
Improved Bug Prediction Through
Conceptual Metrics and Machine

Learning

DSc dissertation

Rudolf FERENC

Szeged, 2023

 ferenc.rudolf_87_23

 ferenc.rudolf_87_23

Contents

1 Introduction 1

2 Background 5
2.1 Static Source Code Analysis . 5
2.2 OpenStaticAnalyzer . 6
2.3 SourceMeter . 6
2.4 Latent Semantic Indexing . 6
2.5 Statistical Methods . 7

2.5.1 Correlation Analysis . 7
2.5.2 Principal Component Analysis 8
2.5.3 Statistical tests . 8

2.6 Machine Learning Techniques . 8
2.6.1 Regression . 8
2.6.2 Classification . 9
2.6.3 Evaluation . 10

I Conceptual Coupling and Cohesion Metrics 11

3 Conceptual Cohesion in Fault Prediction 13
3.1 Introduction . 13
3.2 Related Work . 14
3.3 An Information Retrieval Approach to Class Cohesion Measurement . . 16

3.3.1 Measuring Text Coherence with LSI 16
3.3.2 From Textual Coherence to Software Cohesion 17
3.3.3 The Conceptual Cohesion of Classes 18

3.4 Assessment of the New Cohesion Measure 20
3.4.1 Objectives and Methodology . 20
3.4.2 Design of the Case Studies . 20
3.4.3 First Case Study – Principal Component Analysis of the Metric

Data . 21
3.4.4 Second Case Study – Predicting Faults in Classes 23

3.5 Conceptual vs. Structural Cohesion . 25
3.5.1 Analyzing classes from WinMerge 26
3.5.2 Analyzing classes from Mozilla 27

3.6 Threats to Validity . 28
3.7 Conclusions . 29

iii

 ferenc.rudolf_87_23

4 Conceptual Coupling in Impact Analysis 31
4.1 Introduction . 31
4.2 Related Work . 32

4.2.1 Coupling Measurement . 32
4.2.2 The Use of IR Methods in Program Comprehension 33
4.2.3 Impact Analysis Approaches . 34

4.3 Using IR Methods for Coupling Measurement 34
4.3.1 System Representation and Coupling Measures 35
4.3.2 The Conceptual Coupling of a Class 36
4.3.3 The maximum conceptual coupling of a class 36

4.4 Using Coupling Measures for Impact Analysis 37
4.4.1 Ranking Classes Using Coupling Measures 37
4.4.2 An Example of Using Coupling Measures for Impact Analysis in

Mozilla . 38
4.5 A Case Study on Using Coupling Measures to Support Impact Analysis 39

4.5.1 Design of the Case Study . 39
4.5.2 Comparing Conceptual and Structural Coupling Metrics for Im-

pact Analysis . 41
4.5.3 Testing Statistical Significance of Differences Among Precision

and Recall Values . 45
4.6 Threats to Validity . 45
4.7 Conclusions . 46

5 New Conceptual Coupling and Cohesion Metrics 47
5.1 Introduction . 47
5.2 Related Work . 48
5.3 Conceptual Metrics . 49

5.3.1 Definitions . 49
5.3.2 Conceptual Lack of Cohesion in Classes 50
5.3.3 Conceptual Coupling between Object Classes 50

5.4 Empirical Case Study . 50
5.4.1 Definition and the Context . 50
5.4.2 Research Questions . 52
5.4.3 Case Study Results . 52

5.5 Threats to Validity . 57
5.6 Conclusions . 58

II Machine Learning for Bug Prediction 59

6 A Public Unified Bug Dataset for Bug Prediction 61
6.1 Introduction . 61
6.2 Data Collection . 63

6.2.1 Start Set . 63
6.2.2 Collecting Bug Datasets . 64
6.2.3 Public Datasets . 65
6.2.4 Additional Bug Datasets . 66

6.3 Data Processing . 67
6.3.1 Metrics Calculation . 68

iv

 ferenc.rudolf_87_23

6.3.2 Dataset Unification . 68
6.4 Original and Extended Metrics Suites 70

6.4.1 Original Datasets . 70
6.4.2 Unified Bug Dataset . 71
6.4.3 Comparison of the Metrics . 71

6.5 Evaluation . 77
6.5.1 Datasets and Bug Distribution 77
6.5.2 Metadata of the Datasets . 78
6.5.3 Bug Prediction . 79

6.6 Threats to Validity . 86
6.7 Conclusions . 87

7 Deep Learning for Bug Prediction 89
7.1 Introduction . 89
7.2 Related Work . 90
7.3 Methodology . 92

7.3.1 Overview . 92
7.3.2 Bug Dataset . 93
7.3.3 Algorithms and Infrastructure 93
7.3.4 Model Evaluation . 94

7.4 Results . 95
7.4.1 Preprocessing . 95
7.4.2 Hyperparameter Tuning . 96
7.4.3 Ensemble Model . 100
7.4.4 The Effect of Data Quantity . 102

7.5 Threats to Validity . 103
7.6 Conclusions . 104

8 Summary 105

Appendices 107

A A Public Unified Bug Dataset for Bug Prediction 109
A.1 Tables . 110
A.2 Online Appendix . 123

Bibliography 125

v

 ferenc.rudolf_87_23

 ferenc.rudolf_87_23

List of Tables

3.1 Loading of the PCs . 22
3.2 Results of the univariate logistic regression 24
3.3 Results of the multivariate logistic regression for the top ten pairs of

cohesion metrics with largest R2 values 24
3.4 Results of the multivariate logistic regression for the remaining pairs of

metrics, which contain C3 . 25
3.5 Classes analyzed from WinMerge and Mozilla 26

4.1 Examples of redefined structural coupling measures used to rank classes
during impact analysis . 38

4.2 Classes strongly coupled with nsAbDirectoryQuery and ranked accord-
ing to CCBCm and ICP coupling measures 39

4.3 Impact analysis results – 10 to 50 classes 42
4.4 Impact analysis results – 60 to 100 classes 42
4.5 Impact analysis results – 200 to 500 classes 43
4.6 Impact analysis results – F-measure values 43
4.7 The results of the Kruskal-Wallis tests on coupling metrics 45

5.1 Ten-fold cross validation of conceptual & structural metrics with & w/o
stemming for predicting faults . 53

5.2 Ten-fold cross validation of the structural metrics for predicting fault-
proneness . 54

5.3 Ten-fold cross validation of CLCOM5, LCOM5, CCBO, and C3 for pre-
dicting faults in classes . 56

5.4 Combining CCBO and CLCOM5 with structural, and C3 & structural
metrics . 56

5.5 Results of regression analysis . 57

6.1 Example bug dataset table (excerpt) 62
6.2 Basic properties of the public bug datasets 65
6.3 Number of elements in the merged systems 72
6.4 Comparison of the common class level metrics in the Bug Prediction

dataset . 74
6.5 Comparison of file-level metrics in the Bugcatchers dataset 76
6.6 Comparison of file-level metrics in the Eclipse dataset 77
6.7 Metadata of the datasets . 79
6.8 Most dominant predictors per dataset 81
6.9 Cross training (Bug prediction dataset - class level) - F-Measure values 83
6.10 Cross training (Bug prediction dataset - class level) - AUC values . . . 83

vii

 ferenc.rudolf_87_23

6.11 Cross training (Bugcatchers - file-level) - F-Measure values 84
6.12 Cross training (Bugcatchers - file-level) - AUC values 84
6.13 Cross training (Eclipse - file-level) - F-Measure values 84
6.14 Cross training (Eclipse - file-level) - AUC values 85
6.15 Average F-measures of the full cross-system experiment (class level) . . 85
6.16 Average AUC values of the full cross-system experiment (class level) . . 85
6.17 Average F-measures of the full cross-system experiment (file-level) . . . 86
6.18 Average AUC values of the full cross-system experiment (file-level) . . . 86

7.1 A taxonomy of static bug prediction 91
7.2 Preprocess method comparison . 95
7.3 Resample method and amount comparison 96
7.4 Basic hyperparameter search . 96
7.5 The effect of the initial learning rate 97
7.6 The effect of dynamic learning rates . 98
7.7 The effect of L2 regularization . 98
7.8 Further hyperparameter tuning . 99
7.9 The best version of each algorithm . 99
7.10 CDNNC confusion matrix . 100
7.11 Forest confusion matrix . 100
7.12 Ensemble confusion matrix . 101
7.13 Comparison of individual and ensemble results 101
7.14 F-Measures across different data quantities 102

A.1 Merging results (number of elements) – class-level datasets 110
A.2 Merging results (number of elements) – file-level datasets 111
A.3 Metrics used in the PROMISE dataset 111
A.4 Metrics used in the Eclipse Bug Dataset 112
A.5 Metrics used in the Bug Prediction Dataset 112
A.6 Bad smells used in the Bugcatchers Bug Dataset 112
A.7 Class-level metrics produced by SourceMeter/OpenStaticAnalyzer . . . 113
A.8 File-level metrics produced by SourceMeter/OpenStaticAnalyzer 113
A.9 Basic properties of each dataset . 114
A.10 F-Measure and AUC values in independent training at class-level . . . 115
A.11 F-Measure and AUC values in independent training at file-level 116
A.12 Cross training (PROMISE - class-level) - F-Measure values 117
A.13 Cross training (PROMISE - class-level) - AUC values 118
A.14 Cross training (GitHub – class-level) - F-Measure values 119
A.15 Cross training (GitHub – class-level) - AUC values 120
A.16 Cross training (GitHub – file-level) - F-Measure values 121
A.17 Cross training (GitHub – file-level) - AUC values 122

viii

 ferenc.rudolf_87_23

List of Figures

4.1 Results of using CCBCm and CCBC to rank classes during impact analysis 44

5.1 CLCOM5 and CCBO accuracies across different thresholds 55
5.2 Distribution of (non) faulty classes across C3, CCBO and CLCOM5

metric intervals . 57

6.1 Fault distribution (classes) . 78
6.2 Fault distribution (files) . 78

7.1 ROC comparison for CDNNC, forest, and their ensemble 101
7.2 The tendencies of the normalized relative differences 103

ix

 ferenc.rudolf_87_23

 ferenc.rudolf_87_23

1
Introduction

Software quality has a long history full of shocking moments [83, 119, 142, 217], after
which confessions like the following are not uncommon: “If we had paid more attention
to quality, this could have never happened. . . ”. Fortunately, software companies have
been increasingly realizing the importance of quality assurance, and nowadays, they ap-
ply various monitoring techniques to regularly get a clear picture of the quality of their
systems. This realization also pushed researchers toward exploring and understanding
the complex connections between different software quality characteristics.

Two of the most basic yet hardest questions about software quality are 1) what it
exactly is, and 2) how we can measure it. To answer these questions, we have to break
quality down into smaller components that describe its different aspects. Various stan-
dards – such as the ISO/IEC 9126 [28] or its successor, the ISO/IEC 25010 [29] – have
been proposed to address these challenges. However, these standards suggest aspects
of a higher abstraction level only (e.g. maintainability and reliability) without speci-
fying the exact low-level attributes. Consequently, several implementations have been
presented to solve this problem, including software quality models [1]. Quality models
rely on exact source code metrics for measuring different aspects of a system, such as
size, complexity, documentation, coupling, and cohesion. These low-level attributes
can be measured directly from the source code and can be propagated to higher-levels
in order to measure quality subcharacteristics like stability and testability (which are
in turn subcharacteristics of maintainability – an important component of quality).

One of the earliest realizations is that source code metrics are key components
in describing quality. Cohesion and coupling metrics have shown their usefulness in
different scenarios like fault prediction [16] and impact analysis [55, 232], which have
direct influence on the stability and testability of software. Besides traditional coupling
and cohesion metrics that capture the structure of the source code, their conceptual
counterparts were also defined to capture a more abstract measurement of the system.
In this thesis, we present the conceptual cohesion and coupling metrics that we defined
and show their usefulness in fault prediction and in impact analysis.

Another quality indicator of software is the number of bugs it contains. The cost
of maintaining existing software often exceeds the cost of the initial development [103].

1

 ferenc.rudolf_87_23

Chapter 1. Introduction

Therefore, finding software bugs as soon as possible is extremely important because
even if we follow all best practices, use up-to-date components, and use the latest lan-
guage version idiomatically, we are still human, so a bug may find its way into the
system even with the most rigorous review process. Bugs can cause damage (both fi-
nancial and reputational) to both software development companies and software users.
Finding software bugs can be extremely time-consuming, even if we use static or dy-
namic analyzer tools designed for this exact purpose. These tools often miss real bugs
and have a high false positive rate. As a result, developers often do not take the tools’
warnings seriously.

Nowadays, artificial intelligence-based solutions can also be employed to predict
software bugs. But a significant amount of data is needed to train artificial intelligence
algorithms effectively. Fortunately, with the proliferation of open source software (and
version control systems such as GitHub or GitLab), researchers have access to a rich
set of historical data of software development. However, the information is available in
different formats and systems (even within the same project), and gathering them can
be cumbersome. For this reason, there are bug datasets that contain a collection of
software bugs from distinct systems; however, they are available in different formats,
which makes it challenging to use them collectively in the field of artificial intelligence.
In this work, we show how we combined and extended existing bug datasets to run
machine learning algorithms and have the best possible outcome.

We know that for artificial intelligence, the more data, the better. One of the most
outstanding is the increasingly popular deep artificial neural networks, which can be
trained successfully with vast amounts of data. An important result we show in this
thesis is a unified bug database, which we have created and used to evaluate several
traditional machine learning algorithms. We also show in detail how software metrics
can be used to predict bugs using deep neural networks. We describe the process
step-by-step, including all the fine-tuning needed to achieve a good result.

In Chapter 2, we first introduce some general background information containing
the absolute necessities to understand the rest of this work. Having provided the
necessary foundation, we describe the thesis points of this work as chapters in their
corresponding parts.

Part One deals with conceptual coupling and cohesion metrics.
T1 Conceptual Cohesion in Fault Prediction. I describe the conceptual co-

hesion metric C3, and then show by principal component analysis that it forms
an independent dimension with respect to the structural cohesion metrics. Fur-
thermore, I show that the C3 metric improves the error prediction capabilities of
structural cohesion metrics (Chapter 3) [22].

T2 Conceptual Coupling in Impact Analysis. I describe the CCBC and
CCBCm as well as the CoCC and CoCCm conceptual coupling metrics, and
then show that the CCBCm metric ranks the related classes the best in impact
analysis, far ahead of the structural coupling metrics from this point of view
(Chapter 4) [23].

T3 New Conceptual Coupling and Cohesion Metrics. I define the parameter-
ized new conceptual metrics CCBO and CLOM5, which are easier to compute
than their structural counterparts, while their fault prediction abilities are very
similar. I also show that these conceptual metrics improve the error prediction
capabilities of structural metrics (Chapter 5) [27].

2

 ferenc.rudolf_87_23

Part Two deals with machine learning for bug prediction.

T4 A Public Unified Bug Dataset for Bug Prediction. I summarize how we
explored all available, widely used Java bug datasets, compared and combined
them to create a unified bug dataset, supplemented by a number of source code
metrics we calculated. I show that the unified bug dataset can be used well for
creating bug prediction machine learning models (within-project, merged, and
cross-project) and I evaluate the results (Chapter 6) [12].

T5 Deep Learning for Bug Prediction. I provide a detailed methodology for us-
ing deep neural networks in bug prediction and finding optimal hyperparameters.
I build a deep neural network on the unified bug dataset and compare it with
the results of conventional machine learning algorithms. I show that only the
random forest can outperform it. The combination of these two gives ultimately
the best results. We also show that more learning data is expected to further
improve the performance of the deep neural network (Chapter 7) [4].

Lastly, Chapter 8 concludes our discussion and outlines some possible directions for
future work.

3

 ferenc.rudolf_87_23

 ferenc.rudolf_87_23

2
Background

Before diving deep into the details and the main results of the thesis, we briefly in-
troduce some concepts and fundamental topics since they occur from time to time in
this work and form the basis of all future discussions. Static source code analysis, the
tools we used, and the static source code metrics we can obtain are key building blocks
in this thesis. After introducing these topics, we will describe the LSI, a widely-used
information retrieval technique, and also provide a quick overview of the statistical
methods and machine learning concepts we utilize throughout the thesis.

2.1 Static Source Code Analysis

Static analysis is widely used to examine programs without having to run/execute them
(in contrast with dynamic analysis). The input of the analysis is often the raw source
code itself, however, precompiled binaries could also be used (e.g. in the case of Java,
bytecode is also a common input for static analysis tools).

The main goals of a static analysis include obtaining static source code metrics,
detecting coding rule violations, and revealing code duplications – all of which can be
key to understanding the behavior of the subject software system.

Source code metrics are especially important since they form a vital input for fur-
ther higher-level investigations, such as refactoring and bug prediction. In this work,
we mainly focus on software product metrics, which characterize the software itself
(while process metrics describe the development and maintenance during the project).
Product metrics can be categorized into groups like size (logical lines of code, num-
ber of methods), complexity (McCabe’s Cyclomatic Complexity), coupling (number of
incoming/outgoing method calls), and cohesion (LCOM) metrics.

5

 ferenc.rudolf_87_23

Chapter 2. Background

2.2 OpenStaticAnalyzer
OpenStaticAnalyzer (OSA)1 is a source code analyzer tool, which can perform deep
static analysis of the source code of complex systems. The tool’s earlier name is
Columbus [6].

The source code of a program is usually its only up-to-date documentation. At the
same time, the source code is the exquisite bearer of knowledge, business processes and
methodology, accumulated over a long period of time. Source code quality decrease,
which happens due to many quick fixes and time pressure, results in the increase of
development and testing costs, and operational risks. In spite of this, the source code
usually receives hostile treatment and is merely considered as a tool.

OSA provides deep static analysis of source code. Using the results of the analysis,
the quality of the analyzed source code can be improved and developed both in the
short- and long term in a directed way.

It calculates more than 50 different (size, complexity, coupling, cohesion, inheri-
tance, and documentation) source code metrics for packages and class-level elements,
about 30 metrics for methods, and a few for files. OSA can also detect code duplica-
tions (Type-1 and Type-2 clones) and calculates code duplication metrics for packages,
classes, and methods.

The tool was used in many different publications (e.g. [19, 14, 2, 20, 9, 24]), which
shows the strength of the core idea behind it.

2.3 SourceMeter
SourceMeter2 [9] is a commercial product based on OpenStaticAnalyzer (see Sec-
tion 2.2). It is an innovative tool built for the precise static source code analysis
of C, C++, Java, C#, Python, JavaScript, and RPG projects. This tool makes it
possible to find the weak spots of a system under development from the source code
only, without the need of simulating live conditions. The tool integrates also the best
of available free static checker tools (Cppcheck, PMD, FindBugs, FxCop, Pylint) and
presents their results in a unified way. Using the results of the analysis, the quality
of the analyzed source code can be improved and developed both in the short– and
long term in a directed way. Free version with limited functionality is available for all
programming languages.

2.4 Latent Semantic Indexing
Latent Semantic Indexing (LSI) is a corpus-based statistical method for inducing and
representing aspects of the meanings of words and passages (of natural language) re-
flective in their usage in large bodies of text [80, 85]. LSI is based on a vector space
model (VSM) [213], as it generates a real valued vector description for documents of
text. Results have shown [44, 145] that LSI captures significant portions of the meaning
not only of individual words but also of whole passages such as sentences, paragraphs,
and short essays. The central concept of LSI is that the information about the con-
texts in which a particular word appears or does not appear provides a set of mutual

1https://openstaticanalyzer.github.io/
2http://sourcemeter.com/

6

 ferenc.rudolf_87_23

https://openstaticanalyzer.github.io/
http://sourcemeter.com/

Section 2.5. Statistical Methods

constraints that determines the similarity of the meaning of sets of words compared to
each other.

Since its first introduction, LSI has been used to support various code analysis tasks
such as concept location [198], identification of abstract data types [162], clone detec-
tion [224], traceability link recovery among software artifacts [36, 78, 167], software clus-
tering [141], quality assessment [146] and software measurement [82, 171, 22, 199, 23].

LSI was originally developed in the context of Information Retrieval (IR) as a way
of overcoming problems with polysemy and synonymy that occurred in other VSM
approaches. Some words appear in the same contexts, and an important part of word
usage patterns is blurred by accidental and inessential information. The method used
by LSI to capture the essential semantic information is dimension reduction, selecting
the most important dimensions from a co-occurrence matrix (words by context) de-
composed using singular value decomposition (SVD) [213]. As a result, LSI offers a
way of assessing semantic similarity between any two samples of text in an automatic,
unsupervised way.

LSI relies on a singular value decomposition of a matrix derived from a corpus
of natural text that pertains to knowledge in the particular domain of interest. Ac-
cording to the mathematical formulation of LSI, the term combinations which occur
less frequently in the given document collection tend to be precluded from the LSI
subspace. LSI does “noise reduction” as less frequently co-occurring terms are less
mutually related and, therefore, less sensible. Similarly, the most frequent terms are
also eliminated from the analysis. The formalism behind SVD is rather complex and
too lengthy to be presented here. The interested reader may refer to the work of Salton
and McGill [213] for details.

Once the documents are represented in the LSI subspace, the user can compute
similarity measures between documents using either the cosine between their corre-
sponding vectors or their length. These measures can be used for clustering similar
documents together to identify “concepts” and “topics” in the corpus. This type of us-
age is typical for text analysis tasks. Uses of LSI in software engineering are presented
and discussed in [168].

2.5 Statistical Methods

Throughout the thesis, we will use a variety of statistical methods to corroborate our
hypotheses in an objective manner. We list the most important ones here as a precursor.

2.5.1 Correlation Analysis

To try and find a direct or inverse linear relationship between two variables, we fre-
quently utilize Pearson’s correlation, leading to a p-value from within the [-1,1] inter-
val. Values closer to 1 indicate direct dependence, while values closer to -1 indicate
an inverse dependence. Values close to 0 means that we were not able to draw any
meaningful conclusions – which is not the absence of a relationship, only a linear one.

We also acknowledge that correlation is not causation, therefore we are intentionally
careful in the interpretation of such results.

7

 ferenc.rudolf_87_23

Chapter 2. Background

2.5.2 Principal Component Analysis
Principal Component Analysis (PCA) is widely used in many domains to accomplish
dimensionality reduction and uncover patterns in the data. PCA determines which
dimensions are the most important and which ones represent the most variation in the
data. PCA takes a dataset (a set of metrics in the cases we will use it in) as input and
outputs principal components (uncorrelated dimensions) that span the direction of the
1st, 2nd, 3rd, ... largest variations. The overall purpose of PCA is to identify factors
that explain as much of the variation with as few factors as possible.

2.5.3 Statistical tests
We frequently utilize different statistical tests to accept or reject certain hypotheses.

One is the Wilcoxon’s signed-rank test [231] (a.k.a. Mann-Whitney U test [166]),
which is a non-parametric statistical test to analyze whether the distribution of the val-
ues differs significantly between two groups. Moreover, the mean rank values produced
by the test can be used to decide the direction of the differences.

Another test we reference is Kruskal-Wallis’s test [140, 219], which is a non-
parametric alternative to the one-way analysis of variance in those cases when more
than three independent samples are present. It can be thought of as the generalization
of the Mann-Whitney U test.

Lastly, we use Cohen’s d as well, which indicates the standardized difference between
two means. If this difference, namely Cohen’s d value, is less than 0.2 we say that the
effect size is small and more than 90% of the two groups overlap. If Cohen’s d value is
between 0.2 and 0.5, the effect size is medium, and if the value is larger than 0.8 the
effect size is large.

2.6 Machine Learning Techniques
To make various predictions based on the available data, we also use multiple ma-
chine learning techniques. Here, we summarize the two main groups of algorithms –
regression and classification – and then discuss how we evaluate the resulting models.

2.6.1 Regression
Regression analysis is a statistical process for estimating the relationships among vari-
ables. It tries to predict how the typical value of the dependent variable changes when
any one of the independent variables changes. It accomplishes this by giving an esti-
mation for the dependent variable from a continuous interval. There are different kinds
of regressions, of which we focused mostly on logistic regression.

In logistic regression, the unknown variable (i.e., the dependent variable) can
take one of only two different values (usually labeled “0” and “1”, but this can change
depending on the context). Also, the known variables (also called the explanatory,
or independent variables) can change over different ranges, which is often addressed
through standardization, i.e., each metric is transformed to have a zero mean and unit
variance.

π(X1, X2) = eC0+C1×Xi1+C2×Xi2

1 + eC0+C1×Xi1+C2×Xi2
(2.1)

8

 ferenc.rudolf_87_23

Section 2.6. Machine Learning Techniques

The multivariate logistic regression model is based on the relationship equation
(shown in equation 2.1) where Xis are the explanatory variables and π is the probability
that the dependent variable would be found as “1” during the validation procedure. The
coefficients C1 and C2, are the estimated regression coefficients. The larger the absolute
value of the coefficient, the stronger the impact (positive or negative, according to the
sign of the coefficient) of the explanatory variable on the probability of the dependent
variable. Univariate logistic regression is a special case of multivariate regression
where only one exploratory variable X1 is used.

The typical performance measures of these estimations are Pearson’s correlation
coefficient (showing how well the predicted values follow the tendency of the real value
of the dependent variable) and Mean Absolute Error (which is a quantity used to
measure how close forecasts or predictions are to the eventual outcomes). Another
performance measure is the R2 coefficient, which is defined as the proportion of the
total variation in the dependent variable that is explained by the regression model. The
bigger the value of R2, the larger the portion of the total variance in the dependent
variable that is explained by the regression model and the better the dependent variable
is explained by the explanatory variables.

Since logistic regression is a commonly used statistical method, it will not be ex-
plained here in more detail. For a deeper discussion on regression analyses (and their
applications on using metrics as we will use them in later chapters), the reader is
referred to previous work [41, 56, 16, 222].

2.6.2 Classification
As opposed to a continuous interval where regression analyses take their results from,
classification is a discrete process of choosing the most likely class an unclassified
instance belongs to. Pre-classified observations are used to build such models through
the use of various algorithms, the two most relevant of which we will discuss here.

Decision Tree. C4.5 is an enhanced implementation of the ID3 algorithm that was
proposed by Quinlan in 1993 [204]. The C4.5 algorithm makes use of a variant of the
rule post-pruning method to find high-precision hypotheses for the target concept of
the learning problem. It generates a classification-decision tree for the given data set
by recursively partitioning the data. Training examples are described by attributes
(predictor values) whose choice for a given tree node depends on their information gain
at each step during the growth of the tree.

Some of the features of the algorithm are that it results in smaller decision trees,
it uses a depth-first strategy, and over-fitting is allowed – meaning that the growth of
the tree continues until it best fits the training data. After the tree has been built up,
it will be converted into an equivalent set of rules, all of which incorporate tests of the
predictor values and that will provide the output decision.

Lastly, pruning is applied to the rules to reduce the size of the tree by rearranging
and removing similar branches. C4.5 can handle both discrete valued predictors and
continuous ones as well, and also training examples with missing predictor values.

Neural Network. The Backpropagation algorithm [46] works with neural networks
that are the means for machine learning, whose reasoning concept was borrowed from
the workings of the human brain.

9

 ferenc.rudolf_87_23

Chapter 2. Background

This algorithm uses more layers of neurons; it gets the input patterns and gives
them to the input layers. Then it computes the output layer (the output decision)
from the input layer and the hidden (inner) layers. In addition, an error value is also
calculated from the difference between the output layer and the target output pattern
(the learning data).

The error value is propagated backward through the network, and the values of
the connections between the layers are adjusted in such a way that the next time the
output layer is computed, the result will be closer to the target output pattern. This
method is repeated until the output layer, and target output pattern are almost equal
or up to some iteration limit.

Others. In addition to the previous ones, we also utilize a suite of other machine
learning techniques implemented in Weka [109] and scikit-learn [196] – open-source
collections of machine learning algorithms for data mining tasks.

2.6.3 Evaluation
To evaluate our models, we commonly use N-fold cross-validation. In an N-fold cross-
validation process, the original dataset is randomly partitioned into N subsamples,
desirably equal in size, if possible. Out of the N subsamples, 1 subsample is retained
as the validation data for testing the model, and the other N-1 subsamples are used as
training data. The cross-validation process is then repeated N times (the number of
folds), with each of the N subsamples used exactly once as the validation data. The
results from the folds are then averaged to produce a single estimation. The most
common value for N is 10, but it can be more or less depending on the amount of data
available.

The results of a binary classification (which is what we focus on) can be summarized
in a confusion matrix, separating the true positive (TP), true negative (TN), false
positive (FP), and false negative (FN) cases – also, P = TP + FP , and N = TN +
FN . The performance of the classification is then usually described through various
measures dependent on the cardinality of these sets.

• Accuracy = (TP +TN)/(P +N) – measures how often the prediction is correct
overall.

• Precision = (TP)/(TP + FP) – measures how often the positive predictions
are correct.

• Recall = (TP)/(TP + FN) – measures the ratio of the positive instances we
managed to find (TP rate).

• F-Measure = (2 × Precision × Recall)/(Precision + Recall) – a weighted har-
monic mean of precision and recall, frequently used as a comprehensive indicator
of combined precision and recall values.

• ROC curve = Receiver Operating Characteristics, mapping the relationship
between TP rate and FP rate at different classification thresholds.

• AUC = Area under the ROC curve.

10

 ferenc.rudolf_87_23

Part I

Conceptual Coupling and Cohesion
Metrics

 ferenc.rudolf_87_23

 ferenc.rudolf_87_23

3
Conceptual Cohesion in Fault Prediction

3.1 Introduction
Software modularization, Object-Oriented (OO) decomposition in particular, is an ap-
proach to improve the organization and comprehension of source code. In order to
understand OO software, software engineers need to create a well connected repre-
sentation of the classes that make up the system. Each class must be understood
individually, and then the relationships among the classes must be understood as well.
One of the goals of OO analysis and design is to create a system where classes have
high cohesion and there is low coupling among them. These class properties facilitate
comprehension, testing, reusability, maintainability, etc.

Software cohesion can be defined as a measure of the degree to which elements of
a module belong together [45]. Cohesion can also be regarded from a conceptual point
of view; in this view, a cohesive module is a crisp abstraction of a concept or feature
from the problem domain, usually described in the requirements or specifications. Such
definitions, while very intuitive, are quite vague and make actually measuring cohesion
a difficult task, leaving too much room for interpretation. In OO software systems,
cohesion is usually measured at class level and many different OO cohesion metrics
have been proposed (see Section 3.2 for details), which try to capture different aspects
of cohesion, or which reflect a particular interpretation of cohesion.

Proposals of measures and metrics for cohesion abound in the literature, as software
cohesion metrics proved useful in different tasks [77] including assessment of design
quality [40, 56], productivity, design and reuse effort [65], prediction of software quality,
fault prediction [90, 16, 202], modularization of software [31, 162], identification of
reusable components [92, 147], etc.

Most approaches to cohesion measurement have automation as one of their goals, as
it is impractical to manually measure the cohesion of classes in large systems. The trade
off is that such measures deal only with information that can be automatically extracted
from software and analyzed by automated tools; thereby ignoring less structured, but
rich information from the software (e.g., textual information). Cohesion is usually
measured using structural information extracted solely from the source code (e.g.,

13

 ferenc.rudolf_87_23

Chapter 3. Conceptual Cohesion in Fault Prediction

attribute references in methods, method calls, etc.) that captures the degree to which
the elements of a class belong together from a structural point of view. These measures
give information about the way a class is built and how its instances work together
to address the goals of their design. The principle behind this class of metrics is to
measure the coupling between the methods of a class. Thus, they give no clues whether
the class is cohesive from a conceptual point of view (e.g., whether a class implements
one or more domain concepts), nor do they give any indication about the readability
and comprehensibility of the source code. While other types of metrics were proposed
by researchers (see Section 3.2 for details) to capture different aspects of cohesion, only
few such metrics address the conceptual and textual aspects of cohesion [93, 171].

We propose a new measure for class cohesion, named the Conceptual Cohesion of
Classes (C3), which captures the conceptual aspects of class cohesion, as it measures
how strongly the methods of a class relate to each other conceptually. The conceptual
relation between methods is based on the principle of textual coherence [156]. We
interpret the implementation of methods as elements of discourse. There are many
aspects of a discourse that contribute to coherence, including co-reference, causal re-
lationships, connectives, and signals. Source code is far from a natural language and
many aspects of natural language discourse do not exist in source code or need to be
redefined. The rules of discourse are also different from natural languages.

C3 is based on the analysis of textual information in source code, expressed in com-
ments and identifiers. Once again, this part of the source code, while closer to natural
languages, is still different from them, thus using classic natural language processing
methods such as propositional analysis is impractical or outright unfeasible. Hence, we
use an Information Retrieval (IR) technique, namely Latent Semantic Indexing (LSI),
to extract, represent, and analyze the textual information from source code (see Sec-
tion 2.4). Our measure of cohesion can be interpreted as a measure of the textual
coherence of a class within the context of the entire system.

Cohesion ultimately affects the comprehensibility of source code. For the source
code to be easy to understand, it has to have a clear implementation logic (i.e., design)
and it has to be easy to read (i.e., good language use). These two properties are
captured by the structural and conceptual cohesion metrics, respectively.

The main contributions of our work are:

• Formal definition and calculation of the C3 metric.
• Two case studies aimed at comparing C3 with an extensive set of existing cohesion

measures and assessing its ability to predict faults in source code, in combination
with the existing metrics.

• Investigation of the differences between the structural and conceptual cohesion
metrics.

3.2 Related Work
There are several different approaches to measure cohesion in OO systems. Many of the
existing metrics are adapted from similar cohesion measures for non-OO systems (we
are not discussing those here), while some of the metrics are specific for OO software.

Based on the underlying information used to measure the cohesion of a class, one can
distinguish: structural metrics [45, 52, 67, 117, 122, 148, 245]; semantic metrics [93,
171]; information entropy-based metrics [34]; slice-based metrics [175, 192]; metrics

14

 ferenc.rudolf_87_23

Section 3.2. Related Work

based on data mining [181]; and metrics for specific types of applications like knowledge-
based [138], aspect-oriented [242], and distributed systems [68].

The class of structural metrics is the most investigated category of cohesion met-
rics, which includes: LCOM1, LCOM3 [122], LCOM4 [122], Co (connectivity) [122],
LCOM5 [117], Coh [52], TCC (tight class cohesion) [45], LCC (loose class cohe-
sion) [45], ICH (information-flow-based cohesion) [148], NHD (normalized Hamming
distance) [72], etc.

The dominating philosophy behind this category of metrics considers class variable
referencing and data sharing between methods as contributing to the degree to which
the methods of a class belong together. Most structural metrics define and measure
relationships among the methods of a class based on this principle. Cohesion is seen
dependent on the number of pairs of methods that share instance or class variables, one
way or another. The differences among the structural metrics are based on the defini-
tion of the relationships among methods, the system representation, and the counting
mechanism. A comprehensive overview of graph theory-based cohesion metrics is given
by Zhou et al. [244]. Somewhat different in this class of metrics are LCOM5 and Coh,
which consider cohesion directly proportional to the number of instance variables in a
class that are referenced by the methods in that class. Briand et al. defined a unified
framework for cohesion measurement in OO systems [52], which classifies and discusses
all these metrics.

Other cohesion metrics exploit relationships that underline slicing [175, 192]. A
large-scale empirical investigation of slice-based metrics [175] indicated that the slice-
based cohesion metrics provide complementary views of cohesion to the structural
metrics. While the information used by these metrics is also structural in nature, the
mechanism used and the underlying interpretation of cohesion set these metrics apart
from the structural metrics group.

From the perspective of measurement methodology, two other cohesion metrics are
of interest here because – although used differently – they are also based on an IR
approach. Patel et al. [195] proposed a composite cohesion metric that measures the
information strength of a module. This measure is based on a vector representation
of the frequencies of occurrences of data types in a module. The approach measures
the cohesion of individual subprograms of a system based on the relationships to each
other in this vector space. Maletic and Marcus [162] defined a file level cohesion metric
based on the same type of information we are using for our proposed metrics here. Even
though these metrics were not specifically designed for the measurement of cohesion in
OO software, they could be extended in that direction.

The designers and the programmers of a software system often think about a class
as a set of responsibilities that approximate the concept from the problem domain
implemented by the class as opposed to a set of method-attribute interactions. In-
formation that gives clues about domain concepts is encoded in the source code as
comments and identifiers. Among the existing cohesion metrics for OO software, the
Logical Relatedness of Methods (LORM) [91] and the Lack of Conceptual Cohesion
in Methods (LCSM) [171] are the only ones that use this type of information to mea-
sure the conceptual similarity of the methods in a class. The philosophy behind this
class of metrics – encompassing our work as well – is that a cohesive class is a crisp

1LCOM - lack of cohesion in methods, which was originally introduced [66] and subsequently
extended [67] by Chidamber and Kemerer; we will refer to the first version of LCOM [66] as LCOM1
and to the extended one [67] as LCOM2.

15

 ferenc.rudolf_87_23

Chapter 3. Conceptual Cohesion in Fault Prediction

implementation of a problem or solution domain concept. Hence, if the methods of a
class are conceptually related to each other, the class is cohesive. The difficult problem
here is defining and measuring conceptual relationships. LORM uses natural language
processing techniques for the analysis needed to measure the conceptual similarity of
methods and represents a class as a semantic network. LCSM uses the same informa-
tion, indexed with LSI, and represents classes as graphs that have methods as nodes.
It uses a counting mechanism similar to LCOM.

3.3 An Information Retrieval Approach to Class
Cohesion Measurement

OO analysis and design methods decompose the problem addressed by the software
system development into classes, in an attempt to control complexity. High cohesion
for classes and low coupling among classes are design principles aimed at reducing
the system’s complexity. The most desirable type of cohesion for a class is model
cohesion [88], such that the class implements a single, semantically meaningful concept.
This is the type of cohesion we are trying to measure in our approach.

The source code of a software system contains unstructured and (semi-) structured
data. The structured data is destined primarily for the parsers, while the unstructured
information (i.e., the comments and identifiers) is destined primarily to the human
reader. Our approach is based on the premise that the unstructured information em-
bedded in the source code reflects, to a reasonable degree, the concepts of the problem
and solution domains of the software as well as the computational logic of the source
code. This information captures the domain semantics of the software and adds a
new layer of semantic information to the source code, in addition to the program-
ming language semantics. Existing work on concept and feature location [172, 198], on
traceability link recovery between source code and documentation [36, 170], on impact
analysis [35], and other such tasks showed that our premise stands and this type of
information extracted from source code is very useful.

In order to extract and analyze the unstructured information from source code, we
use Latent Semantic Indexing [80], an advanced IR method (see Section 2.4). While
the general approach (see Section 3.3.2) would work with other IR methods or with
more complex natural language processing techniques, we decided to use LSI here as
a proof of concept. LSI has been used in various software engineering problems like
concept and feature location [172, 198, 200], traceability link recovery between source
code and documentation [170], identification of abstract data types in legacy source
code [162], clone detection [169], etc. Furthermore, LSI has been successfully used
in cognitive psychology for the measurement of textual coherence [98], which is the
principle we base our approach on.

The remainder of this section explains how LSI can be used to measure textual
coherence. The extension of this concept to cohesion measurement is then discussed
and the formalism behind the definition of C3 is presented together with examples.

3.3.1 Measuring Text Coherence with LSI
In a language such as English, there are many aspects of a discourse that contribute to
coherence, including co-reference, causal relationships, connectives, and signals [112].

16

 ferenc.rudolf_87_23

Section 3.3. An Information Retrieval Approach to Class Cohesion Measurement

Existing approaches in cognitive psychology and computational linguistics for automat-
ically measuring text coherence are based on propositional modeling. Foltz et al. [98]
showed that LSI can be applied as an automated method that produces coherence
predictions similar to propositional modeling.

The primary method for using LSI to make coherence predictions is to compare
some unit of text to an adjoining unit of text in order to determine the degree to
which the two are semantically related. These units could be sentences, paragraphs,
individual words, or even whole books. This analysis can then be performed for all
pairs of adjoining text units in order to characterize the overall coherence of the text.
Coherence predictions have typically been performed at a propositional level, in which
a set of propositions all contained within working memory are compared or connected
to each other [136]. For LSI-based coherence analysis, using sentences as the basic unit
of text appears to be an appropriate corresponding level that can be easily parsed by
automated methods. Sentences serve as a good level in that they represent a small set of
textual information (e.g., typically 3-7 propositions) and thus would be approximately
consistent with the amount of information that is held in short term memory.

To measure the coherence of a text, LSI is used to compute similarities between
consecutive sentences in the text. High similarity between two consecutive sentences
indicates the two sentences are related, whereas low similarity indicates a break in
the topic. A well written article or book may provide coherence even at these break
points, thus topic changes are not always marked by a lack of coherence. For example,
an author may deliberately make a series of disconnected points, such as in a summary,
which may not be a break in the discourse structure. The idea is that if the similar-
ity between adjacent sentences is maintained high, the reader can follow the logic of
and understand the text easier. As the similarity measure – as defined by LSI – is
not transitive, it is possible to have non-adjacent sentences with very low similarity
measure, yet maintain a high coherence. The overall coherence of a text is measured
as the average of all similarity measures between consecutive sentences.

3.3.2 From Textual Coherence to Software Cohesion
We adapt the LSI-based coherence measurement mechanism to measure cohesion in
OO software. One issue is the definition of documents in the corpus. For natural
languages, sentences, paragraphs, and even sections are used as units of text to be
indexed (i.e., documents). Based on [171, 172, 199], we consider methods as elements
of the source code that can be units for indexing. Thus the implementation of each
method is converted to a document in the corpus to be indexed by LSI.

Another issue of interest lies in the extraction of relevant information from the
source code. We extract all identifiers and comments from the source code. As men-
tioned before, we assume that developers used meaningful naming and commenting
rules. One can argue that this information does not fully describe a piece of software.
While this is true, significant information about the source code is embedded in this
data, as [167] suggests. More than that, analogous approaches are used in other fields
such as image retrieval. For example, when searching for images on the web with
Google or other search engines, one really searches in the text surrounding these im-
ages in the web pages [134] (and while true image search is also possible nowadays,
text based search is still the dominant technique).

Finally, Foltz’s method for coherence measurement is based on measuring the sim-

17

 ferenc.rudolf_87_23

Chapter 3. Conceptual Cohesion in Fault Prediction

ilarity between adjacent elements of text (i.e., sentences). OO source code does not
follow the same discourse rules as natural languages, thus the concept of adjacent ele-
ments of text (i.e., methods) is not present here. To overcome this issue, we compute
similarities between every pair of methods in a class. There is an additional argument
for this change. A coherent discourse allows for changes in topic, as long as these
changes are rather smooth. In software, we interpret a cohesive class as implementing
one concept (or a very small group of related concepts) from the software domain.
With that in mind, each method of the class will refer to some aspect related to the
implemented concept. Hence, methods should be related to each other conceptually.

We developed a tool, Information Retrieval based Conceptual Cohesion Class
Measurement (IRC3M), which supports this methodology and automatically computes
C3 for any class in a given software system. The following steps are necessary to com-
pute the C3 metric (the tool is also used to measure the LCSM metric [171]):

• Corpus creation. The source code is preprocessed and parsed to produce a text
corpus. Comments and identifiers from each method are extracted and processed.
A document in the corpus is created for each method in every class.

• Corpus indexing. LSI is used to index the corpus and create an equivalent
semantic space.

• Computing conceptual similarities. Conceptual similarities are computed
between each pair of methods.

• Computing C3. Based on the conceptual similarity measures, C3 is computed
for each class (definitions are presented in the next section).

IRC3M is implemented as a MS Visual Studio .NET add-in and computes the C3
metric for C++ software projects in Visual Studio, based on the above methodology.
Our source code parser component is based on the Visual C++ Object Extensibility
Model. Using project information retrieved from Visual Studio .NET, the tool retrieves
parts of the source code that are used to produce a corpus. For software projects
developed outside .NET environment, i.e. Mozilla from our case study, we use external
parsers (e.g., Columbus [6] and srcML [161]) and a set of our own utilities to construct
the corpus. The extracted comments and identifiers are processed – similarly to [172]
– by elimination of stop words and splitting identifiers that follow predefined coding
standards. We use the cosine similarity between vectors in the LSI space to compute
conceptual relations.

3.3.3 The Conceptual Cohesion of Classes
In order to define and compute the C3 metric, we introduce a graph based system
representation, similar to those used to compute other cohesion metrics.

Definition 3.1: System, Classes — We consider an OO system as a set of classes
C = {c1, c2 . . . cn}. The number of classes in the system C is n = |C|.

Definition 3.2: Methods of a Class — A class has a set of methods. For each
class c ∈ C, M(c) = {m1, m2 . . . mz} represents its set of methods, where z = |M(c)| is
the number of methods in a class c. The set of all methods in the system is defined as
M(C).

18

 ferenc.rudolf_87_23

Section 3.3. An Information Retrieval Approach to Class Cohesion Measurement

Definition 3.3: Graph representation of an OO system — An OO system C is
represented as a set of connected graphs GC = {G1, . . . , Gn} with Gi representing class
ci. Each class ci ∈ C is represented by a graph Gi ∈ GC such that Gi = (Vi, Ei), where
Vi = M(ci) is a set of vertices corresponding to the methods in class ci and Ei ⊂ Vi ×Vi

is a set of weighted edges that connect pairs of methods from the class.

Definition 3.4: Conceptual similarity between methods (CSM) — For every
class ci ∈ C, all the edges in Ei are weighted. For each edge (mk, mj) ∈ Ei, we define
the weight of that edge CSM(mk, mj) as the conceptual similarity between the methods
mk and mj.

The conceptual similarity between two methods mk and mj, CSM(mk, mj) is com-
puted as the cosine between the vectors corresponding to mk and mj in the semantic
space constructed by the IR method (in this case LSI):

CSM(mk, mj) = vmT
k vmj

|vmk|2 × |vmj|2
(3.1)

where vmk and vmj are the vectors corresponding to the mk, mj ∈ M(ci) methods, T
denotes the transpose, and |vmk|2 is the length of the vector.

For each class c ∈ C we have a maximum of N = C2
z distinct edges between different

nodes, where z = |M(c)|.
With this system representation, we define a set of measures that approximate the

cohesion of a class in an OO software system by measuring the degree to which the
methods in a class are conceptually related.

Definition 3.5: Average conceptual similarity of methods in a class (ACSM)
— The average conceptual similarity of the methods in a class c ∈ C is:

ACSM(c) = 1
N

×
N∑

i=1
CSM(mi, mj) (3.2)

where (mi, mj) ∈ E, i ̸= j, mi, mj ∈ M(c), and N is the number of distinct edges in G,
as defined previously.

In our view, ACSM(c) defines the degree to which methods of a class belong
together conceptually and thus it can be used as a basis for computing the conceptual
cohesion of classes.

Definition 3.6: Conceptual cohesion of a class (C3) — For a class c ∈ C, the
conceptual cohesion of c, C3(c) is defined as follows:

C3(c) =
{

ACSM(c) if ACSM(c) > 0
else 0 (3.3)

Based on the above definitions, C3(c) ∈ [0, 1] ∀ c ∈ C. If a class c ∈ C is cohesive
then C3(c) should be closer to one meaning that all methods in the class are strongly
related conceptually with each other (i.e., the CSM for each pair of methods is close
to one). In this case, the class most likely implements a single concept or a very small
group of related concepts (related in the context of the software system).

If the methods inside the class have low conceptual similarity values among each
other (CSM close to or less than zero), then the methods most likely participate in the
implementation of different concepts and C3(c) will be close to zero.

