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Abstract

The research we present here touches upon various areas of discrete mathematics: Graph
theory, Combinatorics, Data Mining. One of the recurring common part in those subjects
is the notion of colorings, let those be random, algebraic, based on pairings or resulted in
by playing two-person games in many ways. Yet another common characteristics are the
use of explicit or hidden algorithms and the guiding role of different heuristics.

We start with the generalization and deep analysis of pairing strategies for positional
games, and their “dynamic version”, the Chooser-Picker games. Graph games are closely
connected to random graphs, but this relation can be tricky as we demonstrate in the
diameter games.

One can extend games to the past or the future. More precisely, in a graph game one
may interested in finding the smallest graph on which a player wins the game, i. e. the
player has a zeroth step. The other direction is recycling, in which the players have limited
tokens to play and it runs out they play by reusing those tokens.

In the last chapter we consider lots of different approaches and use of colorings. We
discuss the use of random greedy coloring of hypergraphs, the extensions of Kőnig theo-
rem by linear algebraic point of view. Then a model for graph clustering is given which
give rise to special colorings and chromatic numbers. Finally some global discrepancy
problems are considered. Here the the study of balanced colorings of spanning trees were
our original motivation but the research took unexpected turns.
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Chapter 1

Introduction

We have to live ahead but understand life only in retrospect. In assembling this text I
had to decide what to write about, graph structures, games or data-mining? Considering
the possibilities I chose the games to be the central theme, since that way I can also tell
something about combinatorial and algorithmic problems that are in close connection to
games.

First we pinpoint the subject of the dissertation: it is mainly about finite, two-person,
zero sum, total information games that are played on different boards. In some sense,
these games are simple, Zermelo’s theorem states that either one player has a winning
strategy, or both players have safe strategies, i.e. they can avoid losing the game.

These games also have a normal form, the strategies of the players (row and column)
can be listed, and a matrix A can be defined, where Ai,j is the payoff of the row player
when they follow their ith and jth strategies, respectively. In this case Neumann’s Mini-
max theorem guarantees optimal mixed solutions for the players.

However, if the games are not in normal form, but defined by other means, one might
be faced to enormous combinatorial complexity. On the good side, the need to tame this
complexity brought fascinating new ideas and rich theories.

Here we concentrate on those games which grew out of the ancient game of Tic-Tac-
Toe, and sometimes the whole family is called as Tic-Tac-Toe type games [29]. There
are many links connecting these games to classical games, graphs, hypergraph coloring,
topology, complexity theory, algorithms, AI and so on. In fact, some of those problems
might be considered to be one person game and closely related not only to two-person
games, but other important part of mathematics and applied algorithmic problems. Note
that the terminology has been unified only in the recent years. What we call Positional
games earlier had been referred as Combinatorial, Achievement or Hypergraph games,
and instead of the Maker-Breaker terminology the weak or strong games (and wins, draws
etc) had been used.

1.1 Positional games
There is a large class of two-player games that are played on some, not necessarily physi-
cally present, board. Among these we consider those in which the players are taking turns
in placing tokens to the board, and win if they achieve to reach one from the previously
given configurations. Sometimes a combinatorial impossibility theorem (Ramsey-type,
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connectivity, bandwidth etc) can be turned into a game.
Important examples are the hex, independently invented by Piet Hein and John Nash,

the 5-in-a-row, Bridgit (David Gale), or the Shannon’s switching game. A common gen-
eralization of these games is the following. Let F = (V,H) be a hypergraph, and the
two player taking the element of V alternately. The player who takes all elements of an
A ∈ H first wins the game. The case of the hex seemingly differs since here the winning
sets are not the same for the players. Before presenting earlier results, we need to discuss
the possible variants/terminology shortly.

1.1.1 Maker-Maker vs Maker-Breaker games
The Maker-Maker version on F = (V,H) is just as defined before. In the Maker-Breaker
version Maker wins by getting all vertices of an edge from H, while Breaker wins other-
wise, i.e. no draw is possible. Let us note that it is easy (and polynomial) to transform
a Maker-Breaker game into a Maker-Maker game [43]. Using the transversal hypergraph
of F = (V,H) one can exchange the role of Maker and Breaker [28].

1.1.2 Avoider-Enforcer games
Here Avoider wins by not occupying any edge from H, while Enforcer wins otherwise.
In this version having more vertex (move) may hurt the player. Similar problems make it
difficult to prove mathematical statements for the game Go-Moku or even chess.

1.1.3 Chooser-Picker and Picker-Chooser games
In these games Picker takes two vertices of V in each round, Chooser may keep one of
those, and the other goes to Picker. In the Chooser-Picker version Chooser is evaluated as
Maker, i.e. wins by getting a whole edge, and Picker is the Breaker. In the Picker-Chooser
version the Maker-Breaker roles are swapped. These games have intimate connection to
Maker-Breaker games, see [26, 50, 51, 52, 53, 32, 33]. The Chooser-Picker game is also
a kind of slow cake cutting that can be done in one step and turns to the problem if the
underlying hypergraph has a good two-coloring.

1.2 Classical results
Here we list a few from the most basic results/definition that have relevance in the follow-
ing chapters. As the goal is to connect the classical theory with the new results, we do not
go into the details, most of these ideas will be explained later.

1.2.1 Strategies and strategy stealing
The careful notion of strategy has a great importance, otherwise one runs into difficulties.
In general strategies are functions that map the possible states (with history included) of a
game into legal steps. Strategy stealing argument in general is that assuming the existence
of a winning (or drawing) strategy f to a player, we construct a strategy to the other player
by the means of f .
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For a Maker-Maker F = (V,H) game one gets immediately that the first player wins
or the game is a draw. This was proved for the hex by Nash proved, while in general by
Hales and Jewett [84].

1.2.2 Hales-Jewett games and theorems
Hales and Jewett [84] seminal paper connects Ramsey theory, Positional games and graph
pairings. They study the hypergraphs defined by the d-dimensional cube, divided into nd

sub-cubes. The sub-cubes are the vertices, and the edges are the lines of the cube, shortly
HJ(n, d). (Actually, out of the diagonals only those are needed that contain the origin.)
Note that HJ(3, 2) is the Tic-Tac-Toe. The game HJ(3, 2), called Qubic or Tic-Toc-Tac-
Toe, is a Maker’s win as proved by Oren Patashnik [126].

Arguably their deepest theorem states that the hypergraph outlined before is not two
colorable for any fixed n, provided d is large enough. Together with the strategy stealing
argument, this theorem gives a first player win in the Maker-Maker games on HJ(n, d),
or Maker’s win in the Maker-Breaker version if d is big enough in terms of n. In the
Maker-Breaker version d can be much smaller, see [29]. Hales and Jewett also develop
pairing strategies that rely on the Kőnig-Hall theorem that we will be discussing later.

1.2.3 Connectivity games
In retrospective the common feature of these games that given a graph G, the players take
vertices (or in other case edge) of G, while the winning requires achieving a specified
subgraph.

The first game in that line is the famous hex, invented independently by Piet Hein
and John Nash [34]. It can be played on hexagonal board or a simple n × n grid where
a diagonals of slope −1 are added to each cell. (Note that the second form allows the
n-dimensional generalization, [69].) Here the goal is to connect two opposite sides.

It turns out there is no draw in hex, in other words the hypergraph of the winning sets
has no good two coloring, this is the so-called hex theorem. There are several statements
equivalent to the hex theorem such as the Brouwer fix point theorem, Sperner lemma,
Connector theorem, Pouzet lemma, see [69, 97, 87, 133], or chapter 5., problem 30. in
[115].

Other examples for such games are the Bridgit, invented by David Gale or its gener-
alization, the Shannon’s switching game [34]. We recall the second for its significance
in matroid theory and to our results. A graph G is given, Maker and Breaker take the
edges, and Maker wins by getting all edges of a spanning tree. Lehman [111] showed that
Maker, as a second player wins iff G has two disjoint spanning trees.

1.2.4 Erdős-Selfridge type theorems
In 1973 Erdős and Selfridge [58] introduced the use of weight functions, a tool which
significance cannot be overestimated. They showed Breaker can win a Maker-Breaker
game F = (V,H), as a second player, if Φ(F) :=

∑
A∈H 2−|A| < 1/2. It turned out that

practically for all versions of Positional games there are Erdős-Selfridge type theorems.
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Still, the weight functions give even more, these can be combined with other ideas and
these were central in our studies, too.

Note, that the sum Φ(F) is nothing but the expected number of one colored sets in
H in a random coloring of V by flipping a fair coin. The standard probability method of
Erdős [56] yield the existence of a good coloring F . The weight function strategy gives
a polynomial time deterministic algorithm, i.e. solves the problem of derandomization.
One can also interpret this result as a random play predicts the result of the game.

1.2.5 Biased games and random intuition
Chvátal and Erdős, see [46] modified the Shannon’s switching game played on Kn, the
complete graph n vertices. Since Maker has a huge advantage for n ≥ 4, in compensation
Breaker may take b > 1 edges at each step. They looked for the value of the breaking
point b0, which means that Maker wins iff b < b0. It turned out, b0 = Θ(n/ log n) which
suggested a powerful idea, the so-called probabilistic intuition, or random heuristic. To
spell it out we need some preparation.

LetP be a monotone graph property, and edge set taken by Maker isGM . The players,
Maker and Breaker take one and b edges in each turn. (In a general biased game, one of
the players make a, the other b steps in each turn. Note, that this rule may be applied
for other games.) Maker wins iff GM ∈ P , and b0 is the breaking point defined before.
Then one may expect b0 ≈ 1/p0, where p0 is the threshold probability of property P in
the random G(n, p) model. This heuristic was justified in a number of cases, see e.g.
[28, 26, 30, 107, 152, 89, 90]. We may rephrase it as the result of a game is the same if
two perfect or two random players play it.

Sometimes even the random play is meaningful, see in [31, 149] but usually the built
up of some quasi-random structure helps Maker, while Breaker utilizes some weight func-
tion. Indeed, in some cases the results belong rather to the theory of random graphs then
to the games.

However, the probabilistic intuition breaks down completely in other cases which can
cause great difficulty, as we shall see it.

1.2.6 Accelerated games
If a = b in a biased game, we call it accelerated version of the original one. The acceler-
ation may change the outcome of the game profoundly. E.g. while the status of the chess
is still uncertain, a very subtle remark of Kolmogorov helped to prove the White has at
least a draw in the 2-2 accelerated version. Still, the outcome of the accelerated games
may differ from their 1-1 versions, see [12, 113, 129, 131, 132]. One of the most fasci-
nating findings is that the probabilistic intuition may be restored by acceleration (similar
phenomena can happen in Chooser-Picker games).

1.3 Summary of the results by Chapters
In this section we highlight the most important ideas, results and theorems that will be
dealt in detail in the up-coming sections.
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Chapter 2:
In that section we extend the notion of pairing strategies, show that their existence is

NP-complete and prove a useful necessary condition for it, see Proposition 1.
It enables us to analyze the k-in-a-row, and similar games. First of all, there are

no pairing strategies for k-in-a-row if k ≤ 8. Furthermore we can describe all pairing
strategies for the Harary game P5, that is when Maker’s goal is to get five consecutive
cells in the grid. Lemma 1 tells that basically there are only two pairings exist, both are
of domino-type, see Figure 2.4. Moreover in Theorem 2.4 we show there are no pairing
strategies for Breaker in the Harary game “Snaky" which result has only a computer proof
before. We managed to show that a pairing strategy of Breaker in the game “Snaky" must
be also a pairing strategy in the game P5. Then the classification in Lemma 1 yields a
computer-free proof for Theorem 2.4.

In subsection 2.1.2 we continue to explore pairing strategies. For the 9-in-a-row game
only one pairing strategy was known, attributed to Hales and Jewett, but can be traced
back to the book of Berlekamp, Conway and Guy [34]. We managed to find new ones,
and described the structure of all possible pairing strategies in Theorem 2.5. Briefly,
these are either the extensions of the domino-pairings of the 8 × 8 torus or some special
domino-pairings of the 16× 16 torus.1

In subsection 2.1.8 we study the so-called Chooser-Picker (CP) and Picker-Chooser
(PC) auxiliary games that were introduced by Beck [26] to model the Maker-Breaker
games. He observed that Picker has easier job than the corresponding players in both
the CP and PC cases. We confirmed this phenomenon for some classical games, while
later Knox [103] showed that it is not true in general. We extended CP games to infinite
hypergraphs giving Chooser the right to take any finite sub-hypergraph of the original
one. We used this to study the CP version of the k-in-a-row and showed that Picker wins
for k ≥ 8. Later Csernenszky [51] managed to prove this for k = 7, too.

We showed that although it is easier to solve the CP version of concrete games, it is
still NP-hard to decide about the outcome of both CP and PC games. Finally we illustrate
these versions (MM, MB, CP, PC) for the 4 torus game. It turns out that the win of
Chooser in the PC version is surprisingly hard to prove.
Chapter 3:

Two graph games are investigated in this section. In the diameter game Maker’s goal
is to build a spanning graph with small diameter, the most interesting case is the diameter
two game. The other game is a variant of the Shannon’s switching game; here the edges
of Maker have to be in one connected component during the game.2 The common theme
is that in both of these games there is an easy win for Breaker, but the acceleration results
in the win of Maker.

Perhaps the deepest result is Theorem 3.1. We develop the necessary tools (auxiliary
games) for it, and give a sketch how these ideas lead to this theorem. Some of these
auxiliary games, e.g. the biased degree game is interesting in its own right.

For our variant of Shannon’s switching game we have to main results. Having The-
orem 3.4 we are extremely lucky since a complete characterization of the (1 : 1) game
can be done using elementary arguments. The biased version, i.e. the (1 : b) game for

1All torus lines must contain exactly one domino.
2We call the Maker of this game PrimMaker referring to the resemblance to Prim’s celebrated algorithm

for finding maximal weight trees.
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b > 1 defies the probabilistic intuition. However, if PrimMaker can also get more than
one edges in each step, the game becomes non-trivial again. Theorem 3.5 states that
PrimMaker wins if b < n/(8 log n), and Breaker wins if b > n/ lnn.
Chapter 4:

One of the extensions goes backwards in time. For a certain game Maker has to
create the smallest board, usually a subgraph of Kn, which allows a Maker’s wins. First
D. Hefetz, M. Krivelevich, M. Stojaković and T. Szabó [91] investigated these games.
If Maker wants a connected graph on n vertices, it needs exactly 2n − 2 edges; this is
nothing else than the Shannon’s switching game. Their other, much harder, example was
the positive minimal degree game, that is Maker wants a subgraph having positive degree
at all vertices. They showed the a graph on n vertices has to have at least 11n/8 vertices,
and 10n/7 + 4 (or 10n/7 if n ≡ 0 (mod 7)) is always enough.

Via a discharging argument we prove Theorem 4.1 that says their upper bound is
basically sharp. There are some non-matching lower and upper bounds for degree two or
k games.

The other extension goes ahead in time, we continue an otherwise finished game.
Assume that we play a positional game by placing token, and have only limited number
of tokens for each players. Then the players can replace some of their own tokens in
each steps. We call this the recycled version of the original game. We study recycling of
discrete and continuous versions of the Maker-Breaker Kaplansky’s game.3 If the board
is the infinite grid, and there are only four (or constant) winning directions, Breaker wins
if the k ≥ c1 log n + c2, see Theorem 4.3. Note that Maker wins in (1 : 2) version even
without recycling if k ≤ c log2 n for some c > 0, see Theorem 4.2.

The continuous case is much harder. We need a delicate use of weight functions and
a deep discrete geometry theorem of Trotter and Szemerédi [157] to prove Theorem 4.4,
which says Breaker wins if k > 2n1/3 and n is big enough.
Chapter 5:

Here we consider various types of coloring finite objects. These include the good col-
oring of uniform hypergraphs, {0, 1} coloring of graphs, restrict edge structure between
color classes and ±1 coloring of graph edges.

First we investigate a greedy coloring of uniform hypergraphs that leads to Corollar-
ies 5 and 6, Lemma 12 and Claim 4. These ideas and notions became standard tools of
the area since. For sparse hypergraphs we have Theorem 5.1 and Corollary 7.

Using the elements F2 for two coloring connects some results of linear algebra and
graph theory. We re-prove the classical theorems of Kőnig and Harary, see Theorem 8
and 5.4, and reach a new results that can be considered their dual forms.

In the next section we propose a new kind of coloring to address the clustering of
certain transaction graphs. It leads to the notion of induced H-free coloring number of
a graph G, χH(G), where the minimum of such color classes taken where there are no
induced H is between two classes. In Theorem 5.11 we characterize the complexity of
the computation of that, while give some bounds on χH(G) where G is a random graph
from G(n, p) in Theorem 5.13.

3The original Kaplansky’ game is played on the plane, and a player wins having first k tokens in a line
such that the other player has no token on that line.
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In Section 5.6 we discuss some global discrepancy problems for spanning subgraphs.
These include the discrepancy of Hamiltonian cycles in dense graphs, see Theorem 5.15
and 5.16, the discrepancy version of the Hajnal-Szemerédi theorem, Theorem 5.17. There
are a number of results on sparser graphs, Theorem 5.18 for random regular graphs, The-
orem 5.19 and 5.20 for planar graphs and grids.
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Chapter 2

Pairs and Pairings

In this chapter we demonstrate how pairing strategies can be used to solve some games.
The notion of pairing strategies is somehow vague, so after some examples we discuss
the difference of Hales-Jewett and general pairing strategies. Having this understanding,
it becomes possible to develop complexity results, give computer-free proof concerning
“Snaky", describe all pairing strategies for some game and so on.

The other direction is the exploration of Chooser-Picker (and Picker-Chooser) games.
These games were introduced by József Beck, and proved to be very useful in the un-
derstanding of the clique games. These are in close relation to pairing, and interesting to
their own right. We adopt and develop some methods for their investigation, and results
about the outcomes, complexity etc.

2.1 Pairing strategies revisited
Pairing strategies appear in a plethora of games, see [34]. Before stating general theories,
let me add two little games to this list that I devised for educational purposes.

1. Subgroup game. Let G be an additive group such that a + a 6= 0 for any a ∈ G.
Avoider and Enforcer play a game on the hypergraph H = (G,E), where E is the set of
all non-trivial subgroup. Starting the play, Avoider can win by taking 0, and in the later
rounds answering the step a of Enforcer by −a. �

2. Bandwidth game. Let G be a simple graph on n vertices with bandwidth k, in
notation bdw(G) = k. The players take alternately elements from the set {1, . . . , n} and
place to an unoccupied vertex of G. The first player who places a number i to a vertex v
such that it in the neighborhood of v there is a number j, and |i− j| ≥ k, loses the game.
In general not much known about this game. If G = P 2

k that is the k × k grid for k ≥ 2,
then the first player wins if and only if k is odd. Indeed, if k is odd, then Avoider can
place the “middle" number dk2/2e to the “middle" of the board, and then if the second
player places i to a vertex v, the first player places k2− i+ 1 to v′ where v′ is the reflected
image of v to the center of the grid. It is easy to check that this way the first player never
introduces a distance earlier than the second player, that is never loses. On the other hand
draw is not possible, since bdw(P 2

k ) = k, so the second player loses. For an even k, the
second player can steal the above described strategy. �

Certain kind of pairing strategies were introduced to the theory of Positional Games
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by Hales and Jewett in [84]. Based on these pairing strategies they proved the following
theorem.

Theorem 2.1. [84] Breaker wins a Maker-Breaker game on the hypergraph (V,E) if
| ∪A∈G A| ≥ 2|G| for all G ⊂ E.

The idea is to use the celebrated Kőnig-Hall theorem1, and exhibit a “double” system
of distinct representatives (SDR), in the hypergraph (V,E). A set X ⊂ V is an SDR if
|X| = |E|, and there is a bijection φ : X → E such that for all x ∈ X , x ∈ φ(x). If X
and Y are SDR’s of (V,E) with the bijections φ and ψ where X ∩Y = ∅, then ρ = ψ−1φ
is a bijection ρ : X → Y . Breaker, even as a second player, wins by using ρ. That is,
Breaker takes ρ(x) [takes ρ−1(y)] if Maker takes an x ∈ X [a y ∈ Y ], and an arbitrary
untaken element v ∈ V if Maker takes a w ∈ V \ (X ∪ Y ).

While Theorem 2.1 works fine for some games, it has its drawbacks. It rarely gives
sharp results, which is not surprising considering the PSPACE-completeness of those
games. Another problem is that the Kőnig-Hall theorem (and consequently Theorem 2.1)
applies only to finite hypergraphs. A remedy for this is a lesser known theorem of Mar-
shall Hall Jr., that requires only the local finiteness of the hypergraph (V,E). We say that
(V,E) is locally finite if deg(x) := |{A : x ∈ A ∈ E}| <∞ for all x ∈ V .

Theorem 2.2. [85] There is a SDR in a locally finite hypergraph (V,E) iff |∪A∈GA| ≥ |G|
for all G ⊂ E.

Still, Theorem 2.1 does not apply directly if |V | < 2|E|, for instance, one must use
other ideas to tackle the k-in-a-row games in two or in higher dimensions, see [130].

Definition 1. The bijection ρ : X → Y , where X ∩ Y = ∅ and X, Y ⊂ V , is a winning
pairing strategy for Breaker in the Maker-Breaker game on hypergraph (V,E) if for all
A ∈ E there is an x ∈ X such that {x, ρ(x)} ⊂ A.

Although it is utterly trivial, for the record we have to spell out the Observation 1:

Observation 1 (General pairing). If for a hypergraph F there is a ρ winning pairing
strategy, the Breaker wins the Maker-Breaker game on F .

Of course, we assume that both the function ρ and the decision problem that deter-
mining whether any set Y ⊂ V has the property that Y ⊂ A ∈ E are computable in
polynomial time in the size of description of (V,E). (For the sake of simplicity we con-
sider only the case when both V and E are finite.) Having the bijection ρ, Breaker wins
by taking ρ(x) [taking ρ−1(y)] if Maker’s last move was x ∈ X [was y ∈ Y ]. To decide
the existence of ρ is not easy in general. Let us denote the class of hypergraphs for which
Breaker has a winning pairing strategy by B.

Theorem 2.3. Determining whether a hypergraph is in B is NP-complete.

Proof. Given a bijection ρ that witnesses a winning pairing strategy, one checks for an
A ∈ E if there is an x ∈ X such that {x, ρ(x)} ⊂ A. For any pair (A, x) it can be
done in polynomial time, and |E||V | is an upper bound on the number of such pairs.
Consequently, B ∈ NP.

1A generalized form of this theorem will be spelled out in the next paragraph as Theorem 2.2.
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To show that B is NP-hard one can use basically the same argument as in the proof
of Theorem 2.12. There is, however, a simpler reduction. Let φ be an arbitrary CNF in
3-SAT. We construct a hypergraphHφ = (V,E) such that V = {ri, bi, pi}ni=1 and the edge
set, E, consists of all edges A such that

• A is {ri, bi, pi} for all i ∈ {1, . . . , n},

• A = {pi, ri, pj, rj, pk, rk} for a clause C = xi ∨ xj ∨ xk,

• A = {pi, ri, pj, rj, pk, bk} for a clause C = xi ∨ xj ∨ x̄k,

• A = {pi, ri, pj, bj, pk, bk} for a clause C = xi ∨ x̄j ∨ x̄k,

• A = {pi, bi, pj, bj, pk, bk} for a clause C = x̄i ∨ x̄j ∨ x̄k.

A winning pairing strategy for Breaker cannot contain both {pi, ri} or {pi, bi} for
1 ≤ i ≤ n, because the strategy is a bijection. But such a strategy must contain one of
{pi, ri} or {pi, bi} in order to have at least one pair of the form {x, ρ(x)} in each of the
edges of size 3. Let xi = 1 if {pi, ri} is present, while xi = 0 otherwise. As a result,
a clause C associated to its corresponding set A of size 6 is satisfied if and only if A
contains a pair. �

Remarks. If the hypergraph (V,E) is almost disjoint, then Breaker has a winning pairing
strategy iff | ∪A∈G A| ≥ 2|G| for all G ⊂ E, that is one gets back the assumption of
Theorem 2.1. This case can be decided in polynomial time in the description of (V,E).
As in Theorem 2.12, B is NP-complete for hypergraphs (V,E), where |A| ≤ 6 forA ∈ E.
A result of Hegyháti and Tuza [95] implies that the existence of a winning pairing strategy
can be decided in polynomial time if |A| ≤ 3 for A ∈ E. The cases when |A| ≤ 4 or
|A| ≤ 5, seems to be still open.

2.1.1 Applications for k-in-a-row and Snaky
Let d2 be the maximum pair degree in (V,E), that is d2 = maxx 6=y d2(x, y), where
d2(x, y) = |{A : {x, y} ⊂ A ∈ E}|.

Proposition 1. If Breaker has a winning pairing strategy then d2|X|/2 ≥ |G| must hold
for all X ⊂ V , where G = {A : A ∈ E,A ⊂ X}.

Proof. Simply locate the pairs in the winning pairing strategy. There are at most |X|/2
such pairs, which are disjoint. Each pair will be a subset of at most d2 edges. Since each
edge of G must have a pair as a subset, the number of edges must be at most d2|X|/2. �

Before going on, let us tell a few words about k-in-a-row games.
The 5-in-a-row (amőba) is one of the most well known positional game, inspiring

several deep results in this field. For a very thorough introduction for these, see Beck
[29]. In the Maker-Maker version two players take the squares of a graph paper (integer
lattice), alternately, and the first who achieves five in a row, i. e. five consecutive squares
in a vertical, horizontal or diagonal direction, wins the game. The “strategy stealing"
argument shows that in this type of games the first player either wins the game or it is a
draw, so usually the Maker-Breaker version is investigated.

14

               dc_2032_22



With extensive use of computers, Allis [4] solved the Maker-Maker 5-in-a-row game
for the 19 × 19 and 15 × 15 boards: the first player wins. However, the case of infinite
board is still open. It is natural to ask then what happens in the k-in-a-row game, where the
winning condition is to get k consecutive squares in a row. The first result in that direction
is due to C. Shannon and H. Pollak [34] who showed that Breaker wins the 9-in-a-row.
Later A. Hales and R. Jewett gave even a winning pairing strategy for Breaker. Andries
Brouwer, under the pseudonym T.G.L. Zetters in [78] published that Breaker wins the
8-in-a-row on the infinite board. The cases k = 6, 7 are still open, although it is widely
believed that those are both draws. (Of course for k ≤ 4 Maker wins easily.) On the other
hand, we have the following

Corollary 1. There are no pairing strategies for the k-in-a-row if k ≤ 8.

Proof. In the k-in-a-row game, d2 = k − 1, and if X is an n × n board, then |G| =
4n2+O(kn). By Proposition 1, we have (k−1)n2/2 ≥ 4n2+O(kn); that is, k ≥ 9+o(n).
�

Another example in which we can use this ideas is the polyomino game Snaky, which
were examined by Harary [93], Harborth and Seeman [94], and Sieben [145]. This game
is a Maker-Breaker game in which the board consists of the cells of the infinite grid and
Maker’s goal is to occupy all of the cells in an isomorphic copy of the polyomino Snaky,
shown in Figure 2.1.

Figure 2.1: The polyomino Snaky. The “head” is the pair of cells in the upper row. The
“body” is the set of four consecutive cells in the lower row.

Using a computer search, Harborth and Seeman [94] showed that there is no pairing
strategy for Breaker in this game. We give a computer-free proof for their statement:

Theorem 2.4. [94] Breaker has no pairing strategy to avoid the isomorphic copies of the
polyomino “Snaky.”

Proof. Assume to the contrary that there is a winning pairing ρ for Breaker. Let P` be the
polyomino which consists of ` consecutive squares of the table.

First we show that ρ cannot be a pairing for the polyomino P4. Let us assume that
ρ is such a pairing, and consider an n × n board X such that the edges of G consist of
the P4’s on X . Since d2 = 3, Proposition 1 gives that 3n2/2 ≥ 2n2 + O(n), which is a
contradiction if n is sufficiently large.

On the other hand, if ρ is a pairing for Snaky, then we will show that it must be a
pairing for P5. To see this, we assign labels to the cells such that cells receive the same
label iff they are paired by ρ. Let us take the longest set of consecutive cells R such that
no labels are repeated on R. We may assume that either those labels are 1, . . . , ` for some
` ≥ 5, or R is infinite.

