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Preface

O
NE way to examine nature, as a complex ecosystem, is to go out and explore
its beauty. Take a walk at the uphills of Barcelona, look down to the city that
nests in a valley leading to the sea. You can hear the birds and cicadas play-

ing in the nearby pine trees, as well as, some of the sharp noises of the crowded city
life faded and sweeping through the distance disturbing stillness. You can feel that
you are surrounded and exist in a complex system, but cannot grasp and understand
it as a whole. You can zoom in by taking a narrow side track leading down through
the forest, touching the rough bark of a log lying across the path, or petting the
puppy approaching you with a friendly bark running after a stick. When you go fur-
ther down and reach the backyard of a primary school, you are suddenly surrounded
by a loud large group of pupils and parents just about to depart home. What have
you learnt about Barcelona? A lot about the sense of that part of the city, but almost
nothing about how it is working or governed. For that later you need a systematic
investigation through certain, well-defined scenarios. One way is to take a bottom-up
approach: go to a tapas bar downtown, eat ’pincho de anchoas’, then start exploring
your surroundings. Extend your scope step-by-step: walk the nearby streets, observe
the neighbourhood, scan the seaside, grasp the San Marti region, then get a view on
the whole city, which is a complex system. In this dissertation, I summarise the meth-
ods, approaches, and tools I developed in the past decade for a similar purpose, but
in the world of ICT, first with my close colleagues and international collaborations,
then with my own research group.

Around 2010, Cloud Computing [47] became a diverse research area encompass-
ing many aspects of sharing software and hardware solutions, including computing
and storage resources, application runtimes, or complex application functionalities.
Unlike the previously ruling Grid Computing, the concept of Cloud Computing has
been pioneered by commercial companies with the promise to allow elastic construc-
tion of virtual infrastructures. Cloud solutions provided businesses with the option to
outsource the operation and management of IT infrastructure and services, allowing
them to focus on their core competencies. Soon after this new technology set foot in
ICT, a continuously growing number of powerful devices (smartphones, household
appliances, etc.) started to join the Internet, significantly impacting on the global
traffic volume (e.g. by data sharing, voice, multimedia) and foreshadowing a world
of smart devices, or things in the Internet of Things (IoT) perspective. The CERP-IoT
[173] defined IoT as a dynamic global network infrastructure with self-configuring
capabilities based on standard and interoperable communication protocols. Things
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in this network can interact and communicate among themselves and with the en-
vironment by exchanging data and information sensed, and react autonomously to
events and influence them by triggering actions with or without direct human inter-
vention. In the past years, more than a hundred billion devices became online, most
of them exploiting data services provided by clouds, realizing so-called IoT-Cloud
systems. Such systems can be utilised in many application areas ranging from local
smart homes to mid-range smart cities, or wider smart regions.

The rapid spreading of IoT applications raised new challenges. To cope with
the huge number of communicating entities, data management operations are better
placed close to their origins, resulting in the exploitation of edge servers of the cloud.
This distributed computing paradigm is called Fog Computing [114], where groups
of such edge nodes form a fog, to ensure reduced service latency and improved ser-
vice quality compared to remote cloud usage for data processing and analysis. This
evolution has led to so-called IoT-Fog-Cloud systems that are able to serve the masses.
Nevertheless, applications built on top of these complex, integrated infrastructures
faced further challenges, such as lack of standardisation, increased security and pri-
vacy issues implying social mistrust, as side effects of this technological revolution.
The latest novelty in ICT provided Blockchain (BC), as a solution to most of these
newly arisen problems. BC realises a distributed transactional database secured by
cryptography, and governed by a consensus mechanism [35]. By integrating BC to
IoT-Fog-Cloud systems, we can achieve trusted, immutable, and fully decentralised
data management. In this setting, we arrive at the most complex case, when IoT
applications are executed in a BC-Fog-Cloud system.

In this dissertation, I provide means for analysing the behaviour of complex sys-
tems relying on the aforementioned emerging technologies. In Chapter 1, I sum-
marise my research results achieved mostly through international collaborations,
concerning methods for creating Cloud Federations and enhancing their operation
performance. In Chapter 2, 3 and 4, I present results mostly achieved together with
the PhD students I supervised, concerning modelling and analysing IoT-Cloud sys-
tems, IoT-Fog-Cloud systems, and IoT-Blockchain-Fog-Cloud systems, respectively.

Referring to the city of Barcelona in the allegory of a complex system in the be-
ginning of this preface is not by coincidence. My first research exchange within the
framework of the CoreGRID EU project took place in BRC in 2007. My latest visit
– I evoked here – happened in the fall of 2023, when I was invited as an opponent
of a PhD defense of a student in UPC, whose supervisor was my former colleague I
worked with, back in 2007.
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1Investigating Cloud

Federations

A
N expert group set up by the European Commission published its view on
the future of Cloud Computing (CC) in 2010 [173]. This report categorised
cloud architectures into five groups: Private Clouds (i) consist of resources

managed by an infrastructure provider (IP) that are typically owned or leased by an
enterprise from a service provider (SP). Usually, services with cloud-enhanced fea-
tures are offered, therefore this group includes Software as a Service (SaaS) solutions
like eBay. Public Clouds (ii) offer their services to users outside of the company and
may use cloud functionality from other providers. In this solution, enterprises can
outsource their services to such cloud providers mainly for cost reduction. Examples
of these providers are Amazon or Google Apps. Hybrid Clouds (iii) consist of both
private and public cloud infrastructures to achieve a higher level of cost reduction
through outsourcing by maintaining the desired degree of control (e.g., sensitive data
may be handled in private clouds). The report stated that hybrid clouds had been
rarely used by that time. In Community Clouds (iv) different entities contribute with
their (usually small) infrastructure to build up an aggregated private or public cloud.
Smaller enterprises may benefit from such infrastructures. Finally, Special Purpose
Clouds (v) provide more specialised functionalities with additional, domain-specific
methods, such as the distributed document management by Google’s App Engine.
This group is an extension or a specialisation of the previous cloud categories.

Cloud federation refers to a mesh of cloud providers that are interconnected
based on open standards to provide a universal decentralised computing environ-
ment, where everything is driven by constraints and agreements in a ubiquitous,
multi-provider infrastructure. Till 2010, the cloud ecosystem has been characterised
by the steadily rising of hundreds of independent and heterogeneous cloud providers,
managed by private subjects, which offer various services to their clients. Follow-
ing and extending the hybrid cloud definition of the European Commission, cloud
providers offering Platform as a Service (PaaS) solutions may form sub-federations
simultaneously to these approaches. Specific service-based applications may be more
suitable for these provisions, and projects like Reservoir and 4CaaSt started to work
towards supporting them. Our considered federation-oriented works target IaaS-type
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2 Investigating Cloud Federations

providers, e.g., RackSpace, the infrastructure services of Amazon EC2, and providers
using cloud middleware such as OpenNebula or Eucaliptus, by forming a kind of
multi-cloud architecture managed by a higher level solution.

We named our approach as Federated Cloud Management (FCM) [93], where
interoperability is achieved by high-level brokering instead of bilateral resource rent-
ing. Albeit this does not mean that different IaaS providers may not share or rent
resources, but if they do so, it is transparent to their higher level management. Such
a federation can be enabled without applying an additional software stack to pro-
vide low-level management interfaces. The logic of federated management is moved
to higher levels, and there is no need to adapt interoperability standards by partic-
ipating infrastructure providers, which is usually a restriction that some industrial
providers are reluctant to undertake.

Not only does the interchangeability of user applications in different clouds par-
ticipating in a federation represent an open issue as a whole, but it also has several
related interoperability problems concerning the management of such a large dis-
tributed ecosystem. As I mentioned before, the European Commission has assigned
an expert group to publish reports on future research challenges of clouds. In these
reports, they also performed a gap analysis of already existing commercial and aca-
demic solutions, and highlighted certain topics that need further research. By ad-
dressing many of these concerns, we identified four important research fields that
must be taken into account in building and operating cloud federations. These topics
represent different facets of interoperability: (i) enhanced monitoring solutions are
needed to enable optimised management of participating providers; (ii) legal regu-
lations need to be considered during multi-tenant data processing; and (iii) energy
efficient resource management have to be enabled for future ecosystems.

The research results we achieved by addressing these topics are summarised in
this chapter. In Section 1.1 I summarise our research results in proposing a monitor-
ing approach for a cloud federation, and in Section 1.2 I introduce the legal aspects
of data management in clouds and beyond. In Section 1.3 I summarise our proposal
for energy efficient datacenter management, and in Section 1.4 I present our results
in analysing service quality in these systems. Finally, Section 1.5 presents solutions
for exploiting Personal Clouds within federation scenarios.

1.1 Monitoring in Federated Clouds

An efficient cloud selection in a federated environment requires a cloud monitoring
subsystem that determines the actual status of available IaaS systems. Since there is
only limited monitoring information available for the users or higher-level managers
in these clouds, there is a need for a sophisticated service monitoring approach to
evaluate basic cloud reliability status, and to perform seamless service provisioning
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1.1 Monitoring in Federated Clouds 3

over multiple cloud providers in an interoperable way. We exemplify such an ex-
tension to a federation with our Federated Cloud Management solution, where we
applied a web service monitoring approach to gather additional and more detailed
service quality information from the participating cloud.

The FCM approach uses the Generic Meta-Broker Service as the entry point for
the users of the cloud federation. This service selects the most suitable cloud provider
to perform the user’s service requests by investigating the current state of the partic-
ipating clouds according to the information stored in a generic service registry and
the reliability metrics collected by the integrated SALMon service monitoring frame-
work – as shown in Figure 1.1 [98]. The participating clouds are managed by cloud
brokers that are capable of handling service requests and managing virtual machines
within single IaaS cloud systems.

Single Private/Public 
IaaS cloud (B)

VM Init
VM Destruct
VA Delivery

VM Queue Mgmnt
Call <-> VM association

Cloud selection
Federated Call submission

Query Cloud Metrics

Meta 
Brokering

Cloud 
Brokering

Service 
Deployment

Service M
onitoring

VMVMVM

Single Private/Public 
IaaS cloud (A)

VMVMVM
Service 

Deployment

Cloud 
Brokering

Single Private/Public 
IaaS cloud (C)

VMVMVM
Service 

Deployment

Cloud 
Brokering

Generic 
Service 
Registry

getService
Metadata

Legend:
VMVMVM

Federatively
managed VMs

Compo
nent

External cloud 
extensions

for each IaaS

Figure 1.1: Enhanced monitoring solution for FCM

To enable the meta-brokering service to differentiate between cloud providers,
we proposed to use a basic service that is used to efficiently determine the important
characteristics of the virtual machines (VMs) available in the federation [98]. As a
result, the system is capable of evaluating and choosing between public and private
clouds based on the same kind of metrics. We refer to this basic service as the Minimal
Metric Monitoring Service (M3S), which is capable of measuring the reliability of
the infrastructure together with the integrated SALMon framework in public and
private clouds. The M3S service is prepared to run on a virtual machine and offers
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4 Investigating Cloud Federations

three methods to evaluate the basic capabilities of its hosting VM. SALMon uses the
response times of the method calls to express the reliability of the particular cloud
that runs the M3S VM: it has (i) a generalised ping test to check the availability of the
service; a (ii) CPU analyser method that performs several mathematical calculations
in a large loop over a predefined set of variables, consisting of integer and floating
point numbers in order to determine the computational capability of a given VM; and
finally (iii) bandwidth analyser methods, which are used to compute the download
and upload transfer speed of the system to determine its inbound and outbound data
transfer capabilities.

Our investigations showed that both service reliability and responsiveness do vary
over time and load conditions, and these measures can be used by our federated
cloud management solution to select better execution environments to achieve a
higher level of user satisfaction.

1.2 Data Protection in cloud federations

Cloud Computing (CC) allows the outsourcing of computational power, data storage,
and other capabilities to a remote third-party. In the supply of any goods and ser-
vices, the law gives certain rights that protect the consumer and provider, which also
applies for CC: it is subject to legal requirements and constraints to ensure cloud ser-
vices are accurately described and provided to customers with guarantees on quality
and fitness-for-purpose. To exemplify legal issues arising from data management in
cloud federations, we chose to perform an evaluation using requirements from data
protection law. Data protection legislation is fundamental to CC as the consumer
loses a degree of control over personal artifacts, when they are submitted to the
provider for storage and possible processing. To protect the consumer against mis-
using their data, data processing legislation has been developed to ensure that the
fundamental right to privacy is maintained. However, the distributed nature of CC
(where cloud services are available from anywhere in the world) makes it difficult to
analyse every country’s data protection laws for common cloud architecture evalua-
tion criteria. In 2012, at the time of performing this research, we chose the European
Data Protection Directive (DPD) as the common directive that applies as widely as
possible for our investigations. Although it is a directive of the European Union (EU),
countries that want to collaborate in data transactions with EU Member States are
required to provide an adequate level of protection. The requirements of the DPD
are expressed as two technology-neutral actors that have certain responsibilities that
must be carried out in order to fulfil the directive. These roles are the data controller
and data processor, where a data controller is the natural or legal person, who de-
termines the means of the processing of personal data, whilst a data processor is a
natural or legal person, who processes data on behalf of the controller. However,
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1.2 Data Protection in cloud federations 5

following these definitions, a special case arises: if the processing entity plays a role
in determining the purposes or means of processing, it is a controller rather than a
processor.

We explored cloud federations through a series of use cases to demonstrate where
legal issues can arise [97, 180]. In these use cases, the relevant actors and their roles
were identified and the necessary actions that should be taken in order to prevent
violations of the directive. We identified that there are complications when per-
sonal data is transferred to multiple jurisdictions. For example, considering a service
provider (SP) located in the European Union offers services provisioned in a cloud
federation, which utilises different infrastructure providers (IPs, usually operating
private clouds), and one of which (IP2) is located in a non-Member State, we arrived
to the following conclusion: since SP is the data controller and the participating IPs
are processors, the law of the SP’s Member State has to be applied, and IP2 has to
provide at least the same level of protection as the national law of SP. Otherwise,
if IP2 cannot ensure an adequate level of protection, the decision-making process
should rule out IP2 from provider selection during data management. As a result
of our investigation, we could state that service providers are mainly responsible for
complying with the data protection regulation, and when personal data is transferred
to multiple jurisdictions, it is crucial to properly identify the controller since this role
may change dynamically in specific actions.

To react to the new situation introduced by technological improvements, we ex-
tended the scope of our investigation from cloud federations to systems exploiting
Fog Computing (FC), the Internet of Things (IoT) and Artificial Intelligence, in an
additional work in 2020 [181]. Since 2018, the General Data Protection Regulation
(GDPR) must be applied as the general legal framework of the EU for personal data
protection, and the novelty that this regulation introduced had to be considered as
well. The main objectives of GDPR were to modernise the EU legal system for the
protection of personal data to respond to the use of new technologies, and to revise
and strengthen the previously introduced data processor and controller roles, as well
as the influence of the users on processing their personal data. We identified various
use cases in IoT-Fog-Cloud environments, and used them to exemplify dynamic role
changing in terms of data processors and controllers. Our research results concluded
that as we broaden the scope and complexity of the managed systems, the user con-
trol of the sensed private data weakens, and the responsibility of data protection
are shifting towards fog, cloud, and service providers. Organisations must employ
data mapping to be aware of their data flows (where the data flows from, within,
and to). This would not only help identify the interaction of data between different
stakeholders, but would also make a proper assessment of the privacy risks related
to the storage, processing and transmission of data. Classification and data mapping
are necessary to support data portability, right of access, and right of erasure.
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6 Investigating Cloud Federations

1.3 Energy Efficient Cloud Datacenter Management

The Cloud Computing technology has created the illusion of infinite resources to-
wards consumers, however, this vision raises severe issues with energy consumption:
the higher levels of quality and availability require irrational energy expenditures.
The consumed energy of resources spent for idling represents a considerable amount;
therefore, the current trends are claimed to be clearly unsustainable with respect to
resource utilisation, CO2 footprint, and overall energy efficiency. It is anticipated
that further growth is objected by energy consumption, and the competitiveness of
companies will be strongly related to these issues. Energy consumption is a major
component of the operating costs of cloud datacenters.

In order to exemplify how energy consumption and CO2 emissions could be ad-
dressed in cloud federations, we introduced enhancements to our proposed Feder-
ated Cloud Management solution summarised in the previous section. At the meta-
brokering layer, relying on an enhanced monitoring system within the federation,
service executions can be directed to datacenters of providers consuming less en-
ergy, having higher CO2 emission quota, or have produced less amount of CO2 that
expected within some timeframe. At the cloud brokering layer, if the energy con-
sumption parameters of a cloud suddenly change, there should be strategies to limit
or move around calls and even VMs federation-wise. In 2016 in [101], we targeted
the latter, cloud-brokering layer, and we focused on the energy-aware management
of datacenters of single cloud providers specialised in provisioning task-based cloud
applications.

In order to enable experimentation in this field, we have developed a CloudSim-
based simulation environment. For the evaluations, we used the log files of real VM
utilisation provided by Prezi Inc. The power consumption model of the physical hosts
in the simulator was based on a benchmark result provided by SPEC. To cope with the
high uncertainty and unpredictable load present in these heterogeneous, virtualized
large-scale systems, we applied Pliant system-based approaches to the management
of these systems, which is similar to a fuzzy system. Our proposed Pliant algorithms
calculated a score using the cloud’s properties for each task (i.e. cloudlet in CloudSim
[48]) to be scheduled on a VM. The calculation step included a normalisation step,
where we applied a special Sigmoid function. For example, if the power consumption
counter is high, the normalisation algorithm should give a value close to zero. One
of our applied algorithms considered time and the other energy for optimisation.
There were hosts in the simulated datacenters, and each host could run several VMs.
Such an environment could be described with three properties: power usage counter
(PUC) – which specifies the percentage of the CPU usages at a given time; power
consumption counter (PCC) – the energy usage of the given host at a given time; and
the number of processors of a host (PROC).
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1.4 Service Quality in Cloud Federation 7

To evaluate the performance of our Pliant-based algorithms, in the first round
of experiments, we created three initial strategies: the first one uses only one VM
to execute all submitted jobs (referred to as MINIMUM), the second deploys a new
VM for all jobs (MAXIMUM), and the third uses randomised VM selection from the
available VMs (smartly prioritising the less loaded ones), and deploys a new one,
if no free VM is found (SMARTRANDOM). Based on the results of these artificial
strategies, we have created a Pliant-based strategy, called PLIANTDEFAULT, focusing
on execution time reduction with some energy savings. After examining their results,
we modified the normalisation parameters of the applied Pliant system and created
more focused algorithms. We changed the sharpness of the Sigmoid function, in
order to emphasise the importance of execution time. We tried several combination
of normalisation parameters to achieve our goal. Our revised algorithms used a
Pliant version that is more focused on execution time savings (PLIANTTIME), while
in PLIANTENERGY we modified a Pliant parameter to focus on energy savings. The
comparison diagram in Figure 1.2 shows the overall results [101]. Here, we can see
that significant savings can be achieved in energy consumption with our proposed
Pliant-based algorithms, and by fine-tuning the parameters of the proposed Pliant
strategy, a beneficial trade-off can be set between energy consumption and execution
time.

Figure 1.2: Evaluation results of energy-aware Pliant algorithms for datacenter man-
agement

1.4 Service Quality in Cloud Federation

Services must be described and understood both in terms of functional capabilities
and service quality properties. Service Quality is a combination of several qualities
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8 Investigating Cloud Federations

or properties (e.g., availability, security, response time) of a service, and can be gen-
erally seen as an important factor in distinguishing the success of service providers.
The service quality description is the main driver in selecting the best service among
a set of functionally equivalent ones. Furthermore, quality is used to define a contract
between a service provider and a service user in order to ensure that their expecta-
tions are met. In addition, such a contract feeds the service management system that
is in charge of assessing the proper quality level during the service execution, en-
forcing it by taking appropriate adaptation actions, such as increasing the underlying
service resources, substituting or recomposing the faulty service, and determining
which settlement actions apply based on the way the service was executed, such as
the final cost or penalties to be paid by the service requester or provider, respectively,
and negotiations for contract termination. In 2013, in a survey on state-of-the-art
service quality [106] we introduced and compared various Service Quality Models
(SQM) and Metamodels (SQMM) to reveal categories of service quality attributes in
sophisticated taxonomies that contain many categories and attribute types. Based on
this analysis, we concluded that there is a need for a new language able to express
Service Level Agreements (SLA) in a satisfactory way. This language should satisfy
all the criteria of all the SLA life-cycle management activities and be capable of ex-
plicitly defining service levels with their respective Service Level Objectives (SLO),
and appropriate settlement actions when the service levels are violated or surpassed.

The newly emerging demands of users and researchers that appeared around
2012, called for expanding service models with business-oriented utilisation (agree-
ment handling), and support for human-provided and computation-intensive ser-
vices. Though Grid Computing succeeded in establishing production grids serving
various user communities, and both grids and Service-Based Applications (SBA) al-
ready provide solutions for executing complex user tasks, they were still lacking non-
functional guarantees. Providing guarantees in the form of SLA received great atten-
tion in Grid Computing, but they have failed to be commercialised and adapted for
the business world.

Its successor, Cloud Computing provided a novel infrastructure that focused on
commercial resource provisioning and virtualisation. These infrastructures were also
represented by services that were not only used but also installed, deployed, or repli-
cated with the help of virtualisation. These services can appear in complex business
processes, further complicating the implementation of SLAs. For example, due to
changing components, workload and external conditions, hardware and software
failures, already established SLAs may be violated. Frequent user interactions with
the system during SLA negotiation and service executions (which are usually neces-
sary in case of failures), might turn out to be an obstacle for the success of Cloud
Computing. Thus, there is demand for the development of SLA-aware cloud mid-
dleware, and application of appropriate strategies for autonomic SLA attainment.
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Despite business-orientation, the applicability of SLAs in the cloud has not gone so
smoothly. By 2012, most of the existing work addressed provisioning of SLA guar-
antees to the consumer, and not necessarily the SLA-based management of loosely
coupled cloud infrastructure. In such systems, it was hard to react to unpredictable
changes, and to localise where the failures happened exactly, what the reason was
for the failure and which reaction should have been taken to solve the problem. Last
but not least, such systems were implemented in a proprietary way, making it almost
impossible to exchange the components (e.g., using another version of a resource
broker).

Autonomic Computing is one of the candidate technologies for the implementa-
tion of SLA attainment strategies. Autonomic systems require high-level guidance
from humans and decide, which steps need to be done to keep the system stable.
Such systems continuously adapt to changing environmental conditions. Similar to
biological systems (e.g. human body), autonomic systems maintain their state and
adjust operations considering their changing environment. Usually, autonomic sys-
tems comprise one or more managed elements, e.g. Quality of Service (QoS) ele-
ments.

In a research building on Autonomic Computing principles, we proposed a novel
holistic architecture that considers resource provisioning using a virtualisation ap-
proach combined with business-oriented utilisation used for SLA agreement [99].
Thus, we provided an SLA-coupled infrastructure for SLA-based on-demand service
provisioning. First, we gathered the requirements of a unified service architecture,
then presented our solution called SLA-based Service Virtualisation (SSV) built on
agreement negotiation, brokering, and service deployment combined with business-
oriented utilisation. We examined this architecture and investigated how the princi-
ples of Autonomic Computing appear in the basic components of the architecture, in
order to cope with changing user requirements and on-demand failure handling.

An important characteristic of an autonomic system is an intelligent closed loop
of control. It is able to sense state changes of the managed resources, and to invoke
appropriate set of actions to maintain some desired system state. Typically, con-
trol loops are implemented as MAPE (monitoring, analysis, planning, and execution)
functions. The monitor collects state information and prepares it for analysis. If devi-
ations to the desired state are discovered during the analysis, the planner elaborates
change plans, which are passed to the executor. For the successful implementation of
autonomic principles to loosely coupled SLA-based distributed system management,
the failure source should be identified based on violated SLAs, and firmly located con-
sidering different components of the heterogeneous middleware components (virtu-
alisation, brokering, negotiation, etc.). Thus, once the failure is identified, Service
Level Objectives (SLOs) can be used as a guideline for autonomic reactions. We
examined how the self-management and autonomous capabilities of the SSV archi-
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tecture were used in representative use cases in the three SSV layers. At the highest
layer, which is the meta-negotiator (MN) part of SSV, we proposed novel concepts for
automatic bootstrapping between different protocols and contract formats, increas-
ing the number of services a consumer may negotiate with. Consequently, the full
potential of publicly available services could be exploited. Autonomic behaviour is
also needed by brokers to survive failures of lower-level components, thus restoring
healthy state after such failures. To overcome some of these difficulties, in the sec-
ond, meta-brokering (MB) layer of SSV, brokers use the help of the Autonomic Ser-
vice Deployment (ASD) component to re-deploy some services. Finally, in the third
layer, the ASD component needs to cope with the ever-varying demand of services
in SBAs. Service instances should form autonomous groups based on locality and on
the service interfaces they offer (e.g., neighbouring instances offering the same inter-
face should belong to the same group). Using peer-to-peer mechanisms, the group
can decide to locally increase the processing power of a given service. This decision
could involve reconfiguring an underperforming service instance in the group to al-
low heavier loads, or it could also introduce the deployment of a new instance to
handle the increased needs.

In order to address the challenges arising from providing an enhanced level of
quality in service provisioning in federated cloud environments, we designed a set
of novel technologies for efficient operation of distributed VM repository manage-
ment in [104]. This work was carried out in 2016 in the frame of the ENTICE EU
H2020 project that aimed to develop distinctive software modules to support the fol-
lowing operations: (i) simplified creation of light weight and highly optimised VM
images (VMI) tuned for specific application requirements; (ii) VMI repository optimi-
sation based on a multi-objective approach; and (iii) efficient reasoning mechanism
to streamline support of complex VMI operations. The introduced VMI management
techniques were implemented, integrated, and evaluated in the ENTICE environ-
ment. We mostly researched image size reduction techniques, and designed a VMI
synthesis tool that is able to modify the original images using two approaches. The
first direct method was to alter some of the image files (e.g. by purging unnecessary
packages that were irrelevant for the provided services). While the second, indirect
method was to create alternative recipes that lead to more compact images upon im-
age assembly. The evaluation results, detailed in [104], showed that our proposed
VMI synthesis and analysis technique could reduce the size of the VMIs by up to 55%,
while trimming the image creation time by 66%.