19

 ferenc.rudolf_87_23

Chapter 3. Conceptual Cohesion in Fault Prediction

3.4 Assessment of the New Cohesion Measure
Newly proposed metrics require empirical evaluations [52, 54]. We present the results of
two case studies aimed at comparing and combining C3 with a set of existing cohesion
measures. Subsections 3.4.1 and 3.4.2 describe the objectives and the design of the case
studies. In subsequent subsections, quantitative results are presented and explained
for each case study separately.

3.4.1 Objectives and Methodology
In order to evaluate our measure, we conducted two case studies. The goal of the first
case study was to determine whether the C3 measure captures additional dimensions
of cohesion measurement when compared to existing structural cohesion measures.
Our hypothesis is that given the nature of the information and counting mechanism
employed by C3, it should capture different aspects of class cohesion than existing
structural measures.

Existing research showed that cohesion measures can be used as good indicators for
the fault-proneness of classes in OO systems [90, 16, 202]. So in the second case study,
C3 is compared with existing metrics and combinations of C3 with existing cohesion
metrics are also compared with combinations of structural metrics (with each other)
to assess whether they provide better results in predicting faults in classes or not. Our
assumption is that combining C3 with other structural cohesion metrics should be a
more complete indicator of cohesion (given they capture different aspects of it), hence
a better indicator of fault-proneness than combinations of structural metrics alone.

In summary, the case studies are addressing the following research questions:

• RQ3.1: Does C3 capture aspects of class cohesion that are not captured by other
structural cohesion metrics?

• RQ3.2: Does the combination of structural cohesion metrics with C3 provide
better results in predicting faults in classes than the combinations of structural
metrics?

3.4.2 Design of the Case Studies
We followed recommendations in state-of-the-art work on case studies [97, 239] to
design our two studies. We used several open source systems of different sizes.

Software Systems and Metrics

We chose three open-source software systems from different domains, developed mostly
in C++: TortoiseCVS v.1.8.21, WinMerge v.2.0.2, and Mozilla v.1.6. TortoiseCVS is
an extension for Microsoft Windows Explorer that makes using concurrent versioning
system (CVS) convenient and easy. WinMerge is a tool for visual differencing and
merging for both files and directories. Mozilla is an open-source web browser ported
on almost all known software and hardware platforms. It is large enough to represent
a real-world software system. The source code for TortoiseCVS and WinMerge were
downloaded from http://sourceforge.net, whereas the source code of Mozilla is
obtained from http://www.mozilla.org.

20

 ferenc.rudolf_87_23

http://sourceforge.net
http://www.mozilla.org

Section 3.4. Assessment of the New Cohesion Measure

We selected the following structural cohesion metrics to compare against C3: LCOM1,
LCOM2, LCOM3, LCOM4, LCOM5, Coh, ICH, TCC, and LCC. Our choice of metrics
is not random, since these structural metrics were extensively studied and compared to
each other and to other metrics in previously published studies [40, 52, 56, 63, 94, 223].
The guiding criterion that we used to choose the metrics for our case study is the
availability of results reported for these metrics in the literature, in order to facilitate
comparison and evaluation with our results. For the definitions, explanations, and fur-
ther references on these measures, please refer to Section 3.2. We computed all these
metrics for 2,151 classes from the three open-source systems.

Settings of the Case Studies

All the structural metrics are collected using Columbus [6] and the conceptual cohesion
metrics are computed with our tool, IRC3M. IRC3M can be used with several settings
for the underlying LSI-based analysis. In these case studies, we used the following ones.

For constructing the corpora, we extracted all types of methods from classes in the
source code, including constructors, destructors, and accessors. Comments and iden-
tifiers were extracted from each method. The resulting text was processed as follows:
some tokens are eliminated (e.g., operators, special symbols, some numbers, keywords
of the programming language, standard library function names, etc.); the identifier
names in the source code were split into parts based on known coding standards. For
example all the following identifiers were broken into the words “split” and “identifiers”
: “split_identifiers” , “Split_identifiers” , “SplitIdentifiers” , etc. The original form
of each identifier is preserved in the documents. Since we do not consider n-grams,
the order of the words is not important. It is essential to note, though, that LSI in
this process does not use a predefined vocabulary, or a predefined grammar, therefore
no morphological analysis or transformations are required. Some researchers use word
stemming, however this is an optional step.

Based on previous experience with LSI on similarly sized corpora [170, 198], we
used a 300 factor reduction. We defined a corpus with 637 documents and 1,915 terms
for TortoiseCVS, one with 522 documents and 1,738 terms for WinMerge, and one with
48,823 documents and 64,979 terms for Mozilla (which we used in both case studies).

3.4.3 First Case Study – Principal Component Analysis of the
Metric Data

Briand et al. [56] proposed a methodology to analyze software engineering data in or-
der to make an experiment repeatable and the results comparable. The methodology
consists of the following three steps: collecting the data, identifying outliers, and per-
forming PCA (see Section 2.5.2). As the results of our analysis can be impacted by
the outliers, they were removed [56, 63]. To identify outliers in the data, we utilized
the T2max procedure based on the Mahalanobis distance [127].

After outliers were eliminated, we performed PCA, which was used in our case to
identify groups of variables (i.e., metrics), which are likely to measure the same under-
lying dimension (i.e., mechanism that defines cohesion) of the object to be measured
(i.e., cohesion of a class).

21

 ferenc.rudolf_87_23

Chapter 3. Conceptual Cohesion in Fault Prediction

Table 3.1: Loading of the PCs

PC1 PC2 PC3 PC4 PC5 PC6

Proportion 29.6 20.91 10.12 10.04 17.0 8.56
Cumulative 29.6 50.51 60.63 70.67 87.67 96.24
C3 -0.061 -0.037 -0.017 0.996 -0.043 0.008
LCOM1 0.922 -0.001 0.052 -0.032 0.317 -0.012
LCOM2 0.914 -0.018 0.044 -0.029 0.331 0.004
LCOM3 0.609 -0.129 0.052 -0.048 0.736 -0.138
LCOM4 0.206 -0.196 -0.001 -0.036 0.937 -0.102
LCOM5 0.084 0.032 0.995 -0.017 0.018 -0.040
ICH 0.914 0.056 0.066 -0.057 -0.065 -0.144
TCC -0.023 0.933 -0.033 -0.002 -0.116 0.283
LCC 0.045 0.966 0.079 -0.050 -0.136 0.095
Coh -0.118 0.476 -0.061 0.012 -0.176 0.846

Results

PCA revealed six principal components (PC) that describe 96% of the variance in
our dataset. The loadings of every PC are presented in Table 3.1, where we marked
important coefficients for each PC in bold. In addition, for every PC we provide the
proportion for that PC in terms of the variance of the data set, which is explained by
that PC and also the cumulative variance. We interpret the loadings determined for
every PC as follows:

PC1 (29.6%): LCOM1, LCOM2, LCOM3, ICH. These metrics count the number of
pairs of methods which share instance variables. Another commonality among LCOM1-
LCOM3 is that these measures are not normalized and they do not have upper bounds.

PC2 (20.91%): TCC, LCC are among the measures that are computed as the ratio
of method pairs with shared instance variables, also considering indirect sharing of in-
stance variables by method invocations. Noticeably, the measures are also normalized.

PC3 (10.12%): LCOM5 is a normalized cohesion measure with upper and lower
bounds. However, it is also an inverse cohesion measure that ranges between 0 (max
cohesion) and 2 (min cohesion). The metric is dependent upon instance variable usage,
counting the number of interactions between instance variables and methods.

PC4 (10.04%): C3 is our newly proposed conceptual cohesion metric that measures
cohesion of a class in the context of the complete software system based on the usage of
the terms shared between pairs of methods in the class, assuming there is an underlying
or latent structure in word usage for the software system for which a document set (i.e.,
corpus) is constructed.

PC5(17.0%): LCOM3, LCOM4. These metrics count common attribute usages
within a class. LCOM4 additionally accounts for method invocations, which do not
seriously affect the distribution of the measure.

PC6(8.56%): Coh is a normalized measure that counts individual references to
attributes by methods.

Answer to RQ3.1: The PCA results shows that C3 defines a dimension of its own;
C3 is the only major factor in PC4. These results statistically support our hypothesis
that the C3 cohesion measure captures different aspects of what is considered to be a

22

 ferenc.rudolf_87_23

Section 3.4. Assessment of the New Cohesion Measure

cohesion measurement of the class, as defined by all the metrics measured in the case
study.

The PCA results reinforce the work previously done by other researchers. Chae
et al. [63], Briand et. al. [51], and Etzkorn et. al. [94] also used PCA over different
data sets using similar collections of structural cohesion metrics to those presented in
this chapter. Our results are closer to those of Briand et al. [51] and Etzkorn et al. [94],
as in each case, the first two principal components are the same: both studies have
LCOM1-LCOM3 measures in PC1 and TCC-LCC in PC2.

3.4.4 Second Case Study – Predicting Faults in Classes
The first case study showed that C3 captures different aspects of cohesion compared
to the structural metrics we analyzed it against. Given our interpretation of cohesion,
we believe that a combination of structural and conceptual metrics is a more complete
cohesion indicator than any combination of structural metrics by themselves, since the
combination of structural metrics still captures only the structural properties of co-
hesion, whereas the combination of structural and conceptual metrics might capture
orthogonal, yet complementary properties of class cohesion. In other words, structural
cohesion indicates whether a class is built cohesively, while conceptual cohesion indi-
cates whether a class is written coherently (as a function of the identifier names and
comments). One use of cohesion metrics in software engineering is to predict faults
in classes [90, 16, 202]. The focus here is to analyze the extent to which each of the
cohesion measures selected for the case study can be used to predict faults, as well as to
see whether the combination of any structural cohesion measure with C3 outperforms
the combinations of structural cohesion measures in identifying fault-prone classes.

This case study is performed similarly to Gyimóthy et al. [16]. We used Bugzilla
(http://bugzilla.mozilla.org/), collected the bugs between two versions of Mozilla
(i.e., 1.6 and 1.7), and correlated each bug with specific classes. Details on how we
mined the bugs can be found in our previous work [16].

Analyses

We employed regression analysis methods to discover possible relationships between
values of collected metrics and fault-proneness of those classes (see Section 2.6.1). These
methods have been widely used to study the relationships between the metrics and
fault- or change-proneness of classes [39, 41, 50, 56, 16, 187, 222]. In order to analyze
our data, we chose univariate and multivariate logistic regression analysis methods,
which predict if a class is faulty or not.

In our case, the univariate regression analysis is used to analyze the effect of each
metric separately, whereas multivariate regression is used to analyze the effect of the
combination of metrics on the final results to see whether combinations of C3 with
structural cohesion metrics can improve detecting fault-prone classes as compared to
combinations of only structural metrics alone. All analyses in this case study are
applied with the same settings as those described by Gyimóthy et al. [16].

For logistic multivariate analysis, we build models for predicting faults in classes
based on all possible combinations of pairs of cohesion metrics used in this case study
(i.e., 45 different pairs of metrics comprised of 10 unique cohesion metrics). We study
all the resulting models based on pairs of cohesion metrics to obtain more insight into

23

 ferenc.rudolf_87_23

http://bugzilla.mozilla.org/

Chapter 3. Conceptual Cohesion in Fault Prediction

whether the models where one of the exploratory variables is C3 are superior or not
to those models where both exploratory variables are structural cohesion measures.
The parameters (constant C0 and coefficients C1 and C2) of all instantiated models are
provided in Table 3.2, Table 3.3, and Table 3.4, respectively.

Results

First, we performed the univariate logistic regression (see the results in Table 3.2). In
order to evaluate logistic regression models based on the metrics we studied (as well
as combinations of them), we utilize the R2 coefficient (see Section 2.6.1), as well as
accuracy, precision, and recall (see Section 2.6.3).

The results allow us to draw the following conclusions: if we use every one of the
10 metrics as a separate indicator of fault-proneness, LCC is the least significant, while
C3 has the 2nd largest accuracy, 3rd largest recall, 5th largest R2 value, and 6th largest
precision. These results are not surprising, as C3 captures only certain aspects of
cohesion, whereas faults may be caused by other issues affecting cohesion, which are
not captured by C3 alone. Nonetheless, C3 ranks better than many of the cohesion
metrics we analyzed.

Table 3.2: Results of the univariate logistic regression (sorted by the R2 values)

Model Accuracy Acc.
Rank Precision Prec.

Rank Recall Rec.
Rank

R2

Values C0 C1

LCOM1 61.90 4 74.39 2 60.95 5 0.109 -0.41 0.0012
LCOM3 62.59 1 70.55 4 64.15 4 0.107 -0.71 0.061
LCOM2 62.05 3 75.93 1 59.16 7 0.106 -0.38 0.0013
LCOM4 59.75 7 66.36 5 54.85 8 0.079 -0.60 0.0725

C3 62.05 2 61.35 6 73.13 3 0.073 2.22 -4.11
ICH 60.92 6 73.52 3 53.80 9 0.069 -0.30 0.008
Coh 61.21 5 59.33 7 80.18 1 0.032 0.35 -1.96

LCOM5 56.56 8 54.48 8 77.83 2 0.006 -0.38 0.481
TCC 51.81 9 50.60 9 59.61 6 0.010 0.14 -0.799
LCC 50.73 10 49.47 10 42.64 10 0.002 0.04 -0.292

Table 3.3: Results of the multivariate logistic regression for the top ten pairs of cohesion
metrics with largest R2 values (sorted by R2 values)

Model Accuracy Acc.
Rank Precision Prec.

Rank Recall Rec.
Rank

R2

Values C0 C1 C2

C3+LCOM3 66.20 1 63.47 26 76.26 6 0.160 1.384 -3.783 0.060
C3+LCOM1 65.23 2 68.23 27 74.27 10 0.154 1.536 -3.471 0.001
C3+LCOM2 64.88 5 67.54 29 73.49 11 0.151 1.572 -3.486 0.001
C3+LCOM4 64.98 4 66.20 30 75.61 7 0.141 1.594 -4.054 0.078

C3+ICH 63.71 6 64.74 34 74.60 9 0.119 1.710 -3.597 0.006
LCOM4+ICH 63.32 9 72.87 16 65.39 15 0.119 -0.717 0.058 0.006
LCOM3+ICH 63.46 7 72.61 17 65.32 16 0.118 -0.703 0.048 0.003

LCOM1+LCOM3 63.27 10 74.16 12 64.12 21 0.116 -0.611 0.001 0.034
LCOM1+LCOM4 61.90 28 73.05 15 61.41 32 0.114 -0.553 0.001 0.030

LCOM1+Coh 62.34 21 72.44 18 64.28 18 0.113 -0.208 0.001 -0.816

Our assumption is that C3 complements existing structural metrics, so in order
to investigate whether combining C3 with structural cohesion measures can improve

24

 ferenc.rudolf_87_23

Section 3.5. Conceptual vs. Structural Cohesion

Table 3.4: Results of the multivariate logistic regression for the remaining pairs of
metrics, which contain C3 (sorted by R2 values)

Model Accuracy Acc.
Rank Precision Prec.

Rank Recall Rec.
Rank

R2

Values
R2

Rank C0 C1 C2

C3+Coh 65.03 3 64.22 35 79.43 4 0.105 28 2.709 -4.220 -2.086
C3+TCC 63.41 8 62.72 38 75.38 8 0.085 29 2.507 -4.225 -0.956

C3+LCOM5 63.22 11 62.47 39 76.59 5 0.079 34 1.878 -4.129 0.503
C3+LCC 63.17 12 62.80 37 72.64 12 0.078 37 2.440 -4.230 -0.495

the detection of fault-prone classes we applied multivariate logistic regression analysis
(see Table 3.3). We built 45 models based on all combinations of pairs of cohesion
metrics. Table 3.3 presents the top ten models based on the largest R2 values. As it
can be seen from the results, C3 appears in the first five combined models. In order
to compare the R2 values of these combinations, we performed Wilcoxon’s signed-rank
test (see Section 2.5.3). The results revealed that out of those five pairs, C3 appears
in three statistically significant combinations, as the R2 values for C3+LCOM3 and
C3+LCOM4 and the R2 values for C3+LCOM1 and C3+LCOM2 respectively, are not
different.

In addition, all the models that contain C3 (see Table 3.3 and Table 3.4) are among
the top 12 models in terms of accuracy and recall values. This result supports the idea
that C3 is indeed complementary to the structural metrics, at least from the perspective
of fault prediction.

Also note that the three models with the best accuracy are C3 + LCOM3, C3 +
LCOM1, and C3 + Coh. Any of these models has better accuracy values than the best
model based on a single metric from Table 3.2. Similarly, the models with best values
for precision and recall outperform the relevant models based on a single metric.

Answer to RQ3.2: Overall, the results indicate that C3 is a useful indicator of
an external property of classes in object-oriented systems – fault-proneness of classes.
Based on the results of the regression analyses we can conclude that C3 is a valuable
complement in a number of combinations with other structural cohesion metrics. More
importantly, the results support our assumption that the combination of C3 with other
cohesion metrics allows us to build superior models for detecting fault-prone classes.

3.5 Conceptual vs. Structural Cohesion
Henderson-Sellers [117] noted that: “It is after all possible to have a class with high
internal, syntactic cohesion but little semantic cohesion.” To gain more insight into
how our metric differs from some of the structural ones, we manually analyzed classes
from Mozilla and WinMerge for which the structural and conceptual metrics disagree
(i.e., high structural cohesion with low conceptual cohesion and vice versa). We selected
classes based on high LCOM2 values (i.e., indicating low cohesion) and high C3 values,
and vice versa. We considered a value for a LCOM2 and C3 high if it is in the
top 15% and low if it is in the bottom 15%, respectively. Based on this criteria, we
identified 25 classes in Mozilla that have low structural cohesion (based on LCOM2)
and high conceptual cohesion (based on C3) and 61 classes in the opposite category. In
WinMerge, we identified 4 classes that have low structural cohesion and high conceptual
cohesion and 9 classes in the opposite category. We provide a few examples of such

25

 ferenc.rudolf_87_23

Chapter 3. Conceptual Cohesion in Fault Prediction

classes (see Table 3.5), although we do not claim that all such cases in the two open
source software systems we analyzed follow these patterns.

Table 3.5: Classes analyzed from WinMerge and Mozilla

WinMerge class C3 LCOM2

IVSSItem 0.64 528
IVSSDatabase 0.635 136
IVSSItemOld 0.632 465
BCMenuData 0.434 0
CDirDoc 0.294 0
RescanSuppress 0.392 1
Mozilla class C3 LCOM2

nsXlContext 0.314 1
txFormatNumberFunctionCall 0.306 1
nsAbCardProperty 0.810 8907
nsProfile 0.650 1768
nsPrintSettings 0.656 5402

3.5.1 Analyzing classes from WinMerge
The analysis of the classes in Table 3.5 yields very interesting results. For example,
the IVSSItem class is a wrapper class that does not have data members, only methods
that wrap the implementation for the OLE automation on the client side. High values
for LCOM2 in methods are easily explained in this case. The intersection of any pair
of methods in this class is empty, because the class does not contain any attributes.
For the IVSSItem class, which has 33 methods, LCOM2 = 528. The high C3 value
is also understandable, as the implementation of every method contains invocations of
the InvokeHelper method of the derived class COleDispatchDriver and a similar subset
of identifier names for local variables. Wrappers tend to group together methods that
are conceptually similar. The IVSSDatabase and IVSSItemOld classes follow the same
pattern since they also implement wrappers for the COleDispatchDriver interface. In
conclusion, in these situations (i.e., wrappers) it seems that C3 can give more clues on
cohesion than LCOM2.

From the other group of investigated classes, BCMenuData is a class that imple-
ments a “property container” for menu items that are drawn using an “Office XP”-like
style. It is a small class with a set of accessor functions. LCOM2 is 0, meaning that the
number of intersecting sets is more than the number of non-intersecting ones. Close
examination of the class supports the fact that the class represents a single meaningful
abstraction. However, values of C3 do not capture this fact due to the large number of
unique identifier names used in these accessors. As mentioned above, accessor meth-
ods, just like constructors, may significantly influence the measurement of C3 and such
situations warrant the use of structural metrics in support of C3.

The CDirDoc class is an example of a class with concealed cohesion, which means
that the class includes some attributes and methods that might create another class.
Close analysis revealed that the class handles the following activities: creating and

26

 ferenc.rudolf_87_23

Section 3.5. Conceptual vs. Structural Cohesion

closing of a new document, representing “right-left” panel abstraction in the “view-
merge” application, keeping track of updating time, status and content, as well as
choosing different view modes. It has only several attributes like a pointer to the
CDirView class and a container of CMergeDoc classes. Those attributes are referenced
in most methods of the class. Thus LCOM2 for the CDirDoc is 0. On the other hand,
the value of C3 for CDirDoc is 0.294 which shows low conceptual similarity of methods
inside the class. Detailed analysis shows that the class implements a set of concepts
that could be refactored into separate classes, each implementing one concept only.
The low LCOM2 value would indicate a difficult refactoring since it may create high
coupling. However, when considering the low number of attributes of the class, this
may not be a major issue. While it is hard to generalize, in situations when a class has
few attributes and many methods by comparison, a low LCOM2 value and a low C3
value may indicate the lack of cohesion and a need for refactoring.

The RescanSuppress class implements an abstraction of a simple lock that prevents
objects of type CMergeDocs from rescanning within its lifetime unless the clear()
method is called. It is a small class with three attributes and three methods – a
constructor, a destructor, and the clear() method. Although the class represents a
crisp abstraction from a user point of view, the small value for C3 can be explained by
the small number of identifiers and their intersections within method implementations
of the class. This is a situation where C3 showed its limits and structural metrics are
needed.

3.5.2 Analyzing classes from Mozilla

We applied the same strategy to analyze several more classes from Mozilla (see Ta-
ble 3.5). In this case, the nsXIContext class aggregates dialogs like “license” , “wel-
come” and widgets like “next” and “previous” buttons, which appear during the instal-
lation process. Therefore, the main purpose of this class is to store the user interface
components during the installation process. The class has a set of methods to load,
get, and release resources. It also contains a proprietary implementation of the itoa
function, which in fact decreases the conceptual cohesion of the class, since it has
low conceptual similarities with other methods in this class (itoa performs a very spe-
cific operation – conversion from integer to string, which does not relate conceptually
to loading and releasing resource operations implemented in the class). Another class
from the group of classes with low conceptual and high structural cohesion is txFormat-
NumberFunctionCall. This is a class that derives from an abstract class FunctionCall,
which in turn also derives from an abstract class, namely Expr. This is a base class
of XSL (eXtensible Stylesheet Language) expressions and its evaluate() method is
responsible for evaluating and formatting numbers in XSL transformations. After ana-
lyzing the evaluate() method, we concluded that it has two parts: parsing the format
of the string, and the actual formatting of the number. Thus, we could refactor the
first part into another class (e.g., txFormatParseState), which would be responsible
for parsing the string, whereas txFormatNumberFunctionCall would perform only the
actual transformation of numbers in XSL expressions. As with the class CDirDoc from
WinMerge, this class is another example of a class with concealed cohesion.

On the other hand, we analyzed three classes with high conceptual and low struc-
tural cohesion. The first class in this group is nsAbCardProperty, which implements
a well-defined concept – “Address Book Person Card Entry”. It has over fifty dif-

27

 ferenc.rudolf_87_23

Chapter 3. Conceptual Cohesion in Fault Prediction

ferent attributes that can occur in the address book (e.g., m_PhoneticFirstName,
m_DisplayName, m_DefaultEmail, etc.) and it has many accessor methods. Thus,
the low structural cohesion can be easily explained because of the presence of these
accessor methods, which usually reference one attribute at a time. Since all these
methods are small and share many similar terms (e.g., card, property, set, PRUnichar,
attribute, name, etc.), on average, all pairs of methods have high conceptual similar-
ities. We concluded that this class is one implementing a cohesive concept – storing
and accessing the information about the user in the address book entry.

Another class, nsProfile, implements the concept of a profile in the Mozilla web
browser and it is derived from two interfaces: nsIProfileInternal and nsIProfileChangeS-
tatus. It is rather large, consisting of over a dozen methods and attributes, implemented
in over 2 KLOC. Some of the methods with self-descriptive names are: LoadDefaultPro-
fileDir, LoadNewProfilePrefs, MigrateProfileInternals, Update4xProfileInfo, etc. After
inspecting all the methods we identified that they can be classified into two groups:
operations on Profile and on Registry. This classification explains the high values
of LCOM2, since these two groups of methods reference non-overlapping attributes.
Overall, we conclude that the nsProfile class implements a single concept even though
its operations may be categorized into two related groups (the second group of Registry
operations relates to Profile operations in the sense that those methods are tailored
towards reading and writing profile-related keys in the system registry).

The class nsPrintSettings describes the print settings for a document: print range,
colors, paper size, orientation, etc. This class aggregates a lot of attributes which
describe these properties. In addition, all these attributes have accessor methods.
This class looks like a property container, since it does not have any operations on
these attributes, which can be broadly classified into two groups: printer attributes
(mPrintBGColors, mPrintBGImages, mPrintPreview) and paper attributes (mPaper-
Name, mPaperSizeUnit). Low structural cohesion is explained by the number of acces-
sor methods referencing unique attributes. However, conceptually the class implements
a single concept – a property holder of print settings, which is supported by the high
C3 values.

3.6 Threats to Validity
Several issues affect the results of the case studies and limit our interpretations and
generalizations of the results. The first case study showed that our metric captures new
dimensions in cohesion measurement; however, we obtained these results by analyzing
classes from only three open-source applications written primarily in C++, even though
one of the systems (i.e., Mozilla) represents a real-life application. In order to generalize
the results, large-scale evaluation, similar to the one presented by Succi et al. [223] is
required, which should take into account software systems from different domains,
written in different programming languages, and of varying class sizes [89]. In the case
study, we compare our measures with existing structural cohesion measures, which
could be computed with available tools. The results could be somewhat different if we
considered semantic metrics or those based on information-theory approaches.

One issue may affect the internal validity of the second case study: cohesion is not
the only factor affecting the fault-proneness of classes. To build complete models for
fault prediction, other factors would have to be considered. However, this is out of
the scope of this chapter as the purpose of analyzing fault prediction was to see if the

28

 ferenc.rudolf_87_23

Section 3.7. Conclusions

combination of C3 with structural metrics brings any improvements (which it did).
The C3 metric depends upon reasonable naming conventions for identifiers and

relevant comments contained in the source code. When these are missing, the only
hope for measuring any aspects of cohesion rests on the structural metrics. In addition,
methods such as constructors, destructors, and accessors may artificially increase or
decrease the cohesion of a class [52]. While we did not exclude them in the results
presented here, our method may be extended to exclude them from the computation of
the cohesion using approaches for identifying types of method stereotypes [84]. In its
current form, C3 does not take either polymorphism or inheritance into account, only
considering methods of a class that are implemented or overloaded within the class.

3.7 Conclusions
Classes in object-oriented systems, written in different programming languages, con-
tain identifiers and comments, which reflect concepts from the domain of the software
system. This information can be used to measure the cohesion of software. To extract
this information for cohesion measurement, Latent Semantic Indexing can be used in
a manner similar to measuring the coherence of natural language texts.

This chapter defines the conceptual cohesion of classes, which captures new and
complementary dimensions of cohesion compared to a host of existing structural met-
rics. Principal component analysis of measurement results on three open-source soft-
ware systems statistically supports this fact. In addition, the combination of structural
and conceptual cohesion metrics defines better models for prediction of faults in classes
than combinations of structural metrics alone. Highly cohesive classes need to have a
design that ensures a strong coupling among its methods as well as a coherent internal
description.

Contribution
This chapter is based on the publication:
• Andrian Marcus, Denys Poshyvanyk, and Rudolf Ferenc. Using the conceptual
cohesion of classes for fault prediction in object oriented systems. IEEE Transactions
on Software Engineering, 34(2):287–300, March 2008. [22]

Defining and calculating the C3 metric was done by my co-authors, while the de-
sign, management, and evaluation of both case studies (including whether C3 can
improve upon existing structural metrics in fault prediction) was my responsibility.
Moreover, the source code analysis and computation of structural cohesion metrics for
TortoiseCVS, WinMerge, and Mozilla was my work as well.

Some of my other notable papers that have contributed to this result:

• Rudolf Ferenc, István Siket, and Tibor Gyimóthy. Extracting facts from open source software. In
Proceedings of the 20th IEEE International Conference on Software Maintenance (ICSM 2004), pages
60–69, Chicago, USA, September 2004. [10]

• Tibor Gyimóthy, Rudolf Ferenc, and István Siket. Empirical validation of object-oriented met-
rics on open source software for fault prediction. IEEE Transactions on Software Engineering,
31(10):897–910, November 2005. [16]

29

 ferenc.rudolf_87_23

 ferenc.rudolf_87_23

4
Conceptual Coupling in Impact Analysis

4.1 Introduction
During program comprehension, developers need to understand how software mod-
ules relate to each other. It is especially important when changes are being made to
the software and developers need to assess the impact of their changes. One way to
understand such relationships is to measure the coupling between parts of the soft-
ware. Coupling, along with cohesion, is one of the fundamental properties of software
with a strong influence on comprehension and maintenance of large software systems.
Proposed coupling measures are used in software engineering tasks, such as change
impact analysis [55, 232], assessing the fault-proneness of classes [90, 240, 16, 187],
software re-modularization [32, 236], identifying software components [147] and design
patterns [37], assessing software quality [56], etc.

Depending on the programming paradigm used, the choice of programming lan-
guage for the implementation, and the design of a software system, coupling is influ-
enced by several factors – such as control and data flow – and hence it may be measured
differently. Researchers proposed a variety of coupling measures, but some studies [56]
suggest that some of these metrics tend to compute the same form of coupling, only
through different measuring mechanisms.

In Chapter 3, we defined a set of cohesion measures; in this chapter, we similarly
define a set of coupling measures that capture new dimensions of coupling, based on
the textual information shared between modules of the source code. While elements
of the source code written in a programming language help identify control or data
flow between software modules, the comments and identifiers express the intent of the
software. Two parts of the software with similar intent will most likely refer to the
same (or related) concepts in the problem or solution domains of the system. Hence,
they are conceptually related. This is the same idea we used in Chapter 3, however now
applied to coupling instead of cohesion. Conceptual relations have been also confirmed
by earlier work of other researchers, who examined overlap of semantic information in
comments and identifiers among different software modules [91, 220]. This relationship
is the foundation for the new coupling measures, named conceptual coupling. The set

31

 ferenc.rudolf_87_23

Chapter 4. Conceptual Coupling in Impact Analysis

of conceptual coupling metrics can be defined and used for any type of programming
paradigm, but we define and use them here in the context of OO software systems.

Existing coupling measures have been previously used to support the impact anal-
ysis process, where the task is to identify all classes that would change when a given
class is being changed. However, existing models [55] do not capture all the ripple ef-
fects of changes in existing software. Given that the conceptual coupling metrics reflect
different relationships than structural coupling metrics, we assume that they also prop-
agate changes in software. This chapter focuses on the use of the conceptual coupling
metrics to predict classes that will change during impact analysis. We conducted a
case study on a large open-source software system (Mozilla) to see how the conceptual
coupling metrics compare with nine existing structural coupling metrics, when used
during impact analysis. The case study indicates that one of our conceptual coupling
metrics provides the best results for predicting classes that need to be changed.

Our contributions can be listed as follows:

• Formal definition and calculation of the conceptual coupling metrics.
• Examining the conceptual metrics in impact analysis through a case study and

comparing them to the traditional structural metrics.

4.2 Related Work
We briefly discuss the major approaches to coupling measurement, in order to contrast
between existing approaches and our proposed metrics. The conceptual coupling met-
rics are based on the use of IR methods and constitute a novel application, compared
to previous uses of IR in program comprehension, which we also present here. Coupling
measures have been used to support impact analysis and we present those approaches
here as well.

4.2.1 Coupling Measurement
Coupling measurement is a rich and interesting body of research, resulting in different
measuring approaches for structural coupling metrics [66, 67, 148, 49], dynamic cou-
pling measures [39, 114], evolutionary and logical coupling [100], coupling measures
based on information entropy [34], coupling metrics for specific types of software ap-
plications such as procedural systems [186], knowledge-based systems [138], ontology-
based systems [189] and systems developed using an aspect-oriented approach [242].

The structural coupling metrics have received significant attention in the litera-
ture. These metrics are comprehensively described and classified within the unified
framework for coupling measurement [53]. The best known among these metrics are
CBO (coupling between objects) and CBO’ [66, 67], RFC (response for class) [66] and
RFC∞ [67], MPC (message passing coupling) [150], DAC (data abstraction coupling)
and DAC1 [150], ICP (information-flow-based coupling) [148], and the suite of coupling
measures by Briand et al. [49] (IFCAIC, ACAIC, OCAIC, FCAEC, etc.). Other struc-
tural metrics such as Ce (efferent coupling), Ca (afferent coupling), and COF (coupling
factor) are also overviewed by Briand et al. [53].

Many of the coupling measures listed above are based on method invocations and
attribute references. For example, the RFC, MPC, and ICP measures are based
on method invocations only. CBO and COF measures count method invocations

32

 ferenc.rudolf_87_23

Section 4.2. Related Work

and references to both methods and attributes. The suite of measures defined by
Briand et al. [49] captures several types of interactions between classes such as class-
attribute, class-method, and method-method interactions. The measures from the
suite also differentiate between import and export coupling as well as other types of
relationships including friends, ancestors, descendants, etc.

Dynamic coupling measures [39, 114] were introduced as the refinement to existing
coupling measures due to some gaps in addressing polymorphism, dynamic binding,
and the presence of unused code by static structural coupling measures.

Another important family of coupling measures derives from the evolution of the
software system in contrast to structural coupling which is determined by program
analysis of a single version of software, or dynamic coupling which is obtained by
executing the program. These are called evolutionary couplings among parts of the
systems which are determined by the past common changes or co-changes [100].

Another form of coupling, namely interaction coupling, captures relations among
software artifacts which are relevant to a particular software engineering task [248].
Interaction coupling uses information gleaned using an Integrated Development Envi-
ronment on when artifacts are being used or modified in the same development task.

Furthermore, several specialized coupling metrics were proposed for different types
of software systems. They are coupling metrics for knowledge-based systems [138] as
well as coupling metrics for aspect-oriented programs [242].

Existing work on clustering software [162, 141], retrieving similar components in
software libraries [176] and measuring semantic overlap of information in comments and
identifiers among software modules [91] uses the concept of semantic similarity between
elements of the source code [22], which stands at the foundation of the conceptual
coupling, as defined in this chapter.

4.2.2 The Use of IR Methods in Program Comprehension
IR methods were proposed, and used successfully, to address tasks of extracting and
analyzing textual information existing in software artifacts. Early models were used to
construct software libraries [159, 95] and support reuse tasks [116, 92, 176, 193, 238],
while more recent work focused on specific software maintenance and development
tasks such as recovery of traceability links. Several approaches have been proposed
to recover traceability links between source code and external documentation using
probabilistic IR, vector space models [36] and LSI [170]. Other work proposed a set of
approaches to recover traceability links among requirements [70, 155], requirements and
source code [115], requirements and test cases [157], etc. A set of tools that integrates
facilities to manage traceability links among different types of software artifacts was
developed and evaluated as well [78].

IR methods have also been successfully used for concept and feature location [172,
243, 200, 198, 87] in the source code. Other approaches use IR methods to classify
software systems based on their source code in open-source repositories [133] as well
as to cluster source code to obtain high-level views of software systems [162, 141].

IR techniques were also used to identify the starting impact set of a maintenance
request [35], and to link change request descriptions to the set of historical file revisions
impacted by similar past change requests [57]. An approach to automatically classify
the type of maintenance activity based on a textual description of changes was also
proposed [179]. IR approaches have been used in the context of software measure-

33

 ferenc.rudolf_87_23

Chapter 4. Conceptual Coupling in Impact Analysis

ment to assess the quality of identifiers and comments [146], measure the complexity
of the underlying software [93], or compute the conceptual cohesion [195, 171] and
coupling [199] of classes.

In addition, IR techniques have been applied to several other tasks, such as iden-
tification of duplicate bug reports [211, 228], classification of software maintenance
requests [78], recommendation rendering for novice programmers [73] and identifying
developer contributions [154].

4.2.3 Impact Analysis Approaches
During software change, programmers need to modify the source code of existing soft-
ware systems. The first step during software change is to identify a part of the source
code that needs to be changed. Once the starting point of the change is identified,
developers need to (recursively) identify all the dependent components that need to
be changed as well. Bohner et al. [47] recognized impact analysis as an activity that
estimates all components to be changed. One of the techniques of impact analysis
was proposed in the work of Queille et al. [203], where an interactive process was sug-
gested, in which the programmer, guided by dependencies among program components
(i.e., classes, functions), inspects components one-by-one and identifies the ones that
are going to change – this process involves both searching and browsing activities.
This interactive process was supported via a formal model, based on graph rewriting
rules [64].

More work appears in [48, 208, 120], where the tools they propose can help navigate
and prioritize system dependencies during various software maintenance tasks. The
work in [120] relates to our approach in that it also uses lexical (textual) clues from
the source code to identify related methods. Several papers presented algorithms that
estimate the impact of a change on tests [210, 137]. A comparison of different impact
analysis algorithms was provided in [190].

Coupling measures have been used to support impact analysis in OO systems [55,
232]. Wilkie and Kitchenham [232] investigated if classes with high CBO coupling
metric values are more likely to be affected by change ripple effects. Although CBO
was found to be an indicator of change-proneness in general, it was not sufficient to
account for all possible changes. The work of Briand et al. [55] investigated the use
of coupling measures and derived decision models for identifying classes likely to be
changed during impact analysis. The results of empirical investigation of the structural
coupling measures and their combinations showed that the coupling measures can be
used to focus underlying dependency analysis and reduce impact analysis effort. On
the other hand, the study revealed a substantial number of ripple effects, which are not
accounted for by the highly (structurally) coupled classes. This work motivated our
quest for novel coupling measures, which use alternative sources of information (i.e.,
text in identifiers and comments) to capture dependencies that are not captured by
the existing structural coupling measures.

4.3 Using IR Methods for Coupling Measurement
Our approach to coupling measurement is based on the hypothesis that modules (or
classes) in (OO) software systems are related in more than one way. The evident and

34

 ferenc.rudolf_87_23

Section 4.3. Using IR Methods for Coupling Measurement

most explored set of relationships is based on data and control dependencies. In addi-
tion to such relationships, classes are also related conceptually, as they may contribute
to the implementation of the same domain concept. In this chapter, we propose a
mechanism, based on IR techniques, to capture and measure this form of coupling,
called conceptual coupling. Our choice of IR technique in this type of application is
LSI, as it was in Chapter 3 as well.

In order to compute the conceptual coupling of classes, the source code of the
software system is converted into a text corpus, where each document contains elements
of the implementations of a method. Comments and identifiers are extracted from the
source code, as well as structural information. The user has an option to choose
the desired granularity (e.g., class or method level) for documents (see more details
in Section 4.5.1). LSI uses this corpus to create a term-by-document matrix, which
captures the distribution of words in the methods. From here, the main idea is very
similar to what we described in Chapter 3.

The definition of – and the methodology for measuring – the conceptual coupling
would not change radically if another IR method was used. The only significant change
would be in the definition of the conceptual coupling between methods, which we will
discuss in the next section).

4.3.1 System Representation and Coupling Measures
In order to define and compute the conceptual coupling measures, we will use the graph
based representation of a software system we presented in Section 3.3.3. The classes
and the methods of a system are defined in definitions 3.1 and 3.2, respectively.

Conceptual coupling between methods can be interpreted as the conceptual similarity
between the methods, thus Definition 3.4 can be (re)used to express the conceptual
coupling between two methods.

As defined, the value of CSM(mk, mj) ∈ [−1, 1], as CSM is a cosine in the LSI
space. In order to comply with the non-negativity property of coupling metrics [53],
we refine CSM as:

CSM1(mk, mj) =
{

CSM(mk, mj) if CSM(mk, mj) ≥ 0
else 0 (4.1)

Definition 4.1: Conceptual Coupling between a Method and a Class (CCMC)
— Let ck ∈ C and cj ∈ C be two distinct (ck ̸= cj) classes in the system. Each
class has a set of methods M(ck) = {mk1, mk2 . . . mkr}, where r = |M(ck)| and
M(cj) = {mj1, mj2 . . . mjt}, where t = |M(cj)|. Between every pair of methods
(mk, mj) there is a conceptual coupling measure – CSM(mk, mj). We define the con-
ceptual coupling between a method mk and a class cj as follows:

CCMC(mk, cj) =

t∑
q=1

CSM1(mk, mjq)

t
, (4.2)

which is the average of the conceptual couplings between method mk and all the
methods from class cj.

Definition 4.2: Conceptual Coupling between two Classes (CCBC) — We
define the conceptual coupling between two classes ck ∈ C and cj ∈ C as:

35

 ferenc.rudolf_87_23

Chapter 4. Conceptual Coupling in Impact Analysis

CCBC(ck, cj) =

r∑
l=1

CCMC(mkl, cj)

r
, (4.3)

which is the average of the couplings between all unordered pairs of methods from
class ck and class cj (ck ̸= cj). The definition ensures that the conceptual coupling
between two classes is symmetrical, as CCBC(ck, cj) = CCBC(cj, ck).

4.3.2 The Conceptual Coupling of a Class
With this system representation, we define a measure that approximates the coupling
of a class in an OO software system by measuring the degree to which the methods of
the class are conceptually related to the methods of the other classes.

Definition 4.3: Conceptual Coupling of a Class (CoCC) — For a class c ∈ C,
conceptual coupling is defined as:

CoCC(c) =

n∑
i=1

CCBC(c, di)

n − 1 , (4.4)

where n = |C|, di ∈ C, and c ̸= di.

If a class c ∈ C is strongly coupled to the rest of the classes in the system, then
CoCC(c) should be closer to one meaning that the methods in the class are strongly
related conceptually with the methods of the other classes. In this case, the class most
likely implements concepts that overlap with concepts implemented in other classes
(which are related in the context of the software system).

If the methods of the class have low conceptual coupling values with methods of
other classes, then the class implements one or more concepts with limited interaction
with the rest of the system. The value of CoCC(c) in this case will be close to zero.

In this form, CoCC does not make any distinction between method types. If needed,
CoCC can be altered to account for overloaded, friend, and other method stereotypes,
as discussed in [49].

4.3.3 The maximum conceptual coupling of a class
If a class c ∈ C has a high CoCC value, one can easily infer that it is strongly related
to most other classes in the system. The opposite conclusion can be inferred if the
CoCC value is low. Little can be said, however, if the CoCC value is neither high nor
low. It is a general drawback of average based metrics. In these cases, we can still
have classes strongly related to c, which are important from a program comprehension
point of view. These strong relationships can also propagate changes between classes.

An analogous logic can be applied to the coupling between two classes (e.g., if two
methods from different classes are conceptually similar, they might need to be changed
in concert).

With that in mind, we refine CoCC to capture only the strongest couplings among
methods. The goal here is to make sure that our measuring mechanism does not miss
classes that are highly coupled even to a part of the system, as developers need to be
aware of such classes. Thus, we define:

36

 ferenc.rudolf_87_23

Section 4.4. Using Coupling Measures for Impact Analysis

CCMCm(mk, cj) = max
{
CSM1(mk, mjt), ∀t = 1..|M(cj)|

}
(4.5)

The maximum conceptual coupling between method mkj and class cj is denoted by
the highest conceptual coupling among all possible pairs of methods between method
mk and all the methods in class cj.

The maximum conceptual coupling between two classes based on CCMCm is de-
fined as the following:

CCBCm(ck, cj) =

r∑
l=1

CCMCm(mkl, cj)

r
(4.6)

The maximum conceptual coupling metric CoCCm for a class c, is then defined as:

CoCCm(c) =

n∑
i=1

CCBCm(c, di)

n − 1 , (4.7)

where n = |C|, di ∈ C, c ̸= di.

4.4 Using Coupling Measures for Impact Analysis
The coupling measures can help order (rank) classes in software systems, based on
different types of dependencies among classes, captured by the coupling measures [55].
Such coupling measures and derived ranks of classes can be computed automatically.
The next section describes probabilistic decision models based on coupling measure-
ment to support impact analysis.

4.4.1 Ranking Classes Using Coupling Measures

For a given class c ∈ C (which may be the starting point of a change, identified by
the programmer based on his experience, or automatically with some feature loca-
tion technique), the other classes in a software system are ranked according to their
strength of coupling to the class c, based on a coupling measure or a combination of
such measures [55]. The list of ranked classes is provided to the developer for further
inspection. Since software systems may be large, sometimes containing thousands of
classes, focusing impact analysis on strongly coupled classes may significantly reduce
the burden on the developer.

In Section 4.2.1 we summarized the best known structural coupling measures. In
the literature, these coupling measures are defined and used at the system level (classic
definitions of coupling measures), meaning that they count, for a given class c, all
dependencies (connections) from c to all other classes in the system. In order to use
the coupling measures for impact analysis, they need to be modified to account for
coupling between pairs of classes only. Table 4.1 shows how we redefined some of the
structural coupling measures. More details on how other structural coupling measures
are redefined on a class pair-wise basis are provided by Briend et al. [55]. Section 4.3.1
provides details on how we defined conceptual coupling measures on a pair-wise basis.

37

 ferenc.rudolf_87_23

Chapter 4. Conceptual Coupling in Impact Analysis

Table 4.1: Examples of redefined structural coupling measures used to rank classes
during impact analysis

Name of the measure Definition

CBO (coupling between
object classes)

Two classes ci ∈ C and di ∈ C are coupled to one another,
if methods of one class use methods or attributes of the other,
or vice versa. CBO is computed as a binary indicator, yielding
1 if ci and di are coupled, else 0.

ICP (information-flow
based coupling)

The number of method invocations in a class ci ∈ C, of met-
hods in a class di ∈ C, weighted by the number of parameters
of the invoked methods. The measure also takes polymorphism
into account.

DAC (data abstraction
coupling)

The number of attributes in a class ci ∈ C that has class
di ∈ C as their type.

4.4.2 An Example of Using Coupling Measures for Impact
Analysis in Mozilla

The following example illustrates how conceptual and structural coupling metrics are
used to rank classes to focus impact analysis. The bug #2325701 reports some prob-
lems associated with “ldap2.server.position values for ab pane and search order” in
Mozilla. In order to fix the bug, the developer needs to find and change classes in the
source code containing this bug. Assume that the starting point of this change, the
class nsAbDirectoryQuery, is identified via some available feature location technique.
Given the starting point, the developer needs to perform impact analysis to identify the
remaining classes in order to complete the change. In our approach, we compute the
set of pair-wise coupling measures for all possible pairs between nsAbDirectoryQuery
and other classes. Using these coupling measures, all the classes in Mozilla are ranked
based on the strength of coupling (different type of couplings are captured by differ-
ent measures) to the nsAbDirectoryQuery class. The idea is that the strongly coupled
classes to the given class are more likely to change [55]. In our example, Table 4.2
provides the list of top classes ranked by the values of two coupling metrics, CCBCm
and ICP. These measures provide the quantitative estimation of the strength of cou-
pling between the class nsAbDirectoryQuery and the classes in Table 4.2. In order
to determine the number of candidate classes suggested for inspection during impact
analysis, different strategies can be used. The most common approaches are to use a
cut point cp (i.e., select the top n classes from the list or the top n%) or a threshold t
(i.e., select all classes that have a coupling value higher/lower than some metric value
t). Combinations of the two approaches are also used. For example the top n% classes
will be retrieved if they have a coupling value higher or lower than t.

