
Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics

Department of Telecommunications and Media Informatics

Resource provisioning in cloud
systems

DSc theses

Author
Laszlo Toka

January 26, 2023

 laszlo.toka_36_22

 laszlo.toka_36_22

Contents

1 Introduction 1

1.1 Research topics around the cloud . 1
1.2 Contributions and methodology . 2
1.3 Structure of the Dissertation . 2

2 Inter-cloud businesses 5

2.1 Introduction . 5
2.2 Business network model and formation game 7

2.2.1 Game definition . 9
2.2.2 The Stackelberg game of Bertrand competitions 12

2.3 The pricing game in the cloud resource market 14
2.3.1 Cloud resource market model: actors, resources, strategies . . 14
2.3.2 Equilibrium prices in pricing games 18
2.3.3 Analysis of infinite-capacity games 25

2.4 Related work . 28
2.4.1 Resource pricing in the cloud 28
2.4.2 Network formation models . 30
2.4.3 Internet economics . 31

3 Resource provisioning within cloud-based systems 33

3.1 Introduction . 33
3.2 Scalable and economical edge scheduling for latency-, and operation-

critical applications . 34
3.2.1 Complextiy analysis . 38
3.2.2 Approximation bound . 40

3.3 Re-scheduler: an offline orchestrator to minimize provisioned backup
resources . 45

3.4 Providing scalability with node clustering 48

 laszlo.toka_36_22

3.5 Machine Learning-based auto-scaling 52
3.5.1 Analytical models of auto-scaling methods 54
3.5.2 The proposed proactive scaling engine 60

3.6 Operational model of running microservices 65
3.7 Related work . 70

3.7.1 Orchestration of latency-critical cloud-native applications . . . 70
3.7.2 Auto-scaling solutions in the cloud 73

4 Bandwidth allocation in access networks towards the cloud 77

4.1 Introduction . 77
4.2 An uncoordinated bandwidth sharing model and its analysis 78
4.3 A coordinated cloud resource optimizer method 83

4.3.1 System model and the resource allocation problem 84
4.3.2 Dynamic programming-based solution 86

4.4 Related work . 89

5 Summary of scientific results 91

5.1 Inter-cloud business findings . 91
5.2 Intra-cloud management and orchestration methods 93
5.3 Resource allocation of cloud access 95

Bibliography 97

 laszlo.toka_36_22

List of Figures

2.1 Examples of the graph model of 5G infrastructure providers: the
original service path between a selected pair of SAPs (left) and a new
possible service path formed by establishing a new business connec-
tion between Tier-2 providers (right). 7

2.2 Graph model of operators’ resources and service chains. 15
2.3 Resource allocation and service provisioning periods: In each time

period (of a fixed length R) the served requests are those that arrived
in the previous period. 18

2.4 Topologies with a single SAP, a 1 or 2 DCs and 0 or several NWs. . . 20
2.5 Equilibrium prices for various c, q values in the single NW topology. . 22
2.6 Equilibrium price p∗(c) for k ∈ [1, 10] providers and arrival q=0.1.

Markers are used to describe the price for a finite capacity c ∈ [1, 20]
and a solid line for an infinite capacity c =∞. 23

2.7 Equilibrium price p∗
1(c1, c2) for provider capacities c1, c2 ∈ [0, 20] and

arrival q = 0.1. Markers are used to describe the price for finite
capacities ci ∈ [0, 20] and a solid line for infinite capacities ci =∞. . . 24

2.8 Parallel paths with serial NWs. 25
2.9 The pine-tree topology. 26
2.10 Equilibrium price for NW nodes according to their distance from the

DC in the top (x-axis: i, y-axis: p∗
i), and the same distance-dependent

prices, but the sequential number of nodes are normalized by k + 1 in
the bottom (x-axis: i/(k+1), y-axis: p∗

i) figure. One line corresponds
to one numerical evaluation of formula in Lemma 2.13 for a given k
value. 27

3.1 Proposed system architecture design for edge computing 35
3.2 The components of our edge-scheduler 36
3.3 Deterministic and non deterministic clustering examples 49
3.4 Measurement setup for application profiling 53
3.5 Profiles of different applications . 54
3.6 One week Facebook traffic in a university campus (green: training

data, red: test data, blue: weekend, not used) 58

 laszlo.toka_36_22

3.7 One week of MMPP-based traffic generated from the Facebook load
using the algorithm described in [99] (green: training data, red: test
data, blue: weekend, not used) . 58

3.8 Comparison of the lossy discrete model and HPA - Pod usage 59
3.9 Comparison of lossy discrete and lossless MMPP/M/c models - Pod

usage . 59
3.10 Simulations of discrete-time HPA and of the ML-based forecast models 62
3.11 Simulations of HPA’s discrete-time and of the ML-based forecast

models on the generated MMPP traffic 63
3.12 Proportion of HPA+ and HPA costs as a function of input load scale 65
3.13 Illustration of the scaling overhead model through an example appli-

cation consisting of 5 modules . 67
3.14 Modules of an illustrative example application, ordered by their scal-

ing factor, and grouped (denoted by various colors and dashed line
contours) . 68

4.1 The Boosting Framework in a toy example for 2 users 78
4.2 Toy example for utility-based bidding policy (left-hand side) and zero

bidding policy (right-hand side) . 81
4.3 Evolution of number of players of various strategies 82
4.4 System overview . 84
4.5 Example of utility functions and QoS, which are the expected number

of detected events as a function of bandwidth. 85
4.6 The dynamic program for B = 2 . 87

 laszlo.toka_36_22

Chapter 1

Introduction

1.1 Research topics around the cloud

Cloud computing has transformed the scene of information technologies in less than
two decades. The amazing technological evolution both in terms of computing and
networking enabled several new applications and services running at extremely large
scale on top of different cloud platforms. Public cloud platforms, such as Amazon
Web Services [9], Google Cloud Platform [40] and Microsoft Azure [80] are capable
of providing an “arbitrary” number of virtual resources on demand making use
of virtualization techniques and resource management mechanisms. Well-designed
data centers contain all the necessary physical assets, including thousands of blade
servers and network devices, and the burden of operation is delegated to the cloud
providers, ensuring high reliability and high performance. The cloud application
owner has nothing else to do except for selecting the best-suited cloud service offering
and deploying their application in the cloud to go live: this means i) zero initial
investment as cloud services offer pay-as-you-go schemes, and ii) that there is no
need to plan for maximum capacity as resource provisioning is flexible, usually
automatically scaled, often assumed to be completely elastic. Besides the non-
existent capital expenditures into infrastructure on the cloud tenant’s side, deploying
applications into the cloud also has the benefit of low operating costs. The reason
behind the effective operation is the economies of scale of compute infrastructure
in data centers, and the shared resources among a myriad of tenants, resulting in a
time multiplexed usage of resources.
However, during the last decade, the centrally placed physical resources started
to move closer to the users in order to enable the operation of novel types of ap-
plications, specifically latency sensitive ones. This paradigm shift has opened the
door for telecommunications operators, mobile and fixed network vendors: they
have joined the ecosystem to be part of the success story. Various concepts and
paradigms appeared to designate the proper way how to leverage computing re-
sources deployed in the vicinity of customers and end devices. Edge computing, fog
computing, Multi-Access (formerly called as Mobile) Edge Computing, cloudlets are
distinct concepts, nevertheless they share several common objectives and features
[102, 76, 75, 142, 82, 83, 50]. Different technological and business use cases are

1

 laszlo.toka_36_22

addressed by these concepts but the telecommunications stakeholders are crucial
players in all scenarios as standalone entities or federated with cloud providers.
In addition, the emerging cloud platforms and the exposed capabilities have trans-
formed the software running atop and also changed the corresponding software de-
velopment techniques. Starting from monolithic applications running in dedicated
Virtual Machine (VM)s, microservices have emerged: consisting of loosely coupled,
inter-communicating software modules running in separate containers or as distinct
functions managed by the underlying cloud system. At the end of the day, devel-
opers and service providers can obviously benefit from this shift, however, several
new challenges arise on the platform side. Therefore, the research community has
dedicated significant efforts to this topic during recent years and a large number of
theoretical results have been published addressing different aspects and variants of
the related mathematical problems: various techniques of several scientific fields were
applied from mathematical programming across graph theory to machine learning.

1.2 Contributions and methodology

The goal of the cloud-related research presented in this Dissertation is to design
and propose systems and methods that make the world of cloud computing even
more reliable, affordable and easier to access for clients all over the world. The
applied approach to reach this goal is two-fold: first, the involvement of traditional
telecommunications operators in the cloud business is investigated, second, cloud
management techniques are proposed for an enhanced Quality of Service (QoS).
Within both approaches, end-to-end delay of cloud-based applications and an eco-
nomical use of resources receive high emphasis: the former is indispensable for a
good QoS, and the latter makes cloud applications even cheaper to operate.
The applied modeling tool set and analytical methodology covers a wide range of
mathematical apparatus. Graph theory is used in modeling situations where the
interplay of certain entities not only affects each other’s status, but they do have
indirect impact on those that are more than one hop away from them. Game theory
is applied for use cases in which multiple rational entities interact, each pursuing
their own agenda and predefined utilities, calling for a distributed framework to
find stable points in the system. Machine Learning (ML) techniques ensure that
the behavior of clients is accurately predicted, which is of paramount importance
for reaching our aforementioned goals, i.e., providing reliable, affordable and acces-
sible cloud services at the desired QoS level. Furthermore, the following chapters
contain probability theory, queuing theory, differential equation systems, dynamic
programming formulation, and Karp reductions to NP-complete problems.

1.3 Structure of the Dissertation

In Chapter 2 we start our investigation by characterizing conceivable business struc-
tures for multi-provider cloud-based service offerings. Assuming the current multi-
tier Internet Service Provider (ISP) structure for worldwide connectivity services as

2

 laszlo.toka_36_22

a starting point, we examine why and how the current ISP structure may change
into new business connections, i.e., we study economic inter-cloud relations.
Beginning from the layered ISP order, we describe a network formation game in
which players represent the ISPs; link creation represent business associations with
an upkeep cost; operational expenses and incomes are determined to be dependent on
paid and received middleman costs offering mediator services. Our work is inspired
by the body of related work addressing the phenomenon of growing number of
peering relations between ISPs. In contrast to those work, our study focuses on
agreements between 5G and cloud infrastructure providers, either directly or via
mediating parties, instead of exchanging Internet traffic through either peering or
transit relations studied in the related research papers.
Moreover, we believe that the current Internet pricing models based on transit and
peering cost decisions will be challenged due to the change of the services obtained
in the future. More specifically, as long as the service is mere connectivity, aggre-
gation and hiding the connectivity topology are substantial. Therefore, a transit
provider providing default access to the rest of the Internet is sufficient unless se-
rious bottlenecks are detected. However, in envisioned 5G services connectivity
interleaves with compute services where proximity becomes a key asset. Therefore,
address reachability information may be complemented with cloud availability and
capability information on considering edge deployments.
While 5G has been driving a revolution in the field of networking [41, 94], the on-
going and envisioned changes affect many other areas from cloud/edge computing
to vertical industries including health care, Industry 4.0, and transportation [131].
In the visions of 5G the often heard service-level keywords are cost-effectiveness and
improved service provisioning with fast creation, fast reconfiguration and with large
geographical reach of customers. This paradigm shift is technologically enabled by
Network Function Virtualization (NFV) [31], i.e., implementing telco functions in
VMs that can be run on general purpose computers instead of running them on
expensive dedicated hardware as the traditional manner, and by Software Defined
Networking (SDN) [91], i.e., configuring and controlling network appliances with
easily manageable, often centrally run software applications [78]. We study the
economic aspects of this paradigm shift: how providers set their prices in such a
market, and how customers select the necessary resources given those prices.
Next, in Chapter 3, we pinpoint the most pressing challenges in cloud resource man-
agement, typically stressed in edge cloud settings, and we offer reassuring solutions
to those.
Future applications, e.g., extended reality applications or 5G and beyond telco ser-
vices, will require ultra-reliable and low-latency communication from the hosting
compute and network infrastructure. Edge computing, built on the fast access net-
work of 5G, is capable of fulfilling such strict delay criteria. But remote edge nodes
are prone to failures and their downtime might be longer than that of a central
infrastructure, i.e., data centers. Therefore, while the edge deployment of com-
pute elements of the service minimizes service delay, ensuring the high reliability of
services is a challenge.

3

 laszlo.toka_36_22

Allocating resources dynamically to constituent VMs, containers and scaling them
properly on demand can be a challenging task. The scaling logic can be driven
by various service management goals, e.g., either minimizing resource usage while
sustaining a given QoS target, or minimizing Service Level Agreement (SLA) viola-
tions no matter the price paid for the provisioned resources. The decision-making
in cloud scaling is further aggravated by the peculiar scaling behavior of the man-
aged application, i.e., the function that translates the amount of requests to be
served respecting the given SLA constraints to the necessary amount of resources to
provision.
Cloud-native applications typically follow the microservice architecture nowadays,
where the monolithic software is broken down into smaller independently managed
components, usually realized by software containers that are separately orchestrated
and scaled by the cloud platform enabling optimal resource utilization [4]. This
brings the possibility of extra delays in the application’s response times, which must
be tackled in order to sustain a high QoS.
These intra-cloud challenges are addressed in respective sections of Chapter 3. In the
subsequent Chapter 4, we take a further step down, and study resource provisioning
under the cloud: we propose service quality assurance frameworks in an uncoor-
dinated and in the centrally optimized setting. In the first case the users get an
opportunity to signal their urgent bandwidth demands and the scheduling decisions
are made at the network access point based on those. In the second case we present
a cloud-based IoT architecture that maximizes utility when high-bandwidth video
streams have to share a narrow uplink channel. The scheme attains a significant
reduction in the used uplink bandwidth and processing power in the cloud.
The organization of the Chapters 2, 3 and 4 follow the same structure: in each
Chapter we provide a general introduction on the main problems first; next, we
present formal models and problem formulations arising in the context of the tackled
challenges; then we describe the main contributions; and finally we review related
research and position the new results against the state-of-the-art. Each chapter
stands on its own and can be read independently from the rest; notations and
definitions are provided in-place.
Finally, Chapter 5 is devoted to a compact description of the most important findings
in a formal representation.

4

 laszlo.toka_36_22

Chapter 2

Inter-cloud businesses

2.1 Introduction

Keeping the activity of the autonomous systems manageable in the present Internet
has a cost of lessening the degree of their interoperability to best effort. Subse-
quently, when one considers making services that reach over numerous adminis-
trative domains, they cannot guarantee Quality of Service (QoS). The 5G vision
anticipates online services to be more advanced [17] than the present ones for which
infrastructure providers ensure end-to-end QoS in network slices [30] with small de-
lay and large bandwidth capacity. Moreover, with the appearance of virtualization
both in compute and network technologies, quicker service creation is feasible and
the reconfiguration of those can be more versatile, bringing about a totally novel
life-cycle management approach contrasted with what the present standard is [110].
The idea of elastic resource slicing [129] is the key empowering ingredient for this
[42], and when different providers partake in making a resource slice, comparably
exacting commitment to QoS assurance is required from all members [129, 111].
The locality of clients is one of the most significant driving variables of the birth of
multi-provider resource slices [129, 111]. Connectivity requisites of services naturally
characterize the potential set of qualified networks for the resource slice: the required
latency guarantees of a given Virtual Network Function (VNF) decide whether it
should be deployed to the cloud or to an edge cloud (or fog) near the clients, and
in which one they can be sent for conveying QoS [90]. One of the other significant
characteristics is cost: when QoS necessities permit, it can drive the requirement for
multi-domain resource slice creation [125]. Luckily, Network Function Virtualization
(NFV) makes it conceivable to make adaptable services in the form of a Service
Function Chain (SFC) of VNFs when the suitable resource slice has been made.
Roused by these elements, we anticipate that 5G framework actors will work to-
gether in alliances. In order to have the option to offer locality-aware services for
their clients around the world, they will utilize the compute and network assets of
any of their fellow suppliers [129, 111]. However, before committed resource slices
are provisioned crossing over different providers’ authoritative domains, business
arrangements must be set up between partners, e.g., on cost and QoS assurance
designated to the resource slice [49, 120]. For the end-to-end QoS capabilities of

5

 laszlo.toka_36_22

a resource slice that numerous providers partake in, dispersed arrangements and
consistently maintained business connections may be vital among the stakeholders
[27].
If incumbent transit providers, who do not necessarily possess (deep) edge clouds, are
not willing to proxy, process, and forward network slice orchestration requests, then
providers must establish bi-, or multilateral contracts similar to Internet peering,
which come with extra operational costs. We investigate the rationale for all operator
players to evolve services from connectivity-only to 5G network slicing via their
existing transit and peering business relationships, i.e., under what mediation pricing
strategy incumbent transit providers can enter the 5G slicing market to prevent lower
tier providers to enter into bilateral direct business contracts. We research how the
organization of business relations may advance in the reign of 5G: will it follow the
geography of transit and peering relations of the Web today [89] or will new business
relations be set up between neighboring or far off providers correspondingly to ISPs’
peering arrangements?
Due to this novel flexibility of the control and management of networking, new
types of actors will enter the telco market, resulting in a largely heterogeneous
ecosystem with currently unexplored business relationships among the stakeholders.
For example, traditional telcos with physical resources and geographical footprint
can provision basic Infrastructure as a Service (IaaS) or Network Function Virtual-
ization Infrastructure as a Service (NFVIaaS) in the new context for remote telcos
without footprint, or for Over-the-Top (OTT) solution providers. But they can also
extend their product range with Software as a Service (SaaS) offerings in order to
step up in the value chain and to increase potential revenue. Alternatively, software
solutions can be delivered by third party VNF developers, providing VNFaaS in this
context even for the telco itself. We argue therefore that the new NFV ecosystem
fundamentally redefines how telecommunications enterprises will soon operate not
only from a technical, but also from a business perspective.
Online services can be best implemented as SFCs [46] in which functions are run sep-
arately, possibly in remote data centers, while network control ensures connectivity
between those and the end users. This tightly integrated environment encompassing
cloud and network resources, together with the extreme service level requirements of
verticals’ use cases, poses serious technological challenges on all stakeholders. The
related issues seem hot topics and are being addressed by several research projects
and working groups of standardization bodies [141, 63]. However, in our opinion the
economic aspects and business related challenges have not received enough atten-
tion yet. We therefore establish a novel economic framework in order to understand
the NFV ecosystem, to evaluate analytical models, and to propose novel pricing
schemes and co-operation strategies among stakeholders. We tackle the analysis
of the expected business interaction between the infrastructure providers and the
customers. More specifically, we are interested in how providers set their prices in
such a market, and how customers select the necessary resources given those prices.
We argue that price is an essential, if not the most important attribute of resources,
therefore it is crucial to take it into account in resource orchestration methods.

6

 laszlo.toka_36_22

2.2 Business network model and formation game

We formalize the development of business relations as a network formation game
in an envisioned multi-provider multi-user setup, where resource slices are created
for users that might be located out of the direct reach of their provider, thus the
slices to be created are possible overarching multiple providers, comprising compute
and network resources of remote providers. We present the interplay between two
contradicting effects. First, we represent a creation and upkeep cost of business
connections that are paid as a provider builds up contracts with a number of fellow
actors. Second, we introduce the notion of mediation prices, collected by middleman
actors; these providers who have direct links to other providers that are not directly
interconnected with a business link, but want to initiate the creation of a resource
slice with each other, with the help of the middlemen.
We study this game from the perspective of profit-oriented 5G infrastructure
providers in order to characterize this business trade-off of those opposing forces.
Our contributions consist of (i) analytic conditions on these pricing factors for a
stable business relationships topology, (ii) formulas that describe the expected mid-
dleman prices if providers start making business relationships from scratch. For the
first point, we write a formal condition on the highest price that middlemen can ask,
at which the actors do not have any incentives to create new business links.
As analytical results, we prove that high tier providers have a motivating force to
keep their broker costs low in order to preserve their place in the ecosystem, and
in an alternative setup with business links being created starting from a clean slate
situation, we determine the equilibrium prices with parameterized formulas. With
the numerical results, we show the interesting interplay of the number of created
links and the attached costs, in addition to the distribution of business path lengths
that arise in stable setups.
The rest of the section is organized as follows. We first define our business network
model and the trade-off we study in detail; then, we formalize the model as a network
formation game, and derive analytic results on equilibrium conditions.

Figure 2.1: Examples of the graph model of 5G infrastruc-
ture providers: the original service path between a selected pair
of SAPs (left) and a new possible service path formed by es-
tablishing a new business connection between Tier-2 providers
(right).

7

 laszlo.toka_36_22

Figure 2.1 shows instances of our graph model of 5G providers. In this model, ver-
tices stand for (i) network providers (likewise offering computing services) and (ii)
Service Access Points (SAP), which are reaching points of end-clients. Edges rep-
resent business connections, which, in the underlying stage can be either (i) transit
relations (depicted by solid lines in the figure) or (ii) peering relations (depicted by
dashed lines) between nodes. The locality of clients and delay-critical services are
among the most significant driving components of multi-provider setups; accord-
ingly, we portrayed SAPs only at Level 3 providers as those offer access service to
end-clients [56]. However, in our vision all network providers are expected to become
5G cloud operators as well [129, 111].
In the center of our model are such multi-domain services in which the end-clients
of the service are clients of provider A, but they really utilize the service inside the
access domain of provider B. In this situation, provider A purchases a resource slice
from provider B (and perhaps from different providers interconnecting providers
A and B). We model these business arrangements as paths in the graph model
associating two nodes: the purchaser of the service is essentially the customer-facing
provider, while the seller of the service is the provider in whose domain end-clients
currently utilize the service. The delay-critical service is subsequently placed at
the vendor provider’s premises near the current SAP of the end-client. The service’s
descriptive characteristics, e.g., computing needs, explicitly stating VNFs to onboard
that comprise the service, network QoS to the SAP, and so forth, should be satisfied
and paid for by the purchaser provider. In this multi-provider arrangement, we
investigate the development of business relations: we do not handle the pricing
of services or that of the resource slices, this study is limited to the valuation of
inter-provider organizational possibilities.
Deploying a service into the resource slice that is mounted on another provider(s) in-
frastructure requires prior negotiations and a pre-built business link or path among
the partners, similarly to the network formation models, e.g., in [13]. We assume
that two opposing effects decide how these arrangements are made: either by a
direct business made between the two parties, or through a chain of agents that
relay between the seller and purchaser providers. In the second case, the base
cost of the resource slice is supplemented by the business relay cost of the inter-
connecting providers. The length of the chain of mediating providers equals to
the number of hops on the path between the two providers in our graph model.
Alternatively, each extra immediate business connection between providers incurs
an expense at the two players: setting up and keeping up business contracts have
their expenses. The trade-off situation is clear: while edges increment the general
managerial expenses, barring mediators from setting up resource slices in a remote
operator’s infrastructure saves cost. Compared to the classical network formation
games [34, 25, 116], the utility of being strongly connected to other nodes there,
is, in our case, translated to fewer middlemen to pay for mediating the business
between remote nodes.
Figure 2.1 showcases the business connection between a chosen pair of SAPs in an
underlying layered graph model. The path traverses the transit links towards the
highest level of the tiered structure of providers. Nevertheless, another business
interconnection can be shaped by building up business associations between any

8

 laszlo.toka_36_22

two nodes at lower tiers, e.g., between Tier 2 providers in this case, as appeared
in Figure 2.1. We underline the important notice that the new business connec-
tion does not change the data plane path if we assume that the newly connected
providers are not neighboring ASes. Tier 1 providers will presumably provide the
data plane connectivity, which might be provisioned for the relating Tier 2 providers
on an alternate timescale. The new business path is, however, abbreviated as Tier
1 providers do not act as business mediators any longer.
In the following, we characterize the network formation game we use for tackling
the aforementioned model. As part of the study, we infer significant characteristics
that portray the equilibria of the game.

2.2.1 Game definition

For tractability, let us use the notation of [25]. We consider the network service
providers as the players of a network formation game. N denotes the player set
{1, 2, . . . , n}. Si denotes the strategy set of player i, which is the power set of N \ i,
in other words, the collection of possible sets of other players to create a link with.
sij indicates the whether i wants a link between nodes i and j, so Si = {(sij)j ̸=i|sij ∈
{0, 1}} and |Si| = 2n−1. The strategy of i is si and si ∈ Si. The combination of
the strategies of all players provide the outcome of the game. The resulted strategy
profile is denoted by s = (s1, s2, . . . , sn) ∈ S1×S2×· · ·×Sn. The outcome of this one-
shot game is an undirected graph G(s) = (N, E(s)) in which a given edge is built if
there is consent between the two nodes, i.e., E(s) = {(i, j) : i ̸= j, sij = 1∧ sji = 1}.
That is, both players i and j must agree to establish a link between each other in
order for it to be created.
Cost function c determines the player cost given the strategy profile out of the
combination of strategy sets, i.e., c : S1 × S2 × · · · × Sn → Rn. As in related work,
the expense brought onto player i when all players embrace strategy s is comprised
by the expense based on the quantity of links |si| that player i sets up effectively
with different nodes, and by the aggregate of the agent expenses paid to middlemen
to reach every single other node. As a novel term, we represent the salary that is
created by mediating business going through node i. In our game, the total cost is
defined as follows:

ci(s) = α|si|+
∑

j∈N\i

βd(i,j)(G(s))Mi,j −
∑

j∈N\i

∑
k∈N\i,j

βIi∈pj,k
(G(s))Mj,k ∀i ∈ N,

(2.1)
where α and β are the business peering cost and the middleman price, respectively;
d(i,j)(G(s)) denotes the number of middlemen on the shortest-path between providers
i and j in the business graph G; Mi,j depicts the extent of services bought by i
from j through whatever path of middlemen providers this business is realized; and
Ii∈pj,k

(G(s)) indicates whether i is on path pj,k, i.e., the shortest path between j and
k. If no path exists between i and j, then d(i,j)(G(s)) =∞. Therefore, the first term
of the cost formula stands for the business link creation, the second term reflects the
price to pay middlemen for reaching providers indirectly, and the third term is the
income that is generated by acting as middlemen for other providers’ businesses.

9

 laszlo.toka_36_22

As in [25], this game model reflects a setting in which building connections is ex-
pensive; however, an extensive direct network might be beneficial to build in order
to limit the brokers to pay off. Likewise, the more connections a provider has,
the more probable it will earn as a middleman, subsequently lowering the total cost.
Naturally, providers try to limit their costs characterized in Equation (2.1). If the
expense of an extra business link α, the mediator cost β, and the business demand
M are all fixed, the game comes down to the question of which new connections are
worth being made so as to reduce expenses.
For different sorts of equilibrium, stability conditions, lower and upper limits on the
price of anarchy in network formation games, we refer the reader to [34, 25, 116].
Note that our model is different from the models found in the related work.
The game variant that is the most similar to ours was introduced in [13]; how-
ever, contrary to that model where a player’s transit traffic brings about expense,
in our arrangement, the more shortest paths that traverse a node, the more in-
come is created to that respective player. For their arrangement, the authors of [13]
demonstrated that the steady result of the game is consistently a tree, as more tran-
sit paths and the edge creation are not worth making lower distances to different
nodes, once the graph is connected. In our game, the final graph G(s) can also be
a tree for high connection creation cost α: both lower distance to different nodes,
and mediating more business paths decrease the expense, hence, if edge creation is
generally low cost, it is useful to make a few.
We expect an underlying layered topology of providers. The objective of the work
introduced in this section is to give an adequate condition under which there are no
new connections made by the players. In case this condition is fulfilled, the under-
lying layered structure is along the stable state of our game, i.e., an equilibrium.

Assumption 2.1. There are business links between providers originally, and these
links organize nodes in a tiered topology, denoted by G0, such as the one depicted
in Figure 2.1.

Let us number the tiers from top to bottom, 1, 2, . . . , t, and let ti indicate the tier
that provider i belongs to. Let Ci denote the set of providers that can be reached
downwards in the tiered topology through provider i, i.e., Ci = {k | i ∈ pj,k ∀j | tj =
1, tk > ti}, preferring peering links in Tier-1 to peering links in lower tiers. Now, we
deduce the parametric cost saving when a new link is created.

Lemma 2.1. If Assumption 2.1 holds, the highest cost reduction a new link between
two nodes, i and j, can result in is

2β(ti + tj − 2)|Ci||Cj|max (Mkl|k∈Ci,l∈Cj
, Mkl|l∈Ci,k∈Cj

)− 2α (2.2)

Proof. Providers i and j, belonging to tiers ti and tj respectively, would both make
a cost reduction for their children in Ci and Cj by interconnecting themselves with
a new link and thus lowering the second term of Equation (2.1) of the children.
At most, ti − 1 + tj − 1 middlemen in upper tiers are shortcut from cross paths
between the two sets of children with the new link. This number might be lower if
any peering links exist between parents of i and j, or if they have the same Tier-
1 parent. Note that we assume full mesh among Tier-1 providers in G0. The cost

10

 laszlo.toka_36_22

allocated to middlemen is proportional with the extent of the business which is upper
bounded by max (Mkl|k∈Ci,l∈Cj

, Mkl|l∈Ci,k∈Cj
). The number of business relationships

is given by |Ci||Cj|, hence the result starting from the following formula:∑
k∈Ci

∑
l∈Cj

β(ti − 1 + tj − 1)(Mkl + Mlk)− 2α.

Hindered by the complexity in a general tiered topology setting, we make the fol-
lowing assumption on the number of children each node has, and of businesses leaf
nodes make.

Assumption 2.2. G0 contains a number of Tier-1 nodes connected in full mesh,
and a tree subgraph under each Tier-1 node in which intermediary nodes have at
least k children, and all leaf nodes are at the same depth t. Furthermore, any pair of
leaf nodes exchange m amount of business; intermediary nodes do not act as service
sellers or buyers.

Given the specific tiered topology of Assumption 2.2, we prove that the highest cost
saving can be attained with new peering links in the topmost tier.

Lemma 2.2. Under Assumption 2.2, the higher tier the nodes belong to, the larger
the cost saving that is attained if they create a new link.

Proof. Under Assumption 2.2, the size of Ci and Cj are lower bounded by the number
of leaves of perfect k-ary trees: |Ci| ≥ kt−ti . The cost saving of two nodes i and j
by creating a link is 2β(ti + tj − 2)k2t−ti−tj

m− 2α, where m represents the amount
of business any pair of leaf nodes exchange under Assumption 2.2. By expressing
x = ti + tj, it is easy to see that this cost saving is higher when x−2

kx is larger.
As k ≥ 2 and x ≥ 3, the maximum is attained if x = 3, i.e., ti = 1 and tj = 2,
or x = 4, i.e., ti = 2 and tj = 2.

We suppose that providers may turn to dynamic pricing schemes for middleman
fees in order to bar the monetary incentives of new business link creation: as men-
tioned above, we seek the stable level of middleman prices when the status quo is
kept, i.e., top tier providers demotivating low tier providers of making new business
peerings. We determine this exclusionary price level in the assumed topologies.

Theorem 2.1. Under Assumption 2.2, if all providers keep their price below α
k2t−3m

,
then topology G0 is an equilibrium.

Proof. It is easy to see that the topmost tiers lose business if peerings are created
underneath them. In such a topology G0 that satisfies Assumption 2.2, the maximal
middleman price β for which no new links are worth being created between any two
providers is given by 2β(ti + tj− 2)k2t−ti−tj

m− 2α ≤ 0 from which the upper bound
on β is α kx

(x−2)k2tm
with x = ti + tj, according to Lemma 2.2. A statement is given

by x = 3.

