760 0.1730 0.0079
YEAST lc 0.0818 0.0713 0.0034 0.0767 0.0036
YEAST repeat 0.0331 0.0287 0.0041 0.0302 0.0040
WORM disorder 0.2493 0.2124 0.0149 0.1636 0.0136
WORM lc 0.1006 0.0906 0.0077 0.0808 0.0069
WORM repeat 0.0873 0.0660 0.0099 0.0588 0.0095
FLY disorder 0.3148 0.2280 0.0059 0.2594 0.0063
FLY lc 0.1381 0.1010 0.0030 0.1140 0.0031
FLY repeat 0.0875 0.0568 0.0034 0.0633 0.0034
HUMAN disorder 0.2722 0.2292 0.0050 0.2389 0.0054
HUMAN lc 0.1027 0.0999 0.0023 0.0955 0.0024
HUMAN repeat 0.0967 0.0785 0.0039 0.0864 0.0042

a For each species (S. cerevisiae, D. melanogaster, C. elegans, and H. sapiens) and each sequence feature (disorder, low complexity (lc), repeats, and total
length in the case of absolute numbers) the distribution of the number of residues or the proportion of the given feature in the sequences of hub proteins is
compared to that of both the genome sequences (RAN) and the IC_1 (proteins with exactly one interaction). HUB proteins were defined as proteins with at
least five interactions. The averages were calculated for HUB proteins, for the RAN and IC_1 datasets. The SD refers to the standard deviation calculated from
the average properties over random samples of proteins, matching the number of HUB proteins but selected from RAN and IC_1 datasets, respectively (see
Materials and Methods).
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species, with the possible exception of the low complexity in

WORM and length in YEAST_CORE. It is also to be noted that

differences are more significant in some cases with RAN than

IC_1, which suggests IC_1 as a class is not representative of

the whole genome but is biased due to the methods used for

high-throughput screening of protein-protein interactomes.

In general, there are some minor differences between the

datasets. Disorder is a strong distinguishing feature in the

various interactomes, with length and repeats being also

convincing in most cases. In several instances low complexity

appears to be the least obvious but is still significant. Apart

from these minor differences, however, it is safe to conclude

that all three features are important, and thus conserved, in

defining hub behavior.

Proportion of Various Sequence Features in Hubs. In

addition to the overall length of regions with a particular

feature, it is also worth investigating how the proportion of

regions with a given feature differs between hubs and nonhubs.

Regions with a given feature were identified and normalized

by the size of the protein for the four species, as shown in

Figure 4. Again, the difference in favor of hubs is significant in

most cases, with the exception of low complexity in

YEAST_CORE, as quantitatively rendered in Table 4. Compared

to the total length of features, there are some differences in

the order of the importance of features, which are probably of

secondary importance. Overall, these data strongly suggest that

not only lengthy regions of disorder/repeats/low complexity

but also a high proportion of these features is likely to be

important for conferring advantages in terms of hub behavior.

Interdependence of Sequence Features. Because the three

features studied are not independent of each other, it is

important to determine the extent of their correlation. Although

intrinsically unstructured or disordered proteins are often

composed of repeats32 and low sequence complexity correlates

with the lack of a well-defined structure,36 the three features

are not perfectly correlated characteristics. Indeed their com-

binations are stronger indicators of hubs than any single one.

To characterize their interdependence, the difference of the

averages of individual features and their combinations between

HUB and RAN proteins has been determined (Figure 5). Among

the three properties, disorder exhibited the largest increase in

all species, whereas their combination increased the difference

even further. In contrast, low complexity in any combination

led to only a minor increase and showed a relatively high

correlation with both disorder and repeats (data not shown).

All Interactions versus Confident Interactions. A compari-

son of interactomes obtained in different studies has shown

that individual studies may have provided a low coverage of

the total interactome and contain a significant fraction of false

positive interactions.4,43 This suggests that the actual interaction

databases may not be representative, which may cause artificial

results in our studies. To minimize this possibility, we char-

acterized specific subsets covering reliable interactions only.

These are available for the Drosophila (FLY_CONF) and yeast

(YEAST_CORE) interactome (for definitions, see Datasets).

Restricting our analysis to the subset of confident interac-

tions did not alter the differences in any significant way (Tables

3 and 4), thus corroborating the prior major conclusions. The

differences of the averages are significant in most of the cases

by the measures ø2 and probability of difference in the

distributions of hubs and reference datasets.

Figure 2. Effect of hub definition on the difference between hubs and random proteins. Three sequence features, disorder (red), repeat

coverage (green), and low complexity (blue) are compared for YEAST, WORM, FLY, and HUMAN hubs (HUB) and a random selection

of proteins (RAN). The difference between the average values for HUB and RAN is shown as a function of the number of interactions,

above which a protein is considered a hub (cutoff). The light-colored stripe around the mean corresponds to the standard deviation.
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Figure 3. Total length of sequence features of hubs in interactomes. Comparison of the total number of residues with disorder (a), low

complexity (b), repeats (c), and the length of protein (d) for the yeast (YEAST), worm (WORM), Drosophila (FLY), and human (HUMAN)

interactomes. Green columns represent the borders of bins that contain about the same number of proteins calculated for the random

sample of genome sequences (RAN). Hub proteins are shown in red, and the random sample of proteins with exactly one interaction

(IC_1) are shown in blue. The height of the columns and the position of symbols represent the percent of proteins in the given database

that fall into the given bin, i.e., range of feature. The horizontal position of symbols is arbitrary, because it represents all data within

the given bin. The error bars correspond to the standard deviation calculated from IC_1.
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Discussion

The interaction networks of different species show remark-

able similarity in terms of the global feature of near scale-free

topology. In the interactomes examined, we found significant

deviations from a strict scale-free behavior (cf. Figure 1), with

an increasing deficiency of hubs toward higher connectedness.

In principle, this may be attributed to the suppression of hubs,2

to an approximation of scale-free behavior due to limited

sampling,5 or to some other factors, such as the limited size of

the network. Notwithstanding these reservations, the funda-

mental features of these networks derive primarily from the

presence of highly connected hubs. Thus, the molecular basis

of the function of hub proteins is key to understanding how

interaction networks provide the bases for cell function. In this

paper, we present evidence that hub proteins are significantly

larger, have more predicted disorder, and contain more

sequence repeats and/or low-complexity regions than nonhubs.

Our studies into the interdependence of the features have

shown that disordered segments and repeat regions are rela-

tively independent, and their presence in hubs provides

synergistic structural rationale for hub behavior. Low complex-

ity, on the other hand, is much worse in distinguishing hubs

from nonhubs and may actually compromise discrimination

between these functional classes (cf. Figure 5). Interpretation

of this sequence feature in terms of hub function, thus, may

lead to misleading conclusions.

As noted in the Introduction, structural disorder confers

many functional advantages, several of which provide the

rationale for its prevalence in hubs,16,18,19 as also suggested in

previous works.24,31 The observation that either the total length

of disordered segments or the proportion of disorder are

equally good attributes of hub function may actually imply two

alternative structural strategies. For example, the open structure

of intrinsically unstructured or disordered proteins provides a

large interaction surface, which enhances the capacity of the

protein for interactions.23 This is of clear benefit to proteins,

which interact simultaneously with many partners such as the

so-called party hubs.31,44 The presence of long repeat regions

may be rationalized on a similar ground.35 For several actual

examples of hubs, such as for caldesmon, BRCA1, and estrogen

receptor R, for example,31 the advantage of a large amount of

disorder has been demonstrated. Hub function may also benefit

because disorder significantly increases the association rate of

protein interactions,17,25 as formulated in the fly casting26 and

protein fishing27 models. In addition, multicomponent com-

plexes do not assemble very well from rigid components due

to steric clashes. In contrast, the use of coupled folding and

binding by flexible subunits facilitates the formation of such

multicomponent complexes by avoiding the steric problems

encountered by rigid subunits.45

A somewhat different structural logic may apply to proteins

that do not necessarily have long disordered regions but that

have a high proportion of disorder. These hubs may rely on

the malleability of their structures, which enable them to adapt

to distinct partners. Such adaptability has been described for

cyclin-dependent protein kinase inhibitors,28 for glycogen

synthase kinase 3â,46 for R-synuclein,47 and for the hypoxia

inducible factor 1R,18 and has been generalized as moonlight-

ing29 or polymorphism in the bound state.24 A variation on this

theme might be represented by ordered hubs, such as calm-

odulin,31 or 14-3-3 proteins,48 for which the partners utilize

disorder in an adaptative process. While such a use of disorder

by hub partners definitely occurs in some cases, we found no

statistical difference between hub partners and other proteins

(data not shown). To further investigate whether disorder may

be important for some hub partners, it will be necessary to

separately evaluate the partners of a large collection of highly

ordered hubs. Overall, the excess of the features studied in hubs

can be rationalized in terms of the functional specialization of

these proteins. It would be interesting to test additionally

whether the features are also correlated with the connectedness

of hubs. Due to the relatively low number of hubs and the

extremely wide range of the number of interaction partners

(Table 1), the significance of this possible correlation could not

be established given the current limited dataset (data not

shown).

In addition, the excess of disorder and repeat regions in hubs

also has general evolutionary implications. Hubs play a central

role in defining the scale-free topology of interaction networks,

but the prevailing model for the emergence of such a contextual

arrangement fails to capture the basic capacity of proteins to

undergo evolutionary changes. The most influential model of

network evolution assumes that random growth and prefer-

ential attachment to already highly connected nodes explains

the emergence of scale-free behavior.6,7 The underlying evo-

lutionary mechanism has been assumed to be gene duplication,

which, due to mere chance, prefers nodes already connected

to nodes with multiple links.9,10 Although scale-free topology

in principle may confer several selective advantages, such as

error tolerance,8 avoidance of jamming,49 and hierarchical

modularity,44 upon which selective pressure may act, its

suggested development oversimplifies the situation in which

deletion of gene products, rewiring of physical contacts, and

Table 3. Number of Residues with Sequence Features of Hubs

in Four Interactomes with Floating Cutoffa

compared to RAN compared to IC_1

datasets property ø2 probability ø2 probability

YEAST disorder 49.14 >0.999 99 58.81 >0.999 99
YEAST lc 23.94 0.999 91 38.87 >0.999 99
YEAST repeat 16.05 0.997 04 13.27 0.989 99
YEAST length 27.53 0.999 98 42.27 >0.999 99
YEAST_CORE disorder 24.89 0.999 94 8.79 0.933 46
YEAST_CORE lc 13.43 0.990 64 4.74 0.685 45
YEAST_CORE repeat 58.93 >0.999 99 36.29 >0.999 99
YEAST_CORE length 21.65 0.999 76 3.36 0.500 88
WORM disorder 53.13 >0.999 99 8.24 0.916 94
WORM lc 25.53 0.999 96 2.71 0.392 13
WORM repeat 20.43 0.999 58 4.31 0.633 74
WORM length 17.55 0.998 48 5.45 0.755 59
FLY disorder 53.67 >0.999 99 84.06 >0.999 99
FLY lc 27 0.999 98 54.14 >0.999 99
FLY repeat 63.67 >0.999 99 106.29 >0.999 99
FLY length 17.84 0.998 67 12.28 0.984 60
FLY_CONF disorder 29.62 0.999 99 28.75 0.999 99
FLY_CONF lc 3.49 0.520 86 4.57 0.665 33
FLY_CONF repeat 15.72 0.996 58 23.30 0.999 89
FLY_CONF length 32.9 0.999 99 24.83 0.999 95
HUMAN disorder 125.77 >0.999 99 40.93 >0.999 99
HUMAN lc 64.37 >0.999 99 5.66 0.774 17
HUMAN repeat 79.14 >0.999 99 41.68 >0.999 99
HUMAN length 170.41 >0.999 99 28.93 0.999 99

a For each species (S. cerevisiae, D. melanogaster, C. elegans, and H.
sapiens) and each sequence feature (disorder, low complexity (lc), repeats,
and total length) the distribution of the number of residues with the given
feature in the sequences of hub proteins is compared to that in both the
genome sequences (RAN) and the IC_1 (proteins with exactly one interac-
tion). The difference is characterized by ø2 values (see Materials and Methods)
and the corresponding probability that the two sets of data are of different
distributions.
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critical differences between individual proteins all need to be

taken into account.12 In fact, it has been formally shown that

this topology also arises simply if hub proteins attract novel

partners due to their physicochemical nature that predisposes

them for interactions.11 It is of relevance here that IUPred, the

algorithm used for assessing disorder,39,40 relies on estimating

the energy content that a given protein segment can realize.

This incorporates energy terms for both intramolecular and

protein-solvent interactions. The importance of the latter in

both network evolution and intrinsic disorder has been dis-

cussed recently.50 A recent analysis of genetic regulatory

networks has in fact shown that, for the evolution of a network

with the observed global and local features, elements of both

node copying (gene duplication) and link mutation (change in

Figure 4. Proportion of disorder, sequence repeats, and low complexity in hubs in interactomes. Comparison of the relative abundance

of disorder (a), repeats (b), and low complexity (c) for the yeast (YEAST), worm (WORM), Drosophila (FLY), and human (HUMAN)

interactomes. Hub proteins (red), a random sample of proteins with exactly one interaction (blue), and a random sample of genome

sequences (green) are shown as in Figure 3.
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interaction) events have to be invoked.51 Although protein-

protein interaction networks studied in our work and genetic

regulatory networks differ in some basic aspects, the evolution-

ary complexity for one regulatory network supports our point

that a more elaborate evolutionary model of biological networks

is likely needed in general for biological networks.

By examining hubs of the four species, it is clear their length

and disorder, and to a lesser degree their repeats and low

complexity regions, tend to increase as the complexity of the

organism and the underlying interactomes increases in com-

plexity on the evolutionary tree. These observations support

the idea that the evolution of protein interaction networks has

involved an element of selection of certain proteins toward

functioning in network organization, i.e., by becoming hubs.

In this process, the generation and extension of internal repeat

regions and the increase in disorder is proposed to have played

an active role. This scenario fully conforms to the logic of

specialization that enables biological entities to occupy more

niches. Additionally, direct functional advantages could also

derive from this specialization process. Disordered proteins are

frequently involved in regulated interaction processes, due to

their disposition for posttranslational modification.16,52 This is

of significant functional benefit, as interaction networks are

very dynamic objects, prone to undergo profound reorganiza-

tion events mostly conducted by “transient”53 or “date”44 hubs.

An interesting possibility is that date hubs may also draw a

functional advantage not from the disorder and ensuing

adaptability of their own but that of their partners. In principle,

this might alleviate the demand of structural adaptability of

the hub and provide a simpler solution for the inclusion of the

hub in distinct and functionally/structurally unrelated com-

plexes. This possibility has been discussed previously.31

Another significant feature might derive from the observation

that, since intrinsically disordered proteins are typically un-

folded, they undergo little change upon treatment with heat

or chemical denaturants. This resistance may provide protec-

tion against elimination of hub function, to which scale-free

networks are very sensitive.8 A further pertinent point is that

intrinsically unstructured or disordered regions often bind with

their partner(s) by virtue of an extended surface with interac-

tion sites dispersed over the surface of the ordered protein

partner.19 A change in any of these sites might not entirely

eliminate the interaction and may thus provide resistance

against point mutations. This may be a good explanation why

evolutionary variability shows very weak correlation with the

number of interaction partners,54 whereas removal of a hub is

three times more probable to be lethal than other proteins.55

In summary, hub proteins are found to be enlarged and also

to be enriched in predicted disorder, in sequence repeats, and

in low complexity regions and in combinations involving two

or more of these features. All of these characteristics and their

combinations facilitate binding to multiple partners. The

enrichment of these features over evolutionary time is probably

necessary to explain these observations, suggesting a more

complicated evolutionary history than the commonly accepted

mechanisms based on simple, random gene duplication.

Experimental studies to further test these proposed roles of

intrinsic disorder in protein-protein interaction networks

would be useful.
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sapiens) and each sequence feature (disorder, low complexity (lc), repeats)
the distribution of the number of the proportion of the given feature for
hub proteins is compared to that in both the genome sequences (RAN) and
the IC_1 (proteins with exactly one interaction). The difference is character-
ized by ø2 values (see Materials and Methods) and the corresponding
probability that the two sets of data are of different distributions.

Figure 5. Averages and correlations of the sequence features.

The average percentage of the sequence properties and their

various combinations in HUB proteins for the four species

calculated. The region below the zero line corresponds to the

average in the random genome subsets (RAN), whereas the

region above the zero line shows the increase in HUB proteins

for the three primary sequence properties (disorder, repeats, and

low complexity, lc) and their various combinations. These latter

ones were defined as the maximum of the two or three properties

for each protein, averaged over the dataset.
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(40) Dosztányi, Z.; Csizmok, V.; Tompa, P.; Simon, I. IUPred: Web
server for the prediction of intrinsically unstructured regions of
proteins based on estimated energy content. Bioinformatics 2005,
21, 3433-3434.

research articles Dosztányi et al.
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Thorough knowledge of the molecular principles of protein–protein
recognition is essential to our understanding of protein function at the
cellular level. Whereas interactions of ordered proteins have been analyzed
in great detail, complexes of intrinsically unstructured/disordered proteins
(IUPs) have hardly been addressed so far. Here, we have collected a
database of 39 complexes of experimentally verified IUPs, and compared
their interfaces with those of 72 complexes of ordered, globular proteins.
The characteristic differences found between the two types of complexes
suggest that IUPs represent a distinct molecular implementation of the
principles of protein–protein recognition. The interfaces do not differ in size,
but those of IUPs cover a much larger part of the surface of the protein than
for their ordered counterparts. Moreover, IUP interfaces are significantly
more hydrophobic relative to their overall amino acid composition, but also
in absolute terms. They rely more on hydrophobic–hydrophobic than on
polar–polar interactions. Their amino acids in the interface realize more
intermolecular contacts, which suggests a better fit with the partner due to
induced folding upon binding that results in a better adaptation to the
partner. The two modes of interaction also differ in that IUPs usually use
only a single continuous segment for partner binding, whereas the binding
sites of ordered proteins are more segmented. Probably, all these features
contribute to the increased evolutionary conservation of IUP interface
residues. These noted molecular differences are also manifested in the
interaction energies of IUPs. Our approximation of these by low-resolution
force-fields shows that IUPs gain much more stabilization energy from
intermolecular contacts, than from folding, i.e. they use their binding energy
for folding. Overall, our findings provide a structural rationale to the prior
suggestions that many IUPs are specialized for functions realized by
protein–protein interactions.

© 2007 Elsevier Ltd. All rights reserved.
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Introduction

The recent success in high-throughput studies of
protein structure, function and interactions provide
solid evidence that for most proteins macromole-

cular interactions are indispensable for their func-
tions.1,2 Among these, protein–protein interactions
(PPIs) are central for both function and control, and
justify concerted efforts aimed at describing the
complicated network of interacting proteins, i.e. the
interactome.3,4 At the level of individual proteins,
most pertinent studies are directed towards solving
structures of complexes to unveil the molecular
principles of interactions that govern specific
recognition.1 The idea underlying all these efforts
is that a better understanding of PPIs at both the
individual and system levels will provide an
improved atomistic picture of communication with-

Abbreviations used: PDB, Protein Data Bank; IUP,
intrinsically unstructured protein; PPI, protein–protein
interaction; MorEs, molecular recognition elements;
MorFs, molecular recognition features.
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in the proteome, which is essential for our under-
standing of the living cell.
A common theme in these efforts is the detailed

analysis of the molecular interfaces that proteins
apply to recognize each other. Several studies have
focused on dissecting these surfaces, and have
shown that these usually are of the order of 1000 Å2

in area, and they are distinguished from the average
surface of proteins by an elevated hydrophobicity,
evolutionary conservation of certain anchoring
residues and characteristic shapes that differ for
various classes of complexes, such as homodimers,
heterodimers or enzyme–inhibitor complexes.5–8

The insight gained from these analyzes enables the
prediction of interfaces from structural information
about the monomers and enables a structural
interpretation of functionally relevant features of
PPIs, such as strength, kinetics, specificity and
evolution.
The issue of the molecular principles of PPIs, how-

ever, has so far been unduly neglected in the case of
the newly recognized structural class of intrinsically
disordered proteins. The discovery of such regions
(IDRs) and full-length proteins (IUPs)9–11 has been
followed by the recognition that protein disorder is

widespread in eukaryotic proteomes, and correlates
with signaling and regulatory,12–16 and chaperone17

functions. The relevance to our subject comes from
the fact that all these functions rely on rapid and
highly regulated PPIs and, in fact, several func-
tional advantages ascribed to protein disorder are
linked directly with its involvement in protein
binding. When IUPs/IDRs are involved in PPIs,
they undergo induced folding or disorder-to-order
transition,18,19 suggested to provide several advan-
tages, such as specificity without excessive binding
strength, increased speed of interaction, binding
promiscuity or moonlighting, among others.14,20,21
These advantages underscore the high frequency of
disorder in proteins organizing the interactome, i.e.
in hubs.22–25 In terms of the molecular details of the
recognition process, it has been suggested that IUPs
often use short sequential recognition elements for
binding, termed primary contact sites,26 preformed
structural elements,27 or molecular recognition
elements/features (MorEs/MorFs).28,29 In direct
connection with these concepts, a recent analysis
has shown that short linear motifs in proteins often
fall into locally disordered regions,30 underlying
the suggestion that interactions of IUPs/IDRs

Table 1. Disordered protein complexes

PDB ID Chain ID Resolution (Å) Name

1axc (B, A) 2.6 DNA-binding protein/DNA (human PCNA)
1cee (B, A) NMR CDC42 – GTPase binding domain of WASP
1cmk (I, E) 2.9 Phosphotransferase
1cqt (I, A) 3.2 Gene regulation/DNA (ternary complex)
1dev (B, A) 2.2 Signaling protein (SMAD2 MH2 – SARA)
1dpj (B, A) 1.8 Hydrolase/hydrolase inhibitor (proteinase A – IA3 peptide inhibitor)
1f83 (BC, A) 2.0 Hydrolase/membrane protein (botulinum neurotoxin – synaptobrevin-II)
1fqj (C, ABDE) 2.02 Signaling protein
1fv1 (F, DE) 1.9 Immunodominant peptide from myelin basic protein
1g3j (B, A) 2.1 XTCF3-CBD/β-catenin armadillo repeat complex
1i7x (B, A) 3.0 β-Catenin/E-cadherin complex
1i8h (A, B) NMR Membrane protein/isomerase
1iwq (B, A) 2.0 Metal-binding protein
1j2j (B, A) 1.6 GGA1 gat N-terminal region in complex with ARF1 GTP form
1jsu (C, AB) 2.3 Transferase/cyclin/inhibitor
1kdx (B, A) NMR Transcription regulation complex (KIX domain of CBP – PKID CREB)
1kil (CD, ABE) 2.3 Membrane protein (complexin/snare complex)
1l8c (B, A) NMR Gene regulation
1mv0 (A, B) NMR Tumor suppressor BIN1
1mxl (I, C) NMR Ca-binding protein (cardiac troponin C – troponin I)
1o9a (B, A) NMR Complex of 1f12f1 fibronectin with B3 from FNBB
1onv (B, A) NMR RAP74 – MAP II CTD phosphatase FCP1
1p16 (D, B) 2.7 mRNA capping enzyme – RNA polymerase
1p4q (A, B) NMR Transferase
1q68 (A, B) NMR T-cell surface glycoprotein – tyrosine-protein kinase
1rf8 (B, A) NMR Biosynthetic protein (EIF4E – M7GDP and EIF4GI)
1sb0 (B, A) NMR KIX domain of CBP – transactivation domain of c-MYB
1sc5 (B, A) 3.26 σ-28(FLIA)/FLGM complex
1sqk (B, A) 2.5 Structural protein (ciboulot – skeletal actin)
1sqq (I, A) 3.0 Oxidoreductase
1tba (A, B) NMR Transcription factors (TBP-TAFII230 complex)
1th1 (C, A) 2.5 Cell adhesion/antitumor protein
1vit (I, LH) 3.2 Serine protease/inhibitor
1wkw (B, A) 2.1 Ternary complex of EIF4E-M7GPPPA-4EBP1 peptide
1xtg (B, A) 2.1 Neurotoxin BONT/A – synaptosomal-associated protein 25
1ycq (B, A) 2.3 Oncogene protein (MDM2 – p53)
2auh (B, A) 3.2 Transferase (grb14 bps region – receptor tyrosine kinase)
2b3g (B, A) 1.6 P53N – RPA70N
2c1t (D, B) 2.6 Nuclear transport complex (KAP60P:NUP2 complex)
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Table 2. Ordereded complexes

PDB ID Chain ID Resolution (Å) Name

1a0o (B, A) 2.95 CHEA – CHEY
1atn (D, A) 2.8 Deoxyribonuclease I – actin
1avz (C, AB) 3.0 Myristylation/transferase
1glb (F, G) 2.6 Phosphotransferase
1hrp (A, B) 3.0 Hormone (HCG)
1lpa (A, B) 3.04 Hydrolase (carboxylic esterase)
1luc (B, A) 1.5 Bacterial luciferase
1spb (P, S) 2.0 Serine proteinase/prosegment
1ttq (A, B) 2.0 Carbon-oxygen lyase (tryptophan synthase)
2btf (P, A) 2.55 Acetylation and actin-binding (β-actin-profilin complex)
2pcb (B, AC) 2.8 Cytochrome c peroxidase (ccp) – Cytochrome c
3hhr (A, BC) 2.8 Human growth hormone complexed with its receptor
1aoz (A, B) 1.9 Oxidoreductase (oxygen acceptor)
1cdt (A, B) 2.5 Cytotoxin (cardiotoxin)
1fc1 (A, B) 2.9 Immunoglobulin (FC fragment)
1g6n (A, B) 2.1 CAP-CAMP (DNA binding protein)
1glq (A, B) 1.8 Gluthatione transferase – glutathione
1hng (A, B) 2.8 T lymphocyte adhesion glycoprotein
1il8 (A, B) NMR Interleukin 8
1msb (A, B) 2.3 Hepatic lectin
1nl3 (A, B) 2.8 Seca protein translocation ATPase
1phh (A, B) 2.3 Oxidoreductase (ternary complex)
1pp2 (R, L) 2.5 Hydrolase (Ca-free phospholipase)
1pyp (A, B) 3.0 Acid anhydride hydrolase
1tar (A, B) 2.2 Aspartate aminotransferase
1utg (A, B) 1.34 Steroid binding (uteroglobin)
1vsg (A, B) 2.9 Variant surface glycoprotein
1ypi (A, B) 1.9 Isomerase (intramolecular oxidoreductase)
2ccy (A, B) 1.67 Electron transport (heme protein)
2cts (A, B) 2.0 Oxo-acid-lyase (citrate synthase)
2gn5 (A, B) 2.3 Gene 5/DNA binding protein
2or1 (L, R) 2.5 Gene regulating protein (434 repressor complex with operator)
2rhe (A, B) 1.6 Immunoglobulin (Bence-Jones protein)
2rus (A, B) 2.3 Rubisco complex with CO2 and Mg
2rve (A, B) 3.0 ECO RV endonuclease
2sod (O, Y) 2.0 Oxidoreductase (Cu, Zn superoxide dismutase)
2ts1 (A, B) 2.3 Ligase (tyrosyl-transfer RNA synthetase)
2tsc (A, B) 1.97 Methyltransferase (thymidylate synthase)
3enl (A, B) 2.25 Carbon-oxygen lyase
3grs (A, B) 1.54 Oxidoreductase (flavoenzyme)
3hvt (B, A) 2.9 Nucleotidyltransferase (HIV virus reverse transcriptase)
3icd (A, B) 2.5 Oxidoreductase (isocitrate dehydrogenase)
3sdh (A, B) 1.4 Hemoglobin I (carbon-monoxy)
3sdp (A, B) 2.1 Oxidoreductase (Fe superoxide dismutase)
3ssi (A, B) 2.3 Serine protease inhibitor
4mdh (A, B) 2.5 Oxidoreductase (cytoplasmic malate dehydrogenase)
5adh (A, B) 2.9 Oxidoreductase (alcohol dehydrogenase–ADP-ribose)
1ahw (C, AB) 3.0 Tissue factor – inhibitory FAB (5g9)
1fdl (Y, LH) 2.5 IGG1 FAB fragment – lysozyme
1iai (MI, LH) 2.9 Idiotype – anti-idiotype FAB complex
1jhl (A, LH) 2.4 Lysozyme antibody D11.15 – lysozyme
1mel (L, A) 2.5 VH antibody – lysozyme
1nca (N, LH) 2.5 N9 neuraminidase-NC41–FAB
1yqv (Y, LH) 1.7 FAB HYHEL5 – lysozyme
2jel (P, LH) 2.5 JELL42 FAB/HPR complex
2vir (C, AB) 3.25 Influenza virus hemagglutinin – neutralizing antibody
3hfm (Y, LH) 3.0 IGG1 FAB fragment – lysozyme
1acb (I, E) 2.0 Hydrolase (serine protease)
1avw (B, A) 1.75 Trypsin – trypsin inhibitor
1brs (D, A) 2.0 Barnase – barstar
1cho (I, E) 1.8 Serine proteinase/inhibitor (α-chymotrypsin–ovomucoid third domain)
1cse (I, E) 1.2 Serine proteinase/inhibitor (subtilisin carlsberg – eglin-C)
1dfj (E, I) 2.5 Ribonuclease inhibitor – ribonuclease A
1fss (B, A) 3.0 Acetylcholinesterase – fasciculin-II
1mct (I, A) 1.6 Trypsin – trypsin inhibitor
1stf (I, E) 2.37 Hydrolase (papain – inhibitor stefin B)
1tab (I, E) 2.3 Hydrolase (trypsin – Bowman-Birk inhibitor)
1tgs (I, Z) 1.8 Proteinase/inhibitor (trypsinogen – trypsin inhibitor)
1ugh (I, E) 1.9 Glycosylase (uracil-DNA glycosylase – protein inhibitor)
2ptc (I, E) 1.9 β-Trypsin – trypsin inhibitor
2sic (I, E) 1.8 Subtilisin – streptomyces subtilisin inhibitor
4htc (I, LH) 2.3 Hydrolase (α-thrombin – recombinant hirudin)
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represent a distinct mode of PPIs.31 Whereas this
notion has been often invoked in the literature,
structural studies in support are rather scarce.
In two recent studies of the interfaces, several

classes of protein complexes, including a limited
number of IUPs32 and complexes of short binding
elements (molecular recognition elements/features),
have been analyzed.33 It was found that the surfaces
and interfaces of two-state complexes and com-
plexes of IUPs show special features, such as
increased area per residue, or an elevated level of
exposed hydrophobic residues buried only upon
complex formation. These studies have limitations
in terms of generalizations toward IUP behavior,
either because they included only five bona fide IUP
complexes, ten two-state complexes, and 44 riboso-
mal proteins,32 or because selection of the 258 MoRF
examples was based on length.33 The resulting
dataset contains complexes of small but stable
proteins, like the trypsin inhibitor, beside many
potentially disordered proteins. These results per-
tain to the behavior of IUPs, but the recent rapid
growth in the number of experimentally verified
IUPs,34 and structures of complexes with an IUP as
one partner,35–38 enabled us to extend these studies
and provide further statistically sound conclusions.
On the basis of novel data, we identified 39
complexes, in which an IUP binds a globular protein
partner, analyzed their interfaces and compared
them with those of 72 complexes of globular
proteins. We found that the chemical and physical
features of interfaces of IUPs are distinct from those
of globular proteins in many aspects, such as a much
larger relative area, and preference for hydrophobic
residues, which exceeds even the interior of the
protein. Their much larger contact number per
residue are indicative of structural adaptation
driven by induced folding, and suggest that IUPs
might preferentially gain stabilization energy from
contacts with the partner. We provide evidence for
this latter by estimating these energies via low-
resolution force-fields, already exploited in predict-
ing protein disorder by the IUPred algorithm.39,40

These differences suggest that IUP binding repre-
sents a unique implementation of the principles of
protein–protein binding, which provides the ratio-
nale for why IUPs fold only upon encountering their
physiological partner, and why so often they
function via molecular recognition.18,21,41

Results

Data for analysis

For this analysis, we have scanned the PDB for
entries of complexes, one chain of which was proven
to be disordered by experimental techniques. The
database of such “disordered” complexes contains
39 complexes (Table 1). The interfaces of these have
been analyzed and compared to those of 72
complexes, for which both components are ordered

in isolation (ordered complexes, Table 2). Figure 1
shows characteristic examples for the two classes,
i.e. ordered and disordered, which already illustrate
the differences that emerge as the quantitative study
unfolds.

Global characteristics of interfaces

The first level of analysis is a rough comparison of
the geometry of interfaces of the two classes of
complexes. Figure 2(a) shows the distribution of the
size of the interface area. The distributions are not
significantly different, i.e. the size of IUP interfaces
covers about the same range as those of ordered
complexes, maybe with the lack of very large
interfaces (N3000 Å2) for IUPs. Characteristic differ-
ences can be seen, however, if the interface area is
plotted as a function of chain length (Figure 2(b)). It
takes a much longer chain for globular proteins than
for IUPs to create the same interface, which indicates
that IUPs may have a much larger interaction
potential, as already suggested.42

The explanation for this observation may come
from the fact that IUPs have the same relative
surface, but use a larger part of it for interaction, or
they already have a larger surface per residue, or
both. To find out which actually applies, we plotted
the surface area per residue of proteins against their
interaction areas per residue (Figure 3(a)). The two
classes show a striking difference and clear separa-
tion, which validates previous observationsmade on
a much smaller dataset.32 IUPs have a much larger
surface per residue, and they exceed globular
proteins in their interface area per residue. When
the ratio of the two values are calculated (Figure
3(b)), it is clear that IUPs have relatively larger
surfaces, they also use a larger portion of their
surface for interaction with their partner, sometimes
50% of the whole, as opposed to only 5%–15% for
most ordered proteins.
Another way of comparing the interfaces is to

count how many continuous segments (for defini-
tion, see Data and Methods) the binding surface is
assembled from. Since folding of a globular protein
brings distinct segments of the polypeptide chain in
proximity, it is expected that their binding surfaces
are more fragmented, i.e. they are assembled from
more segments than those of IUPs. The picture that
emerges (Figure 4) is in complete agreement with
this expectation: in 70% of the cases the binding
surface of the IUP represents a single sequentially
continuous segment only, and with the exception of
a single case (PDB 1sc5) they never contain more
than three separate segments. On the other hand,
ordered proteins hardly ever use a single segment
for binding to their partner, and their segmentation
number may occasionally even exceed the value of
10.

Chemical nature of interfaces

As seen, global characteristics of the interfaces of
IUPs and ordered proteins differ significantly. When
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we ask about the physical and chemical nature of the
interfaces, IUPs again stand out. By having much
larger relative surfaces, it is natural their ratio of
buried/exposed area is much smaller on average
than that of globular proteins (Figure 5). As
expected, this is true for polar residues, because
proteins in general must not be able to bury polar
residues upon folding. The surprise, however,
comes from looking at hydrophobic residues,
because they also are more exposed than buried in
IUPs, which suggests that they are mostly used for

contact with the partner, and not for generating a
hydrophobic core, as with globular proteins. In a
way, it may be suggested that the hydrophobic core
of IUPs is in the interface, and not within the
polypeptide chain of the folded, partner-bound
state. This observation suggests an unexpected
structural strategy for function, in a sense that
IUPs tend to expose their few hydrophobic residues
for interaction with the partner. A similar observa-
tion has been made in the case of two-state
complexes, the monomers of which may exist either
as unfolded (disordered) in isolation or folded in the
complex.32,43

The detailed analysis of the amino acid composi-
tion of the interfaces provides full evidence for this
point, i.e. that IUPs preserve and expose their
hydrophobic residues for partner binding. In agree-
ment with previous studies,5,32 the analysis of
ordered proteins shows that their surface is enriched
in polar/charged residues, and depleted in hydro-
phobic residues (Figure 6(a)). Relative to this
distribution, their interfaces are more hydrophobic,
and occupy a position intermediate between the
hydrophobic interior and the polar surface of the

Figure 2. IUPs realize large contact surfaces in their
complexes. (a) The distribution of the size of the interface
area for the smaller chain of ordered complexes (blue
bars), and for disordered proteins in complex with an
ordered protein (red bars). (b) The interface area versus
chain length for the smaller chain of the ordered (blue
triangles) and disordered (red squares) type of complexes
(the smaller chain is always the IUP in the disordered
complexes) as a function of the length of the chain
involved in the construct.

Figure 1. A typical example of ordered and disordered
complexes. The Figure shows an example of the two basic
types of complexes analyzed in this study. (a) Bacterial
luciferase (PDB code 1luc) is an example for complexes
between ordered proteins. (b) Botulinum neurotoxin (PDB
code 1f83) shows a complex between a disordered and
ordered protein, where the disordered protein chain
wraps around an ordered protein in a largely extended
conformation.
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protein, with the balance tilted towards polar resi-
dues. IUPs look completely different (Figure 6(b)).
As already suggested by the analysis of the
polarity/hydrophobicity of their surfaces (Figure
5), they keep a larger fraction of their hydrophobic
residues exposed than ordered proteins do. Further-
more, unlike the case of ordered proteins, their
interfaces are more hydrophobic than their surface
in general, and more hydrophobic than the protein
in general, and thus more hydrophobic than the
buried regions of the protein. Thus, IUPs show a
unique preference to expose and use their hydro-
phobic residues for interaction, whether they are
aromatic (Trp, Tyr), or aliphatic (Leu, Ile). This
difference comes from a greater relative hydropho-
bicity of IUP interfaces, and from the chemical
differences between the two groups: interfaces of
IUPs are significantly more hydrophobic than
interfaces of ordered proteins (Figure 6(c)). It
appears that IUPs rely much more on hydrophobic
residues at their interface, which counteracts their
unfavorable decrease in entropy upon folding.
When the types of contacts in the interface are

counted (Figure 7), this distinction clearly shows.
IUP interfaces rely much more on hydrophobic–
hydrophobic contacts than ordered proteins do,
which balance this by significantly more polar–polar
contacts, probably due to being able to better shield
these from hydration water. A further characteristic
difference is that the interface residues of IUPs are
engaged in larger numbers of contacts than those of
ordered proteins (Figure 8). The reason of this
difference is probably related directly to the differ-
ent binding modes of the two structural classes,
because IUPs undergo large-scale induced folding
upon binding, and can better adapt to the structure
of the partner, whereas structural adaptation of
ordered proteins is limited due to their much lower
level of conformational freedom.

Figure 3. IUPs use a large fraction of their surfaces for
binding. (a) Surface area per residue versus interface area
per residue for the smaller chain of ordered complexes
(blue triangles), and for disordered proteins in complex
with an ordered protein (red squares). (b) The distribution
of interfaces in terms of the interface area relative to the
total surface area (blue for ordered and red for disordered
complexes).

Figure 4. Lack of segmentation of the interfaces of
IUPs. The distribution of the occurrence of interfaces with
various numbers of non-continuous sequence segments
(as defined in Data and Methods), given for the smaller
chain of ordered complexes (blue), and for disordered
proteins in complex with an ordered protein (red).

Figure 5. Buried and exposed surfaces of IUPs and
ordered proteins in complexes. The ratio of the buried and
exposed polar area versus the ratio of the buried and
exposed hydrophobic area for the smaller chain of ordered
complexes (blue triangles), and for disordered proteins in
complex with an ordered protein (red squares).
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Interaction energies at the interface

A key question that arises from all the fore-
going studies is whether all the characteristic
differences between the interfaces of ordered and
disordered proteins manifest themselves in differ-
ences in the interaction energies of the two types
of complexes. We showed earlier that the concept
of low-resolution force-fields can be used to
recognize IUPs from the amino acid sequence
because the estimated pair-wise inter-residue
interaction energy of IUPs is less favorable

Figure 6. Amino acid composition of the surface and
interface of IUPs and ordered proteins. (a) The amino acid
composition of the surface (blue) and the interface area
(red) relative to the total amino acid composition for the
smaller chain of ordered complexes, and (b) for disordered
proteins in complex with an ordered protein. The amino
acids are sorted according to the hydrophobicity scale
described by Fauchere and Pliska.50 Additionally, the ratio
of hydrophobic amino acids (Ala, Cys, Ile, Leu, Met, Prot,
Val, Phe, Trp, Tyr) is shown for the surface and the
interface residues normalized by the total amino acid
composition (marked as h). Amino acids with statistically
significant differences between the surface and interface
compositions are marked by a red letter. Statistical
significance was calculated by two-sided Student's t-test.
(c) The ratio of the amino acid compositions of IUP
interfaces and interfaces of ordered proteins. The ratio of
hydrophobic amino acids in the two datasets is shown.
Amino acids showing significant differences between the
interface compositions of ordered and disordered com-
plexes are marked by a red letter.