In this example, for each metric, a cut point strategy is used (e.g., the top five
classes from each rank list are retrieved).

While using CCBCm for ranking conceptually similar classes to the nsAbDirecto-
ryQuery class, we retrieve five out of 4,853 (see Table 4.2). Two of these classes,
nsAbMDBDirectory and nsAbLDAPDirectory, are among those ten classes in the of-
ficial patch that were changed to fix this bug (nsAbAutoCompleteSession, nsAbBSDi-

1The bug can be accessed in Bugzilla at https://bugzilla.mozilla.org/show_bug.cgi?id=
232570 (verified at 06/04/2023)

38

 ferenc.rudolf_87_23

https://bugzilla.mozilla.org/show_bug.cgi?id=232570
https://bugzilla.mozilla.org/show_bug.cgi?id=232570

Section 4.5. A Case Study on Using Coupling Measures to Support Impact Analysis

Table 4.2: Classes strongly coupled with nsAbDirectoryQuery and ranked according
to CCBCm and ICP coupling measures

Rank CCBCm ICP
Classes Values Classes Values

1 nsAbQueryLDAPMessageListener 0.86 nsDebug 123
2 nsAbMDBDirectory 0.81 nsAFlatString 121
3 nsAbDirectoryQuerySimpleBoolExpression 0.79
4 nsAbLDAPDirectory 0.76
5 nsAbView 0.72

rectory, nsAbCardProperty, nsAbDirProperty, nsAbDirectoryDataSource, nsAbDirecto-
ryProperties, nsAbDirectoryQuery, nsAbLDAPDirectory, nsAbMDBDirectory, nsMsg-
Compose). However, when the ICP metric is used with this cut point, only two classes
are suggested and none of them is among the classes that changed. The precision
and recall for these two metrics is computed as the following. Precision for CCBCm
is 2/5 ∗ 100 = 40% , while recall is 2/9 ∗ 100 = 22% (we use nine classes instead of
ten in the denominator, since one of the classes that changed – nsAbDirectoryQuery
– is already identified and used as a starting point for the impact analysis). None of
the classes that changed have any structural dependencies on nsAbDirectoryQuery that
could have been captured by the ICP measure, though, so the precision and recall for
ICP is zero.

4.5 A Case Study on Using Coupling Measures to
Support Impact Analysis

In this section, we present a case study where we empirically investigated how concep-
tual coupling metrics can be used during impact analysis, as well as compared them
to a set of existing structural coupling measures used for the same task.

4.5.1 Design of the Case Study
The case study is designed in a similar fashion to the one presented in the work by
Briand et al. [55], where a set of structural coupling metrics was used to rank classes
during impact analysis in an OO system. While designing and conducting the case
study, we followed the guidelines from two papers written by Yin and by Flyvbjerg,
respectively [239, 97].

Objectives and Methodology

In this case study, the CCBC and CCBCm measures are compared to nine existing
structural coupling measures (i.e., PIM, ICP, CBO, MPC, OCMIC, DAC, OCAIC,
ACMIC, and ACAIC) to evaluate whether they provide better support for impact
analysis or not. The premise is that given the nature of the information captured (e.g.,
textual information in identifiers and comments) and counting mechanism employed by
CCBC and CCBCm, these measures should capture different aspects of coupling among

39

 ferenc.rudolf_87_23

Chapter 4. Conceptual Coupling in Impact Analysis

classes as compared to the nine existing coupling metrics, which utilize structural
information only.

In the case study, we used the source code of Mozilla v1.6 – as we did in Chapter 3
– since it is large enough (4,853 classes, approximately four million lines of source code
including 738,180 lines of comments) to represent a real-world software system, and it
also comes with an available history of changes.
Our case study addresses the following question:

RQ4.1: Do CCBC and CCBCm provide better support for ranking classes during
impact analysis than any of the following structural coupling measures: PIM, ICP,
CBO, MPC, OCMIC, DAC, OCAIC, ACMIC and ACAIC?

Settings of the Case Study

The setting of the case study is very similar to the one we used in Section 3.4.2. Here,
we only list the differences.

All the structural coupling measures, including pair-wise versions of coupling mea-
sures, were computed using Columbus [6]. The conceptual coupling measures were
computed with the IRC2M tool [199], which can be used with several settings for
the underlying LSI-based analysis. We used a reduction factor of 500 for the Mozilla
software system corpus.

Collecting Change Data in Mozilla for Evaluation

In order to compare conceptual and structural coupling measures for identifying classes
that change together (i.e., changes related to the same bug report and having the same
identification number in the configuration management system) during impact analysis,
we utilized the history of changes in Mozilla. We used Bugzilla2, a bug-tracking system
used in the development of Mozilla, to collect the bugs between two specific versions
(namely, 1.6 and 1.7), and correlated each bug with specific classes.

Although the Bugzilla database contained around 256,613 different bug entries for
all the versions of the system at the time of this experiment, we restricted the scope of
mining only to the bugs that appear between versions 1.6 and 1.7, and that were fixed
(meaning that the bug was officially closed and contained an official patch file with
modifications). In our analysis, we did not consider bug reports for accessory software
systems such as Bonsai, Tinderbox, etc. We extracted 1,021 different bug entries that
satisfied all the aforementioned requirements. By analyzing the patch files, associated
with bug reports, we assigned bugs to particular intervals in the source code. This
could be completed automatically, since each patch file contained the name of the file
that changed, and it described how many lines were deleted from a given line number
and how many lines were inserted at a given line number. Using this line-level change
information, we determined the intervals of actual changes in the file and localized the
bugs to implementations of specific classes in the source code. To ensure that the files
in the patch were changed at the same time, we searched and checked log messages in
the configuration management system to ensure that check-in messages for those files
contained the same identification number, assigned by the Bugzilla system.

After collecting a set of bug reports and sets of changed classes respectively, we
filtered the data to eliminate the bugs that contained only one modified class. After

2http://bugzilla.mozilla.org/

40

 ferenc.rudolf_87_23

http://bugzilla.mozilla.org/

Section 4.5. A Case Study on Using Coupling Measures to Support Impact Analysis

the filtering, we ended up with 391 bug reports, containing on average 7.3 modified
classes (standard deviation: 14.6). In addition to this, we also removed some outliers
in the data. For example, one such outlier was the patch in bug report #2264393,
which contained a record number of 149 modified classes to fix a single bug.

Evaluation Methodology

Our evaluation strategy was to utilize the history of changes observed in Mozilla to
determine whether existing structural and conceptual coupling measures can be used
during impact analysis to identify classes with common changes (i.e., changes in classes
related to the same bug report and having the same bug identification number in the
configuration management system). The history of changes can be used to evaluate
rankings of classes produced with different coupling measures against actual changes
in the software system. We expected that the conceptual coupling measures, namely
CCBC and CCBCm, would be at least as effective as the nine existing coupling measures
in ranking classes during impact analysis.

The evaluation methodology is summarized in the following steps:

• For a given software system, a set of bug reports B = {b1, b2 . . . bn} is mined from
the bug tracking system. The set of classes, which has been changed to fix each
bug (e.g., c(b1) = {c1, c2 . . . cn}) are mined from the configuration management
system.

• For each class in c(bi), pair-wise structural and conceptual coupling metrics are
computed. The values of each metric are used to compute ranks of the remaining
classes in the software system.

• Using a specific cut point criteria (which ranges anywhere from 10 to 500 classes),
defined as cp, select top n classes in each ranked list of results generated by every
metric. For every class in c(bi), which is used in the evaluation, we assess the
effectiveness of identifying relevant classes (i.e., the other classes in c(bi)) via
rankings of specific coupling metric.

• In order to evaluate each coupling measure and compare all the coupling measures
used in the case study, the suggested ranked lists of classes are compared against
classes that were actually changed. Average precision (P), recall (R), and F-
measure (F) for each class in c(bi) for each i = 1..|B| is computed for every
metric (see Section 2.6.3).

4.5.2 Comparing Conceptual and Structural Coupling Met-
rics for Impact Analysis

In order to compare the coupling measures, we followed the evaluation methodology
presented in Section 4.5.1. We computed precision and recall values for each coupling
metric for every class in each of the 391 bug reports. In total, we computed 1,490 preci-
sion and recall values for eleven coupling measures. In addition to this, we studied the
impact of different cut points on precision, recall, and F -measure values for particular
coupling measures.

Our results are presented in tables 4.3, 4.4, and 4.5, containing precision and recall
values for CCBCm, ICP, PIM, CCBC, CBO, MPC, OCMIC, OCAIC, DAC, ACMIC,

3The bug can be accessed in Bugzilla at https://bugzilla.mozilla.org/show_bug.cgi?id=
226439 (verified at 06/04/2023)

41

 ferenc.rudolf_87_23

https://bugzilla.mozilla.org/show_bug.cgi?id=226439
https://bugzilla.mozilla.org/show_bug.cgi?id=226439

Chapter 4. Conceptual Coupling in Impact Analysis

and ACAIC – with different cut points ranging from 10 classes to 500 classes. The
values of pair-wise conceptual and structural coupling measures taken at each cut
point are provided in the Threshold (Thr) column.

Table 4.3: Impact analysis results – 10 to 50 classes

Cut point=10 Cut point=20 Cut point=30 Cut point=40 Cut point=50
Pre Rec Thr Pre Rec Thr Pre Rec Thr Pre Rec Thr Pre Rec Thr

CCBCm 27.8 14.6 0.64 24.7 22.1 0.61 22.4 27.7 0.6 20.3 31.7 0.59 18.36 34.5 0.59
ICP 11.9 6.9 268 10.1 9.7 268 9.3 12 268 8.8 14.2 268 8.6 16.5 268
PIM 11.3 6.6 138 9.84 9.56 138 9.13 11.7 138 8.66 13.8 138 8.52 16.3 138
CCBC 10.8 5.6 0.47 9.5 8.9 0.45 8.1 11.1 0.45 7.2 12.8 0.44 6.7 14.1 0.44
CBO 7.2 6.2 10 5.4 9.4 20 4.1 10.4 30 3.3 10.9 40 2.8 11.3 50
MPC 6.6 5.7 3 3.9 6.7 0 2.8 7.0 0 2.1 7.0 0 1.7 7.0 0
OCMIC 2.0 2.1 2 1.1 2.2 0 0.8 2.3 0 0.6 2.3 0 0.5 2.3 0
OCAIC 1.7 2.0 0 1.0 2.1 0 0.6 2.1 0 0.5 2.1 0 0.4 2.1 0
DAC 1.8 2.0 0 1.0 2.1 0 0.6 2.1 0 0.5 2.1 0 0.4 2.1 0
ACMIC 0.9 0.4 0 0.5 0.4 0 0.3 0.4 0 0.2 0.4 0 0.2 0.4 0
ACAIC 0.8 0.3 0 0.4 0.3 0 0.3 0.3 0 0.2 0.3 0 0.2 0.3 0

Table 4.4: Impact analysis results – 60 to 100 classes

Cut point=60 Cut point=70 Cut point=80 Cut point=90 Cut point=100
Pre Rec Thr Pre Rec Thr Pre Rec Thr Pre Rec Thr Pre Rec Thr

CCBCm 16.6 36.5 0.58 15.3 38.6 0.58 14.2 40.2 0.57 13.4 41.8 0.57 12.62 43.1 0.57
ICP 8.5 18.8 268 7.9 20.1 157 7.3 20.9 69 6.8 21.8 29 6.5 22.8 22
PIM 8.43 18.7 138 7.82 19.9 69 7.23 20.6 30 6.81 21.6 13 6.52 22.6 11
CCBC 6.3 15.5 0.43 5.9 16.5 0.43 5.6 17.7 0.43 5.4 18.8 0.43 5.2 19.8 0.42
CBO 2.4 11.6 60 2.1 11.7 70 1.9 11.8 80 1.7 11.9 90 1.6 12 100
MPC 1.4 7.1 0 1.3 7.2 0 1.1 7.2 0 1.0 7.2 0 0.9 7.2 0
OCMIC 0.4 2.4 0 0.4 2.5 0 0.3 2.5 0 0.3 2.5 0 0.3 2.5 0
OCAIC 0.3 2.2 0 0.3 2.3 0 0.3 2.3 0 0.3 2.3 0 0.2 2.3 0
DAC 0.3 2.2 0 0.3 2.3 0 0.3 2.3 0 0.3 2.3 0 0.2 2.3 0
ACMIC 0.2 0.5 0 0.2 0.6 0 0.2 0.6 0 0.2 0.6 0 0.1 0.6 0
ACAIC 0.1 0.4 0 0.2 0.5 0 0.2 0.5 0 0.1 0.5 0 0.1 0.5 0

Only two of the coupling metrics, CCBC and CCBCm, are normalized (see Sec-
tion 4.3.2), thus we could compute precision, recall, and F -measure values for various
thresholds within the complete spectrum of metric values (see Figure 4.1). The other
coupling metrics are not normalized as they count the total number of coupling con-
nections of a class with other classes in the system (the larger the metric value, the
stronger the coupling between two classes). The only exception is CBO, which has a
binary value indicating if two classes have a coupling connection or not. In the case of
CBO, we based our evaluation on choosing n coupled classes to a given class instead
of using actual metric values (as it is done in the case of other structural coupling
measures).

For each coupling measure, we varied the cut point from 10 to 500 classes. For
instance, in the case of using CCBCm (see Table 4.3) with a cut point of 10 classes, we
obtained a precision of 27.8%, recall was 14.6%, and F -measure was 19.1%. Increasing
a cut point to 20 classes provides more candidate classes, thus decreasing precision to
24.7%, but significantly increasing recall values to 22.1% and increasing F -measure to
23.3%. Also notice that while using a cut point of 10 classes, the CCBCm value for a

42

 ferenc.rudolf_87_23

Section 4.5. A Case Study on Using Coupling Measures to Support Impact Analysis

Table 4.5: Impact analysis results – 200 to 500 classes

Cut point=200 Cut point=300 Cut point=400 Cut point=500
Pre Rec Thr Pre Rec Thr Pre Rec Thr Pre Rec Thr

CCBCm 8.39 52.4 0.55 6.47 58.2 0.54 5.35 62.1 0.53 4.61 65.1 0.52
ICP 4.13 27.3 22 3.26 31.1 22 2.89 34.9 22 2.63 39 22
PIM 4.12 27.1 11 3.25 30.8 11 2.88 34.8 11 2.62 38.9 11
CCBC 3.99 27 0.41 3.44 33.3 0.39 3.16 39.1 0.38 2.98 44.8 0.36
CBO 1.05 13.2 200 1.01 16.1 300 1.0 20.4 400 0.99 26.5 500
MPC 0.72 8.56 0 0.81 11.7 0 1.07 16.3 0 1.22 22.7 0
OCMIC 0.47 4.25 0 0.67 7.98 0 0.97 12.8 0 1.19 20.2 0
OCAIC 0.45 4.15 0 0.66 7.89 0 0.96 12.5 0 1.18 19.9 0
DAC 0.19 2.4 0 0.18 2.41 0 0.18 2.41 0 0.17 2.42 0
ACMIC 0.4 2.41 0 0.64 6.36 0 0.94 11.1 0 1.17 18.5 0
ACAIC 0.4 2.38 0 0.64 6.32 0 0.94 11.1 0 1.17 18.5 0

class is 0.64, which decreases to 0.61 while using a cut point of 20 classes. This means
that the conceptual similarities for ten of the candidate classes are within the [0.61,
0.64] interval.

Analysis of the results presented in tables 4.3, 4.4, 4.5, and 4.6 reveals that CCBCm
is the best coupling measure for ranking classes during impact analysis (in terms of
precision, recall, and F -measure). None of the other coupling metrics achieve the same
magnitude of F -measures (i.e., a maximum of 24.8% for a cut point of 30/40 classes,
and 19.0% on average across all the cut points) for any given cut point. For example,
in the case of using a cut point of 30 classes, using CCBCm recovers around 28% of
the classes that actually changed (recall), and one in five suggested classes is correct
(precision). These are encouraging results, as the source code of Mozilla consist of 4,853
classes and focusing developers on a set of relevant classes can significantly reduce the
amount of time developers spend on impact analysis.

Table 4.6: Impact analysis results – F-measure values (in descending order).

10 20 30 40 50 60 70 80 90 100 200 300 400 500 Avg

CCBCm 19.1 23.3 24.8 24.8 23.9 22.9 21.9 21.1 20.3 19.5 14.5 11.6 9.86 8.62 19
ICP 8.77 9.89 10.5 10.8 11.3 11.7 11.3 10.8 10.4 10.1 7.19 5.91 5.34 4.93 9.22
PIM 8.35 9.7 10.3 10.7 11.2 11.6 11.2 10.7 10.4 10.1 7.15 5.89 5.33 4.93 9.12
CCBC 7.34 9.18 9.38 9.24 9.05 8.94 8.71 8.51 8.39 8.27 6.95 6.24 5.85 5.59 7.97
CBO 6.7 6.85 5.92 5.05 4.45 3.95 3.61 3.28 3.01 2.77 1.96 1.9 2.28 2.54 3.88
MPC 6.16 4.97 3.99 3.24 2.73 2.36 2.15 1.93 1.74 1.59 1.34 1.52 2.01 2.33 2.72
OCMIC 2.06 1.48 1.15 0.92 0.77 0.67 0.68 0.61 0.55 0.5 0.85 1.23 1.8 2.25 1.11
OCAIC 1.85 1.32 0.98 0.78 0.65 0.56 0.59 0.53 0.48 0.43 0.82 1.23 1.79 2.24 1.02
DAC 1.88 1.34 0.93 0.81 0.67 0.53 0.53 0.53 0.53 0.37 0.35 0.33 0.33 0.32 0.68
ACMIC 0.56 0.43 0.35 0.29 0.25 0.23 0.29 0.26 0.24 0.22 0.69 1.16 1.73 2.2 0.64
ACAIC 0.43 0.33 0.27 0.23 0.2 0.19 0.26 0.23 0.21 0.2 0.69 1.15 1.73 2.2 0.6

The results for using only structural coupling measures for the same task are less
encouraging. The second best metric after CCBCm is the structural ICP (based on
the average F -measure, see Table 4.6), which captures information flow based coupling.
This coupling measure captures the number of invocations in a class ci ∈ C, of methods
in a class di ∈ C, weighted by the number of parameters of the invoked methods, and
also taking polymorphism into account. While using the cut point of 20 classes, the
precision of identifying relevant classes using ICP is 10.1%, recall is 9.7%, and F -

43

 ferenc.rudolf_87_23

Chapter 4. Conceptual Coupling in Impact Analysis

Figure 4.1: Results of using CCBCm and CCBC to rank classes during impact analysis,
based on different thresholds. (The number of classes we actually retrieved for every
threshold is given in parenthesis)

measure is 9.89%. The best value of the F -measure for ICP (11.7%) is obtained while
using a cut point of 60 classes (see Table 4.6).

The next metric after ICP is PIM, which captures the number of method invocations
in class ci ∈ C of methods in class di ∈ C. The measure also takes polymorphism into
account. For example, when using the first twenty classes with the highest PIM values
as a cut point, the precision of identifying relevant classes is 9.84%, recall is 9.56%,
and the F -measure is only 9.7%. The best value of the F -measure for PIM (11.6%) is
obtained – again – while using a cut point of 60 classes. PIM has been shown to be
a relatively effective coupling measure (as compared to other structural measures) to
rank classes during impact analysis in other case studies [55].

The MPC coupling measure shows higher precision values compared to the others
in some cases (more than 7%), however it has low recall (around 2% on average) for
all of the studied cut points.

44

 ferenc.rudolf_87_23

Section 4.6. Threats to Validity

The other coupling measures, namely CBO, DAC, ACAIC, ACMIC, OCAIC and
OCMIC have low precision and recall values (less than 10%) for all of the computed
cut points.

While CCBC uses the same type of information as CCBCm, it uses a different
counting mechanism – it is based on average similarities as opposed to the strongest
coupling link between classes. According to the results we saw so far, CCBCm signifi-
cantly outperforms CCBC. Moreover, CCBC is outperformed by some of the structural
coupling measures such as ICP and PIM as well.

Answer to RQ4.1: The results show that CCBCm is a useful indicator (the best
among the coupling measures we studied) of an external property of classes in OO
systems – change proneness. This coupling measure can be effectively used to rank
relevant classes during impact analysis in OO systems.

CCBCm performed better on average than any of the structural metrics we com-
pared it to. While we do not investigate the extent to which structural and conceptual
coupling measures complement each other in this case study, there is a noticeable po-
tential in combining these coupling measures for ranking classes during impact analysis.

4.5.3 Testing Statistical Significance of Differences Among
Precision and Recall Values

In order to compare values of precision and recall for the coupling measures for each
of the cut points and conclude whether or not the difference is statistically significant,
we executed the Kruskal-Wallis test (see Section 2.5.3) for all of the coupling measures
(results in Table 4.7).

Table 4.7: The results of running two Kruskal-Wallis tests for precision (Test 1) and
recall (Test 2) values of eleven coupling metrics across the different cut points

Test 1
Precision

Test 2
Recall

H (observed value) 126.55 110.905
H (critical value) 18.31 18.307
DF (degrees of freedom) 10 10
One-tailed p-value < 0.0001 <0.0001
Alpha 0.05 0.05

In both tests, at the level of significance for alpha=0.05, the decision was to reject
the null hypothesis of absence of differences between even metric values. In other
words, both tests have shown that the differences between precision (first test) and
recall (second test) values for eleven coupling metrics were statistically significant.

4.6 Threats to Validity
We identify several issues that affects the results of our case study and might limit the
generalizability of our interpretations.

In the case study, we considered only structural metrics that were based on the
static information obtained from the source code. The results can differ to some extent
if dynamic coupling measures are used [39, 177].

45

 ferenc.rudolf_87_23

Chapter 4. Conceptual Coupling in Impact Analysis

The conceptual coupling measures depend on rational naming conventions for iden-
tifiers and comments in source code. When these are missing, – as we mentioned in the
previous chapter as well – the only hope for measuring any aspects of coupling rests
on the structural coupling measures.

Additionally, CCBC and CCBCm, as they are currently defined, do not take ei-
ther polymorphism or inheritance into account. The measures – similarly to C3 in the
previous chapter – only consider methods for a class that are implemented or over-
loaded within the class. One of the solutions, which accounts for inheritance, consists
of extending the measures to include the source code of inherited methods into the
documents of derived classes, as it is done by Kuhn et al. [141].

In our case study, we used one large software system, while to allow for generaliza-
tion of results, large-scale evaluation is necessary. Several releases of software systems
from different domains, developed using different programming languages should also
be taken into account.

Also, our evaluation is based on the class changes extracted from patches in related
bug reports. This could have impacted the evaluation procedure as these patches may
contain incomplete information about which classes actually changed, or the changes
could have introduced other bugs. We alleviate this issue by considering only patches
that are officially approved by module owners in Mozilla.

4.7 Conclusions
This chapter defines a novel set of operational measures for the conceptual coupling of
classes, based on IR, which are theoretically valid and empirically studied. Moreover,
one of the conceptual coupling measures – CCBCm – appears to be a superior indicator
of change ripple effects as compared to existing structural coupling measures, and it
can be effectively used to rank classes of a large OO system during impact analysis.

Contribution
This chapter is based on the publication:
• Denys Poshyvanyk, Andrian Marcus, Rudolf Ferenc, and Tibor Gyimóthy. Using
information retrieval based coupling measures for impact analysis. Empirical Software
Engineering, 14(1):5–32, February 2009. Springer Nature. [23]

Similarly to the research referenced in Chapter 3, defining and calculating the con-
ceptual metrics was done by my co-authors, while the design, management, and evalu-
ation of the case study was my responsibility. Moreover, the source code analysis and
computation of structural coupling metrics for Mozilla was my work as well.

Some of my other notable papers that were inspired by this result:

• Gábor Szőke, Gábor Antal, Csaba Nagy, Rudolf Ferenc, and Tibor Gyimóthy. Empirical study on
refactoring large-scale industrial systems and its effects on maintainability. Journal of Systems and
Software, 129(C):107–126, July 2017. Elsevier. [25]

• Péter Hegedűs, István Kádár, Rudolf Ferenc, and Tibor Gyimóthy. Empirical evaluation of
software maintainability based on a manually validated refactoring dataset. Information and Software
Technology, March 2018. Elsevier. [17]

46

 ferenc.rudolf_87_23

5
New Conceptual Coupling and Cohesion

Metrics

5.1 Introduction
In Chapter 3 and Chapter 4, we introduced coupling and cohesion measures that cap-
ture the degree of interaction and relationships among source code elements, such as
classes, methods, and attributes in object-oriented (OO) software systems. One of the
main goals behind OO analysis and design is to implement a software system where
classes have high cohesion and low coupling among them. These class properties facil-
itate comprehension activities, testing efforts, reuse, and maintenance tasks.

The vast majority of coupling and cohesion metrics abound in the literature relies
on structural information, which captures relations, such as method calls or attributes
usages. These metrics have been proved useful in different tasks, such as assessment of
design quality [40, 56], impact analysis [55, 23, 232], prediction of software quality [146],
and faults [90, 16, 202], identification of design patterns [37, 5] etc. As we have already
seen, however, these structural metrics lack the ability to identify conceptual links,
which, for example, specify implicit relationships encoded in identifiers and comments
in the source code.

In this chapter, we further investigate the usefulness of conceptual metrics and we
propose two new ones, namely Conceptual Coupling between Object Classes (CCBO)
and Conceptual Lack of Cohesion of Methods (CLCOM5). The proposed metrics are
different from the conceptual cohesion and coupling metrics presented in chapters 3
and 4 as they utilize different counting mechanisms inspired by peer structural cohesion
and coupling metrics (LCOM5 and CBO, respectively).

In order to evaluate the proposed metrics, we compare CCBO and CLCOM5 against
a large host of existing structural and conceptual coupling metrics for predicting faults
in a large open-source software system. Furthermore, we perform a comprehensive
empirical evaluation of other parameters, including the impact of pre-processing tech-
niques. These parameters also impact the performance of other existing conceptual
metrics, such as C3 (see Chapter 3) and CoCC (see Chapter 4). The results of our

47

 ferenc.rudolf_87_23

Chapter 5. New Conceptual Coupling and Cohesion Metrics

empirical study indicate that not only can CCBO and CLCOM5 be used to build
operational models for predicting the fault-proneness of classes, but they can also be
effectively used in conjunction with other structural metrics to improve overall accuracy
of bug prediction models.

This chapter offers the following contributions:

• We defined two new conceptual cohesion and coupling metrics, which are easier
to compute than their structural counterparts.

• We carried out an extensive empirical study of 61 software metrics, including
the newly proposed measures, to build models for fault prediction using machine
learning and logistic regression analyses.

• We empirically studied a range of parameters that can impact the performance
of CCBO and CLCOM5, such as corpus stemming and parameterized thresholds.

• We developed an online appendix summarizing the results of our empirical study
to facilitate the development and comparison of conceptual metrics, as well as
the reproducibility of our results.

5.2 Related Work
Our related work can be broadly classified into two areas – conceptual cohesion and
coupling metrics, and predicting the fault-proneness of classes.

Conceptual cohesion and coupling metrics were introduced in chapters 3 and 4,
respectively, thus the corresponding related work for these topics can be found in
sections 3.2 and 4.2. However, some additional related work is also listed here.

WME is a conceptual cohesion metric based on Latent Dirichlet Allocation and
information theory approaches [21]. This cohesion metric has been shown to capture
different aspects of class cohesion and improve fault prediction for most existing cohe-
sion metrics. While building comprehensive models for fault prediction was not at the
focus of papers presenting conceptual metrics, this chapter not only introduces new
metrics, but also explores their role in building complete models for fault prediction.

Existing research showed that software metrics can be used as good indicators for
the fault-proneness of classes in OO systems [39, 41, 50, 56, 90, 16, 187, 202, 222].
More specifically, some of the existing approaches also utilized machine learning [16]
and logistic regression analyses [39, 41, 50, 56, 16, 187, 222] to build metric-based
models for fault prediction. We have also investigated the usefulness of the C3 metric
in fault prediction in Chapter 3. This chapter, however, defines new conceptual metrics
for class cohesion and coupling, which appear to be an improvement over the state-of-
the-art.

The chapter also explores a set of machine learning techniques and regression anal-
yses to test a number of models based on the combinations of structural and conceptual
metrics along with the detailed investigation into principal factors impacting the perfor-
mance of the conceptual metrics. Finally, prediction of fault-prone classes – or simply,
bug prediction – is an active area of research that produced quite a few research papers
in the last decade. Besides conference and journal publications on the topic, specialized
conferences were organized such as PROMISE1 and MSR2 with their specialized data
sets for predicting fault-prone classes in software.

1http://promisedata.org
2https://www.msrconf.org

48

 ferenc.rudolf_87_23

http://promisedata.org
https://www.msrconf.org

Section 5.3. Conceptual Metrics

5.3 Conceptual Metrics
Our approach to measuring coupling and cohesion relies on the assumption that the
methods and classes of OO systems are connected in more than one way. While the
most explored and evaluated set of relations among methods and classes are based on
data and control dependencies, we rely on an orthogonal type of relationships, known
as conceptual dependencies, to capture the conceptual cohesion and coupling of classes.

Conceptual coupling and cohesion metrics extract, encode, and analyze the semantic
information embedded in the comments and identifiers in software (as it was shown
in the previous chapters). Software developers utilize the comments and identifiers to
represent elements of the problem or solution domain [59, 81]. While the C3 and CoCC
metrics also capture this information, we augment the family of conceptual metrics with
two new members, namely CCBO and CLOM5. These rely on the same underlying
mechanism of LSI to extract and analyze the conceptual information (see Section 2.4).

5.3.1 Definitions
The definition of an OO system with its classes and the methods contained by the
classes can be found in definitions 3.1 and 3.2, respectively. The graph representation
of an OO system was described in Definition 3.3.

The conceptual similarity between methods (CSM) was expressed in Definition 3.4.
As defined, the value of CSM(mk, mj) ∈ [−1, 1], as CSM is a cosine similarity in the
LSI space. In order to fulfill non-negativity property of software metrics [53], we refined
CSM and introduced the definition of CSM1 in Section 4.3.1. We defined the CCBC
metric in Definition 4.2 as the conceptual coupling (similarity) between two classes.

In this chapter, we define conceptual cohesion and coupling metrics utilizing count-
ing mechanisms stemming from existing structural metrics, which are sensitive to the
input information such as nodes and edges (e.g., methods and attribute references).
Thus, in this section we introduce the notion of parameterized conceptual similar-
ity, which distinguishes among significant and non-significant conceptual interactions
among methods of classes.

Definition 5.1: Parameterized Conceptual Similarity — We conjecture that it
is possible to empirically derive a threshold for a given software system to distinguish
between strong and weak conceptual similarities. More formally, we define parameter-
ized CSMP and CCBCP as:

CSMP (mk, mj, t) =
{

1 if CSM1(mk, mj) ≥ t
else 0 (5.1)

CCBCP (ck, cj, t) =
{

1 if CCBC(ck, cj) ≥ t
else 0 (5.2)

Of course, the particular threshold t depends on the specific software system. We
previously experienced that the absolute value of the cosine similarity can not be used
as a reliable indicator of either the presence or the absence of a conceptual relationship
among pairs of methods; more comprehensive analysis of similarity distributions is
required. One of the main research questions in our empirical evaluation is centered on
empirically deriving such a threshold and analyzing the impact of that choice on the
resulting metrics.

49

 ferenc.rudolf_87_23

Chapter 5. New Conceptual Coupling and Cohesion Metrics

5.3.2 Conceptual Lack of Cohesion in Classes
In this section, we define our first metric, namely CLCOM5, using CSMP (see Def-
inition 5.1) as the foundation for computing conceptual similarities among methods
of classes. However, in terms of the counting mechanism, we also heavily rely on one
of the ideas from previously defined structural cohesion metrics, namely the graph-
based LCOM5 [117]. The main difference between CLCOM5 (our new metric) and C3
(from Chapter 3), is that we define a parameterized metric using a different counting
mechanism:

CLCOM5(c, x) = NoCC(G), (5.3)

where NoCC identifies the number of connected components in the graph GC =
(M(c), E), c ∈ C, E ⊆ M(c) × M(c), and (mk, mj) ∈ E if CSMP (mk, mj, t) = 1.

5.3.3 Conceptual Coupling between Object Classes
The definition of CCBO is inspired by the well-known CBO metric introduced by
Chidamber and Kemerer [66, 67]. The definition relies on previous definitions for
the CoCC metric, more concretely it uses the CCBCP , the parameterized conceptual
coupling between two classes according to Definition 5.1.

We define the Conceptual Coupling between Object Classes c as the following:

CCBO(c, t) =
∑

ck∈C,c̸=ck

CCBCP (c, ck, t), (5.4)

which is the sum of the parameterized conceptual couplings between a class c and all
the other classes in the system.

5.4 Empirical Case Study
In this section, we present the design of the empirical case study aimed at comparing
CLCOM5 and CCBO with other structural and conceptual coupling metrics for the
task of predicting bugs in open-source software, as well as identifying and analyzing
various factors impacting the performance of the proposed measures. The description
of the study follows the Goal-Question-Metrics design presented in [42]. The data,
which has been used to generate the results, was previously used in Chapter 4.

5.4.1 Definition and the Context
Our primary goals include comparing our new conceptual metrics against existing cou-
pling and cohesion metrics and determining whether combining both categories could
support the task of predicting bugs in large open-source software. In this empirical
study, the quality focus was on establishing orthogonality among CCBO, CLCOM5,
and existing coupling and cohesion metrics, and improving on the accuracy of bug
prediction, while the perspective was of a software developer analyzing a release of
a software system for possible faults. The context of this case study consists of a
large open-source software system, that is, Mozilla (as it did in the previous chapters).
As earlier, we analyzed only C++ classes from the source code and computed CCBO,
CLCOM5, and other structural and conceptual metrics among object-oriented classes
implemented in C++ only.

50

 ferenc.rudolf_87_23

Section 5.4. Empirical Case Study

Cohesion and coupling metrics

In order to determine whether the newly proposed metrics capture new dimensions
in coupling measurement, we selected 61 exiting structural and conceptual metrics
for comparison, including coupling metrics (e.g., CBO, RFC), cohesion metrics (e.g.,
Coh, Coh, LCOM1, LCOM2, LCOM3), and the CK [66] metrics suite as well as other
metrics implemented in Columbus [6]. In addition to these structural metrics, we
also considered the C3 conceptual cohesion metric introduced in Chapter 3. Another
guiding criterion we used to choose the metrics is the availability of results reported
for these metrics elsewhere in the literature [56, 16] to facilitate systematic comparison
and evaluation of the results.

Building and indexing text corpora

In order to compute CCBO and CLCOM5, we first needed to generate a correspond-
ing corpus for the software system. To build such a corpus for Mozilla, we extracted
the textual information (e.g., identifiers and comments) from the source code using
method level granularity, where each document in the corpus represents a method
from the software system (i.e., a sequence of identifiers and comments implementing
the corresponding method). More specifically, we extracted the following textual infor-
mation: (1) comments, (2) local and attribute variable names, (3) user defined types,
(4) methods names, (5) parameter lists, and (6) names of the methods that were called.
It should be noted that the comments preceding or proceeding the code have been ex-
tracted using similar heuristics to [96], which have been implemented in our Columbus
reverse engineering framework. Finally, we opted for not including the names of the
primitive types in the corpus and we considered those to be a part of our stop word list.
Once a corpus is built this way, we index it through LSI using the term-by-document
co-occurrence matrix corresponding to the corpus.

Settings of the Case Study

All the structural coupling measures were computed using Columbus [6]. In this case
study, we used the compiler wrapper technology of Columbus to extract the facts
from Mozilla’s source code [10]. The textual information needed to compute CCBO
and CLCOM5 has been also extracted using the Columbus framework. We used a
cross-platform numerical analysis and data processing library ALGLIB3 to compute
the Singular Value Decomposition, which is needed for the LSI algorithm.

We used mostly the same case study settings as in Section 3.4.2. However, one
major difference here is that we built various corpora with and without stemming to
study its impact on the metrics.

Predicting Faults Using Machine Learning Algorithms and Software Metrics

In order to evaluate the usefulness of our metrics, we conducted a number of analyses
to discover possible relationships between the values of the metrics and the number
of bugs found in Mozilla’s classes through regression analysis methods and machine
learning techniques. See Section 2.6 for more information on these topics.

3http://www.alglib.net

51

 ferenc.rudolf_87_23

http://www.alglib.net

Chapter 5. New Conceptual Coupling and Cohesion Metrics

Note that while logistic regression predicts if a class is faulty or not, it does not infer
a probable number of bugs in classes. We used univariate logistic regression analysis
to examine each metric separately, and multivariate analysis to study the common
effectiveness of the combinations of various metrics (as we also did in Chapter 3).

In addition to regression analyses, we utilized machine learning methods to predict
the fault-proneness of classes. In particular, we used Naïve Bayes, Bayesian Logistical
Regression, Bayes Net, Logistic Regression, RBF Network, Simple Logistic Regression,
SMO, IB-k, Conjunctive Rule, Decision Table, ADTree, and REP Tree, all implemented
in Weka [109].

All the models were trained to provide binary predictions, which implies that they
predict if a class is prone to be faulty or not based on the values – or combination of
values – of particular metrics. In order to estimate the performance of the predictive
models we generated, we utilized ten-fold cross-validation. As for the training bug data,
we repurposed the bug data that was collected and used in our previous work [16].

5.4.2 Research Questions
We address the following research questions within the context of this empirical study.

• RQ5.1: Are the new metrics, CCBO and CLCOM5, orthogonal to existing struc-
tural and conceptual coupling and cohesion metrics?

• RQ5.2: How does stemming impact accuracy of CCBO and CLCOM5 for pre-
dicting the fault-proneness of classes?

• RQ5.3: What is the optimal threshold for CCBO and CLCOM5 for predicting
fault-prone classes?

• RQ5.4: Does combining CCBO and CLCOM5 with existing structural and con-
ceptual cohesion and coupling metrics improve the accuracy of predicting fault-
prone classes?

5.4.3 Case Study Results
RQ5.1 – Results of the principal component analysis

PCA was performed on 3,625 classes from Mozilla (i.e., classes for which we could
compute all the metrics) with 61 structural and conceptual metrics. While the complete
results are too lengthy to be presented here, we summarize some of the results, and
provide the link to the complete results in the online appendix4, which also contains
the brief explanations of the metrics mentioned in the following.

The PCA resulted in 11 Principal Components (PCs) that describe 87.6% of the
variance in our data set. We provide the top four PCs with their interpretations:

PC1 (27%): There are several metrics which were included in this component: cohe-
sion metrics LCOM-LCOM5, NLMA, NLMAni and our CLCOM5, size metrics NML,
NMLD, NAML, NAL, NMLDpub, NMLpub, LOC, lLOC, coupling metrics NFMA,
NOI and RFC, and the WMC complexity metric. These clusters of the results are
consistent with previous work with some changes in the rankings of the PCs [56].

PC2 (21%): This component was comprised of several coupling metrics RFC1, RFC2
and RFC3, inheritance-based metrics AID, DIT, NOA, NMI and various size metrics,
such as, NM, NMpub, NMprot, NMD, NMDpub, NMDprot, NAM.

4http://www.cs.wm.edu/semeru/scam10-conceptual-metrics

52

 ferenc.rudolf_87_23

http://www.cs.wm.edu/semeru/scam10-conceptual-metrics

Section 5.4. Empirical Case Study

PC3 (7.2%): This component was described mostly by NMLDpriv, NMDpriv, NML-
priv and NMpriv metrics. As it can be seen in the results for the other research ques-
tions, these metrics’ prediction performance was quite offset from the other variants of
these metrics, i.e., NMLDpub, NMLDprot.

PC4 (6%): This component consisted of the structural cohesion Co1, Co2, and Coh
metrics, as well as the CCBO and C3 conceptual metrics.

In addition to the PCA, we also analyzed correlations among the metrics. While
we pinpoint a few interesting observations in this paper, we refer the interested reader
to the online appendix for the complete analysis results.

CCBO correlated with CLCOM5 with a coefficient of 0.41 and a few other structural
metrics, such as Coh, CBO, RFC with a coefficient between 0.4 and 0.5. On the other
hand, CLCOM5 was highly correlated with many other structural metrics such as LOC,
LLOC, NOI, CBO, RFC, and WMC with correlation coefficients above 0.7. These
results indicate that the new conceptual cohesion and coupling metrics are closer to
structural metrics as previously defined conceptual metrics, such as C3. This result
can be interpreted as a positive result as conceptual metrics are less expensive to
compute compared to many structural metrics, and they do not depend on the specific
programming language either.

RQ5.2 – Identifying the impact of stemming on CCBO and CLCOM5 metrics
for predicting fault-prone classes

The conceptual metrics rely on the quality of the underlying comments and identifiers
in the source code as well as specific pre-processing strategies used to transform the
corpus before indexing. While previous research did not look closely into this important
factor, we perform close investigation of the impact of stemming on the performance
of conceptual metrics and their combinations with structural metrics to identify fault-
prone classes. The goal of this investigation is to identify whether stemming helps in
building better models for predicting faults, which utilize conceptual metrics.

Table 5.1: Ten-fold cross validation of conceptual & structural metrics with & w/o
stemming for predicting faults

ML Algorithm Conceptual-no-stem All-metrics-no-stem Conceptual-with-stem All-metrics-with-stem

A P R F A P R F A P R F A P R F

Bayesian Log. Reg. 68.3 70.5 69.1 69.8 71.8 76.7 67.3 71.7 68.8 70.4 71.2 70.8 71.5 71.5 74.7 72.3
Bayes Net 67 64.7 83.4 72.8 70.5 72.5 71.5 72 67.3 65 83.1 73 70.5 72.4 71.8 72.1
Naïve Bayes 68.1 67.9 75.9 71.7 69.2 73.1 66.3 69.6 68.5 67.9 77.2 72.3 69.1 73.1 66.3 69.5
Logistic Regression 67.6 73.6 61 66.7 72.5 76.6 69.5 72.8 67.9 72.6 63.4 67.7 72.4 77 68.4 72.4
RBF Network 67.1 70.1 66.4 68.2 69.3 70.7 71.9 71.3 68.7 68.8 75.1 71.8 69.7 71.9 70.5 71.2
Simple Logistic 67.6 73.5 60.9 66.6 72.1 75.9 69.6 72.6 67.8 72.6 63.4 67.7 71.8 75.6 69.2 72.3
SMO 67.8 73.8 61.1 66.9 72.4 76.2 69.8 72.8 68 72.5 64.1 68 72.2 76 69.7 72.7
IB-k 66.6 67.9 70.3 69.1 71.2 73.1 72.5 72.8 68.8 70.5 70.9 70.7 72.7 74.5 73.8 74.2
Conjunctive Rule 65.8 79.9 47.6 59.6 69.6 81.8 55 65.8 64.5 73.1 52.6 61.2 69.5 82.1 54.3 65.4
Decision Table 67.8 65.8 81.9 73 70.3 73.6 68.5 71 68.1 66.5 80.7 72.9 70.5 74.3 67.9 71
AD Tree 68.4 65.9 84.2 73.9 70.9 72.8 72.3 72.5 68.3 65.7 84.6 74 71 74.4 69.3 71.7
REP Tree 67.3 67.8 73.2 70.4 71.2 72.6 73.6 73.1 67.6 68.5 72.3 70.3 70.6 72.2 72.6 72.4

The results of the ten-fold cross-validation of various configurations of the models
– with & without stemming – are presented in Table 5.1. The first part of the table
presents the results of applying several machine learning techniques for predicting bugs
in Mozilla using three conceptual metrics (i.e., CCBO, CLCOM5 and C3) without
stemming. As it can be seen, the performance of these models in terms of accuracy (A),

53

 ferenc.rudolf_87_23

Chapter 5. New Conceptual Coupling and Cohesion Metrics

precision (P), recall (R), and F-measure (F) are quite high as compared, for instance,
to a random classifier. While the performance of the metrics are rather consistent
across various machine leaning algorithms, we identify that the AD Tree algorithm
produces the highest accuracy, recall and F-measure values (i.e., 68.4%, 84.2%, and
73.9%, respectively), while Conjunctive rule achieves the highest precision.

It should also be noted that the results of combining new conceptual metrics (with-
out stemming) for predicting fault-proneness is comparable to the combination of struc-
tural metrics (see Table 5.2). Furthermore, the models based on conceptual metrics
are able to outperform the models based on structural metrics in terms of recall and
F-measure (i.e., 84.2% vs. 73%, and 73.9% vs. 72.4%, respectively).

When we compare the results of combining all the metrics (i.e., all-metrics-no-stem
in Table 5.1) against conceptual metrics without stemming (i.e., conceptual-no-stem in
Table 5.1), we can observe slight improvement in the accuracy (i.e., 72.5% vs. 68.4%)
and precision (i.e., 81.8% vs. 79.9%), while the best recall and F-measure values are
obtained with conceptual metrics (i.e., 84.2% and 73.9%, respectively).

Table 5.2: Ten-fold cross validation of the structural metrics for predicting fault-
proneness

ML Algorithm A P R F

Bayesian Log. Reg. 70.5 71.8 73 72.4
Bayes Net 69.9 72.1 70.6 71.4
Naïve Bayes 69.1 73.2 66.1 69.5
Logistic Regression 72.1 76.6 68.5 72.3
RBF Network 68.9 75 62.1 67.9
Simple Logistic 71.7 75.2 69.9 72.3
SMO 71.4 74.7 69.9 72.2
IB-k 70.2 72.3 71 71.6
Conjunctive Rule 70.1 81.7 56.4 66.7
Decision Table 70.6 75.3 66.5 70.7
AD Tree 70.9 75.2 67.5 71.1
REP Tree 70.5 72.9 70.5 71.7

According to the results, applying stemming (see conceptual-with-stem in Table 5.1)
leads to improvements in the case of accuracy, recall, and F-measure. Moreover, we can
observe that this improvement is consistent for these parameters across the different
machine learning algorithms we utilized. We can also observe a noticeable improvement
in recall and F-measure for conceptual metrics with stemming over structural metrics.

Finally, the results for combining conceptual metrics with stemming and all the
structural metrics (all-metrics-with-stem in Table 5.1) leads to the conclusion that this
combination produces the best values across all of accuracy, precision, recall, and F-
measure (i.e., 72.7%, 82.1%, 74.7%, and 74.2%, respectively). Likewise, the models
with all the metrics and stemming outperforms the model based on a combination of
pure structural metrics (see all-metrics-with-stem in tables 5.1 and 5.2).

Based on these results, we conclude that stemming does improve the results for
predicting fault-prone classes. To the best of our knowledge, this is the first research
result in the literature that empirically confirms the positive impact of stemming on
conceptual metrics as they are applied to predict an external software quality attribute,

54

 ferenc.rudolf_87_23

Section 5.4. Empirical Case Study

such as the fault-proneness of classes. According to this, we apply stemming from this
point forward to answer the remaining two research questions.

RQ5.3 – Identifying the optimal thresholds for CCBO and CLCOM5 for
predicting the fault-proneness of classes

CCBO and CLCOM5 are parameterized metrics that depend on the threshold t to
identify conceptual similarities among methods. While we used a default threshold of
0.7 to answer RQ5.2, it is necessary to identify acceptable values of this parameter for
the given task. We acknowledge that the process of identifying an optimal threshold
could be software system specific, thus, we present the results for Mozilla only.