11

 laszlo.toka_36_22

As a result of Theorem 2.1, the high tier providers have a motivating force to keep
their broker costs low. The way that they need to save the status quo in terms
of business relations among providers has a general constructive outcome on the
whole system: the middleman cost of building up multi-provider businesses is upper
limited. This bound is directed by the topology and the link creation cost.

2.2.2 The Stackelberg game of Bertrand competitions

Finally, in this section, we describe the equilibrium point of the network formation
game with the assumption of initially non-existent peering relations between low
tier providers, and of missing transit links between tiers.

Assumption 2.3. Let us assume a 3-tier topology of providers, initially with no
transit/peering links other than the Tier-1 full mesh. Furthermore, we assume that
one transit link can be built by each Tier-2 (to a Tier-1) and Tier-3 (to a Tier-2)
provider for no cost.

Bertrand competitions [18] describe interactions among suppliers that set prices
and their customers that choose quantities to purchase from them at the prices set.
The Bertrand competition model assumes that (i) there are at least two suppliers
producing a homogeneous (undifferentiated) product and cannot cooperate in any
way, (ii) suppliers compete by setting prices simultaneously and consumers want to
buy everything from a supplier with a lower price (since the product is homogeneous
and there are no consumer search costs), (iii) if suppliers charge the same price,
consumers’ demand is split evenly between them, (iv) all suppliers have the same
constant unit cost of the product or service, so that marginal and average costs are
the same, and (v) each supplier has sufficient capacity to serve all customers.
Bertrand proved that, if suppliers chose prices strategically, then the competitive
outcome would occur with the equilibrium price equal to marginal cost. In our
specific case, the product to sell is the middleman service; therefore, we suppose
that there is no maximum capacity imposed on the suppliers, and they all offer the
same service.
We argue therefore that the game of setting individual middleman prices in Tier-1
and Tier-2 are Bertrand competitions , as lower tier providers seek to build their
transit link to one with the lowest price. Consequently, the Nash Equilibrium of
the Bertrand game in Tier-1 results in a homogeneous β∗

1 middleman price for all
Tier-1 providers, covering the marginal cost of the full mesh linkage. Considering
the average transit business they take care of, the following statement displays the
value of β∗

1 .

Lemma 2.3. In equilibrium, Tier-1 providers all set their middleman prices to
β∗

1 = n1(n1−1)α
2γm

, where n1 is the number of Tier-1 providers, γ is the fraction of
businesses reaching Tier-1 and m is the grand sum of business matrix M .

Proof. As in a Bertrand duopoly competition, the only equilibrium price for the
n1 competing providers is at the marginal cost, since any provider setting a higher
price would lose its customers. The total income is provided by the fraction of

12

 laszlo.toka_36_22

businesses flowing through Tier-1 providers, i.e., not via Tier-2 peering links, denoted
by γm2β1. Supposing a uniform distribution of businesses flowing through the Tier-
1 providers, and an equal share of peering costs, then applying β∗

1 covers the cost of
full mesh peering at each Tier-1 provider.

As Lemma 2.3 shows, the Bertrand game equilibrium is partly defined by the frac-
tion of business (γm) that will reach Tier-1 providers in the first place. This fraction
is, in turn, dependent on the middleman price that Tier-1 providers set, i.e., β∗

1 be-
cause, for certain Tier-2 providers that exchange relatively large amount of business,
creating a direct link might be beneficial compared to paying the Tier-1 middlemen.
In order to grasp this condition, we introduce the empirical distribution of such
business amounts.

Definition 2.1 (Distribution of businesses). Let us denote the empirical distribution
of the amount of business between Tier-2 provider pairs by f(µ). Similarly, let us
denote the distribution of those between Tier-3 providers by g(µ).

Both Tier-2 and Tier-3 providers have the option of creating peering links in case
it is less costly than dealing with middlemen. As middleman prices grow, more
and more provider pairs decide so. Therefore, the fraction of business from Tier-2
to Tier-1, and from Tier-3 to Tier-2, decreases with the rise of middleman prices:
demand is monotone decreasing in β1 and β2, respectively. Furthermore, peering
links are created in the decreasing order of the amount of business between the two
endpoints, as the middleman price grows. This phenomenon creates a Stackelberg
game [26] nature of the middleman price setup between Tier-1 (being the leaders)
and Tier-2 (being the followers) . The Stackelberg competition suits well the sit-
uation as the leaders, i.e., Tier-1 providers move first by setting their middleman
prices homogeneously, and then the followers, i.e., Tier-2 providers move sequen-
tially, deciding about the link creation in function of Tier-1 prices. Let us see how
we can deduce the equilibrium price in Tier-2.

Lemma 2.4. In equilibrium, the Tier-2 providers’ middleman price is

β∗
2 = α

2δm

(
n1(n1 − 1) + n2(n2 − 1)

∫ ∞

2γm
n1(n1−1)

f(µ)dµ

)
,

where δ is the fraction of business reaching Tier-2, and n2 denotes the number of
Tier-2 providers.

Proof. Similarly to Lemma 2.3, in equilibrium, all Tier-2 providers ap-
ply the same middleman price β∗

2 , and their total income precisely cov-
ers their cost. The overall Tier-2 income is given by the Tier-3 providers,
with their business not traversing through their own peerings, i.e., δm2β2.
The middleman fee and the creation of peerings constitute the total
cost of Tier-2 providers, i.e., γm2β∗

1 and 2α
∫∞

µp
2

f(µ)dµn2(n2−1)
2 , respectively,

where µp
2 denotes the amount of business over which the peering is cheaper than

via Tier-1 middlemen. This latter condition gives µp
2 = α

β∗
1
. Substituting the value

of β∗
1 with n1(n1−1)α

2γm
from Lemma 2.3 yields the formula for β∗

2 .

13

 laszlo.toka_36_22

Finally, we can draw the amount of business that Tier-3 providers will carry through
Tier-2 providers. The following statement expresses the necessary formulas for sub-
stituting δ and γ in Lemmas 2.3 and 2.4.

Lemma 2.5. In equilibrium, the fraction of business flowing through Tier-2 and
Tier-1, respectively, are: δm =

∫ α
β∗

2
0 µg(µ)dµ, and γm =

∫ α
β∗

1
0 µf(µ)dµ.

Proof. Similarly to the proof of Lemma 2.4, let us denote by µp
3 the amount of busi-

ness over which the peering is cheaper than through Tier-2 middlemen. Analogously
to µp

2, µp
3 = α

β∗
2
. The statement then follows.

The equilibrium prices can be determined numerically if n1, n2, f(µ), g(µ), m, α are
given. Moreover, if Tier-3 providers select their Tier-2 transit partner randomly,
and the ratio between the number of Tier-2 and Tier-3 providers is sufficiently small,
the central limit theorem might be applicable in order to determine f(µ) based on
g(µ).

2.3 The pricing game in the cloud resource mar-
ket

We now turn to the pricing of the services offered to end users. First, we introduce
a model to describe the requirements of a service that a customer wants to deploy,
and the attributes of the resources from which the customer selects. Building on
the model, we define the provider-customer interaction as a game, and we formal-
ize the resource selection problem. Second, we show analytically proven optimal
pricing strategies for stochastic games in which the customer behavior is modeled
as random process, and resources are finite or infinite. Third, we evaluate realis-
tic network topologies and show relevant results with the assumption of abundant
provider capacities.

2.3.1 Cloud resource market model: actors, resources,
strategies

Our work tackles the trades of resources that are necessary for deploying SFCs: com-
puting power in data centers, and network bandwidth from the end-users, modeled
as service access points, to data centers.
We consider two types of actors in our model: the infrastructure (data center and
network) providers and their customers, the latter possibly supplying application
to the home user or to enterprises. The resources that are traded between these
two types of actors are compute and network resources. Both types are offered
with given capacity and tolling a given latency. Furthermore, we consider service
access points as resources where the customers want to make their to-be-deployed
service accessible to their customers. We build a graph model for these resources;
an example illustration is shown in Figure 2.2.

14

 laszlo.toka_36_22

NWs
Network Providers

DCs
Data centers

SAPs
Access Points

Figure 2.2: Graph model of operators’ resources and service
chains.

Let A denote the set of SAPs, N the set of network providers and D the set of data
centers.

Definition 2.2 (Resources). We define resources as an undirected graph G = (V, E)
where V denotes the set of nodes and E the set of edges. There is a node assigned to
each SAP, each network provider and each data center in G, thus the total number
of nodes is |V | = |A| + |N | + |D|. The following forms of edges can appear (see
Figure 2.2):

• SAP - network provider: each customer wants to create an online service that
is reachable at one or more network providers;

• network provider - network provider: interconnect transit (Tier-1) and access
(Tier-2 and Tier-3) networks that have direct links (representing peering) or
connectivity at Internet Exchange Points, etc.;

• network provider - data center: each data center is connected to the Internet
via at least one network provider.

As illustrated in Figure 2.2, the graph G has no edges between the nodes in A and
no edges between the nodes of D. Likewise, there are no edges connecting a node
in A with a node in D.

We denote the providers’ capacity with c, which can be either a network capacity cn

for n ∈ N , or compute capacity in a data center cd for d ∈ D. We introduce ln for
n ∈ N and ld for d ∈ D as the latency (i.e., delay) a network provider n and a data
center provider d guarantees, respectively. For pricing, we use the notation p for the
current price of resource units for both network and data center providers. Being
part of the customer-facing network operators, the price is zero for SAP nodes, i.e.
pa = 0, ∀a ∈ A, and those abstract nodes do not raise any technical obstacles, i.e.,
ca =∞, la = 0, ∀a ∈ A. The details are summarized in Table 2.1.
Customers arrive with random demand for resources which are used for deploying a
service for the customer’s end users. Demand characteristics include specific service
access points, certain amount of computation and network capacity, maximum end-
to-end latency and maximum total cost. Formally:

15

 laszlo.toka_36_22

Components Service requests
SAPs NWs DCs instance random variable
A N D s S

Capacity ∞ cn cd cs C
Latency 0 ln ld ls L

Price/budget 0 pn pd bs B

Table 2.1: Summary of the applied parameters.

Definition 2.3 (Service request). A service request is defined by a 4-tuple s =
(as, cs, ls, bs), describing

1. a selected access point as ∈ A,

2. a required resource amount cs (capacity),

3. an upper limit ls on the end-to-end network latency that has to be met from
SAP to DC,

4. a budget bs that is an upper limit on the total cost the customer is willing to
pay.

The request refers to a single time period as defined later. For the sake of simplic-
ity, we assume in our model, that the amount of resources required by a request
is characterized by a single parameter describing for instance either a measure of
computation required to run the service in DCs, or corresponds to consumed net-
work bandwidth at NWs. We do not consider multidimensional combinations of this
parameter. This implies that any DC can serve any service, i.e., the computation
never requires any special hardware. Notation is summarized in Table 2.1.
Here we define the business interactions in the market, i.e., how deals are made.

Definition 2.4 (Resource allocation). A service request s is served through a path
t or a set of paths T in G.

We first describe a service through a single path. A path t is a sequence of nodes
(at, nt,1, . . . , nt,ℓ(t), dt) where at ∈ A, dt ∈ D and the number of its network providers
is denoted by ℓ(t). The latency of the path is defined as the sum of the latencies of
its network providers and the latency of its data center lt = ∑ℓ(t)

i=1 lnt,i
+ ldt . The path

is associated with the unit price pt = ∑ℓ(t)
i=1 pnt,i

+ pdt and an allocated capacity ct.
The allocated capacity must take into account the capacity of the resources along
the path and the capacity allocated to other paths using them. To serve a request
s the path t has to satisfy at = as, ct = cs, lt ≤ ls, ctpt ≤ bs.
A request can also be served by a set of paths T . In that case, we have for t ∈ T :

1. Each path contains the requested access point at = as,

2. The total capacity of the paths equals the required capacity ∑t∈T ct = cs,

16

 laszlo.toka_36_22

3. Each of the paths follows the latency constraint
maxt∈T (lt) ≤ ls,

4. The total cost of the paths follows the price budget ∑t∈T ctpt ≤ bs.

While serving service requests, each by its path or set of paths, it is required to
follow the capacity constraints of all network components, i.e., to guarantee that for
each component the sum of capacities allocated to paths containing the component
is not larger than the capacity of the component.
We define the resource allocation and service provisioning time periods and their
relation, illustrated in Figure 2.3.
Definition 2.5 (Resource allocation and service provisioning periods). The re-
sources that the customers lease are allocated for a fixed-length time period; this
is the service provisioning period. Before this period, customers sequentially arrive
with their service requests; that is what we call resource allocation period. Cus-
tomers therefore book resources at the given cost at the selected providers during
the resource allocation period for the service provisioning period.

Providers set price on their resources to be allocated for the service provisioning
period. We assume that they maximize their expected profit for each service pro-
visioning period. In order to do so they must take into account expected charac-
teristics of demand (access points, capacity, latency, price budget) to appear during
the resource allocation period. Furthermore, in any moment during the resource
allocation period they have to consider the amount of resources that are already
allocated for the given service provisioning period. They also have to compete with
other providers’ prices, we suppose they have complete information in this aspect.
Customers behave as followers, acting on the prices the providers have set. Cus-
tomers arrive in a sequence one after the other, and seek a set of resources that can
serve their requests. In case there is no suitable set of resources to serve a customer
request, i.e., no option that satisfies its access point, capacity, latency and budget
parameters, the customer is not served. If customers react to prices offered by re-
source providers, it is the typical setup of a Stackelberg game: leaders, in this game
the resource providers, choose their strategies, i.e., set their prices, by taking into
account the expected selfish decisions that the customers, followers in this case, will
make.
After a customer finds an eligible resource set and allocates it, the providers reset
their prices based on the available capacities, becoming the leaders again for the time
the next customer comes. This way the Stackelberg game repeats itself although
not identically in various stages as available capacities are decreasing from one stage
to the subsequent one, while the allocation of capacities are cumulating until the
point when the resource allocation period ends and the service provisioning period
starts.
In the following we show how the followers can determine their best response strate-
gies.
Any given customer with a service request s = (as, cs, ls, bs) during the resource
allocation period would like to find a path (or a set of paths) with a total cost under

17

 laszlo.toka_36_22

0 R 2R 3R

serve Q1 serve Q2

Q1 Q2 Q3

service

arrival time

Figure 2.3: Resource allocation and service provisioning pe-
riods: In each time period (of a fixed length R) the served
requests are those that arrived in the previous period.

its budget, while preserving the technical demands of s (on its access points, capacity
and latency). The requested access point constrains the selection to be among a
smaller resource subset. Similarly, the capacity requirement implies a subset of the
network components from which the path can be found, following their available
capacities. The impact of the latency and the budget constraints has a different
flavor since these two metrics of a possible path (or a set of paths) are calculated in
an aggregated way along the path resources. Accordingly, the path should be found
while considering the following problem: given a network subset, find a path (or a
set of paths) that preserves both the latency and budget constraints.

Theorem 2.2. The problem of finding an eligible flow with at most bs budget (or
the cheapest eligible flow) is NP-hard if the network is an arbitrary graph.

Proof. The problem of finding an eligible flow with at most bs budget is the asso-
ciated decision problem of finding the cheapest eligible flow problem. The latter
problem is, on the other hand, equivalent to the shortest weight-constrained path
problem, known to be NP-complete ([38], page 214). In this problem, given a graph
in which each edge is associated with a length and a weight, it is required to de-
termine whether there exists a path satisfying two upper bounds on its total length
and weight. Even though in this problem values refer to links while in ours to
nodes (latency and price), we can deduce the hardness for our problem. Note that
polynomial-time algorithms exist for cases where all link weights are equal or alter-
natively all links have the same length.

Due to the NP-hard nature of the eligible flow finding problem, we assume that
the sequentially arriving customers apply heuristics when selecting the resource set
to allocate. For this reason and because the service request parameters cannot be
known in advance, in the next section we model the pricing game as a stochastic
game, the customers being the randomness with a probabilistic behavior of setting
request parameters and selecting paths.

2.3.2 Equilibrium prices in pricing games

In this section we list the analytical results of the evaluation of the pricing game.
We set the stage for the stochastic game between the providers, given that customer
requests are random in terms of parameters and selected paths. Then we examine
three simple topologies and describe the equilibrium prices in those games.

18

 laszlo.toka_36_22

As customers face an NP-hard problem with the eligible flow selection, we reduce
the Stackelberg game, where providers are leaders, customers are followers, to a
stochastic game among providers as players. In this stochastic game, the state is
the available capacity level of resources at providers, the actions (or strategies) of
the players are the prices that the providers set for themselves, and the transition
probability function is determined by the probabilistic type of the customer that
arrives next, and the path(s) it selects. Depending on which providers are chosen
at resource allocation, which is a heuristic decision, providers’ payoffs increase by
a reward based on their given prices. Going forward we assume that customers
allocate single paths (instead of flows), and thus we define the random variables of
service requests as follows.

Definition 2.6 (Random variable of service request). Let S denote the set of all
possible requests and S the random variable of the next request. We define the
random variable of service request by the tuple S = (A, C, L, B), where we denote
the random variables of the requested access point, the requested capacity, the
latency constraint and the price budget by A, C, L and B, respectively. We suppose
that each service s selects a single path during resource allocation from its access
point as. Let Ts be the set of paths from as to D such that all of its elements satisfies
Cs and Ls. Given Ts, the tuple (Ts, Bs) fully defines the service request, where Ts is
a random variable on Ts. The path is chosen independently from the prices; if the
selected path is costlier than the budget constraint, the request fails.

Feasible requests select such paths that satisfy capacity, latency and budget con-
straints. In such a setup, the central question is: what is the winning policy of
the game players, i.e., the resource providers? In order to answer that, we seek the
value of the game [92] for each player that gives the best-response actions in Markov-
perfect equilibrium. Before doing so, we make an assumption on the memoryless
arrival process.

Assumption 2.4. The number of requests during the resource allocation period
follows geometric distribution with parameter q. Namely, each request is the last
one with probability q and at least one other request follows with probability 1− q.

Without the loss of generality, we can suppose there is one element in D, i.e., there
is only one data center node in the topology under investigation, and its unit price
is 0. If this is not true, i.e., if there are more elements in D or the one element’s
unit price is not 0, then for the analysis we turn the elements in D into elements in
N with the same properties and insert an additional element into D, connected to
all original data center nodes. Assuming infinite capacity, zero delay and zero price
for this one data center, we arrived to our initial assumption, keeping the original
topology’s characteristics intact from the analysis point of view.
For illustrative purposes, in the following we derive the equilibrium strategies for se-
lected settings: the network topologies of providers represent both serial and parallel
setups, latency constraints are supposed to be met for all eligible service requests,
demanded capacity is fixed to one unit (large capacity services might be modeled
by a number of unit-sized requests), and the price budget parameters of service re-
quests are randomly drawn from uniform distributions. The goal of the analysis is

19

 laszlo.toka_36_22

NWs
Network Providers

SAPs
Access Points

DCs
Data centers

(a) A single DC node
... ...

k − 1

(b) k − 1 serial NW nodes, a single DC node

(c) Two DC nodes

Figure 2.4: Topologies with a single SAP, a 1 or 2 DCs and
0 or several NWs.

to formulate the best response strategies, i.e., the prices that providers set as their
actions, through first determining the value of each game. We present 3 cases, as
depicted in Figure 2.4. With these illustrative examples we present how the ex-
pected number of subsequent requests and the graph topology of interconnections
determine the pricing strategies of the providers.
The example of Figure 2.4a shows how sequential allocations affect price, i.e., how to
maximize revenue by setting a price with the expectation of future service requests.
We suppose a widely used arrival process of Assumption 2.4: the probability of
receiving a next service request does not diminish over time. Let V 1 denote the
value of this game, although there is only one player here, hence the superscript,
which is technically a decision problem. The recursive solution by capacity gives the
following result for the provider with capacity c and price p.

Lemma 2.6. If Assumption 2.4 holds, the value of the game is

V 1(c, p) =
P(Z)

(
pE(C|Z) + (1− q)E(W 1(c− C)|Z)

)
q + P(Z)(1− q) ,

where W 1(c) is the optimal value of the game for one player with c capacity, P(X)
stands for probability of a stochastic event X, E(Y) denotes the expected value of a
random variable Y , and Z

def= (B ≥ pC), i.e., the event of B ≥ pC.

Proof. In general, the value of the game is

V 1(c, p) = P(Z)(pE(C|Z)+(1−q)E(W 1(c−C)|Z))+(1−P(Z))(1−q)V 1(c, p). (2.3)

Z means that the request has enough budget to pay the price. When Z holds, the
price p is paid, a capacity of c − C remains for future requests. When Z does not
hold, a value might be gained only from subsequent requests.

20

 laszlo.toka_36_22

Building on Lemma 2.6, and supposing unit-sized capacity requests and uniform
distribution of budgets, we derive the closed-form formula of the equilibrium price.

Assumption 2.5. Service requests’ capacity values are fixed C ≡ 1, budget con-
straint follows uniform distribution (denoted by U(min, max)), without loss of gen-
erality B ∼ U(0, 1).

Lemma 2.7. If Assumptions 2.4 and 2.5 hold, then the optimal price in the setup
of Figure 2.4a is:

p∗ =
1−

√
1− (1− q) (1− (1− q)qW 1(c− 1))

1− q
.

Proof. From Lemma 2.6 the value of the game for c > 0 is

V 1(c, p) = (1− p) (p + (1− q)W 1(c− 1))
q + (1− p)(1− q) ,

and V 1(0, p) = 0. In order to maximize the above function we get its derivative,
which leads to the following equation for p∗ ∈ (0, 1): p∗2(1 − q) − 2p∗ + 1 − (1 −
q)qW 1(c− 1) = 0. From there, the statement is straightforward after some algebra.

As for the equilibrium strategy, we know that p∗ = arg maxp V 1(ĉ, p), so denoting
maxp V 1(ĉ, p) = V 1(ĉ, p∗) as V 1(ĉ), we have V 1(0) = 0 and V 1(1) = 1

(1+√
q)2 with

p∗ = 1
1+√

q
. For further values of ĉ > 1, we solve the recursive formula p2(1 − q) −

2p + (q − 1)qV 1(ĉ− 1) + 1 = 0, p ∈ (0, 1) for p∗ numerically. In Figure 2.5 we plot
the equilibrium prices for different provider node capacities, i.e., c ∈ [1, 30], and
geometric distribution parameters, i.e., q = {0.1, 0.2}. First, we can see that higher
chances for the arrival of subsequent requests (low values of q) motivates the resource
provider to demand a higher price. On the other hand, having a larger capacity for
the resource, motivates it not to be strict and to accept requests with lower budgets.
Inspired by the observations of the numerical solutions depicted in Figure 2.5, we
derive the equilibrium price of the game analytically for c = ∞: when serving a
request has no negative impact on the remaining capacity, the resource provider
tries to maximize the value obtained from every request independently. We prove
that the price should not be too low or high in terms of the budget distribution.

Lemma 2.8. If Assumption 2.5 holds and the provider’s capacity is infinite, i.e.,
c =∞, the equilibrium price is 1

2 .

Proof. With c =∞ the game reduces to focusing on a single request. Then similarly
to Lemma 2.6 the value of one stage is: V 1(∞, p) = pP(B ≥ p) = p(1− p) → p∗ =
1
2 .

Namely, with infinite capacity, providers maximize the profit from each request,
independently. While setting a high price can increase the profit when taken, it has

21

 laszlo.toka_36_22

3025201510510.4
0.5
0.6
0.7
0.8

Node capacity c
Eq

ui
lib

riu
m

pr
ic

e
p

∗

q = 0.1
q = 0.2

Figure 2.5: Equilibrium prices for various c, q values in the
single NW topology.

lower chances to be a part of a selected path. With a uniform distribution of the
budget B ∼ U(0, 1), we get that the equilibrium price is 0.5.
Here we analyze the game in which k network providers are adjacent to each other,
as depicted at Figure 2.4b. Similarly to the previous case, we can determine the
equilibrium prices for the restricted case of uniformly distributed price budgets and
fix capacities in the service requests.

Lemma 2.9. If Assumptions 2.4 and 2.5 hold, and the number of network providers
is k in the serial setup, then for the Nash-equilibrium we have the following equation:
0 = k2(1− q)p∗2 − p∗(2k − q(k − 1)) + 1− q(1− q)W s(c− 1).

Proof. Similarly to Lemma 2.6 the value of the game is:

V s
i (c, p) = (1−∑ pj)(pi + (1− q)W s

i (c− 1))
q + (1−∑ pj)(1− q) ,

where V s
i is the game value for provider i (s superscript as in serial), and p =

(p1, p2, . . . , pk). The numerical analysis of the equilibrium prices is based on the
observation that the network provider nodes have symmetrical role, so we suppose
p∗

i = p∗ ∀i. Then we have the above equation for p∗.

In Figure 2.6 we plot the numerical values of prices calculated with the formula in
Lemma 2.9, now in the function of the number of providers (k = [1, 10]), and their
capacities (c = [1, 20]). The expected number of requests is 10, i.e., q = 0.1. Results
show that prices are inversely proportional to the number of players, and converge
fast as the values of capacities leave the range of under-provisioning. Again, inspired
by these results, from Lemma 2.9 we have the following direct consequence for the
case where network capacities are unlimited. For this latter case, a solid blue line
depicts the numerical values in Figure 2.6.

Lemma 2.10. If Assumption 2.5 holds and the providers’ capacity is infinite, i.e.,
ci =∞, then the equilibrium price and ratio to the the price of anarchy for k nodes
are:

p∗ = 1
k + 1 , PoA = (k + 1)2

4k

22

 laszlo.toka_36_22

Figure 2.6: Equilibrium price p∗(c) for k ∈ [1, 10] providers
and arrival q=0.1. Markers are used to describe the price for a
finite capacity c ∈ [1, 20] and a solid line for an infinite capacity
c =∞.

Proof. To derive equilibrium prices for infinite capacities it is enough to focus on only
one request. The value of a request is pi(1−

∑
pj). It is maximal if 2pi = 1−∑j ̸=i pj,

and in equilibrium p∗
i are the same, so p∗ = 1

k+1 . For k providers the price of the path
is k

k+1 , so the value for one provider is p∗P(B > k
k+1) = 1

k+1
1

k+1 . The game value for
one request is W s(∞) = 1

(k+1)2 , and for the whole game it is V s(∞) = 1
1−q

W s(∞).
If providers maximized the sum of their game values, the sum of probability would
be 1

2 , which would lead to p = 1
2k

and for the maximal value it would give 1
4k

.

The inter-dependent providers drive their prices to an inversely proportional drop,
and to a slight increase in the total price for the customer. The price of anarchy
grows linearly with the number of providers: the longer the chain of providers, the
further they shift away from Pareto optimum.
After the examples of one, or more players on the same path, optimizing their ex-
pected total income over the resource allocation period, now we turn to the simplest
competitive game of “substitute” providers. In this setting two DC providers are
both connected to the SAP in parallel, posing direct competition to each other. This
is the scenario depicted in Figure 2.4c. Let V p denote the value of this so-called
parallel game.
Now we give the general formula for the value of this game, assuming that the arrival
process of service requests is memoryless. If Assumption 2.4 holds, then:

V p
1 (c, p) = P(S1 ∧ S2)

2 p1E(C|S1 ∧ S2) + P(S1 ∧ S2)p1E(C|S1 ∧ S2)

+ (1− q)
[
P(S1 ∧ S2)

1
2E(V p

1 (c1 − C, ĉ2) +V p
1 (c1, c2 − C)|S1 ∧ S2)

+P(S1 ∧ S2) E(V p
1 (c1 − C, c2)|S1 ∧ S2) + P(S1 ∧ S2)E(V p

1 (c1, c2 − C)|S1 ∧ S2)
+P(S1 ∧ S2)V p

1 (c, p)
]

,

23

 laszlo.toka_36_22

where Si
def= (C ≤ ci) ∧ (pi ≤ B), c = (c1, c2), p = (p1, p2), and S̄ denotes the

complement of S.
In case of uniform budgets and unit-sized jobs, the price strategies are delivered by
the following formula.

Lemma 2.11. If Assumptions 2.4 and 2.5 hold, in the two-player parallel game the
solution of these equations provide the equilibrium prices for the 2 players, denoted
by i and −i:

0 = p∗
i

2(1− q)− p∗
i (4− 2p∗

−i(1− q)) + 2− (1− q)(2W p(ci − 1, c−i) + p−i)
+(1−q)2(p−i(W p(ci−1, c−i)−W p(ci, c−i−1))+(1−q)2(W p(ci−1, c−i)+W p(ci, c−i−1)).

(2.4)

Proof. Similarly to the previous cases, the value of the game for the first provider
can be written as:

V p
1 (c, p) = (1− q)(1− p1)W p(c1 − 1, c2)

2− (1− q)(p1 + p2)
+(1− q)(1− p2)W p(c1, c2 − 1) + p1(1− p1)

2− (1− q)(p1 + p2)
(2.5)

By deriving it according to p1, we get the equation above.

If provider capacities are infinite then the game is again reducible to the case of
only one request. In that case the providers’ game values are independent from each
other, which means the game reduces to the single node case, where the optimal
price is 1

2 . The numerical solution of Lemma 2.11 depicted in Figure 2.7 shows in
the case of q = 0.1 how the equilibrium price converges to 1

2 as the capacities go to
infinite. It also means that the price of anarchy converges to 1 for this topology, as
in the single node case. The prices in case of infinite provider capacities are depicted
again by solid blue lines in Figure 2.7.

Figure 2.7: Equilibrium price p∗
1(c1, c2) for provider capacities

c1, c2 ∈ [0, 20] and arrival q = 0.1. Markers are used to describe
the price for finite capacities ci ∈ [0, 20] and a solid line for
infinite capacities ci =∞.

24

 laszlo.toka_36_22

NWs
Network Providers

1 :
2 :
3 :
4 :

k :

SAPs
Access Points

DC
Data center

Figure 2.8: Parallel paths with serial NWs.

In the next section we investigate such cases in which the providers’ capacity can
be treated as infinite, compared to that of a single request.

2.3.3 Analysis of infinite-capacity games

Hindered by the complexity of the game analysis, and building on the observation of
fast price convergence in function of provider capacities, in this section we relax the
capacity constraints of service requests. By doing so, first we derive the equilibrium
prices for an artificial, but more complex topology than the previous ones; second,
we formulate equations that provide equilibrium price values for general topologies.

Assumption 2.6. Network and compute providers have sufficient capacity to ac-
commodate service requests: the set of available paths of a given request is not
limited by capacity constraints.

Here we show the equilibrium prices for the topology shown in Figure 2.8: in this
artificial topology we draw k chains of NWs with different lengths that connect k
SAPs to the same DC. The equilibrium prices are given in the next proposition.

Lemma 2.12. If Assumptions 2.5 and 2.6 hold, the topology is as it is given in
Figure 2.8 and the requests contain uniformly the k SAPs, then the equilibrium
prices are:

p∗
D = Hk

k + Hk

, p∗
i = k/i

k + Hk

, PoA ∼ k + Hk

4Hk

where p∗
D is the price of the DC, p∗

i is the price of nodes in chain with i − 1 NWs
and Hk = ∑ 1/j ∼ ln k.

Proof. Assuming that the providers in the same chain have the same optimal price,
from the derivatives of the value functions we have the following equation for pi i ∈
[2, . . . , k] and pD:

pi = 1− pD

i
, pD = k −∑(i− 1)pi

2k
.

On one hand, pD ∼
∑

1/i

k
, i.e., the data center’s price is proportional to the average

of the path length reciprocals. On the other hand, the even more important result

25

 laszlo.toka_36_22

from this topology is that if k is large enough, then p∗
i ∼ 1/(i + 1), where i is the

length of the path that contains the node. With this observation in hand, we now
turn to another topology in which network provider nodes are situated on shared
paths to the same DC.