We first consider the case ` = 5, and in doing so let us refer to a cell of the grid by
its lower left lattice point. If ρ is not a pairing for P5, then we may assume, without loss
of generality, that the set of cells L = {(1, 0), . . . , (5, 0)} contains no pairs. These cells
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Figure 2.2: The cases ` = 5 and ` = 6.

are labeled by 1, . . . , 5 on the left-hand side of Figure 2.2. Since ` = 5, the both the cells
(0, 0) and (6, 0) are in a pair with some cell of L. (We indicate the cells that have indices
which matching with an element of L by a diamond, otherwise by capital letters.) This
leaves only three elements of L that can be matched with a cell the rows above and below
of L.

Consider the Snakys that have four cells in L. The head of the snake will have two
cells in one of 4 disjoint sets of three consecutive cells in the row above or the row
below L. Without loss of generality, we may assume that the three consecutive cells
{(4, 1), (5, 1), (6, 1)}. That is, no cell of L is matched by the cells {(4, 1), (5, 1), (6, 1)},
labeled by “?” in Figure 2.2. But in that case ρ should contain, as pairs, both {(4, 1), (5, 1)}
and {(5, 1), (6, 1)}, which is impossible. So we may assume that ` > 5.

Remark. In the case that ` > 5, or ` is infinite, we again have a set L containing no
pairs such that |L| = `. Every three consecutive cells in the rows above and below L
must contain at least one cell whose label is matched to a cell of L, otherwise we finish
the argument as in case ` = 5. Here by “the rows above and below L” we mean sets that
extend one cell longer than the end of L if L is finite or if L terminates in one direction.

Second is the case of ` = 6 and we may assume that {(1, 0), . . . , (6, 0)} receive
distinct labels. We will show that the only possible pattern is shown in the right-hand
side of Figure 2.2. There are diamonds in the cells (0, 0) and (7, 0). Four diamonds
remain to be placed and each set of three consecutive cells above and below L. The only
possible locations do to so are (2,±1) and (5,±1). This ensures that {(0, 1), (1, 1)} and
{(0,−1), (1,−1)} form pairs, which we label with “A” and “B”, respectively.

Note that neither diamonds above and below the cell “2” can also be labeled by “2”,
otherwise the diamond, its right neighbor, and the cells 3, 4, 5, 6 would be a pairing-free
Snaky. The cells above and below the cell “3” are labeled “C” and “D”, respectively. At
this moment C could be equal to D. However, if we consider a standing Snaky on the
cells {(1, 2), (1, 1), (2, 1), (2, 0), (2,−1), (2,−2)}, the only unpaired cells are those that
are labeled with “E”. If we consider a standing Snaky with the same body and the head
towards the upper right, the only unpaired cells are those labeled “C” in the right-hand
side of Figure 2.2. Symmetrically, we may assign labels “D” and “F ” as shown in the
figure. This, however, leads to a contradiction, since there would be a pairing-free Snaky
again. In particular, the upper E and F cells make the head, and the body consists of the
diamond above the cell “2”, the cell of the lower C, the empty cell above “4” and the
diamond above the cell “5”. So, we may assume that ` > 6.
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The third case, where ` = 7, is impossible since the rows above and below L should
contain three diamonds each to avoid the snakes and two are needed to the right and left
of L. This totals at least 8, more than the 7 that are available.

L 1 2 3 4 5 6 7 8� �
� �A A

L 1 2 3 4 5 6 7 8 9

� � �

� � �

Figure 2.3: The cases ` = 8 and ` ≥ 9.

In the fourth case, where ` = 8, we have at most eight diamonds around L, two of
those at the ends, and every three consecutive cells above and below L containing at least
one diamond. So, there are ten cells above L and ten cells below L to receive the re-
maining 6 diamonds. There must be one in the three leftmost cells above L, in the three
rightmost cells above L, in the three leftmost cells below L and in the three rightmost
cells below L. Only two diamonds remain. One must be above one of the cells labeled
“3”, “4”, “5” or “6”. A diamond cannot be above the cell labeled “4” or “5” because for
the two Snakys with heads equal to {(4, 1), (5, 1)} and bodies in L, the diamond either
represents one of {1, 2, 3, 4} or one of {5, 6, 7, 8}. Hence, one of these Snakys must be
pairing-free. As a result, the cells {(4, 1), (5, 1)} must be paired with each other and so
we label them with “A”. See the diagram in the left-hand side of Figure 2.3. Because
every three consecutive cells must contain at least one diamond, the cells above the cells
labeled “3” and “6” are labeled with a diamond. This is a contradiction to the fact that
only one diamond can be above these cells. So, we may assume that ` > 8.

In the fifth case, where ` ≥ 9 and is finite, all cells above and below the cells
4, . . . , ` − 3, the “critical region”, must be diamonds. It is the same idea as in the pre-
vious case: If, say the cell above “4”, is A, then so is the cell above “5”. But the same
is true for the cells above “5” and “6”. Not only must the cells in the critical region be
diamonds, there must be a total of at least 4 more above at below L to cover all of the
triples of consecutive cells. With the additional two on the endpoints, there must be at
least 2(` − 6) + 4 + 2 diamonds, that is impossible, given that the total number of dia-
monds is at most `, which is at least 9.

Finally, suppose L is infinite. Take 13 consecutive cells of L, call it L′. In the critical
region of L′ there must be 2(13 − 6) = 14 cells with diamonds, but they must repeat the
labels in the cells of L′, a contradiction. This concludes the proof of the fact that a pairing
for Snaky must be a pairing for P5.

We exhibit two pairings for P5. The pairing T1 is like a chessboard, where the fields
are 2 × 2, and alternately packed by a standing and lying pairs of dominoes as in the
left-hand side of Figure 2.4. The pairing T2 is like an infinite zipper, repeated in both
directions, see the right-hand side of Figure 2.4.
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Figure 2.4: The parings T1 and T2.

Lemma 1. A pairing for P5 is either the translated and rotated copy of T1 or T2.

Proof. Let us consider a pairing, ρ, for P5. A pair {x, ρ(x)} is good if x and ρ(x) are
neighboring cells. If {x, ρ(x)} is good, then d2(x, ρ(x)) = 4, otherwise it is smaller. The
number of P5’s are 2n2 +O(n) on an n×n sub-board X , so Proposition 1 implies that at
all but O(n) pairs on X are good. It follows that, if n is sufficiently large, then there is a
Y ⊂ X , k × k square sub-board that contains only good pairs. I. e. this k × k sub-board
is paired by dominoes.

There are either two dominoes meeting at their longer sides, or the two long sides
meet but are offset by one unit. In these cases the immediate neighboring dominoes are
forced to be in the pattern of T1 or T2, respectively.

11
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Figure 2.5: The forcing for pairs and filling.

We will show that if we have a large enough pattern of dominoes, then the pairs
in the neighboring cells are forced to be in either T1 or T2. First suppose that, within
the pattern tiled by dominoes that two dominoes share a long edge, as in the dominoes
labeled with “1” in the left-hand side of Figure 2.5. Since the pairs can only occur as
dominoes, we can use horizontal P5’s to ensure the pairing is oriented as in the dominoes
labeled with “2”. Vertical P5’s ensure the orientations of the dominoes labeled “3”. We
can continue in this fashion, getting the 8 × 8 pattern in the left-hand side of Figure 2.5.
Once this is determined, one can extend the pattern to a larger rectangle, forcing not just
the domino condition, but the T1 pattern itself. This can be seen by first taking horizontal
P5’s in rows 1,2,5,6 that have two cells outside of the pattern. Then taking vertical P5’s in
columns 9,10, the pattern can be extended to an 8 × 10 rectangle. This can be continued
ad infinitum, showing that the entire n× n board must be in the pattern T1.

Next, suppose that whenever two dominoes meet at their long edge in the sub-board,
that they are offset by one unit, since two dominoes meeting at their long edge will force
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the pattern T1. See dominoes labeled “1” in the diagrams in the center or the right-hand
side of Figure 2.5. The pairs must occur as dominoes and so vertical P5’s ensure that the
dominoes labeled with “2” are placed in that location. Now, consider the right-hand side
of Figure 2.5. Two P5’s are indicated by thin lines. Since the dominoes cannot share a
long side, this forces the placement of the dominoes labeled with “3”.

In fact, if we know that a sub-board is tiled with dominoes that do not share a long
edge, then the configuration must be that of T2. It remains to show that if we have a large
enough fragment of T2 in a sub-board, then, even if the board is not guaranteed to be
tiled with dominoes, it must be completed to a T2 pattern. The other pairs are forced even
without the assumption that those are in dominoes, since the otherwise a P5 containing
no pair would arise.

To see how we can use this sub-board to extend T2 to the whole board, we first show
in the center of Figure 2.5 how enough pairs can be formed under the assumption that
every pair forms a domino and no pair of dominoes can share a long edge. The numbers
show the order in which dominoes can be taken. Then, in Figure 2.6 we show how, under
no assumptions that the pairs occur as dominoes, that the dominoes that cover the 7 × 7
board can be extended to cover a 9×9 board. Again, the numbers show the order in which
dominoes can be taken.

The general approach is that one can force new horizontal dominoes in every third row
that touch the left and right border of the small square and vertical dominoes in every third
column that touch the top and bottom border. From there, the rest of the larger square is
easy to complete. This can continue ad infinitum until the board is filled. This concludes
the proof of Lemma 1. �

10 10
12 11 12

13 13

10

10

13 13

12 11 12
10 10

· ·· ··
· ·· ·· ·· ·· ·· ·· ··
· ·· ·

Figure 2.6: Expanding a 7× 7 square to a 9× 9 square. The dominoes given by the 7× 7
square are marked with “·”.

By Lemma 1, the pairs of ρ are either in the pattern T1 or the pattern T2, but none of
those are pairings for Snaky. This concludes the proof of Theorem 2.4. �

2.1.2 Pairing strategies for 9-in-a-row
As we mentioned, Alfred Hales and Robert Jewett gave a winning pairing strategy for
Breaker in the 9-i-a-row, see [29, 34] and also on Figure 2.7, while Corollary 1 shows
there are no pairing strategies for k-in-a-row for k ≤ 8. Since in the last about 50 years
no one has given different pairings, the highly symmetric structure of the Hales-Jewett
pairing, and the other examples of uniqueness or quasi uniqueness of pairings in similar
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problems, it is natural to think this is the only possible solution. However, it turned out
there are lots of good pairings.

An other belief was that the pairing must be all extension of a pairing of the 8 × 8
torus. Somehow surprisingly, this belief is not true either; there are lot of solutions which
are connected to the 16× 16 torus, but are not extensions of the pairings of a 8× 8 torus.

We will show that all solutions can be got either the extension of the pairings of a 8×8
torus (there are 194 543 non-isomorphic ones) or some combinations of those resulting in
16× 16 toric solutions.

We prove also a special case of the conjecture of Kruczek and Sundberg [108] about
the existence of pairings in higher dimensions.

Since in our discussion k-in-a-row type games play an important role, we define Hk,
the hypergraph of the k-in-a-row games.

Definition 2. The vertices of the k-in-a-row hypergraphHk are the squares of the infinite
(chess)board, i. e. the infinite square grid. The edges of the hypergraph Hk are the k-
element sets of consecutive squares in a row horizontally, vertically or diagonally. We
refer to the whole infinite rows as lines.

The following result is due to Hales and Jewett [34]:

Figure 2.7: Hales-Jewett pairing blocks the 9-in-a-row

A pairing is a domino pairing or rather a match(-stick) pairing on the square grid,
if all pairs consist of only neighboring cells (horizontally, vertically or diagonally). Note
that the pairing on Figure 2.7 is a domino pairing.

For the case k = 9 Hales and Jewett gave a pairing, see [34] or Figure 2.7. However,
in the literature there are neither different solutions nor claims of the uniqueness of the
Hales-Jewett pairing. Our main goal is to decide about this questions.

2.1.3 Conditions for good pairings ofH9

Considering an n × n square sub-board of the infinite board Proposition 1 gives (k −
1)n2/2 ≥ 4n2 + O(n) which implies k ≥ 9 + O(1/n). It suggests that to block H9 one
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must use the pairs “optimally" that is a pair should block a maximum possible edges of
H9. We make precise the notion of optimality as follows.

Definition 3. A pairing is optimal if:

1. Every pair blocks exactly k − 1 edges.

2. There are no over blocking, an edge is blocked by exactly one pair.

3. There is no empty square, i.e. a square that is no part of a pair.

Corollary 2. Let us consider an optimal good pairing for H9. Then this pairing is a
domino pairing in which the dominoes are following each other by 8-periodicity in each
line and all squares are covered by a pair.

Proof. The first point of Definition 3 implies that the pairing is a domino pairing, while
the second gives the 8-periodicity since otherwise it would cause either over blocking or
resulting in an unblocked edge. The lack of empty squares just the repetition of the third
condition. �

Definition 4. We call a square of a pairing anomaly where the 8-periodicity is violated, a
non-domino type pair or an empty square appears first in the natural geographic notation.
The natural order is West to East, North to South, North-West to South-East and South-
West to North-East.

Of course the Hales-Jewett pairing is anomaly-free.

Remark 1. There might be anomalies even in a good pairing of H9.2 However, in sub-
section 2.1.6 we show that the good pairings ofH9 are anomaly-free.

The first step towards this is the following lemma:

Lemma 2. For every good pairing ofH9 there is an arbitrarily big, anomaly-free square
sub-board.

Proof. Let us take any n× n sub-board X and cut it up
√
n/100×

√
n/100 sub-boards.

Applying Proposition 1, there are at most 48n − 128 anomalies in X . Hence, among its
10000n sub-squares most of them must be anomaly-free. �

From now on we describe the structure of anomaly-free pairings ofH9. Let us divide
a good pairing ofH9 into 8× 8 sub-boards and designate one that we call Central square,
shortly C. We keep only the (domino) pairs touching C and examine where should be
pairs on the neighboring 8 × 8 sub-boards of C. In order to talk about these sub-boards
Eastern (E), North-Eastern (NE) etc. while for the individual squares of the sub-boards
the usual algebraic chess notation (A1 to H8) are used, see Figure 2.8.

Theorem 2.5. Suppose we have an anomaly-free good pairing of H9 and we have nine
8 × 8 squares, (C,E,NE, ...) as above. The horizontal and vertical dominoes touching
the Central square C appears on the same places in all eight neighbor sub-boards of C.
The diagonal dominoes also must appear on the sub-boards NE,NW,SW,SE on the
same places. However, while the diagonal pattern of C may extend to the other four sub-
boards, namely the E, S,W,N , it cannot be guaranteed. That is the whole plane is the
periodic copies either ofC or the 16×16 square consisting of the sub-boardsC, S, SE,E.

2A pairing with anomalies might be called “quasi-crystal" since the pairing symmetry group is trivial.
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Figure 2.8: The extension of a pairing of C
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Proof. It suffices to check the following five steps. We designate a general square in a
8 × 8 sub-board by Xi according to the chess notation. If a domino d covers the same
pair of squares e. g. in the C and E square, we say that d extends to E from C.

1. Because of the 8-periodicity of the domino pairs on horizontal (vertical) lines, the
pairs of C extend uniquely to the same places ofW andE (N and S). The slope +1
diagonal dominoes extend similarly to SW and NE, while the slope −1 diagonal
dominoes to SE and NW .

2. To see the horizontal (vertical) extension of dominoes on N and S (W and E) we
need a little case study. We have already seen that the vertical dominoes of C ex-
tend to north and south. Suppose for example that there is a vertical domino v at
the Xi square of C. If the Xi square of W is covered by a slope +1 (or −1) di-
agonal domino, then the 8-periodicity implies that the Xi square of N (or S) is
also covered by a diagonal domino. This is a contradiction because we know from
the previous point, that the Xi square of N is covered by a copy of the vertical
domino v. The same is true for the sub-board E. If the Xi square of W (or E) is
covered by a horizontal domino, then C should contain the copy of that horizontal
domino at Xi by 8-periodicity, which is also a contradiction. We get that the ver-
tical domino v in C extends to W and E, moreover, by 8-periodicity v extends to
SW,NW,NE, SE, too. So, we have seen that the vertical dominoes of C extend to
all its eight neighboring sub-boards. The same is true for the horizontal dominoes
of C.

3. Let us check the diagonal dominoes. At the first and second step all slope +1
diagonal dominoes of C extend to SW and NE. Since there are no empty squares
or over blocking, the remaining squares in SW and NE can be covered only by
−1 slope diagonal dominoes. The same is true for +1 slope diagonal dominoes in
SE and NW . That is so far, all dominoes of C extend to the SW,SE,NE,NW ,
furthermore, the vertical and horizontal dominoes of C extend to S,E,N and W .

4. We can see that the diagonal dominoes of C do not necessarily extend to the sub-
boards S,E,N,W (colored by black on Figure 2.8). However, by 8-periodicity the
diagonal pairs of E extend to S,N and W , that is the black sub-boards S,E,N,W
have the exactly same structure of pairs.

5. The diagonal dominoes of C may extend to the sub-boards S,E,N,W , and then all
8 × 8 sub-boards of the infinite board are the exact copy of C. However, it is pos-
sible that there are two different diagonal structures on the whole board, one in the
C,NW,NE, SE and SW types 8× 8 sub-boards (colored by white on Figure 2.8)
and a different diagonal structure in the sub-boards same as S,E,N and W (black
ones).

�

Definition 5. A pairing of the infinite board (or of an anomaly-free sub-board) is k-toric
if it is an extension of a k × k torus, but not for a smaller value.

We can spell out Theorem 2.5 in such a way: an anomaly-free good pairing of H9 is
either 8-toric or 16-toric.
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Observation 2. There are 8-toric good pairings of H9 that are not isomorphic to the
Hales-Jewett pairing.

Proof. The extensions on Figure 2.9 result in three different 8-toric pairings. Note that the

Figure 2.9: Some other pairings for 9-in-a-row

pairing on the left has reflectional symmetry, while the pairing on the right has rotational
symmetry. �

It is somehow surprising that there exists also some 16-toric pairings of H9. To un-
derstand their structure we refine the argument of the proof of Theorem 2.5 in the next
subsection.

2.1.4 Diagonal alternating cycles
The 8-toric and 16-toric good pairings of H9 can be considered as special perfect match-
ings of graphs. The vertex sets are the basic tori, and each vertex is connected to the eight
neighbors of the square it represents. A domino of a pairing is an edge, and the whole
pairing is not only a perfect matching but have the additional property, that is, contains
exactly one edge (domino) from each torus line.

It is well-known that the union of two perfect matchings on the same vertex set con-
sists of parallel edges and alternating cycles. So if we take the (graph theoretic) union of
two good pairings (e. g. of C and W ) which have the same horizontal and vertical edges,
then the non-trivial alternating cycles contain only diagonal edges. (All alternating cycles
are trivial - parallel edges - if and only if the two pairings are the same.) Identifying the
vertices in the case of non-isomorphic GC and GW the system of diagonal alternating
cycles gives the possible ways to get the 16-toric good pairings.

We arrive to the following simple corollary.

Corollary 3. If there exists a 16-toric good pairing for H9, then we can derive it from
two 8-toric good pairings (in case of non-isomorphic GC and GW ) differ only in some
diagonal cycles.

Theorem 2.6. An 8-toric solution C gives an 16-toric solution if and only if there exists
another 8-toric solution W , differing in some diagonal dominoes, such that their union
gives a system of diagonal alternating cycles. There are only two possible system of
diagonal alternating cycles which are shown on Figure 2.11; the left and middle ones.
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Figure 2.10: Diagonal alternating cycles give 16-toric pairing (left) and some -1 slope
diagonal torus lines (right)

Figure 2.11: The diagonal alternating cycles

Proof. Since there is exactly one domino in each torus line of an arbitrarily chosen 8× 8
square sub-board of a 8-toric solution, then the following must hold. The alternating
cycles coming from the diagonal dominoes of the union of C and W must meet the torus
lines either in zero or two dominoes. (If they meet only in one, then there will be an
unblocked torus line in C or W . The more than two meet would mean over blocking.)

An easy case study gives that only the systems of diagonal alternating cycles of Fig-
ure 2.11 may come into consideration. However, the third one would make a horizontal
line (namely the 1-9) impossible to be blocked by a domino. �

Observation 3. There exist good pairings for H9 containing the first or the second type
of (the systems of) diagonal alternating cycles.

Proof. On Figure 2.12 one can see examples for the statement. Taking bold (thin) pairs of
the alternating cycle for C (W ) we get a 16-toric pairing. Of course this 16-toric pairing
is not 8-toric. �

Figure 2.12: Examples of the alternating circles
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2.1.5 Pairings of the 8× 8 torus
We have seen that pairings on the anomaly-free sub-boards are either 8-toric or 16-toric.
Since the 16-toric solutions can be reduced to 8-toric ones, we examine only the later ones
in detail.

Definition 6. The 8 × 8 Maker-Breaker torus game is played on the 64 squares of the
discrete torus, where there are 32 winning sets; the eight rows and columns and the
diagonal torus lines of slope ±1, see the right side of Figure 2.10).

Observation 4. An arbitrary 8-toric pairing induces a pairing strategy for any 8 × 8
sub-board considering a torus game on it.

That is, a 8-toric pairing of the whole grid (or a big sub-board) gives a good pairing
for the 8× 8 torus.

Remark 2. The reverse is not true, since the 8× 8 torus has good pairings which are not
domino types. Of course, considering only domino pairs we can extend a good pairing of
the torus into a 8-toric pairing of the whole plane.

To find all good domino pairings for the 8× 8 torus is a finite task, which is not hard
by a computer. However, one also has to check for the torus symmetries to list the non-
isomorphic ones. The number of non-isomorphic domino type good pairings is 194 543,
which turns out to be a prime. The pairings themselves can be downloaded at the page:
http://www.math.u-szeged.hu/ makay/amoba/

2.1.6 There are no quasi crystal pairings for the infinite board
We have left an open problem if there are pairings forH9 with anomalies? Note that on a
n× n sub-board there can be O(n) anomalies which might result in infinitely many (and
possibly intractable) solutions. Fortunately, this is not the case as we will see.

Lemma 3. A given anomaly-free pairing of a large enough square sub-board can be
extended to the whole plane uniquely.

Proof. We have seen that all anomaly-free pairings of a square sub-board is an extension
of a domino pairing of either a 8 × 8-as or a 16 × 16 torus. Continuing the extension to
the whole plane gives a good pairing. �

Lemma 4. Let us assume that a pairing of the whole plane is an extension of an anomaly-
free half-plane R. Then the whole pairing is anomaly-free.

Proof. Assume contrary that we have an extension AL containing anomalies. Let AF be
the anomaly-free extension of the half-plane pairing that exists by Lemma 3. Obviously
AL is not equal to AF .

Let us take among the squares with anomaly the closest one to R, and denote it by q.
As it is pictured on Figure 2.13 we may assume that the border line of the half-plane R
is vertical and left to the square q the pairing AL is also anomaly-free. Let AF (q) be the
domino covering the square q in AF . If AF (q) is horizontally placed, and q is the right
half of it, then AL does not contain the domino AF (q) which leaves a 9-in-a-row edge
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Figure 2.13: There are no quasicrystal

unblocked by AL. The similar argument shows that AF (q) can be nothing but a vertical
domino. Let us take the six squares above and below AF (q). Because of 8-periodicity,
there are no other vertical domino in AF covering these 12 squares, but there must be a
half of a vertical pair s on those places in AL, because of the blocking condition. The
domino AF (s) is either horizontal or diagonal), and since AF (s) is not in AL, it results
in an unblocked horizontal or vertical edge in AL. �

In fact, we will need the ideas of the previous lemma, not the statement itself.

Figure 2.14: The extension of an anomaly-free pairing

Theorem 2.7. An anomaly-free pairing of a big enough square sub-board extends uniquely
and anomaly-free to the whole board.

Proof. Fix a good pairing for H9 and take an m ×m sub-board B that is anomaly-free;
this exists by Lemma 2. The pairing on B extends anomaly-free to a large part of the
right side of B, like in Lemma 4. The extension surely contains the right-angled triangle
which hypotenuse length is m− 16, and touches the right side of B, see Figure 2.14. The
argument of Lemma 4 does not work next to the top and the bottom of B, since there are
no diagonal dominoes there in B which were used before.

We can do the same trick to extend the pairing on the other sides of B, which results
in a bigger (about size

√
2m − 16) rotated square. Repeating this procedure, we can see

the anomaly-free pairing of B is forced to extend to the whole plane. �
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2.1.7 A pairing strategy in 3D
Kruczek and Sundberg [108] conjectured upper bounds matching with the lower bound
of Proposition 1 for k-in-a-row type games in d dimension.

Conjecture 1. [108] In the Maker-Breaker game on Zd where there is a finite set S ⊂ Zd
of winning line direction-vectors, Breaker has a pairing strategy that allows him to win if
the length of each winning line is at least 2|S| + 1, i.e., Breaker has a winning pairing-
strategy for the game k-in-a-row if k ≥ 2|S|+ 1.

The special case on the plane just gives back that in the k-in-a-row Breaker has
winning pairing strategy if and only if k ≥ 9. The higher dimensional versions are
mainly open. One possible form when the winning directions in the 3-dimensional lat-
tice are given by the 13 vectors: {(0, 0, 1), (0, 1, 0), (1, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0),
(0, 1,−1), (1, 0,−1), (1,−1, 0), (1, 1, 1), (1, 1,−1), (1,−1, 1), (−1, 1, 1)}. Here Propo-
sition 1 implies that to have a good pairing k should be at least 27. According to Conjec-
ture 1, we may expect good pairings for k = 27.

Figure 2.15: A good pairing of the 3D 7-in-a-row

We have examined a related problem in 3-dimension; the directions of winning lines
are given by the three vectors: {(0, 0, 1), (0, 1, 0), (1, 0, 0)}. Here one expects pairing
strategies if k ≥ 7. (In other words, this is a Harary-type game [34] in 3-dimension,
where the winning polyomino is the P7, i.e. the seven connected consecutive cubes in a
row.)

In fact, a computer search confirms this expectation, see on Figure 2.15. This is a
domino pairing of 3-dimensional torus type, we give the pairing on the 6 × 6 × 6 torus
in layers. The horizontal and vertical pairs of the same layer are obvious, while the pairs
between the layers are denoted by points and circles.

2.1.8 Chooser-Picker games and Beck’s conjecture
Studying the very hard clique games, Beck [26] introduced a different type of heuristic,
that proved to be a great success. He defined the Picker-Chooser or shortly P-C and the
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Chooser-Picker (C-P) versions of a Maker-Breaker game that resembles fair division, (see
[150]). In these versions Picker takes an unselected pair of elements and Chooser keeps
one of these elements and gives back the other to Picker. In the Picker-Chooser version
Picker is Maker and Chooser is Breaker, while the roles are swapped in the Chooser-
Picker version. When |V | is odd, the last element goes to Chooser. Beck obtained that
conditions for winning a Maker-Breaker game by Maker and winning the Picker-Chooser
version of that game by Picker coincide in several cases. Furthermore, Breaker’s win in
the Maker-Breaker and Picker’s win in the Chooser-Picker version seem to occur together.

Beck [26] has another interesting remark, namely that Picker may win easily the
Picker-Chooser game if Maker wins the corresponding Maker-Breaker game. He for-
mulates this as follows:

“Note that Picker has much more control in the Picker-Chooser version than Chooser
does in the Chooser-Picker version, or Maker does in the Maker-Breaker version so the
Picker-Chooser game is far the simplest case. This relative simplicity explains why we
start with the Picker-Chooser game instead of the perhaps more interesting Maker-Breaker
game."

However, one has to be careful to spell out a good conjecture, since it is easy to check
that Chooser wins the 2× 2 hex.

The precise form of Beck’s conjecture is:

Conjecture 2. Picker wins a Picker-Chooser (Chooser-Picker) game on (V,F) if Maker
(Breaker) as second player wins the corresponding Maker-Breaker game.

Remark 3. It is enough to prove Conjecture 2 for Picker-Chooser games since the Chooser-
Picker case would follow. To see this one just considers (V,F∗), the transversal hyper-
graph of (V,F). That is F∗ contains those minimal sets B ⊂ V such that for all A ∈ F ,
A ∩ B 6= ∅. Note that Breaker as a first (second) player wins the Maker-Breaker (V,F)
iff Maker as a first (second) player wins the Maker-Breaker (V,F∗).