1.5 Federating Personal and Infrastructure Clouds

Besides our research investigations on the interoperation of purely cloud infrastruc-
ture providers, I also focused on interoperating computational and data services in
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clouds. In 2015, I proposed new approaches to allow the management and process-
ing of user data produced by mobile devices in different clouds transparently, and
to share these data among cloud providers in an autonomous way [94]. Although
the computing capacity of mobile devices rapidly increased by that time, there were
still numerous applications that could not be solved with them in reasonable time.
The goal of my research team was to utilise cloud infrastructure services by execut-
ing such applications with mobile data stored in Personal Clouds. The basic concept
of our solution was the following: data management services should run in one or
more IaaS systems that keep tracking the cloud storage of a user, and execute data
manipulation processes when new files appear in the storage – see Figure 1.3 [94].

Figure 1.3: Enhancing data management of mobile devices by interoperating clouds

We have identified real world scenarios that require interoperable data manage-
ment among cloud infrastructures to manage user data produced by mobile devices.
In general, services running in IaaS clouds can download user data files from the
cloud storage, execute the necessary application on these files, and upload the modi-
fied data to the storage service. Such files can be for example a photo or video made
by the user with his/her mobile phone to be processed by an application unsuitable
for mobile devices. In our solution developed for Android devices, there is a possi-
bility to configure the processes to be performed on the data with a separate con-
figuration file, which is automatically created and managed by a mobile application
running on the user’s device. This application is also responsible for communicating
with cloud storage, which was Dropbox in our case. The file manipulation applica-
tions have been created as a virtual appliance, and have been pre-deployed in the
participating IaaS clouds, before evaluating them.

In order to exemplify the usability of this generic approach, we have developed an
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Android application, which can be used to manipulate pictures produced by mobile
devices. This program creates thumbnails of each image of the appropriate folder
then ensembles them into a single image that represents the folder and gives an
overview of its contents to the user. This app can be really useful by providing a
glimpse of a directory, when a user has thousands of pictures spread over numerous
directories, and he/she is looking for a specific one. We conducted a performance
evaluation with an academic IaaS solution called the SZTAKI Cloud, where we de-
ployed the ImageConverter VA in two different types of virtual images, meanwhile we
have also tested the Android application on two different mobile devices: on a phone
(Samsung Galaxy Mini) and a tablet (Asus Slider). The results clearly showed the
following differences: the local execution on the Android devices was significantly
slower (more than 100 times), than the image generations performed in the cloud.
These measurements fulfilled our expectations; it is worth both in terms of computa-
tion time and energy efficiency to move computation-intensive tasks to clouds from
mobile devices.

To increase heterogeneity, and to show a scenario when academic and commer-
cial IaaS clouds are interoperated through a Personal Cloud, we created another
evaluation by using Dropbox, OpenNebula and Amazon. For this scenario, we ported
a biochemical application to this environment that generates conformers by uncon-
strained molecular dynamics at high temperature to overcome the conformational
bias, then finishes each conformer by simulated annealing and energy minimisation
to obtain reliable structures. The end users of this app are biologists or chemists, who
need to examine molecular modelling for QSAR studies for drug development, and
the execution of the whole application on a single PC takes about 5-8 days [100].

By using our approach, users only need to make available their data in a Personal
Cloud, and to specify with a configuration file the order of data processing (by linking
VM methods to data). Once this configuration file is available, and at least one
VM (executing the necessary service for processing user data) is running in an IaaS
Cloud, the autonomous data processing starts and goes on till all data are processed.
We used the former SZTAKI Cloud and Amazon to deploy the VMs of our biochemical
application, while Dropbox was hosting the application data. With this solution, we
managed to reduce the execution time to less than a day.
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Summary of Chapter 1.

Contributions:

• I designed and proposed a federated cloud management approach,
and an integrated monitoring solution for Cloud Federations;

• I proposed a classification of data protection issues in Cloud Federa-
tions and in IoT-Fog-Cloud systems for identifying legal responsibility;

• I designed and proposed methods for energy-efficient datacenter man-
agement in a Cloud Federation;

• I proposed an SLA-based service virtualization approach exploiting
meta-brokering in a Cloud Federation to maintain service quality;

Project involvement:

Duration Project name Type Role
2007-2013 S-Cube EU FP7 Participant
2013-2014 Magyary Postdoc. Fellowship TKP / TAMOP Leader
2013-2016 CloudSME EU FP7 Participant
2013-2017 ACROSS (IC1304) EU COST Action MC Member
2016-2017 Bolyai Research Scholarship MTA postdoc. Leader
2015-2018 ENTICE EU H2020 Participant

Resulting publications:

No. Title Venue Rank IF
1 Characterizing cloud federation ... [93] Springer CCN - -
2 Enhancing Federated Cloud Man. ... [98] Springer JoGC Q2 1.667
3 The necessity of legally compliant ... [180] Elsevier CLSR Q2 -
4 Legal Aspects of Data Protection ... [97] Springer - -
5 Legal Issues of Social IoT Services ... [181] Springer SCI - -
6 A pliant-based virtual machine ... [101] Springer JoGC Q1 2.766
7 A Survey on Service Quality Desc. [106] ACM CSUR D1 4.034
8 An interoperable and self-adaptive ... [99] Elsevier FGCS D1 2.639
9 Distributed environment for eff. ... [104] WILEY CPE Q2 1.167

10 Interoperable Data Management ... [94] IEEE CC Q3 -
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Systems

C
LOUD computing (CC) [47] has become a widespread and reliable solution
over the past decade by providing scalable, virtualized data storage and
computation. Over the years, we experienced an evolution in CC: the first

clouds appeared in the form of a single virtualized datacenter, then broadened into a
larger system of multiple, interconnected datacenters. As the next step, cloud burst-
ing techniques were developed to share the resources of different clouds, then cloud
federations were realised by interoperating formerly separate cloud systems. By over-
coming the interoperability issues of public cloud providers and various middleware
implementations, the process of creating and managing cloud federations was clari-
fied and applied [46]. There are various reasons to optimise resource management
in such federations: to serve more users simultaneously, to increase the quality of
service, to earn higher profit from resource renting, or to reduce energy consumption
or CO2 emissions.

After solving optimisation issues in federations that address datacenter consolida-
tion, operating costs, and energy efficiency, further research directions started using
clouds to support newly emerging domains, such as the Internet of Things (IoT) [72].
An IoT system is a form of a global, dynamic network infrastructure composed of
smart devices and sensors that have self-configuring capabilities [173]. These things
can interact and communicate through the Internet by exchanging sensor data and
can react autonomously to certain events. We can also influence them by triggering
actions without direct human intervention. It is obvious that such systems are suit-
able for numerous application areas having different properties and requirements.
According to reports and predictions in the IoT field, nowadays there are tens of
billions of devices connected to the Internet [88].

Many cloud providers offer IoT-specific services nowadays, because CC can poten-
tially serve most IoT needs, including transparent data generation, processing, and
visualisation. Designing and analysing IoT-Cloud environments represents a great
challenge (due to the huge number of devices to be managed at the same time), and
these systems generally include a wide range of devices with heterogeneous compo-
nents, supporting different data formats for their communication.

14
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In this chapter, I summarise the research results we achieved by providing tools
and methods for investigating IoT-Cloud environments. First, in Sections 2.1 I in-
troduce related work in the field of IoT system simulation and modelling, and in
Section 2.2 I summarise our research in analysing the widely used MQTT protocol in
IoT systems. Finally, in Section 2.3 I introduce our proposed semi-simulation envi-
ronment for IoT-Cloud systems. Our efforts have contributed to the proliferation of
the integrated use of IoT-Cloud technologies, by providing means for evaluating and
demonstrating the inner workings of such ecosystems.

2.1 Modelling and Simulating IoT Systems

Gubbi et al. [72] have identified that to support the IoT vision, the current comput-
ing paradigm needs to go beyond traditional mobile computing scenarios. CC has
the potential to address these needs, as it is capable of hiding data generation, pro-
cessing, and visualisation tasks. For this reason, there are more and more Platform-
as-a-Service (PaaS) cloud providers offering IoT specific services. Some of these IoT
features are unique, but every IoT PaaS provider has the basic capabilities to connect
and store data from devices. Many things have to be managed at the same time
and a wide range of devices and data formats are available, therefore, creating and
examining such applications are not trivial. Botta et al. presented the main prop-
erties, features, and open issues of these systems in [42], while Nastic et al. [137]
listed the numerous challenges of realising IoT-Cloud systems in practise. Studying
these related works also served as a motivation for our research by raising the need
to manage a large number of protocols and data formats by means of simulation.
Due to the fierce competition that occurred in the past decade among leading cloud
providers, such as Amazon, Google, IBM, and Microsoft, to attract users who require
emerging technologies, such as CC and IoT, incompatible service interfaces and data
description formats appeared in the field of IoT [113], causing severe interoperation
and standardisation issues.

Several cloud providers have started to offer IoT specific services to ease the de-
velopment of IoT-Cloud applications, but such systems are hard to realise. In a tar-
geted literature survey we gathered 20 typical IoT use cases and categorised them
with a taxonomy [142]. We found that these applications can be grouped into three
broad categories, namely smart home, smart city, and smart region applications. Con-
cerning the surveyed cases, the number of end-users was rather small-scale, and the
number of devices was medium-scale. The sensor types and the context of the use
cases were really diverse; this came from the nature of these systems to be every-
where by assisting our daily lives. The considered systems incorporated devices with
low energy consumption to maintain a good battery lifetime. Regarding networking
features, we could comprehend that the frequency and size of the generated sensor
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data were relatively small, but if we take into account the type of networks used, it
can be seen that wireless networks are in the majority, and the bandwidth and error
rate of these networks are not as good as in wired networks. We used the results of
this taxonomy to build on and plan suitable tools for simulating IoT-Cloud systems.
After conducting these surveys in 2018, we envisioned designing an IoT simulator
capable of mimicking IoT behaviour to represent various IoT devices and sensors,
and at the same time being able to connect to real cloud services. Such tools would
save money and time for IoT application developers, hence no real devices would be
needed for developing and evaluating the applications.

In 2019, the existing simulators for distributed systems could be classified as gen-
eral network simulators, such as NetSim [10], Qualnet [8] and OMNeT++ [182].
With these tools, IoT-related processes, such as device placement or message han-
dling can only be examined with great programming efforts. The OMNeT++ discrete
event simulation environment is a popular and generic tool for simulating commu-
nication networks and distributed systems [182]. It can be used in various domains
ranging from queueing network simulations to wireless and ad-hoc network simula-
tions.

There were also specialised IoT simulators that addressed the issues raised by
our work. Chernyshev et al. [55] presented a recent survey of IoT simulators and
testbeds. They argued that research in this area was especially challenging and that
existing simulators were specialised in the sense that they focused on a particular ar-
chitectural layer. Han et al. [75] designed DPWSim, which is a simulation toolkit to
support the development of service-oriented and event-driven IoT applications with
secure web service capabilities. SimIoT [172] was derived from the SimIC simulation
framework [171], and introduced several techniques to simulate the communication
between an IoT sensor and the cloud, but was limited to computing activity models.
Zeng et al. [190] proposed a tool called IOTSim, which provides simulation capabili-
ties for big data processing in IoT systems, but their solution is limited to applications
using the MapReduce model. Moschakis and Karatza [132] introduced several simu-
lation concepts for IoT systems. First, they showed how the interaction between var-
ious cloud providers and IoT systems could be modelled in a simulation. Compared
to our proposal, they are focusing on the behaviour of cloud systems that support
the processing of data originating from an IoT system. Silva et al. [167] investigated
the dynamic nature of IoT systems; therefore, they analysed fault behaviours and
introduced a fault model for such systems. Khan et al. [103] introduced a novel
infrastructure coordination technique that supports the use of larger-scale IoT sys-
tems, built on top of CloudSim [48], They provided customisation for their specific
home automation scenarios, and as a result, they limited the applicability of their
extensions. The iFogSim [73] solution is also an extension to the CloudSim toolkit.
It can be used to simulate IoT and fog environments by measuring resource manage-
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ment techniques with several metrics, such as latency, network congestion, energy
consumption, and cost.

Regarding device simulation, the SimpleIoTSimulator [9] is an IoT sensor simula-
tor, which can be used to set up and evaluate test environments that have thousands
of sensors and gateways, on a single computer. Its drawback was that it needed a
specific, RedHat Linux environment, while our approach was more heterogeneous
and focused on IoT device simulation with mobile devices, which was easier to ap-
ply. The Atomiton simulator [3] seemed to be very close to our concept by managing
virtual sensors, actuators, and devices with unique behaviours that make up complex
dynamic systems. Unlike our planned mobile, open solution, it was commercial and
provided a web-based environment with limited documentation.

Table 2.1: Comparison of related simulators for IoT

Simulator Cloud IoT Artificially Real sensor Learning GUI
nodes sensors gen. sensor /device curve support

/services /devices data data
NetSim Simulated no yes no long yes
Qualnet Simulated no yes no long yes

OMNet++ Simulated no yes no long limited
DPWSim Simulated yes yes no long yes
SimIoT Simulated yes yes no long limited

CloudSim Simulated yes yes no long no
IoTSim Simulated yes yes no long no
iFogSim Simulated yes yes no long yes

SimpleIoTSim. Real yes yes limited short yes
Atomiton No inf. yes yes no inf. short yes

MobIoTSim Real yes yes yes short yes

A comparison of the above-mentioned simulators is presented in Table 2.1 [142].
We used six categories to compare the main properties of these solutions. The ”Cloud
nodes / services” column uses the value ”Simulated”, if the application can only sim-
ulate cloud resources in a certain use case, or ”Real”, if the system can send data to
a real application in the cloud, thus using a semi-simulated environment. The option
”No inf.” means that we could not find any information about this feature. The ”IoT
sensors / devices” category has the ”yes” value, when the actual tool supports the
simulation of IoT devices. The ”Artificially gen. sensor data” column denotes ”yes”,
if the simulator can generate sensor data in an artificial way (e.g. using certain algo-
rithms and deviation), and the ”Real sensor / device data” provides the information
about whether or not a real life IoT device data can be used in the simulation. The
”Learning curve” can be long, if the learning of the usage of the simulator and setting
up a simulation environment takes a longer time, and short, if the simulator can be
used almost immediately after installation, in a self-explanatory way. The GUI sup-
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port feature has the value ”no”, if there is no graphical interface provided, ”limited”,
if the application requires code writing and editing for creating a visualised interface,
and ”yes”, if it provides graphical interaction and configuration by default. We can
see from this comparison that our proposed tool (i.e. MobIoTSim, to be introduced
later in Section 2.3) can bring novelty to the state-of-the-art with a graphical config-
uration and execution interface, offering a unique way for simulating real IoT sensor
operation through loading trace data. Due to its mobile design, simulations could
also be performed in wireless locations, composing a semi-simulated environment.

2.2 Analysis of MQTT Brokers for IoT Systems

From the literature review presented in the previous section we can see that a semi-
simulation tool we envisioned to support IoT application developers was missing.
The next step of our design process was to select a suitable communication protocol
to send sensor data from our simulator to real cloud services.

IoT networks deploy several radio technologies like RFID, WLAN (IEEE 802.11),
WPAN (IEEE 802.15) and WMAN (IEEE 802.16), etc. for communications at the
lower level. Lower-level communication protocols may include LoRaWAN, SigFox in
long-range(km)-low data rate (bps-kbps), Cellular/4G/5G in long-range(km)-high
data rate (Mbps), Zigbee, Zwave in medium range(m)-medium-data rate (kbps),
WiFi in medium range(m)-high-data rate (Mbps), and NFC short-range(cm)-medium
data rate (kbps) category. No matter which radio technology is used to deploy an IoT
network, all independent data generation by IoT devices must make their data avail-
able through the Internet for further processing, and send control information back.
The performance of Machine-to-Machine (M2M) communication heavily relies on
the special messaging protocols designed for M2M communication within IoT appli-
cations [17]. The web uses a single standard messaging protocol HTTP, which may
be too diverse in its characteristics for IoT. In addition, there are many messaging
protocols available to select from better suited for the needs of IoT systems: MQTT,
CoAP, AMQP, and HTTP are the four widely accepted and emerging messaging pro-
tocols in this area [134].

To support our decision on which protocol to use for our proposed simulator, we
performed a literature search for published papers in this area between 2015 and
2019 [128]. To better see how the popularity of MQTT-related research is compared
to other IoT protocols, we used the following keywords: MQTT, CoAP, and AMQP.
Our result showed that MQTT was the most popular choice in the field of IoT in the
past five years. MQTT is an open OASIS and ISO standard (ISO/IEC PRF 20922)
for client-server, publish/subscribe type messaging transport protocol [1]. The focus
in the design principles of this protocol was on minimising network bandwidth and
device resource requirements, ensuring reliable delivery. It is capable of transmitting
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data over low-bandwidth or unreliable networks with very low power consumption
[134]. Characteristics like lightweight, open, simple, and easy deployment make
MQTT an ideal communication protocol for constraint environments; these were the
reasons why we have chosen this protocol for our proposed semi-simulator. MQTT
also offers three QoS levels for message delivery (0, 1 and 2). 2 provides the highest
quality and the longest transfer time, which means that messages are ensured to be
delivered exactly once.

Figure 2.1: Research in MQTT application areas (2000-2019)

Taking into account MQTT application areas, we aggregated 20 years of research
(2000-2019) on MQTT-related publication data. We performed our search in three
major indexing services (Google Scholar, Dimensions, and Scopus) for the follow-
ing domains: agriculture, disaster management, healthcare, logistics, and smart city
services. Figure 2.1 highlights the number of papers found for each domain in the
corresponding indexing databases [128]. The figures suggest that smart city services
were the most popular, followed by healthcare applications.

After putting our vote for MQTT, we performed a detailed survey on the avail-
able MQTT implementations, which provide slightly different interfaces, and have
different performance characteristics [128]. Next, we summarise the results of these
investigations.

We found 14 different MQTT broker and 12 MQTT client library implementa-
tions, and provided a taxonomy, through which we compared and classified them by
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the following categories: source code availability, design and implementation, pro-
tocol features, security, and data visualisation support. Concerning the brokers, we
observed that almost 50% of investigated solutions were open-source, and 50% of
the tools are closed-source in nature. Almost 57.2 % of the solutions were written
in C and Java, 14.3% of solutions were written in Erlang, C++, and Python, and
almost 9.6% of the reviewed solutions were written in JavaScript and Go. Almost
all solutions supported most QoS categories and persistent connection features. Of
all the reviewed broker solutions, up to 61.53% supported the shared subscription
feature, 57.14% of the solutions adopted MQTT 5.0. All the brokers had enabled se-
curity features through authentication, MQTT over TSL/SSL, and WS/WSS. Around
64.28% of the tools supported cloud hosting, 85.71% of the solutions had Docker
container availability, and 92.3% had UI and dashboard. Concerning MQTT client
libraries, most of the surveyed solutions were open-source in nature. After studying
their implementation details and slightly different features, it was hard to choose one
as the best solution, there was no clear decision to be the most suitable for our needs.
We evaluated the most promising ones, and chose the Paho MQTT client library [2]
for our semi-simulator implementation due to its ease of use and Eclipse integration.

Concerning MQTT brokers, we further conducted a stress testing of six broker
implementations discussed in detail in [129]. We measured their message process-
ing rate at 100% process/system CPU use, normalised message rate at unrestricted
resource (CPU) usage, and average latency, both in a single-core and multi-core pro-
cessor environments. We conducted our experiments in a low-end local testing infras-
tructure, and in a high-end cloud-based infrastructure. The local evaluation testbed
was created using an Intel NUC (NUC7i5BNB), a Toshiba Satellite B40-A laptop PC,
and an Ideapad 330-15ARR laptop PC. To diminish network bottleneck issues, the de-
vices were connected through a Gigabit Ethernet switch. The Intel NUC was config-
ured as a server running an MQTT broker, the Ideapad 330-15ARR laptop was used
as a publisher machine, and the Toshiba, Satellite B40-A was used as a subscriber
machine. The Ideapad 330-15ARR (publisher machine), with 8 hardware threads,
was capable enough of firing messages at higher rates. The cloud-based evaluation
testbed was configured on the Google Cloud Platform (GCP) [71]. We created three
c2-standard-8 virtual machine (VM) instances that have 8 vCPUs, 32 GB of memory,
and 30 GB local SSD each to act as publisher, subscriber, and server, respectively. All
the VM instances were placed within a Virtual Private Cloud (VPC) Network subnet
using Google’s high-performing premium-tier network service.

To perform our experiments, we developed a Paho MQTT library-based bench-
marking tool called MQTT Blaster. In our measurements, we used the following
brokers: Mosquitto 1.4.15, Bevywise MQTT Route 2.0, ActiveMQ 5.15.8, HiveMQ
CE 2020.2, VerneMQ 1.10.2 and EMQ X 4.0.8 [129]. Out of these MQTT brokers,
Mosquitto and Bevywise MQTT Route are non-scalable implementations, and the rest
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are scalable in nature. Mosquitto is a single-threaded implementation, and Bevywise
MQTT Route uses a dual thread approach, in which the first thread acts as an ini-
tiator of the second that processes messages. During the test, we assumed that by
increasing the number of subscribers or the number of topics or message rate results
in an increased load on the broker.

Figure 2.2: A comparison of average latency of all scalable and non-scalable brokers in
the local evaluation environment

We used the combination of three different publishing threads (one topic per
thread) and 15 subscribers, and we were able to push the broker to 100% process
usage, and limited the CPU usage on publisher and subscriber machines below 70%
and 80%, respectively. We considered latency as the time taken by a system to trans-
mit a message from a publisher to a subscriber. With this experiment, we tried to
simulate a realistic scenario of a client trying to publish a message, when the broker
is overloaded with many messages on various topics from different clients. Con-
cerning the message payload size setting, we used 64 bytes for the entire testing.
We separated our experimental results into three categories for better interpretation
and understanding: (i) projected message processing rates of non-scalable brokers
at 100% process CPU usage, (ii) projected message processing rates of scalable bro-
kers, and (iii) latency comparison of all the brokers. We performed three evaluation
runs for each QoS level in each category, and considered the best result with the
maximum rate of message delivery, and zero message drop for comparison. Here we
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selected two evaluation result comparisons to show, the rest with detailed results and
discussion can be read in [129].

Figure 2.3: A comparison of average latency of all scalable and non-scalable brokers in
the cloud evaluation environment

Regarding the results of the evaluation for the local infrastructure experiments,
Figure 2.2 shows the results in terms of average latency (or round-trip time) [129].
Here, we found that at QoS0 Bevywise MQTT Route 2.0 performed best, while in
all other QoS categories (QoS1 and QoS2), Mosquitto v. 1.4.15 had the best results.
Figure 2.3 shows a side-by-side comparison of both scalable and non-scalable brokers
in terms of average latency recorded, when the evaluation was performed in the
cloud-based infrastructure [129]. The results showed that Mosquitto performed best
at 0 and 1 QoS levels, while it came second right after ActiveMQ for QoS level 2. This
detailed performance analysis strengthened our decision for choosing the Mosquitto
MQTT broker to be the base for our future private cloud gateway service, besides its
widespread use in related cloud provider implementations (e.g. in IBM Cloud).

2.3 Semi-simulating IoT-Cloud Environments

In our research, we did not aim to simulate all possible IoT systems and networks,
but we still wanted to aid the design, development, and testing processes of these
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systems with a reasonable coverage. Our goal was to develop a mobile IoT device
simulator that can emulate real devices and sensors, thus it can be used in the pro-
cesses mentioned above instead of real resources.

Our refined requirements for basic functionalities of such a simulator were to
send and receive messages, generate sensor data (for possibly multiple devices), and
react to received messages. These capabilities are sufficient for a simulator to be
used in IoT system analysis. Other requirements for advanced functionalities (such
as simulating network errors, recording and replaying concrete simulation cases, and
connecting real IoT devices to the simulator) could contribute to the analysis of more
realistic systems.

Figure 2.4: A framework for semi-simulating IoT-Cloud systems

First, we aimed to support the basic IoT functionalities. To this end, a simulated
device should have a unique identifier, as well as tokens for registration and authen-
tication. The generated sensor data should be made available in plain text, such as
JSON, or in binary format, including metadata information, such as date, time, and
device state. Lastly, the MQTT communication protocol should be supported.

By examining related simulators in the IoT field, we found that we wanted to
have a solution that puts an emphasis on mobility, and provides means for perform-
ing simulations at specific geolocations. This fact served as the main motivation for
designing our simulator for mobile devices. The main purpose of our proposed mo-
bile IoT device simulator was to help cloud application developers learn IoT device
handling without buying real sensors, and to test and demonstrate IoT applications
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that utilise multiple devices.
The architectural view of our proposal for simulating IoT-Cloud systems is de-

picted in Figure 2.4 [102]. Compared to traditional simulators, we proposed a semi-
simulated environment to stay as close to real world systems as possible. We started
to gather real sensor trace files of public IoT initiatives, and made them available
through an archive (2 and 1), which can be connected to our simulator called Mo-
bIoTSim (3) to replay real device behaviour. We also developed gateway services (4)
to manage IoT devices by processing and visualising sensor data. These gateways
can be instantiated and operated at private or public cloud providers. Our proposed
framework has been presented in detail in [102], next I summarise their main com-
ponents in the following subsections.

Figure 2.5: MobIoTSim GUI: a.) On the left - Cloud settings, b.) In the middle - Devices,
c.) On the right - Device settings

2.3.1 MobIoTSim

Our mobile IoT device simulator was designed to simulate up to hundreds of IoT de-
vices, and it was implemented as a mobile application for Android platforms. Sensor
data generation of the simulated devices can be done through artificially generated,
random values in a range given by the user by default. For more advanced simula-
tions, data from IoT-specific trace files can also be loaded and replayed. The data
sending frequency can be specified for each device for both cases. We created trace
files from the OpenWeatherMap public weather data provider [7], which monitors

               kertesz.attila_100_23



2.3 Semi-simulating IoT-Cloud Environments 25

multiple cities and stores many parameters of them, including temperature, humid-
ity, air pressure, and wind speed. Using the trace loader feature of MobIoTSim, the
simulation can mimic a real life scenario by using real world application traces. The
simulator uses the MQTT protocol to send messages with the use of the Eclipse Paho
library, as we discussed in the previous section. Message data is represented in a
structured JSON object, which is compatible with the IBM IoT Foundation message
format [6].