NWs
Network Providers

1 :
2 :
3 :

k :

SAPs
Access Points

DC
Data center

Figure 2.9: The pine-tree topology.

In this second case the topology, depicted in Figure 2.9, contains a chain of k
providers and each of them has an SAP, and there is one DC at the end of the
chain.

Lemma 2.13. If the topology is the same as in Figure 2.9, and the requests arrive
uniformly from the k SAPs, then the Nash-equilibrium is:

p∗
i = ei(i + 1)(i + 2) . . . k

(ei + i)(ei+1 + i + 1) . . . (ek + k) ,

where e1 = 1 and ei+1 = i+(i+1)ei

i+ei
. NW nodes are enumerated based on the number

assigned to their connected SAP as depicted in Figure 2.9

Proof. As Vi(p) = 1
k
pi
∑i

l=1

(
1−∑k

l pj

)
, considering the equations ∂

∂pi
Vi = 0, we get

the following equations: pi = ei

i+ei

(
1−∑k

i+1 pj

)
, which gives the above solution.

Figure 2.10 shows that in the numerical evaluation of the above formula the price
monotonously decreases NW node-by-NW node going from the DC towards the
edge, i.e., providing transport for fewer and fewer SAPs. Calculations were run for
different values of k: [2, 10], lines represent the simulations, the more nodes are
involved, lower the price curve is located on the plot.
In the following we formulate the equations that give equilibrium prices of the
providers for general topologies. If t is a requested path then let us denote with
t the set of vertices on t except the service access point.

Lemma 2.14. If Assumptions 2.5 and 2.6 hold we have the following equations for
the prices for all x ∈ G \ A:

0 =
∑
s∈S

∑
x∈t,t∈Ts

P(S = s, Ts = t)
1− FBs

∑
y∈t

py

− fBs

∑
y∈t

py

 px

 (2.6)

26

 laszlo.toka_36_22

Figure 2.10: Equilibrium price for NW nodes according to
their distance from the DC in the top (x-axis: i, y-axis: p∗

i), and
the same distance-dependent prices, but the sequential number
of nodes are normalized by k + 1 in the bottom (x-axis: i/(k +
1), y-axis: p∗

i) figure. One line corresponds to one numerical
evaluation of formula in Lemma 2.13 for a given k value.

Proof. For every x ∈ G \ A, Vx denotes the value of the game and px the unit price
of resource provider x respectively.

Vx =
∑

s∈S,t∈Ts,x∈t

P(S = s, Ts = t)
1− FBs

∑
y∈t

py

 px

If ∂
∂px

Vx = 0, then we get the above equations.

Finally, we make an important statement for cases in which customers’ path selection
is not random, instead determined by Assumption 2.7 below.
Since finding the cheapest eligible path is NP-hard (see Theorem 2.2) we suppose
that customers do not solve this problem. Instead we propose for the customers to
use the following heuristics to select a path in polynomial time: choose the eligible
path with minimum number of hops. It is well known that the shortest weight-
constrained path problem is polynomial if the link weights are equal, and in this
case they are all ones. The reason to apply this heuristics is that as we see in
Lemma 2.12 the shorter a path (in hops), the cheaper. We believe this is true in
general situations, not only in the case of Lemma 2.12.

Assumption 2.7. Let all a ∈ A deterministically choose the shortest path (in terms
of hops) which is eligible, ta, to the closest d ∈ D. In this case S = {sa|a ∈ A, sa =
(ta, Ba)}.

Assuming this shortest path selection policy, Lemma 2.14 directly leads to the next
consequences.

Corollary 2.1. If Assumptions 2.5, 2.6 and 2.7 hold we have the following linear
equation system on the probability of a provider being on a path selected by a service

27

 laszlo.toka_36_22

request. The equilibrium prices can be calculated from these equations.

P(x ∈ TS) =
∑

a if x∈ta

P(S = sa)
px +

∑
y∈ta

py

 ,

∀x ∈ G \ A.

Corollary 2.2. If Assumptions 2.5, 2.6 and 2.7 hold all used SAP - DC paths have
the same length, and the number of non-AP nodes on the path are k (∀a ∈ A, |ta| =
k), then the equilibrium prices are px = 1

k+1 for all x ∈ G \ A.

Moreover, we can also deduce the price of anarchy.

Corollary 2.3. For the case Assumptions 2.5, 2.6 and 2.7 hold, the price of anarchy
can be calculated from the equilibrium prices px for x ∈ G \ A by the following way:

PoA = 1
4∑a∈A P(S = sa)(1−∑y∈ta

py)(∑y∈ta
py) .

Proof. The sum of the game values can be maximized by the following way: DCs
set the price to 1

2 , NWs set the price to 0. In this case the maximum is 1
4 .

Corollary 2.1 provides an equation system that gives the equilibrium prices of any
given topology. Corollary 2.2’s statement is similar to those that we made for special
cases in the previous section, but in this case it stands for general topologies. The
importance of this statement is supported by the fact that in realistic settings SAPs
are typically at the edge of the network, while DCs are in the center, so the length
of most of the paths equals to the radius of the network. Finally, Corollary 2.3
provides the formula for the price of anarchy. In cases when paths typically contain
4 providers, PoA ∼ 1.5, if they contain 10 providers the PoA ∼ 3.

2.4 Related work

Here we summarize related work that connects to our domain of research. We
group the collected research papers into three categories: resource pricing in the
cloud, network formation games, Internet connectivity prices and agreements.

2.4.1 Resource pricing in the cloud

Managing network and cloud resources together in cloud networking has many chal-
lenges. [74] reviews pricing models for resource management in this scope. Most
of the collected works therein propose the application of dynamic pricing, as it in-
creases seller’s profit when two product characteristics co-exist: first, the product
expires at a point in time, second, capacity is fixed and it is costly to be augmented.

28

 laszlo.toka_36_22

Both are true for the market of leasing data center resources. The term cloud net-
working is perceived in a multi-administration situation in which network and cloud
domains interface with one another.
When goods are sold with dynamic pricing, either markets generate the prices, e.g.,
in auctions, or sellers apply pricing schemes and market mechanisms to adapt dy-
namically to the demand. A real-world example for the former is a spot market
where the price is given by the intersection point of demand and supply, as for
Amazon EC2 Spot Instances [8]. In the latter case, there are various techniques for
maximizing seller surplus. In [136] the authors proposed strategies that a provider
can use to improve revenue, including resource throttling. [17] presents an algo-
rithm for the admission and allocation of network slice requests that maximizes the
infrastructure provider’s revenue. Related to pricing aspects of 5G network slices, in
[17] the authors proposed a model for network slicing under the control of a single
infrastructure provider: they introduced an analytical model for admission control
of slicing-capable 5G networks. Furthermore, they also proposed a method for op-
timizing the revenue of the infrastructure provider. The authors of [20] applied
the share-constrained proportional allocation mechanism for network slicing. The
research in [97] focuses on mobile cloud computing, i.e., the integration of cloud
computing into a mobile ecosystem, thus enabling on-demand and elastic resource
utilization for mobile users. The article, however, emphasized that further work
was required to explore the trade-off between the benefits of uploading tasks and
the price that mobile users must pay for the same. In [127], the authors tackled a
problem seemingly similar to ours with the same tool set: resource allocation for
network slices among multi-tier stakeholders in a Stackelberg game. The problem
they modeled, however, covered wireless channel allocation of access providers, i.e.,
leaders, and user equipment subscriptions, i.e., followers. The payoff models were
built such that convex optimization problems arose, i.e., followers set their demand
independently from each other, but in response to the prices advertised by the lead-
ers; leaders determined their prices in an iterative process by giving best response to
others’ prices, but independent of the price to pay towards the backhaul providers.
The latter were also part of the analysis, i.e., determining the price of the band-
width to sell to access providers, but the backhaul providers were not part of the
Stackelberg game.
The term cloud networking is understood in a multi-administrative domain scenario
in which network and data center domains interact with each other. While major
effort lies within the design and evaluation of NFV management and orchestration
solutions [32], interestingly there are no proposals for pricing or including prices in
orchestration methods among standards [33], and to the best of our knowledge only
a few research works have addressed these problems so far. In the multi-provider
NFVIaaS market however, for the implementation of the visions of 5G it is necessary
to price cloud and network resources in a market for many providers and customers.
The following related works made modeling and evaluation steps in this direction.
In [64] the authors analyzed pricing schemes for the joint provisioning of radio
access capacity and mobile edge computing services in a multi-tenant Radio Access
Network. A usage-based dynamic pricing scheme applied for SFCs is presented in
[87]: the authors derive the prices, based on the actual utilization and on historic

29

 laszlo.toka_36_22

data, that maximize the potential income of the provider. In all of this related work,
the optimal pricing scheme for compute and/or network resources was sought, mostly
in a single-provider multi-user setting. In contrast to these work, our endeavor is to
model the business costs of interaction between multiple providers and customers.

2.4.2 Network formation models

The second area of the related work is best described by network formation models,
inspired by the stability of the Internet despite its sheer size. Large computer
networks, such as the Internet, are built, operated, and used by a large number of
diverse and competitive entities. In light of these competing forces, it is surprising
how efficient these networks are. An exciting challenge in the area of algorithmic
game theory is to understand the success of these networks in game theoretic terms:
network formation games are widely used to investigate the principles of interaction
that lead selfish participants to form efficient networks.
Fabrikant et al. presented the network formation game that modeled the dynamic
building process of networks by economically selfish nodes without any central co-
ordination [34]. In their model, nodes pay for the connections that they set up, and
pull advantage from the short routes to all fellow nodes. The authors examined the
Nash equilibria of the game, and inferred results about the “price of anarchy”, i.e.,
the overall loss due to the absence of coordination.
Corbo et al. contemplated a network formation game where connections required
the assent of the two nodes and were negotiated reciprocally [25]. The authors
contrasted these networks with those produced by the prior model of [34] in which
connections were created unilaterally. Their observations exhibited that the average
price of anarchy was better in the reciprocal network formation game than in the one-
sided game for little connection costs, however worse as connections become more
costly. In the book chapter [116] the authors investigated various different network
formation games regarding the loss that comes from game theoretical selfishness.
Another work that handles reciprocally concurred agreements was introduced in
[13]: cost was caused to a node from four sources: (1) routing traffic; (2) keeping
up connections to different nodes; (3) getting disconnected from nodes it wished
to reach; and (4) installments made to different nodes. The authors studied the
game in context of the idea of pairwise stability. The distinction contrasted with
our work is that our model records for the “routing” term as income source, rather
than making it a cost-expanding term.
All these network formation models and the games defined on them considered a
flat, single-layer topology in which nodes, i.e., network providers, are homogeneous.
In this aspect, our assumption about the players is different: as in the related work
on the economics of the Internet, discussed in the following, we consider a tiered
setup of nodes in which upper layer network providers are significantly larger in
terms of infrastructure and end user base than lower layer network providers. This
context makes the network formation game entirely different.

30

 laszlo.toka_36_22

2.4.3 Internet economics

The authors of [108] focused on the Internet topology as they analyzed Internet
Service Provider (ISP) interactions at different levels: (1) when they compete di-
rectly for customers, (2) when they belong to different levels of the hierarchy, and
(3) when they try to bypass a section of the hierarchy. The paper examined the
existence of equilibrium strategies through a Stackelberg game [26] along the ISPs’
tiered hierarchy. The authors derived conclusions on the possible evolution of the
Internet topology focusing on local ISPs, anticipating that ISPs in each region would
set similar prices and provide similar QoS levels.
Dhamdhere et al. investigated how the Internet ecosystem evolved from a multi-
tier hierarchy, built mostly with transit (customer-provider) links, to a dense mesh,
formed with mostly peering links [28]. They studied this evolutionary transition
with an agent-based network formation model that captured key aspects of the
inter-domain ecosystem, e.g., traffic flow and routing, provider and peer selection
strategies, geographical constraints, and the economics of transit and peering in-
terconnections. Their model predicted several differences between the Hierarchical
Internet and the Flat Internet in terms of topological structure, path lengths, and
the profitability of transit providers.
The same authors published an agent-based network formation model for the Inter-
net at the Autonomous System (AS) level in [69]: ASes act in a myopic and decen-
tralized manner to optimize a cost-related fitness function, capturing key factors that
affect the network formation dynamics, such as highly skewed traffic matrix, policy-
based routing, geographic co-location constraints, and the costs of transit/peering
agreements. As opposed to analytic game-theoretic models, which focus on prov-
ing the existence of equilibria, this was a computational model that simulated the
network formation process and allowed to actually compute distinct equilibria (i.e.,
networks) and to also examine the behavior of sample paths that do not converge.
They found that such oscillatory sample paths occur in about 10% of the runs, and
they always involved Tier-1 ASes, resembling the Tier-1 peering disputes often seen
in practice. In another work [70], the same authors investigated why many transit
providers apply open peering strategy. They also examined the impact of an Open
peering variant that requires some coordination among providers.
These selected papers from the body of research on Internet economics focused on
the hidden reasons of the Internet topology evolution, specifically the decade-long
investigation on transit vs. peering relations in the Internet. In the late 2000s,
peering links between ISPs started to form in great numbers. This phenomenon
inspired the researchers, and several of them applied game theoretical methodologies
to model and explain this prominent trend. Although the methodology we apply is
similar, our focus is not on the exchanged traffic between ISPs, rather on the multi-
provider resource slice creation between infrastructure providers that might operate
at remote geographic location far from each other. However, the sense of end-to-end
connectivity is also found in our research domain, only not in the classical user plane
sense, rather as business relationships.

31

 laszlo.toka_36_22

32

 laszlo.toka_36_22

Chapter 3

Resource provisioning within
cloud-based systems

3.1 Introduction

Today’s services strive for worldwide availability and geographic reach might be even
more crucial in the future. In order for a system to meet all the requirements, e.g.,
low latency and high availability practically everywhere, it should have tens of thou-
sands of computing nodes geographically distributed and fully connected to serve
all the clients. Generally, we can state that managing such a huge infrastructure
is far from trivial, and exacerbated by the geographical spread. Answering simple
questions, like, how do we measure network characteristics effectively, how can we
react to topology changes, do become more and more difficult. Besides availabil-
ity, reaching high reliability is also challenging: service providers must ensure that
they can respond to different failures, so their users will not be affected by a service
outage for a long time.
In this chapter we give potential answers to these challenges and provide a con-
ceptual solution for the fulfillment of strict time criteria of future applications. We
propose our advanced edge-scheduler that takes into account the underlying network
latency, and the applications’ latency requirement in the scheduling decisions about
the application components. Our backup resource multiplexing technique provides
high reliability for the applications with aware of latency requirements by carefully
provisioning resources for this aim. The system works on large scale with huge num-
ber of worker nodes and service requests thanks to our dynamic clustering method
that can also organize a federated system dynamically.
In order to sustain QoS for the cloud-deployed application’s users, cloud resources
are continuously adapted to fit the demand, e.g., the time varying amount of client
requests hitting the application ingress. When incoming demand is hectic, SLA
constraints are strict, and the budget for cloud resources is tight, one must apply
a sophisticated auto-scaler logic. This is the case in edge cloud setups that are
characterized by limited infrastructure capacity and a relatively small number of
clients, the requests of which are not multiplexed into a stable demand, while typical
edge applications promise strict SLAs, e.g., low latency. In this chapter we also

33

 laszlo.toka_36_22

provide an auto-scaler engine that adapts scaling decisions to the actual demand,
not constrained by limited information, or by the rigidity of the scaling logic.
When software is packaged as a set of microservices, its modularity is high, both
in terms of development and operation. As a consequence, extra delay might be
introduced in the cloud application end-to-end latency due to the following reasons:
i) such distributed applications have to count with an inter-component invocation
delay, and ii) this is exacerbated by the inter-node network latency of the data center,
if application components are orchestrated to run on different compute nodes [45].
However, if modules are packaged together and therefore scaled together, scale-out
actions may lead to unnecessary resource, e.g., memory, consumption, while the
co-location of application components within the cloud results in lower operational
delays, hence better QoS for the application user. In this chapter we also propose a
model to define the trade-off between response time performance (i.e., latency) vs.
cloud resource footprint when it comes to the decision about designing, packaging
and deploying a cloud native application.
The rest of the chapter is organized as follows. In Section 3.2 we introduce our model
for ensuring high reliability and ultra-low latency with economical edge resource
provisioning: we show our proposed scheduler solution that is based on an advanced
heuristic scheduling algorithm, which dynamically handles incoming events of a
geographically widespread virtual infrastructure, supporting several latency critical
5G applications. In Section 3.3 we present the operation of our re-scheduler that
further decreases the provisioned resources in our system periodically, in an offline
orchestration operation. We address scalability and present our edge node clustering
solution based on network delay in Section 3.4. In Section 3.5 we evaluate auto-
scaling methods analytically with a queuing theory-based model, and then inspired
by the vast body of research performed in time series analysis and scaling decision-
making in various systems ranging from power grids to cloud services, we propose
a Machine Learning (ML)-based scaling method in order to capitalize on such well-
known phenomena as daily and weekly profiles, and changing variability of request
intensity throughout the day. Finally, in Section 3.6 we analyze the effects of various
packaging options of cloud-native applications.

3.2 Scalable and economical edge scheduling for
latency-, and operation-critical applications

Our proposed concept turns a virtual infrastructure scheduler into a manager of
geographically widespread infrastructure. It is built on two advanced scheduling al-
gorithms that support latency critical applications. In this section we introduce our
proposition for reserving backup resources, and we build a model for describing the
problem of minimizing the amount of those while conveniently providing reliability
for delay-critical applications on top of them.
In the architecture of the system we call the physical entities with computational
resources, processor, memory, network bandwidth, as nodes. In this sense, a node
can represent a single server at the edge of the network, or an abstraction of an

34

 laszlo.toka_36_22

entire cloud data center. Since our system considers network latency in every aspect
of application deployment, we use a delay matrix: the values in the delay matrix
represent the smallest delay value between each node pair. The deployable units of
application components are called as Pods. The users can define delay criterion for
each latency critical Pod which gives the maximum network latency that is tolerated
by the application from an arbitrary point defined by the application provider, which
we call origin.

Definition 3.1 (Pod deployment request). The application provider submits its
requests to deploy each and every Pod in the system along with the Pod’s origin
and with the respective radius. The origin of a Pod can be defined either as one of
the nodes (that is close to the location of the users that the Pod will serve), or as
another Pod deployed previously in the system (with which affinity is required for
the Pod currently being deployed).

Figure 3.1: Proposed system architecture design for edge
computing

To provide high reliability for the applications, we provision backup compute re-
sources on edge nodes, which we call placeholders. We prepare for only one node
failure at a given moment, so we dimension the placeholders for the maximum num-
ber of Pods on any node to fail at once. Therefore, each placeholder has a resource
demand depending on two factors: i) how many Pods it supports simultaneously;
ii) how the backed up Pods are distributed among the nodes. A placeholder’s size
is not necessarily equal to the sum of the supported Pods’ sizes: it can be less if the
supported Pods are placed on different nodes. A Pod’s placeholder must be assigned
to a node that differs from the host of the Pod, and the placeholder must also fulfill
the Pod’s latency requirement.
Since edge nodes are prone to failures and we strive to ensure high reliability for all
the applications, we want to make sure if a single node failure occurs, placeholders
in the system have enough reserved resource to restart all Pods of the failed node.
We consider that the resources on edge nodes are expensive, since edge nodes have
limited resource capacity compared to the large data centers. The Pods’ have com-
putational characteristics that our system needs to ensure, i.e., processor, memory,
network bandwidth. Regarding of these two properties, one of our main goals is to
minimize the resources reserved for placeholders in the system.

35

 laszlo.toka_36_22

An example view of our system architecture with two simple scheduling results is
presented in Figure 3.1 with a central cloud, and several edge nodes. On the left
side of Figure 3.1, a non-optimal scheduling example is presented. In this case, the
amount of backup resource (placeholder) reservation is greater than what the optimal
solution would need. The result of how an advanced scheduler would deploy both
the Pods and the placeholders can be seen on the right side. Since both of the Pods
have common servers in their latency radius, their placeholders can be multiplexed in
order to decrease the provisioned extra resources but still high reliability is ensured
for the Pods.
The architecture of our edge-scheduler with some mandatory operations of each
component is visualized in Figure 3.2. The main components in our edge-scheduler
are the Monitoring, Event handler, Clustering, Scheduler, and Re-scheduler.

Figure 3.2: The components of our edge-scheduler

Our online scheduler component is in charge of deploying the incoming Pod re-
quests on the fly, with the awareness of their delay and computational requirements,
and also of deploying respective placeholders for ensuring high reliability. It works
in polynomial time and its approximation ratio is 3 in terms of total amount of
placeholder resources sacrificed for guaranteeing high reliability against single node
failures.
The scheduler works in an online manner, it processes the users’ application requests
one-by-one at the time of their submission. The major steps of scheduling are
showcased in the schedule box in Figure 3.2 and Algorithm 1.

36

 laszlo.toka_36_22

Algorithm 1: Online schedule algorithm
Data: pod, nodes
Result: pod.node and pod.placeholder are set

1 if pod.reschedule then
2 bind(pod, pod.target);
3 pod.reschedule ← False;
4 end
5 if pod.placeholder then
6 patch(pod, pod.placeholder);
7 else
8 nodes_in_radius ← nodes.filter(pod.origin, pod.delay) ;
9 suitable_nodes ← nodes_in_radius.filter(pod.capacity);

10 while suitable_nodes.size = 0 do
11 nodes_in_radius ← find_and_migrate_pods(nodes_in_radius) ;
12 suitable_nodes ← nodes_in_radius.filter(pod.capacity);
13 end
14 if suitable_nodes.size > 1 then
15 hosting_nodes, placeholder ← find_placeholder(suitable_nodes,

pod) ;
16 else
17 No placeholder will be assigned to this Pod! ;
18 end
19 if hosting_nodes.size > 0 then
20 chosen_node ← min_utilized(hosting_nodes) ;
21 else
22 chosen_node ← min_utilized(suitable_nodes) ;
23 end
24 bind(pod, chosen_node);
25 if placeholder then
26 patch(pod, placeholder) ;
27 else
28 create_placeholder(suitable_nodes, pod) ;
29 end
30 end

Since our scheduler must give a solution that meets the delay requirements, the
scheduling starts with the identification of the options that the Pod’s requirements
allow. More precisely, it pinpoints the nodes that are in the radius of the given origin
(Line 8 of Algorithm 1). In case of the origin is a Pod, the algorithm defines its
current host and gets the nodes around that. It is possible that none of the nodes
in the radius have enough computational resource for the new application, i.e.,
processor, memory, network bandwidth. If none of the listed nodes have enough
computational resources, our algorithm tries to migrate Pods from their current
hosts to somewhere else, in order to free up some resource for the actual request
(Line 11 of Algorithm 1).
During the Pod scheduling, we have to keep in mind the scarcity of the edge re-
sources. Therefore, our algorithm first tries to place each Pod without increasing

37

 laszlo.toka_36_22

the total placeholder size in the system, keeping in mind the delay requirement
(Lines 15 and 26 of Algorithm 1). When we can not find any solution that keeps the
total backup resource size intact, we have to deploy the Pod first and then create
a new placeholder or increase an existing placeholder’s size for the Pod (Line 28 of
Algorithm 1). Our node selection strategy for Pods favors dispersing them among
nodes, leading to a balanced utilization in the system, which in turn decreases
the necessary placeholder resources to support single node failures (Lines 20 and
22 of Algorithm 1). In contrast, the placement of placeholders favors those nodes
that have a high number of nodes in their vicinity in terms of delay: these “central”
nodes are good choices for placeholders, since they can support Pods on many nodes
around them. The scheduler does not cover a Pod with a placeholder if the available
computational resources do not allow the placeholder creation or size increase, or
the delay requirement is so strict that only the starting node appears in the radius
(Line 17 of Algorithm 1).

3.2.1 Complextiy analysis

The scheduler algorithm processes the incoming Pod requests at the time of their
arrival. Therefore, in a globally available system, the scheduler component need to
act fast when a request comes in. We state that our scheduler runs in polynomial
time, which we state in Lemma 3.1.

Lemma 3.1. Our proposed online scheduling algorithm has polynomial complexity.

Proof. Let us denote the set of nodes with N and the set of Pods with P . In the
beginning, getting the nodes in the radius around the origin can be done in O(|N |).
Then, the online scheduling algorithm tries to deploy the incoming Pod without
increasing the total placeholder size in the system. Regarding that, the algorithm
collects the placeholders in the radius and checks the network and computational
constraints. This collection and constraint check have the following complexity:
O(|N |2 + |P |2). In the next step, the algorithm sorts the nodes based on their
number of deployed Pods and their number of network connections that fulfill the
delay requirements. In the worst case scenario, the algorithm has to do this sorting
two times, which means, its complexity can be approximated with O(2|N | log |N |) =
O(|N | log |N |). After the sorting, the selection of the best fitting node and the
deployment takes constant time. To summarize, the complexity of our online Pod
scheduling algorithm (without migration) can be approximated by O(|N | + |N |2 +
|P |2 + |N | log |N |) = O(|N |2 + |P |2), which equals with O(|N |2) when |N | > |P |,
and O(|P |2) when |N | < |P |.

There are certain dynamic operational challenges that scheduling algorithms must
face; for remedy we propose a migration policy. Network-aware migration of de-
ployed Pods is triggered when a new Pod request comes in, but the available re-
sources are not sufficient. In these situations we migrate the affected Pods to new
nodes to avoid disruptions. The major steps of migration, and the flow of the pro-
cess between them is presented in the “Migrate” box in Figure 3.2. Although we
strive to make room for the incoming Pod in the system, we migrate Pods only if

38

 laszlo.toka_36_22

their relocation frees enough resources and their assigned placeholders’ size remains
the same.
While the online scheduling will inevitably lead to suboptimal resource allocation
for the placeholders, i.e., more resources will be dedicated to backup than the abso-
lute minimal amount at the highest attainable multiplexing scheme for single node
failures, we are not sure how often migration events will need to take place. As
the authors of [53] argue, edge computing is the strongest candidate for providing
low-latency responses, but it is not yet clear what edge infrastructures will be like.
In addition to that, the edge applications’ dynamics and their latency requirements
will greatly affect the frequency of migrations.
Our solution can also handle topology changes dynamically. The fail-over process is
triggered, when our scheduler perceives that a worker node is unreachable, or a delay
deterioration in the infrastructure spoils Pods’ delay constraints. In these cases we
use the already provisioned placeholders to restart the respective Pods within their
placeholders’ resources. After the restart, we remove the Pods from their original
placeholders, and try to find or create new placeholders for them.
Both Pod migration and fail-over appear in our online algorithm. Since we consider
the delay requirements as hard constraints, both of these methods take the delay
requirements into account. In every system, the migration of virtual entities, e.g.
Pods, is an expensive process in terms of execution time and operational steps.
Although it is a costly operation, we show that our Pod migrating algorithm runs
in polynomial time, and we prove its polynomial complexity in Lemma 3.2.

Lemma 3.2. The migration calculation in our scheduler has polynomial complexity.

Proof. Let us denote the set of nodes with N and the set of Pods with P . In the
migration process the algorithm knows the new Pod (that cannot be deployed in the
system due to lack of resources) characteristics and the nodes that are in the latency
radius of the Pod’s origin node. Our solution iterates over all those nodes’ Pods and
try to migrate them till one of the nodes has enough free resource to host the new
Pod. This means in the worst case we have to try the migration in O(|P |) times.
When we examine a Pod if its “migratable”, we check the following constraints: i)
the actual node will have enough free resource for hosting the new Pod, in case we
migrate the examined Pod to another node (can be done in O(1)); ii) at least one
of the nodes in the examined Pod’s radius has enough free resource for that Pod
(O(|N |)); iii) when a placeholder is assigned to the examined Pod, we do not have
to increase its size if we deploy the Pod to a new host (if |P | > |N | then O(|P |2),
otherwise |N |2log|N |). If all constraints are met, we migrate the examined Pod, so
we can deploy the new Pod to its original host. The complexity of Pod migration is
O(|P ||N |2log|N |) in cases, when |P | < |N |, else (|P | > |N |) it is O(|P |3).

As for the technical migration overhead, we argue that stateless [114] application
components can be migrated with minimal extra resources. The stateless design,
of course, must be supported by a distributed cloud database [113, 115], which
transforms the punctual migration overhead into a continuous synchronization of
application states onto multiple database instances running on nodes potentially

39

 laszlo.toka_36_22

hosting the stateless application, which leads to an extra consumption in terms of
compute, memory and network resources.

3.2.2 Approximation bound

We prove that our scheduler is a 3-approximation algorithm in terms of the amount
of placeholder allocation for Pods. As the first step, let us create a graph G =
(V, E), where the vertices represent the nodes and the edges of the graph present
the connection between the nodes. We denote the set of Pods as P . In the proofs
of the approximation we use the graph’s diameter d(G), which is the length of
maxu,v∈V d(u, v) the “longest shortest path” between any two graph vertices (u, v),
where d(u, v) is the distance between the vertices. We define the group of vertices
that we call buds in Definition 3.2.

Definition 3.2 (Bud). A vertex is a bud, if it connects to at least one leaf.

Furthermore, we make an assumption about the graph model and the latency re-
quirements of the Pods in order to render the approximation analysis of our scheduler
algorithm analytically tractable. The first part of the assumption is about the size
of the topology and the resource capability of each node. The second part simplifies
the number and the requirement of Pods to be deployed.

Assumption 3.1. G is a simple, connected graph, with |V | = n > 3, each vertex in
G represents a node in the Kubernetes [66] cluster and has infinite capacity. Edges
in G represent unit latency distance between the vertices. |P | = |V |, moreover each
Pod p ∈ P has unit resource requirement, i.e., homogeneous Pod sizes, and there
is a one-to-one mapping between the Pods’ origins and the vertices in the graph:
pi → vi; pi ∈ P, vi ∈ V , i.e., every vertex is origin for a Pod. The delay requirement
of each Pod makes the neighboring nodes of the Pod’s origin eligible, no other nodes,
i.e., nodes farther than 1 hop yield too much delay for the service deployed in the
Pod.

Note that in the following we consider Assumption 3.1 to hold. It is partly a relax-
ing assumption, e.g., in terms of Pod-, and placeholder placement as infinite node
capacities are supposed, but partly specific, e.g., in the aspect of origin selection.
In terms of latency requirements, the assumption considers an extremely restrictive
scenario.
The goal of an economical scheduler is to find the minimum amount of placeholders
that can support all Pods in the system in case of one node’s failure. Let us denote
by OPT the optimal solution and by HEUR the solution that our online scheduler
algorithm yields. Let us denote the number of buds as b, and the diameter of the
graph d. The lower bound of the optimal solution can be deduced from the number
of buds and the diameter of the graph. Therefore, we define the lowest amount of
placeholders that can be theoretically achieved in Lemmas 3.3 and 3.4 using the
diameter and number of buds respectively.

Lemma 3.3. OPT ≥ d+1
3

40

 laszlo.toka_36_22

Proof. G with diameter d has at least one shortest path with length d and must
have d + 1 nodes. Thus, there is a subgraph G′ in G that can be represented as
a path graph, which has d + 1 vertices. The Pods’ delay requirement allows only
the origin node and its neighbors (see Assumption 3.1) as their hosting node. Since
every node is an origin for a Pod, the number of vertices in each Pod’s radius (whose
origin is in G′) is 2 or 3 in G′.
In the path graph representation the minimum number of sets that cover all nodes
at least once and each set contains only neighboring nodes, equals to dividing the
nodes into groups of three. One can see that the number of sets gives the minimum
number of placeholders in G, that should be deployed.