The decision problem that if Picker wins a P-C (or C-P) game is at least NP-hard
[133], but probably it is PSPACE-complete as that of the Maker-Breaker games, shown
by Schaefer [146]. Still, for concrete games it can be easier to decide the outcome of the
P-C (C-P) version than the Maker-Maker version. That is if Conjecture 2 is proved for a
class of hypergraphs then the easier P-C (C-P) games can be used in an alpha-beta pruning
algorithm for the harder Maker-Breaker game. A natural class for that is the otherwise
hopeless Hales-Jewett or torus games for low dimension (see [27, 84]). We discuss some
examples and useful tools for that direction in Section 2.1.11. Here we would emphasize
the extension of Picker-Chooser games to infinite hypergraphs and the role of Lemma 6
and Proposition 3 in this case. These might be used in solving Harary-type of polyomino
problems for Chooser-Picker games for which the Maker-Breaker versions were studied
by Harary, Blass, Pluhár and Sieben [34, 129, 144].

Remark 4. It turned out that the Beck’s conjecture does not hold in general. In 2012 F.
Knox [103] gave a counterexample.

2.1.9 Chooser-Picker version of Shannon’s switching game
We prove Conjecture 2 for the Picker-Chooser version of Shannon’s switching game in
the generalized version as Lehman did in [111]. Let (V,F) be a matroid, where F is the
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set of bases, and Picker wins by taking an A ∈ F . Note that this is equivalent with the
Chooser-Picker game on (V, C), where C is the collection of cutsets of the matroid (V,F),
that is for all A ∈ F and B ∈ C, A ∩B 6= ∅.

Theorem 2.8. Let F be collection of bases of a matroid on V . Picker wins the Picker-
Chooser (V,F) game, if and only if there are A,B ∈ F such that A ∩B = ∅.

Proof.
The notation and the proof closely follow the ones given in [124] for the Maker-

Breaker case.
First we show that if there are no two disjoint A,B ∈ F then Chooser wins. Let

M1 = (V,F) andM = M1 ∨M1 be the union matroid ofM1 with itself. The rank
function rM of the union matroid ofM = M1 ∨ · · · ∨Mk is the following,

rM(S) = min
T⊂S

{
|S \ T |+

k∑
i=1

ri(T )

}
,

where the matroids are defined on the same ground set S, and the matroid Mi has the
rank function ri. We have minT⊂V {|V \ T |+ 2r1(T )} = rM(V ) < 2r1(V ), sinceM1

does not have two disjoint bases. Equivalently, |V \ T | < 2(r1(V ) − r1(T )). Receiving
a pair (x, y), Chooser keeps an element of V \ T if possible. At the end of the game
Chooser owns at least d|V \ T |/2e elements of V \ T . That is Picker may own at most
b|V \ T |/2c < r1(V )− r1(T ) elements of V \ T at the end of the game.

Let Y be the elements of Picker at the end of the game. Clearly,

r1(Y ) ≤ r1(Y ∩ (V \ T )) + r1(T ) < r1(V )− r1(T ) + r1(T ) = r1(V ),

that is Picker has lost the game.
For the other direction, we assume that A,B ∈ F , A ∩B = ∅, and use induction. We

consider the matroidM/y \ x given a pair (x, y) taken by Chooser and Picker, respec-
tively. Clearly Picker wins the game forM if he can win it forM/y \ x. (The dimension
ofM/y \ x is one less than that ofM, and if A′ is a base ofM/y \ x, then A′ ∪ {y} is a
base ofM.)

All we need here is the strong base exchange axiom (or rather theorem), that says
if A and B are bases of a matroid M, then there exist x ∈ A, y ∈ B such that both
{A \ {x}} ∪ {y} and {B \ {y}} ∪ {x} are also bases ofM. Picker selects the pair (x, y)
such that the above applies, and reduces the game to eitherM/y \ x orM/x \ y. Since
A \ {x} and B \ {y} are disjoint bases both inM/y \x andM/x \ y, we can proceed. �

2.1.10 Erdős-Selfridge-type theorems
The Erdős-Selfridge theorem [58] gives a very useful condition for Breaker’s win in a
Maker-Breaker (V,F) game stating that Breaker as the second player has a winning strat-
egy in the Maker-Breaker (V,F) game when

∑
A∈F 2−|A| < 1/2.

Beck [26] considers both versions (Picker-Chooser and Chooser-Picker). Surprisingly
the Picker-Chooser version is easier to prove, and the

∑
A∈F 2−|A| < 1 condition suffices.

He used the usual weight function method, for fun, we show another approach.3

3Similar argument was used by Spencer in [149].
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Proof. Chooser chooses by flipping a coin. Let us check the probability that all elements
of an A ∈ F go to Picker. If {xi, yi} ⊂ A, then this probability is zero, otherwise it
is 2−|A|. The expected number of edges taken by Picker E ≤

∑
A∈F 2−|A| < 1 by any

strategy of Picker. So Picker cannot have a winning strategy, since it would result in at
least one edge taken by Picker. The game is won by one of the players, so according to
Zermelo’s theorem, Chooser has a winning strategy. �

For the Picker-Chooser version, Beck Using a stronger condition, Beck [26] proves
Picker’s win in a Chooser-Picker (V,F) game. (For the P-C version he proved a sharp
result that we include here.) Let ||F|| = maxA∈F |A| be the rank of the hypergraph
(V,F).

Theorem 2.9. [26] If

T (F) :=
∑
A∈F

2−|A| <
1

8(||F||+ 1)
, (2.1)

then Picker has an explicit winning strategy in the Chooser-Picker game on hypergraph
(V,F). If T (F) < 1, then Chooser wins the Picker-Chooser game on (V,F).

We improve on his result by showing:

Theorem 2.10. If ∑
A∈F

2−|A| <
1

3
√
||F||+ 1

2

, (2.2)

then Picker has an explicit winning strategy in the Chooser-Picker game on hyper-
graph (V,F).

Proof.
We shall modify the proof of Theorem 2.9 appropriately. The idea of the proof is to

associate a weight function T (F) to a hypergraph (V,F) that measures the danger for
Picker. The value of T becomes 1 iff Chooser wins the game, so Picker tries to keep
T down. In Maker-Breaker games the greedy selection works, see the classical Erdős-
Selfridge theorem in [58] or in [27]. Let T (F) =

∑
A∈F 2−|A|, T (F ; v) =

∑
v∈A∈F 2−|A|

and T (F ; v, w) =
∑
{v,w}⊂A∈F 2−|A| for an arbitrary hypergraph (V,F).

Assume that after the ith turn Chooser already has the elements x1, x2, . . . , xi and
Picker has the elements y1, y2, . . . , yi. Now Picker picks a 2-element set {v, w}, from
which Chooser will choose xi+1, and the other one (i. e. yi+1) will go back to Picker.
Let Xi = {x1, x2, . . . , xi} and Yi = {y1, y2, . . . , yi}. Let Vi = V \ (Xi ∪ Yi). Clearly
|Vi| = |V |−2i. LetF(i) be the truncated subfamily ofF which consists of the unoccupied
parts of the still dangerous winning sets:

F(i) = {A \Xi : A ∈ F , |A \Xi| ≤ d|Vi|/2e , A ∩ Yi = ∅}.

Here we will deviate a little from Beck’s proof, since he includes all sets A ∈ F ,
|A\Xi| ≤ |Vi| inF(i) ifA∩Yi = ∅. But if |A\Xi| > d|Vi|/2e, then Picker automatically
gets an element of A, so deleting these sets from F(i) does not change the outcome of the
game.
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Let F(end) = F(d|V |/2e), i. e., these are the unoccupied parts of the still dangerous
sets at the end of the play. Chooser wins iff T (F(end)) ≥ 1, so to guarantee Picker’s win
it is enough to show that T (F(end)) < 1. Let xi+1 and yi+1 denote the (i+ 1)th elements
of Chooser and Picker, respectively. Then we have

T (F(i+ 1)) = T (F(i)) + T (F(i);xi+1)− T (F(i); yi+1)− T (F(i);xi+1, yi+1).

It follows that

T (F(i+ 1)) ≤ T (F(i)) + |T (F(i);xi+1)− T (F(i); yi+1)|.

Introduce the function

g(v, w) = g(w, v) = |T (F(i); v)− T (F(i);w)|

which is defined for any 2-element subset {v, w} of Vi. Picker’s next move is that 2-
element subset {v0, w0} of Vi for which the function g(v, w) achieves its minimum. Since
{v0, w0} = {xi+1, yi+1}, we have

T (F(i+ 1)) ≤ T (F(i)) + g(i), (2.3)

where

g(i) = min
v,w:v 6=w,v,w⊂Vi

|T (F(i); v)− T (F(i);w)|. (2.4)

To estimate g(i) we take a lemma from [26]. It is an easy exercise for the reader.

Lemma 5. If t1, t2, . . . , tm are non-negative real numbers and t1 + t2 + . . . + tm ≤ s,
then

min
1≤j<`≤m

|tj − t`| ≤
s(
m
2

) .
We distinguish two phases of the play.
Phase 1: |Vi| = |V | − 2i > 2||F||. (Note that Beck uses |Vi| > ||F||.) Simple

counting shows that ∑
v∈Vi

T (F(i); v) ≤ ||F||T (F(i)).

By Lemma 5 and (2.4),

g(i) ≤ ||F||(|Vi|
2

)T (F(i)),

so by (2.3),

T (F(i+ 1)) ≤ T (F(i))

{
1 +
||F||(|Vi|

2

)} .
Since 1 + x ≤ ex = exp(x), we have
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T (F(i+ 1)) ≤ T (F) exp

{
||F||

i∑
j=0

1(|Vj |
2

)} .
It is easy to see that ∑

i:|Vi|>2||F||

1(|Vi|
2

) < 1

2||F||
,

so if i0 denotes the last index of the first phase then

T (F(i0 + 1)) <
√
eT (F). (2.5)

Phase 2: |Vi| = |V | − 2i ≤ 2||F||.
Then a similar counting as in Phase 1 gives∑

v∈Vi

T (F(i); v) ≤
⌈
|Vi|
2

⌉
T (F(i)).

One checks that T (F(i + 1)) ≤ T (F(i)) when 2 ≤ |Vi| ≤ 4. If |Vi| ≥ 4, then by
Lemma 5 and (2.4),

g(i) ≤ 1

|Vi| − 1
T (F(i)),

so by (2.3),

T (F(i+ 1)) ≤ |Vi|
|Vi| − 1

T (F(i)). (2.6)

Let us recall the well-known Wallis’ formula, limn→∞
1

2n+1

∏n
i=1

(2i)2

(2i−1)2 = π
2
. Since

(2n+2)2

(2n+1)(2n+3)
> 1 for all n ∈ N , we have the inequality for all n ∈ N

n∏
i=1

2i

2i− 1
<

√
π

2
(2n+ 1). (2.7)

By repeated application of (2.6) we have

T (F(end)) ≤ T (F(i0 + 1))2
∏

i:2≤|Vi|≤2||F||

|Vi|
|Vi| − 1

≤ T (F(i0 + 1))2

||F||∏
j=2

2j

2j − 1
.

Now using (2.7), (2.5) and (2.2), we have

T (F(end)) < T (F(i0 + 1))

√
π(||F||+ 1

2
) ≤
√
eπT (F)

√
||F||+ 1

2
< 1.

That is, Chooser cannot completely occupy a winning set, and Theorem 2.10 follows.
�
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Remark 5. In 2013 Bednarska-Bzdȩga [32] proved the sharp version Erdős-Selfride-type
theorem for the Chooser-Picker games. Namely if

∑
A∈F 2−|A| < 1/2, then Picker wins.

In the next subsection we extend Chooser-Picker games to infinite hypergraph, and
discuss the classical k-in-a-row games.

2.1.11 The k-in-a-row
The Picker-Chooser k-in-a-row is an easy Picker’s win for all k ∈ N, by Beck’s argument
in [27]. The Chooser-Picker is again Picker’s win for k > 1 on the infinite board, since
Picker may select elements far from each other at all time. However, the games become
interesting if we restrict them to a finite board, since sooner or later all elements must be
selected. (One might think that Chooser starts the game by selecting a finite part of the
board.)

Proposition 2. Picker wins the Chooser-Picker version of the game 8-in-a-row on any
B ⊆ Z2.

Proof. First we need an easy but useful lemma. Given the hypergraph (V,F) let (V \
X,F(X)) denote the hypergraph where F(X) = {A ∈ F , A ∩X = ∅}.

Lemma 6. If Picker wins the Chooser-Picker game on (V,F), then Picker also wins it on
(V \X,F(X)).

Proof. By induction it is enough to prove the statement for X = {x}, i. e., |X| = 1.
Assume that p is a winning strategy for Picker in the game on (V,F). That is, in a certain
position of the game, the value of the function p is a pair of unselected elements that
Picker is to give to Chooser. We can modify p in order to get a winning strategy p∗ for the
Chooser-Picker game on (V \ {x},F({x})).

Let us follow p while it does not give a pair {x, y}. Getting a pair {x, y}, we ignore
it, and pretend we are playing the game on (V,F), where Chooser has taken y and has
returned x to us. If |V | is odd, there is a z ∈ V at the end of the game that would go
to Chooser. Here Picker’s last move is the pair {y, z}. Picker wins, since Chooser could
not win from this position even getting the whole pair {y, z}. If |V | is even, p∗ leads to
a position in which y is the last element, and it goes to Chooser. But the outcome is then
the same as the outcome of the game on (V,F), that is Picker’s win. �

We shall cut up the infinite board to sub-boards in the same way as was in [78], see
also Figure 2.1.11. The left tile and its mirror image are the bases of the tiling. The
winning sets for the these sub-boards are the rows, the diagonals of slope one, and the
two pairs indicated by the thin lines. The middle of the picture shows the tiling itself. We
use one type of tile in an infinite strip, and its mirror image in the neighboring stripes. On
the right side of Figure 2.1.11 the transformed tile is drawn, where the winning sets are
the rows, columns and the indicated two pairs.
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Figure 2.1.11 The subdivison of the plane.

Let B̄ be the union of those sub-boards meeting B. We show that Picker wins the
Chooser-Picker 8-in-a-row game for the board B̄. Note that B̄ is a union of sub-boards.
Picker plays auxiliary games on the sub-boards independently of each other with the goal
of preventing Chooser from getting a winning set of a sub-board.

To achieve this goal, Picker selects the two pairs first on any sub-board, that give rise
to the possible positions shown in Figure subboardpairs. Then Picker uses the appropriate
winning pairing strategy indicated by the thin lines. One checks easily that if Picker wins
all the auxiliary games then he wins the Chooser-Picker 8-in-a-row game on playing B̄,
too. Finally, by Lemma 6, Picker wins on B. �

f fv
v f vv

f v vf
f

Figure 2.1.11 Pairings on a sub-board.

One might wonder how the idea of the pairings used in Proposition 2 came from. It is
worthwhile to spell out the following simple fact.

Proposition 3. In a Chooser-Picker game if a winning set contains no elements of Picker,
and has only two untaken elements, x, y then Picker has an optimal strategy that starts
with picking the pair {x, y}.

Proof. We may assume that Picker has a winning strategy p, otherwise there is nothing
to prove. First we show that during any optimal play of the game Picker has to offer the
pair {x, y} sometimes. If Picker offers, say, {x, z}, z 6= y, and y has not been taken
yet, Chooser would keep x, and win taking y later. Now let us assume the Chooser has
a winning strategy ρ, taking, say, x if Picker starts with {x, y}. Chooser can adapt the
strategy ρ against any strategy of Picker’s by pretending that the start was {x, y}. Over
the course of the play Picker has to offer the pair {x, y}. Then Chooser takes x and
resumes playing the strategy ρ, and Chooser wins, since the outcome of the game would
be the same if Picker would have started with {x, y}. �

Remark 6. András Csernenszky, see [51] managed to prove an even stronger result,
Picker wins the Chooser-Picker version of the game 7-in-a-row on any B ⊆ Z2. To do
this he cut the plane into 4 × 8 rectangular sub-boards, with appropriate winning sets
such that a Picker win on a sub-board guarantees a win in the whole plane. To analyze
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a sub-board similar techniques were used as in Proposition 2, especially Proposition 3.
The result, considering the connection between the Maker-Breaker and Chooser-Picker
games, supports the belief that Breaker might win the Maker-Breaker 7-in-a-row game.
However, the 7-in-a-row game (let alone the 6-in-a-row game) is still a mystery.

2.1.12 From pairs to colorings
Observation 1 tells that the existence of a winning pairing strategy ρ is a sufficient condi-
tion for Breaker to win in a Maker-Breaker F game. On the other hand, if Breaker wins,
χ(F) ≤ 2 is necessary. (Even stronger, F must have a good two-coloring about same
sized of color classes.)

We can fill the area between the pairings and good coloring with other objects which,
thanks to the notion of accelerated Chooser-Picker games, have a game theoretical mean-
ing.

First we generalize the pairings, and call a set C = C1 ∪ C2 ⊂ V of the hypergraph
F = (V ;H) to be a t-cake, or cake of size t if |C1| = p, |C2| = q and |C| = p + q. It is
balanced, if p = q. The set T is a t-cake placement if it consists of cakes of size at most
t. When all cases are of size t, and p = q, we may call it p-pairing.

A t-cake C blocks an edge A ∈ H if |A∩Ci| > 0 for i = 1, 2. A t-cake placement T
is good t-cake placement if all edges o F are blocked by some cakes from T .

Among the many possible scenarios that we examined in [81] let us restrict to our-
selves to the 2p-pairings of the k-in-a-row hypergraph.

Observation 5. Picker wins a p : p accelerated Chooser-Picker game on F if there is a
good 2p-placement T .

Complexity issues for Chooser-Picker games

The Maker-Breaker (and the Maker-Maker) games are PSPACE-complete (see [146]) so
it is natural to think that Chooser-Picker or Picker-Chooser games are not easy as well. To
prove PSPACE-completeness for positional games is more or less standard, see [140, 43].
Here we can prove something weaker because of the asymmetric nature of these games.

Theorem 2.11. It is NP-hard to decide the winner in a Picker-Chooser game.

Theorem 2.12. It is NP-hard to decide the winner in a Chooser-Picker game.

2.1.13 Proofs of Theorems 2.11 and 2.12
Both proofs are based on the usual reduction method. We reduce 3 − SAT to Chooser-
Picker or Picker-Chooser games.

Proof of Theorem 2.11. Consider an arbitrary CNF formula φ(x1, . . . , xn) ∈ 3− SAT.
We denote φ = C1∧· · ·∧Ck, whereCi = `i1∨`i2∨`i3 and `ij is a literal for i ∈ {1, . . . , k}
and j = 1, 2, 3. With a slight abuse of notation, we use Ci also to denote the set of literals
in it. That is, if there exists a clause Ci = x2 ∨ x̄5 ∨ x6, then we also denote the set
Ci = {x2, x̄5, x6}.

We will exhibit a hypergraph Hφ = (V,E) such that the Picker-Chooser game is a
win for Chooser if and only if φ is satisfiable.
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The vertex set will be V = {x1, . . . , xn, x̄1, . . . , x̄n}. Let B ⊂ 2V have the property
that B ∈ B if, for all i ∈ {1, . . . , n}, B contains either xi or x̄i but not both. The edge set
E consists of the sets A such that A = Ci ∪B for some i and some B ∈ B.

Note that B, and consequently E, has a short (polynomial in φ) description even
though |E| ≥ |B| = 2n.

Claim 1 allows us to restrict our attention to games in which Picker has a specific kind
of strategy.

Claim 1. If Picker fails to select pairs of the form {xi, x̄i} in each round, then Chooser
has a winning strategy.

Proof of Claim 1. We assume to the contrary: Let {x, y} be the first pair selected by
Picker such that {x, y} 6= {xi, x̄i} for any i ∈ {1, . . . , n}. In that case, Chooser keeps,
say, x, and waits until Picker offers up x̄ in a pair. In that round, Chooser takes x̄, and
wins the game, since Picker cannot take any B ∈ B. This proves Claim 1. �

First we show that if Picker-Chooser onHφ is a win for Chooser, then φ is satisfiable.
According to Claim 1, we may assume that Picker’s strategy is to select pairs of the form
{xi, x̄i} resulting in the fact that such pairs are shared among Picker and Chooser for all
i. Assume that Chooser wins the game on Hφ, and set x̂i = 1 if Chooser holds xi, and
x̂i = 0 otherwise. Picker holds all elements of some B ∈ B, so the assumption means
that Chooser has an element in each of the Ci’s. That is, φ(x̂1, . . . , x̂n) = 1.

Next we show that if φ is satisfiable, then Picker-Chooser onHφ is a win for Chooser.
Since φ is satisfiable, there exist x̂1, . . . , x̂n, such that φ(x̂1, . . . , x̂n) = 1. Consider the
Picker-Chooser game on Hφ. By Claim 1, we may assume that, in each round, Picker
offers a pair of the form {xi, x̄i}. In that case, Chooser takes xi if and only if x̂i = 1, and
wins the game. This proves Theorem 2.11. �

Proof of Theorem 2.12. Let us use the same set-up and notation for the CNF formula φ
as in the proof of Theorem 2.11. We want to define a hypergraph Hφ = (V,E) such that
the Chooser-Picker game onHφ = (V,E) is a Picker’s win if and only if φ is satisfiable.

Let the vertex set be V = {ai, bi, ci, di}ni=1. The edge set, E, consists of all edges A
such that

• A ⊂ {ai, bi, ci, di} and |A| = 3 for some i ∈ {1, . . . , n},

• A = {ai, aj, ak, bi, bj, bk} for a clause C = xi ∨ xj ∨ xk,

• A = {ai, aj, ak, bi, bj, ck} for a clause C = xi ∨ xj ∨ x̄k,

• A = {ai, aj, ak, bi, cj, ck} for a clause C = xi ∨ x̄j ∨ x̄k,

• A = {ai, aj, ak, ci, cj, ck} for a clause C = x̄i ∨ x̄j ∨ x̄k.

Claim 2 allows us to restrict our attention to games in which Chooser has a specific
kind of strategy.

Claim 2:

• If Picker picks a pair (x, y) such that {x, y} 6⊂ {ai, bi, ci, di} for some i ∈ {1, . . . , n},
then Chooser has a winning strategy.
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• Chooser has an optimal strategy that results in always choosing ai and always giving
di to Picker.

In particular, this means that we may assume that for all i, Picker either picks {(ai, bi), (ci, di)}
or {(ai, ci), (bi, di)}. Moreover, Chooser will get ai and Picker will get di and each player
will get exactly one of (bi, ci).
Proof of Claim 2. Suppose Picker offers a pair (x, y) for which x ∈ {ai, bi, ci, di} but y 6∈
{ai, bi, ci, di}. Consider the first such instance. In that case, Chooser chooses x, and ulti-
mately wins by choosing at least two more elements from
{ai, bi, ci, di} \ {x}, giving Chooser every element of some A of size 3. So, for all i,
Picker will pick either {(ai, di), (bi, ci)} or {(ai, bi), (ci, di)} or {(ai, ci), (bi, di)}. Hence,
Chooser and Picker will have at least one member of each set of size 3.

However, no di appears in any of the sets of size 6 and so if Chooser wins by choosing
di, then he must also win by not choosing di. Finally, suppose Picker picks the pair (ai, bi)
or (ai, ci). Chooser will choose ai in either case because every A of size 6 that contains
either bi or ci will also contain ai. So, once again, Chooser can only benefit by choosing
ai over bi or ci. Summarizing, if Picker plays optimally; i.e., always taking pairs with the
same subscript, then for every winning strategy in which Chooser chooses di, there exists
a winning strategy in which he does not and for every winning strategy in which Chooser
does not choose ai, there exists a winning strategy in which he does.

So, we may assume that Picker picks either {(ai, bi), (ci, di)} or {(ai, ci), (bi, di)} for
all i because if Picker picks {(ai, di), (bi, ci)}, then the outcome is the same except that
he cannot control which of {bi, ci} he will be given by Chooser. This proves Claim 2. �

Now let Picker’s {(ai, bi), (ci, di)} or {(ai, ci), (bi, di)} moves correspond to setting
the value of xi = 1 or xi = 0, respectively.

First we show that if Chooser-Picker onHφ is a win for Picker, then φ is satisfiable. We
may assume that Chooser plays according to the restrictions imposed by Claim 2. At the
end of the game, Picker has exactly one of {bi, ci}. Chooser has ai for all i ∈ {1, . . . , n}.
Let x̂i = 1 if Picker has bi and x̂i = 0 otherwise. By the construction of Hφ, this means
that φ(x̂1, . . . , x̂n) = 1.

Next we show that if φ is satisfiable, then Picker-Chooser on Hφ is a win for Picker.
Suppose that there is some assignment that φ = (x̂1, . . . , x̂n). Picker makes sure to get
bi (i.e., Picker picks {(ai, bi), (ci, di)}) if x̂i = 1, and makes sure to get ci (i.e., Picker
picks {(ai, ci), (bi, di)}) if x̂i = 0. Because of Claim 2, we may assume that Chooser will
always choose ai for all i ∈ {1, . . . , n}. As a result, Picker will get at least one element
from every A ∈ E, and wins the game. This proves Theorem 2.12. �

Note that this theorem implies that Chooser-Picker games are NP-hard, even in the
case of hypergraphs (V,E), for which |A| ≤ 6 for all A ∈ E.

Torus games

To test Beck’s paradigm from Conjecture 2that Chooser-Picker and Picker-Chooser games
are similar to Maker-Breaker games, we check the status of concrete games defined on
the 4 × 4 torus. That is, we identify the opposite sides of the grid, and consider all
lines of slopes 0 and ±1 and size 4 to be winning sets. We denote the torus, along with
those winning sets with the notation 42. For the general definition of torus games, see
[27]. We use a chess-like notation to refer to the elements of the board. We note that the
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hypergraph of winning sets on 42 is not almost disjoint, see e. g. the two winning sets
{a2, b1, c4, d3} and {a4, b1, c2, d3}. See Figure 2.16. We consider four possible games
on 42: Maker-Maker, Maker-Breaker, Chooser-Picker and Picker-Chooser. According to
[27], the Maker-Maker version of 42 is a draw, and, according to [50], Picker wins the
Chooser-Picker version. Here, we investigate the Maker-Breaker and the Picker-Chooser
versions. In fact, the statement of the Maker-Breaker version implies the result for the
Maker-Maker version, while the proof of it contains the proof of the Chooser-Picker ver-
sion.

Proposition 4. Breaker wins the Maker-Breaker version of the 42 torus game.

Proof. Using the symmetry of 42, we may assume, without loss of generality, that Maker
takes a4. Breaker’s move will then be to take d1. Up to isomorphism, there are eight cases
depending on the next move of Maker. The first element of the pair is Maker’s move, while
the second is Breaker’s answer: 1. (c3, b2), 2. (b3, b2), 3. (c2, b2), 4. (b4, c3), 5. (c4, b4),
6. (d4, c3), 7. (d2, a3) and 8. (d3, b1).

In the first seven cases Breaker has winning pairing strategies. All eight cases are
shown in the first two rows of Figure 2.16 and the pairs appear under the labels A, B, C,
D, and E. We leave it to the reader to check that the pairs block all 16 winning sets.

In the eighth case Breaker does not have pairing strategy, but the game reduces to one
of the seven prior cases unless Maker plays a3, a2 or a1 in the third step of the game. In
that case, Breaker plays b4, a3 or b2, respectively, and wins by the pairing strategy shown
in the third row of Figure 2.16. �

Note that in the Chooser-Picker version of the game 42, Picker can achieve a position
isomorphic to Case 1. That is, Picker wins.

If Conjecture 2 were true, then Breaker has an easier job in the Maker-Breaker version
than Chooser has in the Picker-Chooser game. For the 4 × 4 torus the outcome of these
games are the same, although this is much harder to prove.

Proposition 5. Chooser wins the Picker-Chooser version of 42, the 4× 4 torus game.

Proof. (Sketch.) The full proof needs a lengthy exhaustive case analysis. However, some
branches of the game tree may be cut by the following result of Beck [26]: Chooser wins
the Picker-Chooser game onH if T (H) :=

∑
A∈E(H) 2−|A| < 1.

In our case, T (H) = 16 × 2−4 = 1, which just falls short. Instead we use a similar
method using so-called potential functions. We assign weights to each edge at the i th

stage such that wi(A) = 0 if Chooser has taken an element of A, otherwise it is 2−f(A),
where f(A) is the number of untaken elements of A. The weight of a vertex x is wi(x) =∑

x∈Awi(A), while the total weight is wi :=
∑

A∈E(H)wi(A).
Note that Picker wins if and only if both w8 ≥ 1 and w0 = T (H) = 1. When a pair

(x, y) is offered, Chooser can always take the one with larger weight, which results in a
non-increasing total weight. In fact, if the weights of x and y differ or both x and y are
elements of an A of positive weight, then the total weight strictly decreases.