The basic usage of the simulator is the following: (i) connect the application to
a cloud, where the data are to be sent, (ii) create and configure the devices to be
simulated, and (iii) start the (data generation of the) required devices. These main
steps are represented by the three main parts of the application: the Cloud settings,
the Devices, and the Device settings screens – as shown in Figure 2.5 [102].

In the Cloud settings screen (Figure 2.5.a), the user can set the required informa-
tion about the target cloud, where the data will be received and processed. Default
connections are predefined for IBM Cloud (formerly Bluemix) and Microsoft Azure
public cloud providers. If a simulated device wants to send data such as an IoT ser-
vice, it has to be registered beforehand. The registered devices have device IDs and
tokens for authentication. The MobIoTSim application handles the device registra-
tion to the cloud with REST API calls, so the user does not have to register the devices
manually on the graphical web interface (which is also possible). The main part of an
IoT service is an MQTT broker, where device messages are received, and are possibly
forwarded to other cloud services. Such cloud services or applications can process
the data, react to it or just perform some visualisation tasks. The required configura-
tion parameters for the default providers are preset in the simulator (and have to be
updated in the application for each user registration at the utilised providers to allow
proper authentication).

In the Devices screen (Figure 2.5.b), we can create or import devices, and we
can also view the list of existing devices, where every row is a device or a device
group. These entities can be started and stopped by the user at will, both together
or separately for the selected ones. Some devices have the ability to display warn-
ings and notifications coming back from the gateway, so backward communication is
also supported. By clicking on the Add button we can create new devices or device
groups. Predefined device templates can also be used for this purpose. These device
templates help to create often used devices, such as temperature sensors, humidity
sensors, or a thermostat. The import feature is applicable when we previously saved
a device to a file with its sent messages for a certain simulation period.

The creation of a new device and the editing of an existing one can be done in
the Device settings (or Edit device) screen (Figure 2.5.c). If the user selects an exist-
ing template for the base of the device in the Type field, the message content and
frequency will be set to some predefined values. For example, the Thermostat tem-
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plate has a temperature parameter, and the device turns on by reaching a predefined
low-level value and turns off at reaching a high-level value. The On/Off state of the
device is displayed on the screen of the application all the time. It is possible to select
the Custom template to configure a unique device with various sensor parameters in
detail. By default, random values will be generated within the set ranges as parame-
ters. A device group is a group of devices with the same base template, and they can
be started and stopped together. A group can be defined by setting the value of the
Number of devices field (which is one by default).

To evaluate the simulator, we examined the device simulation scalability. For this
purpose, we created a simplified version of MobIoTSim (called MQTTDemo), con-
taining only its core parts for device management functionality. It enables access to
low-level configurations, such as specifying the number of threads used for manag-
ing the simulated devices. It also collects detailed statistical information regarding
the simulation by measuring elapsed times for executing certain functions. It can
be connected to our private gateway deployed in the IBM Cloud, and can send mes-
sages to it using the MQTT protocol. By the time we performed the evaluations, the
number of simulated devices was limited to 20 by the IBM Cloud platform, therefore
we had to obey this restriction. The evaluation was performed with a Samsung S5
device, and a Node.js visualisation gateway application running in the IBM Cloud.
The Samsung S5 was released in 2014 having Snapdragon 801, Quad-core 2.5 GHz
processor, 2 GB RAM and the OS is Android 4.4. The most informative measurements
were made with 1 sec. message frequency, simulating 10 to 20 devices, and using 3
to 12 threads. The message contents were five randomly generated values in a JSON
object (according to the Weather template). The duration of performing a test was
around one minute.

The executed test results showed that the random data generalisation consumed
an almost negligible amount of time, so it did not interfere with the simulation.
First, we started using three threads, because Samsung S5 has four cores, but from
the results we could see that the number of threads is an important factor. With 10
simulated devices, three threads had difficulties coping with simultaneous message
sending, it required almost 1.5 seconds for the devices to start a message sending
cycle again, instead of the one second specified in the settings. To manage 15 devices,
four threads are few, but six threads would be enough to perform well. To manage
20 devices, we can see that six threads were too few for the acceptable performance,
therefore, we had to use eight threads instead. We also made additional experiments
to find the limits of MobIoTSim using 20 simulated devices. The minimum time
required to send a message is around half a second, in general. For lower frequency
(e.g. 0.25 second), there was no difference in the measured time even by using 16
threads. To conclude these experiments, we can state that our proposed simulator
can send a total number of 2300 messages in a minute with 20 registered devices to
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the IBM Cloud.
In a work within the ACROSS EU COST Action [46], we showed how Cloud Feder-

ation can help IoT systems by providing more flexibility and scalability. Higher-level
decisions can be made on where to place a gateway service to receive IoT device
messages, e.g. in order to optimise resource usage costs and energy utilisation. Such
complex IoT-Cloud systems can hardly be investigated in real world, and simulators
can help in providing a scalable experimentation platform, such as MobIoTSim.

2.3.2 SUMMON

To analyse complex systems exploiting IoT and CC technologies, we need open datasets
of real world IoT applications to enable realistic simulations. The European Commis-
sion has published a guideline document [62] for encouraging open access to reuse
digital research data generated by Horizon 2020 projects. In this report, they de-
fined the so-called FAIR data principles to help Horizon 2020 beneficiaries to make
their research data findable, accessible, interoperable and reusable. Following these
guidelines, we aimed to create an open IoT trace archive to facilitate data search and
accessibility, and to reuse sensor data for experimenting with IoT-Cloud systems. In
research works addressing distributed systems we can find data sources used for a
similar purpose, e.g. in the Grid Workloads Archive [83], which contains trace files
of job executions in real-world Grid systems. Our aim was to propose a way to build
up a similar archive for the IoT-Cloud research community to facilitate simulation
experiments.

As the first step of this research, we looked for publicly available projects of vari-
ous IoT application areas. We found three smart city initiatives that met our criteria,
and publish open data of IoT sensors and devices: the SmartME project [45], which
is a crowdfunded system using the IoT paradigm in the municipality area of the city
of Messina, Italy; the CityPulse project [38], which is a smart city data analytics
framework providing various datasets with time series data and live data feeds; and
finally, the Open Data Program of Surrey, Canada [11], which provided governmental
datasets viewable and searchable through an online service. In [144], we analysed
these projects and their sensor data sharing methods in detail.

To efficiently and easily work with several datasets located at different sources,
we need a service, which gathers and filters such data and unifies their different data
formats. To realise such a service, we proposed a tool called SUMMON (Smart city
Usage data Management and MONitoring). It is a web application implemented in
Node.js, and uses the CKAN system API. The CKAN system has a hierarchical struc-
ture, where the so-called organisations are on the top. It is possible to list all or-
ganisations, and we can even request more information through the provided API,
but unfortunately the datasets (or in CKAN dialect: packages) of an organisation
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cannot be listed. Therefore, we used a different API call to query the datasets. We
can get more detailed information about a dataset (i.e. licence, maintainer, author).
SUMMON uses an API call to receive the schema of the dataset, so it can generate a
form based on that. Finally, the results are displayed as a preview, embedded in an
HTML code with the possibility to modify the form and see some example results, or
in JSON format to be downloadable.

In order to demonstrate the applicability of SUMMON, we used MobIoTSim, our
mobile IoT device simulator. It can be easily connected to a private gateway service
(to be discussed in the next section). It is capable of receiving and processing sensor
data from several devices simultaneously. It has a web-based graphical interface to
visualise sensor data coming from MobIoTSim. Messages (defined in JSON format)
sent by simulated devices are managed by an MQTT server. It can also be used to
send responses (or notifications) back to the simulated IoT devices in MobIoTSim.

The simulation of an IoT usage scenario starts with the filtered JSON data from
SUMMON imported into the MobIoTSim simulator. When the user starts a simulation
with MobIoTSim, the sensor data are sent in the form of messages to the MQTT
Broker of the IoT Gateway service. After receiving these real-life values, the broker
forwards them to a gateway application. The gateway application shows a real-
time chart with the data, even from several devices simultaneously. In cases when
we need specific values from the dataset, or just a specific number or a value of
records, SUMMON can generate a form, where the required criteria can be added.
The downloaded JSON data from SUMMON can be imported into the MobIoTSim
simulator. The process can be done similarly to create a new device, but instead of
generating random data, we can select the downloaded file to read the values from
it. In this way, the created simulated device will send real-life data to the cloud. Even
multiple simulated devices can be added, with the same or different data source
imported from SUMMON.

In order to extend the previously mentioned use cases, we designed an automated
web crawling service [145] to gather and store additional historical IoT and sensor
data in SUMMON. We planned to provide a way to gather and store sensor and
IoT data scattered over websites of various projects. To create such a service we
used Scrapy [13], which is an opensource python-based framework for data mining.
We realised the service as a container-based Docker application, deployed it in the
Google Cloud, and connected it to SUMMON through a REST API connection. In this
way the data gathered by our crawler service can be regularly updated and stored in
SUMMON. To evaluate the operation and usability of our proposed crawler service,
we performed measurements for crawling such websites by executing spider jobs
in certain time intervals. With our experiments, we observed that the web page
layouts of the corresponding smart systems vary highly, therefore no generic spider
can be used to crawl them. The results also showed the difficulty and sophistication
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needed to collect sensor and IoT data from the three different application areas we
considered. Detailed evaluation results can be read in [145].

2.3.3 Private Gateways

We have seen our envisioned architecture for simulating IoT-Cloud systems in the
beginning of this section. Next, we focus on its fourth component, and we show
how to develop specialised, private cloud gateways for IoT application management.
In the literature, Kang et al. [90] introduced the main types and features of IoT
gateways. Compared to this work, our research did not aim to propose a generic
solution for all needs of an IoT system, but to provide a gateway solution that can be
used together with MobIoTSim to enable a comprehensive simulation environment
for investigating IoT-Cloud systems and applications.

Figure 2.6: Detailed, parameter-wise data visualization in the private gateway in the
IBM Cloud sent by a group of devices in MobIoTSim

We developed our own, private gateway service (discussed in detail in [143]) that
is capable of managing several devices simultaneously, and can send a notification to
the MobIoTSim device simulator by responding to critical sensor values. This gate-
way service is an extended version of the IBM visualisation application [5], which is
able to handle up to hundreds of devices at the same time. It has a web-based graph-
ical interface to visualise sensor data coming from MobIoTSim. Messages (in JSON
format) received from the simulated devices are managed by the Mosquitto MQTT
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broker. It can also be used to send responses (or notifications) back to the simulated
IoT devices in MobIoTSim. It provides a view in which the data sent by all devices
can be seen in a single, real-time chart as shown in Figure 2.6 [143]. It is a Node.js
application that is able to manage the chart by subscribing to the device topics with
the MQTT protocol, and waits for the messages. To enhance and better visualise
the data of many devices at the same time, we introduced device grouping for chart
generation. Though the IBM Cloud platform provided some monitoring information
for application services, custom Docker containers can be better monitored. For this
purpose, we created the Docker version of our private gateway to support portability.

It is easy to connect the MobIoTSim simulator to such a private gateway. The
predefined template can be used, we only need to specify an organisation identifier
and the connection type to enable connection to the MQTT server. In the case of
already available templates, the necessary URL is predefined. The application ID, the
authentication key and token can be retrieved by registering to the gateway service,
and these parameters can be used later to sign in to the data visualisation site of
the gateway. The simulated devices also need to be registered to the MQTT server
of the gateway service – just like real devices –, by specifying their device and type
identifiers and sensor data thresholds, which reply with their token identifiers (to be
used for device setting). We can create advanced scenarios with this private gateway,
such as managing more devices and responding to critical sensor data coming from
the simulated devices.

Figure 2.7: Comparison of different device groups
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Evaluation of the private gateway

We performed various experiments to evaluate the performance of MobIoTSim used
together with this private gateway. Here, we show some highlights of this evaluation.
To evaluate the grouped device management feature of the gateway, we compared
cases with 10, 100, 250, and 450 devices in groups. We deployed the private gateway
in a Docker container as a micro application with the following parameters: OS -
Ubuntu with Linux kernel 4.4.0; RAM - 256 MBs; CPU - Intel Xeon E5-2690 with 48
cores. Figure 2.7 shows the average results for the device groups and the appropriate
resources [143]. It highlights how resource utilisation varies by enlarging the groups
of devices to be managed by the gateway.

Figure 2.8: Comparison of CPU utilisation of the two device templates

Once we got some impression of working with a simple thermostat device, we
chose a more complex one. As one of the earliest examples of sensor networks are
from the field of meteorology and weather prediction, we chose to model a meteo-
rological service and gathered real data from OpenWeatherMap. We used it with the
Weather template of MobIoTSim to create device groups of 100 and 450 simulated
devices. For this experiment, we randomly picked weather data of cities (one city
for one simulated device) from earlier traces. We can see that as the number of de-
vices grows, the resource utilisation also gets higher, as shown in Figure 2.8, which
compares the CPU utilisation of the two device types [143].
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Specialized gateway for IoLT applications

Smart farming is a rapidly growing area within smart systems that need to respond
to great challenges in the near future. By 2050, it is expected that the global popula-
tion will grow to 9.6 billion as the United Nations Food and Agriculture Organisation
predicts. A recent Beecham Research report [4] also states that food production
must respond to this growth by increasing it with 70% until 2050. Plant phenotyp-
ing [160] also evolves rapidly and provides high-throughput approaches to monitor
plant growth, physiological parameters, and stress responses of plants with high spa-
tial and temporal resolution. Recent advances use the combination of various remote
sensing methods that can exploit IoT and cloud technologies. In the past, typical
plant phenotyping platforms used very expensive instrumentation to monitor several
hundreds, even a few thousands of plants. Although these large infrastructures are
very powerful, they have high cost, ever reaching a staggering few million euros
per platform, which limits their widespread, everyday use. Due to recent ICT de-
velopments, we can apply novel sensor and IoT technologies to provide a promising
alternative, called affordable phenotyping.

In a research work performed together with colleagues from the Biological Re-
search Centre [146], we proposed a low cost plant phenotyping platform for small
sized plants, in the frame of the Internet of Living Things (IoLT) national project. It
enables the remote monitoring of plant growth in a standard greenhouse environ-
ment. This so-called IoLT Smart Pot uses IoT and cloud technologies to monitor the
effect of various stress factors of plants (drought, nutrition, salt, heavy metals, etc.),
as well as the behaviour of various mutant lines.

The biologists designed a hardware platform for hosting 12 small sized plant
pots (for Arabidopsis plants) organised in a 4x3 matrix. To monitor plant growth, an
RGB camera and a LED-based illumination system for additional lighting are installed
above the plant cluster. The relevant environmental parameters are light intensity, air
and leaf temperature, relative air and soil humidity, which are monitored by sensors
placed above and into the pots. To govern the monitoring processes, a Raspberry Pi
board is placed beside the cluster. The monitored sensor data are stored locally on
the board, and is accessible through a wired connection on the same network. The
initial configuration for performing periodical monitoring was set to five minutes
concerning the sensor readings, and one hour to take pictures of the cluster of pots.

To operate the smart pot cluster, we developed a specialised gateway to monitor
the plants. Users can access the gateway through a web interface provided by a
Node.js portal application. It can be used to group and manage pots and users with
projects created by administrators. In this way, registered and connected smart pots
can send sensor data to them, which can be visualised in the portal. The gateway
stores regularly updated sensor values and periodically taken pictures of the smart
pot cluster. The portal can be used to query, visualise, and download a set of sensor
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values for a certain period, and the created pictures. The portal is also capable of
monitoring the growth speed of the plants, which is performed by calculating the
projected leaf area visible in the taken pictures.

Figure 2.9: The architecture of the IoLT Smart Pot Gateway

The architecture of our proposed IoLT Smart Pot Gateway can be seen in Fig-
ure 2.9 [146]. It has a modular setup, it consists of three microservices, realised in
Docker containers, which compose the gateway application that can be deployed to
at a cloud provider. Special monitoring scripts are used to track and log the resource
use of containers for performance measurements. In the middle of the architecture,
we can find the Mosquitto MQTT Broker service, which is built on the open-source
Mosquitto tool to store the sensor values received from the pots using a MongoDB
[12] database. The seven monitored sensor types of a pot are described by a JSON
document, which should be regularly updated and sent in a message by an MQTT
client of a smart pot to the MQTT broker running in this service. Sensor readings on
the Raspberry Pi board are performed by a Python script using an MQTT client pack-
age configured with a pot identifier, sensor value sampling frequencies, and picture
taking frequencies. The third microservice in the bottom is called the Apache Web
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Server, which is responsible for saving the pictures of the plants in the pots.
To evaluate the scalability of our gateway solution, we performed three simulation

measurements with 50, 100, and 250 clusters (composed of 600, 1200, and 3000
pots respectively). In all cases, we performed the measurements for 30 minutes,
and the simulated smart pot platform sent sensor values to our gateway. In the first
simulation for 50 clusters, we set the sampling of resource usage (processor and
memory usage) to every 10 seconds, while for the second and the third one (100 and
250 clusters) we set it to two seconds (to have a better resolution of resource loads).
For the largest experiment, we further increased the number of pot clusters to 250
arriving to a total number of 3000 simulated pots. For this round, we performed the
simulation for 30 minutes, again, with the same periods as defined for the lower-scale
rounds.

To summarise our investigations, we could observe that by increasing the number
of pots to be managed by the gateway service, the utilisation also increased. As
expected, CPU utilisation was the highest in the last round for managing 3000 pots
at the same time with almost 40 percent. The memory utilisation was also the highest
in this case with almost 25 percent. Finally, we could state that these results proved
that we can easily serve numerous phenotyping projects monitoring up to thousands
of pots with a single gateway instance in a cloud.
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Summary of Chapter 2.

Contributions:

• Mishra and I analysed, evaluated and categorized message brokers
using the MQTT protocol;

• I designed an approach for semi-simulating IoT-Cloud systems; Pflanz-
ner and I proposed and evaluated MobIoTSim, a mobile IoT device
simulator based on this approach;

• Pflanzner and I proposed and evaluated a generic and a specialized
cloud gateway solutions that can efficiently manage IoT devices by
receiving, storing and processing or visualizing their data;

Project involvement:

Duration Project name Type Role
2013-2017 ACROSS (IC1304) EU COST Action MC Member
2017-2018 UNKP-17-4 Postdoc. scholarship Leader
2017-2021 Internet of Living Things GINOP WP Leader
2018-2021 Smart Systems NKFIH RG Leader
2019-2022 FK-131793 OTKA Leader

Resulting publications:

No. Title Venue Rank IF
1 A taxonomy and survey of IoT ... [142] EAI IoT - -
2 The use of MQTT in M2M and IoT ... [128] IEEE Access Q1 3.367
3 Stress-testing MQTT brokers ... [129] MDPI Energies Q1 3.252
4 A mobile iot device simulator ... [102] Springer JoGC Q1 2.095
5 Traffic management for cloud ... [46] Springer LNCS Q2 -
6 A private gateway for investigating ... [143] CLOSER conf. - -
7 A crawling approach to facilitate ... [145] IOTSMS conf. - -
8 Designing an iot-cloud gateway ... [146] Springer CCIS Q4 -
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IoT-Fog-Cloud Systems

I
NTERNET of Things (IoT) is estimated to reach over 75 billion smart devices
around the world by 2025 [176], which will dramatically increase the net-
work traffic and the amount of data generated by them. The IoT paradigm

composes sensors, actuators, and smart devices into a complex system through the
Internet, which are utilised in various domains such as smart homes, smart cities,
healthcare, agriculture, and transportation. IoT systems often rely on Cloud Com-
puting (CC) [154] solutions, because of their ubiquitous and theoretically infinite,
elastic computing and storage resources.

In the previous chapter, we have seen that IoT-Cloud systems can be utilised in
many application areas ranging from local smart homes to mid-range smart cities, or
wider smart regions. To cope with the possibly huge number of communicating enti-
ties, data management operations are better placed close to their origins, resulting in
better exploitation of the edge devices of the network. In the distributed computing
paradigm called Fog Computing (FC) [114], groups of such edge nodes form a fog,
where data processing and analysis can be performed with reduced service latency
and improved service quality compared to remote cloud utilisation. As a result, cloud
and fog technologies can be used together to aid the data management needs of IoT
environments, but their application gives birth to complex systems that still need a
significant amount of research.

IoT-Fog-Cloud systems have to deal with various challenges, to ensure reliable IoT
services [188]. Emerging issues of the IoT-to-Cloud continuum, such as connectivity
problems of IoT devices, task offloading of computing nodes, billing and operation
costs of substantial components, and resource provisioning, are typically addressed
by researchers. However, hiring physical machines from virtual server parks that fit
various IoT scenarios could be very expensive, and the investigation of IoT-enabled
service compositions is not always possible with real cloud providers. It is obvious
that significant investments, design and implementation tasks are required to create
such IoT-Fog-Cloud systems in reality, therefore, it is inevitable to use simulations in
the design, development, and operational phases of such establishments. This ratio-
nale has led many scientists to create simulators to investigate and analyse certain

36

               kertesz.attila_100_23



37

properties and processes of similar complex systems.

Figure 3.1: The evolution of DISSECT-CF-Fog through its components

In this chapter, I present our research efforts towards the development of a gen-
eral purpose simulator called DISSECT-CF-Fog, which is capable of simulating IoT-
Fog-Cloud systems. It is based on the DISSECT-CF discrete event IaaS (Infrastructure-
as-a-Service) cloud simulator [92], and extends it in four phases with: IoT sensor and
device modelling, cloud and IoT service usage pricing, fog infrastructure modelling,
finally mobility, actuation and energy metering features. The basic (uncolored) and
the extended (colored) system components are depicted in Figure 3.1 [122].

There are already existing survey papers highlighting the basic capabilities of
simulation tools modelling such complex systems, also comparing them by certain
views, e.g. by Ragman et al. [156] or by Puliafito et al. [152]. Nevertheless,
we believe that modelling IoT-Fog-Cloud architectures in such simulators is far from
complete, and there is a need to gather and compare how key properties, especially
of fogs, are represented in these works to trigger further research in this field.

The remainder of this chapter is organised as follows: in Section 3.1 I summarise
the most relevant related work in the field of IoT-Fog-Cloud simulation, then in Sec-
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tion 3.2 I detail our iterative extensions to the base DISSECT-CF simulator to reach
the current set of functionalities.

3.1 Modelling and Simulating Fog Computing

There are already a couple of survey papers addressing different aspects of Cloud
Computing and Fog Computing techniques supporting IoT systems.

Yousefpour et al. [189] presented a survey on Fog Computing and made compar-
isons with the following main points of view: computing paradigms such as cloud,
fog, mobile, mobile-cloud, and edge, and frameworks and programming models for
real applications, software, and tools for simulated applications.

Svorobej et al. [174] examined different fog and edge computing scenarios, and
investigated Fog and Edge Computing with various aspects, such as (i) application
level modelling, (ii) infrastructure and network level modelling, (iii) mobility and
(iv) resource management, and (v) scalability, and made a comparison of seven avail-
able fog tools.

Hong and Varghese [80] summarised resource management approaches in Fog
and Edge Computing focusing on their utilised infrastructure and algorithms, while
Ghanbari et al. [68] investigated different resource allocation strategies for IoT
systems. This second work classified the overviewed works into eight categories:
QoS-aware, context-aware, SLA-based, efficiency-aware, cost-aware, power-aware,
utilisation-aware, and load balancing-aware resource allocation. We found this work
particularly interesting, hence it opened the investigation into the field of IoT.

Puliafito et al. [152] investigated the benefits of applying Fog Computing tech-
niques to support the needs of IoT services and devices. In their survey, they de-
scribed the characteristics of fogs and introduced six IoT application groups exploit-
ing fog capabilities. They also gathered fog hardware and software platforms that
support the needs of these IoT applications.

Table 3.1: Comparison of related surveys according to their main contributions

Survey Year Aim
Yousefpour et al. [189] 2018 Paradigms and research topics for fogs
Hong and Varghese [80] 2018 Resource management in the fog and edge

Svorobej et al. [174] 2019 Fog and edge simulation challenges
Ghanbari et al. [68] 2019 Resource allocation methods for IoT
Puliafito et al. [152] 2019 Fog characteristics for IoT

Our survey 2019 Fog models and software quality of simulators

Table 3.1 summarises the relevant surveys that represent the current state-of-the-
art in relation to our research aims [118]. Although cloud solutions are dominating,
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some started to open investigations towards fog, edge, and IoT fields. In the previous
chapter, I summarised the most important IoT simulators, here I present a summary
of the most relevant fog simulators analysed and published in our detailed survey
paper [118] in 2020.

In the development process and foundations of simulators offering fog modelling
capabilities, we can identify a close relation to clouds: most of them are extensions
of cloud or IoT simulators. Nevertheless, they follow different architectural models:
some have centralised, while others have decentralised or peer-to-peer communica-
tion schemes. As a result, understanding the model elements, functions, and imple-
mentation details can be very hard and time-consuming; that was one of the issues
our survey aimed to relax.

Brogi et al. [44] presented a novel cost model to deploy applications on a fog
infrastructure. The approach is based on a simulation prototype called FogTorchΠ,
which determines a deployment in the fog according to actual resource consumption
and cost needs. The main capabilities of this simulator are the monthly cost calcula-
tion extended with subscription/data transfer cost of IoT devices (using bandwidth
and latency parameters), and it takes into account geolocation information.

The PureEdgeSim [53] tool was proposed to design and model cloud, fog, and
edge applications focusing on the high scalability of devices and heterogeneous sys-
tems. PureEdgeSim is based on CloudSim Plus, and it uses XML descriptions for the
simulation, where the users can configure the data and parameters of geographical
location, energy model and virtual machine (VM) settings.

The IoTSim-Edge simulation framework [87] extends the CloudSim model to-
wards IoT and Edge systems. It focuses on resource provisioning for IoT applications
considering the mobility function and battery usage of IoT devices, and different
communication and messaging protocols as well. The IoTSim-Edge contains no ded-
icated class for the actuator components, nevertheless, the representative class of an
IoT device has a method for actuator events, which can also be overridden. This
simulation tool also considers the mobility of smart devices. The location of a de-
vice is represented by a three-dimensional coordinate system. Motion is influenced
by a given velocity and range, where the corresponding device can move, and only
horizontal movements are considered within the range by the default moving policy.

