
Computational complexity of
counting and sampling problems in

bioinformatics

István Miklós

Rényi Institute

 dc_2046_22

Preface

I have been having a special interest in computational methods since my
childhood. I got my first personal computer, a Commodore +4 in my age of
13, and I started writing computer programs. I reinvented pseudo-random
numbers and implemented methods generating fancy maps for arcade games
based on pseudo-random numbers.

I also loved biology. I spent my childhood in a small village and my regular
activity was to play on the fields. The fields were covered with different types
of plants, and it was easy to recognize the analogy between the patches of
vegetation and the objects appearing on my arcade game maps. Obviously,
there had to be some rules behind the patterns, although finding the rules
by looking at the patterns was extremely hard. I have been enchanted by
the miracle of many possible combinations of the patterns, be these patches
of vegetation on a field or objects on a (pseudo)randomly generated map in
a computer game, and they heavily influenced my research interest.

Combinatorics and computation – they came hand by hand. At the first
plant taxonomy seminar, our teacher gave an overview on classification meth-
ods. My immediate question was how to do efficiently a divisive clustering.
Obviously, there are 2n−1 − 1 ways to split n elements into two parts, and
trying all possibilities would be time-consuming. I am still preferring the
question “How to do?” to questions like “How does it look like?” or “What
are its properties?”.

I wrote my PhD on statistical alignment, so I learned dynamic program-
ming, some introduction to probability theory, but the stochastics became
my love only when I was a postdoctoral researcher in Oxford and we learned
Jun S. Liu’s book on Monte Carlo Strategies in Scientific Computing in the
book reading club. It was amazing that stochastics might be the answer to
much more “How to do?” questions than I could imagine before starting
reading that book.

i

 dc_2046_22

ii

Between 2003 and 2005, I worked on Markov chain Monte Carlo methods,
but only at engineering level. It is sufficient to fulfill some easy conditions to
guarantee that a Markov chain converge to the distribution of interest, and
I loved this game, not caring with the speed of convergence. Bence Mélykúti
become my MSc student in 2005, and I offered the speed of convergence of
Markov chains as possible research topic for his MSc thesis. We learned to-
gether the background theory, and I realized that this is a research topic I
want to devote my life to. Indeed, it is a well-balanced mixture of combina-
torics, computation and stochastics, my beloved topics in mathematics.

I moved to the Rényi Institute in 2006 September, and I felt that I had
to pick up the “definition-theorem-proof” style of pure mathematics, even if
I have been mainly working on applied mathematics. Since 2006, I have got
deeper and diaper into the research topic that could be described with the
following keywords: stochastic approximate sampling and counting (FPRAS
and FPAUS), speed of convergence of Markov chains, #P-complete counting
problems.

I attended to a Dagstuhl seminar in 2016 February, co-organized by
Michael Albert, Miklós Bóna, Einar Steingrimsson and myself. Miklós Bóna
emphasised that a large fraction of enumerative combinatorists know very
little about computational complexity and argued for the need of a textbook
on computational complexity of counting and sampling. I very much agreed
with him, and suggested several experts to ask them to write such a book.
After all of them declined due to miscellaneous reasons, I accepted to write a
monograph about that topic published in the Discrete Mathematics and Its
Applications series by CRC Press. I wanted to give a full spectrum of com-
putational complexity in that book. That is, I also gave a detailed overview
about easy counting and sampling problems that is typically missing in other
books on computational complexity of counting and sampling.

In this thesis, I also give a full spectrum of computational complexity. I
introduce an algebraic approach to dynamic programming and I show how
two of my early works fit into this framework. Two other easy counting prob-
lems also solvable by dynamic programming are also presented. Then rapidly
mixing Markov chains are presented that can be used to almost uniformly
sample combinatorial objects. The combinatorial objects for which rapidly
mixing Markov chains are given are realizations of degree sequences, realiza-
tions of joint degree matrices and most parsimonious genome rearrangement
sorting scenarios under a certain rearrangement model called Double Cut
and Join. Negative results are also presented in this thesis. There is a wide

 dc_2046_22

iii

spectrum of possible negative results. One possible negative result is that
a widely used Markov chain is torpidly mixing and thus cannot be used for
almost uniform sampling. A proof of torpid mixing of such a Markov chain
is given. Another possible negative result is a proof that a counting problem
is in #P-complete, which is at least as hard as NP-hard. There are combina-
torial objects that are not only in #P-complete but they cannot be sampled
even nearly uniformly neither the number of them can be reasonably approx-
imated under standard complexity assumptions (assuming that RP ̸= NP).
One-one example of such counting problems are introduced in this thesis. At
the end of the thesis, some partial results are presented. That is, for some
combinatorial objects for which the corresponding counting problems have
unknown complexity, Markov chains are given that have small diameter (and
thus, they are irreducible), and have certain properties that suggest that they
might be rapidly mixing on the combinatorial objects in question.

For such a diverse topic, it is inevitable that the thesis should have a de-
tailed introduction. Both the computational complexity and the mathemat-
ical models defining the combinatorial structures are described in sufficient
detail. Another aspects of this thesis is that it covers a large amount of pub-
lications. These publications are given at the end of the thesis in a separate
reference list. The majority of these publications are written by co-authors.
At the beginning of each chapter, the theorems, lemmas and concepts given
by myself is clearly indicated.

June 2022 István Miklós
Rényi Insitute

Eötvös Loránd Research Network

 dc_2046_22

iv

 dc_2046_22

Contents

1 Preliminaries 1
1.1 Computational complexity . 4

1.1.1 General overview of computational problems 5
1.1.2 Deterministic decision problems: P, NP, NP-complete . 7
1.1.3 Deterministic counting: FP, #P, #P-complete 9
1.1.4 Random decision algorithms: RP, BPP. Papadimitriou’s

theorem . 10
1.1.5 Stochastic counting and sampling: FPRAS, FPAUS,

self-reducible counting problems 12
1.1.6 Markov chains . 16
1.1.7 Techniques to prove rapid mixing of Markov chains . . 23

1.2 Mathematical models . 25
1.2.1 Graphs, networks, discrete tomography 25
1.2.2 Genome rearrangement 27
1.2.3 Biological sequences 38

1.3 Results presented in this thesis 46

I Counting problems in FP 49

2 Algebraic Dynamic Programming 51
2.1 Introduction to Algebraic Dynamic Programming 51
2.2 Moments of the Boltzmann distribution of RNA secondary

structures . 58
2.3 Linear memory Baum-Welch training 63

3 Two easy counting problems under the SCJ model 69
3.1 Pairwise rearrangement problem under the SCJ model 70

v

 dc_2046_22

vi CONTENTS

3.1.1 A dynamic programming solution 70

3.1.2 Alternating permutations 72

3.2 Most parsimonious medians 73

II Counting problems in FPRAS via rapidly mixing
Markov chains 77

4 Sampling realizations of bipartite degree sequences 79

4.1 Tyshkevich-decompositions . 81

4.2 P-stable degree sequences . 83

4.3 Rapid mixing of the switch Markov chain on a family of non-
stable degree sequences . 94

4.4 Further results . 97

5 A decomposition based proof for fast mixing of a Markov
chain over balanced realizations of a joint degree matrix 99

5.1 Mixing of Markov chains on factorized state spaces 99

5.2 Balanced realizations of a JDM 109

6 Approximating the number of Double Cut-and-Join scenar-
ios 117

6.1 Preliminaries . 118

6.2 Decomposing the #MPDCJ problem 119

6.3 Independent and joint sorting of M and W -shaped paths . . . 122

6.4 The Markov chain on DCJ scenarios 125

6.5 Fast convergence of the MCMC 128

6.6 Conclusion . 132

III Negative results: torpid mixing, #P-complete
and non-approximable problems 133

7 The Metropolized Partial Importance Sampling MCMCmixes
slowly on minimum reversal rearrangement paths 135

7.1 Partial Importance Sampling 136

7.2 ParIS mixes slowly on minimum reversal paths 137

7.3 Discussion and Conclusion . 141

 dc_2046_22

CONTENTS vii

8 Hardness results on SCJ problems 145

8.1 Counting the most parsimonious substitution histories on an
evolutionary tree . 145

8.2 Counting the most parsimonious substitution histories on a
star tree . 158

IV Non-trivial kernels and diameters of Markov chains
165

9 Proving the pressing game conjecture for linear graphs 167

9.1 Proof of the Conjecture on Linear Graphs 170

9.2 Discussion and Conclusions 178

10 Cooling down DCJ scenarios to reversal scenarios 179

10.1 Transforming DCJ scenarios to reversal scenarios with small
perturbations . 181

10.2 Parallel tempering . 184

11 Gibbs sampling of optimal SCJ labelings on arbitrary binary
trees 189

11.1 Gibbs sampling of most parsimonious labeling of evolutionary
trees under the SCJ model . 190

11.1.1 Description of the Gibbs sampler 190

11.1.2 Irreducibility of the Gibbs sampler 192

12 Markov kernels with large perturbations and large accep-
tance ratios 201

12.1 Half-regular factorizations of the complete bipartite graph . . 202

12.1.1 Preliminaries . 202

12.1.2 The existence problem 203

12.1.3 The connectivity problem 209

12.1.4 Markov Chain Monte Carlo for sampling realizations
of a half-regular degree matrix 215

12.2 Edge colorings of bipartite graphs 226

12.3 Preliminaries . 226

12.3.1 Almost edge k-colorings 226

 dc_2046_22

viii CONTENTS

12.4 A Markov chain Monte Carlo on the edge k-colorings of a
bipartite graph . 228

12.5 Latin rectangles . 244
12.6 Conclusion . 249

Bibliography 251

Publications by the author of the thesis 261

Subject Index 264

 dc_2046_22

Chapter 1

Preliminaries

In applied mathematics, different aspects of real world objects are modeled
with mathematical objects in order to understand the properties of the real
world objects and answer certain questions emerging. There is a natural
trade-off between the simplicity and the accuracy of the model. Usually,
computations are faster in a simpler model. The computational burden is
striking especially in case of discrete mathematical, combinatorial models,
where the combinatorial explosion might cause that näıve computations are
not feasible even for moderate size of input data.