Lemma 3.4. OPT ≥ b

Proof. We know that a bud is connected with at least one leaf, and each Pod’s
latency constraint allows only the neighbors of the origin node. Therefore, only two
nodes (a bud and the leaf) are in the radius of the Pods, whose origin node is a leaf.
Regarding that, one of the nodes in each bud-leaf pairs must hold a placeholder.
From this statement, one can see that the number of placeholders must be greater
or equal to the number of buds.

We state, with Lemma 3.5, that our heuristic solution will have at least one Pod,
which shares its placeholder with at least one other Pod.

Lemma 3.5. HEUR ≤ n− 1.

Proof. HEUR ≤ n, as |P | = n. By the heuristics applied in our online scheduling
algorithm, equality occurs only in the case when placeholders cannot be multiplexed.
This would occur only in a G with 1-degree vertices, which is impossible with n > 3,
hence the statement.

In order to prove the approximation bound of our scheduler, we have to identify the
proportion between: i) the diameter and the optimal amount of placeholders; ii) the
number of buds and the amount of placeholders provided by our heuristic solution.
Therefore in Lemma 3.6 and Lemma 3.7 we prove that the number of placeholders
is directly proportional with the number of buds and the diameter value, as well.

Lemma 3.6. In case of a fix number of vertices (|V | = n) and a fix diameter (d),
with the increase of the number of buds (b), the optimal solution (OPT) monotoni-
cally increases.

Proof. Referring on the proof of Lemma 3.4, one can see that the number of place-
holders is directly proportional to the number of buds.

Lemma 3.7. In case of a fix number of vertices (|V | = n) and a fix number of buds
(b), with the increasing diameter of the graph d, the number of placeholders, given
by our heuristic algorithm (HEUR) monotonically increases.

41

 laszlo.toka_36_22

Proof. Let us induce a path graph G′ from a path in G whose length equals to
d. We can give a sequence of Pod requests, for which the amount of placeholders
provisioned by our heuristic solution would be equal to HEUR = d. Since G′ has
k = d + 1 vertices, the HEUR = d = k − 1 solution is the worst solution that our
algorithm can give on G′ (Lemma 3.5). Regarding this, one can see that with the
increase of a graph’s diameter, the number of placeholders, given by our heuristic
algorithm, monotonically increases.

Simple, connected graphs can have diverse combinations of diameter value and num-
ber of buds that affect the number of placeholders provisioned in the system. In
Lemma 3.8 we present the possible graph architectures that simple, connected graphs
can have with diverse diameter and bud value combinations.

Lemma 3.8. We deduce the possible number of buds in simple, connected graphs
with a given diameter.

1. If d = 1, then b = 0;

2. If d = 2, then 0 ≤ b ≤ 1;

3. If 3 ≤ d ≤ n
2 , then 0 ≤ b ≤ n

2 ;

4. If d = n
2 + k, k > 0(n

2 + 1 ≤ d ≤ n− 3), then 0 ≤ b ≤ (n
2)− k + 1;

5. If d = n− 2, then 1 ≤ b ≤ 3;

6. If d = n− 1, then b = 2.

Proof. The indices of the following proofs refer to the indices of cases listed in the
lemma.

1. Only complete graphs (from the class of connected, simple graphs) have diam-
eter 1. Complete graphs do not have any leaf vertices, therefore they do not
have buds either.

2. The diameter of a star graph, with one central node is 2. This graph has
exactly 1 bud node (the central node), since all other nodes are leaves. We
can construct several different graphs that have diameter d = 2 and 0 buds.
One trivial example is a graph that is constructed from a complete graph by
deleting a single edge. There cannot be more buds in graphs with d = 2, since
the smallest combination of vertices and edges where b = 2 is a leaf-bud-bud-
leaf subgraph that already has d = 3.

3. Let us create a cycle with n vertices. This cycle has d = n
2 and b = 0. We can

add extra diagonal edges to this graph so that it will have any diameter value
between 3 and n

2 and the number of buds remains 0.
Now let us present the other cases, when the graphs have 0 < b ≤ n

2 . For
every diameter value 3 ≤ d ≤ n

4 we can create a cycle C with n
2 vertices and

adding extra diagonal edges so that G has 3 ≤ d ≤ n
4 . At this point, we can

42

 laszlo.toka_36_22

connect the remaining (G−C) n
2 vertices (from “outside of the circle”) to the

cycle so the number of buds is 0 < b ≤ n
2 .

We can also construct graphs for which n
4 < d ≤ n

2 and 0 < b ≤ n
2 . Let us

create a path graph with d + 1 vertices. The number of internal nodes (that
are neither buds, nor leaves in the initial path graph) is d + 1− 4 = d− 3. We
can add d− 3 extra leaves connected to the internal nodes in order to increase
b. To increase further the value of b, we can connect extra bud-leaf node pairs
to any of the internal nodes till we reach the desired number of buds, or we
consumed all the vertices in the graph. In case we reach the desired number
of buds, but there are more unconnected vertices, we can construct a clique
from them and connect it to any internal node.

We showcased possible diameter and bud combinations between the upper and
lower bounds of both the diameter and the number of buds. We also showed
how we can construct graphs that have any d and b values between the defined
bounds. Since the maximum number of buds in a graph with n vertices is
n
2 , there is no other combination that can be constructed regarding the given
diameter range.

4. Since the diameter of the graph is greater than n
2 , the graph can not be a

cycle. Let us construct a path graph with n
2 + k + 1 vertices (so the diameter

equals to n
2 + k). Following on Lemma 3.8, we can close the two ends of the

path graph with two vertices, and connect the remaining (n
2 − k − 3) vertices

so that the graph will not have any buds. After the induction of the path
graph with n

2 + k + 1 vertices, it has n
2 + k + 1 − 4 = n

2 + k − 3 vertices and
we have n

2 − k − 1 unconnected nodes. The maximum number of buds that is
achievable in these scenarios is n

2 − k− 1 + 2 = n
2 − k + 1, since the path graph

already has 2 buds, one at each end.

5. Let us construct a path graph with n − 1 vertices with d = n − 2 and b = 2.
The remaining one node can be connected to the graph in three possible ways:
i) the graph will have b = 1 bud, if we form a triangle at one end of the path
graph (so we connect the last node to a leaf and to the connected bud); ii)
the graph will have b = 2 buds, if we connect the last node to two adjacent
internal nodes; iii) the graph will have b = 3 buds, if we connect the last node
to one of the internal nodes.

6. A path graph with n nodes is the only connected, simple graph that has
d = n − 1. This graph must have b = 2 buds, i.e., the second vertex on both
ends.

From Lemma 3.6 and Lemma 3.7 we can draw the following relationship:

max
(

HEUR

OPT

)
∝ max

(
d

b

)
.

43

 laszlo.toka_36_22

Based on this observation, we define the approximation bound of our heuristic so-
lution in the combinations of diameter and the number of buds where the latter is
minimal and the former is maximal.

Lemma 3.9. The approximation ratio between our heuristic and the optimal solu-
tion for given maximal diameter and minimal number of buds:

1. if d = 1 and b = 0, then HEUR = OPT = 2;

2. if d = n− 3 and b = 0, then HEUR ≤ 3OPT ;

3. if d = n− 2 and b = 1, then HEUR ≤ 3OPT ;

4. if d = n− 1 and b = 2, then HEUR ≤ 3OPT .

Proof. The indices of the following proofs refer to the indices of cases listed in the
lemma.

1. The optimal solution in every complete graph is 2. The anti-affinity require-
ment hinders to have only one placeholder. Our heuristic algorithm also
achieves the value of 2, since after the deployment of the first request there
will be one Pod and one placeholder in the system. Let us denote the hosting
node of this placeholder with v. Every other Pod whose origin differs from
v will be placed in the system without the need of increasing the number of
the total placeholders. For the Pod, whose origin host is v, our solution cre-
ates the second placeholder, and deploys the Pod on another node. Therefore,
with any order of Pod submissions, the heuristic algorithm will deploy only
two placeholders.

2. Let us construct a path graph with n−2 nodes with d = n−3 and b = 2. Now
let us close both ends of this path graph with two triangles made by the last
two nodes on both ends and the two unconnected nodes. Therefore, the graph
will have b = 0. In this case the optimal solution equals to OPT = d+1

3 = n−2
3

(following on Lemma 3.3). Our heuristic solution will deploy maximum two
placeholders in each triangle, so at least one of the Pods (per side) whose
origin is in the triangle will benefit from a previously deployed placeholder,
i.e., two Pods will share a placeholder on both ends of the graph. From this,
we can state that at least two nodes will not have any placeholder on them,
so HEUR ≤ n− 2. Therefore, HEUR ≤ 3OPT = n− 2 ≤ 3n−2

3 .

3. Regarding to Lemma 3.3, the optimal solution can not be less than OPT =
d+1

3 = n−1
3 . Therefore, even when the heuristic solution achieves the worst

solution (HEUR ≤ n−1), we can state that HEUR ≤ 3OPT = n−1 ≤ 3n−1
3 .

One can see that our statement HEUR ≤ 3OPT is proven in graphs with
d = n− 2 and b = 1.

4. The only connected, simple graph that has d = n − 1 and b = 2 is the path
graph with n nodes (see Lemma 3.8). The Pods’ delay requirements allow only
the origin node and its neighbors (see Assumption 3.1) as their hosting node.
Therefore, the number of vertices in each Pod’s radius is 2 or 3. Therefore, the

44

 laszlo.toka_36_22

minimum number of sets that cover all nodes, each set containing only nodes
that are connected with each other, give the optimal solution for the number
of placeholders. Therefore the optimal solution is OPT = ⌈n

3 ⌉ in a path graph
with n vertices. In Lemma 3.5 we showed that the worst case result of our
heuristic algorithm is HEUR = n − 1 (which is the case in a path graph),
hence HEUR ≤ 3OPT = n− 1 ≤ 3n

3 .

To summarize the previously presented results, we state and prove the approxima-
tion bound of our scheduler algorithm in Theorem 3.1.

Theorem 3.1. Our online scheduling solution is a 3-approximation algorithm for
providing joint placement of placeholders of Pods (HEUR ≤ 3OPT).

Proof. In Lemma 3.9 we prove that on all possible inputs, the approximation ratio
between our heuristic solution and the optimal solution is always less than or equal
to 3. Therefore, our scheduler is a 3-approximation algorithm in terms of the amount
of placeholder allocation under Assumption 3.1.

3.3 Re-scheduler: an offline orchestrator to min-
imize provisioned backup resources

Operating besides the scheduler, our re-scheduler is responsible for the offline min-
imization of the total provisioned backup resources in the system. The main dif-
ference between the two solutions is in the submission pattern of the Pods. While
the scheduler works in an online manner, the re-scheduler better approximates the
minimum amount of necessary placeholders as it works in an offline manner and it
is fed with the batch of all deployed Pods.
Our re-scheduler has three major phases: i) placeholder deployment; ii) Pod de-
ployment; iii) repair phase. The flowchart of the phases are presented inside the
“Re-scheduler” box in Figure 3.2. As for the first phase, according to our intu-
ition, the nodes that could host the most Pods are the best choices for placeholders:
placeholders on them can cover all those Pods if they are placed elsewhere, which
maximizes the multiplexing effect, hence the least possible resources reserved for
placeholders. Therefore in the first phase, as shown in Algorithm 2, we reserve the
minimum amount of placeholders on the nodes (Lines 2 and 3 of Algorithm 2) that
could possibly host all Pods to be deployed.

45

 laszlo.toka_36_22

Algorithm 2: Offline placeholder deployment
Data: pods, nodes
Result: pod.placeholder are set for all Pods

1 while pods do
2 node ← nodes.sort(by_number_of_deployable_pods, decreasing_order,

pods).first ;
3 placeholder ← create_placeholder(node,

maximum_capacity(node.deployable_pods)) ;
4 for pod in node.deployable_pods do
5 patch(pod, placeholder);
6 pod.placeholder ← node;
7 end
8 pods.remove(node.deployable_pods);
9 node.deployable_pods ← ∅;

10 end

The deployment of Pods that can be hosted only on a subset of nodes, e.g., in
a strict latency radius, is challenging. The order of Pod deployment follows the
number of possible nodes that could host a Pod (Line 6 of Algorithm 3), which
mainly corresponds to the tightness of their delay requirements. We deploy the
Pods with the fewest options first, then move forward to Pods with looser latency
requirements. At the end of this phase, each Pod is deployed and all of them are
covered with a placeholder as Algorithm 3 indicates.

Algorithm 3: Offline Pod deployment
Data: pods, nodes
Result: pods are deployed

1 foreach pod in pods do
2 nodes_in_radius ← nodes.filter(pod.origin, pod.delay);
3 suitable_nodes ← nodes_in_radius.filter(pod.capacity);
4 pod.choosable_nodes ← suitable_nodes.filter(pod.placeholder);
5 end
6 foreach pod in pods.sort(by_number_of_choosable_nodes,

decreasing_order) do
7 chosen_node ← min_utilized(pod.choosable_nodes);
8 bind(pod, chosen_node);
9 end

Pod migration is an expensive operation since during the migration the behavior of
the application can be non-deterministic and the service provider has to guarantee
the seamless relocation of the components. Therefore, the cost of migration is not
negligible in the minimization process in our re-scheduler. When the re-scheduler is
triggered, a deployment that defines the host node, determined by the online sched-
uler, is in effect for each submitted Pod. Relying on that predefined deployment,
in the second phase the scheduler strives to deploy the Pods on those nodes that
already host the Pod. Due to this behavior, our solution can minimize the number
of migrations while still minimizing the amount of total provisioned resources.

46

 laszlo.toka_36_22

It is possible that some of the reserved placeholders’ size might not be enough to
back up all the Pods which have been assigned to them. In order to ensure full
reliability, we have to repair those failed placeholders, one input to Algorithm 4.
Since we minimize the total footprint of provisioned placeholders, we reassign Pods
from each failed placeholder to other placeholders, or re-deploy them to other nodes
if migration is favored (Line 2 of Algorithm 4). If we can not find any solution
that would keep the amount of total placeholder size on the same level, we have to
increase the broken placeholders’ size (Line 8 of Algorithm 4), or instantiate new
placeholders (Line 14 of Algorithm 4).

Algorithm 4: Offline repair
Data: bad_placeholders, nodes
Result: no bad placeholders left

1 foreach placeholder in bad_placeholders do
2 success ← reassign(placeholder, nodes) ;
3 if success then
4 bad_placeholders.remove(placeholder);
5 end
6 end
7 foreach placeholder in bad_placeholders do
8 success ← increase(placeholder) ;
9 if success then

10 bad_placeholders.remove(placeholder);
11 end
12 end
13 foreach placeholder in bad_placeholders do
14 success ← create_placeholder(placeholder) ;
15 if success then
16 bad_placeholders.remove(placeholder);
17 end
18 end

Although our re-scheduler works in an offline manner, i.e., it processes the batch
of all the deployed Pods’ requirements, we must not let its execution time increase
unpredictably. The state of the system is continuously changing: Pods come and
go, nodes might fail. If such events occur while the re-scheduler is running, the
placement result yield by the algorithm may not be valid anymore. Therefore it
is of paramount importance to design the re-scheduling algorithm to be fast. In
Lemma 3.10 we prove that our proposed re-scheduler algorithm runs in polynomial
time.

Lemma 3.10. Our proposed re-scheduler algorithm has polynomial complexity.

Proof. Let us denote the set of nodes with N and the set of Pods with P . In the
re-scheduler algorithm’s first phase we deploy the placeholders. As the first step,
it calculates the nodes in each Pod’s radius. This calculation can be estimated
with O(|P ||N |). After the calculation, the re-scheduler sorts the nodes by the num-
ber of the Pods that could be hosted on them. The complexity of this sorting is

47

 laszlo.toka_36_22

O(|N |2). In the next step, it deploys each placeholder and reorders the list af-
ter every deployment. This step and the whole first phase can be estimated with
O(|P ||P ||N |(|N | − 1)) = O(|P |2|N |2 − |N |) = O(|P |2|N |2).
In the second phase the re-scheduler places the Pods on the nodes. First, it sorts
the Pods by their number of fitting nodes. The complexity of the sorting is O(|P |2).
Then, the algorithm iterates through the sorted Pods, and deploys them on the
least utilized node. The worst case complexity of this iteration can be estimated by
O(|P ||N |). The worst case complexity of the whole second phase, if |P | > |N |, is
O(|P |2), anyway the worst case complexity is O(|P ||N |).
In the third phase, the algorithm checks if any broken placeholders exist, and repairs
the failed ones. When it checks the placeholder constraints, it iterates through all
the placeholders and for each of them it also iterates through all the nodes and the
Pods. The worst case complexity of this validation is O(|P ||N |2), as in the worst
case each node contains one placeholder. Then, the re-scheduler goes through all
the broken placeholders, and tries to fix them with Pod reassignment to different,
already instantiated placeholders, or to other nodes. During the reassignment for
each broken placeholder, the algorithm gets those nodes whose constraints are not
fulfilled and tries to reassign the specified Pods. In case of |P | > |N |, the reas-
signment’s complexity is O(|P ||N |2), otherwise the complexity is O(|N |3). In the
second repair method the algorithm increases each broken placeholder’s size, if pos-
sible, which has the worst case complexity of O(|P ||N |). The last repair attempt
is the new placeholder, which has the same worst case complexity as the Pod reas-
signment O(|P ||N |2)or O(|N |3). If |P | > |N | the worst case complexity of the third
phase equals to O(|P ||N |2 + |P ||N |2 + |P ||N |+ |P ||N |2) = O(|P ||N |2), otherwise it
is O(|P ||N |2 + |N |3 + |P ||N |+ |N |3) = O(|N |3).
Summarizing, our proposed heuristic algorithm’s complexity in the worst case sce-
nario equals O(|P |2|N |2 + |P |2 + |P ||N |2) = O(|P |2|N |2) in case of |P | > |N |,
otherwise O(|P |2|N |2 + |P ||N |+ |N |3) = O(|P |2|N |2 + |N |3).

3.4 Providing scalability with node clustering

As the size of the system grows, not only finding the best placement for the service
components, but even measuring the network characteristics becomes challenging.
The continuous measurement is induced by the fact that the underlying network
and topology may change, and such events can cause application failures and delay
requirement violations. Our clustering solution not only reduces the overhead of
determining network characteristics, but also helps the scheduling of the applica-
tions by compressing the topology. By topology compression, we mean that since
a clustering algorithm forms groups (clusters) from a set of nodes, the scheduling
algorithms do not need to iterate through all the nodes, it is sufficient to calcu-
late with the clusters. Furthermore, our solution provides valuable input for service
providers who want to implement self-organizing network features to dynamically
organize their federated system hierarchically, based on their network topology.
We propose a clustering algorithm that groups the physical nodes into clusters in or-
der to ensure that dynamic application placement and network delay measurements

48

 laszlo.toka_36_22

can scale effectively in large topologies. Our solution is an agglomerative clustering
algorithm that creates cluster layers hierarchically, where each layer contains clus-
ters that are constructed with a new delay requirement belonging to a Pod request.
The input of our clustering algorithm is a topology (that maybe already clustered
before), and a set of delay values that will be used for clustering the nodes (or
the clusters) inside topology. In this agglomerative clustering approach, each node
starts in its own cluster, then the clusters are merged as we build up the hierarchy,
where each layer (and their clusters) are built based on increasing delay requirement
values.
In cases when the topology is not clustered with a given delay value yet, a new layer
is being created (visualized in Figure 3.2, in “New layer creation” box inside the
“Clustering” box) relying on the underlying layer that is clustered with the delay
that is the greatest and closest, but still less than the new one. Regarding the
application placement, our clustering mechanism guarantees that all nodes inside
a cluster fulfill a Pod’s delay requirement in case the cluster is an output of the
clustering with that delay value. Hence service delay requirement violations can not
happen inside a cluster for the given delay value, no matter which member node
hosts the given Pod.
The clustering may lead to different outcomes, in which a node may belong to
different clusters. An illustrative example can be viewed in Figure 3.3, where on
the top, a simple topology is depicted with delays on network connections between
the nodes. On the bottom, we present how the topology can be clustered based
on different delay requirements. The red circled clusters (bottom middle) are non-
deterministic, since they overlap each other and the clustering result depends on the
processing order of the nodes.

Figure 3.3: Deterministic and non deterministic clustering
examples

There are some delay values (denoted as d in Figure 3.3), for which the clustering
is deterministic, i.e., each node belongs to only one determined cluster no matter
the order of nodes during the clustering process. Formally we define this problem
in Problem 3.1.

49

 laszlo.toka_36_22

Problem 3.1 (Deterministic clustering problem). Given a G = (V, E) graph and a
d delay value. G is an undirected complete graph with weighted edges that fulfill the
triangle inequality and d is a positive number that represents the delay requirement
of a service.
Can G be clustered based on d in a deterministic manner?

A key feature of our solution is to find those delay values (for the given topology)
that provide such deterministic clustering results. We call these delays as vantage-
free delays and we seek these delays at the initialization of the clustering component
(“Initialization” box inside “Clustering” box in Figure 3.2). These vantage-free
clustering layers can be defined and created in polynomial time by using only the
delay values that appear between the nodes in the topology (see Lemma 3.11).

Lemma 3.11. We can find an answer for Problem 3.1 in polynomial time.

Proof. Let us represent our topology with a complete graph G, where the nodes are
the vertices and the edges are the smallest available latency values between each node
pair. The proof consists two steps. First, we delete the edges from G if their weight
is greater than d, in O(|V |2). Then, we examine each disconnected component, if
they are complete subgraphs. This examination can be done in O(|V |2). If all of the
disconnected components are complete subgraphs (cliques), the output is positive
(yes), G can be clustered based on d deterministically, otherwise it cannot.

The purpose of defining these delay values and their clustering layers is that they
serve well as underlying layers for clustering with other, non vantage-free delay
values, since these vantage-free delays do not change unless the topology changes.
In order to support the large scale scheduling, the purpose of our clustering solution
is to create the least clusters that cover all the nodes and the nodes cannot violate the
given delay requirement within their cluster. We define this problem in Problem 3.2.

Problem 3.2 (Delay based clustering problem). Given a graph G = (V, E) that
represents the physical topology, and d, a positive number that equals to the delay
requirement of the service. G is an undirected complete graph, whose edges fulfill
the triangle inequality.
Clustering the vertices with minimum number of clusters with the awareness of the
following requirements: i) a cluster has to be a clique; ii) the weight of every edge
inside the clusters is less than or equal to d; iii) clusters can not overlap with each
other.

Theorem 3.2. Problem 3.2 is NP-hard.

Proof. In the proof of this theorem, we use Karp-reduction for a known NP-hard
problem, the Clique cover problem, which is the algorithmic problem of finding
a minimum clique cover. A clique cover of a given undirected graph is a partition
of the vertices into cliques.
As a preparation step, we construct G′ with deleting all of the edges with greater
weight than d from G, since those edges surely will not appear inside any cluster.
After this step, we can ignore the edge weights in G′. In this case we strive to

50

 laszlo.toka_36_22

find the minimum number of not overlapping clusters that are cliques, and cover all
the vertices. Note that, since service delay requirement violations can not happen
inside a cluster for the given delay value, the clusters can only contain cliques in
our solution. Let G′ be the input of the clique cover problem. In this case, one can
see that finding the minimum clique cover (the clique cover that uses as few cliques
as possible), equals with finding the minimum clusters (that are also cliques) that
solves Problem 3.2. Also a solution for Problem 3.2 gives a good clique cover for
the minimum clique cover problem. Since G′ can be constructed in polynomial
time (O(|V |2)) from G, and covering with minimum clusters on G is fully complaint
with Clique cover problem on G′, Problem 3.2 is NP-hard.

We proved that Problem 3.2 is a hard problem in general, although in some cases it
is solvable in polynomial time. In Theorem 3.3 we state that Problem 3.2 is solvable
in polynomial time in cases when Problem 3.1 gives positive answer for the same
input.

Theorem 3.3. On a given complete, weighted graph G (whose edges fulfill the trian-
gle inequality) and d positive number for which answering Problem 3.1 gives positive
outcome (yes), a solution can be found for Problem 3.2 in polynomial time.

Proof. In Lemma 3.11 we proved that we can find an answer for the question of
Problem 3.1 in polynomial time. In cases, when Problem 3.1 has a positive answer
if we delete all edges with greater weight than d from G, then all the disconnected
components of G (after the deletion) are complete subgraphs. Since none of the
remaining edges has greater weight than d, the optimal solution for Problem 3.2
equals with the disconnected complete subgraphs.

When our clustering component is initialized, the scheduler receives the node clusters
from our clustering component when they are looking for nodes in a certain delay
radius. The scheduler calls the clustering component with the origin node and the
delay radius required by the Pod. If there is already a constructed cluster layer
with that delay value, the algorithm finds the appropriate cluster (that holds the
starting node), and returns that to the scheduler. If the topology is not clustered
with the given delay value yet, the algorithm creates a new layer that is based on
the underlying layer that is clustered with the delay that is the greatest and closest
to the new one, but still less than the given one. Relying on that underlying layer
and its delay matrix, the algorithm creates the new layer in six steps:

1. delete the edges that are greater than the delay requirement;

2. find a maximal clique in the graph;

3. create cluster from the found maximal clique;

4. remove the vertices in the clique from the graph;

5. return to step 2, until all of the vertices are deleted from the graph;

6. create the new delay matrix.

51

 laszlo.toka_36_22

After we defined the clusters with the new delay requirement, a new delay matrix
must be created that holds the delay values between the clusters. We apply the
conservative complete-linkage clustering method (also known as farthest neighbor
clustering) for delay matrix creation to calculate the delay values between clusters.
The complete-linkage clustering method means that the delay value between two
clusters equals to the delay between those two nodes (one in each cluster) that are
farthest away (have the highest delay) from each other.

3.5 Machine Learning-based auto-scaling

We dissect the problem of cloud auto-scaling into three phases. First, given the
history of client requests’ time series and multiple ML-based forecast methods ap-
plicable on them, we design a Kubernetes plug-in that implements the methods and
selects the most reliable forecast at all times, based on the evaluation of their ac-
curacy on recent measurements. Second, assuming a potential, but not completely
certain request rate that the selected forecast method yields, we adapt the appli-
cation scale accordingly, in order to meet the application provider’s intention on
minimizing SLA violations. Third, we experimentally determine the required scale
of the specific application given any request rate. This last step is in fact performed
prior to the deployment by emulating arbitrary request rates. Here we delve into
the third step, and we present the others in later sections.
Measuring the compute resource requirements of applications, i.e., resource pro-
filing, has been investigated by researchers with resource optimization in mind.
The authors of [133] for instance built application profiles in order to develop an
application-execution policy that minimized the energy consumption of the mobile
device. According to their approach, the applications in focus could be executed
on the mobile device or in the cloud, and they built profiles for mobile applications
based on the size of their input data, and the compilation deadline. In contrast to
that work, our goal is to model the resource requirement of applications when serv-
ing any given rate of application requests, as accurately as possible. To this end we
define application profiles as follows, projected to a Pod, i.e., the smallest runtime
and scaling unit in the Kubernetes system. In a Pod we can include a container or
a set of containers we want to run.

Definition 3.3 (Application profile). The application profile is an AP:N+ → R+

function, which assigns the service rate per Pod to the number of active Pods.

We designed a measurement method to determine the profile for applications hosted
in Kubernetes; the components of the measurement system are shown in Figure 3.4.
In our Kubernetes cluster we replaced the standard load balancer functionality of
the Kubernetes Service object with an ingress controller. We deployed a fortio
[37] benchmark tool to a worker node, and the application we wanted to test was
deployed to another worker node. During the measurement we run benchmark tests
with an increasing number of requests per second. We started the benchmark with
one Pod. When a test finished with the actual number of Pods, we increased the
Pod count and started the measurement again. Each test took one minute. After

52

 laszlo.toka_36_22

Figure 3.4: Measurement setup for application profiling

each test, we collected the percentage of lost requests from fortio and the average
CPU usage from Prometheus, a monitoring tool for Kubernetes [96].
We present results for 3 applications in Figure 3.5 by showing the served query
per second (QPS) in function of the number of running Pods. Using the empirical
measurement results we can approximate the resource profile of each application. On
the top diagram the empirical result of a Node.js application and an Nginx web server
can be seen. In the bottom figure the profile of an image classification application
is shown. Let us take the measurement results of the Node.js web application that
serves static HTML files, depicted in Figure 3.5 with the green dashed line. The
empirical results can be approximated with the linear function (depicted with the
green dotted line) of 125x + 209, where x is the number of running Pods. We
calculated the R2 value of this function and we got 0.997. R2 is a statistical measure
that represents the proportion of variance in the outcome variable that is explained
by the predictor variables in the sample. Its value falls between 0 and 1; a value
close to 1 means that our predictor fully explains the variance in our samples, i.e.
the closer we are to 1, the better our prediction [81].
According to the fitted approximation function, the more active Pods are in the
system, the lower service rate per Pod the application can provide. From this
linear function the profile of the Node.js web application using Definition 3.3 is
APNode.js(x) = 125 + 209

x
. Measuring profiles for a wider set of applications is out of

the scope of this paper, but we note that there surely exist applications for which
profiles are more complex than a linear relation, e.g., the measurements of the image
classification application in the bottom part of Figure 3.5 can be approximated by a
quadratic function. We argue though that Kubernetes is predominantly used for web
applications, therefore selecting a popular web server like Node.js for a representative
profile seems evident. In the following we will use this function as the application
profile in our simulations.

53

 laszlo.toka_36_22

Figure 3.5: Profiles of different applications

3.5.1 Analytical models of auto-scaling methods

In this section we propose analytical models to describe the behavior of Kubernetes’
Horizontal Pod Autoscaler (HPA) [52]. The models allow us to run extensive sim-
ulations for evaluating our ML-based forecast methods and their scaling accuracy
against the baseline HPA.
In Kubernetes, HPA is influenced by several parameters. There are cluster level
settings, e.g., down-scaling stabilization, Pod synchronization period and scaling
tolerance, and there are HPA level parameters, such as minimum and maximum
Pod number, scaling threshold according to arbitrary metrics. By default HPA is
based on CPU utilization measurements: HPA periodically fetches monitoring data
from the system, and takes a decision on how many Pods the cluster should have.
This period is called a scaling interval. The scaling operation and the decision-
making procedure is formally described in Definition 3.4.

Definition 3.4 (Kubernetes HPA parameters and operation). The following pa-
rameters must be configured for HPA [52]:

1. cmin and cmax are the minimal and maximal allowed Pod counts,

2. û ∈ [0, 1] is the targeted average CPU utilization over all running Pods,

3. scaling interval is a R+-long time window, at the end of which HPA evaluates
metrics for scaling decisions,

4. s ∈ [0, 1] is the scaling tolerance.

5. d is the downscale stabilization, i.e., the duration the HPA has to wait be-
fore another downscale operation can be performed after the current one has
completed.

54

 laszlo.toka_36_22

Let di be an indicator function of whether downscaling is enabled or not during the
scaling interval i ∈ N.

di =
1 if stabilization is active (downscale is disabled);

0 else.
(3.1)

ui ∈ [0, 1] is the measured CPU usage in scaling interval i ∈ N. A scaling decision
is made in scaling interval i, if ∣∣∣∣ui

û
− 1

∣∣∣∣ > s, (3.2)

and the number of Pods in interval i + 1 is recursively yield:

c∗
i+1 =

⌈
ci

ui

û

⌉
. (3.3)

After applying the limits, Pods are terminated or instantiated to meet the count

c′
i+1 =


c∗

i+1 if cmin ≤ c∗
i+1 ≤ cmax

cmin if c∗
i+1 < cmin

cmax if c∗
i+1 > cmax.