One of the most referred fog simulators is iFogSim [73], which is also based on
CloudSim. iFogSim can be used to simulate real systems and follows the sensing,
processing and actuating model, therefore, the components are separated into these
three categories. The main physical components are the following: (i) fog devices
(including cloud resources, fog resources, smart devices) with the possibility to con-
figure CPU, RAM, MIPS, uplink- and downlink bandwidth, busy and idle power val-
ues, (ii) actuators with geographic location and reference to the gateway connection,
(iii) sensors that generate data in the form of a tuple representing information. The

               kertesz.attila_100_23



40 Investigating IoT-Fog-Cloud Systems

main logical components aim to model a distributed application: the (i) AppModule
is a processing element of iFogSim, and the (ii) AppEdge realises the logical data
flow between the virtual machines. The main management components are as fol-
lows: the (i) Module Mapping searches for a fog device to serve a virtual machine,
if no such device is found, the request is sent to an upper-tier object, and the (ii)
Controller launches the application on a fog device. To simulate fog systems, we first
have to define the physical components, then the logical components, and finally the
controller entity. Although numerous articles and online source codes are available
for the use of this simulator, based on our experiments, we suggest that there is a
lack of source code comments for many methods, classes, and variables. As a result,
application modelling with this tool requires a relatively long learning curve, and its
operations take valuable time to understand. After its appearance, it has been used
for many research works and various experiments. For example, in [136] a smart city
network architecture is presented for Fog Computing called FOCAN as a case study,
and in [23] the authors proposed to combine Fog and the Internet of Everything into
the so-called Fog of Everything paradigm.

There are also more advanced extensions of iFogSim. MyiFogSim [111] was de-
signed to manage virtual machine migration for mobile users. The main capability
of this simulator is the modelling of user mobility and its connection with the VM
migration policy. The evaluation contains a comparison to a simulation without VM
migration. MobFogSim [153] aims to model user mobility and service migration,
and it is one of the latest extensions of iFogSim, where actuators are supported by
default. Furthermore, the actuator model was revised and improved to handle migra-
tion decisions, because migration is often affected by end-user motions. To represent
mobility, it uses a two-dimensional coordinate system, the users’ direction and veloc-
ity. The authors considered real datasets as mobility patterns, which describe buses
and routes of public transportation. EdgeCloudSim [170] is another CloudSim exten-
sion with the main capabilities of the network modelling extension for WLAN, WAN,
and device mobility. They aimed to respond to the disadvantage of iFogSim’s simple
network model, which ignores network load and does not provide content mobility.
SpanEdge [162] is another decentralised tool related to edge computing, aiming to
model data stream processing. Developers can build up a geographically distributed
network by installing parts of a stream processing application near the data source
for latency and bandwidth reduction. We can also find simulation solutions in the
field of Fog Computing exploiting the use of Matlab, Docker or other real service
APIs.

DISSECT-CF-Fog is our proposed solution (to be discussed in the next section)
to simulate IoT-Fog-Cloud systems, written in Java programming language, and has
several extensions to the core DISSECT-CF simulator.

Table 3.2 compares the works we shortly introduced above [118]. It shows that
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Table 3.2: Comparison of the examined fog simulators with software metrics

Simulator Language
Lines of

code

Comments

(%)

Duplication

(%)
Files Bugs Vulnerabilities

Code

smells

FogTorchΠ Java, XML 2,748 15.9 8.3 39 21 31 308

PureEdgeSim Java, XML 3,308 12.2 4.3 30 18 101 301

iFogSim Java, XML 27,754 25.3 24.3 290 124 248 1.5k

MyiFogSim Java, XML 32,723 23.2 23.5 328 174 275 2k

EdgeCloudSim Java, XML 6,232 14.3 29.7 54 14 22 496

SpanEdge Java, XML 1,417 10.3 34.1 17 9 11 232

DISSECT-CF-Fog Java, XML 9,870 33.3 2.0 118 31 192 482

the iFogSim simulator has relatively bad software quality: about one-fourth of its
code is duplicated, and it has more than 25 thousand lines of code having more than
1,500 code smells, which is the worst out of all simulators. On the contrary, DISSECT-
CF-Fog and PureEdgeSim have the best ratio of duplication, and DISSECT-CF-Fog has
the best ratio of comment lines. As it revealed, software re-engineering methods are
highly encouraged to be used in the future to arrive at reliable and maintainable
extensions.

Table 3.3: Mobility-related characteristics of simulation tools

Simulator Communication direction Actuator events Mobility Position

DISSECT-CF-Fog
- Sensor → Fog / Cloud → Actuator

- Sensor → Actuator

- 10 different predefined
actions for actuation

- Adding new by overriding

- Nomadic
- Random Walk

Latitude,
Longitude

iFogSim - Sensor → Fog → Actuator
- Default, but it can be

overridden - Coordinates

IoTSim-Edge - Sensor → Fog Device → Actuator
- Default, but it can be

overridden - Linear Coordinates

YAFS - Sensor → Service → Actuator - - Real dataset
Latitude,
Longitude

MobFogSim
- Mobile Sensor → Mobile Device

→ - Mobile Actuator - Migration
- Linear

- Real dataset Coordinates

Considering fog modelling capabilities in general, our survey highlighted that
models of Fog Computing were evolving more rapidly, than the ones for IoT, based
on the latest publications, which was approved by the fact that we found twice as
many solutions for the fog compared to IoT solutions. There were many indepen-
dently developed tools (half of the considered studies) we found, and six works ex-
tended some CloudSim solution in a direct or indirect way. It also seemed that former
(purely) network simulation solutions were not considered anymore to be the base
of new extensions for Fog Computing.

The actuator and mobility abilities of the considered simulators are summarised
in Table 3.3, which is the result of our additional literature review presented in [122].
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The second column shows possible directions for transferring the sensor data (usually
in the form of messages), in case the actuator interface is realised in the correspond-
ing simulator. The third column highlights actuator events that can be triggered
in a simulator. The fourth column shows the supported mobility options (we only
listed the ones offered in their source code) and finally, we denote the position rep-
resentation manner in the last column. It can be observed that there is a significant
connection between mobility support and actuator functions, but only half of the
investigated simulators applied both of them. Since the actuator has no commonly
used software model within the latest simulation tools, developers omit it, or it is left
to the users to implement it, which can be time-consuming (considering the need for
additional validation). In a few cases, both actuator and mobility models are simpli-
fied or just rudimentary handled, thus realistic simulations cannot be performed.

Modelling Fog Computing is the latest direction in simulation features, and it tries
to build on previous cloud and IoT system simulators. This area has been under active
research over the past decade. Focusing on the currently available fog simulators, we
can summarise that though usable solutions can be found for analysing specific fog
capabilities or use cases, in general, complex fog environments are still hard to be
addressed with a single tool. It is also unlikely that near future solutions would target
coming up with a general simulator, rather extensions will appear to cover more fog
management-related properties. One direction, which has already been started, is the
modelling of container-based fog node behaviour, another one is the location-aware
management of fog nodes. Cost modelling and energy-aware management are also
missing features in many simulators, hence they still need extensive research. The
sensor models are quite simple in most tools, therefore, sensor and device behaviour
analysis and modelling should also be a target feature of future research.

For simulating distributed systems using emerging technologies, we can state that
CloudSim-based extensions (e.g. iFogSim or EdgeCloudSim) are the most popular
choices, and in general, they are the most referred works in the literature. On the
other hand, the DISSECT-CF simulator is proven to be much faster, more scalable,
and more reliable than CloudSim (see [116]). This former research showed that the
simulation time of DISSECT-CF is 2,800 times faster than the CloudSim simulator for
similar cloud use cases. Besides the paper-based evaluation and review of simulators
capable of modelling Fog Computing, we also performed experiments on executing
and comparing concrete simulations with DISSECT-CF-Fog and iFogSim, which is the
most popular simulator in this field. To compare the performance of the two sim-
ulators, we performed various experiments with a unified scenario implemented in
both systems. A detailed description of the scenario and the evaluation results can
be read in [119]. According to results of these measurements, we could observe
that DISSECT-CF-Fog is better suited for high-scale simulations, while iFogSim can
become intolerably time-consuming by modelling higher than a certain number of
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entities.
We also used a simple source code metric to compare the implemented scenarios

in the simulators. The so-called lines of code (LOC) is a common metric for analysing
software quality. It is interesting to see that the same, unified scenario could have
been written three times shorter in case of DISSECT-CF-Fog, than in iFogSim. Of
course, we tried to implement the code in both simulators with the least number of
methods and constructs (in Java language). In general, we managed to model an IoT-
Fog-Cloud environment with both simulators and investigated a meteorological IoT
application execution on top of it with different sensor and fog and cloud resource
numbers. While DISSECT-CF-Fog dealt with these simulations with ease, iFogSim
struggled to simulate more than 65 entities of this complex system. Nevertheless,
it is obvious that there are only a small number of real-world IoT applications that
require only hundreds of sensors and fog or cloud resources; we need to be able
to examine systems and applications composed of hundreds of thousands of these
components, which can only be simulated by using DISSECT-CF-Fog.

3.2 The Evolution of DISSECT-CF-Fog

In the previous chapter, we have seen that there are already several solutions to
enable the investigation of IoT-Cloud systems, and we proposed a semi-simulation
framework that supports decision making in the design and development phases of
IoT applications. In this chapter I introduce a more generic tool, which is capable of
analysing simulations at much higher scales, than the ones we could consider with
MobIoTSim. In this case, our research aimed at supporting simulations of up to
thousands of IoT devices participating in previously unforeseen/existing IoT scenar-
ios that have not been examined before in detail (e.g. in terms of scalability, energy
efficiency or management costs). Sensors are essential parts of IoT systems, and they
are usually passive entities. Their performance is limited by the connectivity and
maximum update frequency of their network gateway. Actuators are entities also
limited by their network connectivity and reaction time (e.g. how long it takes to
actually perform an actuation action). They also have a unique feature that allows
changing the location of non-cloud entities. Finally, central computing services pro-
vide the large-scale background processing and storage capabilities needed for IoT
scenarios. According to recent advances in IoT, these services are expected to be used
only if unavoidable.

The DISSECT-CF-Fog simulator extensions presented in this chapter take into ac-
count the following IoT components: sensors, actuators and devices (i.e. gateways
or brokers), and applications (deployed in a distributed computing service, i.e. cloud
and fog).
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3.2.1 Pricing Model for IoT-Cloud Applications

The Internet of Things (IoT) paradigm allows for interconnecting sensors (e.g. heart
rate, heat, motion, etc.) and actuators (e.g. motors or lighting devices) in automated
and customisable systems [166]. IoT systems are currently expanding rapidly as the
amount of smart devices (sensors with networking capabilities) is growing substan-
tially, and the costs of sensors are decreasing at the same time.

IoT solutions are often used a lot within businesses to increase the performance in
certain areas, and allow for smarter decisions to be made based on more accurate and
valuable data. Businesses have grown to require IoT systems to be accurate, as deci-
sions based on their data are heavily relied on. However, many sensors have different
behavioural patterns. For example, a heart rate sensor has a different behaviour com-
pared to a light sensor, since a heart rate sensor relies on human behaviour as well,
which is inherently unpredictable, whereas a light sensor could be predicted quite ac-
curately based on the time of day and location. Predicting how a sensor may impact
a system is important as companies generally want to leverage the most out of an
IoT system. An incorrect estimation of their performance could possibly have a neg-
ative impact on the performance of other systems (e.g. using too many sensors could
flood the network, potentially causing inaccurate data, slow response times, or even
system crashes). As there are many ways a sensor can behave, it is difficult to predict
the effects they may have on the overall system, therefore, their interaction and op-
eration must be analysed. Performing such testing could be costly, time-consuming,
and high-risk if the infrastructure has to be created and a wide range of sensors are
purchased before any information is obtained about the planned system behaviour.
It is even more difficult to determine the impact of a prototype system on the net-
work, as there may be limited or no physical sensors available to perform the tests.
An example of this issue is the introduction of soil moisture sensors that analyse soil
properties in real-time and adjust water sprinklers to ensure crops have the correct
conditions to grow. In order to test such an IoT system in the real world, a huge
number of sensors would be required, which could be quite costly and difficult to
implement.

To represent an IoT device with sensors, the following parameters should be con-
sidered: it has a unique identifier and its lifetime is specified with start time and stop
time. The cardinality of the supervised sensor set must be defined as well. Alongside
the set cardinality, the average data produced by one of the sensors can be specified in
the set. Data generation frequency could be set for the sensors (e.g. in milliseconds)
to determine the time interval between two measurements. Each device controls its
local storage with a predefined capacity and its network connectivity to the outside
world is specified by bandwidth and latency values.

IoT applications that receive, process, and store IoT data can be modelled by
building on the IaaS cloud representation layer of DISSECT-CF. The following prop-
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erties are taken into consideration by modelling an IoT application in our DISSECT-
CF-Fog extension: the types of virtual machines used by the application and the task
size attribute, which aggregates IoT data into a processing unit for the VM.

In our simulation model, we aimed to investigate certain IoT-Cloud applications,
therefore, we needed to define and monitor the following parameters: the number
of sensors or devices used, the total number of messages (and their data) sent in
a certain period of time, and the uptime and capacity of virtual machines used to
provide data processing services. Based on these parameters, we can estimate how
our application would be charged after operating its system for a certain amount of
time at a concrete IoT-Cloud provider.

In a work [89] in 2017, we considered the following most popular providers to
create a pricing scheme model: (i) Microsoft and its IoT platform called Azure IoT
Hub1, (ii) IBM’s Bluemix IoT platform2, the services of (iii) Amazon (AWS IoT)3, and
(iv) Oracle’s IoT platform4. We took into account the prices publicly available on the
websites of the providers.

The calculation of the prices depends on different methods. Some providers bill
only according to the number of messages sent, while others also charge for the
number of devices used. The situation is very similar, if we consider virtual machine
rental or application service prices. One can be charged after GB-hour (uptime) or
according to a fixed monthly service price. This price also depends on the configura-
tion of the virtual machine or the selected application service, especially the amount
of RAM used or the number of CPU cores or their clock signal.

Regarding the IoT-side pricing in 2017, the Azure IoT Hub charged after the cho-
sen edition/tier. This means that there were certain intervals defined for the number
of messages used in a month. There were also restrictions for message sizes, which
depended on the chosen tier (Free, S1, S2, and S3). Each of them varied in prices,
and in the total messages allowed per day. The IBM Bluemix (later IBM Cloud) IoT
platform only charged after the MB of data exchanged. They differentiated three
categories in terms of data usage, and each of them came with a different price per
MB. Amazon’s IoT platform used two components for pricing: publishing costs (the
number of messages published to AWS IoT) and delivery costs (the number of mes-
sages delivered by AWS IoT to devices or applications). Finally, we investigated the
pricing of Oracle’s IoT solution, which was slightly different from the three providers
described before. It defined four product categories regarding the types of used de-

1MS Azure IoT Hub (accessed in January, 2017): https://azure.microsoft.com/en-us/services/iot-
hub

2IBM Bluemix (Accessed at January, 2017): https://www.ibm.com/cloud-
computing/bluemix/internet-of-things

3Amazon AWS IoT (accessed in January, 2017): https://aws.amazon.com/iot/pricing
4Oracle IoT platform (accessed in January, 2017):

https://cloud.oracle.com/en US/opc/iot/pricing
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vices (wearable, consumer, telematics, and business). The categories determined the
monthly device price, and the number of messages that could be sent by that par-
ticular type of device. In addition, there was a restriction on how many messages a
particular type of device could deliver per month. In case the number of messages
sent by a device was more, than the device’s category permitted, an additional price
would be charged according to a predefined price per thousand messages.

Concerning cloud-side costs, most providers have a simple calculation method,
which is the following: (i) to run an IoT application one needs at least one vir-
tual machine (VM), container, compute service, or application instance, which has
a fixed instance price every month, or (ii) the providers consider the hour per price
for every instance the IoT application needs. We considered Azure’s application ser-
vice5, Bluemix’s runtime pricing sheet under the Runtimes section6, Amazon EC2
On-Demand prices7, and Oracle’s compute service8 together with the Metered Ser-
vices pricing calculator9. The cloud cost is based on either instance prices (Azure
and Oracle), hourly prices (Amazon), or the mix of the two (Bluemix), in which the
provider uses both types of price calculation. For example, Oracle charged depending
on the daily uptime of our application, as well as the number of CPU cores used by
our VMs.

After carefully examining the pricing methods of these providers, we created an
XML-based description with the actual categories and prices (for details, see: [121]).
This description can be loaded into the DISSECT-CF-Fog simulator and used for auto-
matic usage cost calculation (which can be considered as an estimation), performed
by the simulator, based on the utilised resources in the actual simulation experiment.

As one of the earliest examples of sensor networks is from the field of meteorol-
ogy and weather prediction, we chose to model the crowd-sourced meteorological
service of Hungary called Idokep.hu10, to exemplify the usage of our cost model. It
was established in 2004, and it is one of the most popular meteorology websites in
Hungary. In 2017, it had more than 400 stations send sensor data to their system (in-
cluding temperature, humidity, barometric pressure, rainfall, and wind properties),
and actual weather conditions were refreshed every 10 minutes. They also offered
sensor stations to be installed at buyer-specific locations, in order to extend their
sensor network.

5MS Azure price calculator (accessed in January, 2017): https://azure.microsoft.com/en-
gb/pricing/calculator/

6IBM Bluemix pricing sheet (accessed in January, 2017): https://www.ibm.com/cloud-
computing/bluemix

7Amazon pricing (accessed in January, 2017): https://aws.amazon.com/ec2/pricing/on-demand/
8Oracle pricing (accessed in January, 2017):

https://cloud.oracle.com/en US/opc/compute/compute/pricing
9Orcale Metered Services pricing calculator (accessed in January, 2017):

https://shop.oracle.com/cloudstore/index.html?product=compute
10Idokep.hu (accessed in February, 2017): http://www.idokep.hu
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Table 3.4: Basic configuration information of the application

Devices with sensors 3,864
Device type Consumer

Message size (KB) 0.05
Messages / month / device 4,464

Total messages / day 556,416
Total messages / month 17,248,896
MB exchanged / month 842.23125

Messages transferred / device / hour 6
Test duration (days) 31
Full uptime (hours) 744

We created a model application of this service, which has the following detailed
properties, while operated over a month, as shown in Table 3.4 [121]. It highlights
that 483 stations composed the IoT-Cloud system with 3864 sensors, each sending
4464 messages per month by monitoring the environment. To exemplify the use of
our cost estimation solution, we performed experiments by simulated operation of
this meteorological application for a period of one month. Table 3.5 shows the es-
timated prices to be paid by using these providers [121]. The results showed that
Amazon came with the best price of ∼241 Euros, while Oracle was incredibly expen-
sive compared to the other providers with ∼3862 Euros.

Table 3.5: Cost estimation for the meteorological case study

Provider / Cost Azure Cost Bluemix Cost Amazon Cost Oracle Cost

IoT fix prices and device side

Device price / month - - - + 3,593.52

”Price / message” pricing - - + 78.69 +

”X messages / month” pricing + 421.65 - - + 0

Data exchange (in MB) - + 0.82 - -

Message size limit 4 - 0.5 -

Total messages / day with size limit 556,416 552,960

Cloud side

Instance prices + 188.22 + 245.38 - + 268

GB-hour prices - 0.05 39.13 0.01 162.53 -

TOTAL PRICE / MONTH 609.87 285.33 241.22 3,861.52

After we have introduced these pricing schemes, we turned our research focus
on how resource utilisation and management patterns alter, based on the changing
sensor behaviour, and how these changes affect the incurred costs of operating the
IoT system (e.g. how different sensor data sizes and the varying number of stations
and sensors affect the operation of the simulated IoT system). We presented various
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measurement scenarios in [121]. Here, we highlight only the first scenario of this
work, in which we varied the amount of data produced by the sensors of 486 weather
stations: we set 50, 100, and 200 bytes for different cases (allowing overheads for
storage, network transfer, different data formats, and secure encoding etc.). We also
investigated how the costs of the IoT side changed, if we would use one of the four
IoT providers defined before. In this experiment, we limited the station lifetimes
to a single day. A station used 8 sensors and a sensor measurement was executed
every minute. The start-up period of the stations was selected randomly between
0 and 20 minutes in the simulator. The task creator daemon service spawned tasks
after the cloud storage received the metering data (i.e. a message), but the size of a
task could not exceed 250 KB. This step ensured the estimated processing time of 5
minutes/task. If a task was started with less than 250 KB to process, the execution
time was scaled down. Finally, the application was using a cloud configuration based
on the IBM Bluemix VM instance having 8 CPU cores and 4 GB memory, and its cost
was set as shown in Table 3.5.
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Figure 3.2: IoT and cloud costs in the experiment

Table 3.6: Number of VMs, tasks, and the amount produced data

Amount of data (byte) Number of VMs Number of tasks Produced data (GB)
50 12 1,153 0.261

100 27 2,299 0.522
200 28 4,486 1.044
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For the first case with 50 bytes of sensor data, we measured 0.261 GBs of pro-
duced data in total, while in the second case of 100 bytes, we measured 0.522 GBs,
and in the third of 200 bytes, we measured 1.044 GBs (showing linear scale up). In
the three use cases, we needed 12, 27, and 28 VMs to process all tasks respectively.
With the preloaded cloud parameters, the system is allowed to start a maximum of
28 virtual machines, therefore, in the first case of 50 bytes our cloud cost was 48.839
Euros, in the second case of 100 bytes the cloud cost was 103.896 Euros, and finally,
in the last case, our cloud cost was 217.856 Euros. The lesson learnt from this sce-
nario was that if we used more than 200 bytes per message, we needed stronger
virtual machines (also a larger cloud with stronger physical resources) to manage
our application, because in the third case the simulation run for more than 24 hours
(despite the fact that the sensors were only producing data for a single day), which
increased our costs using time-dependent cloud services. Finally, Table 3.6 shows
how many virtual machines were needed to process all of the generated data for all
test cases, and how many tasks were generated for the produced data [121].

Figure 3.2 presents a cost comparison for all considered providers [121]. We can
see that Oracle costs are much higher than the other three providers in all cases (50,
100, 200 bytes messages). The main cause of this issue is that Oracle charges after
each utilised device, which is not the case for other providers. Our initial estimations
show that only such an IoT-Cloud system operation is beneficial with Oracle, which
has at most 200 devices and transfers 1-2 messages per minute per device.

In summary, we have shown that with our extended DISSECT-CF-IoT simulator,
we can investigate the behaviour and operating costs of these systems and contribute
to the development of better design and management solutions in this research field.

3.2.2 Analysis of Multi-layered Fog Environments

In the surrounding world of IoT devices, location is often fixed, however, the Quality
of Service (QoS) of these systems should also be provided at the same level in the
case of dynamic and moving devices. Sensors are mostly resource-constrained and
passive entities with restricted network connection, on the other hand, actuators en-
sure broad functionality with an Internet connection and enhanced resource capacity
[138]. They aim to make various types of decisions by assessing the processed data
retrieved from the nodes. These actions can affect the physical environment or refine
the configuration of the sensors. Furthermore, the embedded actuators can manipu-
late the behaviour of smart devices, for instance, restart or shut down a device, and
motion-related responses can also be triggered. Systems composed of IoT devices
supporting mobility features are also known as the Internet of Mobile Things (IoMT)
[133]. Mobility can have a negative effect on the QoS to be ensured by fog systems,
for instance, they could increase the delay between the device and the actual node
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it is connected to. Furthermore, using purely cloud services can limit the support for
mobility [149].

In order to serve actuator and mobility decisions, first we had to introduce an
offloading mechanism for IoT applications in DISSECT-CF-Fog. In case a selected fog
node is overloaded, the execution of the appropriate task will be delayed, which has
a negative effect on the makespan of its application and/or on the execution costs.
To reach the required QoS of an IoT application, the management of IoT-Fog-Cloud
systems should also take into account the position and the actual load of the fog
nodes.

When the number of tasks is growing, a single fog node may not be able to pro-
cess them continuously, therefore, a forwarding function for some of the tasks to
other nodes can be useful to manage a higher number of tasks of an IoT application.
A fog topology consisting of several nodes with different locations can handle the un-
foreseen appearance of smart devices (and new tasks) more effectively, than a single,
heavyweight cloud node. Such functions can take into account the physical location
of the entities of the execution environment (i.e., fog or cloud node or IoT devices),
the load of the network used for communication and data transfers, and the transfer,
storage, and execution costs.

To overcome this problem, we introduced a multi-layer fog node management
in DISSECT-CF-Fog by enabling task offloading from (possibly overloaded) nodes to
others [123]. A typical fog topology can contain numerous nodes, some of them
are grouped as a fog cluster, which restricts the access and visibility of other nodes.
These nodes can be ordered into layers, where higher-level fog layers usually contain
stronger physical resources. The computing nodes can be heterogeneous and often
restricted on certain types and strengths of VMs and applications in order to serve as
many users as possible, such restrictions usually concern the processing power and
the memory usage of the given VM.

In the simulator the following parallel steps are performed during an experiment:
(i) sensors of smart devices generate data in the given frequency, (ii) the unprocessed
data are forwarded to a node, (iii) the data are packaged in a compute task, (iv) VMs
on a node process as many tasks as they can, and finally (v) if a node is overloaded,
then the unprocessed tasks will be forwarded to another node.

To manage the offloading decisions separately for each node, we introduced dif-
ferent application strategies and different task allocation approaches adhering the
characteristics of the considered multi-layer fog and cloud topology. We performed
and presented detailed experiments in [123], demonstrating these introduced capa-
bilities and new components of the simulator. We defined four basic strategies for
task allocation. The Random strategy is the default, which always chooses one from
the connected nodes randomly. The Push Up strategy always chooses the connected
parent node (i.e. a node from a higher layer), if available. This approach does not
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take into account the properties of the neighbours, and basically ensures the fastest
way to forward unprocessed tasks to the cloud, where more powerful VMs may re-
duce the processing time of it. The disadvantage of these strategies is the disability
to consider increased network traffic and costs of the operation in the decision. The
third strategy called Hold Down aims to address privacy needs because the system can
keep application data as close to the end-user as possible. In this way, the network
traffic is minimal, but the execution time of the application can increase dramati-
cally (due to the possible overload of constrained resources at the lowest layer). The
Runtime-aware strategy ranks the available parent nodes, and all neighbour nodes
(from its own layer) by network latency and by the ratio of the available CPU capac-
ity and the total CPU capacity. The algorithm picks the node with the highest rank
(i.e. the closest and least loaded one).