Discrete mathematical models naturally emerge in biology. Charles Dar-
win already depicted the evolution of species with a tree graph [24]. Sturte-
vant and Tan [86] as well as Sturtevant and Novitski [85] studied genome
rearrangements in Drosophyla species. They clearly stated a problem that
today is considered as a computational biology problem. The problem was
to find for each genomic sequence the “minimum number of successive in-
versions required to reduce it to the ordinal sequence chosen as ‘standard.’”.
They observed that “The mathematical properties of series of letters sub-
jected to the operation of successive inversions do not appear to have been
worked out, so that we are so far unable to present a detailed analysis.” The
conclusion was that “ For numbers of loci1 above nine the determination of
this minimum number proved too laborious, and too uncertain, to be carried
out. ” It is worth mentioning that the demand for the solution of the stated
computational problem was given before building the first electronic comput-

1A locus (in plural: loci) is a specific position in the chromosome where a particular
gene or genetic marker is located. In the time the cited scientific paper was written, loci
were determined by dyeing the chromosome thus obtaining a barcode-like structure.

1

 dc_2046_22

ers and before the discovery of the DNA structure! In their seminal paper,
Zuckerkandl and Pauling considered biological macromolecules as evolution-
ary fringerprints [101]. Biological macromolecules can naturally be modeled
as sequences over a finite alphabet, and their mutations can be modeled as
string operations.

The study of the above-mentioned discrete mathematical models initiated
research on algorithmics of discrete mathematical objects and resulted in the
emergence of a discipline known as computational biology or bioinformatics.
Early research in bioinformatics focused on optimization problems follow-
ing the principle of parsimony. That is, the most acceptable explanation
of a phenomenon, biological observation is the simplest, involving the fewest
changes. Clearly, Sturtevant and Novitski followed the principle of parsimony
when they studied Drosophyla species. They stated the problem in 1941 and
their algorithmic problem was solved first in 1995, and was published only
in 1999 [45]. The first efficient algorithm computing the minimum number
of insertion, deletion and substitution operations to transform a (biological)
sequence into another one was developed in 1970 and published by two biolo-
gists [68]. More rigorous description were published shortly in mathematical
journals [76, 79, 94].

Since the most probable conformation of a biological macromolecule is
the one with the minimal free energy in a Boltzmann distribution, it is also
natural to ask which conformation has the minimal (free)energy. In very sim-
ple models of RNA structures, this is the RNA structure with the maximum
number of base-pairs [69]. More involved models were developed based on
experimental measurements [91] for which also efficient algorithms exists to
find the structure with minimal free energy [77, 62].

Starting with the seminal paper of Felsenstein [33] probabilistic methods
become widespread in bioinformatics. This involves, among others, maxi-
mum likelihood methods [33, 90], Bayesian statistics [99, 50] or computing
the partition function of the Boltzmann distribution of RNA structures [65].
In a few, very simple models, exact computations are possible [33, 90, 65],
however, in most of the cases, approximate computations are used [50]. One
of the most commonly used approximate computations is the Markov chain
Monte Carlo method [66, 44]. The Metropolis-Hastings algorithm can trans-
form any Markov chain satisfying some mild conditions into another Markov
chain that converges to a prescribed distribution. One of the crucial point
is the speed of convergence, that is, how many steps are required in the
Metropolis-Hastings algorithm to get close to the required distribution. In

2

 dc_2046_22

most of the cases, this is an extremely hard question. When theoretical re-
sults are not possible, heuristic methods are used to estimate the speed of
convergence. Such methods can estimate speed of convergence only for each
particular case, and a few positive results are no guarantee that the Markov
chain mixes rapidly for all possible input data.

A possibly simpler problem is to prove rapid mixing of a Markov
chain that converges to the uniform distribution of the most parsimonious
cases/solutions. It is already a quite challenging task to sample (almost)
uniformly most parsimonious genome rearrangement scenarios. Generating
random graphs with prescribed degree sequences and/or other prescribed
properties is important in hypothesis testing.

In practice, approximate computations are sufficient for several reasons.
First, the mathematical models are only models of the real world. Any
method whose approximation factor is negligible compared to how much the
mathematical model deviates from the reality can be considered as a perfect
solution. If samples are generated to construct a background distribution for
hypothesis testing, then some systematic error might be introduced during
that process. This systematic error is tolerated if it is negligible compared
to the sampling error of the data subject to hypothesis testing.

For a large class of computational problems, approximate sampling and
approximate counting have the same computational complexity [54]. That
is, either both of them or none of them have efficient algorithmic solutions.
Theoretical computer scientists developed the computational complexity of
counting and sampling and defined computational classes. A nice bridge
between pure and applied mathematics is the complexity classification of
mathematical models. While significant progress has been achieved on clas-
sifying decision and optimization problems, we know much less about the
computational complexity of counting and sampling problems appearing in
applied mathematics. This thesis gives an overview of an almost twenty year
work of the author on classifying counting and sampling problems appearing
in bioinformatics and other disciplines of life sciences. In the Introduction,
we first give a brief overview of computational complexity focusing on count-
ing and sampling, then an overview of the mathematical models studied. We
give a brief summary of the results presented in this thesis at the end of this
chapter.

3

 dc_2046_22

1.1 Computational complexity

In computational complexity theory, we distinguish decision, optimization,
counting and sampling problems. Although this thesis is about the computa-
tional complexity of counting and sampling, counting and sampling problems
are related to decision and optimization problems. Counting problems are
always at least as hard as their decision counterparts. Indeed, if we can tell,
say, the number of perfect matchings in a graph G, then naturally we can
tell if there exists a perfect matching in G: G contains a perfect matching if
and only if the number of perfect matchings in G is at least 1.

Optimization problems are also related to counting and sampling. For
example, it is hard to count the cycles in a directed graph as well as sampling
them since it is hard to find the longest cycle in a graph [54]. This might
be surprising in the light that finding a cycle in a graph is an easy problem.
There are numerous other cases when the counting version of an easy decision
problem is hard since finding an optimal solution is hard in spite of the fact
that finding one (arbitrary) solution is easy.

When we are talking about easy and hard problems, we use the con-
vention of computational complexity that a problem is defined as an easy
computational problem if there is a polynomial running time algorithm to
solve it. Very rarely we can unconditionally prove that a polynomial running
time algorithm does not exist for a computational problem. However, we can
prove that no polynomial running time algorithm exists for certain counting
problems if no polynomial running time algorithm exists for certain hard
decision problems. This fact also underlines why discussing decision prob-
lems is inevitable in a thesis about computational complexity of counting
and sampling.

When exact counting is hard, approximate counting might be easy or
hard. Surprisingly, hard counting problems might be easy to approximate
stochastically, however, there are counting problems that we cannot approx-
imate well. We conjecture that they are hard to approximate, and this is a
point where stochastic approximations are also related to random approaches
to decision problems. Particularly, if no random algorithm exists for certain
hard decision problems that run in polynomial time and is any better than
random guessing, then there is no efficient good approximation for certain
counting problems.

Here, we give a brief introduction to computational complexity and show
how computational complexity of counting and sampling is related to com-

4

 dc_2046_22

putational complexity of decision and optimization problems.

1.1.1 General overview of computational problems

A computational problem is a mathematical object representing a collection
of questions that computers might be able to solve. The questions belonging
to a computational problem are also called problem instances . An example
of a decision problem is the triangle problem which asks if there is triangle in
a finite graph. The problem instances are the finite graphs and the answer
for any problem instance is “yes” or “no” depending on whether or not there
is a triangle in the graph. In this computational problem, a triangle in a
graph is called a witness or solution. In general, the witnesses of a problem
instance are the mathematical objects that certify that the answer for the
decision problem is “yes”. An example for an optimization problem is the
clique problem which asks what the largest clique (complete subgraph) is in
a finite graph. The problem instances are again the finite graphs and the
solutions are the largest cliques in the graphs.

Any decision or optimization problem has its natural counting counter-
part problem asking the number of witnesses or solutions. For example, we
can ask how many triangles a graph has, as well as how many largest cliques
a graph has.