(3.4)

HPA will not perform downscale operation if there was another one in the previous
time window of length d.

ci+1 =
ci if c′

i+1 < ci and di+1 = 1;
c′

i+1 else.
(3.5)

The higher the d value, the more resources the application uses, because it scales
out without such stabilization, but scaling in is slower compared to applying a low
d.
For modeling purposes we make some simplification to HPA’s operation and to the
application profile. We assume that d is equal to the scaling interval, i.e. di =
0 ∀i, and cmin = 1, cmax = ∞, s = 0. The application profile is assumed to be
constant, i.e., AP (x) = µ, µ being the rate of the exponentially distributed service
times. We further suppose that the arrival process of requests can be described
as a Markov-Modulated Poisson Process (MMPP) with m states; we denote the
respective transition matrix by Q and the m arrival rates by λ1, λ2 . . . , λm.
HPA sets the number of servers periodically, so in our model we make the case for a
changing number of servers that is adapted dynamically to the change of the arrival
rate. HPA is reactive, i.e., the change of arrival rate takes effect on the number
of servers in the next scaling interval. Therefore the number of servers follows the
MMPP arrivals, but lags one scaling period. Let λ(t) be the arrival rate at time t. By
assuming that the time MMPP spends in a particular state (e.g., minutes) is orders
of magnitude longer than the time between request arrivals (e.g., milliseconds), the

55

 laszlo.toka_36_22

number of servers at t can be calculated with the following formula:

C(t) =
⌈

λ(t− 1)
ρµ

⌉
, (3.6)

where ρ is the server utilization used in M/M/c queue models, and can be calculated
as ρ = λ/(cµ) with λ arrival rate, c servers and µ service rate. The utilization equals
to the management parameter of HPA, i.e., ρ = û.
From this model we can calculate Pod usage to describe the behavior of Kubernetes
HPA, and we can analyze the MMPP parameters. The steady-state probabilities π
of the underlying Markov chain of MMPP arrivals are given by:

π = πQ and πI = 1, (3.7)

where I is an all-ones vector. The steady-state arrival rate is:

λMMP P = πλT (3.8)

where λT is the transpose of the row vector λ = (λ1, λ2, . . . , λm).
Although using the steady-state distribution of MMPP we can infer the arrival rates,
and from that the probability of having a given number of Pods in the system, the
disadvantage of this model is that it does not account for job losses. As timed-
out requests are paramount to count during the operation, we also propose a more
complex, discrete-time queuing model for mimicking the calculation of c∗

i+1 in HPA
in subsequent simulations. Our model is similar to the one presented in [59], where
the scaling decision was based on the ratio of customers waiting and on the number
of servers. Although instead of the number of queued requests, we use the number
of served requests in the scaling decision, because the number of served requests and
the CPU usage are tightly coupled, and the latter is the basis of scaling decisions of
HPA.
Let the number of requests in the system in period i be

Li = Li−1 −Mi−1 + Λi − Ti (3.9)

where Λi is the number of arrived requests, Mi is the number of served requests
in period i and Ti is the number of queued requests that expire in period i. Mi is
defined as follows.

Mi = min{ciAP (ci), Li} (3.10)
where ci is the number of Pods and AP (ci) is the service rate described by the
Application profile defined in Definition 3.3, i.e., Mi is the minimum of the number
of requests in the system and of the number of requests the system could serve in
period i. Li contains the requests arrived during time period i, but does not contain
the requests served in period i− 1, nor the requests lost in period i. We assume an
empty queue in the initial period, i.e., i = 0, L0 = 0, c0 = 1, Λ0 = 0.
This model expresses request loss with the number of timed-out requests Ti, reflect-
ing under-provisioning of the system in the particular scaling interval. The formula
for Ti is given in (3.11), where t denotes the value of timeout expressed in scaling

56

 laszlo.toka_36_22

intervals, e.g., if t = x, then all requests arrived in period (i − x) and not served
from period (i− x) until period (i− 1) are timed out in period i.

Ti =
0, if (i− t) < 0

(Li−t −
∑t

j=1 Mi−j)+ (3.11)

CPU usage can be approximated by the ratio of number of served requests over the
maximum number of requests that can be served. Therefore the current CPU usage
can be written in the following form:

ui ≃
Mi

AP (ci)ci

, (3.12)

which yields the following for (3.3), the number of required Pods in Kubernetes:

c∗
i+1 =

⌈
Mi

ûAP (ci)

⌉
. (3.13)

We introduce downscale stabilization as a positive integer d: if d = 1, it has no
impact on the system, because scaling operation can not be performed within one
scaling interval. The indicator function of downscale stabilization in scaling interval
i can be formed as follows for d > 1:

di =
1 if ∃j : 2 ≤ j ≤ d, ci−j+1 < ci−j

0 else.
(3.14)

With this model we can simulate the number of Pods in the system, their resource
usage and the number of lost requests, taking into account the unique profile of the
application.
There are widely used data sets for testing web applications, the two most com-
mon are NASA-HTTP [85] (two months’ worth of all HTTP requests to the NASA
Kennedy Space Center web server in Florida) and WorldCup98 [134] (three months’
HTTP requests made to the 1998 World Cup Web site). We find that these logs are
rather outdated (1995 and 1998). Therefore to validate the presented HPA models,
we ran simulations with recent anonymized web traffic traces collected in a uni-
versity campus network for a week in the middle of a fall semester. The dataset
contains the flow count per second to Facebook; the trace is shown in Figure 3.6.
Since the Facebook data is generated by real users, it is a good example of how the
traffic of a cloud application manifests, e.g., it shows daily trends, and the average
number of requests per minute is not extremely high, but it shows relatively high
variance, hence it is a good fit for the edge cloud application flavor, i.e., relatively
small user base, hectic traffic. Therefore we use these traces for our simulations.
We also generated an MMPP-based traffic trace for simulation purposes. An MMPP
has been fitted to the Facebook traffic trace using the algorithm described in [99].
The algorithm is able to calculate the parameters of an MMPP from the traffic
information. For simulations we used a generated arrival sequence from this fitted

57

 laszlo.toka_36_22

Figure 3.6: One week Facebook traffic in a university campus
(green: training data, red: test data, blue: weekend, not used)

Figure 3.7: One week of MMPP-based traffic generated from
the Facebook load using the algorithm described in [99] (green:
training data, red: test data, blue: weekend, not used)

MMPP; the final MMPP-based traffic can be seen in Figure 3.7. With this synthetic
trace, we are able to compare the MMPP/M/c HPA model with the lossy discrete
model. Moreover, it is apparent that the synthetic trace does not show the daily
pattern as clearly as the real trace, therefore our forecast methods’ (in Sec. 3.5.2)
behavior can be simulated and evaluated in case of a less predictable traffic, with
which we can analyze the robustness of our system.
First we checked whether the discrete model matches HPA’s behavior by comparing
the number of Pods started in response to the real trace in a simulator of the model,
and in a real Kubernetes cluster. With our model we could simulate the number of
Pods in the system, i.e., resource usage, and the number of expired requests, taking
into account the unique profile of the application. The scaling interval was set to
one minute making the start-up time of new Pods negligible in comparison. The
downscale stabilization was set to one minute, too. Results are shown in Figure 3.8:
x-axis shows the time, the y-axis of the first diagram depicts the number of Pods,
that of the second diagram shows the sum of Pod minutes, i.e., cumulative sum of
Pod numbers accumulated through the simulated minutes. As the results suggest,
the discrete model behaved similarly to the real HPA operation, i.e., it gave a good
approximation of the number of Pods. We calculated the Mean Squared Error

58

 laszlo.toka_36_22

Figure 3.8: Comparison of the lossy discrete model and HPA
- Pod usage

(MSE) on the per minute Pod number of the simulated model compared to the
measurement, and we got 0.27 while the average number of Pods is 2.38 by the
discrete model and 2.28 by the HPA measurement.

Figure 3.9: Comparison of lossy discrete and lossless
MMPP/M/c models - Pod usage

Next we compared the discrete and the MMPP/M/c-based models. Since the latter
requires MMPP input, we used our synthetic traffic (Figure 3.7). We applied the
following equation to calculate the number of Pods for the MMPP/M/c-based model
in scaling interval i: ci+1 = C(i + 1), where C is the method of calculating Pods
given in (3.6). We run the simulations with a constant service rate and a downscale
stabilization of less than one scaling interval. The results are shown in Figure 3.9.
Like in Figure 3.8, the top chart depicts the number of Pods, the bottom chart
shows the cumulative sum of Pod minutes in function of time. The two analytical
models behave similarly. Slight difference can be observed when the input traffic is
volatile. To quantify the difference, we calculated the average number of Pods and
the MSE from the results, and we listed them in Table 3.1. Based on the results for
various average utilization values, it can be stated that the MSE is low compared
to the average number of Pods.
It follows that, under certain conditions, the MMPP/M/c model can be used instead
of the discrete model, enabling the analytical evaluation of the behavior of HPA.

59

 laszlo.toka_36_22

Table 3.1: Comparison of lossy discrete and lossless MMPP models

Pod usage Utilization ratio
0.85 0.9 0.95

Average - lossy discrete 7.18 5.19 4.07
Average - lossless MMPP/M/c 7.31 5.33 4.30

MSE 0.16 0.19 0.29

Since the MMPP/M/c model assumes lossless operation, intuitively the approxima-
tion of HPA is better in settings that result in fewer lost requests, which is reached
at lower utilization, hence the relatively low MSE value at 0.85.

3.5.2 The proposed proactive scaling engine

In order to achieve more effective resource usage and higher service quality than the
reactive HPA, we decided to create a scaling method that anticipates future requests
and allocates or releases resources in advance. In our so-called HPA+ solution
incoming request prediction and the resulting scaling decisions are implemented in
two separate modules. In contrast to many solutions that propose using only Q-
learning for server scaling [100, 29, 16], we use popular ML methods for prediction
[22, 55] in addition to the Q-learning method: auto-regression and Neural Network
(NN). We find it important to utilize models that have substantial differences in
their operation. AR is a simple model with low resource requirement, whereas
LSTM and HTM require more computing power. However, the latter two models
differ in nature: the former requiring supervised learning and the latter being an
unsupervised learning approach. Furthermore, the RL method (Q-learning) requires
a relatively long time for exploring the state space until good actions (or predictions)
are issued.
Our ML models were trained and tested on the anonymized web traffic traces shown
in Figure 3.6. We chose to use the time series of requests targeting Facebook,
because the traces show typical usage patterns: it is a highly visited website, the
number of visits from the campus shows a daily and weekly profile, and the standard
deviation of visits per minute is high, which describes well the request dynamics of an
average web service with a moderate customer base. To build and evaluate forecast
models we standardized the dataset using Z-score normalization. We chose the time
granularity to be in the order of minutes because both the web request time-outs and
the Pod startup times fall in the order of seconds. Furthermore, using a grid search
on the granularity value and other system parameters, we found that the trends in
traffic can be best captured using one minute granularity. This observation is also
supported by Rattihalli et al. [101] in their work.
Our first model to predict the traffic load was an auto-regressive (AR) model. It
assumed that the traffic load at a given time linearly depended on the previous
values of the time series. After the training phase we realized that the previous 32-
minute observations had to be used for achieving the best accuracy. The coefficients
to what extent we use each previous observation was calculated by optimizing the
model.

60

 laszlo.toka_36_22

The second model for the time series analysis was chosen from supervised deep
learning methods: we used the popular Long Short-Term Memory (LSTM) NN. We
examined several values for the size of the look-back window and the most beneficial
turned out to be 15-minute long. Thus for LSTM we used a 15-minute look-back
window, i.e., all the load values from t − 15 to t were used to predict the load in
t + 1. We also used the load difference between loads in the look-back window and
the number of elapsed minutes from midnight in each t as input to the network.
We picked our third model from the family of unsupervised deep learning: we se-
lected the widely used Hierarchical Temporal Memory (HTM). It is a biological NN,
designed to learn temporal patterns from sequences [47]. We used the implemen-
tation of Numenta.org in which we encoded the input load and the timestamp so
that the network would take into account 15-minute history. Numerous parameters
of the HTM architecture were optimized to achieve the best performance.
We used SARSA and Q-learning as our fourth, RL-based approach. In this case,
the state of the system is modeled with the current load and the number of running
Pods. The RL approach looks for the best action to execute in the given state. The
possible actions in a state are: scale out, scale in, idle. Even though the output of
the RL solution is the number of Pods required, we can convert this to a predicted
load by calculating the QPS served by the given number of Pods.
The training set for the four models consisted of the first 3 days of the week and
the test set was the fourth day, as shown in Figure 3.6. Each model was trained
on the training set. The hyperparameters of the models were optimized using grid
search and walk-forward cross validation, which means that each model was re-
trained several times on increasingly larger sets. Then with the best performing
hyperparameters the final models were created and then evaluated on the test set.
For an illustrative example, we wanted our forecast models to learn the daily profile
of workdays; weekends (and Friday afternoon) are significantly different, but the
four-day window proved to be sufficiently long for training and testing.
The results of the forecast methods were examined with the root MSE (RMSE) of
their prediction and with their R2 value. The R2 value assesses how well a model
explains and predicts future outcomes. The closer the value is to 1, the stronger the
predictive power. The RMSE of the AR, LSTM, HTM and RL were 0.092, 0.107,
0.138 and 0.737 and the R2 value were 0.879, 0.859, 0.819 and 0.456. Comparing the
time needed for training, the AR model was significantly faster than the others, its
training time was 14.7ms ± 0.6ms. Besides the advantage of being taught quickly,
computing the AR model is not resource intensive, but it is sensitive to outliers.
On the other hand, LSTM handles outliers well, but its training is more resource
intensive (283s ± 12s). In terms of resource requirements, the HTM falls between
AR and LSTM (13s± 2s), however the main advantage of HTM is that it is robust
to noise and it is able to learn continuously from each new input pattern, no prior
training is required. The important features of RL-based approaches are learning
without prior knowledge, and the ability to learn online and update environmental
knowledge by actual observations. However the learning time of our RL model is
similar to that of LSTM, i.e 212s± 24s.

61

 laszlo.toka_36_22

We further compared the instantaneous performance of our lossy discrete-time queu-
ing model of HPA and that of our ML forecasting models in numerical simulations.
We compared them to the oracle: perfectly predicting the number of arriving re-
quests in every scaling interval, and setting the number of Pods accordingly. The
oracle is used as a benchmark for resource usage, i.e., we evaluated each model
through the excess of their Pod usage, compared to that of the oracle. Furthermore,
on the other side of the provisioning decision problem, we looked at the request
loss ratio, denoted by Loss in the figures, which shows the ratio of lost requests to
the total number of web requests. Again, our four ML-based models (AR, LSTM,
HTM, RL) were trained on the 3-day series of flow counts towards facebook.com in
our traffic traces, and then the models were evaluated on the fourth day’s traffic.

Figure 3.10: Simulations of discrete-time HPA and of the
ML-based forecast models

The results of the simulations for all five scaling methods can be seen in Figure 3.10.
On the top diagram the cumulative request loss ratio (Loss) is displayed. At the
beginning of the simulation, HTM performed best in terms of Loss. In the middle of
the day the cumulative loss ratio of the models changed dynamically, and at the end
of the day AR finished with the lowest value. RL gave the worst Loss performance
throughout the whole day. On the bottom plot the cumulative excess of Pod usage
(relative to the oracle) is shown. HTM is far from the optimal resource usage: the
y-axis shows that it uses around 8% more Pod minutes than the oracle. The same
applies to the RL method: except for a few cases throughout the day, it cannot give
better prediction than the rest of the models. The other three methods perform
similarly to each other: at the beginning AR is the closest to the optimal, but in
the second half of the simulation LSTM gets closer to the optimal. The results show

62

 laszlo.toka_36_22

that although LSTM is closer to the oracle considering the Excess of Pod usage, it
leads to higher loss than what is obtained by the other methods. However, those
other methods all use slightly more Pods.
We also run the comparative simulations with the synthetic MMPP trace. Results
are shown in Figure 3.11: the AR and the LSTM models lead head-to-head in terms
of Loss. The hectic MMPP traffic could not be well tracked by the HTM model
and therefore it led to overprovisioning. The scaling decisions of RL were delayed
or insufficient, thus it resulted in many lost requests again. The lossy discrete HPA
model allocated far less resource than necessary, leading to a relatively high amount
of losses, so it performed much worse in terms of the number of lost requests than
the first two models.

Figure 3.11: Simulations of HPA’s discrete-time and of the
ML-based forecast models on the generated MMPP traffic

The results demonstrate that there is no single method that would always approx-
imate well the optimal scaling. In fact, as the input traces show varying dynamics
throughout the day, methods perform well or poorly episodically. Therefore we de-
sign our framework so that models are extendable and system parameters can be
changed at any time. An arbitrary number of models can be applied; although more
models require more resources, with different models the system can cover different
cases of input traffic fluctuations. So we decided to create a scaling engine, in which
several methods compete with each other and the active, decision-making method
is chosen based on its performance on recent input.
We therefore designed the high level operation of our scaling engine, called HPA+,
as follows:

63

 laszlo.toka_36_22

1. it contains four ML-based forecast models that predict that rate of incoming
web requests;

2. each minute, it calculates the accuracy of the forecast models for the recent
past, and selects the best one;

3. based on the prediction of the selected model, it calculates the number of
required Pods (using the profile of the application) for the next minute;

4. if the accuracy of all the ML-based models are poor, it switches back to the
default HPA operation temporarily.

Each model’s accuracy is calculated based on their past predictions in a brief history
window, and the prediction of the best performing model is used for the scaling
decision. The evaluation is performed on the average of the Relative Percentage
Differences (RPD) in the last n minutes, i.e.,

1
n

t−1∑
i=t−n

(
2 |q̂i − qi|

q̂i + qi

)
, (3.15)

where qi stands for the average QPS in the ith minute and q̂i is the predicted
average QPS for the ith minute. The closer a model’s accuracy is to 0, the better
its prediction, so from the four ML models, the one with the lowest RPD value will
be used each time. We used a parameter for the fallback to HPA, called fallback
threshold. If the accuracy value of our models given by (3.15) is greater than this
threshold, then the engine switches back to the default HPA operation.
We simulated the operation of HPA+ to examine whether better scaling decisions
could be obtained than with HPA, the default auto-scaler in Kubernetes. In order
to simulate the racing behavior of HPA+, for different parameter sets, i.e., history
window and fallback threshold, we trained the ML models and the HPA discrete
model on the 3-day dataset and evaluated them on the fourth day. The active
model was determined every minute by (3.15). The number of Pods used and the
number of lost requests per minute was calculated considering the scaling decisions
of the selected active model only. To account for non-deterministic behavior, we
performed this simulation 25 times for each parameter set.
After the parameter search using grid search, we found that a history window of
5 minutes, and 0.3 as fallback threshold should be used in HPA+. In addition to
the optimal values of the history window and of the fallback threshold, we also
examined how the efficiency of HPA+ would change if the input load was scaled up:
we ran simulations in which input request rate was scaled up to 30x of the original
trace. We compared the cost induced by HPA+ and by HPA; the cost contains the
price of Pod minutes and the penalty for lost requests. We summarize these two
cost terms with a weighting factor, called as trade-off parameter, which translates
the cost of SLA violations, i.e., the number of lost requests, into the cost of cloud
resources, i.e., Pod minutes. In Figure 3.12 we show the average ratio of total cost
of HPA+ over that of HPA on the y-axis, while the x-axis depicts the scale of the
input request rate intensity compared to the original trace. We show the cost ratio
for 5 different trade-off parameters: 0.01, 0.1, 1, 10, 100. The results suggest that

64

 laszlo.toka_36_22

Figure 3.12: Proportion of HPA+ and HPA costs as a func-
tion of input load scale

HPA+ incurs slightly higher costs than HPA only if cloud resources are significantly
more expensive than SLA violations, i.e., trade-off parameter is 100. In other cases
HPA+ reaches significant savings, mostly owing to heavily reduced request losses
with HPA+. Moreover, HPA+ leads to a significantly cheaper operation when the
input request rate is high, i.e., scales over 5x. This phenomenon is due to the
granularity of Pods adapted to the request rate: Pods become relatively smaller in
capacity compared to the overall demand, hence the number of Pods can be better
fitted to the load input.

3.6 Operational model of running microservices

Cloud deployment enables easy scaling to the actual application load. The cost of
scaling is greatly determined by the organization of application into scaling units.
In this section, we propose an analytical model to reflect the resource footprint
overhead at scaling, and the latency overhead of organizing application code into
several deployment units. We show that these cost terms are opposing forces that
steer the application designer towards organizing the application code in an optimal
packaging setup for reaching the sweet spot in terms of operational expenses and
application response time performance. On one hand, the co-location of application
components within the cloud results in lower operational delays, hence better QoS for
the application user. We consider the strictest affinity policy that can be expressed
in public clouds today: packaging those components together within a container or
a function that must be run on the same hardware. On the other hand, with more
packaging comes less modularity, which results in superfluous resource consumption
especially during scale-out regimes.
Let us start by modeling the application as a finite set of sub-application parts, called
as modules, that can be grouped into separate deployment units, e.g., containers
or functions, denoted as scaling units or groups from now on. We assume that
any combination of these modules can be packaged together, i.e., in case all of
them are grouped together, we arrive back to the monolithic application (from a
cloud deployment perspective). We model the modules by their average memory

65

 laszlo.toka_36_22

consumption over a given time period, e.g., an average of 2396 MB memory footprint
integrated over 1 hour. We denote those values by r1, r2, . . . , rn. Now, for each
of these modules, let us further define a value s that reflects its time-weighted
average scaling factor in a steady state operation of the deployed application over
the given time period mentioned above, e.g., an average scaling factor of 2.67 due to
being scaled to 3 instances for 40 minutes, and having 2 instances for the remaining
20 minutes. The value si can be interpreted as the number of invocations of the
respective module i of the application which can be run in parallel, i.e., in multiple
instances. Application codes that have to run sequentially, i.e., no possible way of
parallelism of the module, cannot have a scaling factor s larger than 1.
The problem setup is now translated into dissecting a given application into modules
such that each module is packaged separately, e.g., as one or more containers to be
grouped in a Pod under Kubernetes, the most widely used CaaS manager, or a
function that will be executed in a FaaS platform. Along the process of dissecting
a monolithic application into modules, then organizing them into scaling units, the
application designer has to focus on the following operational aspects that appear
consequently: i) memory footprint of scaling units, ii) overhead of invocation latency
between scaling units.
Scaling cost is due to the amount of code that is scaled out unnecessarily in case
of executing multiple instances of a scaling unit.
Communication cost An extra latency is added to the application execution time
due to invocations across scaling units. Furthermore, when breaking modules and
putting them in parallel resources, the increased network latency, as well as reduced
reliability, requires careful reasoning about consistency.
We illustrate the scaling cost in Figure 3.13: we depict the modules of an application
by 5 rectangles. On the x-axis we mark the memory footprint of one instance of each
module. The ticks represent 200MB of memory, so the leftmost module’s memory
footprint is 600MB. We place the modules’ memory footprint values right next to
each other. On the y-axis we denote the number of instances that run in parallel
for each module, i.e., the average scaling factor. If there is no parallelization for
the modules of a given application, then the height of every rectangle is 1. In the
illustrative case shown in Figure 3.13, the scaling factor is 1, 3, 4, 6, and 7 for the
individual modules from left to right, respectively.
The overall memory footprint of the whole application is the area under the curve,
i.e., the sum of the rectangles’ areas. By separating the application into modules and
scaling those modules with different factors, the end-to-end application execution
time, e.g., response time for a web request, is greatly reduced, but the price to pay
is the above-mentioned overhead: inter-module latency. Let us see how the memory
footprint changes if some modules are merged into a joint scaling unit. For example,
if the application designer decides to add the module in the middle of Figure 3.13
to another module which has either a lower or a higher scaling factor. We assume
that the designer does not want to make any compromises on the execution speed
at scale out regimes, so in the former case, the applied scaling factor will be the
one dictated by the middle module; in the latter case it will be that of the other
module. In both cases there will be modules to be scaled to an unnecessary extent,

66

 laszlo.toka_36_22

Figure 3.13: Illustration of the scaling overhead model
through an example application consisting of 5 modules

leading to an extra scaling cost. In the specific example of Figure 3.13 the extra cost
is represented by the dashed rectangles: if the middle module is packaged together
with its left neighbor, then the scaling factor of the merged module will be that of
the middle module; similarly, merged with its right neighbor, this latter will dictate
the scaling factor.
The overall operational cost is therefore increasing by merging different modules of
the application that require diverse scaling factors. However, merging them might
be necessary to meet the latency requirements dictated by application SLA. The
questions naturally arise: how many scaling units should the application designer
account for, and which modules should be packaged together into those? We make
these statements in the following and provide hints on their proofs.

Lemma 3.12. For any given number of scaling units, the scaling cost is minimized
by grouping the modules together into scaling units following the order of their scaling
factors.

Proof. The proof is indirect. Let us assume an optimal arrangement of modules into
scaling units in terms of minimal scaling cost. Without the loss of generality, let the
scaling units operate at increasingly ordered sg

1, sg
2, ..., sg

x scaling rates. Furthermore,
let module i have si scaling rate and belong to scaling unit j with si < sg

j−1 < sg
j . In

this case the scaling cost can be decreased by re-arranging module i (that does not
hold the largest scaling factor in its own group j) into another scaling unit for which
the scaling factor is higher than its value, but lower than its original group’s scaling
factor, e.g., into group j − 1, contradicting the initial assumption about optimal
arrangement.

67

 laszlo.toka_36_22

Figure 3.14: Modules of an illustrative example application,
ordered by their scaling factor, and grouped (denoted by vari-
ous colors and dashed line contours)

68

 laszlo.toka_36_22

In Figure 3.14 we depict the modules of an illustrative example application, ordered
by their scaling factors and grouped into scaling units along the ordering.
Lemma 3.13. For any given number (x) of scaling units with minimized scaling
cost, for the scaling factor sb of the modules b on group borders

sb ≥
sg

jrb + sg
j−1

∑
i∈j−1 ri

rb +∑
i∈j−1 ri

∀j < x (3.16)

holds.

Proof. In an increasing ordered setting of the modules as suggested by Lemma 3.12,
the borders of scaling groups are left to such modules b for which the jump in scaling
factor is larger than the scaling factor increment (relative to the module’s) of the
right hand side group multiplied by the width of the module, and divided by the
width of the left hand side group. Specifically, assuming x scaling units, for any
neighboring scaling unit pair j − 1, j for which 1 < j < x, the following inequality
must hold: (

sb − sg
j−1

) ∑
i∈j−1

ri ≥
(
sg

j − sb

)
rb. (3.17)

It is straightforward to see that in case this inequality does not hold, then the area
of the e.g., left hand side rectangle depicted by dashed lines in Figure 3.13, which
is expressed by

(
sb − sg

j−1

)∑
i∈j−1 ri, would be greater than that of the right hand

side rectangle, which is equal to
(
sg

j − sb

)
rb, resulting in higher scaling cost, thus

contradicting with the initial assumption of being at the border of optimal grouping.
Equation 3.16 is then derived from Equation 3.17 by rearranging the terms.

In summary, there is a relatively large jump between the scaling groups’ scaling
factors in a setting that is optimized for scaling cost. The authors of [72, 73] found
that a small percentage of microservices are hot-spots in call graphs, specifically,
about 5% of microservices are multiplexed by more than 90% of online services in
Alibaba clusters, which creates such large differences between scaling factor values,
ideal for marking the borders of scaling groups. For an analytically tractable model,
in the next statement the modules are assumed to be infinitesimally small, and the
scaling factor is interpreted as a differentiable continuous function over the variable
that depicts the cumulative resource demand of the modules sorted in the increasing
order of their scaling factors.
Theorem 3.4. In the continuous model of module resource demand ρ and the scaling
factor as its function σ(ρ),

dσ

dρ
ρL + σ − σR = 0 (3.18)

must hold for the scaling group borders, i.e., the points on the x-axis that fall on the
borders of neighboring scaling groups. ρL denotes the width of the scaling group to
the left, σ is the scaling factor value that belongs to the scaling group on the left,
and σR denotes the scaling factor of the scaling group to the right.

Proof. Based on Lemmas 3.12 and 3.13 and the assumption of modules being in-
finitesimally small in resource demand, σ(ρ) is a monotone increasing function and

69

 laszlo.toka_36_22

similarly to Equation 3.17,
dσρL ≥ (σR − σ) dρ (3.19)

also holds, since ∑i∈j−1 ri translates to ρL and sg
j−1, sg

j are denoted as σ, σR, re-
spectively. Therefore, the solutions to the given differential equation provide the
possible scaling group borders in the proposed continuous model. Equation 3.18 is
then derived from Equation 3.19 by rearranging the terms and fixing equality.

Lemma 3.14. The scaling cost decreases monotonically when the modules are
grouped into more scaling units.

Proof. The statement holds since any group that consists of at least 2 modules
with different scaling factors can be split into 2 groups that have a lower overall
scaling cost. As the superfluous resource footprint of the individual scaling units
gets smaller, in case of scaling them out, the amount of memory consumption scaled
out unnecessarily is also smaller.

In contrast to the statement in Lemma 3.14, the communication costs increase mono-
tonically with the number of scaling units due to the resource overhead of virtual-
ization and to the higher number of inter-module invocation delays. These opposing
effects call for an optimization exercise in order to find the sweet spot in operational
costs of polylithic applications.
The limitation of the model is that it ignores the call graph among the modules: it
groups those modules together that are close in scaling factor, not necessarily those
that frequently invoke each other, or whose lifetime overlaps the most. Therefore,
workload affinity is not considered in consolidating software components into scaling
units.

3.7 Related work

In this section we present the major achievements in the literature related to cloud
management and orchestration. We divide the discussion of the state-of-the-art
into parts on i) delay-awareness, high reliability and availability concepts and on ii)
auto-scaling methods in cloud environments.

3.7.1 Orchestration of latency-critical cloud-native applica-
tions

Latency-sensitive and data-intensive applications, such as IoT or mobile services, are
leveraged by edge computing, which extends the cloud ecosystem with distributed
computational resources in proximity to data providers and consumers. This brings
significant benefits in terms of lower latency and higher bandwidth. However, by
definition, edge computing has limited resources with respect to cloud counterparts;
thus, there exists a trade-off between proximity to users and resource utilization.
Moreover, service availability is a significant concern at the edge of the network,
where extensive support systems as in cloud data centers are not usually present.