The last strategy we proposed was a Pliant system-based algorithm that can pre-
dict which computing node could be the best for managing a given IoT device (ac-
cording to the actual state of the system, represented by its properties). The Pliant
system, which is a kind of fuzzy theory that is similar to a fuzzy system [58]. The
difference between the two systems lies in the choice of operators. In fuzzy theory,
the membership function plays an important role, but the exact definition of this
function is often unclear. In the Pliant system, we use a so-called distending func-
tion, which represents a soft inequality. Furthermore, the various operators, which
are called conjunction, disjunction, and aggregative operators, are closely related to
each other. We also have a generator function, which can be used to create such
operators. In the Pliant system, the corresponding aggregative operators of the strict
t-norm and strict t-conorm are equivalent, and De Morgan’s law is obeyed with the
corresponding strong negation of the strict t-norm or t-conorm. For each reachable
fog and cloud node the Pliant strategy calculates a score number using normalisation,
Sigmoid and Kappa functions, and the aggregation operator to choose the appropri-
ate one for the offloading decision. We defined the following three properties for
each system node: load, cost, and unprocessed data of a node. In Table 3.7, we can
see the exact values of the normalisation functions we used [123]. These properties
can be used in the Pliant algorithm to rank fog nodes, from which we choose from
in case of offloading. More details on the applied model and the operation of the
algorithm can be read in [123].

The stakeholders of IoT applications and resource providers have to prepare in
advance for the unforeseen data generated by sensors and often aspire to treat them
in real-time, thus a fog topology should be robust enough and be able to handle a
vast amount of IoT devices. Such requirements can be investigated by defining ap-
plication and device strategies. A device strategy is applicable to map any device to
any preferred node, according to the policy of the actual device. Similarly to other
models, resource needs, energy consumption, latency, bandwidth, and IoT/cloud-
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Table 3.7: Normalisation parameters

Parameter Lambda Shift
Workload of a node -1.0/8.0 (Maximum workload - minimum workload) / 2
Price of using a node 4.0 Minimum price
Unprocessed data -1.0/4.0 (Maximum unprocessed data - minimum unprocessed data)
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Figure 3.3: The considered fog topology in the evaluation

side costs can be considered, in order to ensure appropriate pricing, or to reduce
IoT application execution time (i.e. makespan). The Distance-based device strategy
chooses the geographically closest fog node, to be selected only from the lowest fog
layer, for a device to communicate with (i.e. send tasks to). The disadvantage of this
strategy lies in data overload in a certain node if many devices were located in its
neighbourhood. The Load-balanced device strategy always tries to balance the num-
ber of connected devices for each node considering the number of available physical
machines of the node as well. The disadvantage of this strategy is the increased la-
tency if a device chose a node located farther away from the lowest layer. One can
observe that considering only device strategies can cause a bottleneck effect in the
topology.

We evaluated the proposed device mapping and task allocation strategies with

               kertesz.attila_100_23



3.2 The Evolution of DISSECT-CF-Fog 53

three different scenarios simulating a European-wide weather forecasting system, as
discussed in detail in [123]. Here, I present only the last scenario of this work,
where we modelled a dynamic system. In the beginning, only 2,000 stations started
to work, and after every four hours we installed 2,000 more, thus at the end of the
day, the total number of devices was 12,000. Each station was equipped with five
sensors (e.g. measuring weather conditions, such as temperature and humidity, with
50 bytes of sensor data). The time interval between two measurements (i.e. the data
generation frequency) was set to one minute.

The topology contained two fog layers with 14 different fog nodes organised into
clusters, and one cloud layer had a single cloud node. Each node was represented
by a different city, and the latency between them was measured by using Wonder-
Network11. The defined topology can be seen in Figure 3.3, which also depicts the
fog clusters and layers with different colours [123]. The arrows represent routes that
are responsible for communication between the layers, while the (undirected) edges
are for the message exchanges inside a cluster. The network capability of the smart
devices (or stations) was modelled with a 4G network with an average 50 ms of la-
tency. When a connection is created by applying a device policy, the exact latency
value is weighted in proportion to the physical distance between the device and the
node. The nodes of the topology were modelled with real VM specifications and pric-
ing schemes according to the Amazon Web Services (AWS): the lowest Fog layer has
VMs with 2 CPU cores, 4 GB RAM and 0.051$ hourly price, the top fog layer has VMs
with 4 CPU cores, 8 GB RAM and 0.101$ hourly price, finally, the cloud layer has
VMs with 8 CPU cores, 12 GB RAM and 0.204$ hourly price. Each VM could process
only one task (represented by 250 KB of data) at a time. The lowest fog layer of the
topology was divided into three clusters, one node of the cluster tackled with 12 CPU
cores and 24 GB RAM altogether. We doubled the resource capacity of a node of the
upper fog layer, thus it dealt with 24 CPU cores and 48 GB RAM. Our preliminary
evaluation showed that applying this scheme made the topology (the system) partic-
ularly strong, therefore, some strategies (e.g. Push Up) became more beneficial than
others. Therefore, the cloud resources were set to 48 GB CPU cores and 96 GB RAM.

Concerning the application management in the simulator during executing a sce-
nario, the ratio of the forwardable data was limited to 50% (hence moving all data to
a different node is prohibited). The daemon service of the application decided after
every 150 seconds about the task allocation request to a VM of a node. In the evalua-
tion scenario, the locations of all devices were fixed during the simulation, however,
those positions were randomly chosen at the beginning of the simulation to enable
realistic and unexpected behaviour of such devices. The start time of the devices had
a delay randomly set from the 0-20 interval in minutes (to avoid burst operations,
and also to be more realistic).

11WonderNetwork (accessed in May, 2020): https://wondernetwork.com/pings
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Table 3.8: Evaluation results of a multi-layer fog scenario

Device strategy Distance-based
Application strategy Pliant Runtime-aware Random Hold Down Push Up

Num. of VMs 90 90 90 60 79
Cost ($) 110.1 111.9 107.8 77.1 105.0

Network utilisation (sec.) 87 131 110 0 69
Data transferred (MB) 2,117 5,471 2,939 0 1,099

Timeout (min.) 74.8 144.4 111.6 1,091.0 332.3
Device strategy Load-balanced

Application strategy Pliant Runtime-aware Random Hold Down Push Up
Num. of VMs 90 90 90 51 66

Cost ($) 132.8 138.1 131.5 106.9 134.8
Network utilisation (sec.) 114 204 140 0 40

Data transferred (MB) 4,307 13,599 5,300 0 2,911
Timeout (min.) 195.3 172.8 217.8 3,095.0 1,852.3
Device strategy Mixed

Application strategy Pliant Runtime-aware Random Hold Down Push Up
Num. of VMs 90 90 90 60 80

Cost ($) 111.0 112.8 110.2 78.0 107.3
Network utilisation (sec.) 83 121 108 0 55

Data transferred (MB) 2,194 5,126 3,402 0 1,251
Timeout (min.) 68.7 112.7 72.3 1,641.0 254.8

Table 3.8 summarises the average results after executing the scenarios with all
device and application strategies three times [123]. We also extended our measure-
ments with an additional device strategy called Mixed, where half of the IoT devices
were managed with the Distance-based, and the other half of the devices were man-
aged with the Load-balanced strategy. To compare the proposed strategies, we mea-
sured how many virtual machines were required to process tasks (and their data)
during operating hours. The Network utilisation metric reflects the network load,
and it represents the time taken to transfer the sensor data from the source node to
the actual processing node. The Data transferred metric represents the total size of
all forwarded data. The Data transferred and the Network utilisation metrics were
rounded. The Timeout value means the time taken to finish data processing after the
last sensor measurement was performed. This metric relates to the makespan of an
application. Here, the less time required to process all tasks of an IoT application
(after stopping the devices), the better a node selection strategy is. According to the
used AWS pricing models, we could calculate the exact costs of the usage of the fog
and cloud resources (after executing the IoT applications).

Regarding the results, two of the device strategies (Distance-based, Mixed), and
the Plant application strategy managed the best Timeout values with 74.8 and 68.7
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minutes. This shows that an IoT application only handles the data in a fair way, when
we applied the Load-balanced strategy with the Runtime-aware strategy. Concerning
the average results for the device strategy, we can see that the best strategy for the
operation cost, the network transfer and the timeout value is the Distance-based de-
vice strategy. In one case, the Mixed had a good influence on the network utilisation,
which means location independence of the smart devices may require further in-
vestigation. We can clearly see that the Load-balanced strategy dealt with the least
number of virtual machines, and it became the best scenario, but it also dramatically
increased the rest of the metric values.

3.2.3 Actuator and Mobility models

In the layered architecture of IoT, actuators are located in the perception layer, which
is often referred to as the lowest or physical layer that requires the most detailed
level of abstraction in IoT. The actuator interface should facilitate a more dynamic
device layer and a volatile environment in a simulation. In the works presented so
far we did not exploit actuation and IoT device mobility features, hence they were
not represented in detail in the simulator. In our model we aimed to integrate to the
DISSECT-CF-Fog simulator, an actuator component is connected to one IoT device
for two reasons in particular: (i) it is observing the environment of the smart device
and can act based on previously specified conditions, or (ii) it can influence some
low-level sensor behaviour, for instance, it changes the sampling interval of a sensor,
resets or completely stops the smart device. The latter indirectly conveys the concept
of a reinterpreted actuator functionality for simulator solutions.

The actuator component we developed in DISSECT-CF-Fog can also model a low-
level software component for sensor devices, which makes the model compound
[122]. The actuator model of DISSECT-CF-Fog can operate with compact, well-
defined events, that specify the exact influence on the environment or the sensor.
The set of predefined events during a simulation provides a restriction to the capabil-
ity of the actuator, and limits its scope to certain actions that are created by the user.
The determination of the exact event executed by the actuator, happens in a separate,
reusable, and extendable logic component. This logic component can serve as an ac-
tual actuator configuration, but can also be used as a descriptor for environmental
changes and their relations to specific actuator events. This characteristic makes the
actuator interface thoroughly flexible and adds some more realistic factors to certain
simulation scenarios. With the help of the logic component, the actuator interface
works in an automatic manner. After a cloud or fog node has processed the data
generated by the sensors, it sends a response message back to the actuator, which
chooses an action to be executed. This models the typical sensor-service-actuator
communication direction.
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The proximity of computing nodes is the main principle of Fog Computing and
it has numerous benefits, but mobile IoT devices may violate this criterion. These
devices can move further away from their processing units, causing higher and un-
predictable latency. When a mobile device moves out of range of the currently con-
nected fog node, a new, suitable fog node must be provided. Otherwise, the quality
of service would drastically deteriorate and due to the increased latencies, the fog
and cloud nodes would hardly be distinguishable in this regard, resulting in losing
the benefits of Fog Computing. Another possible problem that comes with mobile
devices is service migration. Service migration usually occurs between two comput-
ing nodes, but if there is no fog node in an acceptable range, the service could be
migrated to the smart device itself, causing lower performance and shorter battery
time.

Figure 3.4: Actuator events related to mobility behaviour

The physical location of fog nodes in a mobile environment is a major concern.
Placing fog nodes too far from each other will result in higher latency or connection
problems. In this case, IoT devices are unable to forward their data, hence they are
never processed. Some devices may store their data temporarily until they connect
to a fog node, but this contradicts the real-time data processing promises of fogs. A
slightly better approach would be to install fog nodes fairly dense in space to avoid
the problem discussed above. However, there might be some unnecessary nodes in
the system, causing a surplus in the infrastructure, which results in resource wastage.

The mobility extension of the DISSECT-CF-Fog was designed to create a precise
geographical position representation of computing nodes (fog, cloud) and mobile
devices, and simulate the movements of devices based on specified mobility policies.
As the continuous movement of these devices could cause connection problems, we
considered five actuator events related to mobility, as shown in Figure 3.4 [122]. Po-
sition changes are done by the Change position event of the actuator. The connection
or disconnection methods of a device are handled by the Disconnect from node and
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the Connect to node events, respectively. When a more suitable node is available for
a device than the already connected one, the Change node actuator event is called.
Finally, in some cases, a node may remain without any connection options due to its
position, or in cases when only overloaded or badly equipped fog nodes are located
in its neighbourhood. The Timeout event is used to measure the unprocessed data
due to these conditions, and to empty the device’s local repository, if data forwarding
is not possible.

The mobile device movements are based on certain strategies. Currently, two
mobility strategies are implemented. We decided to implement one entity and one
group mobility model according to [49], but since we provided a mobility interface,
the collection of usable mobility models can be easily extended. The goal of the (i)
Nomadic mobility model is that entities move together from one location to another,
in our realisation multiple locations (i.e., targets) are available. It is very similar to
the public transport of a city, where the route can be described by predefined points
(or bus stops), and the dedicated points are defined as geographical positions. An
entity reaching the final point of the route will no longer move but may function af-
terwards. Between the locations, a constant speed is considered, and there is a fixed
order of the stops. The (ii) Random Walk mobility takes into consideration entities
with unexpected and unforeseen movements, for instance, the observed entity walks
around the city, unpredictably. The aim of this policy is to avoid moving in straight
lines with a constant speed during the simulation because such movements are un-
realistic in certain use cases. In this policy, a range of the entity is fixed, where it can
move with a random speed. From time to time, or if the entity reaches the border of
the range, the direction and the speed of the movement can dynamically change.

Evaluation with a logistics scenario

We evaluated the proposed actuator and mobility extensions of the DISSECT-CF-Fog
simulator with two different scenarios in [122], which belong to the main open re-
search challenges in the IoT field [117]. The goal of these scenarios was to present
the usability and broad applicability of our proposed simulation extension. We also
extended one of the scenarios with larger-scale experiments, in order to determine
the limitations of DISSECT-CF-Fog (e.g. determining the possible maximum number
of simulated entities).

One of the scenarios we considered was IoT-assisted logistics, where precise lo-
cation tracking of products and trucks can be realised. It can be useful for route
planning (e.g. for avoiding traffic jams or reducing fuel consumption), or for bet-
ter coping with different environmental conditions (e.g. for making weather-specific
decisions). During the evaluation of our simulator extension, we envisaged a dis-
tributed computing infrastructure composed of a certain number of fog nodes (hired
from local fog providers) to serve the computational needs of our IoT applications.
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Besides these fog resources, additional cloud resources could be hired from a pub-
lic cloud provider. For each of the experiments, we used the cloud schema of LPDS
Cloud of MTA SZTAKI [79] to determine realistic CPU processing power and memory
usage for physical machines. Based on this schema, we attached 24 CPU cores and
112 GB of memory for a fog node and set at most 48 CPU cores and 196 GB of mem-
ory to be hired from a cloud provider to start virtual machines (VMs) for additional
data processing.

Figure 3.5: Applied fog ranges in the logistics scenario

The simulator can also calculate resource usage costs, so we set VM prices ac-
cording to the Amazon public cloud pricing scheme. For a cloud VM having 8 CPU
cores and 16 GB RAM we set a 0.204$ hourly price (a1.2xlarge), while for a fog VM
having 4 CPU cores and 8 GB RAM we set a 0.102$ hourly price (a1.xlarge). This
means that the same amount of data is processed twice faster on the stronger cloud
VM, however, the cloud provider also charges twice as much money for it. In our ex-
periments, we proportionally scale the processing time of data, for every 50 KB, we
model one minute of processing time on the Cloud VM. To perform the experiments,
we used a PC with Intel Core i5-4460 3.2GHz, 8GB RAM, and a 64-bit Windows 10
operating system to run the simulations. Since our simulations took into account
random factors, each experiment was executed ten times, and the average values are
presented below.

In the logistics IoT scenario, we simulated a one-year-long operation of a smart
transport route across cities located in Hungary. This track is exactly 875 kilometres
long, and it takes slightly more than 12 hours to drive through it by a car based on
Google Maps, which means the average speed of a vehicle is about 73 km/h. We
placed fog nodes in 9 different cities maintained by a domestic company, and we
used a single cloud node of a cloud provider located in Frankfurt. Each fog node has
a direct connection with the cloud node, the latency between them is set based on the
values provided by the WonderNetwork service as before. A fog node forms a cluster
with the subsequent and previous fog node on the route as depicted in Figure 3.5
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[122]. This figure also presents the first test case (a), when the range of a fog node
is considered as 25 kilometres radius (similar to a LoRa network). For the second
test case (b), we doubled the range to 50 kilometres radius. The IoT devices (placed
in the vehicles to be monitored) were modelled with 4G network options with an
average 50 ms of latency.

Table 3.9: Results of the Transport actuator strategy and number of events during the
logistics scenario

Actuator strategy Transport
Fog node range (km) 25 50

Vehicle (pc.) 2 20 200 2 20 200
VM (pc.) 19 19 19 19 19 19

Generated data (MB) 65 642 6,445 83 851 8,469
Fog + Cloud cost ($) 1,974.7 4,492.9 10,231.1 2,557.8 5,006.5 10,312.7

Delay (min.) 5.0 4.03 2.02 5.0 4.04 4.01
Runtime (sec.) 3 13 119 4 15 128

Change file size (pc.) 20,012 198,221 1,986,157 20,107 189,693 1,870,594
Change node (pc.) 0 0 0 6,111 65,424 654,135

Change position (pc.) 91,167 910,014 9,122,057 93,088 970,373 9,791,859
Connect / disconnect

to node (pc.) 13,140 131,455 1,314,037 7,029 66,349 659,573

Increase frequency (pc.) 19,833 198,888 1,982,648 19,573 66,117 1,872,881
Decrease frequency (pc.) 19,735 199,759 1,983,997 19,646 189,298 1,875,489
Restart / stop device (pc.) 0 0 0 0 0 0

Timeout (pc.) 35,379 354,788 3,536,881 0 0 0
Timeout data (MB) 15 149 1,557 0 0 0

All vehicles were equipped with three sensors (asset tracking sensor, AIDC (au-
tomatic identification, and data capture) and RFID (radio-frequency identification))
generating 150 bytes of data per sensor. In the simulations we set a daemon service
on the computational nodes checking the local storage for unprocessed data every
five minutes, and allocating them in a VM for processing. Each simulation run dealt
with an increasing number of IoT entities, we initialised 2, 20 and 200 vehicles in
every twelve hours, which went around on the route. Half of the created objects were
intended to start their movements in the opposite direction (selected randomly).

During our experiments, we considered the Transport actuator policy, which is a
realistic strategy to model asset tracking, which aims to follow objects based on a
broadcasting technology (e.g. GPS). A typical use case of this, when a warehouse is
prepared for receiving supplies according to the actual location of the truck. In our
evaluation, if the asset was located closer than five kilometres, it would send position
data every two minutes. In the case of five to 10 kilometres, the data frequency was
set to five minutes, and from 10 to 30, the data generation was set to 10 minutes,
lastly, if it was farther than 30 kilometres, it informed changes in 15 minutes.
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The results are shown in Table 3.9 [122]. Comparisons are based on the following
parameters: (i) VM reflects the number of created VMs during the simulation on the
cloud and fog nodes, which process the amount of generated data. As we mentioned
earlier, our simulation tool can calculate the utilisation cost of the resources based
on the predefined pricing schemes (Fog+Cloud cost). Delay reflects the timespan
between the time of the last produced data and the last VM operation. Runtime is a
metric describing how long the simulation runs on the corresponding PC. The rest of
the parameters are previously known, it shows the number of the defined actuator
and mobility events. Nevertheless, Timeout data is highlighting the amount of data
lost, which could not be forwarded to any node, because the actual position of a
vehicle is too far for all available nodes.

Interpreting the results, we can observe that in the case of the 25-kilometre range,
the Transport actuator strategy drops about a quarter (around 23,4%) of the unpro-
cessed data losing information. In the case of the 50-kilometre range, there is no
data dropped, because the nodes roughly cover the route and the size of gaps cannot
trigger the Timeout event. In contrast, the ranges do not cover each other in the case
of the 25-kilometre range, which results in a zero Change node event. Based on the
Fog+Cloud cost metric, one can observe that the Transport actuator strategy utilised
19 cloud and fog VMs, and the average price for a VM was 100$ for managing two
vehicles. In case of 20 vehicles, it increased to about 236$, and lastly, operating 200
vehicles the price was increased to about 538$, which means that the more vehicles
needed to be managed, the more resources had to be used to process their data.
Since the IoT application frequency was set to five minutes, we considered the Delay
acceptable, when it was equal to or less than five minutes. Based on the results, all
test cases fulfilled our expectations. The Runtime metric also points to the usability
and reliability performance of DISSECT-CF-Fog; less than three minutes was required
to evaluate a one-year-long scenario with thousand of entities (i.e. simulated IoT
devices and sensors running for a year).

Modelling Energy Consumption

Besides scalability, latency, and resource management issues, reducing the energy
consumption of an IoT-Fog-Cloud system is also a great challenge as stated in [22].
Energy-efficient solutions also have a significant impact on reducing the carbon foot-
print and on slowing down the climate change. The monitoring and measuring of en-
ergy consumption entail significant challenges for IoT-Fog-Cloud systems. The initial
energy model of the DISSECT-CF simulator covered cloud datacenters by introducing
resource consumption modelling for CPU, disk, and network energy utilisation. The
energy model of the simulator takes into account: the minimum (min) power (e.g.
the machine/device is turned off, but still plugged into the energy source), the maxi-
mum (max) power (e.g. if the CPU is fully utilised), and the idle power of a resource
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(e.g. when the PM is running without executing computational tasks). By default,
the simulator has two power models: (i) dynamic power draining behaviour applies
linear interpolation between idle and max power values, whilst (ii) constant power
draining behaviour can consider any power value (e.g. min). The dynamic model
is applied in the case of states with high energy consumption (e.g. running state of
a PM), and it handles the idle power with min power values, and the consumption
range can be get by subtracting the idle power value from the max power value.

In another work [120], we extended the existing energy model of DISSECT-CF
to cover IoT devices to enable complex energy utilisation analysis of IoT-Fog-Cloud
systems. To determine a fine-grained energy model for microcontrollers, we mea-
sured and collected the energy consumption values of real devices (we chose ESP32
and Raspberry Pi (1 Model A+) microcontrollers). Both devices were equipped with
DTH22 temperature and humidity sensors, and a KCX-017 meter was applied to dis-
play the voltage and the current of the connected USB port. To measure the general
power consumption of IoT applications, we developed a simple Python program for
sensor data reading, message creation and sending. Besides our real measurements
of a typical use of a microcontroller, we gathered information from related works,
such as [115] and [91], since they performed comparative analysis and monitoring
of IoT devices. Our findings and experiments revealed that the power consumption
values of microcontrollers are highly dependent on their actual behaviour and their
use cases. Typical modifying circumstances may be the usage of a wired connection
instead of wireless, and/or different types of power supply cables or converters. To
model the power consumption of IoT resources, we had to extend the IoT device
representation of DISSECT-CF-Fog to include predefined states for microcontrollers,
which allow mapping a certain power consumption to a certain state.

To evaluate the extended, unified energy model for IoT-Fog-Cloud architectures in
DISSECT-CF-Fog, we modelled a weather forecasting scenario with numerous weather
stations (run by IoT microcontrollers with special sensors). These devices could com-
municate directly with a fog layer, which contains three different nodes with an equal
amount of resources, utilising 40 CPU cores and 40 GB of memory in total. On top
of the fog topology, there was one cloud datacenter having 56 CPU cores and 40
GB of memory, furthermore, the devices were not allowed to send messages (unpro-
cessed sensor data) directly to the cloud (they are connected only to the fog). We
considered two types of virtual machine images simulating existing Amazon Cloud
instances. The cloud1 node could utilise VMs with 8 CPU cores and 4 GB of memory,
their hourly prices were set to 0.202$, while the fog1, fog2 and fog3 nodes could
deploy VMs with 4 CPU cores and 2 GB of memory with 0.101$ hourly price. We also
set the IoT-side pricing by applying the IBM Cloud pricing schema, which charged
the consumer after the amount of data exchanged (in MB).

In our simulation, the microcontrollers could use either ESP32 or Raspberry Pi
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energy models, and they were equipped with a temperature-humidity sensor (similar
to our previous real-world measurements). In our weather forecasting use case, we
defined three different scenarios by scaling up the number of operating devices. In
the first case, we utilised 100 IoT devices, then we increased the number of devices
to 1,000, and finally, in the last case, the maximum device number was 10,000,
operated for 60 minutes within the experiments. The microcontrollers measured the
environmental parameters every 60 seconds, similar to the real device evaluation,
hence our goal was to map the real monitoring execution in the DISSECT-CF-Fog
simulation environment.

Figure 3.6: Energy consumption percentage of cloud, fog nodes and IoT devices

During the evaluation, we modelled a European-wide scenario, where the cloud
was located in Frankfurt, whereas the three fog nodes were positioned in London,
Budapest, and Vienna. The latency between them was determined based on online
ping statistics from WonderNetwork. The delay between a device and a fog node
was set to an average of 50 ms weighted with the actual physical distance, and
the positions of the devices were randomly generated across Europe. To highlight
the energy consumption of the nodes, the number of VMs was scaled up and down
dynamically according to the actual load caused by the tasks.

Concerning the evaluation results, the cloud resource utilisation was basically the
same in all six simulation cases, because they had to deal with around the same
amount of unprocessed data/tasks (coming from the fog layer). Nevertheless, in the
case of 1,000 devices, seven VMs could easily handle the scheduled amount of tasks
for both microcontrollers. The more data a task contains, the more time it takes for
the task to be processed, and additional incoming tasks may trigger new VMs to be
deployed (depending on the applied task scheduling policy threshold). In the third
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case having 10,000 devices, the number of VMs dramatically increased to 29, for
both device types.

Figure 3.6 highlights the results by comparing the energy consumption ratio of
the utilised cloud node, fog nodes, and IoT devices (i.e. microcontrollers) [120].
As we can see from the diagram, cloud consumption takes only a small part of the
total energy consumption in all six scenarios. The fog nodes are mostly capable of
handling the vast amount of data with their own resources generated by the IoT layer,
and there is no need to involve cloud resources drastically. Nevertheless, when we
scale up the number of microcontrollers in the IoT layer, our results show a significant
increase in total energy consumption, caused only exclusively by the operation of the
IoT devices.