Computational problems might be solved with algorithms. We can clas-
sify algorithms based on their properties. Algorithms might be exact or
approximate, might be deterministic or random, and probably their most
important feature is if they are feasible or infeasible. To define feasibility,
we have to define how to measure it. Larger problem instances might need
more computational steps, also called running time. Therefore, it is natural
to measure the complexity of an algorithm with the necessary computational
steps as a function of the input (problem instance) size. The size of the
problem instance is defined as the number of bits necessary to describe it. A
computational problem is defined as tractable if its running time grows with
a polynomial function of the size of the input, and intractable if its running
time grows exponentially or even more with the size of the input. This defi-
nition ignores constant factors, the order of the polynomial and typical input
sizes. This means that theoretically tractable problems might be infeasible
in practice, and vice versa, theoretically intractable problems might be fea-
sible in practice if the typical input sizes are small. In practice, most of the
tractable algorithms run in at most cubic time, and their constant factor is

5

 dc_2046_22

less than 10. These algorithms are not only theoretically tractable but also
feasible in practice. The given definitions of tractable and intractable prob-
lems do not cover all algorithms as there are functions that grow faster than
any polynomial function but slower than any exponential function. Such
functions are called superpolynomial and subexponential. Although there are
remarkable computational problems, most notably the graph isomorphism
problem [6, 7], which is conjectured to have superpolynomial and subexpo-
nential running time algorithms in the best case, such problems are relatively
rare, and not discussed in detail in this thesis.

Observe that both the size of the problem instance and the number of
computational steps are not precisely defined. Indeed, a graph, for exam-
ple, might be encoded by its adjacency matrix or by the list of edges in it.
These encodings might have different numbers of bits. Similarly, on many
computers, different operations might have different running times: the time
necessary to multiply two numbers might be much more than the time needed
to add two numbers. To get rigorous mathematical definitions, theoretical
computer science introduced mathematical models of computations; the best
known are the Turing machines. In this thesis, we avoid these formal descrip-
tions of computations. The reason for this is that we are interested in only
the order of the running time, and constant factors are hidden in the O (big
O, ordo) notation. Even if sizes are defined in different ways, different def-
initions almost never have exponential (or more precisely, superpolynomial)
gaps. For example, if a graph has n vertices, then it might have Ω(n2) edges.
However, it does not make a theoretical difference if an algorithm on graphs
runs in O(n3) time or O(m1.5) time, where n is the number of vertices and
m is the number of edges: both functions are polynomials. An example for
the difference when there is an exponential gap between the two concepts of
input sizes is when we distinguish the value of the number and the number
of bits necessary to describe a number. When we would like to emphasize
that the input size is the value of the number, we will say that the input
numbers are given in unary . A typical example is the subset sum problem,
where we ask if we can select a subset of integers whose sum is a prescribed
value W . There is a dynamic programming algorithm to solve this problem
whose running time is polynomial with the value of W . However, it is a hard
decision problem if W is not given in unary [56].

6

 dc_2046_22

1.1.2 Deterministic decision problems: P, NP, NP-
complete

Definition 1. In computational complexity theory, P is the class that con-
tains the decision problems solvable in polynomial time.

For example, the perfect matching problem that asks if there is a perfect
matching in a simple graph [29] and the primality testing that asks if a
natural number is a prime [2] are both non-trivial examples of computational
problems that are in P. It is worth mentioning that deciding if a number is a
prime can be decided in time that is upper bounded by a polynomial of the
number of digits of the input number. That is, the input is also not encoded
unary for this problem.

We are going to define the NP class. Formally, the complexity class
NP contains the problems that can be solved in polynomial time with non-
deterministic Turing machines. The name NP stands for “non-deterministic
polynomial”. Since we do not introduce Turing machines in this thesis, an
alternative, equivalent definition is given here.

Definition 2. The complexity class NP contains the decision problems for
which solutions can be verified in polynomial time.

This definition is more intuitive than the formal definition using Turing
machines. The k-clique problem that asks if there is a clique of size k in a
graph and the feasibility problem that asks if there is a list of integer numbers
satisfying a set of inequalities are both non-trivial examples of computational
problems that are in NP.

One of the most important and unsolved questions in theoretical computer
science is whether or not P is equal to NP.

In many cases, finding a solution seems to be harder than verifying a
solution. There are problems in NP for which no polynomial running time
algorithm is known. We cannot prove that such an algorithm does not exist,
however, we can prove that these hard computational problems are as hard
as any problems in NP. To state this precisely, we first need the following
definitions.

Definition 3. Let A and B be two computational problems. We say that
A has a polynomial reduction to B, if a polynomial running time algorithm
exists that solves any problem instance x ∈ A by generating problem instances

7

 dc_2046_22

y1, y2, . . . , yk all in B and solves x using the solutions for y1, y2, . . . yk. The
computational time generating problem instances y1, y2, . . . yk counts in the
running time of the algorithm, but the computational time spent in solving
these problem instances is not considered in the overall running time. We
also say that A is polynomial-time reducible to B.

An example for this might be the following. An independent set in a
graph is a subset of the vertices such that no two vertices in it are adjacent.
The k-independent set problem asks if there is an independent set of size k in
a graph. The k-independent set problem is polynomial-time reducible to the
k-clique problem. Indeed, a graph contains an independent set of size k if and
only if its complement contains a clique of size k. Taking the complement of
a graph can be done in polynomial time. Similarly, the k-clique problem is
also polynomial-time reducible to the k-independent set problem.

Polynomial reduction is an important concept in computational complex-
ity. If a computational problem A is polynomial-time reducible to B and B
can be solved in polynomial time, then A also can be solved in polynomial
time. Similarly, if B is polynomial-time reducible to A, and A can be solved
in polynomial time, then B can be solved in polynomial time, as well. There-
fore, if A and B are mutually polynomial-time reducible to each other, then
either both of them or none of them can be solved in polynomial time. These
thoughts lead to the following definitions.

Definition 4. A computational problem is in the complexity class NP-hard
if every problem in NP is polynomial-time reducible to it. The NP-complete
problems are the intersection of NP and NP-hard.

What follows from the definition is that P is equal to NP if and only if
there is a polynomial running time algorithm that solves an NP-complete
problem. It is widely believed that P is not equal to NP, and thus, there are
no polynomial running time algorithms for NP-complete problems.

The SAT problem asks if there is a satisfying assignment of a disjunctive
normal form. Stephen Cook proved in 1971 that SAT is NP-complete [21],
and Richard Karp demonstrated in 1972 that many natural computational
problems are NP-complete by reducing SAT to them [56]. These famous
Karp’s 21 NP-complete problems drove attention to NP-completeness and
initiated the study of the P versus NP problem. The question whether or not
P equals NP has become the most famous unsolved problem in computational
complexity theory. In 2000, the Clay Institute offered $1 million for a proof
or disproof that P equals NP [20].

8

 dc_2046_22

1.1.3 Deterministic counting: FP, #P, #P-complete

Definition 5. The complexity class #P contains the counting problems that
ask for the number of witnesses of the decision problems in NP. If A denotes
a problem in NP, then #A denotes its counting counterpart.

For example, #SAT denotes the counting problem that asks for the num-
ber of satisfying assignments of conjunctive normal forms. Since the decision
versions of #P problems are in NP, there is a witness that can be verified in
polynomial time. This does not automatically imply that all witnesses can be
verified in polynomial time, although it naturally holds in many cases. When
it is questionable that all solutions can be verified in polynomial time, a poly-
nomial upper bound must be given, and only those witnesses are considered
that can be verified in that time.

Some counting problems are tractable. Formally, they belong to the class
of tractable function problems.

Definition 6. A function problem is a computational problem where the
output is more complex than a simple “yes” or “no” answer. The complexity
class FP (Function Polynomial-Time) is the class of function problems that
can be solved in polynomial time with an algorithm.

We can define the #P-hard and #P-complete classes analogously to the
NP-hard and NP-complete classes.

Definition 7. A computational problem is in #P-hard if any problem in #P
is polynomial-time reducible to it. The #P-complete class is the intersection
of #P and #P-hard.

As one can naturally guess, #SAT is a #P-complete problem. Indeed,
the following theorem holds.

Theorem 8. For every problem #A in #P, and every problem instance x
in #A, there exists a conjunctive normal form Φ such that the number of
satisfying assignments of Φ is the answer for x. Furthermore, such a Φ can
be constructed in polynomial time of the size of the problem instance x. Since
#SAT is in #P, this means that #SAT is a #P-complete problem.

It is clear that #P ⊆ FP if and only if there exists a polynomial running
time algorithm for a #P-complete problem. It is also trivial to see that
#P ⊆ FP implies P = NP. However, we do not know if the reverse is true,

9

 dc_2046_22

namely, whether or not P = NP implies that counting the witnesses of any
#P-complete problem is easy.

By assuming that P is not equal to NP, we cannot expect a polynomial
running time algorithm counting the witnesses of an NP-complete problem.
Naturally, the counting versions of many NP-complete problems are #P-
complete. However, we do not know if it is true that for any NP-complete
problem A, its counting version #A is #P-complete. On the other hand,
there are easy decision problems whose counting versions are #P-complete.
For example, deciding if there is a perfect matching in a bipartite graph is
in P [49], however, counting the perfect matchings in a bipartite graph is a
#P-complete problem [92]. More surprisingly, The #LE (number of linear
extensions) problem that asks how many total orderings are there which is
an extension of a (finite) partially ordered set is a #P-complete counting
problem [16]. It is surprising because any finite partial ordering can trivially
be extended to a total ordering, and thus, deciding if there is a total ordering
that agrees with a partial ordering is trivially in P.

1.1.4 Random decision algorithms: RP, BPP. Papadim-
itriou’s theorem

In this section, we introduce the two basic complexity classes for random
decision algorithms: the BPP and RP classes, and state a theorem that is
an exercise in Papadimitriou’s book on computational complexity [71].