Figure 7. Contribution of hydrophobic and polar
contacts to the interfaces of IUPs and ordered proteins.
Histogram of the various types of contacts in the interfaces
of the smaller chain of ordered complexes (blue), and of
disordered proteins in complex with an ordered protein
(red). For this analysis, amino acids were classified as
hydrophobic (H: Ala, Cys, Ile, Leu, Met, Prot, Val, Phe,
Trp, Tyr) or polar (Asp, Glu, Gly, His, Lys, Asn, Gln, Arg,
Ser, and Thr). The first position corresponds to the smaller
chain of the complex, which is always the IUP in the
complex designated disordered, thus HP does not equal
PH contacts.

Figure 8. The histogram shows the distribution of the
number of atom contacts per interacting residues–residues
pairs at the interface (as defined in Data and Methods)
observed for the smaller chain of the ordered complexes
(blue), and for disordered proteins in complex with an
ordered protein (red).

555Complexes of Disordered Proteins in the PDB

               dosztanyi.zsuzsanna_45_22



compared to globular proteins.39 Here, we applied
the same statistical potentials to characterize the
energetic relationship of the complexes. The total
interaction energy that arises from interactions
within individual chains and from their interactions
with the partners were calculated (Figure 9(a)). The
picture shows a clear separation of the two classes
of complexes. Considering the energy realized from
intramolecular interactions, ordered proteins invari-
ably fall within the stabilizing range, which under-
scores that they fold due to favorable interactions
within the chain. Most of the IUPs, as already
shown,39 cannot form sufficient inter-residue inter-
actions for a stable fold, which renders them
disordered in isolation. The situation, however,

changes in the presence of the partner. IUPs tend to
have more stabilizing interactions with the partner,
which shifts the overall balance towards favoring
the folded state. This explains why IUPs undergo
induced folding in the presence of the partner and
explains their observed preference for hydrophobic
residues in the interface, since stabilization primar-
ily comes from hydrophobic interactions.
Total interface energies can also be calculated

and plotted as a function of the interface area
(Figure 9(b)). Overall, IUPs tend to have somewhat
larger negative value of stabilization energies for
an interface of the same size, most obvious within
the range of smaller interfaces that range from
500 Å2 to 1500 Å2. This suggests that a better fit
and more hydrophobic contacts result in a some-
what greater binding energy. It should not be
overlooked, however, that this enthalpic compo-
nent is combined with a large unfavorable entropic
term due to the large-scale induced folding of the
IUPs, which probably makes binding of IUPs
overall weaker.

Conservation of the interface of IUPs

Since interfaces constitute the key structural
element of PPIs, which, in turn, are intertwined
with the function of proteins, we asked whether it
has made its mark on the evolutionary conservation
of proteins. To this end, we calculated a conservation
rank score for various parts of the complexes,
including the whole protein, the part seen in the
PDB, and the interface itself (Figure 10). For both
IUPs and ordered complexes, the distribution of
conservation scores for the complete sequences is
even, as expected. In other aspects, the two types of
complexes differ significantly. In the case of globular
proteins, positions corresponding to the PDB struc-
ture are close in distribution to the complete
sequences, although they contain somewhat fewer
variable residues. Surface residues not involved in
the complexes are less conserved, whereas interface
residues are significantly more conserved in com-
parison, although they do not show an overall
significant conservation, probably due to the key
contribution to interactions of only a few anchor
residues.8,44 IUPs show clearly distinguishable
behavior. Disordered regions, on average, are the
least conserved compared to all other types of
regions. The regions that become ordered upon
complex formation (structured part in PDB) are
more conserved, even in comparison to the complete
sequence. Interface positions show the most pro-
nounced tendency to be conserved, in line with their
importance in the function of IUPs, also apparent in
their energetic contribution to binding-induced
folding, a shown in the previous section.

Discussion

The advance of intrinsic structural disorder in
evolution is often associated with the advantages

Figure 9. Pairwise energies of intrachain versus inter-
chain interactions. (a) Pairwise energies of intrachain
versus interchain interactions normalized by the length of
the chain and the number of residues at the interface,
respectively. Pairwise energy was calculated by statistical
force-fields, as given in Data and Methods. The energies
are in arbitrary energy units (aeu). The vertical line at −0.2
(arbitrary energy units) shows the borderline between
ordered (blue triangles) and disordered proteins (red
squares), used for predictions of protein disorder. Typi-
cally, disordered chains lie below the y=x line, indicating
that in terms of statistical potentials they make more
favourable interactions with their partner compared to the
interactions made within the chain. (b) Total energies of
interfaces as the function of the interface area of the
smaller chain of ordered complexes (blue triangles), and of
disordered proteins in complexes (red squares).
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disorder imparts on protein–protein interactions. In
accord, a great deal of relevant studies on IUPs have
focused on the rules and principles of their interac-
tions, such as the contribution of disorder to the
function of hubs,23–25 binding of IUPs by short
recognition elements,26,29,30 large-scale induced
folding accompanying their partner binding18,19 or
the possibility of drug development by targeting
IUP-binding sites.45 Studies of key components
designed to understand their interactions, i.e.
atomistic analysis of their interaction sites, however,
has so far lagged behind. Whereas the contact sur-

faces of ordered, globular proteins have been
analyzed and characterized in great detail,5–8

those of IUPs have scarcely been addressed. In
two pertinent studies,32,33 either a limited set of
IUP complexes (five examples only) or complexes
selected on the criterion of length (258 MoRFs)
have been analyzed alongside two-state complexes
and ribosomal proteins for possible generalizations
on the interfaces of IUP PPIs. The recent rapid
advance in the IUP field enabled us to extend these
studies to the complexes of much more experimen-
tally verified IUPs, and to provide a solid founda-
tion to the principles of its involvement in PPIs.
Our results reinforce or extend some previous
observations, and suggest some useful novel
generalizations.
The major finding of our work is that IUPs differ

in how the chemical and physical principles of
protein–protein interactions are implemented, as
probably dictated by their disorder in the unbound
state. IUPs tend to have much larger exposed surface
per residue, of which they dedicate a much larger
portion for contacting the partners. This has been
suggested in earlier studies,32,33 and is in excellent
agreement with the proposition that IUPs have
evolved to provide much larger relative intermole-
cular interfaces than globular proteins.42 Our obser-
vations suggest that ordered and disordered
proteins segregate in terms of the surface area per
residue versus interface area per residue, i.e. the two
types of proteins do not lie on a continuous scale;42

rather, they represent separate and disparate solu-
tions to similar evolutionary problems. These points
provide compelling evidence for the often-invoked
point that the involvement in PPIs is a key element
of the functional repertoire of IUPs. The suggestion
that IUPs carry out their functions by transient
or permanent interactions in five out of six func-
tional categories is in excellent agreement with these
points.21,41
A further key observation of our studies is that in

70% of the cases the binding surface of the IUP
represents a single continuous segment of the
polypeptide chain. The possible explanation is that
bringing together more segments to occupy adjacent
positions would disproportionately increase the
unfavorable entropic component of binding, and is
avoided in most instances. This finding is a struc-
tural manifestation of the observation made by
sequence analysis that short, isolated recognition
segments of proteins tend to fall into locally
disordered regions.30,31 Our observation that inter-
action surfaces of IUPs tend to be more hydrophobic
than the rest of the surface, or the entire chain, also
conforms to earlier suggestions of entirely different
origin. The concept of predicting short recognition
segments of IUPs, i.e. MoREs/MoRFs,28,29 from
local anomalies in disorder scores can be associated
with a local increase of hydrophobicity in an
otherwise highly charged/polar disordered sequen-
tial environment. Interfaces of these motifs are
characterized by an enrichment of usually buried
residues, and depletion of otherwise exposed resi-

Figure 10. Conservation at the interfaces of ordered
and disordered complexes. (a) The plot shows the
fractional rank of conservation scores for ordered protein
complexes. For each protein in the dataset, the alignments
were generated at the level of the complete sequence of the
SwissProt/Uniprot entry corresponding to the PDB
sequence. The conservation scores were calculated as
described,53 and transformed into fractional rank score,
which ranges between 0 and 1. The scores were divided
into ten bins, and the percentage of positions falling into
each bin was collected. Distribution of conservation rank
scores are given for: the complete amino acid sequence
(green), positions part of the structure (blue), surface
positions (light blue) and interface positions (red). (b)
Distribution of conservation rank scores for disordered
proteins. The score is given for: the complete sequence
(green), positions in disordered regions (as given in
DisProt, orange), the region corresponding to the PDB
file (blue), and the interface residues in the complex (red).
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dues,33 in agreement with our findings. Our analysis
of the unique evolutionary design of short linear
motifs (SLMs/ELMs) in proteins30 is also in line
with these observations. We found that ELMs have a
basic design in that they have a few consensus
residues of globular-like attributes, grafted on a
carrier sequence typically disordered in nature.
This unexpected mode of IUP interactions sug-

gests that they use their very few hydrophobic
residues for intermolecular interactions rather than
intramolecular stabilization of structure. In other
words, they counter the tendency of hydrophobic
amino acids to collapse into some structure by their
special amino acid composition, keeping them
exposed for interaction with the partner. In this
sense, these proteins (at least their interaction
segments) are really specialized for partner binding.
In contrast to what has been suggested in a previous
study,42 our analysis of a larger number of com-
plexes show that IUPs do not bury the majority of
their hydrophobic residues, but keep most of them
exposed even in the partner-induced folded state.
This suggest a somewhat inside-out way of folding,
in which interactions with the partner via primarily
hydrophobic contacts promotes folding, which
buries polar residues to a greater extent than with
ordered, globular proteins.
The significance of these differences is underscored

by our observation that the interfaces of IUPs differ
from those of ordered proteins in terms of hydro-
phobicity. IUP interfaces are more hydrophobic with
respect to the rest of the chain,32 and in direct
comparison with those of globular proteins, in line
with results onMoRF bindingmotifs.33 Further, they
use more hydrophobic–hydrophobic than polar–
polar contacts, and they realize more contacts per
residue than globular proteins. Often, the interfaces
of globular proteins are composed of conserved
polar/charged residues that provide critical anchor-
ing interactions, surrounded and sealed from hydra-
tion by more variable shielding residues.44 The
different geometry, segmentation and amino acid
composition of IUP interfaces entails a different logic,
since being unable to shield polar residues theymust
rely much more on hydrophobic-hydrophobic inter-
actions. This also explains the relative paucity of
charged residues, such as Arg, a noted anchor
residue in the interactions of globular proteins,44 in
the interfaces of IUPs. All these features are in line
with the newly observed evolutionary conservation
of their interfaces, suggesting an increased number of
anchoring residues compared to the very few such
residues in the case of globular complexes.8,44

These molecular features are expected to manifest
themselves in the energetics of interactions. Our
estimation of the interaction energies by low-
resolution force-fields shows that IUPs realize
much more energy in their interaction than within
the chain upon folding, and have a somewhat larger
total energy at the interface than ordered proteins.
Since our calculations estimate only the enthalpic
component of binding energy, it is safe to conclude
that the overall free energy of IUP binding is rather

small, due to a large part being spent on compensat-
ing the unfavorable entropic cost of folding from a
disordered state. Thus, our results are in line with
the general wisdom of the field, that the special
binding mode of IUPs separate binding strength
from specificity, an often-mentioned functional
advantage of protein disorder.10,14,41

In conclusion, wemight state that recent studies on
the principles of the interactions of IUPs point to a
coherent picture of how these proteins realize their
function. All studies32,33 agree that the interfaces of
IUPs per residue are much larger, and IUPs, unlike
globular proteins, use their hydrophobic residues for
interaction rather than folding. The size of their
interfaces is not particularly different from those of
ordered proteins, but they tend to consist of a few,
often only a single, segment. This is probably
attributed to the fact that IUPs use the energy of
binding to assist folding, which, according to our
results, would be energetically too demanding if
more segments had to fold and come in spatial
proximity for binding. As a final word, wemust note
that in addition to all these intriguing theoretical
insights gained from studying the interactions of
IUPs, understanding their interaction principles has
a much farther-reaching practical side. Recent
studies have shown that protein disorder abounds
in proteins involved in various diseases, such as
cancer,12 cardiovascular diseases,46 and conforma-
tional diseases,47 and it has been suggested that IUPs
bind their partner in a special way, through a deep
binding crevice amenable for interference with
small-molecule inhibitors.45 This latter feature has
been demonstrated by developing inhibitors against
the p53-MDM2 interaction.48 It is not too far-fetched
to suggest that a detailed understanding of the
physical principles of the interactions of IUPs will
open new possibilities to develop inhibitors against
their PPIs, which hopefully will offer a wealth of
opportunities for developing drugs to combat often
lethal diseases.

Data and Methods

Databases

Disordered complexes were collected by identifying
complexes in the Protein Data Bank (PDB) with experi-
mental evidence of the disorder of one of the partners. The
initial dataset was taken from the literature,27 and was
extended with further examples collected from the
database of protein disorder, DisProt.34 The disordered
state was accepted if the protein showed at least 95%
sequence identity with a protein found in DisProt, and at
least 50% of its amino acids seen in the PDB structure were
shown disordered in DisProt. In practical terms, disorder
in these cases was almost always above 90%. Of the
complexes that corresponded to these definitions, we
discarded those in which the two interacting partners
were actually part of the same SwissProt sequence, and any
that contained a chimera protein. Further, we excluded
ribosomal proteins, which were included in an earlier
study.32 Although parts of ribosomal proteins may lack a
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well-defined structure in the absence of the partner, they
interact with the highly charged RNA, and their interfaces
must have rather special features. For the same reason, we
excluded protein–DNA complexes. The database contains
39 independent complexes, presented in Table 1. Ordered
complexes contained examples in which both partners had
a well-defined structure when studied in isolation. These
were taken from the literature.5,32,44 Protein chimeras and
fragments were discarded, which left 72 independent
complexes, presented in Table 2. Different classes of
complexes (homodimers, enzyme-inhibitor complexes,
etc.) were not distinguished in this study.

Calculation of surfaces

Accessible surfaces of proteins were calculated as
described.49 Polar and hydrophobic surfaces were defined
as the accessible surfaces of polar and hydrophobic amino
acids. Hydrophobicities were calculated by using the scale
developed by Fauchere and Pliska.50 On this basis, we
considered N, Q, S, T, H, G, R, K, D and E as polar amino
acids, and A, I, L, M, F, P, W, V, Y, and C as hydrophobic
amino acids. Buried surface was defined as the difference
between the standard surface and actual accessible surface
of the protein. Standard surface was taken as the sum of
the surfaces of its amino acids, as determined in an AXA
sequential environment†. The interaction surface (inter-
face) buried in a complex was defined as the difference
between the surface area of the complex and the sum of
the surface areas of the two separate protein subunits.

Interactions, interaction energies and segmentation

Two atoms were considered in contact if the distances
between their centers were less than the sum of their van
der Waals radii plus 1 Å. Two amino acids were
considered in contact if they had at least two heavy
atoms in contact. Interaction energies within a folded
chain and between interacting partners were approxi-
mated by low-resolution statistical amino acid contact
potentials,39 also used as the basis of the disorder
prediction algorithm IUPred.40 The potentials originate
from the work of Thomas and Dill.51 These energy-like
quantities have been summed for all amino acid pairs in
contact, either within a single chain or in the interface
between the two interacting chains.
Part of a binding interface was considered to belong to a

single segment of the parent protein if the respective amino
acidswere in contactwith the partner and their distances in
the polypeptide chain were not larger than five amino acid
residues.5,30 Segmentation was defined as the number of
segments within the interface of a protein in the given
complex.

Evolutionary conservation

For each PDB entry in the database, the complete
sequence of the protein was retrieved using the corre-
sponding SwissProt/Uniprot entry.52 In a few cases, the
disordered part of the complex was composed of multiple
chains and these were treated separately. Residue con-
servation was calculated at the level of the full protein
sequence as described.53 Homologous sequences were
collected from the Uniref100 sequence database using Psi-

Blast,54 with a cut-off value of 10e-30. From these
sequences, a multiple alignment was created by CLUSTAL
W.55 For each position in the alignment, the conservation
score was determined using the formula of Valdar01.53

This method sums all possible pair-wise match scores
between amino acids in an aligned column, weighted by
the combination of the appropriate substitution matrix
score and the sequence weight, which normalizes against
the redundancy of sequences in the alignment. The scoring
scheme penalizes gaps as well as mutations. The original
algorithm was modified so that gaps longer than 50
residues were not taken into account, e.g. domain-sized
deletions were not considered during the calculation of the
conservation scores. The variation of conservation scores
also depends on the number and diversity of the
homologous sequences. To place the various sequence
variations on the same platform, the conservation scores
were transformed into the fractional rank in the alignment.
This artificially stretches the distribution of conservation
scores evenly between 0 and 1. The proteins that did not
have a corresponding match in SwissProt, or the number
of aligned sequences was below 20, were discarded. This
reduced the number of proteins in the datasets to 31 for
disordered and 39 for ordered protein complexes.
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Abstract

Many disordered proteins function via binding to a structured partner and undergo a disorder-to-order transition. The
coupled folding and binding can confer several functional advantages such as the precise control of binding specificity
without increased affinity. Additionally, the inherent flexibility allows the binding site to adopt various conformations and to
bind to multiple partners. These features explain the prevalence of such binding elements in signaling and regulatory
processes. In this work, we report ANCHOR, a method for the prediction of disordered binding regions. ANCHOR relies on
the pairwise energy estimation approach that is the basis of IUPred, a previous general disorder prediction method. In order
to predict disordered binding regions, we seek to identify segments that are in disordered regions, cannot form enough
favorable intrachain interactions to fold on their own, and are likely to gain stabilizing energy by interacting with a globular
protein partner. The performance of ANCHOR was found to be largely independent from the amino acid composition and
adopted secondary structure. Longer binding sites generally were predicted to be segmented, in agreement with available
experimentally characterized examples. Scanning several hundred proteomes showed that the occurrence of disordered
binding sites increased with the complexity of the organisms even compared to disordered regions in general. Furthermore,
the length distribution of binding sites was different from disordered protein regions in general and was dominated by
shorter segments. These results underline the importance of disordered proteins and protein segments in establishing new
binding regions. Due to their specific biophysical properties, disordered binding sites generally carry a robust sequence
signal, and this signal is efficiently captured by our method. Through its generality, ANCHOR opens new ways to study the
essential functional sites of disordered proteins.
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Introduction

The classical point of view on protein function claims that the

functionality of a protein requires the presence of a well-defined

three dimensional structure. However, as the amount of

experimental evidence against the generality of this concept grew,

this paradigm had to be reassessed [1]. It has become evident that

there is a large number of proteins that do not require a stable

structure even under physiological conditions in order to fulfill

their biological role [2–4]. These intrinsically unstructured/

disordered proteins (IUPs/IDPs) lack a well defined tertiary

structure and exhibit a multitude of conformations that dynam-

ically change over time and population. The importance of protein

disorder is underlined by the abundance of partially or fully

disordered proteins encoded in higher eukaryotic genomes [5,6].

Disordered proteins are involved in many important biological

functions [2,7], which complement the functional repertoire of

globular proteins [7]. Recent characterization of IUPs based on

their functions shows that disorder can help these proteins to fulfill

their functions in various ways [8,9]. In the case of entropic chains,

the biological function is directly mediated by disorder (e.g. MAP2

projection domain [10], titin’s PEVK domain [11], NF-M and

NF-H between neurofilaments [12,13], nucleoporin complex

[14]). Furthermore, disordered segments often act as flexible

linkers between folded domains in multidomain proteins [2,15].

Alternatively, many disordered proteins function by binding

specifically to other proteins, DNA or RNA. This process, termed

coupled folding and binding involves a transition from disordered

state to a more ordered state with stable secondary and tertiary

structural elements [16,17].

The coupled folding and binding confers several functional

advantages in certain types of molecular interactions. Since – at

least partial – folding happens together with binding, the entropic

penalty counterbalances the enthalpy gain coming from the

binding [18,19]. This way disorder uncouples specificity from

binding strength allowing for weak transient, still specific

interactions that are essential for signaling processes. These

properties enable disordered proteins to play an important role

in molecular recognition including gene regulation, cell cycle

control and other key cellular processes [20–23]. The kinetic and

thermodynamic details of the binding are influenced by confor-

mational preferences present prior to binding [24]. Although

disordered proteins in general lack secondary and tertiary

structure, some exhibit partial secondary structure at closer

inspection. For example, CD analysis indicated that p21 and

p27 possess a-helical segments [19,25,26]. Detailed NMR
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characterization of p27 and other proteins showed that several

segments can have a pronounced tendency to adopt a-helical, or

even b strand conformations [9]. Upon binding, these inherent

structural preferences can either be solidified or overwritten by the

partner molecule [27]. Some regions can preserve flexibility even

within the complex, mitigating the unfavorable entropy term [28].

This allows the fine-tuning of the affinity of interactions over a

wide range. As a general rule, however, these interactions are

driven largely enthalpically by the favorable interactions formed

with the partner molecule [18,19,29].

The inherent flexibility of disordered proteins offers further

advantages in binding. It results in a malleable interface that can

allow binding to several partners or to adopt different conforma-

tions, manifested in increased binding capability [8,20]. In

accordance, several analyses of protein interaction networks

revealed that disordered proteins are abundant among hub

proteins, proteins with a large number of interacting partners

[30,31]. In a different scenario, the binding partners of an ordered

protein are disordered, as shown for binding of 14-3-3 proteins,

thus allowing a single protein to bind multiple partners [32].

Beside their involvement in protein-protein interactions, these

proteins are also subjects of various post-translational modifica-

tions that control their functions, localization and turnover [33]. In

this way, these proteins can integrate and mediate multiple signals

of various sources, and act as the central elements in signaling or

regulatory networks. The centrality of these proteins, however, is

also their weakness. It has been suggested that the targeted attack

of hubs can cause serious disruption in protein interaction

networks [34]. Furthermore, disordered proteins are often

associated with various diseases [35]. For example, the primary

importance of p53 originates from its involvement of 50% of

cancers [36]. In general, 79% of human cancer associated proteins

have been classified as IUPs, compared to 47% of all eukaryotic

proteins in SwissProt database [22]. Disordered proteins were also

suggested to be common in diabetes and cardiovascular diseases

[35,37]. Several disordered proteins - such as Ab, t, a synuclein,

and prion protein - are involved in neurodegenerative diseases and

are also prone to amyloid formation [38–40]. On the other hand,

due to their specific way of interactions, disordered proteins can

also be attractive targets for drug discovery. A novel strategy for

drug discovery exploiting binding sites within disordered regions

has already been suggested [41]. This adds further support to the

importance of finding specific functional sites in proteins that

undergo disorder-to-order transition upon binding or disordered

binding regions in short.

Despite their importance, the number of well characterized

examples of disordered proteins undergoing disorder-to-order

transition is very small. The PDB also offers only a limited sample

of proteins adopting a well defined conformation as part of a

complex. However, recent comparisons of these structures with

complexes formed between ordered proteins pointed out several

differences [42–44]. In general, disordered proteins adopted a

largely extended conformation in the complex exposing the

majority of their residues for interacting with their partner. The

interface of disordered proteins was enriched in hydrophobic

residues compared to the interface of ordered proteins, but also to

disordered regions in general. The higher number of interchain

contacts was suggested to be a sign of better adaptation of

disordered proteins to the surface of their partner. In general, the

regions that become ordered were shorter as compared to globular

domains, usually less than 30–40 residues. While the interface of

globular proteins was most often formed by distant segments of the

amino acid sequence brought together by folding, disordered

binding sites were much more localized in the primary structure.

These features demonstrate that the underlying principles of

molecular recognition of disordered binding regions are different

from the complex formation of globular proteins [43].

Disordered binding sites are also expected to be distinguishable

from general disordered sites that are not directly involved in

binding. A common notion is that protein disorder comes in many

flavors, and these should be targeted by specific prediction

methods [45,46]. However, training specific methods would

require significantly larger datasets than those that are available

today. Nevertheless, existing general protein disorder prediction

methods might already be equipped for this problem. It has been

suggested that specific patterns of disorder prediction profiles can

be associated with regions undergoing disorder-to-order transitions

[47]. Since these regions can be ordered as well as disordered,

there is no clear recipe whether these regions should be predicted

ordered, disordered, or as borderline cases. A recent analysis

compared several methods to recognize short protein-protein

interaction motifs containing a-helical elements in their bound

state, the so-called a-MoRFs [48]. As expected, the various

methods showed large variations in predicted order/disorder

tendency corresponding to binding regions. One of the earliest

prediction method PONDR VL-XT [49–51] was quite consistent

in predicting these regions as ordered within a broader disordered

region, giving them the characteristic appearance of dips in the

prediction output. Based on this specific prediction output, a

method was developed to recognize a-MoRFs from the amino

acid sequence [48,52]. First, regions predicted with dips in the

output of VL-XT were selected and were filtered further by a

neural network using several additional properties. This prediction

method is restricted to recognize short, a-helical binding regions

within disordered proteins.

Here we present a general method to identify specific binding

regions undergoing disorder-to-order transition. Our method

relies on the general disorder prediction method IUPred [53,54].

IUPred is based on the assumption that disordered proteins have a

specific amino acid composition that does not allow the formation

Author Summary

Intrinsically unstructured/disordered proteins (IUPs/IDPs)
do not adopt a stable structure in isolation but exist as a
highly flexible ensemble of conformations. Despite the
lack of a well-defined structure these proteins carry out
important functions. Many IUPs/IDPs function via binding
specifically to other macromolecules that involves a
disorder-to-order transition. The molecular recognition
functions of IUPs/IDPs include regulatory and signaling
interactions where binding to multiple partners and high-
specificity/low-affinity interactions play a crucial role. Due
to their specific functional and structural properties, these
binding regions have distinct properties compared to both
globular proteins and disordered regions in general. Here,
we present a general method to identify disordered
binding regions from the amino acid sequence. Our
method targets the essential feature of these regions:
they behave in a characteristically different manner in
isolation than bound to their partner protein. This
prediction method allows us to compare the binding
properties of short and long binding sites. The evolution-
ary relationship between the amount of disordered
binding regions and general disordered regions in various
organisms was also analyzed. Our results suggest that
disordered binding regions can be recognized even
without taking into account their adopted secondary
structure or their specific binding partner.
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of a stable well-defined structure. The method utilizes statistical

potentials that can be used to calculate the pairwise interaction

energy from known coordinates. Using a dataset of globular

proteins only, a method was developed to estimate the pairwise

interaction energy of proteins directly from the amino acid sequence.

By virtue of this algorithm, disordered residues can be predicted by

having unfavorable estimated pairwise energies. The estimation of

the energy for each residue is based on its amino acid type, and the

amino acid composition of its sequential neighborhood. Through the

amino acid composition of the sequential environment, IUPred can

take into account that the disorder tendency of residues can be

modulated by their environment [53]. This property of IUPred is

exploited in order to recognize regions that are most likely to

undergo a disorder-to-order transition based on their estimated

pairwise energies in different contexts. The prediction of binding

sites is based on estimating the energy content in free and in the

bound states, and identifying segments that are potentially sensitive

to these changes. In a previous work, the ability to predict specific

contacts was emphasized in order to recognize disordered regions

that are involved in binding externally rather than internally [46]. In

our model, however, there was no attempt made to model specific

interactions. Instead, the environment is taken into account simply at

the level of amino acid composition. Here we show that this simple

model captures the essential property of disordered binding regions

and allows their robust prediction. We termed our disordered

binding site prediction method ANCHOR, to reflect the primary

importance of short segments driving the complex formation

between a disordered protein and its partner.

Results

The outline of the algorithm
The goal of the present work was to recognize a special class of

disordered segments from the amino acid sequence, namely those

that are capable of undergoing a disorder-to-order transition upon

binding to a globular protein partner. The essential feature of such

binding regions is that they behave in a characteristically different

manner in isolation than bound to their partner protein. In their

free state, they behave as disordered proteins, existing as a highly

flexible structural ensemble. In their bound state they usually

adopt a rigid conformation, similar to regions within globular

structures. This capability to behave in drastically different ways in

different environments is targeted by our approach. We seek to

identify segments in a generally disordered region that cannot

form enough favorable intrachain interactions, however they have

the capability to energetically gain by interacting with a globular

partner protein. Our prediction is based on three properties.

1. The first criterion ensures that a given residue belongs to a long

disordered region, and filters out globular domains.

2. The second criterion corresponds to the isolated state and it

ensures that a residue is not able to form enough favorable

contacts with its own local sequential neighbors to fold, otherwise

it would be prone to adopt a well defined structure on its own.

3. The third criterion tests the feasibility that a given residue can

form enough favorable interactions with globular proteins

upon binding. This basically ensures that there is an energy

gain by interacting with globular regions.

These properties are estimated individually and are combined

into a single predictor via optimized weights.

In more detail, the prediction of these three properties relies on

the energy estimation framework implemented in IUPred, a

general disorder prediction method. The core element of IUPred

is the energy predictor matrix P. The parameters in Pij were

trained on globular proteins with known structures only, without

relying on any kind of disordered dataset. These parameters were

determined to minimize the difference between the estimated

energies and the energies calculated from the known structures on

the dataset of globular proteins. Using the energy predictor matrix

IUPred predicts the E interaction energy for each residue based on

the following formula in default:

Ek
i ~

X20

j~1

Pijf
k
j w0ð Þ ð1Þ

where i denotes the type of the k-th amino acid, Pij is the element of

the energy predictor matrix that estimates the pairwise energy of

residue of type i in the presence of residue type j, f kj w0ð Þ is the

fraction of residue type j in the sequential environment within w0

residues from residue k. The size of neighborhood considered (w0)

equals 100 residues in both directions and the result is smoothed

over a window size of 10 (also in both directions from the k-th

residue so in fact 21 residues are considered in total). For the final

prediction output, the energies are transformed into probability

values, denoted as sk. For more details see Dosztányi et al. [53].

The disordered binding site prediction is based on three

different scores that are calculated with a slight modification of the

original energy estimation scheme. The parameters of Pij were
taken directly from IUPred. The following three scores are

assigned to each residue in a protein according to the above

described criteria (1–3):

1, To measure the tendency of the neighborhood of an amino

acid for being disordered we use the IUPred algorithm and assign

an Sk score to the k-th residue of the chain by averaging the

IUPred scores in the w1 neighborhood of the residue in question:

Sk~
1

N

Xbupper

k=j~blower

sj ð2Þ

where sj is the IUPred score of the j-th residue of the chain, N is the

number of amino acids in the averaging and blower and bupper are the

lower and upper boundaries of the neighborhood of the i-th
residue, that is blower=max(k2w1;1) and bupper=min(k+w1;l), where l

is the chain length.

2, We estimate the pairwise interaction energy the given residue

may gain by forming intrachain contacts. This is done the exact

same way as in IUPred using (1), only here the size of the

considered neighborhood (w2) is left as a parameter and is set

during the training of the predictor:

Eint,k
i ~

X20

j~1

Pijf
k
j w2ð Þ ð3Þ

The smaller window size corresponds to more local behavior.

3, The pairwise energy that the residue may gain by interacting

with a globular protein is approximated using the average amino

acid composition of globular proteins:

E
glob
i ~

X20

j~1

Pijf glob,j ð4Þ

where f glob,j is the fraction of residue type j in the averaged

reference amino acid composition of globular proteins shown in

Predicting Disordered Binding Regions in Proteins
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Table 1. By subtracting this energy from Eint,k
i one can estimate

the energy that the residue may gain by interacting with a

hypothetical globular protein compared to forming intrachain

contacts (E
gain,k
i ~Eint,k

i {E
glob
i ).

The final prediction score of the residue is given by the linear

combination of the above three terms:

Ik~p1Skzp2E
int,k
i zp3E

gain,k
i ð5Þ

where the p1, p2 and p3 coefficients are determined during the

training of the predictor together with the optimal values of w1 and

w2 window sizes. Ik is then converted into a p value that expresses

the probability of that residue being in a disordered binding site.

For a binary classification residues with scores above 0.5 are

predicted to be in a disordered binding site. Since the second and

third terms of (5) may vary heavily between neighboring residues,

the final score is smoothed in a window of 4 residues.

The optimal values for the three weights (p1, p2 and p3) and the two

window sizes (w1 and w2) are determined using a dataset of disordered

protein complexes and ordered monomeric proteins by three-fold

cross validation (See Methods and Figure S1 for a schematic

representation and outline of this procedure). The small dataset of

known disordered proteins bound to ordered proteins represent a

serious bottleneck during optimization. Therefore, it is a clear

advantage of our approach that it greatly reduces the dependence on

the existing dataset of disordered complexes, and leaves us with only 5

parameters to be optimized on this small dataset.

The behavior of various scores is shown for an example, the N

terminal domain (residues 1–100) of human p53 tumor supressor

protein that plays an important regulatory role [55]. Its N terminal

region is completely disordered [56] and is known to be able to

bind to (at least) three different globular proteins as shown in

Figure 1. The segment between residues 17–27 binds to MDM2

[57], the other two binding sites overlap with residues 33–56

binding to RPA 70N [58] and residues 45–58 binding to the B

subunit of RNA polymerase II [59]. The three calculated

quantities for this domain are also shown in Figure 1. It is worth

noting that the MDM2 binding site in the N-terminal region of

p53 appears to be on the border of being disordered. Although the

disordered prediction is part of ANCHOR, the output of this

prediction (Eint, described in Theory) is linearly combined with two

other quantities meaning that predicted disorder is not strictly a

prerequisite of a successful disordered binding site prediction.

Testing of the algorithm
Testing of the predictor was done by dividing both our negative

and positive datasets (Globular proteins and Short disordered complexes)

into three subsets, training the predictor on two of these and

evaluating it on the remaining third one. This was done in all three

possible combinations yielding three optimal parameter sets. The

parameters calculated on the training sets are shown in Table 2

together with the respective True Positive Rates (TPR) and the

fraction of the amino acids in disordered regions of the Disprot

dataset predicted to be in disordered binding sites (F values). The

optimal parameters were chosen to maximize the amount of

correctly predicted disordered binding sites (TPR) while minimiz-

ing predicted binding sites in globular proteins (FPR) and also

restricting predicted binding sites within disordered regions in

general (F). The fact that the three parameter sets do not differ

significantly implies that our method is robust.

The output of the predictor with all three parameter sets and

the combined final predictor (the average of these three) are shown

for the example of the N terminal region of p53 in Figure 1. A few

additional well characterized examples are shown in the

Supporting Information (Figure S2, Figure S3, Figure S4, Figure

S5, and Figure S6).

The results obtained on the three independent testing subsets as

well as their average are given in Table 3. Since the cutoffs are

given by the training process such that we achieve exactly 5%

False Positive Rate (FPR) on the respective training sets (ie. the

part of the original Globular proteins dataset that was used in the

training of the respective subpredictor), the FPR’s are also quoted

(they can differ slightly from 5%). Besides the overall TPR

calculated on a residue basis (marked TPRAA), we also calculated

the percentage of binding sites identified, termed TPRSEG. A

binding site was considered to be found if at least five of its amino

acids are correctly classified. The results show that ANCHOR

performs at 62% TPRAA with a slightly higher TPRSEG of 68% on

average, while maintaining a 5% FPR. ANCHOR is also specific

to disordered binding sites as opposed to disorder to general. If all

disordered proteins had approximately equal capability of binding

then the fraction of correctly identified disordered binding sites

(TPR) could not be significantly different from the fraction of

disordered regions predicted to be binding sites (F value). As this is

not the case (TPR=62% vs. F= 42%) we can conclude that

common features of known disordered binding sites that

distinguish them from general disordered protein regions are

successfully recognized.

Another standard way of describing prediction algorithms is by

Receiver Operating Characteristic (ROC) curves [60], that is the

TPR versus the FPR of the algorithm. This relationship is mapped

Table 1. Reference amino acid composition of globular
proteins.

AA F %

R 3.68

K 6.37

D 4.92

E 5.43

N 4.69

Q 3.86

S 8.05

G 8.46

H 2.00

T 6.35

A 7.67

P 4.89

Y 3.86

V 7.13

M 1.84

C 2.43

L 8.22

F 3.19

I 5.20

W 1.76

Amino acid composition of the reference globular protein dataset comprised of
all the amino acids in the longer chains of the ordered complexes dataset.
Amino acids are sorted by increasing hydrophobicity based on the Fauchere-
Pliska hydrophobicity scale [94]. AA denotes amino acid codes and f denotes
the fraction of the respective amino acid expressed as a percentage.
doi:10.1371/journal.pcbi.1000376.t001
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by scanning the interval between 0 and 1 with the score cutoff.

The three ROC curves of the predictor with the three different

parameter sets evaluated on the respective testing sets are shown in

Figure 2. A single number measure to characterize the

performance is the area under the curve (AUC) with random

predictors scoring AUC=0.5 and perfect predictors scoring

AUC=1. The AUC values of the predictors trained and tested

on the respective subsets are 0.8675, 0.8781 and 0.8993.

Figure 1. The construction of the ANCHOR prediction method demonstrated on the N-terminal domain of human p53. Left: IUPred
prediction score for the full length human p53 (top) and S, Eint and Egain calculated for the disordered N terminal domain of human p53 (middle). Grey
boxes show the three binding sites with the overlap of the RPA70N and RNAPII binding sites shown in dark grey. The outputs of the three individually
optimized predictors are shown in black and their average, the final prediction score is shown in purple (bottom). Right: PDB structures of the binding
sites in the N-terminal region of p53 (yellow) complexed with the respective partners (blue): MDM2 (top, PDB ID: 1ycq [57]), RPA 70N (middle, PDB ID:
2b3g [58]) and RNA PII (bottom, PDB ID: 2gs0 [59]).
doi:10.1371/journal.pcbi.1000376.g001

Predicting Disordered Binding Regions in Proteins

PLoS Computational Biology | www.ploscompbiol.org 5 May 2009 | Volume 5 | Issue 5 | e1000376

               dosztanyi.zsuzsanna_45_22



Since the interacting regions of a disordered and an ordered

protein are inherently different we expect that the predictor will

only recognize binding sites in disordered proteins that interact

with globular proteins but are not part of globular proteins

themselves. In order to verify this hypothesis we tested the

combined final predictor on a dataset of complexes containing

only ordered chains (that is three-state complexes – see Methods).

The prediction was done on the short interacting chain of the

complexes. This gave a false positive rate of only 3.7% that is even

lower than the value obtained on our testing set, although this

might be only a consequence of the relatively small size of our

ordered complex set (72 complexes). Overall, we could ensure that

our predictor makes very few mistakes on both globular proteins

and complexes of globular proteins, while it can still recognize the

majority of disordered binding regions. This implies that our

algorithm is specific to disordered binding sites as opposed to

globular proteins, the interface between globular proteins or

disordered proteins in general.

Our predictor was also tested on a completely independent

dataset of a-MoRFs, short disordered complexes that was

assembled by Cheng et al. [48] and composed of 40 proteins

containing binding regions that adopt mostly a-helical structure

upon binding. The results of the prediction on this dataset can be

seen in Table 4. Although the residue based TPR is somewhat

lower than that calculated on our testing set (57.0% instead of

61.8%), the segment based TPR is almost the same for the two sets

(67.5% and 68.3%). Overall these results are comparable to the

ones calculated on our training set.

Amino acid based evaluation of the predictor
The specific construction of the algorithm for the prediction of

interaction energy implies that the method will be sensitive to

amino acid compositions. The differences between the composi-

tion of disordered binding sites and the amino acid composition of

any of the negative sets (globular proteins, ordered interfaces and

disordered proteins in general) are shown in Figure 3A, 3B, and

3C, respectively. The amino acid compositions of all three datasets

are significantly different from that of disordered binding segments

(data not shown).

