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1 Introduction

Recent developments in technology led to many new fascinating challenges in com-
putational and combinatorial geometry. Nowadays we are all constantly surrounded
by electronic gadgets fulfilling various roles. The complex interconnection network of
these objects can be described by geometric graphs and hypergraphs. The edges of
such graphs are defined by the metric properties of the space they are embedded in.
For example, in case of a surveillance problem, an area might be monitored by sensors
with a given location and range; here the the points of the area form the vertices of
the hypergraph and the range of each sensor forms a hyperedge.

Any mathematical problem that involves partitioning into groups can be modeled
and visualized by colorings. These include many practical problems, such as job schedul-
ing and bin packing, that have important real world applications. For example, in case
of the surveillance problem, suppose that each sensor also has an associated lifetime for
which it can remain active, and our goal is to create a time schedule which determines
when each sensor is active, so that the whole area is constantly monitored, for as long
as possible. Or, in case of solar powered devices with a fixed amount of active hours
per day, our goal is to determine the feasibility of maintaining the surveillance all day.
Suppose that the lifetime of each sensor is the same, and for each we need to pick a
time slot during which it stays active. The different time slots can be represented by
the colors, and the question becomes a coloring problem in a hypergraph.

There are many different questions one can ask about graph colorings, as these
notions are general enough to capture a wide variety of problems. The most famous ex-
ample, Ramsey’s theorem about coloring graphs without large monochromatic cliques,
comes up in several seemingly unrelated fields and have motivated a large part of the
research in combinatorics. This result is, in fact, about hypergraph colorings, where
the vertices of the hypergraph are the edges of the underlying graph, and the hyper-
edges are the cliques. In case of hypergraph colorings, there are several versions of
colorings one can consider, all generalizing the notion of proper coloring for graphs.
Depending on the condition required to be satisfied for each single hyperedge, we can
differentiate several colorings; these include proper coloring, polychromatic coloring,
rainbow coloring, strong coloring, conflict-free coloring, unique-maximum coloring, and
odd coloring.

The topic of this dissertation will primarily be proper and polychromatic coloring of
geometric hypergraphs. The systematic study of such questions was initiated by Pach
in 1980, but some examples go back earlier. Perhaps the most famous example is the
Hales-Jewett theorem, which can be geometrically phrased as follows. For every naturals
k and m there is a d such that in any k-coloring of the points of the d-dimensional grid
of width m, having md points, there is a line through m of the points that are all of
the same color.

We will also primarily focus on hypergraphs where each hyperedge contains many
points. A typical question that we will try to answer is the following. For which naturals
k and m can we k-color any planar point set such that every disk containing at least
m points has at least two points of different colors?
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1.1 Abstract hypergraphs

There are several different terminologies for hypergraphs. We mainly follow the one
used by extremal combinatorists; see [36].

A hypergraph H = (V,E) is a collection of sets E over a base set V . The elements
of V are called the vertices of the hypergraph and the elements of E the hyperedges, or
just simply the edges of the hypergraph. For a hypergraph H, we denote its vertices by
V (H) and its edges by E(H); the H is omitted when it leads to no confusion. If all sets
of E are different, the hypergraph is simple; otherwise, it is called multihypergraph.
For technical reasons, we will assume that ∅ ∉ E and E ≠ ∅. A hypergraph is finite if
V and E are finite sets. A hypergraph is m-uniform if all of its edges have size m and
it is m-heavy if all of its edges have size at least m. Edges with at least m vertices are
called m-heavy; the m is omitted when it leads to no confusion.

The incidence matrix M(H) of H = (V,E) is a matrix whose rows and columns are
indexed by V and E, respectively, such that M(v, e) = 1 if v ∈ e and M(v, e) = 0 if v ∉ e.
Note that the order of the rows and columns is arbitrary. The dual of the hypergraph
H = (V,E) is the hypergraph H∗ = (E,V ) where the containment relation ∈∗ of H∗

is defined as e ∈∗ v if v ∈ e. Note that M(H∗) = MT (H), the transpose of the matrix
M(H).
H′ = (V ′,E′) is a subhypergraph of H = (V,E) if V ′ ⊂ V and E′ ⊂ E. For a subset

of the vertices X ⊂ V we define the trace of H on X as H[X] = (X,E ∩X), that is,
V (H[X]) = X and E(H[X]) = {e ∩X ∣ e ∈ E(H)}. The subhypergraph of a trace is
called a (sub)configuration or (sub)pattern. Note that the incidence matrix of a sub-
pattern of H is a submatrix of M(H). A family of hypergraphs F is hereditary if it is
closed for taking subhypergraphs and traces, i.e., for taking subpatterns. This is equiv-
alent to the family of incidence matrices being closed for taking submatrices.

A k-coloring of a hypergraph H = (V,E) is a map from V to {1, . . . , k}. There are
several different version of hypergraph colorings of interest.

� A coloring is proper if every edge contains two differently colored vertices. The
least k for which a proper k-coloring of H exists is denoted by χ(H).

� A coloring is polychromatic if every edge contains a vertex of each k colors; note
that such a coloring is only possible if H is k-heavy. The largest k for which a
polychromatic k-coloring of H exists is denoted by χpc(H).

� A coloring is rainbow if all vertices of each edge have different colors; note that
such a coloring is possible only if every edge has size at most k. The largest k for
which a rainbow k-coloring of H exists is denoted by χrb(H).

� A coloring is strong if it is polychromatic for the k-heavy part of H, while rainbow
on the rest. The largest k for which a strong k-coloring of H exists is denoted by
χs(H).

� A coloring is conflict-free if every edge has a vertex whose color differs from
the color of all other vertices of that edge. The least k for which a conflict-free
k-coloring of H exists is denoted by χcf(H).

2
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� A coloring is unique-maximum if in each edge e the largest1 color in e occurs
exactly once in e. The least k for which a unique-maximum k-coloring of H exists
is denoted by χum(H).

� A coloring is odd if for each edge there is a color that occurs in it an odd number of
times. The least k for which an odd k-coloring of H exists is denoted by χodd(H).

Note that all of these parameters might be infinite if H is not finite; in this case we
could study the rate as they tend to infinity as a function of the number of the vertices
for finite H from the given family, but this is not the topic of this dissertation.2 We
also have the following relationship among the above chromatic numbers by definition:
χ(H) ≤ χodd(H) ≤ χcf(H) ≤ χum(H) and χs(H) ≤ χpc(H), χrb(H). Moreover, χ(H) = 2
if and only if χpc(H) ≥ 2 if and only if χs(H) ≥ 2.

In the rest of the dissertation we will only consider proper and polychromatic col-
orings; for a survey on conflict-free colorings of geometric hypergraphs, see [73].

We can naturally extend the notions of chromatic numbers to families of hyper-
graphs by taking the maximum/minimum values over members of the family. This
way, χ(F) = maxχ(H) and χpc(F) = minχpc(H) where H is any finite hypergraph
from the family F . Note that finiteness is a technical condition that is needed in most
proofs, while it is more convenient to state certain statements if we allow F to con-
tain infinite hypergraphs as well in the definition. In this thesis we will only study F
that are hereditary, for example, all (finite) subconfigurations of some typically infinite
hypergraph; see Section 1.2.

Sometimes a suitable coloring might not exist because of the non-heavy edges of H,
as typically for these it is harder to satisfy the requirements of the coloring. Because of
this, we denote by χm(F) the least k for which for some m a proper k-coloring exists
for every m-heavy H ∈ F , i.e., χ(H) ≥ k; if there is no such k, then let χm(F) = ∞.
Note that here the m in the subscript of χm is not a variable, unlike at other places.

We could define a similar parameter for polychromatic colorings, but we instead de-
fine mk(F) to be the least m (if exists) for which every m-heavyH ∈ F is polychromatic
k-colorable, i.e., χpc(H) ≥ k; if there is no such m, then let mk(F) =∞. Note that by
definition m2(F) <∞ if and only if χm(F) = 2, and we always have mk(F) ≤mk+1(F).
Moreover, the following might also be true.

Conjecture 1.1. If m2(F) <∞, then mk(F) <∞ for every k for any hereditary F .

This beautiful conjecture is only known to hold if m2(F) = 2; this is a classic result
of Berge [8], who proved that in this case mk(F) = k, and also characterized these
families. The case m2(F) = 3 is already wide open.

Conjecture 1.1 first “came up” in 2009 during the writing of a survey [63], until
then it was simply believed to be true by the (few) people working on related questions
for geometric families. Later it was popularized by the author at several venues, such
as Oberwolfach meetings and MathOverflow, and other variants also emerged. The
strongest form is the following, conjectured by Keszegh and the author.

1Here we use that the coloring maps to numbers.
2For some nice questions of geometric flavor about the growth rate, see [18, 20].
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Conjecture 1.2. mk(F) ≤ (k − 1)(m2(F) − 1) + 1 for every k for any hereditary F .

Compare the striking similarity of the formula to the Calder-Eckhoff conjecture
about Radon numbers of abstract convexity spaces; as that conjecture has already
been refuted [14], just to be on the safe side, let us also mention three alternative,
weaker conjectures:3

mk(F) ≤ C ⋅ k ⋅m2(F),
mk(F) ≤ poly(k,m2(F)),
mk(F) ≤ C(m2(F)) ⋅ k.

There are several (geometric) families for which the inequality of Conjecture 1.2 is
sharp; several examples of such families are given later. We also know a polynomial
dependence in several special cases, see Theorem 5.2.

1.1.1 Coloring unions of hypergraphs

Claim 1.3. H1 = (V,E1) and H2 = (V,E2) be two hypergraphs on a common vertex
set V . Then χ(H1 ∪H2) ≤ χ(H1) ⋅ χ(H2).

Proof. Take the direct product of the colorings for H1 and H2.

Corollary 1.4. χm(H1 ∪H2) ≤ χm(H1) ⋅ χm(H2).

In case of proper colorings, these bounds can be sharp, already for graphs (2-uniform
hypergraphs). But if we start with a stronger condition, then we can get a better bound.

Lemma 1.5 (Damásdi-Pálvölgyi [24]). Let H1, . . . ,Hk−1 be hypergraphs on a common

vertex set V . If H1, . . . ,Hk−1 are each polychromatic k-colorable, then χ(
k−1
⋃
i=1
Hi) ≤ k.

Proof. Let ci ∶ V → {1, . . . , k} be a polychromatic k-coloring of Hi. Choose c(v) ∈
{1, . . . , k} such that it differs from each ci(v). We claim that c is a proper k-coloring

of
k−1
⋃
i=1
Hi. To prove this, it is enough to show that for every edge H ∈Hi and for every

color j ∈ {1, . . . , k}, there is a v ∈ H such that c(v) ≠ j. We can pick v ∈ H for which
ci(v) = j. This finishes the proof.

Corollary 1.6. For any families F1, . . . ,Fk−1 if mk(F1), . . . ,mk(Fk−1) < ∞, then
χm(F1 ∪⋯ ∪Fk−1) ≤ k.

Lemma 1.5 is sharp in the sense that for every k there are k − 1 hypergraphs such
that each is polychromatic k-colorable but their union is not properly (k−1)-colorable.
For example, take a (k−1)-dimensional grid of width k, V = {(i1, . . . , ik−1) ∣ 1 ≤ ij ≤ k},
and let a k-tuple v1, . . . , vk ∈ V be an edge of Hj if the j-th coordinates are all different,

i.e., {v1j , . . . , v
k
j } = {1, . . . , k}. A simple induction argument shows that χ(

k−1
⋃
j=1
Hj) = k.

3The equivalent of the below last weakening of the Calder-Eckhoff conjecture has been recently
proved by the author [68], while the equivalent of the first weakening is still open. The equivalent of
Conjecture 1.1 would be a very easy statement for Radon numbers.
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1.1.2 Connection to ε-nets

Let us also mention that polychromatic colorings are also related to ε-nets. If
mk(F) =m, then the elements of the base set V (F) can be partitioned into k parts such
that each part intersects every m-heavy F ∈ F . Letting n = ∣V (F)∣ and setting ε =m/n,
each of the k parts forms a strong ε-net for F . By the pigeonhole principle, the size of
one of these parts will be at most n/k = m/(εk). This implies that if mk(F) = O(k),
then we have an O(1/ε) size strong ε-net for F .

5

               domotorp_98_23



1.2 Geometric hypergraphs

A hypergraph H = (V,E) is called geometric if its structure is derived from some
geometric configuration in some space. If R is a range space, a family of sets in some
geometric space, then the hypergraph whose vertices are the points of the underlying
space, and whose edges are the sets ofR with the natural containment relation, is called
the primal hypergraph induced by R. An example of a range space is the collection
of disks in the plane, and its primal hypergraph is H(disks) = (R2, disks) where v ∈ e
if the point corresponding to v is contained in the disk corresponding to e. Similarly,
the hypergraph whose vertices are the sets of R, and whose edges are the points of
the underlying space with the reverse of the natural containment relation, is called the
dual hypergraph induced by R. We will be interested in the hereditary family F(disks)
that consists of the (finite) subconfigurations of H(disks), or its dual, F∗(disks). In
short, we will call F(disks) the family of disks, and we will also refer to parameters,
such as χm(F(disks)), simply as “χm of disks,” when it leads to no confusion. Also,
for brevity, instead of parameters of the dual of the family, such as χm(F

∗(disks)),
we write simply “χ∗m of disks.” If a hypergraph H belongs to the family of disks, we
will also say that H is realizable by disks and, similarly, if H∗ belongs to the family of
disks, then we say that H has a dual realization with disks.

For a geometric family F a statement of the form χm ≤ k is equivalent to the
following: There is an m =m(F) such that any finite set of points P can be k-colored
such that if for some F ∈ F we have ∣P ∩F ∣ ≥m, then not all the points in P ∩F have
the same color. Similarly, mk ≤m is equivalent to the following: Any finite set of points
P can be k-colored such that if for some F ∈ F we have ∣P ∩ F ∣ ≥ m, then all k colors
occur among the points in P ∩F . The statement m∗k ≤m about the dual range space is
equivalent to the following: Any finite collection of sets F1, . . . , Fn ∈ F can be k-colored
such that if for some point we have ∣{Fi ∣ p ∈ Fi}∣ ≥ m, then all k colors occur among
the sets {Fi ∣ p ∈ Fi}. This latter can also be rephrased as any finite m-fold covering of
any subset of the underlying space is decomposable into k disjoint coverings.

The simplest example to consider is the family of intervals in R. A result, sometimes
attributed to Tibor Gallai, is that for intervalsmk = k andm∗k = k; for finite hypergraphs
both of these follow from a simple induction. It is not hard to generalize this result to
the family whose members are the sets formed by the union of t intervals. In this case
mk = t(k − 1) + 1, which means that these families satisfy the inequality of Conjecture
1.2 with equality for all mk ≥ 2. The dual case is entirely different as m∗2 = ∞ for any
t ≥ 2.

Another classic example is the family of lines in R2. It was observed in [65] that a
generic projection from a sufficiently high dimensional grid, {1, . . . ,m}d, to the plane
shows that χm = ∞ using the Hales-Jewett theorem and, by point-line duality, also
χ∗m =∞.

As we mentioned earlier, in this dissertation we want to avoid issues with infinite
hypergraphs, that is why χm and mk have been defined for finite hypergraphs from
the family; for some of the issues with infinite hypergraphs, see [67], while for some
positive results, see [54]. Because of this, we typically do not need to specify whether
the underlying sets are open or closed, as it usually follows by a perturbation argument
that the finite hypergraphs of the respective families are the same.

6
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1.2.1 Relationships among geometric hypergraphs

As just mentioned, the hypergraphs realizable by open disks, for example, are the
same as the hypergraphs realizable by closed disks, because in any finite realization after
an appropriate perturbation the incidences remain the same, but no points will fall on
the boundary of the disks. In this section, we will describe some further equivalences
and containments among geometric families. For a large poset describing many of these
containments, see the webpage https://coge.elte.hu/cogezoo.html, designed by
Keszegh, and maintained by him and the author.

Another important equivalence [61, 63] is that if a family is the collection of some
(or all) translates of one set in Rd, then the primal and dual hypergraphs induced by
the range spaces are the same. Indeed, consider a family C = {Ci ∣ i ∈ I} of translates
of a set C ⊂ Rd and a set of points P ⊆ Rd. Suppose, without loss of generality, that C
contains the origin 0. For every i ∈ I, let ci denote the point of Ci that corresponds to
0 ∈ C. In other words, we have C = {C + ci ∣ i ∈ I}. Assign to each p ∈ P a translate of
−C, the reflection of C about the origin, by setting C∗p = −C + p. Observe that

p ∈ Ci ⇐⇒ ci ∈ C
∗
p

which proves that the same hypergraphs are realizable by primal and dual range spaces.
In the early papers more focus was put on studying dual range spaces, but mainly
range spaces of translates were studied, when the two problems are anyhow equivalent.
A set was defined as cover-decomposable [61] if any sufficiently thick covering of the
whole plane by the translates of the given set can be decomposed into two disjoint
coverings. For a bounded open set S it follows from a compactness argument that
cover-decomposability follows from the statement that for (the family defined by the
range space of) the translates of S we have χm = 2. For more about the connection and
results, see [63].

Finally, some so-called dynamic versions of hypergraph families can be shown to be
equivalent to other (normal) hypergraph families. In a dynamic hypergraph the vertices
are ordered as v1, . . . , vn, and each prefix v1, . . . , vi induces a certain hypergraph from
a given family; for the precise statement, see Definition 4.15. A geometric example is
the hypergraph induced by an ordered set of points, p1, . . . , pn ∈ R, where the range
space is formed by all intervals. The edges of this hypergraph are the sets of the form
I∩{p1, . . . , pi} where I is an interval and 1 ≤ i ≤ n. A good way to visualize this problem
is that the points “appear” in the given order on the number line. This dynamic interval
hypergraph family is in fact the same as the family of hypergraphs realizable by so-
called bottomless rectangles. A subset of R2 is called a bottomless rectangle if it is of
the form {(x, y) ∶ ℓ ≤ x ≤ r, y ≤ t}. This equivalence was used in [7]] to prove Theorem
2.20, and later a similar relationship was used between dynamic quadrants and octants
[45] to prove Theorem 2.24; for the details, see Chapter 3. Several further results about
dynamic versions can be found in Section 4.5.

An easy containment relation among hypergraph families is that hypergraphs real-
izable by halfspaces (in any dimension) are a subfamily of the hypergraphs realizable
by unit balls, which are a subfamily of the hypergraphs realizable by balls. This latter
containment is a special case of the fact that hypergraphs realizable by the translates

7
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of a set are always a subfamily of the hypergraphs realizable by the homothetic copies4

of the same set.
Let us mention one more containment that proved quite useful for obtaining in-

teresting results. Note that if a hypergraph is realizable by axis-parallel bottomless
rectangles, then it is also realizable by the homothetic copies of a fixed triangle, as the
sides of the bottomless rectangles can be slightly bent to meet. And any hypergraph H
realizable by the homothets of a fixed triangle is also realizable by octants in R3, where
by octant we mean a subset of R3 of the form (−∞, x0) × (−∞, y0) × (−∞, z0). This
follows from embedding the plane realizing H with triangles into R3 as the x+y+ z = 0
plane (see Figure 1).

p

p ∈ triangle ⇔ p octant

Figure 1: Octants give a richer family than homothetic copies of a triangle, because
every homothet of the triangle depicted on the shaded plane can be obtained as the
intersection of an octant with the plane.

1.2.2 Generalized Delaunay triangulation

To obtain the generalized Delaunay triangulation with respect to some bounded
convex body C of a point set P , define a graph DT = DT (P,C) whose vertex set is
P , and two points of P are connected by an edge if they are covered by a homothet
of C not containing any other point of P . It is well-known (see e.g., [51]) that this
graph is connected and planar for any P and C, such that the vertices are mapped
to the respective points of P and the edges are segments. Each inner face of this
embedding is covered by a homothet of C not containing any points in its interior,
and all inner faces are triangles if the points are in general position with respect to C,

4A homothetic copy, or homothet, of a set is a scaled and translated copy of it (rotations are
not allowed). We also require the scaling factor to be positive—some other papers call this a positive
homothet.

8
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meaning that no four points fall on the boundary of a homothet of C. If this is not
the case, then we triangulate the remaining inner faces arbitrarily to obtain the graph
DT . Since because of this last step DT might not be unique, we should say one of the
Delaunay triangulations but to avoid complications we always fix one of the Delaunay
triangulations and denote that by DT .

We recall a few simple statements about Delaunay triangulations, which also ap-
peared in [2].

Proposition 1.7. If C ′ is a homothet of C, the points C ′ ∩ P induce a connected
subgraph of DT (P,C).

Corollary 1.8 ([2]). If C ′ is a homothet of C and e is an edge of DT that crosses C ′

and splits it into two parts, then one of these parts does not contain any point from P .

We will also use the following related claim.

Claim 1.9. The intersection of a convex polygon with the boundary of its homothetic
copy is always connected.

9
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2 Survey of results

This chapter is a survey of the most interesting results about the parameters χm

and mk of geometric families. It can be considered as an updated version of the survey
[63], joint work with Pach and Tóth. In fact, we rely very little on [63], as it became
outdated practically already by the time it appeared, as many breakthrough results
came soon after. Some of the proofs of the results mentioned in this chapter can be
found in later chapters. For a summary of some important results, see the Summary
Table on the last page, and for a more complete, always up-to-date version of the known
results, see the website https://coge.elte.hu/cogezoo.html.

Let C be a family of sets in Rd, and let P ⊆ Rd. We say that C is an m-fold covering
of P if every point of P belongs to at least m members of C. A 1-fold covering is simply
called a covering. Clearly, the union of m coverings is an m-fold covering. We will be
mostly interested in the case when P is a finite set of points or the whole space Rd.

Sphere packings and coverings have been studied for centuries, partially because of
their applications in crystallography, Diophantine approximation, number theory, and
elsewhere. The research in this field has been dominated by density questions of the
following type: What is the most “economical” (i.e., least dense) m-fold covering of
space by unit balls or by translates of a fixed convex body? It is suggested by many
classical results and physical observations that, at least in low-dimensional spaces, the
optimal arrangements are typically periodic, and they can be split into several lattice-
like coverings [31, 32]. Does a similar phenomenon hold for all sufficiently “thick”
multiple coverings, without any assumption on their densities?

About 15 years ago, a similar problem was raised for large scale ad hoc sensor net-
works; see Feige et al. [30] and Buchsbaum et al. [13]. In the—by now rather extensive—
literature, it is usually referred to as the sensor cover problem. In its simplest version
it can be phrased as follows. Suppose that a large region P is monitored by a set of
sensors, each having a circular range of unit radius and each powered by a battery of
unit lifetime. Suppose that every point of P is within the range of at least m sensors,
that is, the family of ranges of the sensors, C, forms an m-fold covering of P . If C can
be split into k coverings C1, . . . ,Ck, then the region can be monitored by the sensors for
at least k units of time. Indeed, at time i, we can switch on all sensors whose ranges
belong to Ci (1 ≤ i ≤ k). We want to maximize k, in order to guarantee the longest
possible service. Of course, the first question is the following, raised by Pach in 1980.

Problem 2.1 (Pach [60]). Is it true that every m-fold covering of the plane with unit
disks splits into two coverings, provided that m is sufficiently large?

In a long unpublished manuscript, Mani and Pach [56] claimed that the answer to
this question was in the affirmative with m ≤ 33. Pach [66] warned that this “has never
been independently verified.” Winkler [77] even conjectured that the statement is true
with m = 4. For more than 30 years, the prevailing conjecture has been that for any
open plane convex body (i.e., bounded convex set) C, there exists a positive integer
m = m(C) such that every m-fold covering of the plane with translates of C splits
into two coverings. This conjecture was proved in [61] for centrally symmetric convex
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polygons C. It took almost 25 years to generalize this statement to all convex poly-
gons [75, 69, 37]. Thus, this question has propelled research in the area for decades.
Eventually, it was surprisingly answered in the negative by the author.5 Later, the
counterexample has been extended to other smooth bodies as well in a paper with
Pach [62], see Section 7.

In the remaining part of this chapter, we will look at coloring results about hyper-
graphs of range spaces of natural geometric families, mostly focusing on primal range
spaces and finite hypergraphs.

5D. Pálvölgyi, Indecomposable coverings with unit discs, preprint https://arxiv.org/abs/1310.

6900v1, 2013.
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2.1 Translates of polygons

As mentioned, in a series of papers, it was proved that all open convex polygons
are cover-decomposable. These proofs relied on the following results about finite hy-
pergraphs.

Theorem 2.2 (Pach [61]). For the translates of any centrally symmetric convex polygon
χm = 2.

Theorem 2.3 (Tardos-Tóth [75]). For the translates of any triangle χm = 2.

Theorem 2.4 (Pálvölgyi-Tóth [69]). For the translates of any convex polygon χm = 2.

Note that the above statement cannot be extended to all polygons.

Theorem 2.5 (Pach-Tardos-Tóth [65]). For the translates of any concave quadrilateral
χm > 2.

While an upper bound for χm has not been studied in detail, it can shown that in
fact χm = 3.6 Triangulate Q to obtain two triangles, T1 and T2. Using Theorem 2.3,
for the translates of each triangle we have χm = 2, that is, there is an m such that any
finite m-heavy hypergraph whose edges are translates of Ti can be 2-colored for i = 1,2.
Finally, by applying Lemma 1.5 to these two hypergraphs, we get a proper 3-coloring
for translates of Q that contain at least 2m−1 points, thus χm = 3. A similar argument
shows that χm ≤ n − 1 for the translates of any n-gon.

A larger class of concave polygons for whose translates χm > 2 was given by the
author [67], where it turned out that the pairs of angles that can be found in the polygon
play an important role. In fact, based on these results, the translates of polygons have
been completely classified with respect to χm = 2.

Theorem 2.6 (Pálvölgyi-Tóth [69]). For the translates of a polygon χm = 2 if and only
if any pair of its convex angles7 are such that either one angle contains the other one,
or the same pair could occur in a convex polygon.

For families with χm = 2, the growth rate of the function mk has been also exten-
sively studied. The only case when m2 was also studied explicitly is the translates of
triangles, for which 5 ≤ m2 ≤ 9 as a corollary of Theorems 3.2 and 2.24. First, in [61]
it was shown that for any centrally symmetric convex polygon P the parameter mk

exists and is bounded by an exponentially fast growing function of k. In [75] a similar
result was established for triangles, and in [69] for convex polygons. However, all these
results were improved to the optimal linear bound in a series of papers.

Theorem 2.7 (Pach-Tóth [66]). For the translates of any centrally symmetric convex
polygon mk = O(k

2).

Theorem 2.8 (Aloupis et al. [5]). For the translates of any centrally symmetric convex
polygon mk = O(k).

6Earlier a similar argument of István Kovács (personal communication) gave the weaker bound
χm ≤ 4.

7An angle is called a convex angle if it is smaller than π.
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Theorem 2.9 (Gibson-Varadarajan [37]). For the translates of any convex polygon
mk = O(k).

Although in [37] only convex polygons have been studied, their proof also works
for any polygon such that any pair of its convex angles are such that either one angle
contains the other one, or the same pair could occur in a convex polygon.

The situation, however, is completely different in higher dimensions.

Theorem 2.10 (Pálvölgyi [67]). For the translates of any polyhedron χm > 2.

The proof is based on the observation that for any polyhedron P , either there is a
plane that intersects P in a concave polygon for which χm > 2 because of Theorem 2.6,
or there are two parallel planes that intersect P in two polygons such that taking one
convex angle from each they could not form a convex polygon. In both cases, we can
take a plane in space and a family of translates of P that realize the planar construction
from [67] in this plane with the translates of P .
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2.2 Homothets of polygons

Recall that a homothetic copy, or homothet, of a set is a scaled and translated
copy of it (rotations are not allowed). Colorings of geometric range spaces induced by
homothetic copies of polygons have been studied much less than translates of polygons.
Note that it follows from the planarity of the generalized Delaunay graph (Section 1.2.2)
that for homothets χm ≤ 4.

The first paper in which specifically homothets were studied proved the following.

Theorem 2.11 (Cardinal et al. [16]). For the homothets of a triangle mk ≤ 144k
8.

Their method was developed further by Keszegh and the author.

Theorem 2.12 (Keszegh-Pálvölgyi [47]). For the homothets of a triangle the inequality
mk ≤m2 ⋅ k

log2(2m2−1) holds.

Since as a corollary of Theorem 3.1 the best bound for m2 of the homothets of a
triangle is currently 9, this gives mk ≤ 9 ⋅ k

4.09. Moreover, in [47] a general method was
developed which implies that if m2 <∞ for the homothets of any convex polygon, then
mk grows polynomially; see Corollary 5.4. This method can be found in full detail in
Chapter 5. However, apart from triangles, the square (and its affine transformations,
i.e., parallelograms) is the only convex polygon for whose homothets m2 <∞ has been
proved.

Theorem 2.13 (Ackerman-Keszegh-Vizer [2]). For the homothets of a square m2 ≤

215.

Combining this with Theorems 5.2 and 5.6, we get the following bound.

Corollary 2.14 (Ackerman-Keszegh-Vizer [2]). For the homothets of a square mk =

O(k8.75).

The situation, surprisingly, is completely different for the dual range spaces of ho-
mothets. For the homothets of a triangle we have m∗k = O(k

5.09) from Corollary 2.26
because if a hypergraph is (dual) realizable by the homothets of a triangle, then it is
also realizable by octants. However, for the homothets of other polygons Kovács showed
the following, building on the construction from [67].