Definition 9. A decision problem is in the BPP (Bounded-error Probabilis-
tic Polynomial) class if a random algorithm exists such that

(a) it runs in polynomial time on all inputs,

(b) if the correct answer is “yes” it answers “yes” with probability at least
2/3,

(c) if the correct answer is “no” it answers “no” with probability at least
2/3.

Any such algorithm is also called a BPP algorithm.

The 2/3 in the definition of BPP is just a convention. The number 2/3
is the rational number p/q between 1/2 and 1 such that p + q is minimal.
Indeed, any fixed constant number between 1/2 and 1 would provide an

10

 dc_2046_22

equivalent definition or even it would be enough if one of the probabilities
was strictly 1/2 and the probability for the other answer would converge to
1/2 only polynomially fast. Similarly, if a BPP algorithm exists for a decision
problem, then also a random algorithm exists that runs in polynomial time
and gives the wrong answer with very small probability (say, with probability
1

2100
).

Definition 10. A decision problem is in RP (Randomized Polynomial time)
if a random algorithm exists such that

(a) it runs in polynomial time on all inputs

(b) if the correct answer is “yes” it answers “yes” with probability at least
1/2

(c) if the correct answer is “no” it answers “no” with probability 1.

Any such algorithm is also called RP algorithm.

Again, the 1/2 in the definition of RP is only a convention; it is the
rational number p/q between 0 and 1 such that p + q is minimal. Just like
in the case of the BPP class, any fixed constant probability or a probability
that converges only polynomially fast to 0 would suffice. Also, the existence
of an RP algorithm means that the correct answer can be calculated with
very high probability (say, with probability 1− 1

2100
) in polynomial time.

We know that
P ⊆ RP ⊆ NP (1.1)

however, we do not know if any containment is proper. Surprisingly, we do
not know if BPP ⊆ NP or NP ⊆ BPP. In this thesis, we will assume the
following conjecture.

Conjecture 1. For the decision classes P, RP and NP, the relation

P = RP ⊂ NP (1.2)

holds.

Corollary 11. The P ̸= NP assumption also means that

NP-complete ∩ P = ∅ (1.3)

and
#P-complete ∩ FP = ∅. (1.4)

11

 dc_2046_22

The conjecture that RP ̸= NP also implies that RP ∩ NP-complete = ∅.
We can say even more.

Theorem 12. (Papadimitriou’s theorem) If the intersection of NP-complete
and BPP is not empty, then RP = NP.

The theorem says the following: if we can stochastically solve any NP-
complete problem with anything better than random guessing, then we could
solve any problem in the NP class with probability almost 1. We will use
this theorem to prove that certain counting problems cannot be well approx-
imated stochastically unless RP = NP.

1.1.5 Stochastic counting and sampling: FPRAS, FPAUS,
self-reducible counting problems

In a random computation, we cannot expect that the answer be correct
with probability 1, and we even cannot expect that the answer have a given
approximation ratio with probability 1. However, we might require that the
computation have small relative error with high probability. This leads to
the definition of the following complexity class.

Definition 13. A counting problem is in FPRAS (Fully Polynomial Ran-
domized Approximation Scheme) if for any problem instance x and param-
eters ϵ, δ > 0 it has a randomized algorithm generating an approximation f̂
for the true value f satisfying the inequality

P

(
f

1 + ϵ
≤ f̂ ≤ f(1 + ϵ)

)
≥ 1− δ (1.5)

and the running time of the algorithm is polynomial in |x|, 1
ϵ
and − log(δ).

An algorithm itself with these prescribed properties is also called FPRAS.

The following folklore theorem shows that we cannot expect a counting
problem to be in FPRAS if its decision version is NP-complete.

Theorem 14. If there exists an NP-complete decision problem A such that
#A is in FPRAS, then RP = NP.

Proof. By Theorem 12, it is sufficient to show that an FPRAS algorithm for
the number of solutions provides a BPP algorithm for the decision problem.

12

 dc_2046_22

Indeed, let x be a problem instance in A, then the answer for x is “no” if the
number of solutions is 0 and the answer is “yes” if the number of solutions is
a positive integer. Consider an FPRAS with input x, ϵ = 1/2 and δ = 1/3.
Such an FPRAS runs in polynomial time with the size of x, and provides an
answer larger than 1/2 with probability at least 2/3 if there is at least one
solution for x, namely, if the correct answer for the decision problem is “yes”.
Furthermore, if the correct answer for the decision problem is “no”, then the
FPRAS returns 0 with probability at least 2/3. Therefore, the algorithm
that sends the input x, ϵ = 1/2 and δ = 1/3 to an FPRAS and answers “no”
if FPRAS returns a value smaller that 1/2 and answers “yes” if the FPRAS
returns a value larger than or equal to 1/2 is a BPP algorithm even if the
running time of the FPRAS is included in the running time.

There are also counting problems whose decision versions are easy (they
are in P), however, they cannot be approximated unless RP = NP. For ex-
ample, Jerrum, Valiant and Vazirani already observed in 1986 that it is hard
to count the number of cycles in a directed graph [54].

The situation will remain the same if we could generate roughly uniformly
distributed cycles from a directed graph. Below we state this precisely after
defining the necessary ingredients of the statement.

Definition 15. The total variation distance of two discrete distributions p
and π over the same (countable) domain X is defined as

dTV (p, π) :=
1

2

∑
x∈X

|p(x)− π(x)|. (1.6)

It is easy to see that the total variation distance of two distributions is
between 0 and 1, it is 0 if and only if the two distributions are pointwise the
same (for all x, p(x) = π(x)), and it is 1 if and only if the two distributions
have disjoint support (that is, p(x) ̸= 0 implies that π(x) = 0 and vice versa).
It is also easy to see that the total variation distance is indeed a metric.

Definition 16. A sampling problem #X is in FPAUS (Fully Polynomial
Almost Uniform Sampler) if #X is in #P, and there is a sampling algorithm
that for any problem instance in #X and ϵ > 0, it generates a random witness
following a distribution p satisfying the inequality

dTV (p, U) ≤ ϵ (1.7)

13

 dc_2046_22

where U is the uniform distribution of the witnesses. The algorithm must run
in polynomial time both with the size of the problem instance and − log(ϵ).
This algorithm itself is also called FPAUS.

There is a strong relationship between the complexity classes FPRAS and
FPAUS. For a large class of counting problems, called self-reducible counting
problems , there is an FPRAS algorithm for a particular counting problem
if and only if there is an FPAUS algorithm for it. To formally define self-
reducible counting problems we can think of the #P problems as p-relations ,
defined below.

Definition 17. A relation R ⊆ Σ∗ × Σ∗ is a p-relation iff

• ⟨x, y⟩ ∈ R =⇒ |y| = O(poly(|x|)).

• the predicate ⟨x, y⟩ ∈ R can be tested in deterministic polynomial time.

Here Σ is the common alphabet we use to describe problem instances and
solutions, and |x| denotes the length of sequence x.

Definition 18. A p-relation is self-reducible iff

• there exists a polynomial time computable function g : Σ∗ → N such
that

⟨x, y⟩ ∈ R =⇒ |y| = g(x)

• there exist polynomial time computable functions ϕ : Σ∗×Σ∗ → Σ∗ and
σ : Σ∗ → N satisfying

σ(x) = O(log(|x|))

g(x) > 0 =⇒ σ(x) > 0 ∀x ∈ Σ∗

|ϕ(x,w)| ≤ |x| ∀x,w ∈ Σ∗

and for all x ∈ Σ∗ and y1y2 . . . yn ∈ Σ∗

⟨x, y1y2 . . . yn⟩ ∈ R ⇔ ⟨ϕ(x, y1y2 . . . yσ(x)), yσ(x)+1 . . . yn⟩ ∈ R

The explanation of the definition is that the σ function tells the ’gran-
ulation’ of the solutions of x in a sense that taking any σ(x) long prefix
w of a solution to x, there is another problem instance x′, defined by the

14

 dc_2046_22

function ψ(x,w), such that the solutions of x′ are exactly the words which
gave solutions to x when concatenated to w. Although the definition of
self-reducible counting problems is quite technical, there are many counting
problems which are naturally self-reducible. For example, a partially ordered
set can be defined by giving a list of all comparable pair of elements, show-
ing their relationships, ai ⪯ aj. Any total ordering might be the list of the
elements ai1 , ai2 , . . . , ain . The granulation function must find the length of
the string ”ai1 , ”, and ϕ(x, ”ai1 , ”) is the partially ordered set from which ai1
is removed.

In their seminal paper, Jerrum, Valiant and Vazirani proved the following
theorem.

Theorem 19. (Jerrum-Valiant-Vazirani) Let #A be a self reducible counting
problem. Then #A has an FPRAS approximation if and only if it has an
FPAUS sampling.

There are #P-complete problems that do have FPRAS algorithms. For
example, Karzanov and Khaciyan gave a rapidly mixing Markov chain that
can almost uniformly generate total orderings agreeing with a given partially
ordered set [57]. Since #LE is a self-reducible counting problem, Karzanov
and Khaciyan also proved that #LE is in FPRAS. Since #LE is also in
#P-complete[16], the intersection of FPRAS and #P-complete is not empty.