The final prediction is based on three different scores that

combine local and global disorder tendency with sensitivity to the

structural environment. Although the individual quantities that are

combined for the final score can work selectively better or worse

for various types of residues, the effect of these differences on the

efficiency of the final prediction is not trivial. This effect was tested

by comparing the amount of the different amino acids in the short

disordered binding sites to the amount recovered from these by the

predictor. These data are shown in Table 5 together with the

calculated p values quantifying their differences. As all of the p

values are fairly large, these differences are likely to occur by

chance alone. For example, proline rich binding sites are found

Table 2. Parameter and prediction accuracy values obtained
during the optimization of ANCHOR.

w1 w2 p1 p2 p3 F (%) TPR (%) FPR (%)

Training set 1 25 60 0.4630 0.3847 0.7985 46.0 69.8 5.0

Training set 2 27 60 0.6075 0.4149 0.6773 47.4 67.7 5.0

Training set 3 29 90 0.6990 0.4585 0.5488 43.4 64.8 5.0

Optimal parameters of the predictor determined during training. w1, w2, p1, p2
and p3 are the optimized parameters, F is the fraction of the residues in the
disordered regions in the Disprot database that are predicted to be in binding
sites, TRP and FPR are the True- and False Positive Rates, respectively.
doi:10.1371/journal.pcbi.1000376.t002

Table 3. Prediction efficiency of ANCHOR evaluated on the
testing datasets.

TPRAA (%) TPRSEG (%) FPR (%)

Testing set 1 61.1 62.5 5.7

Testing set 2 69.5 80.0 4.4

Testing set 3 54.7 62.5 5.1

Average 61.8 68.3 5.1

Results of the testing of ANCHOR on the three testing datasets. TPRAA denotes
the ratio of correctly identified amino acids belonging to binding sites. TPRSEG
denotes the ratio of binding sites found by the algorithm.
doi:10.1371/journal.pcbi.1000376.t003

Figure 2. ROC curves obtained during the testing of ANCHOR.
ROC curves of the predictor with parameter sets optimized on each of
the three training subsets and evaluated on the respective testing
subsets are shown with red, green and blue lines. The line with unity
slope corresponding to random prediction is also shown. The vertical
line corresponds to FPR= 0.05, where the final predictor (the average of
these three) is used.
doi:10.1371/journal.pcbi.1000376.g002

Table 4. Prediction efficiency of ANCHOR evaluated on an
independent dataset (a-MoRFs dataset).

H E C Total SEG

In dataset 263 8 210 479 40

Found 147 5 121 273 27

Ratio (TPR) 55.9% 62.5% 57.6% 57.0% 67.5%

Prediction results for the a-MoRFs dataset. SEG denotes segment based results
where each binding site is considered one segment and one such segment is
considered found if at least five of its amino acids are correctly identified.
doi:10.1371/journal.pcbi.1000376.t004
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with similar accuracy as binding sites enriched in hydrophobic

amino acids. Therefore, one may conclude that there is no

statistical evidence based on the available dataset that the

efficiency of the predictor depends significantly on the amino

acid composition of the disordered binding site in question.

Secondary structures and the efficiency of ANCHOR
The relationship between the efficiency of the prediction and

the secondary structure types was also assessed, by considering the

three types of secondary structural elements: helix (H, including a-

and 310 helices), extended (E) and coil (C, including everything else)

as defined by DSSP [61]. The number of amino acids in different

conformations that can be found in the PDB structures of our

positive training set (short disordered complexes), in the interacting

residues of these structures and the interacting residues that are

correctly identified by the predictor are shown in Table 6. These

data are represented graphically as distributions in Figure 4. The

secondary structure content in this type of interactions is heavily

biased towards coil conformation. It can also be seen on Figure 4 that

the predictor seems to work slightly better for H and E

conformations. However assessing the difference of the distributions

of secondary structures in interacting residues and in the subset

identified correctly by ANCHOR shows that this difference is not

statistically significant at a 5% level (x2=5.32, p=0.070).

Furthermore, a similar result holds true if binding sites are

categorized based on their dominant secondary structure type -

that is there is no significant correlation between the secondary

structure type the binding regions adopt upon binding and the

efficiency of the predictor. (Dataset S1 shows the secondary

structure types determined for the short disordered chains in the

disordered complexes as described in Protocol S1.) Overall, this

means that there is no significant difference in the efficiency of the

prediction on different secondary structural elements.

Testing on long disordered regions
Since the predictor was trained on the short disordered dataset

it is informative to see how it performs on long disordered binding

Figure 3. The distinct amino acid composition of short disordered binding sites. The average amino acid composition of the interacting
parts of the short disordered binding sites compared to the average amino acid composition of (A) the globular proteins dataset, (B) the disordered
proteins dataset and (C) the interacting parts of the shorter chains of the ordered complexes. Amino acids are arranged according to increasing
hydrophobicity.
doi:10.1371/journal.pcbi.1000376.g003

Table 5. The independence of the efficiency of ANCHOR from
the amino acid composition of the binding sites.

AA Nint Nfound p

R 42 21 0.122

K 47 36 0.362

D 40 27 1.000

E 41 20 0.116

N 14 6 0.252

Q 22 11 0.358

S 46 34 0.497

G 23 14 0.758

H 9 7 1.000

T 31 20 1.000

A 39 33 0.068

P 40 19 0.113

Y 17 11 1.000

V 29 20 1.000

M 17 16 0.085

C 4 2 1.000

L 69 47 0.857

F 26 19 0.764

I 31 26 0.146

W 6 5 1.000

Nint shows the number of interacting residues in the short disordered binding
sites, Nfound shows the amount of these that are correctly found by the
predictor. As there are types of amino acids that are rare, Fisher’s exact test was
used to calculate (two-tailed) p values to determine if the predictor works
significantly better or worse for certain amino acid types with high p values
corresponding to no significant difference.
doi:10.1371/journal.pcbi.1000376.t005
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sites. There is experimental evidence that at least some long

disordered chains are not uniform concerning binding strength but

contain short stretches of strongly interacting residues separated by

segments that interact with the partner only weakly if at all [19]. In

these cases, it is expected that the predictor will be unable to

identify the weakly interacting parts since – though these parts

may also form interchain contacts – they would not be able to bind

to the partner in the absence of their sequential neighbors. The

distribution of predicted binding regions for the short and long

disordered chains in Figure 5A shows a strong preference for

predicting multiple interacting regions for longer chains. This

inevitably yields lower residue based TPR but the segment based

TPR is not expected to drop. Testing the predictor on the long

disordered data confirms this assumption with a decreased residue

based TPR of 47.7% (as opposed to 65.8% obtained on running

the final predictor on the whole set of short disordered complexes)

but with a basically unchanged segment based TPR of 78.6%

(compared to the 76.1% calculated on short disordered complex-

es). These data suggest that the method either finds short

disordered binding sites as a whole or completely misses it.

However, this may not be true for long binding regions. Figure 5B

shows the distribution of the fraction of amino acids successfully

identified during prediction in the two types of binding sites. The

effect can clearly be seen as about 59% of short binding regions

are either fully recovered or are completely missed (the sum of the

rightmost and leftmost columns) whereas this ratio is only about

29% for long binding sites.

This type of behavior is illustrated on the disordered human

p27. This protein is involved in controlling eukaryotic cell division

through interactions with cyclin-dependent kinases. Its kinase

inhibitory domain binds both subunits of the CDK2-cyclin A

complex in an extended conformation (PDB ID: 1jsu [62]). It is

known from kinetic measurements that the binding of p27 is

hierarchical through its three domains: first, the D1 domain

(residues 25–36) binds to cyclinA which anchors the neighboring

LH domain (residues 38–60) that exhibits transient helical

structure in monomer state as well [63]. After the binding of D1

this transient structure is stabilized and positions the rest of the

chain (D2 domain, residues 62–90) in the correct position to bind

to CDK2.

Figure 6 shows the prediction output for p27. Four interacting

regions are identified with the first one (27–37) clearly corre-

sponding to D1. The gap between the first two regions (38–58)

coincides with the weakly interacting LH domain. The last three

regions (59–67, 74–77 and 79–90) cover the strongly interacting

D2. Figure 6 also shows the number of atomic contacts/residue for

p27 (averaged in a window of size 3). This contact number profile

exhibits well pronounced peaks that line up with the regions that

are predicted by our algorithm. The figure also shows the four

predicted regions mapped to the crystal structure of the complex.

Wiskott-Aldrich Syndrome protein (WASp)
The examples discussed so far represent various fragments of

proteins. Here we present an additional case showing the

prediction output for a complete protein sequence.

Table 6. Secondary structure distributions in the short
disordered binding site dataset.

Total in PDB

Interacting

residues Correctly identified

Number

Fraction

(%) Number

Fraction

(%) Number

Fraction

(%)

H 297 35.7 200 33.6 144 36.7

E 25 3.0 25 4.2 23 5.9

C 510 61.3 371 62.2 225 57.4

Total 832 596 392

The number and fraction of amino acids in different secondary structures in the
disordered chains of the complexes. The three groups show these data for all
the amino acids in the PDB structures, the ones in interaction and the ones that
are correctly identified as part of binding site by ANCHOR.
doi:10.1371/journal.pcbi.1000376.t006

Figure 4. Secondary structure distributions in the short disordered binding site dataset. Fraction of amino acids in different secondary
structures in the disordered chains of the complexes. The three groups denote the fractions calculated on all the residues in the PDB structures, only
the interacting ones and the ones correctly identified by the predictor.
doi:10.1371/journal.pcbi.1000376.g004
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The human Wiskott-Aldrich Syndrome protein (WASp) is a 502

residue long protein that is expressed in the cells of the

hematopoietic system [64]. Its mutations can be linked to the

Wiskott-Aldrich Syndrome (WAS), a disease characterized by

actin cytoskeleton defects leading to deficiencies in blood clotting

and immune response. The protein is composed of various

functional domains. It contains the WH1 domain near the N

terminus (residues 39–148), the GTPase-binding domain (GBD,

230–310), a polyproline-rich region and a C-terminal verpolin

homology/central region/acidic region (VCA, 430–502) domain

[65] that also contains the WH2 domain (430–447). Apart from

the structured WH1 domain, it is predicted to be largely

disordered and contains several low complexity regions (enriched

in P, G and acidic amino acids). There is experimental evidence

that the activated WASp hubs a number of interactions with

partners including CDC42, RAC, NCK, FYN, SRC kinase FGR,

BTK, ABL, PSTPIP1, WIP, and the p85 subunit of PLC-gamma

as well as the Arp2/3 complex. However, the location of many of

these binding regions is not known. The domain structure of

WASp is shown in Figure 7 together with the known binding

regions.

In its inactive state WASp exists in an autoinhibited form with

the GBD domain bound to the VCA domain. When WASp is

activated, the GBD domain is bound to CDC42 and this

interaction disrupts the GBD-VCA interaction. This initiates a

conformational change where WASp opens up and becomes able

to bind to the Arp2/3 complex leading to its activation and actin

nucleation. Both GBD and VCA regions were shown to be

disordered in their free state [65,66], with GBD adopting a loosely

packed, compact conformation. However, the structure of both

complexes could be determined using NMR, by covalently linking

GBD to CDC42 or the VCA region, respectively [65,67]. In these

two structures WASp GBD adopts related but distinct folds. The

plasticity that can be seen by comparing these two complexes is

enabled by the absence of discrete tertiary structure in isolation. As

it can be seen on Figure 7, ANCHOR captures these disordered

binding sites correctly.

It is known that WASp is able to bind to SRC Homology 3

(SH3) domains through one of its proline rich regions although

the exact binding site is not known. The interaction with SH3

domains is usually mediated by a short, linear sequence motif

that is present in the interaction partner. In the collection of

Eukaryotic Linear Motifs (ELM) database (http://elm.eu.org/

[68]) there are five different motifs annotated as SH3 recognition

sites. Multiple instances of the following three can be found in

human WASp: LIG_SH3_1, LIG_SH3_2 and LIG_SH3_3

represented by the following consensus sequences: [RKY]..P..P,

P..P.[KR] and …[PV]..P, for interaction with Class I/ClassII

SH3 domains and those SH3 domains with a non-canonical

Class I recognition specificity, respectively. The found motifs are

clustered in two separate regions mainly falling into the proline-

rich regions of WASp (Figure 7). Although there is no direct

evidence for the location of interaction with SH3 domains on

human WASp, the interaction sites have been identified for

Las17 [69], the yeast homologue of this protein. In total, four

distinct regions containing multiple binding sites were identified

experimentally in Las17 that interact with various SH3 domains.

These sites correspond to the proline rich regions in WASp

Figure 5. Prediction accuracies and segmentation for the short and long disordered binding sites. (A) The distribution of the number of
binding segments predicted in short (white bars) and long (black bars) binding sites. It shows the segmented nature of longer binding sites. (B) The
distribution of the fraction of correctly recovered interacting residues in both the short (white bars) and long (black bars) disordered binding sites.
doi:10.1371/journal.pcbi.1000376.g005
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(155–194 and 306–427) that also match with several SH3

binding motifs. As linear motifs were shown to have a preference

to reside in disordered regions [70], it is plausible to expect

ANCHOR to be able to recognize the SH3 binding region of

WASp. In accordance with this, both regions containing putative

SH3 binding sites contain binding sites predicted by ANCHOR.

This prediction can restrict the candidate sequence regions for

SH3 binding and can guide experimental studies to localize true

binding sites.

Complete proteome scans
In order to gain some evolutionary insight concerning

disordered binding sites, the predictor was run on the 736

complete proteomes (53 archaea, 639 bacteria and 44 eukaryota,

see Dataset S5, Dataset S6, and Dataset S7, respectively) that are

currently available from the SwissProt database (ftp://ftp.expasy.

org/). In agreement of previous analyses [5,6] there is a clear trend

of increasing amount of protein disorder as the complexity of the

organism increases (see Figure 8). However, Figure 8 also shows

that the fraction of disordered amino acids predicted to be in

disordered binding sites increases even compared to fraction of

disordered residues, as the complexity of organisms grows.

Generally, archaea have the least amount of both disorder and

binding sites. On the other hand, eukaryota have generally the

largest ratio of disordered and binding amino acids with bacteria

being between these two groups on average. However there are a

few exceptions to these general trends, marked separately on

Figure 8.

Figure 6. ANCHOR prediction for human p27. Top: Number of atomic contacts (green) and prediction output (blue) and for the N-terminal
binding region of human p27. ‘‘D1’’and ‘‘D2’’ denote the two strongly interacting domains (red boxes) and ‘‘LH’’ denotes the weakly interacting linker
domain between them (yellow box). Bottom: Crystal structure of human p27 (red and yellow) complexed with CDK2 (magenta) and Cyclin A (blue)
(PDB ID: 1jsu [62]). Red parts denote regions that are predicted to bind by the predictor. These regions correspond to the experimentally verified
strongly binding regions of p27. The figure was generated by PyMOL.
doi:10.1371/journal.pcbi.1000376.g006
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Considering archaea, mesophiles generally contain a larger

amount of disorder and a larger fraction of disordered binding

sites than most extremophiles (thermophiles, cryophiles and

acidiphiles). However the group of halophile archaea (archaea

that favor high saline concentration) is a distinct exception with

fraction of disordered amino acids ranging from 0.2 to 0.25 as

opposed to other extremophiles’ values not exceeding 0.07. This

group includes all the halophile archaea in our study, namely

Figure 7. ANCHOR prediction for humanWASp. Red bars mark known interaction sites, green box marks the globular WH1 domain, blue boxes
mark the GBD and VCA domains. Light red boxes indicate the regions with putative SH3 domain interaction sites.
doi:10.1371/journal.pcbi.1000376.g007

Figure 8. Fraction of disordered and disordered binding site residues in complete proteomes. The number of amino acids in disordered
binding sites divided by the number of amino acids in disordered regions plotted as a function of the number of amino acids in disordered regions
divided by the total number of residues in the proteome of the organism for the 736 complete proteomes deposited in the SwissProt database,
colored according to the three kingdoms of life. The outlying points are marked with the name of the corresponding organism.
doi:10.1371/journal.pcbi.1000376.g008
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Natronomonas pharaonis, Haloarcula marismortui, Haloquadratum walsbyi

and two types of Halobacterium salinarum. Cenarchaeum symbiosum, the

only example of obligate endosymbiont among archaea also has an

unusually large amount of disordered protein segments in its

proteome (0.12). While Cenarchaeum symbiosum is closely related to

thermophile archaeas, it is adopted to the much lower living

temperature of its host [71]. This adaptation could explain the

relatively large amount protein disorder and disordered binding

sites. In general, these clear differences in the predicted disorder

between various archaea organisms points to different strategies to

adapt to various extreme environmental conditions resulting in

biased amino acid compositions. However, we cannot rule out the

possibility that under such extreme conditions, as high salt

concentration or high temperature, the amount of disorder can

be over- or underpredicted depending how these conditions affect

the presence of protein disorder.

Among bacterial proteomes, there are a few examples of

organisms that seem to utilize a surprisingly large fraction of their

disordered amino acids in binding. The three most extreme cases

(Carsonella ruddii, Sulcia muelleri and Buchnera aphidicola subsp. Cinara

cedri) are marked separately on Figure 8. These are the three

smallest complete bacterial proteomes, none of them reaching the

size of the smallest archaea proteome. These organisms present

extreme cases of streamlined genomes as a result of endosymbiosis

[72–74]. As these proteomes are very small, the predicted amount

of disorder and disordered binding sites are within the false

positive range, and should be treated more cautiously.

Eukaryotes tend to appear more consistent both in using larger

amount of disordered residues and larger fraction of disordered

residues for binding compared to the other two kingdoms

(Figure 8). The only notable outlier both in terms of extremely

low amount disordered proteins and disordered binding sites is

Encephalitozoon cuniculi. This organism is the only microsporidian

parasite in our dataset and has an extremely small proteome. This

lack of complexity and dependence on a eukaryotic host to

function might explain the lack of disordered proteins.

Figure 9. Length distribution of disordered and disordered binding sites in complete proteomes. The length distribution of (A) the
disordered protein segments determined by IUPred and (B) predicted disordered binding sites determined by ANCHOR for the 736 complete
proteomes available, grouped according to the three kingdoms of life.
doi:10.1371/journal.pcbi.1000376.g009
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The length distributions of the predicted disordered regions and

binding sites in the three kingdoms of life was also analyzed and

are shown in Figure 9A and 9B, respectively. As complexity

increases, longer disordered segments are preferred, and the

difference between eukaryota and lower complexity organisms

becomes even more apparent for longer regions (over 30 residues).

A similar trend can be observed in the length distribution of

disordered binding sites. While in archaea and bacteria predicted

binding regions are generally below 30 residues, longer binding

sites in eukaryota organisms are much more common. There are

at least three different effects that can contribute to this

phenomenon. First, as the number of binding sites rise there is

also an increasing possibility of these binding sites becoming very

close to each other or even overlapping with each other. This

scenario was demonstrated in the case of the N-terminal domain of

p53, as shown in Figure 1. Second, extremely large disordered

binding regions may be needed for special functions. Some

members of the mucin protein family provide an example for this.

Human MUC1 contains a large repeat region (20–120 repeats,

one repeat being 20 amino acids long) that enables it to aggregate

and to perform its function [75]. As each repeat is correctly

identified as a disordered binding site, the whole repeat region is

predicted as one large binding region. This mechanism can create

binding sites up to the length of several hundreds of residues in

extreme cases. Third, we cannot exclude the possibility that longer

binding sites are not always segmented by weakly interacting

regions like in the case of p27, thus forming long, continuous

binding regions. Nevertheless, the majority of predicted binding

sites is shorter than 30 residues, although such restriction on the

length of disordered binding sites was not enforced.

Discussion

Regions undergoing disorder-to-order transitions upon binding

are essential elements in the molecular recognition process

involving disordered proteins. The main property of these binding

regions is that they can exist in a disordered state as well as in

bound state, adopting at least partially a well-defined conforma-

tion. The presence of these two separate states discriminates them

from monomeric globular proteins as well as from complexes

formed between globular proteins and from disordered proteins in

general. They are also expected to differ from dual personality

fragments [76], which occur within globular proteins, however,

mostly as a result of perturbations of environmental conditions. In

this work we aimed to recognize such disordered binding regions

from the amino acid sequence. So far, the limited number of well

characterized examples hindered the development of general

prediction methods. Nevertheless, biophysical considerations

suggest that in most cases there is a strong signal in the amino

acid sequence highlighting regions involved in coupled folding and

binding. These regions are linear in sequence, unlike in the case of

globular proteins, where distinct sites in the amino acid sequence

are brought together to form the interface for interaction [43]. An

additional difference is that binding of disordered proteins is

driven by a large enthalpic component to compensate for the

entropy penalty due to the loss of conformational freedom [9].

These features result in a relatively short sequence segment

containing residues with a pronounced tendency to make

interactions, leading to a characteristic sequence signal.

Our approach relies on a basic physical model of disordered

binding sites and it is based on modeling the interaction capacity

in the free disordered state and in the bound ordered state.

Previously, it was shown that ordered proteins can be discrimi-

nated from disordered proteins based on estimated pairwise

energy content and this approach was implemented in IUPred, a

general disorder prediction method [53]. This method takes into

account that disorder/order tendency can be modulated by the

sequential neighborhood simply at the level of amino acid

composition, without attempting to model the specific interactions.

Taking it one step further, the same energy estimation calculations

were used to identify disordered binding regions in proteins. Our

model assumes that the specific properties of disordered binding

sites are dictated by the combination of preferences to bind to an

ordered protein on the one hand, and the ability to remain in a

disordered state in isolation, on the other. Based on this simple

model, ANCHOR achieved approximately 67% accuracy at

predicting 5% false positive rate (Tables 2–4). Furthermore, this

approach was validated by the ability to reproduce the specific

amino acid composition of disordered binding sites, that is distinct

from that of ordered proteins as well as disordered proteins in

general (Table 5).

During binding, the formation of intermolecular contacts is

accompanied by the formation or the stabilization of secondary

structure elements. The secondary structure composition of the

binding sites is highly unequal (Table 6 and Figure 4). The most

dominant secondary structure element adopted in the bound

conformation is coil, while b strand conformation is rare. Helical

conformations are observed as frequently in disordered complexes

as in globular proteins [27]. It was found that the adopted

secondary structure can be predicted from the amino acid

sequence with similar accuracy as in the case of globular proteins,

suggesting that the adopted secondary structure can be imprinted

into the sequence of the binding motif [27]. The secondary

structure observed in the complex can also be dictated by the

template structure. An extreme example of this is the C-terminal

region of p53 (see Supporting Information), observed in all three

secondary structure classes [32]. It is clear that not all of these

conformations can be the result of inherent preferences.

Interestingly, our prediction method does not seem to be sensitive

to the adopted secondary structure conformation and it works with

the same accuracy for all secondary structure conformations

(Table 6 and Figure 4). This independence of secondary structure

elements underlines the generality of ANCHOR. These results

also suggest that disordered binding sites can be recognized

without taking into account of the adopted secondary structure in

the majority of cases. Nevertheless, the details of conformational

preferences can be still crucial in selecting the specific binding

partner, or determining the kinetic and thermodynamic properties

of the associations.

Beside our algorithm, a previously published method called a-

MoRF predictor also exploited a general disorder prediction

method to recognize short binding elements [48,52]. Although the

direct comparison between the two methods was not possible,

because the a-MoRF predictor is not yet publicly available, some

basic differences between the two methods should be noted. First,

the a-MoRF predictor directly relies on the prediction output of

PONDR VXLT, which essentially predicts binding regions as

ordered structural elements, and a subsequent neural network is

applied to filter out valid disordered binding sites. Although very

high accuracies were reported for the performance of the neural

network based filtering, the complete method is limited by finding

dips based on PONDR VLXT [49–51]. Therefore it should be

taken into account that this program is a first generation

prediction method that was trained on only 15 proteins. In the

case of IUPred, dips corresponding to certain binding sites were

also observed, although to a smaller extent [48,53]. This

observation, however, is not directly exploited in our prediction

method. Instead, the core parameters of the energy prediction of
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IUPred are used to create three separate scores characterizing

three important attributes of disordered binding regions. The

second main difference is that ANCHOR is not restricted to a

single secondary structure class like the a-MoRF predictor that

was trained to recognize only a-helical segments. The example of

the C-terminal region of p53 (Figure S2), where four short

overlapping regions were shown to bind in different conformations

representing all three secondary structure classes, indicates that

such restriction can be a serious disadvantage for recognizing some

extremely adaptable disordered binding motifs.

An alternative approach for binding site identification is based

on the observation that protein-protein interactions are often

mediated through short linear motifs (approximately three to eight

residues) [77]. Such motifs are defined by a consensus pattern,

which captures the key residues involved in function or binding.

Prominent examples include the nuclear receptor box motif,

MDM2 binding sites, SH2/SH3 domain recognition patterns or

14-3-3 domain binding sites [68]. Although there are known

examples of motifs that reside within globular domains, many of

them are required to be in a disordered region to function properly

and it was suggested that such motifs share many similarities with

disordered binding regions [70]. Our preliminary results support

previous observations of the partial overlap between short linear

motifs and disordered binding segments. Nevertheless, short

disordered binding sites and sequence specific linear motifs

capture different aspects of certain binding regions. Linear motifs

are defined on the basis of a per residue binding strength, and they

are specific to a certain partner or to a group of partner molecules.

However, such short linear motifs can also occur purely by chance,

with no biological significance. Also, sequence patterns alone

cannot ensure the accessibility of the site and the potential

flexibility of the binding region that could be necessary for the

complex formation. Complementary to sequence motifs, AN-

CHOR aims to capture a broader structural context. Based on

their specific structural properties, it can recognize disordered

binding regions that are capable of undergoing disorder-to-order

transition. The predictions are made without taking into account

the partner molecules and are expected to be less sensitive to

sequence details. For certain motifs, this molecular environment

can be a prerequisite of functionality and could help to identify

biologically significant binding motifs.

In our work we assumed, that short binding regions undergoing

disorder-to-order transition can be viewed as elementary binding

units that are necessary for the molecular recognition. Therefore,

such examples were used for the optimization of our method. In

accordance with their elementary unit picture, ANCHOR

recognized them generally as a single continuous binding site

(Figure 5). Regions undergoing disorder-to-order transition,

however, are not limited to such short segments as there are

several examples of longer disordered segment becoming ordered

upon complex formation. Such segments can be as long as 100

residues. However, these longer regions can contain segments

which bind only weakly or might not become ordered at all

[63,78,79]. This segmentation of longer binding regions can occur

for structural reasons. The segmentation can prevent the

accumulation of the critical amount of residues that would lead

to the formation a collapsed structure or non-specific aggregates.

The possible functional advantages of the segmented nature of a

binding site were demonstrated for the well characterized example

of p27. The kinase inhibitory domain of p27 can be divided into

several subdomains which dock and fold in a stepwise manner on

the surface of the Cdk2-cyclin A complex [19]. These segments

can also evolve independently, increasing the repertoire for

specificity for different cellular location or species. Intervening

segments of higher flexibility are accessible for modifications such

as phosphorylations and ubiquitinations. This way p27 can

integrate and process various signals to regulate cell proliferation,

in which the flexibility and modularity of p27 is essential [63]. The

segmented nature of binding is reflected in the prediction output,

with predicted binding sites corresponding to the strongly

interacting regions (Figure 6 for p27, and Figure S4 for a similar

example, calpastatin). In the dataset of longer disordered binding

segments, we found this segmentation to be quite general. In these

cases, the predicted sites generally give only partial coverage of the

PDB structure, and multiple binding sites are predicted in the

majority of cases (Figure 5). This suggests that our prediction

method is likely to find those sites that interact more strongly,

anchoring the disordered segments to their partner protein. While

the segmented nature of binding is prominent in the case of long

binding regions, to a smaller extent, it can also affect shorter

binding regions. Indeed, around 20% of short disordered binding

regions are predicted as 2 or 3 segments (Figure 5). This could also

account for the significantly lower per residue efficiency compared

to the segment based efficiency.

By looking at further individual examples, one can already see

remarkable variations in the details of disorder-to-order transitions

even within the limited collection that is available today. The

adopted conformation in these complexes can be quite different,

both in terms of secondary or tertiary structure. Furthermore, the

transition to an ordered structure might not be complete [28]. This

could leave terminal residues or linker regions flexible and

inaccessible to structure determination. It was also suggested that

specific binding can be possible even without adopting a well-

defined conformation as in the case of the f-chain of T-cell

receptor [80] (see Figure S6). Differences are also present at the

level of the sequence. Some binding regions rely largely on

hydrophobic or aromatic residues (MDM2 binding regions,

Figure 1), others use proline rich regions (WASp SH3 binding

regions, Figure 7). Disordered binding regions can contain

conserved linear motifs, while large divergence in sequence was

noted in other cases (C terminal domain of histones [81]). These

examples represent multiple ways disordered regions can be

utilized for binding. A single protein sequence can contain several

distinct binding regions, however, a single region can be involved

in binding to multiple partners, or use these regions in

combination to hub several interactions (p53 – see Figure 1 and

Figure S2, WASp – see Figure 7). In an alternative scenario,

disorder present in the partner molecules allows to bind a well-

folded protein by a large number of proteins (b-catenin [82],

Figure S3). Even further variations are expected as the number of

examples will grow in the future. Nevertheless, the success of

ANCHOR confirms our hypothesis, that despite these differences

disordered binding regions have a common property that

predispose them for coupled folding and binding.

The occurrence of disordered binding sites is clearly tied to the

presence of disordered protein regions. Their relationship was

further analyzed at the level of complete proteomes. Previous

studies have shown that the amount of predicted disordered

regions increases with the complexity of organisms throughout

evolution and reaches a high level in multicellular organisms [5,6].

This increase can be mostly attributed to the appearance of long,

domain-sized segments of protein disorder or fully disordered

proteins (Figure 9A). Our analysis showed that the amount of

disordered binding segments increases in eukaryotes in a similar

way, however, their fraction is elevated even compared to

disordered regions in general (Figure 8). The observed trend is

valid through a wide range of organisms, and occasional

exceptions occur either due to adaptation to extreme habitat
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conditions, or as a result of endosymbiosis. These findings imply

that the newly introduced disordered proteins and protein

segments mainly serve as a carrier for new binding regions in

eukaryotic organisms. The importance of disordered regions in

protein-protein interactions is also supported by the increased ratio

of disordered proteins among hub proteins [30,31]. Disordered

segments are often involved for complex signaling and regulatory

processes [20] such as cell cycle control, gene regulation or signal

transduction in the intracellular region of transmembrane proteins

[83]. These processes rely on interactions involving multiple

partners and high specificity/low affinity interactions, that

disordered binding segments can provide by their very nature.

The disordered segments can harbor multiple binding sites which

can act relatively independently. In other cases segmented binding

sites can be involved in simultaneous binding to larger complexes.

Overlapping binding sites (such in the case of p53 N and C

terminal regions) suggest competition between binding partners.

We are only beginning to comprehend how disordered binding

regions are exploited to provide versatile interaction sites in

proteins.

In conclusion, disordered binding regions represent a specific

subclass of disordered proteins that can undergo a disorder-to-

order transition upon binding. These binding sites generally have

distinct properties both structurally and functionally. Due to the

inherent flexibility, these regions are difficult to study experimen-

tally [84], making specific prediction methods even more valuable.

While there are several methods available for prediction of

disordered regions [85,86], recognizing disordered binding sites

was regarded as a more challenging problem [9] due to the limited

number of well-characterized examples. In this work we report a

general method to recognize disordered binding sites based on a

basic biophysical model. Our method relies on a simple energy

estimation procedure that was developed earlier for the IUPred

disorder prediction method. This way, the problem of small

datasets can be largely avoided. We showed that these regions can

be characterized by highly disordered sequential neighborhood,

unfavorable intrachain energies and more favorable interaction

energies with a globular partner. The combination of these

properties allowed the recognition of disordered binding sites

independent of their secondary structure or amino acid compo-

sition, underlining the generality of the method. As such binding

sites are essential functional elements of disordered proteins, their

prediction directly provides information about functionally

important residues in these proteins. In this way, ANCHOR

broadens the repertoire of prediction methods for functional sites

in proteins aiming to decrease the large number of unannotated

sequences [87]. Generally, the complete understanding of protein-

protein interactions involving disordered binding sites requires the

knowledge of their partners as well as possible post-translational

modifications that can influence their binding. While predictions

can be made even without taking the partner molecule into

account, certain cases might require incorporating the specific

feature of the partner. Nevertheless, our method can provide the

starting point for such scientific explorations, by finding potential

regions involved in such binding.

Methods

Databases
The primary source of data for the present analysis is a carefully

assembled dataset of binding regions undergoing disorder-to-order

transition. The strict requirement of the experimental verification

of both the disordered status in isolation and the formation of an

ordered structure in complex distinguishes our dataset from a

previously collected dataset for disordered binding regions [88].

The length of disordered regions involved in the binding can vary

on a large scale. In the case of longer regions it is not guaranteed

that each residue is equally important for binding, therefore

complexes of short disordered regions were treated separately, and

only these were used for tuning the method.

Short disordered complexes. Complexes from the PDB

[89] were collected by scanning the chains in the PDB entries

against the Disprot database [90]. A complex was accepted if it

consisted of a chain with length between 10 and 30 residues that

was found in the Disprot database as part of an annotated

disordered segment and at least one interacting partner that was at

least 40 residues long. Furthermore, complexes containing

transmembrane proteins, RNA or DNA, chimeras, disulfide

bonds between the disordered and ordered chains or a large

number of unknown residues (marked with an X) were excluded.

A few experimentally verified disordered complexes missing from

Disprot were added to this set [42,43,62,91–93]. A sequence

similarity filter of 50% has also been applied to remove closely

related proteins or protein segments. This procedure yielded a set

of 46 complexes that are listed in Dataset S1.

Long disordered complexes. Complexes containing long

disordered chains were collected in the same fashion as short ones

but with different criteria for the length of the interacting partners.

Here the length of the disordered chains was required to be at least

30 residues and they had to have an interacting partner of 70

residues or more. The resulting set of 28 complexes is listed in

Dataset S2.

a-MoRFs dataset. This dataset originally consisted of 53

complexes [48]. Complexes that were contained in our Short

disordered complexes dataset as well were excluded in order to get

a truly independent set. Three complexes were further removed

from the remainder since one of them is part of the ribosome

subunit S23 and the other two can be found in the PBD with

structures containing only the disordered chain – that is they are

presumably capable of folding on their own. The rationale behind

this exclusion is that our predictor is neither trained to recognize

RNA/DNA-protein interactions nor to identify globular-globular

interfaces. This left 40 complexes in total.

Globular proteins. Globular proteins were collected from

PDB entries that had only one chain of at least 30 residues [53].

Also transmembrane proteins and complexes with RNA/DNA

were filtered out. This dataset contains 553 proteins and is

presented in Dataset S3.

Ordered complexes. This set contains protein complexes

that consist of two partners both of which are ordered. These data

were taken from the literature [43]. The dataset does not include

cases of crystal packing dimers, chimeras and fragments and

consists of 72 complexes (Dataset S4).

Disordered proteins. For the analysis of disordered proteins

and protein segments the 3.7 version of Disprot database was used

(http://www.disprot.org/) [90], considering only annotated

disordered segments of 10 residues or longer.

Parameter optimization
The optimal parameters were determined by a three fold cross-

validation, by dividing both our negative and positive datasets

(Globular proteins and Short disordered complexes, respectively)

into three parts. In each turn we used two parts for training and

the remaining part for testing. To avoid any bias, the different

subsets were chosen such that the distribution of chain lengths in

both the positive and negative sets and the distribution of

secondary structure types in the positive set were approximately

the same. Our approach relies on IUPred, a general disorder
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prediction method, and its energy predictor matrix. These

parameters (ie. the elements of the energy predictor matrix) have

been determined earlier, independently of disordered binding

regions. Only five additional parameters, w1, w2, p1, p2 and p3 were

optimized for this specific problem and were selected by a grid search

procedure. Specifically, w1 was varied in the range of 20 to 100 in

steps of 10 (giving 9 possible values), w2 was varied in the range of 5

to 35 in steps of 2 (giving 16 possible values), and p1, p2 and p3 was

selected from 1000 sets of randomly generated values. Taking into

account that the prediction performance is insensitive to the norm

and the sign of the vector corresponding to the p1, p2 and p3 values,

the search was restricted to 1000 random sets that were evenly

distributed on the surface of the upper half of the unit sphere. This

means that p1 and p2 were randomly selected from the interval

[21;1] and p3 was selected from the interval [0;1] in a way that the

sum of their squares is always equal to 1. This yielded 1000 different

(p1, p2, p3) combinations. These, combined with all possible values of

w1 and w2 gave 144,000 different parameter sets in total. These were

considered in order to select the optimal one, containing the five

optimal parameters for each round of the cross-validation.

To quantify the performance of the predictor given a set of

parameters we calculated the True Positive Rate (TPR) at False

Positive Rates (FPR) fixed at 5% calculated on globular proteins as

the negative set. However, a full characterization of the

performance of the algorithm would also require a set of

disordered proteins that are known not to bind to globular

proteins. Unfortunately, such dataset cannot be constructed since

there is hardly any way to give evidence for a protein that it does

not contain binding sites. This problem was addressed by

calculating the fraction of amino acids that are predicted as

binding sites in general disordered regions of Disprot database that

are correctly recognized as disordered by IUPred. This fraction

was denoted as F. Optimal parameters should combine high TPR

with low F at the expense of very low FPR.

During optimization of the algorithm, the performance on three

different datasets needed to be monitored at the same time (set of

globular proteins, set of disordered binding sites and Disprot). The

best parameter set was chosen manually, by reducing the

parameter set in a step-wise manner based on the following steps:

1, Calculate TPR (at fixed FPR=5%) and F for each of the

144,000 candidate sets of parameters

2, Discard all for which F.50%

3, Discard all for which TPR,60%

4, From the remainder choose the 20 for which the difference

between TPR and F is the largest

5, Choose the one for which TPR is maximal (the TPR-F

difference among these 20 sets vary only within a range of less then

0.02 so that is not a good measure to choose the best one)

The negative and positive sets were divided into three parts,

resulting in three different optimal parameter sets. The final

predictor algorithm is constructed by averaging these three

outputs. As the training sets only contained binding regions of at

least 10 amino acids and we aim to identify at least 5 residues of

each region, all predicted binding sites were removed that did not

exceed 5 consecutive residues. A schematic figure of the training

procedure is given in Figure S1.

Availability
ANCHOR is available upon request from the authors.

Supporting Information

Dataset S1 46 complexes of short disordered and long globular

proteins. Column 4 contains the secondary structure type of the

bound disordered chains based on the structure found in the PDB

record as defined in Data and Methods. Thick lines separate the

three groups used during parameter optimization.

Found at: doi:10.1371/journal.pcbi.1000376.s001 (0.07 MB

DOC)

Dataset S2 28 complexes of long disordered and long globular

proteins. Column 4 contains the secondary structure type of the

bound disordered chains based on the structure found in the PDB

record as defined in Data and Methods.

Found at: doi:10.1371/journal.pcbi.1000376.s002 (0.05 MB

DOC)

Dataset S3 553 monomeric globular proteins that were used as

a negative dataset [2]. Columns correspond to the grouping used

during parameter optimization.

Found at: doi:10.1371/journal.pcbi.1000376.s003 (0.20 MB

DOC)

Dataset S4 72 complexes of ordered proteins [3]. The

interaction is considered between the shortest chains and its

interaction partners.

Found at: doi:10.1371/journal.pcbi.1000376.s004 (0.08 MB

DOC)

Dataset S5 The 53 complete archaea proteomes available from

SwissProt (ftp://ftp.expasy.org/) used for full proteome scans. The

fraction of total amino acids in disordered regions and the fraction

of disordered amino acids in disordered binding sites are indicated

together for each organism.

Found at: doi:10.1371/journal.pcbi.1000376.s005 (0.09 MB

DOC)

Dataset S6 The 639 complete bacteria proteomes available

from SwissProt (ftp://ftp.expasy.org/) used for full proteome

scans. The fraction of total amino acids in disordered regions and

the fraction of disordered amino acids in disordered binding sites

are indicated together for each organism.

Found at: doi:10.1371/journal.pcbi.1000376.s006 (0.86 MB

DOC)

Dataset S7 The 44 complete eukaryota proteomes available

from SwissProt (ftp://ftp.expasy.org/) used for full proteome

scans. The fraction of total amino acids in disordered regions and

the fraction of disordered amino acids in disordered binding sites

are indicated together for each organism.