Theorem 2.15 (Kovács [53]). For the homothets of any non-triangle polygon χ∗m > 2.

This means that for the homothets of squares χm = 2 but χ∗m > 2. Just like for
translates, the finiteness of χm for the homothets of any polygon follows from χm = 2
for the homothets of triangles. A similar bound can be also proved for χ∗m, which
we sketch here for the homothets of a quadrangle Q. Suppose that we have a finite
collection Q of homothets of Q. Divide Q to two triangles, T1 and T2. Partition the
points of the plane covered by at least 2m − 1 members of Q into P1 and P2 such that
every point pi ∈ Pi is covered by at least m homothets of Ti, formed by the respective
triangles of the quadrangles from Q. From Corollary 2.26, if m is large enough, we
get a polychromatic 3-coloring of the members of Q for the m-heavy edges of the dual
hypergraph induced by the points of P1, and another polychromatic 3-coloring of the
members of Q for the m-heavy edges of the dual hypergraph induced by the points of
P2. Finally, Lemma 1.5 implies χ∗m ≤ 3.

The bound on χm was improved for convex polygons as follows.
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Theorem 2.16 (Keszegh-Pálvölgyi [50]). For the homothets of a convex polygon χm ≤

3.

The proof of this result can be found in Chapter 6.
We would like to remark that known constructions do not exclude the possibility

that for convex polygons χm = 2 might also hold; this statement has been already
mentioned to hold for triangles and squares, and it is also known in the special case
when all homothets are stabbed by a common point, for example, if they all contain
the origin [22].

Keszegh and the author conjectured that Theorem 2.16 can be extended to every
plane convex set C, i.e., that there is an m = m(C) such that any finite set of points
admits a 3-coloring such that any homothetic copy of C that contains at least m points
contains two points with different colors. (The special case when C is a disk has been
posed earlier by Keszegh [42].) However, these conjectures have been disproved in [22];
see Section 7.10.
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2.3 Axis-parallel boundaries

Besides polygons, other natural families are ones defined by axis-parallel boundaries.
After intervals, the simplest range space is the family of (positive) quadrants, i.e., sets
of the form [x0,∞)×[y0,∞), for which several easy arguments give the following claim.

Claim 2.17. For positive quadrants mk =m
∗
k = k.

If instead of positive quadrants, we allow all four quadrants, then mk = O(k) is a
simple corollary of Theorem 2.9 for squares, while m∗k ≤ 4k−3 follows from the previous
claim by applying it to the four families separately.

Another simple shape family is axis-parallel strips, i.e., the sets of the form [x1, x2]×
R and R × [y1, y2]. If only horizontal or only vertical strips are considered, then the
obtained family is isomorphic to the family of intervals in R. If both are allowed, we
have the following results.

Theorem 2.18 (Aloupis et al. [6]). For axis-parallel strips 1.5k − 1 ≤mk ≤ 2k − 1 and
m∗k ≤ 2k − 1.

In the same paper some generalizations for higher dimensions are also proved. Define
a slab as the section between two parallel hyperplanes in Rd.

Theorem 2.19 (Aloupis et al. [6]). For d-dimensional axis-parallel slabs
2⌈(2d − 1)k/2d⌉ ≤mk ≤ k(4 lnk + lnd) and ⌊k/2⌋d + 1 ≤m

∗
k ≤ d(k − 1) + 1.

A lot of work was put into determining these parameters for bottomless rectangles.
Recall that a subset of R2 is called a (closed) bottomless rectangle if it is of the form
{(x, y) ∶ ℓ ≤ x ≤ r, y ≤ t}. The range space of bottomless rectangles were first studied by
Keszegh [42], who showed m2 = 4 and m∗2 = 3. Later the following general upper bound
was given for mk.

Theorem 2.20 (Asinowski et al. [7]). For bottomless rectangles 1.67k−2.5 ≤mk ≤ 3k−2.

Therefore, bottomless rectangles are known to satisfy Conjecture 1.2 but we do
not know whether the inequality is tight or not. Much less is known about their dual
range space. The best bound, m∗k = O(k5.09), follows from the respective result for
octants, Corollary 2.26; for better bounds in some special cases and for the reason
why known methods fail, see [15]. Also, it was recently proved that for the union of
bottomless rectangles and horizontal strips χm > 2 [19], while from Theorems 2.18, 2.20
and Lemma 1.5 we get that χm ≤ 3, thus χm = 3.

For the family of axis-parallel rectangles in the plane, we only have negative results.

Theorem 2.21 (Chen-Pach-Szegedy-Tardos [21]). For axis-parallel rectangles χm =∞.

Theorem 2.22 (Pach-Tardos [64]). For axis-parallel rectangles χ∗m =∞.

Cardinal noticed that orthants of Rd for d ≥ 4 can simulate the axis-parallel rectan-
gles of an appropriate subplane of R4. To state this precisely for d = 4, define a (positive)
sedecimant in R4 as the set of points {(x, y, z,w) ∣ x ≥ x0, y ≥ y0, z ≥ z0,w ≥ w0}.
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Corollary 2.23 (Cardinal8). For positive sedecimants χm =∞.

Proof. From Theorem 2.21, for any k and m there is a finite planar point set S such
that for every k-coloring of S there is an axis-parallel rectangle that contains exactly m
points of S, all of the same color. Place this construction on the Π = {(x, y, z,w) ∣ x+y =
0, z +w = 0} subplane of R4. A sedecimant {(x, y, z,w) ∣ x ≥ x0, y ≥ y0, z ≥ z0,w ≥ w0}

intersects Π in {(x, y, z,w) ∣ x0 ≤ x = −y ≤ −y0, z0 ≤ z = −w ≤ −w0}, which is a rectangle
whose sides are parallel to the lines {x + y = 0, z = w = 0} and {x = y = 0, z + w = 0},
respectively. Taking these perpendicular lines as axes, thus any “axis-parallel” rectangle
of Π is realizable by an appropriate sedecimant, and the theorem follows.

Kolja Knauer (personal communication) observed that all axis-parallel rectangles of
a subplane of R3 can be cut out in a similar way by the homothets of a (regular) tetrahe-
dron. Indeed, let ∆ be the tetrahedron whose vertices are (1,0,1), (−1,0,1), (0,−1,−1),
and (0,1,−1). Let ∆h be a translate of ∆ by −1 < h < 1 parallel to the z-axis. The
intersection of ∆h with the plane Π = {(x, y, z) ∣ z = 0} yields an axis-parallel rectangle
Rh = ∆h ∩Π. The ratio of the sides of Rh depends on h, and can take any value, as it
tends to ±∞ as h → ±1. It follows that by taking a homothetic scaling of Dh, we can
obtain any axis-parallel rectangle. Just like in the proof of Corollary 2.23, we obtain by
[21] that for any c and m there is a finite point set S ⊂ R3 such that for every c-coloring
of S there is a homothet of ∆ that contains exactly m points of S, all of the same color.
Therefore, χm =∞ for homothets of simplices.

Between quadrants and sedecimants, only the case of octants had been open, until
the following result.

Theorem 2.24 (Keszegh-Pálvölgyi [45, 49]). For positive octants 5 ≤m2 ≤ 9.

A detailed proof of this result is given in Chapter 3. Let us also mention that it
was proved in [9] that 6-heavy hypergraphs realizable by octants are always proper
3-colorable.

For mk, no upper bound followed from the method of [45]. Later only the very

weak bound of mk ≤ 12
2k was proved [46]. Then a general method was developed in a

series of papers by Cardinal et al. [16, 17] and by Keszegh and the author [47] which
culminated in the following polynomial bound.

Theorem 2.25 (Cardinal et al. [17]). For positive octants mk ≤m2 ⋅ k
log2(2m2−1)+1.

The combination of Theorems 2.24 and 2.25 implies the following bound.

Corollary 2.26. For positive octants mk = O(k
5.09).

Finally, we mention that if instead of positive octants, we allow all 8 octants, then
it follows from the methods of [67] that χm > 2, while the boundedness of χm follows
from Lemma 1.5, or from simply taking the direct products of the colorings for different
octants.

8Cardinal (personal communication) stated χm > 2 using the same reduction based on [65] about
axis-parallel rectangles; Corollary 2.23 is only more general because we use a stronger result, Theorem
2.21, about axis-parallel rectangles.
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2.4 Disks

The first important result about shapes whose boundary does not consist of fixed
direction segments was the following.

Theorem 2.27 (Smorodinsky-Yuditsky [74]). For halfplanes mk = 2k − 1 and 2k − 1 ≤
m∗k ≤ 3k − 2.

Later it was shown by Fulek [34] that for the dual range space of halfplanes the
lower bound is sharp for k = 2, i.e., m∗2 = 3. Keszegh and the author managed to
generalize Theorem 2.27 to pseudohalfplane arrangements as well, which can be defined
as follows. A pseudoline arrangement is a collection of simple curves, each of which
splits R2 into two unbounded parts, such that any two curves intersect at most once.
A pseudohalfplane is the region on one side of a pseudoline in such an arrangement.

Theorem 2.28 (Keszegh-Pálvölgyi [48]). For pseudohalfplanes mk = 2k−1 and 2k−1 ≤
m∗k ≤ 3k − 2.

Note that hypergraphs realizable by halfplanes are also realizable by unit discs, but
this later family turned out to be much richer: The author proved χm > 2 for them,
answering Problem 2.1 in the negative; later the counterexample has been extended to
other smooth bodies as well in a paper with Pach.

Theorem 2.29 (Pach-Pálvölgyi [62]). Let C be any convex body in the plane that has
two parallel supporting lines such that C is strictly convex in some neighborhood of the
two points of tangencies.9 Then for any positive integer m, there exists a 3-chromatic
m-uniform hypergraph that is realizable with translates of C, therefore, χm > 2.

Recall that if F consists of the translates or homothets of some planar convex
body, then it follows from the planarity of generalized Delaunay-triangulations that
χm ≤ 4. This left only the following question open for translates: Is there for any planar
convex body C a positive integer m such that no 4-chromatic m-uniform hypergraph
is realizable with the translates of C? This was answered recently by Damásdi and the
author.

Theorem 2.30 (Damásdi-Pálvölgyi [24]). For any planar convex body C χm ≤ 3, i.e.,
there is a positive integer m such that any finite point set P in the plane can be three-
colored in a way that there is no translate of C containing at least m points of P , all
of the same color.

This has been hitherto known to hold only when C is a polygon (in which case 2
colors suffice according to Theorem 2.6, and 3 colors are known to be enough even for
homothets according to Theorem 2.16) and for pseudodisk families that intersect in a
common point [1] (which generalizes the case when C is unbounded, in which case 2
colors suffice [62]).

Note that an earlier version of the proof [23] only worked if C is a disk, and while
the generalization to other convex bodies with a smooth boundary seemed feasible,

9This condition can be relaxed to require only one smooth neighborhood on the boundary of C.
This was discovered later by Damásdi and the author [24], see Figure 30.
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there was no direct way to extend it to arbitrary convex bodies. The proof of Theorem
2.30 relies on a surprising connection to two other famous results, the solution of the
two dimensional case of the Illumination conjecture (Levi [55]), and a recent solution
of the Erdős-Sands-Sauer-Woodrow conjecture (Bousquet, Lochet, and Thomassé [12]).
In fact, a generalization of the latter result is used, proved also in [24].

The main part of the proof of Theorem 2.30 can be found in Section 7.11.

About homothetic copies, χm ≤ 4 turned out to be sharp for most bodies, including
the disk, disproving earlier conjectures [42, 50], and improving [65], which established
χm > 2 for disks.

Theorem 2.31 (Damásdi-Pálvölgyi [22]). Let C be any convex body in the plane that
has two parallel supporting lines such that C is strictly convex in some neighborhood
of the two points of tangencies. For any positive integer m, there exists a 4-chromatic
m-uniform hypergraph that is realizable with homothets of C, therefore, χm = 4.

The proof of Theorem 2.31 can be found in Section 7.10.

Balls and halfspaces in higher dimensions have not been studied yet in detail. We
are aware of only two unpublished observations.

Damásdi noted that for halfspaces in R3 we have 4 ≤ χm ≤ χ ≤ 5. The lower bound
follows from Theorem 2.31 by projecting up the point set P to a paraboloid, while the
upper bound follows from coloring the points inside the convex hull with one color,
and the points of the convex hull with four more, using the planarity of the Delaunay
triangulation on the surface.

The author noted that halfspaces in R5 can cut out any conic section (given by
Ax2 +Bxy + Cy2 +Dx +Ey + F ≤ 0) from the surface x3 = x

2
1, x4 = x1x2, x5 = x

2
2, and

thus the Hales-Jewett hypergraph can be realized, implying χm = ∞. There are other
constructions as well that are realizable in a high enough dimension, but we do not
know anything else about χm in R3 or in R4 for halfspaces and (unit) balls.
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2.5 Further results and open problems

The following notion came up while studying geometric hypergraphs (for the con-
nection, see Section 7.7 and [48]).

Definition 2.32. For A ⊂ [n] = {1,2, . . . , n}, denote by ai the ith smallest element of
A. For two equal sized sets, A,B ⊂ [n], we write A ⪯ B if ai ≤ bi for every i.

An m-uniform hypergraph on the vertex set [n] is called a shift-chain if its hyper-
edges are totally ordered by the relation ⪯.

Problem 2.33. Does there exist an integer m such that every m-uniform shift-chain
is 2-colorable?

Fulek [33] managed to find by an exhaustive computer search a 3-uniform shift-
chain that is not 2-colorable (see Figure 2), but for larger m the question is wide open,
despite having received significant attention [11].
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Figure 2: A shift-chain of 13 triples, each of which corresponds to a row. For any 2-
coloring of the 9 vertices, one of the triples is monochromatic.

The problem to study the respective colorings of arithmetic progressions was raised
recently by the author.10 For a set D ⊂ N, denote by AD the family of arithmetic
progressions of N with difference d ∈D (of any length). For any S ⊂ N, these progressions
can be interpreted as the hyperedges of a hypergraph over S, where the edges are formed
by the intersections of the arithmetic progressions from AD with S.

Problem 2.34. What can we say about the χm and mk parameters of the above hy-
pergraph families for various D?

10See https://coge.elte.hu/kutverseny21.pdf (in Hungarian).
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Note that if D = N, then van der Waerden’s theorem implies that χm =∞. On the
other hand it is quite easy to establish that χm = 2 and mk = O(k) if D is finite, and
also that the value of χm depends only on the divisibility lattice of D. The author pro-
posed Problem 2.34 as it is a natural question in combinatorial number theory, while it
also connects to geomeric families: If D = {2i ∣ i ∈ N}, then this hypergraph contains all
finite hypergraphs realizable by bottomless rectangles. A further interesting subfamily,
A∞D ⊂ AD, consists of the arithmetic progressions with an infinite number of elements.
Some partial results have been obtained about the χm parameter of these families for
some D by several students working on these questions.

Finally, without defining the exact problem and results, let us also mention that
polychromatic colorings of the edges of graphs have also been studied in this context,
see Bollobás et al. [10].
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3 Octants

This chapter is based on the article [49], using ideas from the articles [45, 46], all
joint work with Keszegh.

By an octant, in this chapter we mean an open subset of R3 of the form (−∞, x0)×
(−∞, y0)×(−∞, z0) and the point (x0, y0, z0) is called the apex of the octant. Note that
this is a negative octant, just the opposite of a positive octant.

To establish the upper bound of Theorem 2.24, we need to prove the following
statement.

Theorem 3.1. Any finite set of points in R3 can be colored with two colors such that
any octant containing at least 9 points contains both colors, thus m2 ≤ 9.

We also give the following construction, which will prove the lower bound of Theo-
rem 2.24.

Theorem 3.2. For every triangle T there is a finite point set P such that for every
two-coloring of P there is a translate of T that contains exactly 4 points and all of these
have the same color.

This also implies m2 ≥ 5 for octants, as they give a richer family (recall Figure 1).
Now we present the proofs of the above two theorems.

3.1 Proof of Theorem 3.1

We will prove the following dynamic planar version of the problem. In this chapter,
by a (negative) quadrant or wedge we mean a subset of the plane of the form (−∞, x)×
(−∞, y). We have to two-color a finite ordered planar point set {p1, p2, . . . , pn} such
that for every t every quadrant that contains at least 9 points from Pt = {p1, . . . , pt}
contains both colors. The equivalence of this dynamic planar version and the statement
of Theorem 3.1 is implied by the following containment-reversing bijections: an octant
with apex (x, y, z) is mapped to the point (x, y) that “appears” at time z, while a point
with coordinates (a, b) is mapped to a mirrored quadrant with apex (a, b), i.e., to the
subset (a,∞) × (b,∞); for a more detailed discussion, see Section 1.2.1.

A way to imagine this problem is that the points “appear” in order and at step t
we have to color the new point, pt. This is impossible to do in an online setting [44],
as we will see in Chapter 4, i.e., without knowing in advance which points will come in
which order. Moreover, it was shown by Cardinal et al. [17] that such a coloring is even
impossible in a so-called semi-online model, where points can be colored at any time
after their arrival as long as every octant with 9 (or any other constant number of)
points contains both colors. Our strategy builds a forest on the points such that any
time any quadrant containing at least 9 points contains two adjacent points from the
same tree-component. Therefore, after all the points arrived, any proper two-coloring
of the forest will be such that any octant containing at least 9 points contains both
colors. We start by introducing some notation (see also Figure 3).

Definition 3.3. We say that point p = (px, py) is northwest (in short NW) from point
q = (qx, qy) if and only if px < qx and py > qy. In this case we also say that q is southeast
(in short SE) from p and that p and q are incomparable.
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p

q

(a) p is NW from q, q is SE from p,
p and q are incomparable

p

q

(b) p is SW from q, q is NE from p,
p and q are comparable

Figure 3: Definition 3.3: the possible relations of two points.

Similarly, we say that point p = (px, py) is southwest (in short SW) from point
q = (qx, qy) if and only if px < qx and py < qy. In this case we also say that q is
northeast (in short NE) from p and that p and q are comparable.

We can suppose that all points have different coordinates, as by a slight perturbation
we can only get more subsets of the points contained in a quadrant (without losing
others).

At any step t, we define a graph Gt (which is actually a forest) on the points of Pt

and a vertex set St of pairwise incomparable points called the staircase, recursively. At
the beginning G0 is the empty graph and S0 is the empty set. A point on the staircase
is called a stair-point. Thus, before the tth step we have a graph Gt−1 on the points
of Pt−1 and a set St−1 of pairwise incomparable points. In the tth step we add pt to
our point set obtaining Pt and we will define the new staircase, St, and also the new
graph, Gt, containing Gt−1 as a subgraph. Before the exact definition of St and Gt, we
make some more definitions and fix some properties that will be maintained during the
process (see Figure 4).

p

q

r

s

Figure 4: Definition 3.4: p is below the staircase, q is above the staircase, r and s are
neighboring staircase points and r is the left neighbor of s.

Definition 3.4. We say that a point p of Pt is above the staircase if there exists a
stair-point s ∈ St such that p is NE from s. If p is not above or on the staircase,
then we say that p is below the staircase. A point below (resp. above) the staircase
is called a below-point (resp. above-point). At any time t, we say that two points of
St are neighbors if their x-coordinates are consecutive among the x-coordinates of the
stair-points. (Note that this does not mean that they are connected in the graph.) We
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also say that p is the left (resp. right) neighbor of q if p and q are neighbors and the
x-coordinate of p is less (resp. more) than the x-coordinate of q.

s s

s

W W W

good right-good left-good

Figure 5: The stair-point s is good (resp. right-good, left-good) ifW contains two points
that are connected by an edge.

Definition 3.5. In any step t, we say that a point p is good if any wedge containing p
already contains two points connected by an edge, which are thus forced to get different
colors (see Figure 5). I.e., at any time after t, a wedge containing p will contain points
of both colors in the final coloring. A stair-point p is almost-good if for at least one
of its neighbors, q, it is true that any wedge containing p and q contains two points
connected by an edge of Gt. Additionally, if q is the left neighbor of p, then we say that
p is left-good, and if q is the right neighbor of p, then we say that p is right-good.

Notice that the good points and the neighbors of the good points are always almost-
good. In fact, good points are also left- and right-good, and a left (resp. right) neighbor
of a good point is right (resp. left) good.

Now we can state the properties we maintain at any time t.

Property 1. All above-points are good.

Property 2. All stair-points are almost-good.

Property 3. All below-points are in different components of Gt.

Property 4. Gt is a forest.

For t = 0, all these properties are trivially true. Whenever a new point arrives, we
execute the following operations (see also Figure 6) repeatedly as long as it is possible,
in any order. This will ensure that the properties remain true.

1Above: If an above-point p is not good, then we connect p by an edge with a stair-
point that is SW from p.

2Comparable: If for some below-points p, q we have that q is NE from p, then connect
them by an edge and put q on the staircase.
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p

q

p3

p1

p2

p4
p

p W

1Above 2Comparable 4Incomparable 1Box

s1
(only left-good)

s2
(only right-good)

Figure 6: The operations maintaining the properties.

4Incomparable: Suppose there are no comparable below-points and there is a wedge
W that lies entirely below the staircase and contains four incomparable points,
q1, q2, q3, and q4, in order of their x-coordinates. Then connect q1 with q2 and also
q3 with q4, and put q2 and q3 on the staircase.

1Box: Suppose there are no comparable below-points, and suppose s1 and s2 are two
neighboring stair-points, s1 is NW from s2, s1 is left-good but not right-good
while s2 is right-good but not left-good and p is a point in the rectangle defined
by the two opposite vertices s1 and s2. We connect p and s2, and put p on the
staircase.

Now we have to verify that the properties remain true after executing an operation.
First, we make the following observation, which implies that we will have to verify
Property 2 only for the new stair-points.

Observation 3.6. If a stair-point is left-good (resp. right-good, resp. good), then if after
an operation this point is still a stair-point, then it remains left good (resp. right-good,
resp. good).

Proof. Notice that if a stair-point gets a new left-neighbor, then the new neighbor is
either good, or right-good. Similarly, if a stair-point gets a new right-neighbor, then
the new neighbor is either good, or left-good.

Proposition 3.7. After executing any operation, Properties 1-4 remain true.

Proof. We check each operation and each property.

1Above: For Property 1, notice that p necessarily has to be the newly arrived
point, pt, and it becomes good after the operation. Property 2 obviously remains
true. For Properties 3 and 4 we use that as p is the newly arrived point, before
the operation it is not connected to any other point.

2Comparable: Property 1 remains true as only points NE from q became above-
points and thus they all have the edge pq SW from them. Property 2 remains true
as the only new stair-point is q, which became good. Properties 3 and 4 remain
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true as before the operation p and q were in different tree-components, which are
then connected.

4Incomparable: Property 1 remains true as, using that no below-points were com-
parable, any point that became an above-point has either both q1 and q2, or both
q3 and q4 SW from it. Property 2 remains true as there are only two new stair-
points: q2 becomes left-good and q3 becomes right-good. Properties 3 and 4 remain
true as before the operation q1, q2, q3, q4 were all in different tree-components, and
after the operation two-two of these are connected in a suitable way.

1Box: Property 1 remains true as, using that no below-points were comparable,
there are no new above-points. Property 2 remains true as p is the only new
stair-point and it is right-good. Properties 3 and 4 remain true if p and s2 are in
different tree-components. This will be proved in Lemma 3.8 and Lemma 3.9.

Lemma 3.8. If there is no below-point in the tree-component Ts of a stair-point s,
then this remains true, i.e., later during the process the component containing s will
never contain a below-point.

Proof. Suppose that there is no below-point in the tree-component Ts of a stair-point
s. This trivially remains true when a new point arrives (before doing operations). Then
a simple case analysis shows that none of the operations can introduce a below-point
to the tree-component Ts of a stair-point s:

1Above: Either Ts does not change or only p (an above-point) is added to it.

2Comparable: Only the components of the below-points p and q are joined, as Ts

must be a different tree from these two (as it contained no below-point), Ts does
not change.

4Incomparable: Only the components of the below-points q1, . . . , q4 change, as Ts

must be a different tree from these (as it contained no below-point), Ts does not
change.

1Box: Either Ts does not change or s2 ∈ Ts in which case Ts is joined with the tree
Tp containing p. In the latter case in Tp the only below-point was p (by Property
3), which after the operation becomes a stair-point, so the new tree containing s,
T ′s = Ts ∪ Tp still does not contain a below-point after this operation.

Lemma 3.9. Suppose s is a stair-point and b is a below-point in the tree-component
Ts containing s. If s is right-good but not left-good, then b is lower than s, that is, b
has a smaller y-coordinate than s.

Proof. By Observation 3.6, we know that if s is right-good but not left-good, then this
was also true at the time when s became a stair-point. A simple case analysis of the
operations shows that at the time when s becomes a stair-point, the statement holds:

1Above: This is not a possible case as in this case no point becomes a stair-point.
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2Comparable: This is not a possible case as necessarily s plays the role of q in
the operation, in which case s is good and thus also left-good, contradicting our
assumption on s.

4Incomparable: Necessarily s plays the role of q3 in the operation, thus b is q4 and
so it is lower than s, as required.

1Box: Necessarily s plays the role of p in the operation, thus after the operation
the below-point in Ts is necessarily the point which was the below point of Ts2

before the operation. As s2 was right-good but not left-good, by induction this
below point was lower than s2, thus it is also lower than s = p, as required.

If after some step Ts stops to have a below-point, then by Lemma 3.8 this remains
true and so there can be no below-point b in Ts as required by the lemma and we are
done. Otherwise, if Ts still has a below-point, then by Property 3 there is exactly one
below-point b in Ts, it is lower than s, and we have to check that after any operation
the below-point in Ts remains below s. The only operation in which the below-point b
in Ts could go higher is 4Incomparable such that b plays the role of q2. If b = q2 is SW
from s, then s goes above the staircase, thus stops being a stair-point as required by
the lemma and we are done. If b = q2 is SE from s, then the whole wedge W must be
lower than s, and then the new below-point in Ts becomes q1, also lower than s. This
finishes the proof of the lemma and also of Proposition 3.7.

WW1

W2

s

(a)

WW1

W2

∅

s1

s2

(b)

Figure 7: A monochromatic wedge can contain at most 8 points.

Now we can finish the proof of the dynamic dual version, and thus also of Theo-
rem 3.1, by showing that taking any (partial) two-coloring of the forest Gt constructed
using the above operations, at all times (i.e., for every prefix set {p1, . . . , pt} of the
point set), any quadrant W containing at least 9 points contains both colors. Fix the
time after the arrival of the point pt (and after we repeatedly applied the operations
as long as possible). Thus no more operations can be applied, in particular there are
no two comparable below-points otherwise we could apply operation 2Comparable. If
W contains an above-point, it contains both colors as all above-points are good. If W
contains at most one stair-point, s, then by “splitting” W at s (see Figure 7(a)), we

27

               domotorp_98_23



get two quadrants that do not contain any stair-point, but contain all other points
that W contains. One of these two quadrants must contain at least 4 below-points,
thus we could apply operation 4Incomparable, a contradiction. If W contains at least
3 stair-points, then it contains a stair-point s such that both neighbors of s are also
in W . As every stair-point is almost-good, W must contain both colors. Finally, if W
contains exactly two (neighboring) stair-points, s1 NW from s2, then the only way for
W to be monochromatic is if s1 is left-good but not right-good and s2 is right-good but
not left-good. Therefore, there can be no points in the rectangle formed by s1 and s2,
as otherwise we could apply operation 1Box, a contradiction. At least one of the two
quadrants obtained by “splitting” W at s1 and s2 (see Figure 7(b)), must contain at
least 4 below-points, thus we could apply operation 4Incomparable, a contradiction.

3.2 Proof of Theorem 3.2

Here we construct for any triangle T a finite point set P such that for every two-
coloring of P there is a translate of T that contains exactly 4 points and all of these
have the same color. As the construction is quite hard to describe precisely, we refer to
Figures 8 and 9 for the details, and we only give an informal description below. With a
simple case analysis, we will show that in any two-coloring, there is a monochromatic
triangle with exactly 4 points.

The “big picture” is on Figure 8 that shows what the construction looks like from
far. The thicker triangles denote families of triangles that are very close to each other.
The center part has only three points, p1, p2 and p3. Two of these, without loss of
generality, p1 and p3, must receive the same color, say blue.

After this, we look more closely at the family T2 that consists of the subfami-
lies T2,1, T2,2, T2,3 and T2,4, see the left part of Figure 9. Unless the triangle T2,0 is
monochromatic, at least one of p2,0,1, p2,0,2, p2,0,3 and p2,0,4 must be blue. Without loss
of generality, we suppose p2,0,3 is blue.