In order to have any possibility of winning, Picker has to select x and y of equal
weights and no edge of positive weight containing both. By the symmetries of the board,
we may assume Picker gets a4 and Chooser gets c3 in the first round. After that, Picker has
only pairs (x, y) that do not result in a loss for Picker: (b4, d3), (a3, c4), (b3, d4), (a3, b3),
(a3, d3), (b3, d3), (a1, b2) and (a1, d2), see Figure 2.17. The letter P [C] designates the
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Figure 2.16: The pairings used by Picker in the game 42.
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vertex taken by Picker [Chooser] in the first step, the numbers are the weights of the
vertices.
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Figure 2.17: The beginning of the Picker-Chooser 42 game.

The rest of the proof is similar to that of the prior step: one needs to check that Chooser
has winning strategy for each of the eight non-trivial responses of Picker. We omit the
details. �
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Chapter 3

Biased and accelerated games on graphs

As we mentioned before, the random heuristic is an excellent tool to guess to outcome
of, possibly biased, positional games. For us the most intriguing cases when it fails.
For the sake of completeness we need to recall some results from from the author’s PhD
dissertation, see [130], or in [131, 129].

The Maker-Breaker (a : b)-k-in-a-row behaves in a strange way. Maker wins for all
k ∈ N assuming a > b, while if for example b ≥ 4a, Breaker wins for k ≥ a + 2.
The really hard case is when a = b. Because of the infinite board the expected number
of one colored edges of the hypergraph is infinite for all k ∈ N, and one cannot cut the
game into disjoint sub-games. Still, with some effort it can be shown that Maker wins
if k ≤ a + log2 a/ log2 log2 a and Breaker wins if k ≥ a + 80 log2 a + 160, provided
a ≥ 1000. Moreover if a restriction is added, namely that all Maker’s marks should be
within a distance d in each steps, then Breaker can win if k ≥ 240 log2 d+ 480, provided
a = 2b and d ≥ 4000.

3.1 Diameter games
In diameter games are graph games played on Kn, the complete graph on n vertices. Fix
a d ∈ N. Taking turn, the players claim the edges of Kn, and Maker wins iff the diameter
of GM is not more than d. We denote the corresponding d-diameter game by Dd(a : b),
or simply, by Dd if a = b = 1.

To relate this set-up with the probabilistic intuition, we use the monotone property
Pd, that is the graph has diameter at most d. Since the diameter of G(n, 1/2) is 2 almost
surely, one would expect that Maker wins D2. However, the probabilistic intuition fails
completely in this case.

Proposition 6. Assume that Maker starts the game D2. For n ≤ 3 Maker has and for
n ≥ 4 Breaker has a winning.

Proof of Proposition 6. One checks that for n ≤ 3 the win is automatic. For n ≥ 4
Breaker can choose an edge not incident to that chosen by Maker. Let this edge – the one
Breaker chooses – be uv. The strategy of Breaker is: if Maker chooses an edge incident
to u, say uw, then Breaker chooses wv. Similarly, if Maker chooses vw, then Breaker
chooses wu. Otherwise Breaker may take an arbitrary edge. Clearly, at the end of the
game, in Maker’s graph the pair {u, v} has distance at least three. �
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One thinks if Maker can take two edges in a move the outcome would be different. It
turns out to be true, the acceleration of the game almost restores the random heuristic.

Theorem 3.1. Maker wins the gameD2(2 : 1
9
n1/8/(log n)3/8), and Breaker wins the game

D2(2 : (2 + ε)
√
n/ lnn) for any ε > 0, provided n is large enough.

We proved corresponding results for the game Dd for d ≥ 3, too.

Theorem 3.2. For any fixed d ≥ 3, and n large enough, Maker wins the game Dd(1 :
(2d)−1(n/ lnn)1−1/dd/2e).

Furthermore, for every integer a > 1 and integer d ≥ 3, there exist c2 = c2(d) > 0
and c3 = c3(a, d) > 0 such that Breaker wins the games Dd(1 : c2n

1−1/(d−1)) and Dd(a :
c3n

1−1/d), provided n is big enough.

In fact Theorem 3.2 will hold even if d grows slowly, for example d ≤ c1 lnn/ ln lnn
for some positive constant c1.

The game D3(1 : b) deserves a closer look. The threshold for P3 is about n−2/3; i.e.,
G(n, p) has property P3 with probability close to 1 if p = n−2/3+ε, and it does not have
property P3 if p = n−2/3−ε for arbitrary ε > 0 and n sufficiently large, see Bollobás [37].

As Theorem 3.2 shows, Maker wins the game D3(1 : c1
√
n/ lnn), and Breaker wins

the game D3(1 : c2
√
n), for some c1, c2 > 0, provided n is big enough. That is, the

game D3(1 : b) also defies the probabilistic intuition. Most probably acceleration would
brings the game bound closer to the probabilistic threshold. That is for D3(3 : b)-game
the breaking point should be b0 ≈ n2/3 × polylog(n). Unfortunately, there has been no
progress in that direction yet.

3.1.1 Auxiliary games
To prove Theorems 3.1 and 3.2 is quite long and technical. Instead we try to give a sketch
of the proof and a special case of Theorem 3.1. We also introduce some of the deeper
tools used in that process and to relate those to earlier results.

Namely, we define and state some results regarding minimum-degree and expansion
games. However, before stating our results, let us recall and old theorem of Erdős and
Chvátal [46], since it makes at least one direction of the proof of Theorem 3.1 easy.

Theorem 3.3 (Chvátal-Erdős [46]). Let H be an r-uniform family of k disjoint winning
sets. Then
(i) Maker has a winning strategy in the (a : 1)-game when

r ≤ (a− 1)
k−1∑
i=1

1

i
.

(ii) Maker has a winning strategy in the (a : 2)-game when

r ≤ a− 1

2

k−1∑
i=1

1

i
.
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Degree games

Given a graph G and a prescribed degree d, Maker and Breaker play an (a : b)-game
on the edges of G. Maker wins by getting at least d edges incident to each vertex. For
G = Kn and a = b = 1 this game was investigated thoroughly in [155] and [25]. It was
shown that Maker wins if d < n/2−

√
n log n, and Breaker wins if d > n/2−

√
n/12.

For the biased case we give a condition for Maker’s win first.

Lemma 7. Let a ≤ n/(4 lnn) and n be large enough. Then Maker wins the (a : b)-degree
game on Kn if d < a

a+b
n− 6ab

(a+b)3/2

√
n lnn.

Remark. We refer to the winning strategy of Maker as playing as MINDEG-Maker.
These results are in agreement with the probabilistic intuition, since in G(n, 1/2)

the degrees of all vertices fall into the interval
[
n/2−

√
n log n, n/2 +

√
n log n

]
almost

surely. In the case a 6= b, playing on G = Kn analogously one would expect that Maker
wins if d < an/(a + b) − c′

√
n log n, and Breaker wins if d > an/(a + b) − c′′

√
n for

some c′, c′′ > 0.

Lemma 8. Breaker wins the (a : b)-MINDEG(d) game on Kn if d > a
⌊

n
a+b

⌋
, if n > 2a.

Remark. We refer to the winning strategy of Breaker as playing as MINDEG-Breaker.
Proof of Lemma 8. In the first round Breaker chooses a vertex, say v, which Maker has
not touched and chooses all of his edges to be incident to that vertex in every round. At
the end of the game, Maker has chosen at most a

⌊
n−1
a+b

⌋
edges incident to v. �

Expansion game

Different type of expansion properties of a graph are extremely useful, see Pósa [137].
These can properties might be achieved by Maker in a graph game as it was demonstrated
by Beck in [28].

In the expansion game, Maker wins by achieving that for every pair of disjoint sets
R and S, where |R| = r and |S| = s, there an edge between R and S in GM . We may
assume that s ≥ r.

Lemma 9. Maker wins the (a : b)-expansion game on Kn with parameters r ≤ s if one
of the following holds:

a. 2b lnn < r ln(a+ 1),

b. b lnn < r ln(a+ 1) ≤ 2b lnn and s > rb lnn
r ln(a+1)−b lnn ,

c. n− s < nr ln(a+1)
b lnn+r ln(a+1)

.

Remark. We refer to the winning strategy of Maker as playing as EXP-Maker.

3.1.2 About the proof of the 2-diameter game
If Maker takes more edges per move than Breaker, then a winning condition come easily
from Lemma 7:
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The b < a case in the 2-diameter game.

First we prove that Maker wins the D2(a : b)-game if b < a < (n/(72 lnn))1/3 and n is
large enough. Maker’s strategy is to play the degree game with d =

⌈
n−1
2

⌉
on Kn. By

Lemma 7, he wins the game and it is easy to check that the diameter of Maker’s graph
is 2, i.e., he wins the D2(a : b)-game. Indeed, if uv is not a Maker’s edge for some
vertices u and v, then |N(u) ∩ N(v)| ≥ n − 2 − 2

(
n− 2−

⌈
n−1
2

⌉)
> 0, implying that

the intersection is non-empty. That is, in Maker’s graph, the distance between u and v,
hence the diameter of the graph, is at most two. �

Breaker wins when b is large.

We prove that Breaker wins the D2(2 : b)-game for b = (2 + ε)
√
n/ lnn. Breaker plays

in two phases. In Phase I, before his first move, he picks a vertex v which has no edge in
Maker’s graph yet. For r′ ≤ (n + b − 1)/b rounds, he occupies as many incident edges
to v as possible. Let u1, . . . , ut be the list of vertices so that Maker occupied the edge vui
before Breaker makes his (r′ + 1)st move. Trivially t ≤ 2r′ + 2. At the end of Phase I,
there is no unclaimed edge incident to v.

In Phase II, Breaker considers n− t− 1− 2r′ disjoint sets of edges: For each vertex
x 6∈ {v, u1, . . . , ut} such that neither xv nor any xui is occupied by Maker after round r′,
define Ex := {xu1, . . . , xut}. By Theorem 3.3 (ii), Breaker can occupy one of these sets,
say Ex, when

t ≤ b− 1

2
ln(n− t− 1− r′),

which is satisfied for b = (2 + ε)
√
n/ lnn, if n is large enough. This forces v and x,

in Maker’s graph, to be at a distance of at least 3 from each other, i.e., Breaker won the
game. �

Maker wins when b is small (sketch).

We set r, s and c such that the possible value of b is maximized. The values will be

b =
n1/8

9(lnn)3/8
, c =

1

8
, r =

√
n lnn

2
and s =

n3/4

lnn
, (3.1)

although we will not substitute these values until the end of the proof.
Maker’s strategy consists of two phases. The first one, which lasts 2nr rounds, uses

2nr(b + 2) edges, and the second deals with the rest of the
(
n
2

)
edges. In the first phase,

Maker will play four subgames, each with a different strategy.
Denote degIB(x) to be Breaker’s degree and degIM(x) to be Maker’s degree at vertex

x after Phase I. In general, degB(x) and degM(x) will denote Breaker’s and Maker’s de-
grees, respectively, in whichever round the context indicates.

Phase I. There are 2nr rounds in this phase. Each of the following games is played in
successive rounds. That is, Maker plays game i in round j iff i ≡ j (mod 4). A vertex
becomes high if it achieves degB(x) ≥ cn/b before the end of Phase I. Note that Maker’s
goals are monotone properties, i.e., if the strategy of a subgame requires Maker to occupy
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an edge that he already occupied in an other subgame, then he is free to use his edges in
any way for this turn. The goals of Maker in the four games played in Phase I are the
following:

• Game 1. Ratio game. If vertex x becomes high, then after this change the follow-
ing relation will hold during the rest of Phase I: degB(x)/ degM(x) < 3b.

• Game 2. Degree game. For all vertices x, degIM(x) ≥ r.

• Game 3. Expansion game. For every pair of disjoint sets with |R| ≥ r and |S| ≥ s
there is a Maker’s edge between R and S at the end of Phase I.

• Game 4. Connecting high vertices. In this subgame, which lasts in the entire
game not only in Phase I, the aim of Maker is to connect each pair of high vertices
with a path of length at most two.

Phase II. In the odd rounds of this phase, Maker will connect with a path of length at
most two each pair of vertices whose distance in Maker’s graph is at least 3. As for the
even turns of this game, half of them are already dedicated to continue Game 4, the other
half are arbitrary moves by Maker. Because Game 4 played in the entire game, it is easier
to analyze the connection of pairs of vertices by performing it only in odd rounds.

By Game 2, after Phase I is finished, degIM(u) ≥ r for every vertex u. By Game 3,
after Phase I is finished, in Maker’s graph there is an edge from the neighborhood of u
into every s set of vertices, hence to all but s vertices there is a path of length at most 2
from u at the end of Phase I. The aim of Maker in Phase II to connect the remaining pairs
of vertices with a path of length at most 2. This is handled in Game 4 for pairs (u,w)
when both are high. So in the odd rounds in Phase II we only need to connect u and w
where either u or w is not a high vertex.

3.2 All the time connected Shannon’s switching game
One of the most discussed graph game is the classical Shannon’s switching game, which
we mentioned in the Introduction. This is a Maker-Breaker game on the edge set of a
connected graph G, and Maker wins by taking the edges of a spanning tree. The outcome
of this game is characterized by Lehman’s theorem [111] stating that Maker wins (as a
second player) if and only if the graph contains two edge-disjoint spanning trees.

To play it on Kn, Chvátal and Erdős [46] introduced the (1 : b) biased version. The
outcome is a monotone function of b in a sense that if Maker wins for a value b, and b′ < b
then Maker also wins the (1 : b′)-game. It turned out later that the turning point is around
b0 = Θ(n/ log n), Gebauer and Szabó [71]. Of course this is nothing else but another
highly non-trivial example of the probabilistic intuition.

Epsig, Frieze, Krivelevich and Pedgen et al[62] introduced new variants of connectiv-
ity games, the so-called Walker-Breaker game and PathWalker-Breaker game. If Walker’s
position is a vertex x, he may claim any edge e = (x, y) such that e has not been taken
by Breaker before and changes his position to y. PathWalker is even more restricted;
he is allowed to visit a vertex only once. For Breaker’s moves, there are no restrictions.
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Walker and PathWalker wants to visit as many vertices of G as possible. It was shown
that Walker (and even PathWalker) reaches at least n−2 vertices of Kn for large n. In the
1 : b-game the number of vertices that can be visited by PathWalker falls into the interval
[n− c1 log n, n− c2 log n], where the values of c2 < c1 depend on only b.

Motivated by their approach and some classic problems, we define new versions of
Shannon’s switching game. These are Maker-Breaker games in which Maker’s goal is to
get a connected spanning subgraph GM of a graph G such that the subgraph consisting
of Maker’s edges is connected throughout the whole game. It is convenient to call such a
game PrimMaker-Breaker game paying tribute to Prim’s celebrated algorithm. Note that
Prim’s algorithm [138] finds a (minimal) spanning tree in a weighted undirected graph
by keeping subgraph of the already selected edges connected in contrast to Kruskal’s
algorithm [109] which does not have this property.

We are lucky enough to have a complete characterization for the (1 : 1) unbiased
game. Let Hn be the graph that we get from Kn−2,2 by joining the two vertices in its
two-element color class, see Figure 3.1.

Theorem 3.4. Playing the PrimMaker-Breaker game on a graphG with n vertices, Prim-
Maker wins as a first player if and only if G contains Hn as a subgraph.

Proof of Theorem 3.4. It is remarkable that in both directions of the proof of Theorem 3.4
the actual winner may utilize a pairing strategy. First we show if a graph G on n vertices
contains the subgraph Hn, then PrimMaker wins the game as a first player. PrimMaker
might restricts his moves the the edges of Hn, as follows. His first move is the edge
e = (u, v), the edge added to Kn−2,2, see Figure 3.1. The other edges of Hn are paired
such that f, g ∈ E(Hn) \ {e} is a pair if they incident and their common endpoint lies
in V (Hn) \ {u, v}. PrimMaker plays according to this pairing, more precisely, in every
turn, he takes one element of a pair. This keeps his subgraph connected and results in a
spanning tree in the (n− 1)st move.

For the other direction, let us assume that G does not contain Hn, and PrimMaker first
move is an edge e = (u, v). Then there must be a vertex x ∈ V (G) \ {u, v}, such that
|N(x) ∩ {u, v}| ≤ 1. Now Breaker might also use a pairing strategy: whenever Prim-
Maker connects a new vertex y to his subgraph, i. etakes an edge (z, y), where z had been
visited earlier, then Breaker takes the edge (y, x) if (y, x) ∈ E(G), and moves arbitrarily
otherwise. Obviously, PrimMaker can never connect the vertex x to his subgraph. �

We proved a little more than was stated in Theorem 3.4. By winning PrimMaker
builds a subgraph of diameter not more than three, which type of games were explored in
[12]. Note the close resemblance to the proof of Theorem 6.

Breaker’s strategy can be adopted to a (1 : b)-game on Kn, and shows that Breaker
wins if b > 1, in contrast to the probabilistic intuition which predicts b0 = Ω(n/ log n).
As it was observed before, acceleration of games has surprising effects, and it may restore

r r
r r r p p p r1 w n− 2

u v r r
r r r p p p r1 w n− 2

u v

Figure 3.1: The graph Hn and a possible Maker’s subgraph.
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the probabilistic intuition destroyed by a pairing strategy in the (1 : 1)-game [12]. Here
we can witness a, in magnitude, perfect restoration of that intuition.

Theorem 3.5. Playing the (2 : b) PrimMaker-Breaker game on Kn, Maker wins if b <
n/(8 log n), and Breaker wins if b > n/ lnn.

3.2.1 Background
The following result is not just one of the most important one in the theory of hypergraph
games, but it can be used very effectively to decide the winner of biased hypergraph
games. For the case a = b = 1 it was proved by Erdős and Selfridge in [58], the general
form by Beck in [22].

Theorem 3.6. If ∑
A∈E(H)

(1 + b)−|A|/a < 1,

then Breaker has a winning strategy in the (H, a, b) game.

Still, several times not Theorem 3.6 but its proof techniques and corollaries are used.
For the sake of better understanding and introducing some notations, we give a sketch

of the proof of the case b = 1, and all elements of E(H) have the same size, a more
detailed detailed proof can be found in [131].

The uniform case with b = 1. For any A ∈ V (H) let Ak(M) and Ak(B) be the number
of elements in A, after Maker’s kth move, selected by Maker and Breaker, respectively.
Now, for an A ∈ E(H)

wk(A) =

{
λAk(M) if Ak(B) = 0
0 otherwise,

where λ = 21/a. For any x ∈ V (H) let wk(x) =
∑

x∈Awk(A). The numbers wk(A) and
wk(x) are called the weight of A and x (in the kth step), respectively.

In the kth step Breaker chooses an unselected element yk ∈ V (H) of maximum
weight. Setting wk =

∑
A∈E(H) wk(A), called the potential, one gets wk ≥ wk+1, k ≥ 0.

Particularly w1 ≤ (λa − 1)|E(H)| + |E(H)| ≤ 2|E(H)|. Since b = 1 and the ele-
ments of E(H) are of the same size, the inequality

∑
A∈E(H) 2−|A|/a < 1/2 leads to the

inequality 2|E(H)| < 2|A|/a. Let us suppose that Maker wins the game in the kth step.
This would imply wk ≥ λ|A| = 2|A|/a, contradicting the monotonicity of the potential. �

An edge A ∈ E(H) is active if Breaker has not taken any of its elements. On reverse,
A ∈ E(H) is blocked if Breaker has already taken an element of it. Since wk ≤ w1 ≤
2|E(H)| for all k, we have a bound on the “fill-in” of an active edge. Note, that this bound
holds for the non-uniform hypergraphs, too.

Corollary 4. [131] Playing the Maker-Breaker (H, a, 1) game, Breaker may arrange that
whenever A is active, i. eAk(B) = 0, then Ak(M) ≤ a+ a log2 |E(H)|.

Proof of Corollary 4. Just take the logarithm of the inequality λAk(I) = wk(A) ≤ wk ≤
w1 ≤ 2|E(H)| that holds for any active edge A ∈ E(H). �
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3.2.2 Proof of Theorem 3.5
PrimMaker’s win. First we describe the winning strategy then show its feasibility. Prim-
Maker plays an equivalent auxiliary game, the positive minimum degree game, see Espig
et al. [62], with the additional requirement that his subgraph should be connected during
the game.

PrimMaker tries to get edges incident to each vertices as fast as possible. More pre-
cisely, he can guarantee an edge incident the vertex x, before Breaker takes, say n/4
edges incident to x. This can be done by an appropriate weight function method used
before several times [129, 131, 132].

In order to utilize Corollary 4, we associate an auxiliary hypergraph game to the
PrimMaker-Breaker game. To each vertex x ∈ V (Kn) let the Ax ∈ E(H) be the set
of ordered pairs 〈x, y〉, where y ∈ V (Kn) \ x. That is Ax ∩ Ay = ∅ for x 6= y and
|Ax| = n − 1 for all x ∈ V (Kn). When Maker takes the edge (x,w) in the graph game,
it results in taking both 〈x, y〉 and 〈y, x〉 in the hypergraph game. Of course Breaker one
move means taking 2b ordered pairs. Note that PrimMaker intends to play as Breaker in
this auxiliary game.

Let us assume that PrimMaker can imitate the greedy strategy of Corollary 4 in the
(H, 1, 2b) game. Note, that in order to do so, PrimMaker does not have to take the pair
(edge) 〈x, y〉 of the largest weight, taking any pair from the largest weight hyperedge has
the same effect on the potential function wk.

Extending the notation of Corollary 4, we may say a vertex x is blocked if Ax is
blocked, i. ePrimMaker has an edge that is incident to x. We shall prove by induction on
the steps of the game that an arbitrary vertex can be blocked at each step. The induction
hypothesis holds in the first step, and assuming it holds until the kth step, we can use the
bound of Corollary 4. It gives that Breaker can take at most b+ b log2 n ≤ n/4 edges are
incident to an unblocked vertex x. Note, that we can also assume that PrimMaker’s edges
form a tree Ti after the ith step, and i ≤ n/2. Indeed, in the process of blocking we never
need to create cycles, so |V (Ti)| = 2i+ 1 if the game is not over already.

Let Tk be PrimMaker’s graph andUk be the set of unconnected (unblocked) vertices by
PrimMaker after the kth round, respectively. Assume, that the blocking strategy requires
to block (connect) the vertex x ∈ Uk in the (k + 1)st step. If there is an unoccupied edge
e = (x, y), y ∈ Tk, then we take it. Similarly, if there are unoccupied edges e = (x, y)
and f = (y, z), z ∈ Tk then we take those, and x is blocked.

Assume on contrary there is a vertex x ∈ Uk that cannot be blocked by PrimMaker
in the (k + 1)st step, that is in the subgraph of unoccupied edges there are no paths of
length at most two from x to Tk. According to the induction hypothesis, we know that
Breaker has taken less than n/4 edges incident to x. The other endpoints of these edges
cannot be in Tk and actually all edges between these endpoints and the vertices of Tk are
taken by Breaker. The number of those edges is at least (n− 1− n/4)(2k+ 1) < 3nk/2,
since k ≤ n/2. After round k, Breaker has claimed bk edges, therefore we would have
3nk/2 ≤ bk, which contradicts of the choice of b.

Breaker’s win. One checks it is an easy consequence of Theorem 3.3. In fact Breaker
wins in the original Maker-Breaker (2 : b) Shannon’s switching game. �
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Chapter 4

Extended games

In the study of several games the question is not who (and how) wins, but how long does
it take, what size of board is needed etc, see some example in [4, 29, 20, 21, 26, 28, 90].

We have already seen another idea in subsection 2.1.11. Since an infinite Chooser-
Picker game has no mean, we extend the game backwards giving the opportunity to
Chooser to carve out a finite board on which the game is to be played.

A general approach to create a Maker-Breaker game is to select a monotone graph
property P , let the players take the edges of Kn alternately (possibly in a biased (a : b)
distribution), and Maker wins iffGM has property P . The probabilistic intuition, or rather
the larges number of examples show that Maker needs only a fraction of the edges, i.e.
may win the game even if a << b. So it is natural to ask, what is a minimal subgraph of
Kn for which Maker wins the corresponding (1 : 1)-game? One can make this question to
be precise several ways1, here we explore the following version. In the zeroth step Maker
select a G ⊂ Kn such that |E(G)| is minimal and Maker has a win playing on G. We
discuss these games in Section 4.1.

Another idea is the extend a positional game to “the other side", that is continue the
play that has been ended by the rules. In fact in most of the really played board games
(chess, checkers, nine-men-morris etc.) the set pieces can move according to certain rules,
and this is vital part of the game. We introduce this extension to positional games and give
some results in Section 4.2.

4.1 Positive minimal degree game
We consider Maker-Breaker graph games; that is the board is such a hypergraph F =
(V,H), where V ⊂ E(Kn) and H = P is a graph property. Here we restrict our interest
to global properties, that is if A ∈ P then the subgraph spanned by A has n vertices.
Now, for a property P = E(H), we look for m̂(P), the smallest size of V ⊂ E(Kn) such
that Maker wins playing on V .

The idea, notations and first results due to D. Hefetz, M. Krivelevich, M. Stojaković
and T. Szabó [91]. Note that in these games always Breaker starts game.

Their first obvious choice is the Shannon’s switching game, in whichH consists of the
edge sets of the spanning trees in Kn, [111]. So Maker wins if and only if starting from

1For example Stojaković and Szabó considered a random part of Kn in [152].
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an G ⊂ Kn that contains two edge-disjoint spanning trees. That is 2n − 2 appropriately
selected edges results in a Maker’s win, while Breaker wins if G has fewer than 2n − 2
edges.

Another idea is to define minimum degree games, that is in Dk := Dk(n) game Maker
wins if the minimum degree inGM is at least k. (We have already mentioned other degree
games in subsection 3.1.1, see also in [12, 25, 29, 155].)

Hefetz et. al [91] gave the following bounds 11n/8 ≤ m̂(D1) ≤ 10n/7 + 4, and
m̂(D1) ≤ 10n/7 if n = 7`.

They also worked on Hamiltonicity, in that case property P was all subgraph of Kn

having Hamilton cycle.
We close the gap between the bounds and give the exact value of m̂(D1) in [13].

Theorem 4.1. For n ≥ 4⌈
10

7
n

⌉
= m̂(D1), for n 6≡ 2 (mod 7),

and ⌈
10

7
n

⌉
+ 1 = m̂(D1), for n ≡ 2 (mod 7).

It means that there exists graphs with
⌈
10
7
n
⌉

(or
⌈
10
7
n
⌉

+ 1, if n = 7` + 2) edges on
n vertices on which Maker wins, and on graphs with fewer edges always Breaker wins.
Similar, but much weaker results might be spelled out for m̂(D2) and m̂(Dk).

Proposition 7. For all k ∈ N, m̂(D2) ≤ 20n
7

for n = 14k, and m̂(Dk) ≤ 10
7
kn for n = 7k.

We can show easily that at least the second part of Proposition 7 cannot be optimal.
As mentioned in subsection 3.1.1, L. Székely [155] and J. Beck [25] studied degree games
on the edges of Kn,n. Briefly Maker wins if k < n/2 −

√
n log n, and Breaker wins if

k > n/2 −
√
n/12. To use this bound, let us pave Kn by n/(2`) copies of K`,`, we get

a G ⊂ Kn with n`/2 edges. Maker plays separately on each copy of K`,`, achieving
at least `/2 −

√
` log ` degree at each vertex. One check that ` ≤ 2k + 4

√
k, if ` is

big enough, that is Maker wins Dk on G, which yields D̂k = (k + 2
√
k)n. Of course

(k+ 2
√
k)n < 10kn/7, provided k > 32. In other words, while we are working on small

degrees, explicit constructions, and the careful study of arising structures give the best
results. However, for larger degrees the weight function method prevails, since this can
take into account the current state of the game in a more flexible way.

Remark. This is not a unique phenomenon, the “elementary methods" (pairing strategies,
case studies, subgame partitions etc) are always competing with the sophisticated use of
weight function methods, and these are sometimes even combined, see a very subtle result
of J. Beck on clique games in [26]. With the advantage of hindsight we may recognize a
pattern that we word for graph games. If the graphs (the playing boardG itself orGM , the
part that Maker gets eventually) are dense, then the weight function methods, if these are
sparse, then elementary methods may yield better results. For the latter two nice examples
are shown for biased graph games on Kn, see Hefetz, Krivelevich, Stojaković and Szabó
in [89] (Hamilton cycle game) and Gebauer and Szabó [71] (Shannon’s switching game).
In these works the original weight function approach is (partly) substituted with more
direct approach improving the game of Maker to be nearly optimal.
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4.1.1 Proofs
Proof of Theorem 4.1. Observe that for n ≤ 3 Breaker always wins, so we may assume
that n ≥ 4. First we construct graphs on which Maker can win, establishing the upper
bounds. It is easy to check that Maker wins on K4, K3,3, and D7, where D7 is a “double
diamond", that is we take two copies of K4 \ v1v4, and identify the two vertices called
“v4." Note that this was observed already in [91].
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The graph D7. Here v4 = v′4.