Figure 5.1: CLCOM5 (left) and CCBO (right) accuracies across different thresholds

In order to search for the optimal thresholds for CCBO and CLCOM5 metrics on our
dataset, we computed accuracy values of the metrics across various thresholds starting
from 0.05 until 0.95 with a step of 0.05. It should be noted that we used a reduced
set of machine learning algorithms in this case, which corresponded to the subset of
algorithms indicating a superior performance in RQ5.2. According to our results (see
Figure 5.1), it can be seen that the thresholds for CLCOM5 resulting in the accuracy
of at least 64% reside in the interval [0.3, 0.95], whereas the peak performance of 68.5%
in accuracy is observed in the interval of [0.7, 0.8]. These results are consistent across
all the machine learning algorithms used in this situation.

On the other hand, the accuracy of CCBO is more sensitive to threshold values as
compared to CLCOM5. Here, we observe that the accuracies of the algorithms slowly
decline from the 0.05 threshold onward. This finding is quite interesting, suggesting
that we should assign higher thresholds for the CLCOM5 cohesion metric and lower
thresholds for the CCBO coupling metrics to warrant a better prediction accuracy of
fault-proneness.

While using the best thresholds (see Table 5.3) for CLCOM5 and CCBO, we ob-
served some improvement in CLCOM5 over LCOM5 in terms or accuracy (i.e., 68.8%
vs. 64.6%), recall (i.e., 72.2% vs. 71.3%) and F-measure (i.e., 70.8% vs. 68.1%). CCBO
appears to be better at recall (i.e., 74.6% vs. 72.8%). Finally, both new conceptual
measures outperform the C3 measure in terms of accuracy, precision, and F-measure.

55

 ferenc.rudolf_87_23

Chapter 5. New Conceptual Coupling and Cohesion Metrics

Table 5.3: Ten-fold cross validation of CLCOM5, LCOM5, CCBO, and C3 for predict-
ing faults in classes

Algorithm CLCOM5; t=0.75 LCOM5 CCBO; t=0.1 CBO C3

A P R F A P R F A P R F A P R F A P R F

Naïve Bayes 68.8 71 69.8 70.4 62.8 66.8 59.3 62.8 67.3 68.8 70.3 69.5 71.9 73.9 72.8 73.3 65.4 63.3 83.2 71.9
Bayesian Log. Reg. 68.7 70.2 71.4 70.8 61 69.7 46.9 56.1 67.3 68.4 71.5 69.9 71.9 74.1 72.4 73.2 55.3 54.4 97 69.8
Simple Logistic 67.6 73.5 61 66.6 64.6 65.2 71.3 68.1 66.8 66.7 74.6 70.5 71.9 74.1 72.4 73.2 55.4 54.5 97 69.8
IB-k 68.3 69.4 72.2 70.8 64.6 65.4 70.9 68 64.9 64.8 74.2 69.2 71.9 74.1 72.4 73.2 65.6 63 85.3 72.5
Conjunctive Rule 66.5 73.4 57.9 64.7 64.6 65.2 71.3 68.1 67.4 68.9 70.5 69.7 70.5 77.7 62.3 69.2 61.8 58.5 96.5 72.8
AD Tree 68.7 70.2 71.4 70.8 64.6 65.2 71.3 68.1 67.1 68.6 70.3 69.4 71.9 74.1 72.4 73.2 65.5 63.3 83.1 71.9

RQ5.4 – Results of combining CCBO and CLCOM5 with structural and
conceptual metrics for fault-proneness.

Lastly, we tested if combining CCBO, CLCOM5, and structural metrics improves the
performance of models for fault prediction as compared to combinations of C3 and
structural metrics (see Table 5.4).

Based on the results, we conclude that prediction models using a combination of
CCBO and CLCOM5 with structural metrics are more robust than combinations of
the existing conceptual metric C3 and structural metrics. We derive these conclusions
based on the analysis of the average results of accuracy, precision, and recall measures.

Table 5.4: Combining CCBO and CLCOM5 with structural (left), and C3 & structural
metrics (right)

Algorithm CCBO,
CLCOM5+struct C3+struct

A P R A P R

Bayes. Log. Reg. 71.6 74.8 70.1 71.7 73.1 73.9
Bayes Net 70.7 72.6 72 70.3 72.3 71.6
Naïve Bayes 69.2 73 66.5 68.9 73 65.9
Logistic Reg. 72 75.8 69.6 71.8 76.3 68.1
RBF Network 69.8 72.4 69.8 69.8 72.4 69.5
Simple Logistic 71.6 75.5 69 71.9 75.6 69.5
SMO 72 74 72.7 72.1 75.6 70.1
IB-k 73 75.4 72.9 72.3 74.7 72.2
Conjunctive Rule 69.7 81.1 56 69.9 80.9 56.7
Decision Table 70.4 74.1 67.9 70.4 74.1 67.9
AD Tree 71 72.9 72.3 70.5 74.3 67.9
REP Tree 71.1 73.4 71.3 70.6 72.6 71.6

Analyzing metric intervals

In addition to answering our research questions, we examined the proposed metrics
more closely. In particular, we analyzed histograms of distributions of faulty classes
across metric intervals, where the x-axis represents metric intervals and the y-axis
shows faulty (dark grey) and non-faulty (light gray) classes (see Figure 5.2).

Interestingly enough, all three conceptual metrics – C3, CCBO and CLCOM5 –
reinforce our underlying hypotheses. In other words, C3 captures more faulty classes

56

 ferenc.rudolf_87_23

Section 5.5. Threats to Validity

Figure 5.2: Distribution of (non) faulty classes across C3 (left), CCBO (center) and
CLCOM5 (right) metric intervals

while the metric values are low, similarly to the CLCOM5 metric; whereas CCBO
captures more faulty classes when the metric values are getting higher.

Results for the logistic regression analysis.

We also decided to examine individual performance of the metrics using univariate
logistic regression. The set-up of this study was similar to the one we presented in
Chapter 3.

The results (shown in Table 5.5) present the top 12 performing metrics (out of
a total of 61) in terms of accuracy. According to the numbers, CCBO and CLCOM5
were not the best measures overall. However, CLCOM5 appears to be the best measure
within the family of cohesion metrics, and CCBO appears to be one of the best coupling
metrics besides CBO, RFC, and RFC3. This result further supports the usefulness of
our proposed metrics.

Table 5.5: Results of regression analysis

Metric Acc. Prec. Rec.

CBO 71.9 74.1 72.4
NOI 71.4 76.8 66.1

WMC 70.3 77.7 61.8
RFC 69.8 75.9 63.2

NFMAni 69.8 75.5 63.7
NFMA 69.3 72.9 67.2
lLOC 68.9 76.4 59.8
RFC3 68.9 77.7 58.1
LOC 68.7 76.9 58.6

CLCOM5 67.5 73.5 60.9
CCBO 66.7 66.7 74.6
NAML 66.7 74.7 56.4

5.5 Threats to Validity
In recognition of some of the issues that could have affected the results of the case
study (and our interpretation of it), we would like to refer back to sections 3.6 and
4.6. Our previous disclaimers about the fact that more (and diverse) software systems
are needed for broader generalization, about naming conventions, and about handling
polymorphism all apply here as well.

57

 ferenc.rudolf_87_23

Chapter 5. New Conceptual Coupling and Cohesion Metrics

In addition to these, we also observed that the machine learning algorithms did
not generate the best models in every case. In other words, we did not investigate
collinearity among the metrics to identify similar groups of metrics to improve the
predictive power for the models. Instead, we utilized all the software metrics generated
by Columbus.

Also, our metrics rely on parameterized conceptual similarities among methods,
which assume specifying a threshold for the operational measures. While we used
near-optimal threshold values (as indicated via analysis of all other possible threshold
values), these threshold values may vary for other software systems.

5.6 Conclusions
This chapter defines novel operational measures for conceptual class cohesion and cou-
pling measurement, which have been empirically validated. An extensive case study
using machine learning techniques on metrics data indicates that the measures we pro-
posed have comparable accuracy to those defined using structural information. More-
over, combinations of the novel metrics with a host of existing measures attests statis-
tically significant improvement in the results across multiple evaluation criteria.

Contribution
This chapter is based on the publication:
• Béla Újházi, Rudolf Ferenc, Denys Poshyvanyk, and Tibor Gyimóthy. New concep-
tual coupling and cohesion metrics for object-oriented systems. In Proceedings of the
10th IEEE International Working Conference on Source Code Analysis and Manipula-
tion (SCAM 2010), pages 33–42, Timişoara, Romania, September 2010. Best paper of
the conference. [27]

Defining the new conceptual metrics CLCOM5 and CCBO and comparing them
to their existing counterparts is my contribution, along with the coordination and
evaluation of the investigation studying their fault prediction capabilities.

Some of my other notable papers that have contributed to this result:

• Yixun Liu, Denys Poshyvanyk, Rudolf Ferenc, Tibor Gyimóthy, and Nikos Chrisochoides. Mod-
eling class cohesion as mixtures of latent topics. In Proceedings of the 25th IEEE International
Conference on Software Maintenance (ICSM 2009), pages 233–242, Edmonton, Canada, September
2009. [21]

• Rudolf Ferenc, Árpád Beszédes, Mikko Tarkiainen, and Tibor Gyimóthy. Columbus – reverse
engineering tool and schema for C++. In Proceedings of the 18th IEEE International Conference on
Software Maintenance (ICSM 2002), pages 172–181, Montréal, Canada, October 2002. [6]

58

 ferenc.rudolf_87_23

Part II

Machine Learning for Bug
Prediction

 ferenc.rudolf_87_23

 ferenc.rudolf_87_23

6
A Public Unified Bug Dataset for Bug

Prediction

6.1 Introduction
Finding and eliminating bugs in software systems has always been one of the most
critical issues in software engineering. Bug or defect prediction is a process by which
we try to learn from mistakes committed in the past and build a prediction model
to leverage the location and amount of future bugs. Many research papers on bug
prediction introduced new approaches to achieve better precision values [246, 235, 110,
230]. Unfortunately, a reported bug is rarely associated with the source code lines that
caused it or with the corresponding source code elements (e.g., classes and methods).
Therefore, to carry out such experiments, bugs have to be associated with source code,
which is a difficult task. It is necessary to properly use a version control system and
a bug tracking system during development. Even in this case, it is still challenging to
associate bugs with problematic source code locations.

Although several algorithms were published on associating a reported bug with the
corresponding defective source code [74, 234, 62], only a few such bug association ex-
periments were carried out. Furthermore, not all of these studies published the bug
dataset, or even if they did, closed-source systems were used, limiting the bug dataset’s
verifiability and reusability. Despite these facts, several bug datasets (containing infor-
mation about open-source software systems) were published and made publicly avail-
able for further investigations or to replicate previous approaches [229, 209]. These
datasets are very popular; for instance, the NASA and the Eclipse Bug Dataset were
used in numerous experiments [247, 107, 129, 216].

The main advantage of these bug datasets is that if someone wants to create a new
bug prediction model or validate an existing one, it is enough to use a previously created
bug dataset instead of building a new one, which would be very resource-consuming.
It is common in these bug datasets that all of them store specific information about
the bugs, such as the containing source code element(s) with their source code metrics
or any additional bug-related information. Since different bug prediction approaches

61

 ferenc.rudolf_87_23

Chapter 6. A Public Unified Bug Dataset for Bug Prediction

use various sources of information as predictors (independent variables), different bug
datasets were constructed. Defect prediction approaches and, hereby, bug datasets can
be categorized into larger groups based on the captured characteristics [76]:

• Datasets using process metrics [182, 184].
• Datasets using source code metrics [41, 53, 222].
• Datasets using previous defects [135, 191].
Although these datasets seem very similar, they are often very different in some

aspects, which is also true within the categories mentioned above. Our research focused
on datasets augmented with static source code metrics. Since this category itself has
grown so immense, it is worth studying it as a separate unit. This category also has
many dissimilarities between the existing datasets, including the granularity of the data
(source code elements can be files, classes, or methods), the representation of element
names (different tools may use different notations), and the metrics set can also be
different. Even if the names or abbreviations of a metric calculated by different tools
are the same, it can have different meanings because it can be defined or calculated
slightly differently. The bug-related information given for a source code element can
also be contrasting. An element can be labeled whether it contains a bug. Sometimes
it shows how many bugs are related to that given source code element. From the
information content perspective, it is less critical, but not negligible, that the format of
the files containing the data can be CSV (Comma Separated Values), XML, or ARFF
(which is the input format of Weka [109]), and these datasets can be found on different
places on the Internet.

We collected five publicly available datasets, downloaded the corresponding source
code for each system in the datasets, and analyzed the source code to obtain a standard
set of source code metrics. As a result, we produced a unified bug dataset at the class
and file-levels.

Table 6.1: Example bug dataset table (excerpt)

Type Name Path Line Col. ... WMC CBO ... LOC ... bug

Class ASTParser ... 83 1 ... 96 55 ... 1077 ... 1
Class ASTRecoveryPropagator ... 28 1 ... 131 57 ... 422 ... 0
Class ASTRequestor ... 34 1 ... 6 4 ... 85 ... 0
Class ASTSyntaxErrorPropagator ... 20 1 ... 44 13 ... 129 ... 0
Class ASTVisitor ... 104 1 ... 170 84 ... 2470 ... 0
Class AbstractTypeDeclaration ... 27 1 ... 20 11 ... 230 ... 0
Class Annotation ... 25 1 ... 16 12 ... 157 ... 0
Class AnnotationBinding ... 27 1 ... 63 31 ... 217 ... 2
Class AnnotationTypeDeclaration ... 46 1 ... 26 14 ... 226 ... 0
Class AnonymousClassDeclaration ... 32 1 ... 14 8 ... 159 ... 0
Class ArrayAccess ... 28 1 ... 27 7 ... 243 ... 0
Class ArrayCreation ... 49 1 ... 27 11 ... 271 ... 0
Class ArrayInitializer ... 28 1 ... 13 7 ... 133 ... 0
Class ArrayType ... 30 1 ... 23 7 ... 211 ... 0
Class AssertStatement ... 28 1 ... 24 8 ... 234 ... 0
Class Assignment ... 30 1 ... 33 9 ... 312 ... 0
Class BindingComparator ... 33 1 ... 91 15 ... 275 ... 0
Class BindingResolver ... 31 1 ... 53 45 ... 971 ... 0
...

To make it easier to imagine how a dataset looks like, Table 6.1 shows an excerpt
of an example table where each row contains a Java class with its basic properties like

62

 ferenc.rudolf_87_23

Section 6.2. Data Collection

Name or Path, which are followed by the source code metrics (e.g., WMC, CBO), and
the essential property, the number of bugs.

After constructing the unified bug dataset, we examined the diversity of the metric
suites. We calculated Pearson correlation and Cohen’s d effect size and applied the
Wilcoxon signed-rank test (see Section 2.5.3) to reveal these possible differences. We
then used a decision tree algorithm (see Section 2.6.2) to show the usefulness of the
dataset in bug prediction. We found statistically significant differences in the values of
the original and the newly calculated metrics. Furthermore, notations and definitions
can severely differ. We compared the bug prediction capabilities of the original and
the extended metric suites (within-project learning). Afterward, we merged all classes
(and files) into one large dataset consisting of 47,618 elements (43,744 for files), and
we evaluated the bug prediction model built on this large dataset. Finally, we also
investigated the cross-project capabilities of the bug prediction models and datasets.
We made the unified dataset publicly available for everyone. By using a public unified
dataset as an input for different bug prediction-related investigations, researchers can
make their studies reproducible, thus able to be validated and verified.

Our contributions can be listed as follows:

• Collection of the public bug datasets and source code.
• Unification of the contents of the collected bug datasets.
• Calculation of a common set of source code metrics.
• Comparison of the metrics suites.
• Assessment of the metadata of the datasets.
• Assessment of bug prediction capabilities of the datasets.
• Making the results publicly available.

6.2 Data Collection
This section gives a detailed overview of how we collected and analyzed the datasets.
We applied a snowballing-like technique [233] as our data collection process. The
following will describe how our start set was defined, the inclusion criteria, and how
we iterated over the relevant papers.

6.2.1 Start Set
Starting from the early 70s [207, 123], many studies were introduced concerning soft-
ware faults. According to Yu et al. [241], 729 studies were published until 2005
and 1,564 until 2015 on bug prediction (the number of studies has doubled in 10
years). From time to time, the enormous number of new publications on software
faults made it unavoidable to collect the most critical advances in literature review
papers [124, 118, 225]. Since these survey or literature review papers could serve as
strong start-set candidates, we used Scopus and Google Scholar to look for these papers.
We used these two search sites to fulfill the diversity rule and cover as many different
publishers, years, and authors as possible. We considered only peer-reviewed papers.
Our search string was the following: ’(defect OR fault OR bug) AND prediction
AND (literature OR review OR survey)’. Based on the title and the abstract, we
ended up with 32 candidates. We examined these papers, and based on their content,
we narrowed the start set to 12 [61, 110, 205, 118, 221, 60, 164, 130, 163, 225, 33, 151].

63

 ferenc.rudolf_87_23

Chapter 6. A Public Unified Bug Dataset for Bug Prediction

Other papers were excluded since they were out of scope, lacked peer review, or were
not literature reviews. The included literature papers cover a time interval from 1990
to 2017.

6.2.2 Collecting Bug Datasets
Now we have the starting set of literature review papers; next, we applied backward
snowballing to gather all the possible candidates which refer to a bug dataset. In
other words, we considered all the references of the review papers to form the final set
of candidates. Only one iteration of backward snowballing was used since the survey
papers have already included the most relevant studies in the field, and sometimes they
have also included reviews about the used datasets.

After having the final candidates (687), we filtered irrelevant papers based on key-
words, titles, and abstracts. We also searched for the string ‘dataset’ or ‘data set’, or
‘used projects’. Investigating the remaining set of papers, we took into consideration
the following properties:

• Basic information (authors, title, date, publisher).
• Accessibility of the bug dataset (public, non-public, partially public).
• Availability of the source code.

The latter two are extremely important when investigating the datasets since we need
to obtain the appropriate underlying data to construct a unified dataset.

From the final set of papers, we extracted all relevant datasets. We considered the
following list to check whether a dataset meets our requirements:

• the dataset is publicly available,
• source code is accessible for the included systems,
• bug information is provided,
• bugs are associated with the relevant source code elements,
• included projects were written in Java,
• the dataset provides bug information at file/class-level, and
• the source code element names are provided and unambiguous (the referenced

source code is identifiable).

If any condition was missing, we excluded the subject system or the whole dataset from
the study because they could not be included in the unified bug dataset.

Initially, we did not insist on examining Java systems; however, relevant research
papers mainly focus on Java language projects [215, 60, 205]. Consequently, we nar-
rowed our research topic to datasets capturing information about systems written in
Java. This way, we could use one static analysis tool to extract the characteristics
from all the systems; furthermore, including heterogeneous systems would have added
a bias to the unified dataset since the interpretation of the metrics, even more, the
interpretable set of metrics themselves, can differ from language to language.

The list of found public datasets we could use for our purposes is the following (ref-
erences are pointing to the original studies in which the datasets were first presented):

• PROMISE – Jureczko [129]
• Eclipse Bug Dataset [247]
• Bug Prediction Dataset [75]

64

 ferenc.rudolf_87_23

Section 6.2. Data Collection

• Bugcatchers Bug Dataset [111]
• GitHub Bug Dataset [26]

It is important to note that we will refer to the Jureczko dataset as the PROMISE
dataset throughout the study; however, the repository contains more datasets, such as
the NASA MDP [215] (had to be excluded since the source code is not accessible).

6.2.3 Public Datasets
In the following subsections, we will describe the chosen datasets in more detail, in-
vestigate each dataset’s peculiarities, and look for common characteristics. Before
introducing each dataset, we show some basic size statistics about the chosen datasets,
presented in Table 6.2. We used the cloc1 program to measure the Lines of Code. We
only considered Java source files, and we neglected blank lines.

Table 6.2: Basic properties of the public bug datasets

Dataset Systems Versions Lines of Code

PROMISE 14 45 2,805,253
Eclipse Bug Dataset 1 3 3,087,826
Bug Prediction Dataset 5 5 1,171,220
Bugcatchers Bug Dataset 3 3 1,833,876
GitHub Bug Dataset 15 105 1,707,446

PROMISE

PROMISE [215] is one of the largest research data repositories in software engineering.
It is a collection of many different datasets, including the NASA MDP (Metric Data
Program) dataset, used by numerous past studies. However, one should always mis-
trust the data from an external source [197, 107, 216, 106]. The repository is created to
encourage repeatable, verifiable, refutable, and improvable predictive models of soft-
ware engineering, which is essential for the maturation of any research discipline. The
repository is community-based; thus, anybody can donate a new dataset or public tools
to help other researchers build state-of-the-art predictive models. PROMISE provides
the datasets under categories like code analysis, testing, and software maintenance,
and it also has a category for defects. One of the prominent datasets in the repository
is from Jureczko et al. [129], which we use in our study. The dataset uses the classic
Chidamber & Kemerer (C&K) metrics [66] to characterize the bugs in the systems.

Eclipse Bug Dataset

Zimmerman et al. [247] mapped defects from the bug database of Eclipse 2.0, 2.1, and
3.0. The resulting dataset lists the number of pre- and post-release defects on the
granularity of files and packages collected from the BUGZILLA bug tracking system.
They collected static code features using the built-in Java parser of Eclipse. They
calculated some features at a finer granularity; these were aggregated by taking the

1https://www.npmjs.com/package/cloc

65

 ferenc.rudolf_87_23

https://www.npmjs.com/package/cloc

Chapter 6. A Public Unified Bug Dataset for Bug Prediction

average, total, and maximum values of the metrics. Data is publicly available and has
been used in many studies since then.

Bug Prediction Dataset

The Bug prediction dataset [75] contains data extracted from 5 Java projects using
inFusion and Moose to calculate the traditional C&K metrics for class-level. The source
of information was mainly CVS, SVN, Bugzilla, and Jira, from which the number of
pre- and post-release defects were calculated. D’Ambros et al. [75, 76] also extended
the source code metrics with change metrics, which, according to their findings, could
improve the performance of the fault prediction methods.

Bugcatchers Bug Dataset

Hall et al. presented the Bugcatchers Bug Dataset [111], which solely operates with
bad smells, and found that coding rule violations have a small but significant effect
on the occurrence of faults at the file-level. The Bugcatchers Bug Dataset contains
bad smell information about Eclipse, ArgoUML, and some Apache software systems
for which the authors used Bugzilla and Jira as the data sources.

GitHub Bug Dataset

Our preliminary work on bug datasets was the GitHub Bug Dataset. In this database,
we selected 15 Java systems from GitHub and constructed a bug dataset at class
and file-level [26]. This dataset was employed as an input for 13 different machine
learning algorithms to investigate which algorithm family performs the best in bug
prediction. We included many static source code metrics in the dataset and used these
measurements as independent variables in the machine learning process.

6.2.4 Additional Bug Datasets
In this section, we show additional datasets which could not be included in the chosen
set. Since this study focuses on datasets that fulfilled our selection criteria and could
be used in the unification, we only briefly describe the most important but excluded
datasets.
Defects4J – Defects4J is a bug dataset first presented at the ISSTA conference in
2014 [131]. It focuses on bugs from the software testing perspective. Defects4J encap-
sulates reproducible real-world software bugs. Its repository2 includes software bugs
with their manually cleaned patch files (irrelevant code parts were removed manually),
and most importantly, it includes a test suite from which at least one test case fails
before the patch was applied and none fails after the patch was applied. Initially, the
repository contained 357 software bugs from 5 software systems, but it reached 436
bugs from 6 systems owing to active maintenance.
IntroClassJava – IntroClassJava [86] dataset is a collection of programs, each with
several revisions3. The revisions were submitted by students and each revision is a
maven project. This benchmark is interesting since it contains C programs trans-
formed into Java. Test cases are also transformed into standard JUnit test cases. The

2https://github.com/rjust/defects4j
3https://github.com/Spirals-Team/IntroClassJava

66

 ferenc.rudolf_87_23

https://github.com/rjust/defects4j
https://github.com/Spirals-Team/IntroClassJava

Section 6.3. Data Processing

benchmark consists of 297 Java programs, each having at least one failing test case.
The IntroClassJava dataset is similar to Defects4J but does not provide the manually
cleaned fixing patches.

QuixBugs – QuixBugs is a benchmark for supporting automatic program repair re-
search studies [152]. QuixBugs consists of 40 programs written in both Python and
Java4. It also contains the failing test cases for the one-line bugs located in each pro-
gram. Defects are categorized, and each defect falls into exactly one category. The
benchmark also includes the corrected versions of the programs.

Bugs.jar – Bugs.jar [212] is a large-scale, diverse dataset for automatic bug repair5.
Bugs.jar falls into the same dataset category as the previously mentioned ones. It con-
sists of 1,158 bugs with their fixing patches from 8 large open-source software systems.
This dataset also includes the bug reports and the test suite to support reproducibility.

Bears – Bears dataset [160] is also present to support automatic program repair stud-
ies6. It uses the continuous integration tool named Travis to generate new entries in
the dataset. It includes the buggy state of the source code, the test suite, and the
fixing patch.

All the datasets described above focus on bugs from the software testing perspective
and also support future automatic program repair studies. These datasets can be good
candidates to be used in fault localization research studies as well. These datasets
capture buggy states of programs and provide the test suite and the patch. Our dataset
is fundamentally different from these datasets. The datasets we collected gathered
information from a wider time interval and provided information for each source code
element by characterizing them with static source code metrics.

6.3 Data Processing

Although the found public datasets have similarities (e.g. containing source code met-
rics and bug information), they are inhomogeneous. For example, they contain different
metrics calculated with different tools and for different kinds of code elements. The
file formats are also different; therefore, using these datasets together is challenging.
Consequently, we aimed to transform them into a unified format and extend them with
source code metrics calculated with the same tool for each system. This section will
describe the steps we performed to produce the unified bug dataset.

First, we transformed the existing datasets into a common format. This means
that if a bug dataset for a system consisted of separate files, we conflated them into
one file. Next, we changed the CSV separator in each file to comma (,), renamed the
column called the ’number of bug’ in each dataset to ’bug’ and changed the column
name ’source code element’ to ’filepath’ or ’classname’ depending on the granularity
of the dataset. Finally, we transformed the source code element identifier into the
standard form (e.g., org.apache.tools.ant.AntClassLoader).

4https://github.com/jkoppel/QuixBugs
5https://github.com/bugs-dot-jar/bugs-dot-jar
6https://github.com/bears-bugs/bears-benchmark

67

 ferenc.rudolf_87_23

https://github.com/jkoppel/QuixBugs
https://github.com/bugs-dot-jar/bugs-dot-jar
https://github.com/bears-bugs/bears-benchmark

Chapter 6. A Public Unified Bug Dataset for Bug Prediction

6.3.1 Metrics Calculation
The bug datasets contain different metric sets, which were calculated with different
tools; therefore, even if the same metric name appears in two or more different datasets,
we must be sure they mean the same metric. We analyzed all the systems with the same
tool to eliminate this deficiency. For this purpose, we used the free and open-source
OpenStaticAnalyzer 1.0 (OSA) tool (see Section 2.2) that can analyze Java systems
(among other languages).

The metrics in the original bug datasets were calculated with five different tools
(inFusion Moose, ckjm, Visitors written for Java parser of Eclipse, Bad Smell Detector,
SourceMeter – which is a commercial product based on OSA; see Table 6.7). From
these tools, only ckjm and SourceMeter are still available on the internet, but the
last version of ckjm is from 2012, and the Java language has evolved a lot since then.
Additionally, ckjm works on the bytecode representation of the code, which makes it
necessary to compile the source code before analysis. Consequently, we selected OSA
because it is a state-of-the-art analyzer that works on the source code and enables more
precise analysis besides being easier to use. Additional tools are also available, but this
work did not aim to find the best available tool.

For calculating the new metric values, we needed the source code itself. Since all
datasets belonged to a release version of a given software, if the software was open-
source and the given release version was still available, we could manage to download
and analyze it. This way, we obtained two results for each system: one from the
downloaded bug datasets and one from the OSA analysis.

6.3.2 Dataset Unification
We merged the original datasets with the results of OSA by using the “unique identi-
fiers” of the elements (Java standard names at the class-level and paths at the file-level).
More precisely, the basis of the unified dataset was our source code analysis result, and
it was extended with the data of the given bug dataset. This means that we went
through all elements of the bug dataset, and if the “unique identifier” of an element
was found in our analysis result, then these two elements were conjugated (paired the
original dataset entry with the one found in the result of OSA). Otherwise, it was left
out of the unified dataset. Table A.1 and Table A.2 show the results of this merging
process at class and file-level, respectively: column OSA shows how many elements
OSA found in the analyzed systems, column Orig. presents the number of elements
originally in the datasets, and column Dropped tells us how many elements of the bug
datasets could not be paired, and so they were left out from the unified dataset. The
numbers in parentheses show the number of dropped elements where the drop was
caused by the sources not being real Java sources, such as package-info.java and Scala
files (which are also compiled to byte code and hence included in the original dataset).
Although these numbers are auspicious, we had to “modify” a few systems to achieve
this, but there were cases where we could not solve the inconsistencies. The details of
the source code modifications and the main reasons for the dropped elements are the
followings:
Camel 1.2: In the org.apache.commons.logging, there were 13 classes in the original
dataset that we did not find in the source code. There were five package-info.java7 files

7Scala (see also Camel 1.4 and 1.6) and package-info.java files are “not real” Java source files

68

 ferenc.rudolf_87_23

Section 6.3. Data Processing

in the system, but these files did not contain any Java classes since they are used for
package-level Javadoc purposes; therefore, OSA did not find such classes.
Camel 1.4 Besides the 7 package-info.java files, the original dataset contained infor-
mation about 24 Scala files (they are also compiled to byte code); therefore, OSA did
not analyze them.
Camel 1.6: There were 8 package-info.java and 30 Scala files.
Ckjm 1.8: A class in the original dataset did not exist in version 1.8.
Forrest-0.8: Two different classes appeared twice in the source code; therefore, we
deleted the copies from the etc/test-whitespace subdirectory.
Log4j: There was a contribs directory that contained the source code of different
contributors. These files were put into the appropriate sub-directories (where they
belonged according to their packages), meaning they occurred twice in the analysis,
preventing their merging. Therefore, we analyzed only those files in their appropriate
subdirectories in these cases and excluded the files found in the contribs directory.
Lucene: All three versions had an org.apache.lucene.search.Remote-Searchable_Stub
class in the original dataset that did not exist in the source code.
Velocity: In versions 1.5 and 1.6 there were two org.apache.velocity.app.event. im-
plement.EscapeReference classes in the source code; therefore, it was impossible to
conjugate them by using their “unique identifiers” only.
Xerces 1.4.4: Although the name of the original dataset and the corresponding pub-
lication state that this is the result of Xerces 1.4.4 analysis, we found that 256 out
of the 588 elements did not exist in that version. We examined a few previous and
following versions, and it turned out that the dataset is much closer to 2.0.0 than 1.4.4
because only 42 elements could not be conjugated with the analysis result of 2.0.0. Al-
though version 2.0.0 was still not matched perfectly, we did not find a “closer version”;
therefore, we used Xerces 2.0.0 in this case.
Eclipse JDT Core 3.4: Many classes appeared twice in the source code: once in the
“code” and once in the “test” directory; therefore, we deleted the test directory.
Eclipse PDE UI 3.4.1: The missing 6 classes were not found in its source code.
Equinox 3.4: Three classes could not be conjugated because they did not have a
unique name (there are more classes with the same name), while two classes were not
found in the system.
Lucene 2.4 (BPD): Twenty-one classes from the original dataset were not present in
the source code of the analyzed system.
Mylyn 3.1: 457 classes were missing from our analysis that were in the original
dataset; therefore, we downloaded different versions of Mylyn, but still needed help
finding the matching source code. We could only achieve a better result by knowing
the correct version.
ArgoUML 0.26 Beta: Three classes in the original dataset did not exist in the source
code.
Eclipse JDT Core 3.1: Twenty-five classes did not exist in the analyzed system.
GitHub Bug Dataset: Since OSA is the open-source version of SourceMeter, the tool
used to construct the GitHub Bug Dataset, we could easily merge the results. However,

and should not be included in the original results. Their quantities are presented in parenthesis in
Table A.1.

69

 ferenc.rudolf_87_23

Chapter 6. A Public Unified Bug Dataset for Bug Prediction

the class-level bug datasets contained elements with the same “unique identifier” (since
class names are not the standard Java names in that case), so this information was
insufficient to conjugate them. Luckily, the paths of the elements were also available,
and we used them; therefore, all elements could be conjugated. Since they performed
a machine learning step on the versions that contained the most bugs, we decided to
select these release versions and present the characteristics of these release versions.
We also used these versions of the systems to include in the unified bug dataset.

As a result, we obtained a unified bug dataset containing all the public datasets
in a unified format. Furthermore, they were extended with the same metrics provided
by the OSA tool. The last lines of Table A.1 and Table A.2 show that only 1.29%
(624 out of 48,242) of the classes and 0.06% (28 out of 43,772) of the files could not be
conjugated, which means that only 0.71% (652 out of 92,014) of the elements were left
out from the unified dataset in total.

In many cases, the analysis results of OSA contained more elements than the original
datasets. Since we did not know how the bug datasets were produced, we could not
give an exact explanation for the differences, but we list the two main possible causes:

• In some cases, we could not find the proper source code for the given system
(e.g., Xerces 1.4.4 or Mylyn), so two different but close versions of the same
system might be conjugated.

• OSA considers nested, local, and anonymous classes while some datasets associ-
ated Java classes with files.

6.4 Original and Extended Metrics Suites
In this section, we present the metrics proposed by each dataset. Additionally, we will
show a metrics suite that is used by the newly constructed unified dataset.

6.4.1 Original Datasets

PROMISE – The authors calculated the metrics of the PROMISE dataset with the
tool called ckjm [173]. All metrics, except McCabe’s Cyclomatic Complexity (CC),
are class level metrics. Besides the C&K metrics, they also calculated some additional
metrics shown in Table A.3.
Eclipse Bug Dataset – In the Eclipse Bug Dataset, there are two types of predictors.
By parsing the structure of the obtained abstract syntax tree, they calculated the
number of nodes for each type in a package and in a file (e.g. the number of return
statements in a file) [247]. By implementing visitors to the Java parser of Eclipse, they
also calculated various complexity metrics at method, class, file, and package levels.
Then they used avg, max, total avg, total max aggregation techniques to accumulate
to file and package level. The complexity metrics used in the Eclipse dataset are listed
in Table A.4.
Bug Prediction Dataset – The Bug Prediction Dataset collects product and change
(process) metrics. The authors produced the corresponding product and process met-
rics at class level [75]. Besides the classic CK metrics, they calculated some additional
object-oriented metrics that are listed in Table A.5.

70

 ferenc.rudolf_87_23

Section 6.4. Original and Extended Metrics Suites

Bugcatchers Bug Dataset – The Bugcatchers Bug Dataset differs from the previous
datasets since it does not contain traditional software metrics but the number of bad
smells for files. They used five bad smells presented in Table A.6. Besides, in the CSV
file, there are four source code metrics (blank, comment, code, codeLines), which are
not explained in the corresponding publication [111].
GitHub Bug Dataset – The GitHub Bug Dataset [26] used the free version of the
SourceMeter tool to calculate the static source code metrics, including software product
metrics, code clone metrics, and rule violation metrics. The rule violation metrics were
not used in our research, therefore, Table A.7 shows only the list of the software
product and code clone metrics at the class-level. At the file-level, only a narrowed
set of metrics is calculated, but there are four additional process metrics included, as
Table A.8 shows.

6.4.2 Unified Bug Dataset
The unified dataset contains all the datasets with their original metrics and with further
metrics that we calculated with OSA. The set of metrics calculated by OSA concurs
with the metric set of the GitHub Bug Dataset because SourceMeter is a product
based on the free and open-source OSA tool. Therefore, all datasets in the Unified
Bug Dataset are extended with the metrics listed in Table A.7 except the GitHub Bug
Dataset because it contains the same metrics originally.

In spite of the fact that several of the original metrics can be matched with the
metrics calculated by OSA, we decided to keep all the original metrics for every system
included in the unified dataset because they can differ in their definitions or in the
ways of their calculation. One can simply use the unified dataset and discard the
metrics that were calculated by OSA if they want to work only with the original
metrics. Furthermore, this provides an opportunity to confront the original and the
OSA metrics.

Instead of presenting all the definitions of metrics here, we give an external resource
to show metric definitions because of the lack of space. All the metrics and their
definitions can be found in the Unified Bug Dataset file, reachable as an online appendix
(see Section A.2).

6.4.3 Comparison of the Metrics
In the unified dataset, each element has numerous metrics, but these values were cal-
culated by different tools, therefore, we assessed them in more detail to get answers to
questions like the following ones:

• Do two metrics with the same name have the same meaning?
• Do metrics with different names have the same definition?
• Can two metrics with the same definition be different?
• What are the root causes of the differences if the metrics share the definition?

Three out of the five datasets contain class level elements, but unfortunately, for
each dataset, a different analyzer tool was used to calculate the metrics (see Table 6.7).
To be able to compare class level metrics calculated by all the tools used, we needed at
least one dataset for which all metrics of all three tools are available. We were already
familiar with the usage of the ckjm tool, so we chose to calculate the ckjm metrics for

71

 ferenc.rudolf_87_23

Chapter 6. A Public Unified Bug Dataset for Bug Prediction

the Bug Prediction dataset. This way, we could assess all metrics of all tools because
the Bug Prediction dataset was originally created with Moose, so we have extended it
with the OSA metrics, and also – for the sake of this comparison – with ckjm metrics.

In the case of the three file-level datasets, the used analyzer tools were unavailable,
therefore, we could only compare the file-level metrics of OSA with the results of the
other two tools separately on Eclipse and Bugcatchers Bug datasets.

In each comparison, we merged the different result files of each dataset into one,
which contained the results of all systems in the given dataset, and deleted those el-
ements that did not contain all metric values. For example, in the case of the Bug
Prediction Dataset, we calculated the OSA and ckjm metrics, then we removed the
entries which were not identified by all three tools. Because we could not find the ana-
lyzers used in the file-level datasets, we used the merging results seen in Section 6.3.2.
For instance, in the case of the Bugcatchers Bug Dataset, the new merged (unified)
dataset has 14,543 entries (491 + 1,752 + 12,300), out of which 2,305 were in the
original dataset and not dropped (191 + 1,582 + 560 - 28).

The resulting spreadsheet files can be found in the online appendix. Table 6.3 shows
how many classes or files were in the given dataset and how many of them remained.
We calculated the basic statistics (minimum, maximum, average, median, and standard
deviation) of the examined metrics and compared them (see Table 6.4). Besides, we
calculated the pairwise differences of the metrics for each element and examined its
basic statistics as well. In addition, the Equal column shows the percentage of the
classes for which the two examined tools gave the same result (for example, at class
level OSA and Moose calculated the same WMC value for 2,635 out of the 4,167
elements, which is 63.2%, see Table 6.4).

Table 6.3: Number of elements in the merged systems

Name Merged Remained elements

Bug Prediction Dataset 11,370 4,167
Eclipse Bug Dataset 25,295 25,210
Bugcatchers bug Dataset 14,543 2,305

Since the basic statistic values gave only some impression about the similarity of
the metric sets, we performed a Wilcoxon signed-rank test (see Section 2.5.3), which
determines whether two dependent samples were selected from populations having the
same distribution. In our test, the H0 hypothesis is that the difference between the
pairs follows a symmetric distribution around zero, while the alternative H1 hypothesis
is that the difference between the pairs does not follow a symmetric distribution around
zero. We used 95% confidence level in the tests to calculate the p-values. This means
that if a p-value is higher than 0.05, we accept the H0 hypothesis, otherwise, we reject
it and accept the H1 alternative hypothesis instead. In all cases, the p-values were less
than 0.001, therefore, we had to reject the H0 and accept that the difference between
the pairs does not follow a symmetric distribution around zero.

Although from the statistical point of view, the metric sets are different, we see that
in many cases, there are a lot of equal metric values. For example, in the case of the
file-level dataset of Eclipse (see Table 6.6), only 11 out of 25,199 metrics are different,
but 10 out of these 11 are larger only by 1 than their pairs, so the test recognizes
well that it is not symmetric. On the other hand, in this case, we can say that the
two groups can be considered identical because less than 0.1% of the elements differ,

72

 ferenc.rudolf_87_23

Section 6.4. Original and Extended Metrics Suites

and the difference is neglectable. Therefore we calculated Cohen’s d as well, which
indicates the standardized difference between two means. Besides, to see how strong
or weak the correlations between the metric values are, we calculated the Pearson
correlation coefficient (see Section 2.5.3). We used 0.8 for the threshold above which
the correlation is considered strong.

Class Level Metrics

The unified bug dataset contains the class level metrics of OSA and Moose on the Bug
Prediction dataset. We downloaded the Java binaries of the systems in this dataset
and used ckjm version 2.2 to calculate the metrics. The first difference is that while
OSA and Moose calculate metrics on source code, ckjm uses Java bytecode and takes
“external dependencies” into account, therefore, we expected differences, for instance,
in the coupling metric values.

We compared the metric sets of the three tools and found that, for example, CBO
and WMC have different definitions. On the other hand, the efferent coupling metric is
a good example of a metric that is calculated by all three tools but with different names
(see Table 6.4, CBO row). In the following paragraphs, we only examine those metrics
whose definitions coincide in all three tools, even if their names differ. Table 6.4 shows
these metrics where the Metric column contains the abbreviation of the most widely
used name of the metric. The Tool column presents the analyzer tools, and in the
Metric name column, the metric names are given using the notations of the different
datasets. The “tool1−tool2” means the pairwise difference where, for each element, we
extracted the value of tool2 from the value of tool1 and the name of this “new metric”
is diff. The following columns present the basic statistics of the metrics. The Equal
column denotes the percentage of the elements having the same metric value (i.e. the
difference is 0), and the last two columns are the Cohen’s d value and the Pearson
correlation coefficient (where it is appropriate). We highlighted with boldface those
values that suggest that the two metric set values are close to each other from a given
aspect:

• if more than half of the element pairs are equal (i.e. Equal is above 50%),
• if the effect size is small (i.e. Cohen’s d is less than 0.2),
• if there is strong linear correlation between the elements (i.e. the absolute value

of the Pearson correlation coefficient is larger than 0.8).
Next, we will analyze the metrics one at a time.
WMC: This metric expresses the complexity of a class as the sum of the complexity of
its methods. In its original definition, the method complexity is deliberately not defined
exactly; and usually, the uniform weight of 1 is used. In this case, this variant of WMC
is calculated by all three tools. Its basic statistics are more or less the same, and the
pairwise values of OSA and ckjm seem to be closer to each other (see OSA−ckjm row)
than to Moose, and the extremely high Pearson correlation value (0.995) supports this.
Among the Moose results, there are several very low values where the other tools found
a great number of methods, and that caused the extreme difference (e.g. the max. value
of OSA−Moose is 420). In spite of this, the Pearson correlations between the results
of Moose and the other tools are high. On the other hand, OSA and Moose gave
the same result for almost two third of the classes, which means that the difference
probably comes from outliers. And finally, Cohen’s d values are small, so we can say
that the three tools gave very similar results but with notable outliers.

73

 ferenc.rudolf_87_23

Chapter 6. A Public Unified Bug Dataset for Bug Prediction

Table 6.4: Comparison of the common class level metrics in the Bug Prediction dataset

Metric Tool Metric name Min Max Avg Med Dev Equal Cohen Pearson

WMC

OSA NLM 0 426 11.04 7 18.12 - - -
Moose Methods 0 403 9.96 6 14.38 - - -
ckjm WMC 1 426 11.96 7 18.49 - - -
OSA−Moose diff -4 420 1.08 0 9.40 63.2% 0.066 0.857
OSA−ckjm diff -48 0 -0.91 0 1.94 51.9% 0.050 0.995
Moose−ckjm diff -421 4 -1.99 -1 9.57 41.1% 0.120 0.859

CBO

OSA CBO 0 214 8.86 5 12.25 - - -
Moose fanOut 0 93 6.22 4 7.79 - - -
ckjm Ce 0 213 13.78 8 16.88 - - -
OSA−Moose diff -32 161 2.65 2 7.61 16.0% 0.258 0.801
OSA−ckjm diff -120 83 -4.91 -1 9.72 26.2% 0.333 0.823
Moose−ckjm diff -160 32 -7.56 -4 11.84 7.4% 0.575 0.780

CBOI

OSA CBOI 0 607 9.38 3 26.14 - - -
Moose fanIn 0 355 4.69 1 14.30 - - -
ckjm Ca 0 611 7.64 2 22.13 - - -
OSA−Moose diff -18 607 4.69 1 16.55 43.4% 0.222 0.821
OSA−ckjm diff -100 189 1.74 0 11.02 59.6% 0.072 0.909
Moose−ckjm diff -611 146 -2.95 -1 15.30 39.6% 0.158 0.727

RFC

OSA RFC 0 600 22.82 12 34.53 - - -
Moose rfc 0 2,603 50.62 23 108.06 - - -
ckjm RFC 2 684 38.93 23 49.72 - - -
OSA−Moose diff -2,095 600 -27.80 -8 83.70 8.4% 0.347 0.786
OSA−ckjm diff -327 12 -16.11 -9 22.72 4.9% 0.376 0.917
Moose−ckjm diff -673 2,049 11.69 -1 75.42 5.7% 0.139 0.787

DIT

OSA DIT 0 8 1.31 1 1.63 - - -
Moose dit 1 9 2.08 2 1.44 - - -
ckjm DIT 0 5 0.38 0 0.60 - - -
OSA−Moose diff -3 0 -0.76 -1 0.43 23.9% 0.496 0.969
OSA−ckjm diff -5 8 0.94 1 1.96 22.1% 0.761 0.418
Moose−ckjm diff -4 9 1.70 2 1.79 30.2% 1.540 0.453

NOC

OSA NOC 0 107 0.73 0 3.27 - - -
Moose noc 0 49 0.64 0 2.55 - - -
ckjm NOC 0 107 0.64 0 2.95 - - -
OSA−Moose diff -3 97 0.08 0 1.68 96.8% 0.028 0.863
OSA−ckjm diff 0 42 0.09 0 1.15 97.1% 0.029 0.937
Moose−ckjm diff -97 34 0.01 0 1.81 95.8% 0.003 0.794

LOC

OSA LLOC 2 8,746 131.99 56 357.39 - - -
Moose LinesOfCode 0 7,341 124.01 51 306.54 - - -
ckjm LOC 4 26,576 399.42 147 1142.60 - - -
OSA−Moose diff -1,068 7,824 7.98 3 157.69 3.1% 0.024 0.898
OSA−ckjm diff -19,150 112 -267.43 -91 791.30 0.6% 0.316 0.988
Moose−ckjm diff -26,541 198 -275.41 -93 879.89 0.1% 0.329 0.893

NPM

OSA NLPM 0 404 7.23 4 13.67 - - -
Moose PublicMethods 0 387 6.42 4 11.28 - - -
ckjm NPM 0 404 7.48 5 13.64 - - -
OSA−Moose diff -4 236 0.81 0 6.55 68.0% 0.065 0.879
OSA−ckjm diff -8 0 -0.25 0 0.45 75.8% 0.018 0.999
Moose−ckjm diff -237 3 -1.06 0 6.55 62.2% 0.085 0.879

CBO: In this definition, CBO counts the number of classes the given class depends
on. Although it is a coupling metric, it counts efferent (outer) couplings, therefore, the
metric values should have been similar. On the other hand, based on the statistical
values and the pairwise comparison, including Equal and Cohen values, we can say that
these metrics differ significantly. We can observe a strong linear correlation among them
(Pearson values are close to or above 0.8), but since there are few equal values, we can
suspect that they differ by a constant in most cases. The reasons can be, for example,

74

 ferenc.rudolf_87_23

Section 6.4. Original and Extended Metrics Suites

that ckjm takes into account “external” dependencies (e.g. classes from java.util) or it
counts coupling based on generated elements too (e.g. generated default constructor),
but further investigation would be required to determine all causes.
CBOI: It counts those classes that use the given class. Although the basic statistics
of OSA and ckjm are close to each other, their pairwise comparison suggests that
they are different because there are large outliers and the averages of the diffs are
commensurable with the averages of the tools. Based on Equal, Cohen, and Pearson
values, it seems that the metric values of OSA and ckjm are close to each other, but
the metric values of Moose are different. The main reason can be, for example, that
OSA found two times more classes, therefore, it is explicable that more classes use the
given class or ckjm takes into account the generated classes and connections as well
that exist in the bytecode, but not in the source code.
RFC: All three tools defined this metric in the same way, but the comparison shows
that the metric values are very different. The tools are able to calculate the same
metric value for less than 10% of the classes (Equal value), but the high or almost high
Pearson correlation values indicate that there is some connection between the values.
The reasons for this are mainly the same as in the case of the CBO metric.
DIT: Although the statistical values “hardly” differ compared to the previous ones,
these values are usually small (as the max. values show), therefore, these differences are
quite large. From the minimal values, we can see that Moose probably counts Object
too as the base class of all Java classes, while the other two tools neglect this. The only
significant connection among them is the very large Pearson correlation (0.969) between
OSA and Moose, but its proper explanation would require a deeper investigation of
the tools.
NOC: Regarding this metric, the three tools calculate very similar values. More than
95% of the metric values are the same for each pairing which is very good. On the
other hand, the remaining almost 5% of the values may differ significantly because the
minimum and maximum values of the differences are large compared to the absolute
maximum metric values and, at the same time, the Pearson correlation values are not
extremely large, which means that the 5% impairs it a lot.
LOC: Lines of code should be the most unambiguous metric, but it also differs a lot.
Although this metric has several variants and it is not defined exactly how Moose and
ckjm count it, we used the closest one from OSA based on the metric values. The very
large value of ckjm is surprising, but it counts this value from the bytecode; therefore,
it is not easy to validate it. Besides, OSA and Moose have different values, in spite of
the fact that both of them calculate LOC from source code. The 0 minimal value of
Moose is also interesting and suggests that either Moose used a different definition or
the algorithm was not good enough. We found the fewest equal metric pairs for LOC
metric (Equal values are 3.1%, 0.6%, 0.1%), but the large Pearson correlation values
(close or above 0.9%) suggest that the metrics differ mainly by a constant value only.
NPM: Based on the statistical results, the number of public methods metrics seems
to be the most unambiguous metric. Both the basic statistics and the Equal, Cohen,
and Pearson triplet imply that the metrics are close to each other. OSA and ckjm are
really close to each other (75% of the values are the same, and the rest is also close
to each other because the Pearson correlation coefficient is 0.999), while Moose has
slightly different results. However, the average difference is around 1, which can be
caused by counting implicit methods (constructors, static init blocks) or not.