After this we look more closely at the family T2,3 that consists of the triangles
T2,3,1, T2,3,2, T2,3,3 and T2,3,4, see the right part of Figure 9. Unless the triangle T2,3,0 is
monochromatic, at least one of p2,3,1, p2,3,2, p2,3,3 and p2,3,4 must be blue. But if p2,i,3
is blue, then T2,i,3 is monochromatic. This finishes the proof.
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T1

T2

T3

p3 p1

p2

T2,0

T2,∗,0 = {T2,1,0, T2,2,0, T2,3,0, T2,4,0}

T1,∗,0 = {T1,1,0, T1,2,0, T1,3,0, T1,4,0}

T3,∗,0 = {T3,1,0, T3,2,0, T3,3,0, T3,4,0}

T3,0

T1,0

Figure 8: The construction in which there is always a monochromatic triangle with 4
points.
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(a) zooming into T2

T2,0

T2,1
T2,2
T2,3
T2,4

p2,0,1
p2,0,2

p2,0,3

p2,0,4

(b) zooming into T2,3

p2,0,1
p2,0,2

p2,0,3

p2,0,4

T2,3,0

T2,3,1, T2,3,2, T2,3,3, T2,3,4

p2,3,1, p2,3,2, p2,3,3, p2,3,4

p2

T2,3,0

T2,1,0

T2,2,0

T2,4,0

p3 p1

p3 p1

Figure 9: Zooming into the construction in two stages.
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4 Online and dynamic colorings

This chapter is based on the article [44], joint work with Keszegh and Lemons.
In this chapter we consider proper online colorings of hypergraphs defined by geo-

metric regions. We prove that there is an online coloring method that colors N intervals
of the real line using Θ(logN/k) colors such that for every point p, contained in at least
k intervals, not all the intervals containing p have the same color. We also show that
this is best possible. We also prove the corresponding result about online coloring quad-
rants in the plane that are translates of a given fixed quadrant. These results contrast
to the results of the previous chapter, which showed that in the dynamic setting 2 colors
are enough to color quadrants if k ≤ 9 (independent of N). We also consider coloring
intervals in the dynamic setting. In all cases we present efficient coloring algorithms as
well.

Despite the well-known applications of the study of colorings of geometric graphs
and hypergraphs, relatively little attention has been paid to the online and dynamic
versions of these problems. In online coloring problems, the set of objects to be colored
is not known beforehand; objects come to be colored one-by-one and a proper coloring
must be maintained at all times. We give asymptotically tight bounds on the number
of colors necessary to properly online color wedges in the plane and then relate these
to bounds on the number of colors necessary to properly online color intervals.

In dynamic coloring, objects come online and must be colored one by one, such that
a valid coloring is maintained at each step, yet the objects and their order are known in
advance. Such problems can be used to solve corresponding offline higher dimensional
problems, as we have seen earlier. This was the motivation to revisit the problem about
dynamic coloring intervals.

4.1 Definitions and description of main results

In this chapter, a wedge in the plane is a set of points {(x, y) ∈ R ×R∣x ≤ x0 y ≤ y0}
for some x0, y0. We are interested in coloring with c colors a set of wedges (or intervals)
such that for any point contained in at least k wedges (respectively intervals) not all the
wedges (intervals) containing that point have the same color. We will often refer to this
simply as a coloring of the set of points; the parameters k and c will be obvious from
the context. For a collection of c-colored points in the plane, we define the associated
color-vector to be a vector of length c where the ith coordinate is the size of the largest
wedge consisting only of points with color i. The size of the color-vector refers to the
sum of its coordinates.

Note that given a set of wedges (or intervals) we can define a hypergraph whose
vertices are the wedges (intervals) and whose edges consist exactly of those subsets
of the vertices such that there exists a point contained exactly in the corresponding
wedges (intervals). Then the coloring problem above is exactly the problem of finding a
proper coloring of this hypergraph if we disregard those edges which contain less than
k points.

For convenience, we will work with the equivalent dual-form of the wedge-coloring:
a finite set of points S in the plane is called k-properly c-colored if S is colored with c
colors such that every wedge intersecting S in at least k points contains at least two
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points of different colors. A wedge containing points of only one color is said to be
monochromatic.

A reformulation of Theorem 2.24 is the following statement: Any finite family of
wedges in the plane can be colored dynamic with 2 colors such that any point contained
by at least k = 9 of these wedges is not monochromatic.

Gábor Tardos asked (personal communication) whether such a coloring can be
achieved in a completely online setting, possibly with a larger k and more colors (again
such that all large wedges are non-monochromatic). It is easy to see that 2 colors are not
enough to guarantee colorful wedges (i.e. there may be arbitrarily large monochromatic
wedges) even when the points are restricted to a diagonal line. However, 3 colors (and
k = 2) are enough if the points are restricted to a diagonal, see [45]. We prove that
in general, for any c and k, there exists a method of placing points in the plane such
that any online-coloring of these points with c colors will result in the creation of
monochromatic wedges of size at least k.

Next, we consider the cases when either c or k is fixed. When c is fixed, we derive
upper bounds on k (in terms of n) for which there is always a k-proper online c-coloring
of a set of n points. For fixed k, we derive bounds on c for which there is always a k-
proper online c-coloring of n points.

The rest of this chapter is organized as follows.
In Section 4.2 we study online coloring points with respect to wedges.
In Section 4.3 we show how our results on online colorings of wedges directly relates to
the online coloring of intervals.
In Section 4.4 we describe our results on dynamic colorings of intervals.
Finally, in Section 4.5, based on parts from [49], we investigate various dynamic hyper-
graphs defined by intervals on a line.

4.2 Online coloring wedges

Our first result is a negative answer to the question of Tardos: for every c and k,
there exists a method of placing points in the plane such that any online-coloring of
these points with c colors will result in the creation of monochromatic wedges of size
at least k. Actually we prove a stronger statement.

Theorem 4.1. There exists a method to give N = 2n −1 points in a sequence such that
for any online-coloring method using c colors there will be c monochromatic wedges,
W1,W2, . . . ,Wc, and nonnegative integers x1, . . . , xc such that for each i, the wedge Wi

contains exactly xi points colored with color i and ∑xi ≥ n + 1 if n ≥ 2.

Corollary 4.2. No online-coloring method using c colors can avoid to make a mono-
chromatic wedge of size k + 1 for some sequence of N = 2ck − 1 points.

Proof of Theorem 4.1. By induction on the size of the color-vector. Clearly, one point
gives a color-vector of size 1. Two points guarantee a color-vector of size 2 if they are
placed diagonally from each other. Now we can place the third point diagonally between
the first two if they had a different color or place it diagonally below them to get a
color-vector of size 3 for three points.
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By the inductive hypothesis, using at most 2n−1 − 1 points, we can force a color-
vector with size n. Moving southeast (i.e. so that all the new points are southeast from
the previous ones) we repeat the procedure, again using at most 2n−1 −1 points we can
force a second color-vector with sum n. If the two color-vectors are different then the
whole point set has a color-vector of size at least n + 1. If they are the same then we
put an additional point southwest from all the points of the first set of points but not
interfering with the second set of points. Then as this point is colored with some color,
i, the ith coordinate of the first color-vector increases. (The rest of its coordinates will
becomes 0.) Together with the wedges found in the second set of points, we can see
that the size of the color-vector of the whole point set increased by one. Altogether we
used at most 2(2n−1 − 1) + 1 = 2n − 1 points, as desired.

What happens if c or k is fixed? The case when c = 2 was considered, e.g., in [45]. It
is not hard to see that using 2k−1 points, the size of the largest monochromatic wedge
can be forced to be at least k and this is the best possible. For c = 3 a quadratic (in k)
number of points is needed to force a monochromatic wedge of size k:

Proposition 4.3. The following statements hold.

1. There exists a method of placing k2 points such that any online 3-coloring of these
points produces a monochromatic wedge of size at least k.

2. There exists a method of online 3-coloring k2 − 1 points such that all monochro-
matic wedges have size less than k.

We use the following terminology. Given a collection of 3-colored points in the plane,
we say a new, uncolored point x is a potential member of a monochromatic wedge W ,
if by giving x the color of W , the size of W increases. Furthermore if x is a potential
member of W , and giving x a color different from the color of W destroys the wedge
W , then x threatens the wedge W .

Proof. To prove the first statement, consider the largest monochromatic wedge of each
color after some points have already been placed and colored. Moving in the northwest
/ southeast directions label the wedges W1,W2 and W3. It is clear that W2 lies between
the other two wedges. Note that it is possible to place a new point directly southwest of
the points in W2 such that the point is a potential member of all three wedges but only
threatens W2. Thus if the point is assigned the color of one of the other wedges (say
W1), the size of W1 increments while W3 remains the same and W2 is destroyed (it is
no longer monochromatic). Now suppose W2 is not larger than either of the other two
wedges. In this case, a point is placed, as described above, such that it is a potential
member of all three wedges. If the point is assigned the color of W1 or W3 then W2 is
destroyed and while W1 (or W3) moves from size i to i + 1, the j ≤ i points of W2 are
rendered ineffective for forming monochromatic wedges. On the other hand suppose
W2 has size larger than (at least) one of the other wedges (say W3). Then we forget the
wedge W3 and proceed as above where there is a new wedge W0 (of size 0) between W1

and W2. (We can think that in the previous step W2 increased from i to i+ 1 while the
j ≤ i points of W3 are destroyed.) As we proceed in this way, the sizes of the two “side”
wedges only increase at each step while the “middle” wedge may be reduced to size 0
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at some steps. However, the j points of the middle wedge are only destroyed when a
side wedge increases from i to i+ 1 when i ≥ j. Thus by destroying at most 2(k2) points
we can guarantee that the two side wedges have size k − 1. Adding at most k more
points to the middle, a monochromatic wedge of size k is guaranteed.

To prove the second statement we must assign colors to the points to avoid a
monochromatic k-wedge. When a new point, x is given, consider those wedges of which
x is a potential member. Note that at most two of these are not threatened by x. Let
s be the size of the smallest wedge, W which is not threatened by x but of which x
is a potential member. If by giving x the color of W at least s points are destroyed
among the wedge(s) threatened by x, then give x this color. Otherwise give x the color
different from the two non-threatened wedges. In this way we guarantee that a wedge
only increases in size from i to i+1 if at the same time i other points are destroyed (i.e.
rendered ineffective) or if two other wedges of size i+ 1 already exist. Therefore if only
2∑k−2

i=1 i + 3(k − 1) = k2 − 1 vertices are online-colored, we can avoid a monochromatic
k-wedge.

For c ≥ 4 we can give an exponential (in ck) lower bound for the worst case:

Theorem 4.4. For c ≥ 4 we can online color with c colors any set of N = O(1.22074ck)
points such that throughout the process there is no monochromatic wedge of size k.
Moreover, if c is large enough, then we can even online color N = O(1.46557ck) points.

Proof. Denote the colors by the numbers {1, . . . , c}. A wedge refers to both an area
in the plane as well as the collection of placed points which fall within that area. For
brevity, we will often refer to maximal monochromatic wedges as simply wedges. If a
wedge is not monochromatic, we will specifically note it. At each step, we define a parti-
tion of all the points which have come online in such a way that each set in the partition
contains exactly one maximal monochromatic wedge. Two maximal monochromatic
wedges are called neighbors if they are contained within a larger (non-monochromatic)
wedge which contains no other monochromatic wedges. If the placement and coloring
of a point cause a wedge to no longer be monochromatic, that wedge has been killed.

We now describe how to color a new point given that we have already colored some
(or possibly no) points. If the new point is Northeast of an earlier point, it is given a
different color from the earlier point. In this case no new wedges are created and no
wedges increase in size. Otherwise the new point will eventually be part of a wedge. We
want to make sure that the color of the point is distinct from its neighbors colors. In
particular, consider the (at most) two wedges which are neighbors of wedges containing
the point but which do not actually contain the point. From the c colors we disregard
these two colors. From the remaining, we choose the color which first minimizes the
size of the wedge containing the point and secondly minimizes the color (as a number
from 1 to c.) This means that our order of preference is first to have size 1 wedge of
color 1, then a size 1 wedge of color 2, . . ., size 1 wedge of color c, size 2 wedge of color
1, . . . etc. These rules determine our algorithm. For an illustration see Figure 10 for a
5-coloring, where the new vertex v cannot get the neighboring colors 2 and 4 and by
our order of preference it gets color 3, thus introducing a (monochromatic) wedge (of
color 3) of size 2. Now we have to see how effective this coloring algorithm is.
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Figure 10: A general step of the coloring in the proof of Theorem 4.4.

To prove the theorem we show that the partition set associated with the newly
created (or incremented) wedge is relatively large. Suppose this wedge is of color i and
size j. Let Ai,j denote the smallest possible size of the associated partition set. One
can regard Ai,j as the least number of points that are required to “build” a wedge W
of size i of color j. For simplicity, we also use the notation Bc(i−1)+j = Ai,j . Note that
this notation is well defined as j is always less than c. Thus we have B1 = B2 = B3 = 1
and B4 = 2.

It follows from our preferences that Bi ≤ Bj if i ≤ j. Our goal is to give a good lower
bound on Ak,1 = Bc(k−1)+1.

Notice that when we create a new wedge, it will kill many points that were contained
in previous wedges. More precisely, from our preferences we have Bi ≥ 1+Bi−3 +Bi−4 +
. . . +Bi−c (where Bi = 0 for i ≤ 0). Note that Bi−1 and Bi−2 is missing from this sum
because the coloring method must choose a color different from the new points two
to-be-neighbors’.

From the solution of this recursion we know that the magnitude of Bi is at least q
i

where q is the (unique, real, > 1) solution of qc = (qc−2 − 1)/(q − 1), which is equivalent
to qc+1 = qc + qc−2 − 1. Moreover, since trivially Bi ≥ 1 ≥ q

i−c if i ≤ c, from the recursion
we also have Bi ≥ qi−c for all i. If we suppose c ≥ 4, then q ≥ 1.22074 and from this
Bc(k−1)+1 ≥ 2.22074

k−2. As c tends to infinity, q tends (from below) to the real root of

q3 = q2 + 1, which is ≥ 1.46557. From this we obtain that Bc(k−1)+1 ≥ 1.46557
c(k−2) if c

is large. Also, in the special case k = 2, we get the well known sequence A000930 (see
OEIS), which is at least 1.46557c, if c is big enough.

Summarizing, if we have c ≥ 4 colors, the smallest N0 number of points that forces
a monochromatic wedge of size k is exponential in ck. Thus, if the number of colors,
c, is given, these bounds give an estimate of Θ(logN/c) on the size of the biggest
monochromatic wedge in the worst case.

If we consider k fixed (and we want to use as few colors as possible), by the
above bound the number of colors needed to avoid a monochromatic wedge of size
k is O(logN/k) for k ≥ 1.
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Corollary 4.5. There is a method to online color N points in the plane using at most
O(logN/k) colors such that all monochromatic wedges have size strictly less than k.

Recall that Theorem 4.1 stated that N = 2n − 1 points can always force a size n+ 1
color-vector (for the definition see the proof of Theorem 4.1). We remark that Theorem
4.4 implies a lower bound close to this bound too. Indeed, fix, e.g., c = 4 and k = ⌈n/4⌉.
If the number of points is at most N = O(1.22074n) = O(1.22074ck) then by Theorem
4.4 there is an online coloring such that at any time there is no monochromatic wedge
of size k, thus the color-vector is always at most 4(k − 1) < n.

Suppose now that k is fixed and we want to use as few colors as possible without
knowing in advance how many points will come, i.e. for k fix we want to minimize c
without knowing N . To solve this, we alter our previous algorithm. (Note that we could
also easily adjust the algorithm if for an unknown N we want to minimize min(c, k), or
ck, the answer would be still logarithmic in N .) All this comes with the price of loosing
a bit on the base of the exponent. The following theorem implies that for k = 2 (and
thus also for any k ≥ 2) we can color any set of N = O(1.0905ck) points and if k is big
enough then we can color any set of N = O(1.1892ck) points.

Theorem 4.6. For fixed k ≥ 1 we can color a countable set of points such that for any
c, and any n < 2⌊(c+1)/4⌋(k−1), the first n points of the set are k-properly c-colored.

Proof. We need to define a coloring algorithm and prove that it uses many colors only if
there were many points. The coloring and the proof is similar to the proof of Theorem
4.4, we only need to change our preferences when coloring and because of this the
analysis of the performance of the algorithm differs slightly too. We fix a c and an
N < 2⌊(c+1)/4⌋(k−1) for which we will prove the claim of the theorem (the coloring we
define can obviously not depend on c or N , but it depends on k). Denote the colors by
the numbers {1,2, . . . , c − 1, c, . . .}.

We can suppose again that every new point will be on the actual diagonal. When
we add a point its color must still be different from its to-be-neighbors’ and together
with this point we still cannot have a monochromatic wedge of size k. Our primary
preference now is that we want to keep ⌊c/4⌋ small where c is the color of the new
point (as a number). Our secondary preference is that the size of the biggest wedge
containing the new point should be small.

This means that our order of preference is first to have size 1 wedge of color 1, then
a size 1 wedge of color 2, size 1 wedge of color 3, a size 1 wedge of color 4, a size 2
wedge of color 1, . . ., a size k−1 wedge of color 1, size k−1 wedge of color 2, a size k−1
wedge of color 3, a size k − 1 wedge of color 4, size 1 wedge of color 5, size 2 wedge of
color 5, . . . etc. These rules determine our algorithm, now we have to see how effective
it is.

Ai,j is defined as in the proof of Theorem 4.4. We only need to prove that Ai,j ≥

2(k−1)(⌊j/4⌋+i−1) as this means that if the algorithm uses the color c+ 1, then we had at
least A1,c+1 ≥ 2(k−1)⌊(c+1)/4⌋ > N points, a contradiction. Recall that Ai,j denotes the
least number of points that are required to “build” a wedge W of size i of color j.

We prove by induction. First, A1,1 = A1,2 = A1,3 = A1,4 = 1 indeed. By our prefer-
ences, whenever we introduce a size one wedge with color j, we had to kill at least two
(four minus the two forbidden colors of the neighbors of the new point) points that have
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colors from the previous 4-tuple of colors and are contained in monochromatic wedges
of size k − 1. Thus A1,j ≥ Ak−1,4(⌊j/(4−1)⌋+1) +Ak−1,4(⌊j/(4−1)⌋+2 ≥ 2 ⋅ 2

(k−1)(⌊j/(4−1)⌋+k−2) =

2 ⋅ 2(k−1)(⌊j/4⌋−1 = 2(k−1)(⌊j/4⌋+1−1. If we introduce a wedge of size i > 1 with color
j, we had to kill at least two points that have colors from the same 4-tuple of col-
ors as j and are contained in monochromatic wedges of size i − 1. Thus in this case
Ai,j ≥ Ai−1,4(⌊j/4⌋+1 +Ai−1,4(⌊j/4⌋+2 ≥ 2 ⋅ 2

(k−1)(⌊j/4⌋+i−2) = 2(k−1)(⌊j/4⌋+i−1.

Proposition 4.7. The online coloring methods, guaranteed by the second part of Propo-
sition 4.3 and Theorems 4.4 and 4.6, run in O(n logn) time to color the first n points
(even if we have a countable number of points and n is not known in advance).

The proof of this proposition is omitted as it follows easily from the analysis of the
algorithms.

4.3 Online coloring intervals

This section deals with the following interval coloring problem. Given a finite family
of intervals on the real line, we want to online color them with c colors such that
throughout the process if a point is covered by at least k intervals, then not all of these
intervals have the same color.

Proposition 4.8. The interval coloring problem is equivalent to a restricted case of
the point with respect to wedges coloring problem, where we care only about the wedges
with apex on the line L defined by y = −x.

Proof. Consider the natural bijection of the real line and L. Associate to every point
p of L the wedge with apex p and associate with every interval I = (x1,−x1), (x2,−x2)
of L the point (x1,−x2). It is easy to see that p ∈ I if and only if the point associated
to I is contained in the wedge associated to p.

Corollary 4.9. Any upper bound on the number of colors necessary to (online) color
wedges in the plane is also an upper bound for the number of colors necessary to (online)
color intervals in R.

Also the lower bounds of Theorem 4.1 and of Proposition 4.3 follow for intervals
easily by either repeating the proofs for intervals or by Observation 4.10:

Observation 4.10. The proofs of Theorem 4.1 and of the first part of Proposition
4.3 can be easily modified such that all the relevant wedges have their apex on the line
y = −x.

In particular, we have the following.

Corollary 4.11. There is a method to online color N intervals in R using Θ(logN/k)
colors such that for every point x, contained in at least k intervals, there exist two
intervals containing x of different colors.

As we have seen the results about intervals follow in a straightforward way from
the results about wedges. Thus all the statements we proved hold for online coloring
wedges, also hold for intervals, however, it seems unlikely that the exact bounds are the
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same. Thus, we would be happy to see (small) examples where there is a distinction.
As the next section shows, there is a difference between the exact bounds for dynamic
coloring wedges and intervals.

4.4 Dynamic coloring of intervals

A dynamic coloring of an ordered collection of intervals {It}
n
t=1, is a coloring ϕ such

that for every k, the sub-collection {It}
k
t=1 is properly colored under ϕ.

Theorem 4.12. Any finite family of intervals on the line can be dynamic colored with
2 colors such that at any time any point contained by at least 3 of these intervals is not
monochromatic.

We exploit an idea used in Chapter 3; instead of online coloring the intervals we
online build a labelled acyclic graph (i.e., a forest) with the following properties. Each
interval will correspond to a vertex in this graph (there might be other vertices in
the graph as well). The final coloring of the intervals will then be generated from this
graph. In particular, to define a two-coloring, we will assign each edge in the forest one
of two labels, “different” or “same”. For an arbitrary coloring of exactly one vertex in
each component (tree) of the graph, there is a unique extension to a coloring of the
whole graph compatible with the labelling, i.e., such that each edge labelled “same”
is adjacent to vertices of the same color and each edge labelled “different” is adjacent
to vertices of different colors. In Chapter 3 all the edges were labelled “different” so it
was actually a simpler variant of our current scheme. As we will see, this idea can also
be generalized to more than two colors.

We denote the color of an interval I by ϕ(I), the left (resp. right) endvertex of I
by ℓ(I) (resp. by r(I)). These vertices are real numbers, and so they can be compared.

Proof of Theorem 4.12. Let {It}
n
t=1 be the given enumeration of the intervals to be

dynamic colored. We first build the forest and then show that the coloring defined by
this forest works. As we build the forest we will maintain also a set of intervals, called
the active intervals (not necessarily a subset of the given set of intervals). At any time
t the vertices of the actual forest correspond to the intervals of {It}

n
t=1 and the set

of current or past active intervals. The set of active intervals will change during the
process, but we maintain that the following properties hold any time.

1. Every point of the line is covered by at most two active intervals.

2. No active interval contains another active interval.

3. A point is either forced by the labelling to be contained in original intervals of
different colors or it is contained in the same number of active intervals as original
intervals, and additionally the labelling forces these original intervals to have the
same colors as these active intervals.

4. Each tree in the forest contains exactly one vertex that corresponds to an active
interval.
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Figure 11: A general step in the proof of Theorem 4.12.

The last property ensures that a coloring of the active intervals determines a unique
coloring of all the intervals which is compatible with the labelling of the forest.

Note that in the third property one or two of the original intervals can actually
coincide with one or two of the active intervals.

For the first step we simply make the first interval active; our forest will consist of
a single vertex corresponding to this interval. In general, at the beginning of step t,
we have a list of active intervals, Jt−1. Consider the tth interval, It. If It is covered by
an active interval, J ∈ Jt−1, then we add It to the forest and connect it to J with an
edge labelled “different”. Note that there is at most one such active interval. If there
is no active interval containing It, we add It to the set of active intervals and also
add a corresponding vertex to the forest. Now if there are active intervals contained
in It, these are all deactivated (removed from the set of active intervals) and each is
connected to It in the graph with an edge labelled “different”. Note that this way any
point covered by these inactivated intervals will be covered by intervals of both colors.

It remains to ensure that no point is contained within three active intervals. If
there still do exist such points, by induction they must be contained within It. Let L1

and L2 be the (at most) two active intervals covering ℓ(It) such that ℓ(L1) < ℓ(L2)

(if both of them exist.) Similarly, let R1 and R2 be the (at most) two active intervals
covering r(It) such that ℓ(R1) < ℓ(R2) (if both of them exist.) We note that the Li

and Rj cannot be the same, as such an interval would cover It. Also, no other active
intervals can intersect It, as they would necessarily be contained in It. Without loss
of generality, we can assume that both L1 and L2 exist. If R1 and R2 also both exist,
deactivate L1, L2, It,R1 and R2 and activate a new interval N = L1 ∪ It ∪ R2 (and
add a corresponding vertex to the graph). In the graph, connect L1, It and R2 to N
with edges labelled “same”. Connect L2 and R1 to N with edges labelled “different”.
Otherwise, if at most one active edge contains r(It) we deactive L1 and L2 and connect
these to the new interval N = L1∪It (again with edges labelled “same” and “different”,
respectively), also we deactive It and connect it to N with an edge labelled “same”.
Figure 11 is an illustration of this case when the active interval N is assigned color blue
and deactivated intervals are shown with dashed lines.

This way within a given step, any point which is contained in (at least) two intervals
deactivated during the step, is forced by the labelling to be contained in intervals of
different colors. For any other point v the number of original intervals containing v
remains the same as the number of active intervals covering v (both remains the same
or both increases by 1). The first three properties were maintained and also it is easy
to check that the graph remains a forest such that in each component there is a unique
active interval.

At the end of the process any coloring of the final set of active intervals extends
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to a coloring of all the intervals (compatible with the labelling of the graph). We
have to prove that for this coloring at any time any point contained by at least 3 of
these intervals is not monochromatic. By induction at any time t < n the coloring is
compatible with the graph at that time, thus by induction any point contained by at
least 3 of these intervals is not monochromatic. Now at time n, if the active intervals
are colored, the extension (by induction) is such that every point not in In is either
covered by at most two original intervals or it is covered by intervals of both colors. On
the other hand, from the way we defined the graph, we can see that points covered by
In and contained in at least 3 intervals are covered by intervals of both colors as well.
Indeed, by the properties maintained, if a point v is not covered by intervals of both
colors than it is covered by as many active intervals as original intervals. Yet, no point
is covered by more than 2 active intervals at any time, thus v is covered by no more
than 2 active and thus no more than 2 original intervals.

Theorem 4.13. Any finite family of intervals on the line can be dynamic colored with
3 colors such that at any time any point contained by at least 2 of these intervals is not
monochromatic.

Proof. We proceed similarly to Theorem 4.12. In particular, we require the same four
properties from active intervals, although the second two need some modifications.
Now instead of a labelled graph we define rules of the following form: some interval I
(original or auxiliary) gets a different color from at most two other intervals J1, J2. We
say that I depends from J1, J2, otherwise I is independent. If there is an order on the
intervals such that an interval depends only on intervals later in this order then starting
with any coloring of the independent intervals and then coloring the dependent ones
from the last going backwards we can naturally extend this coloring to all the intervals
such that the coloring is compatible with the rules (i.e. I gets a color different from
the color of J1, J2 for all dependent triples). For a representation with directed acyclic
graphs - showing more clearly the similarities with the previous proof - see the proof
of Theorem 4.14.

1. Every point of the line is covered by at most two active intervals.

2. No active interval contains another active interval.

3. A point of the line is either forced by the rules to be contained in original intervals
of different colors or it is contained in the same number of active intervals as
original intervals, and additionally the rules force these original intervals to have
the same colors as these active intervals.

4. An interval is independent if and only if it is an active interval.

The first two properties ensure the following structure on the set of active intervals.
Define a chain as a sequence of active intervals such that everyone intersects the one
before and after it in the chain. The set of active intervals can be partitioned into
disjoint chains. The last property guarantees that any coloring of the active intervals
extends naturally and uniquely to a coloring of all the intervals which is compatible
with the rules.
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We will define the rules such that if we start by a proper coloring of the active
intervals then the extension is a dynamic coloring (as required by the theorem) of the
original set of intervals. Note that in the previous proof we started with an arbitrary
coloring of the active intervals, which was not necessarily proper, thus now we addi-
tionally have to take care that a proper coloring of the active intervals extends to a
coloring which is a proper coloring of the active intervals at any previous time as well.

In the first step we add I1 and activate it. In the induction step we add It to the
set of active intervals. If It is covered by an active interval or by two intervals of a
chain, then we deactivate It and the rule is that we give a color to it differing from the
color(s) of the interval(s). If It does not create a triple intersection, it remains activated.
Otherwise, denote by L (resp. R) the interval with the leftmost left end (resp. rightmost
right end) that covers a triple covered point. We distinguish two cases.

Case i) If It is not covered by one chain, then either L or R is It, or L and R are not
in the same chain. In either case we deactivate all intervals covered by N = L ∪ It ∪R,
except for L, It and R. The rule to color the now deactivated intervals is that they get
a color different from It, in an alternating way along their chains starting from L and
R.

It is easy to check that the four properties are maintained.
Given a proper coloring of the active intervals at step n by our rules it extends to

a proper coloring of the active intervals in the previous step. Thus by induction at any
time t < n for any point v it is either covered by differently colored intervals or it is
covered by at most one interval. For time n it is either covered by differently colored
intervals or it is covered by as many original intervals as active intervals, and they have
the same set of colors (by the third property). As the coloring was proper on the active
intervals, v is either covered by two original intervals and then two active intervals
which have different colors, thus the original intervals have different colors as well, or
v is covered by at most one active and thus by at most one original interval.

Case ii) If It is covered by one chain, then L and R both differ from It. We deactivate
all intervals covered by L∪ It ∪R (including It), except for L and R. Notice that apart
from It these intervals are all between L and R in this chain.

L

It

RL

It

R

Figure 12: Case i) of Theorem 4.13

If we deactivated an odd number of intervals this way (so an even number from the
chain), then we insert the new active interval L′ that we get from L by prolonging the
right end of L such that L′ and R intersect in an epsilon short interval. We deactivate
L and the rule is to color it the same as we color L′. The rule to color the deactivated
It is to color it differently from the color of L′ (or, equivalently, L) and R. The rule
to color the deactivated intervals of the chain is to color them in an alternating way
using the colors of L and R (in a final proper coloring of the active intervals they get
different colors as L′ and R intersect). If we deactivated an even number of intervals
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L′

It

R

L

Figure 13: Case ii), odd subcase of Theorem 4.13

this way (so an odd number from the chain), then we deactivate L and R as well and
add a new active interval N = L ∪ It ∪ R. The rule to color the deactivated It is to
color it differently from the color of N . The rule to color the deactivated intervals of
the chain is to color them in an alternating way using the color of N (L and R get this
color) and the color that is different from the color of N and It.