One might ask if the fact that the intersection of #P-complete and
FPRAS is not empty implies that RP = NP. Papadimitriou’s theorem says
that we can nicely handle probabilities in polynomial reductions. However,
we might not be able to handle relative errors. Indeed, there are operations
that do not keep the relative error, most notably, the subtraction and mod-
ulo prime number calculations. We will see that such operations appear in
each #P-completeness proof of a counting problem that is also in FPRAS.
Therefore the polynomial reductions used in such proofs cannot be used to
propagate FPRAS approximations to other counting problems in #P: we
will lose the small relative error. Thus, it does not follow that any counting
problem in #P has an FPRAS.

On the other hand, if a #P-completeness proof for a problem #A pre-
serves the relative error, it also proves that there is no FPRAS for #A unless
RP = NP.

15

 dc_2046_22

1.1.6 Markov chains

Discrete time, discrete space Markov chains

The Karzanov-Khaciyan Markov chain highlights the importance of Markov
chains in computational complexity. Below we define the discrete time, dis-
crete state Markov chains.

Definition 20. A discrete time, finite Markov chain X = (X0, X1, . . .) is a
sequence of random variables taking values on a finite state space S, such that
Xn depends on only Xn−1. That is, for all m ≥ 0 and all possible sequence
i0, i1, . . . , im+1 ∈ Sm+2,

P (Xm+1 = im+1 | X0 = i0, . . . , Xm = im) = P (Xm+1 = im+1 | Xm = im).

For the sake of simplicity, we will write P (im+1|im) instead of P (Xm+1 =
im+1 | Xm = im). We will denote by P the transition matrix containing the
transition probabilities, that is, if P = {pi,j}, then pi,j = P (i|j). In this
thesis, we talk about only discrete time, finite Markov chains that we will call
Markov chains for short.

An irreducible Markov chain is a Markov chain with only one communi-
cating class, i.e. for any two states i, j ∈ S, the probability of getting from i
to j and from j to i (in multiple steps) are both positive.

A Markov chain is aperiodic if all its states i ∈ S satisfy that

di := gcd {t ≥ 1| p(t)ii = P (getting from i to itself via t steps) > 0} = 1,

where gcd stands for greatest common divisor.

A standard technique to make a Markov chain aperiodic is to have P (i|i) ̸=
0 for all states i. Frequently, P (i|i) is set at least 1

2
. This can be obtained,

for example, by defining a new Markov chain whose transition matrix is the
average of the transition matrix and the identity matrix. Such a Markov
chain is called a Lazy Markov chain [52, 115]. The spectral analysis of Lazy
Markov chains is technically simpler, see also Theorem 26 about the average
of a transition matrix and the identity matrix and also its Corollary 27.

Below we give definitions regarding the convergence of Markov chains.

Definition 21. A stationary distribution π of a Markov chain with a tran-
sition matrix P is an eigenvector of P with eigenvalue 1.

16

 dc_2046_22

A Markov chain converges to distribution π from a starting state x0 = i
if

lim
t→∞

dTV (P
t1i, π) = 0 (1.8)

where 1i is the vector that contains all 0 except at coordinate i where it is 1,
and dTV denotes the total variation distance (Definition 15).

The relaxation time is defined as

τi(ε) := min{n0 ∈ N : dTV (P
n1i, π) ≤ ε ∀n ≥ n0}, (1.9)

and the convergence time is the maximum of the relaxation time, that is

τ(ε) := max
i
τi(ε). (1.10)

We say that a Markov chain satisfies the detailed balance condition with
respect to a distribution π if for all i, j it holds that

π(i)P (j|i) = π(j)P (i|j). (1.11)

The followings are well-known theorems on convergence of Markov chains,
see for example, [15] for reference.

Theorem 22. Any Markov chain has a stationary distribution, that is, for
any Markov chain with transition matrix P, P has an eigenvector π with
eigenvalue 1.

This stationary distribution might not be unique. However, if the Markov
chain is irreducible, then this stationary distribution is unique.

Furthermore, if the Markov chain is aperiodic and irreducible, then the
Markov chain converges to its unique stationary distribution from any start-
ing point.

If a Markov chain is irreducible, aperiodic and reversible with respect to
distribution π, then π is its unique stationary distribution.

Markov chain Monte Carlo

TheMarkov chain Monte Carlo (MCMC) method is a class of algorithms that
achieves the goal of sampling from a probability distribution. One typical
example is the Metropolis-Hastings algorithm [44, 66], described below.

17

 dc_2046_22

Definition 23. The Metropolis-Hastings algorithm takes a Markov chain
on a state space X and transforms it into another one.

For a given function g : X → R>0, and an irreducible, aperiodic Markov
chain with transition probabilities such that for all pair of states x, y ∈ X it
holds that P (y|x) ̸= 0 ⇔ P (x|y) ̸= 0, a new Markov chain is constructed on
the same state space. The state xi is defined based on xi−1 in the following
steps.

1. Propose a candidate y for the next sample y ∼ P (·|xi−1), where ∼
stands for “following distribution”.

2. Generate a random number u ∼ U(0, 1), where U(0, 1) is the uniform
distribution on the [0, 1] interval.

3. The proposed state y is accepted, that is, xi = y if u ≤ g(y)P (xi−1|y)
g(xi−1)P (y|xi−1)

.

Otherwise the proposed state is rejected, that is, xi = xi−1.

Observe that the probability of accepting a proposed state y is

min

{
1,
g(y)P (x|y)
g(x)P (y|x)

}
.

The fraction g(y)P (x|y)
g(x)P (y|x) is called the Metropolis-Hastings ratio, and the proba-

bility is called the acceptance probability . Also observe that the Metropolis-
Hastings ratio has the following property. IfM(x, y) denotes the Metropolis-
Hastings ratio when proposing y from a state x, then

M(x, y) =
1

M(y, x)
.

The inverse of a lower bound on the Metropolis-Hastings ratio gives an upper
bound on the expected number of proposals before the first acceptance at
an arbitrary state. Due to the above mentioned property, the inverse of
a lower bound of the Metropolis-Hastings ratio is an upper bound of the
Metropolis-Hastings ratio and vice versa.

It is easy to prove that a Markov chain defined by the Metropolis-Hastings
algorithm is irreducible, aperiodic, and reversible with respect to π, the prob-
ability distribution obtained after g is normalized, and thus it converges to
distribution π starting in an arbitrary state [52, 115]. In this thesis, we will
consider only Markov chains obtained by the Metropolis-Hastings algorithm

18

 dc_2046_22

and its variants (see below), so from now we will consider only irreducible,
aperiodic and reversible Markov chains, and we will call them Markov chains
for short.

A variant of the Metropolis-Hastings algorithm is when for each pair of
states x and y such that P (y|x) ̸= 0 (and thus P (x|y) ̸= 0), there are several
ways to transform x to y: W = {w1, w2, . . . , wt}, and there is a one-to-one
mapping from W to the set W ′ = {w′

1, w
′
2, . . . , w

′
t}, the possible ways to

transform y back to x. The sets W and W ′ depend on x and y, but for the
sake of simplicity, we do not indicate this dependency in the notation. Also,
for all x, y, wi and w

′
i we require that

P (y, wi|x) ̸= 0 ⇔ P (x,w′
i|y) ̸= 0.

Then the Metropolis-Hastings ratio can be changed to

g(y)P (x,w′
i|y)

g(x)P (y, wi|x)
(1.12)

when y is proposed from x via the way wi. Here P (y, wi|x) is the probability
that y is proposed from x via way wi. It can be proved that the so-obtained
Markov chain still converges to π, the probability distribution obtained after
g is normalized [113]. We will use this version of the Metropolis-Hastings
algorithm twice in this thesis, in Chapter 7 and Chapter 12.

Speed of convergence of Markov chains

The eigenvalues of a Markov chain are the eigenvalues of its transition matrix.
For reversible Markov chains, these eigenvalues are all real, denoted by 1 =
λ1, λ2, . . . , λr.

Definition 24. The second-largest eigenvalue modulus of a Markov chain
is defined as

max{λ2, |λr|} (1.13)

and is denoted by ρ. It is also abbreviated as SLEM.

The following theorem is known about the second largest eigenvalue mod-
ulus and the relaxation time.

19

 dc_2046_22

Theorem 25. For a Markov chain, it holds that

τi(ε) ≤
1

1− ρ

(
log

(
1

π(xi)

)
+ log

(
1

ε

))
(1.14)

and

max
i

{τi(ε)} ≥ ρ

2(1− ρ)
log

(
1

2ε

)
. (1.15)

The proof of the first inequality can be found in [26], while the proof
of the second inequality can be found in [5]. Theorem 25 says that the
relaxation time is proportional to the inverse of the difference between the
largest eigenvalue (that is, 1) and the SLEM. The following theorem says that
it is sufficient to consider the second-largest eigenvalue of a Markov chain.

Theorem 26. Let M be a quadratic matrix with eigenvalues λ1, . . . , λr and
eigenvectors v1, . . . , vn. Then the matrix

M + I

2
(1.16)

has eigenvalues λ1+1
2
, . . . , λr+1

2
and eigenvectors v1, . . . , vn, where I is the

identity matrix.

Proof. It trivially comes from the basic properties of linear algebraic opera-
tions. Indeed,

M + I

2
vi =

1

2
(M + I)vi =

1

2
(Mvi + Ivi) =

1

2
(λivi + vi) =

λi + 1

2
vi. (1.17)

Corollary 27. If M is a Markov chain, then the random process defined by
the following algorithm (so-called lazy version of M) is also a Markov chain
whose SLEM is λ2+1

2
and converges to the same, globally stable stationary

distribution.