70

 laszlo.toka_36_22

To overcome these limitations, [12] proposes a score-based edge service scheduling al-
gorithm that evaluates network, compute, and reliability capabilities of edge nodes.
The algorithm outputs the maximum scoring mapping between resources and ser-
vices with regard to critical aspects of service quality. [53] introduces a new platform
for enabling an edge infrastructure according to a disaggregated distributed cloud ar-
chitecture and an opportunistic model based on bare-metal providers. Results from
a multi-server online gaming application deployed in a real geo-distributed edge
infrastructure show the feasibility, performance and cost efficiency of the solution.
In order to meet the rapidly changing requirements of the cloud-native dynamic
execution environment, without human support and without the need to continually
improve one’s skills, autonomic features need to be added. Embracing automation at
every layer of performance management enables us to reduce costs while improving
outcomes. [65] lists the definition of autonomic management requirements of cloud-
native applications, and the authors propose that the automation is achieved via
high-level policies, while autonomy features are accomplished via the rule engine
support. One such feature of online scheduling in a cloud-native context is migration.
A large body of research has tackled the issues around migration of VMs, containers,
etc. in the cloud. E.g., [57] proposes an energy-aware VM migration technique for
cloud computing. The proposed technique migrates the maximally loaded VM to
the least loaded active node while maintaining the performance and energy efficiency
of the data centers.
In the era of cloud services, there is a strong desire to improve the elasticity and
reliability of applications in the cloud. The standard way of achieving these goals
is to decouple the life-cycle of important application states from the life-cycle of
individual application instances: states, and data in general, are written to and read
from cloud databases, deployed close to the application code. Rooted in cloud-native
computing, the stateless design outsources the state embedded in computing entities,
e.g., VMs, containers, Pods, virtual network functions, to a dedicated state storage
layer, facilitating elastic scaling and resiliency [114]. In [114] the authors propose
a system design that can be adapted to any cloud application without the need for
complex coordination among the network control, the stateless application elements,
and the state storage backend. They present the first product-phase realization of
the stateless paradigm, an operational virtualized IP Multimedia Subsystem that
can restore the live call records of thousands of mobile subscribers under a couple
of seconds with half the resources required by a traditional “stateful” design.
The high performance requirements on the application impose strict latency limits on
these cloud storage solutions for state access. Cloud database instances are therefore
distributed on multiple hosts in order to strive to ensure data locality for all applica-
tions. However, the shared nature of certain states, and the inevitable dynamics of
the application workload necessarily lead to inter-host data access within the data
center (or even across data centers, if the application requires a multi-data center
setup). In order to minimize the inter-host communication due to state externaliza-
tion, the authors of [114, 115] propose an advanced cloud scheduling algorithm that
places applications’ states across the hosts of a data center. In such a cloud-native
setting, stateless cloud applications and an adaptively self-synchronizing distributed
cloud database alleviate the long-standing issues of live migration within the cloud.

71

 laszlo.toka_36_22

Several research papers have been published that all propose some kind of scheme for
improving the availability and reliability of applications in the inherently untrust-
worthy context of edge cloud infrastructure. [58] tackled the problem of separate
software stacks between the edge and the cloud with no unified fault-tolerant man-
agement, which hinders dynamic relocation of data processing. In such systems,
the data must also be preserved from being corrupted or duplicated in the case of
intermittent long-distance network connectivity issues, malicious harming of edge
devices, or other hostile environments. A self-adapting scheme is proposed in [109]
which uses static and dynamic backups for VNFs over both the edge and the cloud in
order to provide high availability. Fan. et al. [35] propose a framework to provision
availability of SFC requests in a data center. None of these research works consider
multiplexing backup resources for multiple virtual instances like our scheduler does.
Yala et al. [139] propose a solution for their optimization problem that strive to
optimize the trade-off between availability and latency. However, their work deploys
VNFs without deploying backup resources.
Although, the solution of Kanizo et al. [61] and Raba [144] both multiplex backup
resources, they ensure high availability for VNFs with dedicated backup nodes.
In contrast, our scheduler performs resource provisioning on general nodes that
contains Pods as well. In [36, 19] the authors consider the replica and virtual function
placement to achieve lower migration time, however they did not consider minimizing
the provisioned resources assigned to replicas. Authors of [140] investigate the fog
resource provisioning problem for deadline-driven IoT services to minimize the cost
considering the probability of resource failures. They assume that VM failures are
temporary and recoverable. In contrast, we argue that each node’s failure should be
prepared for.
An online resource orchestration algorithm which takes into account network aspects
is proposed in [43]. The algorithm enables the orchestrator of OpenStack to manage
a distributed cloud-fog infrastructure. An embedding algorithm is proposed in [90],
which instantly deploys end-to-end delay-constrained services while applying a cost-
aware VNF migration strategy. The authors’ hybrid orchestration approach unites
the advantages of online heuristics and offline optimization in their service orches-
tration method, with the goal of providing fast service placement and minimizing
the cost due to VNF migrations.
The research community has already started extending the Kubernetes scheduler
to support edge computing architectures with network awareness [23, 84, 107]. In
contrast to our work, the scheduling method in [23] does not take into account the
delay directly between the edge nodes. Authors of [84] propose a content delivery
method that improves Kubernetes scheduler with awareness to network distance
using the Autonomous System path of the Border Gateway Protocol. In contrast, we
use the measured delay values as the network distance property. An extension, called
Network-Aware Scheduler, is implemented in [107] enabling Kubernetes to make
resource provisioning decisions based on the network infrastructure properties like
latency and bandwidth. Although, the application requests in [107, 84] do not define
latency requirement that has to be met during their scheduling. Furthermore, none
of the previous works consider providing high reliability for the applications, and
dynamic topology clustering to relax the difficulties that a large scale architecture

72

 laszlo.toka_36_22

poses. We argue that the main goal of edge computing, i.e., hosting delay critical
applications, must be aware of not only network latency, but it must also take into
account the unreliability and the large number of edge nodes.

3.7.2 Auto-scaling solutions in the cloud

Since elasticity and dynamism are key concepts to cloud computing, offering appro-
priate application scaling is one of the most important features for a cloud provider.
[71, 3] give comprehensive surveys about scaling solutions applied in data centers.
They categorize auto-scalers according to their underlying theoretical models. We
follow suit, and highlight those recent works that fall close to our proposed solution.
Threshold-based: Authors of [2, 101] improved vertical elasticity in cloud sys-
tems of lightweight virtualization technologies with threshold-based scaling rules.
Authors of [2] proposed ElasticDocker which supports vertical elasticity of Docker
containers based on the IBM’s autonomic computing MAPE-K principles. In [101]
the authors presented the Resource Utilization Based Autoscaling System, which
improved Kubernetes’ Vertical Pod Autoscaler with the ability of dynamically ad-
justing the allocation of containers non-disruptively in a Kubernetes cluster. Both
papers incorporated container migration and examined the possibilities in vertical
scaling, while our proposed solution improves the horizontal auto-scaler. Khazaei
et al. [62] presented the architecture of Elascale that provided auto-scalability and
monitoring-as-a-service for any type of cloud software system, making scaling de-
cisions based on an adjustable linear combination of CPU, memory, and network
utilization. We argue that this simplification is a limiting factor in the scaling per-
formance.
Queuing model-based: Several queuing models describe scaling systems by as-
suming a memoryless arrival process and an adaptive number of servers. Kaboudan
et al. [59] presented a discrete-time queuing model with a dynamic number of servers
using a threshold-based scaling policy. They ran simulations, and compared their
model to the behavior of an M/M/c queue. Mazalov et al. [77] proposed a queuing
model with an on-demand number of servers, which depended on the length of the
queue, and they assumed a Poisson arrival process with a specified rate. Jia et
al. [48] introduced a queuing model which used a threshold-based policy to better
describe an industrial production process. The model assumed a MMPP as arrival,
and the number of servers was selected from two predefined values based on the
queue length. In all these cited papers we see the Markovian assumption of ex-
ponential inter-arrival times to be a limiting factor. Nevertheless, we also use an
MMPP/M/c model in our analytic approximation of HPA.
Control theory-based: Using control theory, the behavior of a dynamic system
is changed by examining the output and reference values: the goal of the controller
is to align the actual output to the reference based on the feedback to the input
system. In an auto-scaling context, the reference value is the targeted SLA, and
the output values to evaluate performance come from the system, e.g., CPU load
or response time. For maximizing application QoS, while meeting both a time con-
straint and a resource budget, Zhu and Agrawal [146] developed a framework with
Proportional-Integral control and Reinforcement Learning (RL). They showed that

73

 laszlo.toka_36_22

their solution can efficiently scale the VMs under the application with low overhead.
Ali-Eldin et al. proposed two solutions for horizontal cloud elasticity: in their first
work [5], the infrastructure was modeled as a G/G/N queue with variable N, which
was used to design a reactive-adaptive proportional controller that acted based on
the load dynamics, and could respond to sudden changes in it. They also managed
to avoid oscillations and premature resource reduction; in their second article [6],
two adaptive hybrid controllers were introduced that used both reactive and proac-
tive control to change the number of VMs allocated to a service. Their system was
analysed using different deployment scenarios with several real life workloads, and
the proactive and reactive controller based scaling could outperform both the re-
gression and the fully reactive scaling. Kalyvianaki et al. [60] used a Kalman filter
to adjust the CPU allocation based on past utilization observations. The proposed
system is able to scale multi-tier applications and has the ability to configure itself
to any workload conditions. Baresi et al. [14] proposed a discrete-time feedback
controller to scale resources both at VM-, and at container-level, and has the advan-
tage of handling microservices-based applications. Their experiments showed that
the proposed controller can outperform Amazon’s Autoscaling significantly. Con-
trol theory-based models show high efficiency in application scaling. Several models
combine other types of scaling methods, e.g., RL, performance or demand predic-
tion inside the controller to adapt to the application needs. Another advantage of
these solutions is that the controller can operate in the order of seconds as presented
in [60], thus the scaling algorithm can respond quickly to changes in resource usage.
Reinforcement learning-based: Arabnejad et al. [11] combined two RL-based
approaches: Q-learning and state-action-reward-state-action algorithms with a self-
adaptive fuzzy logic controller that drove dynamic resource allocation for VMs.
Horovitz et al. [51] presented a threshold-based solution for horizontal container
auto-scaling that used Q-learning to tune the scaling thresholds. Rossi et al. [105]
proposed RL solutions (i.e., Q-learning, Dyna-Q, and model-based) in Docker Swarm
that exploited different degrees of knowledge about system dynamics. In our auto-
scaler engine we also leverage the power of RL methods.
Performance prediction-based: Wajahat et al. [130] proposed a NN-, and
regression-based application agnostic autoscaling solution, called MLscale. They
used a multi-layer feed-forward NN to build the performance model of the applica-
tion based on the request rate and system resource statistics. The model was able
to predict the response time of the application. To predict the new response time
after a proposed scaling action, they trained multiple linear regression models, which
were able to determine the metrics from the current state taking into account the
scaling decision. Rahman et al. [98] proposed a solution to predict end-to-end tail
latency of microservice-based applications and to scale based on that. They trained
several ML methods, like random forest, linear regression, support vector regression
and deep NNs, to predict the latency of the application. For a given workload con-
dition, they used the best model to find the highest resource utilization values of
the relevant microservices, at which the given SLA targets would not be violated,
and the scaling threshold was set to the found resource utilization value. Authors
of [143] presented Microscaler, an autoscaling system that automatically detected
SLA violations, determined the services requiring scaling, and evaluated how much
resource those needed. They introduced Service Power, a metric that could be cal-

74

 laszlo.toka_36_22

culated from the response times of the service, and they used this metric to find
the services which needed scaling. To determine the required instances for these
services, they used Bayesian optimization and a step-by-step heuristic approach.
Authors of [106] provided a solution called Autopilot, an ML-based horizontal and
vertical scaler used by Google to configure the resources for tasks in a job. The
primary goal was to reduce the difference between the limit and the actual resource
usage (slack), while minimizing the risk that a task is killed. They used several
ML techniques to predict the vertical resource limits based on historical data, and
different ruled based approaches to horizontal scaling. In practice, Autopiloted jobs
showed a slack of 23%, compared with 46% for manually-managed jobs.
Demand forecast-based: Short-term demand forecasting has been in the focus
of researchers of various application domains for many years. In the energy sector,
it is very important to know the power generated by wind turbines in advance.
To solve this problem Li et al. [68] developed a 4-input NN which turned out
to be better than the single parameter traditional approach. Catalao et al. [21]
proposed a 3-layered feed-forward NN approach to forecast next-week electricity
market prices. Their approach proved to be better than previously presented auto-
regressive integrated moving average model (ARIMA) methods for the reason that
it is less time consuming and easier to implement. For cloud computing, Chen et al.
[22] implemented a dynamic server provisioning technique to minimize the energy
consumption of data centers. A custom AR method was presented in their study
to forecast the number of connections on Windows Live Messenger servers. In [39]
the authors applied signal processing and statistical learning algorithms to achieve
online predictions of dynamic application resource requirements. Their forecast
solution was based either on signatures of historic resource usage, or on a discrete-
time Markov chain with a finite number of states, depending on whether the input
traces showed repeating patterns or not. An effective prediction model was also
provided by Islam et al. [55] for adaptive resource provisioning in the cloud. They
evaluated several ML models, such as NNs and linear regression, on a dataset. They
claimed that their solution was suitable for forecasting resource demand ahead of
the VM instance setup time. The authors of [79] proposed an adaptive prediction
method using genetic algorithms to combine time-series forecasting models, such as
ARIMA, simple and extended exponential smoothing.
Many of the listed approaches modeled the resource needs of the application using
ML techniques. In order to avoid both excessive over-provisioning and SLA viola-
tions, we use such performance models, and we also follow the ideas behind the line
of work of demand forecast-based methods.

75

 laszlo.toka_36_22

76

 laszlo.toka_36_22

Chapter 4

Bandwidth allocation in access
networks towards the cloud

4.1 Introduction

The current state in the evolution of Internet is the “wireless Internet” in which
Internet access has become available for anybody, anywhere at any time via mobile
devices. Quality of experience in wireless access networks has been and, with the
proliferation of the Networked Society, will be an important factor in telecommuni-
cations. In this chapter we propose service quality assurance frameworks with which
the existing tools in the hand of network operators are extended with the capabil-
ity of user-driven or cloud-based quality control. In the first case the users get an
opportunity to signal their online demand for scarce resources towards the network,
which in turn can improve its decisions on resource allocation with the ultimate goal
of raising the satisfaction of its users. As a specific example, we make the case of
user signals for urgent bandwidth demands, and of the scheduling decisions made
at the access point based on those. In the second case we present a cloud-based
IoT architecture that maximizes utility when high-bandwidth video streams have
to share a narrow uplink channel. We propose a resource allocation method that
benefit of the context-based prediction engine. This allows for a significant reduc-
tion in uplink bandwidth and processing power in the cloud, and creates an efficient
multiplexing among the resources used to detect events in video streams in parallel.
This chapter is organized as follows. First, we derive the model of a distributed
framework with the elements of stochastic game theory. Our model describes the
state of the access network via the users’ bandwidth demand, their backlogged jobs,
and the strategies they can choose with the aim of reaching a desirable bandwidth
allocation. Second, we propose a central allocation scheme for the uplink shared by
multiple video streams of e.g., an IoT system. We exploit the benefits of predictable
events for which data to be uploaded to the cloud can be compressed according to
the optimization target of the system operator.

77

 laszlo.toka_36_22

4.2 An uncoordinated bandwidth sharing model
and its analysis

In this section we first present our framework, engineered to solve the aforementioned
issues, then we build its simplified model, and give an analytical formulation and
an example for solving the problem of finding the optimal policy.

Boosted userNormal user

Terminal A

C
u

m
u

la
te

d
 d

a
ta

time

Start rendering: T1

(Object-1 & Object-2 ready)

Bandwidth

O
bj

. 1

Object 2

Object 3

Finished

rendering: T2

Start rendering

baseline: T1

Gain

C
u

m
u

la
te

d
 d

a
ta

time

Start rendering: T1'

(Object-1 & Object-2 ready)

Finished

rendering: T2'

Bandwidth

O
b

j.
1

O
bj

ec
t

2

Object 3

Chrome Shell

AndroidManifest.xml

<Service ... android: isolated

process = “false”>

Blink

Document

::readyState() Logger

W

F

Q

HTTP response

object 1, 2, 3

HTTP response

object 1, 2, 3

Terminal B TCP socket

to set weights

Content

provider
Radio access

network

Figure 4.1: The Boosting Framework in a toy example for 2
users

In Figure 4.1 we depict the components of our framework, i.e., the radio access point,
two terminals and a content provider server, with a toy example that introduces the
notion of “boosting” in a case of e.g., web page rendering. The prioritizing (or
boosting) logic in the wireless access point is stylized with different queues and a
Weighted Fair Queuing (WFQ) scheduler [95]. The “Normal user” with Terminal A
is not using the boosting service, while the “Boosted user” with Terminal B indeed
does. The plots drawn at both users show time on their x axes, and the accumulated
downloaded data and the received bandwidth on their y axes with dotted and dashed
lines respectively. Solid sections show the web objects that are downloaded in the
respective bandwidth-time products.
As the result of boosting, the toy example shows that although the total time to
download all 3 web objects is the same for the 2 users, the “Boosted user” gets hold
of the first 2 objects earlier than the “Normal user”, which is proved to be critical
in terms of QoS, hence the benefits of using our proposed Boosting Framework.
While the download bandwidth for the “Normal user” remains at the same level
throughout the download session, the “Boosted user” receives higher bandwidth
allocation at the beginning, and lower at the end. The boosting service in this case
is implemented in the wireless access point, and is triggered by the web browser’s
custom plugin which sets the weights higher in the beginning and lower at the end
compared to the default value for the WFQ scheduler in the wireless access point.
In the following we model this as submitting bids to an auction where boosting
bandwidth is allocated to users for time slots.
We split the time horizon into uniform slots and assume that in a given time slot
only one user can get a unit amount of boosting bandwidth, resulting in the fact
that one unit of the user’s jobs gets boosted. This way we discretize our model
and make sure that the auction in which the wireless access point selects the user

78

 laszlo.toka_36_22

whose job will be boosted is a single-unit auction. We apply a second-price auction:
highest bid wins and pays the second highest bid for the single item. The usual
notions and notations related to our auction are listed below:

• Users are denoted as I = {1, 2, . . . , i, . . . , n}.

• The amount of boosted jobs of user i in a given time slot t is denoted by
xi(t) ∈ {0, 1} ∀i such that ∑i xi(t) = 1 ∀t. The amount of boosted jobs is
defined in terms of traffic volume (given by the product of time slot length
and the amount of bandwidth allocated for boosting). In each time slot only
one user wins the opportunity to get its jobs boosted.

• Stochastic demand: di(t), job arrival events are linked to time slots and job
sizes are defined in the aforementioned boosted traffic volume units.

• Jobs that are not boosted accumulate in the backlog of the respective user,
denoted as Ji for user i. We denote a job with ji in the backlog Ji = {ji} of
user i, its size as |ji| and its age, i.e., the time it spent in backlog, with j̃i.

• The value of getting a boosting opportunity is ui(t) = ui(xi(t), Ji(t)), ∀i, i.e.,
all the backlogged jobs influence the received utility because by not getting
the opportunity all those jobs get delayed, hence negative effect on QoS.

• Users bid for boosting bandwidth with bi(t) in the discrete time slots. In a
system implementation the bids are best produced by a browser plugin, just
as it is suggested in the toy example of Section 4.2.

• The second highest bid, i.e., the price to be paid, is denoted by ci(t). The bud-
get of user i in time slot t is mi(t). Accounting user budgets and subtracting
costs to be paid at auctions are best handled by the access point in a possible
system implementation.

The system behaves as follows. In each time slot the system is in one of the states
S that describe traffic backlog to boost and remaining budget for each user. If there
are less jobs to be boosted than what the system can handle in a time slot, then
naturally all of them get boosted. On the other hand, when the resource demand
exceeds the offer, i.e., there are more jobs waiting for being boosted in the system
than what can be served, a job ends up either being boosted or staying in backlog
by the end of the time slot.
The aim of the analysis is to find the stationary policy that optimizes the service
allocation according to various Key Performance Indicator (KPI)s. The possible
state transitions from one time slot to the subsequent one are due to job arrivals
and serving jobs, which latter is driven by the job backlogs via boosting attempts.
A Markov decision process based policy optimization approach would require the
definition of selected actions πi(bi|s) = P [At

i = bi|St = s] ∀t, where At
i denotes the

random variable depicting user i’s action in time slot t when the system is in state
s. Due to the high memory dependence of the system behavior the MDP based
analysis is infeasible.

79

 laszlo.toka_36_22

Instead of state space based optimization, we treat the problem as searching for a
policy in a bid-based stochastic game. In this setting the jobs are generated at users
randomly, then they submit bids, finally one unit of the winner’s backlogged jobs
gets served. The auction winning user’s job gets boosted, others’ jobs to be boosted
remain in their backlogs.
The payoff function users optimize is defined as follows.

Definition 4.1. The user payoff is equal to the sum of utilities of jobs served minus
the cost paid for the service, i.e., for user i and time T : pi(T) = ∑T

t=1 ui(t)− ci(t).

Although the value of boosted jobs is what directly affects the user QoS, we also
integrate the cost that a user has to cover from its centrally allocated budget into
the payoff. Doing so we intend to make the payoff resonate with the repeated and
stochastic character of the game: this creates an incentive not to use up all the
allocated funds at one, but keep savings for periods when multiple jobs arrive.
We assume that the rational users strive to maximize their payoffs, and there-
fore seek the optimal strategy: b∗

i = arg maxbi
limT →∞

pi(T)
T

with budget constraint∑T
t=1 mi(t)− ci(t) ≥ 0, ∀T . The strategy (bidding policy) of the user allows for de-

scribing a wide range of dynamic user and system behavior. Therefore optimization
of various KPIs can be implemented through these user strategies.
In order to demonstrate the complexity and the flexibility of the model, here we
show a specific example. We assume a game of 2 players, unit-size jobs, service
capability of 1 job per time slot in total and for both players a utility decreasing
with the age of the head job of the player’s backlog: ui(t) = u− ai(t). For the sake
of simplicity we assume that a player can choose between 2 actions in each time slot:
either bids with the actual utility of its head job, or bids with zero.
In Figure 4.2 we demonstrate two cases in which both players have one job, the first
player’s head job is i time slots old, the other player’s head job is j time slots old.
The left-hand side shows the case in which the players adopt the policy in which
they bid with the head job utility, the right-hand side graph shows the case for zero
value bids. The circles represent states and only those are shown that will be reached
from the one-one job state until ending up in an empty system (no new job arrivals
are supposed). In the circles we depict the number of jobs for the two players. On
the arrows, we show the payoff of the player that wins the auction between the two
states.
In the first case, whoever has the more recent job (e.g., i < j << u) will win the
auction, but has to pay the other player’s utility as cost (e.g., pi = u − i − (u −
j) = j − i). Then the other player can get its job boosted without any cost (e.g.,
pj = u− j − 1), but with less utility, as the head job got older. In the second case
the first time slot gets auctioned to a randomly selected player with no cost, hence
e.g., pi = u− i, and the other player gets the second time slot for no cost, as in the
first case. Based on these payoffs, as long as j− i > 0.5(u− i)+0.5(u− i−1) stands,
i.e., u > j > u − 0.5, the first player is better off with the utility-based bidding
policy. Otherwise, and this is the more probable case of the variables, zero value
bidding results in higher payoffs. Furthermore, if j − i < u− i− 1, i.e., j < u− 1,
it is actually more profitable for the first player to let the second player, with the

80

 laszlo.toka_36_22

Figure 4.2: Toy example for utility-based bidding policy (left-
hand side) and zero bidding policy (right-hand side)

older head job, win. The lack of costs compensates the player for the loss of utility
in the latter time slot.
Note that this toy example with artificial payoff assumes that no new jobs arrive
before the second allocation, and we assume that players either bid with their actual
head job utility or with zero. These are restrictive assumptions, but keep the exam-
ple tractable and show that even without the stochastic element of job arrivals how
the sequential (or repeated) nature of the game rules out the utility-based strategy
from the set of dominant strategies in these second-price auctions.
Hindered by the analytical complexity, we present a numerical evaluation of our
model, and we show simulation results for different heuristic policies. Our main as-
sumption is that urgent bandwidth demands, if not served with the required resource
allocation, lose their valuation with time: jobs are depreciated in the backlog. Our
goal is to show that despite this pushing time constraint even a user-driven resource
allocation framework may alleviate congestion situations.
Here we present its parameter settings, the analysis we made the cases for and fi-
nally the results we obtained. We are interested in the interplay of different bidding
policies. In our simulations we assume that users switch among our heuristic bid-
ding strategies following an evolutionary process, i.e., moving towards policies that
provide higher payoff. First we refine the valuation of boosting for which the users
bid in each round.

Definition 4.2. The value of boosting a job of user i is max(u − ϵt, 0), i.e., the
initial utility is linearly diminishing with the rounds spent in backlog.

Before introducing the policies we investigated, let us define the term opportunity
cost.

Definition 4.3. The opportunity cost is the future loss of valuation of backlogged
jobs: if a user does not get the boosting bandwidth in a given time slot, the valuation
of its backlogged jobs decreases by the next time slot. Therefore the opportunity
cost for user i with jobs Ji = {ji} is ∑ji∈Ji

|ji|ϵ where |ji| is the size of the job ji

still in backlog and ϵ is the depreciation of backlogged jobs from Def. 4.2.

Now, given the time-sensitive job utility and the opportunity cost, we define three
heuristic bidding policies.

81

 laszlo.toka_36_22

Definition 4.4. With greedy policy the player bids its whole budget; with rational
policy one bids the actual utility of the jobs to be boosted; and with generous policy
one bids the opportunity cost (Def. 4.3). In all policies the player’s budget is the
upper limit of the bid.

We run simulations with the following parameters in order to demonstrate the pros
and cons of the proposed heuristic policies, and to compare the distributed auction-
based allocation with traditional bandwidth sharing.

• Number of users: |I| = 30.

• Jobs are generated at users with independent and identically distributed expo-
nential random inter-arrival times having mean β = 1

λ
= |I| (Poisson process),

and all the jobs are unit-sized.

• The age of a job ji of user i is given by the number of rounds the job has spent
in the backlog, i.e., a job’s age is 0 in the round it arrived, 1 in the following,
and so on.

• Jobs in the backlog are continuously served with the bandwidth not allocated
for boosting, therefore in each time slot their size decreases by δ = 0.2. This
however does not induce any valuation for the user.

• Users bid for a bandwidth-timeslot unit in each round. For the auction winner
i xi = 1 in the given round and xj = 0 ∀j ∈ I \ i. This traffic opportunity is
used to boost jobs in the winner’s backlog under FIFO policy.

• Each user gets the same budget increment in each round that they use for
bidding. Users strive to increase their payoffs which is the value of boosted
jobs minus the cost of winning the auction.

• We assume the same initial utility and depreciation for all jobs and all players:
u = 1 and ϵ = 0.1u.

0 20 40 60 80 100
0

5

10

15

20

25

30
Number of players in time

greedy

rational

generous

(a) 0.1
30 job arrival rate

0 20 40 60 80 100
0

5

10

15

20

25

30
Number of players in time

greedy

rational

generous

(b) 1
30 job arrival rate

0 20 40 60 80 100
4

6

8

10

12

14

16

18
Number of players in time

greedy

rational

generous

(c) 10
30 job arrival rate

Figure 4.3: Evolution of number of players of various strate-
gies

It is well-known that the rational policy, i.e., truthful bidding, would be the optimal
strategy in case the game was a one-shot game because of the desirable characteris-
tics of second-price auctions. We make the case, however, for a stochastic game, an

82

 laszlo.toka_36_22

extended game with stochastic transitions between different states represented by
the job backlogs.
In Figure 4.3 we depict the number of players implementing each policy in systems
with increasing load levels. We let users change their applied bidding strategy
mimicking the dynamics of evolutionary game theoretical models: we assume that
when a given user wants to bid for boosting jobs it randomly selects one of the
policies with probabilities proportional to the average accumulated payoffs of users
grouped by their actual strategies. In the beginning users are evenly split among
the policies to start with. The job arrival rate is 0.003 in Figure 4.3a, 0.03 in
Figure 4.3b and 0.3 in Figure 4.3c with a number of players of 30 in all cases.
The solid, dashed and dotted lines show the evolution of player counts with the 3
presented policies on the y-axis in the function of simulation rounds on the x-axis.
When the load is low (Figure 4.3a) the generous policy prevails, when the system
is saturated (Figure 4.3b) the rational policy seems to provide the highest payoff,
while in an overloaded system (Figure 4.3c) no policy is better than the others. The
generous bidding strategy pays off on the long run when the average system load
is low because in most cases the relatively low bid is enough to get jobs boosted,
and the budget is saved for bursty times. Intuitively, when the system is close to
its saturation it is worth bidding with the actual value of the jobs to-be-boosted
(rational policy) in order to beat users applying other bidding strategies and to get
jobs boosted as soon as possible. In any case it is not beneficial to burn the whole
budget in single bids applying the greedy policy, unless the system is overloaded for
a long time (Figure 4.3c) but then no policy beats the others at providing the user
better chance to get a boosting opportunity.

4.3 A coordinated cloud resource optimizer
method

For a cloud-based data intensive system two constraints are to be met: low latency
for real-time applications and affordable uplink speed. In this section we investigate
the problem of connecting an IoT system to the cloud with the aim of processing
time-critical high bandwidth data. Our main idea is to make such systems resource-
efficient by allowing the cloud to control the rate of data streams sent for processing
from the site to the cloud. Roughly speaking the cloud predicts the location and
timing of the next possible events that need to be captured. Based on the prediction
some video streams are awarded more bandwidth and other cameras are switched
off or instructed to operate at lower bandwidth settings. In this way the uplink is
mostly occupied with data important for the analysis.
Figure 4.4 shows the functional blocks of our system. Low data rate sensors provide
a steady stream of raw data that is processed in the cloud for contextual infor-
mation. These components are not affected by the resource allocation algorithm,
they are considered a constant operational cost. Within the cloud there are detector
blocks that are responsible for processing the camera streams. These perform the
most resource-intensive task: detecting events from video data. Also running in
the cloud, there are processes that implement the predictor algorithms that forecast

83

 laszlo.toka_36_22

Venue

Cloud

Cloud control

Predictor

Sensor
processing Data model

Controller

QoS mon-
itoring

Detector

Sensors Cameras

Managed
uplink

Constant
uplink

Figure 4.4: System overview with functional blocks

future events with some probabilistic confidence based on a dynamically recalcu-
lated data model. In the core of the proposed system, we have the controller block
which, based on the different predictions, manages uplink bandwidth and CPU re-
sources, i.e., performs real-time optimization of resources. The resource allocation
is a synchronous process, e.g., discrete time increments of 33ms can be based on
the frame rate of the installed cameras, and resource allocation decisions are made
and enforced for each time frame. Long term utility maximization is handled by the
QoS monitoring component that ensures overall fairness and possibly service level
differentiation.
Our contribution is the resource allocation algorithm that maximizes the overall util-
ity of aggregated processing of IoT data in the cloud. In particular we are focusing
on how to handle situation when there are not enough resources, e.g., if the uplink
does not have sufficient bandwidth for traditional multiplexing of video streams
coming from many sources, and the controller must make fast choices between the
data stream requests. We investigate how an optimal allocation can be reached. In
this section we present our resource allocation scheme, we provide the definition of
the optimization problem and we show a fast dynamic programming algorithm to
compute the optimal solution.

4.3.1 System model and the resource allocation problem

For simplicity we first assume that the cloud has infinite capacity and the only
bottleneck is the uplink bandwidth. Later we explain how to extend the formulas
for multiple resources such as CPU core, GPU core, memory, disk, etc. Our aim is to
maximize QoS, which is the number of detected events of interest, where the event
detection accuracy depends on the amount of resources we allocate to the detection
module.
The proposed system provides a resource-efficient (e.g. energy) control mechanism
for IoT systems by adaptively orchestrating all the underlying elements of the archi-
tecture, such as sensors, agents, actuators, etc. The system comprises of a detector
module that keeps track of the state of the system, a predictor module that can be
used to forecast certain schedules, and a controller module that executes the or-
chestration logic and issues configuration settings and commands to the elements of

84

 laszlo.toka_36_22

the system, therefore implements complex resource allocation. The proposed meth-
ods are applied in the controller module with the goal of operating the underlying
IoT system with the highest achievable precision while keeping the overall resource
consumption to the minimum.
The different aspects that the controller module takes into account when making
decisions for the underlying system are the following.