Modelling Dew Computing

As the latest extension of DISSECT-CF-Fog, we demonstrated how to model Dew
Computing in the simulator in [124]. The concept of Dew Computing can be applied
to various domains [74], such as air transportation systems, including flying ob-
jects (meteorological drones, airplanes, etc.), healthcare systems aimed at real-time
monitoring of patients and interactions with doctors, smart manufacturing focus-
ing on Industry 4.0, and traffic control relying on distributed surveillance systems.
DISSECT-CF-Fog has a generic IoT device representation, which transmits the infor-
mation collected by the sensors to the processing units. To model dew-related use
cases realistically, this representation was extended to provide various behaviours,
including service migration to mobile devices and temporary Internet access limita-
tion.

Moving IoT devices may switch service providers at any time to ensure the best
QoS, which is called mobility-induced service migration. The main issue is how to
seamlessly redirect users to other computing notes without interrupting the service,
especially in the case of time-sensitive applications. Service migration can be distin-
guished based on timing [158]. In case of proactive migration (i), the migration of
the requested service must be done before the device starts using it. With a proac-
tive strategy, near-continuous service is provided; however, it requires a preliminary
decision. In case of an incorrect decision, unnecessary migration can be costly and
degrade QoS. With the reactive strategy (ii), unnecessary migration can be avoided;
however, partial outage of the service is likely because the migration process is in-
duced after the handover of the IoT devices. Whichever strategy is used, the network
properties, the physical distance, and the size of the service influence the length of
the process.

We focused on proactive migration mechanisms, because service interruption is
unacceptable for today’s real-time applications. As a result, the service is already
ready by the time the user’s device is received by the new node. In order to make
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such decisions, the strategy has to decide when and where the service should be
migrated. Typically it is initialized when the response time or the latency increase
due to the distance between the node and the IoT device. To decide which other
node (i.e., where) the service should be migrated, the actual load, network delay,
and physical position can be considered.

In our work a Markov chain was used for proactive migration prediction, be-
cause it is a popular method for mobility estimation due to its efficiency and in-
tuitiveness [52]. The Markov model looks at a set of data and attempts to estab-
lish rules between the different directions of movement. The next estimate is based
only on the measurements that preceded it. In our prediction technique a weighted
Markov model is used, that takes into account the partial results of previous steps
with different weights. It can be assumed that older movements have less effect on
the outcomes of the next move than recent movements. Detailed information on the
implemented proactive migration strategy can be read in [124].

The two main features of Dew Computing are (i) independence when the func-
tionality of the cloud service is still available even with a limited internet connection,
and (ii) collaboration, when the information sampled and collected is exchanged
automatically with the cloud service. It can happen continuously or when internet
access recovers. Dew Computing extends the cloud functionalities to the end users’
gadgets, such as laptops, smartphones, and so on, which is often called a dew server.

To model a smart/dew device as similar as possible to a fog/cloud node, virtual
layers should be provided. As most dew devices have general purpose memories and
CPUs, this is an easy task. In the virtualized dew device architecture, we assume that
there is only one VM at a time, which is vertically scalable, (i.e., more resources can
be allocated to a given VM if needed). On the other hand, a standard fog server is
also horizontally scalable (i.e., it can run multiple VMs at the same time). As a result,
the device behaving as a dew server (running a dew service) will be different from
a full-fledged fog node, as it will not be able to serve other devices, but will only
respond to data from its own domain, which is processed and evaluated locally.

To evaluate our latest simulator extension, we used an IoT-assisted weather fore-
casting scenario utilizing both fog nodes and dew services running on dew devices.
In this scenario, drones fly and collect information about temperature, humidity, and
wind in the atmosphere in the central European area12. The size of the whole area
was around 850 × 230 km2. At the beginning, the devices were located at the edge
of the map (uniformly distributed) and were heading to opposite sides. Such devices
were equipped with computing and storing units (8 CPU cores, 8 GB RAMs, 16 SD-
card), and flied with an average speed of 70 km/h. To be as realistic as possible,
we applied the cloud schema of the ELKH cloud of ELKH SZTAKI [79] to determine

12Droneblog.com (accessed in June, 2022): https://www.droneblog.com/how-drones-are-helping-
with-weather-forecasting/
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the CPU processing power, network operations, and storage capacities of physical
machines for experiments.

To evaluate the proposed proactive service migration strategy, the following use
cases were defined: (i) without motion prediction and (ii) with motion prediction
using the two-order Markov model. In the first case, this meant that a service migra-
tion only occurred when the actual position of a device was not covered by any node
(i.e., reactive migration); therefore, VMs were not initialized in advance. Our ex-
periments considered a fixed number of drones (i.e., 5000), but with different sizes
of node ranges (50 and 100 km), to measure the capacities and limitations of the
defined architecture. The devices were moving around for 12 hours, and the data
sampling period was set to 1 min. A measurement was equivalent to 100 bytes of
data generation.

The results of the evaluation scenario [124] showed that, when nodes over-
lapped each other, a device had multiple choices, and it could process the data
locally or remotely. The 100 km long range ensured effective data offloading and
device handover. This effectiveness also implied the fastest data processing, with a
1.35 min timeout. Due to the proactive service migration strategy, more VMs were
used (i.e. 35 in the case of the 100 km long range). Due to the uncertainty of the
proactive strategy, it dealt with the highest energy consumption of 25.89 kWh, and
initialized 22,487 migrations. It could also be observed that without motion predic-
tion, around 60% (203 MB) of the data – and with motion prediction, around 50%
(121 MB) of the data – were processed by dew devices. These ratios could also be
observed, when we take a look at how much time the devices spent processing data
besides generating data, which were 405.68 and 243.7 min. Finally, considering the
time needed to run the simulation, the average simulation time increased due to the
matrix multiplications used by applying the Markov-model.
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Summary of Chapter 3.

Contributions:

• Markus and I designed a classification taxonomy for IoT-Fog-Cloud
simulators, and categorized of existing simulators using it;

• I designed extensible models for IoT sensors, actuators, provider pric-
ing schemes, and Fog and Dew Computing; Markus and I proposed
the DISSECT-CF-IoT and DISSECT-CF-Fog simulators realizing these
models, and evaluated them with various scenarios;

• I designed a methodology for IoT-Fog-Cloud application behaviour
analysis; Markus and I proposed various resource allocation strate-
gies following this methodology;

Project involvement:

Duration Project name Type Role
2016-2017 UNKP-16-4 Postdoc. scholarship Leader
2017-2021 Internet of Living Things GINOP WP Leader
2022-2023 Smart Systems TKP2021-NVA-09 RG Leader
2020-2025 CERCIRAS (CA19135) EU COST Action MC Member
2019-2022 FK-131793 OTKA Leader

Resulting publications:

No. Title Venue Rank IF
1 A survey and taxonomy of sim. ... [118] Elsevier SIMPAT Q2 3.272
2 Investigating IoT Application ... [119] Springer CCIS Q4 -
3 What Does I(o)T Cost? [89] ACM ICPE WS - -
4 Cost-aware iot extension ... [121] MDPI FI Q3 -
5 Location-aware task allocation ... [123] IEEE PDP conf. CORE C -
6 Actuator behaviour modelling ... [122] PeerJ CS Q2 2.41
7 Modelling energy cons. ... [120] CLOSER conf. Best p. -
8 Modeling dew computing ... [124] MDPI AS Q2 2.7
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Blockchain-Fog-Cloud

Systems

T
HE Blockchain (BC) technology was proposed by Nakamoto [135] in 2008 as
a revolutionary concept in the fields of distributed trust, decentralized econ-
omy and security. It is a Distributed Ledger Technology (DLT) in the form

of a distributed transactional database, secured by cryptography, and governed by a
consensus mechanism [35]. This technology was first introduced as the backbone
of the Bitcoin ecosystem in 2009 [40]. As BC gained a high reputation and atten-
tion among research and industry communities, it has proven robustness against
the disadvantages of classical centralised systems. It is capable to provide trusted,
immutable, and fully decentralised data management and reliable payment method-
ologies. These criteria could solve the remaining major challenges of IoT-Fog-Cloud
systems, once suitably deployed.

In a very simple BC application scenario, an end-user sends a request to the BC
network, which consists of BC nodes, to perform a defined transaction (TX). TXs may
be data to be stored in the chain (i.e., payment data, reputation data, identity data,
etc.), or they can be smart contracts (SC), whose results can be either saved in a
centralised database (e.g. in the case of a cloud) or in a distributed manner (in cases
of fogs or BC). Once the TX is performed, the majority of BC nodes should agree that
it should be saved on the distributed ledger, and as a result added to the chain saved
in all BC nodes. In the operation of a BC network, the saving of TXs is gathered by
the so-called consensus algorithms (CA). Several approaches were proposed to reach
consensus about the state of the chain among the participating nodes (also called
miners). The most famous is the Proof-of-Work (PoW) CA, which was implemented
in 2009 in Bitcoin [135], the first BC system, and has been used in other robust BC
systems, such as Ethereum [183]. In PoW-based BCs, a BC node proves the validity of
its generated block of data by coupling a puzzle solution within the block. The puzzle
solution is generally characterised by the difficulty to obtain, while it can easily be
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validated once it is found. The puzzle is a mathematical problem that requires high
computational power to be obtained. Although PoW methods have proven strong
security and support for BC systems, they have some drawbacks, such as high energy
consumption and high latency, that encouraged R&D communities to search for other
trusted methods. The Proof-of-Stake (PoS) algorithm [105] was proposed a couple of
years later, in order to solve the high energy consumption problem implied by PoW.
However, PoS has some drawbacks, e.g. relatively low reliability [191]. In PoS-based
BCs, the BC node that is allowed to generate the next block is chosen randomly by
the system. To encourage the system to pick a specific BC node, staking more digital
coins in deposit will increase the probability of being chosen. This provides high
trust measures, as faulty generated blocks are not tolerated by the system, and the
staked coins of the malicious/faulty BC node would be burnt as a penalty. Other
approaches were proposed that provide enhanced trust in BCs, like the Proof-of-
Elapsed-Time (PoET) [54], and the Proof-of-Authority (PoA) [16]. PoET-based BCs
generate randomly selected times for BC nodes. The one node whose randomly
picked time elapses first, will be the one to generate the next block. PoA, on the
other hand, implies that only blocks signed by authorised members are validated
and confirmed by the BC network. Those authorised nodes must be known trusted
participants that can be tracked and penalised in case of faulty behaviour. Both of
these CAs share the property of being suitable for private and permissioned BCs,
while PoW and PoS are known to be suitable for public and permissionless BCs.

Though BC is the base technology behind crypto-currencies, yet it is implemented
in a wide range of different applications. The security and reliability, along with
the distributed trust management criteria provided by BC, excited the research com-
munity to integrate it with Fog Computing (FC), in a step towards reaching a dis-
tributed and trusted, data, payment, reputation, and identity management systems.
The integration of FC and IoT includes various challenges, such as the security and
efficiency of communications. The development of a successful IoT system is usu-
ally challenged by security and privacy issues, the need of efficient data manage-
ment schemes, resource-constrained devices, energy consumption, and connectivity
into long distances and periods of time [159]. The advent of IoT-Fog-Cloud systems
solved some of these challenges by providing flexible data processing and storage
services, leading to more than five billion devices connected over the Internet due to
IoT [127]. However, the main challenges remained open even, when FC is integrated
with IoT, such as the need for efficient data management schemes and enhanced pri-
vacy and security.

In this chapter, I summarise our main contributions in the field of integrating BC
to IoT-Fog-Cloud systems. In Section 4.1, I summarise our literature review on BC
integration approaches, and in Section 4.2 I introduce a simulation solution for BC-
FC systems, and summarise our research results in analysing BC-Fog-Cloud systems
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and applications. In Section 4.3 I introduce how BC-FC integration can assist task
scheduling decision making in clouds. Finally, in Section 4.4 I introduce our proposal
for an application of BC-based digital credential verification.

4.1 The Role of Blockchains in IoT-Fog-Cloud Systems

BC applications have been proposed in a wide variety of environments such as dis-
tributed voting, eHealth, Mobile Computing, Internet of Vehicles, etc. We believe
that integrating Blockchain technology with smart applications for managing data of
mobile devices can further enhance the privacy and security requirements of current
complex systems. In [30], we proposed a vision and research methodology for BC
integration options in smart systems. We envisioned a BC-enabled simulation frame-
work capable of analysing the integration possibilities with fog/edge and cloud in-
frastructures at different layers of smart systems. Such a framework could be able to
model and analyse the behaviour of BC networks in large-scale fog-enhanced smart
systems, while using different Artificial Intelligence (AI) methods.

The first step of our research in proposing integrated BC-FC solutions was to
perform a detailed literature review. In [25] we presented a survey of the state-of-
the-art solutions and approaches in this field, and now I summarise our findings. Our
goal was to highlight the roles BC played in IoT-Fog-Cloud systems, and to present
how the research community envisions future BC-FC integration solutions.

Table 4.1: Survey papers in FC-BC integration

Ref. Domain Year Aim
[150] Econoour & Politics 2017 Compare Cryptocurrency to national currencies
[161] CC-BC 2017 Compare Ethereum BC vs. Amazon SWF
[139] IoT-BC 2018 State-of-the-art Assessment
[179] FC-BC 2018 Compare Golem, iExec and SONM
[159] IoT-BC 2018 State-of-the-art Assessment
[65] Smart environments 2019 Assessment of Smart IoT-BC

[175] IoT-FC 2019 Security and Privacy
[66] IoT-FC-BC 2019 Cryptography assisment
[84] SIoV 2019 Trust factors, challenges, models, and vision
[43] eHealth-BC 2020 State-of-the-art Identity management systems
[20] IoT-FC-BC 2020 General concepts

Table 4.1 summarises the corresponding surveys found in the literature in 2020
[25]. A conceptual research surveying the criteria needed to develop a cryptocur-
rency system that integrates neuron technologies, artificial intelligence, BC, and FC
was presented in [150]. It mainly focused on the economical aspects rather than
technical details, in a step towards understanding the threats, challenges, benefits,
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and expectations of replacing national currencies with cryptocurrencies. A compar-
ison of the cost of computation and storage was performed by using Ethereum BC
and Amazon SWF was conducted in [161]. Accordingly, the average cost of executing
the same process instance on Ethereum was reported to be two orders of magnitude
higher than on Amazon SWF. Uriarte and De Nicola [179] technically surveyed three
ongoing Fog-based BC projects, namely Golem, iExec and SONM. The survey con-
cluded that even for those three most mature FC-Based BC solutions, they still lack
standardisation since they are mainly based on ad-hoc communications. The three
solutions use Ethereum platform with different properties. The PoCot [187] algo-
rithm was used in IExec, while a security deposit is made by providers, just like in
the PoS [33]. Reyna et al. [159] extensively surveyed the integration of IoT and BC,
by highlighting the challenges of BC technology, and investigating the integration
ways of IoT and BC. They stated BC as a key factor when deployed in IoT systems,
where information need to be securely shared among participants. They also high-
lighted the challenges and open issues in BC-IoT integration, such as the security, pri-
vacy, resource and scalability limitations. Fernandez-Carames and Fraga-Lamas [65]
provided a comprehensive study on approaches of smart campuses and universities.
They highlighted the main features, communications architectures, and BC potential
applications. According to their finding, using traditional database systems provides
more efficient latency and energy consumption than using BC, hence, BC deploy-
ment is not always the best choice. Tariq et al. [175] surveyed potential security and
privacy challenges in fog-enabled IoT systems, while they briefly discussed how BC
may enhance such systems. George and Sankaranarayanan [66] investigated light
weight cryptographic solutions that might be suitable for IoT-FC-BC systems. Trust
management models for the Social Internet of Vehicles (SIoV) were surveyed and
discussed in [84], where the authors analysed the trust factors in such systems, such
as the reputation, the environment, system expectations and goals. This survey also
reviewed existing trust models, and trending solutions to solve the challenges faced
by such models, e.g. how BC and FC can boost the development of trusted SIoV
systems. Bouras et al. [43] surveyed decentralised BC-based identity management
systems, and the possible scenarios of adopting such systems to improve health-care
applications. Alli and Fahadi [20] presented the basic concepts of IoT, FC, BC, the
FC-BC general deployment frameworks, opportunities, and challenges. They clari-
fied how the decentralisation property of BC can be applied at the device level, the
fog level, or the cloud level, and briefly discussed some deployable CAs.

All surveys approved the advantages of the BC-FC integration, which include en-
hanced security, integrity, reliability, fault-tolerance, and credibility, thanks to the
distribution of processing units of IoT and FC, and the decentralisation and trust
management mechanisms deployed within the BC mechanisms. On the other hand,
this combination of different technologies raised challenges, such as privacy, latency,
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legalisation, and standardisation issues.
In addition to reviewing these surveys, we identified 43 corresponding articles

that proposed systems benefiting from BC-FC integration, or addressed different chal-
lenges faced by such an integration in [25]. We found that most of the papers dis-
cuss solutions for IoT-FC-BC integration. This may be due to the fact that FC was
initially introduced to specifically increase and enhance IoT applications. However,
we found that other papers discuss FC-BC integration when deployed in different
environments, such as Smart Mobile Devices (SMDs), Internet of Vehicles (IoV), In-
dustrial Internet of Things (IIoT), and eHealth.

Our key observations based on this throughout review were the following. The
vast majority of BC-FC integration approaches used Proof-based algorithms. Most
of these deployed a variation of PoW-based CA, despite the fact that PoW-based BCs
are the highest energy consuming ones, compared to other algorithms. Although the
BC deployment has several advantages, there were several challenges faced by re-
searchers and developers of different BC-FC integrated solutions. These challenges
include the lack of standardised methods, informally guaranteed privacy, higher la-
tency compared to centralised solutions, higher energy consumption, and social mis-
trust of BC-based solutions due to the technology being juvenile. Additionally, some
applications in the IoV and the eHealth domains required highly adaptive mobil-
ity controls, due to the continuous movement of clients, which had usually been
solved by deploying FC mechanisms. Specifically, some articles approached some
enhancement of mobility handling while deploying BC, yet this negatively affected
other criteria, like latency and privacy. Finally, since crypto-currency concepts are
still not accepted nor legalised in many countries around the world, BC technology
is ignorantly illegal.

4.2 Modelling and Simulating BC-Fog-Cloud systems

In light of the general tendency towards scepticism around BC systems being reliable,
huge research and industrial projects are being encouraged to address issues and
vulnerabilities of those systems. This is because it is believed that a successful BC
deployment would definitely advance the Internet-of-Everything (IoE) applications.
Dubai, for example, has been planning to become the first smart city powered by BC
[168]. In 2017, the Liberstad project was launched to establish a private smart city in
Norway that adopts City Coin as its official currency. In 2019, China had launched a
BC-based smart city ID system [69], planning to have its own official digital currency
[169].

The major service providers, such as Linux, IBM, Google, and Microsoft, are also
interested in incorporating these technologies to their portfolio. To experiment with
complex systems benefiting from this integration before the deployment phase, suit-
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able and accurate simulation environments are needed. As we have seen in the
previous chapters, the use of simulators can save significant costs and efforts for re-
searchers and companies aiming at adopting these emerging technologies. As we will
see in this section, the available simulation environments in 2020 facilitate FC or BC
simulation, but not both.

The research and industry communities have been working hand-in-hand to solve
the major challenges discussed earlier, along with other technical issues. Such efforts
require reliable and flexible simulation environments that can mimic real-life scenar-
ios at the lowest possible costs. Simulation tools that were initially implemented in
the past for classical Peer-to-Peer (P2P) networks, such as PeerSim [131], may not
be able to cover all the mechanisms of a modern BC system. Although some recently
proposed systems use PeerSim, such as [141], it required a large amount of changes,
modifications, and additions to redesign it into a BC simulation tool.

We performed an extensive literature review on FC and BC simulation approaches
in [26], here I summarise its results. We found several simulation tools that mimic
FC-enhanced cloud systems, IoT-Fog-Cloud scenarios, and some tools that mimic BC
scenarios, each with specific constraints on the used CAs. In approaches targeting FC-
BC integration applications, general-purpose FC simulators are typically used, where
the BC is only implemented as an application case, such as in [107]. The results of
such simulation approach can be trusted valid for limited cases, such as providing
a proof-of-concept proposal. However, critical issues, such as scalability and het-
erogeneity in huge networks, need to be simulated in more specialised simulation
environments. To mention one critical case, the BC protocols, deployed in different
CAs, require a more precise and accurate deployment of the BC entities. Additionally,
interoperation in different layers of a FC-enhanced IoT-Cloud system is rather critical.
As some simulation scenarios need an event-driven implementation, others need a
data-driven implementation, therefore, scenario outputs may differ when simulated
using different simulation environments. Such a possibility of fluctuated simulation
outputs should normally lead to unreliable simulation results.

Anilkumar et al. [21] have compared different available simulation platforms
specifically mimicking the Ethereum BC, namely Remix Ethereum, Truffle Suite, Mist,
and Geth. The comparison included some guidelines and properties, such as initial-
isation and ease of deployment. The authors concluded that truffle suite is ideal for
testing and development, Remix is ideal for compilation and error detection and
correction, while Mist and Geth are relatively easy to deploy. Alharby and van
Moorsel [19] and Faria and Correia [64] proposed a somewhat limited simulation
tool, namely BlockSim, implemented in Python, which specifically deploys the PoW
algorithm to mimic the Bitcoin and Ethereum systems. Similarly, Wang et al. [184]
proposed a simulation model to evaluate what is named Quality of Blockchain (QoB).
The proposed model targeted only the PoW-based systems to evaluate the effect of
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changing different parameters of the simulated scenarios on the QoB. For example,
average block size, number of TXs per day, the size of the memPool, etc. affecting the
latency measurements. Furthermore, the authors identified five main characteristics
that must be available in any BC simulation tool, namely the ability to scale through
time, broadcast and multicast messages through the network, be event-driven, so that
miners can act on received messages while working on other BC-related tasks, pro-
cess messages in parallel, and handle concurrency issues. Gervais et al. [67] analysed
some of the probable attacks and vulnerabilities of PoW-based BCs through emulating
the conditions in such systems. They also classified the parameters affecting the em-
ulation and presented a quantitative framework to objectively compare PoW-based
BCs rather than providing a general-purpose simulation tool. Memon et al. [126]
simulated the mining process in PoW-based BC using the Queuing Theory, aiming to
provide statistics on those, and similar systems. Zhao et al. [192] simulated a BC sys-
tem for specifically validating their proposed Proof-of-Generation (PoG) algorithm.
Therefore, the objective of the implementation was to compare PoG with other CAs
such as PoW and PoS. Another limited BC implementation was proposed by Piriou
et al. in [148], where only the blocks appending and broadcasting aspects are con-
sidered. The tool was implemented using Python, and it aimed at performing Monte
Carlo simulations to obtain probabilistic results on consistency and ability to discard
double-spending attacks of BC protocols. In [57], the eVIBES simulation was pre-
sented, which is a configurable simulation framework for gaining empirical insight
into the dynamic properties of PoW-based Ethereum BCs.

Table 4.2: Blockchain simulation tools and their properties

Ref. PL PoW PoS PoA SC DM PM IDM FC
Faria and Correia [64] Python ✓ χ χ ✓ χ ✓ χ χ

Wang et al. [184] Python ✓ χ χ χ χ ✓ χ χ
Memon et al. [126] Java ✓ χ χ ✓ χ χ χ χ
Zhao et al. [192] Python ✓ ✓ χ χ ✓ χ χ χ

Piriou and Dumas [148] Python χ χ χ χ χ ✓ χ χ
Deshpande et al. [57] Java ✓ χ χ ✓ χ ✓ χ χ

Table 4.2 highlights the relevant properties BC-FC integrated solutions should
have, and compares the most mature solutions in the field [26]. PL, DM, PM, IDM
and FC are abbreviations for Programming Language, Data Management, Payment
Management, Identity Management and Fog Computing support, respectively. As
shown in the table, none of the previously proposed BC simulation tools made the
PoA algorithm available for simulation scenarios, provided a suitable simulation en-
vironment for identity management applications, or, most importantly, facilitated the
integration simulation of FC and BC technologies.
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Many other works can be found in the literature, in which a part of a BC system,
or a specific mechanism is implemented. The simulated part is only used to analyse
a specific property in strict conditions, or to validate a proposed technique or mecha-
nism under named (and probably biased) circumstances, such as in [185] and [157].
It is also worth mentioning here that some open-source BC projects are available and
can be used to simulate BC scenarios. For example, the HyperLedger [177] projects
administered by the Linux Foundation are highly sophisticated and well implemented
BC systems. One can locally clone any project that suits the application needs and
construct a local network. However, those projects are not targeting simulation pur-
poses, rather provide realised BC services mostly for industrial projects. Additionally,
most of these projects, such as Indy, are hard to re-configure and, if re-configured,
very sensitive to small changes in their code.

Figure 4.1: Workflow of a simulation run using the proposed FoBSim tool
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4.2.1 FoBSim

In [26], we proposed FoBSim, a BC-FC simulation environment that can simulate
different integration scenarios of FC and BC technologies, filling the gaps identified
in our literature survey summarised in the beginning of this section. FoBSim im-
plements different CAs, namely PoW, PoS, and PoA that are ready to be deployed
in any scenario. It facilitates the deployment of BC miners in the fog or end-user
layer. It allows different services to be reliably provided by the BC network, namely
Data Management, Identity Management, Computational Services (through SCs),
and Payment/Currency transfer Services. It provides both parallel and non-parallel
execution for mining processes. Enhanced communication among the network nodes
is supported by gossiping, which can be optionally selected, leading to greater consis-
tency in different possible network topologies. To the best of our knowledge, FoBSim
was the first simulation environment released in 2020, whose primary goal was to
mimic integration scenarios of FC and BC technologies.

In FoBSim, the fog layer can be configured according to the scenario that needs to
be simulated. For example, the number of fog nodes, the communications within the
fog layer and with other entities of the simulated system, and the services provided by
the fog, can all be modified. The simulator was implemented using Python v3.8, and
made available as an open source software. It can easily be extended by adding the
needed classes and modules and, hence, cover necessary proposed scenario entities.
Its architecture and conceptual workflow is shown in Figure 4.1 [26]. It was designed
in line with the general architecture of a reliable BC simulation tool presented in
[110]. As shown in the workflow, different CAs can be used, different services of the
BC network can be declared, and different placement scenarios of the BC network
can be chosen. When the BC network is located in the fog layer, the number of
BC nodes does not need to be selected, because each fog node is also a BC node.
Nevertheless, number of task requester end-users connected to each fog node needs
to be added, while some fog nodes in a PoA-based scenario might not be authorised
to mint new blocks. Once the network is built, the system model can be run and
tested.