75

 ferenc.rudolf_87_23

Chapter 6. A Public Unified Bug Dataset for Bug Prediction

The comparison of the three tools revealed that, even though they calculate the
same metrics, in some cases, the results are very divergent. A few of the reasons can
be that ckjm calculates metrics from bytecode while the other two tools work on source
code, or ckjm takes into account external code as well while OSA does not. Besides,
we could not compare the detailed and precise definitions of the metrics to be sure
that they are really calculated in the same way, therefore, it is possible that they differ
slightly, which causes the differences.

File-Level Metrics

Bugcatchers, Eclipse, and GitHub Bug Dataset are the ones that operate at the file-
level (GitHub Bug Dataset contains class level too). Unfortunately, we could make
only pairwise comparisons between file-level metrics since we could not replicate the
measurements used in the Eclipse Bug Dataset (custom Eclipse JDT visitors were used)
and in the Bugcatchers Bug Dataset (unknown bad smell detector was used).

In the case of Bugcatchers Bug Dataset, we compared the results of OSA and
the original metrics, which were produced by a code smell detector. Since OSA only
calculates a narrow set of file-level metrics, Logical Lines of Code (LLOC) is the only
metric we could use in this comparison. Table 6.5 presents the result of this comparison.
Min, max, and median values are likely to be the same. Moreover, the average difference
between LLOC values is less than 1 with a standard deviation of 6.05 which could be
considered insignificant in the case of LLOC at the file-level. Besides, more than 90%
of the metric values are the same, and the remaining values are also close because
Cohen’s d is almost 0, and the Pearson correlation coefficient is very close to 1. This
means that the two tools calculate almost the same LLOC values.

There is an additional common metric (CLOC) which is not listed in Table 6.5 since
OSA returned 0 values for all the files. This possible error in OSA makes it superfluous
to examine CLOC in further detail.

Table 6.5: Comparison of file-level metrics in the Bugcatchers dataset

Metric Tool Met. name Min Max Avg Med Dev Equal Cohen Pearson

LLOC
OSA LLOC 3 5,774 93.33 41 221.16 - - -
Smell Detector code 3 5,774 92.34 40 219.06 - - -
OSA−Smell Detector diff -11 130 0.98 0 6.05 90.8% 0.004 1.000

In the case of the Eclipse Bug Dataset, LLOC values are the same in most of the
cases (see Table 6.6). OSA counted one extra line in 10 cases out of 25,210, and once it
missed 7 lines which is a negligible difference. This is the cause of the “perfect” statis-
tical values. Unfortunately, there is a serious sway in the case of McCabe’s Cyclomatic
Complexity. There is a case where the difference is 299 in the calculated values, which
is extremely high for this metric. We investigated these cases and found that OSA does
not include the number of methods in the final value. There are many cases when OSA
gives 1 as a result, while the Eclipse Visitor calculates 0 as complexity. This is because
OSA counts class definitions but not method definitions. There are cases where OSA
provides higher complexity values. It turned out that OSA took the ternary operator
(?:) into consideration, which is correct since these statements also form conditions.
Both calculation techniques seem to have some minor issues, or at least we have to say
that the metric definitions of cyclomatic complexity differ. This is why there are only

76

 ferenc.rudolf_87_23

Section 6.5. Evaluation

so few matching values (4%), but the Cohen’s d and the Pearson correlation coefficient
suggest that these values are still related to each other.

Table 6.6: Comparison of file-level metrics in the Eclipse dataset

Metric Tool Met. name Min Max Avg Med Dev Equal Cohen Pearson

LLOC
OSA LLOC 3 5,228 122.59 52 230.02 - - -
Visitor TLOC 3 5,228 122.59 52 230.02 - - -
OSA−Visitor diff -7 1 0.0001 0 0.048 100.0% 0.000 1.000

McCC
OSA McCC 1 1,198 19.55 5 48.27 - - -
Visitor VG_sum 0 1,479 28.06 10 60.35 - - -
OSA−Visitor diff -299 123 -8.50 -4 15.83 4.0% 0.156 0.982

The significant differences both at the class and file-level show that tools interpret
and implement the definitions of metrics differently. Our results further strengthen the
conclusion reported by Lincke et al. [153], who described similar findings.

6.5 Evaluation
In this section, we first evaluate the unified bug dataset’s basic properties, like the
number of source code elements and the number of bugs to gain a rough overview of
its contents. Next, we show the dataset’s metadata, like the used code analyzer or the
calculated metric set. Finally, we present an experiment in which we used the unified
bug dataset for its main purpose, namely for bug prediction. Our aim was not to create
the best possible bug prediction model but to show that the dataset is a usable source
of learning data for researchers who want to experiment with bug prediction models.

6.5.1 Datasets and Bug Distribution
Table A.9 shows the basic properties of each dataset. In the SCE column, the number
of source code elements is presented. Based on granularity, it means the number of
classes or files in the system. There are systems in the datasets with a wide variety of
sizes from 2,636 Logical Lines of Code (LLOC)8 up to 1,594,471.

SCEwBug means the number of source code elements that have at least one bug,
SCEwBug% is the percentage of the source code elements with bugs in the dataset.
The SCEwBug% as the percentage of buggy classes or files describes how well-balanced
the datasets are. Since it is difficult to overview the numbers, Figure 6.1 and Figure 6.2
show the distribution of the percentages of faulty source code elements (SCEwBug%)
for classes and files, respectively. The percentages are shown horizontally, and, for
example, the first column means the number of systems (part of a dataset) that have
between 0 and 10 percentages of their source code elements buggy (0 included, 10
excluded). In the case of the systems that give bug information at the class-level,
this number is 11 (5 at the file-level). We can see that there are systems where the
percentages of the buggy classes are very high; for example, 98.79% of the classes are
buggy for Xalan 2.7 or 92.20% for Log4J 1.2. Although the upper limit of SCEwBug%
is 100%, the reader may feel that these values are extremely high, and it is very difficult
to believe that a release version of a system can contain so many bugs. The other end

8Lines of code not counting comments and whitespace.

77

 ferenc.rudolf_87_23

Chapter 6. A Public Unified Bug Dataset for Bug Prediction

is when a system hardly contains any bug; for example, in the case of MCT and Neo4j,
less than 1% of the classes is buggy. From the project point of view, it is very good,
but on the other hand, these systems are probably less usable when we want to build
bug prediction models. This phenomenon further strengthens the motivation to have
a common unified bug dataset that can blur these extreme outliers. Although there
are many systems with extremely high or low SCEwBug% values, we used them “as
is” later in this research because their validation was not the aim of this work.

0

5

10

15

20

25

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Figure 6.1: Fault distribution (classes)

0

1

2

3

4

5

6

7

8

9

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Figure 6.2: Fault distribution (files)

6.5.2 Metadata of the Datasets
Table 6.7 lists some properties of the datasets, which show the circumstances of the
dataset rather than the data content. Our focus is on how the datasets were created
and how reliable the tools used, and the applied methods were. Since most of the infor-
mation in the table was already described in previous sections (Analyzer, Granularity,
Metrics, and Release), we will describe only the Bug information row in this section.

The Bug Prediction Dataset used the commit logs of SVN and the modification
time of each file in CVS to collect co-changed files, authors, and comments. Then, they
linked the files with bugs from Bugzilla and Jira using the bug id from the commit
messages [75]. Finally, they verified the consistency of timestamps. They filtered out
inner classes and test classes.

The PROMISE dataset used Buginfo to collect whether an SVN or CVS commit is
a bugfix or not. Buginfo uses regular expressions to detect the commit messages which
contain bug information.

The bug information of the Eclipse Bug Dataset was extracted from the CVS reposi-
tory and Bugzilla. In the first step, they identified the corrections or fixes in the version
history by looking for patterns that are possible references to bug entries in Bugzilla.
In the second step, they mapped the bug reports to versions using the version field of
the bug report. Since the version of a bug report can change during the life cycle of a
bug, they used the first version.

The Bugcatchers Bug Dataset followed the methodology of Zimmermann et al.
(Eclipse Bug Dataset). They developed an Ant script using the SVN and CVS plugins
of Ant to checkout the source code and associate each fault with a file.

In our previous work – in the case of the GitHub bug dataset – we gathered the
relevant versions to be analyzed from GitHub. Since GitHub can handle references
between commits and issues, it was quite handy to use this information to match

78

 ferenc.rudolf_87_23

Section 6.5. Evaluation

Table 6.7: Metadata of the datasets

Bug
Prediction

Dataset
PROMISE Eclipse

Bug Dataset

Bugcatchers
Bug

Dataset

GitHub
Bug

Dataset

Analyzer inFusion
Moose ckjm

Visitors written
for Java parser

of Eclipse

Bad Smell
Detector SourceMeter

Granularity Class Class File File Class,
File

Bug information CVS, SVN,
Bugzilla, Jira SVN, CVS CVS, Bugzilla CVS, SVN,

Bugzilla, Jira GitHub

Metrics C&K,
process metrics C&K

Complexity,
Structure of

abstract syntax
tree

Bad Smell

C&K,
Complexity,

Clone,
Rule violation

Release post pre pre & post pre post

commits with bugs. In that work, we collected the number of bugs located in each
file/class for the selected release versions (about 6-month long time intervals).

6.5.3 Bug Prediction
We evaluated the strength of bug prediction models built with the Weka [109] ma-
chine learning software. For each subject software system in the Unified Bug Dataset,
we created 3 versions of ARFF files (which is the default input format of Weka) for
the experiments (containing only the original, only OSA, and both sets of metrics as
predictors). In these files, we transformed the original bug occurrence values into two
classes as follows: 0 bug → non buggy class, and at least 1 bug occurrence → buggy
class. Using these ARFF files, we could run several tests about the effectiveness of
fault prediction models built based on the dataset.

Within-project Bug Prediction

As described in Section 6.4, we extended the original datasets with the source code
metrics of the OSA tool in order to create a unified bug dataset. We compared the
bug prediction capabilities of the original metrics, the OSA metrics, and the extended
metric suite (both metric suites together). First, we handled each system individually,
so we trained and tested on the same system data using tenfold cross-validation. To
build the bug prediction models, we used the J48 (C4.5 decision tree – see Section 2.6.2)
algorithm with default parameters. We used only J48 since we did not focus on finding
the best machine learning method, but we rather wanted to show a comparison of the
different predictors’ capabilities with this one algorithm. We chose J48 because it has
shown its power on the GitHub Bug Dataset [26] and because it is relatively easy to
interpret the resulting decision trees and to identify the subset of metrics that are the
most important predictors of bugs. Different machine learning algorithms (e.g. neural
networks) might provide different results. It is also important to note that we did not
use any sampling technique to balance the datasets; we used the datasets ‘as is’. We will
outline some connections between the machine learning results and the characteristics

79

 ferenc.rudolf_87_23

Chapter 6. A Public Unified Bug Dataset for Bug Prediction

of the datasets (e.g. SCEwBug%).
The F-measure results can be seen in Table A.10 for classes and in Table A.11 for

files. We also included the SCEwBug% characteristic of each dataset to gain a more
detailed view of the results. The tables contain two average values since the GitHub
Bug Dataset used SourceMeter, which is based on OSA, to calculate the metrics. The
results of OSA and the Merged metrics would be the same. This could distort the av-
erages, so we decided to detach this dataset from others when calculating the averages.

Results for classes need some deeper explanation for clear understanding. There
are a few missing values since there were less than 10 data entries, not enough to do
the ten-fold cross-validation on (Ckjm and Forrest-0.6).

There are some outstanding numbers in the tables. Considering Xalan 2.7, for
example, we can see F-measure values of 0.992 and above. This is the consequence of the
distribution of the bugs in that dataset which is extremely high as well (98.79%). The
reader could argue that resampling the dataset would help to overcome this deficiency,
however, the corresponding AUC value for the Original dataset is not outstanding (only
0.654). Besides, later in this section, we will investigate the bug prediction capabilities
of the datasets in a cross-project manner, and it turns out that these extreme outliers
generally performed poorly in cross-project learning, as we will describe later in detail.
Let us consider Forrest 0.8 as an example where the SCEwBug% is low (6.25), however,
the F-measure values are still high (0.891-0.907). In this case, the high values came
from the fact that there are 32 classes, out of which only 2 are buggy, so the decision
tree tends to mark all classes as non-buggy. On the other hand, the AUC values range
from very poor (0.100) to very high (0.900), which suggests that for small examples
and a small number of bugs, it is difficult to build “reliable” models.

The averages of F-measure and AUC slightly change in the case of class-level
datasets, and the average of the Merged dataset is only slightly better than the Orig-
inal or the OSA. If we consider F-measure, the GitHub Bug Dataset performed 10%
better generally, while the averages of AUC decreased by only 1%, which is neglectable.
One possible explanation can be that the PROMISE dataset includes all the smaller
projects, while the GitHub Bug Dataset and the Bug Prediction Dataset rather contain
larger projects.

Small differences in the case of the GitHub Bug Dataset come from the difference
in the versions of the static analyzers. The SourceMeter version used in creating the
GitHub Bug Dataset is older than the OSA version used here, in which some metric
calculation enhancements took place. (SourceMeter is based on OSA.)

Results at the file-level are quite similar to class-level results in terms of F-measure
and AUC. The only main difference is that the F-measures average of OSA for Bug-
catchers and Eclipse bug datasets is notably smaller than the other values. The reason
for this might be that there are only a few file-level metrics provided by OSA, and a
possible contradiction in metrics can decrease the training capabilities (we saw that
even LLOC values are very different). On the other hand, the corresponding AUC
value is close to the others, so a deeper investigation is required to find out the causes.
Besides, the average F-measure of the Merged model is slightly worse, while the av-
erage AUC is slightly better than the Original, meaning that in this case, the OSA
metrics were not able to improve the bug prediction capability of the model. The small
difference between the Original and the OSA results in the case of the GitHub Bug
Dataset comes from the slightly different metric suites since OSA calculates the Public
Documented API (PDA) and Public Undocumented API (PUA) metrics as well. Fur-

80

 ferenc.rudolf_87_23

Section 6.5. Evaluation

thermore, the aforementioned static analyzer version differences also caused this small
change in the average F-measure and AUC values.

Merged Dataset Bug Prediction

So far, we compared the bug prediction capabilities of the old and new metric suites
on the systems separately, but we have not used its main advantage, namely, there
are metrics that were calculated in the same way for all systems (OSA metric suite).
Seeing the results of the within-project bug prediction, we can state that creating a
larger dataset, which includes projects varying in size and domain, could lead to a
more general dataset with increased usability and reliability. Therefore, we merged
all classes (and files) into one large dataset, which consists of 47,618 elements (43,744
for files), and by using tenfold cross-validation, we evaluated the bug prediction model
built by J48 on this large dataset as well. The F-measure is 0.818 for the classes and
0.755 for the files, while the AUC is 0.721 for classes and 0.699 for files. Although the
F-measure values are, for example, a little worse than the average of GitHub results
(0.892 for classes and 0.820 for files), the AUC values are better than the best averages
(0.656 for classes and 0.676 for files) even if they were measured on a much larger and
very heterogeneous dataset.

After training the models at class and file-levels, we dug deeper to see which pre-
dictors are the most dominant. Weka gives us pruned trees as a result of both at the
class and file-levels. A pruned tree is a transformed one obtained by removing nodes
and branches without affecting the performance too much. The main goal of pruning is
to reduce the risk of overfitting. We not only constructed a Unified Bug Dataset for all
of the systems together with the unified set of metrics, but we also built one for each
collected dataset, one for the Bug Prediction Dataset, one for the PROMISE dataset,
etc., in which we could use a broader set of metrics (including the original ones).

Table 6.8 presents the most dominant metrics for the datasets extracted from the
constructed decision trees. We marked those metrics with boldfaces that occur in
multiple datasets. At the class-level, WMC (Weighted Methods per Class) and TNOS
(Total Number of Statements) are the most important ones, however, they happened
not to be the most dominant ones in the Unified Bug Dataset.

Table 6.8: Most dominant predictors per dataset

Dataset Level Dominant predictors

Bug Prediction Dataset class wmc, TNOS, cvsEntropy
GitHub Bug Dataset class WMC, NOA, TNOS
PROMISE class LOC, DIT, TNM
Unified Bug Dataset class CLOC, TCLOC, CBO, NOI, DIT
Bugcatchers Bug Dataset file code, PDA, SpeculativeGenerality
GitHub Bug Dataset file McCC, NumOfPrevMods, NumOfDevCommits
Eclipse Bug Dataset file TypeLiteral, NSF_max, MLOC_sum
Unified Bug Dataset file LOC, McCC

Regarding the Unified Bug Dataset, we found CLOC, TCLOC (comment lines of
code metrics), DIT (Depth of Inheritance), CBO (Coupling Between Objects), and NOI
(Number of Outgoing Invocations) as the most dominant metrics at the class-level. In
other words, these metrics have the largest entropy. This set of metrics being the most
dominant is reasonable since it is easier to modify and extend classes that have better

81

 ferenc.rudolf_87_23

Chapter 6. A Public Unified Bug Dataset for Bug Prediction

documentation. Furthermore, coupling metrics such as CBO and NOI have already
demonstrated their power in bug prediction [16, 53]. DIT is also an expressive metric
for fault prediction [90].

At the file-level, the most dominant predictors in the different datasets show over-
lapping with the ones being dominant in the Unified Bug Dataset. LOC (Lines of
Code) and McCC (McCabe’s Cyclomatic Complexity) were the upmost variables to
branch on in the decision tree. These two metrics are reasonable as well since the
larger the file, the more it tends to be faulty. Complexity metrics are also important
factors to include in fault prediction [247].

The diversity of the most dominant metrics shows the diversity of the different
datasets themselves.

Cross-project Bug Prediction

As a third experiment, we trained a model using only one system from a dataset and
tested it on all systems in that dataset. This experiment could not have been done
without the unification of the datasets since a common metric suite is needed to perform
such machine learning tasks. The result of the cross-training is an NxN matrix where
the rows and the columns of the matrix are the systems of the dataset and the value
in the ith row, and jth column shows how well the prediction model performed, which
was trained on the ith system and was evaluated on the jth one.

We used the OSA metrics to test this criterion, but the bug occurrences are derived
from the original datasets, which are transformed into the buggy and non-buggy labels.
The matrix for the whole Unified Bug Dataset would be too large to show here; thus we
will only present submatrices (the full matrices for file and class-levels are available in
the online appendix). A submatrix for the PROMISE dataset can be seen in Table A.12
and A.13. Only the first version is presented for each project except for the ones where
another version has a significantly different prediction capability (for example, Xalan
2.7 is much worse than 2.4, or Pbeans 2 is much better than 1). The values of the
matrix are F-measure and AUC values provided by the J48 algorithm. Higher F-
measure and AUC values are indicated with darker gray, however, it is important to
note that the coloring is done for each table individually (we will introduce cross-
training for other datasets as well in the rest of this section). Absolute white is the
color for the lowest value (not necessarily 0.0), and the deepest gray encodes the highest
value (not necessarily 1.0). Avg. F-m. and Avg. AUC columns9 present the average of
the F-measures and AUC values the given model achieved on the other systems. For a
better overview, we repeat SCEwBug% value here as well (see Table A.9).

We can observe (see Table A.12) that models built on systems (highlighted bold
in the table) having lots of buggy classes (more than 70%) performed very poor in
the cross-validation if we consider the average F-measure (the values are under 0.4).
Even more, these models do not work well on other very buggy systems either. For
example, the model trained on Xalan 2.7 (the buggiest system) achieved only 0.078
F-measure on Log4J 1.2 (the second most buggy system). Besides, in the case of Ckjm
1.8, Lucene 2.2, and Poi 1.5, the rate of buggy classes is between 50 and 70 percent,
and their models are still weak; the average F-measure is between 0.4 and 0.6 only.
And finally, the other systems can be used to build such models that achieve better

9We present the average values only for PROMISE dataset because it contains extremely low
values, namely almost white lines.

82

 ferenc.rudolf_87_23

Section 6.5. Evaluation

results, namely higher F-measures, on other systems, even the ones having lots of bugs.
On the other hand, this trend cannot be observed on the AUC values (see Table A.13)
because they range between 0.483 and 0.629, but there is no “white line” which means
that there is no model whose performance is very poor for all other systems. However,
there are 0.000 and 0.900 AUC values in the table that suggest that the bug prediction
capabilities heavily depend on the training and testing dataset. For example, models
evaluated on Forrest 0.6 have extreme values, and it is probably only a matter of luck
whether the model takes into account the appropriate metrics or not.

Table A.14 shows the cross-training F-measure values for the GitHub Bug Dataset.
Testing on Android Universal Image Loader is the weakest point in the matrix, as it is
clearly visible. However, the values are not critical, and the lowest value is still 0.611.
Based on the F-measure, Elasticsearch performed slightly better than the others in the
role of a training set. This might be because of the size of the system, the average
amount of bugs, and the adequate number of entries in the dataset. On the other hand,
the AUC values in the column of Android Universal Image Loader are not significantly
worse than any other value (see Table A.15), but rather the values in its row seem a
little bit lower. From the AUC point of view, Mission Control T. is the most critical
test system because it has the lowest (0.181) and the highest (0.821) AUC values. The
reason can be the same as for Forrest 0.6. In general, the AUC values are very diverse,
ranging from 0.181 to 0.821, and the average is 0.548.

Table 6.9 and 6.10 show the F-measure and AUC values of cross-training for the
Bug Prediction Dataset. Based on the F-measure, Eclipse JDT Core passed the other
systems in terms of training (which is unequivocally shown by the deep gray color in
the table), but its AUC values, or at least the first two, seem worse than the others.
Equinox performed the worst in the role of being a training set, i.e., having the lowest
F-values, but from the AUC point of view, Equinox is the most challenging test set
because 3 out of 4 of its AUC values are much worse than the average. From testing,
training, and F-measure and AUC value point of view, Mylyn is the best system.

Table 6.9: Cross training (Bug prediction dataset - class level) - F-Measure values

Train/Test Eclipse
JDT Core 3.4 Equinox 3.4 Lucene

2.4 BPD Mylyn 3.1 PDE UI 3.4.1

Eclipse JDT Core 3.4 0.878 0.874 0.848 0.839
Equinox 3.4 0.451 0.614 0.664 0.641
Lucene 2.4 BPD 0.754 0.706 0.808 0.809
Mylyn 3.1 0.730 0.702 0.753 0.815
PDE UI 3.4.1 0.733 0.695 0.748 0.769

Table 6.10: Cross training (Bug prediction dataset - class level) - AUC values

Train/Test Eclipse
JDT Core 3.4 Equinox 3.4 Lucene

2.4 BPD Mylyn 3.1 PDE UI 3.4.1

Eclipse JDT Core 3.4 0.489 0.467 0.555 0.601
Equinox 3.4 0.593 0.638 0.590 0.535
Lucene 2.4 BPD 0.561 0.487 0.560 0.506
Mylyn 3.1 0.685 0.642 0.628 0.569
PDE UI 3.4.1 0.383 0.435 0.548 0.626

The above-described results were calculated for class-level datasets. Let us now
consider the file-level results. The three file-level datasets are the GitHub, the Bug-
catchers, and the Eclipse bug datasets.

83

 ferenc.rudolf_87_23

Chapter 6. A Public Unified Bug Dataset for Bug Prediction

The GitHub Bug Dataset results can be seen in Table A.16 and A.17. As in the
case of class-level, the Android Universal Image Loader project performed the worst in
being the test set based on F-measure and the worst system for building models (low
AUC values). It would be difficult to select the best system, but the Mission Control
T. system is the most critical test system again because it has the lowest and highest
AUC values.

The cross-training results of the Bugcatchers Bug Dataset are listed in Table 6.11
and 6.12. The table contains 3 high and 3 low F-measure values, and they range on
a wide scale from 0.234 to 0.800, while the AUC values are much closer to each other
(0.500−0.606). Since only three systems are used, and there is no significant best or
worst system, we cannot state any conclusion based on these results.

Table 6.11: Cross training (Bugcatchers - file-level) - F-Measure values

Train/Test Apache ArgoUML Eclipse JDT Core 3.1
Apache 0.800 0.676
ArgoUML 0.436 0.665
Eclipse JDT Core 3.1 0.388 0.234

Table 6.12: Cross training (Bugcatchers - file-level) - AUC values

Train/Test Apache ArgoUML Eclipse JDT Core 3.1
Apache 0.541 0.519
ArgoUML 0.563 0.606
Eclipse JDT Core 3.1 0.500 0.588

In the Eclipse Bug Dataset, there are only three systems as well, but they are three
different versions of the same system, namely Eclipse, therefore, we expected better
results. As we can see in Table 6.13 and 6.14, in this case, the F-measure and AUC
values coincide, which means that either both of them are high or both of them are
low. The model built on version 2.0 performed better (0.705 and 0.700 F-measures and
0.723 and 0.708 AUC values) on the other two systems than the models built on the
other two systems and evaluated on version 2.0 (0.638 and 0.604 F-measures and 0.639
and 0.633 AUC values). This is perhaps caused by the fact that this version contains
the least number of bug entries. The other two systems are “symmetrical”; the results
are almost the same when one is the train, and the other one is the test system.

Table 6.13: Cross training (Eclipse - file-level) - F-Measure values

Train/Test Eclipse 2.0 Eclipse 2.1 Eclipse 3.0
Eclipse 2.0 0.705 0.700
Eclipse 2.1 0.638 0.725
Eclipse 3.0 0.604 0.676

We also performed a full cross-system experiment involving all systems from all
datasets. This matrix is, however, too large to present here, consequently, it can be
found in the online appendix and Table 6.15 and 6.16 show only the average of the F-
measures and AUC values of the models performed on other datasets. More precisely,
we trained a model using each system separately and tested this model on the other

84

 ferenc.rudolf_87_23

Section 6.5. Evaluation

Table 6.14: Cross training (Eclipse - file-level) - AUC values

Train/Test Eclipse 2.0 Eclipse 2.1 Eclipse 3.0
Eclipse 2.0 0.723 0.708
Eclipse 2.1 0.639 0.700
Eclipse 3.0 0.633 0.702

systems, and we calculated the averages of the F-measures and AUC values to see how
they performed on other datasets. For example, we can see that the average F-measures
of the models trained and tested on PROMISE is only 0.607, while if these models are
validated on the GitHub dataset, the average is 0.729. Examining F-measures, we
can see that, in general, models trained on the PROMISE dataset perform the worst,
and what is surprising is that they gave the worst result (0.607) on themselves. On
the other hand, if we consider AUC values, the model trained on PROMISE achieved
the best result on PROMISE (0.554 vs. 0.544). But in this case, the coloring of the
table might be misleading because the AUC values range from 0.541 to 0.562, meaning
that the difference is only 0.021, which is small, and the two values are close to each
other, but one of them is white while the other is dark gray. This means that, in this
case, AUC values do not help us to select the best or worst predictor/test dataset or
even compare the results. Another interesting observation is that the models perform
better on the GitHub dataset no matter which dataset was used for training (GitHub
column). On the other hand, GitHub models achieve only slightly worse F-measures on
the other datasets than the best one on the given dataset (0.678 vs. 0.680 on PROMISE
and 0.727 vs. 0.742 on Bug Prediction Dataset), which suggests that the good testing
results are not a consequence of some unique feature of the dataset because it can also
be used to train “portable” bug prediction models.

Table 6.15: Average F-measures of the full cross-system experiment (class level)

Train/Test GitHub PROMISE Bug prediction
GitHub 0.842 0.678 0.727
PROMISE 0.729 0.607 0.617
Bug prediction 0.815 0.680 0.742

Table 6.16: Average AUC values of the full cross-system experiment (class level)

Train/Test GitHub PROMISE Bug prediction
GitHub 0.548 0.544 0.562
PROMISE 0.552 0.554 0.557
Bug Prediction 0.555 0.541 0.555

Table 6.17 shows the average F-measures for the file-level datasets. We can observe a
similar trend, namely, all models performed the best on the GitHub dataset. Besides,
the results of Bugcatchers are poor, and the other two bug prediction model sets
performed better on it. On the other hand, the AUC values do not support this
observation (see Table 6.18). Compared to class level, the AUC values range on a
broader scale, from 0.525 to 0.684, and suggest that Eclipse is the best dataset for
model building, and this observation is supported by the F-measures as well.

85

 ferenc.rudolf_87_23

Chapter 6. A Public Unified Bug Dataset for Bug Prediction

Table 6.17: Average F-measures of the full cross-system experiment (file-level)

Train/Test GitHub Bugcatchers Eclipse
GitHub 0.786 0.613 0.583
Bugcatchers 0.654 0.533 0.529
Eclipse 0.769 0.660 0.675

Table 6.18: Average AUC values of the full cross-system experiment (file-level)

Train/Test GitHub Bugcatchers Eclipse
GitHub 0.587 0.525 0.585
Bugcatchers 0.579 0.553 0.612
Eclipse 0.661 0.564 0.684

To sum up the previous findings based on the full cross-system experiment, it
may seem like file-level models performed slightly better than class level predictors
because the average F-measure is 0.717 and the average AUC value is 0.594 for files
while they are only 0.661 and 0.552 for classes. On the other hand, this might be the
result of the fact that we saw that several systems of PROMISE contain too many
bugs, therefore, they cannot be used alone to build sophisticated prediction models.
Another remarkable result is that all models performed notably better on the GitHub
dataset, which requires further investigation in the future.

6.6 Threats to Validity
First of all, we accepted the collected datasets “as is”, which means that we did not
validate the data; we just used them to create the unified dataset and to examine the
bug prediction capabilities of the different bug datasets. Since the bug datasets did
not contain the source code or step-by-step instructions on how to reproduce the bug
datasets, we had to accept them, even if there were a few notable anomalies in them.
For example, Camel 1.4 contains classes with LOC metrics of 0; in the Bugcatchers
dataset, there are two MessageChains metrics, and in several cases, the two metric
values are different; or there are more datasets with extreme SCEwBug% (buggy classes
percentage) values (more than 90% high or less than 1% low).

Although the version information was available for each system, in some cases,
there were notable differences between the result of OSA and the original result in the
corresponding bug dataset. Even if the analyzers would parse the classes in different
ways, the number of files should have been equal. If the analysis result of OSA contains
the same number of elements or more, and (almost) all elements from the corresponding
bug dataset could be paired, we can say that the unification is acceptable because all
elements of the bug dataset were put into the unified dataset. On the other hand, for
a few systems, we could not find the proper source code version, and we had to leave
out a negligible number of elements from the unified dataset.

Many systems were more than 10 years old when the actual Java version was 1.4,
and these systems were analyzed according to that standard. The Java language has
evolved a lot since then, and we analyzed all systems according to the latest standard,
which might have caused minor but negligible mistakes in the analysis results.

In Section 6.4.3, we used ckjm 2.2 to analyze the projects included in the Bug

86

 ferenc.rudolf_87_23

Section 6.7. Conclusions

Prediction Dataset. We chose version 2.2 since the original paper did not mark the
exact version of ckjm [75], consequently, we experimented with different ckjm versions
(1.9, 2.0, 2.1, 2.2), and we experienced version 2.2 to be the best candidate since it
produced the smallest differences in metric values compared to the original metric
values in the Bug Prediction Dataset.

We used a heuristic method based on name matching to conjugate the elements
of the datasets. Although there were cases where the conjugation was unsuccessful,
we examined these cases manually, and it turned out that the heuristics worked well
and the cause of the problem originated from the differences between the two datasets
(all cases are listed in Section 6.3). We examined the successful conjugations as well,
and all of them were correct. Even though the heuristics could not handle elements
having the same name during the conjugation, only a negligible amount of such cases
happened.

Even when the matching heuristics worked well, the same class name could have
different meanings in different datasets. For example, OSA handles nested, local, and
anonymous classes as different elements, while other datasets did not take into account
such elements. Even more, the whole file was associated with its public class. This
way, a bug found in a nested or inner class is associated with the public class in the bug
datasets, but during the matching, this bug will be associated with the wrong element
of the more detailed analysis result of OSA.

6.7 Conclusions
There are several public bug datasets available in the literature which characterize
the bugs with static source code metrics. Our aim was to create a public unified bug
dataset, which contains all the publicly available ones in a unified format. This dataset
can provide researchers with real value by offering a rich bug dataset for their new bug
prediction experiments.

We considered five different public bug datasets: the PROMISE dataset, the Eclipse
Bug Dataset, the Bug Prediction Dataset, the Bugcatchers Bug Dataset, and the
GitHub Bug Dataset. We gave detailed information about each dataset, which con-
tains, among others, their size, enumeration of the included software systems, used
version control, and bug tracking systems.

We developed and executed a method on how to create a unified set of bug data,
which encapsulates all the information that is available in the datasets. Different
datasets use different metric suites; hence we collected the Java source code for all
software systems of each dataset and analyzed them with one particular static source
code analyzer (OpenStaticAnalyzer) to have a common and uniform set of code metrics
(bug predictors) for every system. We constructed the unified bug dataset from the
gathered public datasets at the file and class-level and made this unified bug dataset
publicly available to anyone for future use.

We investigated the possible differences between the calculated metric values. For
this purpose, we ran the ckjm analyzer tool on the Bug Prediction Dataset to have all
the metrics from different metric suites. Then, we selected the source code elements
which were identified by all three static analyzers. For this subset of source code
elements, we calculated the pairwise differences and provided basic statistics for these
differences as well. We performed the same steps for the Bugcatchers and the Eclipse
bug datasets at the file-level. To see if there is any statistically significant difference, we

87

 ferenc.rudolf_87_23

Chapter 6. A Public Unified Bug Dataset for Bug Prediction

applied a pairwise Wilcoxon signed-rank test. We experienced statistically significant
differences in all cases except in the case of NOC (at the class-level between Moose and
ckjm) and LLOC (at the file-level between OSA and Eclipse).

We evaluated the datasets according to their metadata and functional criteria.
Metadata analysis includes the investigation of the used static analyzer, granularity,
bug tracking, and version control system, the set of used metrics, etc. As functional
criteria, we compared the bug prediction capabilities of the original metrics, the unified
ones, and both together. We used the J48 decision tree algorithm from Weka to build
and evaluate bug prediction models per project (within-project learning) in the unified
bug dataset. Next, we united the contents of the datasets both at the class (47,618
elements) and file-level (43,744 elements) and evaluated the bug prediction capabilities
of this united dataset. This large dataset blurs the deficiencies of the smaller datasets
(for example, datasets with more than 90% of buggy source elements). As an additional
functional criterion, we used different software systems for training and testing the
models, also known as cross-project training. We performed this step on all the systems
of the various datasets. Our experiments showed that the unified bug dataset can be
used effectively in bug prediction.

We encourage researchers to use this large and public unified bug dataset in their
experiments, and we also welcome new public bug datasets.

Contribution
This chapter is based on the publication:
• Rudolf Ferenc, Zoltán Tóth, Gergely Ladányi, István Siket, and Tibor Gyimóthy.
A public unified bug dataset for java and its assessment regarding metrics and bug
prediction. Software Quality Journal, 28:1447–1506, 2020. Springer Nature. [12]

I was responsible for the design of the research study and the assessment of bug
prediction capabilities of the datasets. The latter includes the implementation of the
machine learning experiment and the evaluation of the results.

Some of my other notable papers that were inspired by this result.

• Péter Gyimesi, Béla Vancsics, Andrea Stocco, Davood Mazinanian, Árpád Beszédes, Rudolf Ferenc,
and Ali Mesbah. Bugsjs: a benchmark and taxonomy of javascript bugs. Software Testing, Verification
and Reliability, October 2020. Wiley. [15]

• Rudolf Ferenc, Péter Gyimesi, Gábor Gyimesi, Zoltán Tóth, and Tibor Gyimóthy. An automati-
cally created novel bug dataset and its validation in bug prediction. Journal of Systems and Software,
169:110691, November 2020. Elsevier. [7]

• Péter Hegedűs and Rudolf Ferenc. Static code analysis alarms filtering reloaded: A new real-world
dataset and its ml-based utilization. IEEE Access, 10:55090–55101, 2022. [18]

88

 ferenc.rudolf_87_23

7
Deep Learning for Bug Prediction

7.1 Introduction
There are many ways to detect software bugs, some of which have already been de-
scribed. We can use rule-based static or dynamic analysis tools that flag potentially
faulty code fragments; we can also use natural language processing, model analysis,
and many other techniques. Lu et al. [158] have previously classified bug detection
tools in two ways: according to their analysis method, they can be static, dynamic,
and model checking; while the other classification is based on how the tools find the
bugs, they can be programming-rule-based, statistic-rule-based, or annotation-based
tools. This study was carried out in 2005, but a lot has happened since then: the use
of deep learning (and artificial intelligence, in general) has grown significantly in recent
years.

Deep learning is a new and very successful area in machine learning; the name stems
from the fact that it applies deep neural networks (DNNs). These deep networks differ
from previously used artificial neural networks in one key aspect, namely that they
contain many hidden layers. Unfortunately, with these deep structures, we have to
face the fact that the traditional training algorithm encounters difficulties (“vanishing
gradient effect”) and fails to train good models. As a solution to this problem, several
new algorithms and modifications have been proposed over the years. Of these, we
opted for one of the simplest ones, the so-called deep rectifier network [104]. With a
simple modification to the activation function, the DNN can be trained without any
further changes using the standard stochastic gradient descent (SGD) algorithm.

Therefore, we took the Unified Bug Dataset and used it to compare the performance
of DNNs to other, more traditional machine learning techniques within the domain
of bug prediction – specifically, bug prediction from static source code metrics. We
emphasize the interdisciplinary aspect of this experiment by thoroughly detailing every
step we took on our way to training our optimal model, including the possible data
preprocessing, parameter fine-tuning, and further examinations regarding current or
future expectations. Consequently, the coming sections could be a useful tool for static
analysts not familiar with deep learning, while the nature and quantity of the data –

89

 ferenc.rudolf_87_23

Chapter 7. Deep Learning for Bug Prediction

along with the conclusions we can draw from them – could provide new insights for
machine learning practitioners as well.

Our best deep learning model achieved an F-measure of 53.59% using a dynamically
updated learning rate on the quite imbalanced bug dataset, which contains 8,780 (18%)
bugged and 38,838 (82%) not bugged Java classes. The only single approach capable of
outperforming it was a random forest classifier with an improvement of 0.12%, while an
ensemble model combining these two reached an F-measure of 55.27%. Additionally,
a separate experiment suggests that these deep learning results could increase even
further with more data points, as data quantity seems to be more beneficial for neural
networks than it is for other algorithms.

The contributions of our work include:

• A detailed methodology, that serves as an interdisciplinary guideline for merging
software quality and machine learning best practices;

• A large-scale case study, that demonstrates the applicability of both deep learning
and static source code metrics in bug prediction; and

• An adaptable implementation, that provides replicability, a lower barrier to entry,
and facilitates the wider use of deep learning.

7.2 Related Work
Defect prediction has been the focus of numerous research efforts for a long time. In
this section, we give a high-level overview of the trends we observed in this field and
highlight the differences in our approach.

Bug prediction features. Earlier work concentrated on static source code met-
rics as the main predictors of software faults, including size, complexity, and object-
orientation measures [90, 222, 16, 183, 185]. The common denominator in these ap-
proaches is the ability to look at a certain version of the subject system in isolation
and the relative ease with which these metrics are computable.

Later research shifted its attention to process-based metrics like added or deleted
lines, developer and history-related information, and various aspects of the changes
between versions [184, 113, 182, 43, 132]. These features aim to capture bugs as they
enter the source code, thereby having to consider only a fraction of the full codebase.
In exchange, however, a more complicated data collection process is required.

In this work, we utilize static source code metrics, only combined with deep learning,
a pairing that has not been sufficiently explored in our opinion. We also note that more
exhaustive surveys of defect detection approaches are published by Menzies et al. [174]
and D’Ambros et al. [75].

Bug prediction methods. Once feature selection is decided, the next customization
opportunity is the machine learning algorithm used to build the prediction model.
There have been previous efforts to adapt Support Vector Machines [218], Decision
Trees [226], or Linear Regression [75] to bug prediction. Comparative experiments [101,
206] also incorporate Bayesian models, K Nearest Neighbors, clustering, and ensemble
methods. In contrast, we rely on Deep Neural Networks – discussed below – and
compare their performance to these more traditional approaches.

90

 ferenc.rudolf_87_23

Section 7.2. Related Work

Another aspect is the granularity of the collected data and, by extension, the pre-
dictions of the model. Many techniques stop at the file level, we – among others – use
class-level features, and there are method-level studies as well.

Deep learning and bug prediction. With the advent of more computing per-
formance, deep learning [121] became practically applicable to a wide spectrum of
problems. We have seen it succeed in image classification [69, 139], speech recogni-
tion [104, 180], natural language processing [178, 214], etc. It is reasonable, then, to
try and apply it to the problem of bug prediction as well.

From the previously mentioned features, however, only the change-based ones seem
to have “survived” the deep learning paradigm shift [237]. On the other hand, there
are multiple recent studies focusing on source code-based tokenization with vector em-
beddings, approaching the problem from a language processing perspective [227, 201].
Another use for these vector embeddings is bug localization, where the existence of the
bug is known beforehand, and the task is automatically pairing it to its corresponding
report [143, 144, 125].

Although there are studies where static source code metrics and neural networks
appear together, we feel that the relationship is not sufficiently explored. Therefore,
our work aims to revitalize the use of static source code metrics for bug prediction
by combining it with modern deep learning methodologies and a larger-scale empirical
experiment.

A taxonomy of static bug prediction. To focus more exclusively on the closest
“neighbors” of our approach, we examined a number of publications in order to build
a local taxonomy of differences. The three inclusion criteria were 1) static metric-
based methods that are 2) concerned with bugs, and 3) utilizing some type of machine
learning. A systematic review led to five aspects of potential variations:

• Deep Learning: whether the approach employed deep learning
• Other Sources: whether it collected data from sources other than static source

code metrics
• Quantity: the number of training instances that were available (represented in

powers of 10)
• Granularity: the level of the source code elements that were considered in-

stances (Method, Class, or File)
• Prediction: whether there were any actual predictions or only statistical evalu-

ation

The results are presented in Table 7.1.

Table 7.1: A taxonomy of static bug prediction

Aspect [165] [194] [71] [102] [126] [149] [58] [38] [16] [108] Our
Deep Learning ✓ ✓ ✓ ✓ ✓ ✓ ✓

Other Sources ✓ ✓ ✓

Quantity (10x) 3 6 2 5 3 3 3 2 3 3 4
Granularity M M F M M F M C C C C
Prediction ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

91

 ferenc.rudolf_87_23

Chapter 7. Deep Learning for Bug Prediction

As the taxonomy shows, the novelty of our work lies in its specific combination of
aspects. While there are other studies using class-level granularity, the evaluation is
usually on a much smaller scale and does not involve a deep learning-based inference.
On the other hand, when there is more data or neural networks are used, the granularity
is different. So as far as class-level bug prediction is concerned, this is the largest scale
experiment yet, and, to the best of our knowledge, the first ever to investigate actual
deep learning prediction. Additionally, none of the works from the table try ensemble
models, nor do they consider the possible effects of data quantity.

Since not only our classifier but also our evaluation dataset is new, exact compar-
isons to other state-of-the-art results are meaningless – even if there were works that
would conform to ours in all their taxonomy aspects, which we are not aware of. We
would like to note, however, that a matching granularity usually leads to accuracies
and F-measures in the same ballpark, while significantly better performances seem to
depend on the method-level dataset in question. In the case of [165], for example,
a (losing) stock Bayesian network produced better results than our winners, thereby
showcasing the meaningful impact of the raw input. From our perspective, the relative
performance differences of the various approaches – which can only be measured within
an identical context – are much more relevant.

7.3 Methodology

7.3.1 Overview
To complete the experiment outlined in Section 7.1, we first selected an appropriate
dataset and applied optional preprocessing techniques (detailed in Section 7.3.2). This
was followed by a stratified 10-fold train/dev/test split where the original dataset
was split into 10 approximately equal bins in a way that each bin had roughly the
same bugged/not bugged distribution as the whole. This allowed us to repeat every
potential learning algorithm 10 times, separating a different bin pair for “dev” – a so-
called development set reserved for gauging the effect of later hyperparameter tweaks
– and “test”, respectively. The remaining 8 bins were then merged together to form
the training dataset.