It is easy to check that the four properties are maintained. Also, similarly to the
previous case, it can be easily checked that if we extend a proper coloring of the active
intervals then for its extension it is true at any time (for time t < n by induction,
otherwise by the way we defined the rules) that every point is either covered by at
most one original interval or it is covered by intervals of different colors.

Theorem 4.14. Colorings guaranteed by Theorem 4.12 and Theorem 4.13 can be found
in O(n logn) time.

Proof. Instead of a rigorous proof we provide only a sketch, the easy details are left
to the reader. In both algorithms we have n intervals, thus n steps. In each step we
define a bounded number of new active intervals, thus altogether we have cn regular
and active intervals. We always maintain the (well-defined) left-to-right order of the
active intervals. Also we maintain an order of the (active and regular) intervals such
that an interval’s color depends only on the color of one or two intervals’ that are later
in this order. This order can be easily maintained as in each step the new interval and
the new active intervals come at the end of the order. We also save for each interval
the one or two intervals which it depends on. This can be imagined as the intervals
represented by vertices on the horizontal line arranged according to this order and an
acyclic directed graph on them representing the dependency relations, thus each edge
goes backwards and each vertex has indegree at most two (at most one in the first
algorithm, i.e. the graph is a directed forest in that case). In each step we have to
update the order of active intervals and the acyclic graph of all the intervals, this can
be done in c logn time plus the time needed for the deletion of intervals from the order.
Although the latter can be linear in a step, yet altogether during the whole process it
remains cn, which is still ok. At the end we just color the vertices one by one from right
to left following the rules, which again takes only cn time. Altogether this is cn logn
time.

These problems are equivalent to (offline) colorings of bottomless rectangles in the
plane. Using this notation, Theorem 4.13 and Theorem 4.12 were proved already in
[43] and [42], yet those proofs are quite involved and they only give quadratic time
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algorithms, so these results are improvements regarding simplicity of proofs and effi-
ciency of the algorithms. The algorithms in [43] and [42] proceed with the intervals in
backwards order and the intervals are colored immediately (in each step many of them
are also recolored), this might be a reason why a lot of recolorings are needed there
(which we don’t need in the above proofs), adding up to quadratic time algorithms
(contrasting the near-linear time algorithms above).

4.5 Dynamic interval hypergraphs

In this section, based on parts from [49], we investigate two-coloring geometric dy-
namic hypergraphs defined by intervals on a line. The vertices of a dynamic hypergraph
are ordered and they “appear” in this order. Knowing in advance the whole ordered
hypergraph, our goal is to color the whole vertex set such that at all times any edge
restricted to the vertices that have “arrived so far” is non-monochromatic if it contains
at least m vertices that have arrived so far. The exact definitions are as follows.

Definition 4.15. For a hypergraph H(V,E) with an ordered set of vertices, V =
{v1, v2, . . . , vn}, we define the dynamic closure of H as the hypergraph on the same
vertex set and with edge set {E ∩ {v1, v2, . . . , vi} ∶ E ∈ E ,1 ≤ i ≤ ∣V ∣}. A hypergraph with
an order on its vertices is dynamic if it is its own dynamic closure. A hypergraph is m-
proper two-colorable if V can be two-colored such that for every i and E ∈ E if ∣E∣ ≥m,
then E contains both colors. For a family of (ordered) hypergraphs, {Hi ∣ i ∈ I}, define
m({Hi ∣ i ∈ I}) as the smallest number m such that every (ordered) hypergraph in the
family is m-proper two-colorable.

Let moct =m(Point2Octant), where Point2Octant is the family of hypergraphs real-
izable by octants. From Theorem 2.24 we know that 5 ≤moct ≤ 9. Let DPoint2Quadrant
be the family of the dynamic closures of ordered hypergraphs on ordered finite planar
point sets where a subset is an edge if and only if there is a quadrant containing exactly
this subset of the point set. As we noted already in the previous section, in [45, 63] it
was also shown (not using this terminology) that the hypergraph family Point2Octant
is the same as the (ordered) hypergraph family DPoint2Quadrant (regarding the hy-
pergraphs in it without the vertex orders). Summarizing:

Observation 4.16 ([45, 63]). DPoint2Quadrant equals Point2Octant and therefore
m(Point2Octant) =m(DPoint2Quadrant) =moct.

The set of all intervals on the real line is denoted by IR. Note that we are dealing
with finitely many objects, so it does not matter if the intervals are closed or open.
We study the following five hypergraph families and their dynamic closures defined
by points and intervals on the real line. (For their relations that we will establish, see
Figure 16.)

Point2Int: Vertices: a finite point set;
Edges: subsets of the vertex points contained in an interval I ∈ IR.

Int2Point: Vertices: a finite set of intervals;
Edges: subsets of the vertex intervals containing a point p ∈ R.
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J ⊃ I1, I2, I3 J ⊂ I ′1, I
′
2, I

′
3

J ′

DInt2SmallerIntDInt2BiggerInt

Figure 14: Int2BiggerInt equals Int2SmallerInt.

Int2BiggerInt: Vertices: a finite set of intervals;
Edges: subsets of the vertex intervals contained in an interval I ∈ IR.

Int2SmallerInt: Vertices: a finite set of intervals;
Edges: subsets of the vertex intervals containing an interval I ∈ IR.

Int2CrossInt: Vertices: a finite set of intervals;
Edges: subsets of the vertex intervals intersecting an interval I ∈ IR.

DH: When H is a hypergraph family, DH is the hypergraph family that contains all
the dynamic closures of the family H (with all orderings of their vertex sets).

Observation 4.17. If for two non-ordered hypergraph families, A is a subfamily of B,
then for their dynamic closures, DA is a subfamily of DB. Thus, if A and B are equal,
then DA and DB are also equal.

Now we study the relations among the above five hypergraph families. By exchang-
ing points with small enough intervals we get that the family Point2Int is a subfamily
of Int2BiggerInt, and the family Int2Point is a subfamily of Int2SmallerInt, while both
Point2Int and Int2Point are subfamilies of Int2CrossInt. By definition and using Ob-
servation 4.17, this implies, e.g., m(DPoint2Int) ≤m(DInt2BiggerInt).

We are only aware of earlier papers studying the first two variants. It follows from
a greedy algorithm that m(Point2Int) = 2 and m(Int2Point) = 2. It was shown in [43]
that m(DPoint2Int) = 4, and later this was generalized for k-colors in [7]. It was also
shown in [43] that m(DInt2Point) = 3, and later this proof was simplified in [44]. It
is interesting to note that for the DPoint2Int m-proper coloring problem there is a
so-called semi-online algorithm, that can maintain an appropriate partial m-proper
coloring of the points arrived so far, while it was shown in [17] that no semi-online
algorithm can exist for m-proper coloring DInt2Point. Here we mainly study the other
three hypergraph families.

Proposition 4.18. Int2BiggerInt equals Int2SmallerInt and DInt2BiggerInt equals
DInt2SmallerInt.
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p = (x, y)

Ip = [−y, x]

p = (x, y)

Ip = [x,−y]

Iq = [x′,−y′]

Wq

Wq

Int2BiggerInt Int2SmallerInt

p = (x, y)

Ip = [x,−y]

q = (x′, y′)

Iq = [−y′, x′]

Wq

Int2CrossingInt

q = (x′, y′)

q = (x′, y′)

Iq = [−y′, x′]

Figure 15: Left: Int2BiggerInt equals Point2Quadrant, Center: Int2SmallerInt equals
Point2Quadrant, Right: Int2CrossingInt is a subfamily of Point2Quadrant.

Proof. By Observation 4.17 it is enough to prove the first statement. Notice that in
both Int2BiggerInt and Int2SmallerInt, we can suppose that the left endpoint of any
vertex interval is to the left of the right endpoint of any vertex interval, as swapping
a right endpoint with a left endpoint which is next to (and to the right to) it does
not change the hypergraphs. Thus, without loss of generality, there is a point that
is in all the vertex intervals. Instead of a line, imagine that the vertex intervals of a
hypergraph of Int2BiggerInt are the arcs of a circle such that none of them contains
the bottommost point of the circle and all of them contains the topmost point.11 This
is clearly equivalent to the version when the vertex intervals are on the line. Similarly,
we can imagine that the vertex intervals of a hypergraph of Int2SmallerInt are the arcs
of a circle such that none of them contains the topmost point of the circle and all of
them contains the bottommost point. Taking the complement of each arc transforms
the families into each other, see Figure 14.

Lemma 4.19. Int2BiggerInt and Int2SmallerInt are both equal to Point2Quadrant,
while Int2CrossingInt is a family of subhypergraphs of hypergraphs from the above, and
the same holds for the dynamic variants.

Proof. By Observation 4.17, it is enough to prove the statements about the non-
dynamic families. For an illustration for the proof, see Figure 15. Recall that a quadrant
is a set of the form (−∞, x) × (−∞, y) for some apex (x, y). We can suppose that all
points of the point set are in the North-Eastern halfplane above the line ℓ defined by
the function x + y = 0, i.e., x + y > 0 for every p = (x, y). For each point p = (x, y)
we define an interval, Ip = [−y, x]. Quadrants that lie entirely below ℓ do not contain
points from P . For the quadrants with apex above ℓ, a quadrant whose apex is at q
contains the point p if and only if Iq contains Ip. This shows that the hypergraphs in
Point2Quadrant and in Int2BiggerInt are the same.

11Without the extra condition regarding the bottommost point, we could define a circular variant
of the problem whose parameter m can be at most one larger than m(DInt2BiggerInt) but we omit
discussing this here.
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The equivalence of Int2SmallerInt and Point2Quadrant already follows from Propo-
sition 4.18, but we could give another proof in the above spirit, by supposing that for
all points p = (x, y) we have x + y < 0, moreover, that for every quadrant intersecting
some of the points there is a quadrant containing the same set of points whose apex
q = (x′, y′) has x′ + y′ < 0. Now for each point p = (x, y) we can define the interval
Ip = [x,−y] and proceed as before. Note that this gives another proof for Proposition
4.18.

Finally, taking a H in Int2CrossingInt, it is isomorphic to the subhypergraph of
some H ′ in Point2Quadrant where in H for all points p = (x, y) we have x + y < 0
and we take only the edges corresponding to quadrants whose apex q = (x′, y′) has
x′ + y′ > 0. Now for each point p = (x, y) below ℓ we define Ip = [x,−y], and for each
point q = (x′, y′) above ℓ we define Iq = [−y

′, x′], and proceed as before. This finishes
the proof of the theorem.

As it was shown in [69] that m(Point2Quadrant) = 2, and so it follows that we also
have m(Int2BiggerInt) =m(Int2SmallerInt) =m(Int2CrossingInt) = 2.

Surprisingly, we could not find a direct proof for the fact that DInt2CrossingInt
is a family of subhypergraphs of hypergraphs from the families DInt2BiggerInt and
DInt2SmallerInt.

From Theorems 3.1 and 3.2, and Lemma 4.19 we obtain the following.

Corollary 4.20. 5 ≤m(DInt2BiggerInt) =m(DInt2SmallerInt) =moct ≤ 9.

Point2Octant
Octant2Point

DPoint2Quadrant
DQuadrant2Point

DInt2CrossingInt Point2HomotheticTriangle HomotheticTriangle2Point

TranslatedTriangle2Point
Point2TranslatedTriangle

5 ≤ m ≤ 9

DPoint2Int
Point2BlessRectangle

m = 4

DInt2Point
BlessRectangle2Point

m = 3

DInt2BiggerInt
DInt2SmallerInt

5 ≤ m ≤ 9

Figure 16: Diagram of proved and related hypergraph results.
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5 Self-coverability

This chapter is based on the article [47], joint work with Keszegh.

Definition 5.1. A collection of closed geometric sets S is self-coverable if there exists
a self-coverability function f such that for any S ∈ S and for any finite point set
P ⊂ S, ∣P ∣ = k there exists a subcollection S ′ ⊂ S, ∣S ′∣ ≤ f(k) such that ∪S ′ = S but no
point of P is in the interior of an S′ ∈ S ′.

Note that by definition all points of P are outside or on the boundary of regions
from S ′. Also, points outside or on the boundary of S are irrelevant, thus we can and
will assume that all points of P are in the interior of S.

E.g., it is easy to see that (closed)12 axis-parallel rectangles are self-coverable with
f(k) = k+1 and that all discs in the plane (or, in fact, the homothets of any set that is
a concave polygon or a set with a smooth boundary) are not self-coverable as already
f(1) does not exist.

The motivation to study this notion is the following theorem, which is a general-
ization of a result contained implicitly in Cardinal et al. [16].

Theorem 5.2. Suppose that S is self-coverable with a monotone self-coverability func-
tion f for which f(k) > k, and that m2 ≤ m for S, i.e., any finite set of points can be
colored with two colors such that if S ∈ S contains at least m points, then S contains
both colors. Then mk ≤m(f(m− 1))

⌈log k⌉−1, i.e., any finite set of points can be colored
with k colors such that if S ∈ S contains at least m(f(m − 1))⌈log k⌉−1 ≤ kd points, then
S contains all k colors. (Here d is a constant that depends only on S.)

Our main results about self-coverability are about homothets of convex polygons
where we prove the following.

Theorem 5.3. The family of all homothets of a given convex polygon C is self-coverable
with f(k) ≤ ck where the constant c depends only on C.

In other words, given a closed convex polygon C and a collection of k points in
its interior, we can take ck homothets of C whose union is C such that none of the
homothets contains any of the given points in its interior.

Corollary 5.4. If for the homothets of any convex polygon m2 <∞, then mk ≤ k
d.

For triangles and squares we could even determine the exact value of f .

Theorem 5.5. The family of all homothets of a given triangle is self-coverable with
f(k) = 2k + 1 and this is sharp.

Theorem 5.6. The family of all homothets of a square is self-coverable with f(k) =
2k + 2 and this is sharp.

We also show that the constant in Theorem 5.3 cannot depend only on the number
of vertices of P as even for a quadrangle it can be arbitrarily big.

Theorem 5.7. For every c there exists a quadrangle Q such that the family of all
homothets of Q is self-coverable with f , then f(k) ≥ ck.

In the rest of this chapter, we prove Theorem 5.2 in Section 5.1, then Theorem 2.3
and 5.6 in Section 5.2 and finally Theorem 5.3 and 5.7 in Section 5.3.

12Every polygon is considered to be closed in this chapter, unless stated otherwise.
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5.1 Proof of Theorem 5.2

Proof of Theorem 5.2. Suppose that S is self-coverable with self-coverability function
f and m2 ≤ m, i.e., any finite set of points P can be colored with two colors such
that any member of S with at least m points contains both colors. Now we show by
induction on k that any finite set of points can be colored with k colors such that any
member of S with at least mk =m(f(m − 1))

⌈log k⌉−1 points contains all k colors.

Suppose we already know the statement for a and b, from this we establish it for
k = ab. Color P with a colors using induction and denote the color classes by P1, . . . , Pa.
Now color each of these color classes with b colors using induction. We claim that this
coloring is good for k = ab. By contradiction, say S ∈ S does not contain all colors. This
means that for some 1 ≤ i ≤ a we have ∣S ∩Pi∣ ≤mb − 1. Using the self-coverability of S,
cover S∖Pi with f(mb−1) sets of S. Using the monotonicity of f , one of these covering
sets contains at least ⌈mk−mb+1

f(mb−1) ⌉ points of P but no points of Pi. This contradicts that

our coloring with a colors was good if ⌈mk−mb+1
f(mb−1) ⌉ ≥ma.

Using the above argument for b = 2, we can see that mk = m(f(m − 1))⌈log k⌉−1

satisfies ⌈mk−m+1
f(m−1) ⌉ = m⌈ k

2
⌉, thus we are done (using the monotonicity of mk if k is

odd).

5.2 Self-coverability of triangles and squares

Proof of Theorem 5.5. We now prove that for the family T of homothets of a given
triangle T we have f(k) = 2k + 1. First by affine transformations we can transform the
triangle to any other triangle, thus it is enough to prove the statement for one triangle.
Further, by homothetic symmetry it is enough to prove self-coverability of one fixed
size triangle T0. Thus we can assume that T has the three vertices (0,0), (2,0), (1,1).

First we begin by giving a set P of k points for which 2k + 1 triangles are indeed
needed to cover T0. Let the set of points be on a vertical line passing through the vertex
(1,1), i.e. all points of P have coordinates (1, y); 0 < y < 1. Let ϵ be a small positive
constant and for each point (1, y) of P assign two dummy points (1 − 2ϵ, y − ϵ) and
(1+ 2ϵ, y − ϵ) inside T0 (i.e., we choose ϵ such that ϵ < 1− y for all points of P ). Put an
additional dummy point at coordinate (1, ymax + ϵ) above the highest point (1, ymax)

of P . It is easy to see that if ϵ is small enough then any triangle from T contained in
T0 and not containing a point of P in its interior can cover at most one dummy point
in its interior. As to cover T0 in particular we need to cover all dummy points, so we
need at least 2k + 1 triangles. See Figure 17(a) for an illustration.

Now it is enough to prove that at most 2k + 1 triangles are always enough to cover
T0. We prove this by induction on k. For k = 0 we can cover T0 by itself. If k ≥ 1, then
take the13 point p ∈ P with the smallest y-coordinate and denote it by y(p). Denote by
Hy the halfplane with the horizontal line y = y(p) as its boundary containing an infinite
positive ray on the y-axis. Apply induction on P ∖ p and the triangle T1 = T0 ∩Hy(p).

13For simplicity we suppose that there is only one such point p yet the proof can be easily modified
to the case when there are multiple points with the same y-coordinate, in which case we have to handle
all these points in one step of the induction.
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(a) (b)

Figure 17: Lower bound constructions for self-covering (a) a triangle and (b) a square.

e0

e1 pl r pl r

TrTl

T ′
l = T ′

r

T0 \ T1

T0

T1

Figure 18: Extending a covering of T1 and adding the two triangles Tℓ and Tr.

See Figure 18 for an illustration. We get a collection S1 of at most 2k − 1 triangles
(homothetic to T0) covering T1. Denote by Sa those triangles from S1 whose bottom
edge e is on the bottom edge e1 of T1 but e does not contain p in its interior (thus p
can be a vertex of such a triangle).

Now we can scale all triangles in Sa, their top vertex as the center of scaling, so
that their bottom edge goes onto the bottom edge e0 of T0. Our new collection will
consist of these scaled triangles and S1 ∖Sa. The points of e1 not covered by the scaled
triangles form an interval and p cuts this interval into a left interval ℓ and a right
interval r. Now the triangle Tℓ is (well) defined to be the triangle which intersects e1
in exactly ℓ and has its bottom edge on e0. Similarly, Tr is (well) defined to be the
triangle which intersects e1 in exactly r and has its bottom edge on e0. We claim that
these two triangles do not contain a point from P in their interior. Indeed, first of all
there are no points of P under Hy(p). Second, in the inductive construction there must
be a triangle T ′ℓ whose bottom edge contains the whole ℓ, thus T ′ℓ contains no point of
P in its interior and Tℓ ∩Hy(p) ⊆ T

′
1. The interior of Tr is similarly disjoint from P .

We have seen that none of the triangles in this new collection of at most 2k−1+2 =
2k+1 triangles contains a point of P in its interior. Now we finish the proof by showing
that this collection of triangles covers T0. T1 is trivially covered by induction. For an
arbitrary point q ∈ T0 ∖ T1 at least one of the two diagonal lines (these are the lines
parallel to the non-horizontal edges of T ) across q intersects e1 in a point q′. If q′ is on
ℓ (or respectively r), then q is covered by Tℓ (or respectively by Tr). If none of these
happens then q is covered by one of the scaled triangles.

Proof of Theorem 5.6. First we begin by giving a set P of k points for which 2k + 2
squares are indeed needed to cover a square R = [0,1] × [0,1] if k ≥ 1. The points are
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p
R

R

R′s1

s2
s2

s1

Case(i) Case(ii)

aa

b

b

a− 2b

Figure 19: the rectangle R to be covered by Lemma 5.8, in Case (ii) the squares can
cover parts of R′ ∖R as well, but are not allowed to contain p in their interior.

on one of the diagonals of R, the ith point has coordinates (1− 1/2i,1− 1/2i). Let ϵ be
a small positive constant and for each point (1− 1/2i,1− 1/2i) of P assign two dummy
points (1 − 1/2(i−1) + iϵ,1 − ϵ) and (1 − ϵ,1 − 1/2(i−1) + iϵ) inside R. Put an additional
dummy point at coordinate (ϵ, ϵ) and (1 − ϵ,1 − ϵ). It is easy to see that if ϵ is small
enough (ϵ < 1/2k(k+1) is sufficient) then any square contained in R and not containing
a point of P in its interior can cover at most one dummy point. As to cover R in
particular we need to cover all dummy points, so we need at least 2k + 2 squares. See
Figure 17(b) for an illustration.

Now it is enough to prove that at most 2k + 2 squares are always enough to cover a
square. We again proceed by induction but we need a more general statement, Lemma
5.8. The theorem follows from this lemma by taking R to be a square.

The following lemma states that if the ratio of the two sides of an axis-parallel
rectangle R is at most 2 then it can be covered by 2k + 2 axis-parallel squares (while
not covering the point set of size k), whereas if the ratio of the sides is bigger, then we
can cover R such that the squares may hang out over the top edge of R but only until
a limited height, and not covering an additional fixed point p on the top edge.

Lemma 5.8. Given an axis-parallel rectangle R with width a, height b ≤ a and a point
set P ⊂ R, ∣P ∣ = k and a point p on the top edge of R, there is a collection R of at most
2k + 2 axis-parallel squares covering R, none of them containing a point from P ∪ {p}
in their interior, such that

(i) if a/2 ≤ b then ∪R = R,

(ii) if b < a/2 then R ⊆ ∪R ⊆ R ∪R′, where R′ is a rectangle whose bottom side is the
top side of R and its height is b′ = a − 2b > 0.

Note that p is not in P . Also note that in the first case points of P on the boundary
of R do not matter while in the second case points of P on the top edge of R are not
irrelevant and can modify the choice of squares. See Figure 19 for an illustration.

Proof. We can suppose that the bottom left corner of R is the origin (0,0). We prove
the two cases simultaneously by induction on k. Both cases will be quite similar, we
always cut the rectangle through some point of P into two as equal parts as possible
and apply induction on both parts. We denote the x- and y-coordinate of a point s by
x(s) and by y(s), respectively. For a rectangle Q we denote by intQ its interior.
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R2b

x(s) b − x(s) a − x(s) a

R′
1

R1

p1 = s

(a) Case (i), applying induction
on the two parts of R, Case (ii)
on R1 and Case (i) on R2.

p2 = p

R2
s

a

b

a − 2b

R1 R′
1

R′
2

a2 − 2b

a2 = a − x(s)

b − x(s)x(s)

(b) Case (ii), applying induction on the two
parts of R, Case (ii) on R1 and Case (ii) on
R2.

Figure 20: Proof of Lemma 5.8

If k = 0 then in Case (i) it is trivial to cover R using two squares. In Case (ii) we
can suppose, without loss of generality, that x(p) ≥ a/2. Now put a square of height
min(a− b, x(p)) in the bottom left corner of R and a square of height max(b, a−x(p))
in the bottom right corner of R, so by definition these do not contain p in their interior.
It is easy to check that they cover R and are contained in R′.

Next suppose k > 0 and we are in Case (i). If there exists s ∈ P such that b/2 ≤
x(s) ≤ a−b/2 then cut the rectangle R into two parts R1,R2 by a vertical line through s
and then by induction (Case (i)) we can find squares covering R1 and R2, together they
cover R and the number of the squares is at most 2k1+2+2k2+2 = 2(k1+k2+1)+2 ≤ 2k+2,
where k1 = ∣P ∩ intR1∣, k2 = ∣P ∩ intR2∣.

If there is no such s then choose s to be the point of P which is closest to the vertical
halving line of R, i.e. for which ∣x(s) − a/2∣ is minimal. Without loss of generality, we
can suppose that x(s) < a/2 and thus we also know that x(s) < b/2. We again cut by
the vertical line through s. To get a covering of the right rectangle R2 we can apply the
induction hypothesis with Case (i). For the left rectangle R1 we apply the induction
hypothesis with Case (ii) by setting p1 ∶= s, R1 ∶= R1 and R′1 being the part of R between
the vertical lines at x-coordinate x(s) and b − x(s). The two set of squares together
cover R and as b − x(s) < b < a implies R′1 ⊂ R, they do not hang out from R. We need
to check if the covering of R1 does not interfere with the points in P ∩ intR1. This is
true if intR′1 does not contain points from P , which follows from the fact that there is
no point of P with x-coordinate between x(s) and a−x(s) and the right edge of R′1 has
x-coordinate b−x(s) < a−x(s). Finally, the number of squares we used is again at most
2k1 + 2+ 2k2 + 2 = 2(k1 + k2 + 1)+ 2 ≤ 2k + 2, where k1 = ∣P ∩ intR1∣, k2 = ∣(P ∩R2)∖ {s}∣.
See Figure 20(a) for an illustration.

Suppose now that k > 0 and we are in Case (ii). Similarly to the previous case, if
there exists s ∈ P such that b/2 ≤ x(s) ≤ a− b/2 then cut the rectangle R into two parts
R1,R2 by a vertical line through s and then by induction (using Case (i) or Case(ii),
see details below) we can find squares covering R1 and R2, together they cover R and
the number of the squares is at most 2k1 + 2 + 2k2 + 2 = 2(k1 + k2 + 1) + 2 ≤ 2k + 2,
where k1 = ∣P ∩ intR1∣, k2 = ∣P ∩ intR2∣. The induction is done in the following way. We
just consider R2, R1 can be handled in the same way. If the ratio of the two sides of
the rectangle is at most 2, then we can simply apply induction Case (i). If the ratio of
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the sides is bigger than 2, i.e., b < (a − x(s))/2, then we apply induction Case (ii) with
p2 = p if p is on the top edge of R2 and choosing an arbitrary p2 on the top edge of R2

if p is not on the top edge of R2.
If there is no such s then choose s to be the point of P which is closest to the vertical

halving line of R, i.e. for which ∣x(s) − a/2∣ is minimal. Without loss of generality, we
can suppose that x(s) < a/2 and thus we also know that x(s) < b/2. We again cut by
the vertical line through s. Now in the same way as in Case (i) we can apply induction
Case (ii) on the left part R1. It is easy to see that by the choice of s, R′1 corresponding
to R1 is contained by R and does not contain points from P in its interior. On the
right part R2, again, if the ratio of the two sides b and a − x(s) is at most 2, then we
can simply apply induction Case (i). If the ratio of the sides of R2 is bigger than 2, i.e.,
b < (a − x(s))/2, then we apply induction Case (ii) on R2 with p2 = p if p is on the top
edge of R2 and choosing an arbitrary p2 on the top edge of R2 if p is not on the top edge
of R2. It is easy to see that the rectangle R′2 corresponding to R2 is contained in R′.
Thus, the two set of squares we get by induction again cover the whole R, are contained
in R∪R′, none of the squares contains p in its interior and the number of squares is at
most 2k1+2+2k2+2 = 2(k1+k2+1)+2 ≤ 2k+2, where k1 = ∣P ∩R1∣, k2 = ∣P ∩(R2∖R1)∣.
See Figure 20(b) for an illustration of this case.

5.3 Self-coverability of convex polygons using Delaunay triangulation

In this section we prove Theorem 5.3. Since the proof is a bit complicated, to
illustrate it, first we will reprove Theorem 5.5, then Theorem 5.6 (with a worse self-
coverability function) and only then prove Theorem 5.3 in its full generality.

The proof uses the notion of generalized Delaunay triangulation defined in Section
1.2.2.

T

D
H ′

H

Figure 21: Proof of Theorem 5.5

Second proof of Theorem 5.5. (See Figure 21.) We add three new points to P which are

52

               domotorp_98_23



far, outside of T , and form a reflected copy of T . Denote the new point set by P ′. In
the Delaunay triangulation determined by T , these three points will be all connected,
making all the faces triangles. Using Euler’s formula, there are k + 3 vertices and thus
2(k+3)−4 faces, so we have 2k+1 inner faces, all of which can be covered by a homothet
of T not containing any point of P ′ in its interior.

The only problem is that these homothets might extend beyond the boundary of
T . But it is easy to see that for any homothet H of T the triangle H ′ =H ∩T is also a
homothet of T , so these give at most 2k + 1 covering triangles.

R

D

H ′
H

Figure 22: Proof of Theorem 5.6

Second proof of Theorem 5.6. with worse self-coverability function. (See Figure 22.)
Similarly to the proof for triangles, we add a few points to P and we denote the new
point set by P ′. Now all new points will be on the boundary of the square R. The new
points are obtained as follows. For each p ∈ P project it orthogonally to all four sides
of R and add it to P ′. Also we add the four corners of R to P ′. Thus ∣P ′∣ = 5k + 4 if all
vertices of P have different coordinates, which we suppose from now on for simplicity.
In the Delaunay triangulation determined by R, all boundary points will be connected
to their neighbors (on the boundary), making all inner faces triangles. The infinite
outer face has 4k + 4 vertices. Using Euler’s formula, there are 5k + 4 vertices and thus
2 ⋅ (5k + 4) − 4 − (4k + 1) = 6k + 3 faces. The 6k + 2 triangular inner faces partition R
and all of them can be covered by a homothet of R not containing any point of P ′ in
its interior.