For n = 7k, Maker wins on k vertex disjoint copies of D7. For n = 7k + 4, Maker
wins on k vertex disjoint copies of D7 and one copy of K4. Similarly, for n = 7k + 6,
Maker wins on k vertex disjoint copies of D7 and one copy of K3,3. For the rest of the
cases, the following observation is sufficient: Assume that Maker wins on G. Form G′ by
adding a vertex to G, with edges to arbitrarily chosen two other vertices. Then by playing
the winning strategy on the edges of G and a simple pairing on the two newly selected
edges, Maker wins on G′ as well. For n = 7k+1 Maker wins on (k ·D7)

′, for n = 7k+2
on ((k · D7)

′)′, for n = 7k + 3 on (k − 1) · D7 + K4 + K3,3, and for n = 7k + 5 on
(k ·D7 +K4)

′. �

To prove the lower bounds we need two steps. Since if Maker wins for a graphG, also
wins for any G′ that contains more edges than G. This allows us to consider a graph G on
n vertices such that it has as few edges as possible and still Maker, as a second player, can
achieve degree at least one at every vertex. We first collect some properties of G. Note
the form of these properties are mainly local information bout the distribution of degrees
in G. A similar approach were used in [91].

In the second step we merge together this local information into a global bound. While
significant improvement could be achieved by a careful partition of G, for the optimal
result we need the method of discharging into the realm of games.

Let us start with a definition.
A path xz1 . . . zmy is a (k, `)-(x, y)-path, if d(x) = k, d(z1) = . . . = d(zm) = 3 and

d(y) = `. Note that m can be 0, that is the path consisting of the edge xy.

Lemma 10. The graph G has the following properties.
(i) For every x ∈ V (G) we have d(x) ≥ 2.
(ii) There is no (2, 2)-(x, y)-path in G.
(iii) For any k ≥ 3, there are no vertices x, y1, . . . , yk−1 with a (k, 2)-(x, yi)-path for
every i.
(iv) There is a vertex x ∈ V (G) with d(x) = 2.
(v) In a component of G if there is a vertex x ∈ V (G) with d(x) = 2 then either there is a
vertex y ∈ V (G) with d(y) ≥ 4 or the component consists of at least 7 vertices.
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Proof of Lemma 10. If (i) was false then Breaker would trivially win instantly.
To prove (ii), assume for a contradiction thatG contains a (2, 2)-(x, y)-path xz1 . . . zmy,

where m is chosen to be minimum possible. The minimality of m implies that this path is
an induced path. Now Breaker easily wins, claiming edges xz1, z1z2, . . . , zmy. In order to
avoid instant loss, Maker has to claim the last unclaimed edge at x, z1, . . . , zm, and finally
Breaker could claim the last unclaimed edge at y.

For (iii), assume that for some k ≥ 3 such a path system exists. We might choose one,
with minimum number of vertices. Then using (ii) and the minimality, any edge spanned
by the vertex set of this path system is also an edge of some of those paths. Now as in the
proof of part (ii), Breaker can claim all path edges, starting from the vertices yi, and then
could claim the last edge at x.

Part (iv) follows from that ifGwas a counterexample for Theorem 4.1, then its density
was smaller than 3/2.

For (v) assume that G is a counterexample. Then by (ii), each component of G con-
tains at most one vertex of degree 2. Each such component should have odd number of
vertices. There is one possible graph with 5 vertices, and it is easy to see that Breaker
wins on it. �

We now apply the discharging method, see e. g. [159]:
In the charging phase a vertex v ∈ V (G) is assigned a weight or charge w(v) := d(v).
In the discharging phase the vertices send some of their charges to other, not neces-

sarily neighboring vertices. The rules of the discharging are as follows:

1. A vertex of degree 2 sends no charge.

2. Only vertices of degree 2 receive any charge.

3. A 3-degree vertex x sends charge 1/7 to a 2-degree vertex y if there is a (3, 2)-
(x, y)-path.

4. If for a k > 3 there is a (k, 2)-(x, y)-path, then x sends a charge of 4/7 to y.

In the beginning the sum of the charges is the sum of the degrees. The sum of the
charges does not change during the discharging phase, so the following claim completes
the proof for the case when n 6= 7`+ 2.

Claim 2. After the discharging phase every vertex has charge at least 20/7.

Proof of Claim 2. Observe that charges are staying within components. If every vertex
of a component is of degree at least 3, then the charges do not change, and the claim
is trivially true. If a component has a degree-2 vertex but has no vertex of degree at
least 4, then by Lemma 10 (v) it consists of at least 7 vertices. By Lemma 10 (ii) such
a component contains exactly one vertex of degree 2. Each vertex of degree 3 sends a
charge of 1/7 to the 2-degree vertex, which will have charge at least 2 + 6 · 1/7 = 20/7.
The 3-degree vertices will have charge 3− 1/7 = 20/7.

Now consider a component, which contains vertices both of degree 2 and at least 4.
By Lemma 10 (iii), a vertex x with d(x) = 3 sends to at most one 2-vertex a charge of
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1/7, so it will have charge at least 3− 1/7 = 20/7. For any k > 3, by Lemma 10 (iii), a
vertex x with d(x) = k will have charge at least

k − 4(k − 2)/7 = 3k/7 + 8/7 ≥ 20/7. (4.1)

Now assume that d(x) = 2. For some k > 3 there is a (2, k)-(x, y) path for some k-vertex
y. So x will receive from y a charge of 4/7. If xy 6∈ E(G) then x has two neighbors
of degree 3, and receives charges of 1/7 from both. So the charge of x will be at least
2 + 4/7 + 1/7 + 1/7 = 20/7. Otherwise, let z be the other neighbor of x. Observe,
that d(z) ≥ 3, because of Lemma 10 (ii), and z should send a charge of at least 1/7 to x.
Observe also that the vertex z must have a neighbor w that differs both from x and y, and,
by Lemma 10 (ii) the degree of w is at least 3. But then w sends a charge at least 1/7 to
x, which is sufficient to achieve charge of at least 20/7 at x. �

The proof of Theorem 4.1 is completed when n 6≡ 2 (mod 7).
Assume that n = 7k + 2 for some positive integer k. Then the sum of the charges in

G is at least (7k+ 2) · 20/7 = 20k+ 40/7, yielding that e(G) ≥ 10k+ 3. If we were able
to find extra 3/7 charges, then this would be sufficient to imply e(G) ≥ 10k+ 4, and then
the proof of Theorem 4.1 would have been completed.

Trivially, each component contains at least four vertices. If there is a component, with
each of its vertices having degree at least 3, then each will have extra charge 1/7 and the
proof is completed. Now we can assume that each component contains a degree-2 vertex.
If there is a vertex of degree at least 5, then (4.1) implies that this vertex will have at least
extra 3k/7 + 8/8 ≥ 20/7 + 3/7 charge. So now we can assume that the maximum degree
is at most 4. If there is a component which contains only vertices of degree 2 and 3, then
Lemma 10 (iii) implies that it contains only one degree-2 vertex, and by parity reasons 2s
degree-3 vertices for some s. One can check (we omit the details) that Breaker wins if
s ≤ 4. On the other hand, if s ≥ 5 then we have extra charge at least 2s/7− 6/7 ≥ 4/7.
So now we can assume that each component contains vertices of both degree 2 and 4.

Since n ≡ 2 (mod 7), G must have a component C, such that |C| 6≡ 0 (mod 7).
Assume now that in such a component C there are ` ≥ 1 vertices of degree 4. Then

there should be exactly 2` − 1 or 2` vertices of degree 2. It cannot be fewer, otherwise
either a degree-4 vertex retains charge 4/7 or two degree-2 vertices overcharged by 2/7
and we are done. It cannot be more, as now every degree-2 vertex receives charge from a
degree-4 vertex, and a degree-4 vertex can send charges to at most two degree-2 vertices.

Case 1. There are exactly 2` − 1 vertices of degree 2. Observe that each degree-
4 vertex should send charge to at least two degree-2 vertices, otherwise its remaining
charge would be at least 28/7−4/7 = 20/7+4/7. So either one degree-2 vertex receives
charges from at least three degree-4 vertices and becomes heavily overcharged, or at least
two degree-2 vertices receive charges from two different pairs of degree-4 vertices, and
the total overcharge is at least 2/7 + 2/7 = 4/7.

Case 2. There are exactly 2` vertices of degree 2. The proofs of Case 1 and Claim 2
imply that each degree-2 vertex receives charges from one degree-4 and at least two
degree-3 vertices. So the number of degree-3 vertices is at least 4`. Because |C| 6≡
0 (mod 7), it is more than 4`, but it must be less than 4` + 4, otherwise there would be
4/7 extra charge, So the number of degree-3 vertices is 4`+ 2.

Denote {x1, . . . , x`} the set of degree-4 vertices in C. Observe that C − {x1, . . . , x`}
has at least 2` components, and 2` of them contain a degree-2 and at least two degree-
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3 vertices. Assume that among these 2` − i components contains exactly two degree-3
vertices, where i ≤ 2. There at at least 4` − i edges between these 2` components and
the vertex set {x1, . . . , x`}, and because C is connected, `− 1 edges inside {x1, . . . , x`}.
Counting the degrees within {x1, . . . , x`}, we get the inequality 4` − i + 2(` − 1) ≤ 4`,
i.e. ` = 1 is the only remaining case. Then C has nine vertices, with two degree-2, six
degree-3 vertices and a degree-4 cut-vertex. Up to isomorphy there are only two such
graphs, and it can be checked that Breaker has a winning strategy on both, we omit the
details. �

Sketch of the proof of Proposition 7.
We use the graph D7 that was shown to be a Maker’s win in the positive minimum

degree game in [91]. From two copies of D7 one can make a graph D14 such that
v(D14) = 14, e(D14) = 40 and Maker wins the game (E(D14),D2). The construction is
made in two steps.

First we take two copies of D7, and glue them together in three vertices. The degree
two and degree four vertices are associated to the same vertices in the other copy, one
to each other. The resulting graph H has 11 vertices and 20 edges. Note that playing
Maker’s winning strategy for the positive minimum degree game separately on the edges
of the D7’s, Maker gets degrees at least two at the “glued" vertices, and at least one at the
others.

In the second step we glue together two copies of H , this time at the degree three
vertices, taking care not creating parallel edges, this we call D14. (Simply the vertices of
a diamond should be glued to vertices that are not in a diamond in the other copy.) Again,
playing separately on the edges of the two copies of H , Maker gets at least two degrees
at all vertices of D14.
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The graph D14.

LetD2
7 = D7�D7 be the Cartesian product ofD7 with itself, andDk

7 := D7�D
k−1
7 be

kth power of D7. To play the (E(Dk
7),Dk)-game, let Maker play the winning strategy for

a (E(D7),D1)-game in the same projection in that Breaker has just played. This clearly
gives a winning strategy for the (E(Dk

7),Dk)-game, and e(D7)/v(D7) = 10(7)k−1k/7k =
10k/7. �

Remarks. The discharging method also gives lower bound on m̂(D2), alas, it is not
matching with m̂(D2) ≤ 20n/7, the upper bound of Proposition 7. In fact, we think the
upper bound on m̂(D2) is not tight, but we cannot improve on it.

55

               dc_2032_22



4.2 Recycling
Let us recall that the board of a positional game is a finite or infinite set X and the players
alternately take elements of X (by marking or putting pieces onto it physically), and there
is a fixed H ⊂ 2X , the winning sets. Here we consider biased Maker-Breaker games that
is Maker takes p and Breaker takes q elements of X in turns. If p 6= q, it is a biased game,
otherwise it is called accelerated, see [21, 19, 20, 128, 129, 131]. Here Maker wins by
occupying a winning set, while Breaker wins of preventing Maker’s win.

However, this pattern does not fit for such games as the already solved Connect-4 or
Nine Men’s Morris, see [3], [70]. In the first case the available moves are restricted, while
the whole static approach of the positional games is abandoned in the second. We shall
address the issue of the second one and make an attempt to capture the idea of movements
for a game. For an arbitrary positional game let us define the rules of the recycled versions
as follows. For a natural number n the players make the first n steps as before; this is the
first phase. Then, in the second phase, they just make moves with some of their earlier
placed pieces in turns, instead of introducing new ones.

In order to investigate the effect of recycling, let us recall and define some games.
The first is the well-known k-in-a-row game (k ∈ N ), which is played by the two players
on the infinite (chess)board, or graph paper. They alternately put their own marks to
previously unmarked squares, and whoever gets k-consecutive marks first (horizontally,
vertically or diagonally) of his own, wins.

An interesting way to alter the k-in-a-row game is to relax the consecutiveness condi-
tion. We shall call the game Lk(p, 1;n) (or line game for short) for which:

1. Maker and Breaker mark p and 1 squares in every step, respectively.
2. Maker wins upon getting k, not necessary consecutive, marks in a line (horizontally,

vertically or diagonally), which is free of Breaker’s marks.
3. the game terminates after n steps
Then let RLk(p, 1;n) be the recycled version of Lk(p, 1;n).
Our third subject is the Kaplansky’s game, where the players put their marks on the

Euclidean plane. Here the first player wins achieving k marks on a line, provided the
second player has no mark on that line. Now Kk(p, q) stands for the p : q Maker-Breaker
version of it.2 Let Kk(p, q;n) be the version which ends after n round, and RKk(p, q;n)
be its recycled version.

Before stating our theorems, let us recall some earlier results on these games.
The recycled k-in-a-row (no matter when does the second phase start) turns out to be

easy, because the decomposition methods utilized in [34] still work, and give the same
bounds. That is even the Maker-Breaker version of the recycled k-in-a-row game is a
draw if k ≥ 8.

Bounds for the games Lk(p, 1;n) and RLk(1, 1;n) are less obvious, we shall prove:

Theorem 4.2. In the Maker-Breaker Lk(p, 1;n) game, Breaker wins if k ≥ p log2 n +
p log2 p+ 3p. On the other hand, Maker wins if p > 1 and k ≤ c log2 n for some c > 0.

Theorem 4.3. Breaker wins the Maker-BreakerRLk(1, 1;n) game if k ≥ 32 log2 n+224.

2The original Maker-Maker version of Kaplansky’s game is extremely hard and the outcome is unknown
for k ≥ 4.
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Kleitman and Rothschild [102] studied a Maker-Maker version of Kaplansky’s game
in which the first (second) player wins by getting k (`) points of a line while the opponent
has none of that line, respectively. They prove that, given any k ≥ 1, there is an `(k) such
that second player has a winning strategy whenever ` ≥ `(k). Beck in [21] considers a
p : 1 Maker-Breaker version game in which Maker wins by getting k points on a line. He
has also shown there exist constants c2 > c1 > 0, such that in Kk(1, 1;n): Maker wins
if k < c1 log2 n and Breaker wins if k > c2 log2 n. For its recycled version we have the
following result.

Theorem 4.4. Breaker wins the Maker-Breaker RKk(1, 1;n) game if k > 2n1/3.

4.2.1 Proofs
Weight functions

In the proof of the Theorems 4.2, 4.3 and 4.4 we heavily use the weight function method,
which was developed in [19] and developed in [20] and [58]. First let us recall some
earlier definitions and results.

As we mentioned in earlier chapters, one of the most important result on positional
games is the Erdős-Selfridge theorem; one of its generalization is due to József Beck.

Theorem 4.5 ([19]). Breaker wins the (p, 1, H)− game if
∑

A∈H 2−
|A|
p < 1

2
.

In our cases this theorem cannot be applied directly, since the hypergraphs involved
are infinite, and it is not known if Theorem 4.5 holds for recycled games. The following
lemma is also due to Beck, [19]. We repeat the proof in order to see the properties of the
used weight function.

An edge A ∈ H is active if Breaker has not taken any of its elements.

Lemma 11. Playing a (p, 1, H) game, Breaker can assure that no active edge contains
more than p+ p log2 |H| elements taken by Maker.

Proof of Theorem 4.5. We may assume Maker starts the game. For any A ∈ H let
Ak(M) and Ak(B) be the number of elements in A, after Makers kth move, selected by
Maker and Breaker, respectively. Now, for an A ∈ H

wk(A) =

{
λAk(M) if Ak(B) = 0
0 otherwise

where λ > 0, and for any x ∈ X let wk(x) =
∑

x∈Awk(A). The numbers wk(A) and
wk(x) are called the weight of A and x (in the kth step), respectively. When it does not
cause confusion we may suppress the lower index.

Now selecting an element in the kth step Breaker uses the greedy algorithm, i.e.
chooses an unselected element yk ∈ X of maximum weight. Let xk+1

1 , ..., xk+1
p be the

elements selected by Maker in the (k+1)st step and wk =
∑

A∈H wk(A) be the total sum
or potential. For k ≥ 0, following inequality holds for the potential:

wk − wk(yk) + (λp − 1)wk(y
k) ≥ wk+1.
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Indeed, wk decreases by wk(yk) upon selecting yk. The elements selected by I in the
(k + 1)st step cause the biggest increase if wk(xk+1

l ) is maximal for 1 ≤ ` ≤ p, and for
all A such that wk(A) 6= 0 we have xk+1

` ∈ A iff xk+1
m ∈ A, 1 ≤ `, m ≤ p. Since the

increase in this case is just (λp− 1)wk(y
k), the inequality is proved. Setting λ = 21/p, we

get wk ≥ wk+1, k ≥ 0, which justifies that wk is called potential.
Particularly w1 ≤ (λp − 1)|H|+ |H| ≤ 2|H|. Since q = 1 and the elements of H are

the same size, the inequality
∑

A∈H 2−|A|/p < 1/2 leads to the inequality 2|H| < 2|A|/p.
Assume that Maker wins the game in the kth step. This would imply wk ≥ λ|A| = 2|A|/p,
which contradicts the monotonicity of the potential. �
Proof of Lemma 11. Just take the logarithm of the inequality λAk(M) = wk(A) ≤ wk ≤
w1 ≤ 2|H| that holds for any active edge A ∈ H . �

Proof of Theorem 4.2

Let us recall that a line L means consecutive squares along an infinite line here (hori-
zontally, vertically or diagonally). Now we have infinitely many interacting sets, so the
weight function method does not seem to be helpful. The way to overcome the difficulties
is to change the definition of the weights. The price of this is that the potential is no longer
a decreasing function, but an increasing one. However, we can control the growth, since
the game lasts only n steps.

Let H be the set of all lines, and Lj(M) and Lj(B) the number of squares of line L
marked by Maker and Breaker after the jth step, respectively. Now the weight function
of L at the jth step:

wj(L) =

{
λLj(M) if Lj(M) ≥ 1 and Lj(B) = 0
0 otherwise

where λ = 2
1
p .

For a square q,
wj(q) =

∑
L∈H,q∈L

wj(L)

is the weight of q, and
wj =

∑
L∈H

wj(L)

is the total weight at the jth step.
Breaker applies the greedy selection. For the weight functions, similarly to the proof

of Theorem 4.5, we have ∑
Lj(M)≥1

wj+1(Lj+1) ≤
∑
L∈H

wj(Lj).

On the other hand, in each step the number of lines whose weight becomes positive is at
most 4p, and the weight of such a line is no more than λp = 2. That is

wj+1 ≤ wj + 8p

holds for 0 ≤ j ≤ n, where w0 = 0. That is if the line L is unblocked at step j
(i.e. Lj(B) = 0) and Lj = i than

λi ≤ 8pj ⇔ i ≤ p(log2 j + log2 p+ 3).

58

               dc_2032_22



Since 0 ≤ j ≤ n, the first part of Theorem 4.2 follows.
The second part is fairly standard, we give just the sketch of its proof. In fact, one (say

vertical) winning direction is enough. Maker divides the game into phases. For the sake
of simplicity we omit to write the integer parts. In the first phase Maker places n(p−1)/p
element in a row. Call a column i-free if it contains imarks of Maker, but none of Breaker.
At the end of the first phase the number of 1-free columns is at least n((p− 1)/p)2. In the
ith phase Maker uses up n((p− 1/p))i new mark, each is placed to an i− 1-free column.
It is easy to check that Maker can reach the ith phase if n((p − 1)/p)i ≥ 1, and uses
up at most n marks. That is an i-free column appears if i ≤ c log2 n, where c is about
(log2 p− log2(p− 1))−1. �

Proof of Theorem 4.3

Breaker divides the game into sub-phases. The first sub-phase is the first phase of the
game, then a sub-phase consists of n pair of moves. Defining the weight function as
before, but λ =

√
2, Breaker places every second mark (the active marks) according to

the greedy strategy and deposits the others arbitrarily, i.e. in reserve). It may happen that
one of Breakers reserved marks is already on the square q, which is to be occupied by an
active mark of Breaker. In that case Breaker places the new mark arbitrarily (sends it into
reserve), and the mark on the square q becomes active.

Considering only the effect of Breakers active marks, the game reduces to the game
Lk(2, 1, n). That is Lemma 11 applies, and for any line L if Lj(M) = i and Lj(B) = 0,
then i ≤ 2(log2 j + 4) if 0 ≤ j ≤ n.

In the other sub-phases Breaker plays a fictitious game, and keeps the status of his
marks (active or reserved) strictly. The marks of Maker are indexed by the numbers
1, 2, . . . , n. At the beginning of a sub-phase Breaker cannot see Makers marks, and in the
jth step Makers new mark and the mark indexed by j become visible for Breaker as new
moves. (If Maker moved the jth mark, only one mark becomes visible.)

However Breaker responds only in every second step, using the marks from the re-
serve. (Breaker does nothing in the odd steps. If picking up a mark and putting back to
the same place is permitted, it is easy. If it is not, Breaker designates a mark at the very
beginning, which is neither active nor reserved, and moves this mark arbitrarily in the odd
steps.)

Trying the previous greedy strategy another difficulty arises. Breaker may not occupy
the square q of maximum weight because q has been already taken (by one of Makers
invisible marks or one of Breakers own reserve). Then, Breaker blocks the lines going
through q, using four marks. (See a similar idea in [131].) Now, looking only Makers
visible marks, if for a line L, Lj(M) = i and Lj(B) = 0 then i ≤ 16(log2 j + 7), since
after at most 16 moves of Makers, Breaker may reply, and Theorem 4.2 applies.

By the end of a sub-phase Makers all marks become visible, and a line L, which
contain more than 16(log2 n+7) of them, is blocked by Breakers reserve. Finally, Breaker
starts the next sub-phase renaming his marks, the active ones become reserved and vice
versa.

Since the active marks control the invisible marks during a sub-phase, if for a line L
the sum of visible and invisible marks of Maker on L is i, and L is not blocked (by the
active marks or by the reserve), then i ≤ 32(log2 n+ 7). �
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Proof of Theorem 4.4

The most natural idea is to mimic the proof of Theorem 4.3.
Unfortunately it breaks down irreparably at the point where Breaker wants to occupy,

or at least block the point q, which is already taken. The problem is that q can be the
element of many lines, so Breaker cannot cancel the weight of q by using only constantly
many points.

To overcome this difficulty, we need to change the weight function and give a more
sophisticated analysis of it.

Let the weight of a line L after Maker jth move be

wj(L) =

{
λLj(M) if Lj(M) ≥ c1n

1/3 and Lj(B) = 0
0 otherwise

where λ =
√

2 and c1 > 0 will be specified later.
As before, for a point x of the plane, wj(x) =

∑
L∈H,x∈L wj(L) is the weight of x,

and wj =
∑

L∈H wj(L) is the total weight at the jth step.
However, Breaker uses not only the greedy strategy, the recycled point also have to

be designated. When Breaker removes a point y, the total weight function may grow.
It grows iff there is a line L containing y such that Lj(M) ≥ c1n

1/3 and Lj(B) = 1.
Obviously the number of such points cannot be bigger than the number of lines containing
at least c1n1/3 points of Maker. To estimate this, we need a definition and a theorem of
Szemerédi and Trotter.

An incidence of a point and a line is a pair (p, L), where p is a point, L is a line, and
p lies on L.

Theorem 4.6 (Szemerédi-Trotter, [157]). Let I denote the number of incidences of a set
on n points and m lines. Then I ≤ c(n+m+ (nm)2/3).

Let us note that later László Székely published a new, more accessible proof of Theo-
rem 4.6, see in [156].

An easy corollary of Theorem 4.6 is that there is a constant c2 such that the number of
lines containing at least k points of S is less than c2n2/k3 whenever k ≤

√
n.

That is if c1 > c
1/3
2 , then the number of lines containing at least c1n1/3 points of

Maker is less than n. It means Breaker can always find a mark y such that its removal
does not affect the value of the total weight function. The steps of Maker and Breaker are
x1, x2, . . . , xi and y1, y2, . . . , yi, respectively.

As before, for the weight function we have

wj+2 ≤ wj − wj(yj)− wj+1(yj+1) + wj(xj+1) + wj+1(xj+1) +
2

c1
n2/3λn

1/3

λn
1/3+1.

Here the term f(n) := 2
c1
n2/3λn

1/3
+ λn

1/3 bounds the growth caused by the lines that
of weight becoming positive in the jth and (j + 1)th steps. By the argument of Theo-
rem 4.5, wj(yj) ≥ wj(xj+1) + wj+1(xj+1), since λ =

√
2. We also have wj+1(yj+1) >

wj+1/n, since the number of positive weighted lines is less than n, giving
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wj+2 ≤ wj −
wj+1

n
+ f(n).

On the other hand, wj+2 ≤ wj+1 + f(n), or equivalently wj+1 ≥ wj+2 − f(n). That
is the value of wj+2 is bounded, that is wj+2 ≤ wj since wj+1

n
≥ f(n). From here

one gets that wj+2 ≤ (n + 1)f(n). It means that if for a line L, Lj+2(M) = s and
Lj+2(B) = 0, then (n + 1)f(n) ≥ wj+2 ≥ λs. Taking the logarithm of both sides,
s ≤ 2 log2wj+2 ≤ 2n1/3, provided n is big enough. �

Remarks and Open Questions

As we have seen, there is a large gap between the logarithmic lower and O(n1/3) upper
bound what Maker can achieve in the recycled Kaplansky’s game.

Question 1. Can the upper or lower bounds of Theorem 4.4 improved?

Even less is known about recycled hypergraph games in general. It is easy to give ex-
ample for which Breaker wins the first phase of the game, while Maker wins the recycled
version.

Question 2. Is there a hypergraph game won by Breaker, but Maker wins its recycled
version?

It is also interesting if the Erdős-Selfridge theorem extends to the recycled games.

Question 3. Is it true if
∑

A⊂H 2−|A|+1 < 1, then Breaker wins the recycled version of the
(X,H) game?

Together with my MSc student, Ivánn Vrbáski, we managed to solve the recycled
version of a "discrete-continuous box game" described in [92]. Here the bounds of the
normal and recycled version coincide. We omit the details.
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Chapter 5

Colorings

Different types of colorings the vertices (or edges) in graphs or hypergraphs are central
problems in both pure combinatorics and applications. In this chapter we exhibit some
research was done in the recent years.

In Section 5.1 we thoroughly discuss the use of greedy algorithm for hypergraph col-
orings that can be used in various circumstances. Originally it was applied for the special
case of Erdős-Hajnal problem, but it turned out to be useful in various circumstances.

Considering two colorings as labellings with the zero and unit of the two element
field, allows us to involve algebraic approach thus giving new proofs and suggesting new
questions. In Section 5.2 how to get Kőnig’s and Harary’s well-known theorems and their
dual forms from the classical Kronecker-Capelli theorem. Along that line one can arrive
to some scheduling and cake-cutting problems.

Complementing Section 5.2, in Section 5.3 we show that colorings may be used to get
algebraic results. Namely the existence of rainbow coloring of a hypergraph gives rise to
an isomorphic embedding of an automaton to product of automata.

The research presented in Section 5.4 is completely application driven. We propose
a new approach for clustering for certain real graphs, working out the algorithmic and
theoretical background. In these graphs there are not many edges within the clusters, but
the structure between those clusters is essential. We model this situation by introducing
special graph colorings that avoid certain induced subgraphs between the clusters.

Yet another type of two coloring assigns the numbers ±1, and adding up the labels
of certain object one arrives to the problems of discrepancy. Although the discrepancy
theory is classical and very deeply studied, the discrepancies of global structures of graphs
are barely investigated. In Section 5.6 we report on that direction listing new results and
including some proofs.