In an additional parametric resampling phase, we could even choose to alter the
ratio of bugged and not bugged instances – only in the current training set – in the hopes
of enhancing the learning procedure. In this case, upsampling meant repeating certain
bugged instances to increase their ratio, downsampling meant randomly discarding
certain not bugged instances to decrease their ratio, and the amount of resampling
meant how much of the gap between the two classes should be closed. Note that
while a complete resampling (including even the dev and test sets) is not unheard of
in isolated empirical experiments, it does not correctly indicate real-world predictive
power, as we have no influence over the distribution of the instances we might see in the
future. This distinction should be taken into account when comparing the magnitude
of our results to other studies.

After all, these preparations came the actual machine learning through deep neu-
ral networks and several other well-known algorithms, which we will discuss in Sec-
tion 7.3.3. These algorithms have many parameters, and multiple “constellations”
were tried for each to find the best-performing models. This arbitrary limiting and
potential discretization of parameter values and the evaluation of some (or all) tuples

92

 ferenc.rudolf_87_23

Section 7.3. Methodology

from their Cartesian product is commonly referred to as a grid search. Finally, we ag-
gregated, evaluated, and compared the various results based on the principles explained
in Section 7.3.4.

7.3.2 Bug Dataset
The basis for any machine learning endeavor is a large and representative dataset. Our
choice is the class-level part of the Unified Bug Dataset [11], which contains 47,618
classes. The details of the Unified Bug Dataset were discussed in Chapter 6. To our
knowledge, this is the most complete bug database for Java projects, so it was an
obvious choice. Furthermore, since we created the database, we are familiar with its
capabilities and its structure.

As there are instances where multiple versions of the same project appear, using
the dataset as-is could face the issue of “the future predicting the past”, where training
instances from the more recent state help predict older bugs. We did not treat this
as a threat, though, because a) the whole metric-based approach to bug prediction
relies on the assumption that the metrics are representative of the underlying faults,
so it shouldn’t matter where they came from, and b) there can be legitimate causes
for trying to use the insight gained in later versions and extrapolate it back to past
snapshots of the codebase.

As for preprocessing, the main step preceding every execution was the “binariza-
tion” of the labels, i.e., converting the number of bugs found in a class to a boolean
false or true (represented by 0 and 1), depending on whether the number was 0 or not,
respectively. This can be thought of as making a “bugged” and a “not bugged” class
for prediction.

Additional preprocessing options for the features included normalization – where
metrics were linearly transformed into the [0,1] interval – and standardization – where
each metric was decreased by its mean and divided by its standard deviation, leading to
a Gaussian distribution. These transformations can defend against predictors unjustly
influencing model decisions just because their range or scale is drastically different. For
example, predictor A being a few orders of magnitude larger than predictor B does not
automatically mean that A’s changes should affect predictions more than B’s.

7.3.3 Algorithms and Infrastructure
Once the training dataset is given, machine learning can begin using multiple ap-
proaches. These approaches are implemented following the Strategy design pattern
to be easily exchangeable and independently parameterizable. Our obvious main goal
was to prove the usefulness of deep neural networks – which we attempted with the
help of TensorFlow – but we also utilized numerous “traditional” algorithms from the
scikit-learn Python package. To be able to experiment quickly, we relied on an NVIDIA
Titan Xp graphics card to perform the actual low-level computations. We note, how-
ever, that not having access to a dedicated graphics card should not be considered a
barrier to entry because a CPU-based execution only makes the experiments slower,
not infeasible.

TensorFlow. TensorFlow [30] is an open, computation graph-based machine learning
framework that is especially suited for neural networks. Our dependency is on at

93

 ferenc.rudolf_87_23

Chapter 7. Deep Learning for Bug Prediction

least the 1.8.0 version, but training can also be run with anything more recent. We
followed the setup steps of the DNNClassifier class which we later fine-tuned using
the Estimator API and custom model functions. One other important requirement
was repeatability, so the Estimator’s RunConfig object always contains an explicitly
set random seed.

The structure of the networks we train is always rectangular and dense (fully con-
nected). Initial parameters can set the number of layers, the number of neurons per
layer (which is the same for every hidden layer, hence the “rectangular” attribute),
the batching (how many instances are processed at a time), and the number of epochs
learning should run for. The defaults for these values are 3, 100, 100, and 5, respec-
tively. This algorithm will be referred to as sdnnc, for “simple deep neural network
classifier”. More complex parameters and approaches are explained as our experiment
unfolds step by step in Section 7.4.

scikit-learn To make sure that going through the trouble of configuring and training
deep neural networks is actually worth it, we have to compare their results to “easier” –
i.e., simpler, more quickly trainable – models. We did so using the excellent scikit-learn
0.19.2 module [196]. The 8 algorithms we included in our study (and the names we
will use to refer to them from now on) are: KNeighborsClassifier (knn), GaussianNB
(bayes), DecisionTreeClassifier (tree), RandomForestClassifier (forest), LinearRegres-
sion (linear), LogisticRegression (logistic), and SVC (svm).

Note that from the above-listed algorithms, LinearRegression is not really a classifier
so we did an external binning on the output and determined the prediction bugged if
the result was above 0.5. This threshold was not considered a parameter hereafter.
Also note that LogisticRegression, despite its name, is indeed a classifier. Finally, each
of these models started out with scikit-learn-provided defaults but were later fairly
fine-tuned to make their competition with deep neural networks unbiased.

DeepBugHunter. DeepBugHunter is our experimental Python framework collecting
the above-mentioned libraries and algorithms into a high abstraction level, parametric
tool that makes it easy to either replicate our results or to adapt the approach to
other, possibly unrelated fields as well. We provide it as an accompanying, open-source
contribution through GitHub [79]. Our experiments were performed using Python 3.6,
and dependencies (apart from TensorFlow and scikit-learn) included numpy v1.14.3,
scipy v1.0.1, and pandas v0.22.0.

7.3.4 Model Evaluation
As mentioned at the beginning of this section, our main model evaluation strategy is
a 10-fold cross-validation. We do not, however, compute accuracy, precision, or recall
values independently for any fold but collect and aggregate the raw confusion matrices
(the true positive, true negative, false positive, and false negative values). This enables
us to calculate the higher-level measures once, at the end. Our primary measure
and basis of comparison is the F-measure, but in the case of the best models per
algorithm, we calculated additional ROC curves (Receiver Operating Characteristics),
AUC values (area under the ROC curve), as well as training and evaluation runtimes
(see Section 2.6.3).

94

 ferenc.rudolf_87_23

Section 7.4. Results

We also note that due to the nature of cross-validation, each fold gets a chance to
be part of both the development and the test set. This, however, does not mean that
information from the test data “leaks” into the hyperparameter tuning phase, as each
fold leads to a different model with a separate set of training data.

7.4 Results
This section details the results we achieved, step by step, as we refined our approach.

7.4.1 Preprocessing
The first phase, even before a single machine learning pass, involved examining the
available preprocessing strategies. Note that, as mentioned in Section 7.3, the “bina-
rization” of labels is already a given.

Normalization vs. Standardization As a preprocessing step for the 60 features
– or, predictors – we compared the results of the default algorithms on the original
data (none) vs. normalization and standardization, introduced in Section 7.3.2. A
comparison of the techniques is presented in Table 7.2.

Table 7.2: Preprocess method comparison

none normalize standardize

knn 44.38% 42.63% 46.47%
bayes 34.35% 34.35% 34.35%
forest 24.15% 24.15% 24.13%
tree 25.95% 25.95% 25.95%
linear 21.47% 21.58% 21.40%
logistic 23.45% 24.44% 28.02%
svm N/A 9.23% 9.88%
sdnnc 19.56% 25.04% 34.07%

The results suggest that standardization almost always performs well – as expected
from previous empirical experiments. Even when it does not, it is negligibly close,
and it is also responsible for the largest improvement in our deep neural network
strategy. As there are already many dimensions to cover in our search for the optimal
bug prediction model, with much more still to come – and even more we could have
added – we decided to finalize this standardization preprocessing step for all further
experimentation.

Note that bold font is used to denote our chosen configuration for the given step
while italic font (if any) denotes the previous state. Also note that the “N/A” cell for
the un-preprocessed svm means that execution had to be shut down after even a single
round of the 10-fold cross-validation failed to complete in the allotted timeframe of 12
hours (while in the other 2 cases, an svm fold took mere minutes).

Resampling Similarly to preprocessing, we compared a few resampling amounts in
both directions. The results in Table 7.3 show the effect of altering the ratio of bugged

95

 ferenc.rudolf_87_23

Chapter 7. Deep Learning for Bug Prediction

and not bugged instances in training set on predicting bugs in an unaltered test set.
The numbers in the header column represent the percentage of resampling in the given
direction, as described in Section 7.3.1.

Table 7.3: Resample method and amount comparison

down none up
100 75 50 25 0 25 50 75 100

knn 49.21% 51.10% 49.93% 48.46% 46.47% 50.08% 51.11% 51.17% 51.04%
bayes 34.70% 34.52% 34.39% 34.38% 34.35% 34.39% 34.62% 34.65% 34.78%
forest 47.91% 47.67% 41.17% 32.61% 24.13% 44.22% 48.43% 49.39% 48.15%
tree 46.83% 46.84% 44.28% 34.28% 25.95% 45.19% 47.42% 48.18% 47.37%
linear 46.34% 43.96% 36.02% 27.60% 21.40% 38.89% 45.57% 46.70% 46.50%
logistic 46.95% 45.10% 39.22% 33.44% 28.02% 41.35% 46.60% 47.64% 47.12%
svm 46.49% 41.13% 25.94% 15.69% 9.88% 31.00% 43.85% 47.12% 46.53%
sdnnc 48.25% 49.32% 46.04% 36.73% 34.07% 50.67% 52.03% 51.66% 50.59%

We ended up choosing the 50% upsampling because it was the best performing
option for our sdnnc strategy and produced comparably good results for the other
algorithms as well. Similarly to the above, it is also considered a fixed dimension from
here on out so we can concentrate on the actual algorithm-specific hyperparameters.
We do note, however, that while it was out of scope for this particular study, replicating
the experiments with different resampling amounts definitely merits further research.

7.4.2 Hyperparameter Tuning
Simple Grid Search In our first pass at improving the effectiveness of deep learn-
ing, we tried fine-tuning the hyperparameters that were already present in the default
implementation, namely the number of layers in the network, the number of neurons
per layer (in the hidden layers), and the number of epochs – i.e., the number of times
we traverse the whole training set. Note that the activation function of the neurons
(rectified linear) and the optimization method (Adagrad) were constant throughout
this study, while the batching number could have been varied – and it will be in later
stages – but were kept at a fixed 100 at this point. The performances of the different
configurations are summarized in Table 7.4, where a better F-measure can help us
select the most well-suited hyperparameters.

Table 7.4: Basic hyperparameter search

Layers Neurons Epochs Result
2 100 5 52.01%
3 100 5 52.03%
4 100 5 51.84%
5 100 5 51.83%
5 150 5 52.46%
5 200 5 52.04%
5 200 2 51.26%
5 200 10 52.47%
5 200 20 52.18%

As the F-measures show, the best setup so far is 5 layers of 200 neurons each,
learning for 10 epochs. It is important to note, however, that these F-measures are

96

 ferenc.rudolf_87_23

Section 7.4. Results

evaluated on the dev set, as the performance information they provide can factor into
what path we choose in further optimization. Were we to use the test set for this, we
would lose the objectivity of our estimations about the model’s predictive power, so
test evaluations should only happen at the very end.

Initial Learning Rate The next step was to consider the effects of changing the
learning rate – i.e., the amount of a new batch of information influences and changes
the model’s previous opinions. These learning rates are set only once at the beginning
of the training process and are fixed until the set number of epochs pass. Their effects
on the resulting model’s quality are shown in Table 7.5.

Table 7.5: The effect of the initial learning rate

Learning Rate Result
0.025 52.69%
0.05 52.70%

0.1 52.47%
0.2 52.36%
0.3 51.76%
0.4 52.37%
0.5 51.87%

As we can see, lowering the learning rate to 0.05 – thereby making the model take
“smaller steps” toward its optimum – helped it find a better overall configuration.

Early Stopping and Dynamic Learning Rates Our most dramatic improvement
was reached when we introduced validation during training, and instead of learning
for a set number of epochs, we implemented early stopping. This meant that after
every completed epoch, we evaluated the F-measure of the in-progress model on the
development set and checked whether it was an improvement or a deterioration. In
the case of deterioration, we reverted the model back to the previous – and, so far, the
best – state, halved the learning rate, and tried again; a strategy called “new bob” in
the QuickNet framework [128]. We repeated this loop until there were 4 consecutive
“misses”, signaling that the model seemed unable to learn any further. The rationale
behind this approach is that a) we start from a set learning rate and let the model
learn while it can, and b) if there is a “misstep”, we assume that it happened because
the learning rate is now too big and we overshot our target so we should retry the
previous step with a lower rate.

The performance impact of this change is meaningful, as shown in Table 7.6. Note
that both the above limit of 4 for the consecutive misses and the halving of the learning
rates come from previous experience and are considered constant. We will refer to this
approach as cdnnc, for “customized deep neural network classifier”.

Regularization At this point, to decrease the gap between the training and dev
F-measures and hopefully increase the model’s generalization capabilities, we tried L2
regularization [105]. It is a technique that adds an extra penalty term to the model’s
loss function in order to discourage large weights and avoid over-fitting.

97

 ferenc.rudolf_87_23

Chapter 7. Deep Learning for Bug Prediction

Table 7.6: The effect of dynamic learning rates

Learning Rate Result
0.025 53.98%
0.05 54.18%
0.1 54.48%
0.2 53.93%
0.3 54.14%
0.4 54.29%
0.5 54.31%

In our case, however, setting the coefficient of the L2 penalty term (denoted by β)
to non-zero caused only F-measure degradation (as shown in Table 7.7), so we decided
against its use. Note that we also tried β values above 0.05, but those also led to
complete model failure.

Table 7.7: The effect of L2 regularization

β Result
0.0005 54.07%
0.001 53.34%
0.002 52.60%
0.005 51.05%
0.01 49.32%
0.02 43.35%

0.05+ 0.00%

Another Round of Hyperparameter Tuning Considering the meaningful jump
in quality that cdnnc brought, we found it pertinent to repeat the hyperparameter grid
search paired with the early stopping as well, netting us another +0.45% improvement.
The tweaked parameters were, again, the number of layers, the number of neurons per
layer, the batching amount, and the initial learning rate (that was still halved after
every miss). The results, which are also our final results for deep learning in this
domain, are summarized in Table 7.8.

The best model we were able to build, then, has 5 layers, each with 250 neurons, gets
its input in batches of 100, starts with a learning rate of 0.1, and halves its learning rate
after every misstep with backtracking until 4 consecutive misses, thereby producing a
54.93% F-measure on the development set. Having decided to stop refining the model,
we could also evaluate it on the test set, resulting in an F-measure of 53.59%.

Algorithm Comparison To get some perspective on how good the performance of
deep learning is, we needed to compare it to similarly fine-tuned versions of the other,
more “traditional” algorithms listed in Section 7.3.3. Their possible parameters are
listed in the official scikit-learn documentation [196], the method we used to tweak
them is the same grid search we utilized for deep learning previously, and the best

98

 ferenc.rudolf_87_23

Section 7.4. Results

Table 7.8: Further hyperparameter tuning

Layers Neurons Batch Learning Rate Result
4 200 100 0.1 54.77%
6 200 100 0.1 54.33%
5 150 100 0.1 54.67%
5 250 100 0.1 54.93%
5 200 50 0.1 54.65%
5 200 150 0.1 54.58%
5 300 100 0.1 54.68%
5 300 100 0.2 54.29%
5 300 100 0.3 54.48%
6 300 100 0.1 54.08%
6 300 100 0.2 54.49%
6 300 100 0.3 54.29%
6 350 100 0.1 54.58%
6 350 100 0.2 54.29%
6 350 100 0.3 54.29%
7 350 100 0.1 54.51%
7 350 100 0.2 53.89%
7 350 100 0.3 53.95%

configurations we found are summarized in Table 7.9 in descending order of their test F-
measures. Note that although we used F-measures to guide the optimization procedure,
we list additional AUC values belonging to these final models for a more complete
evaluation. We also measured model training and test set evaluation times, which are
given in the last two columns, respectively.

Table 7.9: The best version of each algorithm

Alg. Parameters Train Dev Test Time
F-mes. AUC F-mes. AUC F-mes. AUC Train Eval.

forest
--max-depth 10
--criterion entropy
--n-estimators 100

74.38% 89.19% 53.55% 83.23% 53.71% 82.98% 87.7s 0.5s

cdnnc
--layers 5
--neurons 250
--batch 100 --lr 0.1

79.10% 91.16% 54.93% 81.92% 53.59% 81.79% 2132.5s 12.7s

knn --n_neighbors 18 73.75% 89.17% 52.47% 81.36% 52.40% 81.14% 124.3s 273.2s

svm --kernel rbf --C 2.6
--gamma 0.02 69.30% 75.87% 52.62% 70.96% 52.25% 70.75% 3142.0s 106.2s

tree --max-depth 10 72.33% 87.04% 50.26% 77.85% 49.77% 77.34% 11.1s 0.1s

logistic
--penalty l2
--solver liblinear
--C 2.0 --tol 0.0001

58.23% 78.28% 46.66% 78.38% 46.43% 78.06% 58.4s 0.1s

linear 57.34% 77.64% 45.57% 77.74% 45.61% 77.47% 3.9s 0.1s
bayes 39.78% 74.36% 34.62% 74.62% 34.84% 74.40% 0.5s 0.1s

The highest generalization on the independent test set goes to the random forest

99

 ferenc.rudolf_87_23

Chapter 7. Deep Learning for Bug Prediction

algorithm, although the highest train and dev results belong to our deep learning
approach according to both F-measure and AUC figures. The numbers also show a
fairly relevant gap between the performance of the two best models (forest and cdnnc)
and the rest of the competitors. Additionally, while their evaluation times are at least
comparable – with others meaningfully behind – training a neural network is two orders
of magnitude slower.

Despite the close second place, the reader might justifiably discard deep learning as
a viable option for bug prediction at this point. Why bother with the complex training
procedure when a random forest can yield comparable results in a small fraction of the
time? In the following, however, we will attempt to show that deep learning can still
be useful (in its current form) with the potential to become even better over time.

7.4.3 Ensemble Model
One interesting aspect we noticed when comparing our cdnnc approach to random
forest was that although they perform nearly identically in terms of F-score, they arrive
there in notably different ways. Taking a look at the separate confusion matrices of the
two algorithms in Tables 7.10 and 7.11 shows a non-negligible amount of disagreement
between the models. Computing their precision and recall values (shown in the first
two columns of Table 7.13) confirm their differences: cdnnc has higher recall (which
is arguably more important in bug prediction anyway) at the price of lower precision,
while the forest is the exact opposite.

Table 7.10: CDNNC confusion matrix

Predicted
Bugged Not Bugged

Measured Bugged 5435 3345
Not Bugged 6069 32769

Table 7.11: Forest confusion matrix

Predicted
Bugged Not Bugged

Measured Bugged 5098 3682
Not Bugged 5105 33733

This prompted us to try and combine their predictions to see how well they could
complement each other as an “ensemble” [188]. The method of the combination was
averaging the probabilities of each model assigned to the bugged class and seeing if that
average itself was over or under 0.5 – instead of a simple logical or on the class outputs.
The thinking behind this experiment was that if the two models did learn the same
“lessons” from their training, then disregarding deep learning and simply using forest
is indeed a reasonable decision. If, on the other hand, they learned different things,
their combined knowledge might even surpass those of the individual models. Tables

100

 ferenc.rudolf_87_23

Section 7.4. Results

Table 7.12: Ensemble confusion matrix

Predicted
Bugged Not Bugged

Measured Bugged 5360 3420
Not Bugged 5255 33583

Table 7.13: Comparison of individual and ensemble results

CDNNC Forest Ensemble
Precision 47.24% 49.97% 50.49%
Recall 61.90% 58.06% 61.05%
F-Measure 53.59% 53.71% 55.27%
AUC 81.79% 82.98% 83.99%

Figure 7.1: ROC comparison for CDNNC, forest, and their ensemble

7.12 and 7.13 attest to the second theory, as the ensemble F-measure reached 55.27%
(a 1.56% overall improvement) while the AUC reached 83.99% (a 1.01% improvement).

Moreover, the corresponding ROC curves provide subtle (yet useful) visual support
for this theory. As we can see in Figure 7.1, CDNNC and Forest learned differently,
hence the differences in their curves. CDNNC slightly outperforms Forest at lower
false positive rates, but the relationship is reversed at higher rates. Combining their
judgments leads to the dotted Ensemble curve, which outperforms both.

101

 ferenc.rudolf_87_23

Chapter 7. Deep Learning for Bug Prediction

This leads us to believe that deep neural networks might already be useful for bug
prediction – even if not by themselves but as parts of a higher-level ensemble model.

7.4.4 The Effect of Data Quantity
Another auxiliary experiment we tried was based on the assumption that “deep learning
performs best with large datasets”. And by “large”, we mean data points in at least
the millions. While our dataset cannot be considered small by any measure, – it is the
most comprehensive unified bug dataset we are aware of – it is still not on the “large
dataset” scale.

The question then became the following: how could we empirically show that deep
learning would perform better on more data without actually having more data? The
answer we came up with inverts the problem: we theorize that if data quantity is
proportional to the “dominance” of a deep learning strategy, then it would also manifest
as a faster deterioration than the other algorithms when even fewer data is available.
So we artificially shrank – i.e., did a uniform stratified downsampling on – the full
dataset three times to produce a 25%, a 50%, and a 75% subset to replicate our whole
previous process. The results are summarized in Table 7.14.

Table 7.14: F-Measures across different data quantities

Algorithm
Test results Relative difference Normalized relative difference

25 50 75 100 25 50 75 100 25 50 75 100
sdnnc 47.66% 50.73% 51.27% 53.37%
cdnnc 48.19% 51.01% 52.84% 53.59%
forest 50.02% 51.96% 53.31% 53.71% -1.83% -0.95% -0.47% -0.12% 0.00% 51.88% 79.92% 100.00%
knn 48.09% 49.55% 50.88% 52.40% 0.10% 1.46% 1.96% 1.19% 0.00% 73.04% 100.00% 58.27%
linear 43.91% 45.55% 45.16% 45.61% 4.28% 5.46% 7.68% 7.98% 0.00% 31.81% 91.93% 100.00%
logistic 44.75% 45.77% 46.02% 46.43% 3.44% 5.24% 6.82% 7.16% 0.00% 48.50% 91.02% 100.00%
svm 47.49% 49.77% 51.80% 52.25% 0.70% 1.24% 1.04% 1.34% 0.00% 83.59% 52.35% 100.00%
tree 45.96% 47.52% 48.82% 49.77% 2.23% 3.49% 4.02% 3.82% 0.00% 70.22% 100.00% 89.02%
bayes 35.48% 35.96% 35.25% 34.84% 12.71% 15.05% 17.59% 18.75% 0.00% 38.80% 80.79% 100.00%

The table consists of three regions, namely the various F-measures evaluated on
their test sets (left), the difference between the best deep learning strategy and the
current algorithm (middle), and the same difference, only normalized into the [0,1]
interval (right). The normalized relative differences are also illustrated in Figure 7.2,
where the slope of the lines represents the change in the respective differences. So we
track these relative differences over changing dataset sizes, and the steeper the incline
of the lines, the less influence dataset sizes have over their corresponding algorithms
compared to neural networks.

An imaginary y=x diagonal line would mean that deep learning is linearly more
sensitive to more data, which would lead us to believe that if there were any more
data, we could linearly increase our performance. And what we see in Figure 7.2 is not
far off from this theoretical indicator. In the case of logistic vs. cdnnc, for example,
growth in the differences means that cdnnc is leaving logistic farther and farther behind
as more data becomes available. While in the case of forest vs. cdnnc, it means that
cdnnc is “catching up” – since the figures are negative, but their absolute values are
decreasing.

As most tendencies of the changing differences empirically corroborate, more data
is good for every algorithm, but it has a bigger impact on deep learning. Naturally,
there are occasional swings like SVM’s decrease at 75% – possibly due to the more

102

 ferenc.rudolf_87_23

Section 7.5. Threats to Validity

Figure 7.2: The tendencies of the normalized relative differences

“hectic” nature of the technique – or KNN’s “hanging tail” at 100%. If we assume a
linear kind of relationship, however, even these cases show overall growth. This leads us
to speculate that deep neural networks could dominate their opponents – individually,
even without resorting to the previously described model combination – when used in
conjunction with larger datasets. We also note that scalability should not be an issue,
as larger input datasets would affect only the training times of the models – which is
usually an acceptable up-front sacrifice – while leaving prediction speeds unchanged.

7.5 Threats to Validity
Throughout this study, we aimed to remain as objective as possible by disclosing all
our presuppositions and publishing only concrete, replicable results. However, there
are still factors that could have skewed the conclusions we drew.

One is the reliability of the bug dataset we used as our input. Building on faulty
data will lead to faulty results – also known as the “garbage in, garbage out” principle
– but we are confident that this is not the case here. The dataset is independently
peer-reviewed, accepted, and compiled using standard data mining techniques.

Another factor might be – ironically – bugs in our bug prediction framework. We
tried to combat this through rigorous manual inspections, tests, and replications. Ad-
ditionally, we are also making the source code openly available on GitHub and inviting
community verification or comments.

Yet another factor could be the study dimensions we decided to fix – namely, the
preprocessing technique, the preliminary resampling, the number of consecutive misses
before stopping early, the 0.5 multiplier for the learning rate “halving”, and even the
random seed, which was the same for every execution. Analyzing how changes to these
parameters would impact the results – if at all – was out of the scope of this study.

Finally, the connections and implications we discovered from the objective figures
might just be coincidences. Although there are perfectly logical and reasonable ex-
planations for the unveiled behavior – which we discussed – there is still much to be
examined and confirmed in this domain.

103

 ferenc.rudolf_87_23

Chapter 7. Deep Learning for Bug Prediction

7.6 Conclusions
In this Chapter, we presented a detailed approach on how to apply deep neural networks
to predict the presence of bugs in classes from static source code metrics alone. While
neither deep learning nor bug prediction are new topics in themselves, we aim to benefit
their intersection by combining ideas and best practices from both.

Our greatest contribution is the thorough, step-by-step description of our process
which – apart from the underexplored coupling of concepts – leads to a deep neural
network that is on par with random forests and dominates everything else. Additionally,
we unveiled that an ensemble model made from our best deep neural network and forest
classifiers is actually better than either of its components individually, – suggesting
that deep learning is applicable right now – and that more data is likely to make
our approach even better. These are two further convincing arguments supporting
the assumption that the increased time and resource requirements of training a deep
learning model are worth it. Moreover, we open-sourced the experimental tool we used
to reach these conclusions and invite the community to build on our findings.

Contribution
This chapter is based on the publication:
• Rudolf Ferenc, Dénes Bán, Tamás Grósz, and Tibor Gyimóthy. Deep learning in
static, metric-based bug prediction. Array, 6:100021, July 2020. Elsevier. [4]

My main contributions include the design of the research study and the detailed
methodology of how we adapt deep neural networks to bug prediction, and their com-
parison to multiple traditional algorithms.

Some of my other notable papers that contributed to or were inspired by this result:

• Rudolf Ferenc. Bug Forecast: A method for automatic bug prediction. In Proceedings of the 2010
International Conference on Advanced Software Engineering & Its Applications (ASEA 2010), volume
117 of Communications in Computer and Information Science (CCIS), pages 283–295, Jeju Island,
Korea, December 2010. Springer Nature. [3]

• Rudolf Ferenc, Tamás Viszkok, Tamás Aladics, Judit Jász, and Péter Hegedűs. Deep-water
framework: The swiss army knife of humans working with machine learning models. SoftwareX,
12:100551, December 2020. Elsevier. [13]

• Rudolf Ferenc, Péter Hegedűs, Péter Gyimesi, Gábor Antal, Bán Dénes, and Tibor Gyimóthy.
Challenging machine learning algorithms in predicting vulnerable javascript functions. In Proceed-
ings of the 7th IEEE/ACM International Workshop on Realizing Artificial Intelligence Synergies in
Software Engineering (RAISE), pages 8–14. IEEE/ACM, May 2019. [8]

104

 ferenc.rudolf_87_23

8
Summary

In this thesis, we discussed two main topics: applying conceptual cohesion and cou-
pling metrics in fault prediction and in impact analysis; and creating and utilizing a
unified bug database using various machine learning and deep learning algorithms. All
the presented results have practical relevance and a potential to advance the state of
practice.

In the field of conceptual cohesion and coupling metrics, we used identifiers and
comments of the source code to extract concepts by feeding them into a latent seman-
tic indexing component. By using principal component analysis, we were able to show
that conceptual metrics capture complementary dimensions compared to their struc-
tural counterparts. As a consequence, we found that combining structural and con-
ceptual cohesion metrics can improve the accuracy of fault prediction models. Among
conceptual coupling metrics, CCBCm appeared to be a strong candidate to be applied
in impact analysis since it can help obtain a better ranking of classes. Finally, we
defined and assessed the new conceptual metrics CLCOM5 and CCBO. We found that
combining these two novel metrics with structural ones improved the capabilities of
fault prediction models.

In the field of bug datasets, we developed and executed a method on how to combine
several sets of bug data, which encapsulates all the information that is available in the
previously existing bug datasets. As they used different metric suites, we collected the
Java source code for all software systems of each dataset and analyzed them with one
particular static source code analyzer to get consistent results. To demonstrate the
potential of such a dataset, we analyzed the bug prediction capabilities of the unified
dataset. We also presented a detailed, step-by-step description of how to apply deep
neural networks to predict the presence of bugs in classes using only static source code
metrics. The result of the fine-tuned deep neural network is on par with random forests
and dominates any other machine learning algorithm we have used. We unveiled that
an ensemble model made from our best deep neural network and forest classifiers is
better than either of its components individually and that more data is likely to make
our approach even better.

105

 ferenc.rudolf_87_23

Chapter 8. Summary

Acknowledgments
This research was supported by the European Union project RRF-2.3.1-21-2022-00004
within the framework of the Artificial Intelligence National Laboratory; and by the
national Project no. TKP2021-NVA-09 which has been implemented with the support
provided by the Ministry of Innovation and Technology of Hungary from the National
Research, Development and Innovation Fund, financed under the TKP2021-NVA fund-
ing scheme.

106

 ferenc.rudolf_87_23

Appendices

107

 ferenc.rudolf_87_23

 ferenc.rudolf_87_23

A
A Public Unified Bug Dataset for Bug

Prediction

109

 ferenc.rudolf_87_23

Appendix A. A Public Unified Bug Dataset for Bug Prediction

A.1 Tables

Table A.1: Merging results (number of elements) – class-level datasets

Dataset Name OSA Orig. Dropped

PROMISE

Ant 1.3 530 125 0
Ant 1.4 602 178 0
Ant 1.5 945 293 0
Ant 1.6 1,262 351 0
Ant 1.7 1,576 745 0
Camel 1.0 734 339 0
Camel 1.2 1,348 608 13 (+5)
Camel 1.4 2,339 872 0 (+31)
Camel 1.6 3,174 965 0 (+38)
Ckjm 1.8 9 10 1
Forrest 0.6 159 6 0
Forrest 0.7 76 29 0
Forrest 0.8 53 32 0
Ivy 1.4 421 241 0
Ivy 2.0 637 352 0
JEdit 3.2 552 272 0
JEdit 4.0 647 306 0
JEdit 4.1 722 312 0
JEdit 4.2 888 367 0
JEdit 4.3 1,181 492 0
Log4J 1.0 180 135 0
Log4J 1.1 217 109 0
Log4J 1.2 410 205 0
Lucene 2.0 758 195 1
Lucene 2.2 1,394 247 1
Lucene 2.4 1,522 340 1
Pbeans 1 38 26 0
Pbeans 2 77 51 0
Poi 1.5 472 237 0
Poi 2.0 667 314 0
Poi 2.5 780 385 0
Poi 3.0 1,508 442 0
Synapse 1.0 319 157 0
Synapse 1.1 491 222 0
Synapse 1.2 618 256 0
Velocity 1.4 275 196 0
Velocity 1.5 377 214 1
Velocity 1.6 458 229 1
Xalan 2.4 906 723 0
Xalan 2.5 992 803 0
Xalan 2.6 1,217 885 0
Xalan 2.7 1,249 909 0
Xerces 1.2 564 440 0
Xerces 1.3 596 453 0
Xerces 1.4 782 588 42

Bug Prediction Dataset

Eclipse JDT Core 3.4 2,486 997 0
Eclipse PDE UI 3.4.1 3,382 1,497 6
Equinox 3.4 742 324 5
Lucene 2.4 1,522 691 21
Mylyn 3.1 3,238 1,862 457

GitHub Bug Dataset

Android U. I. L. 1.7.0 84 73 0
ANTLR v4 4.2 525 479 0
Elasticsearch 0.90.11 6,480 5,908 0
jUnit 4.9 770 731 0
MapDB 0.9.6 348 331 0
mcMMO 1.4.06 329 301 0
MCT 1.7b1 2,050 1,887 0
Neo4j 1.9.7 6,705 5,899 0
Netty 3.6.3 1,300 1,143 0
OrientDB 1.6.2 2,098 1,847 0
Oryx 562 533 0
Titan 0.5.1 1,770 1,468 0
Eclipse p. for Ceylon 1.1.0 1,651 1,610 0
Hazelcast 3.3 3,765 3,412 0
Broadleaf C. 3.0.10 2,094 1,593 0

Sum All 76,623 48,242 624

110

 ferenc.rudolf_87_23

Section A.1. Tables

Table A.2: Merging results (number of elements) – file-level datasets

Dataset Name OSA Orig. Dropped

Eclipse Bug Dataset
Eclipse 2.0 6,751 6,729 0
Eclipse 2.1 7,909 7,888 0
Eclipse 3.0 10,635 10,593 0

Bugcatchers Bug Dataset
Apache Commons 491 191 0
ArgoUML 0.26 Beta 1,752 1,582 3
Eclipse JDT Core 3.1 12,300 560 25

GitHub Bug Dataset

Android U. I. L. 1.7.0 63 63 0
ANTLR v4 4.2 411 411 0
Elasticsearch 0.90.11 3,540 3,035 0
jUnit 4.9 308 308 0
MapDB 0.9.6 137 137 0
mcMMO 1.4.06 267 267 0
MCT 1.7b1 1,064 413 0
Neo4j 1.9.7 3,291 3,278 0
Netty 3.6.3 914 913 0
OrientDB 1.6.2 1,503 1,503 0
Oryx 443 280 0
Titan 0.5.1 981 975 0
Ceylon for Eclipse 1.1.0 699 699 0
Hazelcast 3.3 2,228 2,228 0
Broadleaf C. 3.0.10 1,843 1,719 0

Sum All 57,530 43,772 28

Table A.3: Metrics used in the PROMISE dataset

Name Abbr.

Weighted methods per class WMC
Depth of Inheritance Tree DIT
Number of Children NOC
Coupling between object classes CBO
Response for a Class RFC
Lack of cohesion in methods LCOM
Afferent couplings Ca
Efferent couplings Ce
Number of Public Methods NPM
Lack of cohesion in methods (by Henderson-Sellers) LCOM3
Lines of Code LOC
Data Access Metric DAM
Measure of Aggregation MOA
Measure of Functional Abstraction MFA
Cohesion Among Methods of Class CAM
Inheritance Coupling IC
Coupling Between Methods CBM
Average Method Complexity AMC
McCabe’s cyclomatic complexity CC
Maximum McCabe’s cyclomatic complexity MAX_CC
Average McCabe’s cyclomatic complexity AVG_CC
Number of files (compilation units) NOCU

111

 ferenc.rudolf_87_23

Appendix A. A Public Unified Bug Dataset for Bug Prediction

Table A.4: Metrics used in the Eclipse Bug Dataset

Name Abbr.

Number of method calls FOUT
Method lines of code MLOC
Nested block depth NBD
Number of parameters PAR
McCabe cyclomatic complexity VG
Number of field NOF
Number of method NOM
Number of static fields NSF
Number of static methods NSM
Number of anonymous type declarations ACD
Number of interfaces NOI
Number of classes NOT
Total lines of code TLOC
Number of files (compilation units) NOCU

Table A.5: Metrics used in the Bug Prediction Dataset

Name Abbr.

Number of other classes that reference the class FanIn
Number of other classes referenced by the class FanOut
Number of attributes NOA
Number of public attributes NOPA
Number of private attributes NOPRA
Number of attributes inherited NOAI
Number of lines of code LOC
Number of methods NOM
Number of public methods NOPM
Number of private methods NOPRM
Number of methods inherited NOMI

Table A.6: Bad smells used in the Bugcatchers Bug Dataset

Name Fowler et al. definitions [99]

Data Clumps Some data items occur together in lots of places: fields in a
couple of classes, parameters in many method signatures.

Message Chains
You see message chains when a client asks one object for
another object, which the client then asks for yet another
object, which the client then asks for yet another object,
and so on. Navigating this way means the client is coupled
to the structure of the navigation. Any change to the
intermediate relationships causes the client to change.

Middle Man You look at an interface of a class and find that the half of
the methods are delegating to this other class. It may mean
problems.

Speculative Generality If the machinery were being used, it would be worth it. But
if it isn’t, it isn’t. The machinery just gets in the way, so get
rid of it.

Switch Statements Switch statements often lead to duplication. Most times you
see a switch statement you should consider polymorphism.

112

 ferenc.rudolf_87_23

Section A.1. Tables

Table A.7: Class-level metrics produced by SourceMeter/OpenStaticAnalyzer

Name Abbr. Name Abbr.

API Documentation AD Number of Local Public Methods NLPM
Clone Classes CCL Number of Local Setters NLS
Clone Complexity CCO Number of Methods NM
Clone Coverage CC Number of Outgoing Invocations NOI
Clone Instances CI Number of Parents NOP
Clone Line Coverage CLC Number of Public Attributes NPA
Clone Logical Line Coverage CLLC Number of Public Methods NPM
Comment Density CD Number of Setters NS
Comment Lines of Code CLOC Number of Statements NOS
Coupling Between Object classes CBO Public Documented API PDA
Coupling Between Obj. classes Inv. CBOI Public Undocumented API PUA
Depth of Inheritance Tree DIT Response set For Class RFC
Documentation Lines of Code DLOC Total Comment Density TCD
Lack of Cohesion in Methods 5 LCOM5 Total Comment Lines of Code TCLOC
Lines of Code LOC Total Lines of Code TLOC
Lines of Duplicated Code LDC Total Logical Lines of Code TLLOC
Logical Lines of Code LLOC Total Number of Attributes TNA
Logical Lines of Duplicated Code LLDC Total Number of Getters TNG
Nesting Level NL Total Number of Local Attributes TNLA
Nesting Level Else-If NLE Total Number of Local Getters TNLG
Number of Ancestors NOA Total Number of Local Methods TNLM
Number of Attributes NA Total Number of Local Public Attr. TNLPA
Number of Children NOC Total Number of Local Public Meth. TNLPM
Number of Descendants NOD Total Number of Local Setters TNLS
Number of Getters NG Total Number of Methods TNM
Number of Incoming Invocations NII Total Number of Public Attributes TNPA
Number of Local Attributes NLA Total Number of Public Methods TNPM
Number of Local Getters NLG Total Number of Setters TNS
Number of Local Methods NLM Total Number of Statements TNOS
Number of Local Public Attributes NLPA Weighted Methods per Class WMC

Table A.8: File-level metrics produced by SourceMeter/OpenStaticAnalyzer

Name Abbr.

McCabe’s Cyclomatic Complexity McCC
Comment Lines of Code CLOC
Logical Lines of Code LLOC
Number of Committers -
Number of developer commits -
Number of previous modifications -
Number of previous fixes -

113

 ferenc.rudolf_87_23

Appendix A. A Public Unified Bug Dataset for Bug Prediction

Table A.9: Basic properties of each dataset

Name Granularity SCE SCEwBug SCEwBug% #Bug kLLOC Bug/kLine

Ant 1.3 class 125 20 16.00% 33 33 1.00
Ant 1.4 class 178 40 22.47% 47 43 1.09
Ant 1.5 class 293 32 10.92% 35 72 0.49
Ant 1.6 class 351 92 26.21% 184 98 1.88
Ant 1.7 class 745 166 22.28% 338 116 2.91
Camel 1.0 class 339 13 3.83% 14 26 0.54
Camel 1.2 class 590 216 36.61% 522 47 11.11
Camel 1.4 class 841 145 17.24% 335 76 4.41
Camel 1.6 class 928 188 20.26% 500 99 5.05
Ckjm 1.8 class 9 5 55.56% 23 8 2.88
Forrest 0.6 class 6 1 16.67% 1 19 0.05
Forrest 0.7 class 29 5 17.24% 15 4 3.75
Forrest 0.8 class 32 2 6.25% 6 3 2.00
Ivy 1.4 class 241 16 6.64% 18 31 0.58
Ivy 2.0 class 352 40 11.36% 56 54 1.04
JEdit 3.2 class 272 90 33.09% 382 55 6.95
JEdit 4.0 class 306 75 24.51% 226 63 3.59
JEdit 4.1 class 312 79 25.32% 217 72 3.01
JEdit 4.2 class 367 48 13.08% 106 88 1.20
JEdit 4.3 class 492 11 2.24% 12 109 0.11
Log4J 1.0 class 135 34 25.19% 61 10 6.10
Log4J 1.1 class 109 37 33.94% 86 14 6.14
Log4J 1.2 class 205 189 92.20% 498 23 21.65
Lucene 2.0 class 194 91 46.91% 268 68 3.94
Lucene 2.2 class 246 144 58.54% 414 111 3.73
Lucene 2.4 class 340 203 59.71% 632 126 5.02
Pbeans 1 class 26 20 76.92% 36 3 12.00
Pbeans 2 class 51 10 19.61% 19 6 3.17
Poi 1.5 class 237 141 59.49% 342 63 5.43
Poi 2.0 class 314 37 11.78% 39 82 0.48
Poi 2.5 class 385 248 64.42% 496 94 5.28
Poi 3.0 class 442 281 63.57% 500 140 3.57
Synapse 1.0 class 157 16 10.19% 21 20 1.05
Synapse 1.1 class 222 60 27.03% 99 33 3.00
Synapse 1.2 class 256 86 33.59% 145 46 3.15
Velocity 1.4 class 196 147 75.00% 210 26 8.08
Velocity 1.5 class 213 141 66.20% 330 33 10.00
Velocity 1.6 class 228 78 34.21% 190 37 5.14
Xalan 2.4 class 723 110 15.21% 156 104 1.50
Xalan 2.5 class 803 387 48.19% 531 126 4.21
Xalan 2.6 class 885 411 46.44% 625 154 4.06
Xalan 2.7 class 909 898 98.79% 1,213 160 7.58
Xerces 1.2 class 440 71 16.14% 115 65 1.77
Xerces 1.3 class 453 69 15.23% 193 69 2.80
Xerces 1.4 class 547 396 72.39% 1,554 74 21.00

Lucene 2.4 class 670 63 9.40% 96 126 0.76
Mylyn 3.1 class 1,405 209 14.88% 296 166 1.78
PDE UI 3.4.1 class 1,492 208 13.94% 340 186 1.83
Equinox 3.4 class 319 126 39.50% 239 64 3.73
Eclipse JDT Core 3.4 class 997 206 20.66% 374 630 0.59

Apache Commons file 191 84 43.98% 223 53 4.21
ArgoUML 0.26 Beta file 1,579 192 12.16% 285 186 1.53
Eclipse JDT Core 3.1 file 535 310 57.94% 567 1,594 0.36

Eclipse 2.0 file 6,729 2,610 38.79% 7,635 792 9.64
Eclipse 2.1 file 7,888 2,139 27.12% 4,975 988 5.04
Eclipse 3.0 file 10,593 2,913 27.50% 7,422 1,307 5.68

Android U. I. L. 1.7.0 class 73 20 27.40% 35 4 8.75
ANTLR v4 4.2 class 479 21 4.38% 27 40 0.68
Broadleaf C. 3.0.10 class 1,593 292 18.33% 353 125 2.82
Eclipse p. for Ceylon 1.1.0 class 1,610 68 4.22% 104 112 0.93
Elasticsearch 0.90.1 1 class 5,908 678 11.48% 1,182 362 3.27
Hazelcast 3.3 class 3,412 380 11.14% 1,053 179 5.88
JUnit 4.9 class 731 35 4.79% 41 16 2.56
MapDB 0.9.6 class 331 40 12.08% 96 47 2.04
mcMMO 1.4.06 class 301 57 18.94% 114 23 4.96
MCT 1.7b1 class 1,887 9 0.48% 9 104 0.09
Neo4j 1.9.7 class 5,899 58 0.98% 60 328 0.18
Netty 3.6.3 class 1,143 271 23.71% 423 76 5.57
OrientDB 1.6.2 class 1,847 280 15.16% 494 184 2.68
Oryx class 533 74 13.88% 80 29 2.76
Titan 0.5.1 class 1,468 96 6.54% 106 80 1.33
Android U. I. L. 1.7.0 file 63 18 28.57% 33 4 8.25
ANTLR v4 4.2 file 411 41 9.98% 59 40 1.48
Broadleaf C. 3.0.10 file 1,719 286 16.64% 350 125 2.80
Eclipse p. for Ceylon 1.1.0 file 699 57 8.15% 94 112 0.84
Elasticsearch 0.90.11 file 3,035 487 16.05% 899 362 2.48
Hazelcast 3.3 file 2,228 317 14.23% 911 179 5.09
JUnit 4.9 file 308 42 13.64% 50 16 3.13
MapDB 0.9.6 file 137 22 16.06% 59 47 1.26
mcMMO 1.4.06 file 267 57 21.35% 114 23 4.96
MCT 1.7b1 file 413 6 1.45% 6 104 0.06
Neo4j 1.9.7 file 3,278 32 0.98% 33 328 0.10
Netty 3.6.3 file 913 243 26.62% 381 76 5.01
OrientDB 1.6.2 file 1,503 270 17.96% 493 184 2.68
Oryx file 280 44 15.71% 48 29 1.66
Titan 0.5.1 file 975 70 7.18% 80 80 1.00