1. The uplink capacity to the cloud, which is usually a scarce resource from the
sensor side.

2. The sensor sources and resolution, e.g., image resolution in case of a camera,
sampling rate in case of a temperature sensor.

3. The reserved computing power, which greatly influences the precision of both
event detection.

All these aspects and constraints interplay in the controller module that can be
implemented to maximize QoS given the resource (also cost) constraints at all times
with high frequency. In order to do this, we propose to implement fast algorithms,
e.g., dynamic programming, with discrete target functions.
The cloud runs the detector process to capture the events of interest. In general, the
accuracy of event detection depends on the quality and quantity of the received data
and the allocated cloud resources. Our goal is to minimize the number of missed
events, or the price of missing events if prices to event misses are assigned. We
discretize time into time frames, and at the end of each time frame the predictor
process computes the value of a utility function, which is the expected number
of events detected in the next time frame depending on the amount of resources
it will receive (see Figure 4.5 as an example). The controller aggregates these
utility functions to maximize QoS. An example of an aggregation of utility functions
maximizes the minimum of the detection probabilities, which ensures the highest
minimum quality for every video source.

1 2

0.5

1

x1

p1(x1)

(a) Source 1

1 2

0.5

1

x2 (BW)

p2(x2)

(b) Source 2

1 2 3 4

0.5

1

BW

QoS

(c) The aggregated QoS

Figure 4.5: Example of utility functions and QoS, which are
the expected number of detected events as a function of band-
width.

One of the most critical part of the scheduling is to define a utility function for each
video source. The basic utility is the probability of detecting the next event.

Definition 4.5. The utility function, denoted by p(), is 0 for zero bandwidth (p(x) =
0). The utility function is an increasing function of the allocated resources, as

85

 laszlo.toka_36_22

assigning more resources should not decrease the chance of detecting an event. The
largest value the utility function can have is the expected number of events in the
next time frame.

Figure 4.5 shows two examples of utility functions for two video sources. For Source
1 (Figure 4.5a) the probability of an event in the next period is 0.7 and no other
events are possible. If we allocate less than 1 unit of bandwidth the event will be
surely missed. We can crop the images to upload, requiring 1 unit of bandwidth,
but this choice decreases the chance of detection. If we send the full picture in the
video stream, 2 units of bandwidth is required, and we have all the possibilities to
detect the event. In Source 2 (Figure 4.5b) the predictor estimates the probability of
an event to 0.3. Here we can reduce the time period of sending camera pictures. If
the pictures are sent through the whole time period 2 units of bandwidth should be
allocated. Another option is delaying the start of transferring the camera pictures,
which will result in a linear increasing utility function depending on the fraction of
time the pictures are sent in the time period.
The utility is typically a multidimensional function of the resources, such as uplink
bandwidth, CPU core, etc. This highlights an interesting trade-off between band-
width and CPU. If we have more CPU but less bandwidth we may send low quality
video images and run more sophisticated detection algorithms, and vice versa. Thus
when the resources are scarce we are faced with the following interesting trade-off:
should we use the high-performance algorithm on less data, or the low-performance
one on high resolution video?
If all events in distinct video sources are naturally independent, then aggregating the
utility for these events is straightforward. The simplest case is to consider the total
number of detected events, and to maximize the expected number of detections. In
this case the utility for each time frame is the sum of the detection probabilities
given the allocated resources.

4.3.2 Dynamic programming-based solution

First let us describe the problem for n sources and B amount of available bandwidth
(BW). For every source we are given a list of utility functions pi(x), corresponding
to the probability of detecting an event in source i depending on the allocated
bandwidth x. Our goal is to maximize the expected number of detected events, or
equivalently, the aggregated detection probabilities. The problem can be formulated
as a mathematical program as follows.

maximize
n∑

i=1
pi(xi), (4.1)

subject to
n∑

i=1
xi ≤ B, (4.2)

xi ≥ 0, i = 1, . . . , n. (4.3)

We will solve the mathematical program with dynamic programming, for which we
need to define states. A state of the problem (c, b) consists of the source index

86

 laszlo.toka_36_22

u1,0 = p1(0) = 0, u1,1 = p1(1) = 0.45,

u1,2 = p1(2) = 0.7,

u2,0 = u1,0 + p2(0) = 0,

u2,1 = max{u1,1 + p2(0), u1,0 + p2(1)}
= max{0.45 + 0, 0 + 0.15} = 0.45,

u2,2 = max{u1,2 + p2(0), u1,1 + p2(1),
u1,0 + p2(2)} = max{0.7, 0.575, 0.25} = 0.7

Figure 4.6: The dynamic program for B = 2

c ∈ {1, . . . , n} and the amount of bandwidth b already allocated to video sources
1, 2, . . . , c, where b is in the closed interval [0, B]. Note that while c needs to be an
integer, as it is a video source index, there is no such restriction for b. The only
restriction we have is that for every source the number of different scenarios should
be finite. The state space is the set of feasible states, which is

S = {(c, b) : 1 ≤ c ≤ n, 0 ≤ b ≤ B}.

The actual number of states depends on how many different values b can take.
Let us define a working variable uc,b assigned to each state, which represents the
QoS corresponding to sources 1, . . . , c using b units of BW. The optimal uc,b can be
computed by solving the following recursive equations. First, for a single source the
QoS equals to the utility function thus we have

u1,b = p1(b) , b = 0, . . . , B . (4.4)

For the internal states optimal decisions are driven by the following equation:

uc,b = max
x=0,1,...,b

{pc(x) + uc−1,b−x}, (4.5)

for c = 2, . . . , n.
The final value we get is un,B, which gives us the QoS to expect. To process the
states we start at source 1, and compute u1,b for b = 0, . . . B, next compute the
states for source 2 u2,b for b = 0, . . . B, etc. Finally, we read out the the optimal x∗

i

for all the sources in the opposite direction: it is the x for which ui,B−b∗
i

takes its
maximum, where b∗

i = ∑n
j=i+1 x∗

j .
Let us explain the dynamic program on the example of Figure 4.5. We allocate the
bandwidth in integer units, and the number of sources is n = 2. Let the bandwidth
constraint be B = 3. The states are c ∈ {1, 2} and b ∈ {0, 1, 2, 3} which is 8 states in
total. See the dynamic program in Figure 4.6 till B = 2, and u1,3 = p1(3) = 0.7 and
the final solution is u2,3 = max{u1,3 + p2(0), u1,2 + p2(1), u1,1 + p2(2), u1,0 + p2(3)} =
max{0.7+0, 0.7+0.15, 0.45+0.3, 0+0.3} = 0.85. See also Figure 4.5c as illustration
of the QoS function.

87

 laszlo.toka_36_22

As a straightforward generalization we consider multiple resources with a general
utility function. Say we have m resources B1, B2, . . . , Bm. Apart from bandwidth
restrictions we may have further constraints on, e.g., the total number of CPU cores
we may allocate for processing.
Let xij denote the amount of resource j we allocate to video source i in a given time
frame. Let the set of allocations be X = {xij, i = 1 . . . , n, j = 1, . . . , m}. Let p(X)
be the gain if we make these allocations, and let U(·) be the desired utility.
The problem can be formulated as follows.

maximize U(p(X)),

subject to
n∑

i=1
xij ≤ Bi, j = 1, . . . , m,

xij ≥ 0, i = 1, . . . , n, j = 1, . . . , m.

First we have to re-define the states of the problem. A state s = (c, b1, b2, . . . , bm)
represents the amount bj of resource Bj, j = 1, . . . , m that has already been allocated
when we consider video source c. Similarly as before, the state space is

S = {s : 1 ≤ c ≤ n, 0 ≤ bi ≤ Bi, i = 1, . . . , m}.

The new recursive equations that define the optimal decisions are the following. For
the first source we have

u1,b1,...,bm = p1(b1, . . . , bm) ,
b1=0,...,B1

:
bm=0,...,Bm

. (4.6)

For the internal states optimal decisions are driven by the following equation:

uc,b1,...,bm = max
x1=0,1,...,b1

:
xm=0,1,...,bm

{
pc(x1, . . . , xm) + uc−1,b1−x1,...,bm−xm

}
(4.7)

for c = 2, . . . , n.

Theorem 4.1. The QoS can be computed in O(nmBm+1
max) time, where Bmax =

max{B1, . . . , Bm}.

Proof. The maximum in (4.7) is performed over O(Bm
max) items, and there are

nmBmax states.

The cloud-native application components are designed to be stateless in a sense
that prediction and detection requests from the same source can be served by any
active instance. This way simple load balancers available in public clouds can be
used, and the system can be operated on cloud scale. The only requirement on the
load balancer is to use sticky sessions to route the packets of a single video burst
to the same instance. The states can be stored in the data model, in an in-memory
database also provided by the cloud which is periodically loaded for the resource
allocation.

88

 laszlo.toka_36_22

4.4 Related work

Dynamic assignment of network resources has been heavily studied since the appear-
ance of integrated communication systems [103]. Contradicting goals like service
differentiation, fairness, low delay, low delay-variation, starvation avoidance have
to be integrated in a properly operated network. The class of potential schedul-
ing solutions include priority schemes with various levels of aggregations, different
implementations of WFQ like resource sharing, again with various levels of ag-
gregations. The common root of these service class based service differentiation
mechanisms is the system’s (or service provider’s) centric optimization of resource
sharing. However, in recent communication systems more short term dynamic ef-
fects are considered. The start render time of web pages is a good example for the
need of user oriented dynamic resource assignment. Apart of the dynamic elements
of QoS, there are random fluctuations also due to propagation changes through the
air interface.
Many works have targeted the dynamic nature of wireless access sharing. The
considered optimization methods include several models where the parameters are
optimized by numerical investigations and a set of problems that can be attacked
with general stochastic optimization tools, e.g., Markov Decision Process (MDP)
[104]. Those related works that turn to distributed allocation schemes mostly apply
the tool set of game theory [88], [1], but some employ other modeling techniques,
e.g., portfolio theory [135].
The analytical tools developed for system oriented resource sharing are not appli-
cable for the quantitative assessment and optimization of user oriented resource
sharing. The analytic potential of the stochastic game theory approach for user-
oriented dynamic behavior has been recently discovered by many researchers. A
wide range of dynamic resource sharing mechanisms of wireless networks have been
defined through stochastic games, here we mention only those few that we think
are the most closely related to our work. The authors of [7] apply a linear program
formulation to find the stationary policy for maximizing throughput given power
and delay constraints. In [145] a multi-level game theoretic model is given which
accounts for an evolutionary game within the set of secondary spectrum users, and
for a potential game played among the providers competing for larger slices of spec-
trum. In contrast to these works we build an abstract model for wireless access, and
apply an allocation mechanism of discrete resource units.
We see in the world of the IoT that connected devices can benefit hugely from
a cloud-based back-end. For offloading processing-intensive tasks cloud-based vir-
tualization infrastructures have emerged [128] that handle data processing, data
mediation, access control and billing [86] for IoT systems. With the wide availabil-
ity of WiFi and LTE networks, and with the advent of the 5G technology [93], a
new IoT device class has emerged, the streaming cameras [10], e.g., remote facility
management solutions can benefit of security cameras following the IoT paradigm.
Separating video capture and processing with standard interfaces enables a more
flexible infrastructure, where the tenants decide which streams have to be processed
for what ends, and a service center provides image processing and event handling.

89

 laszlo.toka_36_22

Another related field with similar challenges is online gaming: the industry has
already started to exploit the possibilities of the cloud by moving heavy computation
into data centers. The clients in such gaming scenarios are only transmitting the
user input to the cloud and playing out the rendered video stream [138]. The quality
of the network and the shared nature of the cloud are the factors which determine
the latency and as a result the QoS of cloud gaming.
For cloud gaming, the latency threshold for proper QoS is mostly defined to be
100 ms and it is further divided into network latency (80 ms) and computation
latency (20 ms) in the literature. Li et al. [67] measured the wide area latency of
4 different cloud providers from 260 points in the US and except one provider, the
latency is under 80 ms to the closest data center from 80% of the measurement
points. Choy et al. [24] reports 70% coverage for the same 80 ms threshold using
the Amazon cloud in the US. Against long tails such frameworks, e.g., Bobtail [137],
can be used that allocate multiple virtual machines during the deployment, measure
the latencies and shut down the underperforming instances.
Sunderesan et al. [112] investigated multiple Internet service providers and found
that the upload throughput is fairly consistent, the last mile access latency varies
between 10 and 30 ms and that even the network equipment at the user can influence
the service quality. As a result the quality of the network at a particular endpoint
has to be investigated before the deployment of a time sensitive application.
As the cloud is shared infrastructure, other tenants may have impact on the comput-
ing performance [15]. The importance of choosing the right virtual machine flavor
is investigated by Wang et al. [132] against performance fluctuations. In general,
more powerful virtual machines types have more logical CPU cores, and get higher
scheduling priority. While it is more expensive to operate these machines the ex-
tra price has to be paid in order to get the right performance for time sensitive
applications [54].

90

 laszlo.toka_36_22

Chapter 5

Summary of scientific results

5.1 Inter-cloud business findings

In the epicenter of the envisioned 5G ecosystem compute and network resources are
allocated via an NFVIaaS market across multi-administrative domains. Customers
include OTT application providers who offer services to home users, enterprise ap-
plication providers who provision business services, etc. On the other side of the
market, providers are compute infrastructure and network operators, given the abil-
ity of online service deployments, i.e., resource allocation and service provisioning
are dynamic and flexible. This is ensured by applying virtualization and SDN tech-
niques.
In Chapter 2 models and respective analysis are provided for B2B pricing of middle-
man services, and B2C pricing of cloud and network services based on Stackelberg
games.

Theses 1. In my research, I evaluated how the cloud-centered service provisioning
can influence the Internet structure and which factors can motivate service providers
in adjusting their mediation price on virtual services. I have formalized the model
as a network formation game and derived analytical results on the equilibrium con-
ditions of it. I also modeled price-related decisions of customers and providers in
this market: for customers, I showed how they formalize their requirements, and
how they select the suitable allocation from the resource offerings. For providers, I
modeled how they relate to each other, and I derived how they should set their end
prices, given the expected characteristics of forthcoming customer demand.

In Theorem 2.1 I have provided the price limits that ensure status quo for a tiered
topology dictated by Assumption 2.2.

Thesis 1.1. [27] Let G0 contain a number of Tier-1 nodes connected in full mesh,
and a tree subgraph under each Tier-1 node in which intermediary nodes have at
least k children, and all leaf nodes are at the same depth t. Furthermore, any pair of
leaf nodes exchange m amount of business; intermediary nodes do not act as service
sellers or buyers. Let α be the expense of an extra business link. If all providers
keep their price below α

k2t−3m
, then topology G0 is an equilibrium.

91

 laszlo.toka_36_22

Under a stricter assumption on the initial topology (Assumption 2.3), I derived the
Tier-1 and Tier-2 equilibrium prices in a 3-tier topology (Lemmas 2.3 and 2.4).

Thesis 1.2. [123] Let us assume a 3-tier topology of providers, initially with no
transit/peering links other than the Tier-1 full mesh. Furthermore, we assume that
one transit link can be built by each Tier-2 (to a Tier-1) and Tier-3 (to a Tier-2)
provider for no cost.
In equilibrium, Tier-1 providers all set their middleman prices to β∗

1 = n1(n1−1)α
2γm

,
where n1 is the number of Tier-1 providers, γ is the fraction of businesses reaching
Tier-1 and m is the grand sum of business matrix M .
In equilibrium, the Tier-2 providers’ middleman price is

β∗
2 = α

2δm

(
n1(n1 − 1) + n2(n2 − 1)

∫ ∞

2γm
n1(n1−1)

f(µ)dµ

)
,

where δ is the fraction of business reaching Tier-2, n2 denotes the number of Tier-2
providers, f(µ) and g(µ) denote the empirical distribution of the amount of business
between Tier-2 and Tier-3 provider pairs, respectively.

Turning towards the end customers of cloud and network services, in Theorem 2.2 I
proved that resource orchestration is a hard problem for them in a general topology
due to the joint economic-technological requirements, e.g., capacity, latency, budget
(defined in Definitions 2.3 and 2.5).

Thesis 1.3. [120, 125] The problem of finding an eligible flow with at most bs budget
(or the cheapest eligible flow) is NP-hard if the network is an arbitrary graph.

As customers face an NP-hard problem with the eligible flow selection, I reduced
the Stackelberg game, where providers are leaders, customers are followers, to a
stochastic game among providers as players. I showed that dynamic pricing of
cloud and network resources is well-suited to the nature of the trade, and derived
the equilibrium prices for various topology setups with finite and infinite capacities
(Lemmas 2.6, 2.7, 2.8, 2.9, 2.10, 2.11).

Thesis 1.4. [125] If the number of requests during the resource allocation period
follows geometric distribution with parameter q, then equilibrium cloud prices can be
derived for simple topologies in which one or two data centers are reachable by the
customer directly or through a series of network providers.

Generalizing on the findings, I relaxed the capacity constraints of service requests
and derived the equilibrium prices for artificial, but more complex topologies of
parallel and overlapping paths with serial network providers (depicted in Figures 2.8
and 2.9, Lemmas 2.12 and 2.13, respectively). Based on the findings, I formalized
the equilibrium prices of infinite capacity cloud and network providers.

Thesis 1.5. [125] Let t denote a requested path and let t denote the set of vertices
on t except the service access point. The following equations provide the prices for

92

 laszlo.toka_36_22

all providers x ∈ G:

0 =
∑
s∈S

∑
x∈t,t∈Ts

P(S = s, Ts = t)
1− FBs

∑
y∈t

py

− fBs

∑
y∈t

py

 px

 , (5.1)

where Ts is the set of paths from the customer s to a data center, px is the unit price
of resource provider x, FBs and fBs are the cumulative distribution and probability
density function of the budget of customer s, respectively.

Besides the expectation of the customer demand, the relative location of provider
resources is of paramount importance in determining income-maximizing prices. As
a general observation, I showed that those data center providers who are closer to
the customer can set higher prices, and in turn the closer a network provider is to
data centers, the higher its price is.

5.2 Intra-cloud management and orchestration
methods

Cloud computing has grown to be the de facto standard to host online services by
offering less expensive and simpler answers for resource and application management.
Distributed infrastructure, e.g., edge and fog computing, is by all accounts the
significant advance forward to boost service offerings in a cost-productive way.
In Chapter 3 I proposed cloud management techniques and methods on a wide range
of resource orchestration challenges, e.g., reliability, scalability, latency-awareness,
and cost effective operation.

Theses 2. I proposed a system and several methods for ensuring high reliability and
ultra-low latency with economical edge resource provisioning by an online and by an
offline scheduler, which handle deployment requests in a geographically widespread
cloud infrastructure at large scale. I proposed a Machine Learning-based auto-scaling
method in order to address the variability of application load intensity throughout the
day. I analyzed the effects of various packaging options of cloud-native applications
on response latency and memory footprint.

For scalable and economical edge cloud scheduling for latency-, and operation-
critical applications, I proposed a system that provides high reliability for the ap-
plications by provisioning backup compute resources on edge nodes, which I called
placeholders. Preparing for single node failures, I set the capacity of the placehold-
ers for the maximum number of Pods on any node to fail at once. The proposed
algorithms to calculate the placeholders and place the Pods are proved to be fast
(Lemmas 3.1, 3.2 and 3.10)

Thesis 2.1. [121, 44, 117]. I showed that the complexity of the online scheduling, the
offline re-scheduling, and the infrastructure node clustering methods have polynomial
complexity.

93

 laszlo.toka_36_22

Building on Lemmas 3.3, 3.4, 3.5, 3.6, 3.7, 3.8 and 3.9 I calculated the quality of the
heuristic online scheduling algorithm’s output in terms of the amount of resources
dedicated for fail-over, i.e., the total sum of placeholders (Theorem 3.1).

Thesis 2.2. [117] The online scheduling solution is a 3-approximation algorithm for
providing joint placement of placeholders of Pods (HEUR ≤ 3OPT).

Kubernetes [66], the widely used cloud manager platform, has a built-in solution for
scaling its managed applications. Horizontal Pod Autoscaler (HPA) is influenced by
several parameters. There are cluster level settings, e.g., down-scaling stabilization,
Pod synchronization period and scaling tolerance, and there are HPA level param-
eters, such as minimum and maximum Pod number, scaling threshold according
to arbitrary metrics. By default HPA is based on CPU utilization measurements:
HPA periodically fetches monitoring data from the system, and takes a decision
on how many Pods the cluster should have. In order to analyze this auto-scaling
method’s performance, I built lossy and lossless models to mimic HPA’s behavior
(Section 3.5.1).

Thesis 2.3. [122, 126] I proposed analytical models to describe the behavior of Ku-
bernetes’ auto-scaling engine.

Based on numerical evaluations, the models proved to be acceptable for simula-
tion benchmarks representing the default auto-scaler’s performance. Therefore I
used those for comparison to evaluate my proposed ML ensemble-based auto-scaling
method (Section 3.5.2). I have found it important to utilize various ML models for
application usage predictions that have substantial differences in their operation. In
addition to the well-known strength of ensemble-based models, the numerical results
demonstrated that there was no single method that would always approximate well
the optimal scaling as the input traces showed varying dynamics throughout the
day, methods performed well or poorly episodically.

Thesis 2.4. [122, 126] I proposed a Machine Learning ensemble-based predictive
auto-scaling method for cloud-deployed applications. The proposed method reaches
significant cost savings (up to 50%) compared to the default benchmark, mostly owing
to heavily reduced request losses.

The cost of scaling is greatly determined by the organization of application into
scaling units. On one hand, the co-location of application components within the
cloud results in lower operational delays, hence better QoS for the application user.
On the other hand, less modularity results in superfluous resource consumption
during scale-out regimes (Section 3.6). Based on Lemmas 3.12 and 3.13,

Thesis 2.5. [118] I proposed an analytical model to describe the trade-off between
resource footprint overhead during scale-out periods and the latency overhead due
to organizing application code into several scaling units. Let ρ denote the resource
demand and let the scaling factor be its monotone increasing function σ(ρ). Then

dσ

dρ
ρL + σ − σR = 0 (5.2)

94

 laszlo.toka_36_22

must hold for the scaling group borders for a minimal resource overhead, i.e., the
borders of neighboring scaling groups when ordered by their scaling factors along the
cumulative resource demand dimension. ρL denotes the width of the scaling group to
the left, σ is the scaling factor value that belongs to the scaling group on the left, and
σR denotes the scaling factor of the scaling group to the right in this arrangement.

As consequence, there are relatively large jumps between the scaling groups’ scaling
factors in a setting that is optimized for scaling cost.

5.3 Resource allocation of cloud access

Quality of experience in wireless access networks has been and, with the proliferation
of the Networked Society, will be an important factor in telecommunications. As
these networks are usually shared among multiple customers, the network resource
provisioning is of paramount importance in regards the QoS the clients eventually
perceive while accessing cloud applications. In Chapter 4 I therefore introduce two
service quality assurance frameworks with which the existing tools in the hand of
network operators are extended with the capability of user-driven or cloud-based
quality control.

Theses 3. I proposed an uncoordinated and a coordinated resource allocation scheme
for sharing network bandwidth among cloud application clients on the same access
network.

First, I define a model for uncoordinated resource provisioning implemented as an
auction where extra bandwidth for short time periods can be gained by submitting
bids to the network operator which will allocate the resources to users based on their
bids for the upcoming time slots (Section 4.2).

Thesis 3.1. [124] I proposed an uncoordinated resource allocation model for access-
ing cloud applications based on second-price auctions and via numerical analysis I
showed heuristic policies that prevail others in different traffic load scenarios.

The results show that generous bidding strategy pays off on the long run when the
average system load is low because in most cases the relatively low bid is enough to
get jobs boosted, and the budget is saved for bursty times. When the system is close
to its saturation it is worth bidding with the actual value of the jobs to-be-boosted
(rational policy) in order to beat users applying other bidding strategies and to get
jobs boosted as soon as possible.
In a centralized resource allocation scheme I proposed to ensure resource-efficiency
by allowing the cloud to control the rate of data streams sent for processing to the
cloud. In the illustrative video stream processing IoT system the cloud predicts
the location and timing of the next possible events that need to be captured within
multiple video streams. Based on the prediction some video streams are awarded
more bandwidth and other cameras’ feeds are switched off or instructed to operate
at lower bandwidth settings. This way the shared uplink is mostly occupied with
data important for the analysis (Section 4.3).

95

 laszlo.toka_36_22

Thesis 3.2. [119] I proposed a coordinated resource allocation scheme for access-
ing cloud applications that are able to predict subsequent demand for data transfer
and the QoS implications of provisioned network capacity. I proposed a dynamic
programming-based solution to the QoS maximization problem, and proved that op-
timum can be computed in O(nmBm+1

max) time, where n denotes the number of data
sources, m denotes the number of different types of resources to allocate, e.g., band-
width, CPU in the cloud, {B1, . . . , Bm} indicate the available amount of the respec-
tive resources, and Bmax = max{B1, . . . , Bm}.

Note that for every source and for every type of resources, the number of different
allocation scenarios should be finite. The actual number of states depends on how
many different values such an allocated resource chunk can take. In case the resulting
state space is relatively small, e.g., the set of feasible states is shrunk due to a
coarse grained division of the total available bandwidth among the data sources, the
runtime of the algorithm can be decreased.

96

 laszlo.toka_36_22

Bibliography

[1] Khajonpong Akkarajitsakul, Ekram Hossain, and Dusit Niyato. Distributed
resource allocation in wireless networks under uncertainty and application of
bayesian game. IEEE Communications Magazine, 49(8):120–127, 2011.

[2] Yahya Al-Dhuraibi, Fawaz Paraiso, Nabil Djarallah, and Philippe Merle. Au-
tonomic vertical elasticity of docker containers with elasticdocker. In 2017
IEEE 10th International Conference on Cloud Computing (CLOUD), 2017.

[3] Yahya Al-Dhuraibi, Fawaz Paraiso, Nabil Djarallah, and Philippe Merle. Elas-
ticity in cloud computing: State of the art and research challenges. IEEE
Transactions on Services Computing, 11(2):430–447, 2018.

[4] Muhammad Alam, Joao Rufino, Joaquim Ferreira, Syed Hassan Ahmed, Nadir
Shah, and Yuanfang Chen. Orchestration of microservices for iot using docker
and edge computing. IEEE Communications Magazine, 56(9):118–123, 2018.

[5] Ahmed Ali-Eldin, Maria Kihl, Johan Tordsson, and Erik Elmroth. Efficient
provisioning of bursty scientific workloads on the cloud using adaptive elas-
ticity control. In ScienceCloud, Proceedings of the 3rd workshop on Scientific
Cloud Computing. ACM, 2012.

[6] Ahmed Ali-Eldin, Johan Tordsson, and Erik Elmroth. An adaptive hybrid
elasticity controller for cloud infrastructures. In 2012 IEEE Network Opera-
tions and Management Symposium, 2012.

[7] Eitan Altman, Konstantin Avratchenkov, Nicolas Bonneau, Merouane Deb-
bah, Rachid El-Azouzi, and Daniel Sadoc Menasche. Constrained stochas-
tic games in wireless networks. In IEEE GLOBECOM 2007 - IEEE Global
Telecommunications Conference, 2007.

[8] Amazon. Amazon EC2 spot instances, . URL https://aws.amazon.com/
ec2/spot/.

[9] Amazon. Amazon Web Services (AWS): Elastic Container Service (ECS as
CaaS) and Lambda (FaaS). https://aws.amazon.com/, .

[10] Aamir Nizam Ansari, Mohamed Sedky, Neelam Sharma, and Anurag Tyagi.
An internet of things approach for motion detection using raspberry pi. In
Proceedings of 2015 International Conference on Intelligent Computing and
Internet of Things, 2015.

97

 laszlo.toka_36_22

https://aws.amazon.com/ec2/spot/
https://aws.amazon.com/ec2/spot/
https://aws.amazon.com/

[11] Hamid Arabnejad, Claus Pahl, Pooyan Jamshidi, and Giovani Estrada. A
comparison of reinforcement learning techniques for fuzzy cloud auto-scaling.
In IEEE/ACM International Symposium on Cluster, Cloud and Grid Com-
puting (CCGRID), 2017.

[12] Atakan Aral, Ivona Brandic, Rafael Brundo Uriarte, Rocco De Nicola, and
Vincenzo Scoca. Addressing application latency requirements through edge
scheduling. Journal of Grid Computing, 17(12), 2019.

[13] Esteban Arcaute, Ramesh Johari, and Shie Mannor. Network formation: Bi-
lateral contracting and myopic dynamics. IEEE Transactions on Automatic
Control, 54(8):1765–1778, 2009.

[14] Luciano Baresi, Sam Guinea, Alberto Leva, and Giovanni Quattrocchi. A
discrete-time feedback controller for containerized cloud applications. In Pro-
ceedings of the 2016 24th ACM SIGSOFT International Symposium on Foun-
dations of Software Engineering, 2016.

[15] Sean Kenneth Barker and Prashant Shenoy. Empirical evaluation of latency-
sensitive application performance in the cloud. In Proceedings of the First
Annual ACM SIGMM Conference on Multimedia Systems, 2010.

[16] Enda Barrett, Enda Howley, and Jim Duggan. Applying reinforcement learn-
ing towards automating resource allocation and application scalability in the
cloud. Concurrency and Computation: Practice and Experience, 25(12):1656–
1674, 2013.

[17] Dario Bega, Marco Gramaglia, Albert Banchs, Vincenzo Sciancalepore, Kon-
stantinos Samdanis, and Xavier Costa-Perez. Optimising 5g infrastructure
markets: The business of network slicing. In IEEE Conference on Computer
Communications (INFOCOM), 2017.

[18] Joseph Bertrand. Theorie mathematique de la richesse sociale. Journal de
Savants, 67:499–508, 1883.

[19] Sumit Kumar Bose, Scott Brock, Ronald Skeoch, and Shrisha Rao. CloudSpi-
der: Combining replication with scheduling for optimizing live migration of
virtual machines across wide area networks. In Proceedings of the 2011 11th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing,
2011.

[20] Pablo Caballero, Albert Banchs, Gustavo de Veciana, and Xavier Costa-Pérez.
Network slicing games: Enabling customization in multi-tenant networks. In
IEEE Conference on Computer Communications (INFOCOM), 2017.

[21] J.P.S. Catalão, S.J.P.S. Mariano, V.M.F. Mendes, and L.A.F.M. Ferreira.
Short-term electricity prices forecasting in a competitive market: A neural
network approach. Electric Power Systems Research, 77(10):1297–1304, 2007.

[22] Gong Chen, Wenbo He, Jie Liu, Suman Nath, Leonidas Rigas, Lin Xiao,
and Feng Zhao. Energy-aware server provisioning and load dispatching for

98

 laszlo.toka_36_22

connection-intensive internet services. In Proceedings of the 5th USENIX Sym-
posium on Networked Systems Design and Implementation. USENIX Associ-
ation, 2008.

[23] Michael Chima Ogbuachi, Chinmay Gore, Anna Reale, Péter Suskovics, and
Benedek Kovács. Context-Aware K8S Scheduler for Real Time Distributed 5G
Edge Computing Applications. In 2019 International Conference on Software,
Telecommunications and Computer Networks (SoftCOM), 2019.

[24] Sharon Choy, Bernard Wong, Gwendal Simon, and Catherine Rosenberg. The
brewing storm in cloud gaming: A measurement study on cloud to end-user
latency. In 2012 11th Annual Workshop on Network and Systems Support for
Games (NetGames), 2012.