5.1 Greedy coloring
We use the notation of [7] and partly those of [105]. A hypergraph (V,E) is k-colorable
if V can be colored by using at most k colors such that no edge A ∈ E is monochromatic.
Let mk(n) denote the minimum possible number of edges of an n-uniform hypergraph
that is non-k-colorable. We suppress the lower index for k = 2, that is m(n) = m2(n).
We list some of the significant results concerning the values ofmk(n) and other colorabil-
ity issues as follows.
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Erdős proved lower and upper bounds on m(n), namely 2n−1 ≤ m(n) ≤ cn22n in
[56] and in [57], respectively. While the upper bound is still the best known, the lower
bound on m(n) was improved in a sequence of papers. Note that all subsequent works
start with his idea, that is coloring the vertices randomly and independently of each other.

First Schmidt showed (1 − 2/n)2n < m(n) (see [142]), then Beck came up with the
idea of recoloring of a random coloring, and he proved the bounds c log n2n < m(n) and
n1/3+o(1)2n < m(n) [22, 25], respectively. The proof of the latter bound was simplified
by Spencer in [148].

Twenty years later Radhakrishnan and Srinivasan modified the recoloring idea of
Beck, and showed 0.7

√
n/ lnn2n < m(n) [139]. In the same paper it was shown that a

hypergraph is 2-colorable if every edge meets at most 0.17
√
n/ lnn2n other edges. It is

also worth noting that Erdős and Lovász guessed [59] that m(n) is perhaps around n2n.
The n-uniform, n-regular hypergraph is an interesting special case. The 2-colorability

easily follows from the Lovász Local Lemma for n ≥ 9, (see e.g., in [7]), for n = 8 it was
proven by Alon and Bregman in [6], and finally Thomassen [158] showed it for n ≥ 4.

Kostochka obtained the following lower bound on mk(n) in [105]. For every k ∈ N,
let ε(k) = exp{−4k2} and r = blog2 kc. Then for every n > exp{2ε−2}, mk(n) ≥
ε(k)kn(n/ lnn)r/(r+1).

In followings we use a different probability space which admits easier proof, though
it gives weaker bounds. The main idea is to use greedy colorings on a random order
of the vertices. Note that Radhakrisnan and Srinivasan [139] also used random vertex
orderings after an initial random coloring. To generate a random order we let each vertex
u pick a random real xu uniformly and independently of each other from [0, 1], and order
the vertices according to these values. Equivalently, one can take a uniformly selected
random element among the permutations of the vertex set, although the first form is better
suited for the proof of Theorem 5.1.

In the next subsection we give a simple proof for the statement m(n) > c1 4
√
n2n.

The analysis of a random greedy algorithm also yields mk(n) > c2k
−1n

k−1
2k 2n. The

constructions lead to a “characterization" of k-colorable hypergraphs which might be of
interest by its own. We conclude the text by a new proof for the 2-colorability of n-
uniform, n-regular hypergraphs for n ≥ 8.

5.1.1 Results
2-coloring

We define a random greedy coloring of a hypergraph H = (V,E) as follows. Let σ be
a uniformly picked random order of V . At the beginning all vertices are blue. In the ith

step we recolor the vertex σ(i) to red if σ(i) is the first element of an A ∈ E according to
the order σ.

Clearly, there are no completely blue edges in E at the end of the procedure. Let the
number of completely red edges be X .

Claim 3. EX < 2
√
πe1/(6n)n−

1
2 2−2n|E|(|E| − 1).

Proof of Claim 3. We say that A ∈ E precedes B ∈ E if the last vertex of A becomes
red because it was the first element of B. If XA,B is the indicator variable of the event A
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precedes B then X =
∑
XA,B, where the summation runs over all ordered pairs of E.

Hence

EX =
∑

EXA,B =
∑

Pr(A precedes B) =
∑ ((n− 1)!)2

(2n− 1)!
=
∑ 2(n!)2

n(2n)!
,

sinceAmay precedeB iffA∩B = {x} and x is the last element ofA and the first element
of B. Let us use the Stirling formula, i.e., n! =

√
2πn(n/e)neλn , where 1/(12n + 1) <

λn < 1/(12n).

EX =
∑ 2(n!)2

n(2n)!
≤ |E||E − 1|2

√
πe2λn−λ2n√

n
2−2n ≤ 2

√
πe1/(6n)n−

1
2 2−2n|E|(|E| − 1),

since e2λn−λ2n < e1/(6n).

Corollary 5. m(n) >
√
2
2
π−

1
4 e−

1
12n 4
√
n2n. That is m(n) > 0.5268 4

√
n2n, for n ≥ 3.

Proof. Just plug in |E| =
√
2
2
π−1/4e−1/(12n) 4

√
n2n into the formula of Claim 3. It gives

EX < 1, which means that there exists a good 2-coloring of (V,E).

k-coloring

It is possible to get k-colorings by greedy algorithms for arbitrary k ∈ N. Here greedy
means that we color all the vertices with color 1, and in the ith step we recolor the vertex
σ(i) if σ(i) is a first element of an A ∈ E according to the order σ. To recolor σ(i) we
use the smallest possible color that does not result in a monochromatic edge, otherwise
we use the color k.

For an order σ of V , let {Ai}ki=1 be an ordered k-chain if |Ai∩Ai+1| = 1, Ai∩Aj = ∅
for |i − j| > 1 and σ−1(x) ≤ σ−1(y) for all x ∈ Ai and y ∈ Ai+1, i = 1, . . . , k − 1. If
we have a fixed order σ, let f(A) and `(A) be the first and the last vertices of an edge A,
respectively.

Lemma 12. The hypergraph (V,E) is k-colorable if and only if there is an order σ of V
containing no ordered k-chains. Moreover the greedy algorithm on (V,E) in this case
provides a good k-coloring.

Proof. For the “if" part let us color the vertices of V by the greedy algorithm in order σ.
By the setup of the greedy algorithm, if there is a monochromatic edge Ak−1 ∈ E then
its color can only be k. Now `(Ak−1) gets the color k since there is an edge, let us call it
Ak, such that `(Ak−1) = f(Ak). Similarly, f(Ak−1) is colored k, since there is an edge
Ak−2 such that `(Ak−2) = f(Ak−1), and all vertices of Ak−2 \ Ak−1 are colored k − 1.
Taking f(Ak−2), we can get anAk−3 ∈ E such that all vertices ofAk−3\Ak−2 are colored
k− 2. By induction there is an Ai ∈ E such that all vertices of Ai \Ai+1 are colored i+ 1
if i ≥ 1. But then {Ai}ki=1 is an ordered k-chain. The “only if" is trivial, given a good
k-coloring let σ be an order induced by the colors, breaking the ties arbitrarily.

Claim 4. LetX be the number of k-chains in a random order of the n-uniform hypergraph
(V,E), and s = n− 1 > 0. Then

EX < |E|k exp

{
k

12s
+ 1

}
(2πs)

k−1
2 k−sk−1sk−1.
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Proof of Claim 4. The proof is almost the same as that of Claim 3. Let K be the set of
ordered k-tuples of A. For any H ∈ K,

Pr(H is a k − chain) ≤ {(n− 1)!}2{(n− 2)!}k−2

{(n− 1)k + 1}!
=

s!k

(sk + 1)!sk−2
.

Using the Stirling formula, with the bounds eλsk < ek/(12s), 1 < eλsk+1 we get

EX < |E|k exp{ k

12s
+ 1}(2πs)

k−1
2 k−sk−1sk−1.

Corollary 6. If |E| ≤ (2πe)−1/2s
k−1
2k ks, then (V,E) is k-colorable. That is

mk(n) > (
√

4πek)−1n1/2−1/(2k)kn.

Proof of Corollary 6. If |E| ≤ (2πe)−1/2s
k−1
2k ks then there is an order σ of V such that

(V,H) has no k-chain by Claim 4. Moreover (
√

4πek)−1n1/2−1/(2k)kn < (2πe)−1/2s
k−1
2k ks,

and then (V,E) is k-colorable by Lemma 12.

Remarks. One can consider Lemma 12 from yet another point of view. Given a hy-
pergraph (V,E) and a fixed order σ on its vertices, one may construct a directed graph
Gσ = (V (Gσ), E(Gσ)). Let v ∈ V (Gσ) iff v = f(A) or v = `(A) for some A ∈ E, and
(u, v) ∈ E(Gσ) iff there is an A ∈ A such that u = f(A) and v = `(A). Obviously if
for an order σ the graph Gσ has a good k-coloring then (V,E) is also k-colorable, and if
(V,E) is k-colorable, then there exists an order σ such that Gσ is k-colorable. The non
trivial part of Lemma 12 says that Gσ has a good k-coloring if it has no directed paths of
length k. This is nothing else but a special case of an old result attributed to T. Gallai and
B. Roy, that says if a directed graphG contains no paths of length k, thenG is k-colorable,
see chapter 9., problem 9 in [115].

Sparse hypergraphs

If a hypergraph (V,E) is sparse, that is each edge meets at most D other edges, then a
good 2-coloring exists if D ≤ 0.17

√
n/ lnn2n and n is big enough [139]. The direct use

of the random orders and the Lovász Local Lemma gives

Theorem 5.1. Let H = (V,E) be an n-uniform hypergraph in which each edge meets at
most D other edges. If 2e(2D2 −D)((n− 1)!)2/(2n− 1)! ≤ 1, then H is 2-colorable.

Before the proof let us recall the Lovász Local Lemma. To spell it out we need a
definition. If A1, ..., An are events of a probability space, then a dependence graph G =
(V,E) of these events is a graph having the following properties: V = {1, ..., n}, and
each event Ai is mutually independent of the events {Aj : (i, j) 6∈ E}. Let degG(v) be a
degree of a vertex v in G. For details see [7] and [59].

Lemma 13. (Lovász Local Lemma) [59] Let A1, ..., An be events of a probability space,
and G be a dependence graph of these events. If Pr(Ai) ≤ p and degG(Ai) ≤ d for all
1 ≤ i ≤ n, and ep(d+ 1) ≤ 1, then Pr(∩ni=1Ai) > 0.
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Proof of Theorem 5.1. Let us consider the uniform random orders of V . For A,B ∈ E
let AAB be the bad event that either A precedes B or B precedes A. Clearly, the event
AAB is mutually independent of all the other events ARS when (A ∪ B) ∩ (R ∪ S) = ∅.
One checks that the number of intersecting unordered pairs (R, S) 6= (A,B) that also
intersects A ∪ B is not more than 2D2 −D − 1. Now the Lovász Local Lemma implies,
there is an order σ containing no 2-chain, if

ePr(AAB)(2D2 −D) = 2e(2D2 −D)((n− 1)!)2/(2n− 1)! < 1.

This inequality holds by assumption, so H is 2-colorable by Lemma 12.

Remark. A quick asymptotic of Theorem 5.1 gives that such hypergraphs are 2-colorable
if D < 0.23 4

√
n2n. This result is asymptotically weaker than the former 0.17

√
n/ lnn2n

bound, but Theorem 5.1 has better constants and works for all n > 1. It already im-
plies the known results of the values for which an n-uniform, n-regular hypergraph is
2-colorable. Note that this follows from the Lovász Local Lemma easily if n ≥ 9, while
for the case n = 8, see the paper of Alon and Bregman, [6].

Corollary 7. Every n-uniform, n-regular hypergraph is 2-colorable, for n ≥ 8.

Proof of Corollary 7. First we show a sharp bound on ∆n, the number of intersecting
unordered pairs (R, S) 6= (A,B) that also intersects A ∪ B. Observe that the number of
pairs intersecting with the fixed (A,B) is maximum when (V,E) is almost disjoint, i.e.,
for every R, S ∈ E we have |R ∩ S| ≤ 1 if R 6= S.

From the n-regularity we have

∆n ≤ 2(n− 1)4 + 2(n− 1)

(
n− 1

2

)
+

(
n− 2

2

)
+ 2(n− 2).

Following the proof of Theorem 5.1, the Lovász Local Lemma implies that if

f(n) := 2e(∆n + 1)((n− 1)!)2/(2n− 1)! < 1,

then an n-uniform, n-regular hypergraph (V,E) is 2-colorable. Since f(8) ≤ 0.604,
Corollary 7 follows.

5.2 Two-colorings of graphs
Lots of deep combinatorial statements are proved by linear algebraic tools, in many cases
these are the only known proofs. The area is huge, we cannot even try to give a concise
overview of it. Instead we recommend the following excellent books to the interested
reader [11, 79, 116].

Without wishing to be exhaustive, we list some combinatorial statements together with
the algebraic concepts that were used in their proof, details can be found in the references
above:

• Fisher inequality (r(AAt) ≤ r(A), where r(A) is the rank of matrix A)

• Odd town theorem (the number of linearly independent vectors in an n-dimensional
vector space)
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• Hoffman-Singleton theorem (spectral theorem)

• Graham-Pollak theorem (r(A+B) ≤ r(A) + r(B))

• number of spanning trees in graph G (Laplace expansion)

• Shannon capacity (tensor product)

In practice, the question is sometimes raised in the opposite direction, if a linear alge-
bra result is given what might be the combinatorial meaning of that result? So it is nat-
ural to ask whether there are a non-trivial combinatorial consequences of the Kronecker-
Capelli theorem, which characterizes the solvable of a systems of linear equalities. Prob-
ably many people have asked this before, but I have not find any references, but some
unpublished results of Zoltán Füredi. (With his consent, his result, Theorem 5.2 is repro-
duced here.) To understand these, we need the following concepts:

Definition 7 (Coloring). The two-coloring of a hypergraph (X,E) is a function f : X →
F2, where F2 is the Galois field with two elements. 1 f is a good coloring if |f(e)∩F2| = 2,
that is both colors occur for all e ∈ E. Furthermore f is an odd coloring if

∑
x∈e f(x) =

1 for all e ∈ E. 2

Observe, if for a hypergraph (X,E) the size for all e ∈ E are even, then an odd
coloring of f is a good coloring, too.

Theorem 5.2 (Füredi). [67] A hypergraph (X,E) has an odd coloring if and only if there
is not such a set H := {e1, . . . , e2k+1} ⊂ E, that for all x ∈ X is contained by even
number of sets from H .

Corollary 8 (Kőnig). A graphG has a good two-coloring if and only ifG does not contain
odd circuit.

Proof. Let X = V (G) and E = E(G), and apply Theorem 5.2 to the hypergraph (X,E).
It means the graph G has a good two-coloring if and only if for all odd subset of edges
H ⊂ E(G) there must be at least one vertex of odd degree, that is H cannot be an odd
walk. Of course G contains an odd walk if and only if it contains odd circuit, too. �

In the next subsection we prove the generalization of Füredi’s theorem and some of
its consequences.

Generalized Füredi’s theorem and its consequences.

As we mentioned before, we need to re-call the Kronecker-Capelli theorem:

Theorem 5.3 (Kronecker-Capelli). Let F be an arbitrary field, A be an m × n matrix,
and b be n m-dimensional vector over F. The equality system Ax = b has a solution if
and only if, there is no such a vector y ∈ Fm, for which ytA = 0 and ytb = 1 hold.

Before we spell out and prove the generalization of Theorem 5.2, we carry over the
stability notion of Harary to hypergraphs, see also [88].

1The domain of f could be any two-element set, but the algebraic structure turns out to be very useful
in F2.

2That is in all edges e odd number of vertices receive color 1.
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Definition 8 (Stable coloring). Let (X,E, φ) be an edge-colored hypergraph, where φ :
E → F2. A stable coloring of hypergraph (X,E) is such a function f : X → F2, for
which

∑
x∈e f(x) = φ(e) for all e ∈ E.

Theorem 5.4 (Generalized Füredi). An edge-colored hypergraph (X,E, φ) has a stable
coloring if and only if there is no such a set H := {e1, . . . , ek} ⊂ E, that for all x ∈ X
are contained in even number of sets of H , and φ colors odd number of elements of H by
the color 1.

Proof. Let us consider the transpose of the incidence matrix of hypergraph (X,E, φ),
that is the rows (columns) of A are indexed by the elements of E (X), respectively, and
Aex = 1, if x ∈ e, otherwise Aex = 0. Furthermore let bi := φ(ei) be the ith coordinate
of the m-dimensional vector b. Then a solution of Ax = b over F2 gives a stable coloring
of the hypergraph (X,E, φ). If there are no stable colorings, then Ha Theorem 5.3 gives
a vector y ∈ Fm2 such that ytA = 0 and ytb = 1. Let us take those edges ei, for which
yi = 1. The all vertices covered even number of these edges since ytA = 0, while odd
number of those edges have color 1 because of the condition ytb = 1. �

Theorem 5.4 is the generalization of Harary’s theorem from 1954 to hypergraphs. In
fact Harary’s theorem can be considered as a generalization of the Theorem 8, proven by
Dénes Kőnig. Its motivation came from some application in sociology, like many other
problems of graph theory. The vertices of a simple graph G are entities, and the relations
among those are labeled by {+,−} signs describing friendly or hostile relations. Stability
may be expected if the vertices can be partitioned into two set such that within the sets
there are only edges with positive sign, while the edges between the sets has negative sign.

From Theorem 5.4 follows the original theorem of Harary in analogous way as the
Corollary 8 before:

Corollary 9 (Harary). [88] A signed graph G has a stable partition if and only if all of
its circuit contain even number of edges with negative sign.

Remarks. The approach outlined above has an algorithmic meaning. Solving Ax = b,
that is executing a Gaussian elimination, it can be decided if a graph G is bipartite (or in
a signed case if it is stable). Furthermore if the answer is “yes" the color classes can be
read out from the solution.

The Dual of Kőnig and Harary theorems

Since we have an algebraic formalism, we can interpret the dual of Theorem 5.4 and
consequently the duals of Corollary 8 and 9. We just swap the roles of X and E and
consider the matrixAt instead ofA, that is the incidence matrix of the hypergraph (X,E).

Assume that in the colored hypergraph (X,E, α) the function α : X → F2 a fixed
coloring of the vertices and a stable edge coloring h is such a function h : E → F2, for
which

∑
x∈e h(e) = α(x) for all x ∈ X . Then Theorem 5.4 translated as:

Theorem 5.5 (Dual Füredi). A hypergraph (X,E, α) has a stable edge coloring if and
only if, there is no such a set Y := {x1, . . . , xk} ⊂ X , such that for all e ∈ E contain
even number of elements of Y and the function α colors odd number of elements of Y by
color 1.
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A special case. Let us label the vertices of a graph G by the labels + and −. Under a
stable edge partition we mean such a partition E(G) = E1 ∪ E2 in which for all vertices
labeled by + (−) incident to even (odd) number of edges of E1, respectively.

Corollary 10 (Dual Harary). A vertex signed graph G has a stable edge partition of and
only if it has no component containing odd number of vertices with negative label.

Corollary 11 (Dual Kőnig). The edge set of a graph G can be partitioned into sets E1,
E2 such that for all vertices are incident to odd number of edges of E1 if and only if G
has no odd component.

5.2.1 Other equalities
The structure of the solution of the system Ax = b is rather complicated, we only touch
upon it here.

The so-called Necklace problem was investigated by Alon and West in 1987, see [10].
In the original version two thief want to share the gems of a necklace. There are n types of
gems on the necklace, and an even number of gems from all types. What is the minimum
number of cuts they have to apply if they want the same number of gems from each
types? It is easy to see, that if the necklace is modeled as 1122 . . . nn then at least n cuts
are necessary. Alon and West proved that n cuts always suffices, using a classical result
from topology, the Borsuk-Ulam theorem.

Theorem 5.6 (Borsuk-Ulam). Let f be a continuous function mapping the surface of the
n+1-dimensional ball, Sn, to the Rn. Then there is an x ∈ Sn such that f(x) = −f(−x).

More precisely, they used an equivalent form, in which there is the additional require-
ment f(x) = −f(−x). Then there is an x ∈ Sn, such that f(x) = 0.

Observe, if function f is a linear function mapping Rn+1 to Rn, with an n× (n+ 1)-
dimensional matrix A, then it means the homogeneous linear system Ax = 0 has a non-
trivial solution. This fact helped Seymour to prove his coloring theorem, see [147], and
this was the starting point in the proof of the Beck-Fiala theorem, see [18].

Epping et al investigated the algorithmic solutions of the necklace problem, and tried
to minimize the number of cuts, see [55].

Some of their results:

1. If there are n types of gems, then one can find an solution using n cuts in polynomial
time.

2. Finding a solution with minimal number of cuts is NP-hard.

3. A greedy algorithm yields a solution with n cuts, provided there are exactly two
gems of each types. (This special case is called Paint shop problem.)

4. Finding a solution with minimal number of cuts is NP-hard even in the Paint shop
problem.
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The Paint shop problem or the result in the 3. item can be phrased and solved by a
system of linear equations. Going through on the necklace let us associate the variable
xi the the part between the ith and i + 1st gems. The variable xi can take the value 0, 1,
where xi = 1 means an executed cut between the two gems. The sharing is good if there
are an odd number of cuts between two gems of the same types, then the two gems end
up at different players. We define matrix A as follows. Its rows are indexed by the gems,
and if the gems of type j are in the positions sj < s′j , then Aji = 0, provided i < sj or
s′j < i, otherwiseAji = 1. It is easy to see, that a solution ofAx = 1 over F2 gives a good
sharing of the Paint shop problem. Applying enough cuts, there are always solutions, so
there is a basis solution also, in which at most n variables take non-zero value. So we
re-proved the next statement:

Statement 1. [55] If in a Paint shop problem there n different types of gems, then n cuts
suffices for a good sharing.

The above procedure can be generalized in several ways.

Intervals, clique covering

It is a classical problem to investigate the covering point set X of a set of interval I =
{Ii}ni=1, that is X ⊂ R is such that X ∩ Ii 6= ∅ for i = 1, . . . , n. Covering sets always
exists, and the greedy algorithm provides a minimum size of such a set X , see [49]. What
happens if we impose a stronger condition for covering, namely that |X ∩ Ii| is odd for
all i? We call such a set X an odd cover.

Odd covers might not exit, e. g. I = {[0, 2], [0, 1], (1, 2]}. Still the existence of odd
covers can be checked by an algebraic construction. Let us associate to a system I the
0− 1 matrix A of n rows that defined as follows. The ones in the rows continuous and if
Ij ⊂ Ik then Aji ≤ Aki such that in the kth row there are strictly more 1s from left (right)
if Ij left (right) endpoint greater (smaller) than that of Ik.

Statement 2 (Odd cover). The system of intervals I has an odd cover if and only ifAx = 1
has a solution over F2.

Proof. It is obvious from the construction. �

Corollary 12 (No cover). If the system I has no odd cover then it has a sub-system I∗ ⊂ I
such that |I∗| is odd and for all x ∈ ∪I∗ the number of intervals in I∗ containing x is even.

Proof. Apply Theorem 5.3 to the system Ax = 1 over F2, where A is the matrix associ-
ated to I. �

The above method extends to the clique cover of graphs. In the first step let us note
the clique-vertex incidence matrix of interval graphs are row-continuous, see [77], and
the number of cliques is not more than the number of vertices. On the other hand for an
interval graph G there is a leftmost clique (which is a simplicial vertex together with its
neighbors in G), so according to Corollary 12 the cliques of G has odd cover by at most
|V (G)| vertices.

Of course one can use Corollary 12 to find odd covers for in general graphs, the prob-
les is that the number of cliques can be exponential and their structure is more intricate.
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5.2.2 Splitting trees
Another possibility to generalize the necklace problem if instead of a path, we lace the
gems to a tree. If there are even number of gems (or of colors) of all types, then cutting
enough edges we can distribute those evenly. Interestingly enough, this question were
raised before the necklace problem, see Bhatt and Leiserson [35]. Let us assume a graph
G is two-colored (i. e. there are two types of gems) and both colors appear on even
number numbers, and partition V (G) = A ∪ B such that A and B contains the same
number of vertices from both colors. A two-color bisection is the edge set of between A
and B in such a partition. Among other, they proved the following theorem:

Theorem 5.7 (Bisector). [35] Every n-vertex forest on binary trees has a two-color bi-
section of size 2 log2 n.

If there are two gems from each type, we have a theorem analogous the Statement 1.

Theorem 5.8 (2-gems). If F is an n-colored tree, where all colors appear exactly twice
then it has an n-color bisection of size at most n.

Proof. LetA be the path-edge incidence matrix of the tree F , where we consider the paths
connecting the vertices of the same color. That is A is an n × (2n − 1) matrix. Again,
Ax = b has a solution over F2 gives a good bisection. Since any subset of path cover at
least one edge in odd number of times, we can apply Theorem 5.3. On the other hand, if
the is a solution, there must be a basis solution, in which the number of non-zero variables
is at most n. �

One may ask if there is a direct generalization of the necklace theorem to trees? (That
is if there are n types of gems, how many cuts suffice in getting good bisection?) Alas, a
lots of cut is needed even for one color (one type of gems); this number is k for the star
K2k−1,1. To bound the degrees of a tree T does not help, since the size of a one-color
bisection of binary tree T is log2 |V (T )| (the observation is due to Béla Csaba).

Conjecture 3 (General bisection). If T is an n-colored tree, in which all colors used in
even times, then T has an n-color bisection of size cdn log2 v(T ), where d is the maximum
degree, v(T ) = |V (T )| and c is an absolute constant.

5.3 Automata isomorphisms by colorings
The notion of complete system was introduced by V. M. Glushkov in [76] where he intro-
duced the general product and characterized the complete systems for this product under
the isomorphic embedding as representation.

One can consider compositions as networks of automata. In this case, the underlying
graphs are the complete graphs, and each vertex contains an automaton. If the network re-
ceives an external input sign, then simultaneously, each component automaton receives an
input sign which may depend on the external input sign and all of the actual states of the
ancestor automata of the considered one. On the basis of this network approach, we can
define different compositions by giving the set of the available underlying graphs. Having
this general definition of composition it is natural to look for conditions on the underlying
graphs under which there are finite isomorphically complete systems with respect to the
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corresponding product. This question is studied in [72] where it is proved that if there
exists a finite complete system for some composition under isomorphic embedding as
representation, then for every integer k there is a graph among the underlying graphs de-
termining the composition such that it has a connected subgraph for which the indegree of
each vertex is at least k. This result immediately implies that most of the known compo-
sitions have no finite complete system under the isomorphic embedding. There are only
two exceptions, namely, the general product [76] and the cube-product [98]. Paper [72]
does not contain any sufficient condition for the underlying graphs which would imply
the existence of a finite complete system under isomorphic embedding. Here we present a
sufficient condition such that compositions determined by graphs satisfying this condition
are equivalent to the general product with respect to the isomorphic completeness.

5.3.1 Automata and their products
By an automaton, we mean a couple A = (X,A), where A and X are finite nonempty
sets, the set of states and the set of input symbols, respectively, and for all x ∈ X , x is
realized as a unary operation onA which is denoted by xA. Since we consider an automa-
ton as a unoid (universal algebra with unary operations), the notions such as isomorphism,
homomorphism, and subautomata can be introduced in a natural way.

Let D = (V,E) be a directed graph consisting of a nonempty finite set of vertices
V = {1, . . . , n} and a set E ⊆ V ×V of edges, and let us consider an arbitrary nonempty
set D of such finite directed graphs. Furthermore, let Aj = (Xj, Aj), j = 1, . . . , n, be a
system of automata, X a nonempty finite set and ϕ a mapping of A1 × · · · × An ×X →
X1 × · · · ×Xn. An automaton A = (X,A) is called a D-product of Aj , j = 1, . . . , n, if
the conditions below are satisfied:

(1) A =
∏n

j=1Aj .
(2) There exists a graph D = ({1, . . . , n}, E) in D such that the mapping ϕ can be

given in the following form:

ϕ(a1, . . . , an, x) = (ϕ1(a1, . . . , an, x), . . . , ϕn(a1, . . . , an, x))

for all (a1, . . . , an) ∈ A, x ∈ X , moreover ϕj is independent of any ai with (i, j) 6∈ E for
every j, j = 1, . . . , n.

(3) For all (a1, . . . , an) ∈ A and x ∈ X ,

(a1, . . . , an)xA = (a1x
A1
1 , . . . , anx

An
n )

where xj = ϕj(a1, . . . , an, x), j = 1, . . . , n.

For the product introduced above we use the notation

n∏
j=1

Aj(X,ϕ,D).

Now, let Γ be a system of automata. Γ is called an isomorphically complete system
with respect to the D-product if every automaton can be embedded isomorphically into a
D-product of automata from Γ.
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It is worth noting that we obtain the notion of the general product if the set D of the
underlying graphs is the set of the complete graphs of the form

Dn = ({(1, . . . , n}, {1, . . . , n} × {1, . . . , n}),

n ∈ N.