114

 ferenc.rudolf_87_23

Section A.1. Tables

Table A.10: F-Measure and AUC values in independent training at class-level

Original OSA Merged

Dataset F-Measure AUC F-Measure AUC F-Measure AUC SCEwBug%

Eclipse JDT Core 3.4 0.665 0.687 0.819 0.699 0.817 0.637 9.40
Equinox 3.4 0.727 0.711 0.764 0.793 0.790 0.798 14.88
Lucene 2.4 BPD 0.891 0.635 0.878 0.611 0.879 0.443 13.94
Mylyn 3.1 0.932 0.635 0.806 0.600 0.813 0.610 39.50
PDE UI 3.4.1 0.856 0.638 0.820 0.608 0.816 0.592 20.66
Ant 1.3 0.799 0.603 0.846 0.747 0.827 0.707 16.00
Ant 1.4 0.724 0.681 0.717 0.603 0.726 0.616 22.47
Ant 1.5 0.887 0.579 0.854 0.562 0.871 0.571 10.92
Ant 1.6 0.775 0.665 0.752 0.704 0.745 0.663 26.21
Ant 1.7 0.794 0.727 0.788 0.652 0.788 0.654 22.28
Camel 1.0 0.943 0.433 0.946 0.494 0.932 0.391 3.83
Camel 1.2 0.626 0.624 0.673 0.627 0.686 0.647 36.61
Camel 1.4 0.805 0.637 0.806 0.594 0.814 0.612 17.24
Camel 1.6 0.744 0.597 0.767 0.628 0.776 0.661 20.26
Ckjm - - - - - - 55.56
Forrest 0.6 - - - - - - 16.67
Forrest 0.7 0.793 0.737 0.676 0.279 0.676 0.320 17.24
Forrest 0.8 0.891 0.900 0.907 0.100 0.907 0.700 6.25
Ivy 1.4 0.897 0.493 0.915 0.547 0.899 0.511 6.64
Ivy 2.0 0.855 0.624 0.835 0.517 0.847 0.585 11.36
Jedit 3.2 0.727 0.695 0.703 0.710 0.724 0.689 33.09
Jedit 4.0 0.774 0.662 0.766 0.655 0.780 0.654 24.51
Jedit 4.1 0.747 0.640 0.778 0.698 0.781 0.753 25.32
Jedit 4.2 0.866 0.634 0.847 0.650 0.849 0.631 13.08
Jedit 4.3 0.967 0.469 0.965 0.620 0.780 0.608 2.24
Log4J 1.0 0.776 0.637 0.835 0.759 0.781 0.687 25.19
Log4J 1.1 0.739 0.681 0.743 0.718 0.849 0.696 33.94
Log4J 1.2 0.892 0.621 0.885 0.421 0.963 0.495 92.20
Lucene 2.0 0.610 0.571 0.659 0.635 0.634 0.626 46.91
Lucene 2.2 0.584 0.631 0.655 0.657 0.661 0.638 58.54
Lucene 2.4 0.698 0.689 0.656 0.688 0.663 0.676 59.71
Pbeans 1 0.813 0.633 0.769 0.741 0.813 0.779 76.92
Pbeans 2 0.727 0.565 0.686 0.503 0.740 0.553 19.61
Poi 1.5 0.743 0.744 0.753 0.747 0.782 0.778 59.49
Poi 2.0 0.851 0.465 0.841 0.729 0.831 0.576 11.78
Poi 2.5 0.787 0.792 0.809 0.788 0.789 0.791 64.42
Poi 3.0 0.768 0.763 0.768 0.768 0.764 0.759 63.57
Synapse 1.0 0.830 0.524 0.843 0.531 0.839 0.576 10.19
Synapse 1.1 0.758 0.683 0.767 0.717 0.749 0.672 27.03
Synapse 1.2 0.738 0.670 0.734 0.677 0.733 0.663 33.59
Velocity 1.4 0.827 0.744 0.824 0.733 0.856 0.796 75.00
Velocity 1.5 0.706 0.660 0.728 0.696 0.778 0.742 66.20
Velocity 1.6 0.703 0.649 0.774 0.783 0.748 0.730 34.21
Xalan 2.4 0.802 0.621 0.807 0.645 0.794 0.562 15.21
Xalan 2.5 0.654 0.648 0.693 0.686 0.699 0.718 48.19
Xalan 2.6 0.751 0.747 0.730 0.707 0.747 0.750 46.44
Xalan 2.7 0.994 0.654 0.992 0.820 0.992 0.745 98.79
Xerces 1.2 0.815 0.716 0.824 0.683 0.823 0.716 16.14
Xerces 1.3 0.860 0.629 0.837 0.625 0.836 0.743 15.23
Xerces 1.4 0.938 0.904 0.804 0.815 0.932 0.935 72.39
Average 0.793 0.653 0.793 0.646 0.798 0.656 -
Android U. I. L. 1.7.0 0.749 0.657 0.742 0.677 - - 27.40
ANTLR v4 4.2 0.944 0.618 0.922 0.555 - - 4.38
Broadleaf C. 3.0.10 0.898 0.826 0.881 0.796 - - 18.33
Eclipse p. for Ceylon 1.1.0 0.942 0.611 0.939 0.586 - - 4.22
Elasticsearch 0.90.11 0.871 0.645 0.874 0.683 - - 11.48
Hazelcast 3.3 0.876 0.693 0.878 0.658 - - 11.14
jUnit 4.9 0.927 0.579 0.928 0.624 - - 4.79
MapDB 0.9.6 0.911 0.659 0.886 0.673 - - 12.08
mcMMO 1.4.06 0.791 0.593 0.776 0.568 - - 18.94
MCT 1.7b1 0.993 0.480 0.993 0.478 - - 0.48
Neo4j 1.9.7 0.985 0.494 0.985 0.486 - - 0.98
Netty 3.6.3 0.809 0.699 0.802 0.699 - - 23.71
OrientDB 1.6.2 0.868 0.687 0.862 0.715 - - 15.16
Oryx 0.889 0.764 0.898 0.725 - - 13.88
Titan 0.5.1 0.922 0.696 0.926 0.706 - - 6.54
Average 0.892 0.647 0.886 0.642 - -

115

 ferenc.rudolf_87_23

Appendix A. A Public Unified Bug Dataset for Bug Prediction

Table A.11: F-Measure and AUC values in independent training at file-level

Original OSA Merged

Dataset F-Measure AUC F-Measure AUC F-Measure AUC SCEwBug%

Apache Commons 0.779 0.733 0.454 0.536 0.712 0.778 43.98
Argo UML 0.26 Beta 0.899 0.730 0.832 0.677 0.880 0.719 12.16
Eclipse JDT Core 3.1 0.827 0.657 0.528 0.567 0.638 0.658 57.94
Eclipse 2.0 0.682 0.654 0.670 0.713 0.694 0.660 38.79
Eclipse 2.1 0.749 0.623 0.750 0.711 0.745 0.639 27.12
Eclipse 3.0 0.728 0.597 0.735 0.694 0.727 0.603 27.50
Average 0.777 0.666 0.662 0.650 0.733 0.676 -
Android U. I. L. 1.7.0 0.611 0.484 0.624 0.654 - - 28.57
ANTLR v4 4.2 0.900 0.795 0.849 0.753 - - 9.98
Broadleaf C. 3.0.10 0.862 0.759 0.823 0.795 - - 16.64
Eclipse p. for Ceylon 1.1.0 0.879 0.639 0.874 0.574 - - 8.15
Elasticsearch 0.90.11 0.775 0.669 0.778 0.678 - - 16.05
Hazelcast 3.3 0.829 0.688 0.796 0.626 - - 14.23
jUnit 4.9 0.800 0.585 0.801 0.592 - - 13.64
MapDB 0.9.6 0.784 0.686 0.766 0.654 - - 16.06
mcMMO 1.4.06 0.731 0.669 0.794 0.614 - - 21.35
MCT 1.7b 0.977 0.291 0.978 0.551 - - 1.45
Neo4j 1.9.7 0.985 0.474 0.985 0.474 - - 0.98
Netty 3.6.3 0.677 0.700 0.732 0.762 - - 26.62
OrientDB 1.6.2 0.739 0.759 0.751 0.722 - - 17.96
Oryx 0.771 0.467 0.861 0.735 - - 15.71
Titan 0.5.1 0.894 0.498 0.894 0.498 - - 7.18
Average 0.814 0.611 0.820 0.646 - - -

116

 ferenc.rudolf_87_23

Section A.1. Tables

Ta
bl

e
A

.1
2:

C
ro

ss
tr

ai
ni

ng
(P

RO
M

IS
E

-c
la

ss
-le

ve
l)

-F
-M

ea
su

re
va

lu
es

Pr
oj

ec
t

SCEwBug%

Avg.F-m.

Ant1.3

Camel1.0

Ckjm1.8

Forrest0.6

Ivy1.4

Jedit3.2

Log4J1.0

Log4J1.2

Lucene2.0

Lucene2.2

Pbeans1

Pbeans2

Poi1.5

Poi2.0

Synapse1.0

Velocity1.4

Velocity1.6

Xalan2.4

Xalan2.7

Xerces1.2

Xerces1.4

A
nt

1.
3

16
.0

0.
71

0.
83

0
0.

77
6

0.
77

6
0.

78
5

0.
78

4
0.

79
4

0.
76

2
0.

75
4

0.
73

9
0.

71
8

0.
71

8
0.

70
6

0.
71

1
0.

67
4

0.
66

0
0.

64
8

0.
65

9
0.

59
0

0.
59

6
0.

58
8

C
am

el
1.

0
3.

8
0.

66
0.

75
5

0.
71

9
0.

71
9

0.
73

2
0.

73
1

0.
74

7
0.

71
1

0.
70

1
0.

68
4

0.
66

0
0.

66
1

0.
64

8
0.

65
5

0.
61

8
0.

60
4

0.
59

3
0.

60
8

0.
52

4
0.

53
2

0.
52

4
C

kj
m

1.
8

55
.6

0.
49

0.
30

7
0.

44
2

0.
48

8
0.

48
1

0.
48

2
0.

49
6

0.
49

5
0.

49
6

0.
49

7
0.

50
0

0.
50

0
0.

50
3

0.
49

3
0.

50
7

0.
51

4
0.

51
3

0.
51

1
0.

51
0

0.
50

5
0.

50
1

Fo
rr

es
t

0.
6

16
.7

0.
63

0.
76

7
0.

74
1

0.
69

7
0.

71
2

0.
71

0
0.

72
8

0.
69

1
0.

68
1

0.
66

3
0.

63
7

0.
63

8
0.

62
3

0.
63

1
0.

58
7

0.
57

3
0.

56
2

0.
57

6
0.

48
7

0.
49

6
0.

48
7

Iv
y

1.
4

6.
6

0.
67

0.
80

7
0.

75
6

0.
71

4
0.

71
4

0.
73

5
0.

74
8

0.
71

5
0.

70
7

0.
69

2
0.

67
1

0.
67

2
0.

65
8

0.
66

5
0.

62
2

0.
61

0
0.

60
1

0.
61

3
0.

53
3

0.
54

0
0.

53
2

Je
di

t
3.

2
33

.2
0.

69
0.

73
3

0.
74

6
0.

71
9

0.
71

8
0.

72
8

0.
75

0
0.

72
5

0.
72

1
0.

71
1

0.
69

6
0.

69
7

0.
69

1
0.

69
1

0.
67

8
0.

66
5

0.
65

5
0.

66
4

0.
58

4
0.

58
9

0.
57

9
Lo

g4
J

1.
0

25
.2

0.
70

0.
75

3
0.

73
1

0.
72

2
0.

72
2

0.
73

3
0.

73
4

0.
72

3
0.

71
8

0.
71

3
0.

70
3

0.
70

4
0.

69
6

0.
69

7
0.

67
7

0.
67

2
0.

66
8

0.
67

1
0.

62
4

0.
62

7
0.

62
1

L
og

4J
1.

2
92

.2
0.

20
0.

06
0

0.
11

8
0.

18
0

0.
17

9
0.

17
7

0.
17

9
0.

16
3

0.
18

3
0.

18
9

0.
20

0
0.

19
9

0.
20

5
0.

19
8

0.
22

0
0.

23
0

0.
23

6
0.

22
4

0.
27

1
0.

26
8

0.
27

3
Lu

ce
ne

2.
0

46
.9

0.
67

0.
75

0
0.

71
8

0.
69

6
0.

69
6

0.
69

7
0.

69
8

0.
70

0
0.

68
0

0.
68

0
0.

67
2

0.
67

3
0.

67
1

0.
66

4
0.

66
5

0.
65

5
0.

65
1

0.
65

6
0.

61
9

0.
62

0
0.

61
5

Lu
ce

ne
2.

2
58

.5
0.

47
0.

31
1

0.
36

9
0.

42
8

0.
42

8
0.

44
6

0.
46

3
0.

47
6

0.
47

7
0.

48
0

0.
49

6
0.

49
6

0.
49

7
0.

49
6

0.
49

5
0.

49
5

0.
49

4
0.

48
3

0.
49

7
0.

48
8

0.
48

5
P

be
an

s
1

76
.9

0.
36

0.
32

0
0.

31
9

0.
35

2
0.

35
3

0.
35

0
0.

34
5

0.
32

9
0.

33
6

0.
34

1
0.

34
6

0.
35

8
0.

36
3

0.
35

8
0.

37
5

0.
37

8
0.

38
6

0.
37

8
0.

40
1

0.
39

3
0.

39
5

Pb
ea

ns
2

19
.6

0.
71

0.
73

7
0.

76
9

0.
74

7
0.

74
7

0.
75

9
0.

75
5

0.
76

7
0.

74
3

0.
73

7
0.

72
8

0.
71

4
0.

70
9

0.
70

9
0.

68
7

0.
67

6
0.

66
8

0.
67

4
0.

62
0

0.
62

3
0.

61
4

Po
i1

.5
59

.5
0.

55
0.

39
4

0.
53

8
0.

55
5

0.
55

5
0.

55
0

0.
55

4
0.

57
8

0.
57

1
0.

56
9

0.
56

7
0.

56
4

0.
56

4
0.

56
9

0.
57

5
0.

57
6

0.
57

4
0.

57
2

0.
56

2
0.

55
7

0.
55

4
Po

i2
.0

11
.8

0.
66

0.
73

4
0.

74
2

0.
70

5
0.

70
5

0.
71

4
0.

71
2

0.
72

6
0.

69
9

0.
69

1
0.

67
8

0.
66

3
0.

66
4

0.
65

2
0.

63
0

0.
62

1
0.

61
4

0.
62

2
0.

56
0

0.
56

5
0.

55
7

Sy
na

ps
e

1.
0

10
.2

0.
65

0.
77

2
0.

74
5

0.
70

6
0.

70
6

0.
72

0
0.

72
0

0.
73

4
0.

69
9

0.
69

1
0.

67
5

0.
65

2
0.

65
2

0.
63

8
0.

64
5

0.
59

4
0.

58
2

0.
59

6
0.

50
9

0.
51

6
0.

50
9

V
el

oc
it

y
1.

4
75

.0
0.

27
0.

22
3

0.
20

9
0.

23
2

0.
23

3
0.

22
9

0.
22

9
0.

25
2

0.
26

5
0.

26
7

0.
27

1
0.

27
7

0.
27

7
0.

28
0

0.
28

3
0.

29
8

0.
32

3
0.

31
6

0.
34

7
0.

34
3

0.
34

3
Ve

lo
ci

ty
1.

6
34

.2
0.

67
0.

70
0

0.
69

3
0.

69
7

0.
69

8
0.

70
7

0.
70

7
0.

69
7

0.
68

1
0.

67
7

0.
66

9
0.

66
0

0.
66

1
0.

66
0

0.
66

1
0.

64
5

0.
64

1
0.

64
2

0.
62

4
0.

62
0

0.
61

4
X

al
an

2.
4

15
.2

0.
69

0.
79

2
0.

76
7

0.
71

8
0.

71
8

0.
73

2
0.

74
1

0.
76

0
0.

72
8

0.
72

1
0.

70
5

0.
68

4
0.

68
5

0.
67

7
0.

68
3

0.
65

5
0.

64
2

0.
63

2
0.

59
9

0.
60

4
0.

59
4

X
al

an
2.

7
98

.8
0.

10
0.

04
4

0.
05

4
0.

07
3

0.
07

3
0.

06
6

0.
06

8
0.

06
2

0.
07

8
0.

08
3

0.
09

2
0.

10
5

0.
10

5
0.

11
3

0.
10

9
0.

13
4

0.
14

2
0.

14
9

0.
14

2
0.

19
9

0.
20

5
X

er
ce

s
1.

2
16

.1
0.

64
0.

73
4

0.
72

3
0.

67
7

0.
67

7
0.

69
2

0.
69

3
0.

71
1

0.
68

1
0.

67
1

0.
65

5
0.

63
2

0.
63

2
0.

61
8

0.
62

6
0.

58
7

0.
57

6
0.

56
7

0.
57

9
0.

51
3

0.
51

9
X

er
ce

s
1.

4
72

.4
0.

29
0.

35
3

0.
28

0
0.

27
8

0.
27

9
0.

27
7

0.
27

6
0.

26
1

0.
27

1
0.

27
3

0.
27

8
0.

28
6

0.
28

7
0.

29
2

0.
28

8
0.

30
2

0.
30

6
0.

31
2

0.
31

4
0.

34
3

0.
34

3

117

 ferenc.rudolf_87_23

Appendix A. A Public Unified Bug Dataset for Bug Prediction

Table
A

.13:
C

ross
training

(PRO
M

ISE
-class-level)

-A
U

C
values

Project

SCEwBug%

Avg. AUC

Ant 1.3

Camel 1.0

Ckjm 1.8

Forrest 0.6

Ivy 1.4

Jedit 3.2

Log4J 1.0

Log4J 1.2

Lucene 2.0

Lucene 2.2

Pbeans 1

Pbeans 2

Poi 1.5

Poi 2.0

Synapse 1.0

Velocity 1.4

Velocity 1.6

Xalan 2.4

Xalan 2.7

Xerces 1.2

Xerces 1.4

ant-1.3
16.0

0.524
0.395

0.500
0.500

0.812
0.578

0.456
0.476

0.510
0.468

0.554
0.444

0.540
0.535

0.513
0.538

0.509
0.552

0.532
0.505

0.560
cam

el-1.0
3.8

0.537
0.516

0.500
0.500

0.658
0.506

0.657
0.556

0.544
0.565

0.421
0.638

0.476
0.497

0.511
0.504

0.515
0.580

0.550
0.538

0.512
ckjm

-1.8
55.6

0.585
0.520

0.656
0.200

0.558
0.606

0.699
0.703

0.610
0.583

0.575
0.633

0.642
0.543

0.620
0.561

0.573
0.620

0.783
0.495

0.522
forrest-0.6

16.7
0.500

0.500
0.500

0.500
0.500

0.500
0.500

0.500
0.500

0.500
0.500

0.500
0.500

0.500
0.500

0.500
0.500

0.500
0.500

0.500
0.500

ivy-1.4
6.6

0.629
0.767

0.576
0.600

0.500
0.690

0.692
0.587

0.661
0.607

0.575
0.676

0.626
0.648

0.690
0.523

0.666
0.728

0.676
0.523

0.571
jedit-3.2

33.2
0.580

0.707
0.593

0.650
0.400

0.719
0.762

0.584
0.634

0.545
0.525

0.621
0.606

0.549
0.650

0.499
0.489

0.550
0.455

0.578
0.489

log4j-1.0
25.2

0.574
0.695

0.475
0.400

0.400
0.523

0.568
0.575

0.623
0.636

0.550
0.674

0.510
0.668

0.516
0.563

0.604
0.694

0.594
0.641

0.574
log4j-1.2

92.2
0.483

0.531
0.446

0.475
0.600

0.510
0.493

0.533
0.552

0.562
0.467

0.344
0.499

0.470
0.504

0.398
0.454

0.490
0.408

0.495
0.422

lucene-2.0
46.9

0.592
0.781

0.594
0.500

0.500
0.814

0.684
0.546

0.390
0.609

0.575
0.534

0.641
0.578

0.564
0.451

0.569
0.699

0.689
0.571

0.556
lucene-2.2

58.5
0.614

0.538
0.659

0.900
0.600

0.637
0.532

0.680
0.527

0.648
0.850

0.463
0.626

0.584
0.622

0.630
0.539

0.597
0.712

0.398
0.541

pbeans-1
76.9

0.558
0.595

0.564
0.625

0.300
0.589

0.582
0.585

0.469
0.598

0.580
0.705

0.600
0.572

0.526
0.514

0.619
0.571

0.559
0.465

0.550
pbeans-2

19.6
0.543

0.511
0.454

0.500
0.600

0.561
0.565

0.533
0.443

0.578
0.580

0.625
0.579

0.565
0.521

0.488
0.589

0.587
0.565

0.527
0.485

poi-1.5
59.5

0.551
0.551

0.598
0.875

0.400
0.426

0.553
0.646

0.583
0.517

0.528
0.288

0.570
0.447

0.620
0.488

0.574
0.566

0.722
0.430

0.635
poi-2.0

11.8
0.532

0.546
0.665

0.500
0.400

0.722
0.444

0.487
0.388

0.495
0.542

0.538
0.761

0.544
0.459

0.683
0.592

0.454
0.492

0.486
0.436

synapse-1.0
10.2

0.509
0.526

0.556
0.700

0.400
0.326

0.489
0.624

0.537
0.487

0.567
0.475

0.513
0.534

0.540
0.525

0.474
0.509

0.491
0.426

0.488
velocity-1.4

75.0
0.485

0.444
0.332

0.600
0.900

0.317
0.442

0.642
0.596

0.453
0.474

0.625
0.393

0.431
0.442

0.473
0.533

0.333
0.427

0.411
0.429

velocity-1.6
34.2

0.592
0.499

0.630
0.825

0.000
0.670

0.573
0.681

0.559
0.628

0.617
0.775

0.533
0.652

0.540
0.709

0.470
0.619

0.820
0.461

0.580
xalan-2.4

15.2
0.605

0.728
0.541

0.600
0.500

0.501
0.697

0.743
0.571

0.649
0.560

0.600
0.677

0.644
0.646

0.687
0.468

0.618
0.619

0.527
0.516

xalan-2.7
98.8

0.511
0.514

0.522
0.500

0.500
0.507

0.544
0.535

0.487
0.469

0.516
0.475

0.561
0.535

0.518
0.514

0.524
0.494

0.511
0.515

0.484
xerces-1.2

16.1
0.493

0.471
0.570

0.250
0.500

0.683
0.518

0.543
0.476

0.451
0.479

0.521
0.570

0.410
0.562

0.480
0.512

0.541
0.508

0.348
0.464

xerces-1.3
72.4

0.529
0.595

0.511
0.575

0.000
0.629

0.594
0.518

0.436
0.550

0.506
0.721

0.644
0.581

0.527
0.582

0.498
0.525

0.533
0.399

0.547
0.636

118

 ferenc.rudolf_87_23

Section A.1. Tables

Ta
bl

e
A

.1
4:

C
ro

ss
tr

ai
ni

ng
(G

itH
ub

–
cl

as
s-

le
ve

l)
-F

-M
ea

su
re

va
lu

es

Tr
ai

n/
Te

st

Android
UniversalI.L.

ANTLRv4

Broadleaf
Commerce

Eclipsep.
forCeylon

Elasticsearch

Hazelcast

jUnit

MapDB

mcMMO

Mission
ControlT.

Neo4j

Netty

OrientDB

Oryx

Titan

A
nd

ro
id

U
ni

ve
rs

al
I.

L.
0.

88
5

0.
77

2
0.

82
2

0.
81

3
0.

82
1

0.
82

7
0.

82
7

0.
82

5
0.

83
6

0.
86

8
0.

85
9

0.
85

2
0.

85
0

0.
85

3
A

N
T

LR
v4

0.
61

1
0.

78
5

0.
85

2
0.

84
3

0.
84

2
0.

84
7

0.
84

7
0.

84
5

0.
86

2
0.

89
3

0.
88

2
0.

87
6

0.
87

4
0.

87
6

Br
oa

dl
ea

fC
om

m
er

ce
0.

63
5

0.
87

7
0.

92
8

0.
87

0
0.

85
9

0.
86

3
0.

86
2

0.
86

0
0.

87
3

0.
89

4
0.

88
6

0.
88

0
0.

87
9

0.
87

9
Ec

lip
se

p.
fo

r
C

ey
lo

n
0.

61
1

0.
89

4
0.

78
1

0.
84

7
0.

84
7

0.
85

1
0.

85
1

0.
84

8
0.

86
4

0.
89

5
0.

88
4

0.
87

9
0.

87
7

0.
87

9
El

as
tic

se
ar

ch
0.

64
2

0.
86

8
0.

83
5

0.
87

5
0.

90
0

0.
90

2
0.

90
0

0.
89

7
0.

90
4

0.
91

4
0.

90
4

0.
89

7
0.

89
5

0.
89

5
H

az
el

ca
st

0.
63

5
0.

87
6

0.
79

2
0.

83
1

0.
82

8
0.

86
4

0.
86

3
0.

86
1

0.
87

1
0.

88
8

0.
87

9
0.

87
2

0.
87

1
0.

87
2

jU
ni

t
0.

64
4

0.
84

9
0.

77
4

0.
83

7
0.

81
9

0.
81

3
0.

82
2

0.
82

1
0.

83
5

0.
86

7
0.

85
8

0.
85

4
0.

85
3

0.
85

4
M

ap
D

B
0.

67
0

0.
85

2
0.

79
9

0.
85

5
0.

85
2

0.
85

3
0.

85
7

0.
85

8
0.

87
1

0.
89

4
0.

88
4

0.
87

9
0.

87
7

0.
87

8
m

cM
M

O
0.

64
2

0.
87

9
0.

79
3

0.
85

5
0.

84
5

0.
84

9
0.

85
3

0.
85

3
0.

86
6

0.
88

8
0.

88
0

0.
87

4
0.

87
3

0.
87

5
M

iss
io

n
C

on
tr

ol
T

.
0.

61
1

0.
89

0
0.

77
3

0.
84

3
0.

83
6

0.
83

6
0.

84
0

0.
84

0
0.

83
8

0.
89

0
0.

87
9

0.
87

2
0.

87
0

0.
87

2
N

eo
4j

0.
61

1
0.

89
0

0.
77

4
0.

84
3

0.
83

6
0.

83
6

0.
84

1
0.

84
0

0.
83

8
0.

85
6

0.
87

8
0.

87
1

0.
86

9
0.

87
1

N
et

ty
0.

64
4

0.
87

3
0.

78
7

0.
84

8
0.

83
4

0.
83

1
0.

83
7

0.
83

6
0.

83
4

0.
84

7
0.

87
4

0.
86

9
0.

86
7

0.
86

8
O

rie
nt

D
B

0.
61

1
0.

84
5

0.
80

0
0.

85
7

0.
83

5
0.

84
1

0.
84

6
0.

84
6

0.
84

5
0.

85
9

0.
88

8
0.

87
8

0.
88

2
0.

88
2

O
ry

x
0.

71
2

0.
87

4
0.

78
7

0.
84

5
0.

83
7

0.
84

0
0.

84
5

0.
84

5
0.

84
3

0.
85

7
0.

87
9

0.
87

0
0.

86
5

0.
86

8
T

ita
n

0.
61

1
0.

89
5

0.
78

7
0.

84
9

0.
84

0
0.

84
3

0.
84

7
0.

84
7

0.
84

5
0.

85
9

0.
89

0
0.

88
0

0.
87

4
0.

87
2

119

 ferenc.rudolf_87_23

Appendix A. A Public Unified Bug Dataset for Bug Prediction

Table
A

.15:
C

ross
training

(G
itH

ub
–

class-level)
-A

U
C

values

Train/Test

Android
Universal I. L.

ANTLR v4

Broadleaf
Commerce

Eclipse p.
for Ceylon

Elasticsearch

Hazelcast

jUnit

MapDB

mcMMO

Mission
Control T.

Neo4j

Netty

OrientDB

Oryx

Titan

A
ndroid

U
niversalI.L.

0.257
0.282

0.335
0.415

0.390
0.559

0.361
0.428

0.706
0.464

0.504
0.382

0.664
0.515

A
N

T
LR

v4
0.578

0.548
0.699

0.641
0.624

0.548
0.713

0.672
0.792

0.541
0.610

0.664
0.548

0.641
BroadleafC

om
m

erce
0.541

0.748
0.635

0.633
0.649

0.572
0.667

0.604
0.753

0.564
0.624

0.622
0.589

0.644
Eclipse

p.
for

C
eylon

0.537
0.532

0.439
0.503

0.553
0.538

0.558
0.518

0.486
0.520

0.480
0.584

0.502
0.490

Elasticsearch
0.637

0.504
0.556

0.484
0.523

0.505
0.509

0.511
0.656

0.488
0.563

0.571
0.525

0.531
H

azelcast
0.341

0.662
0.412

0.615
0.547

0.486
0.531

0.493
0.494

0.479
0.463

0.564
0.671

0.349
jU

nit
0.571

0.730
0.466

0.443
0.526

0.514
0.645

0.668
0.821

0.502
0.577

0.494
0.428

0.538
M

apD
B

0.542
0.685

0.619
0.654

0.589
0.597

0.713
0.626

0.694
0.608

0.541
0.592

0.577
0.529

m
cM

M
O

0.576
0.523

0.532
0.584

0.637
0.673

0.694
0.611

0.814
0.608

0.657
0.589

0.666
0.584

M
ission

C
ontrolT

.
0.491

0.536
0.530

0.554
0.515

0.527
0.513

0.541
0.524

0.514
0.524

0.537
0.506

0.517
N

eo4j
0.500

0.500
0.500

0.500
0.500

0.500
0.500

0.500
0.500

0.500
0.500

0.500
0.500

0.500
N

etty
0.539

0.609
0.451

0.522
0.512

0.523
0.506

0.487
0.537

0.603
0.553

0.535
0.522

0.501
O

rientD
B

0.485
0.650

0.555
0.577

0.485
0.508

0.511
0.495

0.552
0.643

0.511
0.494

0.441
0.490

O
ryx

0.637
0.675

0.534
0.668

0.607
0.573

0.596
0.628

0.558
0.420

0.612
0.528

0.506
0.581

T
itan

0.617
0.673

0.510
0.440

0.492
0.547

0.572
0.367

0.404
0.181

0.530
0.519

0.464
0.495

120

 ferenc.rudolf_87_23

Section A.1. Tables

Ta
bl

e
A

.1
6:

C
ro

ss
tr

ai
ni

ng
(G

itH
ub

–
fil

e-
le

ve
l)

-F
-M

ea
su

re
va

lu
es

Tr
ai

n/
Te

st

AndroidUniversalI.L.

ANTLRv4

BroadleafCommerce

Eclipsep.forCeylon

Elasticsearch

Hazelcast

jUnit

MapDB

mcMMO

MissionControlT.

Neo4j

Netty

OrientDB

Oryx

Titan

A
nd

ro
id

U
ni

ve
rs

al
I.

L.
0.

79
1

0.
73

6
0.

72
4

0.
70

7
0.

72
4

0.
72

7
0.

72
6

0.
72

4
0.

72
5

0.
75

3
0.

74
6

0.
74

3
0.

74
3

0.
74

9
A

N
T

LR
v4

0.
59

5
0.

77
1

0.
79

7
0.

78
1

0.
78

4
0.

78
5

0.
78

4
0.

78
2

0.
79

0
0.

84
0

0.
82

5
0.

81
6

0.
81

5
0.

82
0

Br
oa

dl
ea

fC
om

m
er

ce
0.

63
1

0.
83

2
0.

84
2

0.
80

3
0.

80
3

0.
80

3
0.

80
3

0.
80

0
0.

80
6

0.
84

8
0.

83
5

0.
82

6
0.

82
5

0.
82

9
Ec

lip
se

p.
fo

r
C

ey
lo

n
0.

59
5

0.
84

1
0.

79
7

0.
80

4
0.

80
5

0.
80

5
0.

80
6

0.
80

3
0.

80
9

0.
85

0
0.

83
5

0.
82

9
0.

82
8

0.
83

2
El

as
tic

se
ar

ch
0.

59
5

0.
81

7
0.

77
1

0.
79

7
0.

78
4

0.
78

5
0.

78
4

0.
78

2
0.

79
0

0.
84

0
0.

82
5

0.
81

6
0.

81
5

0.
82

0
H

az
el

ca
st

0.
59

5
0.

81
9

0.
77

5
0.

79
9

0.
78

3
0.

79
1

0.
79

0
0.

78
8

0.
79

6
0.

84
3

0.
82

8
0.

81
9

0.
81

8
0.

82
2

jU
ni

t
0.

72
2

0.
81

3
0.

75
9

0.
76

7
0.

75
9

0.
76

6
0.

76
8

0.
76

6
0.

77
1

0.
80

2
0.

79
3

0.
78

8
0.

78
8

0.
79

3
M

ap
D

B
0.

62
2

0.
84

7
0.

80
8

0.
82

2
0.

81
3

0.
81

4
0.

81
5

0.
81

4
0.

81
9

0.
85

5
0.

84
3

0.
83

7
0.

83
6

0.
83

9
m

cM
M

O
0.

71
0

0.
80

6
0.

80
0

0.
78

6
0.

77
0

0.
78

0
0.

78
2

0.
78

1
0.

78
0

0.
79

1
0.

78
4

0.
77

9
0.

77
8

0.
78

2
M

iss
io

n
C

on
tr

ol
T

.
0.

59
5

0.
82

1
0.

77
3

0.
79

7
0.

78
2

0.
78

5
0.

78
5

0.
78

5
0.

78
2

0.
84

1
0.

82
6

0.
81

8
0.

81
7

0.
82

1
N

eo
4j

0.
59

5
0.

81
7

0.
77

1
0.

79
7

0.
78

1
0.

78
4

0.
78

5
0.

78
4

0.
78

2
0.

79
0

0.
82

5
0.

81
6

0.
81

5
0.

82
0

N
et

ty
0.

68
2

0.
81

8
0.

77
3

0.
79

5
0.

77
4

0.
78

3
0.

78
4

0.
78

4
0.

78
4

0.
78

9
0.

82
7

0.
81

8
0.

81
7

0.
81

9
O

rie
nt

D
B

0.
59

5
0.

81
7

0.
77

1
0.

79
7

0.
78

1
0.

78
4

0.
78

5
0.

78
4

0.
78

2
0.

79
0

0.
84

0
0.

82
5

0.
81

5
0.

82
0

O
ry

x
0.

63
7

0.
83

0
0.

76
8

0.
79

5
0.

78
7

0.
78

9
0.

79
1

0.
79

0
0.

78
7

0.
79

4
0.

83
9

0.
82

5
0.

81
6

0.
82

2
T

ita
n

0.
59

5
0.

81
7

0.
77

1
0.

79
7

0.
78

1
0.

78
4

0.
78

5
0.

78
4

0.
78

2
0.

79
0

0.
84

0
0.

82
5

0.
81

6
0.

81
5

121

 ferenc.rudolf_87_23

Appendix A. A Public Unified Bug Dataset for Bug Prediction

Table
A

.17:
C

ross
training

(G
itH

ub
–

file-level)
-A

U
C

values

Train/Test

Android Universal I. L.

ANTLR v4

Broadleaf Commerce

Eclipse p. for Ceylon

Elasticsearch

Hazelcast

jUnit

MapDB

mcMMO

Mission Control T.

Neo4j

Netty

OrientDB

Oryx

Titan

A
ndroid

U
niversalI.L.

0.468
0.271

0.355
0.426

0.433
0.637

0.341
0.465

0.271
0.391

0.534
0.374

0.665
0.339

A
N

T
LR

v4
0.649

0.682
0.710

0.667
0.631

0.634
0.732

0.727
0.777

0.687
0.621

0.627
0.538

0.648
BroadleafC

om
m

erce
0.537

0.598
0.729

0.675
0.641

0.549
0.684

0.752
0.667

0.570
0.604

0.644
0.598

0.632
Eclipse

p.
for

C
eylon

0.517
0.593

0.528
0.565

0.549
0.500

0.680
0.592

0.725
0.541

0.538
0.574

0.512
0.543

Elasticsearch
0.598

0.582
0.679

0.626
0.637

0.559
0.752

0.699
0.295

0.616
0.607

0.622
0.553

0.623
H

azelcast
0.481

0.460
0.579

0.652
0.545

0.500
0.597

0.534
0.209

0.523
0.496

0.564
0.537

0.498
jU

nit
0.707

0.723
0.732

0.658
0.665

0.647
0.598

0.681
0.653

0.721
0.669

0.642
0.634

0.630
M

apD
B

0.327
0.462

0.493
0.643

0.576
0.547

0.368
0.574

0.633
0.463

0.511
0.529

0.486
0.481

m
cM

M
O

0.608
0.799

0.655
0.685

0.684
0.640

0.563
0.806

0.814
0.728

0.611
0.622

0.519
0.600

M
ission

C
ontrolT

.
0.450

0.534
0.492

0.506
0.485

0.497
0.463

0.472
0.535

0.496
0.474

0.499
0.535

0.511
N

eo4j
0.500

0.500
0.500

0.500
0.500

0.500
0.500

0.500
0.500

0.500
0.500

0.500
0.500

0.500
N

etty
0.656

0.686
0.733

0.678
0.673

0.652
0.698

0.746
0.698

0.856
0.753

0.693
0.784

0.733
O

rientD
B

0.573
0.686

0.718
0.559

0.661
0.603

0.600
0.794

0.640
0.786

0.737
0.736

0.611
0.750

O
ryx

0.682
0.724

0.725
0.663

0.644
0.610

0.658
0.595

0.664
0.578

0.689
0.703

0.613
0.648

T
itan

0.500
0.500

0.500
0.500

0.500
0.500

0.500
0.500

0.500
0.500

0.500
0.500

0.500
0.500

122

 ferenc.rudolf_87_23

Section A.2. Online Appendix

A.2 Online Appendix
The Unified Bug Dataset 1.2 is available as an online appendix at the following links:

• https://doi.org/10.5281/zenodo.3693685

• http://www.inf.u-szeged.hu/~ferenc/papers/UnifiedBugDataSet

The UnifiedBugDataset-1.2.zip file contains

• the original bug datasets in their original form,

• the list of projects contained in each dataset,

• the source code of the systems that were used to develop the datasets,

• the unified dataset in CSV and ARFF format at file/class-level,

• the dataset containing only the results of OpenStaticAnalyzer in ARFF format
at file/class-level,

• description of the OpenStaticAnalyzer metrics,

• metrics comparisons in spreadsheet format of the PROMISE [173], Eclipse [247],
Bug Prediction [75], Bugcatchers [111], and GitHub [26] bug datasets,

• the results of the within-project training at file/class-level in spreadsheet format,

• the results of the cross-training at file/class-level in spreadsheet format.

For a more exhaustive description of the exact contents of the files and usage informa-
tion, one should refer to the ’README.txt’ file, which is located in the root folder of
the Unified Bug Dataset package.

123

 ferenc.rudolf_87_23

https://doi.org/10.5281/zenodo.3693685
http://www.inf.u-szeged.hu/~ferenc/papers/UnifiedBugDataSet

 ferenc.rudolf_87_23

Bibliography

Referenced Publications of the Author
[1] Tibor Bakota, Péter Körtvélyesi, Rudolf Ferenc, and Tibor Gyimóthy. A prob-

abilistic software quality model. In Proceedings of the 27th IEEE International
Conference on Software Maintenance (ICSM 2011), pages 243–252, Williams-
burg, VA, USA, September 2011. IEEE Computer Society.

[2] Csaba Faragó, Péter Hegedűs, and Rudolf Ferenc. Code ownership: Impact on
maintainability. In Proceedings of the 15th International Conference on Com-
putational Science and Its Applications (ICCSA 2015), volume 9159 of Lecture
Notes in Computer Science (LNCS), pages 3–19, Banff, Alberta, Canada, June
2015. Springer-Verlag.

[3] Rudolf Ferenc. Bug Forecast: A method for automatic bug prediction. In Pro-
ceedings of the 2010 International Conference on Advanced Software Engineering
& Its Applications (ASEA 2010), volume 117 of Communications in Computer
and Information Science (CCIS), pages 283–295, Jeju Island, Korea, December
2010. Springer-Verlag.

[4] Rudolf Ferenc, Dénes Bán, Tamás Grósz, and Tibor Gyimóthy. Deep learning in
static, metric-based bug prediction. Array, 6:100021, July 2020. Open Access.

[5] Rudolf Ferenc, Árpád Beszédes, Lajos Jenő Fülöp, and János Lele. Design pat-
tern mining enhanced by machine learning. In Proceedings of the 21st IEEE In-
ternational Conference on Software Maintenance (ICSM 2005), pages 295–304,
Budapest, Hungary, September 2005. IEEE Computer Society.

[6] Rudolf Ferenc, Árpád Beszédes, Mikko Tarkiainen, and Tibor Gyimóthy. Colum-
bus – reverse engineering tool and schema for C++. In Proceedings of the 18th
International Conference on Software Maintenance (ICSM 2002), pages 172–181,
Montréal, Canada, October 2002. IEEE Computer Society.

[7] Rudolf Ferenc, Péter Gyimesi, Gábor Gyimesi, Zoltán Tóth, and Tibor Gy-
imóthy. An automatically created novel bug dataset and its validation in bug
prediction. Journal of Systems and Software, 169:110691, November 2020. Open
Access.

[8] Rudolf Ferenc, Péter Hegedűs, Péter Gyimesi, Gábor Antal, Bán Dénes, and
Tibor Gyimóthy. Challenging machine learning algorithms in predicting vulner-
able javascript functions. In Proceedings of the 7th IEEE/ACM International
Workshop on Realizing Artificial Intelligence Synergies in Software Engineering
(RAISE), pages 8–14. IEEE/ACM, May 2019.

125

 ferenc.rudolf_87_23

Bibliography

[9] Rudolf Ferenc, László Langó, István Siket, Tibor Gyimóthy, and Tibor Bakota.
SourceMeter SonarQube plug-in. In Proceedings of the 14th IEEE International
Working Conference on Source Code Analysis and Manipulation (SCAM 2014),
pages 77–82, Victoria, British Columbia, Canada, September 2014. IEEE Com-
puter Society.

[10] Rudolf Ferenc, István Siket, and Tibor Gyimóthy. Extracting facts from open
source software. In Proceedings of the 20th International Conference on Software
Maintenance (ICSM 2004), pages 60–69, Chicago Illinois, USA, September 2004.
IEEE Computer Society.

[11] Rudolf Ferenc, Zoltán Tóth, Gergely Ladányi, István Siket, and Tibor Gyimóthy.
A public unified bug dataset for java. In Proceedings of the 14th International
Conference on Predictive Models and Data Analytics in Software Engineering,
pages 12–21. ACM, 2018.

[12] Rudolf Ferenc, Zoltán Tóth, Gergely Ladányi, István Siket, and Tibor Gyimóthy.
A public unified bug dataset for java and its assessment regarding metrics and
bug prediction. Software Quality Journal, 28:1447–1506, 2020. Open Access.

[13] Rudolf Ferenc, Tamás Viszkok, Tamás Aladics, Judit Jász, and Péter Hegedűs.
Deep-water framework: The swiss army knife of humans working with machine
learning models. SoftwareX, 12:100551, December 2020. Open Access.

[14] Péter Gyimesi, Gábor Gyimesi, Zoltán Tóth, and Rudolf Ferenc. Characterization
of source code defects by data mining conducted on GitHub. In Proceedings of
the 15th International Conference on Computational Science and Its Applications
(ICCSA 2015), volume 9159 of Lecture Notes in Computer Science (LNCS), pages
47–62, Banff, Alberta, Canada, June 2015. Springer-Verlag.

[15] Péter Gyimesi, Béla Vancsics, Andrea Stocco, Davood Mazinanian, Árpád
Beszédes, Rudolf Ferenc, and Ali Mesbah. Bugsjs: a benchmark and taxon-
omy of javascript bugs. Software Testing, Verification and Reliability, October
2020. Open Access.

[16] Tibor Gyimóthy, Rudolf Ferenc, and István Siket. Empirical validation of object-
oriented metrics on open source software for fault prediction. IEEE Transactions
on Software Engineering, 31(10):897–910, November 2005.

[17] Péter Hegedűs, István Kádár, Rudolf Ferenc, and Tibor Gyimóthy. Empirical
evaluation of software maintainability based on a manually validated refactoring
dataset. Information and Software Technology, March 2018.

[18] Péter Hegedűs and Rudolf Ferenc. Static code analysis alarms filtering reloaded:
A new real-world dataset and its ml-based utilization. IEEE Access, 10:55090–
55101, 2022. Open Access.

[19] István Kádár, Péter Hegedűs, and Rudolf Ferenc. Adding constraint building
mechanisms to a symbolic execution engine developed for detecting runtime
errors. In Proceedings of the 15th International Conference on Computational
Science and Its Applications (ICCSA 2015), volume 9159 of Lecture Notes in

126

 ferenc.rudolf_87_23

Bibliography

Computer Science (LNCS), pages 20–35, Banff, Alberta, Canada, June 2015.
Springer-Verlag.

[20] Gergely Ladányi, Zoltán Tóth, Rudolf Ferenc, and Tibor Keresztesi. A software
quality model for RPG. In Proceedings of the 22nd IEEE International Confer-
ence on Software Analysis, Evolution, and Reengineering (SANER 2015), pages
91–100, Montréal, Canada, March 2015. IEEE Computer Society.

[21] Yixun Liu, Denys Poshyvanyk, Rudolf Ferenc, Tibor Gyimóthy, and Nikos
Chrisochoides. Modeling class cohesion as mixtures of latent topics. In Pro-
ceedings of the 25th IEEE International Conference on Software Maintenance
(ICSM 2009), pages 233–242, Edmonton, Canada, September 2009. IEEE Com-
puter Society.

[22] Andrian Marcus, Denys Poshyvanyk, and Rudolf Ferenc. Using the conceptual
cohesion of classes for fault prediction in object oriented systems. IEEE Trans-
actions on Software Engineering, 34(2):287–300, March 2008.

[23] Denys Poshyvanyk, Andrian Marcus, Rudolf Ferenc, and Tibor Gyimóthy. Using
information retrieval based coupling measures for impact analysis. Empirical
Software Engineering, 14(1):5–32, February 2009.

[24] Gábor Szőke, Gábor Antal, Csaba Nagy, Rudolf Ferenc, and Tibor Gyimóthy.
Bulk fixing coding issues and its effects on software quality: Is it worth refac-
toring? In Proceedings of the 14th IEEE International Working Conference on
Source Code Analysis and Manipulation (SCAM 2014), pages 95–104, Victoria,
British Columbia, Canada, September 2014. IEEE Computer Society.

[25] Gábor Szőke, Gábor Antal, Csaba Nagy, Rudolf Ferenc, and Tibor Gyimóthy.
Empirical study on refactoring large-scale industrial systems and its effects on
maintainability. Journal of Systems and Software, 129(C):107–126, July 2017.

[26] Zoltán Tóth, Péter Gyimesi, and Rudolf Ferenc. A public bug database of GitHub
projects and its application in bug prediction. In Proceedings of the 16th Interna-
tional Conference on Computational Science and Its Applications (ICCSA 2016),
pages 625–638, Beijing, China, July 2016. Springer International Publishing.

[27] Béla Újházi, Rudolf Ferenc, Denys Poshyvanyk, and Tibor Gyimóthy. New con-
ceptual coupling and cohesion metrics for object-oriented systems. In Proceedings
of the 10th IEEE International Working Conference on Source Code Analysis and
Manipulation (SCAM 2010), pages 33–42, Timişoara, Romania, September 2010.
IEEE Computer Society. Best paper of the conference.

127

 ferenc.rudolf_87_23

Bibliography

Other References

[28] ISO/IEC 9126-1:2001 Software engineering — Product quality — Part 1: Quality
model . 2001.

[29] ISO/IEC 25010:2011 Systems and software engineering — Systems and software
Quality Requirements and Evaluation (SQuaRE) — System and software quality
models. 2013.

[30] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving,
M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,
R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,
I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas,
O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. Ten-
sorFlow: Large-scale machine learning on heterogeneous systems, 2015. Software
available from tensorflow.org, Accessed: 2023-03-20.

[31] F. Abreu and M. Goulao. Coupling and cohesion as modularization drivers: are
we being over-persuaded? In Proceedings Fifth European Conference on Software
Maintenance and Reengineering, pages 47–57, March 2001.