Found at: doi:10.1371/journal.pcbi.1000376.s007 (0.08 MB

DOC)

Figure S1 Development of ANCHOR. In the first step, our

Short Disordered Binding Sites dataset and Globular Proteins

dataset (positive and negative datasets) are split up and only 2/3 is

used in the subsequential steps. Then a parameter set (w1, w2, p1,

p2, p3) is selected from the 144,000 random ones. This parameter

set is used to calculate S, Eint and Egain for every position in every

sequence in the three input datasets using the fixed energy

predictor matrix P (see Theory). Based on this calculations the

evaluating measures are calculated: TPR is calculated on Short

Disordered Binding Sites, FPR is calculated on Globular Proteins

and F is calculated on Disordered Proteins. Based on these

measures, the best parameter set out of 144,000 is chosen (see

Data and Methods). Then this parameter set is evaluated on the

remaining one third of the datasets. These results are reported in

Table 3. This procedure is repeated for all three subsets of Short

Disordered Binding Sites and Globular Proteins. The output of the

three optimized predictors are combined into one final predictor

by averaging their output.

Found at: doi:10.1371/journal.pcbi.1000376.s008 (0.05 MB PPT)
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Figure S2 ANCHOR prediction output for the C-terminal

domain of human p53. Prediction for the C-terminal disordered

domain of human p53. The regulatory binding site around

residues 375–390 is able to adopt all three secondary structural

elements upon binding to globular partners [4].

Found at: doi:10.1371/journal.pcbi.1000376.s009 (0.04 MB TIF)

Figure S3 ANCHOR prediction output for Tcf4. Prediction

output for transcription factor Tcf4 (blue) together with the

number of atomic contacts (green) determined in the complexed

form with Beta-catenin (PDB ID: 2gl7 [5]). Beta-catenin is known

to bind several disordered binding regions.

Found at: doi:10.1371/journal.pcbi.1000376.s010 (0.03 MB TIF)

Figure S4 ANCHOR prediction output for human calpastatin.

Prediction output for the I. domain of human calpastatin.

Subdomains A. B and C (grey boxes) are known to bind to

calpain and inhibit it. Subdomains A and C bind via a preformed

alpha-helix. while subdomain B does not exhibit strong structural

preference in solution [6].

Found at: doi:10.1371/journal.pcbi.1000376.s011 (0.04 MB TIF)

Figure S5 ANCHOR prediction output for the KID domain of

CREB. Prediction output for the KID domain of CREB. The

region marked with a grey box interacts with the KIX domain of

CBP via two preformed alpha-helices [7].

Found at: doi:10.1371/journal.pcbi.1000376.s012 (0.03 MB TIF)

Figure S6 ANCHOR prediction output for the f-chain of T-cell

receptor. Prediction output for the zeta-chain of the T-cell

receptor. The transmembrane region is marked with red box

and the three intracellular ITAM regions are marked with blue

boxes.

Found at: doi:10.1371/journal.pcbi.1000376.s013 (0.12 MB TIF)

Protocol S1 Protocol including references for the Supporting

Information.

Found at: doi:10.1371/journal.pcbi.1000376.s014 (0.04 MB

DOC)
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Tusnady and Petr Kulhánek for their continuous support in computational

problems. We are grateful to Christopher J. Oldfield and A. Keith Dunker

for providing us the a-MoRF dataset. We would also like to thank to Mark

Adamsbaum for his critical comments on the manuscript.

Author Contributions

Conceived and designed the experiments: BM IS ZD. Performed the

experiments: BM. Analyzed the data: BM IS ZD. Wrote the paper: BM IS

ZD.

References

1. Wright PE, Dyson HJ (1999) Intrinsically unstructured proteins: re-assessing the
protein structure-function paradigm. J Mol Biol 293: 321–331.

2. Dyson HJ, Wright PE (2005) Intrinsically unstructured proteins and their
functions. Nat Rev Mol Cell Biol 6: 197–208.

3. Dunker AK, Lawson JD, Brown CJ, Williams RM, Romero P, et al. (2001)
Intrinsically disordered protein. J Mol Graph Model 19: 26–59.

4. Tompa P (2002) Intrinsically unstructured proteins. Trends Biochem Sci 27:
527–533.

5. Dunker AK, Obradovic Z, Romero P, Garner EC, Brown CJ (2000) Intrinsic
protein disorder in complete genomes. Genome Inform Ser Workshop Genome
Inform 11: 161–171.

6. Ward JJ, Sodhi JS, McGuffin LJ, Buxton BF, Jones DT (2004) Prediction and
functional analysis of native disorder in proteins from the three kingdoms of life.
J Mol Biol 337: 635–645.

7. Xie H, Vucetic S, Iakoucheva LM, Oldfield CJ, Dunker AK, et al. (2007)
Functional anthology of intrinsic disorder. 1. Biological processes and functions
of proteins with long disordered regions. J Proteome Res 6: 1882–1898.

8. Tompa P (2005) The interplay between structure and function in intrinsically
unstructured proteins. FEBS Lett 579: 3346–3354.

9. Galea CA, Wang Y, Sivakolundu SG, Kriwacki RW (2008) Regulation of cell
division by intrinsically unstructured proteins: intrinsic flexibility, modularity,
and signaling conduits. Biochemistry 47: 7598–7609.

10. Chen J, Kanai Y, Cowan NJ, Hirokawa N (1992) Projection domains of MAP2
and tau determine spacings between microtubules in dendrites and axons.
Nature 360: 674–677.

11. Linke WA, Kulke M, Li H, Fujita-Becker S, Neagoe C, et al. (2002) PEVK
domain of titin: an entropic spring with actin-binding properties. J Struct Biol
137: 194–205.

12. Mukhopadhyay R, Kumar S, Hoh JH (2004) Molecular mechanisms for
organizing the neuronal cytoskeleton. Bioessays 26: 1017–1025.

13. Hoh JH (1998) Functional protein domains from the thermally driven motion of
polypeptide chains: a proposal. Proteins 32: 223–228.

14. Alber F, Dokudovskaya S, Veenhoff LM, Zhang W, Kipper J, et al. (2007) The
molecular architecture of the nuclear pore complex. Nature 450: 695–701.

15. Bruschweiler R, Liao X, Wright PE (1995) Long-range motional restrictions in a
multidomain zinc-finger protein from anisotropic tumbling. Science 268:
886–889.

16. Dyson HJ, Wright PE (2002) Coupling of folding and binding for unstructured
proteins. Curr Opin Struct Biol 12: 54–60.

17. Uversky VN (2002) Natively unfolded proteins: a point where biology waits for
physics. Protein Sci 11: 739–756.

18. Demarest SJ, Martinez-Yamout M, Chung J, Chen H, Xu W, et al. (2002)
Mutual synergistic folding in recruitment of CBP/p300 by p160 nuclear receptor
coactivators. Nature 415: 549–553.

19. Lacy ER, Filippov I, Lewis WS, Otieno S, Xiao L, et al. (2004) p27 binds cyclin-
CDK complexes through a sequential mechanism involving binding-induced
protein folding. Nat Struct Mol Biol 11: 358–364.

20. Uversky VN, Oldfield CJ, Dunker AK (2005) Showing your ID: intrinsic disorder
as an ID for recognition, regulation and cell signaling. J Mol Recognit 18: 343–384.

21. Liu J, Perumal NB, Oldfield CJ, Su EW, Uversky VN, et al. (2006) Intrinsic
disorder in transcription factors. Biochemistry 45: 6873–6888.

22. Iakoucheva LM, Brown CJ, Lawson JD, Obradovic Z, Dunker AK (2002)
Intrinsic disorder in cell-signaling and cancer-associated proteins. J Mol Biol
323: 573–584.

23. Fuxreiter M, Tompa P, Simon I, Uversky VN, Hansen JC, et al. (2008)
Malleable machines take shape in eukaryotic transcriptional regulation. Nat
Chem Biol 4: 728–737.

24. Dunker AK, Garner E, Guilliot S, Romero P, Albrecht K, et al. (1998) Protein
disorder and the evolution of molecular recognition: theory, predictions and
observations. Pac Symp Biocomput. pp 473–484.

25. Kriwacki RW, Hengst L, Tennant L, Reed SI, Wright PE (1996) Structural studies
of p21Waf1/Cip1/Sdi1 in the free and Cdk2-bound state: conformational disorder
mediates binding diversity. Proc Natl Acad Sci U S A 93: 11504–11509.

26. Bienkiewicz EA, Adkins JN, Lumb KJ (2002) Functional consequences of
preorganized helical structure in the intrinsically disordered cell-cycle inhibitor
p27(Kip1). Biochemistry 41: 752–759.

27. Fuxreiter M, Simon I, Friedrich P, Tompa P (2004) Preformed structural
elements feature in partner recognition by intrinsically unstructured proteins.
J Mol Biol 338: 1015–1026.

28. Tompa P, Fuxreiter M (2008) Fuzzy complexes: polymorphism and structural
disorder in protein-protein interactions. Trends Biochem Sci 33: 2–8.

29. Spolar RS, Record MT Jr (1994) Coupling of local folding to site-specific
binding of proteins to DNA. Science 263: 777–784.

30. Dosztanyi Z, Chen J, Dunker AK, Simon I, Tompa P (2006) Disorder and
sequence repeats in hub proteins and their implications for network evolution.
J Proteome Res 5: 2985–2995.

31. Haynes C, Oldfield CJ, Ji F, Klitgord N, Cusick ME, et al. (2006) Intrinsic
disorder is a common feature of hub proteins from four eukaryotic interactomes.
PLoS Comput Biol 2: e100. doi:10.1371/journal.pcbi.0020100.

32. Oldfield CJ, Meng J, Yang JY, Yang MQ, Uversky VN, et al. (2008) Flexible
nets: disorder and induced fit in the associations of p53 and 14-3-3 with their
partners. BMC Genomics 9(Suppl 1): S1.

33. Iakoucheva LM, Radivojac P, Brown CJ, O’Connor TR, Sikes JG, et al. (2004)
The importance of intrinsic disorder for protein phosphorylation. Nucleic Acids
Res 32: 1037–1049.

34. Albert R, Jeong H, Barabási AL (2000) Error and attack tolerance of complex
networks. Nature 406: 378–382.

35. Uversky VN, Oldfield CJ, Dunker AK (2008) Intrinsically disordered proteins in
human diseases: introducing the D2 concept. Annu Rev Biophys 37: 215–246.

36. Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408:
307–310.

37. Cheng Y, LeGall T, Oldfield CJ, Dunker AK, Uversky VN (2006) Abundance of
intrinsic disorder in protein associated with cardiovascular disease. Biochemistry
45: 10448–10460.

Predicting Disordered Binding Regions in Proteins

PLoS Computational Biology | www.ploscompbiol.org 17 May 2009 | Volume 5 | Issue 5 | e1000376

               dosztanyi.zsuzsanna_45_22



38. Frankfort SV, Tulner LR, van Campen JP, Verbeek MM, Jansen RW, et al.
(2008) Amyloid beta protein and tau in cerebrospinal fluid and plasma as
biomarkers for dementia: a review of recent literature. Curr Clin Pharmacol 3:
123–131.

39. Waxman EA, Giasson BI (2008) Molecular mechanisms of alpha-synuclein
neurodegeneration. Biochim Biophys Acta;In press.

40. Marc D, Mercey R, Lantier F (2007) Scavenger, transducer, RNA chaperone?
What ligands of the prion protein teach us about its function. Cell Mol Life Sci
64: 815–829.

41. Cheng Y, LeGall T, Oldfield CJ, Mueller JP, Van YY, et al. (2006) Rational
drug design via intrinsically disordered protein. Trends Biotechnol 24: 435–442.

42. Gunasekaran K, Tsai CJ, Nussinov R (2004) Analysis of ordered and disordered
protein complexes reveals structural features discriminating between stable and
unstable monomers. J Mol Biol 341: 1327–1341.

43. Meszaros B, Tompa P, Simon I, Dosztanyi Z (2007) Molecular principles of the
interactions of disordered proteins. J Mol Biol 372: 549–561.

44. Vacic V, Oldfield CJ, Mohan A, Radivojac P, Cortese MS, et al. (2007)
Characterization of molecular recognition features, MoRFs, and their binding
partners. J Proteome Res 6: 2351–2366.

45. Vucetic S, Brown CJ, Dunker AK, Obradovic Z (2003) Flavors of protein
disorder. Proteins 52: 573–584.

46. Schlessinger A, Punta M, Rost B (2007) Natively unstructured regions in proteins
identified from contact predictions. Bioinformatics 23: 2376–2384.

47. Garner E, Romero P, Dunker AK, Brown C, Obradovic Z (1999) Predicting
binding regions within disordered proteins. Genome Inform Ser Workshop
Genome Inform 10: 41–50.

48. Cheng Y, Oldfield CJ, Meng J, Romero P, Uversky VN, et al. (2007) Mining
alpha-helix-forming molecular recognition features with cross species sequence
alignments. Biochemistry 46: 13468–13477.

49. Romero, Obradovic, Dunker K (1997) Sequence data analysis for long
disordered regions prediction in the calcineurin family. Genome Inform Ser
Workshop Genome Inform 8: 110–124.

50. Romero P, Obradovic Z, Li X, Garner EC, Brown CJ, et al. (2001) Sequence
complexity of disordered protein. Proteins 42: 38–48.

51. Li X, Romero P, Rani M, Dunker AK, Obradovic Z (1999) Predicting protein
disorder for N-, C-, and internal regions. Genome Inform Ser Workshop
Genome Inform 10: 30–40.

52. Oldfield CJ, Cheng Y, Cortese MS, Romero P, Uversky VN, et al. (2005)
Coupled folding and binding with alpha-helix-forming molecular recognition
elements. Biochemistry 44: 12454–12470.

53. Dosztanyi Z, Csizmok V, Tompa P, Simon I (2005) The pairwise energy content
estimated from amino acid composition discriminates between folded and
intrinsically unstructured proteins. J Mol Biol 347: 827–839.

54. Dosztanyi Z, Csizmok V, Tompa P, Simon I (2005) IUPred: web server for the
prediction of intrinsically unstructured regions of proteins based on estimated
energy content. Bioinformatics 21: 3433–3434.

55. Chumakov PM (2007) Versatile functions of p53 protein in multicellular
organisms. Biochemistry (Mosc) 72: 1399–1421.

56. Dawson R, Muller L, Dehner A, Klein C, Kessler H, et al. (2003) The N-
terminal domain of p53 is natively unfolded. J Mol Biol 332: 1131–1141.

57. Kussie PH, Gorina S, Marechal V, Elenbaas B, Moreau J, et al. (1996) Structure
of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation
domain. Science 274: 948–953.

58. Bochkareva E, Kaustov L, Ayed A, Yi GS, Lu Y, et al. (2005) Single-stranded
DNA mimicry in the p53 transactivation domain interaction with replication
protein A. Proc Natl Acad Sci U S A 102: 15412–15417.

59. Di Lello P, Jenkins LM, Jones TN, Nguyen BD, Hara T, et al. (2006) Structure
of the Tfb1/p53 complex: Insights into the interaction between the p62/Tfb1
subunit of TFIIH and the activation domain of p53. Mol Cell 22: 731–740.

60. Fawcett T (2006) An introduction to ROC analysis. Pattern Recognit Lett 27:
861–874.

61. Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern
recognition of hydrogen-bonded and geometrical features. Biopolymers 22:
2577–2637.

62. Russo AA, Jeffrey PD, Patten AK, Massague J, Pavletich NP (1996) Crystal
structure of the p27Kip1 cyclin-dependent-kinase inhibitor bound to the cyclin
A-Cdk2 complex. Nature 382: 325–331.

63. Galea CA, Nourse A, Wang Y, Sivakolundu SG, Heller WT, et al. (2008) Role
of intrinsic flexibility in signal transduction mediated by the cell cycle regulator,
p27 Kip1. J Mol Biol 376: 827–838.

64. Ochs HD, Notarangelo LD (2005) Structure and function of the Wiskott-Aldrich
syndrome protein. Curr Opin Hematol 12: 284–291.

65. Kim AS, Kakalis LT, Abdul-Manan N, Liu GA, Rosen MK (2000)
Autoinhibition and activation mechanisms of the Wiskott-Aldrich syndrome
protein. Nature 404: 151–158.

66. Marchand JB, Kaiser DA, Pollard TD, Higgs HN (2001) Interaction of WASP/
Scar proteins with actin and vertebrate Arp2/3 complex. Nat Cell Biol 3: 76–82.

67. Abdul-Manan N, Aghazadeh B, Liu GA, Majumdar A, Ouerfelli O, et al. (1999)

Structure of Cdc42 in complex with the GTPase-binding domain of the

‘Wiskott-Aldrich syndrome’ protein. Nature 399: 379–383.

68. Puntervoll P, Linding R, Gemund C, Chabanis-Davidson S, Mattingsdal M, et

al. (2003) ELM server: A new resource for investigating short functional sites in

modular eukaryotic proteins. Nucleic Acids Res 31: 3625–3630.

69. Tong AH, Drees B, Nardelli G, Bader GD, Brannetti B, et al. (2002) A

combined experimental and computational strategy to define protein interaction

networks for peptide recognition modules. Science 295: 321–324.

70. Fuxreiter M, Tompa P, Simon I (2007) Local structural disorder imparts

plasticity on linear motifs. Bioinformatics 23: 950–956.

71. Preston CM, Wu KY, Molinski TF, DeLong EF (1996) A psychrophilic

crenarchaeon inhabits a marine sponge: Cenarchaeum symbiosum gen. nov., sp.

nov. Proc Natl Acad Sci U S A 93: 6241–6246.

72. Perez-Brocal V, Gil R, Ramos S, Lamelas A, Postigo M, et al. (2006) A small

microbial genome: the end of a long symbiotic relationship? Science 314:

312–313.

73. Nakabachi A, Yamashita A, Toh H, Ishikawa H, Dunbar HE, et al. (2006) The

160-kilobase genome of the bacterial endosymbiont Carsonella. Science 314:

267.

74. Wu D, Daugherty SC, Van Aken SE, Pai GH, Watkins KL, et al. (2006)

Metabolic complementarity and genomics of the dual bacterial symbiosis of

sharpshooters. PLoS Biol 4: e188. doi:10.1371/journal.pbio.0040188.

75. Hanisch FG, Muller S (2000) MUC1: the polymorphic appearance of a human

mucin. Glycobiology 10: 439–449.

76. Zhang Y, Stec B, Godzik A (2007) Between order and disorder in protein

structures: analysis of ‘‘dual personality’’ fragments in proteins. Structure 15:

1141–1147.

77. Neduva V, Russell RB (2005) Linear motifs: evolutionary interaction switches.

FEBS Lett 579: 3342–3345.
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ABSTRACT

The structural states of proteins include ordered
globular domains as well as intrinsically disordered
protein regions that exist as highly flexible confor-
mational ensembles in isolation. Various computa-
tional tools have been developed to discriminate or-
dered and disordered segments based on the amino
acid sequence. However, properties of IDRs can also
depend on various conditions, including binding to
globular protein partners or environmental factors,
such as redox potential. These cases provide fur-
ther challenges for the computational characteriza-
tion of disordered segments. In this work we present
IUPred2A, a combined web interface that allows to
generate energy estimation based predictions for or-
dered and disordered residues by IUPred2 and for
disordered binding regions by ANCHOR2. The up-
dated web server retains the robustness of the orig-
inal programs but offers several new features. While
only minor bug fixes are implemented for IUPred, the
next version of ANCHOR is significantly improved
through a new architecture and parameters opti-
mized on novel datasets. In addition, redox-sensitive
regions can also be highlighted through a novel ex-
perimental feature. The web server offers graphical
and text outputs, a RESTful interface, access to soft-
ware download and extensive help, and can be ac-
cessed at a new location: http://iupred2a.elte.hu.

INTRODUCTION

Intrinsically disordered proteins and protein regions
(IDPs/IDRs) carry out important biological functions
without relying on a single well-defined conformation,
defying the traditional structure-function paradigm (1).
Such regions are best characterized as ensembles of
highly fluctuating conformations in isolation but their

detailed properties are delicately tailored for their specific
function (2). The activities of IDPs can directly emerge
from their flexible nature, exhibiting entropic chain func-
tions or serving as linkers between ordered domains.
Disordered proteins can also mediate protein-protein
interactions by recognizing specific partners and undergo
a disorder-to-order transition by adopting a more struc-
tured conformation. Such disordered binding regions or
MoRFs (molecular recognition features) commonly occur
in modular proteins involved in signaling and regulation
(3,4). The specific properties of these compact functional
modules, such as their plasticity and flexibility, enable their
regulation depending on cellular cues through various
mechanisms including post-translational modifications
(PTMs) or competitive binding (5). While the majority
of known disordered binding regions lose their flexibility
upon interaction (with the exception of fuzzy complexes
(6,7)), an order-to-disorder transition is the key for the
function of another group of proteins. These condition-
ally disordered proteins are folded in isolation but their
functional state requires a local or global unfolding to
a more disordered state. The transition can be induced
by interactions with other macromolecules or changes
in environmental factors, such as pH, temperature or
redox potential (8). One example for such conditional
disorder is presented by Hsp33 from Escherichia coli. This
redox-sensing chaperone becomes active upon oxidative
stress, which induces a transition to a more disordered state
exposing the substrate binding surface of the protein (9).

The growing number of examples of experimentally
verified disordered segments are collected into dedicated
databases, such as the DisProt database, which currently
holds 2,167 such disordered regions from 803 proteins
(10). However, these entries only provide a small sample
of IDPs/IDRs that are widespread in all domains of life
but are most prevalent in eukaryotic organisms (11–14).
At this scale, protein disorder can only be studied through
computational approaches. The distinct sequence proper-
ties of IDPs compared to that of globular proteins enable
the discrimination of these two groups at the amino acid se-
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quence level at reasonable accuracies. So far, over 50 pre-
diction methods have been developed using a wide arse-
nal of approaches, including simple amino acid propen-
sity scales, simplified biophysical models, machine learn-
ing techniques and meta-servers (15–17). IUPred is one
of the commonly used methods for predicting protein dis-
order and it is based on capturing the basic biophysical
properties of IDPs (18,19). The basic assumption of this
method is that intrinsically disordered proteins have a spe-
cific amino acid composition that does not allow the forma-
tion of enough favorable inter-residue interactions to stabi-
lize a well-defined structural state (20,21). In IUPred, the in-
teraction capacity of each residue is captured by an energy
estimation scheme. While there are other methods that can
achieve higher accuracies on particular datasets, IUPred
still provides robust predictions with a favorable trade-off
between speed and accuracy (22–24). As a result, IUPred is
frequently used in itself or in combination with other tools
to provide information about disorder (25).

The next challenge following the prediction of protein
disorder is the characterization of the functional properties
of IDPs/IDRs. Towards this end, most efforts focused on
predicting regions of disordered proteins that are involved
in protein-protein interactions, although methods that aim
to predict regions binding to DNA and RNA, or to recog-
nize linker regions have also been developed (26,27). The
first publicly available method developed to recognize dis-
ordered binding regions was ANCHOR (28,29). Similarly
to IUPred, this method relies on the energy estimation ap-
proach to characterize the disordered tendency and binding
capacity of protein segments. Apart from ANCHOR, ma-
chine learning methods, in particular support vector ma-
chines (SVM) have also been developed for the prediction
of disordered binding regions.MoRFpred and fMoRFpred
utilize SVM models in their predictions incorporating se-
quence conservation data and amino-acid physicochemical
properties, in addition to predictions of intrinsic disorder,
relative solvent accessibility and residue flexibility (30,31).
MFSPSSMpred and DISOPRED3 predict MoRFs based
on an SVM with a radial basis function kernel, and using
sequence-derived features and evolutionary profiles as in-
puts (32,33). MoRFchibi also employs SVMs, but uses a
dual architecture to efficiently discriminate shortMoRF re-
gions from their flanking regions and to recognize similarity
to already known instances (34).
The precision of the computational identification of dis-

ordered binding regions is usually evaluated against pre-
dicting such regions within globular proteins. However,
these prediction methods should also have a discriminatory
power against disordered regions in general. Themain chal-
lenge is that currently we do not have a clear idea about the
prevalence of disordered binding regions in proteins in gen-
eral. One well-characterized example, p53 shows a nearly
complete coverage by overlapping binding regions within
its N- and C-terminal disordered segments (35). Other ex-
amples suggest that this could be a common scenario for
many IDPs/IDRs, however, methods are often evaluated
on proteins with a single known disordered binding site. A
further limitation for accurate method development origi-
nates from a limited set of well-characterized examples used
for training and testing. As a result, larger datasets were re-

sorted to PDB complexes formed between short and longer
segments, assuming that the short segments are usually as-
sociatedwith disorder (30). However, this approach resulted
in noisy datasets without experimental verification. In this
regard, a major new development was the launch of the
DIBS database, which collects protein complexes where one
partner was shown experimentally to be both disordered in
isolation and being involved in disorder-to-order transition
(36). This database currently contains 773 entries, provid-
ing a reliable platform for further method development for
recognizing disordered binding regions.
Conditionally disordered regions provide further compu-

tational challenges for the characterization of IDPs (8). An
important category in this class corresponds to redox po-
tential regulated proteins that play important roles in ox-
idant signalling and protein biogenesis events (37). Fasci-
nating examples, such as Hsp33(9), COX17(38) or CP12
(39) indicate that redox sensing can be coupled to disorder-
to-order or order-to-disorder transitions. While the limited
number of such cases currently prevents systematic analy-
ses, we found that the biophysical model of IUPred is al-
ready equipped to highlight redox-sensitive regions in pro-
teins.
Recently, we have relocated our web-server IUPred to a

new location (25). This gave us access to further improve-
ments. Here, we describe the IUPred2A web server, which
provides a combined interface to collect predictions for dis-
ordered regions via an improved version of IUPred, disor-
dered binding segments via a new version of ANCHOR,
and can highlight redox-sensitive regions in proteins based
on the energy estimation method. These predictions can be
accessed through an HTML server, a RESTful web server
and as a downloadable software.

METHODS

IUPred2

IUPred uses an energy estimation method at its core. This
approach utilizes a low-resolution statistical potential to
characterize the tendencies of amino acid pairs to form con-
tacts, observed in a collection of globular protein structures
(40). When the structure is known, the statistical poten-
tial allows the calculation of the energy for each residue
based on its interactions with other contacting residues in
the structure. The sum of these residue-level energy terms
can be used to quantify the total stabilizing energy contri-
bution of intrachain interactions in a given protein struc-
ture. To open up a way to estimate these energies directly
from the amino acid sequence without a known structure,
a novel method was developed (18). In this model, the en-
ergy of each residue in the amino acid sequence is estimated
based on the following formula:

ei
k = � j=1

20Pi jc j
k,

where ei
k is the energy of the residue in position k of type i,

Pij is the ijth element of the energy predictor matrix, and cj
is the jth element of amino acid composition vector, speci-
fying the ratio of amino acid type j in the sequence neigh-
bourhood of position k. P is a 20 × 20 energy predictor
matrix that connects the amino acid composition vector to
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the energy of the given residue. Its parameters were opti-
mized on a set of globular proteins to minimize the differ-
ence between the energy calculated from the known struc-
tures using the statistical potential and the energy estimated
from the amino acid sequence. Based on the energy esti-
mation, residues that have favorable energies are predicted
as ordered and residues with unfavorable energies are pre-
dicted disordered. The energies calculated for each residue
in the amino acid sequence are smoothed with the window
size (w0) and are transformed into a score between 0 and 1,
so they can be interpreted as quasi-probabilities of a given
residue being disordered.
The resulting method, IUPred (19) is able to recognize

regions of proteins that are not compatible with ordered
regions based on their inability to form enough favorable
intrachain interactions. As the method relies on a low-
resolution biophysical model of protein folding, its param-
eters are easily interpretable. Furthermore, calculations in-
volve only simple arithmetics and as a result IUPred not
onlymakes reliable and highly robust predictions, but is cur-
rently one of the fastest available disorder prediction algo-
rithms, making it especially suited for large-scale studies.
In the current version, IUPred2, the force field and the

architecture of the method were left unchanged. However,
integration into several resources, such asMobiDBlite (41),
MobiDB 3.0 (42) and InterPro (43) made it necessary to
implement several minor bug-fixes. IUPred2 was tested on
both the original testing sets of disordered and globular
structures (18), and the newest version of DisProt (10) as a
positive testing set, and a custom-built negative testing set
of single domain ordered proteins with known structures
(see Supplementary material). The efficiencies of IUPred2
and the original IUPred are consistent with earlier indepen-
dent testing results (22,24), and are virtually the same. This
is evidenced by the high similarities between the two receiver
operating characteristic (ROC) curves of the two algorithms
on both pairs of testing datasets (see Supplementary mate-
rial for the ROC curves), with the areas under the curves
being nearly identical (AUC= 0.855 and 0.856 for IUPred2
and IUPred on the new testing sets, and AUC = 0.924 and
0.926 on the original testing sets). From a practical point of
view, these efficiencies correspond to true positive rates of
59.6% and 68.72% when using IUPred2 with 5% and 10%
false positive rates, respectively, on the new testing sets.

ANCHOR2

Similarly to IUPred, ANCHORalso utilizes the energy esti-
mation approach, for the identification of disordered bind-
ing sites. Besides the general disorder tendency, two addi-
tional terms were also incorporated into the method that
estimate the energy associated with interaction with a glob-
ular protein and with the local disordered sequence envi-
ronment (28). These tendencies were combined using a lin-
ear combination and were transformed to yield a normal-
ized score between 0 and 1 representing the probability of
a given residue being part of a disordered binding region.
In the presented IUPred2A server, ANCHORwas substan-
tially reworked to give better predictions.

Concept and architecture of ANCHOR2. Retaining the
original idea behindANCHOR, the newANCHOR2meth-
ods also employs a simple biophysics-based model to
describe disordered binding regions. In this framework,
residues belonging to disordered binding sites have to ful-
fill two distinct criteria: (i) they have to be able to form
favourable interactions with the binding surface of an or-
dered protein and (ii) they should be embedded in a gen-
erally disordered sequence environment. These two criteria
are formulized as follows:

Sk = (Egain,k(w1) − Egain,0)(Ik(w2) − I0),

where Sk is the score assigned to residue k; Egain,k(w1) =
Eloc,k(w1) – Eint,k is the energy the residue gains by mak-
ing interactions with an averaged ordered interacting sur-
face (represented by the composition vector Eint) instead of
its own sequential environment (represented by the compo-
sition vector Eloc,k(w1), calculated in a w1 half-window se-
quential neighborhood of residue k); Ik(w2) is the averaged
IUPred score in the w2 half-window sequential neighbor-
hood of residue k; Egain,0 and I0 are parameters that deter-
mine the minimum energy gain and minimum average dis-
order tendency a residue has to possess in order to become
a disordered binding site. The sign of Egain is chosen in a
way that high positive values mark true binding residues (as
usually expected from prediction methods), which is differ-
ent from the standard choice for true free energy. Keeping
this inmind, the architecture of ANCHOR2 has a clear bio-
physical meaning and contains only four parameters (w1,
w2, Egain,0 and I0) that need to be optimized during train-
ing.

Training and benchmarking. ANCHOR2 was trained and
tested using the disordered binding regions in the DIBS
database (36) filtered for 30% sequence identity as the
positive set, using only short binding regions below 30
residues yielding a total of 374 protein regions. Four dis-
tinctively different datasets were used as negative (see Sup-
plementary material). The first negative dataset (ordered
monomers) comprises sequence regions (also filtered for
30% sequence identity) that encode single structural do-
mains with determined monomeric structures in the PDB
(4,549 protein regions). The second dataset contains 389
flexible linker regions, used previously in the assessment
of DISOPRED3(33). These two datasets can be consid-
ered as verified in a sense that they are unlikely to contain
currently unknown disordered binding regions. The third
dataset (decoy sequences) were collected as ∼15,000 protein
segments taken randomly from the human proteome, ex-
cluding extracellular proteins, transmembrane regions and
known structural Pfamdomains to increase the expected ra-
tio of disordered regions. The fourth negative dataset con-
tains 1,042 known disordered protein regions from theDis-
Prot database (10) that do not overlap with entries in DIBS.
These two datasets cannot be assumed to be devoid of
currently unknown disordered binding regions (unverified
datasets). However, for parameter optimization and testing,
the positive dataset, the ordered monomer set and the de-
coy set were split, and two thirds of all three were used in
training and the remaining one third was used in testing.
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During training the four adjustable parameters w1, w2,
Egain,0 and I0 were tuned to their optimal values. The Egain

term of the score basically describes the distinction between
disordered binding regions and other sequence regions in
general (non-binding disordered segments in particular). In
accord, w1 was set to achieve the highest information gain
(similarly to the protocol employed in (44)) calculated in
the separation of the positive and decoy training sets (see
Supplementary material). While the decoy set can in theory
contain any number of disordered binding regions, due to
the random assignment we expect their numbers to be fairly
low. In contrast to the energy gain term, the I term of the
score primarily describes the separation between disordered
binding regions and ordered proteins. Thus, w2 was set to
achieve the highest information gain in the distinction be-
tween the positive and the ordered monomer training sets
(see Supplementary material). As a final step, Egain,0 and I0
were also set to best discriminate the elements of the posi-
tive and the two negative training sets.
Testing of ANCHOR2 was done by calculating residue-

based ROC curves evaluating the ability of the method to
separate the testing positive dataset from any of the four
negative testing datasets. To better gain insights into the
strengths and weaknesses of ANCHOR2, three other meth-
ods capable of predicting disordered binding regions: the
original ANCHOR, DISOPRED3 and MoRFchibi, were
also evaluated on the same datasets. The obtained ROC
curves for all four negative testing sets are shown in Fig-
ure 1, while the calculated AUC values for all methods for
all datasets are shown in Table 1. The obtained efficiencies
of the four methods outline the clear differences between
their applicability. Both DISOPRED3 and MoRFchibi are
machine learning based methods and were trained to have
very low false positive prediction rates in both ordered and
disordered protein regions. However, this comes at the ex-
pense of recognizing disordered binding regions that are
not similar to currently known ones. ANCHOR and AN-
CHOR2 on the other hand incorporate a direct description
of protein disorder in their predictions and thus excel at giv-
ing an extremely low false positive rate on ordered protein
regions. They are also remarkable at distinguishing flexi-
ble linkers, but predict a higher ratio of disordered binding
sites in generic disordered protein datasets, such as DisProt.
While this may involve over-prediction, it is worth noting
that the exact number of true disordered binding regions in
DisProt sequences are not known and thus it is hard to de-
termine the optimal behaviour of disorder binding site pre-
dictions on these data.
As a final step, the prediction score of ANCHOR was

normalized to fall between 0 and 1 in such a way that the
ratio of binding residues stayed below 50% even in the Dis-
Prot database, where it was the highest among the nega-
tive datasets. Using this threshold, the ratio of residues pre-
dicted to be binding in the positive and negative datasets is
shown in Table 2. While this reduces the apparent efficiency
of ANCHOR2 as compared to the scaling used in the origi-
nal ANCHOR (the 0.5 cutoff corresponded to 5% false pos-
itive prediction on ordered protein segments), ANCHOR2
is still able to correctly predict nearly 64% of residues in
known binding regions (true positive rate), with over 72%

of known binding regions harboring at least one correctly
predicted residue (segment-level true positive rate).

Redox-state dependent prediction of protein disorder

In another group of conditionally disordered proteins,
changes of the oxidation status are coupled to disorder-
to-order or order-to-disorder transitions (37). One exam-
ple for this behaviour is provided by the human small cop-
per chaperone Cox17. This protein can be viewed as a pro-
totype for proteins that are synthesized on cytosolic ribo-
somes and diffuse as intrinsically disordered proteins to the
mitochondrial intermembrane space, where they become
oxidized and fold into their functional conformations (38).
The activity of Hsp33 also depends on oxidative condi-
tions, however, for this protein the functional state is disor-
dered. Under non-stress conditions, Hsp33 is a compactly
folded zinc-binding protein with negligible activity. Oxida-
tive stress causes the formation of two intramolecular disul-
fide bonds and the release of Zn2+ ions. This leads to the un-
folding of the zinc-binding domain, exposing the substrate
binding surface of the chaperone that is necessary for its ac-
tivity (45).
The key sensors built into these redox-regulated proteins

are cysteine residues which can undergo reversible thiol ox-
idation in response to the oxidation status of the molecular
environment. Under reducing conditions cysteine residues
can behave as polar amino acids, most similar to serine,
without contributing much to protein stability. However,
they can also play essential roles in stabilizing the folded
conformation by coordinating Zn2+ ions under reducing
conditions, or by forming disulfide bonds that are com-
monly used by extracellular proteins that experience oxida-
tive conditions (46). In our energy estimation scheme, the
strong stabilizing feature of cysteine residues can be ade-
quately captured, with the most extreme energy terms cor-
responding to interactions mediated by cysteine residues.
In order to capture the other end of the spectrum, cys-
teine residues can be changed to serine in the amino acid
sequence. Thus, we generate two disorder prediction pro-
files, one corresponding to the state that is achieved through
cysteine stabilization (redox-plus) and one without cysteine
stabilization (redox-minus), modeled by a cysteine/serine
swap. In many cases the two profiles would not differ signif-
icantly. However, our assumption is that in the case of con-
ditionally disordered redox proteins the two profiles would
be separated and would highlight redox-sensitive regions
based on their different disorder tendencies. These regions
are defined when the redox-minus line predicts disorder for
a minimal region of 10 residues, while no disorder is pre-
dicted for the same region by the redox-plus profile. This
core region is then extended in both directions to the point
where the separation in the disorder score between the two
lines falls below 0.15. Thus identified redox-sensitive re-
gions are merged if their sequence separation is less than
10 residues (for details see Supplementary material). While
this feature of IUPred2A cannot be tested rigorously, exam-
ples provided in later sections and on the server help pages
indicate that the prediction of redox-sensitive regions can
be used to explore this phenomenon at the large-scale. Our
preliminary data suggests that redox sensitive regions can be
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Figure 1. ROC curves of four methods predicting disordered binding regions/MoRFs on the four different negative testing datasets. The upper row shows
testing on verified negative data containing virtually no disordered binding regions. Negative sets of the bottom row might contain an unknown number
of disordered binding regions, albeit with a significantly lower frequency compared to the positive set.

Table 1. Area under the curve (AUC) values calculated from the ROC curves in Figure 1

Methods

ANCHOR2 ANCHOR DISOPRED3 MoRFchibi

Datasets ordered monomers 0.901 0.835 0.627 0.561
linkers 0.870 0.859 0.612 0.581
decoy 0.865 0.840 0.536 0.595
DisProt 0.590 0.610 0.522 0.588

AUC values can range from 0.5 for random predictions to 1 for perfect predictions. The highest AUC values for each negative dataset are highlighted in
bold.

Table 2. Prediction rates of ANCHOR2 on training and testing datasets

Dataset name Dataset type
Fraction of residues predicted to be disordered
binding regions by ANCHOR2

DIBS training Verified positive 57.31% (66.40% at segment level)
DIBS testing 63.83% (72.58% at segment level)
Ordered monomers training Verified negative 2.38%
Ordered monomers testing 2.44%
Linker regions Verified negative 6.03%
Decoy training Putative negative 10.69%
Decoy testing 11.55%
DisProt Putative negative 50%

Datasets were evaluated using 0.5 cutoff to discriminate between disordered binding regions and non-binding residues.
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quite common in the human proteome: the few experimen-
tally characterized examples indicate that how this redox
sensitivity is used in biological context can bemore complex
and can be fully understood only based on further experi-
ments.

SERVER DESCRIPTION

Input

To ease the transition of users of the original IUPred server,
the user interface of IUPred2A inherits a lot from its prede-
cessor, enabling fast and straightforward usage. The main
page features entry boxes, which accept a FASTA for-
matted or plain protein sequence, or any valid UniProt
accession/ID. The sequences of corresponding UniProt en-
tries are accessed through an SQL database containing in-
formation about the specified input, or extract the informa-
tion directly from UniProt, in case of an SQL database fail-
ure. In addition, a multi-FASTA formatted file with a max-
imum size of 200 megabytes can also be uploaded. The new
web-server also incorporates RESTful services using cus-
tom links for searches. For IUPred2 predictions, three types
of predictions can be chosen depending on the type of struc-
tural regions the user wants to analyse: short stretches of
disorder (such as flexible loops or linkers), long disordered
regions (such as disordered domains), or structured do-
mains. These options are directly inherited from the previ-
ous IUPred implementation (19,25). In addition, IUPred2A
features optional context dependent prediction options, us-
ing either ANCHOR2 for the identification of disordered
binding sites, or the redox-sensitive feature to uncover redox
potential dependent disorder. Once the proper inputs are
filled, the server calculates the results on aDjango 2.0 based
back-end. Each prediction is calculated on-the-fly server
side, utilizing the latest MPI technology for maximum ef-
ficiency. To ease the load on the server, multi-FASTA up-
loads are treated separately and are queued until the server
has enough free capacity.