5.3.2 Embeddings and colorings
The following statement shows that if a finite graph can be colored in an appropriate way,
then the composition having this graph as its underlying graph is strong enough.

Lemma 14. LetD = ({1, . . . , n}, E) be a directed graph and also let A =
∏m

j=1Aj(X,ϕ)
be a general product of automata where 1 ≤ m < n. Moreover, let χ : {1, . . . , n} →
{1, . . . ,m} be such a coloring of the vertices of D that for every vertex r ∈ {1, . . . , n}
χ(Sr) = {1, . . . ,m}, where Sr denotes the set of the ancestors of r in D. Then A can
be embedded isomorphically into a D-product of copies of Aj , j = 1, . . . ,m, with the
underlying graph D.

Proof of Lemma 14. Let us denote the elements of
∏m

j=1Aj(X,ϕ) by (at1, . . . , atm),
t = 1, . . . s, where s = |

∏m
j=1Aj|. Then the elements (at1, . . . , atm), t = 1, . . . , s, are

pairwise different. Without loss of generality, it can be assumed that the copies of each
automaton Aj occurring in the considered general product are distinguished. In this case,
the sets {at1, . . . , atm}, t = 1, . . . , s, are pairwise different, and thus there exist functions
ϕ′j , j = 1, . . . ,m, such that for all j ∈ {1, . . . ,m}, x ∈ X and 1 ≤ t ≤ s,

ϕj(at1, . . . , atm, x) = ϕ′j({at1, . . . , atm}, x)

is valid. Let us define the mapping µ of the set
∏m

j=1Aj into the set
∏n

i=1Aχ(i) as follows.

µ : (at1, . . . , atm)→ (at,χ(1), . . . , at,χ(n))

for all t, t = 1, . . . , s and let C = {(at,χ(1), . . . , at,χ(n)) : t = 1, . . . , s}. Since χ(Sr) =
{1, . . . ,m} for all r ∈ {1, . . . , n}, µ is a one-to-one mapping of

∏m
j=1Aj onto C. Now,

let us define the D-product B =
∏n

i=1Aχ(i)(X, ϕ̄,D) in the following way. For all
i ∈ {1, . . . , n}, x ∈ X and (a1, . . . , an) ∈

∏n
i=1Aχ(i), let

ϕ̄i(a1, . . . , an, x) =


ϕ′χ(i)({at1, . . . , atm}, x) if(a1, . . . , an) = (at,χ(1), . . . at,χ(n))

for some 1 ≤ t ≤ s,

an arbitrarily fixed x ∈ X otherwise.

Since the sets {at1, . . . , atm}, t = 1, . . . , s, are pairwise different, the functions ϕ̄i, i =
1, . . . , n, are well-defined. Moreover, since χ(Sr) = {1, . . . ,m}, for all r ∈ {1, . . . , n},
the defined product is a D-product.

Finally, we prove that C determines a subautomaton in
∏n

i=1 Aχ(i)(X, ϕ̄,D) which is
an isomorphic image of A under the mapping µ. For this purpose, let (at1, . . . , atm) ∈∏m

j=1Aj and x ∈ X be arbitrary elements. Then it is enough to prove that
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(at1, . . . , atm)xAµ = (atχ(1), . . . , at,χ(n))x
B.

Let us suppose that (at1, . . . , atm)xA = (aq1, . . . , aqm) for some q ∈ {1, . . . , s}. Then
the required equality is valid if at,χ(i)x

Aχ(i)

i = aq,χ(i) for all i ∈ {1, . . . , n}, where xi =
ϕ̄i(at,χ(1), . . . , at,χ(n), x). Let i ∈ {1, . . . , n} be arbitrary. By the definition of ϕ̄i,

xi = ϕ̄i(at,χ(1), . . . , at,χ(n), x) = ϕ′χ(i)({at1, . . . , atm}, x),

moreover ϕ′χ(i)({at1, . . . , atm}, x) = ϕχ(i)(at1, . . . , atm, x). Let χ(i) = j. Then the left

side of the required equality is atjx
Aj

i , where xi = ϕj(at1, . . . , atm, x). On the other hand,
by the definition of the general product, atjx

Aj

j = aqj where xj = ϕj(at1, . . . , atm, x).

Let us observe that xi = xj , and consequently at,χ(i)x
Aχ(i)

i = aq,χ(i) for all i = 1, . . . , n.
This completes the proof of Lemma 1. �

The next statement presents a sufficient condition for a nonempty set D of directed
graphs for admitting the existence of a finite isomorphically complete system.

Theorem 5.9. Let D be a nonempty set of finite directed graphs of the form given at
the beginning of the previous section. Then, there exists a finite isomorphically complete
system with respect to theD-product, if for every positive integerm,D contains a graphD
which has a connected subgraph D′ = (V ′, E ′) having a coloring χ : V ′ → {1, . . . ,m}
of the vertices of D′ such that, for every vertex r ∈ V ′, χ(Sr) = {1, . . . ,m} where Sr
denotes the set of the ancestors of r in D′.

Proof of Theorem 5.9. Let B2 = ({w, x, y, z}, {0, 1}) be the automaton which is defined
by 0wB2 = 1zB2 = 0 and 1yB2 = 0xB2 = 1. To prove our statement, we shall show that
an arbitrary automaton can be embedded isomorphically into a suitable D product of
suitable copies of B2. For this purpose, let A = (X,A) be an arbitrary automaton. By
the theorem of Glushkov [76], A can be embedded isomorphically into a general product∏m

j=1B2(X,ϕ). Let us distinguish the copies of B2 as A1, . . . ,Am. Furthermore, let
Am+1 denote a further copy of B2. By our assumption, there is a graph D = (V,E) ∈ D
containing a subgraph D′ = (V ′, E ′) which has a coloring χ : V ′ → {1, . . . ,m} such
that for every vertex r ∈ V ′, χ(Sr) = {1, . . . ,m}. Without loss of generality, it can
be assumed that V ′ = {1, . . . , n} for some positive integer n, furthermore, let |V | = s.
Consider the function ρ : V → {1, . . . ,m + 1} given in the following way. For every
j ∈ {1, . . . , s} let

ρ(j) =

{
χ(i) if1 ≤ j ≤ n,

m+ 1 otherwise.

Now, let us define the D-product
∏s

i=1 Aρ(i)(X, ϕ̄,D) as follows. For the first n compo-
nents, let the product be given in the same way as in the proof of Lemma 1, and for the
last s− n components, let us choose the state 0, and let the value of ϕ̄j , n < j ≤ s, be w.
Then it can be seen that

∏m
j=1 B2(X,ϕ), and thus also A, can be embedded isomorphi-

cally into the D-product
∏s

i=1Aρ(i)(X, ϕ̄,D) which ends the proof of Theorem 1. �
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By the theorem of Glushkov [76], a system Γ of automata is isomorphically complete
with respect to the general product if and only if there exists an A ∈ Γ such that B2 can
be embedded isomorphically into a general product of A with a single factor. Thus, by the
proof of Theorem 5.9, if Γ is isomorphically complete with respect to the general product,
then Γ is isomorphically complete with respect to the D-product given in Theorem 5.9.
The converse assertion is obvious since the D-product is a special case of the general
product. Consequently, we obtain the following corollary.

Corollary 13. If a D-product satisfies the condition of Theorem 5.9, then it is equivalent
to the general product regarding isomorphic completeness.

Finally we spell out results that ensure the appropriate colorings. Associate the Sr
in-neighborhoods for the vertex r in the graph D to the edges of a hypergraph F =
(E(D),H), we get a condition for the required colorings. Namely we need a coloring
χ : E(D) → {1, ...,m} such that |χ(E)| = m, for all E ∈ H, where m ∈ N given. If
such χ exists we call the hypergraph F to be m-colorful. (Such a coloring is also called a
rainbow coloring with m colors.)

We lists some results without proofs, for the details see [73]. A standard first moment
method gives the following lemma.

Lemma 15. Let F be a hypergraph such that |E| ≥ k for all E ∈ H, |H| = n and
k > 2m log n. Then F is m-colorful.

Lemma 15 and Theorem 5.9 immediately give one of the results in [72], which states
that a general product of automata can be embedded isomorphically into aD-product ifD
contains large, “almost” complete graphs. Precisely, there exist a universal constant c and
a sequence of graphs Dn` ∈ D such that |V (Dn`)| = n` and the number of the ancestors
of every vertex of Dn` is at least n` − c.

Lemma 15 shows that this result can be extended in the following way. Let f(n) be
a function which tends to∞ if n → ∞. If every vertex has at least f(n) log n ancestors,
then among the corresponding underlying graphs there exists an m-colorful for every
positive integer m.

With the use of Lovász Local Lemma we get

Lemma 16. Let F be a hypergraph and k a positive integer such that for all E ∈ F ,
|E| ≥ k. If k > m(1 + log d+ logm), then F is m-colorful.

As an application of Lemma 16, let us consider the hypercubes as underlying graphs
(see [98]). Let n > 0 be an arbitrary integer. Then, |Sr| = n for any vertex r ∈ {0, 1}n of
the n-dimensional hypercube. Moreover, let us observe that Sr ∩ Sr′ 6= ∅ if and only if r
and r′ are different exactly in two components. Consequently, d = d(Sr) = n(n − 1)/2,
for all r ∈ {0, 1}n. Now, if m is a fixed positive integer, then we can choose an n such
that

n > m(1 + log
n(n− 1)

2
+ logm)

is valid. Therefore, by Lemma 16, the n-dimensional hypercube ism-colorful, and conse-
quently, by Corollary 13, the cube-product is equivalent to the general product regarding
the isomorphically complete systems which is the main result in [98].
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5.4 Graph Clustering via Generalized Colorings
We propose a new approach for defining and searching clusters in graphs that represent
real technological or transaction networks. In contrast to the standard way of finding
dense parts of a graph, we concentrate on the structure of edges between the clusters, as it
is motivated by some earlier observations, e.g. in the structure of networks in ecology and
economics and by applications of discrete tomography. Mathematically special colorings
and chromatic numbers of graphs are studied.

5.4.1 Introduction and Results
One of the main tasks in network theory is clustering vertices, see Newman [120]. Graph
clustering is a well-studied problem and has important applications in graph mining or
model construction. The usual methods try to achieve many edges inside clusters and only
a few between distinct clusters [141]. To measure the algorithms’ efficacy the parameter
known as Newman modularity is commonly used [120]. This approach generally works
well for so-called social graphs, which usually contain more triangles than a random
graph with similar edge density or degree properties. Note, that although the various
methods are proposed to obtain clustering, the resulting clusters are usually very similar.

In contrast technological or transaction graphs contain fewer triangles and often dis-
play tree-like structures. We need to consider important examples that give us motivation
to develop a completely different approach for clustering.

First is the pollinator network which is a bipartite graph (A,B), the vertices of one
part are associated to pollinating animal species (bees, butterflies, flies, bats etc), the other
to plants which these animals pollinate. An (x, y) edge is drawn in this graph iff the animal
x pollinates the plant y. According to the findings, the resulting graph is not arbitrary
bipartite graph, it has a strong structural property, the so-called nestedness. That is, the
vertices of each color class can be ordered, and the smaller ranked vertex neighborhood
contains the neighborhood of any higher ranked one. Formally, A = {x1, . . . , xn} and
B = {y1, . . . , ym} such that N(xj) ⊂ N(xi) and N(yj) ⊂ N(yi) if i < j.

Uzzi [160] studied cloth making firms and fashion shops selling the products of those
firms in New York City. He defined a bipartite graph of firms and shops by setting an
edge (x, y) if the shop y sells the product of the firm x and observed the same nestedness
of the neighborhoods (he called this embeddedness) if the vertices are ordered properly.

In the context of image processing, Junttila and Kaski [100] call a binary matrix A
(that is, a matrix whose entries are either zero or one) fully nested if its rows and columns
can be reordered such that the ones are in an echelon form. Let GA be the bipartite graph
whose adjacency matrix is A. Then A being fully nested is equivalent to GA satisfying
embeddedness. They main interest is to cut one partition of a bipartite graph into as few
sets as possible such that the induced s are nested.

Formally, letX (the columns) and Y (the rows) be the bipartition ofGA. The matrixA
and the graph GA are each said to be k-nested with respect to X if X can be partitioned as
X1, . . . , Xk such that all subgraphs spanned by (Xi, Y ) are fully nested for i = 1, . . . , k.
The quantity of interest for any GA is smallest k for which GA is k-nested.

Observe, that nestedness has a forbidden induced subgraph characterization for bipar-
tite graphs. If neither N(xi) ⊂ N(xj) nor N(xj) ⊂ N(xi) hold for some indices i, j,
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then there are yi and yj vertices such that yi ∈ N(xi), yi ∈ N(xi) but yi 6∈ N(xj) and
yj 6∈ N(xi). That is the set {xi, xj, yi, yj} spans an induced 2K2. O the other hand, in a
bipartite graph an induced 2K2 is obviously an obstruction for the nestedness.

Following these examples, we may try to cluster a general transaction graph similarly.
The clusters are not dense subsets of vertices, just the opposite, there are no edges inside.
Restricting the graph to any two clusters there must be nestedness in the neighborhoods,
or equivalently, no 2K2 appear. In other words, the clusters are color classes of a good
coloring, with the addition that the union of any two classes is an induced 2K2-free graph.

From the mathematical point of view it is natural to generalize this notion to an arbi-
trary host graph G and a forbidden bipartite subgraph H as follows.

Definition 9. Fix a bipartite graph H . A proper coloring of a graph G is an induced H-
avoiding coloring if the union of any two color classes spans an induced H-free graph.
Let χH(G) be the minimum number of colors in an induced H-avoiding coloring of G.

Remarks. There are coloring ideas in the literature that give back special cases of our
notion. For a connected bipartite graph H , coloring of a graph G is H-avoiding, if the
union of any two color classes do not contain H as a subgraph, see the paper of Choi,
Kim and Park [45]. If e.g. H = P3 then an H-avoiding coloring is automatically an
induced H-avoiding coloring. However, if H is not a bipartite complete graph, then the
two notions differ.

Hale [83] introduced the family of L(h, k) coloring, see also at Calamoneri’s survey
[44]. They consider such labellings of the vertices with natural numbers in which labels
of adjacent vertices apart least h and the ones with common neighbors apart at least k,
while λh,k(G) is the minimum span of labels used in such labellings. Observe if H = P3

then λ1,2(G) = χH(G). In fact Hale [83] proved the NP-completeness of the computation
of λh,k(G) for general h, k values, and h = 1, k = 2 gives the part Lemma 17.

Note that the function χH(G) is not necessarily monotone either in H or in G. How-
ever, we have a useful property:

Observation 6. For any graphs H and G, χ(G) ≤ χH(G). If G is H-free, then χ(G) =
χH(G).

To use Observation 6 we need to mention a paper of Král, Kratochvíl, Tuza and Woeg-
inger [106] that studied the hardness of coloring H-free graphs. They gave a complete
description of the problem in the theorem follows:

Theorem 5.10 (Král-Kratochvíl-Tuza-Woeginger [106]). The problemH-FREE COLORING

is polynomial-time solvable if H is an induced subgraph of P4 or of P3 ⊕ K1, and NP-
complete for any other H .

Complexity issues

We show that that the computation of χH(G) is NP-hard for some graphs, and polyno-
mially computable for others. The most interesting case, when H = 2K2, gives back
embeddedness as described above. For these generalized chromatic numbers we derive
some theoretical extremal results as well as results on complexity.3

3Heuristics for finding induced H-avoiding colorings and case studies were presented in Gera, London
and Pluhár, [74].

77

               dc_2032_22



In the following we use Kn, Pn and Cn for the complete graph, path and cycle on n
vertices, respectively. For graphs H1 and H2 on disjoint vertex sets, H1 ⊕ H2 denotes
their disjoint union. Theorem 5.11 gives a characterization of the complexity issues in
computing χH(G) depending on the graph H .

Theorem 5.11. The computation of χH(G) is polynomial-time solvable if H is K1⊕K1,
K2, or K2 ⊕K1 and is NP-hard for all other graphs.

It is valuable to spell out special cases since the proofs of these are needed in proving
Theorem 5.11.

Lemma 17. It is NP-complete to decide if χP3(G) ≤ 5, while it is polynomial time decid-
able if χP3(G) ≤ 3. It is also NP-complete to decide if χP3⊕K1(G) ≤ 5.

Lemma 18. It is NP-complete to decide if χP4(G) ≤ 3.

Lemma 19. There is a unique H-avoiding coloring of G using exactly χH(G) colors if
H = K2 ⊕K1. One can find this coloring in polynomial time.

Let us note that a P3-avoiding coloring of G has a nice combinatorial meaning, it
represents the edges of G as the union of independent matchings. The computation of
χP3(G) can be reduced to the normal chromatic number. Let P3(G) be a graph which
made from G by adding an edge to every induced P3, i. emaking a triangle out of these
P3.

Observation 7. χ(P3(G)) = χP3(G).

Note that if a bipartite graph GA is k-nested then it has a similar reduction as in
Observation 7.

For a bipartite graph GA with bipartition (X, Y ), define the conflict graph co(X) on
X such that (x, x′) is an edge in co(G) for x, x′ ∈ X if there are y, y′ ∈ Y such that
{x, x′, y, y′} spans a 2K2 in GA.

Observation 8. The bipartite graph GA is exactly k-nested for X if χ(co(X)) = k.

For applications the computation of χ2K2(G) seems to be the most important case.

Theorem 5.12. It is polynomial time decidable if χ2K2(G) ≤ 3.

For a fix graph H there is a linear upper bound on the value of χH(G). In this text,
lg n is the logarithm of n in base 2 and log n is the natural logarithm of n.

Proposition 8. Let H be a bipartite graph and let k1 be the largest positive integer such
that each bipartition of H has a part with size at least k1. Let k2 be the smallest positive
integer such that each bipartition of H has both parts of size at least k2. Let G be an
n-vertex graph with chromatic number χ and independence number α. If k2 ≥ 3, then

χH(G) ≤ min

{
n

k1 − 1
+
k1 − 2

k1 − 1
χ,

n

k2 − 1

(
1− 1

χ

)
+
k2 − 2

k2 − 1
(χ− 1) + 1

}
.

If k2 = 2, then

χH(G) ≤ min

{
n

k1 − 1
+
k1 − 2

k1 − 1
χ, n− α + 1

}
.
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Random graphs

In the case where G is a random graph drawn from G(n, p), the Erdős-Rényi random
graph on n vertices with edge probability p, we establish tight bounds for χH(G). The
distribution of α(G), where G ∼ G(n, p) for p fixed, was determined by Bollobás and
Erdős [36]. The distribution of χ(G) was first proven by in a classic result by Bol-
lobás [40] and the error terms have been further refined by various authors (see [8]).

To be precise, whp means with high probability, i. ea probability arbitrarily close to
one, provided that the number of vertices (or other natural parameter) is large enough.

Theorem 5.13. Let H be a bipartite graph with k1 and k2 defined as in Proposition 8.
Fix p ∈ (0, 1), let d = 1/(1 − p), and let G ∼ G(n, p). If k1 ≥ 3 and k2 ≥ 2, then there
is a C = C(H, p) such that whp

n

k1 − 1
− C log n ≤ χH(G) ≤ n

k1 − 1
+O

(
n

logd n

)
.

If k1 = k2 = 2, then there exists a C = C(H, p) such that whp

n− C log n ≤ χH(G) ≤ n− 2 logd n+O (logd log n) .

In particular, if H = 2K2, then whp

n− 8 log1/Q n+ Ω
(
log1/Q log n

)
≤ χH(G) ≤ n− 2 logd n+O (logd log n) ,

where Q = 1− 2p2(1− p)2.

Finally, we mention a useful observation on the H-avoiding chromatic number, see its
consequences in Section 5.5.

Observation 9. If G is a graph such that every H-free induced subgraph has at most `
edges, then χH(G) satisfies

`

(
χH(G)

2

)
≥ e(G).

In the followings we provide the proofs of the main results. In Subsection 5.4.2 we
prove Theorem 5.11. Subsection 5.4.3 contains the proof of Theorem 5.12, while Sub-
section 5.4.4 contains the proofs of Proposition 8 and of Theorem 5.13. In Subsection 5.5
we show some of the consequences of Observation 9.

5.4.2 Proof of Theorem 5.11
We start the proof with the cases in which the graph H is equal to either K1 ⊕K1, K2 or
K2 ⊕K1. The graph G has K2-avoiding coloring if and only if G is the empty graph.
Proof of Lemma 19. If H = K2 ⊕ K1 then any two color classes in an H-avoiding
coloring spans either a complete or empty bipartite graph. (In the special case if H =
K1⊕K1 then there can be only complete bipartite graphs between any two color classes.)
Let us define a binary relation ρ such that for x, y ∈ V (G) we have xρy iff N(x) = N(y).
Obviously ρ is an equivalence relation, and the equivalence classes induced by ρ are
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exactly the color classes of G in the unique K2 ⊕ K1-avoiding coloring of χK2⊕K1(G)
classes. �

Combining Theorem 5.10 and Observation 6, one gets immediately that the computa-
tion of χH(G) is NP-complete if χ(G) is also NP-complete for H-free G. On the other
hand, the polynomial-time computability of χ for H-free graphs does not imply the same
for χH . Among the polynomial cases of Theorem 5.10 we have checked already the
graphs K1 ⊕K1, K2 and K2 ⊕K1. Somehow against intuition, the computation of χH is
NP-complete for the remaining H = P3 and H = P4 cases according to Lemmas 17 and
18.
Proof of Lemma 17. We need to show L5 = {G : χP3(G) ≤ 5} is NP-complete lan-
guage. We use reduction from the language

L3,2 = {T : T is a 3-uniform hypergraph, χ(T ) ≤ 2},

which is a well-known NP-complete problem. Let T be an instance, that is T ∈ L3,2.
We need to assign a graph GT to T such that χP3(GT ) ≤ 5 if and only if χ(T ) ≤ 2.

It turns out that the greatest difficulty is to associate the colorings of the graph GT and
the hypergraph T . The color of a vertex t of T cannot be encoded in one vertex xt of
GT , since the gadgets constructed in GT that enforce the good coloring of the edges of T
containing t would interfere with each other. The solution is to repeat the actual color of
vertex t at least as many times as the number of edges of T that contain t. For simplicity
we repeat the color of any vertex t a total of m times, where m is the number of edges in
T , and read out the color of t at most once from each place.

The graph GT will consist of an n × m matrix of pentagons, in which the i-th row
codes the color of the i-th vertex in T . To assess the coloring of the j-th edge of T , the
j-th column of this matrix is read. The usual types of gadgets are used in GT representing
and evaluating the edges of T , see Figure 5.4.2.
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5.4.2 The matrix and the colorings of gadgets.

Before examining the coloring of GT , let us examine a P3-avoiding good coloring
of just C5, since C5 is the main building block of our construction. The vertices are
referenced clockwise. If the first vertex is colored by 1, the second by 2, the third vertex
color can be neither 2, because of adjacency, or 1 since it would create a two colored P3.
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So, without loss of generality, the first three vertices are colored 1, 2, 3 respectively. The
fourth vertex needs the fourth color. It cannot be colored by 2 or 3 as before. If it would
be colored by 1, the first, fifth and fourth vertices would form a two-colored P3. Finally,
the fifth vertex needs to be colored 5, since 1 and 4 are colors of adjacent vertices, while
2 or 3 would create two-colored P3’s.

Assuming that the n vertices of T are x1, . . . , xn and the m edges are e1, . . . , em, the
graph GT is first constructed by taking an n×m matrix with a C5 in each position (i, j).
The C5 in the (i, j) position will be referred to as Ci,j . Second, connect the third and
fourth vertices of Ci,j to the first vertex of Ci+1,j for i = 1, . . . , n − 1, j = 1, . . . n, and
similarly from Cn,j to C1,j+1 for j = 1, . . . , n − 1. Third, draw edges from the fourth
vertex of Ci,j to the second vertex of Ci,j+1 for i = 1, . . . , n and j = 1, . . . ,m − 1. See
Figure 5.4.2.

Without loss of generality, any P3-avoiding five-coloring should use color 1 at the first
vertex of any C5, should use the colors 2 and 5 in the second and fifth vertices (although
in any order) and the colors 3 and 4 in the third and fourth vertices (again their order is
arbitrary).

Furthermore, is easy to verify that a proper P3-avoiding five-coloring must use the
same order of colors 2 and 5 within a row, while the order of 2 and 5 can be arbitrary for
each row. We will use the i-th row to code the color of the vertex xi of the hypergraph T .
However, when we read this “value," each C5 is read only once.

Finally, the gadgets realizing the edges of T arem copies ofK1,3. Let e` be {xp, xq, xr}
and connect the leaves of the `-th K1,3 to the fifth vertex of a yet unused C5 in the p-th,
q-th and r-th rows, respectively. The colors the vertices of e` receives are the color of the
fifth vertices of C5-s which were connected to the leaves of the representing K1,3.

Let us check if proper five-colorings of the construction and proper two-colorings of
T correspond to each other. If, for e`, the vertices in the graph coloring all receive the
color, say 5, then the leaves of the representative K1,3 can be colored 2 or 3. One of these
colors appears two times, and it results in a two-colored P3 in the graph coloring. If e` is
colored properly, say 5, 5, 2, then the connected vertices in the representative K1,3 may
get the colors 2, 3, 5. Giving color 4 to the 3-degree vertex of the representative K1,3 we
get a proper P3-avoiding five-coloring of G.
The case χP3⊕K1(G) ≤ 5. For instance T consider GT ⊕K5 instead of GT . Since of five
colors appear in a five-coloring ofGT⊕K5 among the vertices ofK5, χP3⊕K1(GT⊕K5) ≤
5 iff T is 2-colorable.
The case χP3(G) ≤ 3. If G has a vertex of degree at least three, then P3(G) has a
clique of size at least four, and by Observation 7, χP3(G) ≥ 4. If all vertices have degree
at most two, then the components of G are paths and cycles. The components can be
colored independently of each other in that case, so G has a P3-avoiding 3-coloring if
and only if all components have. For all k ∈ N, χP3(Pk) ≤ 3, we just repeat the pattern
1, 2, 3, 1, 2, 3 . . . starting from one of the ends. The same can be (and must be) done for
Ck by specifying a starting vertex. However, it is successful only if k ≡ 0 mod 3. �

Proof of Lemma 18. As in the proof of Lemma 17, we use a reduction from the language
L3,2, the two-coloring of 3-uniform hypergraphs. Having an instance T ∈ L3,2 with vertex
set x1, . . . , xn, n ≥ 4, the reduction to a P4-avoiding 3-coloring of a graph GT goes as
follows. To each vertex xi of T we create a pair of vertices xi, x′i and have the edge
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(xi, x
′
i). An additional special vertex z is adjacent to each xi and to each x′i.

For each hyperedge e` = {xp, xq, xr} in T , we define a gadget as follows. Take three
disjoint copies of P3, ai, bi, ci for i = 1, 2, 3, and vertices w1, w2, and draw the edges
(c1, w1), (c2, w1), (c2, w2) and (c3, w2). Finally we set the gadget by drawing the edges
(a1, xp), (a2, xq) and (a3, xr).

We claim that a G has a P4-avoiding 3-coloring if and only if T has a P4-avoiding
2-coloring. We may assume vertex z is colored by 3, so xis are colored 1 or 2, both in the
coloring of G and T .

If the vertices of an edge e` = {xp, xq, xr} all receive the same color, say 2, then in
the gadget associated to e` the vertices a1, a2, a3 must receive the color 1. (Indeed, if say
a1 would be colored by 3, then take an xi 6∈ {xp, xq, xr}. Either xi or x′i has the color 2,
say it is xi. But a1, xp, z, xi is a 2-colored P4.) The vertices b1, b2 and b3 must get color
3, since if, say b1, is of color 2, then b1, a1, xp, x′p would induce a 2-colored P4. If c2 has
color 1, then both w1 and w2 have color 2, since otherwise w1 or w2, c2, b2, a2 would be a
2-colored P4. But in that case, the color of c3 could be only 1, inducing 2-colored P4 on
the vertices c3, w2, c2, w1.

If c2 has color 2, and at least one of c1 or c3 has color 1, assume c1, then w1 must
be colored 3. But then w2, c1, b1, a1 would be a 2-colored P4. Finally, if all c1, c2, c3 has
color 2, then w1 and w2 must have different colors in order to avoid the 2-colored P4

on c1, w2, c2, w2. But if, say w1 has color 3, then we see a 2-colored P4 on the vertices
c1, w1, c2, b2.