1. Draw a random number u uniformly from the [0, 1] interval.

2. If u ≤ 1
2
then do nothing; the next state of the Markov chain is the

current state. Otherwise, the next state is drawn following the Markov
chain M .

20

 dc_2046_22

Indeed, this process is a Markov chain, since the series of random states
satisfies the Markov property: where we are going depends on the current
state and not where we came from. Its transition matrix is T+I

2
, so we can

apply Theorem 26. The largest eigenvalue and its corresponding eigenvector
do not change, so the Markov chain still converges to the same distribution.

Here we state and prove a theorem on the mixing time of Markov chains
and FPAUS algorithms.

Theorem 28. Let #A be a counting problem in #P, and let x denote a
problem instance in #A with size n. Assume that the following holds:

(a) a solution of x can be constructed in O(poly(n)) time,

(b) there is a Markov chain with transition matrix T that converges to the
uniform distribution of the solutions of x, and for its second-largest
eigenvalue it holds that

1

1− λ2
= O(poly(n)), (1.18)

(c) there is a random algorithm that for any solution y, draws an entry
from the conditional distribution T (·|y) in polynomial time.

Then #A is in FPAUS.

Proof. Let x be a problem instance of #A, and let ε > 0. Since #A is in
#P, there is a constant c > 1 and a polynomial poly1 such that the number
of solutions of x is less than or equal to cpoly1(n). Indeed, any witness can
be verified in polynomial time, and the witnesses are described using a fixed
alphabet (the alphabet depends on only the problem and not the problem
instance). To verify a solution, it must be read. What follows is that the
number of solutions cannot be more than |Σ|poly(n), where Σ is the alphabet
used to describe the solutions and poly() is the natural or given polynomial
upper bound on the running time to verify a solution.

Having said these, it is easy to show that the following algorithm is an
FPAUS:

1. Construct a solution y of x.

21

 dc_2046_22

2. Using y as the starting point of the Markov chain, do

2

1− λ2

(
poly1(n) log(c) + log

(
1

ε

))
(1.19)

number of steps in the lazy version of the Markov chain.

3. Return with the last state of the Markov chain.

Indeed, the state that the algorithm returns follows a distribution that
satisfies Equation (1.7), since

τy(ε) ≤
2

1− λ2

(
log

(
1

π(y)

)
+ log

(
1

ε

))
≤

2

1− λ2

(
poly1(n) log(c) + log

(
1

ε

))
. (1.20)

The first inequality comes from Theorem 25 and from Corollary 27. The sec-
ond inequality comes from the observation that 1

π(y)
is the size of the solution

space, since π is the uniform distribution, and we showed that cpoly1(n) is an
upper bound of it. The running time of the algorithm is O(poly(n,− log(ε))),
since the initial state y can be constructed in polynomial time, there are
poly(n,− log(ε)) number of steps in the Markov chain, and each of them can
be performed in O(poly(n)) time.

This theorem explains the following definition.

Definition 29. Let #A be a counting problem in #P. Let M be a class of
Markov chains, such that for each problem instance x of #A, it contains a
Markov chain converging to the uniform distribution of witnesses of x. Let
Mx denote this Markov chain, and let λ2,x denote its second-largest eigen-
value. We say that M is rapidly mixing if

1

1− λ2,x
= O(poly(|x|)). (1.21)

Similarly, we can say that a Markov chain is slowly or torpidly mixing if

1

1− λ2,x
= Ω(c|x|) (1.22)

for some c > 1.

The difference between the largest eigenvalue, 1 and the second largest
eigenvalue is called the spectral gap.

22

 dc_2046_22

1.1.7 Techniques to prove rapid mixing of Markov chains

Multicommodity flow

There are several methods to prove rapid mixing of a Markov chain via
proving upper bounds on the inverse of the spectral gap. First, we introduce
the multicommodity flow technique developped by [82]. We denote by T (·|·)
the transition probabilities of the Markov chain.

The Markov graph G(V,E) of a Markov chain on matchings is a directed
graph whose vertices are the states of the Markov chain, and there is an arc
between two states u and v if there is a transition from u to v.

Definition 30. We define the load of an edge e = (u, v) as

Q(e) := T (u|v)θ(u)

A path system Γ in a Markov graph is a set of distributions of paths for
each ordered pair (x, y), x, y ∈ V . We will denote the distribution of paths
defined for (x, y) by Γx,y, and then

Γ := ∪(x,y)∈V×V Γx,y

Let p(x,y)(γ) denote the probability of a path γ in the distribution Γx,y of
a path system Γ.

Let

κΓ := max
e=(u,v)∈E

∑
(x,y)∈V×V

∑
γ∈Γ(x,y):e∈γ

θ(x)θ(y)px,y(γ)
|γ|
Q(e)

(1.23)

The κΓ of a path system is called the Poincaré coefficient . We have the
following inequality.

Theorem 31. [82] For any path system Γ,

1

1− λ2
≤ κΓ, (1.24)

where λ2 is the second eigenvalue of the transition matrix of the Markov
chain.

What follows is that the Markov chain can be used for an FPAUS if κΓ
is bounded by a polynomial in the size of the data.

Sometimes we create path systems such that there is a unique path be-
tween any ordered pair (x, y). In such case, the method is referred as canon-
ical path system method .

23

 dc_2046_22

The Cheeger inequalities

Cheeger’s inequalities connect the conductance of a Markov chain and its
second-largest eigenvalue. First we define the conductance and then state
the inequalities.

Definition 32. The capacity of a subset S ⊆ X of the state space is defined
as

π(S) :=
∑
x∈S

π(x). (1.25)

The ergodic flow of a subset S ⊆ X of the state space is defined as

F (S) :=
∑
x∈S
y∈S

π(x)T (y|x). (1.26)

The conductance of a Markov chain is

Φ := min

{
F (S)

π(S)

∣∣∣∣S ⊂ X, 0 < π(S) ≤ 1

2

}
. (1.27)

Theorem 33. Cheeger’s inequality The second-largest eigenvalue λ2 of a
Markov chain satisfies the following inequalities:

1− 2Φ ≤ λ2 ≤ 1− Φ2

2
. (1.28)

The proof can be found in [15], Chapter 6. The two inequalities in Equa-
tion (1.28) will be referred to as the left and right Cheeger’s inequality. This
theorem says that a Markov chain is rapidly mixing if and only if its conduc-
tance is large. We can prove the torpid mixing of a Markov chain by finding
a subset whose ergodic flow is negligible compared to its capacity.

In the definition of conductance, there might be double exponentially
many subsets to be considered. Indeed, the size of the state space might be
an exponential of the input size, and the number of subsets with at most half
probability might be also an exponential function of the base set. In spite
of this, surprisingly, we can prove rapid mixing of a Markov chain using the
right Cheeger’s inequality.

24

 dc_2046_22

1.2 Mathematical models

1.2.1 Graphs, networks, discrete tomography

Degree sequences

Definition 34. The degree sequence D = d1, d2, . . . , dn is a sequence of non-
negative integers. We say that a vertex-labeled simple graph G = (V,E) is a
realization of D if for all vi ∈ V , d(vi) = di, where d(v) denotes the degree of
v, that is, the number of edges incident to v. Here the labeling of the vertices
are identified with the indexes of the vertices.

The bipartite degree sequence Db = (d1,1, d1,2, . . . , d1,n), (d2,1, d2,2, . . . , d2,m)
is an ordered pair of sequences of non-negative integers. We say that a vertex-
labeled bipartite graph G = (U, V,E) is a realization of Db if for all ui ∈ U ,
d(ui) = d1,i and for all vj ∈ V , d(vj) = d2,j.

The directed degree sequence D⃗ = (d+1 , d
−
1), (d

+
2 , d

−
2), . . . , (d

+
n , d

−
n) is a

sequence of ordered pair of non-negative integers. We say that a vertex-
labeled directed graph G⃗ = (V,E) is a realization of G⃗ if for all vi ∈ V ,
d+(vi) = d+i and d−(vi) = d−i , where d

+(v) is the in-degree of v and d−(v) is
the out-degree of v.

For any type of degree sequence, we say that the degree sequence is graphic
if there is a realization of it.

The graphicality of degree sequences are well known problems in graph
theory. Erdős and Gallai gave necessary and sufficient conditions when a
degree sequence is graphic [31]. Gale and Ryser gave necessary and sufficient
conditions for bipartite degree sequences [37, 75]. Havel and Hakimi proved
the following theorem:

Theorem 35. (Havel-Hakimi, [43, 47]) Let D = d0, d1 ≥ d2 ≥ . . . ≥ dn
be a degree sequence. Then D is graphic if and only if D′ = d1 − 1, d2 −
1, . . . , dd0 − 1, dd0+1, . . . dn is graphic.

The proof of the theorem is based on the following observation. If D is
graphic then also a realization of D exists in which v0 is the neighbor of the
first d0 largest degree vertices. Any realization can be transformed into such
a realization with a series of so-called switch operations . A switch operation
removes two edges (v1, v2) and (v3, v4) and creates two new edges (v1, v3) and
(v2, v4). The Havel-Hakimi theorem can be iterated on D′, and this leads to
a canonical or Havel-Hakimi realization in which v0 is the neighbor of the

25

 dc_2046_22

first d0 largest degree vertices, then on G \ {v0}, v1 is the neighbor of the
first d̃1 largest degree vertices, where d̃1 is the degree of v1 in G \ {v0}, etc.
Any realization can be transformed to this canonical realization by switch
operations. Since the inverse of a switch operation is also a switch operation,
the corollary of the Havel-Hakimi theorem is the following.