Output

The latest version of Bokeh (0.12.14) is responsible for the
visualization of the results that is directly integrated into
the Django framework. The graphical output presents the
requested predictions. By default, it contains disorder pre-
dictions from IUPred2 and binding site predictions from
ANCHOR2, but the individual predictions can be turned
on and off on the plot. Alternatively, the redox-sensitive
regions are highlighted. Integration with the UniProt re-
source enables the display of various additional informa-
tion about the requested protein (when available), such as
PFAMannotations (47), low-throughput post-translational
modifications (including phosphorylation, methylation and
acetylation sites) from PhosphoSitePlus (48), related struc-
tures from the PDB (49) and experimentally verified disor-
dered regions from three different databases: generic disor-
der from DisProt (10) and disordered binding regions from
DIBS (36) and MFIB (50). Besides the visual output, both
text based and JSON formatted outputs are downloadable
for each prediction. Despite the intensive use of cutting-

edge web technologies, IUPred2A supports all HTML5 and
WebP compatible browsers.

Supporting features

To further enhance the usability of IUPred2A, the site fea-
tures the description of the method, together with various
examples that highlight its functionality and aid the correct
interpretation of the results. Furthermore, IUPred2A also
supports the local use of IUPred2 and ANCHOR2, as both
methods are available for download as Python3 codes.

EXAMPLES

ANCHOR2 can correctly recognize many disordered bind-
ing regions that machine learning methods are likely to
overlook due to their very conservative estimates of the oc-
currence of these functional modules. This is demonstrated
through the example of the oncogenic Human adenovirus
C early E1A protein (Figure 2). E1A is a largely disordered
protein (51), which is essential for forcing the host cell into
S phase via modulation of the Rb1/E2F1 pathway (52) and
the inhibition of apoptosis via modulation of p53 degra-
dation (53). These host-pathogen interactions are mediated
by several binding events. Rb1 and CBP are targeted by
twoN-terminal tandem binding sites with determined com-
plex structures deposited in the PDB. These known disor-
dered binding regions are identified by ANCHOR2 as two
distinct neighbouring peaks in the output score. While no
other E1A-human protein complexes are currently known
in structural detail, E1A harbors two additional knownmo-
tifs capable of forming host-specific interactions. Both mo-
tifs, together with the putative binding site for the deubiq-
uitinase UBE2I are correctly recognized by ANCHOR2 as
a separate peak in the prediction score. A distinct peak C-
terminal of the structured zinc-finger has no known binding
partners; however it entails a serine residue that was shown
to be phosphorylated by host kinases (54), hinting at an
additional important binding region with currently limited
characterization.
In the case of disordered binding regions, the transition

between the disordered and the folded state is induced by
the presence of a protein partner. However, in certain cases
both the structural state and molecular interactions can be
influenced by redox potential. A prime example of such be-
haviour is presented by the endothelial nitric oxide synthase
(NOS3). Dimerization of this protein is essential for its oxi-
doreductase activity. The dimer interface is formed through
aZn2+-cysteine complex, whereCys94 andCys99 from each
subunit coordinate the Zn2+. These cysteines appeared sus-
ceptible to redox modifications which promote a disulfide
bond formation within each monomer and subsequent re-
lease of Zn2+. This results in the disruption of the dimer
and a transition to the monomeric state, parallelled by the
disruption of the enzyme activity (46,55). Figure 3 shows
the prediction for NOS3 generated using the experimen-
tal redox-state option of IUPred2, correctly capturing the
redox-sensitive region involved in this structural transition.
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Figure 2. The output of IUPred2 and ANCHOR2 for the oncogenic Human adenovirus C early E1A protein. Top: IUPred2 and ANCHOR2 scores are
shown in red and blue. Bottom: schematic architecture of E1A. Disordered binding regions with known complex structure are shown in deep red boxes.
Light red boxes correspond to known linear motifs. Grey box marks the region sufficient for interaction with UBE2I.

Figure 3. The output of the redox-state dependent IUPred2 predictor for the N-terminal region of NOS3. Top: the coordination of Zn2+ by cysteines
94 and 99 from both chains in the dimeric NOS3 structure. Bottom: the output of IUPred2 using the redox state modeling option, where the estimated
sensitivity of the disorder tendency is marked in purple. The plot is zoomed into the N-terminal region that can be seen in the dimeric complex (PDB:
3NOS).

CONCLUSION

The current paper presents the new IUPred2A server that
serves as a unified platform for both generic and context-
dependent prediction of protein disorder. IUPred2A com-
bines and supersedes our general disorder prediction
method IUPred and disordered binding region prediction

method ANCHOR. While IUPred2 features only slight
improvements over its predecessor, ANCHOR2 was com-
pletely re-trained and re-tested built on a new architecture,
bringing a significant improvement over the original ver-
sion. In addition, IUPred2A also incorporates a new exper-
imental feature that targets the identification of protein re-
gions capable of redox-state dependent transition between
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disordered and ordered states. These methods are available
through a completely rewritten server at a new location.
The IUPred2A server retains all options for data input from
previous versions, but also significantly expands its func-
tionality by introducing RESTful services, and automated
data integration from a range of databases with information
about protein structure. Furthermore, completely rewritten
codes for IUPred2 and ANCHOR2 are available for down-
load to aid local large-scale analyses.
Concurrent machine learning algorithms typically excel

at correctly predicting protein regions with a substantial
similarity to training examples. However, owing to their
biophysics-based models, IUPred2 and ANCHOR2 are ex-
pected to be able to correctly recognize protein regions that
share limited to no resemblance to currently known dis-
ordered regions or binding sites. This, together with the
fact that both IUPred and ANCHOR present virtually
the fastest methods with high accuracies in their respec-
tive fields (56), make them outstandingly suited for de novo
identification of binding- and non-binding disordered pro-
tein regions in large-scale studies.
While the computational identification of protein disor-

der in general has already been targeted by several methods,
the possible context dependence of structural features has
been generally overlooked from a prediction standpoint.
IUPred2A presents the first attempt at the unified descrip-
tion of the context-dependence of protein disorder by being
able to describe the lack of structure and its dependence on
the presence of a partner protein or a change in redox envi-
ronment. As IUPred2A is rooted in a biophysical model of
molecular interactions, it holds the potential for the future
extension of its architecture to successfully incorporate the
effects of other structure-modifying environmental factors,
such as pH or post-translational modifications.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS

The authors are grateful to Domenico Cozzetto and David
T. Jones for kindly providing the flexible linker dataset used
for benchmarking DISOPRED3. The constructive remarks
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29. Dosztányi,Z., Mészáros,B. and Simon,I. (2009) ANCHOR: web
server for predicting protein binding regions in disordered proteins.
Bioinformatics, 25, 2745–2746.

30. Disfani,F.M., Hsu,W.-L., Mizianty,M.J., Oldfield,C.J., Xue,B.,
Dunker,A.K., Uversky,V.N. and Kurgan,L. (2012) MoRFpred, a
computational tool for sequence-based prediction and
characterization of short disorder-to-order transitioning binding
regions in proteins. Bioinformatics, 28, i75–i83.

31. Yan,J., Dunker,A.K., Uversky,V.N. and Kurgan,L. (2016) Molecular
recognition features (MoRFs) in three domains of life.Mol. Biosyst.,
12, 697–710.

32. Fang,C., Noguchi,T., Tominaga,D. and Yamana,H. (2013)
MFSPSSMpred: identifying short disorder-to-order binding regions
in disordered proteins based on contextual local evolutionary
conservation. BMC Bioinformatics, 14, 300.

33. Jones,D.T. and Cozzetto,D. (2015) DISOPRED3: precise disordered
region predictions with annotated protein-binding activity.
Bioinformatics, 31, 857–863.

34. Malhis,N. and Gsponer,J. (2015) Computational identification of
MoRFs in protein sequences. Bioinformatics, 31, 1738–1744.

35. Gibson,T.J. (2009) Cell regulation: determined to signal discrete
cooperation. Trends Biochem. Sci., 34, 471–482.
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Mészáros,B. (2018) DIBS: a repository of disordered binding sites
mediating interactions with ordered proteins. Bioinformatics, 34,
535–537.

37. Reichmann,D. and Jakob,U. (2013) The roles of conditional disorder
in redox proteins. Curr. Opin. Struct. Biol., 23, 436–442.

38. Fraga,H., Pujols,J., Gil-Garcia,M., Roque,A.,
Bernardo-Seisdedos,G., Santambrogio,C., Bech-Serra,J.-J., Canals,F.,
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ABSTRACT

Summary: ANCHOR is a web-based implementation of an original

method that takes a single amino acid sequence as an input and

predicts protein binding regions that are disordered in isolation but

can undergo disorder-to-order transition upon binding. The server

incorporates the result of a general disorder prediction method,

IUPred and can carry out simple motif searches as well.

Availability: The web server is available at http://anchor.enzim.hu.

The program package is freely available for academic users.

Contact: zsuzsa@enzim.hu

1 INTRODUCTION

Many disordered proteins contain important functional elements

involved in protein–protein interactions. Disordered binding regions

play a critical role in various biological processes, involving

regulation and signaling (Dyson and Wright, 2002). These segments

differ from protein interaction sites of globular proteins due to their

distinct structural properties (Mészáros et al., 2007). Such regions

exist as a highly flexible structural ensemble in isolation and adopt

a well-defined conformation only upon binding to their specific

partner molecules. It was suggested that certain disorder prediction

methods can be indicative of disordered binding regions (Garner

et al., 1999). Specialized methods have been developed to regions

adopting α-helical conformation in their bound state (Cheng et al.,

2007) or for the binding partners of calmodulin (Radivojac et al.,

2006). In contrast, ANCHOR is a general method for recognizing

disordered binding regions.

ANCHOR aims to capture the basic biophysical properties of

disordered binding regions using estimated energy calculations

(Mészáros et al., 2009). Estimated energies can be assigned to

each residue in a sequence and were shown to well-approximate

the corresponding energies calculated from known structures of

globular proteins (Dosztányi et al., 2005b). Generally, disordered

regions can be discriminated from ordered proteins by unfavorable

estimated energies. This concept is utilized in the IUPred server

for the prediction of protein disorder (Dosztányi et al., 2005a).

The estimated energies can also detect regions that are likely to

gain energetically by interacting with globular proteins. Predictions

in ANCHOR combine the general disorder tendency with the

sensitivity to the structural environment (Mészáros et al., 2009).

∗To whom correspondence should be addressed.

Because of this additional property, ANCHOR scores are relatively

independent from IUPred scores.

The developed method was able to recognize disordered binding

regions with almost 70% accuracy at the segment level on various

datasets. We also ensured that disordered binding regions could

be discriminated from generally disordered regions and that the

false positive rate on a dataset of globular proteins was <5%.

Since the publication of the original paper (Mészáros et al.,

2009), we have found that the false positive rate can be further

reduced by eliminating segments with IUPred scores too low to

be compatible with disordered binding regions. Additionally, short

predicted segments of length less than six residues are also filtered

out.

ANCHOR predicts disordered binding regions without any

information about the partner protein(s). A complementary approach

identifies protein binding regions using motif searches. It was

suggested that interaction with certain proteins or protein families

are mediated through specific linear motifs that capture key residues

responsible for binding. A growing number of such linear motifs are

now being categorized in the ELM server (Puntervoll et al., 2003).

The presence of sequence motifs reduces the complex task of finding

putative protein binding sites to a simple pattern matching problem.

However, such matches can contain many false positives, suggesting

that the definition of the binding motif should include information

about the specific structural context. Since several instances of

linear motifs occur within disordered regions, disordered binding

regions could help to filter out false positive matches. Therefore,

complementing the prediction of disordered binding regions with

specific motif searches can prove useful in many cases and help to

explore other motifs.

2 THE ANCHOR SERVER

The minimum input of the web server is a single amino acid

sequence. Sequences can also be specified by their corresponding

UniProt IDs or ACs. A list of motifs can also be submitted, specified

as regular expressions with or without their names. A few examples,

including known eukaryotic linear motifs are given in the help to

guide the user with the format. The motif search, however, is not

restricted to known linear motifs, any kind of regular expression can

be specified.

The basic output of our prediction method is a probability

score, indicating the likelihood of the residue to be part of a

© The Author(s) 2009. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/

by-nc/2.5/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
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Fig. 1. An example of ANCHOR graphical output for the Wiskott–Aldrich Syndrome protein (WASp) with various motif searches. The N-terminal of the

protein contains an ordered domain, otherwise it is largely disordered. Multiple disordered binding regions were predicted, and several of these can be

confirmed experimentally [see Mészáros et al. (2009) for more details]. The results of the motif searches show regions containing various SH3 binding sites

as specified in the ELM database. Additionally, proline rich regions and the CRIB motif implicated in binding to Cdc42 can also be located.

disordered binding region along each position in the sequence.

Regions that have a score >0.5 and pass the filtering criteria

are predicted as disordered binding regions. The returned plot

shows the prediction profile calculated by ANCHOR, the disordered

binding region prediction method, together with IUPred, a general

disorder prediction method. Predicted disordered binding regions

and matched motifs are also indicated underneath the profile as

horizontal bars. The graphical output is followed by a simple text

output, summarizing the predicted and filtered binding regions, the

location of the found motifs and the returned prediction profile.

An example for the graphical output is presented in Figure 1. The

core program of ANCHOR is written C, while motif searches are

carried out by a Perl wrapper. This Perl program is called by the

web server written in PHP. The graphical output is generated by the

JpGraph software (JpGraph, 2005; http://www.aditus.nu/jpgraph/).

The default option for graphical/text output is automatically

determined by the browser type, but it can be changed by user.

Additionally, list of sequences can also be submitted to generate

simple text output on a larger scale.

Funding: Hungarian Scientific Research Fund (OTKA-K72569); the

National Office for Research and Technology, Hungary (NKTH07a-

TB_INTER).

Conflict of Interest: none declared.
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ABSTRACT

Intrinsically disordered proteins and protein regions
(IDPs/IDRs) exist without a single well-defined con-
formation. They carry out important biological func-
tions with multifaceted roles which is also reflected
in their evolutionary behavior. Computational meth-
ods play important roles in the characterization of
IDRs. One of the commonly used disorder prediction
methods is IUPred, which relies on an energy esti-
mation approach. The IUPred web server takes an
amino acid sequence or a Uniprot ID/accession as
an input and predicts the tendency for each amino
acid to be in a disordered region with an option to
also predict context-dependent disordered regions.
In this new iteration of IUPred, we added multiple
novel features to enhance the prediction capabilities
of the server. First, learning from the latest evalua-
tion of disorder prediction methods we introduced
multiple new smoothing functions to the prediction
that decreases noise and increases the performance
of the predictions. We constructed a dataset con-
sisting of experimentally verified ordered/disordered
regions with unambiguous annotations which were
added to the prediction. We also introduced a novel
tool that enables the exploration of the evolution-
ary conservation of protein disorder coupled to se-
quence conservation in model organisms. The web
server is freely available to users and accessible at
https://iupred3.elte.hu.

GRAPHICAL ABSTRACT

INTRODUCTION

A significant part of the genome of various organisms en-
code protein segments that do not form awell-defined struc-
ture in isolation even under physiological condition (1–
3). These regions are called intrinsically disordered regions
(IDRs) and their presence defines intrinsically disordered
proteins (IDPs). IDRs are best characterized as fluctuating
conformational ensembles whose behaviour is often context
dependent (4,5). Despite the lack of well-defined structure,
disordered regions play important functional roles in many
cellular processes and are associated with various diseases
(4,6). IDRs are multifaceted in terms of their function and
can serve as entropic chains (serving e.g. as a spring) or flex-
ible linkers between domains, mediate interactions through
short linear motifs (SLiMs) or through sequentially longer
and evolutionary conserved functional units called intrin-
sically disordered domains (IDDs) (4). A growing number
of examples highlights the important role of IDPs driv-
ing or regulating the formation of membraneless organelles
through liquid-liquid phase separation as well (7). Recog-
nizing the importance of IDRs motivated efforts to develop
various computational resources to facilitate the identifica-
tion of biological relevant disordered regions and their func-
tional characterization.

*To whom correspondence should be addressed. Tel: +36 1372 2500/8537; Email: zsuzsanna.dosztanyi@ttk.elte.hu

C© The Author(s) 2021. Published by Oxford University Press on behalf of Nucleic Acids Research.
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The central resource of experimentally verified disor-
dered segments is the DisProt database (8). Through a com-
munity effort, entries are identified on the basis of vari-
ous types of experimental data, collected from the litera-
ture by manual annotation. The IDEAL database has a
similar focus (9), while DIBS and MFIB collect specific
subsets of IDRs that undergo a disoder-to-order transition
upon binding to globular protein or other disordered pro-
tein partners, respectively (10,11). Ordered structures are
usually collected from the Protein Data Bank (PDB) (12).
However, the PDB also contains regions that only adopt a
well-defined structure in complex but would be disordered
in isolation. The presence ofmissing residues inX-ray struc-
tures or high variations between conformers which satisfy
the NMR constraints are usually taken as an indication of
disorder. Despite existing experimental information, there
can be ambiguity in the structural status of protein regions
when order and disorder annotations overlap.
In recent years, the number of regions annotated as dis-

ordered has been growing steadily, with >1700 entries cur-
rently collected in the DisProt database (8). However, the
overwhelming majority of IDRs is still uncovered. The
large-scale analysis of ordered and disordered regions in
proteins is available only through prediction tools which
can recognize these segments from the amino acid sequence.
More than 50 predictionmethods have been developed over
the last 20 years relying on different principles, including
simple amino acid scales and biophysical models or various
machine learning techniques, including deep learning tech-
niques (13). The performance of these tools had been eval-
uated in the CASP experiments (14). However, these evalu-
ations only included a small number of disordered regions
with usually short length and provided limited insights into
the usability of disorder prediction methods. Recently, a
Critical Assessment of protein Intrinsic Disorder (CAID)
prediction experiment was launched as a community-based
blind test to determine the state of the art in predicting in-
trinsically disordered regions (15). Based on the first round,
top performing methods were using machine learning ap-
proaches incorporating multiple sequence derived inputs,
but the performance also varied depending on the evalu-
ation criteria.
An intriguing aspect of prediction of protein disorder is

what is the best way to incorporate evolutionary informa-
tion. Several prediction algorithms include information de-
rived from sequence profiles or rawmultiple sequence align-
ment at the expense of significantly slower running time
(15). Although these types of inputs can increase predic-
tion accuracy, the gain is generally smaller relative to other
problems like secondary structure prediction. In general,
disordered regions are evolutionary less conserved com-
pared to ordered regions, due to the lack of structural con-
straints in the case of IDRs (16–18). However, sequence
based analyzes of functional IDRs showed that these mod-
ules can be as conserved in evolutionary terms as globu-
lar domains (17,19,20). The strict conservation is often lim-
ited to a few key amino acids, which could be surrounded
by less conserved positions (18). However, the appearance
of this island-like conservation pattern corresponding to
these functional motifs is often compromised due to dif-
ficulties finding the optimal sequence alignment. In some

cases, larger disordered segments can also show strong evo-
lutionary conservation, and can also be used to define se-
quence families (21). On the other hand, disordered char-
acteristics can also be preserved over evolution without any
sequential constraints. This type of conservation can occur
in case of entropic chains, such as the projection domain
of microtubule-associated protein 2 (MAP2), which serves
as a spacer in the cytoskeleton by repealing molecules that
approach microtubules (4). It was suggested that based on
the relationship between the conservation of disorder and
the conservation of sequence, three basic scenarios can oc-
cur. While the strict categorization largely depends on cut-
off values (22), the simultaneous inspection of the disorder
profile linked to sequence alignment can provide important
insights for the evolutionary analysis of IDPs.
In this paper, we present the updated version of the

IUPred (IUPred3) disorder prediction method. IUPred is
based on a unique energy estimation approach that pro-
vides fast and robust prediction of disordered tendency. In
addition, the same approach can also be used to highlight
context dependent disordered regions,which can undergo a
disorder-to-order transition as a result of binding (i.e. AN-
CHOR) or changes in redox conditions (23). IUPred is also
incorporated into databases such as ELM (24) andMobidb
(25) or meta-tools (26,27). IUPred is also used to predict
disordered binding regions (28–30), or to aid the identifica-
tion of linear motif sites, both for de-novo discovery and to
filter out false positive instances (31,32). A recent applica-
tion of this method explored cancer associated mutations
within IDRs (33). In the new implementation of IUPred
we focus on features that can help the identification of bi-
ologically relevant disordered regions. We directly incorpo-
rated experimentally verified unambiguous ordered and dis-
ordered segments in the prediction profiles. We also devel-
oped a novel visualization tool which can highlight evolu-
tionary conserved features of disordered regions by link-
ing conservation protein disorder to sequence alignments
of model organisms.

MATERIALS AND METHODS

IUPRED3: the algorithm

IUPred is based on an energy estimation method (34). For
this, a pairwise statistical potential is generated from a li-
brary of known structures. Using this empirical force field,
an energy-like quantity can be assigned to each residue
based on the contacts it makes with other residues in the
structure. These energies are estimated from the amino acid
sequence using a 20 × 20 energy estimation matrix. The pa-
rameters in this matrix are calculated by least square fitting
to minimize the difference between the energies calculated
from known structures and the energies calculated from the
sequence. The energy estimation depends only on the amino
acid type of each residue and the composition of its sequen-
tial neighborhood. The basic assumption of this approach
is that residues with favorable energies are ordered while
residues with unfavorable energies are disordered (34). The
energies of neighboring residues are smoothed with a mov-
ing average using a window size of 10. Then, as a final step
the energies are converted into a score between 0 and 1.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/n
a
r/a

rtic
le

/4
9
/W

1
/W

2
9
7
/6

2
8
7
8
4
1
 b

y
 E

lte
 E

g
y
e
te

m
i K

ö
n
y
v
tá

r u
s
e
r o

n
 0

2
 J

a
n
u
a
ry

 2
0
2
3

               dosztanyi.zsuzsanna_45_22



Nucleic Acids Research, 2021, Vol. 49, Web Server issue W299

Table 1. Influence of an additional layer of smoothing for the performance

of IUPred on the CAID dataset using the previous method (no second

layer smoothing), using the Savitzky-Golay filter with parameters (19, 5)

and using moving average smoothing with window size 11 compared to

other stat-of-the-art disorder prediction tools

AUC F1 score

No smoothing (IUPred2A) - 0.736 0.417
Medium Sav Gol (19,5) 0.738 0.421
Strong MA (11) 0.744 0.428
IUPred3 + experimental data MA(11) 0.798 0.472
DisoMine 0.765 0.43
Predisorder 0.747 0.44

In our experience, the resulting IUPred profile can be
still quite noisy. Therefore, here we introduce additional op-
tions to apply another layer of smoothing for the web server
as well as for the downloadable IUPred3 package. As a
first option, we apply a medium level smoothing using the
Savitzky-Golay filter with parameters 19 and 5. This type of
smoothing follows the ups and downs of the original pre-
diction profile, but still eliminates significant parts of local
noise. The second option uses a moving average with win-
dow size 11. Both options, but especially the strong smooth-
ing options, improved the overall performance of the pre-
diction when tested on the CAID DisProt dataset (Table
1). Nevertheless, the medium level smoothing can also be
useful, because it can indicate local tendencies better, which
could correspond to disordered binding sites within disor-
dered regions, or flexible loops within ordered domains.

Experimentally verified information

To collect experimentally verified disordered regions, we
downloaded consensus disordered regions from theDisProt
database (version 8.1). We also collected 54972 monomeric
structures from the PDB using the Protein Interfaces, Sur-
faces, and Assemblies (PISA) service of the European
Bioinformatics Institute (EBI). These structures were fil-
tered for missing residues and served as a basis of our or-
dered dataset. However, the two types of annotations can
overlap. To resolve these issues, we used a strict definition
of order and disorder. Basically we eliminated DisProt an-
notations which overlapped with a monomeric structure or
with a Pfam family which mapped to a monomeric struc-
ture. Altogether we identified 3160 ordered domains and
462 disordered regions. In addition, filtering based on ex-
perimentally characterized domains significantly boosts the
performance of the method (Table 1).

Disorder conservation tool

In IUPred3, we introduce a novel viewer of evolutionary
conservation that enables the user to inspect disorder con-
servation along with sequence conservation. It is based on
a precalculated dataset of orthologous sequences and mul-
tiple sequence alignments. First, orthologs were obtained
by applying all-against-all GOPHER algorithm based pre-
diction using protein sequences of the latest QFO (re-
lease 2020 04) reference dataset as the searching database
(35,36). The orthology calculations were carried out for

48 eukaryota species with a total number of 876 605 pro-
teins. Multiple sequence alignments of orthologs were con-
structed for each protein using the MAFFT algorithm (de-
fault parameters) (37). The orthologs were classified into
the most specific term using 6 main evolutionary levels
(Mammalia, Vertebrata, Eumetazoa, Opisthokonta, Eu-
karya and Plant). Users can also upload their own align-
ments which extends the application of this tool beyond eu-
karyotic species.

SERVER DESCRIPTIONS

Version control

To enable the smooth transition between different ver-
sions of the prediction methods related to IUPred, we re-
structured the website. The URL of the current version
points to https:/iupred3.elte.hu and also to https://iupred.
elte.hu, which from now on will always be the latest ver-
sion of IUPred. The previous iterations were moved to
other domains, the original (34) version was renamed to
IUPred1 and relocated to https://iupred1.elte.hu, the previ-
ous version (23) is available at https://iupred2a.elte.hu, as
before. Many features of the web server were transferred
from this earlier implementation, including download op-
tions.

Submission page

The main page features entry boxes which accept a FASTA
formatted or plain protein sequence, or any valid UniProt
accession or an ID. The sequences of corresponding
UniProt entries are accessed through an SQL database con-
taining information about the specified input, or extract
the information directly from UniProt, in case of an SQL
database failure. In addition, a multi-FASTA formatted file
with a maximum size of 200MB can also be uploaded. The
web-server also incorporates RESTful services using cus-
tom links for searches.
IUPred3 offers multiple types of prediction options from

which the user can choose. These include the default long
disorder option, the short disorder option, which is tailored
to recognize missing residues fromX-ray structures, and the
structural domains option. Additional options enable the
prediction of context-dependent disordered regions such as
disordered binding regions (ANCHOR method) or redox
regulated disordered regions. In the current version we im-
plemented novel features for the most commonly used long
disorder prediction option, and introduced a new tool to ex-
plore disorder conservation.Alongsidewith the novelmeth-
ods we also introduced an option for the users to be able to
choose from different smoothing functions.
To further generalise the usability of the novel feature of

IUPred3 to visualize disorder conservation a new submis-
sion option has been added, where users can uploadFASTA
formatted multiple sequence alignments containing up to
50 sequences. If such an alignment is supplied, IUPred3 will
automatically use the first six sequences to calculate the dis-
order conservation and presents the results similarly to a
standard ‘Disorder conservation’ analysis.
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Disorder prediction output

Once the proper inputs are selected and submitted, the
server calculates the results on the latest Django based
back-end. Each prediction is calculated on-the-fly server
side, utilizing the latest MPI technology for maximum ef-
ficiency. Multi-FASTA uploads are treated separately and
are queued until the server has enough free capacity.
The output of the requested prediction is presented in a

graphical output visualized using a combination of Bokeh
(1.4.0) and PlotlyJS (1.58.4) integrated into the Django
frontend template framework. Integration with theUniProt
resource enables the display of various additional informa-
tion about the requested protein (when available). In case
of a sequence input, IUPred tries to match the given se-
quence to a UniProt entry based on hashes generated from
the sequence. If a unique matching entry is found, IUPred
will map the input to the found entry in UniProt. Addi-
tional annotations include information on experimentally
verified disordered regions from three different databases:
generic disorder from DisProt (8) and disordered bind-
ing regions from DIBS (10) and MFIB (11), together
with known motifs from the ELM database (24). Low-
throughput post-translational modifications (including Ser,
Thr and His phosphorylations, methylation, ubiquitylation
and acetylation sites) from PhosphoSitePlus (38) are also
indicated. In addition, PFAM annotations (39) with the
different types of sequence families (domain, families, re-
peats, motifs, disordered) highlighted with different col-
ors. Regions that have structural information based on
known structures in the PDB (40) are also mapped to the
selected entry. By selecting the ‘Show structures’ option,
the mapped PDB regions are shown individually for each
structure.
Besides the graphical output, both text based and JSON

formatted outputs are downloadable for each prediction.
All functions of IUPred support all modernHTML5 and

WebP compatible browsers.

Disorder conservation output

Here we introduce a novel feature of IUPred3 that outputs
both disorder and sequence conservation information of a
given query protein relying on orthologous sequences of
model organisms. The disorder conservation visualization is
available directly from the submission page, but can also be
accessed from the disorder output. The ‘IUPred3 disorder
conservation’ tool uses the latest PlotlyJS library alongside
with msaJS (1.0.0) (41).

Disordered profiles and multiple sequence alignments of
orthologs are visualized in two separate viewers which are
linked to each other. Disorder predictions are shown for
six species. The disorder profiles are linked with a custom
built hover function that maps the corresponding positions
in each sequence. If there is no corresponding ortholog se-
quence in the given species, this bar is left empty. Alongside
with the mapping of disorder profiles, the disorder conser-
vation tool displays the multiple sequence alignment of 48
orthologs of the query protein (if found) using the msaJS li-
brary (41). Orthologs of model organisms are classified into
six main evolutionary levels from unicellular eukaryotes to

mammalian in a nested way instead of listing sequences
without any order. Each level is indicated with different col-
ors to orient the users. The alignment is also mapped to the
hover function of the prediction plots marking the central
residue selected by the user. To ease the analysis of the mul-
tiple sequence alignment, pressing the Ctrl button locks the
alignment in its current position, and the prediction plots
can be reset to their default state. Disordered regions in the
prediction plots are highlighted, however the cut-off value
(default is 0.5) can be adjusted at the top of the page. Users
might also search for interesting regions in the sequences of
the model organisms using the respective input field above
the plot. The field accepts regions in the format of start-end
as well as standard regular expressions, for example ‘15–45’
or ‘[RK].TQT’, respectively.

Supporting features

IUPred3 also features the description of the method on the
website, as well as various examples that highlight its func-
tionality. Furthermore, IUPred3 is also available as a stan-
dalone downloadable package alongside ANCHOR2 and
the experimental redox sensitive conditional disorder pre-
diction. Besides the standard executablewe supply the pack-
age with an importable python library to further ease the
use of the software (42).

USE CASES

Example 1. Combining prediction with experimentally veri-
fied information

Many different annotations can exist with different reliabil-
ities even for a single protein. These include experimental
disorder, structural information or mapped sequence fami-
lies. The complexity of these different levels of annotations
can be demonstrated in the case of yeast Rap1.
Rap1 (repressor-activator protein 1) in yeast is a mul-

tifunctional protein that controls telomere silencing and
the activation of glycolytic and ribosomal genes (43).
Yeast Rap1 contains multiple regions matching DisProt en-
tries and PDB structures (Figure 1). In this case, we ac-
cept disorder annotations, because there is no overlapping
monomeric annotation neither in this protein, nor in other
DisProt entries with the same domains. The BRCT domain
which is located near the N-terminal is considered as a
true ordered region. The solution structure of this domain
was determined previously which reveals there is no dis-
ordered part of the core domain (44). Indeed, we identi-
fied nine fully resolved monomeric PDB structures in to-
tal corresponding to the BRCT Pfam family. Furthermore,
the corresponding HMM profile did not match any of the
experimentally verified disordered regions. However, there
was no monomer based evidence identified for the other
three structured regions and currently these are not con-
sidered as true ordered regions despite structural and do-
main annotations. Supporting this, the central region forms
a complex withDNA, and probably has no or limited stabil-
ity without it. Furthermore, the second DNA-binding do-
main overlaps with an experimentally verified disordered
region.
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Figure 1. The output of IUPred3 for the repressor-activator protein 1 of Saccharomyces cerevisiae. The strong smoothing option was used to generate this
plot. At the upper part of the figure the disordered and ordered unambiguous experimentally verified protein regions are marked by red lines at the top and
bottom of the plot, respectively. According to the manual curation of experimental data, the part of protein that has unambiguous verified order/disorder
profile is coloured grey. The bottom part shows the various annotations for Rap1. Disordered regions from DisProt are shown in deep red boxes. Light red
and blue boxes correspond to Pfam families and domains, respectively. Green boxes mark mapped consensus regions of PDB structures.

To highlight more reliable annotations, regions consid-
ered as true ordered or true disordered are indicated by a
line at 0 and 1, and the prediction line faded to grey in the
corresponding region. Additional annotations which were
not accepted as true order or disorder due to some incon-
sistencies, are only highlighted below the plot. For these re-
gions, the prediction is shown by a red line. Altogether, the
visualization of the unambiguous experimental dataset of
disordered and ordered protein regions helps the users to
have a more clear view of the structural state information
on the query.

Example 2. Combined view of sequence and disorder conser-
vation in model organisms

Previous analyses highlighted that the relationship between
disorder and evolutionary conservation can be quite com-
plex and include cases when both disorder and sequence
is conserved, when only the disorder profile is conserved
or when the sequence conservation is limited to few posi-
tions that can be indicative of putative linear motif sites.
The two-level based visualization approach introduced here
can be used to identify the different scenarios. Tools, such
as Jalview (45) or ProViz (46) can visualize sequence align-
ment and also show disorder information for a single pro-
tein, but they cannot provide information on the evo-
lutionary conservation of IDPs. Altogether, this new vi-
sualization tool of IUPred3 offers a simple way to in-
spect the disorder conservation based evolutionary history
of IDPs.
One potential application of this tool is to locate puta-

tive linear motif sites within conserved disordered regions.
An example for an evolutionary conserved disordered re-
gion is the human Eukaryotic translation initiation factor
2A (eIF2A) (Figure 2). The eIF2A protein is thought to
participate in translation initiation during the translation of
the first few amino acids (47). Orthologs of human eIF2A
protein can be predicted not only in vertebrates but also
in eumetazoa and unicellular eukaryotic organisms. This
is supported by previous results in which yeast homolog

of eIF2A was identified based on homology searches (47).
These proteins contain a conserved disordered region in
their C-terminal. While the overall sequence conservation
is low, it contains likely linear motif sites. For example, the
YxPPx�R motif in eIF2A is preserved over the evolution
which is clearly observable in the multiple sequence align-
ment of orthologs (Figure 2). This corresponds to a con-
sensus translation initiation factor (eIF4E) binding motif
(YxPPx�R) that was originally identified based on the in-
teraction of eIF4E and DDX3X RNA helicase (48). How-
ever, in a previous study it was shown that the interac-
tion between eIF2A and eIF4E is not dependent on the
YxPPx�R motif. This suggests that eIF2A might have a
second binding region and the motif is involved in regula-
tion of eIF4E activity (32). Although the YxPPx�R motif
in eIF2A is not well characterized, its evolutionary conser-
vation indicates an ancient functional relevance.

CONCLUSION

Disordered prediction tools can be used for multiple prob-
lems, including identifying regions suitable for structure
determination, and are important starting points in the
quest to characterize the function of non-globular regions.
IUPred is one of the commonly used disordered prediction
methods that is also often used in different contexts, to char-
acterize individual proteins as well as for large-scale analysis
(49). Here, we describe novel features introduced into the
IUPred web server. We provide a way to filter out known
ordered regions and to leverage experimentally verified dis-
ordered segments. We offer smoothing options which can
help to eliminate noise in the prediction profile. These op-
tions can make it easier for the user to identify biologically
relevant disordered regions. We also introduce a novel vi-
sualization tool which can be used to understand how the
conservation of disorder is linked to the conservation of se-
quence. As the patterns of evolutionary conservation of dis-
ordered regions covers a wide range of behaviours, we ex-
pect this tool to be useful to understand the complex rela-
tionship between protein disorder and evolutionary history.
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Figure 2. The output of disorder conservation for the human eIF2A protein. At the top of the figure, IUPred3 profiles of the human eIF2A and its
orthologs from five generally known model organisms are depicted, and predicted disordered regions are highlighted by red. The bottom of the figure
represents the multiple sequence alignment of orthologs identified from an extended set of eukaryotic model organisms. The human eIF2A as the query
protein is highlighted by red in both parts of the figure. Model organisms are classified by taxonomic levels which are indicated with different colours.
Using the regular expression based motif search box, the YxPPx�R motif of eIF2A is highlighted by blue rectangles in each profile.
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As many diseases can be traced back to altered protein function, studying the effect of genetic

variations at the level of proteins can provide a clue to understand how changes at the DNA level

lead to various diseases. Cellular processes rely not only on proteins with well-defined structure

but can also involve intrinsically disordered proteins (IDPs) that exist as highly flexible ensembles

of conformations. Disordered proteins are mostly involved in signaling and regulatory processes,

and their functional repertoire largely complements that of globular proteins. However, it was

also suggested that protein disorder entails an increased biological cost. This notion was

supported by a set of individual IDPs involved in various diseases, especially in cancer, and the

increased amount of disorder observed among disease-associated proteins. In this work, we tested

if there is any biological risk associated with protein disorder at the level of single nucleotide

mutations. Specifically, we analyzed the distribution of mutations within ordered and disordered

segments. Our results demonstrated that while neutral polymorphisms were more likely to occur

within disordered segments, cancer-associated mutations had a preference for ordered regions.

Additionally, we proposed an alternative explanation for the association of protein disorder and

the involvement in cancer with the consideration of functional annotations. Individual examples

also suggested that although disordered segments are fundamental functional elements, their

presence is not necessarily accompanied with an increased mutation rate in cancer. The presented

study can help to understand how the different structural properties of proteins influence the

consequences of genetic mutations.

Introduction

For several decades, molecular biology studies largely concen-

trated on globular proteins, based on the assumption that a

well-defined structure is necessary for the proper function of

proteins, and the loss of structure leads to the loss of function.

In exploring the genetic background of various diseases similar

biases were also present, by focusing on mutations that could

be placed into structural context. With the increase of available

genome sequences, it has become evident that a large number

of naturally occurring proteins do not require a well-folded

structure to fulfill their biological role.1–3 These intrinsically

unstructured/disordered proteins (IUPs/IDPs) exist as highly

flexible ensembles of rapidly interconverting conformations,

even under physiological conditions.1–3 IDPs are surprisingly

common, especially in higher eukaryotes,4,5 and are involved

in many vital cellular functions. These include regulation,

transcription and translation, signal transduction, protein

phosphorylation, storage of small molecules, chaperone action,

transport, and assembly of large multiprotein complexes.6 The

increased flexibility of these proteins is pertinent for their

specific functions and offers several functional advantages.

IDPs provide a larger interaction surface area than globular

proteins of similar length.7,8 They generally interact with their

partners with relatively high specificity and low affinity and can

bind to multiple partners.9,10 The plasticity of these proteins

also enables them to adapt to the surface of their partners.11

They are often subject to various post-translational modifica-

tions that facilitate the regulation of their function in the

cell.12,13 Consequently, disordered proteins can capture and

integrate various signals in a complex way through their

disordered segments and participate in a large number of

interactions.13 These properties explain their prevalence in

signaling and regulatory functions,5,14 as well as serving as

hubs of interaction networks.15,16

Given the functional importance of disordered protein

regions, their malfunction is expected to have serious biological

consequences. IDPs indeed are often associated with various

diseases, especially with cancer.17 This observation is supported

by the list of IDPs, such as BRCA1, p27, p21 and CBP, that are
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involved in various forms of cancer. One of best characterized

disordered proteins, p53, is directly inactivated in more than

50% of cancers.18 At a more general level, the higher proportion

of disordered proteins among cancer associated proteins was

also observed. According to the analysis of the SwissProt

database, 79% of human cancer associated proteins have been

classified as IDPs, compared to 47% of all eukaryotic proteins.19

The correlation between protein disorder and cancer was

further underscored in the case of two common forms of

generic alterations, chromosomal rearrangements20 and copy

number variations.21 In addition to cancer, disordered

proteins were also suggested to be common in diabetes and

cardiovascular diseases.17,22 Several disordered proteins—such

as Ab, t, a synuclein, and prion proteins—are involved in

neurodegenerative diseases and are also prone to amyloid

formation.23,24 Altogether, these results lead to the conclusion

that protein disorder comes with a ‘‘biological cost’’ that is

reflected in an increased risk of cancer and other diseases.2,17

This calls for the understanding of the role of protein disorder

in various diseases.