[25] Jacomo Corbo and David Parkes. The price of selfish behavior in bilateral
network formation. In Proceedings of the Twenty-Fourth Annual ACM Sym-
posium on Principles of Distributed Computing, 2005.

[26] Costas Courcoubetis. Pricing Communication Networks Economics, Technol-
ogy and Modelling. Wiley Online Library, 2003.

[27] Mate Cserep, Akos Recse, Robert Szabo, and Laszlo Toka. Business network
formation among 5G providers. In IEEE Conference on Computer Communi-
cations Workshops (INFOCOM WKSHPS), 2018.

[28] Amogh Dhamdhere and Constantine Dovrolis. The internet is flat: Modeling
the transition from a transit hierarchy to a peering mesh. In Proceedings of
the 6th International COnference, Co-NEXT ’10. ACM, 2010.

[29] Xavier Dutreilh, Sergey Kirgizov, Olga Melekhova, Jacques Malenfant, Nicolas
Rivierre, and Isis Truck. Using reinforcement learning for autonomic resource
allocation in clouds: Towards a fully automated workflow. In ICAS 2011 : The
Seventh International Conference on Autonomic and Autonomous Systems,
2011.

[30] Ericsson. Network slicing. https://www.ericsson.com/en/
network-slicing.

[31] ETSI. White Paper: Network Functions Virtualisation (NFV). http:
//portal.etsi.org/nfv/nfv_white_paper2.pdf, 2013.

[32] ETSI. Management and Orchestration. Technical report, ETSI GS NFV-MAN
001, 12 2014.

[33] ETSI. Network Service Templates Specification. Technical report, ETSI GS
NFV-IFA 014, 10 2016.

[34] Alex Fabrikant, Ankur Luthra, Elitza Maneva, Christos H. Papadimitriou, and
Scott Shenker. On a network creation game. In Proceedings of the Twenty-
Second Annual Symposium on Principles of Distributed Computing, 2003.

99

 laszlo.toka_36_22

https://www.ericsson.com/en/network-slicing
https://www.ericsson.com/en/network-slicing
http://portal.etsi.org/nfv/nfv_white_paper2.pdf
http://portal.etsi.org/nfv/nfv_white_paper2.pdf

[35] Jingyuan Fan, Meiling Jiang, Ori Rottenstreich, Yangming Zhao, Tong Guan,
Ram Ramesh, Sanjukta Das, and Chunming Qiao. A framework for provi-
sioning availability of nfv in data center networks. IEEE Journal on Selected
Areas in Communications, 36(10):2246–2259, 2018.

[36] I. Farris, T. Taleb, H. Flinck, and A. Iera. Providing ultra-short latency
to user-centric 5g applications at the mobile network edge. Transactions on
Emerging Telecommunications Technologies, 29(4), 2018.

[37] Fortio. Fortio. http://fortio.org/.

[38] Michael R. Garey and David S. Johnson. Computers and Intractability; A
Guide to the Theory of NP-Completeness. W. H. Freeman & Co., 1990.

[39] Zhenhuan Gong, Xiaohui Gu, and John Wilkes. Press: Predictive elastic re-
source scaling for cloud systems. In 2010 International Conference on Network
and Service Management, 2010.

[40] Google. Google Cloud: Google Kubernetes Engine (GKE as Caas) and Google
Cloud Functions (FaaS). https://cloud.google.com/.

[41] Akhil Gupta and Rakesh Kumar Jha. A survey of 5G network: Architecture
and emerging technologies. IEEE Access, 3:1206–1232, 2015.

[42] David M. Gutierrez-Estevez, Marco Gramaglia, Antonio De Domenico, Ghina
Dandachi, Sina Khatibi, Dimitris Tsolkas, Irina Balan, Andres Garcia-
Saavedra, Uri Elzur, and Yue Wang. Artificial intelligence for elastic man-
agement and orchestration of 5g networks. IEEE Wireless Communications,
26(5):134–141, 2019.

[43] David Haja, Marton Szabo, Mark Szalay, Adam Nagy, Andras Kern, Las-
zlo Toka, and Balazs Sonkoly. How to orchestrate a distributed OpenStack.
In IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS), 2018.

[44] David Haja, Mark Szalay, Balazs Sonkoly, Gergely Pongracz, and Laszlo Toka.
Sharpening Kubernetes for the Edge. In ACM SIGCOMM Conference Posters
and Demos, 2019.

[45] David Haja, Zoltan Richard Turanyi, and Laszlo Toka. Location, Proximity,
Affinity – The key factors in FaaS. Infocommunications Journal, 12(4):14–21,
2020.

[46] J. Halpern and C. Pignataro. Service Function Chaining (SFC) Architecture.
IETF RFC 7665, 2015.

[47] Jeff Hawkins and Sandra Blakeslee. On intelligence: How a new understanding
of the brain will lead to the creation of truly intelligent machines. Macmillan,
2007.

100

 laszlo.toka_36_22

http://fortio.org/
https://cloud.google.com/

[48] Yan he Jia, Li xin Tang, Zhe George Zhang, and Xiao feng Chen. MMPP/M/C
queue with congestion-based staffing policy and applications in operations of
steel industry. Springer Journal of Iron and Steel Research International, 26
(7):659—-668, 2018.

[49] Poul E. Heegaard, Gergely Biczok, and Laszlo Toka. Sharing is power: In-
centives for information exchange in multi-operator service delivery. In 2016
IEEE Global Communications Conference (GLOBECOM), 2016.

[50] Cheol-Ho Hong and Blesson Varghese. Resource Management in Fog/Edge
Computing: A Survey on Architectures, Infrastructure, and Algorithms. ACM
Computing Surveys, 52(5), 2019.

[51] Shay Horovitz and Yair Arian. Efficient Cloud Auto-Scaling with SLA Objec-
tive Using Q-Learning. In 2018 IEEE 6th International Conference on Future
Internet of Things and Cloud (FiCloud), 2018.

[52] HPA. Horizontal Pod Autoscaler - Kubernetes. https://kubernetes.io/
docs/tasks/run-application/horizontal-pod-autoscale/.

[53] Eduardo Huedo, Rubén S. Montero, Rafael Moreno-Vozmediano, Constantino
Vázquez, Vlastimil Holer, and Ignacio M. Llorente. Opportunistic deployment
of distributed edge clouds for latency-critical applications. Journal of Grid
Computing, 19(1), 2021.

[54] Alexandru Iosup, Simon Ostermann, M. Nezih Yigitbasi, Radu Prodan,
Thomas Fahringer, and Dick Epema. Performance analysis of cloud com-
puting services for many-tasks scientific computing. IEEE Transactions on
Parallel and Distributed Systems, 22(6):931–945, 2011.

[55] Sadeka Islam, Jacky Keung, Kevin Lee, and Anna Liu. Empirical prediction
models for adaptive resource provisioning in the cloud. Future Generation
Computer Systems, 28(1):155–162, 2012.

[56] ISP. ISP 3-Tier Model. Available online: https://www.thousandeyes.com/
learning/techtorials/isp-tiers.

[57] Nidhi Jain and Inderveer Chana. Energy-aware Virtual Machine Migration
for Cloud Computing - A Firefly Optimization Approach. Journal of Grid
Computing, 14(6), 2016.

[58] Asad Javed, Jérémy Robert, Keijo Heljanko, and Kary Främling. IoTEF:
A Federated Edge-Cloud Architecture for Fault-Tolerant IoT Applications.
Journal of Grid Computing, 18(3), 2020.

[59] Mak A. Kaboudan. A dynamic-server queuing simulation. Computers & Op-
erations Research, 25(6):431–439, 1998.

[60] Evangelia Kalyvianaki, Themistoklis Charalambous, and Steven Hand. Self-
adaptive and self-configured cpu resource provisioning for virtualized servers
using kalman filters. In Proceedings of the 6th International conference on
Autonomic computing, 2009.

101

 laszlo.toka_36_22

https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://www.thousandeyes.com/learning/techtorials/isp-tiers
https://www.thousandeyes.com/learning/techtorials/isp-tiers

[61] Yossi Kanizo, Ori Rottenstreich, Itai Segall, and Jose Yallouz. Optimizing
virtual backup allocation for middleboxes. IEEE/ACM Transactions on Net-
working, 25(5):2759–2772, 2017.

[62] Hamzeh Khazaei, Rajsimman Ravichandiran, Byungchul Park, Hadi Ban-
nazadeh, Ali Tizghadam, and Alberto Leon-Garcia. Elascale: Autoscaling
and monitoring as a service. In Proceedings of the 27th Annual International
Conference on Computer Science and Software Engineering, 2017.

[63] Selma Khebbache, Makhlouf Hadji, and Djamal Zeghlache. Scalable and cost-
efficient algorithms for vnf chaining and placement problem. In 2017 20th
Conference on Innovations in Clouds, Internet and Networks (ICIN), 2017.

[64] P. S. Khodashenas, C. Ruiz, J. Ferrer Riera, J. O. Fajardo, I. Taboada,
B. Blanco, F. Liberal, J. G. Lloreda, J. Pérez-Romero, O. Sallent, I. Neokos-
midis, and T. Rokkas. Service provisioning and pricing methods in a multi-
tenant cloud enabled ran. In 2016 IEEE Conference on Standards for Com-
munications and Networking (CSCN), 2016.

[65] Joanna Kosińska and Krzysztof Zielinski. Autonomic management framework
for cloud-native applications. Journal of Grid Computing, 18, 12 2020.

[66] Kubernetes. Kubernetes: Production-Grade Container Orchestration. https:
//kubernetes.io.

[67] Ang Li, Xiaowei Yang, Srikanth Kandula, and Ming Zhang. Cloudcmp: Com-
paring public cloud providers. In Proceedings of the 10th ACM SIGCOMM
Conference on Internet Measurement, 2010.

[68] Shuhui Li, D.C. Wunsch, E.A. O’Hair, and M.G. Giesselmann. Using neural
networks to estimate wind turbine power generation. IEEE Transactions on
Energy Conversion, 16(3):276–282, 2001.

[69] Aemen Lodhi, Amogh Dhamdhere, and Constantine Dovrolis. GENESIS: An
agent-based model of interdomain network formation, traffic flow and eco-
nomics. In IEEE INFOCOM, 2012.

[70] Aemen Lodhi, Amogh Dhamdhere, and Constantine Dovrolis. Open peering
by internet transit providers: Peer preference or peer pressure? In IEEE
INFOCOM, 2014.

[71] Tania Lorido-Botrán, Jose Miguel-Alonso, and Jose Lozano. A review of auto-
scaling techniques for elastic applications in cloud environments. Journal of
grid computing, 12(4):559–592, 2014.

[72] Shutian Luo, Huanle Xu, Chengzhi Lu, Kejiang Ye, Guoyao Xu, Liping Zhang,
Yu Ding, Jian He, and Chengzhong Xu. Characterizing microservice depen-
dency and performance: Alibaba trace analysis. In ACM Symposium on Cloud
Computing (SoCC’21), 2021.

102

 laszlo.toka_36_22

https://kubernetes.io
https://kubernetes.io

[73] Shutian Luo, Huanle Xu, Chengzhi Lu, Kejiang Ye, Guoyao Xu, Liping Zhang,
Jian He, and Cheng-Zhong Xu. An in-depth study of microservice call graph
and runtime performance. IEEE Transactions on Parallel and Distributed
Systems, 2022.

[74] Nguyen Cong Luong, Ping Wang, Dusit Niyato, Yonggang Wen, and Zhu
Han. Resource management in cloud networking using economic analysis and
pricing models: A survey. IEEE Communications Surveys & Tutorials, 19(2):
954–1001, 2017.

[75] Pavel Mach and Zdenek Becvar. Mobile Edge Computing: A Survey on Ar-
chitecture and Computation Offloading. IEEE Communications Surveys &
Tutorials, 19(3):1628–1656, 2017.

[76] Yuyi Mao, Changsheng You, Jun Zhang, Kaibin Huang, and Khaled B. Letaief.
A Survey on Mobile Edge Computing: The Communication Perspective. IEEE
Communications Surveys & Tutorials, 19(4):2322–2358, 2017.

[77] Vladimir Mazalov and Andrei Gurtov. Queuing system with on-demand num-
ber of servers. Mathematica Applicanda, 40(2):1–12, 2012.

[78] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry
Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner. OpenFlow:
enabling innovation in campus networks. SIGCOMM Comput. Commun. Rev.,
38(2):69–74, 2008.

[79] Valter Rogério Messias, Julio Cezar Estrella, Ricardo Ehlers, Marcos José
Santana, Regina Carlucci Santana, and Stephan Reiff-Marganiec. Combining
time series prediction models using genetic algorithm to autoscaling web ap-
plications hosted in the cloud infrastructure. Springer Neural Computing &
Applications, 27(8):2383–2406, 2016.

[80] Microsoft Azure. Microsoft Azure: Azure Kubernetes Service (AKS as CaaS)
and Azure Functions (FaaS). https://azure.microsoft.com/.

[81] Jeremy Miles. R squared, adjusted R squared. Wiley StatsRef: Statistics
Reference Online, 2014.

[82] Carla Mouradian, Diala Naboulsi, Sami Yangui, Roch H. Glitho, Monique J.
Morrow, and Paul A. Polakos. A Comprehensive Survey on Fog Computing:
State-of-the-Art and Research Challenges. IEEE Communications Surveys &
Tutorials, 20(1):416–464, 2018.

[83] Mithun Mukherjee, Lei Shu, and Di Wang. Survey of Fog Computing: Fun-
damental, Network Applications, and Research Challenges. IEEE Communi-
cations Surveys & Tutorials, 20(3):1826–1857, 2018.

[84] Kento Nakanishi, Fumiya Suzuki, Satoshi Ohzahata, Ryo Yamamoto, and
Toshihiko Kato. A container-based content delivery method for edge cloud
over wide area network. In 2020 International Conference on Information
Networking (ICOIN), 2020.

103

 laszlo.toka_36_22

https://azure.microsoft.com/

[85] NASA. NASA-HTTP logs. ftp://ita.ee.lbl.gov/html/contrib/
NASA-HTTP.html.

[86] Stefan Nastic, Sanjin Sehic, Duc-Hung Le, Hong-Linh Truong, and Schahram
Dustdar. Provisioning software-defined iot cloud systems. In 2014 Interna-
tional Conference on Future Internet of Things and Cloud, 2014.

[87] Bram Naudts, Mario Flores, Rashid Mijumbi, Sofie Verbrugge, Joan Serrat,
and Didier Colle. A dynamic pricing algorithm for a network of virtual re-
sources. In 2016 IEEE NetSoft Conference and Workshops (NetSoft), 2016.

[88] Dusit Niyato and Ekram Hossain. Competitive pricing for spectrum sharing
in cognitive radio networks: Dynamic game, inefficiency of nash equilibrium,
and collusion. IEEE Journal on Selected Areas in Communications, 26(1):
192–202, 2008.

[89] William B. Norton. Internet service providers and peering. In NANOG, vol-
ume 19, pages 1–17, 2001.

[90] Balázs Németh, Márk Szalay, János Dóka, Matthias Rost, Stefan Schmid,
László Toka, and Balázs Sonkoly. Fast and efficient network service embed-
ding method with adaptive offloading to the edge. In IEEE Conference on
Computer Communications Workshops (INFOCOM WKSHPS), 2018.

[91] ONF. Software-defined networking: The new norm for networks (white paper),
2012. https://www.opennetworking.org.

[92] Martin J. Osborne and Ariel Rubinstein. A course in game theory. The MIT
Press, 1994.

[93] Maria Rita Palattella, Mischa Dohler, Alfredo Grieco, Gianluca Rizzo, Johan
Torsner, Thomas Engel, and Latif Ladid. Internet of Things in the 5G Era:
Enablers, Architecture, and Business Models. IEEE Journal on Selected Areas
in Communications, 34(3):510–527, 2016.

[94] Nisha Panwar, Shantanu Sharma, and Awadhesh Kumar Singh. A survey on
5g: The next generation of mobile communication. Physical Communication,
18(P2):64–84, 2016.

[95] A.K. Parekh and Robert G. Gallager. A generalized processor sharing ap-
proach to flow control in integrated services networks: the single-node case.
IEEE/ACM Transactions on Networking, 1(3):344–357, 1993.

[96] Prometheus. Prometheus. https://prometheus.io/.

[97] M. Reza Rahimi, Jian Ren, Chi Harold Liu, Athanasios V. Vasilakos, and
Nalini Venkatasubramanian. Mobile cloud computing: A survey, state of art
and future directions. Mobile Networks and Applications, 19(2):133–143, 2014.

[98] Joy Rahman and Palden Lama. Predicting the end-to-end tail latency of con-
tainerized microservices in the cloud. In 2019 IEEE International Conference
on Cloud Engineering (IC2E), 2019.

104

 laszlo.toka_36_22

ftp://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html
ftp://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html
https://www.opennetworking.org
https://prometheus.io/

[99] Ali Rajabi and Johnny W. Wong. MMPP characterization of web application
traffic. In 2012 IEEE 20th International Symposium on Modeling, Analysis
and Simulation of Computer and Telecommunication Systems, 2012.

[100] Jia Rao, Xiangping Bu, Cheng-Zhong Xu, Le Wang, and Gang Yin. VCONF:
A reinforcement learning approach to virtual machines auto-configuration. In
Proceedings of the 6th International Conference on Autonomic Computing,
ICAC’09, 2009.

[101] Gourav Rattihalli, Madhusudhan Govindaraju, Hui Lu, and Devesh Tiwari.
Exploring potential for non-disruptive vertical auto scaling and resource esti-
mation in kubernetes. In 2019 IEEE 12th International Conference on Cloud
Computing (CLOUD), 2019.

[102] Ju Ren, Deyu Zhang, Shiwen He, Yaoxue Zhang, and Tao Li. A survey on
end-edge-cloud orchestrated network computing paradigms: Transparent com-
puting, mobile edge computing, fog computing, and cloudlet. ACM Computing
Surveys, 52(6), 2019.

[103] James Roberts, Ugo Mocci, and Jorma Virtamo. Broadband Network Teletraf-
fic. Springer, 1996.

[104] Sheldon M. Ross. Applied Probability Models with Optimization Applications.
Holden-Day, San Francisco, 1970.

[105] Fabiana Rossi, Matteo Nardelli, and Valeria Cardellini. Horizontal and vertical
scaling of container-based applications using reinforcement learning. In 2019
IEEE 12th International Conference on Cloud Computing (CLOUD), 2019.

[106] Krzysztof Rzadca, Pawel Findeisen, Jacek Swiderski, Przemyslaw Zych, Prze-
myslaw Broniek, Jarek Kusmierek, Pawel Nowak, Beata Strack, Piotr Witu-
sowski, Steven Hand, and John Wilkes. Autopilot: Workload autoscaling at
google. In Proceedings of the Fifteenth European Conference on Computer
Systems. ACM, 2020.

[107] José Santos, Tim Wauters, Bruno Volckaert, and Filip De Turck. Towards
Network-Aware Resource Provisioning in Kubernetes for Fog Computing Ap-
plications. In 2019 IEEE Conference on Network Softwarization (NetSoft),
2019.

[108] Srinivas Shakkottai and Rayadurgam Srikant. Economics of network pricing
with multiple ISPs. IEEE/ACM Transactions on Networking, 14(6):1233–
1245, Dec 2006. ISSN 1063-6692. DOI: 10.1109/TNET.2006.886393.

[109] Xiaojun Shang, Yaodong Huang, Zhenhua Liu, and Yuanyuan Yang. Re-
ducing the service function chain backup cost over the edge and cloud by
a self-adapting scheme. In IEEE Conference on Computer Communications
(INFOCOM), 2020.

[110] Balázs Sonkoly, Dávid Haja, Balázs Németh, Márk Szalay, János Czentye,
Róbert Szabó, Rehmat Ullah, Byung-Seo Kim, and László Toka. Scalable

105

 laszlo.toka_36_22

http://dx.doi.org/10.1109/TNET.2006.886393

edge cloud platforms for iot services. Journal of Network and Computer Ap-
plications, 170:102785, 2020.

[111] Balázs Sonkoly, Róbert Szabó, Balázs Németh, János Czentye, Dávid Haja,
Márk Szalay, János Dóka, Balázs P. Gerő, Dávid Jocha, and László Toka.
5G applications from vision to reality: Multi-operator orchestration. IEEE
Journal on Selected Areas in Communications, 38(7):1401–1416, 2020.

[112] Srikanth Sundaresan, Walter de Donato, Nick Feamster, Renata Teixeira, Sam
Crawford, and Antonio Pescapè. Broadband internet performance: A view
from the gateway. In Proceedings of the ACM SIGCOMM 2011 Conference,
2011.

[113] Mark Szalay, Peter Matray, and Laszlo Toka. Minimizing state access delay for
cloud-native network functions. In 2019 IEEE 8th International Conference
on Cloud Networking (CloudNet), 2019.

[114] Mark Szalay, Maté Nagy, Daniel Gehberger, Zoltan Kiss, Peter Matray, Feli-
cian Nemeth, Gergely Pongracz, Gabor Retvari, and Laszlo Toka. Industrial-
Scale Stateless Network Functions. In 2019 IEEE International Conference
on Cloud Computing (CLOUD), 2019.

[115] Mark Szalay, Peter Matray, and Laszlo Toka. State management for cloud-
native applications. Electronics, 10(4), 2021.

[116] Eva Tardos and Tom Wexler. Network Formation Games and the Potential
Function Method, page 487–516. Cambridge University Press, 2007.

[117] Laszlo Toka. Ultra-reliable and low-latency computing in the edge with Ku-
bernetes. Journal of Grid Computing, 19(3), 2021.

[118] Laszlo Toka. The shape of your cloud: How to design and run polylithic cloud
applications. IEEE Access, 10:97971–97982, 2022.

[119] Laszlo Toka, Balazs Lajtha, Eva Hosszu, Bence Formanek, Daniel Gehberger,
and Janos Tapolcai. A resource-aware and time-critical IoT framework. In
IEEE Conference on Computer Communications (INFOCOM), 2017.

[120] Laszlo Toka, Janos Tapolcai, George Darzanos, and Balazs Sonkoly. On pricing
of 5G services. In IEEE Global Communications Conference (GLOBECOM),
2017.

[121] Laszlo Toka, David Haja, Attila Korosi, and Balazs Sonkoly. Resource pro-
visioning for highly reliable and ultra-responsive edge applications. In IEEE
International Conference on Cloud Networking (ClOUDNET), 2019.

[122] Laszlo Toka, Gergely Dobreff, Balazs Fodor, and Balazs Sonkoly. Adaptive AI-
based auto-scaling for Kubernetes. In IEEE/ACM International Symposium
on Cluster, Cloud and Internet Computing (CCGRID), 2020.

[123] Laszlo Toka, Akos Recse, Mate Cserep, and Robert Szabo. On the mediation
price war of 5G providers. Electronics, 9(11), 2020.

106

 laszlo.toka_36_22

[124] Laszlo Toka, Mark Szalay, David Haja, Geza Szabo, Sandor Racz, and Miklos
Telek. To boost or not to boost: a stochastic game in wireless access networks.
In IEEE International Conference on Communications (ICC), 2020.

[125] Laszlo Toka, Marton Zubor, Attila Korosi, George Darzanos, Ori Rotten-
streich, and Balazs Sonkoly. Pricing games of NFV infrastructure providers.
Telecommunication Systems, 76:219–232, 2020.

[126] Laszlo Toka, Gergely Dobreff, Balazs Fodor, and Balazs Sonkoly. Machine
learning-based scaling management for Kubernetes edge clusters. IEEE Trans-
actions on Network and Service Management, 18(1):958–972, 2021.

[127] Thinh Duy Tran and Long Bao Le. Resource allocation for multi-tenant net-
work slicing: A multi-leader multi-follower stackelberg game approach. IEEE
Transactions on Vehicular Technology, 69(8):8886–8899, 2020.

[128] Hong-Linh Truong and Schahram Dustdar. Principles for engineering IoT
cloud systems. IEEE Cloud Computing, 2(2):68–76, 2015.

[129] I. Vaishnavi, J. Czentye, M. Gharbaoui, G. Giuliani, D. Haja, J. Harmatos,
D. Jocha, J. Kim, B. Martini, J. MeMn, P. Monti, B. Nemeth, W. Y. Poe,
A. Ramos, A. Sgambelluria, B. Sonkoly, L. Toka, F. Tusa, C. J. Bernardos,
and R. Szabo. Realizing services and slices across multiple operator domains.
In NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management Sym-
posium, 2018.

[130] Muhammad Wajahat, Anshul Gandhi, Alexei Karve, and Andrzej Kochut. Us-
ing machine learning for black-box autoscaling. In 2016 Seventh International
Green and Sustainable Computing Conference (IGSC), 2016.

[131] Jiafu Wan, Shenglong Tang, Zhaogang Shu, Di Li, Shiyong Wang, Muhammad
Imran, and Athanasios V. Vasilakos. Software-defined industrial internet of
things in the context of industry 4.0. IEEE Sensors Journal, 16(20):7373–7380,
2016.

[132] Guohui Wang and T. S. Eugene Ng. The impact of virtualization on network
performance of Amazon EC2 data center. In IEEE INFOCOM, 2010.

[133] Yonggang Wen, Weiwen Zhang, and Haiyun Luo. Energy-optimal mobile
application execution: taming resource-poor mobile devices with cloud clones.
In IEEE INFOCOM, 2012.

[134] Worldcup. WorldCup98 HTTP logs. ftp://ita.ee.lbl.gov/html/
contrib/WorldCup.html.

[135] Tadeusz Wysocki and Abbas Jamalipour. Spectrum management in cognitive
radio: Applications of portfolio theory in wireless communications. IEEE
Wireless Communications, 18(4):52–60, 2011.

[136] Hong Xu and Baochun Li. A study of pricing for cloud resources. SIGMET-
RICS Perform. Eval. Rev., 40(4):3–12, 2013.

107

 laszlo.toka_36_22

ftp://ita.ee.lbl.gov/html/contrib/WorldCup.html
ftp://ita.ee.lbl.gov/html/contrib/WorldCup.html

[137] Yunjing Xu, Zachary Musgrave, Brian Noble, and Michael Bailey. Bobtail:
Avoiding long tails in the cloud. In 10th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 13), 2013.

[138] Zheng Xue, Di Wu, Jian He, Xiaojun Hei, and Yong Liu. Playing high-end
video games in the cloud: A measurement study. IEEE Transactions on Cir-
cuits and Systems for Video Technology, 25(12):2013–2025, 2015.

[139] Louiza Yala, Pantelis A Frangoudis, and Adlen Ksentini. Latency and avail-
ability driven VNF placement in a MEC-NFV environment. In IEEE Global
Communications Conference (GLOBECOM), 2018.

[140] Jingjing Yao and Nirwan Ansari. Reliability-Aware Fog Resource Provisioning
for Deadline-Driven IoT Services. In IEEE Global Communications Conference
(GLOBECOM), 2018.

[141] Faqir Zarrar Yousaf and Tarik Taleb. Fine-grained resource-aware virtual
network function management for 5G carrier cloud. IEEE Network, 30(2):
110–115, 2016.

[142] Ashkan Yousefpour, Caleb Fung, Tam Nguyen, Krishna Kadiyala, Fatemeh
Jalali, Amirreza Niakanlahiji, Jian Kong, and Jason Jue. All one needs to
know about fog computing and related edge computing paradigms: A complete
survey. Elsevier Journal of Systems Architecture, 98:289–330, 2019.

[143] Guangba Yu, Pengfei Chen, and Zibin Zheng. Microscaler: Automatic scaling
for microservices with an online learning approach. In 2019 IEEE International
Conference on Web Services (ICWS), 2019.

[144] Jiao Zhang, Zenan Wang, Chunyi Peng, Linquan Zhang, Tao Huang, and Yun-
jie Liu. Raba: Resource-aware backup allocation for a chain of virtual network
functions. In IEEE Conference on Computer Communications (INFOCOM),
2019.

[145] Kun Zhu, Dusit Niyato, and Ping Wang. Dynamic bandwidth allocation under
uncertainty in cognitive radio networks. In 2011 IEEE Global Telecommuni-
cations Conference - GLOBECOM 2011, 2011.

[146] Qian Zhu and Gagan Agrawal. Resource provisioning with budget constraints
for adaptive applications in cloud environments. IEEE Transactions on Ser-
vices Computing, 5(4):497–511, 2012.

108

 laszlo.toka_36_22

Glossary

AR Autoregressive. 60–63, 75

AS Autonomous System. 31

CPU Central Processing Unit. 53–57, 73, 74, 84, 86, 88, 90, 94, 96

HPA Horizontal Pod Autoscaler. 54–60, 62–65, 73, 94

IaaS Infrastructure as a Service. 6

IoT Internet of Things. 4, 70, 77, 83–85, 89, 95

ISP Internet Service Provider. 2, 3, 31

KPI Key Performance Indicator. 79, 80

MDP Markov Decision Process. 79, 89

ML Machine Learning. 2, 34, 52, 54, 60, 62–64, 74, 75, 93, 94

MMPP Markov-Modulated Poisson Process. 55–60, 63, 73

MSE Mean Squared Error. 58–61

NFV Network Function Virtualization. 3, 5, 6, 29

NFVIaaS Network Function Virtualization Infrastructure as a Service. 6, 29, 91

NN Neural Network. 60, 61, 74, 75

OTT Over-the-Top. 6, 91

QoS Quality of Service. 2, 4, 5, 8, 31, 33, 34, 65, 73, 78–80, 84, 85, 87–90, 94–96

RL Reinforcement Learning. 60–63, 73, 74

SaaS Software as a Service. 6

SAP Service Access Points. 7, 8, 15, 16, 20, 23, 25, 26, 28

SDN Software Defined Networking. 3, 91

109

 laszlo.toka_36_22

SFC Service Function Chain. 5, 6, 29, 72

SLA Service Level Agreement. 4, 33, 52, 73–75

VM Virtual Machine. 2–4, 71, 72, 74, 75

VNF Virtual Network Function. 5, 6, 8, 72

VNFaaS Virtual Network Function as a Service. 6

WFQ Weighted Fair Queuing. 78, 89

110

 laszlo.toka_36_22

	Introduction
	Research topics around the cloud
	Contributions and methodology
	Structure of the Dissertation

	Inter-cloud businesses
	Introduction
	Business network model and formation game
	Game definition
	The Stackelberg game of Bertrand competitions

	The pricing game in the cloud resource market
	Cloud resource market model: actors, resources, strategies
	Equilibrium prices in pricing games
	Analysis of infinite-capacity games

	Related work
	Resource pricing in the cloud
	Network formation models
	Internet economics

	Resource provisioning within cloud-based systems
	Introduction
	Scalable and economical edge scheduling for latency-, and operation-critical applications
	Complextiy analysis
	Approximation bound

	Re-scheduler: an offline orchestrator to minimize provisioned backup resources
	Providing scalability with node clustering
	ml-based auto-scaling
	Analytical models of auto-scaling methods
	The proposed proactive scaling engine

	Operational model of running microservices
	Related work
	Orchestration of latency-critical cloud-native applications
	Auto-scaling solutions in the cloud

	Bandwidth allocation in access networks towards the cloud
	Introduction
	An uncoordinated bandwidth sharing model and its analysis
	A coordinated cloud resource optimizer method
	System model and the resource allocation problem
	Dynamic programming-based solution

	Related work

	Summary of scientific results
	Inter-cloud business findings
	Intra-cloud management and orchestration methods
	Resource allocation of cloud access

	Bibliography