Again, the problem is that these homothets might extend beyond the boundary
of R. To take care of this, observe first that each square H that extends beyond R
intersects only one side s of R. For each such H, push H perpendicularly to s until its
outer side overlaps with s, call the pushed square H ′. This way no point p ∈ P can get
into the interior of H ′ since then the projection of p to s would have been also inside
H. So we get f(k) ≤ 6k + 2.
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Figure 23: Proof of Theorem 5.3

Proof of Theorem 5.3. Let C be an arbitrary convex polygon. Denote its vertices in
clockwise order by c0c1 . . . cn−1 and its sides by ei = cici+1. We will again add some
points to P to define P ′ and take the Delaunay triangulation of P ′ with respect to C.
All the added points lie on the boundary or outside of C and their positions depend
on the point set P as follows.

For each p ∈ P and side ei (indices are always modulo n) of C we do the following.
First draw two lines through p such that the first is parallel to ei−1 and the second is
parallel to ei+1. These intersect the supporting line ℓi of ei in two points, pℓ and pr.
(See Figure 23 for an illustration.) Any homothet C ′ of C that intersects ℓi and has
p on its boundary contains a point of the pℓpr segment. (Here we allow C ′ to contain
more points in its interior.) Take a C ′ for which the length of the intersection of (the
closure of) C ′ and ℓi is minimal and denote this minimum by ϵ. It is easy to see that ϵ
is well-defined and positive.

Also observe that ∣pℓpr ∣/ϵ depends only on C and i and is independent of the position
of p, since translating p parallel to ei only shifts the ppℓpr triangle with the same
quantity, while moving p perpendicularly to ei only scales ppℓpr, thus scaling both ϵ
and ∣pℓpr ∣ by the same value.

Now put Ni = ⌊∣pℓpr ∣/ϵ⌋ evenly spaced points on the segment pℓpr, so that the
distance between any two of them is less than ϵ. Moreover, add one point very close
to pℓ and another very close to pr onto ℓi but not on pℓpr, such that the distances
from them to the next point is still less than ϵ. We add these Ni + 2 points to P ′.
Since the distance between any two of them is less than ϵ, any homothet of C with p
on its boundary and intersecting ℓi contains one of the just added Ni + 2 points in its
interior by the definition of pℓ, pr and ϵ. The number of points we added depends only
on C and i, not on p. Repeating this for all points and edges of C, we add at most
k∑n

i=1(Ni + 2) = O(k) points. (Here the constant in the O(.) notation depends on C.)
For each vertex ci of C we add 3 points to P ′. First put a small homothetic copy

C ′i touching C from inside whose respective vertex c′i = ci and add ci and the two
neighboring vertices c′i−1 and c′i+1 of C ′i to P ′.

To ensure that the outerface would not intersect the interior of C, we add n more
points to P ′ which are far, outside of C, and form a reflected copy of C. This way these
n points will be the vertices of the outerface.

In the last two stages we added 4n = O(1) vertices.
In the Delaunay triangulation of P ′ the inner faces are triangles, with a homothet

54

               domotorp_98_23



of C covering each triangle not containing any point of P ′ in its interior. We claim
that there is no Delaunay triangle whose side crosses the boundary of C and thus the
triangles inside C partition C (this way Delaunay edges form a cycle along the boundary
of C). Furthermore, we claim that the homothetic copies covering the triangles inside
C are contained in C.

Consider any Delaunay triangle T . By Claim 1.9, if T intersects two different sides of
C, the homothet D covering T must also contain one of C’s vertices, ci on its boundary
and thus we necessarily have C ′i ⊂ D and as the vertices neighboring ci in C ′i were
added to P ′, D must be completely inside C. If T intersects only one side of C and
the interior of C, then it must contain a point p from P . The homothet D covering T
must also contain p on its boundary and thus it would also contain a point of P ′ in its
interior if it crossed the boundary of C.

Using Euler’s formula, there are O(k) vertices and thus at most O(k) faces. Each
face inside C is a triangle which can be covered by a homothet of C which does not
intersect the boundary of C and does not contain any point of P ′ in its interior.

Finally, we prove Theorem 5.7, which states that even for a quadrangle we may
need many points. For that we basically prove that while by the above upper bound
states that at most k∑n

i=1(Ni + 5) copies are enough to cover C, also at least kminiNi

copies are necessary to cover C.

p

δ
c

q1q2

Q

pl pr

δ

δ

Q′

δ c−1
c

Figure 24: Proof of Theorem 5.7

Proof of Theorem 5.7. Given c > 1, let Q be a symmetric trapezoid with vertices
q1, q2, q3, q4 in clockwise order, with two horizontal edges, the bottom edge, q1q2 has
length 1/c, while the length of the top edge, q3q4, and the height of Q are both equal
to 1. We show that for Q we have f(k) ≥ (c − 1)k.

Put a point p very close to the bottom edge of Q, say the distance of p from the
bottom edge is δ. We define pℓ and pr as in the previous proof (see Figure 24). Evidently,
in the self-cover of Q, the points of pℓpr can only be covered by homothetic copies of
Q whose upper edge touches or is below p, thus have height at most δ. The length of
the top edge of such a Q′ is thus also at most δ and thus the length of its bottom edge
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is at most δ/c. We also know that ∣pℓpr ∣ = δ(1 − 1/c). Thus to cover the points of pℓpr
we need at least

δ(1−1/c)
δ/c = c − 1 such homothets.

Now if instead of one, we put k points very close to the bottom edge, but far
from each other, then for each point we need c − 1 homothets to cover the respective
segment on the boundary of Q, thus altogether we need at least (c− 1)k homothets, as
claimed.
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6 3-coloring for homothets of polygons

This chapter is based on the article [50], joint work with Keszegh.

In Section 6.1 we summarize the main idea of our proof.
In Section 6.2 we prove Theorem 2.16, using the proof method of [2].
In Section 6.3 we examine stabbed families, following [22].
In Section 6.4 we briefly discuss further related topics.

6.1 Framework

In this section we outline the main idea behind the proof of Theorem 2.16. Consider
the generalized Delaunay triangulation DT = DT (S,D). We will take an initial coloring
of S that has some nice properties. More specifically, we need a 3-coloring for which
the assumptions of the following lemma hold for c = 3 and for some constant t that
only depends on D.

Lemma 6.1. For every convex polygon D for every c and t there is an m such that
if for a c-coloring of a point set S and a set of points R ⊂ S and for every homothet D′

(i) if D′ ∩ S is monochromatic with at least t vertices, D′ contains a point of R,

(ii) if D′ contains t points from R colored with the same color, D′ also contains a
point from S ∖R that has the same color,

then there is a c-coloring of S such that no homothet that contains at least m points of
S is monochromatic.

To prove Lemma 6.1, we use Theorem 5.3 about self-coverability of convex polygons.

Proof of Lemma 6.1. The proper c-coloring will be simply taking the c-coloring given
in the hypothesis, and recoloring each vertex in R arbitrarily to a different color. Now
we prove the correctness of this new coloring. Let D′ be a homothet of D containing
at least m points (where m is to be determined later).

Suppose first that D′ contains m ≥ ct points from R. Using the pigeonhole principle,
D′ contains at least t points from R that originally had the same color. Using (ii), D′

will have a point both in R and in S ∖ R that had the same color. These points will
have different colors after the recoloring, thus D′ will not be monochromatic.

Otherwise, suppose that D′ contains m points of which less than ct are from R.
Apply Theorem 5.3 with D′ and R′ = D′ ∩ R. This gives cDct homothets (where cD
comes from Theorem 5.3), each of which might contain at most three points on their
boundaries (which include the points from R′), thus by the pigeonhole principle at least
one homothet, D′′, contains no points from R and at least m−3cDct

cDct points from S∖R. If

we set m = cDct(t+3), this is at least t. Thus, by (i), D
′′ was not monochromatic before

the recoloring. As the recoloring does not affect points in S∖R, after the recoloring D′′

(and so also D′) still contains two points that have different colors. Thus m = cDct(t+3)
is a good choice for m in both cases.

Therefore, to prove Theorem 2.16, we only need to show that we can find a coloring
with three colors that satisfy the conditions of Lemma 6.1 for some t.
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6.2 Proof of Theorem 2.16

In this section we prove Theorem 2.16, that is, we show that for every convex
polygon D there is an m such that any finite set of points S admits a 3-coloring such
that there is no monochromatic homothet of D that contains at least m points. If
one could find a 3-coloring where every monochromatic component of DT is bounded,
then that would immediately prove Theorem 2.16. This, however, is not true in general
[52], only for bounded degree graphs [28], but the DT can have arbitrarily high degree
vertices for any convex polygon, thus we cannot apply this result. Instead, we use the
following result (whose proof is just a couple of pages).

Theorem 6.2 (Poh [70]; Goddard [38]). The vertices of any planar graph can be 3-
colored such that every monochromatic component is a path.

To prove Theorem 2.16, apply Theorem 6.2 toDT to obtain a 3-coloring where every
monochromatic component is a path. It follows from Lemma 6.1 that it is sufficient to
show that for t = 4n + 12 (where n denotes the number of sides of D) there is a set of
points R ⊂ S for which

(i) for every homothet D′ if D′ ∩ S is monochromatic with at least t vertices, D′

contains a point of R,

(ii) for every homothet D′ if D′ contains t points from R colored with the same color,
D′ also contains a point from S ∖R that has the same color.

Now we describe how to select R. First, partition every monochromatic path that
has at least t vertices into subpaths, called sections, such that the number of vertices
of each section is at least t

4 but at most t
2 . We call such a section cuttable if there is a

monochromatic homothet of D that contains all of its points. R will consist of exactly
one point from each cuttable section. These points are selected arbitrarily from the
non-extremal points of each section, except that they are required to be non-adjacent
on their monochromatic path. Since each section has at most two end points and n
extremal points, we can select such a point from each section if t

4 ≥ n + 3. For an r ∈ R
we denote its section by σr and a (fixed) monochromatic homothet containing σr by
Dr.

Now we prove that R satisfies the requirements (i) and (ii).
To prove (i), suppose that a homothet D′ is monochromatic with at least t vertices.

Using Proposition 1.7, the subgraph induced on these vertices is connected. As any
monochromatic connected component is a path, D′ contains at least t consecutive
vertices of a monochromatic path, and thus also a section. Because of D′ this section
is cuttable, and thus contains a point of R.

To prove (ii), suppose that a homothet D′ contains t points from R colored with
the same color, red. Denote these points by R′. For each r ∈ R′, the neighbors of r in
σr are red but not in R, thus they must be outside D′, or otherwise (ii) holds and we
are done. Denote the geometric embedding of the two edges adjacent to r in σr by Λr.
Therefore, Λr will intersect the boundary of D′ in two points for each r ∈ R′. We claim
that these two intersection points usually fall on the same side of D′, i.e., they are not
separated along the boundary by a vertex.
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Proposition 6.3. Both intersection points of Λr and the boundary of D′ are on the
same side of D′ for all but at most n points of r ∈ R′.

r2

D′
r1

Λr1

Λr2

Dr2

Figure 25: Proof of Proposition 6.3.

Proof. Suppose that there are more than n points r ∈ R′ for which Λr intersects D′ in
two sides. For each such point r ∈ R′, for (at least) one of the two (one convex and one
non-convex) cones whose sides are the halflines starting in Λr, denoted by Cr, we have
Cr ∩D

′ ⊂Dr. Since the intersection Cr ∩D
′ is a connected curve, it contains a vertex of

D′. Using the pigeonhole principle, there are two points, r1, r2 ∈ R
′, such that Cr1 and

Cr2 contain the same vertex of D′. (See Figure 25.) As Λr1 ∩Λr2 = ∅, we have (without
loss of generality) r1 ∈ Cr2 , which also implies r1 ∈ Dr2 . But using Proposition 1.7, r1
must have a neighbor in D′. Since this neighbor is also in Dr2 , it has to be red. As the
red neighbors of any red point of R are not in R, we have found a red point from S ∖R
in D′, proving (ii).

Divide the points r ∈ R′ for which Λr intersects only one side of D′ into n groups,
R′1, . . . ,R

′
n, depending on which side is intersected. By the pigeonhole principle there is

a group, R′i, that contains at least
t−n
n ≥ 3 points. Suppose, without loss of generality,

that the side ab intersected by Λr for r ∈ R
′
i is horizontal, bounding D′ from below. For

each r ∈ R′i, fix and denote by xr a point from σr whose y-coordinate is larger than the
y-coordinate of r. (Such a point exists because no r ∈ R is extremal in σr.) Denote the
path from r to xr in σr by Pr, and the neighbor of r in Pr by qr.

The geometric embedding of Pr starts above ab with r, then goes below ab as qr ∉D
′,

and finally xr is again above the line ab. Denote the first intersection (starting from
r) of the embedding of the path Pr with the line ab by αr = ¯rqr ∩ āb, and the next
intersection by βr. Since ∣R

′
i∣ ≥ 3, without loss of generality, there are r1, r2 ∈ R

′
i such

that βr1 is to the left of αr1 and βr2 is to the left of αr2 . For readability and simplicity,
let xi = xri , Pi = Pri , qi = qri , αi = αri , βi = βri .

Without loss of generality, suppose that α1 is to the left of α2. Recall that P2

contains only red points, of which only r2 is in R. Therefore, no other vertex of P2 can
be in D′. If β2 is to the right of α1, then one of the edges of P2 would separate r1 and
r2 in the sense described in Corollary 1.8. (See Figure 26.) As this cannot happen, β2
is to the left of α1.

This implies that q1 ∉ P2 is in the convex hull of P2 below the ab line. Take the
point q ∈ S ∖ P2 with the smallest y-coordinate such that q is in the convex hull of P2

below the ab line. As q is not an extremal point of S, it is connected in DT to some
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Figure 26: The two cases at the end of the proof of Theorem 2.16. To the left, β2 is to
the right of α1, the part of the edge splitting D′ is bold. To the right, β2 is to the left
of α1, the shaded regions must contain q1.

point in S whose y-coordinate is smaller (because the faces of DT are triangles). By
the definition of q, this neighbor must be in P2. As the end vertices of P2, r2 and x2,
are above the ab line, q is connected to an inner vertex of a monochromatic red path.
Since every monochromatic component is a path, q cannot be red. The homothet Dr2

contains the red vertices of P2 and thus all the points in the convex hull of P2. But Dr2

is monochromatic, so it cannot contain the non-red point q, a contradiction.
This finishes the proof of Theorem 2.16.

6.3 Stabbed homothets of polygons

it is also interesting to consider the case when our family contains stabbed homo-
thetic copies of a given convex set. Based on parts of [22], we show the following for
polygons.

Theorem 6.4 (Damásdi-Pálvölgyi [22]). For stabbed convex polygons mk = O(k), i.e.,
for any convex polygon P there is a integer tP such that for any positive integer k any
finite point set S can be k-colored such that any positive homothetic copy of P , that
contains some fixed point o ∉ S and tPk points from S, will contain all k colors.

Proof. Let P be a fixed polygon and let v1, v2, . . . , vn be the vertices of P . Let αij =

inf{∠viqvj ∣ i ∈ {1, . . . , n}, q ∈ P ∖ vivj}. It is not hard to see that this angle αij is
minimized for a vertex v. This also implies αij > 0. Let α =mini,j αij .

Divide the plane into regions around o such that each region is a cone whose angle
is less than α. A homothet of P that contains o can have at most one vertex in each
region, otherwise they would be visible from an angle α from o. Let P ′ and P ′′ be
homothetic copies of P that contain o. We will show that P ′ and P ′′ intersects at most
once in each region.

Suppose there is a region R where they intersect twice. The boundary of R intersects
at most two sides of each polygon, since they are convex and contain o. There are
essentially two ways P ′ and P ′′ can intersect (see Figure 27). Either the two intersection
points of P ′ and P ′′ fall on the same side of one of the polygons, or not.

We will show that these are not possible for two homothets. In the first case let s
be the side that contains the two intersections. In the second case let s be one of the
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Figure 27: The two ways P ′ and P ′′ can intersect each other twice in a region.

sides that ends at the vertex in R that is closer to o. Let n be the normal vector of
the side s and let us look at the extremal points of P ′ and P ′′ in the direction of n.
Since they are homothets of each other, the extremal points should form a side of the
polygon in both P ′ and P ′′. But for one of them we get only a vertex as an extremal
point. Therefore two homothets meet at most once in each region. This implies that in
each region they form pseudohalfplanes, thus we can apply Theorem 2.28 separately to
each region to color the points.

We remark that with similar methods it can be proved that for the stabbed trans-
lates of any plane convex set mk = O(k) [22].

6.4 Further remarks

Combining Theorems 2.16 and 5.3, for any convex polygon, D, and for any finite
point set, S, we can first find a 3-coloring of S using Theorem 2.16 such that every large
(in the sense that it contains many points of S) homothet of D contains two differently
colored points, then using Theorem 5.3 we can conclude that every very large homothet
of D contains many points from at least two color classes, and finally we can recolor
every color class separately using Theorem 2.16. This proves that for every k there is a
3k-coloring such that every large homothet of D contains at least 2k colors. Of course,
the colors that we use when recoloring need not be different for each color class, so we
can also prove for example that there is a 6-coloring such that every large homothet
of D contains at least 3 colors. What are the best bounds of this type that can be
obtained?
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7 Disks and other smooth bodies

The main result of this chapter is that χm > 2 for unit disks and for most other
smooth bodies. As most of this chapter is based on a slightly older paper [62] (joint work
with Pach), many statements use the terminology of cover decomposition, i.e., colorings
of the dual range space. In our case, this is equivalent to colorings of the primal range
space, as we only deal with translates. It also has statements about infinite coverings,
like the following main result.

Theorem 7.1. For every positive integer m, there exists an m-fold covering of the
plane with open unit disks that cannot be split into 2 coverings.

Our construction can be generalized as follows.

Theorem 7.2. Let C be any open plane convex set, which has two parallel supporting
lines with positive curvature at their points of tangencies. Then, for every positive
integer m, there exists an m-fold covering of the plane with translates of C that cannot
be split into 2 coverings.

It follows from Theorem 2.4 (using Theorem 2.6 and compactness) that for every
open convex polygon Q, there exists a smallest positive integer m(Q) such that every
m(Q)-fold covering of the plane with translates of Q splits into 2 coverings. We have
that supm(Q) = ∞, where the sup is taken over all convex polygons Q. Otherwise,
we could approximate the unit disk with convex n-gons with n tending to infinity.
By compactness, we would conclude that the unit disk C satisfies m(C) < +∞, which
contradicts Theorem 7.1. This leaves the following question open.

Problem 7.3. Does there exist, for any n > 3, an integer m(n) such that every convex
n-gon Q satisfies m(Q) ≤m(n)?

For any triangle T , there is an affine transformation of the plane that takes it into
an equilateral triangle T0. Therefore, we have m(T ) = m(T0) and m(3) is finite. For
every n ≥ 4, Problem 7.3 is open.

In spite of our sobering negative answer to Problem 2.1 and its analogues in higher
dimensions (cp. [56]), there are important classes of multiple coverings such that all of
their members are splittable. According to our next, somewhat counter-intuitive result,
for example, any m-fold covering of Rd with unit balls can be split into 2 coverings,
provided that no point of the space is covered by too many balls. (We could innocently
believe that heavily covered points make it only easier to split an arrangement.)

Theorem 7.4. For every d ≥ 2, there exists a positive constant cd with the following
property. For every positive integer m, any m-fold covering of Rd with unit balls can
be split into two coverings, provided that no point of the space belongs to more than
cd2

m/d balls.

Theorem 7.4, first stated in [56], was one of the first geometric applications of the
Lovász local lemma [26], and it was included in [4]. Here, we establish a more general
statement (see Theorem 7.29).

One may also believe that unbounded convex sets behave even worse than the
bounded ones. It turns out, however, that this is not the case.
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Theorem 7.5. Let C be an unbounded open convex set and let P be a finite set of
points in the plane. Then every 3-fold covering of P ⊂ R2 with translates of C can be
split into two coverings of P .

Here we remark that later in [48] Theorem 7.5 was generalized to arbitrary pseu-
dohalfplane arrangements, see Theorem 2.28.

Using a standard compactness argument, Theorem 7.5 also holds if P is any compact
set in the plane. However, Theorem 7.5 does not generalize to higher dimensions. Indeed,
it follows from the proof of Theorem 7.1 that, for every positive integer m, there exists
a finite family C of open unit disks in the plane and a finite set P ⊂ R2 such that C
is an m-fold covering of P that cannot be split into two coverings. Consider now an
unbounded convex cone C ′ in R3, whose intersection with the plane R2 is an open disk.
Take a system of translates of C ′ such that their intersections with the plane coincide
with the members of C. These cones form an m-fold covering of P that cannot be split
into two coverings.

For interesting technical reasons, the proof of Theorem 7.5 becomes much easier if
we restrict our attention to multiple coverings of the whole plane. In fact, in this case,
we do not even have to consider multiple coverings! Moreover, the statement remains
true in higher dimensions.

Proposition 7.6. Let C be an unbounded line-free open convex set in Rd. Then every
covering of Rd with translates of C can be split into two, and hence into infinitely many,
coverings.

The reason why we assume here that C is line-free (i.e., does not contain a full
line) is the following. If C contains a straight line, then it can be obtained as the direct
product of a line ℓ and a (d − 1)-dimensional open convex set C ′. Any arrangement
C of translates of C in Rd is combinatorially equivalent to the (d − 1)-dimensional
arrangement of translates of C ′, obtained by cutting C with a hyperplane orthogonal
to ℓ. In particular, the problem whether an m-fold covering of Rd with translates of C
can be split into two coverings reduces to the respective question aboutm-fold coverings
of Rd−1 with translates of C ′.

Proposition 7.6 is false already in the plane without the assumption that C is open.
However, every 2-fold covering of the plane with translates of an unbounded C can
be split into two coverings. We omit the proof as it reduces to a simple claim about
intervals.

However, in higher dimensions, the similar claim is false.

Theorem 7.7. There is a bounded convex set C ′ ⊂ R3 with the following property. One
can construct a family of translates of C = C ′ × [0,∞) ⊂ R4 which covers every point of
R4 infinitely many times, but which cannot be split into two coverings.

The construction given in Section 7.8 is based on an example of Naszódi and Taschuk
[59], and explores the fact that the boundary of C ′ can be rather “erratic.” We do not
know whether sufficiently thick coverings of R3 by translates of an unbounded line-free
convex set can be split into two coverings or not.

In the sequel, we will study the equivalent of the above questions for primal range
spaces. As we talk about translates, Theorem 7.1 can be rephrased in the following
form.
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Theorem 7.1’. For every m ≥ 2, there is a set of points P ∗ = P ∗(m) in the plane
with the property that every open unit disk contains at least m elements of P ∗, and no
matter how we color the elements of P ∗ with two colors, there exists a unit disk such
that all points in it are of the same color.

A set system not satisfying this condition is said to have property B (in honor of
Bernstein) or is 2-colorable (see [58, 25, 71]). Generalizations of this notion are related
to conflict-free colorings [29] and have strong connections, e.g., to the theory of ε-nets,
geometric set covers and to combinatorial game theory [41, 65, 3, 76, 35].

The rest of this chapter is organized as follows. In the next three sections, we prove
Theorem 7.1’ in 3 steps. In Section 7.1, we exhibit a family of non-2-colorablem-uniform
hypergraphs H(k, ℓ) which first appeared in [67]. In Section 7.2, we construct planar
“realizations” of these hypergraphs, where the vertices correspond to points and the
(hyper)edges to unit disks, preserving the incidence relations. In Section 7.3, we show
how the same hypergraph can be easily realized with halfdisks, a fact that was missed
in [62] and was noticed later, in [24]. In Section 7.4, we extend this construction,
without violating the colorability condition, so that every disk contains at least m
points. In Section 7.5, we modify these steps in order to establish Theorem 7.2, a
generalization of Theorem 7.1 to bounded plane convex bodies with a smooth boundary.
Sections 7.7 and 7.8 contain the proofs of our results related to multiple coverings with
unbounded convex sets: Theorem 7.5, Proposition 7.6, and Theorem 7.7. The proof of
a more general version of Theorem 7.4, using the Lovász local lemma, can be found in
Section 7.9. Finally, in Sections 7.10 and 7.11 we give the proofs of Theorems 2.31 and
2.30, the newest results from [22] and [24].

7.1 A family of non-2-colorable hypergraphs H(k, ℓ)

In this section we define, for any positive integers k and ℓ, the abstract hypergraph
H(k, ℓ) with vertex set V (k, ℓ) and edge set E(k, ℓ) that was first used in [67]. The
hypergraphs H(k, ℓ) are defined recursively. The edge set E(k, ℓ) will be the disjoint
union of two sets, E(k, ℓ) = ER(k, ℓ) ⊍ EB(k, ℓ), where the subscripts R and B stand
for red and blue. All edges belonging to ER(k, ℓ) will be of size k, all edges belonging
to EB(k, ℓ) will be of size ℓ. In other words, H(k, ℓ) is the union of a k-uniform and
an ℓ-uniform hypergraph. If k = ℓ =m, we get an m-uniform hypergraph.

Definition 7.8. Let k and ℓ be positive integers.

1. For k = 1, let V (1, ℓ) be an ℓ-element set.
Set ER(1, ℓ) ∶= V (1, ℓ) and EB(1, ℓ) ∶= {V (1, ℓ)}.

2. For ℓ = 1, let V (k,1) be a k-element set.
Set ER(k,1) ∶= {V (k,1)} and EB(k,1) ∶= V (k,1).

3. For any k, ℓ > 1, we pick a new vertex p, called the root, and let

V (k, ℓ) ∶= V (k − 1, ℓ) ⊍ V (k, ℓ − 1) ⊍ {p},

ER(k, ℓ) ∶= {e ∪ {p} ∶ e ∈ ER(k − 1, ℓ)} ∪ER(k, ℓ − 1),

EB(k, ℓ) ∶= EB(k − 1, ℓ) ⊍ {e ∪ {p} ∶ e ∈ EB(k, ℓ − 1)}.
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Figure 28: The hypergraph H(3,3) with (arbitrarily) 2-colored vertices. There is a blue
(dashed) set with 3 blue vertices or a red (solid) set with 3 red vertices.

By recursion, we obtain that

∣V (k, ℓ)∣ = (
k + ℓ

k
) − 1,

∣ER(k, ℓ)∣ = (
k + ℓ − 1

k
), ∣EB(k, ℓ)∣ = (

k + ℓ − 1

ℓ
),

∣E(k, ℓ)∣ = ∣ER(k, ℓ)∣ + ∣EB(k, ℓ)∣ = (
k + ℓ

k
).

Lemma 7.9 ([67]). For any positive integers k, ℓ, the hypergraph H(k, ℓ) is not 2-
colorable. Moreover, for every coloring of V (k, ℓ) with red and blue, there is an edge in
ER(k, ℓ) such that all of its k vertices are red or an edge in EB(k, ℓ) such that all of
its ℓ vertices are blue.

For completeness, here we include the proof of Lemma 7.9 from [67]. The induction
on two parameters, k and ℓ, is similar to the proof of Ramsey’s theorem by Erdős and
Szekeres [27].

Proof. We will prove that for every coloring of V (k, ℓ) with red and blue, there is an
edge in ER(k, ℓ) such that all of its k vertices are red or an edge in EB(k, ℓ) such that
all of its ℓ vertices are blue.

Suppose first that k = 1. If any vertex in V (1, ℓ) is red, then it is a red singleton
edge in H(1, ℓ). If all vertices in V (1, ℓ) are blue, then the (only) edge V (1, ℓ) ∈ EB(1, ℓ)
contains only blue points. Analogously, the assertion is true if ℓ = 1.

Suppose next that k, ℓ > 1. Assume, without loss of generality, that the root p is red.
Consider the subhypergraph H(k−1, ℓ) ⊂H(k, ℓ) induced by the vertices in V (k−1, ℓ).
If it has a monochromatic red edge e ∈ ER(k − 1, ℓ), then e ∪ {p} ∈ ER(k, ℓ) is red. If
there is a monochromatic blue edge in EB(k − 1, ℓ), then we are again done, because it
is also an edge in EB(k, ℓ).

For other interesting properties of the hypergraphs H(k, ℓ) related to hereditary dis-
crepancy, see Matoušek [57].
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7.2 Geometric realization of the hypergraphs H(k, ℓ)

The aim of this section is to establish the following version of Theorem 7.1’ that
states that χm > 2 for unit disks.

Theorem 7.1”. For every m ≥ 2, there exists a finite point set P = P (m) ⊂ R2 and a
finite family of unit disks C = C(m) with the property that every member of C contains
at least m elements of P , and no matter how we color the elements of P with two
colors, there exists a disk in C such that all points in it are of the same color.

We realize the hypergraph H(k, ℓ) defined in Section 7.1 with points and disks. The
vertex set V (k, ℓ) is mapped to a point set P (k, ℓ) ⊂ R2, and the edge sets, ER(k, ℓ) and
EB(k, ℓ), to families of open unit disks, CR(k, ℓ) and CB(k, ℓ), so that a vertex belongs
to an edge if and only if the corresponding point is contained in the corresponding disk.
The geometric properties of this realization are summarized in the following lemma.

Given two unit disks C,C ′, let d(C,C ′) denote the distance between their centers.
We fix an orthogonal coordinate system in the plane so that we can talk about the
topmost and the bottommost points of a disk.14

Lemma 7.10. For any positive integers k, ℓ and for any ε > 0, there is a finite point
set P = P (k, ℓ) and a finite family of open unit disks C(k, ℓ) = CR(k, ℓ) ⊍ CB(k, ℓ) with
the following properties.