Corollary 36. Let G1 and G2 be two realizations of the same degree sequence.
Then G1 can be transformed to G2 by a finite series of switch operations.

Similar theorem and corollary for bipartite degree sequences are folklore.
For sake of completeness we state these theorems here.

Theorem 37. Let Db = (d1,1, d1,2, . . . , d1,n), (d2,1 ≥ d2,2 ≥ . . . ≥ d2,m)
be a bipartite degree sequence. Then Db is graphic if and only if D′

b =
(d1,2, . . . , d1,n), (d2,1 − 1, d2,2 − 1, . . . , d2,d1,1 − 1, d2,d1,1+1, . . . , d2,m) is graphic.

Corollary 38. Let G1 and G2 be two realizations of the same bipartite degree
sequence Db. Then G1 can be transformed via realizations of Db to G2 by a
finite series of switch operations.

Given a degree sequence D (respectively, a bipartite degree sequence Db,

directed degree sequence D⃗) we can ask how many vertex labeled simple
graph realizations of D (respectively, vertex labeled bipartite graph realiza-

tions of Db, vertex labeled directed graph realizations of D⃗) are there. We
also would like to generate random realizations following a distribution of
the set of realizations that is very close to the uniform one, that is, we would
like an FPAUS sampler.

Joint Degree Matrix

There are other properties that characterize networks. One of them is the
assortativity. A network is said to be assortative if vertices with similar de-
grees tends to be neighbors. On the other hand, the neighbors in dissortative
networks typically have different degrees. For example, social networks tend
to be assortative while regulatory networks in gene regulation systems tend
to be dissortative. A possible way to describe the assortativity of a network
is the Joint Degree Matrix , also denoted by JDM.

Definition 39. The matrix J (G) = [Jij] {1 ≤ i, j ≤ k} is the joint degree
matrix of the (simple) graph G, where for all i, Jii is the number of edges

26

 dc_2046_22

spanned by Vi and for all i ̸= j, Jij is the number of edges between Vi and Vj,
where Vℓ is the set of vertices with degree ℓ. If for k×k matrix M there exists
a graph s.t. its joint degree matrix is equal to M then the latter is called a
graphic JDM.

Remark 1. It is clear that the degree sequence of the graph is fully deter-
mined by its JDM. Indeed, we have:

|Vi| =
1

i

(
Jii +

∞∑
ℓ=1

Jiℓ

)
.

Beyond deciding if a JDM has a realization, we also would like to generate
a random realization of a JDM following an almost uniform distribution, that
is, we would like an FPAUs sampler.

Discrete tomography

The discrete tomography problem is to construct binary or multicolor im-
ages from a few of their projections. One of the possible tasks in discrete
tomography is the following. Given a list of k bipartite degree sequences of
the same vertex set, decide if these degree sequences have disjoint common
realizations. That is, a realization for each degree sequence such that for any
pair of vertices u and v, (u, v) is an edge in at most one realization. This
problem is generally NP-complete even for k = 2 [42]. However, there are
positive results for some special sets of degree sequences. Above constructing
one realization, it is also an important task to construct an FPAUS sampler
for the possible realizations.

1.2.2 Genome rearrangement

Below we give a mathematical model of genomes.

Definition 40. A genome is an edge labeled, directed graph G⃗ = (V,E, L, l),
where l is a labeling function l : E → L such that each vertex has a total
degree 1 or 2. That is, the sum of the in and out degrees is either 1 or 2.
Both parallel edges and loops are allowed.

The labels are unique, that is, the labeling function l : E → L is an
injection. The vertices with total degree 1 are called telomers, the vertices

27

 dc_2046_22

with total degree 2 are called adjacencies. The edges are called genes or
synteny blocks.

The components of a genome are called chromosomes. Each component
is either a (not necessarily directed) line or a (not necessarily directed) cy-

cle. In this way, we talk about linear and circular chromosomes. When G⃗ is
connected (not necessarily strongly connected), the genome is called unichro-
mosomal. A disconnected genome is called multichromosomal.

If an edge is going from vertex u to vertex v, then its end at u is called
tail and its end at v is called head. The joint name of heads and tails is
extremities.

In genome rearrangement models, we consider the edges (that is, the
genes or synteny blocks) as building blocks. That is, a genome rearrange-
ment operation changes the vertices of a genome and not the edges. In
a genome rearrangement problem, two genomes, G⃗1 = (V1, E1, L, l1) and

G⃗2 = (V2, E2, L, l2) are given such that l1(E1) = l2(E2), and we are inter-

ested in the series of operations that transforms G⃗1 into G⃗2. Usually, the
parsimony principle is followed. That is, we are looking for the minimum
number of necessary operations to transform G1 into G2. Typically, there
are several shortest sequences of operations transforming one genome into
another one. We can ask how many such shortest sequences are there and
we might want to (almost) uniform sample one of them. We will call these
sequences shortest rearrangement paths or shortest rearrangement scenarios .

The genome rearrangement models differ in what kind of genomes and
rearrangement operations are considered. Below we list those considered in
this thesis.

Double Cut and Join (DCJ)

In the Double Cut and Join (or frequently called, DCJ model), there is no
restriction on the possible genome: a genome might be unichromosomal or
multichromosomal and any chromosome might be linear or circular. Further-
more, in case of a multichromosomal genomes, the chromosome types might
be mixed, that is, it is allowed that a genome contain both linear and circular
chromosomes. With other words, a genome might be an arbitrary directed
graph in which each vertex has a total degree 1 or 2. Usually, the label of
the edges are the positive integers, and we denote by h1 the head of the first
edge, we denote by t1 the tail of the first edge, etc. The vertices are labeled

28

 dc_2046_22

by the extremities they are incident to. In this way, for example, (h2, t5)
denotes the vertex of degree 2 incident to the head of the second edge and
the tail of the fifth edge, etc. General extremities are denoted by x, y, z and
q.

A DCJ operation takes at most two vertices and replaces them into at
most two vertices. That is, a DCJ operation is any of the following.

• It takes two vertices of degree 2, (x, y) and (z, q), and creates two new
vertices (x, z) and (y, q). We will denote this by (x, y|z, q). Note that
(x, y|z, q) ≡ (q, z|y, x) ≡ (y, x|q, z) ≡ (z, q|x, y).

• It takes a vertex of degree 2, (x, y), and a vertex with degree 1, (z), and
creates two new vertices (x, z) and (y). We will denote it by (x, y|z, 0) ≡
(0, z|y, x) ≡ (y, x|0, z) ≡ (z, 0|x, y).

• It takes a vertex of degree 2, (x, y), and creates two vertices of degree 1,
(x) and (y). We will denote it by (x, y|0, 0) ≡ (0, 0|x, y) ≡ (y, x|0, 0) ≡
(0, 0|y, x).

• It takes two vertices of degree 1, (x) and (y) and creates a new vertex
of degree 2, (x, y). We will denote it by (0, x|0, y) ≡ (x, 0|y, 0) ≡
(0, y|0, x) ≡ (y, 0|x, 0).

Computing the DCJ distance between two genomes can be easily obtained
using the adjacency graph defined below. See also Figure 1.2.

Definition 41. The adjacency graph G(V1 ∪ V2, E) of two genomes G1 and
G2 is a bipartite multigraph in which V1 is the set of adjacencies and telomeres
of G1 and V2 is the set of adjacencies and telomeres of G2. The number of
edges between u ∈ V1 and v ∈ V2 is the number of extremities they share.

Each vertex of the adjacency graph has either degree 1 or 2, and thus,
the adjacency graph falls into disjoint cycles and paths. Each path has one
of the following three types:

• odd path, containing an odd number of edges and an even number of
vertices,

• W -shaped path, which is an even path with two endpoints in V1,

• M-shaped path, which is an even path with two endpoints in V2.

29

 dc_2046_22

1

2

3

4

5

6

7

8

9

G
1

2

1

3

4

5

6

8

9

7

G
2

Figure 1.1: Two genomes with 9 genes sharing the same set of labels.

t1 (h1,t2) (t3) (h2,h3)

(t1,t2) (h1,t3) (h2)

(h8,t9)(h9,t8)(h4,h5)

(h3,h4) (h5)

(t4) (t5,h6)

(t4,t5) (h6)(h9,t7)

(t6,t7)

(h7)

(h7)

(h8,t9)(t6,t8)

Figure 1.2: The adjacency graph of the two genomes on Fig. 1.1

30

 dc_2046_22

In addition we call trivial components the cycles with two edges and the
paths with one edge. An adjacency graph example can be seen on Figure 1.2.

Yancopoulus et al. introduced the DCJ model, and gave the first poly-
nomial running time algorithm to compute the minimum number of DCJ
operations necessary to transform one genome into another one [98]. Berg-
eron et al. gave a linear time algorithm constructing one scenario [13]. Below
we present their theorem.

Theorem 42. For the DCJ distance of two genomes, G1 and G2 it holds
that

dDCJ(G1, G2) = N −
(
C +

I

2

)
(1.29)

where N is the number of edges in each genome, C is the number of cycles
in the adjacency graph of G1 and G2, and I is the number of odd paths in
the adjacency graph of G1 and G2.