Large scale sequencing efforts now enable us to explore the

relationship between protein disorder and disease-causing

genetic mutations at a more detailed level. The completion

of the Human Genome Project is being followed by concerted

efforts to categorize commonly occurring sequence alterations.25,26

As a result, the dbSNP database already contains more than

13 million sequence variations. Recently, dbSNP started to

include personal genomics data by incorporating the results

from the pilot study of 1000 Genomes Project.27 The rapid

accumulation of DNA variation data enabled the evaluation

of evolutionary constraints at the level of single nucleotide

polymorphisms (SNPs).28 Furthermore, advances in sequencing

technologies also opened new ways to explore how genetic

changes lead to diseases. Before the Human Genome Project,

the identification of potential cancer-causing genes often

relied on prior assumptions about the approximate location

of mutated regions in the genome or some information about

their biological function.29 Consequently, traditional approaches

could indirectly favor better-characterized ordered proteins

and introduce a bias against disordered segments. Cancer

genome projects can decipher the genetic background of

cancer without such biases by directly analyzing the differences

between cancer and normal cells at the DNA level.30 From the

currently available studies of breast, colorectal,31,32 pancreatic

cancers33 and glioblastoma,34 an unexpectedly complex land-

scape of cancer emerged. According to this, cancer is a result

of the accumulation of a relatively large number of mutations

each of which carries a small fitness advantage towards tumor

progression. While there are a few frequently occurring muta-

tions, the distribution of mutations is dominated by a much

larger number of infrequently mutated genes.32

With the rapid explosion of data on sequence variations and

the expanding catalogue of cancer-associated mutations, we

can have a fresh look on how the structural properties of

proteins determine the distribution of neutral and cancer-

associated mutations. In this work we tested the hypothesis

regarding the biological cost of protein disorder in terms

of single point mutations. We considered cancer-associated

proteins identified by traditional biochemical essays as well as

by the various cancer genome projects. Using these datasets,

the distributions of commonly occurring polymorphisms and

cancer-associated mutations within ordered and disordered

regions of proteins were investigated. A functionally relevant

subclass of disordered segments corresponding to disordered

binding regions was also studied in a similar manner. In order

to explore indirect relationships between cancer and the struc-

tural state of proteins, we also considered functional categories

of cancer-associated proteins. A closer look at interesting

examples can give further insights into the role of protein

disorder in cancer-associated proteins.

Results

We have compiled 12 datasets of cancer-associated proteins

from various resources (see Data and methods and Table 1).

The datasets differed in their size and the primary way the

specific proteins were identified. It is worth noting that in

this study, genetic variations were restricted to single amino

acid substitutions, therefore proteins that were associated

with cancer via chromosomal translocations or copy number

variations were not considered.

The first type of dataset was collected from the SwissProt

database,35 primarily from literature searches (SP_cancer).

A subset of this dataset with specific annotation in the OMIM

database was also considered (SP_cancer_annotated). These

two datasets, especially the annotated subset, are expected to

be dominated by the cancer mutations identified in more

traditional ways. The second type of datasets was compiled

from four cancer genome projects. Two of these corresponded

to breast and colorectal cancers (CGP_br/col_1 and CGP_br/

col_2),31,32 one to pancreatic cancer (CGP_pan)33 and another

one to glioblastoma (CGP_glio).34 In each case, a subset of

genes were selected that were more likely to contain driver

mutations. These mutations are expected to actively contribute

to the tumorigenesis as opposed to passenger mutations which

occur purely by chance. These CAN sets were also analyzed

separately (CGP_CAN). The largest dataset was compiled

from the COSMIC database (COSMIC).36 It included cancer

mutation data collected both from the literature and the

outcomes of large-scale cancer genome projects. An additional

Table 1 The number of proteins and residues for the 12 cancer-
associated mutation databases and the polymorphism database.
The number of mutations and/or polymorphisms are also shown
where applicable

Datasets

Number of

Proteins Residues Mutations Polymorphisms

SP_cancer 1403 1 250 776 5246 —
SP_cancer_annotated 113 91 683 1555 —
SP_poly 11 510 7 776 050 — 36 583
CGP_br/col_1 924 795 543 1239 3536
CGP_br/col_2 1335 1 332 469 1739 6098
CGP_pan 711 769 634 790 3848
CGP_glio 1089 1 074 168 1195 5794
CGP_CAN_br/col_1 174 203 731 395 908
CGP_CAN_br/col_2 243 298 114 513 1372
CGP_CAN_pan 64 72 317 130 289
CGP_CAN_glio 36 43 031 77 210
COSMIC 8957 6 898 559 22 708 26 435
COSMIC_census 261 238 130 5375 673
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dataset corresponded to a more restricted subset of proteins in

COSMIC that were part of cancer census genes.37 These pro-

teins could be casually linked to oncogenesis (COSMIC_census).

The number of proteins, amino acids and mutations in each

dataset are given in Table 1.

Protein disorder in cancer-associated proteins

We evaluated the disorder content in our datasets to confirm

that protein disorder is common in human cancer-associated

proteins.19 The length and average disorder content were

analyzed in these datasets. As a reference, we used the complete

human proteome downloaded from the SwissProt database.38

The disorder content was calculated using the IUPred disorder

prediction method.39,40 The results were confirmed with two

other popular disorder prediction methods, DISOPRED25 and

VSL2.41

Fig. 1 shows the disorder content and the percentage of

proteins with disordered regions over 30 residues, as well

as the average length of proteins in the various datasets as

compared to the average values of the human proteome

obtained with IUPred. In contrast to earlier results,19 the

percentage of disordered residues in these datasets was not

significantly different compared to the background (Fig. 1 and

Table S1 (ESIz)). Significant differences were only observed in

the case of two breast–colorectal datasets (CGP_br/col_2 and

CGP_CAN_br/col_2) and the COSMIC census dataset. In

the case of SP_cancer_annotated data, the disorder content

actually decreased compared to the average disorder content

in the human proteome, although this difference was not

statistically significant. These results did not depend on the

choice of the disorder prediction software, as DISOPRED2

and VSL2, two other fundamentally different methods pro-

duced remarkably similar outputs (see Fig. S1, ESIz). It should

be noted that Iakoucheva et al.19 compared the disorder

content of cancer proteins to those of all eukaryotic proteins

in the SwissProt database. This could explain why the differ-

ences in their work were much larger compared to our work.

There was, however, a significant increase in the proportion

of proteins containing long disordered segments among cancer-

associated proteins compared to the human proteome. With

the exception of SP_cancer_annotated and the CGP_CAN_glio

datasets, all differences were significant. The results calculated

with IUPred (Fig. 1B) were again confirmed by the two other

prediction methods (Fig. S1, ESIz). In agreement with earlier

results,42 cancer-associated proteins were also significantly longer.

The increase in length and in fraction of proteins with long

disordered segments points to the increased modularity and

complexity of cancer-associated proteins.

Polymorphisms in ordered and disordered regions

The rates of evolution are largely governed by the stringency of

functional and structural constraints. As ordered and disordered

segments in proteins have distinct properties in this regard,

these characteristic differences are expected to be reflected in

the distribution of genetic variations in these regions. To test

this assumption, we analyzed the differences in the distribution

of SNPs within disordered and ordered segments of cancer-

associated proteins. Polymorphism data were collected from

the SwissProt resource and the dbSNP database (release 132).

On average, we observed around five polymorphisms per

thousand amino acid positions, although this number varied

slightly among the various datasets (see Table 1).

For each protein in our datasets, we tallied the number of

observed polymorphisms in ordered and disordered segments.

These numbers were compared to the expected number of

polymorphisms based on the assumption that the mutations

are distributed evenly in the sequence. The results presented in

Fig. 2A show the relative difference between the observed and

expected number of polymorphisms within both disordered

and ordered segments predicted with IUPred. A more detailed

account of the results for each dataset including the p-values

showing the statistical significance is presented in Table S2

(ESIz). The results indicate that a significantly larger number

of polymorphisms fell within disordered segments compared

to ordered regions. The enrichments ranged from 7.7%

(CGP_CAN_pan) to 45.9% (CGP_CAN_glio) in the various

datasets, with an average of 15.0% (see Table S2, ESIz). With

the exception of some of the CAN gene sets, the differences

were statistically significant in all datasets and largely agreed

for all three disorder prediction methods (see also Fig. S2A

and S3A, ESIz). These data indicate that in cancer-associated

proteins, disordered regions generally are more tolerant to

mutations compared to ordered proteins. This trend is in agree-

ment with the lower evolutionary conservation of disordered

proteins, observed at various levels.28,43–45

Cancer-associated mutations

As a next step we investigated if there is any preference of

cancer-associated mutations towards order or disorder in

proteins. The cancer-associated mutations collected from

various sources were projected onto positions in the protein

sequence, and the order/disorder status of the corresponding

Fig. 1 Average ratio of disordered residues (A), ratio of proteins

containing >30 residue long disordered regions (B) and length (C) in

the 12 datasets analyzed. Black horizontal lines represent the average

values obtained for the proteins of the human proteome taken from

SwissProt. Flags show the confidence interval of a = 0.01 calculated

from the standard error of the mean of randomly selected samples

from the human proteome (see Data and methods). Significant

differences are marked with asterisks (see Table S1, ESIz).
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residues was determined by the IUPred disorder prediction

algorithm. Similarly to polymorphisms, the observed number

of mutations within ordered and disordered segments was

compared to the expected number of mutations based on the

assumption that the mutations are distributed evenly in the

sequence.

Compared to polymorphisms, cancer-associated mutations

followed a reversed trend and were more likely to appear

within ordered regions (Fig. 2B). This tendency was strongest

in the SwissProt datasets, but was also present in the four

CGP_CAN, as well for the complete COSMIC dataset and its

subset of cancer census proteins. The SwissProt and COSMIC

datasets produced statistically significant differences (see Table S2,

ESIz). Results obtained with IUPred again were in agreement

with results of the two other disordered prediction methods

(Fig. S2 and S3, ESIz). The complete dataset of cancer

genomes showed a slightly different trend. In these cases,

cancer-associated mutations were slightly tilted towards

disordered segments. The weak preference of these sequence

variations for disordered segments can be due to the higher

number of randomly occurring passenger mutations present in

these datasets. Indeed, the normalization which takes into

account the uneven distribution of polymorphisms, compen-

sated for this behavior. As a result, the underrepresentation of

cancer-associated mutations within disordered regions became

even more apparent and unequivocal within all datasets

analyzed (Fig. 2C). The normalization also increased the

statistical significance of the results (Table S2, ESIz). The

reversed trend was statistically significant in the manually

curated datasets (SP_cancer, SP_cancer_annotated, COSMIC,

and COSMIC_census). Some of the cancer genomes project

also produced significant differences after the normalization,

despite the increased noise present in these datasets due to

the higher content of passenger mutations. Altogether, these

results clearly contradicted the original hypothesis about the

increased risk of cancer associated with protein disorder, at

least in terms of single nucleotide mutations.

Disordered binding regions

As disordered proteins are quite heterogeneous both in terms

of their structural and functional properties, deviations from

the general behavior can occur in certain cases. We specifically

analyzed predicted disordered binding regions that are expec-

ted to be enriched in functionally relevant sites. Disordered

proteins often function via binding to other macromolecules

that involves a disorder-to-order transition.2,10 Although

binding to other macromolecules can induce a transition to a

fully or at least partially ordered structure in the case of many

IDPs, their complexes have distinct properties compared to

complexes formed by ordered proteins.46,47 The actual binding

regions often correspond to short, localized elements in the

sequence and have unique sequence properties compared to

both ordered and disordered segments in general.48 Using

a sequence based prediction method, called ANCHOR,48,49

we examined the distribution of polymorphisms and cancer-

associated mutations within disordered binding regions.

Based on the predictions, a distinct group was formed from

the residues of disordered binding regions. Residues not

predicted as disordered binding sites were divided into two

separate groups depending on whether they were predicted

as disordered or as ordered. Disordered binding residues are

usually part of a disordered segment, however, in some cases

they can also correspond to local dips in the prediction profile

in which case they are predicted as ordered.50 Therefore, both

disordered and ordered datasets contained fewer residues

compared to the previous analysis. The results for the three

groups are presented in Fig. 3A–C and Table S3 (ESIz). There

are significant differences among the three sets in the distri-

butions of observed SNPs (Fig. 3A), with the exception of

the small CAN gene sets. While SNPs were clearly over-

represented in disordered segments and underrepresented in

ordered regions, disordered binding regions fell between these

two categories, but their behavior was still closer to disordered

segments. One of the CAN gene sets (pancreatic cancer)

differed slightly from this trend, in this case more SNPs were

observed in disordered binding regions than in disordered

segments in general.

The distribution of cancer-associated mutations within

disordered binding regions was largely similar to that of disordered

regions in general, with some differences in the case of the cancer

Fig. 2 Over- and under-representation of mutations in disordered

(red) and ordered regions (blue) calculated with IUPred, as compared

to background distributions (see Data and methods). (A) The distribu-

tion of polymorphisms as compared to the uniform random distribu-

tion; (B) the distribution of cancer-associated mutations as compared

to the uniform random distribution and (C) the distribution of cancer-

associated mutations as compared to the expected values weighted by

the distribution of polymorphisms shown in (A). Significant differences

are marked with asterisks (see Table S2, ESIz).
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genome datasets (Fig. 3B). These deviations can also be attributed

to the increased number of passenger mutations within disordered

segments and disappeared when the uneven distribution of poly-

morphisms was taken into account. In this normalized data,

disordered binding regions had a smaller depletion of cancer-

associated mutations in most cases compared to disordered regions

in general (Fig. 3C). This behavior was expected for regions with

increased functional importance.

Functional correlations

We also analyzed cancer-associated proteins in terms of their

functional categories and their number of protein–protein

interactions. First, we assessed which functional groups were

overrepresented within cancer-associated proteins. For this

analysis, the GeneOntology functional categories were used

(see Data and methods). The occurrence of each of the con-

sidered 50 biological processes and 41 molecular functions in

the COSMIC_census dataset was compared to the expected

occurrence of these functions in the human proteome. The list

of biological processes and molecular functions that exhibited

statistically significant differences is shown in Table 2. The

significantly enriched processes among cancer-associated pro-

teins included signal transduction, involvement in cell-cycle and

proliferation, DNA- and protein binding, phosphorylation

and regulation of transcription. These proteins on the other

hand were significantly depleted in transport processes in general

and particularly in ion transport. In other cases, the differences

were not significant at the a = 0.01 level. In general, our results

are in complete agreement with an earlier study,42 and correlate

well with the functional enrichments of disordered proteins.5,14

Cancer-associated proteins represent a specific group of

proteins that are enriched in certain functions, contain more

disordered regions, generally are longer and involved in a

larger number of interactions (25.5 per protein as compared to

5.5 per protein in the human proteome). However, all these

features also correlate with each other. To untangle these

complicated relationships, we studied the association between

these distinct features. Specifically, we considered the length of

the protein, the ratio of its residues residing in disordered

segments or disordered binding regions, the number of cancer-

associated mutations taken from the COSMIC census data-

base and the number of protein–protein interactions as well as

the above identified significant functional classes (see Data and

methods). The mutual information and the Jaccard distances

were calculated between all pairs of features. The obtained

distances between the different features are shown in Table 3.

These distances were also subject to multidimensional scaling

to reduce the dimensionality to two. The resulting scaled

location of each feature is presented in Fig. 4.

It can be seen that the association between the ratios of

residues in disordered regions and disordered binding sites is

the highest indicating the relatively constant ratio of disordered

residues that are involved in binding. Apart from this strong

association, the functional features shared the most information

with all the other features. This indicated the central role of

function that largely determines the disorder content together

with the amount of disordered binding regions, the number

of protein–protein interactions, the required length for a given

protein and its involvement in cancer. These data suggest that

the association between increased amount of protein disorder

and cancer in terms of single nucleotide mutations is indirect.

Examples

Besides analyzing the general features of cancer-associated

proteins, a few examples are also presented here to gain further

insights into how disordered regions and their binding sites

contribute to the function of these proteins. The examples

were selected from the COSMIC dataset and stand out with

the largest number of mutations falling into ordered (p53,

PTEN) or disordered regions (b-catenin, ACP). The domain

structure (according to PFAM51), the predicted disordered

regions and disordered binding regions and the distribution of

cancer-associated mutations are shown in Fig. 5. Interestingly,

these proteins basically contained no neutral polymorphisms.

p53. The largest number of mutations occurred within p53

(TP53). It is a transcription factor that regulates a large number

of genes (>100 genes) and controls a number of key tumor

suppressing functions such as cell cycle arrest, DNA repair,

Fig. 3 Over- and under-representation of mutations in disordered

binding regions (orange), disordered (red) and ordered regions (blue)

calculated with ANCHOR, as compared to background distributions

(see Data and methods). (A) The distribution of polymorphisms as

compared to the uniform random distribution; (B) the distribution of

cancer-associated mutations as compared to the uniform random

distribution and (C) the distribution of cancer-associated mutations

as compared to the expected values weighted by the distribution of

polymorphisms shown in (A). Significant differences are marked with

asterisks (see Table S3, ESIz).
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senescence and apoptosis.52,53 p53 protein is expressed at a low

level in normal cells and at a high level in response to DNA

damage and oncogenic transformation. Whilst the activation of

p53 often leads to apoptosis, p53 inactivation facilitates tumor

progression. From structural point of view, it is composed of the

central DNA binding domain that is largely ordered, and the

disordered N- and C-termini (Fig. 5A).54,55 These disordered

regions harbor several binding sites. Specifically, binding part-

ners for the N-terminal regions include MDM2, RPA 70N and

the B subunit of RNA polymerase II.48 The C-terminal contains

the tetramerization domain that becomes ordered only upon

forming a tetramer. The dynamic nature of this complex,

however, is underlined by the presence of the nuclear localiza-

tion signal hidden within this structure.56 A remarkable example

for the plasticity of disordered binding regions is presented by a

short segment near the end of the sequence that was observed

to bind to several partners, such as S100b, CBP, Cyclin A2

and sirtuin, in different local conformations.11 Although p53

contains a significant amount of disorder that is essential for

its central role, cancer-associated mutations are concentrated

within the ordered DNA binding domain.54

PTEN. PTEN is also among the most frequently inactivated

tumor suppressor genes in various cancers, with the second

largest number of mutations collected in COSMIC. The PTEN

gene encodes a dual specificity phosphatase that can act on both

proteins and phosphoinositide substrates.57,58 It negatively

regulates the intracellular level of phosphatidylinositol-3,4,5-

triphosphate in cells and functions as a tumor suppressor by

negatively regulating Akt/PKB signaling pathways. PTEN

contains two key domains, the phosphatase (catalytic) domain,

and the C2 (lipid membrane-binding) domain (Fig. 5B).59 The

C-terminal region is disordered, and the very end of the sequence

contains the disordered binding region that can form a complex

with the PDZ domain.60The observed cancer-associated mutations

occur throughout the length of PTEN, but they are enriched

in the C2 and in especially the phosphatase domains (Fig. 5B).

Therefore, this protein is another example where cancer-

associated mutations clearly prefer ordered regions. Although

p53 and PTEN were thought to act independently as tumor

suppressors, with an interesting twist, it turned out that they

can interact both directly and indirectly.61 The sites of the

physical interaction were localized within the C2 domain of

PTEN and the C-terminal region of p53, which is involved

in multiple interactions.62 The complex crosstalk between

these two proteins is also supported by the recent finding

demonstrating that PTEN and p53 somatic mutations are

mutually exclusive in the case of human breast cancers.63

b-catenin. b-catenin (CTNNB1) goes against the general

trend with a significantly higher number of cancer-associated

mutations falling into disordered segments. b-catenin is an

essential structural component of the cadherin-based cell

adhesion complex, and it is also involved in the Wnt/Wingless

growth factor signaling pathway.64 In cell adhesion, b-catenin

helps link cadherin adhesion molecules to cytoskeletal actin

filaments. In its signal transduction role, b-catenin functions as

a transcriptional co-activator of target genes involved in cell

Table 2 List of GO biological processes and molecular functions that are significantly over- or under-represented in the COSMIC census
database as compared to the human proteome. p-values were obtained using the exact Fisher test (see Data and methods)

GO ID Description

Number of COSMIC
census proteins with
the given term

Expected number of
proteins with the
given term p-value

Over- or under-
representation

Biological processes GO:0007165 Signal transduction 51 26 1.418 � 10�3 0.96
GO:0008283 Cell proliferation 17 4 3.055 � 10�3 3.25
GO:0006811 Ion transport 0 8 3.696 � 10�3 �1.00
GO:0006810 Transport 9 24 5.370 � 10�3 �0.63
GO:0007049 Cell cycle 20 7 8.084 � 10�3 1.86

Molecular functions GO:0005515 Protein binding 184 65 1.305 � 10�26 1.83
GO:0003677 DNA binding 84 27 4.907 � 10�10 2.11
GO:0000166 Nucleotide binding 72 25 6.844 � 10�8 1.88
GO:0004672 Protein kinase

activity
36 6 5.573 � 10�7 5.00

GO:0003700 Transcription
factor activity

44 12 3.463 � 10�6 2.67

GO:0016301 Kinase activity 37 8 3.192 � 10�6 3.63
GO:0016740 Transferase activity 48 18 5.276 � 10�5 1.67
GO:0030528 Transcription

regulator activity
17 5 7.340 � 10�3 2.40

Table 3 Jaccard distances of the 6 features calculated on the COSMIC census database as compared to the human proteome (see Data and
methods)

Length Disorder % Binding regions % COSMIC census mutations Interactions Functions

Length 0.0000 0.9871 0.9860 0.9597 0.9776 0.9157
Disorder % 0.0000 0.5170 0.9753 0.9896 0.9208
Binding regions % 0.0000 0.9732 0.9860 0.9162
COSMIC census mutations 0.0000 0.9444 0.8808
Interactions 0.0000 0.8670
Functions 0.0000
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differentiation and proliferation.65 The core region of b-catenin

is composed of 12 copies of a 42 amino acid sequence motif

known as an armadillo repeat (Fig. 5C). These repeats form a

superhelix of helices that features a long, positively charged

groove.66 This groove mediates the interaction of b-catenin

with several unrelated partners, largely based on charge

complementarity. Besides the central repeat region, the protein

also contains short disordered segments on both termini.

Nearly all cancer-associated mutations are located in the

N-terminal disordered region (Fig. 5C). Of particular impor-

tance is the second predicted disordered binding site that also

contains a short linear motif, the DSGxxS diphosphodegron.

This region is recognized by the SCF-b-TrCP E3 ligase with

the binding site located at the top face of the bTrCP1 WD40

b-propeller.67 The complex formation targets b-catenin for

proteasome destruction depending on the phosphorylation

state of its degron.68 Mutations in this region can lead to

malignant transformation by increasing the cytoplasmic pool

of b-catenin. This prompts its translocation to the nucleus,

where it activates downstream elements of the Wnt pathway

leading to cell overgrowth.64

APC. A large number of cancer-associated mutations within

disordered regions are also present in another key element of

the Wnt signalling pathway, the adenomatous polyposis coli

(APC) protein.69 Mutations of this protein frequently occur in

colorectal tumors.70 APC is a large (2843 residues) protein with

several putative functions in cell cycle control, differentiation,

migration, apoptosis, and the maintenance of chromosomal

stability. It acts as a tumor suppressor based on its ability to

bind to b-catenin and to promote its rapid degradation.71,72 By

downregulating CTNNB1, ACP acts as a negative regulator in

Wnt signaling. The central region of APC contains multiple

b-catenin interaction motifs, including three 15 amino acid

repeats and seven 20 amino acid cysteine-rich repeats.73,74 The

large majority of cancer-associated mutations are located

within the first three 20 amino acid repeats (Fig. 5D). The

protein contains several additional domains or motifs, such as

Fig. 4 Two-dimensional mapping of various features based on the

distances calculated on the COSMIC census database relative to the

human proteome. Coordinates were obtained using multidimensional

scaling (see Data and methods) by projecting the original Jaccard

distances into two dimensions. The widths of the connecting lines are

inversely proportional to the original Jaccard distances (see Table 3).

Fig. 5 Domain structure, location of disordered binding regions and disordered segments and the number of cancer-associated mutations per

position shown for (A) p53, (B) PTEN, (C) b-catenin and (D) APC. Black horizontal lines mark the full length proteins, colored boxes below show

the various Pfam domains, red and orange boxes above show the disordered and disordered binding regions, respectively. The black boxes above

the structural descriptions show the number of known cancer-associated mutations for each residue.
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the oligomerization domain, armadillo repeats, axin binding

repeats, basic region, and EB-1 interaction domain. With the

exception of the armadillo repeats, these regions are largely

disordered and contain several binding regions. Nevertheless,

the cancer-associated mutations are significantly less frequent

within these regions. This also indicates that it is not disorder

in itself, but it is rather the specific function that can pose an

increased biological risk in this case.

Discussion

IDP regions are important elements of cancer-associated

proteins.12 In general, disordered proteins are fundamentally

different from globular proteins both in their structural and

functional properties. This necessitates the understanding of

how these regions contribute to the development of cancer.

Ordered and disordered proteins are expected to differ in

terms of their tolerance to mutations. The basic assumption is

that neutral polymorphisms are less likely to occur in positions

with stronger structural and functional constraints. In globular

proteins, functionally relevant sites are often restricted to a

few residues that form the active site, but nearly all residues

contribute to the formation of the 3D structure at some

level.75,76 This represents a large evolutionary constraint for

globular proteins. Functionally important residues of IDPs,

such as residues directly involved in binding or undergoing

post-translational modifications, can experience constraints

similar to the active sites of globular proteins. In terms of

structural constraints, however, mutations generally are expec-

ted to have a smaller impact on the structural properties of

disordered segments, due to the lack of a well-defined structure.

The increased evolutionary constraints of ordered residues

compared to disordered ones have been observed at various

evolutionary distances, ranging from human polymorphisms,28

to the divergence between mouse and human.43 Similar con-

clusions were drawn from the comparison of evolutionarily

related sequences from different organisms that indicated that

disordered segments were generally less conserved.44,45 Devia-

tions from this trend were observed in only a few cases and

were mostly attributed to the involvement in protein–protein

interactions.44

In complete agreement with this view, the larger tolerance to

mutations of disordered segments was also present in cancer-

associated proteins. Our results showed that a significantly

fewer number of SNPs were observed in ordered regions

compared to disordered regions in cancer-associated proteins.

In contrast, cancer-associated mutations were more likely to

occur within ordered segments. This effect was even larger,

when the uneven distribution of polymorphisms was taken

into account. These results suggest that disordered residues are

more tolerant to mutations at two levels. Firstly, disordered

regions can allow a larger number of genetic variations with-

out affecting the function. Secondly, if a mutation occurs, it is

more likely to cause cancer if the affected residue is located

within an ordered region. The lower sensitivity of disordered

regions to genetic variations is likely to originate from the

specific structural properties of these regions. The analysis of

disordered binding regions showed that functionally relevant

sites within disordered regions can slightly deviate from this

behavior. Disordered binding regions could be placed between

disordered regions in general and ordered regions, both in

terms of the appearance of polymorphisms and cancer associated

mutations. These suggest stronger evolutionary constraints within

disordered binding regions, in accordance with their functional

importance. Nevertheless, within the broader context of binding

regions, only a few residues might be directly responsible for the

specificity of the binding.77 These residues could present even

higher evolutionary constraints.

While results obtained on the various datasets agreed quite

well, there were some variations. These differences can be

associated with potential biases of the datasets. For example,

since cancer genome projects rely on identifying nucleotide

changes between normal and cancer cell lines at the level of

genome, differences can also occur by random sites that are

not actively involved in tumorigenesis. Mutations that occur

randomly throughout the sequence do not bias our results,

although they could decrease the statistical significance of the

observed differences. However, we observed that neutral SNPs

were not distributed randomly, but were more likely to occur

within disordered regions. We accounted for this by using a

different type of normalization. This leads to a more consistent

picture with more pronounced differences, showing that cancer-

associated mutations are more likely to occur within ordered

regions. The normalization had the largest effect on the pure

data of cancer genomes projects, where a higher number of

non-disease causing mutations were expected. In the other cases,

the results did not change much. Nevertheless, passenger

mutations can also be present in the other databases. This is

supported by the fact that only a few neutral polymorphisms

were described in the case of our examples while they had the

highest number of cancer-associated mutations. Due to the

potential problems of passenger mutations, we used the term

‘‘cancer-associated mutation’’ throughout the manuscript. To

weed out these mutations, further studies are needed. One of

the important conclusions of our work is that such random

mutations are not distributed evenly and affect disordered

regions even more. This phenomenon should be taken into

account in selecting driver mutations.

Other databases may suffer from different types of biases.

For example, the SP_cancer_annotated dataset had a smaller

percentage of disordered residues, in contrast to the increase of

protein disorder in all other datasets. The preference of cancer

associated mutations for ordered residues was also unusually

high in this case. We suspect that the slightly different behavior

in this case originates from the experimental biases of tradi-

tional approaches that could have favored ordered proteins.

We could observe some differences within the various cancer

genome projects as well, for example in the distribution of

disordered binding regions (Fig. 3). The results obtained for

breast and colorectal cancers agreed well in the two cases, but

there were some differences when the CAN gene sets of glio-

blastoma and pancreatic cancer were considered. Although

larger statistical variations can be expected in these cases due

to the small size of these datasets, the results caution us that

different types of cancer might be associated with different

molecular and functional properties. Nevertheless, the 12 data-

sets analyzed in this work presented quite a consistent picture

altogether, despite their different sizes, origins, and potential
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biases. The consistency of these results lends confidence to

our findings, showing that while in cancer genes neutral poly-

morphisms are more likely to occur within disordered regions,

cancer-associated mutations are more common in ordered

regions.

Our general finding is in contrast with the results obtained

in the analyses of another major form of genetic aberrations

leading to cancer, chromosomal translocations. In this case, a

direct link between disorder and cancer was found.20 This was

rationalized based on that ordered proteins are more likely to

be misfolded and degraded as a result of translocation, while

disordered proteins could survive with an aberrant function.2,20

A third form of commonly occurring genetic variations is copy

number variation (CNV), which corresponds to the enrich-

ment or depletion of certain genomic regions. CNVs are

frequently observed in cancer and other diseases. In a recent

study, a strong correlation between dosage sensitive gene

products and protein disorder was found, and it was related

to the interaction promiscuity of IDPs.21 Interestingly, in two

of the analyzed examples mutations affected disordered

regions that regulated the level of b-catenin, a central element

of the Wnt signalling pathway. These examples are in agree-

ment with the observation that disordered proteins are

generally under tight cellular control.78,79 In contrast, the level

of p53 is regulated by MDM2.52 The specific binding site,

however, did not show an increased rate of cancer-associated

mutations (Fig. 5A). In order to resolve these seemingly

contradictory results, cancer-associated mutations have to be

placed into a network context. The network view was also

suggested to be crucial in order to reduce the complexity of the

landscape of cancer genomes.33

In conclusion, our results clearly show that protein disorder

in itself is not responsible for the increased biological risk in

terms of cancer-associated mutations. It seems plausible that

the functional involvement of a protein determines both its

disorder content and its involvement in cancer, thus presenting

a correlation between these two features, without an existing

casual link between them. Our study was restricted to single

amino acid changes, however, other type of genetic alterations

can also lead to cancer. A strong association between protein

disorder and cancer was suggested in copy number variations

or chromosomal translocations. The exploration of the role of

protein disorder in these cases necessitates many further

studies and taking into account the specific functions of these

proteins and the way they are regulated. The present work,

nevertheless, demonstrated that genetic mutations affect ordered

and disordered regions in different ways, in accordance with the

distinct structural and functional properties of these segments.

In order to understand the background of various diseases, these

differences have to be taken into account.

Data and methods

Datasets

SwissProt cancer datasets. We used three different resources

to collect various cancer-associated genetic variations. The

first dataset was downloaded from the UniProt/SwissProt

Knowledgebase35 and was derived primarily from literature

reports using strict inclusion criteria. This dataset contains

polymorphisms with no clinical relevance, disease related

amino acid mutations and some unclassified variants. Cancer-

associated mutations were collected from the pre-compiled

database available at http://www.uniprot.org/docs/humsavar.

In the full dataset (SP_cancer) those entries were kept, where

the ‘Disease name’ field either matched one of the selection

keywords (‘cancer’, ‘tumor’, ‘lymphoma’, ‘leukemia’, ‘carcinoma’,

‘glioma’, ‘glioblastoma’, ‘melanoma’ and ‘sarcoma’) or had an

OMIM reference to a type of cancer (checked on the http://

www.omim.org/ site). A smaller list was also created by

selecting the mutations from SP_cancer that had ‘Disease’

annotations in the database omitting ones with ‘Unclassified’

tags (SP_cancer_annotated).

Cancer genome project datasets. The second type of datasets

corresponded to four cancer genome projects collecting the

result of comprehensive genome-wide analyses. Two of these

studies described the mutations of breast and colorectal cancer

(CGP_br/col_1 and CGP_br/col_2 datasets31,32), one focused

on pancreatic cancer (CGP_pan dataset33) and one on glio-

blastoma (CGP_glio dataset34). In these studies, somatic

mutations in cancer were determined by sequencing the major

fraction of human genes and identifying nucleotide changes.

Any alterations that were also present in normal samples or

could be found in single-nucleotide polymorphism (SNP)

databases were removed. The list of somatic mutations could

still contain nonfunctional ‘‘passenger’’ alterations. To distin-

guish genes likely to contribute to tumorigenesis from those

in which passenger mutations occurred by chance, a list of

candidate cancer genes (CAN genes) was established based on

the probability that the number of mutations in a given gene

was greater than expected from the background mutation rate.

The mutations described in these selected genes were used to

compile the four datasets CGP_CAN_br/col_1, CGP_CAN_br/

col_2, CGP_CAN_pan and CGP_CAN_glio. The list of gene

identifiers and the nucleotide changes were downloaded from

the supplementary materials of the original publications.

COSMIC. The third dataset was collected from the COSMIC

database.36 This is currently the most comprehensive catalogue

of somatic mutations in cancer. Data are gathered from two

sources, publications in the scientific literature (v52 contains

11 437 curated articles) and the full output of the genome-wide

screens from the Cancer Genome Project (CGP) at the Sanger

Institute, UK. This dataset also incorporated the outcome

of cancer genome projects. A small subset of the COSMIC

database was also part of the cancer census datasets that were

casually linked to oncogenesis.37 These genes constituted the

COSMIC_census dataset.

Although there could be some overlap between the three

datasets, we opted to keep them separately in order to be able

to observe any potential biases. Our analysis was restricted

to single missense substitutions. Altogether we analyzed 12

different datasets. The number of proteins and mutations in

each dataset are listed in Table 1.

Polymorphisms. In the case of SP datasets, the polymorphisms

present in the SwissProt resource were also collected in the

SP_poly dataset and were used as reference.35 In all other
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cases, polymorphisms were collected using the UCSC Genome

Browser.80 Single genes were mapped to the genomic location

corresponding to the UCSC Santa Cruz hg19/GRCh37 build.

Those sequences, that could not be mapped, were changed or

retracted, were discarded from further analyses. The poly-

morphism data were obtained by mapping the SNPs of dbSNP

(release 132)25 to the genomic coordinates. This release con-

tained over 13 million SNPs. It also incorporated the results of

the 1000 Genomes pilot projects that collected variations via

whole genome shotgun sequencing from two families with high

coverage and 179 individuals with low coverage.27 We used the

Common SNPs corresponding to uniquely mapped variants

that appear in at least 1% of the population. The commonness

of these variations suggests that these are likely to be neutral

polymorphisms with no clinical relevance. To ensure the quality

of the polymorphisms data, we only used validated SNPs.

All cancer associated mutations and polymorphisms were

transformed into a common format specifying the used identi-

fier of the sequence, the sequence position of the mutation and

the original and mutated amino acids. This format enabled a

simple selection at the level of unique mutations, therefore

identical polymorphisms were only counted once. The numbers

of polymorphisms are also listed in Table 1.

Human proteome. The proteins of the human proteome were

downloaded from the ‘‘complete proteome’’ page of the

UniProt database. Only reviewed entries were kept, resulting

in a dataset of 20 232 proteins.

Functional annotations

Functional classifications were based on GeneOntology

(GO)81 terms assigned to human proteins in UniProt. We

retrieved all GO terms for all proteins in the human proteome

and mapped them to high level GO terms described in the

Generic GOslim subset of GO. This subset contained 127

terms covering all three parts of GO annotations: biological

processes (50 terms), cellular components (36 terms) and

molecular functions (41 terms). All proteins from COSMIC,

were possible, were mapped to UniProt sequences and were

assigned the relevant GOslim terms.

Interactions

Protein–protein interactions were taken from the current

release of the IntAct database (www.ebi.ac.uk/intact/).82

Statistical analysis

Comparison of the 12 cancer databases and the human

proteome. The average ratio of disordered residues, ratio of

proteins containing >30 residue long disordered regions

and average length were calculated in the 12 cancer datasets

analyzed (Fig. 1). These averages were compared to the

average values calculated in the human proteome. For each

of the 12 datasets, standard errors of the mean were calculated

by selecting 10 000 random samples from the human proteome

of the same size as the respective dataset. In each of the 10 000

random selections, the means were calculated. From these

means the standard error of the mean was established and

used to test the difference between the random samples and the

database average. The mean values, standard errors and the

appropriate p-values are shown in Table S1 (ESIz). Fig. 1

shows the confidence intervals of a = 0.01 (corresponding to

2.576 standard errors) in each case.

Over- and under-representation of polymorphisms and cancer-

associated mutations. For each protein in our dataset, the

sequences were downloaded from the Uniprot database or

the UCSC Genome Browser. Using the sequence, the IUPred

method39,40 was used to assess which residues were part of

disordered regions. These results were also calculated with

two other disorder prediction methods, DISOPRED25 and

VSL2.41 The ANCHOR method48,49 was used to predict

regions involved in disordered binding regions. While there

are several methods to predict disordered residues, ANCHOR

is the only publicly available method for the prediction of

disordered binding regions. For each protein, the number of

polymorphisms and cancer-associated mutations within these

regions were calculated. These numbers were compared to the

expected number of mutations calculated in the following way:

to calculate the expected number of mutations for ordered

and disordered regions, the number of observed mutations was

divided according to the ratio of ordered and disordered

residues in the given sequence. This model takes into account

that the number of mutations can change from one protein

to another. The number of expected and observed mutations

was summed up separately for ordered and disordered seg-

ments. Using these numbers, the statistical significance of the

differences in the two distributions was assessed by the w2 test.

In this null model we assumed that the selection pressure

on disordered and ordered regions is the same, and the prob-

ability that a mutation occurs in ordered or disordered regions

is equal. We expect that the observed differences are mainly

the result of selection acting at the protein level. It should be

noted that other factors can also contribute to the selections, for

example, by affecting the stability of DNA, mRNA, or inter-

actions with regulatory factors. We checked that taking into

account the different codon usage, or differences in transition–

transversion rates does not affect our results.

In the case of cancer-associated mutations, an additional

model was used to calculate the expected number of muta-

tions. This took into account the uneven distribution of poly-

morphisms between ordered and disordered regions. The

model was based on a normalization factor calculated from

the ratio of the observed number of SNPs relative to their

expected number. The normalization factor was calculated for

disordered and ordered residues, in each dataset. The expected

number of mutations was recalculated by weighting them

according to the normalization factor for disordered and

ordered residues within each dataset. Using these references,

the statistical significance could be calculated similarly to the

previous case. Unfortunately, current data do not enable us to

calculate this factor for proteins individually. However, when

datasets were divided into subgroups, for example based on

the number of mutations, the results did not change.

Distributions of functional categories. The distribution of

each GO term was analyzed using the COSMIC_census

dataset. To determine significantly over- or under-represented

terms, the distribution of these terms in the human proteome
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was used as a reference. A random subset was selected from

the human proteome dataset and was parsed for occurrence

numbers of each term. This was repeated 100 times and then

the average occurrence of each term was calculated. These

occurrence numbers were compared to the occurrence num-

bers in the COSMIC_census dataset using left and right sided

Fisher tests to assign significance values to the under- and

over-representation of terms.