1. Any disk C ∈ CR(k, ℓ) (resp. CB(k, ℓ)) contains precisely k (resp. ℓ) points of P .

2. For any coloring of P with red and blue, there is a disk in CR(k, ℓ) such that all
of its points are red or a disk in CB(k, ℓ) such that all of its point are blue. In
fact, P and C(k, ℓ) realize the abstract hypergraph H(k, ℓ) in the above sense.

3. For the coordinates (x, y) of any point from P , we have −ε < x < ε and −ε2 < y <
ε2.

4. For the coordinates (x, y) of the center of any disk from CR(k, ℓ), we have −ε <
x < ε and −ε2 < y − 1 < ε2.

5. For the coordinates (x, y) of the center of any disk from CB(k, ℓ), we have −ε <
x < ε and −ε2 < y + 1 < ε2.

6. The topmost and the bottommost points of a disk C ∈ C(k, ℓ) are not covered by
the closure of any other member of C(k, ℓ).

Looking at our construction from “far away” the two families CR and CB look
like two touching disks, with all points of P very close to the touching point. The
segments connecting the centers of disks from different families are almost vertical
with all members of CR lying “above” all members of CB. We prove the lemma by
induction. Most conditions are needed for the induction to go through. Condition 6 is
an exception: it will be used in Section 7.4.

14Beware that these extremal points are not inside the open disk.
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CR(k, 1)

CB(k, 1)

(a) Starting step: C(k,1).

CR(2, 2)

CB(2, 2)

(b) C(2,2) magnified (and a bit distorted
for visibility).

p (root)

P (k − 1, l)

P (k, l − 1)CR(k − 1, l)

CR(k, l − 1)

CB(k − 1, l)

CB(k, l − 1)

(c) Induction step.

Figure 29: The construction.
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Proof. We give a recursive construction. We can assume that ε < 1/10. It is easy to
see that, for k = 1 or ℓ = 1, there exists such a family of unit disks for any ε > 0, see
Figure 29(a). The family C(2,2) is depicted in Figure 29(b), where the main idea of
the induction may already be visible.

Suppose that k, ℓ ≥ 2 and we have already constructed P (k − 1, ℓ) and C(k − 1, ℓ),
and P (k, ℓ − 1) and C(k, ℓ − 1), for some ε(k − 1, ℓ) < ε/100 and ε(k, ℓ − 1) < ε/100,
respectively. To obtain P (k, ℓ), we place the root p of H(k, ℓ) into the origin (0,0), and
we shift (translate) P (k − 1, ℓ) and P (k, ℓ − 1) into new positions such that their roots
are at (−ε/3,−ε2/10) and (ε/3, ε2/10), respectively. With a slight abuse of notation,
the shifted copies will also be denoted P (k − 1, ℓ) and P (k, ℓ − 1). See Figure 29(c). In
this way, it is guaranteed that for the coordinates (x, y) of any point of P , we have

−ε < −(ε/3 + ε(k − 1, ℓ) + ε(k, ℓ − 1)) < x < ε/3 + ε(k − 1, ℓ) + ε(k, ℓ − 1) < ε

and

−ε2 < −(ε2/10 + ε2(k − 1, ℓ) + ε2(k, ℓ − 1)) < y < ε2/3 + ε2(k − 1, ℓ) + ε2(k, ℓ − 1) < ε2.

Thus, property 3 of the lemma holds.
The family C(k, ℓ) is defined as the union of two previously defined families, C(k −

1, ℓ) and C(k, ℓ − 1), translated by the same vectors as P (k − 1, ℓ) and, resp. P (k, ℓ −
1) were. Again, we use the same symbols to denote the translated copies. To verify
properties 4 and 5, we only have to repeat the above calculations, with the y-
coordinates being shifted 1 higher (resp. 1 lower).

Now we show that our set of points P (k, ℓ) and set of disks C(k, ℓ) realize the
hypergraph H(k, ℓ) (properties 1 and 2). It is easy to see that if C ∈ CR(k − 1, ℓ)
and s ∈ P (k, ℓ − 1), then s ∉ C but p = (0,0) ∈ C. The coordinates of the center of C
are ( − ε/3 ± ε(k − 1, ℓ),1 − ε2/10 ± ε2(k − 1, ℓ)) (where here and in the following, ±z
denotes a number that is between −z and z), so the distance of p from C is at most
(ε/3 + ε(k − 1, ℓ))2 + (1 − ε2/10 + ε2(k − 1, ℓ))2 < 1. On the other hand, the coordinates
of s are (ε/3 ± ε(k, ℓ − 1), ε2/10 ± ε2(k, ℓ − 1)), thus the square of its distance from the
center of C is at least

(2ε/3 − ε(k − 1, ℓ) − ε(k, ℓ − 1))
2
+ (1 − 2ε2/10 − ε2(k − 1, ℓ) − ε2(k, ℓ − 1))

2
> 1.

Analogously, if C ∈ CB(k, ℓ − 1) and s ∈ P (k − 1, ℓ), then s ∉ C but p = (0,0) ∈ C.
Let C ∈ CR(k, ℓ − 1) and s ∈ P (k − 1, ℓ). We prove that p, s ∉ C. The coordinates

of the center of C are (ε/3 ± ε(k, ℓ − 1),1 + ε2/10 ± ε(k, ℓ − 1)). Therefore, the distance
of p from the center of C is at least (ε/3 − ε(k, ℓ − 1))2 + (1 + ε2/10 − ε(k, ℓ − 1))2 > 1.
The calculation for s is similar in the case C ∈ CR(k − 1, ℓ). Analogously, we have that
if C ∈ CB(k − 1, ℓ) and s ∈ P (k, ℓ − 1), then p, s ∉ C. As the disks in C(k, ℓ − 1) (resp.
C(k − 1, ℓ)) contain precisely the same points of P (k, ℓ− 1) (resp. P (k − 1, ℓ), as before
the shift, we have obtained a geometric realization of H(k, ℓ), and properties 1 and 2
hold.

It remains to prove that the topmost and the bottommost points of a disk C ∈
C(k, ℓ) are not covered by any other member of C(k, ℓ) (property 6). Using that our
construction and disks are centrally symmetric, it is enough to prove the statement
for the topmost points. If C ∈ CR(k, ℓ − 1), the coordinates of its topmost point are
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(ε/3±ε(k, ℓ−1),2+ε2/10±ε2(k, ℓ−1)). If C ∈ CR(k−1, ℓ), the coordinates of its topmost

point are (− ε/3± ε(k − 1, ℓ),2− ε2/10± ε2(k − 1, ℓ)). If C ∈ CB(k, ℓ− 1), the coordinates

of its topmost point are (ε/3 ± ε(k, ℓ − 1),−2 + ε2/10 ± ε2(k, ℓ − 1)). If C ∈ CB(k − 1, ℓ),

the coordinates of its topmost point are ( − ε/3 ± ε(k − 1, ℓ),−2 − ε2/10 ± ε2(k − 1, ℓ)).
If C ∈ CR(k, ℓ−1), by the induction hypothesis, its topmost point cannot be covered

by any other disk from C(k, ℓ − 1). Nor can it be covered by any other disk, as the
topmost points of all other disks are below it (i.e., have smaller y-coordinates). If
C ∈ CR(k − 1, ℓ), then the square of the distance of its topmost point from the center
of some C ′ ∈ CR(k, ℓ − 1) is at least

(2ε/3 − ε(k, ℓ − 1) − ε(k − 1, ℓ))
2
+ (1 − 2ε2/10 − ε2(k, ℓ − 1) − ε2(k − 1, ℓ))

2
> 1.

If C ∈ CB(k, ℓ − 1), then the distance of its topmost point from the center of some
C ′ ∈ CR(k − 1, ℓ) is also at least

(2ε/3 − ε(k, ℓ − 1) − ε(k − 1, ℓ))
2
+ (1 − 2ε2/10 − ε2(k, ℓ − 1) − ε2(k − 1, ℓ))

2
> 1.

In all other cases, trivially, the corresponding distances are also larger than 1. This
completes the proof of property 6 and hence the lemma.

7.3 Halfdisks

Theorem 7.2 states that, if C is a plane convex body with two antipodal points at
which the curvature is positive, then for every m, there exists an m-fold covering of
R2 with translates of C that does not split into two coverings. We also know that this
statement is false for any convex polygon. But what happens if C “almost satisfies”
the condition concerning the antipodal point pair?

Problem 7.11. Does there exist an integer m such that every m-fold covering of R2

with translates of an open semidisk splits into two coverings?

This question was answered later in [24], where it was later observed that the
construction presented in this chapter is in fact easily realizable by halfdisks and similar
shapes, see Figure 30.

7.4 Adding points to P—Proof of Theorem 7.1’

In this section, we extend the proof of Theorem 7.1” to establish Theorem 7.1’
(which is equivalent to Theorem 7.1). Note that the only difference between Theo-
rems 7.1” and 7.1’ is that in the latter it is also required that every unit disk of the
plane contains at least m elements of the point set P ∗ = P ∗(m). The set P = P (m,m)
constructed in Lemma 7.10, does not satisfy this condition. In order to fix this, we will
add all points not in ∪C(m,m) to the set P (or rather a sufficiently dense discrete subset
of R2 ∖ ∪C(m,m)). In order to show that the resulting set P ∗ meets the requirements
of Theorem 7.1’, all we have to show is the following.

Lemma 7.12. No (open) unit disk C ∉ C(k, ℓ) is entirely contained in ∪C(k, ℓ).
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p (root)
P (k, ℓ − 1)

P (k − 1, ℓ)

Figure 30: The recursive step of the construction with unit halfdisks.

For future purposes, we prove this statement in a slightly more general form. In
what follows, we only assume that C is an open convex body with a unique topmost
point t and a unique bottommost point b,15 which divide the boundary of C into two
closed arcs. They will be referred to as the left boundary arc and a right boundary arc.

Definition 7.13. A collection C of translates of C is said to be exposed if the topmost
and bottommost points of its members do not belong to the closure of any other member
of C.

By the last condition in Lemma 7.10, the collections of disks C(k, ℓ) constructed in
the previous section are exposed. We prove the following generalization of Lemma 7.12.

Lemma 7.14. Let C be a finite exposed collection of translates of an open convex body
C with unique topmost and bottommost points. If C ∉ C, then C /⊆ ∪C.

For the proof, we need a simple observation.

Claim 7.15. If the right boundary arcs of two translates of C intersect, then the closure
of one of the translates must contain the topmost or bottommost point of the other.

Proof. Let C1 and C2 be the two translates, and let γi denote the closed convex curve
formed by the right boundary arc of Ci and the straight-line segment connecting its two
endpoints (the topmost and the bottommost points of Ci). The curves γ1 and γ2 are
translates of each other, and since they intersect, they must cross twice. (At a crossing,
one curve comes from the exterior of the other, then it shares an arc with it, which
may be a single point, and enters the interior.) It cannot happen that both crossings
occur between the right boundary arcs, because they are convex and translates of each
other. Therefore, one of the two crossings involves the straight-line segment of one the
curves, say, γ1. But since the condition is that the right boundary arcs intersect, one of
the two endpoints of this straight-line segment, either the topmost or the bottommost
point of C1, lies in the closure of C2

15Recall that these extremal points are not inside the open C.
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Proof of Lemma 7.14. Suppose, for contradiction, that C ⊆ ∪C. By removing some
members of C if necessary, we can assume that C is a minimal collection of translates
that covers C. As C ∉ C, there cannot be only one translate in C. If C consists of only
two translates, {C1,C2} = C, then the topmost point of C, t, must lie on the segment
whose endpoints are the topmost points of C1 and C2, t1 and t2. But in this case, if
C is covered, either t1 ∈ C2 or t2 ∈ C1, contradicting the assumption that C is exposed.
From this we can conclude that if C1,C2 ∈ C intersect inside C, their boundaries must
also intersect inside C, otherwise either C ⊂ C1 ∪ C2, or C ∩ C1 ⊂ C2 or C ∩ C2 ⊂ C1,
contradicting the minimality of C. Fix a p ∈ C that lies on the boundary of C1 and C2,
inside C. Take a C3 ∈ C that covers p. Since C3 is open, it covers a small neighborhood
of p, thus we have C1 ∩C2 ∩C3 ∩C ≠ ∅.

None of the topmost and bottommost points of these three translates can be covered
by C, otherwise, it would also be covered by another member of C, contradicting the
assumption that C is exposed. Thus, C intersects either the left or the right boundary
arc of every Ci. Without loss of generality, suppose that C intersects the right boundary
arcs of C1 and C2. These right boundary arcs must intersect inside C, otherwise C1∩C ⊆
C2 ∩ C or C2 ∩ C ⊆ C1 ∩ C, and C would not be minimal. Therefore, we can apply
Claim 7.15 to conclude that one of them must contain the topmost or bottommost
point of the other.

Remark 7.16. In the construction described in Lemma 7.10, every disk in C(m,m)
contains at most ∣P (m,m)∣ < 22m points. At the last stage, we added many new points
to P . We can keep the maximum number of points of P lying in a unit disk bounded
from above by a function f(m). What is the best upper bound? The bound given by our
construction depends on ε(m,m) ≤ 100−2mε(1,1).

7.5 Other convex bodies—Proof of Theorem 7.2

Throughout this section, C denotes an open plane convex body which has two
parallel supporting lines with positive curvature at the two points of tangencies. To
prove Theorem 7.2, by duality, it is sufficient to establish the analogue of Theorem 7.1’,
where the role of unit disks is played by translates of C.

Theorem 7.2’. For every m ≥ 2, there is a set of points P ∗ = P ∗(m) in the plane
with the property that every translate of C contains at least m elements of P ∗, and no
matter how we color the elements of P ∗ with two colors, there exists a translate of C
such that all points in it are of the same color.

As in the case of disks, after defining the hypergraphs H(k, ℓ), the proof consists of
two steps:

Step 1: We find a geometric realization of H = H(k, ℓ) with translates of C, i.e.,
a finite point set P representing the vertices and a collection C of translates of C
representing the hyperedges of H such that a point of P lies in a member of C if and
only if the corresponding vertex belongs to the corresponding hyperedge. We show that
C is an exposed family.

Step 2: We show that no translate of C is entirely contained in ∪C, unless C ∈ C.
Thus, we can add all the points not in ∪C(k, ℓ) to the points of P to ensure that every
translate of C contains many points.
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In Section 7.4, we have shown that Step 2 can be completed, provided that C is
exposed (see Lemma 7.14). Therefore, here we concentrate on Step 1.

Without loss of generality, we can assume that C has unique bottommost and
topmost points, b and t, resp., at which the curvature is positive. After applying an
affine transformation, we can also attain that the line bt is vertical. Let rb and rt denote
the reciprocals of the curvatures at b and t, respectively. If we place b at the origin,
then, for every δ > 0, in a small neighborhood of b, the boundary of C will lie between
the parabolas y = (1−δ)rbx

2 and y = (1+δ)rbx
2. Analogously, if we place t at the origin,

then in a small neighborhood of it, the boundary of C will lie between the parabolas
y = −(1−δ)rtx

2 and y = −(1+δ)rtx
2. We find a geometric realization using the following

lemma.

p (root)

P (k − 1, l)

s ∈ P (k, l − 1)

CR(k − 1, l)

Figure 31: Parabolas enclosing the boundary of C.

Lemma 7.10’. For any positive integers k, ℓ and for any ε > 0, there is a finite point
set P = P (k, ℓ) and a finite family of translates of C, C(k, ℓ) = CR(k, ℓ) ⊍ CB(k, ℓ) with
the following properties.

1. Any translate from CR(k, ℓ) (resp. CB(k, ℓ)) contains precisely k (resp. ℓ) points
of P .

2. For any coloring of P with red and blue, there is a translate from CR(k, ℓ) such
that all of its points are red or a translate from CB(k, ℓ) such that all of its point
are blue. In fact, P and C(k, ℓ) realize the abstract hypergraph H(k, ℓ) in the above
sense.

3. For the coordinates (x, y) of any point from P , we have −ε < x < ε and −ε2 < y <
ε2.

4. For the coordinates (x, y) of the bottommost point of any translate from CR(k, ℓ),
we have −ε < x < ε and −ε2 < y < ε2.

5. For the coordinates (x, y) of the topmost point of any translate from CB(k, ℓ), we
have −ε < x < ε and −ε2 < y < ε2.

6. The topmost and the bottommost points of translate from C(k, ℓ) are not covered
by the closure of any other member of C(k, ℓ).

Proof. Using an affine transformation, we can suppose that rt, rb < 1. We fix a δ that is
small enough compared to rt and rb, and an ε = ε(k, ℓ) that is small enough compared
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to δ, rt and rb, but big enough compared to ε(k, ℓ − 1) and ε(k − 1, ℓ). (To keep the
presentation simple, we omit the exact required dependencies here.) We will use that
the boundary of C in a 2ε(rt + rb) neighborhood around t and b is between the (above
mentioned) pairs of parabolas, y = (1− δ)rbx

2 and y = (1+ δ)rbx
2, and y = −(1− δ)rtx

2

and y = −(1 + δ)rtx
2.

If k = 1 or ℓ = 1, the construction is trivial. For k, ℓ ≥ 2, assume that the point sets
P (k−1, ℓ) and P (k, ℓ−1), and the families of translates of C, C(k−1, ℓ) and C(k, ℓ−1),
have already been defined, and that they satisfy all conditions in the lemma. To obtain
P (k, ℓ), we place the root p of H(k, ℓ) into the origin (0,0), and we shift P (k−1, ℓ) and
P (k, ℓ− 1) such that their roots are at (−rtε,−(1+ 2δ)rbr

2
t ε

2) and (rbε, (1+ 2δ)rtr
2
bε

2),
respectively. The family of translates C(k, ℓ) is defined as the union of the families
C(k − 1, ℓ) and C(k, ℓ− 1) translated by the same vectors, as P (k − 1, ℓ) and P (k, ℓ− 1),
respectively.

To verify properties 3, 4, and 5, we need that −ε < −rtε, rbε < ε and −ε2 <
−(1 + 2δ)rbr

2
t ε

2, (1 + 2δ)rtr
2
bε

2 < ε2, which hold since rt, rb < 1 and δ is small. Notice
that where we have omitted ε(k, ℓ− 1) and ε(k − 1, ℓ) from these equations to keep the
calculations simple. This we can do as the difference of the two sides depends on ε,
which we can select to be sufficiently large compared to ε(k, ℓ − 1) and ε(k − 1, ℓ). We
will also omit dependencies of ε(k, ℓ − 1) and ε(k − 1, ℓ) later.

To verify properties 1 and 2, we have to show that for any C ∈ CR(k − 1, ℓ), the
origin p = (0,0) belongs to C, but no point s ∈ P (k, ℓ − 1) does, provided that ε > 0 is
sufficiently small. To see this, fix C ∈ CR(k − 1, ℓ). The equation of the parabola that
touches C from the inside at its bottommost point is approximately y = (1 + δ)rb(x +
rtε)

2−(1+2δ)rbr
2
t ε

2. If x = 0, the value of y is (1+δ)rb(rtε)
2−(1+2δ)rbr

2
t ε

2 = −δrbr
2
t ε

2.
This is negative, which means that p = (0,0) lies above the parabola. Thus, we have
p ∈ C. Analogously, if C ∈ CB(k, ℓ − 1) and s ∈ P (k − 1, ℓ), then s ∉ C but p = (0,0) ∈ C.

On the other hand, the equation of the parabola that touches C at its bottommost
point from the outside is approximately y = (1 − δ)rb(x + rtε)

2 − (1 + 2δ)rbr
2
t ε

2. If
x = rbε ± ε(k, ℓ − 1) the value of y at x is approximately

(1 − δ)rb(rbε + rtε)
2
− (1 + 2δ)rbr

2
t ε

2
= ((1 − δ)(r3b + 2r

2
brt) − 3δrbr

2
t ) ε

2
≥ (r3b +O(δ)) ε

2.

Therefore, s = (rbε ± ε(k, ℓ − 1), (1 + 2δ)rtr
2
bε

2 ± ε2(k, ℓ − 1)) is below the parabola, if δ
is small enough, thus s ∉ C.

Let C ∈ CR(k, ℓ− 1) and s ∈ P (k − 1, ℓ). We prove that p, s ∉ C. The equation of the
parabola that touches C from the outside at its bottommost point is approximately
y = (1 − δ)rt(x − rbε)

2 − (1 + 2δ)rtr
2
bε

2. If x = 0, the value of y is (1 + δ)rt(−rbε)
2 −

(1 + 2δ)rtr
2
bε

2 = −δrbr
2
t ε

2 < 0, thus p ∈ C. The calculation for s is similar in the case
C ∈ CR(k − 1, ℓ). Analogously, we have that if C ∈ CB(k − 1, ℓ) and s ∈ P (k, ℓ − 1), then
p, s ∉ C. As the translates in C(k, ℓ − 1) (resp. C(k − 1, ℓ)) contain precisely the same
points of P (k, ℓ−1) (resp. P (k−1, ℓ), as before the shift, we have obtained a geometric
realization of H(k, ℓ), and properties 1 and 2 hold.

It remains to prove that the topmost and the bottommost points of a translate
C(k, ℓ) are not covered by any other member of C(k, ℓ) (property 6). Using that our
construction is symmetric, it is enough to prove the statement for the topmost points.
Recall that the line connecting b and t is vertical and denote their distance, the height
of C, by h.
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The coordinates of the topmost points of translates from CR(k, ℓ − 1) are approxi-
mately (rbε+h, (1+ 2δ)rtr

2
bε

2 +h). The coordinates of the topmost points of translates
from CR(k−1, ℓ) are approximately (−rtε+h,−(1+2δ)rbr

2
t ε

2+h). The coordinates of the
topmost points of translates from CB(k, ℓ − 1) are approximately (rbε, (1 + 2δ)rtr

2
bε

2).
The coordinates of the topmost points of translates from CB(k−1, ℓ) are approximately
(−rtε,−(1 + 2δ)rbr

2
t ε

2).
If C1 ∈ CR(k, ℓ−1), by the induction hypothesis, its topmost point cannot be covered

by any other C2 ∈ C(k, ℓ − 1). Nor can it be covered by any other translate, as the
topmost points of all other translates are below it (i.e., have smaller y-coordinates).
If C1 ∈ CR(k − 1, ℓ), then the vector connecting it to the topmost point of some C2 ∈

CR(k, ℓ − 1) is approximately the same as the vector connecting a point s ∈ P (k − 1, ℓ)
to the topmost point of some C ′ ∈ CB(k, ℓ− 1). As we have seen earlier that s ∉ C ′, the
same calculation shows that the topmost point of C1 is not in C2. If C1 ∈ CR(k − 1, ℓ)
and C2 ∈ CB(k, ℓ−1) or C2 ∈ CB(k−1, ℓ), then the topmost point of C2 is lies below the
topmost point of C1. If C1 ∈ CB(k, ℓ− 1) and C2 ∈ C(k, ℓ− 1), by induction the topmost
point of C1 is not in C2. If C1 ∈ CB(k, ℓ − 1) and C2 ∈ C(k − 1, ℓ), then the topmost
point of C1 is approximately at the same place as the points of P (k, ℓ − 1) which are
avoided by C2, and the same calculation works here. Similarly, if C1 ∈ CB(k − 1, ℓ) and
C2 ∈ C(k − 1, ℓ), we can use induction, and if C1 ∈ CB(k − 1, ℓ) and C2 ∈ C(k, ℓ − 1), we
can use that the topmost point of C1 is approximately at the same place as the points
of P (k−1, ℓ) which are avoided by C2, the same calculation works here. This completes
the proof of property 6 and hence the lemma.

7.6 Higher dimensions

In this section, based on parts from [50], we study the following natural extension
of the problem to higher dimensions. Given a finite set of points S ∈ Rd and a family
F , can we c-color S such that every F ∈ F contains at least two colors?

For balls, however, we do not know of any counterexamples, even though a 3-
dimensional Delaunay triangulation of any number of points might induce a complete
graph (for a recent proof, see [39]). We find it quite surprising that while in the plane
convex polygons admit polychromatic colorings and disks do not, in the space it might
be vice versa. We could only prove the following weaker statement.

Theorem 7.17. For every m there is a finite set of points S ∈ R3 such that for any
3-coloring of S there is a unit ball that contains exactly m points of S, all of the same
color.

Earlier such a construction with unit balls was only known for 2-colorings [65].
Although by now Theorem 7.17 became a simple corollary of Theorem 2.31, we will
sketch its original proof from [50], as it shows how the planar construction from the
previous sections can be improved in higher dimensions.

Abstract hypergraph.
First we define the abstract hypergraph that will be realized with unit balls. It

is a straight-forward generalization of the hypergraph from Section 7.1. This time
the induction will be on three parameters, k, ℓ and m. For any k, ℓ,m we define
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the (multi)hypergraph H(k, ℓ,m) = (V (k, ℓ,m),E(k, ℓ,m)) recursively. The edge set
E(k, ℓ,m) will be the disjoint union of three sets, E(k, ℓ,m) = E1(k, ℓ,m)⊍E2(k, ℓ,m)⊍
E3(k, ℓ,m). All edges belonging to E1(k, ℓ,m) will be of size k, all edges belonging to
E2(k, ℓ,m) will be of size ℓ, and all edges belonging to E3(k, ℓ,m) will be of size m. We
will prove that in every 3-coloring of H(k, ℓ,m) with colors c1, c2 and c3 there will be
an edge in E i(k, ℓ,m) such that all of its vertices are colored ci for some i ∈ {1,2,3}. If
k = ℓ =m, we get an m-uniform hypergraph that cannot be properly 3-colored.

H1,2,2 H2,1,2 H2,2,1

p

Figure 32: H(1,2,2) drawn with sets (left) and H(2,2,2) drawn as graph (right). Dif-
ferent colors represent the edges from the different families E i.

Now we give the recursive definition. Define H(1,1,1) as a hypergraph on one
vertex with three edges containing it, with one edge in each of E1(1,1,1), E2(1,1,1)
and E3(1,1,1). If at least one of k, ℓ,m is bigger than 1, define H(k, ℓ,m) recursively
from H(k−1, ℓ,m), H(k, ℓ−1,m), H(k, ℓ,m−1) by adding a “new” vertex p as follows.

V (k, ℓ,m) = V (k − 1, ℓ,m) ⊍ V (k, ℓ − 1,m) ⊍ V (k, ℓ,m − 1) ⊍ {p}.

If k = 1, then E1(1, ℓ,m) = {{v} ∶ v ∈ V (1, ℓ,m)}, otherwise

E1(k, ℓ,m) = {e ∪ {p} ∶ e ∈ E1(k − 1, ℓ,m)} ⊍ E1(k, ℓ − 1,m) ⊍ E1(k, ℓ,m − 1).

Similary, if ℓ = 1, then E2(k,1,m) = {{v} ∶ v ∈ V (k,1,m)}, otherwise

E2(k, ℓ,m) = {e ∪ {p} ∶ e ∈ E2(k, ℓ − 1,m)} ⊍ E2(k − 1, ℓ,m) ⊍ E2(k, ℓ,m − 1),

and if m = 1, then E3(k, ℓ,1) = {{v} ∶ v ∈ V (k, ℓ,1)}, otherwise

E3(k, ℓ,m) = {e ∪ {p} ∶ e ∈ E3(k, ℓ,m − 1)} ⊍ E3(k − 1, ℓ,m) ⊍ E3(k, ℓ − 1,m).

Lemma 7.18. In every 3-coloring of H(k, ℓ,m) with colors c1, c2 and c3 there is an
edge in E i(k, ℓ,m) such that all of its vertices are colored ci for some i ∈ {1,2,3}.
Therefore, H(k, ℓ,m) has no proper 3-coloring.

The proof is a simple modification of the respective statement from [67].

Proof. If k = ℓ = m = 1, the statement holds. Otherwise, suppose, without loss of
generality, that the color of p is c1. If k = 1, we are done as {p} ∈ E1(1, ℓ,m). Otherwise,
consider the copy of H(k − 1, ℓ,m) contained in H(k, ℓ,m). If it contains an edge in
E2(k − 1, ℓ,m) or E3(k − 1, ℓ,m) such that its vertices are all colored c2 or all colored
c3, respectively, we are done. Otherwise, it contains an e ∈ E1(k − 1, ℓ,m) such that its
vertices are all colored c1. But then all the vertices of (e ∪ {p}) ∈ E1(k, ℓ,m) are also
all colored c1, we are done.
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p
S(k − 1, `,m)

B1(k, `− 1,m)

B1(k − 1, `,m)

B2(k, `− 1,m)

B2(k − 1, `,m)

S(k, `− 1,m)

B1(k, `,m− 1)

B2(k, `,m− 1)

B3(k, `,m− 1)

Figure 33: The intersection of H(k, ℓ,m) with the z = 0 plane. Point sets/collections
of balls that are at distance O(ε5) are represented by a single point/ball. As the balls
B3(k−1, ℓ,m) intersect in a O(ε5) vicinity of S(k−1, ℓ,m) and the balls B3(k, ℓ−1,m)
intersect in a O(ε5) vicinity of S(k, ℓ−1,m), they are not drawn to avoid overcrowding
the picture.

Geometric realization.
Now we sketch how to realize H(k, ℓ,m) by unit balls in R3. The construction will

build on the construction of [62], where the edges belonging to E1(k, ℓ,1) ⊍ E2(k, ℓ,1)
of H(k, ℓ,1) were realized by unit disks.