For the other direction, assume that e` = {xp, xq, xr} received two colors in the hy-
pergraph coloring. Without loss of generality, we may assume two vertices are colored
1, and one with 2. The vertex colored by 2 is either on one of the side, xp, xr or the in
the middle, xq. Let us say xp has color 2 and xq, xr received color 1. Then the coloring
extends to the gadget of e` by coloring a1, c2, c3 by 1, c1, a2, a3, w2 by 2, and b1, b2, b3, w1

by 3. If xq has color 2 and xp, xr have color 1, then the extension is c1, a2, c3 is of color
1, a1, c2, a3 is of color 2, and b1, b2, b3, w1, w2 is of color 3. Notice that in both cases all
b types vertices received color 3, which “insulates" the gadgets from each other, so the
defined 3-coloring is a P4-avoiding one. �

5.4.3 Proof of Theorem 5.12
Proof of the case H = 2K2. To see if χ2K2(G) ≤ 3 for a given graph G, first we check
if G contains 4K2 as an induced subgraph. This requires no more than O(n4) time. If G
does contain a 4K2, then χ2K2(G) ≥ 4, since between two color classes there can be only
one of those four independent edges. Assume G does not contain 4K4, and recall a result
of Farber, Hujter and Tuza [64]:

Theorem 5.14 (Farber-Hujter-Tuza [64]). If the graph G does not contain (t + 1)K2 as
an induced subgraph, then the number of maximal independent sets in G is at most

(
n/t
t

)
.

The following ideas are well-known and perhaps motivated Theorem 5.14. The set
M of all maximal independent sets can be found by, for example, a DFS tree algorithm,
and can be listed in no more than O(n2|M|) time. The decision problem of whether
χ(G) ≤ k can be solved by checking if there is k-set fromM covering the vertex set of
G. This still can be done in O(

(|M|
k

)
) time.
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Applying Theorem 5.14 to G, |M| ≤
(
n/3
3

)
< n3/162, so for a possible 3-coloring

we have to check a configuration of size no larger than O(n9). A configuration consists of
three maximal independent sets X1, X2 and X3. First, ∪iXi should contain all vertices of
G. If this holds, it readily gives a 3-coloring, however it is not necessarily 2K2-avoiding.
Indeed we are looking for Yi ⊂ Xi for i = 1, 2, 3 such that ∪iYi contains all vertices of
G, Yi ∩ Yj = ∅ if i 6= j, and the partition {Y1, Y2, Y3} is 2K2-avoiding.

We can assume that∩iXi = ∅, if not, these vertices are isolated, and can be assigned to
any Yi in the end. Then we start with the sets Y1 := X1 \ (X2∪X3), Y2 := X2 \ (X1∪X3)
and Y3 := X3 \ (X1 ∪ X2) and try to put the leftover vertices into those. The triple
{Y1, Y2, Y3} should be 2K2-avoiding, otherwise we discard the configuration. Then we
have to decide, for example, if a vertex x ∈ X1 ∩X2 should be put in Y1 or Y2. If either
placement would give a 2K2 with the set Y3, we discard the configuration; if only one, we
place it to the other; if none, we decide about it later.

At the end of this process we have disjoint sets Y1, Y2, Y3 that are 2K2-avoiding, Yi ⊂
Xi, and the vertices of R1,2 := (X1 ∩ X2) \ (Y1 ∪ Y2) can be placed both Y1 or Y2 (and
same for R1,3 and R2,3). Let us construct a conflict graph on R1,2 and for other indices do
similarly. For x, y ∈ R1,2 there is an edge (x, y) ∈ E(R1,2) if x and y cannot be placed to
Y1. (That is, they induce a 2K2 to Y3. It means x and y could not be placed in Y2 either.) It
is easy to see that if all those conflict graphs Ri,j , i 6= j are bipartite, then all vertices can
be placed and we are ready. Otherwise the configuration is to be discarded and we have
to move to the next one. If none of the configurations can be formed to be a 2K2-avoiding
3-coloring, then χ2K2 > 3. �

5.4.4 Proof of Theorem 5.13
Proof of Proposition 8.

Let G have a coloring with part sizes s1, s2, . . . , sχ and s1 the largest. First, further
partition each color class arbitrarily into subparts of size at most k1 − 1. The number of
parts is

χ∑
i=1

⌈
si

k1 − 1

⌉
≤

χ∑
i=1

(
si

k1 − 1
+
k1 − 2

k1 − 1

)
=

n

k1 − 1
+
k1 − 2

k1 − 1
χ,

which is an upper bound that holds regardless of the value of k2.
Second, if k2 ≥ 3, partition each color class except the largest arbitrarily into subparts

of size at most k2 − 1. The number of parts is

1 +

χ∑
i=2

⌈
si

k2 − 1

⌉
≤ 1 +

χ∑
i=2

(
si

k2 − 1
+
k2 − 2

k2 − 1

)
= 1 +

n− s1
k2 − 1

+
k2 − 2

k2 − 1
(χ− 1)

≤ 1 +
n− n/χ
k2 − 1

+
k2 − 2

k2 − 1
(χ− 1).

Third, if k2 = 2, color G by giving the largest independent set one color and every
other vertex an individual color. The number of parts is n − α + 1. Trivially, each of
these partitions is an H-free coloring. All three combined bounds give the result in the
proposition.

�
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Proof of Theorem 5.13.
To obtain the upper bound, in the case of k1 ≥ 3, we use Proposition 8 together with

the result from Bollobás [40] that, whp χ (G(n, p)) = (1 + o(1)) n
2 logd n

. Hence,

χH(G) ≤ n

k1 − 1
+O

(
n

logd n

)
.

In the case of k1 = 2, the upper bound comes from Proposition 8 together with the
result from Bollobás and Erdős [36] that, whp α (G(n, p)) = 2 logd n − 2 logd log n +
O(1). Hence,

χH(G) ≤ n− 2 logd n+O (logd log n) .

Now we proceed to the lower bound. An (`; k)-complex is a family of ` disjoint
independent sets, each of size k, A1, . . . , A` such that each pair (Ai, Aj), 1 ≤ i < j ≤ `
induces a graph that has no induced copy of H . The key to the proof is to show that for
certain values of k and ` = `(n), the probability that a (`; k)-complex exists goes to zero.

If no (`; k)-complex exists, then whenever there is a coloring with color classes of size
n1, . . . , nt ≥ k it is the case that

∑t
i=1bni/kc < `. Thus,

1

k

t∑
i=1

ni −
k − 1

k
t ≤

t∑
i=1

⌊ni
k

⌋
< `

t∑
i=1

ni < k`+ (k − 1)t,

while the leftover vertices are in color classes of size at most k−1. So, if there are t color
classes of size at least k, then

χH(G) ≥ t+
n− k`− (k − 1)t

k − 1
=

n

k − 1
− k

k − 1
`. (5.1)

For the graph H , let Q = Q(H, p) be the probability that a k1 × k1 random bipartite
graph has no induced copy of H . Taking the product over all

(
`
2

)
pairs (Ai, Aj) and

multiplying by the probability that each G[Ai] induces an independent set, we obtain:

Pr [∃ an (`; k1)-complex] =
(n)k1`
`!(k1!)`

Q(`2)(1− p)`(
k1
2 ) (5.2)

<

[(√
e

`

)
nQ(`−1)/(2k1)(1− p)(k1−1)/2

]k1`
,

which is obtained from the inequalities (n)k1` ≤ nk1`, `! ≥ (`/e)`, and k1! ≥ 1.
Let C ′ = C ′(H, p) = 2k1

log(1/Q)
. For n sufficiently large, if ` > C ′ log n, then the

probability in (5.2) goes to zero. By (5.1), it is the case that whp

χH(G) ≥ n

k1 − 1
− C ′ k1

k1 − 1
log n.

Thus the general lower bound is satisfied.
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In the special case where H = 2K2, we observe that Q(2K2, p) = 1− 2p2(1− p)2.

Pr [∃ an (`; 2)-complex] =
(n)2`
`!2`

Q(`2)(1− p)`

<

[(√
e

2`

)
nQ(`−1)/4(1− p)1/2

]2`
.

If ` > 4 logn
log(1/Q)

− 4 log logn
log(1/Q)

+ log log log n and n is sufficiently large, then whp no (`; 2)-
complex exists. By (5.1), it is the case that whp

χ2K2(G) ≥ n− (1− o(1))
8 log n

log(1/Q)
,

where Q = 1− 2p2(1− p)2.
�

Similar results can be obtained as long as min{p, 1 − p} = ω
(
logn
n

)
but express our

results in the case where p is a fixed constant.

5.5 Examples for Observation 9
We list without proofs some consequences of Observation 9. The details can be found in
A. London, R. R. Martin and A. Pluhár [114].

Corollary 14.

χ2K2(Pn) ≥

√
2

⌈
n− 1

3

⌉
+

1

4
+

1

2
.

For n = 2, 3, 4, χ2K2(Pn) = 2 because every proper 2-coloring is 2K2-avoiding. For
the case n ≥ 5, a more refined argument gives the value of χ2K2(Pn) for n ≥ 5 as follows:

Corollary 15. If n ≥ 5 and k is the least integer that satisfies⌊
k + 1

2

⌋
(k − 2) ≥

⌈
n− 1

3

⌉
then χ2K2(Pn) = k.

Corollary 16.

χ2K2

(n
2
·K2

)
=

⌈√
n+

1

4
+

1

2

⌉
.

Bounds on some other graphs are given as follows:

Corollary 17. Let n be odd and let T be the tree formed when each edge of K1,(n−1)/2 is
subdivided (by a vertex) exactly once.

χ2K2(T ) =

⌈√
n− 3

4
+

1

2

⌉
.
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Corollary 18. Let Qd be the d-dimensional hypercube. Then

χ2K2(Q2) = 2,

χ2K2(Q3) = 4,

and if d ≥ 4 then

χ2K2(Qd) ≥
√

d

2d− 1
2d +

1

2

=

√
n

2

1

1− 1/(2 lg n)
+

1

2
.

Definition 10. Let p be a prime power and let G(p) be the bipartite graph on n = 2(p2 +
p+ 1) vertices defined by the projective plane of order p+ 1. That is, there are p2 + p+ 1
points and p2 + p+ 1 lines and a point is adjacent to a line if and only the point is in the
line in the projective plane. This graph is (p+ 1)-regular with no K2,2.

Corollary 19. If G(p) is the graph in Definition 10 then,

χ2K2(G(p)) ≥

√
2(p2 + p+ 1)(p+ 1)

2p+ 1
+

1

2

≥
√
n

2
+

√
n

4
+

1

2
.

5.6 Discrepancies
The thorough study of discrepancy theory started with Weyl [161] and quickly gained
several applications in number theory, combinatorics, ergodic theory, discrete geometry,
statistics etc, see the monograph of Beck and Chen [24] or the book chapter by Alexander
and Beck [1].

We touch upon only the combinatorial discrepancy of hypergraphs. Given a hyper-
graph (X,E), and a mapping f : X → {−1, 1}, for an edge A ∈ E let f(A) :=∑

x∈A f(x). The discrepancy of f is D(X,E, f) = maxA∈E |f(A)|, while the discrep-
ancy of the hypergraph (X,E)

D(X,E) := min
f
D(X,E, f).

In our case X = E(G) and E = SG ⊂ 2E(G), and with a slight abuse of notation we
write D(G,SG) for short.

Erdős, Füredi, Loebl, and Sós [61] studied the case G = Kn, the complete graph on
n vertices, and SG is the set of copies of a fixed spanning tree Tn with maximum degree
∆. They showed the existence of a constant c > 0, such that D(G,SG) > c(n− 1−∆).

Erdős and Goldberg [60] defined dis(A,B) := e(A,B) − e(G)|A||B|/
(
n
2

)
, where

A,B ⊂ V (G) and A ∩ B = ∅. They showed that for every ε > 0 there exists an
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ε′ > 0 such that in every graph G with e = e(G) > v(G) = n, there are disjoint sets
A,B ⊂ V (G), |A|, |B| ≤ εn, and dis(A,B) > ε′

√
en.

Here we investigate the discrepancy of (spanning) trees, paths, Hamilton cycles and
packing with fixed complete graphs. That is for a graph G let SG be the set of spanning
trees (Tn), trees (T ), Hamiltonian paths (Pn), paths (P), or Hamilton cycles (H).

Usually, one expects big discrepancy if the hypergraph has many edges. Since for
every graph G, either G or G is connected, we have D(Kn, Tn) = n − 1. Beck [23]
showed that there is a graph F on n vertices and 2n edges such that in every two-coloring
of its edge set there exists a monochromatic path of length cn, that is D(F,P) = cn.
Another example for this is the interpretation of the result of Burr, Erdős and Spencer
[41], namely that R(mK3,mK3) = 5m. That is if k ·K3 is the set of triangle factors in
Kn, n = 3k and n is divisible by 5, then D(Kn, k ·K3) = n/5.

We first consider the discrepancy of Hamilton cycles, and show that, roughly speaking,
if G has sufficiently large minimum degree then for every labeling of E(G) with +1,−1
there is a Hamilton cycle with linear discrepancy.

Theorem 5.15. Let c > 0 be an arbitrarily small constant and n be sufficiently large. Let
G be a graph of order n with δ(G) ≥ (3/4 + c)n. Then we have D(G,H) ≥ cn/32.

Figure 5.1 below shows that the minimum degree condition in Theorem 5.15 is the
best possible. In this example, let G = Kn − Kn/4, i.e., |V (G)| = n is divisible by 4,
|V1| = n/4, |V2| = 3n/4, δ(G) = 3n/4. Assign −1 to all edges incident to V1 and +1 to
the rest of the edges. As each Hamilton cycle in G touches V1 exactly n/4 times, they all
have zero discrepancy.

V1 V2

Figure 5.1: G with δ(G) = 3n/4 and zero Hamilton cycle discrepancy.

For the existence of a Hamilton cycle, Dirac’s Theorem requires only minimum degree
n/2. We could also push down the minimum degree requirement for the existence of a
linear discrepancy Hamilton cycle, if we have some local restriction on the coloring.

For ν > 0 real number, we say a vertex is ν-balanced if it has at least νn edges with
label +1, and at least νn edges of label −1, otherwise it is ν-unbalanced.

Theorem 5.16. Let c, d, ν be positive numbers satisfying c ≥ 8ν and d ≥ 4ν. Let G be a
graph of order n, where δ(G) ≥ (1/2 + c)n. Assume that the edges of G are labelled by
either +1 or−1, such that the number of ν-balanced vertices is at least (3/4 +d)n. Then
there exists a Hamilton cycle in G with discrepancy at least ν2n/2000.
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The number of the balanced vertices in the graph in Figure 5.1 is 3n/4, hence the
condition on the size of the balanced set in Theorem 5.16 is tight.
Remarks. The proofs of Theorem 5.15 and 5.16 is published in J. Balogh, B. Csaba, Y.
Jing and A. Pluhár [14].

Th perfect tilings are also global structures in graphs. An H-tiling in a graph G is a
collection of vertex-disjoint copies ofH contained inG. AnH-tiling is perfect if it covers
all the vertices of G. Perfect H-tilings are also often referred to as H-factors, perfect H-
packings or perfect H-matchings. H-tilings can be viewed as generalizations of both
the notion of a matching (which corresponds to the case when H is a single edge) and the
Turán problem (i.e. a copy of H in G is simply anH-tiling of size one). Except for the case
whenH contains no component of size at least 3, the decision problem of whether a graph
contains a perfect H-tiling is NP-complete (see [101]). Thus, there has been substantial
efforts to obtain sufficient conditions that force a graph to contain a perfect H-tiling. In
particular, a cornerstone result in extremal graph theory is the Hajnal-Szemerédi theorem
[82], which characterizes the minimum degree threshold that ensures a graph contains
a perfect Kr-tiling. Theorem 1.3 (Hajnal and Szemerédi [82]). Every graph G whose
order n is divisible by r and whose minimum degree satisfies δ(G) ≥ (11/r)n contains a
perfect Kr-tiling. Moreover, there are n-vertex graphs G with δ(G) = (11/r)n1 that do
not contain a perfect Kr-tiling. There has also been much interest in the minimum degree
threshold that ensures a perfect H-tiling for an arbitrary graph H . After earlier work
on this topic (see e.g. [9, 104]), Kühn and Osthus [110] determined, up to an additive
constant, the minimum degree that forces a perfect H-tiling for any fixed graph H .

We have following discrepancy version of the Hajnal-Szemerédi theorem:

Theorem 5.17. Suppose r ≥ 3 is an integer and let > 0. Then there exists n0N and
γ > 0 such that the following holds. Let G be a graph on n ≥ n0 vertices where r divides
n and where

δ(G) ≥ (1
1

r + 1
+ θ)n.

Given any function f : E(G){1, 1} there exists a perfect Kr-tiling T in G so that

|
∑

e∈E(T )

f(e)| ≥ γn.

In both of the theorems above, G is dense. However, the sparsity of a graph does
not imply small discrepancy, the expansion is a more important factor. Let G ∈ Gn,d be a
randomly, uniformly selected d-regular graph on n vertices. A property P holds with high
probability, whp, if for every ε > 0 there exist an nε such that Pr(G ∈ Gn,d, G ∈ P) ≥
1− ε. Similarly, property P holds asymptotically almost surely, a.a.s., if limn→∞ Pr(G ∈
Gn,d, G ∈ P) = 1.

Theorem 5.18. Let G ∈ Gn,3. Then there exists a constant c > 0 such that a.a.s. we have
D(G, Tn) ≥ cn.

For planar graphs, one can expect sub-linear discrepancy of spanning trees; we man-
aged to give asymptotically sharp bounds.

Theorem 5.19. Let G be a planar graph on n vertices. Then there exists a real number
c > 0 such that D(G, Tn) ≤ c

√
n.
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The bounds, up to the constant factor are best possible. Let P 2
k := Pk�Pk be the

k × k grid.

Theorem 5.20. D(P 2
k , Tn) ≥ ck for some c > 0, where n = k2.

If we drop the condition of spanning subgraph, then the discrepancies can be linear in
the number of vertices.

Proposition 9. Let k, ` > N+. Then D(Pk�P`,P) > k`/8−max{k, `}/8−min{k, `}.

We have the following corollary since paths are also trees.

Corollary 20. D(Pk�P`, T ) > k`/8−max{k, `}/8−min{k, `}.

Let us make some easy observations which nevertheless give motivations for the above
theorems and to those proofs. The graph P2�Pk has exponentially many spanning trees,
but still D(P2�Pk, T2k) ≤ 3. To see this, we partition the graph into a 2 × dk/2e grid
and a 2 × bk/2c grid, and label the edges of the first grid by −1, of the second grid by
+1. We label the edge shared by two sub-grids arbitrarily. The situation for Pk�Pk, the
k × k grid, is similar: cut the grid into two halves and label +1 the upper, and −1 the
lower region. Since any spanning tree is cut at most k times, D(Pk�Pk, Tn) ≤ k − 1.
For not necessarily spanning trees, obviously, D(G, T ) ≥ d∆(G)/2e.

In what follows we give the proofs some of these results. Since the proofs of the
Theorems 5.15, 5.16 and 5.17 are quite technical, we leave those out of the present text.
The interested reader may find them in [14, 15].

5.6.1 Discrepancies in random 3-regular graphs
Proof Theorem 5.18

Buser [42] and later, in a much simpler paper, Bollobás [39] showed that random
regular graphs have expanding properties. More precisely, let

i(G) := min
U

|∂U |
|U |

,

where U ⊂ V (G) with |U | ≤ |V (G)|/2, and ∂U := {v /∈ U | ∃u ∈ U, uv ∈ E(G)}.
(i) Bollobás [39] proved that i(G) ≥ 2−7 for a random 3-regular graph G with high

probability. In particular, it is connected whp.
(ii) Bollobás [38] showed for 3 ≤ j ≤ k, where k is fixed, and Xj stands for the

number of cycles of length j inG ∈ Gn,3, thatX3, . . . , Xk are asymptotically independent
Poisson random variables with means λj = 2j/(2j).

(iii) Wormald proved (see [162, Lemma 2.7]) that for a fixed d and every fixed graph
F with more edges than vertices, G ∈ Gn,d a.a.s. contains no subgraph isomorphic to F .

Fix an arbitrary f : E(G)→ {−1, 1}, denote N and P the subsets of edges, where f
takes −1 and 1, respectively. We may assume that |N | ≤ |P |, i.e., |N | ≤ 3n/4.

Denote by G+ the subgraph of G spanned by P , and let Ai be the set of components
with size i in G+, while ai := |Ai|. The number of components in G+ is t =

∑n
i=1 ai.
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Note that (i) means that G is connected whp so G has a spanning tree T satisfying
that |E(T )∩N | ≤ t− 1. Hence if t ≤ (1/2− 2−12)n+ o(n) or t ≥ (1/2 + 2−12)n+ o(n)
then D(G, Tn) ≥ 2−12n− o(n).

Three edges of N are incident to each element of A1, four edges to each of A2. The
number of edges incident to a component of size at least 3 could be less than four only
if the component contains a cycle, i.e., w.h.p. only in O(1) many components Ai for
i = 3, . . . , 29. For every component larger than 29, and smaller than n/2, w.h.p. the
number of incident edges is at least four by (i).

That is, w.h.p.

2|N | ≥ 3a1 + 4
n∑
i=2

ai −O(1) = 4t− a1 −O(1),

which gives

(1/2− 2−12)n+O(1) ≤ t ≤ |N |/2 + a1/4 +O(1) ≤ 3n/8 + a1/4 +O(1). (5.3)

Now we consider the number of negative edges. The number of edges in N which are
incident to vertices in A1 is e(G[A1]) + e(G[A1, A1]). Since |N | ≤ |P |, we have

3a1
2
≤ e(G[A1]) + e(G[A1, A1]) ≤ |N | ≤

3n

4
,

which implies that a1 ≤ n/2. Using the condition (i), we have e(G[A1, A1]) ≥ 2−7a1.
Therefore,

3a1 ≤ 2e(G[A1]) + e(G[A1, A1]) ≤ 2|N | − 2−7a1,

implying
3a1
2

+
a1
27
≤ |N | ≤ 3n

4
,

which gives a1 ≤ (1/2 − 2−10)n w.h.p. With (5.3) it implies t ≤ (1/2 − 2−12)n +
o(n) w.h.p. That gives us D(G, Tn) ≥ 2−12n− o(n). w.h.p. �

5.6.2 Discrepancies of planar graphs
Lemma 20. Let C be a vertex cut of a connected graph G, that is V (G) = A ∪ B ∪ C
such that there are no edges between A and B, and, say, |A| ≤ |B|. Then D(G, Tn) ≤
|B| − |A|+ |C|.

Proof Theorem 20
Let f(x, y) = 1 if (x, y) ∈ E(A)∪E(A,C), f(x, y) = −1 if (x, y) ∈ E(B)∪E(B,C)

and arbitrary in E(C). Every spanning tree T of G has at most |C| components restricted
toA∪C. It means the number of edges labeled by 1 is at least |A|+|C|−1−|C| = |A|−1
in T , and the edges labeled by −1 at most |B|+ |C| − 1. �

Proof Theorem 5.19
To deduce Theorem 5.19 we need to recall the celebrated planar separation theorem of

Lipton and Tarjan in [112]. It says if G is a planar graph on n vertices then G has a vertex
cut of size O(

√
n) partitioning the graph into two parts A and B, where n/3 ≤ |A|, |B| ≤
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2n/3. A well-known consequence [54, Theorem 5] of that theorem is that there exists
a cut C and constants c1, c2, c3 such that n/2 − c1

√
n ≤ |A|, |B| ≤ n/2 + c2

√
n and

|C| = c3
√
n.

Having the partition above we can use Lemma 20 getting that for a planar graph G,
D(G, Tn) ≤ |B| − |A|+ |C| ≤ O(

√
n). �

Lemma 21 ([47]). Let S ⊆ Pk�Pk such that (k2 − k)/2 ≤ |S| ≤ (k2 + k)/2. Then we
have |∂S| ≥ k.

Proof Theorem 5.20
Assume there exists an f : E(Pk�Pk) → {−1, 1} such that D(Pk�Pk, Tn, f) ≤

k/4. Let P,N and M be the subset of vertices, such that v ∈ P if all edges incident
to v are positive, v ∈ N if all edges incident to v are negative, and M = V − N − P .
Consider an arbitrary Hamiltonian path in Pk�Pk, from the assumption on f it follows
that |P |, |N | ≤ k2/2 + k/8 + 2.

First, we show that |M | ≥ k. If max{|P |, |N |} ≤ (k2 − k)/2 then this follows from
|P |+ |N |+ |M | = k2. That is we may assume (k2−k)/2 < |P | ≤ k2/2 +k/8 + 2. Note
that ∂P = M . By Lemma 21, for sets P of such size we have |∂P | ≥ k, which means
|M | ≥ k, too.

We identify the vertices of Pk�Pk with coordinate pairs such that (0, 0) belongs to
the bottom left vertex, (k − 1, k − 1) to the upper right vertex. For r, s ∈ {0, 1} let Xr,s

be those vertices (i, j) (0 ≤ i, j ≤ k − 1) for which i = r (mod 2) and j = s (mod 2).
At least one of these sets Xr,s contains at least k/4 vertices of M , say X0,0. Consider an
arbitrary tree T spanned on the vertices X0,1 ∪X1,0 ∪X1,1.

Note that we can extend T to the entire Pk�Pk such that the vertices of X0,0 will
be leaf vertices in the extension. Moreover for (i, j) ∈ X0,0 ∩M we can connect (i, j)
to T with either an edge labeled by −1 or 1. Fixing any extension to X0,0 \M , let T+

(T−) be the extension where we use the edge labeled by 1 (−1) for the vertices X0,0∩M .
Obviously, |

∑
e∈T+ f(e)−

∑
e∈T− f(e)| ≥ k/2, so either |

∑
e∈T+ f(e)| or |

∑
e∈T− f(e)|

is at least k/4. �

Proof Theorem 9
We show first that D(Pk�P2,P) ≥ k/2. Let us refer to the graph Pk�P2 as a

rectangle with horizontal length k in which the edges are labeled by f . Let X and Y be
the set of the vertical edges labeled by +1 and−1 respectively. Without loss of generality,
we may assume |X| ≥ |Y | and let x := |X| ≥ k/2, y := |Y |. We consider four paths:
P (X) starts from the left-upper corner goes to right except when it meets an edge e ∈ X
at which point it goes down or up, depending on which one is possible. The path P ′(X)
is almost the same, but it starts from the left-lower corner. Finally the paths P (Y ) and
P ′(Y ) are drawn analogously, those also start from left and go to right, but rise and fall at
the edges belonging to Y . Note that P (X) and P ′(X) each contain X , P (Y ) and P ′(Y )
each contain Y . P (X)∪P ′(X) and P (Y )∪P ′(Y ) have the same set of horizontal edges.

Let z1 :=
∑

e∈P (X)\X f(e), and z2 :=
∑

e∈P ′(X)\X f(e). If max{z1, z2} ≥ 0, then
we are done since one of

∑
e∈P (X) f(e) or

∑
e∈P ′(X) f(e) is at least k/2. If both z1 and

z2 are negative, we have D(Pk�P2,P , f) ≥ x + z1, and D(Pk�P2,P , f) ≥ x + z2.
Considering the paths P (Y ) and P ′(Y ) we also have 2D(Pk�P2,P , f) ≥ 2y − z1 − z2,
since the horizontal edges in those carry exactly z1 + z2 negative surplus. Adding those
up, we get 4D(Pk�P2,P , f) ≥ 2x+2y, that isD(Pk�P2,P , f) ≥ k/2 since x+y = k.
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In the general case we may assume that k ≤ ` and Pk�P` is referred as a rectangle
with k rows and ` columns. We cut out bk/2c non-touching stripes P2�P`. For every
f : E(Pk�P`) → {−1, 1}, applying our construction of paths above, without loss of
generality, at least half of the rectangles have a path with more positive edges, and with
discrepancy at least d`/2e. Note also, that these paths can be joined into one path by
adding at most k − 1 edges. Thus, we create a path with discrepancy at least⌈

1

2

⌊k
2

⌋⌉⌈ `
2

⌉
− k + 1 >

k`

8
− `

8
− k,

and the result is proved. �
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[80] L. Győrffy, G. Makay and A. Pluhár, The pairing strategies of the 9-in-a-row game.
Ars Mathematica Contemporánea, 16(1) (2018), 97–109.
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