Features. The calculated length, ratio of disordered residues

and disordered binding residues, interaction numbers and the

number of COSMIC census mutations for COSMIC census

proteins and the randomly selected reference human proteins

were categorized into 5 bins to provide a coarse-grained

description. The boundaries of the bins for each feature are

shown in Table S4 (ESIz). The sixth feature describing the

functional involvement of the proteins was represented by

‘functional profiles’. These profiles were calculated based on

the significantly over- and under-represented GO terms shown

in Table 3. For each protein, a 13 element binary vector was

assigned that showed which of the 13 considered GO terms the

protein was annotated with.

Mutual information and Jaccard distance. The association

between different features calculated on proteins was measured

by calculating the mutual information (I(X,Y)) between all X

and Y pairs of features using the standard formula:

IðX ;YÞ ¼
X

x

X

y

pðx; yÞ log2
pðx; yÞ

p0ðxÞp00ðyÞ

� �

where p0(x) and p00(y) are the probability distributions of the

featuresX andY respectively and p(x,y) is their joint probability

distribution. As the maximal information of different features

can vary (and hence their maximal mutual information can

also vary), to be able to compare the association of different

parameter pairs directly, the mutual information was scaled:

DðX ;YÞ ¼ 1�
IðX ;YÞ

HðX ;YÞ

where H(X,Y) is the joint entropy of X and Y:

HðX;YÞ ¼ �
X

x

X

y

pðx; yÞ log2 pðx; yÞ

The resulting D(X,Y) Jaccard distance is a universal metric

with D(X,Y) = 1 if X and Y are completely independent and

D(X,Y) = 0 if X and Y are identical.

The multidimensional scaling of the obtained distances was

calculated using the R package.
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Abstract: Many proteins contain intrinsically disordered regions (IDRs) which carry out important

functions without relying on a single well-defined conformation. IDRs are increasingly recognized as

critical elements of regulatory networks and have been also associated with cancer. However, it is

unknown whether mutations targeting IDRs represent a distinct class of driver events associated with

specific molecular and system-level properties, cancer types and treatment options. Here, we used

an integrative computational approach to explore the direct role of intrinsically disordered protein

regions driving cancer. We showed that around 20% of cancer drivers are primarily targeted through

a disordered region. These IDRs can function in multiple ways which are distinct from the func-

tional mechanisms of ordered drivers. Disordered drivers play a central role in context-dependent

interaction networks and are enriched in specific biological processes such as transcription, gene

expression regulation and protein degradation. Furthermore, their modulation represents an alter-

native mechanism for the emergence of all known cancer hallmarks. Importantly, in certain cancer

patients, mutations of disordered drivers represent key driving events. However, treatment options

for such patients are currently severely limited. The presented study highlights a largely overlooked

class of cancer drivers associated with specific cancer types that need novel therapeutic options.

Keywords: intrinsically disordered regions; protein modules; short linear motifs; molecular switches;

cancer genomics; driver gene identification; cancer hallmarks; drug targets

1. Introduction

The identification of cancer driver genes and understanding their mechanisms of
action is necessary for developing efficient therapeutics [1]. Many cancer-associated genes
encode proteins that are modular, containing not only globular domains but also intrin-
sically disordered proteins/regions (IDPs/IDRs) [2–4]. IDRs can be characterized by
conformational ensembles; however, the detailed properties of these ensembles can vary
greatly from largely random-like behavior to exhibiting strong structural preferences, with
the length of these segments ranging from a few residues to domain-sized segments [5–7].
The function of IDRs relies on their inherent conformational heterogeneity and plasticity,
enabling them to act as flexible linkers or entropic chains, mediate transient interactions
through linear motifs, direct the assembly of macromolecular assemblies or even drive the
formation of membraneless organelles through liquid–liquid phase separation [5–8]. In
general, disordered regions are core components of interaction networks and fulfill critical
roles in regulation and signaling [4]. In accordance with their crucial functions, IDPs are
often associated with various diseases [9], in particular with cancer. The prevalence of
protein disorder among cancer-associated proteins was generally observed [10]. However,
cancer-associated missense mutations showed a strong preference for ordered regions,
which indicates that the association between protein disorder and cancer might be indi-
rect [11]. Nevertheless, a direct link between protein disorder and cancer was suggested in
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the case of two common forms of generic alterations: chromosomal rearrangements [12]
and copy number variations [13]. Cancer mutations were shown to occur within linear
motif sites located in IDRs [14]. In a specific case, the creation of IDR-mediated interactions
was suggested to lead to tumorigenesis [15]. However, it has not been systematically
analyzed whether mutations of IDRs can have a direct role driving cancer development or
what the main molecular functions and biological processes altered by such events are.

In recent years, thousands of human cancer genomes have become available through
large-scale sequencing efforts. The collected genetic variations revealed that cancer samples
are heterogeneous and contain a large number of randomly occurring, so-called passenger
mutations. Therefore, one of the main challenges for the interpretation of cancer genomics
data is the identification of genes whose mutations actively contribute to cancer devel-
opment, the so-called driver genes. When samples are analyzed in combination, various
patterns start to emerge that enable the identification of cancer driving genes [16]. These
signals can highlight genes which are frequently mutated in specific types of cancer [17,18],
biological processes/pathways that are commonly altered in tumor development [19,20] or
traits that govern tumorigenic transformation of cells [21]. The positional accumulation
of mutations within specific ordered structures, domains or interaction surfaces was also
shown to be a strong indicator of cancer driver roles [22–26]. The number of driver genes is
currently estimated to be in the low to mid hundreds [27], but this number could increase
with the growing number of sequenced cancer genomes [18]. However, most of the known,
well-characterized driver genes are associated with ordered domains of proteins. Overall,
the structural and functional properties of the affected proteins determine their oncogenic
or tumor suppressor roles, which, in the case of context-dependent genes, can also depend
on tissue type or the stage of tumor progression.

The complex relationship between protein disorder and cancer can be demonstrated
through two well-characterized examples, p53 (corresponding to gene TP53) and β-catenin
(CTNNB1). As a tumor suppressor, p53 is most commonly altered by truncating mutations,
but it also contains a large number of missense variations. Mutations collected from multi-
ple patients across different cancer types tend to cluster within the central region of p53
which corresponds to the ordered DNA-binding domain [28]. In contrast, significantly
fewer mutations correspond to the disordered N- and C-terminal regions which are in-
volved in numerous, sometimes overlapping protein–protein interactions [29]. In particular,
almost no mutations are located within the N-terminal region corresponding to a so-called
degron motif, a linear motif site recognized by the E3 ligase MDM2 that plays a critical
role in regulating the degradation of p53 [30]. Furthermore, the tetramerization domain
in the C-terminal part is also less affected by cancer mutations. This region represents
a so-called disordered domain, a conserved region that forms a well-defined structure
in its oligomeric form. The tetrameric ordered structure masks a nuclear export signal,
which needs to become exposed for the proper function of p53, highlighting the intrinsic
dynamic properties of this region [31]. The oncogenic β-catenin presents a completely
different scenario. In terms of domain organization, β-catenin also contains a disordered N-
and C-terminal and an ordered domain in between [32]. However, in this case the cancer
mutations are largely localized to a short segment within the N-terminal disordered region
which corresponds to the key degron motif regulating the cellular level of β-catenin in the
absence of Wnt signalling [11,14].

The aim of this work was to explore if other IDRs, similarly to β-catenin, play a poten-
tial driver role in cancer. Based on cancer mutations collected from genome-wide screens
and targeted studies [33], we identified significantly mutated protein regions [34] and
classified them into ordered and disordered regions by integrating experimental structural
knowledge and predictions. Automated and high-quality manually curated information
was gathered for the collected examples to gain better insights into their functional and
system-level properties, and to confirm their roles in tumorigenic processes. We aimed
to answer the following questions: What are the characteristic molecular mechanisms,
biological processes and protein–protein interaction network roles associated with proteins
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mutated at IDRs? At a more generic level, how fundamental is the contribution of IDPs
to tumorigenesis? Are IDP mutations just accessory events, or can they be the dominant
molecular background to the emergence of cancer? Is there a characteristic difference in
terms of treatment options between patient samples targeted mostly within ordered and
disordered regions?

2. Material and Methods

2.1. Identification of Driver Regions in Cancer-Associated Proteins

To collect mutation data, cancer mutations were retrieved from the v83 version of
COSMIC (Catalogue Of Somatic Mutations In Cancer) [33] and the v6.0 version of TCGA
(The Cancer Genome Atlas). Mutations used from both databases included only missense
mutations and in-frame insertions and deletions. Mutations were filtered similarly to the
procedure described in [34]. Mutations from samples with over 100 mutations were dis-
carded to avoid the inclusion of hypermutated samples. Samples including a large number
of mutations in pseudogenes or mutations indicated as possible sequencing/assembly
errors in [35] were also discarded. Redundant samples were filtered out. Mutations falling
into positions of known common polymorphisms [36] or genomically unconserved regions
based on the PhastCons method [37] were filtered out. The final set of COSMIC mutations
used as an input to region identification consisted of 599,137 missense mutations, 4189 in-
sertions and 12,670 deletions from 253,568 samples. The final set of TCGA mutations used
as an input to region identification consisted of 274,109 missense mutations, 2775 insertions
and 2900 deletions from 7058 samples.

Driver regions were identified using iSiMPRe [34] with the filtered mutations from
COSMIC and TCGA, separately. Then, regions obtained from COSMIC and TCGA muta-
tions were merged, and p-values for significance were kept from the dataset with the higher
significance. Only regions with high significance (p-values lower than 10−6) were kept.

2.2. Structural Categorization of Driver Regions

Regions were assigned ordered or disordered status based on the structural anno-
tation of the corresponding functional unit, incorporating experimental data as well as
predictions. For this, we collected experimentally verified annotations for disorders from
the DisProt [38] and IDEAL [39] databases, and for disordered binding regions from the
DIBS [40] and MFIB [31] databases. We also mapped known PDB structures [41]. Structure
of a monomeric single domain protein chain was taken as a direct evidence for order. In
contrast, missing residues in case of X-ray structures and mobile regions calculated for
NMR ensembles using the CYRANGE method [42] were taken as indication of disorder.
Pfam families annotated as the domain type were considered as ordered, while families
annotated as disordered were assigned as disordered. All these types of evidence were
extended by homology transfer.

Pfam entities with no instances overlapping with any protein regions with a clear
structural designation were annotated using predictions, together with protein residues
not covered by known structural modules. Such protein regions were defined as ordered
or disordered using predictions from IUPred [43,44] and ANCHOR [45,46]. Residues
predicted to be disordered or to be part of a disordered binding region, together with their
10 residue flanking regions, were considered to form disordered modules. Regions shorter
than 10 residues were discarded. Regions annotated as disordered were also checked using
additional prediction methods using the MobiDB database [47] and structure prediction
using HHPred [48]. The final ordered/disordered status of the identified regions was
based on manual assertion, taking into account information from the literature if available
(Supplementary Table S1). For the disordered regions, the level of supporting information
for the disordered region is also included (Supplementary Table S2). Please note that
we use gene symbols to refer to their protein products throughout the manuscript, with
corresponding names of protein products also specified in the Supplementary Table S2.
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2.3. System-Level Analyses

Gene Ontology terms (GO) [49,50] were used to quantify interaction capabilities,
involvement in various biological processes, molecular toolkits and hallmarks of cancer.
In each case, a separate collection of GO terms (termed GO Slim) was compiled. Each
GO Slim features a manual selection of GO terms that are independent from each other,
meaning that they are neither child or parent terms of each other. Terms were assigned a
level showing the fewest number of successive parent terms that include the root term of
the ontology namespace (considered to be level 0).

GO term enrichments in a set of proteins were calculated by first obtaining expected
values. Expected mean occurrence values for GO terms together with standard deviations
were calculated by assessing randomly selected protein sets from the background (the
full human proteome) 1000 times. The enrichment in the studied set is expressed as the
difference from the expected mean in standard deviation units.

GO for molecular toolkits: biological_process terms attached to proteins with identi-
fied regions were filtered for ancestry. The resulting set was manually filtered, yielding
93 terms which were manually grouped into 16 toolkits. Enrichments for toolkits were
calculated as the ratio of the sum of expected and observed values for individual terms.
Individual terms and enrichments for each toolkit are shown in Supplementary Table S3.

GO Slim for assessing interaction capacity: Terms from levels 1–4 from the molecu-
lar_function namespace were filtered for ancestry and only the more specific terms were
kept, i.e., terms from levels 1–3 were only included if they had no child terms. Only terms
describing interactions containing the keyword “binding” were kept. Individual terms are
shown in Supplementary Table S4.

GO for the assessment of process overlaps: Terms from levels 1–4 from the biologi-
cal_process namespace were filtered for ancestry and only the most specific terms were
kept. Only those terms were considered that were attached to at least one protein from the
set studied (full human proteome, ordered drivers or disordered drivers). Individual terms
are shown in Supplementary Table S5.

GO for hallmarks of cancer: Terms were chosen from the biological_process namespace
via manual curation using the GO annotations of known cancer genes as a starting point.
Terms were only kept if they showed a significant (p < 0.01) enrichment on proteins in the
full census cancer driver set compared to randomly selected human proteins. Individual
terms and enrichments for each hallmark are shown in Supplementary Table S6.

To characterize the network properties of the selected examples, binary protein–
protein interactions for the human proteome were downloaded from the IntAct database [51]
on 06 May 2018. Data were filtered for human–human interactions, where interaction part-
ners were identified by UniProt accessions. Interactions from spoke expansions were
excluded. Interactions were kept in an undirected way. (Values for disordered drivers are
quoted in Supplementary Table S2).

3. Results

3.1. Disordered Protein Modules Are Targets for Tumorigenic Mutations

For the purpose of our analysis, it was necessary to use an approach that could identify
not only cancer drivers, but also the specific regions directly targeted by cancer mutations.
We used the iSiMPRe [34] method, which can highlight significantly mutated regions with-
out prior assumptions about the type or the size of such regions and was shown to perform
similarly to other methods in identifying cancer drivers [52]. Cancer mutations were col-
lected from the COSMIC and TCGA databases and were pre-filtered (see Section 2.1). The
filtering steps were necessary to eliminate cases with a random accumulation of mutations
with no biological significance, especially in the case of IDRs [34]. We restricted our analysis
to high-confidence cases to minimize the chance of false positives. The order/disorder
status of the identified significantly mutated regions was determined based on experimen-
tal data or homology transfer, when available, or by using a combination of prediction
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approaches (See Data and Methods). Cancer drivers were manually characterized as tumor
suppressors (TSGs), oncogenes and context-dependent cancer genes based on the literature.

Altogether, we identified 178 ordered and 47 disordered driver regions in 145 proteins
from the human proteome (Supplementary Table S1, Figure 1A). The ratio of disordered
driver regions was lower than expected on the ratio of disordered residues (21% vs. 30%).
This was the case for both oncogenes and tumor suppressor genes, but not for context-
dependent genes. Further underlining the relevance of IDRs, context-dependent cancer
drivers also had more residues and mutations within disordered regions in general, together
with a slightly higher proportion of disordered drivers (see Supplementary Figure S1).

Figure 1. The distribution of ordered and disordered driver protein regions. (A) The distribution of ordered and disordered

driver protein regions and their distribution among oncogenes, tumor suppressor genes (TSG) and context-dependent

genes. (B) Oncogene scores of full genes and oncogene scores explained by the identified regions in oncogenes and

context-dependent driver genes. “Unaccounted” corresponds to the fraction of mutations not in the identified, high

significance regions.

The identified driver regions typically represent compact modules, usually not cover-
ing more than 10% or 20% of the sequences in the case of oncogenes and tumor suppressors,
respectively (Supplementary Figure S2). It was suggested that true oncogenes are recog-
nizable from mutation patterns according to the 20/20 rule, having a higher than 20%
fraction of missense point mutations in recurring positions (termed the oncogene score [53]).
In contrast, tumor suppressors have lower oncogene scores, and predominantly contain
truncating mutations. Figure 1B shows that the 20/20 rule holds true for the vast majority
of the identified region-harboring oncogenes and context-dependent genes, even based
on the oncogene scores calculated from the identified regions alone. This underlines that
the identified driver regions are the main source of the oncogenic effect in almost all cases.
While most drivers contain both ordered and disordered modules, oncogenesis is typically
mediated through either ordered or disordered mutated regions. This effectively partitions
cancer drivers into “ordered drivers” and “disordered drivers,” regardless of the exact
structural composition of the full protein.

While many of the disordered drivers have already been identified previously as
cancer drivers, our analysis identified 13 additional examples that were not included in the
list of identified cancer drivers collected recently [27]. However, even in these cases there
is literature data supporting their importance in driving cancer (Supplementary Table S2).
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3.2. Disordered Drivers Function via Distinct Molecular Mechanisms

We collected available information about the possible mechanisms of action of the
disordered regions that are altered in cancer (Figure 2, Supplementary Table S2). Although
this information was partially incomplete in several cases, it still allowed us to highlight
the distinct properties of the identified disordered drivers.

Figure 2. IDP regions mutated in cancer. The classification of identified disordered cancer drivers. Protein names in gray

indicate known switching mechanisms either via post-translational modifications (PTMs) or overlapping functions. In

protein architecture schematics, blue ovals represent folded domains, blue lines represent disordered regions and red

rectangles represent disordered driver modules. Boxes placed between two categories indicate dual functions. For detailed

mutation profiles for each gene, see the online visualization links in Supplementary Table S2.

Several of the identified highly mutated disordered regions correspond to linear motifs,
including sites for protein–protein interactions (e.g., USP8, FOXO1 and ESR1) or degron
motifs that regulate the degradation of the protein (e.g CTNNB1, CCND3 and CSF1R).
However, other types of disordered functional modules can also be targeted by cancer
mutations. IDRs with autoinhibitory roles (e.g., modulating the function of adjacent folded
domains) are represented by EZH2, a component of the polycomb repressive complex 2.
While the primary mutation site in this case is located in the folded SET domain, cancer
mutations are also enriched within the disordered C-terminus that normally regulates the
substrate binding site on the catalytic domain. Another category corresponds to regions
involved in DNA and RNA binding. The highly flexible C-terminal segment of the winged
helix domain is altered in the case of FOXA1, interfering with the high affinity DNA
binding. For the splicing factor SRSF2, mutations affect the RNA binding region (Figure 2).
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Larger functional disordered modules, often referred to as intrinsically disordered
domains (IDDs), can also be the primary sites of cancer mutations. Mutated IDDs exhibit
varied structure and sequence features. In VHL, the commonly mutated central region
adopts a molten globule state in isolation [54]. The mutated region of APC incorporates
several repeats containing multiple linear motif sites, which are likely to function collec-
tively as part of the β-catenin destruction complex [55]. In CALR, cancer mutations alter
the C-terminal domain-sized low complexity region, altering Ca2+ binding and protein
localization [56].

Linker IDRs, not directly involved in molecular interactions, are also frequent targets
of cancer mutations. The juxtamembrane regions located between the transmembrane
segment and the kinase domain of KIT and related kinases are the main representatives
of this category. Similarly, the regulatory linker region connecting the substrate- and the
E2-binding domains is one of the dominant sites of mutations in the case of the E3 ubiquitin
ligase CBL.

One of the recurring themes among cancer-related IDP regions is the formation of
molecular switches (Supplementary Table S2). The most commonly occurring switching
mechanism involves various post-translational modifications (PTMs), including serine
or threonine phosphorylation (e.g., CCND3, MYC and APC), tyrosine phosphorylation
(e.g., CBL, CD79B, and CSF1R), methylation (e.g., histone H3s [H3F3A/H3F3B/HIST1H3B])
or acetylation (e.g., ESR1). An additional way of forming molecular switches involves
overlapping functional modules (Figure 2). In the case of PAX5, the mutated flexible
linker region is also involved in the high-affinity binding of the specific DNA binding
site [57]. Cancer mutations of the bZip domain of CEBPA disrupt not only the DNA
binding function, but the dimerization domain as well [58]. In addition to their linker
function, the juxtamembrane regions of kinases are also involved in autoinhibition and
trans-phosphorylation, regulating degradation and downstream signaling events [59,60].

The collected examples of disordered regions mutated in cancer cover both oncogenes
and tumor suppressors, as well as context-dependent genes (Figure 2). There is a slight
tendency for tumor suppressors to be altered via longer functional modules, such as IDDs.
Nevertheless, with the exception of linkers in tumor suppressors and IDDs in context-
dependent genes, every other combination occurs even within our limited set.

3.3. Disordered Driver Mutations Preferentially Modulate Receptor Tyrosine Kinases,
DNA-Processing and The Degradation Machinery

Disordered and ordered drivers can employ different molecular mechanisms in order
to fulfill their associated biological processes. To quantify these differences, we assembled
a set of molecular toolkits integrating Gene Ontology terms (see Data and Methods and
Supplementary Table S3). Based on this, we calculated the enrichment of each molecu-
lar toolkit in both disordered and ordered drivers in comparison with the full human
proteome, highlighting enriched and possibly driver class-specific toolkits (Figure 3A).
Receptor activity is the most enriched function for both types of drivers, owing at least
partially to the fact that receptor tyrosine kinases can often be modulated via both ordered
domains and IDRs (Figure 1B). In contrast, the next three toolkits enriched for disordered
drivers are highly characteristic of them. These are gene expression regulation and the
modulation of DNA structural organization—together representing the structural and the
information content-related aspects of DNA processing—and the degradation of proteins,
mainly through the ubiquitin-proteasome system. In addition, RNA processing, transla-
tion and folding is also characteristic of disordered drivers; and while this toolkit is not
highly enriched compared to the human proteome in general, ordered drivers are almost
completely devoid of this toolkit.

Among the highlighted functional groups, receptor tyrosine kinases (RTKs) are well-
known to be major players in tumorigenesis [61]. While for several RTKs the major
mutational events are oncogenic kinase domain mutations, there are also RTKs that contain
a secondary disordered mutation site with lower incidence rates, or an alternative primary
site which usually shows context dependent behavior. Several RTKs are clear examples of
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this context dependence: gastrointestinal stromal tumor mutations prefer IDR mutations
in both KIT and PDGFRA [62], while leukaemia prefers catalytic site mutations in KIT.
Group III receptor tyrosine kinases in general (including KIT, FLT3 and PDGFRA) are
especially prone to be mutated at their disordered juxtamembrane regions (Figure 3B). In
some cases, such as FLT3, these IDRs are the main sites for tumorigenic mutations [63].
However, RTK IDR mutations are not restricted to group III receptor tyrosine kinases, as
MET also often harbors missense mutations at its juxta-membrane loop region. These
mutations include missense mutations affecting the Tyr1010 phosphorylation site and
exon 19 skipping, removing a degron located within this region [64]. In contrast, CSF1R
mutations accumulate in the negative regulatory motifs (a c-Cbl ubiquitin ligase binding
motif) in the receptor tail, leading to the overactivation of the receptor [65] in various
haematopoietic cancers.

Figure 3. Pathways and processes modulated by disordered driver mutations. (A) Overrepresentation of molecular toolkits

defined based on gene ontology (GO) terms for ordered (blue) and disordered (red) drivers, compared to the average of

the whole human proteome. Categories enriched in disordered drivers represented in bold. B-D: schematic examples of

receptor tyrosine kinases (RTKs) (B), transcription factors (C) and components of the ubiquitin ligase machinery (D) that are

modulated through disordered driver regions. Typically, these proteins have a modular architecture. Functional modules

that are mutated preferentially in disordered or ordered regions are placed above or below the middle line.

Cancer mutations often target various elements of the transcriptional machinery,
including transcription factors, repressors, transcriptional regulators and coactivators/
corepressors [66] (Figure 3C). In most cases, transcription factors are targeted through linear
motifs that regulate the degradation (EPAS1, CTNNB1, MYC and NMYC) or localization
of the protein (FOXO1). Mutated IDRs can also directly affect the activity of the protein.
These regions often work in conjunction with a separate DNA-binding domain and can
shift affinities for various DNA-binding events (such as FOXA1 mutations preferentially
affecting low-affinity DNA binding [67]), or can disrupt interaction with cofactors (such as
the SMAD3 interaction of the FOXL2 [68]). In the case of bZip-type dimeric transcription
factors, mutations can affect the interaction through the modulation of the disordered
dimerization domain. Depending on the activating/repressive function of individual
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transcription factors, IDR-mutated proteins can be both oncogenes (with MYOD1 mutations
promoting the dimerization with MYC [69]), or tumor suppressors (with ID3 mutations
impairing its repressor activity [70]). Disordered mutational hotspots also target other
elements of the transcription machinery, affecting either covalent or non-covalent histone
modifications and altering histone PTMs or histone exchange/movement along the DNA.
However, the exact role of several other proteins involved in chromatin remodelling is still
somewhat unclear (SETBP1 or ASXL1).

The alteration of protein abundance through the ubiquitin-proteasomal system (UPS)
is a central theme in tumorigenesis [30]. Interestingly, ubiquitination sites are seldom
mutated directly. More commonly cancer mutations directly alter degron motifs which
typically reside in disordered protein regions (Figure 3D). Such mutations lead to increased
abundance of the protein by disrupting the recognition by the corresponding E3 ligase.
Complementing degron mutations, ubiquitin ligases are also implicated in tumorigenesis
(Figure 3D). These enzymes are typically highly modular and can harbor driver mutations
in both ordered and disordered regions (Supplementary Table S1). FBXW7 is mutated
at its ordered substrate-binding domain, paralleled with target degron mutations in its
substrates, MYC and MYCN. In contrast, VHL, which is the substrate recognition com-
ponent of the cullin-2 E3 ligase complex, is targeted through a large disordered driver
region, with its target EPAS1 bearing a mutant degron. The activity of CBL, the main E3
ligase responsible for the regulation of turnover for RTKs, is targeted through a disordered
linker/autoregulatory region in acute myeloid leukemia (AML) and other hematopoietic
disorders. In addition to the disruption of ubiquitination, the enhancement of deubiquitina-
tion can also provide a tumorigenic effect. USP8, the deubiquitinase required for entry into
the S phase, is mutated at its disordered 14-3-3-binding motif, enhancing deubiquitinase
activity in lung cancer [71].

3.4. Disordered Mutations Give Rise to Cancer Hallmarks by Targeting Central Elements of
Biological Networks

Almost all of the analyzed IDRs are involved in binding to a molecular partner, even
some of the linkers owing to their multifunctionality. Therefore, we analyzed known
protein–protein interactions of ordered and disordered cancer drivers in more detail (see
Data and Methods). Our results indicate that both sets of drivers are involved in a large
number of interactions and show increased betweenness values compared to average
values of the human proteome, even compared to the direct interaction partners of cancer
drivers (Figure 4A). However, this trend is even more pronounced for disordered drivers.
The elevated interaction capacity could also be detected at the level of molecular function
annotations using Gene Ontology (see Supplementary Table S4 and Data and Methods).
Figure 4B shows the average number of types of molecular interaction partners for both
disordered and ordered drivers contrasted with the average for the human proteome. The
main interaction partners are similar for both types of drivers, often binding to nucleic
acids, homodimerizing or binding to receptors. However, disordered drivers are able
to physically interact with a wider range of molecular partners, and are also able to
more efficiently interact with RNA and the effector enzymes of the post-translational
modification machinery. This, in particular, can offer a way to more easily integrate and
propagate signals through the cell, relying on the spatio-temporal regulation of interactions
via previously demonstrated switching mechanisms (Supplementary Table S2).

The high interaction capacity and central position of disordered drivers allows them
to participate in several biological processes. The association between any two processes
can be assessed by quantifying the overlap between their respective protein sets (see Data
and Methods). We analyzed the average overlap between various processes using a set of
non-redundant human-related terms of the Gene Ontology (Supplementary Table S5). The
average overlap of proteins for two randomly chosen processes is 0.15%, showing that as
expected, in general biological processes utilize characteristically different gene/protein
sets. Restricting proteins to the identified drivers and only considering processes connected
to at least one of them, the average overlap between processes increased to 3.00% for or-
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dered drivers and 5.80% for disordered drivers (Figure 4C). This shows that the integration
of various biological processes is a distinguishing feature of cancer genes in general and for
disordered drivers in particular, and that IDPs targeted in cancer are efficient integrators of
a wide range of processes.

Figure 4. Characteristics of cancer drivers at the network/pathway and cellular levels. (A) Average degree (top) and

betweenness (bottom) of all human proteins, showing the direct interaction partners of drivers, ordered drivers and

disordered drivers. (B) The average occurrence of various types of interaction partners for the whole human proteome

(grey circle), ordered drivers (blue circle) and disordered drivers (red circle). Values in circles show the average number of

types of interactions together with standard deviations. The most common interaction types are shown in grey boxes, with

connecting lines showing the fraction of proteins involved in that binding mode. Only interaction types present for at least

1/8th of the proteins are shown. (C) Top: An example subset of disordered drivers with associated biological processes

marked with arrows (dashed and solid arrows marking processes involving only one or several disordered drivers). Bottom:

Average values of overlap between protein sets of various biological processes, considering the full human proteome (grey),

ordered drivers (blue) and disordered drivers (red). Process names in grey represent processes that involve at least two

disordered drivers, names in white boxes mark other processes attached to disordered drivers. (D) Overrepresentation of

hallmarks of cancer for ordered (blue) and disordered (red) drivers compared to all census drivers.

Cancer hallmarks describe ubiquitously displayed traits of cancer cells [21]. In order
to quantify the contribution of drivers to each of the ten hallmarks, we manually curated
sets of biological process terms from the Gene Ontology that represent separate hallmarks
(see Data and Methods and Supplementary Table S6). Enrichment analysis of these terms
shows that all hallmarks are significantly overrepresented in census cancer drivers com-
pared to the human proteome (Supplementary Figure S3A), serving as a proof-of-concept
for the used hallmark quantification scheme. Furthermore, comparing drivers with iden-
tified regions to all census cancer drivers shows a further enrichment (Supplementary
Figure S3B), indicating that the applied region identification protocol of iSiMPRe is able
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to pick up on the main tumorigenic signal by pinpointing strong driver genes. Separate
enrichment calculations for ordered and disordered drivers show that despite subtle dif-
ferences in enrichments, in general all ten hallmarks are overrepresented in both driver
groups (Figure 4D). This indicates that while the exact molecular mechanisms through
which ordered domain and IDR mutations contribute to cancer are highly variable, both
types of genetic modulation can give rise to all necessary cellular features of tumorigenic
transformation. Hence, IDR mutations provide a mechanism that is sufficient on its own
for cancer formation.

3.5. Disordered Drivers Can Be the Dominant Players at The Patient Sample Level

We assessed the role of the identified drivers at the patient level using whole-genome
sequencing data from TCGA; 10,197 tumor samples containing over three and a half million
genetic variations were considered to delineate the importance of disordered drivers at the
sample level across the 33 cancer types covered in TCGA. In driver region identification,
we only considered mutations with a local effect (missense mutations and in frame indels),
which naturally yielded only a restricted subset of all true drivers. However, in patient-
level analyses, we also considered other types of genetic alterations of the same gene in
order to get a more complete assessment of the alteration of identified driver regions per
cancer type (see Data and Methods).

In spite of the incompleteness of the identified set of driver genes, we still found
that on average about 80% of samples contain genetic alterations that affect at least one
identified ordered or disordered driver region. Thus, the identified regions are able to
describe the main players of tumorigenesis at the molecular level (Figure 5A). While at the
protein level typically either ordered or disordered regions are modulated (Figure 1B), at the
patient level most samples show a mixed structural background, most notably in colorectal
cancers (COAD and READ). Some cancer types, however, show distinct preferences for
the modulation of a single type of structural element. For thyroid carcinoma (THCA) or
thymoma (THYM), the molecular basis is almost always the exclusive mutation of ordered
protein regions. At the other extreme, the modulation of disordered regions is enough for
tumor formation in a considerable fraction of cases of liver hepatocellular, adrenocortical,
and renal cell carcinomas, together with diffuse large B-cell lymphoma (LIHC, ACC, KIRC
and DLBC). These results, in line with the previous hallmark analyses, show that IDR
mutations can constitute a complete set of tumorigenic alterations. Hence, there are specific
subsets of patients that carry predominantly or exclusively disordered driver mutations in
their exome.

Whole genome sequencing data was also used to assess the cancer type specificity
of disordered drivers (Figure 5B). Basically, all studied cancer types have at least one
disordered driver that is mutated in at least 1% of cases, with the exception of thyroid
carcinoma (THCA). There are only four disordered drivers that can be considered as generic
drivers, being mutated in a high number of cancer types. p53 presents a special case in this
regard, as it is the main tumor suppressor gene in humans and thus is most often affected
by gene loss or truncations which are likely to eliminate the corresponding protein product.
These alterations abolish the function of both the ordered and disordered driver regions at
the same time (the DNA-binding domain and the tetramerization region). In contrast, the
other three generic disordered drivers are predominantly altered via localized mutations in
their disordered regions: the degrons of β-catenin and NRF2 and the central region of APC,
and hence these are true disordered drivers which are commonly mutated in several cancer
types. However, the majority of disordered drivers show a high degree of selectivity for
tumor types, being mutated only in very specific cancer types. This specificity is strongly
connected to the tumorigenic roles of disordered drivers (Figure 5C). Considering 1%
of patient samples as the cutoff, tumor suppressors are typically implicated in a broad
range of cancer types, while oncogenes on average show a high cancer type specificity.
Context-dependent disordered drivers are often mutated in only a very restricted set
of cancers.
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Figure 5. Therapeutic options for targeting disordered drivers. (A) Fraction of samples that contain altered driver genes

per cancer type. Samples can contain mutations affecting only ordered drivers (blue), only disordered drivers (red) or

both (mixed, gray). (B) Percentage of cancer samples, grouped by cancer types, containing genetic alterations that target

the identified disordered driver regions. (C) The distribution of disordered drivers from the three classes of cancer genes

(oncogenes, tumor suppressor genes (TSG) and context dependent genes) categorized into specific, narrow and broad range

based on the frequency of samples they are mutated in (see Data and Methods). (D) The probability of having an available

FDA-approved drug for at least one mutation-affected gene for patients, as a function of the ratio of affected disordered

genes compared to all mutated genes in the sample. The horizontal black line represents the total fraction of targetable

samples (0.49) from 8444 samples.

Strikingly, the identified disordered drivers can have an even more dominant role.
In several rarer cancers or more specific cancer subtypes which are not included in the
broad classes described in TCGA (including both malignant and benign cases), mutations
in a specific disordered driver are the main, or one of the main, driver events (Table 1).
Altogether, this list includes 18 of our disordered cancer drivers. In the collected cancer
types, targeting disordered regions can have a potentially huge treatment advantage,
and in many cases, the counteraction of these IDR mutations may be the only viable
therapeutic strategy.
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Table 1. Cancer types with mutation incidence rates around or above 10% in the disordered driver gene of interest per total

patients studied.

Tumor Type (Name) Implicated Gene Product Malignancy Incidence Reference

Diffuse large B-cell lymphoma
(ABC subtype)

CARD11 malignant 9.6–10.8% (7/73, 4/37) [72,73]

Burkitt lymphoma CCND3 malignant 14.6% (6/41) [74]

Diffuse large B-cell lymphoma
(ABC subtype)

CCND3 malignant 10.7% (3/28) [74]

Diffuse large B-cell lymphoma
(PCNS subtype)

CD79B malignant 31.6% (6/19) [75]

Acute myeloid leukaemia CEBPA malignant 15% (16/104) [76]

Myelodysplasia and acute
myeloblastic leukemia

CSF1R malignant 12.7% (14/110) [77]

Endometrioid endometrial
carcinoma (low-grade)

CTNNB1 malignant 87.0% (47/54) [78]

Ovarian endometrioid carcinomas
(low-grade)

CTNNB1 malignant 53.3% (16/30) [79]

Hepatocellular carcinoma
(HBV/HCV related)

CTNNB1 malignant 26% (32/122) [80]

Desmoid tumor CTNNB1 benign 73% (106/145) [81]

Juvenile nasopharyngeal
angiofibroma

CTNNB1 benign 75% (12/16) [82]

Paraganglioma EPAS1 possibly malignant 17% (7/41) [83]

Adult granulosa cell tumors of the
ovary

FOXL2 malignant 93–97% (52/56, 86/89) [84,85]

Pediatric anaplastic
astrocytoma/glioblastoma

H3F3A malignant
17.9–27.1%

(5/28, 35/129)
[86]

Giant cell tumor of bone
(stromal cell)

H3F3A benign 92% (49/53) [87]

Chondroblastoma (stromal cell) H3F3B benign 95% (73/77) [87]

GIST KIT malignant 47% (57/121) [88]

Extrauterine leiomyoma and
leiomyosarcoma

MED12
(possibly)
malignant

19% (6/32) [89]

Phyllodes tumor of breast MED12 possibly malignant 49% (41/83) [90]

Uterine leiomyoma MED12 benign 70% (159/225) [91]

Rhabdomyosarcoma MYOD1 malignant 20% (10/49) [92]

Esophageal squamous cell
carcinoma

NFE2L2 malignant 9.6% (47/490) [93]

B-cell progenitor acute
lymphoblastic leukemia

PAX5 malignant 34–39% (40/117, 94/242) [94,95]

Chronic myelomonocytic leukemia SETBP1 malignant 25% (14/56) [96]

Atypical Chronic Myeloid
Leukemia

SETBP1 malignant 24.3% (17/70) [97]

Chronic myelomonocytic
leukaemia

SRSF2 malignant 47% (129/275) [98]

Pituitary adenoma USP8 possibly malignant 14% (6/42) [99]
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3.6. Cancer Incidences Arising through Disordered Drivers Lack Effective Drugs

Next, we addressed how well disordered drivers are targetable by current FDA
approved drugs, as collected by the OncoKB database [100]. This database currently
contains 83 FDA-approved anticancer drugs, either as part of standard care or efficient
off-label use (see Data and Methods). These drugs have defined exome mutations that
serve as indications for their use. The majority of these drugs target ordered domains,
mostly inhibiting kinases. Currently only seven drugs are connected to disordered region
mutations, which correspond to only four sites in FGFR and c-Met. These drugs act
indirectly, targeting ordered kinase domains, to counteract the effect of the listed activating
disordered mutations.

This represents a clear negative treatment option bias against patients whose tumor
genomes contain disordered drivers. Considering all mutations in patient samples gathered
in TCGA, the fraction of disordered driver mutations actually serves as an indicator of
whether there are suitable drugs available. Patients with mostly ordered driver mutations
have a roughly 50% chance that an FDA-approved drug can be administered with the
expected therapeutic effect. This chance drops to 10% for patients with predominantly
disordered mutations (Figure 5D). Thus, incidences of cancer arising through disordered
driver mutations are currently heavily under-targeted, highlighting the need for efficient
targeting strategies for IDP-driven cancers.

4. Discussion

In recent years, cancer genome projects have revealed the genomic landscapes of many
common forms of human cancer. As a result, several hundred cancer driver genes have been
identified whose genetic alterations can be directly linked to tumorigenesis [27]. Only a few
of these genes correspond to “mutation mountains,” i.e., genes that are commonly altered in
different tumor types, while most of the cancer drivers are altered infrequently [53]. Cancer
driver genes are associated with a set of core cellular processes, also termed hallmarks [21].
At a more detailed level, however, drivers are surprisingly heterogeneous in terms of
molecular functions and cellular roles. In this work we showed that cancer drivers are
also diverse in terms of their structural properties. Using an integrated computational
approach, we identified a set of cancer drivers that are specifically targeted by mutation
in a disordered region. IDRs represent around 30% of residues in the human proteome
and are also an integral part of many cancer-associated proteins. Despite the critical roles
of these regions, they are often not the main sites of driver mutations [11]. Our results
confirmed that driver mutations that alter the proper functioning of ordered domains of the
encoded protein are slightly overrepresented compared to those that modulate the function
of disordered regions. Nevertheless, in a significant number of cases, corresponding to
around 20% of the mutated drivers, cancer mutations specifically target disordered regions
(Figure 1A).

The critical role of these disordered drivers in tumorigenesis is supported not only
by the enrichment of single nucleotide variations and in-frame insertions and deletions,
but also by literature data (Supplementary Table S2). Disordered drivers are associated
with known cancer hallmarks through specific biological processes (Figure 3A) and show
strong evolutionary conservation [101]. Driver mutations within IDRs are present in
samples across a wide range of cancer types, and can also be the main, or one of the
main, driver events for several tumor subclasses, including both malignant and benign
cases (Table 1). Our work highlighted several novel drivers that are not yet included in the
previous collections of cancer driver genes previously assembled based on a combination of
computational methods [27], indicating a hidden bias in the identification of driver genes.