[32] F. Abreu, G. Pereira, and P. Sousa. A coupling-guided cluster analysis approach
to reengineer the modularity of object-oriented systems. In Proceedings of the
Fourth European Conference on Software Maintenance and Reengineering, pages
13–22, March 2000.

[33] A. Adewumi, S. Misra, N. Omoregbe, B. Crawford, and R. Soto. A systematic lit-
erature review of open source software quality assessment models. SpringerPlus,
5(1):1936, 2016.

[34] E. B. Allen, T. M. Khoshgoftaar, and Y. Chen. Measuring coupling and cohesion
of software modules: an information-theory approach. In Proceedings Seventh
International Software Metrics Symposium, pages 124–134, April 2001.

[35] G. Antoniol, G. Canfora, G. Casazza, and A. De Lucia. Identifying the starting
impact set of a maintenance request: a case study. In Proceedings of the Fourth
European Conference on Software Maintenance and Reengineering, pages 227–
230, March 2000.

[36] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo. Recovering
Traceability Links Between Code and Documentation. IEEE Transactions on
Software Engineering, 28(10):970–983, October 2002.

[37] G. Antoniol, R. Fiutem, and L. Cristoforetti. Using Metrics to Identify Design
Patterns in Object-Oriented Software. In Proceedings of the Fifth International
Symposium on Software Metrics (METRICS98), pages 23–34. IEEE Computer
Society, November 1998.

[38] Ö. F. Arar and K. Ayan. Software defect prediction using cost-sensitive neural
network. Applied Soft Computing, 33:263–277, 2015.

128

 ferenc.rudolf_87_23

tensorflow.org

Bibliography

[39] E. Arisholm, L. C. Briand, and A. Foyen. Dynamic coupling measurement for
object-oriented software. IEEE Transactions on Software Engineering, 30(8):491–
506, Augustus 2004.

[40] J. Bansiya and C. G. Davis. A hierarchical model for object-oriented design
quality assessment. IEEE Transactions on Software Engineering, 28(1):4–17,
2002.

[41] V. R. Basili, L. C. Briand, and W. L. Melo. A validation of object-oriented
design metrics as quality indicators. IEEE Transactions on Software Engineering,
22(10):751–761, October 1996.

[42] V. R. Basili, G. Caldiera, and D. H. Rombach. The Goal Question Metric
Paradigm. John W & S, 1994.

[43] A. Bernstein, J. Ekanayake, and M. Pinzger. Improving defect prediction using
temporal features and non linear models. In Ninth international workshop on
Principles of software evolution: in conjunction with the 6th ESEC/FSE joint
meeting, pages 11–18. ACM, 2007.

[44] M. W. Berry. Large-scale sparse singular value computations. The International
Journal of Supercomputing Applications, 6(1):13–49, April 1992.

[45] J. M. Bieman and B-K. Kang. Cohesion and reuse in an object-oriented system.
In Proceedings of the 1995 Symposium on Software Reusability, SSR ’95, pages
259–262. ACM, 1995.

[46] C. M. Bishop. Neural Networks for Pattern Recognition. Clarendon Press, Ox-
ford., 1995.

[47] S. Bohner. Impact analysis in the software change process: a year 2000 perspec-
tive. In 1996 Proceedings of International Conference on Software Maintenance,
pages 42–51, Nov 1996.

[48] S. A. Bohner and D. Gracanin. Software impact analysis in a virtual environ-
ment. In 28th Annual NASA Goddard Software Engineering Workshop, 2003.
Proceedings., pages 143–151, Dec 2003.

[49] L. Briand, P. Devanbu, and W. Melo. An investigation into coupling measures
for c++. In Proceedings of the (19th) International Conference on Software
Engineering, pages 412–421, May 1997.

[50] L. Briand, W. Melo, and J. Wust. Assessing the applicability of fault-proneness
models across object-oriented software projects. IEEE Transactions on Software
Engineering, 28(7):706–720, July 2002.

[51] L. C. Briand, J. Daly, V. Porter, and J. Wust. A comprehensive empirical val-
idation of design measures for object-oriented systems. In Proceedings Fifth In-
ternational Software Metrics Symposium. Metrics (Cat. No.98TB100262), pages
246–257, Nov 1998.

129

 ferenc.rudolf_87_23

Bibliography

[52] L. C. Briand, J. W. Daly, and J. Wüst. A unified framework for cohesion mea-
surement in object-oriented systems. Empirical Software Engineering, 3:65–117,
1998.

[53] L. C. Briand, J. W. Daly, and J. K. Wust. A unified framework for coupling
measurement in object-oriented systems. IEEE Transactions on Software Engi-
neering, 25(1):91–121, Jan 1999.

[54] L. C. Briand, S. Morasca, and V. R. Basili. Property-based software engineering
measurement. IEEE Transactions on Software Engineering, 22(1):68–86, 1996.

[55] L. C. Briand, J. Wust, and H. Lounis. Using coupling measurement for impact
analysis in object-oriented systems. In Proceedings IEEE International Confer-
ence on Software Maintenance - 1999 (ICSM’99). ’Software Maintenance for
Business Change’ (Cat. No.99CB36360), pages 475–482, Aug 1999.

[56] L. C. Briand, J. Wüst, J. W. Daly, and D. V. Porter. Exploring the relationships
between design measures and software quality in object-oriented systems. Journal
of Systems and Software, 51(3):245–273, may 2000.

[57] G. Canfora and L. Cerulo. Impact analysis by mining software and change request
repositories. In 11th IEEE International Software Metrics Symposium (MET-
RICS’05), pages 9 pp.–29, Sep. 2005.

[58] L. F. Capretz and J. Xu. An empirical validation of object-oriented design metrics
for fault prediction. Journal of Computer Science, 4(7):571, 2008.

[59] B. Caprile and P. Tonella. Restructuring program identifier names. In Proceedings
2000 International Conference on Software Maintenance, pages 97–107, Oct 2000.

[60] C. Catal. Software fault prediction: A literature review and current trends.
Expert systems with applications, 38(4):4626–4636, 2011.

[61] C. Catal and B. Diri. A systematic review of software fault prediction studies.
Expert systems with applications, 36(4):7346–7354, 2009.

[62] P. Cellier, M. Ducassé, S. Ferré, and O. Ridoux. Multiple fault localization with
data mining. In SEKE, pages 238–243, 2011.

[63] H. S. Chae, Y. R. Kwon, and D. H. Bae. A cohesion measure for object-oriented
classes. Software: Practice and Experience, 30(12):1405–1431, 2000.

[64] K. Chen and V. Rajlich. Case study of feature location using dependence graph.
In Proceedings IWPC 2000. 8th International Workshop on Program Comprehen-
sion, pages 241–247, June 2000.

[65] S. R. Chidamber, D. P. Darcy, and C. F. Kemerer. Managerial use of metrics
for object-oriented software: an exploratory analysis. IEEE Transactions on
Software Engineering, 24(8):629–639, 1998.

[66] S. R. Chidamber and C. F. Kemerer. Towards a metrics suite for object ori-
ented design. In Conference Proceedings on Object-oriented Programming Sys-
tems, Languages, and Applications, OOPSLA ’91, pages 197–211, New York, NY,
USA, 1991. ACM.

130

 ferenc.rudolf_87_23

Bibliography

[67] S. R. Chidamber and C. F. Kemerer. A metrics suite for object oriented design.
IEEE Transactions on Software Engineering, 20(6):476–493, jun 1994.

[68] E. S. Cho, C. J. Kim, D. D. Kim, and S. Y. Rhew. Static and dynamic metrics for
effective object clustering. In Proceedings 1998 Asia Pacific Software Engineering
Conference (Cat. No.98EX240), pages 78–85, Dec 1998.

[69] D. Cireşan, U. Meier, and J. Schmidhuber. Multi-column deep neural networks
for image classification. arXiv preprint arXiv:1202.2745, 2012.

[70] J. Cleland-Huang, R. Settimi, C. Duan, and X. Zou. Utilizing supporting evi-
dence to improve dynamic requirements traceability. In 13th IEEE International
Conference on Requirements Engineering (RE’05), pages 135–144, Aug 2005.

[71] C. J. Clemente, F. Jaafar, and Y. Malik. Is predicting software security bugs
using deep learning better than the traditional machine learning algorithms? In
2018 IEEE International Conference on Software Quality, Reliability and Secu-
rity (QRS), pages 95–102. IEEE, 2018.

[72] S. Counsell, S. Swift, and J. Crampton. The interpretation and utility of three
cohesion metrics for object-oriented design. ACM Transactions on Software En-
gineering and Methodology, 15(2):123–149, apr 2006.

[73] D. Cubranic, G. C. Murphy, J. Singer, and K. S. Booth. Hipikat: a project
memory for software development. IEEE Transactions on Software Engineering,
31(6):446–465, June 2005.

[74] V. Dallmeier and T. Zimmermann. Extraction of bug localization benchmarks
from history. In Proceedings of the 22nd IEEE/ACM International Conference
on Automated Software Engineering, ASE ’07, page 433–436, New York, NY,
USA, 2007. Association for Computing Machinery.

[75] M. D’Ambros, M. Lanza, and R. Robbes. An extensive comparison of bug pre-
diction approaches. In 7th Working Conference on Mining Software Repositories
(MSR), pages 31–41. IEEE, 2010.

[76] M. D’Ambros, M. Lanza, and R. Robbes. Evaluating defect prediction ap-
proaches: a benchmark and an extensive comparison. Empirical Software Engi-
neering, 17(4-5):531–577, 2012.

[77] D. P. Darcy and C. F. Kemerer. OO metrics in practice. IEEE Software, 22(6):17–
19, nov 2005.

[78] A. De Lucia, F. Fasano, R. Oliveto, and G. Tortora. Recovering traceability links
in software artifact management systems using information retrieval methods.
ACM Trans. Softw. Eng. Methodol., 16(4), September 2007.

[79] DeepBugHunter – experimental python framework for deep learning. https:
//github.com/sed-inf-u-szeged/DeepBugHunter, 2019. Accessed: 2023-03-
20.

131

 ferenc.rudolf_87_23

https://github.com/sed-inf-u-szeged/DeepBugHunter
https://github.com/sed-inf-u-szeged/DeepBugHunter

Bibliography

[80] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harsh-
man. Indexing by latent semantic analysis. Journal of the American Society for
Information Science, 41(6):391–407, sep 1990.

[81] F. Deissenboeck and M. Pizka. Concise and consistent naming. Software Quality
Journal, 14(3):261–282, 2006.

[82] B. Dit, D. Poshyvanyk, and A. Marcus. Measuring the semantic similarity of
comments in bug reports. In in Proc. of 1 st STSM’08, 2008.

[83] M. Dowson. The ariane 5 software failure. ACM SIGSOFT Software Engineering
Notes, 22(2):84, 1997.

[84] N. Dragan, M. Collard, and J. Maletic. Reverse engineering method stereotypes.
In 2006 22nd IEEE International Conference on Software Maintenance. IEEE,
sep 2006.

[85] S. T. Dumais. Improving the retrieval of information from external sources.
Behavior Research Methods, Instruments, & Computers, 23(2):229–236, jun 1991.

[86] T. Durieux and M. Monperrus. IntroClassJava: A Benchmark of 297 Small and
Buggy Java Programs. Technical report, Universite Lille 1, 2016.

[87] M. Eaddy, A. V. Aho, G. Antoniol, and Y. Guéhéneuc. Cerberus: Tracing
requirements to source code using information retrieval, dynamic analysis, and
program analysis. In 2008 16th IEEE International Conference on Program Com-
prehension, pages 53–62, June 2008.

[88] J. Eder, G. Kappel, and M. Schrefl. Coupling and cohesion in object-oriented
systems. Technical report, University of Klagenfurt, 1994.

[89] K. El Emam, S. Benlarbi, N. Goel, and S. N. Rai. The confounding effect of class
size on the validity of object-oriented metrics. IEEE Transactions on Software
Engineering, 27(7):630–650, jul 2001.

[90] K. El Emam, W. Melo, and J. C. Machado. The prediction of faulty classes using
object-oriented design metrics. Journal of Systems and Software, 56(1):63–75, feb
2001.

[91] L. Etzkorn and H. Delugach. Towards a semantic metrics suite for object-oriented
design. In Proceedings. 34th International Conference on Technology of Object-
Oriented Languages and Systems - TOOLS 34, pages 71–80, Aug 2000.

[92] L. H. Etzkorn and C. G. Davis. Automatically identifying reusable OO legacy
code. Computer, 30(10):66–71, 1997.

[93] L. H. Etzkorn, S. Gholston, and W. E. Hughes. A semantic entropy metric. Jour-
nal of Software Maintenance and Evolution: Research and Practice, 14(4):293–
310, 2002.

[94] L. H. Etzkorn, S. E. Gholston, J. L. Fortune, C. E. Stein, D. Utley, P. A. Far-
rington, and G. W. Cox. A comparison of cohesion metrics for object-oriented
systems. Information and Software Technology, 46(10):677–687, aug 2004.

132

 ferenc.rudolf_87_23

Bibliography

[95] B. Fischer. Specification-based browsing of software component libraries. In
Proceedings 13th IEEE International Conference on Automated Software Engi-
neering (Cat. No.98EX239), pages 74–83, Oct 1998.

[96] B. Fluri, M. Würsch, E. Giger, and H. C. Gall. Analyzing the co-evolution of
comments and source code. Software Quality Journal, 17(4):367–394, December
2009.

[97] B. Flyvbjerg. Five misunderstandings about case-study research. Qualitative
Inquiry, 12(2):219–245, apr 2006.

[98] P. W. Foltz, W. Kintsch, and T. K. Landauer. The measurement of textual
coherence with latent semantic analysis. Discourse Processes, 25(2-3):285–307,
jan 1998.

[99] M. Fowler. Refactoring: Improving the Design of Existing Code. Addison-Wesley,
1999.

[100] H. Gall, M. Jazayeri, and J. Krajewski. Cvs release history data for detecting
logical couplings. In Sixth International Workshop on Principles of Software
Evolution, 2003. Proceedings., pages 13–23, Sep. 2003.

[101] B. Ghotra, S. McIntosh, and A. E. Hassan. Revisiting the impact of classification
techniques on the performance of defect prediction models. In Proceedings of the
37th International Conference on Software Engineering-Volume 1, pages 789–800.
IEEE Press, 2015.

[102] E. Giger, M. D’Ambros, M. Pinzger, and H. C. Gall. Method-level bug prediction.
In Proceedings of the ACM-IEEE international symposium on Empirical software
engineering and measurement, pages 171–180. ACM, 2012.

[103] R. L. Glass. Frequently forgotten fundamental facts about software engineering.
IEEE software, 18(3):112–111, 2001.

[104] X. Glorot, A. Bordes, and Y. Bengio. Deep sparse rectifier neural networks. In
Proceedings of the fourteenth international conference on artificial intelligence
and statistics, pages 315–323, 2011.

[105] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[106] D. Gray, D. Bowes, N. Davey, Y. Sun, and B. Christianson. The misuse of the
nasa metrics data program data sets for automated software defect prediction.
In Evaluation & Assessment in Software Engineering (EASE 2011), 15th Annual
Conference on, pages 96–103. IET, 2011.

[107] D. Gray, D. Bowes, N. Davey, Y. Sun, and B. Christianson. Reflections on the
nasa mdp data sets. IET software, 6(6):549–558, 2012.

[108] D. L. Gupta and K. Saxena. Software bug prediction using object-oriented met-
rics. Sādhanā, 42(5):655–669, 2017.

133

 ferenc.rudolf_87_23

http://www.deeplearningbook.org

Bibliography

[109] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Wit-
ten. The weka data mining software: an update. ACM SIGKDD explorations
newsletter, 11(1):10–18, 2009.

[110] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell. A systematic lit-
erature review on fault prediction performance in software engineering. IEEE
Transactions on Software Engineering, 38(6):1276–1304, 2012.

[111] T. Hall, M. Zhang, D. Bowes, and Y. Sun. Some code smells have a significant
but small effect on faults. ACM Trans. Softw. Eng. Methodol., 23(4):33:1–33:39,
September 2014.

[112] M. A. K. Halliday. Cohesion in English. Longman, London, 1976.

[113] A. E. Hassan. Predicting faults using the complexity of code changes. In Proceed-
ings of the 31st International Conference on Software Engineering, pages 78–88.
IEEE Computer Society, 2009.

[114] Y. Hassoun, R. Johnson, and S. Counsell. A dynamic runtime coupling metric
for meta-level architectures. In Eighth European Conference on Software Mainte-
nance and Reengineering, 2004. CSMR 2004. Proceedings., pages 339–346, March
2004.

[115] J. H. Hayes, A. Dekhtyar, and S. K. Sundaram. Advancing candidate link gen-
eration for requirements tracing: the study of methods. IEEE Transactions on
Software Engineering, 32(1):4–19, Jan 2006.

[116] R. Helm and Y. S. Maarek. Integrating information retrieval and domain specific
approaches for browsing and retrieval in object-oriented class libraries. In Con-
ference Proceedings on Object-oriented Programming Systems, Languages, and
Applications, OOPSLA ’91, pages 47–61, New York, NY, USA, 1991. ACM.

[117] B. Henderson-Sellers. Software Metrics. U.K., Prentice Hall, 1996.

[118] S. Herbold, A. Trautsch, and J. Grabowski. A comparative study to benchmark
cross-project defect prediction approaches. IEEE Transactions on Software En-
gineering, 44(9):811–833, 2017.

[119] R. Hiesgen, M. Nawrocki, T. C. Schmidt, and M. Wählisch. The race to the
vulnerable: Measuring the log4j shell incident. arXiv preprint arXiv:2205.02544,
2022.

[120] E. Hill, L. Pollock, and K. Vijay-Shanker. Exploring the neighborhood with
dora to expedite software maintenance. In Proceedings of the Twenty-second
IEEE/ACM International Conference on Automated Software Engineering, ASE
’07, pages 14–23, New York, NY, USA, 2007. ACM.

[121] G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with
neural networks. science, 313(5786):504–507, 2006.

[122] M. Hitz and B. Montazeri. Measuring coupling and cohesion in object-oriented
systems. In Proceedings of International Symposium on Applied Corporate Com-
puting, pages 25–27, 1995.

134

 ferenc.rudolf_87_23

Bibliography

[123] J. Horning, H. Lauer, P. Melliar-Smith, and B. Randell. A program structure for
error detection and recovery. Operating Systems, pages 171–187, 1974.

[124] S. Hosseini, B. Turhan, and D. Gunarathna. A systematic literature review and
meta-analysis on cross project defect prediction. IEEE Transactions on Software
Engineering, 45(2):111–147, Feb 2019.

[125] X. Huo, M. Li, and Z-H. Zhou. Learning unified features from natural and
programming languages for locating buggy source code. In IJCAI, pages 1606–
1612, 2016.

[126] R. Jayanthi and L. Florence. Software defect prediction techniques using metrics
based on neural network classifier. Cluster Computing, 22(1):77–88, 2019.

[127] J. D. Jobson. Applied Multivariate Data Analysis. Springer New York, 1992.

[128] D. Johnson. Quicknet, 2019. Accessed: 2023-03-20.

[129] M. Jureczko and L. Madeyski. Towards identifying software project clusters with
regard to defect prediction. In Proceedings of the 6th International Conference
on Predictive Models in Software Engineering, PROMISE ’10, pages 9:1–9:10,
New York, NY, USA, 2010. ACM.

[130] M. Jureczko and L. Madeyski. A review of process metrics in defect prediction
studies. Metody Informatyki Stosowanej, 5:133–145, 2011.

[131] R. Just, D. Jalali, and M. D. Ernst. Defects4j: A database of existing faults to
enable controlled testing studies for java programs. In Proceedings of the 2014
International Symposium on Software Testing and Analysis, ISSTA 2014, pages
437–440, New York, NY, USA, 2014. ACM.

[132] Y. Kamei, E. Shihab, B. Adams, A. E. Hassan, A. Mockus, A. Sinha, and
N. Ubayashi. A large-scale empirical study of just-in-time quality assurance.
IEEE Transactions on Software Engineering, 39(6):757–773, 2013.

[133] S. Kawaguchi, P. K. Garg, M. Matsushita, and K. Inoue. Mudablue: an automatic
categorization system for open source repositories. In 11th Asia-Pacific Software
Engineering Conference, pages 184–193, Nov 2004.

[134] M. L. Kherfi, D. Ziou, and A. Bernardi. Image retrieval from the world wide
web. ACM Computing Surveys, 36(1):35–67, mar 2004.

[135] S. Kim, T. Zimmermann, E. J. Whitehead Jr, and A. Zeller. Predicting faults
from cached history. In Proceedings of the 29th international conference on Soft-
ware Engineering, pages 489–498. IEEE Computer Society, 2007.

[136] W. Kintsch. Comprehension: A paradigm for cognition. Cambridge University
Press, New York, 1998.

[137] R. Kosara, C. G. Healey, V. Interrante, D. H. Laidlaw, and C. Ware. Visualization
viewpoints. IEEE Computer Graphics and Applications, 23(4):20–25, July 2003.

135

 ferenc.rudolf_87_23

Bibliography

[138] S. Kramer and H. Kaindl. Coupling and cohesion metrics for knowledge-based
systems using frames and rules. ACM Transactions on Software Engineering and
Methodology, 13(3):332–358, jul 2004.

[139] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing
systems, pages 1097–1105, 2012.

[140] W. H. Kruskal and W. A. Wallis. Use of ranks in one-criterion variance analysis.
Journal of the American Statistical Association, 47(260):583–621, 1952.

[141] A. Kuhn, S. Ducasse, and T. Gîrba. Semantic clustering: Identifying topics in
source code. Information and Software Technology, 49(3):230 – 243, 2007. 12th
Working Conference on Reverse Engineering.

[142] S. Kyatam, A. Alhayajneh, and T. Hayajneh. Heartbleed attacks implementa-
tion and vulnerability. In 2017 IEEE Long Island Systems, Applications and
Technology Conference (LISAT), pages 1–6. IEEE, 2017.

[143] A. N. Lam, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen. Combining deep
learning with information retrieval to localize buggy files for bug reports (n).
In Automated Software Engineering (ASE), 2015 30th IEEE/ACM International
Conference on, pages 476–481. IEEE, 2015.

[144] A. N. Lam, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen. Bug localization
with combination of deep learning and information retrieval. In Program Com-
prehension (ICPC), 2017 IEEE/ACM 25th International Conference on, pages
218–229. IEEE, 2017.

[145] T. K. Landauer and S. T. Dumais. A solution to plato’s problem: The latent se-
mantic analysis theory of acquisition, induction, and representation of knowledge.
Psychological Review, 104(2):211–240, 1997.

[146] D. J. Lawrie, H. Feild, and D. Binkley. Leveraged quality assessment using infor-
mation retrieval techniques. In 14th IEEE International Conference on Program
Comprehension (ICPC’06), pages 149–158, June 2006.

[147] J. K. Lee, S. J. Jung, S. D. Kim, W. H. Jang, and D. H. Ham. Component
identification method with coupling and cohesion. In Proceedings Eighth Asia-
Pacific Software Engineering Conference, pages 79–86, Dec 2001.

[148] Y. S. Lee, B. S. Liang, S. F. Wu, and F. J. Wang. Measuring the coupling and
cohesion of an object-oriented program based on information flow. In Proceedings
of International Conference on Software Quality, Maribor, Slovenia, 1995.

[149] J. Li, P. He, J. Zhu, and M. R. Lyu. Software defect prediction via convolutional
neural network. In 2017 IEEE International Conference on Software Quality,
Reliability and Security (QRS), pages 318–328. IEEE, 2017.

[150] W. Li and S. Henry. Object-oriented metrics that predict maintainability. Journal
of Systems and Software, 23(2):111 – 122, 1993. Object-Oriented Software.

136

 ferenc.rudolf_87_23

Bibliography

[151] Z. Li, X. Jing, and X. Zhu. Progress on approaches to software defect prediction.
IET Software, 12(3):161–175, 2018.

[152] D. Lin, J. Koppel, A. Chen, and A. Solar-Lezama. Quixbugs: A multi-lingual
program repair benchmark set based on the quixey challenge. In Proceedings
Companion of the 2017 ACM SIGPLAN International Conference on Systems,
Programming, Languages, and Applications: Software for Humanity, SPLASH
Companion 2017, pages 55–56, New York, NY, USA, 2017. ACM.

[153] R. Lincke, J. Lundberg, and W. Löwe. Comparing software metrics tools. In Pro-
ceedings of the 2008 International Symposium on Software Testing and Analysis,
ISSTA ’08, pages 131–142, New York, NY, USA, 2008. ACM.

[154] E. Linstead, P. Rigor, S. Bajracharya, C. Lopes, and P. Baldi. Mining eclipse de-
veloper contributions via author-topic models. In Fourth International Workshop
on Mining Software Repositories (MSR’07:ICSE Workshops 2007), pages 30–30,
May 2007.

[155] K. K. Lo, C. K. Man, and E. Baniassad. Isolating and relating concerns in require-
ments using latent semantic analysis. In Proceedings of the 21st Annual ACM
SIGPLAN Conference on Object-oriented Programming Systems, Languages, and
Applications, OOPSLA ’06, pages 383–396, New York, NY, USA, 2006. ACM.

[156] R. F. E. Lorch Jr and E. J. O’Brien. Sources of coherence in reading. Lawrence
Erlbaum Associates, Inc, 1995.

[157] M. Lormans and A. van Deursen. Can lsi help reconstructing requirements trace-
ability in design and test? In Conference on Software Maintenance and Reengi-
neering (CSMR’06), pages 10 pp.–56, March 2006.

[158] S. Lu, Z. Li, F. Qin, L. Tan, P. Zhou, and Y. Zhou. Bugbench: Benchmarks for
evaluating bug detection tools. In Workshop on the evaluation of software defect
detection tools, volume 5. Chicago, Illinois, 2005.

[159] Y. S. Maarek, D. M. Berry, and G. E. Kaiser. An information retrieval approach
for automatically constructing software libraries. IEEE Transactions on Software
Engineering, 17(8):800–813, Aug 1991.

[160] F. Madeiral, S. Urli, M. de Almeida Maia, and M. Monperrus. Bears: An
extensible java bug benchmark for automatic program repair studies. CoRR,
abs/1901.06024, 2019.

[161] J. I. Maletic, M. L. Collard, and A. Marcus. Source code files as structured docu-
ments. In Proceedings 10th International Workshop on Program Comprehension,
pages 289–292, June 2002.

[162] J. I. Maletic and A. Marcus. Supporting program comprehension using semantic
and structural information. In Proceedings of the 23rd International Conference
on Software Engineering. ICSE 2001, pages 103–112, May 2001.

[163] R. Malhotra. A systematic review of machine learning techniques for software
fault prediction. Applied Soft Computing, 27:504–518, 2015.

137

 ferenc.rudolf_87_23

Bibliography

[164] R. Malhotra and A. Jain. Software fault prediction for object oriented systems: A
literature review. ACM SIGSOFT Software Engineering Notes, 36(5):1–6, 2011.

[165] C. Manjula and L. Florence. Deep neural network based hybrid approach for
software defect prediction using software metrics. Cluster Computing, 22(4):9847–
9863, 2019.

[166] H. B. Mann and D. R. Whitney. On a Test of Whether one of Two Random
Variables is Stochastically Larger than the Other. Ann. Math. Statist., 18(1):50–
60, 03 1947.

[167] A. Marcus. A Semantic Driven Program Analysis. PhD thesis, Kent State Uni-
versity, Kent, OH, USA, 2003.

[168] A. Marcus, A. De Lucia, J. H. Hayes, and D. Poshyvanyk. Working session:
Information retrieval based approaches in software evolution. In 2006 22nd IEEE
International Conference on Software Maintenance. IEEE, sep 2006.

[169] A. Marcus and J. I. Maletic. Identification of high-level concept clones in source
code. In Proceedings 16th Annual International Conference on Automated Soft-
ware Engineering (ASE 2001), pages 107–114, Nov 2001.

[170] A. Marcus, J. I. Maletic, and A. Sergeyev. Recovery of traceability links between
software documentation and source code. International Journal of Software En-
gineering and Knowledge Engineering, 15(05):811–836, oct 2005.

[171] A. Marcus and D. Poshyvanyk. The conceptual cohesion of classes. In 21st IEEE
International Conference on Software Maintenance (ICSM’05), pages 133–142,
Sep. 2005.

[172] A. Marcus, A. Sergeyev, V. Rajlich, and J. I. Maletic. An information retrieval
approach to concept location in source code. In 11th Working Conference on
Reverse Engineering, pages 214–223, Nov 2004.

[173] T. Menzies, R. Krishna, and D. Pryor. The Promise Repository of Empirical
Software Engineering Data, 2015. Accessed: 2023-03-20.

[174] T. Menzies, Z. Milton, B. Turhan, B. Cukic, Y. Jiang, and A. Bener. Defect
prediction from static code features: current results, limitations, new approaches.
Automated Software Engineering, 17(4):375–407, 2010.

[175] T. M. Meyers and D. Binkley. Slice-based cohesion metrics and software inter-
vention. In 11th Working Conference on Reverse Engineering, pages 256–265,
Nov 2004.

[176] A. Michail and D. Notkin. Assessing software libraries by browsing similar classes,
functions and relationships. In Proceedings of the 1999 International Conference
on Software Engineering (IEEE Cat. No.99CB37002), pages 463–472, May 1999.

[177] Á. Mitchell and J. F. Power. A study of the influence of coverage on the re-
lationship between static and dynamic coupling metrics. Science of Computer
Programming, 59(1):4 – 25, 2006. Special Issue on Principles and Practices of
Programming in Java (PPPJ 2004).

138

 ferenc.rudolf_87_23

Bibliography

[178] A. Mnih and G. E. Hinton. A scalable hierarchical distributed language model.
In Advances in neural information processing systems, pages 1081–1088, 2009.

[179] A. Mockus and L. G. Votta. Identifying reasons for software changes using historic
databases. In Proceedings of the International Conference on Software Mainte-
nance (ICSM’00), ICSM ’00, pages 120–, Washington, DC, USA, 2000. IEEE
Computer Society.

[180] A. Mohamed, G. E. Dahl, G. Hinton, et al. Acoustic modeling using deep belief
networks. IEEE Trans. Audio, Speech & Language Processing, 20(1):14–22, 2012.

[181] C. Montes de Oca and D. L. Carver. Identification of data cohesive subsys-
tems using data mining techniques. In Proceedings. International Conference on
Software Maintenance (Cat. No. 98CB36272), pages 16–23, Nov 1998.

[182] R. Moser, W. Pedrycz, and G. Succi. A comparative analysis of the efficiency of
change metrics and static code attributes for defect prediction. In Proceedings of
the 30th international conference on Software engineering, pages 181–190. ACM,
2008.

[183] N. Nagappan and T. Ball. Static analysis tools as early indicators of pre-release
defect density. In Proceedings of the 27th international conference on Software
engineering, pages 580–586. ACM, 2005.

[184] N. Nagappan and T. Ball. Use of relative code churn measures to predict system
defect density. In Software Engineering, 2005. ICSE 2005. Proceedings. 27th
International Conference on, pages 284–292. IEEE, 2005.

[185] N. Nagappan, T. Ball, and A. Zeller. Mining metrics to predict component fail-
ures. In Proceedings of the 28th international conference on Software engineering,
pages 452–461. ACM, 2006.

[186] A. J. Offutt, M. J. Harrold, and P. Kolte. A software metric system for module
coupling. Journal of Systems and Software, 20(3):295 – 308, 1993. Oregon Metric
Workshop on Software Metrics, 1992.

[187] H. M. Olague, L. H. Etzkorn, S. Gholston, and S. Quattlebaum. Empirical
validation of three software metrics suites to predict fault-proneness of object-
oriented classes developed using highly iterative or agile software development
processes. IEEE Transactions on Software Engineering, 33(6):402–419, jun 2007.

[188] D. Opitz and R. Maclin. Popular ensemble methods: An empirical study. Journal
of artificial intelligence research, 11:169–198, 1999.

[189] A. M. Orme, H. Tao, and L. H. Etzkorn. Coupling metrics for ontology-based
system. IEEE Software, 23(2):102–108, March 2006.

[190] A. Orso, T. Apiwattanapong, J. Law, G. Rothermel, and M. J. Harrold. An
empirical comparison of dynamic impact analysis algorithms. In Proceedings. 26th
International Conference on Software Engineering, pages 491–500, May 2004.

139

 ferenc.rudolf_87_23

Bibliography

[191] T. J. Ostrand, E. J. Weyuker, and R. M. Bell. Predicting the location and number
of faults in large software systems. IEEE Transactions on Software Engineering,
31(4):340–355, 2005.

[192] L. M. Ott and J. J. Thuss. Slice based metrics for estimating cohesion. In [1993]
Proceedings First International Software Metrics Symposium, pages 71–81, May
1993.

[193] Y. Pan, L. Wang, L. Zhang, B. Xie, and F. Yang. Relevancy based semantic
interoperation of reuse repositories. In Proceedings of the 12th ACM SIGSOFT
Twelfth International Symposium on Foundations of Software Engineering, SIG-
SOFT ’04/FSE-12, pages 211–220, New York, NY, USA, 2004. ACM.

[194] L. Pascarella, F. Palomba, and A. Bacchelli. Re-evaluating method-level bug
prediction. In 2018 IEEE 25th International Conference on Software Analysis,
Evolution and Reengineering (SANER), pages 592–601. IEEE, 2018.

[195] S. Patel, W. Chu, and R. Baxter. A measure for composite module cohesion. In
International Conference on Software Engineering. IEEE, 1992.

[196] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[197] J. Petrić, D. Bowes, T. Hall, B. Christianson, and N. Baddoo. The jinx on the
nasa software defect data sets. In Proceedings of the 20th International Con-
ference on Evaluation and Assessment in Software Engineering, page 13. ACM,
2016.

[198] D. Poshyvanyk, Y. Gueheneuc, A. Marcus, G. Antoniol, and V. Rajlich. Feature
location using probabilistic ranking of methods based on execution scenarios and
information retrieval. IEEE Transactions on Software Engineering, 33(6):420–
432, June 2007.

[199] D. Poshyvanyk and A. Marcus. The conceptual coupling metrics for object-
oriented systems. In 2006 22nd IEEE International Conference on Software
Maintenance. IEEE, sep 2006.

[200] D. Poshyvanyk and A. Marcus. Combining formal concept analysis with infor-
mation retrieval for concept location in source code. In 15th IEEE International
Conference on Program Comprehension (ICPC ’07), pages 37–48, June 2007.

[201] Michael Pradel and Koushik Sen. Deep learning to find bugs. Technical Report,
2017.

[202] T. Quah and M. M. T. Thwin. Application of neural networks for software quality
prediction using object-oriented metrics. In International Conference on Software
Maintenance, 2003. ICSM 2003. Proceedings., pages 116–125, Sep. 2003.

[203] J-P. Queille, J-F. Voidrot, N. Wilde, and M. Munro. The impact analysis task
in software maintenance: a model and a case study. In Proceedings 1994 Inter-
national Conference on Software Maintenance, pages 234–242, Sep. 1994.

140

 ferenc.rudolf_87_23

Bibliography

[204] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.

[205] D. Radjenović, M. Heričko, R. Torkar, and A. Živkovič. Software fault prediction
metrics: A systematic literature review. Information and Software Technology,
55(8):1397–1418, 2013.

[206] G. K. Rajbahadur, S. Wang, Y. Kamei, and A. E. Hassan. The impact of using
regression models to build defect classifiers. In Proceedings of the 14th Interna-
tional Conference on Mining Software Repositories, pages 135–145. IEEE Press,
2017.

[207] B. Randell. System structure for software fault tolerance. IEEE Transactions on
Software Engineering, 10(2):220–232, 1975.

[208] M. P. Robillard. Automatic generation of suggestions for program investiga-
tion. In Proceedings of the 10th European Software Engineering Conference Held
Jointly with 13th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, ESEC/FSE-13, pages 11–20, New York, NY, USA, 2005.
ACM.

[209] G. Robles. Replicating msr: A study of the potential replicability of papers
published in the mining software repositories proceedings. In Mining Software
Repositories (MSR), 2010 7th IEEE Working Conference on, pages 171–180.
IEEE, 2010.

[210] A. Rountev, A. Milanova, and B. G. Ryder. Points-to analysis for java using
annotated constraints. In Proceedings of the 16th ACM SIGPLAN Conference on
Object-oriented Programming, Systems, Languages, and Applications, OOPSLA
’01, pages 43–55, New York, NY, USA, 2001. ACM.

[211] P. Runeson, M. Alexandersson, and O. Nyholm. Detection of duplicate defect
reports using natural language processing. In 29th International Conference on
Software Engineering (ICSE’07), pages 499–510, May 2007.

[212] R. Saha, Y. Lyu, W. Lam, H. Yoshida, and M. Prasad. Bugs.jar: A large-scale,
diverse dataset of real-world java bugs. In 2018 IEEE/ACM 15th International
Conference on Mining Software Repositories (MSR), pages 10–13, May 2018.

[213] G. Salton and M. McGill. Introduction to Modern Information Retrieval.
McGraw-Hill, 1993.

[214] R. Sarikaya, G. E. Hinton, and A. Deoras. Application of deep belief networks
for natural language understanding. IEEE/ACM Transactions on Audio, Speech
and Language Processing (TASLP), 22(4):778–784, 2014.

[215] J. Sayyad Shirabad and T. J. Menzies. The PROMISE Repository of Software
Engineering Databases. School of Information Technology and Engineering, Uni-
versity of Ottawa, Canada, 2005.

[216] M. Shepperd, Q. Song, Z. Sun, and C. Mair. Data quality: Some comments on
the nasa software defect datasets. IEEE Transactions on Software Engineering,
39(9):1208–1215, 2013.

141

 ferenc.rudolf_87_23

Bibliography

[217] R. Shetty, K-K. R. Choo, and R. Kaufman. Shellshock vulnerability exploitation
and mitigation: a demonstration. In International Conference on Applications
and Techniques in Cyber Security and Intelligence: Applications and Techniques
in Cyber Security and Intelligence, pages 338–350. Springer, 2018.

[218] B. Shuai, H. Li, M. Li, Q. Zhang, and C. Tang. Software defect prediction using
dynamic support vector machine. In Computational Intelligence and Security
(CIS), 2013 9th International Conference on, pages 260–263. IEEE, 2013.

[219] S. Siegel and N. J. Castellan. Nonparametric Statistics for the Behavioral Sci-
ences. McGraw-Hill, New York, 1988.

[220] C. Stein, L. H. Etzkorn, G. W. Cox, P. A. Farrington, S. Gholston, D. R. Utley,
and J. Fortune. A new suite of metrics for object-oriented software. In Software
Audit and Metrics, pages 49–58, 2004.

[221] J. D. Strate and P. A. Laplante. A literature review of research in software defect
reporting. IEEE Transactions on Reliability, 62(2):444–454, June 2013.

[222] R. Subramanyam and M. S. Krishnan. Empirical analysis of CK metrics for
object-oriented design complexity: implications for software defects. IEEE Trans-
actions on Software Engineering, 29(4):297–310, apr 2003.

[223] G. Succi, W. Pedrycz, S. Djokic, P. Zuliani, and B. Russo. An empirical explo-
ration of the distributions of the chidamber and kemerer object-oriented metrics
suite. Empirical Software Engineering, 10(1):81–104, jan 2005.

[224] R. Tairas and J. Gray. An information retrieval process to aid in the analysis of
code clones. Empirical Software Engineering, 14(1):33–56, 19 September 2008.

[225] R. S. Wahono. A systematic literature review of software defect prediction: Re-
search trends, datasets, methods and frameworks. Journal of Software Engineer-
ing, 1(1):1–16, 2015.

[226] J. Wang, B. Shen, and Y. Chen. Compressed c4. 5 models for software defect
prediction. In Quality Software (QSIC), 2012 12th International Conference on,
pages 13–16. IEEE, 2012.

[227] S. Wang, T. Liu, and L. Tan. Automatically learning semantic features for defect
prediction. In Software Engineering (ICSE), 2016 IEEE/ACM 38th International
Conference on, pages 297–308. IEEE, 2016.

[228] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun. An approach to detecting
duplicate bug reports using natural language and execution information. In 2008
ACM/IEEE 30th International Conference on Software Engineering, pages 461–
470, May 2008.

[229] E. J. Weyuker, R. M. Bell, and T. J. Ostrand. Replicate, replicate, replicate. In
Replication in Empirical Software Engineering Research (RESER), 2011 Second
International Workshop on, pages 71–77. IEEE, 2011.

142

 ferenc.rudolf_87_23

Bibliography

[230] E. J. Weyuker, T. J. Ostrand, and R. M. Bell. Comparing the effectiveness of
several modeling methods for fault prediction. Empirical Software Engineering,
15(3):277–295, 2010.

[231] F. Wilcoxon. Individual comparisons by ranking methods. Biometrics Bulletin,
1(6):80–83, 1945.

[232] F. G. Wilkie and B. A. Kitchenham. Coupling Measures and Change Ripples in
C++ Application Software. J. Syst. Softw., 52(2):157–164, June 2000.

[233] C. Wohlin. Guidelines for snowballing in systematic literature studies and a
replication in software engineering. In Proceedings of the 18th international con-
ference on evaluation and assessment in software engineering, page 38. Citeseer,
2014.

[234] W. E. Wong, V. Debroy, and D. Xu. Towards better fault localization: A
crosstab-based statistical approach. IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews), 42(3):378–396, 2012.

[235] Z. Xu, T. M. Khoshgoftaar, and E. B. Allen. Prediction of software faults using
fuzzy nonlinear regression modeling. In High Assurance Systems Engineering,
2000, Fifth IEEE International Symposim on. HASE 2000, pages 281–290. IEEE,
2000.

[236] H. Y. Yang, E. Tempero, and R. Berrigan. Detecting indirect coupling. In 2005
Australian Software Engineering Conference, pages 212–221, March 2005.

[237] X. Yang, D. Lo, X. Xia, Y. Zhang, and J. Sun. Deep learning for just-in-time
defect prediction. In QRS, pages 17–26, 2015.

[238] Y. Ye and G. Fischer. Reuse-conducive development environments. Automated
Software Engineering, 12(2):199–235, 2005.

[239] R. K. Yin. Applications of Case Study Research. Sage Publications, Inc, CA,
USA, 2003.

[240] P. Yu, T. Systa, and H. Muller. Predicting fault-proneness using oo metrics.
an industrial case study. In Proceedings of the Sixth European Conference on
Software Maintenance and Reengineering, pages 99–107, March 2002.

[241] Z. Yu, N. A. Kraft, and T. Menzies. How to read less: Better machine
assisted reading methods for systematic literature reviews. arXiv preprint
arXiv:1612.03224, 2016.

[242] J. Zhao and B. Xu. Measuring aspect cohesion. In Fundamental Approaches to
Software Engineering, pages 54–68. Springer Berlin Heidelberg, 2004.

[243] W. Zhao, L. Zhang, Y. Liu, J. Sun, and F. Yang. Sniafl: Towards a static
noninteractive approach to feature location. ACM Trans. Softw. Eng. Methodol.,
15(2):195–226, April 2006.

[244] Y. Zhou, J. Lu, H. Lu, and B. Xu. A comparative study of graph theory-based
class cohesion measures. ACM SIGSOFT Software Engineering Notes, 29(2):13,
mar 2004.

143

 ferenc.rudolf_87_23

Bibliography

[245] Y. Zhou, B. Xu, J. Zhao, and H. Yang. ICBMC: an improved cohesion mea-
sure for classes. In International Conference on Software Maintenance, 2002.
Proceedings., pages 44–53, Oct 2002.

[246] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B. Murphy. Cross-project
defect prediction: a large scale experiment on data vs. domain vs. process. In
Proceedings of the the 7th joint meeting of the European software engineering
conference and the ACM SIGSOFT symposium on The foundations of software
engineering, pages 91–100. ACM, 2009.

[247] T. Zimmermann, R. Premraj, and A. Zeller. Predicting defects for eclipse. In
Proceedings of the third international workshop on predictor models in software
engineering, page 9. IEEE Computer Society, 2007.

[248] L. Zou, M. W. Godfrey, and A. E. Hassan. Detecting interaction coupling from
task interaction histories. In 15th IEEE International Conference on Program
Comprehension (ICPC ’07), pages 135–144, June 2007.

144

 ferenc.rudolf_87_23

	Introduction
	Background
	Static Source Code Analysis
	OpenStaticAnalyzer
	SourceMeter
	Latent Semantic Indexing
	Statistical Methods
	Correlation Analysis
	Principal Component Analysis
	Statistical tests

	Machine Learning Techniques
	Regression
	Classification
	Evaluation

	I Conceptual Coupling and Cohesion Metrics
	Conceptual Cohesion in Fault Prediction
	Introduction
	Related Work
	An Information Retrieval Approach to Class Cohesion Measurement
	Measuring Text Coherence with LSI
	From Textual Coherence to Software Cohesion
	The Conceptual Cohesion of Classes

	Assessment of the New Cohesion Measure
	Objectives and Methodology
	Design of the Case Studies
	First Case Study – Principal Component Analysis of the Metric Data
	Second Case Study – Predicting Faults in Classes

	Conceptual vs. Structural Cohesion
	Analyzing classes from WinMerge
	Analyzing classes from Mozilla

	Threats to Validity
	Conclusions

	Conceptual Coupling in Impact Analysis
	Introduction
	Related Work
	Coupling Measurement
	The Use of IR Methods in Program Comprehension
	Impact Analysis Approaches

	Using IR Methods for Coupling Measurement
	System Representation and Coupling Measures
	The Conceptual Coupling of a Class
	The maximum conceptual coupling of a class

	Using Coupling Measures for Impact Analysis
	Ranking Classes Using Coupling Measures
	An Example of Using Coupling Measures for Impact Analysis in Mozilla

	A Case Study on Using Coupling Measures to Support Impact Analysis
	Design of the Case Study
	Comparing Conceptual and Structural Coupling Metrics for Impact Analysis
	Testing Statistical Significance of Differences Among Precision and Recall Values

	Threats to Validity
	Conclusions

	New Conceptual Coupling and Cohesion Metrics
	Introduction
	Related Work
	Conceptual Metrics
	Definitions
	Conceptual Lack of Cohesion in Classes
	Conceptual Coupling between Object Classes

	Empirical Case Study
	Definition and the Context
	Research Questions
	Case Study Results

	Threats to Validity
	Conclusions

	II Machine Learning for Bug Prediction
	A Public Unified Bug Dataset for Bug Prediction
	Introduction
	Data Collection
	Start Set
	Collecting Bug Datasets
	Public Datasets
	Additional Bug Datasets

	Data Processing
	Metrics Calculation
	Dataset Unification

	Original and Extended Metrics Suites
	Original Datasets
	Unified Bug Dataset
	Comparison of the Metrics

	Evaluation
	Datasets and Bug Distribution
	Metadata of the Datasets
	Bug Prediction

	Threats to Validity
	Conclusions

	Deep Learning for Bug Prediction
	Introduction
	Related Work
	Methodology
	Overview
	Bug Dataset
	Algorithms and Infrastructure
	Model Evaluation

	Results
	Preprocessing
	Hyperparameter Tuning
	Ensemble Model
	The Effect of Data Quantity

	Threats to Validity
	Conclusions

	Summary
	Appendices
	A Public Unified Bug Dataset for Bug Prediction
	Tables
	Online Appendix

	Bibliography