The vertices V (k, ℓ,m) will be embedded as a point set, S(k, ℓ,m), and the edge
set E i(k, ℓ,m) as a collection of unit balls, Bi(k, ℓ,m), where a point is contained in
a ball if and only if the respective vertex is in the respective edge. All the points of
S(k, ℓ,m) will be placed in a small neighborhood of the origin. The centers of the balls
from B1(k, ℓ,m), B2(k, ℓ,m) and B3(k, ℓ,m) will be close to (0,−1,0), (0,1,0) and
(0,0,−1), respectively. The realization of H(1,1,1) contains only one point, the origin,
and one ball in each family, centered appropriately close to the required center.

Suppose that not all of k, ℓ,m are 1, and we have already realized the hypergraphs
H(k−1, ℓ,m), H(k, ℓ−1,m) and H(k, ℓ,m−1). Place the new point p in the origin, and
shift the corresponding realizations (i.e., the point sets, S(k−1, ℓ,m), S(k, ℓ−1,m) and
S(k, ℓ,m−1), and the collection of balls, B(k−1, ℓ,m), B(k, ℓ−1,m) and B(k, ℓ,m−1))
by the following vectors, where ε = ε(k, ℓ,m) is a small enough number, but such that
ε(k − 1, ℓ,m), ε(k, ℓ − 1,m) and ε(k, ℓ,m − 1) are all O(ε5(k, ℓ,m)).

1. Shift H(k − 1, ℓ,m) by (2ε − 1.5ε3,2ε2,0).

2. Shift H(k, ℓ − 1,m) by (−2ε + 1.5ε3,−2ε2,0).

3. Shift H(k, ℓ,m − 1) by (0,0,2ε2).

For an illustration, see Figure 33.
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Proposition 7.19. The above construction realizes H(k, ℓ,m).

The proof of this proposition is a routine calculation, we only show some parts.

Proof. Denote by oB the center of the ball B and denote by dist(p, q) the Euclidean
distance of two points p, q.

1. p ∈ B ∈ B1(k − 1, ℓ,m):

dist2(p, oB) = (2ε − 1.5ε
3
)
2
+ (1 − 2ε2)2 +O(ε5) = 1 − 2ε4 +O(ε5) < 1.

2. p ∉ B ∈ B1(k, ℓ − 1,m):

dist2(p, oB) = (2ε − 1.5ε
3
)
2
+ (1 + 2ε2)2 +O(ε5) = 1 + 4ε2 +O(ε3) > 1.

3. p ∉ B ∈ B1(k, ℓ,m − 1):

dist2(p, oB) = 1
2
+ (2ε2)2 +O(ε5) = 1 + 4ε4 +O(ε5) > 1.

4. If s ∈ S(k, ℓ − 1,m), then s ∉ B ∈ B1(k − 1, ℓ,m):

dist2(s, oB) = (4ε − 3ε
3
)
2
+ (1 − 4ε2)2 +O(ε5) = 1 + 8ε2 +O(ε3) > 1.

5. If s ∈ S(k, ℓ − 1,m), then s ∉ B ∈ B1(k, ℓ,m − 1):

dist2(s, oB) = (2ε − 1.5ε
3
)
2
+ (1 − 2ε2)2 + (2ε2)2 +O(ε5) = 1 + 2ε4 +O(ε5) > 1.

6. If s ∈ S(k, ℓ − 1,m), then s ∉ B ∈ B3(k, ℓ,m − 1):

dist2(s, oB) = (2ε − 1.5ε
3
)
2
+ (2ε2)2 + (1 − 2ε2)2 +O(ε5) = 1 + 2ε4 +O(ε5) > 1.

7. If s ∈ S(k, ℓ,m − 1), then s ∉ B ∈ B1(k − 1, ℓ,m):

dist2(s, oB) = (2ε − 1.5ε
3
)
2
+ (1 − 2ε2)2 + (2ε2)2 +O(ε5) = 1 + 2ε4 +O(ε3) > 1.

The other incidences can be checked similarly and thus Proposition 7.19 follows.

Lemma 7.18 and Proposition 7.19 imply Theorem 7.17 by selecting k = ℓ = m,
therefore this also finishes the proof of Theorem 7.17.

7.7 Special shift-chains—Proof of Theorem 7.5

Throughout this section, P denotes a fixed set of n points in the plane, no two
of which have the same x-coordinate, and C is a fixed open convex set that contains
a vertical upward half-line. First, we recall the Definition 2.32: of shift-chains, and
introduce a special variant of them.16

16In later papers, these were called ABA-free hypergraphs; see [48].
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Definition 7.20. For A ⊂ [n] = {1,2, . . . , n}, denote by ai the ith smallest element of
A. For two equal sized sets, A,B ⊂ [n], we write A ⪯ B if ai ≤ bi for every i.

An m-uniform hypergraph on the vertex set [n] is called a shift-chain if its hyper-
edges are totally ordered by the relation ⪯. A shift-chain H is special if for any two
hyperedges, A,B ∈H with A ⪯ B, we have max(A ∖B) <min(B ∖A).

For any integer m and real number x, let C(m;x) denote the translate of C which
a. contains exactly m points of P ,
b. can be obtained from C by translating it through a vector with x-coordinate x,
c. and has minimum y-coordinate, among all translates satisfying a and b.

The union of all translates of C through every vector that has x-coordinate x is a
vertical strip (or an open half-plane or the whole plane), denoted by S(x). If S(x)
contains precisely m points for some x, then in condition c, the minimum y-coordinate
is y = −∞, and we set C(m;x) = S(x). If S(x) contains fewer than m points, then
C(m;x) is undefined.

Proposition 7.21. Let p1, p2, . . . , pn denote the elements of P , listed in the increasing
order of their x-coordinates. Then the m-uniform hypergraph consisting of the sets
P (x) = {i ∈ [n] ; pi ∈ C(m;x)}, over all x ∈ R, is a special shift-chain.

Proof. Notice that if x < x′, then the boundary of C(m;x) intersects the boundary of
C(m;x′) precisely once. Therefore, every element of (C(m;x)∖C(m;x′))∩P is to the
left of all elements of (C(m;x′) ∖C(m;x)) ∩ P . This means that P (x) ⪯ P (x′).

In view of the duality described at the end of the introduction, Theorem 7.5 is an
immediate corollary of the following statement.

Theorem 7.22. For any m ≥ 3, every m-uniform special shift-chain is 2-colorable.
Moreover, such a coloring can be constructed in linear time.

An example found by Fulek [33] (depicted on Figure 2) shows that Theorem 7.22
is false without assuming that the shift-chain is special.

Proof of Theorem 7.22. The proof breaks into several simple claims. In the rest of
this section, H denotes a fixed 3-uniform special shift-chain on [n] = {1,2, . . . , n}. For
simplicity, a hyperedge (triple) {a, b, c} ∈H with a < b < c will be denoted by {a < b < c}.

Claim 7.23. If {a < b < c} ∈H and {a′ < b < c′} ∈H, then a′ = a or c′ = c.

Proof. Otherwise, {a < b < c} ∖ {a′ < b < c′} = {a < c} and {a′ < b < c′} ∖ {a < b < c} =
{a′ < c′} would not be separated, contradicting our assumption that H is special.

Define a digraph, D =D(H) with vertex set [n] and edge set E, as follows. For any
b < c, the directed edge bc ∈ E if and only if there exist a, a′ ∈ [n], a ≠ a′, such that
{a < b < c} ∈H and {a′ < b < c} ∈H. Analogously, for any a < b, the directed edge ba ∈ E
if and only if there exist c, c′ ∈ [n], c ≠ c′, such that {a < b < c} ∈H and {a < b < c′} ∈H.
According to Claim 7.23, the out-degree of every vertex of D is at most one. Note that
an edge may appear in E with both orientations ab and ba.

Claim 7.24. The directed graph D can be constructed by a linear time algorithm.

78

               domotorp_98_23



Proof. H, as any 3-uniform shift-chain on n vertices has at most 3n−8 hyperedges. Sup-
pose that they are listed in an arbitrary order, and process them one-by-one. Suppose
the next triple is {a < b < c}.

1. If b is a middle vertex for the first time, store it, together with both of its neighbors,
a and c.

2. If b is a middle vertex for the second time, decide if it was a or c that has been
previously stored as one of its neighbors. (By Claim 7.23, we know that one of
them was.) If it is a, add ba to E, if it is c, add bc.

3. Otherwise, do not add any new edge, and pass to the next triple.

Claim 7.25. For a < b < c (or c < b < a) it is not possible that ac ∈ E and ba ∈ E.

Proof. Suppose ac, ba ∈ E. By definition, this means that there exist {x < a < c} ∈H and
{a < b < y} ∈ H, for some x and some y ≠ c. Obviously, with respect to the ordering of
the triples, we have {x < a < c} ≺ {a < b < y}. The sets {x < a < c}∖{a < b < y} = {x < c}
and {a < b < y}∖{x < a < c} = {b < y} are not separated, because the maximal element of
the first set, c, is larger than the minimal element of the second set, b. This contradicts
our assumption that H was a special shift-chain.

Claim 7.26. For a < b < c < d it is not possible that bd ∈ E and ca ∈ E.

Proof. This would mean that there exist {x < b < d} ∈ H with x ≠ a and {a < c <
y} ∈ H with y ≠ d. These two triples are disjoint, but not separated, contradicting the
assumption that H is special.

If a directed graph T can be obtained from a directed tree oriented toward its
root r, by possibly adding one of the edges pr entering the root also with the reverse
orientation rp, then it is called a quasi-tree. Note that in this case, we can also think
of T as a quasi-tree rooted in p.

Claim 7.27. The graph D is the vertex-disjoint union of quasi-trees.

Proof. As no vertex of D has out-degree larger than 1, it is enough to show that D
has no directed cycle of length larger than 2. Suppose there is such a directed cycle,
and denote its smallest and largest elements by a and b, respectively. By Claim 7.25,
we have that ab ∉ E and ba ∉ E. Let ya ∈ E and ax ∈ E be the incoming edge and the
outgoing edge of the cycle at a. Again, by Claim 7.25, we have a < x < y < b. There is
a directed path from x to b, and along this path there is a first edge uv with u < y and
v > y. But then the edges ya, uv ∈ E would contradict Claim 7.26, as a < u < y < v.

Now we are in a position to find a 2-coloring of H in linear time. For every {a <
b < c} ∈ H, we will guarantee that the color of its middle vertex, b, will differ from the
color of a or the color of c.

First, using breadth-first search, we properly 2-color each connected component.
Hence, it will be guaranteed that if the out-degree of b is non-zero, then all triples of
the form {a < b < c} ∈ H contain both colors. Then assign to each vertex x ∈ [n] an
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edge ab ∈ E such that a < x < b or b < x < a, provided that such an edge exists. This
can be done in linear time, but here we omit the details.

For every {x < y < z} ∈ H that does not yet contain both colors, its middle vertex
y has out-degree zero. If there is an edge bc ∈ E assigned to y such that b < y < c, then
there are two different hyperedges {a < b < c},{a′ < b < c} ∈ H. Either a ≠ x or a′ ≠ x,
and thus, necessarily, we have c = z. We color y with the same color as b (i.e., differently
from c = z), so that {x < y < z} contains both colors. Note that if the in-degree of y is
non-zero, then a simple case analysis shows that the only possibility is zy ∈ E. Thus,
this color agrees with the color given earlier to y from its connected component.

In a similar manner, if there is an edge ab ∈ E assigned to y such that a < y < b,
then necessarily a = x, and we can color y with the same color as b (i.e., differently
from a = x).

Finally, if there are uncolored vertices, color them in increasing order so that when
y is colored, if there are {x < y < z} ∈H, then y gets the opposite color as x. (This step
is well defined, because it follows from the fact that the out-degree of y is zero, that
there is only one triple {x < y < z} with the above property.)

This completes the proof of Theorem 7.22, as it follows that the middle vertex of
any triple will have a different color from another vertex of the triple.

7.8 Covering space with unbounded convex sets

Every open, unbounded, line-free convex set C is contained in a half-space with inner
normal vector v⃗ such that for any c ∈ C, the half-line emanating from c and pointing
in the direction of v⃗ lies entirely in C. We can assume, without loss of generality, that
v⃗ is the unit vector ed = (0,0, . . . ,0,1), pointing vertically upwards, and that C lies in
the upper half-space.

First, we prove Proposition 7.6, according to which every covering of Rd with trans-
lates of a set C satisfying the above conditions can be split into two, and hence into
infinitely many, coverings. We prove a slight generalization of this statement, in which
C is not required to be convex.

Proposition 7.6’. Let C be an open set in the upper half-space of Rd, which has the
property that, for every c ∈ C, the half-line starting at c and pointing vertically upwards
belongs to C. Then every covering of Rd with translates of C splits into two coverings.

Proof. For any positive integer i, let Bi denote the closed (d − 1)-dimensional ball of
radius i around the origin in the coordinate hyperplane xd = 0. Let C be a covering of
Rd with translates of C. As the members of C cover the whole d-dimensional space,
they also cover the (d−1)-dimensional ball B1×{0}, orthogonal to the xd-axis. This set
is compact and the members of C are open. Therefore, there is a finite subfamily C1 ⊂ C
which covers B1 × {0}. Choose a number z1 < 0 such that all members of C1 lie strictly
above the hyperplane xd = z1, and consider the (d−1)-dimensional ball B2×{z1}. Select
a finite family C2 ⊂ C that covers this ball and a number z2 < z1 such that all members
of C2 lie strictly above the hyperplane xd = z2. Proceeding like this, we can construct
an infinite sequence of disjoint finite subfamilies C1,C2, . . . ⊂ C and a sequence of reals
z0 ∶= 0 > z1 > z2 > . . . tending to −∞ such that Ci covers the (d − 1)-dimensional ball
Bi × {zi−1}.
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Let p be any point of Rd which is at distance r from the dth coordinate axis
and whose dth coordinate is pd. Notice that p lies above some point of every (d − 1)-
dimensional ball Bi × {zi−1} such that i ≥ r and zi−1 ≤ pd. Consequently, p is covered
by the corresponding families Ci. Hence, C1 ∪ C3 ∪ C5 ∪ . . . and C2 ∪ C4 ∪ C6 ∪ . . . are two
disjoint subfamilies of C, each of which covers the whole space.

Next, we establish Theorem 7.7, which shows that starting from 4-dimensions,
Proposition 7.6 is false if we drop the assumption that C is an open set.

Proof of Theorem 7.7. We have to prove that there is a convex, bounded (not open)
set C ′ ⊂ R3 such that R4 can be covered by translates of C = C ′ × [0,∞) so that every
point of R4 is covered infinitely many times, but this covering cannot be decomposed
into two.

The set C ′ will be the convex hull of ∪∞i=1(Ci × {
1
i2
}), where each Ci is in R2, and

thus Ci × {
1
i2
} lies in the plane determined by the equation z = 1

i2
of R3. Each Ci is

the union of an open disk, defined by the inequality x2 + (y − 1
i )

2 < 1, and a part of
its boundary defined as follows. A point belongs to the boundary of Ci if and only if
it can be represented as (x,

√
1 − x2 + 1

i ), where x ∈ [0,1] and the ith digit of x after
the “decimal” point in binary form is 1. For each i, denote the set of such x’s by C∗i .
Therefore, C∗i is the disjoint union of 2i−1 closed intervals.

Note that C ′ is neither closed, nor open. Clearly, C ′ is a bounded set, as it is
contained in the box [−1,1]×[−1,2]×[0,1]. Observe that for every i, the point (0, 1i ,

1
i2
),

the center of the disk Ci × {
1
i2
}, lies the plane x = 0, on the parabola z = y2. Hence, for

each i and for every point p ∈ R3 whose third coordinate is 1
i2

and first coordinate is

non-negative, p belongs to the boundary of C ′ if and only if it is of the form (x,
√
1 − x2+

z, z2) with x ∈ C∗i and z = 1
i . To see this, it is enough to notice that no point of this

form can be obtained as a convex combination of other points in C ′.
Now we describe an infinite-fold covering C of R4 with translates of C that cannot

be decomposed into two coverings. Let X = {(x,
√
1 − x2,0,−w) ∣ x ∈ [0,1],w ∈ [0,∞)}.

For every point x /∈ X, select an arbitrary translate of C that covers x and does not
intersect X. (It is easy to see that such a translate always exists.) Let C consist of all
these translates, and for every i (i = 1,2, . . .), the translate of C through the vector
(0,−1

i ,−
1
i2
,−i), denoted by Ĉi.

Notice that the Ĉi covers (x,
√
1 − x2,0,−w) ∈ X if and only if x ∈ C∗i and w ≤ i.

This implies that every point of X is covered by infinitely many members of C, because
every number has a representation with infinitely many digits that are 1.

It remains to show that C cannot be split into two coverings. This is a direct
consequence of the following statement: For any I ⊂ N for which N∖ I is infinite, there
is a point (x,

√
1 − x2,0,0) ∈X that is not covered by ∪i∈IĈi.

To prove this statement when I is infinite, define the ith digit of x as 1 if and
only if i ∉ I. Since this is only one binary representation of x, we have x ∉ ∪i∈IĈ

∗
i and

(x,
√
1 − x2,0,0) ∉ ∪i∈IĈi. If I is finite, it can be extended to an infinite set such that

N∖I remains infinite. Thus, this case can be reduced to the case when I is infinite.
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7.9 Bounded coverings

We prove Theorem 7.4 in a somewhat more general form. For the proof we need
the following consequence of the Lovász local lemma.

Lemma 7.28 (Erdős-Lovász [26]). Let k,m ≥ 2 be integers. If every edge of a hyper-
graph has at least m vertices and every edge intersects at most km−1/4(k − 1)m other
edges, then its vertices can be colored with k colors so that every edge contains at least
one vertex of each color.

Let C be a class of subsets of Rd. Given n members C1, . . . ,Cn of C, assign to each
point x ∈ Rd a characteristic vector c(x) = (c1(x), . . . , cn(x)), where ci(x) = 1 if x ∈ Ci

and ci(x) = 0 otherwise. The number of distinct characteristic vectors shows how many
“pieces” C1, . . . ,Cn cut the space into. The dual shatter function of C, denoted by
π∗C(n), is the maximum of this quantity over all n-tuples C1, . . . ,Cn ∈ C. For example,
when C is the family of open balls in Rd, it is well known that

π∗C(n) ≤ (
n − 1

d
) +

d

∑
i=0
(
n

i
) ≤ nd,

provided that 2 ≤ d ≤ n.

Theorem 7.29. Let C be a class of open sets in Rd with diameter at most D and
volume at least v. Let π(n) = π∗C(n) denote the dual shatter function of C, and let Bd

denote the unit ball in Rd. Then, for every positive integer m, any m-fold covering of
Rd with members of C splits into two coverings, provided that no point of the space is
covered more than v

(2D)dV oℓBdπ
−1(2m−3) times, where V oℓBd is the volume of Bd.

Proof. Given an m-fold covering of Rd in which no point is covered more than M
times, define a hypergraph H = (V,E), as follows. Let V consist of all members of C
that participate in the covering. To each point x ∈ Rd, assign a (hyper)edge e(x): the
set of all members of the covering that contain x. (Every edge is counted only once.)
Since every point x is covered by at least m members of C, every edge e(x) ∈ E consists
of at least m points.

Consider two edges e(x), e(y) ∈ E with e(x) ∩ e(y) ≠ ∅. Then there is a member
of C that contains both x and y, so that y must lie in the ball B(x,D) of radius D
around x. Hence, all members of the covering that contain y lie in the ball B(x,2D)
of radius 2D around x. Since the volume of each of these members is at least v, and
no point of B(x,2D) is covered more than M times, we obtain that B(x,D) can be
intersected by at most MV oℓB(x,2D)/v =M(2D)dV oℓBd/v members of the covering.
By the definition of the dual shatter functions, those members of the covering that
intersect B(x,D) cut B(x,D) into at most π(M(2D)dV oℓBd/v) pieces, each of which
corresponds to an edge of H. Therefore, for the maximum number N of edges of H
that can intersect the same edge e(x) ∈ E, we have

N ≤ π(M(2D)dV oℓBd
/v).

According to Lemma 7.28 (for k = 2), in order to show that the covering can be split
into two, i.e., the hypergraph H is 2-colorable, it is sufficient to assume that N ≤ 2m−3.
Comparing this with the previous inequality, the result follows.
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In the special case where C is the class of unit balls in Rd, we have v = V oℓBd, D = 2,
and so the upper bound on π∗C(n) implies, π−1(z) ≥ z1/d. Thus, we obtain Theorem 7.4
with cd = 2

−2d−3/d.
If we want to decompose an m-fold covering into k > 2 coverings, then the above

argument shows that it is sufficient to assume that

π(M(2D)dV oℓBd
/v) ≤ km−1/4(k − 1)m.

In case of unit balls, this holds for M ≤ ck,d(1 +
1

k−1)
m/d with ck,d = k

−1/d4−d−1/d.
Two sets are homothets of each other if one can be obtained from the other by a

dilation with positive coefficient followed by a translation. It is easy to see [40] that
for d = 2, the dual shatter function of the class C consisting of all homothets of a fixed
convex set C is at most n2 − n + 2 ≤ n2, for every n ≥ 2. In this case, Theorem 7.29
immediately implies

Corollary 7.30. Every m-fold covering C of the plane with homothets of a fixed convex
set can be decomposed into two coverings, provided that no point of the plane belongs
to more than 2(m−11)/2 members of C.

Naszódi and Taschuk [59] constructed a convex set C in R3 such that the dual
shatter function of the class of all translates of C cannot be bounded from above by
any polynomial of n. Therefore, for translates of C, the above approach breaks down.
We do not know how to generalize Theorem 7.4 from balls to arbitrary convex bodies
in Rd, for d ≥ 3.

7.10 χm = 4 for general disks

Here we prove Theorem 2.31, based on parts of [22]. In this section all disks are
assumed to be open. Let P be a point set and let D be a family of disks. An important
folklore observation that we will use many times is that small perturbations of the
points and the disks will not change the hypergraph H(P,D). To put this into more
precise terms, we will say that two points are ε-close if their distance is less than ε and
two disks/circles are ε-close if their centers are ε-close and the difference of their radii
is also smaller than ε.

Observation 7.31. Suppose we have a finite point set P and a finite set of open disks
D such that none of the points lie on the boundary of any of the disks. Then there exists
an ε > 0 such that replacing each disk with any ε-close disk and each point with any
ε-close point will not change the hypergraph H(P,D).

First we prove the following result about stabbed disks.

Theorem 7.32 (Damásdi-Pálvölgyi [22]). For any positive integer m, there exists an
m-uniform hypergraph that is not two-colorable and that permits a planar realization
with disks that all contain some fixed point.
Moreover, there is a realization (P,D), where the boundary of each disk from D is
arbitrarily close to a given circle, on this circle we are given ∣P ∣ points, and an arbitrarily
small neighborhood of each of these points contains a point from P.

83

               domotorp_98_23



Our main lemma is the following. Combined with Observation 7.31, this gives us
a way to perturb the points of P with changing only a small part of the hypergraph
H(P,D).

Lemma 7.33. If ε > 0, C is a circle, and a, b1, . . . , bt, c are points on C in this order,
then there is a circle C ′ and points b′1, . . . , b

′
t on C ′ with the following properties.

1. C ′ is ε-close to C.

2. b′i is ε-close to bi for each i ∈ [t].

3. C ′ intersects C between a and b1, and between bt and c.

4. Each b′i is outside of C.

a
A B

cb1
b2 b3

b′1

b′2
b′3

C ′
C

O

Figure 34: Illustration for Lemma 7.33.

Proof. Choose points A and B between between a and b1, and between bk and c,
respectively (see Figure 34). Choose O on the perpendicular bisector of AB, close to
the center of C. C ′ will be the circle centered at O passing through A and B. Project
b1, . . . , bt onto C ′ using O as center. If O is close enough to the center of C, this will
clearly satisfy the requirements.

Hypergraphs based on rooted trees

The following hypergraph construction was used in [65] to create several counterex-
amples for coloring problems.

Definition 7.34. For every rooted tree T , let H(T ) denote the hypergraph on vertex
set V (T ), whose hyperedges are all sets of the following two types.

1. Sibling hyperedges: for each vertex v ∈ V (T ) that is not a leaf, take the set S(v)
of all children of v.

84

               domotorp_98_23



2. Descendent hyperedges: for each leaf v ∈ V (T ), take the set of all vertices along
the unique path Q(v) from the root to v.

It is easy to see thatH(T ) is not two-colorable for any T . Either there is a monochro-
matic sibling edge, or we can follow the color of the root down to a leaf, finding a
monochromatic descendent edge. We can create an m-uniform hypergraph by choosing
T to be the complete m-ary tree of depth m. The non-two-colorable construction of
Pach, Tardos and Tóth is also based on these hypergraphs.

Theorem 7.35 (Pach-Tardos-Tóth [65]). For every rooted tree T , the hypergraph H(T )
permits a planar realization (P,D) with disks in general position such that every disk
D ∈ D has a point on its boundary that does not belong to the closure of any other disk
D′ ∈ D.

In order to be able to later build a point set that is not three-colorable, we will
first extend Theorem 7.35 by showing that we can require the points to be close to a
prescribed set of concyclic points, and require the disks to be close to the circle that
contains the prescribed points. (We lose the property that every disk D ∈ D has a point
on its boundary that does not belong to the closure of any other disk D′ ∈ D, so strictly
speaking Theorem 7.36 is not a generalization of Theorem 7.35.)

Theorem 7.36. If γ > 0, C is a circle and q1, q2, . . . , qn are distinct points on C, then
for any rooted tree T on n vertices, the hypergraph H(T ) permits a planar realization
(P,D) with disks such that

(I) P = {p1, . . . , pn}, and each pi is γ-close to qi for all i ∈ [n].

(II) Every D ∈ D is γ-close to C.

Theorem 7.36 clearly implies Theorem 7.32, so it is sufficient to establish Theorem
7.36.

An important property of rooted trees is that we can order their vertices in a special
way. For a vertex v, let Des(v) denote all descendants of v. Keszegh and the author
[48] have used that the vertices of T can be ordered such that

1. For each vertex v ∈ V (T ) the vertices in S(v) are consecutive and they appear in
the order later than v.

2. Furthermore, suppose S(v) = {r1, . . . , rk} and they are in this order. Then the
vertices r1, . . . , rk−1, rk,Des(rk),Des(rk−1), . . . ,Des(r1) are ordered like this, and
the rest of the vertices of T are not in this interval. (The internal order of each
Des(ri) is not specified by this statement.)

Call an order satisfying these properties a siblings first order [1] of T . Such an
ordering can be constructed in a straight-forward way.

Proof of Theorem 7.36. In the planar realization of H(T ), the vertices will correspond
to the points qi according to an (arbitrary) fix siblings first order. We start by showing
that the sibling hyperedges can be easily realized and we only need to consider the
descendent hyperedges.
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Sibling hyperedges

From the properties of the siblings first order we know that for each v the vertices
of S(v) are consecutive, i.e., the points qi corresponding to S(v) are consecutive along
the circle C. We apply Lemma 7.33 to find a disk that is γ-close to C, and contains
exactly the points of S(v). We can also ensure that no point qi lies on the boundary of
this disk. We repeat this for each v ∈ V (H), until each sibling hyperedge is realized. Let
DSib denote the set of these disks. We apply Observation 7.31 to ({q1, . . . , qn},DSib) to
get εSib. That is, if each point pi is εSib-close to qi, then (P,DSib) will still represent the
sibling hyperedges. Therefore, it is enough to show that we can realize the descendent
hyperedges for every γ > 0.

Descendent hyperedges

It is useful to realize a slightly extended hypergraph. In H(T ), we have a descendent
hyperedge for each leaf. Now we will create a descendent hyperedge for non-leaf vertices
too. So let Q(v) contain the vertices of the path from the root to v, and for each vertex
v, we will realize the hyperedge Q(v). The disk realizing Q(v) will be denoted by B(v).
Let this extended hypergraph be denoted by H′(T ). We will realize not only H(T ),
but H′(T ). See Figure 35 for an example where we omitted the sibling edges.

Figure 35: Disks realizing all paths from the root.

We construct a required point set by the following algorithm. Let P = {p1, p2, . . . , pn}
denote the vertices of T in a siblings first order. We will create the planar realization
gradually, step by step. The algorithm starts by setting pi = qi and in each step we
will modify the position of some of the pi-s. That is, we identify the vertices of the
hypergraph with points in the plane, and we will update the position of the vertices
until they realize the hypergraph H′(T ).

During the algorithm, we need to change the position of the points many times
without altering the hyperedges that we have already realized. For this reason, we in-
troduce a set of fixed points, Pfix, and a set of disks, DDes, that corresponds to the
descendent hyperedges. Once a point is in Pfix we will not change its position anymore.
Every disk that we create will be immediately added to DDes, and we will never change
its position. The unfixed points, i.e., the points in P ∖Pfix, will always be kept on the
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boundary of ⋃
D∈DDes

D. Furthermore, if we add B(v) to DDes in the k-th step of the

algorithm, B(v) ∩ P will remain the same after we finished the k-th step, i.e., it will
contain exactly the points of the path Q(v) in its interior. Moreover, all descendants
of v will be on the boundary of B(v) after the k-th step, but later they will be moved off.

The structure of the algorithm is the following. We go through the vertices in the
siblings first order and for each we do the following. By the time we arrive at vertex
pk, the disk B(pk) representing the path Q(pk) from the root to pk, will be already
realized. For each child of pk we will add a new disk, close to B(pk), that also realizes
the same path from the root to pk. Then we will move the points such that each new disk
contains exactly one child of pk. We have summarised the structure of the algorithm
in the following pseudo code, while the phases of a step are depicted in Figure 36.