Network connectivity characteristics are a major and critical concern in any BC
system. To facilitate a network architect’s job, FoBSim allows to define the number
of nodes in each layer, the number of neighbours of each BC node, and the general
topology of the network. Additionally, all BC nodes are connected into one giant
component by default, whether they were deployed in the fog layer or end-user layer.
Consequently, the effect of manipulating the topology of simulated networks can be
easily captured.

Concerning the operation of the simulator, the first block added to the chain in
each simulation run is the most important block of the chain. Different scenarios
imply different formats of this block, and different methods to broadcast it among,
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and be accepted by, miners. In the current version of FoBSim, a genesis block is
initiated with a list of miners available when this block was generated. The block
number, previous hash, and nonce are all set to 0. The timestamp of the genesis
block indicates when the chain was launched, and hence all blocks shall have later
timestamp values than this first timestamp.

Currently, there are three available CAs ready to be used in different simulation
scenarios, which are not abstracted away, but actually executed during the simula-
tions. The use of gossiping can be activated regardless of the selected CA. A Gossip
Protocol [41] is usually deployed in P2P systems for maintaining the consistency of
distributed data saved in decentralised networks. Specifically in BC systems, min-
ers regularly, yet randomly, gossip with their neighbours about current versions of
the chain, aiming to reach consensus finality as soon as possible. According to spe-
cific characteristics of the BC, locally saved chains are updated so that all confirmed
chains will become equivalent after some delay [78]. The equivalency (that any BC
system is seeking) is defined by the content similarity of the chains (i.e. TXs, hashes,
etc.), and the order similarity of the confirmed blocks. Gossip protocols are usually
fault tolerant as many failing nodes do not affect the protocol, and they can adapt
to the dynamics of the network as several solutions have been proposed in the liter-
ature to manage nodes joining and leaving the network. If gossiping was activated
in the simulation, each miner will gossip once a new block is received by default. A
miner, who is gossiping, requests information about the longest chain, and adopts it
if its contents were agreed on by the majority of the network. Additionally, if a miner
receives a new valid block, and the resulting local chain was longer than the global
chain, the miner updates the global chain instantly.

In a simplified scenario of a PoW-based BC in the simulator, miners collect TXs
from the mempool (which is a shared queue in FoBSim), and accumulate them in
blocks that they mint. Specifically, all available miners compete to produce the next
block that will be added to the chain. The fastest miner producing the next block
is the miner whose block is accepted by all other miners of the BC. Synchronously,
all blocks that are being minted by other miners are withdrawn, and all TXs within
are sent back to the mempool. To mimic this scenario in FoBSim, we deployed the
multiprocessing package of Python and trigger all miners to work together on the
next block. Each miner then works within an isolated core of the device on which
the simulation is conducted. When a Miner receives a new block, it checks whether
the hash of the block (in which the nonce or the puzzle solution is included) is in
line with the acceptance condition. Furthermore, the receiver miner checks whether
sender end-users have sufficient amount of digital coins to perform the TX (in the
case of payment functionality). Any miner is authorised to produce a block and there
is no miner verification required. More details on the inner workings of the simulator,
and on the implementation of other CAs can be read in [26].
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Following the validation and verification methods of the simulation models pre-
sented in [163], I presented the technologies and paradigms that exist within our
proposed FoBSim simulation environment, and highlighted its novelty compared to
other related works. Next, I show, how we validated it usability through various case
studies. We performed detailed experiments, validations, and evaluations in the fol-
lowing papers: [26], [96] and [95]. In the next subsections, I present three use cases
of these works. During performing all the experiments, we deployed FoBSim on the
Google Cloud Platform, using a C2-standard-16 VM (clocked at 3.8 GHz, 16 vCPUs,
64 GB memory), running Ubuntu 20.04 LTS OS.

4.2.2 Comparing Time Consumption of PoW, PoS and PoA

When PoW, PoS and PoA are compared in terms of average block confirmation time,
PoW is expected to present the highest rates. This is due to the mathematical puzzle
that each miner needs to solve, in order to prove its eligibility to mine the next block.
In PoS, the network algorithm randomly chooses the next miner, while it slightly
prefers a miner with a higher amount of staked coins. Once a miner is chosen, all
miners are informed about the generator of the next block and, thus, the miner needs
to perform no tasks other than accumulating TXs in a new standard block. Other
miners then accept the new block, if it was generated by the expected generator.
The verification process takes nearly no time (assuming that the transmission delay
between miners is negligible).

Using PoA, all authorised miners mine new blocks, verify newly mined blocks, and
maintain the chain locally. Meanwhile, unauthorised nodes verify new blocks and
maintain the chain, but do not mine new blocks [56]. Every BC node has a regularly
updated list of authorised miners. This implies that the more authorised entities,
the more complex the verification on the receiver side can be. Consequently, it is
recommended to reduce the number of authorised miners to decrease the complexity
of verification [37]. Meanwhile, the more maintainers in a PoA-based BC, the higher
the overall security level of the system.

Table 4.3: Simulation parameters configuration for Case 1

Simulation parameter\CA PoW PoS PoA
no. of miners 5–500 5–500 5–500
neighbours per miner 4 4 4
puzzle difficulty 5–20 – –
Authorized miners All Random choice 2–25
Initial wallet – 1000 –
BC functionality Data Management Data Management Data Management
BC deployment end-user layer end-user layer end-user layer

To exemplify the use of FoBSim, we performed several experiments deploying
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different CAs under similar conditions. The simulation runs specifically focused on
the measurement of the average time consumed by each CA, from the moment when
a miner is triggered to mine a new block, until this mined block is confirmed by at
least 51% of other BC miners.

As shown in Table 4.3 [26], we changed the difficulty of the puzzle during the
PoW-based BC simulation runs from an easy level (i.e. 5), to a harder level (10), and
finally to very hard levels (15) and (20). During the runs where PoA was used, we
changed the number of authorised miners from 2/5 (2 authorised out of a total of
5 miners), 5/10, 10/20, and 25 authorised miners for the rest of the runs. We set
the Data Management functionality, and stabilised the total number of TXs delivered
to the mempool unchanged, which gives equivalent input for all simulation runs.
However, we changed the number of TXs generated by each end-user to be equal to
the number of miners in each run. Concerning the runs where a PoS is deployed,
miner nodes were initiated with a wallet that has 1000 coins, allowing miners to
stake random amounts of coins (with a block reward of 5 coins). We placed the BC
in the end-user layer for all runs.

Figure 4.2: Average block confirmation time for: (a) PoS-based vs. PoA-based BC; and
(b) PoW-based BC with difficulty 5, 10, 15, and 20

Some of the results obtained are depicted in Figures 4.2.a and 4.2.b [26]. We
can see from the results that PoW-based BCs consume much more time to confirm a
block, than PoA and PoS-based BCs, as expected. Additionally, the average block con-
firmation time, in PoW-based and PoA-based BCs, seems to be directly proportional
to the BC network size, which complies with the results presented in related works,
such as [130]. Comparatively, an average block confirmation time in a PoS-based BC
seems unaffected by the network size, which complies with the results presented in
[50].

4.2.3 Analysing Distributed Ledger Consistency

A major component of a BC-based system is the Distributed Ledger (DL), whose
consistency is a problem that describes the unreliability of DLs in dense and highly
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dynamic networks [51]. This problem concerns maintaining exact copies of the DL,
as the appearance of different DL versions is generally expected in realised scenarios.
Reasons for such issue include both the transmission delay between network entities,
and the continuous and concurrent alteration of DL data. The concept of finality is
usually related to the DL consistency, which is the state of the BC, under which TXs
cannot be cancelled, reversed or changed by any member of this network under any
circumstances [32]. Although Nakamoto’s model did not perfectly solve the consis-
tency problem, it proposed a highly accurate, probabilistic solution. Specifically, the
next block of data is introduced into the network, when its previous block had, most
likely, sufficient time to be confirmed on the DL (i.e., synchronised between the ma-
jority of network entities). The occurrence of two different data blocks at the same
time would mostly lead to a temporary inconsistent state of the DL, which is termed
forking [85].

The enforced delay between blocks depends mainly on the ability of the system
entities to find a puzzle solution. The difficulty of the puzzle is indeed updated
through time according to the design requirements (e.g. Bitcoin’s predefined delay
is 10 mins). Such a model is classified as a Probabilistic Finality System. That is,
the system continuously reduces the probability of concurrent DL updates, but the
probability never reaches zero. Examples of algorithms belonging to this category
are the PoW and the PoET. The other category is the Absolute Finality System, where
the system allows its entities to produce the next block, only when the previous block
is confirmed. Examples of algorithms belonging to this class include the PBFT and
some versions of PoS [86].

The mechanisms deployed in BCs to decrease the probability of forking can be
concluded by three main approaches. First, a gossiping protocol can be used to syn-
chronise confirmed blocks and longer DLs. Second, the puzzle difficulty can be con-
tinuously incremented, which gives a window to network entities to gossip, leading
to increased total energy consumption of the system and/or decreased total through-
put. Third, the use of full and light nodes in the network can also be a solution
[39], so that gossiping is performed by fewer network entities. Consequently, data
propagation through the network shall consume less time.

In [96], we analysed the forking phenomenon in BC-based systems using a proba-
bilistic finality mechanism. We defined various experiments in FoBSim, and executed
them by using the PoW algorithm to represent a probabilistic finality system. As we
performed our analysis under different conditions, we evaluated the consistency of
the DL, by finding the ratio of forks appearing within the DL to the maximum possible
number of chain versions. Here, we present the main result achieved and summarise
the lessons learnt.

By deactivating the gossiping functionality in FoBSim, we could detect the ap-
pearance of a fork during a simulation run. That is, more forks appearing in the
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Table 4.4: Scenarios for observing the forking effect of BC parameter changes

Scenario oscillated
factor

run-1
run-2

run-3
run-4

run-5
Average

δ

Effect

M = 100 1 1 1 1 3 1.4
1 M = 500 5 1 4 2 2 2.8 ↑

M = 1000 37 11 4 2 9 12.6 ↑
M = 1500 26 57 54 28 24 37.8 ↑
N = 2 91 105 78 69 91 86.8
N = 3 87 66 42 65 79 67.8 ↓

2 N = 5 45 50 53 65 64 55.4 ↓
N = 8 117 73 71 45 71 75.4 ↑
N = 15 417 418 409 374 413 406.2 ↑
Ω = 5 138 125 142 134 144 136.6
Ω = 10 143 123 128 126 142 132.4 ↓

3 Ω = 15 129 135 125 140 136 133 ↑
Ω = 20 22 14 20 9 31 19.2 ↓
Ω = 25 1 1 1 8 1 2.4 ↓
β=2 3 3 3 3 3 3
β=3 4 3 4 4 3 3.6 ↑

4 β=5 66 72 42 52 89 64.2 ↑
β=8 38 51 39 62 58 49.6 ↓
β=12 393 376 389 405 379 388.4 ↑
β=18 459 461 469 466 460 463 ↑

τ = 0 ms. 2 5 2 1 17 5.4
5 τ = 5 ms. 26 47 7 24 6 22 ↑

τ = 10 ms. 21 46 2 6 40 23 ↑
τ = 15 ms. 31 72 37 11 103 50.8 ↑

ledger indicate higher levels of DL inconsistency under the simulated scenario condi-
tions. Manipulating simulation conditions facilitates the analysis of the direct effect
of those conditions on DL consistency. In each simulation scenario, we oscillated the
configuration of one condition, and stabilised the others. We ran each simulation sce-
nario five consequent times under the same conditions, and computed the average
number of chain versions. The five parameters that were oscillated are the number
of miners M , the number of neighbours per miner N , the puzzle difficulty Ω, the
number of simultaneously mined blocks β, and the average Round Trip Time (RTT)
between neighbours τ . We conducted experiments on the Google Cloud Platform
using an E2-standard-32 VM instance (up to 3.8 GHz, 32 vCPUs, 128 GB memory)
running a Ubuntu 20.10 OS. Table 4.4 shows the applied configuration parameters
and the measured results for each simulation scenario [96]. The table also concludes
the general observed effect of each factor oscillation on δ.

Concerning Scenario 1, the results showed that δ is proportional to the number
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of miner nodes participating in the BC network. For Scenario 2, the table shows that
δ is inversely proportional to the number of neighbours per miner, as long as the
ratio N : M ≤ 1%. This result is similar to the results presented in [109], because
the impact of N was studied for a maximum of four, and with a network size of
500. However, we found that for the case where the ratio N : M > 1%, δ is directly
proportional to N . This observation is somewhat consistent with the observations
presented in [164]. That is, it was argued that N < logM may increase the number
of forks in a given BC, due to several weak links acting as bottlenecks. Consequently,
it was recommended that N shall be set to ≥ M−1

M
logM . Taking the Bitcoin network

as an example, the authors argued that it is safe, with regards to N , since it operates
within a stable range of 22–99 connections (per full miner nodes). However, we
argue that although such range is safe to guarantee partition tolerance, it is not
optimised in terms of consistency. As [164] sets the recommended lower bound of
N for safety, our results recommend an upper bound of N , for optimisation, to be
N ≤ ⌈M/100⌉.

For Scenario 3, simulation results showed that δ was inversely proportional to
the puzzle solution difficulty. Such result is naturally expected for a system with
a probabilistic finality. Increasing Ω is the BC solution to decrease the probability
of β > 1. Additionally, the increment of Ω provides sufficient window for miners
to gossip, and compensates for the continuous enhancement of mining machines.
Such continuous enhancement (predicted by Moore’s law [165]) may lead to faded
effect of a static Ω through time. From another point of view, compensating for the
advancement of computational capacities of mining machines only by increasing Ω

implies higher energy consumption through time as discussed earlier. In Scenario
4, the δ was directly proportional to the number of blocks simultaneously mined
and broadcast in the BC network. In the case where M ≤ 500, simultaneous blocks
appearing in the network are tolerated in terms of Y up to β = 8. Finally, the results
for Scenario 5 showed that δ was directly proportional to the average transmission
delay between neighbouring miners. These results conform with the proportionality
characteristic presented in [112], where higher transmission delays predicted higher
forking probability. Furthermore, it agrees with [81], where it was shown that lower
delay between BC miners implies higher efficiency in terms of consistency.

The individual, relative effect of each analysed, oscillated factor can also be drawn
from the results [96]. That is, increasing M can indeed decrease the ledger consis-
tency level, yet it is not as effective as increasing the number of neighbours per miner
(e.g. adding 500 miners to the network increases Y with about 1%, while changing
the number of neighbours per miner from 8 to 15 increases Y with about 60%).
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Optimizing Neighbour Selection in BC

I mentioned before that gossiping can be used to regain a consistent state of a BC
faster, and to reduce the time needed for inter-miner communication during the op-
eration of a BC. Based on the results we obtained in this section so far, we further
proposed a Dynamic Optimized Neighbour Selection (DONS) protocol in [31], to
enhance neighbour selection (NS) for the BC network nodes, which could further
enhance these aims. More neighbours per miner, and higher delivery time rates be-
tween neighbours lead to lower levels of DL consistency [63, 164]. Our proposed
DONS protocol requires the minimum number of neighbours per miner for a BC, by
directing the miners to communicate with a globally optimised selection of neigh-
bours. DONS decreases the number of cycles within a network path that shared data
walks from any peer to any other peer (i.e. if there are no cycles, we get a Span-
ning Tree, which is an optimal solution [151]). In this work, we showed how DONS
decreases the maximum time spent from generating data by any peer, till it reaches
all the peers of the network. Additionally, we discussed how DONS can address the
scalability issues of the network, leading to adaptive optimisation of NS, despite con-
tinuous change in network topology.

The proposed protocol includes a privacy-preserving leader election method, al-
lowing one of the peers within the BC network to compute the Minimum Spanning
Tree (MST) without previous knowledge of network peers identities (e.g. IP ad-
dress). Using one of the famous MST algorithms (e.g. Prim’s or Kruskal’s), the leader
computes the MST and broadcasts it to all the network. Every recipient of the MST
then can read only its identity and its neighbours’ identities, leading to each peer
of the network communicating with the optimised selection of neighbours. We also
evaluated the DONS protocol against other approaches, using two randomised net-
work models, namely Erdos-Renyi model [60] and Barabasi-Albert model [155]. The
DONS protocol was analytically evaluated in terms of security and privacy, and was
experimentally evaluated in terms of propagation time and message overhead against
the currently used RNS and Round Trip Time based Neighbour Selection (RTT-NS)
methods. The leader election method used is theoretically and experimentally eval-
uated, in terms of time and message complexity [76], against a recent solution pro-
posed in [140]. The evaluation results showed high levels of security, privacy and
efficiency.

Overpowering PoW-based BC Networks

Upon the proposal of Bitcoin, several main security-related assumptions were made
depending on the postulated high security of the utilised cryptography methods. As
long as these main assumptions were not violated, the claimed high security of PoW-
based BCs shall remain dependable. One of these assumptions is that PoW-based BCs
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will always be secure against a dishonest miner, as long as its computational power
proportion is less than 50% of the total computational power of the network. Hence,
controlling a minority of the computational power of a network by a dishonest party
is claimed to be tolerated in Nakamoto’s model. In our most recent work [28], we
discussed probable alternative PoW mining methods, other than those presented in
the original paper [135].

We reviewed several approaches that can be used to undermine or overpower
PoW-based BCs. We discussed, how a dishonest miner can take over the network us-
ing improved Brute-forcing, AI-assisted mining, Quantum Computing, Sharding, Par-
tial Pre-imaging, Selfish mining, among other approaches. As a result, we found that
several practical approaches are available in the literature to undermine PoW-based
BCs under some circumstances, even with minority. We showed that a function that
generates random values, whose randomness level matches the randomness level of
SHA-256, can be used to improve PoW mining. Machine Learning can also be used
to conditionally enhance PoW mining, in terms of block finality, up to 26.6%. An
attacker that controls 35.4% or more of the network can unfairly mine PoW-based
Blockchains using our proposed method using Machine Learning.

4.2.4 Comparing BC Deployment Options for COVID Tracking

Following the outbreak of the COVID-19 virus in early 2020, a new pandemic has
spread across the world, changing our lives. Emerging technologies have played an
important role in providing various solutions to prevent virus spreading. Responding
to the COVID-19 pandemic, smart applications [61] have started to be developed
related to prevention of virus spreading or management of related societal prob-
lems, such as travel restrictions caused by the pandemic. The vast majority of these
applications are mainly centralised and non-smart, which makes them carry single-
point-of-failure, privacy, high latency, and legal issues, along with the lack of efficient
handling of mobile devices [147]. In addition, the challenges in real-life scenarios
include different healthcare institutions, different stakeholders within the supply-
chain, heterogeneous networks, multicultural and highly distributed and dynamic
system entities [108].

The adoption and mass acceptance of such COVID-19-related applications are
greatly hindered by the general lack of trust associated with the nature of tracing
apps, and the reluctance of people to share their personal data. To overcome this
issue, we need to revise current solutions, and design methods addressing privacy-
preserving, privacy-awareness, trust, explainability and interoperability [70].

To address this challenge, we envisioned a solution for gathering, storing, validat-
ing and analysing COVID-19-related data, including infections and vaccinations of
citizens of a region. In this research, we proposed VACFOB [95], a general architec-
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ture for VACcination information validation and tracking with a FOg and cloud-based
Blockchain system. In this vision, we merged FC and BC technologies to provide a
privacy-aware and scalable approach for interoperable and effective vaccination in-
formation management. We derived three scenarios from real world vaccination
reports, and used their requirements to evaluate the scalability of various BC-based
systems with the FoBSim tool. The results can serve as recommendations for possible
implementations of our proposal, which could contribute to a better and more effi-
cient fight against COVID-19. Here, I summarise the most relevant findings of this
study.

Figure 4.3: The proposed VACFOB architecture for COVID-19 vaccination verification
and immunity analysis

The architecture of our VACFOB solution is depicted in Figure 4.3 [95]. As shown
in the figure, the used BC infrastructure is installed in the fog and possibly backed up
at the cloud layer. Fog nodes can host one or more miners and serve several COVID-
related information providing bodies close to them. There are four different end-user
types of the system (see end-user layer in Figure 4.3): (i) issuing bodies, who can
issue vaccination certificates for citizens of a country; (ii) hospitals or private testing
centers that are allowed (certified) to perform testings or to report health status
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of citizens; (iii) border control officers or other legal parties, who have to verify
vaccination of citizens; and finally (iv) anyone, who wishes to make public queries
for analysing a certain virus spreading. The means for this latest type may depend
on the actual type of BC infrastructure utilised. In the first three cases, citizens
should identify themselves, and the corresponding issuing and reporting bodies need
to retrieve the ID hash, and append the status change for the BC transaction or
query. In these processes the required private data are stored in a secure, centralised
governmental database (i.e. off-chain).

In case we consider only vaccination verification as the sole role of the system,
a public-permissioned BC would be suitable to allow anyone to validate vaccination
of a citizen. To enable privacy and comply with GDPR, the issuing body should sign
the vaccination or testing document with its digital certificate (stored off-chain), in
this way any validator (who wish to validate a citizen vaccination) can perform the
verification on the data queried from the BC. The border control entity performs such
action in our figure. The extracted citizen ID will be the ID hash stored in a block,
which is considered personal data, therefore, the collection and management of user
consent must be ensured by the participating bodies (having permission to save new
blocks) [77].

In case we would like to restrict access to the system, we may close verification
for the public, and allow only specific bodies to perform queries, so the ID hash is not
shared with the citizens and others through them. To this end, a Trusted Third Party
(TTP) can be introduced and placed in a central cloud, who governs BC participation.
In this case, digital signing of the documents is not necessary; any pseudonymised
identifier in the form of a hash can be generated for all citizens (during first regis-
tration) and stored within the local private off-chain database together with other
related personal and health data. From now on we consider this case, and suppose
that only a certified body (permissioned) can get the citizen ID hash from the local
private governmental or regional database, so not everybody can verify vaccination.
Nevertheless, by allowing public queries for pseudonymised information can still sup-
port gathering statistics and predictions, e.g. on virus spreading or immunity success
rates.

To allow vaccination verification, each transaction should contain the following
properties (as shown in Figure 4.3): (i) a digitally signed document extract or a
pseudonymised identifier of a citizen (ID hash), (ii) the actual status change (e.g.
got vaccinated with some type of vaccine, or recovered/negatively tested), and (iii)
a timestamp and location information (exact date and city). Note that this solution
does not restrict its use to COVID-19 virus only; we can use it to handle simultane-
ously other types of virus infections/vaccinations as well (such as SARS, MERS or flu
variants). In case we consider the border control use case for vaccination checking
(as shown in the right bottom of Figure 4.3), the officer at the border first checks
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the personal ID of a citizen to pass. Then it enters the ID to the local governmen-
tal database to retrieve the corresponding hash ID, that should be used to make a
query (look up a transaction) in the BC. If a transaction block is found with the ID
hash containing vaccination information with a timestamp within the accepted range
(e.g. 6 months), the citizen can pass without quarantine restriction. A concrete im-
plementation of our VACFOB proposal could be analysed and evaluated according
to different metrics, such as security and privacy, scalability, or operation cost. Con-
cerning privacy-awareness, our proposal is GDPR-compliant, and by utilising the fog
layer, its resources provide lower response times and better scalability, compared to
a purely cloud setup.

The exact performance values of a future implementation will depend on the
actual BC implementation we use. Therefore, we defined three different scenarios
based on real world data with different scalability needs. In a nation-wide scenario,
each BC miner in the fog can serve one or more end-user nodes that handle requests
of certain bodies (concerning vaccination certificate issuing, updates, health state
changes or information requests). In our experiments, we relied on information
shared on the website of OurWorldInData.org [125], where we can find the statistics
for 2020 on the coronavirus pandemic for more than 200 countries. To estimate
the number of daily transactions for a region for our proposed system, we gathered
information on daily performed vaccinations (Vacc.), new cases confirmed (Cases),
and performed tests (Tests) for two randomly selected dates. From these data we
could see that for a small country, such as Hungary (HUN) we may consider around
10 to 200 thousand daily transactions (status updates for citizens). For a big country,
such as Germany (GER) we may expect around 1 to 3 million daily transactions,
while for continents (Europe - EU, United States - US) they may go up to 5 million.
Based on this, we investigated different BC systems that could be used for VACFOB
implementations to serve different regions. We use the following scenarios with
detailed parameter settings in FoBSim. Scenario 1: 100 thousand daily transactions
for COVID-19 status updates for citizens; Scenario 2: 1 million daily transactions for
COVID-19 status updates for citizens; Scenario 3: 10 million daily transactions for
COVID-19 status updates for citizens.

We assumed that transactions are performed during working hours (e.g. eight
hours per day), so we can roughly estimate up to 5 transaction per second (TPS) for
Scenario 1, up to 50 TPS for Scenario 2, and finally, up to 500 TPS for Scenario 3. A
concrete BC infrastructure can be characterised: by the number of fog nodes and its
miners in the system; the maintained block size, which is proportional to the preset
number of transactions per block (TPB); and the applied consensus algorithm. By
investigating different parameter settings, we could analyse how to meet the above-
mentioned required TPS values.

The FoBSim simulation experiments using PoA and the PoS consensus algorithms
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were performed locally, on an Intel i5-8265U CPU (8 cores, 3.8 GHz, 12 GB mem-
ory) running a Windows-10 OS. The PoW experiments were run on an HP Synergy
480 Gen10 server node having 2 Intel Xeon Gold 5118 CPUs (2.3 GHz / 12-core,
each) and 384 GB memory, running a Ubuntu-20.10 OS. We have fixed the number
of transactions to be processed in all simulation runs to 10,000 transactions. We per-
formed each simulation run five times, and took the average value for TPS as they
marginally fluctuated.