The collection of disordered cancer drivers highlighted many interesting examples
that carry out important functions without relying on a well-defined structure, extending
the list of IDR with disease relevance. Many of the collected cases correspond to linear
motif sites which mediate interactions with globular domains, regulating interactions
and localization or cellular fate of proteins. However, the collected examples represent a
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broader set of functional mechanisms, encompassing DNA- and RNA-binding regions,
linkers, autoinhibitory segments and disordered domains. These functional modules can
also regulate the assembly of large macromolecular complexes and regulate the activity
of neighboring domains. The key to the proper functioning of the targeted IDRs is their
structural disorder, which enables them to undergo drastic conformational changes de-
pending on context-dependent regulation. While in most cases it has been clarified how
mutations of the critical IDR disrupt the balance between the different functional states,
our understanding of this mechanism is still incomplete for several examples (Figure 2,
Supplementary Table S2). For instance, the mutation and conservation pattern of MLH1
highlights a novel linear motif site within the disordered linker region of MLH1 with un-
known function. In the case of p14Arf, the functional role of the mutated region needs to be
revisited in the light of recent evidence on the relevance of phase separation organizing the
nucleolus [102]. ASXL1 and EP300 are both involved in chromatin remodelling, but little is
known about the functional roles of the disordered regions targeted by cancer mutations.

At the patient level, samples in general contain a combination of genetic alterations
that involve both ordered and disordered drivers. However, patients with mostly IDR
mutations typically have significantly limited treatment options. Most current anticancer
drugs target ordered protein domains, and are inhibitors designed against enzyme activity
(using either competitive or noncompetitive inhibition) [103–105]. In general, current
successful drug development efforts mainly focus on ordered protein domains derived
within the framework of structure-based rational drug design [106]. However, IDPs can
potentially offer new directions for cancer therapeutics [107]. Currently tested approaches
include the direct targeting of IDPs by specific small compounds, or blocking the globular
interaction partner of IDPs [108,109]. The successful identification of disordered drivers
and corresponding tumor types provides the first step in providing the means for new
therapeutic interventions in cancer types that currently lack treatment options.

5. Conclusions

In this work, we went beyond a simple association between IDRs and cancer by taking
advantage of the avalanche of data produced by systematic analyses and large-scale se-
quencing projects of cancer genomes. Our work underlines the direct driver role of IDRs in
cancer. It provides fundamental insights into the specific molecular mechanisms and regu-
latory processes altered by cancer mutations targeting IDRs, highlighting important regions
that need further structural and functional characterizations. Furthemore, we showed
that many already known cancer drivers rely on intrinsic flexibility for their function and
identified novel cancer drivers that had been overlooked by current driver identification
approaches, revealing a structure-centric bias that still exists in these methods. Importantly,
our work also demonstrates the relevance of disordered drivers at the patient level and
highlights a strong need to expand treatment options for IDRs. By looking at the timeline
of the COSMIC database, we can observe a steady growth of disordered drivers with every
new release (Supplementary Figure S4). Nevertheless, our study was restricted to cases
that were targeted by point mutations or in-frame insertions or deletions, therefore the
location of alterations can be directly linked to the perturbed functional module. However,
there are additional disordered drivers that are altered via more complex genetic mecha-
nisms in cancer, such as specific frameshift mutations (e.g., NOTCH1 [110]), chromosomal
translocations (e.g., BCR [111], ERG [112]) or copy number variations (e.g., p14ARF [113]).
Altogether these observations suggest that we can expect the emergence of further exam-
ples of genetic alterations of driver genes that interfere with structurally disordered regions
as the number of cancer studies increase/ Furthermoe, this paper also highlights cancer
types where novel drug design strategies targeting disordered regions are needed.

Supplementary Materials: The following are available online at https://www.mdpi.com/2218-2

73X/11/3/381/s1, Figure S1: The distribution of residues and cancer mutations, Figure S2: Iden-

tified regions are compact functional units, Figure S3: Overrepresentation of cancer hallmarks,

Figure S4: Growth of disordered cancer drivers, Table S1: List of regions identified using iSiMPRe,
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based on both COSMIC and TCGA mutations, Table S2: Identified disordered driver genes with all

annotations, Table S3: Gene Ontology terms used in the quantification of molecular toolkits used

by cancer driver genes, Table S4: Gene Ontology terms used in the quantification of interaction

capabilities, Table S5: Gene Ontology terms used in the quantification of biological process overlaps,

Table S6: Gene Ontology terms used in the quantification of hallmarks of cancer.
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Abstract: Cancer is a heterogeneous genetic disease that alters the proper functioning of proteins

involved in key regulatory processes such as cell cycle, DNA repair, survival, or apoptosis. Mutations

often accumulate in hot-spots regions, highlighting critical functional modules within these proteins

that need to be altered, amplified, or abolished for tumor formation. Recent evidence suggests that

these mutational hotspots can correspond not only to globular domains, but also to intrinsically

disordered regions (IDRs), which play a significant role in a subset of cancer types. IDRs have distinct

functional properties that originate from their inherent flexibility. Generally, they correspond to more

recent evolutionary inventions and show larger sequence variations across species. In this work,

we analyzed the evolutionary origin of disordered regions that are specifically targeted in cancer.

Surprisingly, the majority of these disordered cancer risk regions showed remarkable conservation

with ancient evolutionary origin, stemming from the earliest multicellular animals or even beyond.

Nevertheless, we encountered several examples where the mutated region emerged at a later stage

compared with the origin of the gene family. We also showed the cancer risk regions become quickly

fixated after their emergence, but evolution continues to tinker with their genes with novel regulatory

elements introduced even at the level of humans. Our concise analysis provides a much clearer

picture of the emergence of key regulatory elements in proteins and highlights the importance of

taking into account the modular organisation of proteins for the analyses of evolutionary origin.

Keywords: intrinsically disordered regions; linear motifs; gene duplications; de novo; evolutionary

origin

1. Introduction

Most human genes are thought to have an extensive and very deep evolutionary history. In line

with the thought “Nature is a tinkerer, not an inventor” [1], major human gene families date back to

the earliest Eukaryotic evolutionary events, or even beyond. The very oldest layers of human genes

encode metabolically, structurally, or otherwise essential proteins that typically go back to unicellular

evolutionary stages. Mutations to this core biochemical apparatus can prove disruptive to all aspects

of cellular life, and indeed, there are known mutational targets associated with genome stability and

cancer. In contrast to these “caretaker” genes, a more novel set of genes have emerged at the transition

to a multicellular stage. These “gatekeeper” proteins are involved in cell-to-cell communication,

especially in early embryonic development and tissue regeneration. Gatekeeper genes that control cell

division are among the best known cancer-associated oncogenes and tumor suppressors [2].

In order to establish the evolutionary origins of cancer genes, Domazet-Loso and Tautz carried

out a systematic analysis based on phylostratigraphic tracking [3]. By correlating the evolutionary
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origin of genes with particular macroevolutionary transitions, they found that a major peak connected

to the emergence of cancer genes corresponds to the level where multicellular animals have emerged.

However, many cancer genes have a more ancient origin and can be traced back to unicellular organisms.

These trends seem to apply to the appearance of disease genes [4] and novel genes in general as

well [5]. These studies were based on the evolutionary history of the founder domains. However,

new genes can also be generated by duplication either in whole or from part of existing genes, when

the duplicate copy of a gene becomes associated with a different phenotype to its paralogous partner.

This mechanism can also influence the emergence of disease genes [5].

By taking advantage of the flux of cancer genome data, several new proteins have been identified

to play a direct role in driving tumorigenesis during recent years [6]. One of the key signatures of

cancer drivers is the presence of mutation hotspot regions, where many different patients might show

a similarly recurrent pattern of mutations [7]. These hotspots are typically located within well-folded,

structured domains. However, many cancer associated proteins have a complex modular architecture,

incorporating not only globular domains, but also intrinsically disordered segments, which can also

be sites of cancer mutations. In our recent work, we systematically collected disordered regions

that are directly targeted by cancer mutations and analyzed their basic functional and system level

properties. [8]. While only a relatively small subset of such disordered cancer drivers was identified,

their mutations can be the main driver event in certain cancer types. These disordered regions can

function in a variety of ways including post-transcriptional modification sites (PTMs), linear motifs,

linkers, and larger sized functional modules typically involved in binding to macromolecular complexes.

These disordered cancer drivers have a characteristic functional repertoire and increased interaction

potential, and their perturbation can give rise to all ten hallmarks of cancer independently of ordered

drivers [8].

In general, owing to the lack of structural constraints, disordered segments show more evolutionary

variability [9]. In particular, linear motifs can easily emerge to a previously non-functional region of

protein sequence by only a few mutations, or disappear as easily, leaving little trace after millions or

billions of years [10]. However, elements fulfilling a critical regulatory function might linger on for

a longer time. So far, the evolutionary origin of intrinsically disordered regions that have a critical

function proven by a human disease association has not been analyzed.

In the current study, we studied the evolutionary origin of disordered cancer risk regions.

For this, we used a dataset of cancer driving proteins in which cancer mutations specifically targeted

intrinsically disordered regions [8]. We retrieved phylogeny data from the ENSEMBL Compara database.

Using a novel conservation and phylogenetic-based strategy, we determined the evolutionary origin

not only at the gene level, but also at the region level. In addition, we also investigated the emergence

mechanism of disordered cancer risk regions and how evolutionary constraints, selection, and gene

duplications events influenced the fate of these examples. Finally, we presented interesting case studies

that demonstrate the ancient evolutionary origin of these examples and the continuing evolution of

their genes built around the critical conserved functional module.

2. Materials and Methods

2.1. Dataset

We used a subset of the previously identified disordered cancer risk regions [8]. These regions

were identified based on genetic variations collected from the COSMIC database [11] using the method

that located specific regions that are enriched in cancer mutations [7]. Disorder status of these regions

was verified based on experimental data collected from dedicated databases and from the literature

when available, or based on consensus disorder prediction methods [8]. Mapping was not feasible for

CDKN2A isoform (Tumor suppressor ARF), because it was not present in the ENSEMBL database

we used in our study), hence this protein was excluded from the further analyses. Proteins in which

both disordered and ordered cancer regions were identified were filtered out in order to be able to
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focus clearly on the disordered regions. Regions that were primarily mutated by in-frame insertion

and deletion and contained less than 15 missense mutations were also excluded because of our

conservation calculation method (see below). Finally, histone proteins were merged, keeping the single

entry of HIST1H3B. Ultimately, we obtained a list of 36 disordered cancer risk regions of 32 proteins

APC (Adenomatous polyposis coli protein): 1284–1537, ASXL1 (Polycomb group protein ASXL1):

1102–1107, BCL2 (Apoptosis regulator Bcl-2): 2–80, CALR(Calreticulin): 358–384, CARD11 (Caspase

recruitment domain-containing protein 11): 111–134; 207–266; 337–436, CBL (E3 ubiquitin-protein

ligase CBL): 365–374, CCND3 (G1/S-specific cyclin-D3): 278–290, CD79B (B-cell antigen receptor

complex-associated protein beta chain): 191–199, CEBPA (CCAAT/enhancer-binding protein alpha):

293–327, CSF1R (Macrophage colony-stimulating factor 1 receptor): 969–969, CTNNB1 (Catenin

beta-1): 32–45, EIF1AX (Eukaryotic translation initiation factor 1A, X-chromosomal): 4–15, EPAS1

(Endothelial PAS domain-containing protein 1): 529–539, ESR1 (Estrogen receptor): 303–303, FOXA1

(Hepatocyte nuclear factor 3-alpha): 248–268, FOXL2 (Forkhead box protein L2): 134–134, FOXO1

(Forkhead box protein O1): 19–26, HIST1H3B (Histone H3.1): 28–28, ID3 (DNA-binding protein

inhibitor ID-3): 48–70, MED12 (Mediator of RNA polymerase II transcription subunit 12): 44–44,

MLH1 (DNA mismatch repair protein Mlh1): 379–385, MYC (Myc proto-oncogene protein): 57–60,

MYCN(N-myc proto-oncogene protein): 44–44, MYOD1(Myoblast determination protein 1): 122–122,

NFE2L2 (Nuclear factor erythroid 2-related factor 2): 20–38; 75–82, PAX5 (Paired box protein Pax-5):

75–80, RPS15 (40S ribosomal protein S15): 129–145, SETBP 1 (SET-binding protein): 858–880, SMARCB1

(SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily B member 1):

368–381, SRSF2 (Serine/arginine-rich splicing factor 2): 95–95, USP8 (Ubiquitin carboxyl-terminal

hydrolase 8): 713–736, VHL (von Hippel-Lindau disease tumor suppressor): 54–136; 144–193.

2.2. Evolutionary Framework

In this work, we calculated the evolutionary origin of cancer risk regions within our dataset of

disordered proteins. Our approach focused on the age of orthologous gene families, instead of focusing

on the evolutionary origin of founder domains. Assignment of age of human gene families (origin)

was carried out using the ENSEMBL genome browser database. To identify the origin of individual

human gene families, we fetched the phylogenies and analysed the evolutionary supertrees built by the

pipeline of the ENSEMBL Compara multi-species comparisons project [12,13]. The used release (99) of

the project contained 282 reference species including 277 vertebrata, 4 eumetazoa, and 1 opisthokonta

(S. cerevisiae) species. Note that, in these phylogenies, the most ancient node can be the ancestor of

yeast. The origin of the gene family was identified by taking the taxonomy level of the most ancient

node of the phylogenetic supertrees. Taxonomy levels were broken into major nested age categories

(mammals, vertebrates, eumetazoa, opisthokonta), similarly to previous studies [14].

To define the evolutionary origin of regions, we built a customized pipeline that included collecting

and mapping mutations from COSMIC database to ENSEMBL entries, constructing multiple sequence

alignments of protein families, and mapping the cancer regions among orthologs and paralogs.

According to the ENSEMBL supertrees, protein sequences of human paralogs (including the cancer

gene) and their orthologs were queried from the database using the Rest API function. Then, multiple

sequence alignments of the corresponding sequences were created with MAFFT (default settings) [15].

On the basis of the sequence alignments, cancer regions were mapped onto the sequences. In the

mapping step, cancer regions were considered as functional units (linear motifs, linkers, disordered

domains) and borders of the regions were defined according to this. When the highly mutated regions

covered only a single residue, it was extended to cover the known functional linear motif or using its

sequence neighbourhood. On this basis, the subset of paralogs, in which the mapped cancer region

was found to be conserved, was identified.

Next, the set of sequences containing regions that showed evolutionary similarity to the mutated

regions were identified among the collected orthologs and paralogs. Conservation of the regions among

paralogs was evaluated relying on two strategies, by calculating the similarity of mutated positions in
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the cancer risk regions (see below) and based on HMM profiles. This consideration was taken into

account in order to reduce the chance of false conservation interpretation arising from the difficulty of

aligning disordered proteins. The HMM profiles were built from conserved cancer regions of vertebrate

model organisms using the HMMER (version 3.3) method [16]. The identified region hits were manually

checked to minimize the chance of false positives or negatives. Next, we identified the evolutionarily

most distant relative in which the cancer region was declared to be conserved. As a result, the origin

of the region could differ from the origin of the orthologous gene family, when paralogue sequences

that contained the conserved motif had a more ancient origin. Basically, we treated the cancer risk

regions as the founder of the family. The taxonomy level of this ortholog was defined as the level in

which the cancer region emerged in the common ancestor of this ortholog and H. sapiens.

2.3. Region Conservation

Within the identified cancer risk region, some of the positions could be more heavily mutated

and are likely to be more critical for the function of this region. We took this into account when

calculating the region conservation. Mutations for each position collected from the COSMIC database

were mapped to the corresponding ENSEMBL human entry. On the basis of the sequence alignment

corresponding to the cancer risk regions, we identified the positions that were similar to the reference

sequence. Two positions were considered similar when the substitution score was non-negative

according to the BLOSUM62 substitution matrix. A given cancer region was considered to be conserved

between homologs, when the conserved residues carried more than 50% of missense mutations.

2.4. Positive Selection: Selectome and McDonald and Kreitman (MK) Test Results

For each entry in our dataset, we collected information about positive selection using the Selectome

database (current version 6) [17]. This database contains collected sites of positive selection detected

on a single branch of the phylogeny using the systematic branch-site test of the CODEML algorithm

from the PAML [18] phylogenetic package version 4b. The ratio of non-synonymous and synonymous

substitutions (ω) can be interpreted as a measurement of selective pressure indicating purifying

(ω values < 1), neutral (ω values = 1), or positive (ω values > 1) selection. In our work, positions

under positive selection that have a posterior probability higher than 0.9 were extracted from the

database and mapped onto our gene set.

However, the branch-site model generally cannot detect species-specific positive selection.

Potential cases of human-specific positive selection may be detected effectively by comparing divergence

to polymorphism data, as in the McDonald and Kreitman (MK) test. Human-specific positive selection

detected by MK test previously calculated [19] was mapped onto our dataset of disordered cancer genes.

3. Results

3.1. Evolutionary Origin of Genes and Regions

Altogether, we collected 36 cancer risk regions of 32 disordered proteins and investigated the

evolutionary origin at the level of genes and regions. The age estimation of disordered cancer genes

was obtained using the last common ancestor of descendants using the ENSEMBL supertrees, which

includes phylogeny of gene families returning not only individual gene history, but also relationships of

ancient paralogs and their history (see Material and Methods). Using this strategy instead of analysing

the evolution of individual genes or simply the emergence of the founder domain, we could define the

origin of regions more precisely, even the ancient ones, without introducing any bias of overprediction

of origins. However, some ambiguity still remained and was manually checked (Supplementary

Materials 1). The genes were traced back to opisthokonta (in accordance with the ENSEMBL database)

and divided into four major phylostratigraphic groups, which are associated with the emergence of

unicellular, multicellular organisms, vertebrates, and mammals.
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Previous results identified the level of eumetazoa as the main age for the emergence of cancer

associated proteins [3]. We observed a similar trend in the case of disordered cancer proteins.

Specifically, we found that 21 disordered cancer proteins, the majority of cases, have emerged at the

level of eumetazoa (Figure 1). Fourteen cases were found to be even more ancient and could be traced

back to single cell organisms, at least to opisthokonta. The only protein that emerged more recently,

at the level of vertebrates, was CD79B, the B-cell antigen receptor complex-associated protein β chain.

Its appearance is in agreement with the birth of many immune receptors [20] and is assumed to be

driven by the insertion of transposable elements.

 
Figure 1. Conservation-based evolutionary origin of disordered cancer regions and genes. (A) The

orange and sky blue squares represent the origin of genes and regions, respectively. Gunmetal squares

indicate the same evolutionary origin at both region and gene levels. (B) Summary barchart of origins

in the three gene-age categories.
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In around half of the cases (21), the emergence of the mutated region was the same as the

emergence of the protein (Figure 1). Strikingly, these included five cases (EIF1AX, HIST1H3B, MLH1,

RPS15, SMARCB1) where not only the gene/protein, but also the region primarily mutated in human

cancers were very ancient and could be traced back to unicellular organisms. Fifteen regions with

Eumetazoa and one with Vertebrata origin could be traced back to the same level as their corresponding

gene. However, in several cases, the emergence of the region was a more recent event compared

with the emergence of the gene. Of these, eight regions emerged at the Eumetazoa and seven at the

Vertebrate level. In general, there was only one level difference between the emergence of the gene and

the region at this resolution. The only exception was SETBP1. In this case, the region itself emerged

at the vertebrate level. However, the gene could be traced back to opisthokonta level, although the

eumetazoa origin cannot be completely ruled out (see Supplementary Materials 1). Overall, many

of the disordered regions were more recent evolutionary inventions compared with the origin of

their genes, and date back to the common ancestors of eumetazoans or vertebrates. Nevertheless,

the ancestors of all of the regions were already present from the vertebrate level.

3.2. Position Conservation

Overall, these results point to the ancient evolutionary origin of disordered regions involved in

cancer, not only at the gene level, but also at the region level. To take a closer look, we also calculated the

conservation of individual positions within the regions based both in terms of homologous substitutions

and identity. The results show that these residues are highly conserved even compared with the

conservation of the whole sequence (Figure 2). Here, 86% of the regions have more than 0.8 average

conservation value even based on identities (Figure 2A). Among the cases with the four lowest values,

the conservation of VHL, CALR, and APC, which all correspond to relatively longer segments, was still

relatively high. The only outlier was BCL2. In this case, the mutations are distributed along the

N-terminal, encompassing the highly conserved BH4 motif, as well as the linker region between the

BH4 and C-terminal part, which is conserved only in mammals (Figure S1).

ω

Figure 2. Representation of average conservation values. (A) Sorted conservation values for each region

having positions with at least one mutation and for the whole protein. Squares (dark blue—region,

green—whole sequence) and triangles (light blue—regions, green—full sequence) represent BLOSUM62

and identity based conservation values, respectively. The outlier at the very end of the sequence

corresponds to the region of BCL2. (B–D) The number of regions and average conservation value of

regions having positions with at least 1, 15, and 25 mutations, respectively. The conservation values are

based on BLOSUM62 and identity, and the number of regions are colored by dark, medium, and sky

blue, respectively.
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Next, we investigated how this average value is altered when only the highly mutated positions

are considered. We repeated that analysis for positions that had at least 15 and 25 missense mutations,

which slightly decreased the number of regions considered. The remaining 28 and 17 regions with

positions having at least 15 and 25 mutations had 0.93, 0.89, 0.96, and 0.92 average conservation values

based on substitutions and identity, respectively (Figure 2C,D). This reflects a very clear trend with

positions with a higher number of cancer mutations showing higher evolutionary conservation.

We also collected sites of potential positive selection mapped onto our genes based on the

Selectome database [17], which provides information on likely molecular selection both at the level

of the evolutionary branch and the sequence position based on the ratio of non-synonymous and

synonymous substitutions (ω). According to these results, positive selection affected only three genes

on the human lineage in our dataset, CALR, CTNNB1, and VHL. All of these selections could be

mapped onto the vertebrates division with multiple positions (see Material and Methods) (Table 1).

Table 1. Positive selection within disordered cancer genes. Positions within cancer risk regions are

colored blue. The numbers in brackets are the posterior probability of positive selection for each position.

Gene Positions under Positive Selection Referring to the Human Protein Sequence

CALR 83(0.971), 155(0.971), 177(0.990), 267(0.995), 307(0.994), 336(0.991), 360(0.999)

CTNNB1 121(0.999), 206(0.993), 250(0.998), 287(0.991), 411(0.998), 433(0.993), 525(0.997), 552(0.998), 556(0.916)

VHL 127(0.957), 132(0.942), 141(0.923), 171(0.947), 183(0.963), 185(0.920)

However, these positions showed limited overlap with the mutated regions. In the case of

CTNNB1, none of the positions under selection overlapped with the cancer mutated region. In the

case of CALR, there was only a single position under selection within the cancer risk region, but it

was not directly targeted by cancer mutations. In the case of VHL, six positions were detected with

selective pressure and five of them were situated within the significantly mutated region. However,

none of them corresponded to a highly mutated residue.

Taking advantage of an earlier analysis [19], we also analyzed if there was any human specific

positive selection. As the ω based approach can not be used without uncertainty to identify

human-specific positive selection, this work relied on the McDonald and Kreitman (MK) test,

which compares the divergence to polymorphism data using closely related species, such as human and

chimp. There was only a single entry in our database, ESR1, that showed human specific evolutionary

changes (see case studies).

3.3. Contribution of Duplications to the Emergence of Disease Risk Regions

Gene duplications often drive the appearance of a novel function through the process called

neofunctionalization. In these cases, after a duplication event, one copy may acquire a novel, beneficial

function that becomes preserved by natural selection. Here, we have evaluated whether the emergence

of disordered cancer regions corresponds to such neofunctionalization events. For this analysis,

we collected paralog sequences and evaluated if there were regions present in these sequences that

showed clear evolutionary similarity to the cancer mutated region.

The evolutionary history of many genes is quite complex and can involve multiple duplication

events. We focused on the level where the cancer regions emerged and distinguished the following

scenarios based on the relationship between the duplication and the presence of the region among

the paralogs. The first scenario corresponds to duplication induced neofunctionalization. In this case,

an ancient cancer region emerged directly after a given gene duplication and became preserved in

only one of the branches that appeared after the duplication (Figure 3A). There are two basic scenarios

in which the duplication cannot be directly linked with the emergence of the regions. One possible

scenario is when both branches contain the region, which indicates that the region must have emerged

before the duplication (Figure 3B). The other possible scenario is when the region emerged at a later
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evolutionary stage after a duplication, and duplication cannot be directly linked to neofunctionalization

(Figure 3B).

 

β
β

Figure 3. The mechanisms of emergence of regions by neofunctionalization and de novo.

(A) Demonstration of the model of duplication induced (neofunctionalization) cancer region emergence.

(B) Depiction of the two sub-scenarios of the de novo region emergence. Mallow boxes and arrows

explain the evolution of the region. Red and green triangles symbolize the further evolution of paralogs

after gene duplications.

Surprisingly, the duplication induced neofunctionalization was much less common than we

expected, with only seven cases showing this behaviour. One example for this scenario is presented by

theβ-catenin family, where the degron motif [21] based cancer risk region that emerged after duplication

is present only on the branch of β-catenin and junctional plakoglobin (JUP). In contrast, we found

that 23 regions have evolved by de novo emergence, which seemed to be the dominant mechanisms

for the emergence of the analyzed cancer mutated disordered regions (Figure 4A). For example, ID3

underwent multiple duplications, but all paralogs contain the cancer risk region, which indicates that

the region emerged prior to the duplication. Another example is ESR1, in which case the paralogs

were born at the level of eumetazoa; however, this event is not directly linked to the emergence of the

cancer region, which appeared only at the level of the ancient vertebrates. In addition, there were two

singletons in our dataset, RPS15 and SMARCB1, which did not have any detectable paralogs. In the

cases of ASXL1, CCND3, SETBP1, and the first region of CARD11, the evolutionary scenarios could

not be unambiguously established. These six examples formed the “Other” group.
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Figure 4. Categorization of emergence scenarios and evolutionary fates of cancer regions. (A) The

number of regions that have emerged by duplication or de novo. Six regions were not categorized

(Other). (B) Classification of cancer regions in terms of their evolutionary fate after emergence.

We also analyzed if additional duplication events occurred after the emergence of regions and

whether the novel paralogues retained the regions. There are basically three scenarios that can occur:

(i) the region is preserved without any further duplications; (ii) the region spreads and becomes

preserved in all of the novel duplicates; (iii) partial loss scenario, that is, the region is preserved in some

duplicates, but is lost in others. Our results show that the most common evolutionary fate is the second

one (Figure 4B). In 29 cases, at least one duplication that inherited the region can be observed after

the emergence of the cancer region. In contrast, only five regions were not duplicated. Some ancient

cases, such as MLH1 and USP8, are also included among the non-duplicated ones, which means that

the reason for the lack of duplications is not the short evolutionary time. The partial loss scenario

was observed in only two cases, in the case of VHL and NFE2L2. For instance, in the case of VHL,

there was a relatively recent gene duplication at the level of mammals. While the N-terminal segment

is present on both paralogs (VHL and VHLL), the C-terminal segment is only present in VHL, but was

lost from VHLL. In a similar fashion, NFE2L2 underwent a more recent gene duplication at the level

of vertebrates, but the newly emerged paralog did not retain the two linear motifs that are primarily

targeted by cancer mutations.

3.4. Case Studies

3.4.1. MLH1

One of the most ancient examples in our dataset corresponds to MLH1 (MutL Homolog 1),

an essential protein in DNA mismatch repair (MMR). As one of the classic examples of a caretaker

function, mutations of MLH1 can lead to cancer by increasing the rate of single-base substitutions and

frameshift mutations [22]. Several positions of MLH1 are mutated in people with Lynch syndrome, also

known as hereditary nonpolyposis colorectal cancer (HNPCC). However, according to the COSMIC

database of somatic cancer mutations, the most common mutation of MLH1 is V384D. Mutational

studies of V384D using yeast assays and in vitro MMR assay did not indicate a strong phenotype,

but still showed a limited decrease of MMR activity [23]. However, it was shown that the (mostly

germline) V384D variant is clearly associated with increased colorectal cancer susceptibility [24], and it

is highly prevalent in HER2-positive luminal B breast cancer [25].

MLH1 is an ancient protein that is present from bacteria to humans. It has a highly conserved

domain organization that involves ordered N- and C-terminal domains connected by a disordered

linker [26] (Figure 5). This underlines the functional importance not only of the structured domains,
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but also of the connecting disordered region. In our previous work, we identified the region from 379

to 385 to be significantly mutated [7], which is located within the disordered segment. Recently, it was

shown that the linker can regulate both DNA interactions and enzymatic activities of neighboring

structured domains [27]. In agreement with the linker function, both the composition and length of this

intrinsically disordered region (IDR) are critical for efficient MMR. Overall, most of the linker shows

relatively low sequence conservation, however, the identified cancer risk region is highly conserved

from across all eukaryotic sequences (Figure 5), in an island-like manner. Although the exact function

of this region is not known, the strong evolutionary conservation indicates a highly important function,

not yet explored in detail.

 

α

β
α

α β

α

Figure 5. Alignment of MLH1 orthologs generated with MAFFT [15] and domain structure of human

MLH1. The segment of the alignment represents the cancer region (highlighted by a rectangle) with the

missense mutation distribution depicted by gray bars. Domains are depicted by yellow, disordered

regions by red boxes, while the green box indicates the cancer risk region.

3.4.2. VHL

VHL, the Von Hippel-Lindau disease tumor suppressor protein possesses an E3 ligase activity.

It plays a key role in cellular oxygen sensing by targeting hypoxia-inducible factors for ubiquitylation

and proteasomal degradation. To carry out its function, VHL forms a complex with elongin B, elongin

C, and cullin-2 and the RING finger protein RBX1 [28,29]. VHL has an α-domain (also known as the

VHL-box, residues 155 to 192) that forms the principal contacts with elongin C, and a larger β-domain

(residues 63 to 154) that directly binds the proline hydroxylated substrate, HIF1α. The positions

mutated across various types of cancers cover a large part of the protein, including both the α and β

domains. While these regions form a well-defined structure in complex with elongin B, elongin C,

and cullin-2, they are disordered in isolation and rapidly degraded [30].

The VHL gene emerged de novo at the level of Eumetazoa together with HIFα and PHD,

the other key components of the hypoxia regulatory pathway. However, more recently, the gene

underwent various evolutionary events. The VHL gene showed slightly higher evolutionary variations

compared with other cancer risk regions (Figure 2). Some positions, including K171, showed signs of

positive selection at the level of Sarcopterygii, which might implicate the occurrence of an important

evolutionary event. It was shown that the SUMO E3 ligase PIASy interacts with VHL and induces

VHL SUMOylation on lysine residue 171 [31]. VHL also undergoes ubiquitination on K171 (and K196),

which is blocked by PIASy. In the proposed model of the dynamic regulation of VHL, the interaction
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of VHL with PIASy results in VHL nuclear localization, SUMOylation, and stability for blocking

ubiquitylation of VHL. Meanwhile, PIASy dissociation with VHL or attenuation of VHL SUMOylation

facilitates VHL nuclear export, ubiquitylation, and instability. This dynamic process of VHL with

reversible modification acts in concert to inhibit HIF1α [32].

A novel acidic repeat region appeared at the N-terminal region of the protein at the level of

Sarcopterygii, and this region underwent further repeat expansion in the lineage leading up to humans

(Figure 6). These GxEEx repeats are generally thought to confer additional regulation to the long isoform

of VHL (translated from the first methionine), with a number of putative (USP7) or experimentally

detected (p14ARF) interactors [33]. Although poorly studied, this repetitive region also seems to

harbour casein kinase 2 (CK2) phosphorylation as well as proteolytic cleavage sites, regulating VHL

half-life (consistent with a deubiquitinase, such as USP7 binding role) [34]. As a result of a recent

gene duplication, the human genome even encodes a VHL-like protein (VHLL), which has lost the

C-terminal segment including the α domain. Consequently, VHLL cannot nucleate the multiprotein

E3 ubiquitin ligase complex. Instead, it was suggested that VHLL functions as a dominant-negative

VHL to serve as a protector of HIF1α [35]. This example demonstrates that, while the basic cancer risk

region remains largely unchanged during evolution, additional regulatory mechanisms can emerge to

further fine-tune the function of the protein.

α

α

α

 

α β
α

Figure 6. Schematic representation of the evolutionary scenario of the VHL family and the functional

units of the members. Repeat units in varying numbers and the α and β core domains are depicted

by green and yellow boxes, respectively. Red stripe in the α domain of human VHL indicates

K171 identified to emerge by positive selection on the Sarcopterygii branch (mapped K171 to other

Sarcopterygii are also indicated by red stripes).

3.4.3. ESR1

Estrogen receptor 1 (ESR1) is a member of the nuclear hormone receptor family with eumetazoan

origin. The most common mutation in both primary and tamoxifen therapy associated samples

corresponds to a single mutation (K303R). This single site emerged more recently (Figure 7) and is

located in a rather complex switch region adjacent to the ligand-binding domain (Figure S2). The highly

mutated K303 of ESR1 (more than 200 K303R missense mutations are seen in COSMIC) is a part of a

motif-based molecular switch region involving several mutually exclusive PTMs. At positions 302,

303, and 305, methylation by SET7/9, acetylation by p300, and phosphorylation by PKA or PAK1 were

observed in previous studies, respectively [36–40]. Our results show that this region is conserved only

in Sarcopterygii, which indicates a relatively young evolutionary origin of the switching mechanism.

However, while the methylation and acetylation sites are well conserved, the phosphorylation motif

appears to be specific only to H. sapiens. We came to this conclusion because R300 and K302 as well

as L306 are required for the protein kinase A (PKA) phosphorylation consensus and the oncogenic
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mutation K303R is expected to turn this region into an even better PKA substrate [41,42]. Curiously,

these residues are not found in any other mammal, supposing species specific adaptive changes.

Comparison of substitutions and polymorphic sites is a powerful approach to identify specific

changes in a pair of closely related species, like H. sapiens and chimpanzee. Relying on this approach,

198 of 9785 analyzed genes were identified to show human-specific changes including ESR1 [19].

In ESR1, there are three more changes besides R300 and K306 (L44, Q502, S559) between H. sapiens and

chimp that are also thought to be adaptive substitutions according to the MK test. Phosphorylation of

S559 was experimentally identified, suggesting this residue is also a H. sapiens specific PTM [43,44],

but there is no specific data in the literature about the biological function of L44 and Q502. Yet, we know

that phosphorylation of S305 allows the increase of estrogen sensitivity by external stimuli other than

steroids, and permits ESR1 activity even when the canonical estrogen effect is completely blocked

by tamoxifen [40,42]. In mice, ESR1 activity is essential for the estrogen effect and normal estrous

episodes [45,46]. Although we lack information, we theorize that this human-specific signaling

crosstalk might somehow be connected to the continuous menstrual cycle of H. sapiens (quite unusual

among mammals), or some other human-specific reproductive adaptation.

 
Figure 7. Insertion-free sequence alignment of estrogen receptor 1 (ESR1) orthologs and domain

structure of human ESR1. The alignment generated with MAFFT [15] represents the cancer region with

sites of post-translational modifications. Borders of non-depicted insertion of zebrafish are indicated by

lower case letters. The highly mutated position (K303R) is highlighted by a rectangle. PTM sites are

indicated by circles above the alignment. H. sapiens specific changes are colored in red. Domains are

depicted in yellow, disordered regions are depicted by red boxes, while the green boxes indicate the

cancer risk regions.

4. Discussion

In our study, we aimed to estimate the evolutionary origin of disordered regions that are specifically

targeted in cancer. Intrinsically disordered protein regions play essential roles in a wide-range of

biological processes and can function as linear motifs, linkers, or other intrinsically disordered

domain-sized segments [47]. They are integral parts of many cancer associated proteins and, in a

smaller number of cases, they can also be the direct targets of cancer driving mutations. In general,
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IDRs are believed to be of more recent evolutionary origin, and exhibit higher rates of evolutionary

variations compared with that of folded globular domains [9]. However, this is not what we see in

the case of disordered cancer genes. Instead, we observed that cancer-targeted disordered regions are

extremely conserved with deep evolutionary origins, which underlines their critical function. The two

main ages for emergence of disordered cancer genes can be linked to unicellular organisms and the

emergence of multicellularity, in agreement with the result of phylostratigraphic tracking of cancer

genes in general [3].

One of the most unexpected findings of our study is the examples of disordered cancer genes that

can be traced back to unicellular organisms. Mechanistically, the group of cancer genes that emerged

in unicellular organisms were suggested to play a caretaker role and contribute to tumorigenesis

by increasing mutation rates and genome instability. In contrast, cancer genes that emerged at the

level of multicellularity were suggested to typically have a gatekeeper function and promote tumour

progression directly by changing cell differentiation, growth, and death rates [48]. MLH1 is one of

the best characterized examples of a gene with a caretaker function [49]. It is involved in mismatch

repair (MMR) of DNA bases that have been misincorporated during DNA replication. Thus, disruptive

mutations of MLH1 greatly increase the rate of point mutations in genes and underline various

inherited forms of cancer. However, the most commonly seen alterations in patients are located in the

flexible internal linker. Mutational studies indicate that this highly conserved segment might not be

directly involved in MMR, but likely has an important, currently uncharacterized function. The other

ancient examples are also involved in basic cellular processes, however, they are associated with a

broader set of functions. HIST1H3B, SMARCB1, and SETBP1 are involved in epigenetic regulation and

their mutations can alter gene expression patterns [50,51]. Mutations of EIF1AX and RPS15 are likely

to perturb translation events [52,53]. However, SRSF2, which is responsible for orchestrating splicing

events, can also have a global influence on cellular states [54]. Therefore, the caretaker function is also a

subject of evolution and some of its components emerged as a result of more recent evolutionary events.

A clear novelty of our approach is to focus at the origin of sub-gene elements; that is, regulatory

regions, modules, and domains, instead of full genes. The genes can be built around founder genes that

have an extremely ancient origin, but their biological function and regulation can change fundamentally

during subsequent evolution. In several cases, the origin of the cancer mutated region was substantially

more recent than the origin of the gene. Nevertheless, after their emergence, disordered cancer regions

were fixated rapidly and showed little variations afterwards. However, their evolution at the gene

level was not set in stone and there are several indications that this process continues indefinitely.

In several cases, the cancer genes underwent gene duplications, further regulatory regions were added,

or fine-tuned by changing some of the less critical positions. We highlighted a fascinating case when

such an event occurred when our species, H. sapiens, separated from its primate relatives.

In general, the rate of gene duplications is very high (0.01 per gene per million years) over

evolution, which provides the source of emergence of evolutionary novelties [55]. According to the

general view, paralogs go through a brief period of relaxed selection directly after duplications—this

time ensures the acquisition of novelties—and subsequently experience strong purifying selection,

preserving the newly developed function. However, our results showed that only a few disordered

cancer regions have emerged in a duplication induced manner and the vast majority of disordered

cancer regions emerged de novo, independent of duplications. The evolution of disordered regions

is better described by the ex-nihilo motif theory, which is based on the rapid disappearance and

emergence of linear motifs by the change of only a few residues within a given disordered protein

segment [10]. This evolutionary phenomenon is commonly observed in the case of linear motifs,

for example, in the case of NFE2L2. This protein carries a pair of crucial linear motifs that have emerged

in the ancient eumetazoa, but are not preserved in the most recent duplicates. In an evolutionary

biology aspect, our results suggest that the evolution of functional novelties in the case of disordered

region mediated functions requires a more complex model.
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Exploring the evolutionary origin of cancer genes is an important step to understand how this

disease can emerge. This knowledge can also have important implications of how their regulatory

networks are disrupted during tumorigenesis and can be incorporated into developing improved

treatment options [56]. In this work, we focused on a subset of cancer genes that belong to the class

of intrinsic disordered proteins, which rely on their inherent flexibility to carry out their important

functions. While the selected examples represent only a small subset of cancer genes, they are

highly relevant for several specific cancer types [8]. In general, disordered proteins are evolutionarily

more variable compared with globular proteins, however, the disordered cancer risk regions showed

remarkable conservation with ancient evolutionary origin, highlighting their importance in core

biological processes. Nevertheless, we found several examples where the region specifically targeted

by cancer mutations emerged at a later stage compared with the origin of the gene family. Our results

highlight the importance of taking into account the complex modular architecture of cancer genes in

order to get a more complete understanding of their evolutionary origin.
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selected cases.
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