Algorithm 1: Structure of the algorithm

Set pi = qi, Pfix = ∅,DDes = ∅.
Add the disk of C, B(p1), to DDes.
Move p1 inside B(p1) and add p1 to Pfix.
for k = 1 to n do

for each child ri of pk do
Add a disk B(ri) representing Q(pk) to DDes. /* Using Lemma 7.33

*/

Move {ri, . . . , rℓ} ∪Des(rℓ) ∪ ⋅ ⋅ ⋅ ∪Des(ri) to the boundary of B(ri).
end
for each child ri of pk do

Move ri inside B(ri). /* now B(ri) represents Q(ri) */

Add ri to Pfix.
end

end

To be able to do these steps we also need a parameter δ that will ensure that the
points do not move too much and the disks are close to each other. There will be only
three kinds of operations that we do during the algorithm.

a) We update the position of a vertex by moving it at a distance less than the current
value of δ. If it reached its final position, we add it to Pfix.

b) We add a new disk to DDes that is δ-close to one of the disks already in DDes.

c) We decrease the value of δ.

We start with δ = min(γ/n2, εSib). (The reason for this is explained later.) Every
time a disk is added or the position of a vertex is changed, we use Observation 7.31 for
(Pfix,DDes) to update δ to a smaller value, if needed. After any given update of δ, we
only move points at distance less than δ. This ensures two things. Firstly, the points
do not move far from their original position, and secondly, if we take a new disk that
is δ-close to one of the disks, then it contains the same points of Pfix.
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The algorithm makes an initial adjustment on p1, and then there is one step (the
k-th step) for each point pk. After each step the following properties will hold.

(i) Each point pi has either reached its final position or it lies on the boundary of
the disk B(w) where w is the lowest ancestor of pi for which B(w) is already
defined. Also, in the second case pi does not belong to the closure of any other
disk D′ ∈ DDes.

(ii) Suppose pj is the parent of pi in T . Then in the j-th step the point pi is added
to Pfix and the disk B(pi) is added to DDes.

(iii) Each disk in DDes contains those points of P that correspond to the appropriate
hyperedge of H′(T ).

During the initial adjustment we update p1 to lie inside C but δ-close to q1. We add
the disk corresponding to the circle C to DDes. We add p1 to Pfix and then we update δ
by applying Observation 7.31 for (Pfix,DDes). Clearly properties (i), (ii) and (iii) are
satisfied.

In the k-th step we update the points in Des(pk). (If pk is a leaf, we continue with
the next step.) The process is depicted in Figure 36. From properties (i) and (ii) we
know that at the start of the k-th step every point in Des(pk) lies on the boundary of
B(pk), and they do not belong to any disk in DDes. Suppose S(pk) = {r1, . . . , rℓ}. To
maintain the three properties, we want to add the disks B(r1), . . . ,B(rℓ), and by the
end of the k-th step we want to place the points of Des(ri) on the boundary of B(ri).

r1

r2
r3

Des(r3)

Des(r2)

Des(r1)
B(pk)

B(r1)

r1

r2

r3 Des(r3)

Des(r2)

Des(r1)

B(r2)

B(pk)

r1

r2

r3 Des(r3)

Des(r2)

Des(r1)
B(pk)

B(r3)

r1

r2

r3 Des(r3)

Des(r2)

Des(r1)

Figure 36: Phases of the k-th step of the algorithm.

To achieve this, we apply Observation 7.31 and Lemma 7.33 for each child in the
following way. First apply Observation 7.31 for the points in Des(pk) and disks in
DDes ∖ {B(pk)}. Since the points in Des(pk) do not belong to the boundary of any
other disk this is possible. We update δ to the value of ε obtained from Observation
7.31 if ε < δ.

Then we apply Lemma 7.33 for the boundary of the disk B(pk), such that the bi-s
are the points {r1, . . . , rℓ} ∪ Des(rℓ) ∪ ⋅ ⋅ ⋅ ∪ Des(r1) and ε is chosen to be the current
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value of δ. The points a and c have to be chosen carefully. We know that the points in
{r1, . . . , rℓ} ∪Des(rℓ) ∪ ⋅ ⋅ ⋅ ∪Des(r1) lie on an arc of B(pk) that is not covered by any
disk in DDes. We choose a and c on the two ends of this arc such that they are also
not covered by any disk. Lemma 7.33 gives us a circle C ′, this defines B(r1), which
is added to DDes. The position of the points in {r1, . . . , rℓ} ∪Des(rℓ) ∪ ⋅ ⋅ ⋅ ∪Des(r1) is
updated according to the result of Lemma 7.33. As usual, δ is also updated.

When we apply Observation 7.31 for the i-th time (i > 1) we apply it for the points
{ri, . . . , rℓ} ∪Des(rℓ) ∪ ⋅ ⋅ ⋅ ∪Des(ri) and disks in DDes ∖ {B(ri−1)}.

When we apply Lemma 7.33 for the i-th time (i > 1), we apply it for the boundary
of B(ri−1), such that the bi-s are the points in {ri, . . . , rℓ} ∪Des(rℓ) ∪ ⋅ ⋅ ⋅ ∪Des(ri) and
ε is the current value of δ. The point a is chosen between ri−1 and ri. The point c is
chosen after the points of {ri, . . . , rℓ} ∪Des(rℓ) ∪ ⋅ ⋅ ⋅ ∪Des(ri), but before the points of
Des(ri−1) ∪ ⋅ ⋅ ⋅ ∪D(r1). If Des(ri−1) ∪ ⋅ ⋅ ⋅ ∪D(r1) is empty, c is chosen before the arc of
B(ri−1) reaches any other disk. In the i-th case we get B(ri), which is added to DDes,
and we get new positions for the points {ri, . . . , rℓ} ∪Des(rℓ) ∪ ⋅ ⋅ ⋅ ∪Des(ri) on B(ri).
We update δ after each application of Lemma 7.33.

Finally, we finish the k-th step by moving r1, r2, . . . , rℓ insideB(r1),B(r2), . . . ,B(rℓ)
respectively, but at most δ far. Since ri was lying on the boundary of B(r1), we can
also ensure that they are not moved into any other disk. Then we add r1, . . . , rℓ to Pfix.
We update δ again by applying Observation 7.31 to (Pfix,DDes).

Let us see why properties (i), (ii), (iii) are maintained in the course of the algo-
rithm. Suppose they are true after the (k − 1)-th step.

The first part of property (i) and property (ii) are maintained since we have created
the disks B(r1), . . . ,B(rℓ), and by the end of the k-th step the points of Des(ri) are
on the boundary of B(ri). Points r1, . . . , rℓ were added to Pfix.

The second part of property (i) could be violated in two ways. It could be that
one of the new disks covers a point it should not. We have always chosen a and c such
that this is avoided. The other possible violation is that we move a point into a disk.
This is avoided, since if a point lies on the boundary of disk D before moving it, then
we have updated δ for the disks in DDes ∖ {D} right before moving the point. Also the
movement is done by Lemma 7.33 so v cannot move into D.

As for property (iii), note that the only new disks in DDes are B(r1), . . . ,B(rℓ).
Since (iii) was true before the step, B(pk) contains the vertices of Q(pk) which
are in Pfix. When we add B(r1), it is δ-close to B(pk), so it contains exactly the
points in Q(pk). Similarly, when B(ri) is added, it is δ-close to B(ri−1), so each of
B(r1), . . . ,B(rℓ) contains the vertices of Q(pk). When finally we move the points
r1, r2, . . . , rℓ inside B(r1),B(r2), . . . ,B(rℓ), respectively, we achieve that B(ri) con-
tains the vertices of Q(ri).

We also need to check property (iii) for the disks that were already in DDes. Con-
sider a disk D ∈ DDes. No point inside D was moved, since they are in Pfix. The points
in P ∖Pfix remain outside of D, since ri only moves into one of the new disks and the
rest of the points remain on the boundary of ⋃

D∈DDes

D. Hence property (iii) remains

true.
Finally, we need to show that the point set we constructed satisfies the requirements

in Theorem 7.36. LetD contain the disks inDSib and those disks inDDes that correspond
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to descendent edges that end at a leaf. Property (iii) and the argument for the sibling
edges gives that (P,D) is a planar representation of H(T ).

For property (I), note that each point moves less than n2 times since in the k-th
step they move less than n times. We started with δ = γ/n2, so each point is at most
n2 γ

n2 = γ far from their original position. The first disk was given by C and each disk
was taken δ-close to a previous disk, in at most n steps reaching back to the first disk.
Hence, all disks are γ/n close to C, implying (II).

A point set that is not three-colorable

Now we turn to the proof of Theorem 2.31 by realizing for every positive integer m
a non-three-colorable m-uniform hypergraph with disks.

We introduce a general operation for constructing hypergraphs that are not c-
colorable. Essentially the same construction was used in [1].

Definition 7.37. Suppose we have a hypergraph A, a hypergraph B and let F be an
edge of A. Then we define the hypergraph A extended by B through F , denoted by
A +F B, as follows. We construct the new hypergraph starting from A, by replacing F
with ∣V (B)∣ edges of the form F ∪ {xi}, where xi is a new vertex. Then we add a set of
edges such that they form the hypergraph B on these new vertices.

Suppose A is m-uniform and B is (m + 1)-uniform. Then, if we extend A by B
through each edge of A, we get a hypergraph that is (m + 1)-uniform.

Claim 7.38. Suppose A is not c-colorable and B is not (c − 1)-colorable. Then any
extension of A by B is not c-colorable.

Proof. Fix an edge F of A, and assume that we are given a c-coloring of A+F B. Since
any coloring of A using c-colors has a monochromatic edge, and we have only “lost”
the edge F , our only chance is to color the extended hypergraph such that the vertices
of F are monochromatic. These are contained in each new edge, implying that none of
the new vertices have the same color as the vertices of F . But then the copy of B is
(c − 1)-colored, and thus one of its edges is monochromatic, a contradiction.

For any positive integer i, let Gi denote the hypergraph that has i vertices and only
a single edge, that contains all the i vertices. Clearly, G1 is not c-colorable for any c
(because it has an edge with just one vertex) and Gi is not 1-colorable. Hence, we can
build non-c-colorable hypergraphs starting from these trivial ones and using them in
the extensions.

Observation 7.39. For any rooted tree T the hypergraph H(T ) can be built with a
sequence of extensions starting from G1, where each extending hypergraph is one of the
Gi-s.

Now we are ready to define the non-three-colorable hypergraphs that we will realize
with points and disks. For every positive integer m let H2(m) = H(T ) where T is the
m-ary tree of depth m. Clearly, H2(m) is m-uniform and not two-colorable. We define
non-three-colorable m-uniform hypergraphs H3(m) based on them inductively.

90

               domotorp_98_23



First we create a sequence of hypergraphs. Let F1(m) = G1 and let v denote the
single vertex of it. For for i > 1, let Fi(m) be the hypergraph that we get if we extend
each edge of Fi−1(m) that contains v by H2(m). (Note that the order in which we
extend the edges does not matter.) Note that Fi(m) has only two types of edges.
There are the edges that contain v; each of these contains exactly i vertices. (These
are like the descendent edges.) And there are the edges that were added in a copy
of H2(m), each of these contain exactly m vertices. (These are a bit like the sibling
edges.) Therefore, Fm(m) is m-uniform. Also, by Claim 7.38 and induction, no Fi(m)
is three-colorable.

Let H3(m) = Fm(m). For example, F1(2) is G1 and H2(2) is a K3. Extending G1
through its single edge by a K3 gives us a K4, so H

3(2) is just K4.

Realizing H3(m)

Since H3(m) was built by a sequence of extensions from G1, it is enough to show
that we can realize each extension geometrically. This step is essentially the same as in
[65].

Lemma 7.40. Suppose a hypergraph A is realized with (P,D) and there is a set E ⊂ D
such that every disk D ∈ E has a point on its boundary that does not belong to the
closure of any other disk D′ ∈ D. Then we can also realize A +F H(T ) for any rooted
tree T and any edge F ∈ E, with a pair (P ′,D′), such that any disk D ∈ E and every
new copy of F has a point on its boundary that does not belong to the closure of any
other disk D′ ∈ D′.

Figure 37: Realizing an extension.

Proof. Suppose DF ∈ D is the disk realizing the edge F . Then DF has a point p on its
boundary that does not belong to the closure of any other disk D′ ∈ D. Take a small
circle C that is tangent to D at p. If we chose the radius of C to be small enough, then
C will not intersect any of the disks. Now take n = ∣V (T )∣ copies of DF and rotate
them slightly around the center of C. If all the rotations are small, the resulting disks
will be ε-close to DF and by Observation 7.31 they will contain the same points as DF .
Also, if the angles of the rotations are different, then each new disk has a point on its
boundary that does not belong to the closure of any other disk.
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Then we enlarge each copy of DF slightly, so that they each intersect C but some
part of their boundary remains uncovered by other disks. Place the points q1, . . . , qn in
the intersections of C with these enlarged copies (one point in each), and use Theorem
7.36 to realize H(T ). Since each disk in the realization of H(T ) is close to C, they do
not contain any point of P.

Using Lemma 7.40 we can construct H3(m). We start from a single disk and a
vertex v inside it. Then, at each extension we apply Lemma 7.40 with E chosen to be
the set of disks that contain v. This completes the proof of Theorem 2.31.

7.11 χm = 3 for unit disks

Here we prove Theorem 2.30, based on parts of [24]. The proof is based on three
results, which we state now. Combining Theorem 2.28 with Lemma 1.5 for k = 3, we
obtain the first result that we will use.

Corollary 7.41. Any 5-heavy hypergraph realizable by two pseudohalfplane families is
proper 3-colorable, i.e., given a finite set of points and two different pseudohalfplane
arrangements in the plane, the points can be 3-colored such that every pseudohalfplane
that contains at least 5 points contains two differently colored points.

The second needed result is a theorem of Bousquet, Lochet and Thomassé, which
solved a conjecture of Erdős, and of Sands, Sauer and Woodrow [72].

Theorem 7.42 (Bousquet-Lochet-Thomassé [12]). For every k, there exists an integer
f(k) such that if D is a complete multidigraph whose arcs are the union of k quasi
orders17, then D has a dominating set of size at most f(k).

We will need the following generalization of Theorem 7.42.

Theorem 7.43 (Damásdi-Pálvolgyi [24]). For every pair of positive integers k and ℓ,
there exist an integer f(k, ℓ) such that if D = (V,A) is a complete multidigraph whose
arcs are the union of k quasi orders ≺1, . . . ,≺k, then V contains a family of pairwise
disjoint subsets Sj

i for i ∈ [k], j ∈ [ℓ] with the following properties:

� ∣⋃
i,j
Sj
i ∣ ≤ f(k, ℓ)

� For each vertex v ∈ V ∖ ⋃
i,j
Sj
i there is an i ∈ [k] such that for each j ∈ [ℓ] there is

an edge of ≺i from a vertex of Sj
i to v.

The third result that we use is a consequence of the planar case of Hadwiger’s
Illumination conjecture settled by Levi [55]. Let Sd−1 denote the unit sphere in Rd. For
a convex body C, let ∂C denote the boundary of C and let int(C) denote its interior.
A direction u ∈ Sd−1 illuminates b ∈ ∂C if {b + λu ∶ λ > 0} ∩ int(C) ≠ ∅.

17A quasi order ≺ is a reflexive and transitive relation, but it is not required to be antisymmetric, so
p ≺ q ≺ p is allowed, unlike for partial orders.
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Conjecture 7.44. The boundary of any convex body in Rd can be illuminated by 2d

or fewer directions. Furthermore, the 2d lights are necessary if and only if the body is
a parallelepiped.

In [24] an interesting connection was made between the Illumination conjecture and
pseudolines. Roughly speaking, the Illumination conjecture implies that for any convex
body in the plane the boundary can be broken into three parts such that the translates
of each part behave similarly to pseudolines, i.e., we get three pseudoline arrangements
from the translates of the three parts.

To put this into precise terms, we need some technical definitions and statements.
Fix a body C and an injective parametrization of ∂C, γ ∶ [0,1]→ ∂C, that follows ∂C
counterclockwise. For each point p of ∂C there is a set of possible tangents touching at
p. Let g(p) ⊂ S1 denote the Gauss image of p, i.e., g(p) is the set of unit outernormals
of the tangent lines touching at p. Note that g(p) is an arc of S1 and g(p) is a proper
subset of S1.

Let g+ ∶ ∂C → S1 be the function that assigns to p the counterclockwise last element
of g(p). (See Figure 38 left.) Similarly let g− be the function that assigns to p the
clockwise last element of g(p). Thus, g(p) is the arc from g−(p) to g+(p). Let ∣g(p)∣
denote the length of g(p).

p
g−(p)

g+(p) p

q

J2J1

Figure 38: Extremal tangents at a boundary point (on the left) and parallel tangents
on two intersecting translates (on the right).

This can be shown to imply the following, which is the last result that we need.

Lemma 7.45 (Damásdi-Pálvölgyi [24]). For a convex body C, which is not a paral-
lelogram, and an injective parametrization γ of ∂C, we can pick 0 ≤ t1 < t2 < t3 ≤ 1
and ε > 0 such that ∣g(γ[t1−ε,t2+ε])∣, ∣g(γ[t2−ε,t3+ε])∣ and ∣g(γ[t3−ε,t1+ε])∣ are each strictly
smaller than π.

Now we can start the proof of Theorem 2.30. We need to show that for any planar
convex body C there is a positive integer m such that any finite point set P in the
plane can be three-colored in a way that there is no translate of C containing at least
m points of P , all of the same color.

If C is a parallelogram, then our proof method fails. Luckily, for translates (even
for homothets) of parallelograms we know that even χm = 2 holds [61, 2]. So from now
on we assume that C is not a parallelogram.

We partition P into several parts, and for each part Pi, we divide the translates of
C into three families such that two of the families each form a pseudohalfplane arrange-
ment over Pi, while the third family will only contain translates that are automatically
non-monochromatic. Then Corollary 7.41 would provide us a proper three-coloring but
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this is not done directly. First, we divide the plane using a grid, and then in each small
square we will use Theorem 7.43 to discard some of the translates of C at the cost of
a bounded number of points.

The first step of the proof is a classic divide and conquer idea [61]. We chose a
constant r = r(C) depending only on C and divide the plane into a grid of squares of
side length r. Since each translate of C intersects some bounded number of squares,
by the pidgeonhole principle we can find for any positive integer m another integer
m′ such that the following holds: each translate Ĉ of C that contains at least m′

points intersects a square Q such that Ĉ ∩Q contains at least m points. For example,
choosing m′ = m(diam(C)/r + 2)2 is sufficient, where diam(C) denotes the diameter
of C. Therefore, it is enough to show the following localized version of Theorem 2.30,
since applying it separately for the points in each square of the grid provides a proper
three-coloring of the whole point set.

Theorem 7.46. There is a positive integer m such that for any convex body C there
is a positive real r such that any finite point set P in the plane that lies in a square of
side length r can be three-colored in a way that there is no translate of C containing at
least m points of P , all of the same color.

We will show that m can be chosen to be f(3,2) + 13 according to Theorem 7.43,
independently of C.

Proof. We pick r the following way. First we fix an injective parametrization γ of ∂C
and then fix t1, t2, t3 and ε according to Lemma 7.45. Let ℓ1, ℓ2, ℓ3 be the tangents of C
touching at γ(t1), γ(t2) and γ(t3). Let K1,2, K2,3, K3,1 be the set of tri-partition cones
bordered by ℓ1, ℓ2, ℓ3, such that Ki,i+1 is bordered by ℓi on its counterclockwise side,
and by ℓi+1 on its clockwise side (see Figure 39 left, and note that we always treat 3+1
as 1 in the subscript).

For a translate Ĉ of C we will denote by γ̂ the translated parametrization of ∂Ĉ,
i.e., γ̂(t) = γ(t)+v if Ĉ was translated by vector v. Our aim is to choose r small enough
to satisfy the following two properties for each i ∈ [3].

(A) Let Ĉ be a translate of C, and Q be a square of side length r such that ∂Ĉ ∩Q ⊂
γ̂[ti+ε/2,ti+1−ε/2] (see Figure 39 right). Then for any translate K of Ki,i+1 whose

apex is in Q ∩ Ĉ, we have K ∩Q ⊂ Ĉ. (I.e., r is small with respect to C.)

(B) Let Ĉ be a translate of C, and Q be a square of side length r such that the curve
γ̂[ti−ε/2,ti+1+ε/2] intersects Q. Then ∂Ĉ∩Q ⊂ γ̂[ti−ε,ti+1+ε]. (I.e., r is small compared
to ε.)

We show that an r satisfying properties (A) and (B) can be found for i = 1. The
argument is the same for i = 2 and i = 3, and we can take the smallest among the three
resulting r-s.

First, consider property (A). Since the sides of K are parallel to ℓ1 and ℓ2, the
portion of K that lies “above” the segment γ̂(t1)γ̂(t2) is in Ĉ. Hence, if we choose
r small enough so that Q cannot intersect γ̂(t1)γ̂(t2), then property (A) is satisfied.
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ℓ1

ℓ2

C ℓ3

K3,1

K1,2

K2,3

γ̂(
t 1
)

γ̂(t2)

ℓ1

ℓ2

γ̂(t2 − ε/2)

γ̂(
t 1
+
ε/
2)

K

Figure 39: Selecting the cones (on the left) and Property (A) (on the right).

For example, choosing r to be smaller than 1√
2
times the distance of the segments

γ̂(t1)γ̂(t2) and γ̂(t1 + ε/2)γ̂(t2 − ε/2) works.
Using that γ is a continuous function on a compact set, we can pick r such that

property (B) is satisfied. Therefore, there is an r satisfying properties (A) and (B).

The next step is a subdivision of the point set P using Theorem 7.43. Apply The-
orem 7.43 for the graph given by the union of ≺K1,2 , ≺K2,3 and ≺K3,1 . It is easy to see
that this is indeed a complete multidigraph on P .

We apply Theorem 7.43 with k = 3 and ℓ = 2, resulting in subsets Sj
i for i ∈ [3], j ∈

[2]. Let S = ⋃
i∈[3],j∈[2]

Sj
i . For each point p ∈ P ∖ S there is an i such that ≺Ki,i+1 has

an edge from a vertex of Si,1 and Si,2 to p. Let P1, P2, P3 be the partition of P ∖ S
according to this i value.

We start by coloring the points of S. Color the points of S1,1 ∪ S2,1 ∪ S3,1 with the
first color and color the points of S1,2 ∪ S2,2 ∪ S3,2 with the second color.

Note that m is at least f(3,2) + 13. Any translate of C that contains f(3,2) + 13
points of P must contain 5 points from either P1, P2 or P3. (Note that the cone might
contain all points of S). Therefore it is enough to show that for each i ∈ [3] the points
of Pi can be colored with three color such that no translate of C that contains at least
5 points of Pi is monochromatic.

Consider P1, the proof is the same for P2 and P3. We divide the translates of C
that intersect Q into four groups. Let C0 denote the translates where Ĉ ∩Q = Q. Let
C1 denote the translates for which ∂Ĉ ∩Q ⊂ γ̂[t1+ε/2,t2−ε/2]. Let C2 denote the translates

for which ∂Ĉ ∩ Q ∩ γ̂[t2−ε/2,t3] ≠ ∅. Let C3 denote the remaining translates for which

∂Ĉ ∩Q ∩ γ̂[t3,t1+ε/2] ≠ ∅.
We do not need to worry about the translates in C0, as Q itself will not be monochro-

matic.
Take a translate Ĉ from C1 and suppose that it contains a point p ∈ P1. By Theorem

7.43, there is an edge of ≺K1,2 from a vertex of S1,1 to p and another edge from a vertex
of S1,2 to p. I.e., the cone p +K1,2 contains a point from S1,1 and another point from
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S1,2, and hence it is not monochromatic. From property (A) we know that every point
in (p +K1,2) ∩ P is also in Ĉ. Therefore, Ĉ is not monochromatic.

Now consider the translates in C2. From property (B) we know that for these trans-
lates we have ∂Ĉ ∩ Q ⊂ γ̂[t2−ε,t3+ε]. By the definition of t1, t2 and t3, we know that
this implies that any two translates from C2 intersect at most once on their bound-
ary within Q, i.e., they behave as pseudohalfplanes. To turn the translates in C2 into a
pseudohalfplane arrangement as defined earlier, we can do as follows. For a translate Ĉ,
replace it with the convex set whose boundary is γ̂[t2−ε,t3+ε] extended from its endpoints

with two rays orthogonal to the segment γ̂(t2 − ε)γ̂(t3 + ε). This new family provides
the same intersection pattern in Q and forms a pseudohalfplane arrangement. We can
do the same with the translates in C3. Therefore, by Corollary 7.41 there is a proper
three-coloring for the translates in C2 ∪ C3.
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[12] N. Bousquet, W. Lochet, S. Thomassé, A proof of the Erdos-Sands-Sauer-Woodrow
conjecture, J. Combin. Theory Ser. B 137, 316–319, 2019.

[13] A. L. Buchsbaum, A. Efrat, S. Jain, S. Venkatasubramanian, and K. Yi, Restricted
strip covering and the sensor cover problem, in Proceedings of the Eighteenth
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2007), 1056–1063,
ACM, New York, 2007.

[14] B. Bukh, Radon partitions in convexity spaces, arXiv:1009.2384, unpublished.

97

               domotorp_98_23



[15] J. Cardinal, K. Knauer, P. Micek, D. Pálvölgyi T. Ueckerdt, N. Varadarajan,
Colouring bottomless rectangles and arborescences, to appear.

[16] J. Cardinal, K. Knauer, P. Micek, T. Ueckerdt, Making Triangles Colorful, Journal
of Computational Geometry 4, 240–246, 2013.

[17] J. Cardinal, K. Knauer, P. Micek, T. Ueckerdt, Making Octants Colorful and
Related Covering Decomposition Problems, SIAM J. Discrete Math. 28, 1948–
1959, 2014.

[18] T. Chan, Conflict-free coloring of points with respect to rectangles and approxima-
tion algorithms for discrete independent set, in Proceedings of the twenty-eighth
annual Symposium on Computational Geometry (SoCG 2012), ACM, New York,
2012.

[19] V. Chekan, T. Ueckerdt, Polychromatic Colorings of Unions of Geometric Hyper-
graphs, in Proceedings of Graph-Theoretic Concepts in Computer Science (WG
2022), LNCS 13453, Springer, Cham.

[20] K. Chen, A. Fiat, H. Kaplan, M. Levy, J. Matoušek, E. Mossel, J. Pach, M. Sharir,
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[32] G. Fejes Tóth and W. Kuperberg, A survey of recent results in the theory of
packing and covering, in New trends in discrete and computational geometry,
251–279, Algorithms Combin. 10, Springer, Berlin, 1993.

[33] R. Fulek, personal communication, 2010.

[34] R. Fulek, Coloring geometric hypergraphs defined by an arrangement of half-
planes, in Proceedings of 22nd Canadian Conference on Computational Geometry
(CCCG 2010), 71–74.

[35] H. Gebauer, H. Gebauer, Disproof of the neighborhood conjecture with implica-
tions to SAT, Combinatorica 32, 573–587, 2012.

[36] D. Gerbner, B. Patkós, Extremal Finite Set Theory, Chapman and Hall/CRC,
2018.

[37] M. Gibson, K. Varadarajan, Decomposing coverings and the planar sensor cover
problem, Discrete and Computational Geometry 46, 313–333, 2011.

[38] W. Goddard, Acyclic colorings of planar graphs, Discrete Math. 91, 91–94, 1991.

[39] B. Gonska, A. Padrol, Neighborly inscribed polytopes and Delaunay triangula-
tions, Advances in Geometry 16, 349–360, 2016.
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Bolyai Society Mathematical Studies 24, Springer-Verlag, 331–389, 2014.

[74] S. Smorodinsky, Y. Yuditsky, Polychromatic coloring for half-planes, J. Combin.
Theory Ser. A, 119, 146–154, 2012.
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A Summary Table

basic shape translates homothets

bottomless
rectangle

χm = 2 [42]

mk ≤ 2k − 1 [15, 48]

χm = 2 [42]

1.67k − 2.5 ≤mk ≤ 3k − 2 [7]

triangle
χm = 2 [75]

mk = O(k) [37]

χm = 2 [45]

mk = O(k
4.09) [17] + [49]

convex
polygon

χm = 2 [69]

mk = O(k) [37]

2 ≤ χm ≤ 3 [50]

χm = 2 for squares [2]

non-convex
polygon∗ 3 ≤ χm [67] 3 ≤ χm [67]

stabbed
convex
polygon

χm = 2 [69]

mk = O(k) [37]

χm = 2 [22]

mk = O(k) [22]

stabbed
disk

χm = 2 [22]

mk = O(k) [22]

χm ≤ 3 [1]

χm = 3 [22]

disk χm = 3 [23, 62] χm = 4 [22]

smooth body∗∗ χm = 3 [24, 62] χm = 4 [22]

Summary of some important results related about proper and polychromatic colorings
of planar geometric hypergraphs. For a family, χm denotes the smallest positive integer
k for which there is an integer m such that every finite set of points can be k-colored
such that any member of the family with at least m points will contain at least two
colors. For k colors, mk denotes the smallest integer m such that any finite set of points
can be k-colored such that any member of the family with at least m points will contain
all k colors.

∗ There are some very special non-convex polygons for which χm = 2—for the complete
classification, see [69].

∗∗ The lower bound only holds for most smooth bodies—for details, see [24].
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