Table 4.5: Selected performance results for BC deployment options

Parameter settings Results
Sim. No. of No. of No. of TPB Delay Cons. TPS Target
No. nodes miners neigh. (ms) alg.
9 10 10 2 100 15.2 PoA 238 ✓

10 50 50 6 100 15.2 PoA 46 ✗

17 10 10 2 100 63.4 PoA 129 ✗

21 10 10 2 1000 63.4 PoA 1205 ✓

1 10 10 2 100 15.2 PoS 206 ✓

8 50 50 6 100 15.2 PoS 28 ✗

16 10 10 2 1000 63.4 PoS 860 ✓

17 50 50 6 1000 63.4 PoS 173 ✗

1 100 100 10 100 63.4 PoW-10 263 ✗

2 100 100 10 1000 63.4 PoW-10 1025 ✓

3 100 100 10 100 63.4 PoW-15 246 ✗

4 100 100 10 1000 63.4 PoW-15 599 ✓

By determining the parameters to investigate certain BC infrastructures, we made
the following restrictions. We varied the number of fog nodes and miners from 10
to 100, and the number of miner neighbours from 2 to 10. Concerning the block
size in the BC system, Ethereum stores around 70 TPB, while Bitcoin stores around
2000 TPB on average; therefore, we decided to use 100 and 1000 TPB values for
the experiments. To set the delay between neighbours in the fog layer we used the
WonderNetwork service. We counted network latency between big cities correspond-
ing to the scenarios defined before (HUN: Vienna-Budapest (7.4 ms), GER: Munich-
Amsterdam (15.2 ms), EU: Warsaw and Porto (63.4 ms)). For simplicity, we kept
these numbers constant even for a higher number of fog nodes as well. Concerning
the settings of the consensus algorithms, we varied the difficulty of the puzzle during
the PoW-based BC simulation runs by changing the hardness level from 10 to 20.
This value basically represents the number of zeros at the beginning of the hashes to
be mint. During the runs where PoA was used, we fixed the number of authorised
miners to 3/5 (3 authorised out of a total of 5 miners). The measured TPS value
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results are shown in the eighth column of the tables, while we denoted in the ninth
column, whether the experiment meets the required target threshold or not.

Figure 4.4: Comparison of different consensus algorithms for Scenario 3

First, we performed simulations with the PoA algorithm, then with the PoS algo-
rithm, and finally, with the PoW algorithm. Simulation no. 1–8 aimed to cover the
needs of Scenario 1 (with 5 TPS target value), no. 9–16 cover Scenario 2 (with 50
TPS), and no. 9–16 cover Scenario 3 (with 500 TPS). Selected evaluation results
are summarised in Table 4.5 [95]. From this table we can see that by using PoA,
simulation no. 10 and 17 failed to provide the required TPS values, while simula-
tion no. 9 and 21 succeeded to provide the necessary performance. By using PoS,
simulation no. 1 and 16 managed to meet the target TPS, but simulation no. 8 and
17 resulted in a failure to meet the expectation. Compared to the PoA algorithm,
we can see that a BC using PoS can perform up to 50% less transactions within the
same timeframe. Since simulations with PoW are generally very compute intensive,
we selected only the largest parameter settings of Scenario 3 to be evaluated in the
third set of experiments. To perform these experiments, we used an HP Synergy 480
Gen10 server node with 24 CPU cores. The results show that simulation no. 2 and 4
provided successful results concerning the target TPS.

Finally, we compared the performance of the utilised consensus algorithms. In
Figure 4.4, we compared the performance of BCs using different CAs for Scenario
3 of our VACFOB proposal [95]. We can see that PoW with difficulty levels 10 and
15 can provide the best performance for the applied settings and requirements, but
these variants can only meet the target TPS when 1000 TPB is applied.

In summary, we can state that determining the number of fog nodes and the
number of transactions per block to be stored in the BC are crucial. For smaller scale
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systems (e.g. in Scenario 1) we can keep these numbers low, but in case we need
to cover a larger region, it is inevitable to scale up the number of fog nodes, which
implies that the TPB value needs to be raised as well to have the necessary perfor-
mance. We believe that our systematic evaluation can provide a general overview on
the behaviour of BC-based systems, and in case of a possible implementation of our
VACFOB proposal, it can serve as a guideline to ease parameter selection.

4.3 Enhancing Task Scheduling in BC-Fog-Cloud Sys-
tems

We have seen in Chapter 1, task scheduling in Cloud Computing is challenging, since
it is an NP-hard problem Ala’a Al-Shaikh et al. [18]. Taking a look at the literature,
there are many scheduling algorithms addressing optimisation issues of task alloca-
tion to Virtual Machines (VM) or Virtual Resources (VR) in cloud datacenters [24].
Ant Colony Optimisation (ACO) [59] was introduced as a Computational Intelligence
meta-heuristic technique for optimising a wide set of different problems, including
task allocation. ACO takes inspiration from the social behaviour of some ant species,
who deposit pheromone on the ground in order to mark some favourable path that
should be followed by other members of the colony. In ACO, a number of artificial
ants build solutions to the considered optimisation problem at hand, and exchange
information on the quality of these solutions via a communication scheme that is
reminiscent of the one adopted by real ants. Several works have proposed the use of
ACO or new methods to improve its results, e.g. Hussein and Mousa [82] proposed
two improved variants of ACO and Particle Swarm Optimisation for task scheduling.

With the advent of the BC technology, new possibilities arose to realise automated
scheduling solutions to improve the effectiveness of data management in IoT-Fog-
Cloud environments. In a research in this direction, we proposed an ACO algorithm
in a fog-enabled BC-assisted scheduling model, called PF-BTS [29]. The protocol and
algorithms of PF-BTS exploit BC miners for generating efficient assignment of tasks
to be performed in cloud VRs using ACO, and award miner nodes for their contribu-
tion in generating the best schedule. It also allows the fog to process, manage, and
perform tasks to enhance latency measurements. Meanwhile, the fog is enforced to
respect the privacy of system components and to ensure that data, location, iden-
tity, and usage information are not exposed. We evaluated and compared PF-BTS
performance, with a related BC-based task scheduling protocol, in a simulated en-
vironment. Our evaluation and experiments showed reliable privacy awareness of
PF-BTS, along with noticeable enhancement in execution time and network load.
Here, I present and summarise the main contributions of this work.

In terms of related work, Srikanth et al. [186] developed a Proof-of-Schedule
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(PoSch) algorithm in their proposed BC-based scheduling approach to solve the same
problem discussed before. In their proposed approach, task schedulers in the cloud
layer are treated as BC miners, which were categorised into four different groups,
and each group finds its optimal solution using a different algorithm. The algorithms
used in the four groups are FCFS, Shortest-Job-First (SJF), Round-Robin (RR), and
Hybrid Heuristic based on Genetic Algorithm (HSGA). Finally, their approach chooses
the least time/energy consuming assignment. In another work, Srikanth et al. [178]
used an ACO algorithm to achieve a feasible assignment of tasks to heterogeneous
processors. In their research, it was also experimentally proven that optimising task
scheduling using ACO guarantees better task assignment, than the results of the FCFS
approach.

Figure 4.5: The proposed BC-Fog-Cloud architecture for PF-BTS

In our approach, we proposed exploiting BC miners to compute schedules with
Smart Contracts (SC), who usually perform computational puzzle solving, to receive
digital coins from the BC network. As shown in Figure 4.5, we deploy fog nodes to
control the communication among end users, the BC network, and the cloud [29].
The Task Pool Coordinator (TPC) in a fog node of our proposed system is responsi-
ble for choosing the best schedule according to specific criteria, which reduces the
latency compared to the case, where the BC network generates the best schedule by
consensus. That is, a BC node picks the SC generated by the fog node, and sends its
proposed schedule back to the fog node. The fog node then chooses the best schedule
among the received ones and sends it to the cloud. The cloud accordingly performs
the tasks using the assigned VRs, and returns the results to the fog node, which for-
wards them to end users. The direct incentive for BC miners who run the SCs is
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provided in the form of GAS, while incentives for generating new blocks are given
by the BC network itself. Notably, the results are saved on the chain by BC peers
consensus (e.g. PoW) for future reference and analysis. However, the time needed to
reach a consensus, in order to save the data on the chain, is not included in the time
required to generate the optimal schedule. Therefore, the type of CA deployed in the
BC network does not affect latency. If some related information is needed, by the
system administrators, the cloud, or the fog, it can be easily retrieved as the result of
each SC is immutably saved on the chain.

To evaluate our proposed system, we adopted and simulated the BC scheduling
system (BS) proposed in [186], which was also used to compare and validate our
experimental results. We performed the experiments on eight VRs, five of them ran
the ACO assignment optimisation, while the other three performed SJF, FCFS, and RR
assignments. We excluded the fourth group studied in [186], since it presented the
worst performance in most cases that were originally evaluated in the BS proposal.
For our ACO assignment, we adopted a Multi-Objective ACO with Global Pheromone
Evaluation, improved by a greedy optimal assignment approach to get even better
solutions. Further technical details of the ACO version we created, its equations,
the proposed improvement, and the final solution algorithm can be found in the
corresponding paper in [29].

Figure 4.6: Time consumption of BS and PF-BTS for 300 tasks

Next, I present the experiment setup and some of the results. To evaluate our pro-
posal, we implemented a simulation environment using Python. We ran it on Google
Cloud Platform (GCP) using a C2-standard-8 (8 vCPUs, 3.8 GHz, 32 GB memory). We
dedicated the first core for the FCFS computations, the second for the SJF computa-
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tions, the third for the RR computations, and the remaining five cores were dedicated
to the ACO computations. We conducted 33 simulation runs in groups of 12, 12, and
9 runs, for simulating 30, 300, and 3000 tasks, respectively, that had to be allocated
to 5, 15, 30, and 50 VRs. In each simulation run, the same tasks’ length and VRs’
computing capacities were set in all generated SCs. Each VR was assigned a random
computing capacity that ranged from 4 to 48 MFLOPS. Each task was assigned a ran-
dom length that ranged from 100 to 1000 MFLO. The TPC was assigned a computing
capacity of 20 MFLOPS. Accordingly, a maximum total execution time of generated
tasks in TPC was configured to be 80 seconds. If this condition was met, the tasks
were performed in the fog layer (i.e. the BC miners, the SCs, and the Cloud are not
exploited). The evaporation factor was set to 0.3. One minute cost of VR was set to
0.1 cent/minute.

The experimental results for 300 tasks are presented in Figure 4.6 [29]. The time
consumption of BS and PF-BTS (blue and yellow bars, respectively) is correlated
with the primary y-axis on the left. The outperformance of PF-BTS over BS (dotted
red line) is correlated with the secondary y-axis on the right. To further highlight
the time needed from sending the tasks and VRs capacities to the BC network, until
getting the schedules back from them, we conducted a simulation run, in which
eight tasks were needed to be assigned into four VRs, and the assignment job was
distributed to 16 BC miner nodes (16 SCs were generated) with each running 10
ants. The 16 miners sent their assignment suggestions to the TPC within 0.03 second.
Obviously, this is a better result, than the one gained by BS (0.07 second), despite
that there were 16 miner nodes involved instead of 4, and the schedules provided are
optimal rather than random. The results showed that our proposed PF-BTS protocol
outperformed several previously proposed approaches for solving similar problems,
in terms of privacy, efficient scheduling of the VRs, and minimal exchanged messages.
Moreover, PF-BTS allows the fog node, as an extension of the cloud, to perform the
computational tasks at the edge of the network.

4.4 PriFoB: An Application for BC-FC Integration

The unprecedented pace of technological development in smart systems, incorpo-
rating sensing, actuation, and control functions, have the following properties and
needs: (i) they are interconnected and need scalable, virtualized resources to run,
store and process data, (ii) they are mobile and can potentially access and build
on user data made available by smartphones and tablets, and (iii) they are getting
smarter, so they may get access to user data provided by connected smart devices.
As the number of smart devices in smart systems grows, the vast amount of data
they produce requires high-performance computational and storage services for pro-
cessing and analysis, among other novel techniques and methods that enhance these
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services and their management. BC applications have been proposed in a wide vari-
ety of environments such as distributed voting, eHealth, Mobile Computing, Internet
of Vehicles, Self-Sovereign-Identity, etc. Integrating BC technology with such smart
applications for managing data of mobile devices can further enhance the privacy
and security requirements of current complex systems.

Specifically, trusted online credential management solutions are needed for in-
stant and practical verification. Most of the available frameworks targeting this field
violate the privacy of end-users or lack sufficient solutions in terms of security and
QoS. To address this issue, we proposed a Privacy-aware FC-enhanced BC-based on-
line credential solution, called PriFoB in [27]. This solution adopts a public per-
missioned BC model with different reliable encryption schemes, standardised Zero-
Knowledge-Proofs (ZKPs) and Digital Signatures (DSs) within a FC-BC integrated
framework, which is also GDPR compliant. We deployed both the PoA and the Signa-
tures of Work (SoW) Consensus Algorithms (CAs) for efficient and secure handling
of Verifiable Credentials (VCs) and global accreditation of VC issuers, respectively.
Furthermore, we proposed a novel Three-Dimensional DAG-based model of the Dis-
tributed Ledger (3DDL), and developed a ready-to-deploy PriFoB implementation.

Here, I present the main architecture of PriFoB, and highlight its latency perfor-
mance compared to related solutions in the literature [27]. Credential recognition is
the process where a(n) (inter)national body, called Verifier, validates the legitimacy
of a document that was issued by another body, also called as Issuer. A credential is
issued upon an event occurrence to certify that this event has indeed happened, such
as educational credentials, vaccination certificates, governmental passports/IDs, etc.
Within a country, area, or continent, one may find agreed-on regulations to recog-
nise a named type of credentials for purposes like governmental treatment, hiring,
travelling, etc. However, once a person/entity, who has been issued a legitimate
credential, needs to approve it abroad, a painfully lengthy and costly process needs
to be carried out. This is because credential documents generally include different
types of stamps, proofs, identification numbers, and other data that have to be ver-
ified individually and carefully for each credential referring to distinct, centralised,
locally maintained databases. As a result, no global credentialing standard is used by
issuers and no constant way to prove different credentials is guaranteed. Generally,
the more sensitive data in a credential, the more complicated and costly it is to be
validated.

Several previous works approached BC-based solutions for realising digital cre-
dential verification. The recently launched BC-based credential verification projects,
namely BlockCerts [14], OpenCerts [15], and trustED [34] were surveyed in [36],
where the most mature and suitable consensus methods, BC architectures, and BC
platforms were presented and discussed. As these systems save all credentials infor-
mation, along with relevant personal identifiers of students on the immutable chain,
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they are non GDPR-compliant.

Figure 4.7: The PriFoB architecture and framework

The general architecture of PriFoB, and its simplified control flow scheme are de-
picted in Figure 4.7 [27]. The circled numbers indicates the order of steps to remotely
accredit an issuer, publish new schemes, issue a new VC by an accredited issuer and
verify that VC. PriFoB can simultaneously provide two major services: i) Institution
Accreditation and ii) Credential Verification. The system is privacy-preserving by de-
sign, meaning that the deployed communication protocols and interaction/process-
ing methods shall allow no window for private data leakage. PriFoB consists of three
major layers: the DTTP layer (i), which consists of the Gateway (GW) and Miners.
The GW connects the BC network with the issuers and end-users. Furthermore, it is
responsible for bootstrapping new miners with randomly selected peers. Miners, on
the other hand, are responsible for verifying new blocks and maintaining the consis-
tency of the DL. Furthermore, miners are responsible for validating VCs using DSs
and ZKPs. The End-user layer (ii), which consists of regular end-users requesting to
be issued VCs. Those end-users can request, validate, share, or rename their issued
VCs. Additionally, those end-users can download the whole or part of the BC. Enti-
ties belonging to this layer are not allowed to write on-chain. Finally, the Fog layer
(iii), which includes the issuer(s). An issuer is an extended end-user entity, which is
responsible for issuing new VCs to other qualifying end-users. To do so, an issuer is
initially required to publish its unique Decentralised Identifier (DID) and a schema(s)
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(which is a VC template) into the DTTP through the GW. Once both are published, it
can issue as many VCs as it needs.

As shown in Figure 4.7, the first step for an issuer to be able to issue new VCs
is to be accredited. To do that, the issuer generates a public key and sends it to the
DTTP along with non-private issuer information (e.g. official name, IP-address, etc.).
The corresponding private key is then saved and managed locally by the issuer. The
combination of data sent by an issuer to request accreditation is called a DID request.
Once the request is accepted and the DID is published on-chain (i.e. as a DID block),
we say the issuer is accredited and can issue VC schemes. Miners perform the SoW
CA on DID blocks to maintain the DL consistency.

A schema is a VC template that is saved on-chain to refer to later when a VC is to
be issued/verified. The second step is publishing a new schema upon issuer accred-
itation, which includes sending non-private information (e.g. schema title, public
key, etc.). Miners perform the PoA CA on schema blocks to maintain DL consistency.
Once the issuer is accredited and its schemes have been published, it can generate
new VCs for its clients.

The third step of the PriFoB protocol, after publishing a schema, is issuing new
VCs with its clients’ private data (e.g. name, grade, birth-info, etc.), and perhaps
with its own shareable private data as well (e.g. courses, professors’ names, admin
and registrar’s signatures, etc.). Thus, this VC is only saved locally. An end-user (e.g.
student or hospital patient, we also interchangeably use the terms client, customer,
or agent) sends a VC request to the issuer, which also includes the client’s public key.
The request shall include some private identifying information (e.g. full name, SSN,
year of credential issuing, etc.), so that the issuer can share a VC representing the
original credential with high confidence that the requester is the client herself. The
client connects with the DTTP to ask for the issuer’s public key (which was initially
saved on-chain in the first step of the protocol), and the mandatory data that needs
to be submitted. Using this public key, the client can encrypt her VC request that
includes the mandatory information. Consequently, no entity but the issuer can read
the private data within the request, as only its private key can decipher the request.
The issuer can then use the client’s public key to encrypt its response. If a new type
of VCs to be issued, a new schema needs to be submitted and, only after saved on-
chain, the new type of VCs can be issued. In our proposed PriFoB system, we solve
these issues by utilising a novel 3DDL.

Mainly, the issuer response shall include two parts (assuming that the requested
credential was indeed issued): the digital credential, and a signature (Sig) (using
the schema’s private key). The encrypted response, which is, in fact, the VC, can only
be then read by the client, as only her private key can decipher it. This is the fourth
step of the protocol. Once the response is decrypted, the client is free to share and
verify the obtained VC.
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The client may send a verification request to the DTTP, as shown in the fifth step.
The verification request includes only non-private data, including: the DID block
identifier and index (e.g. issuer official name and its index on-chain), the schema
block identifier and index (which might be similar for different issuers but unique for
each issuer), the hash of the credential to be validated, and the signature originally
provided by the issuer within the VC.

Once the BC receives the verification request, a miner, randomly selected by the
GW according to the implemented load-balancing criteria, performs a VC verification
(steps 6 and 7). The output of this step defines the response from the DTTP to the
client. That is, the response is either Valid or Invalid, yet the reason for considering
a VC invalid shall be also provided. Reasons for considering a VC invalid include:
the DID or Schema has not been published on-chain, the hash of the credential is not
equivalent to the decrypted Sig, or the VC has been revoked by the issuer. Note that
no private data are saved on-chain, or provided for validation, because we use the
ZKPs scheme to validate VCs without any knowledge requirement.

In our evaluation, we addressed the privacy-awareness of PriFoB, and compared
real measurements of PriFoB deployed in the cloud, against well documented imple-
mentations of Ethereum and different Hyperledger platforms, including Indy, Besu
and Fabric. Some of these works evaluated their solutions using simulation (all
miner nodes run on a single machine), while others evaluated their solutions us-
ing real test-beds (each miner is allocated a different machine). We compared the
latency of PriFoB with all of them to prove PriFoB outperformance, and we ran sev-
eral test scenarios to comprehensively compare them with PriFoB. The performance
of PriFoB was evaluated using a Proof of Concept (PoC) system composed of a single
GW, a network of miners with different sizes (2, 4 and 6 miners), and a script we im-
plemented that emulated several issuers and agents simultaneously communicating
with the DTTP. We deployed each of those entities on a separate VM at the Google
Cloud Platform. According to our evaluation results depicted in detail in [27], PriFoB
outperformed all the compared related systems.
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Summary of Chapter 4.

Contributions:

• Baniata and I designed methods for modelling integrated Fog Com-
puting and Blockchain systems, and proposed an open, extensible sim-
ulator called FoBSim;

• Baniata and I proposed a method for analysing Blockchain perfor-
mance with consistency measurements, and evaluated it with FoB-
Sim;

• I designed and proposed a vaccination information validation and
tracking approach with a fog- and cloud-based Blockchain system;

• Baniata and I proposed a methodology for designing privacy-aware,
Fog-enhanced and Blockchain-based applications;

Project involvement:

Duration Project name Type Role
2020-2023 MILAB national Participant
2022-2023 Smart Systems TKP2021-NVA-09 RG Leader
2020-2025 CERCIRAS (CA19135) EU COST Action MC Member
2021-2022 TruBlo subgrant EU H2020 Leader
2019-2022 FK-131793 OTKA Leader

Resulting publications:

No. Title Venue Rank IF
1 A survey on blockchain-fog ... [25] IEEE Access Q1 3.367
2 Towards blockchain-based ... [30] CEUR WS - -
3 FoBSim: an extensible ... [26] PeerJ CS Q2 2.41
4 Consistency analysis of ... [96] EuroPar WS - -
5 Block the chain: Software ... [95] IEEE Computer Q2 2.2
6 DONS: Dynamic optimized ... [31] Elsevier FGCS D1 7.5
7 Approaches to Overpower ... [28] IEEE Access Q1 3.9
8 PF-BTS: A privacy-aware fog ... [29] Elsevier IPM D1 7.466
9 PriFoB: A privacy-aware fog ... [27] Elsevier JNCA D1 8.7
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Results

This dissertation presents a selection of my results all originating from a period after
defending my PhD dissertation in the year 2011. The four theses are closely related
to Chapters 1-4, and include the results, in which my contributions were essential.

Thesis 1: Cloud Federation Approaches

This thesis summarises our theoretical results concerning methods for creating Cloud
Federations, and enhancing their operation performance:

1.1. I proposed a federated cloud management approach, and an integrated moni-
toring solution for Cloud Federations, which are able to perform efficient cloud
selection for applications.

1.2. I proposed a classification of data protection issues in Cloud Federations and in
IoT-Fog-Cloud systems that serves as a guideline for identifying legal responsi-
bility.

1.3. I proposed and evaluated Pliant-based algorithms for energy-efficient data-
center management in a Cloud Federation. I implemented and evaluated the
algorithms with an extension of the CloudSim simulator.

1.4. I proposed an SLA-based service virtualisation approach exploiting meta-broke-
ring in a Cloud Federation to maintain service quality.

During the research works leading to these results, I performed international
collaborations with outstanding researchers, among others: Ivona Brandic
(Vienna University of Technology), Xavier Franch (Universitat Politecnica de
Catalunya), Vlado Stankovski (University of Ljubljana). Related publications
in Chapter 1.: [93], [94], [97], [98], [99], [101], [104], [106], [180], [181].
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Thesis 2: Investigating IoT-Cloud systems

This thesis summarises our theoretical results concerning methods for analysing IoT-
Cloud systems, and enhancing their operation performance:

2.1. Mishra and I analysed, evaluated and categorised message brokers using the
MQTT protocol.

2.2. I designed an approach for semi-simulating IoT-Cloud systems. Pflanzner and
I proposed and evaluated MobIoTSim, a mobile IoT device simulator based on
this approach. The tool was implemented by Pflanzner, which is capable of
generating and sending real sensor data over the network to cloud gateways.

2.3. Pflanzner and I proposed and evaluated a generic cloud gateway solution that
can efficiently manage IoT devices by receiving, storing and processing or vi-
sualising their data. We also proposed a specialised IoLT gateway application
on this approach, used for remote monitoring of plant growth. The gateway
was implemented by Pflanzner.

During the research works leading to these results, I performed international
collaborations with outstanding researchers, among others: Rob van der Mei
(Vrije Universiteit Amsterdam) and Burkhard Stiller (University of Zurich).
Related publications in Chapter 2.: [46], [102], [128], [129], [142], [143],
[145], [146].

Thesis 3: IoT-Fog-Cloud systems

This thesis summarises our theoretical results concerning methods for analysing IoT-
Fog-Cloud systems, and enhancing their operation performance:

3.1. Markus and I designed a classification taxonomy for IoT-Fog-Cloud simulators,
and proposed an analysis and categorisation of existing simulators using it.

3.2. I designed extensible models for IoT sensors, actuators, and provider pricing
schemes, and Fog and Dew Computing. Markus and I proposed the DISSECT-
CF-IoT and DISSECT-CF-Fog simulators realising these models, and evaluated
them with various scenarios. Markus implemented the simulators and the sce-
narios.

3.3. I designed a methodology for IoT-Fog-Cloud application behaviour analysis.
Markus and I proposed various resource allocation strategies following this
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methodology. The proposed algorithms can be used to reduce application ex-
ecution time and resource utilisation costs, and to optimise IoT-Fog-Cloud in-
frastructure management. We evaluated the algorithms in the DISSECT-CF-Fog
simulator through various use cases. These algorithms were implemented by
Markus.

During the research works leading to these results, I performed international
collaborations with outstanding researchers, among others: Karolj Skala (Ruder
Boskovic Institute). Related publications in Chapter 3.: [89], [118], [119],
[120], [121], [122], [123], [124].

Thesis 4: IoT-BC-Fog-Cloud systems

This thesis summarises our theoretical results concerning methods for analysing IoT-
BC-Fog-Cloud systems, and enhancing their operation performance:

4.1. Baniata and I designed methods for modelling integrated Fog Computing and
Blockchain systems, and proposed an open, extensible simulator called FoB-
Sim. We evaluated it by analysing various Blockchain deployment scenarios.
The simulator was implemented by Baniata.

4.2. Baniata and I proposed a method for analysing Blockchain performance with
consistency measurements, and evaluated it with FoBSim. Baniata and I pro-
posed and evaluated an optimised data propagation protocol with enhanced
neighbour selection. The corresponding algorithms were implemented by Ba-
niata.

4.3. I designed and proposed a vaccination information validation and tracking
approach with a fog- and cloud-based Blockchain system. I evaluated the ap-
proach in FoBSim by comparing different blockchain deployment options with
use cases modelling real world data.

4.4. Baniata and I proposed a methodology for designing privacy-aware, Fog-en-
hanced and Blockchain-based applications, and evaluated it with a simulated
fog-enabled Blockchain-assisted task scheduling application in clouds, and with
a real privacy-aware institution accreditation and credential validation appli-
cation. The applications were implemented and validated by Baniata.

During the research works leading to these results, I performed international
collaborations with outstanding researchers, among others: Radu Prodan (Uni-
versity of Klagenfurt). Related publications in Chapter 4.: [25], [26], [27],
[28], [29], [30], [31], [95], [96].
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