Since calculating C and I is easy, computing the DCJ distance clearly
has a polynomial running time algorithm. Bergeron et al. [13] also give a
linear time algorithm to find one scenario of length dDCJ(G1, G2). It is also
possible to count the number of most parsimonious scenarios in polynomial
time if the genomes share the same telomeres [14, 70]. Braga and Stoye also
gave an algorithm to count the number of most parsimonious scenarios for
the general case, however, it runs in exponential time [14]. The complexity of
the counting problem in the general case remains unknown and is conjectured
to be #P-complete.

Sorting by Reversals

The Sorting by Reversals model considers unichromosomal, linear genomes.
The operations are reversals that can be considered as those DCJ operations
that keep the genome unichromosomal and linear. That is, a consecutive
segment of the current chromosome is taken and reverted. These unichro-
mosomal, linear genomes and the reversals acting on them can be modeled
in the following way. The labels of the edges are positive integer numbers
from 1 to n. One of the vertices of degree 1 is defined as the beginning
of the chromosome and the other is defined as the end. A directed edge
is considered to have a positive direction if its head is towards the end of
the chromsome, otherwise it is considered to have a negative direction. In

31

 dc_2046_22

this way, any unichromosomal, linear genome can be defined as a signed per-
mutation. Based on the choice of beginning and end of a chromsome, each
unichromosomal, linear genome can be represented by a signed permutation
in two different ways. For example, the following genome

3 5 4 2 1

can be represented as

+3 − 5 − 4 + 2 + 1

and
−1 − 2 + 4 + 5 + 3.

A reversal takes a consecutive segment of the permutation, and flips the order
of the numbers as well as their signs. A single number as a segment can also
be selected, and then the reversal acting on it simply changes its sign.

Example 1. For example, the permutation −1 − 2 − 3 − 4 can be
transformed to the +1 + 2 + 3 + 4 permutation in 26 different most
parsimonious ways, two of them are

−1 − 2 − 3 − 4

+1 −2 − 3 − 4

+1 + 2 −3 − 4

+1 + 2 + 3 −4

+1 + 2 + 3 + 4

and

−1 − 2 − 3 − 4

+3 +2 + 1 − 4

+3 + 4 − 1 − 2

+1 −4 − 3 − 2

+1 + 2 + 3 + 4

32

 dc_2046_22

Given two genomes, one of them can be considered as the +1 + 2 . . .+ n
permutation, and then the problem of transforming one signed permutation
into another one can be considered as sorting a signed permutation into the
+1 + 2 . . .+ n permutation. Still, an unichromosomal, linear genome can
be represented as a signed permutation in two different ways, however, the
sorting problem can be solved for both cases, and the representation yield-
ing the smaller number of necessary reversals can be chosen. The minimum
number of reversals necessary to sort a signed permutation π is called its
reversal distance and denoted by dREV (π).

The following combinatorial objects play a central role at computing the
reversal distance. To construct the graph of desire and reality , first a signed
permutation of size n is transformed into an unsigned permutation of 2n.
Each positive number +i is replaced by 2i− 1, 2i and each negative number
−1 is replaced by 2i, 2i − 1. The so-obtained numbers are framed between
0 and 2n+ 1. For example, the permutation

+3 − 5 − 4 + 2 + 1

becomes
0 5 6 10 9 8 7 3 4 1 2 11.

A vertex is assigned to each number and we identify these vertices with their
corresponding numbers. Starting with 0, every second vertex is connected
with a straight line. In the above example, 0 is connected to 5, 6 to 10, etc.
These edges are called the reality edges . Indeed, they represent the reality,
that is, 0 is connected to 5 because the permutation starts with +3, 6 is
connected to 10 since +3 is followed by −5, etc.

Also starting with 0, each even number 2i is connected to 2i+ 1 with an
arc (semicircle). These are called the desire edges . Indeed, this is what we
want: we want 0 to be followed by 1, that is, we want the permutation to
start with +1, etc.

The graph of desire and reality is a drawn graph, in which the vertices
are drawn along a straight line, the reality edges are drawn as line segments
and the desire edges are drawn as arcs (semicircles). It is also a multigraph,
since there might be two edges between two vertices when the ”reality meets
the desire”, that is, if 2i is followed by 2i+1. Since each vertex has degree 2,
the graph of desire and reality can be unequivocally decomposed into cycles.

The overlap graph is a vertex-colored simple graph. The vertices of the
overlap graph are identified with the desire edges of the graph of desire and

33

 dc_2046_22

reality. A vertex is colored by black if its corresponding desire edge spans over
an odd number of vertices in the graph of desire and reality. Two vertices in
the overlap graph are neighbors if their corresponding desire edges overlap,
that is, their spanned intervals intersect, but none of them contains the
other. For an example of graph of desire and reality and overlap graph, see
Figure 1.3.

We have the following theorem.

Theorem 43. ([45]) Let π be a signed permutation of size n, and let c(π)
denote the number of cycles in its graph of desire and reality. If each non-
trivial component in the overlap graph of π contains at least one black vertex,
then the reversal distance of π is

dREV (π) = n+ 1− c(π).

For example, the +3 − 5 − 4 + 2 + 1 permutation satisfies that each
non-trivial component in its overlap graph contains a black vertex, therefore
its reversal distance is 5 + 1− 3 = 3.

If the overlap graph of a permutation contains non-trivial all-white com-
ponents, some of them are so-called hurdles . For such genomes, the reversal
distance is always greater than n + 1 − c(π). We consider only hurdle-free
permutations in this thesis, the interested reader is referred to [45] or [12].

We say that a reversal acts on a black vertex if it flips the segment
delimited by the neighbor reality edges of the desire arc the black vertex
represent. For example, the reversal acting on the (10, 11) vertex of the
overlap graph of permutation +3 − 5 − 4 + 2 + 1 flips the segment
−5 − 4 + 2 + 1. It can be shown (see, for example, [12]) that a reversal
acting on a black vertex that maximizes the number of its white neighbors
minus the number of its black neighbors is always a sorting reversal , that
is, it decreases the reversal distance. In this way, it is easy to construct one
sorting scenario. For example, a sorting scenario of +3 − 5 − 4 + 2 + 1
is

+3 −5 − 4 + 2 + 1

+3 − 1 − 2 + 4 + 5

+1 −3 − 2 + 4 + 5

+1 + 2 + 3 + 4 + 5

It is also easy to show [12] that the reversal acting on a black vertex v has
the following effect on the graph of desire and reality:

34

 dc_2046_22

0 5 6 10 9 8 7 3 4 1 2 11

(0, 1)

(2, 3)

(4, 5)

(6, 7)

(8, 9)

(10, 11)

Figure 1.3: The graph of desire and reality as well as the overlap graph of
the permutation +3− 5− 4 + 2 + 1

• All neighbors of v change color, that is, black vertices become white,
white vertices become black.

• All pair of neighbors of v changes neighborhood. That is, for all pair

35

 dc_2046_22

u,w ∈ N (v) if (u,w) is an edge in the overlap graph before the act of
the reversal, (u,w) will not be an edge after the act of the reversal and
vice versa.

• The vertex v becomes an isolated, white vertex.

A special class of signed permutations are those whose graph of desire and
reality contains only cycles of length 4 and 2, and each non-trivial component
in their overlap graph contains at least one black vertex. There are two im-
portant properties of this class. First, all reversals in all most parsimonious
sorting by reversals act on black vertices. The second important property is
that each extremity is effected by reversals at most once in all most parsi-
monious sorting by reversals. Biologists call this phenomena the infinite site
model [63]. In the infinite site model, mutations (reverals) happen randomly.
The length of the genome (the number of positions or sites where a mutation
can happen) tends to infinity while the rate of the mutations per site tends
to 0 in such a way that the expected number of mutations during a fixed
time is constant. In this model, no reversals happen twice at a given site
almost surely.

Although efficient algorithms exists to compute the reversal distance for
any signed permutations (and not only those whose overlap graph contains
only trivial components and non-trivial components with at least one black
vertex) [45, 87], we know little on the number of solutions. It is conjectured
that computing the number of most parsimonious sortings by reversals is
#P-complete.

Single Cut or Join

The Single Cut or Join model is one of the simplest possible genome rear-
rangement models. Arbitrary genomes are allowed in this model, just like in
the DCJ model, however, only two types of DCJ operations are allowed: the
one that cuts a vertex of degree 2 into two vertices of degree 1, and the one
that merges two vertices of degree 1 into a vertex of degree 2. The model was
introduced by Feijão and Meidanis [32]. They computed the SCJ distance
between two genomes. Let G1 and G2 be two genomes with the same edge
labels, and let A1 and A2 be the set of the vertices of degree 2 in G1 and
G2. We consider two vertices to be the same if they are incident to the same
extremities. Feijão and Meidanis proved that

dSCJ(G1, G2) = |A1∆A2| (1.30)

36

 dc_2046_22

where ∆ denotes the symmetric difference of two sets.They also showed
that the small parsimony problem can be solved in polynomial time for the
SCJ model. The small parsimony problem is the following. Given an un-
rooted binary tree T = (V,E), and let E = L ⊎ I where L are the leaves of
T and I are the internal nodes. Let a set of objects X are defined on which
some distance d : X × X → R≥0 is defined. Furthermore, let a function
f : L→ X is given, The small parsimony problem is the following: extend f
to a g : V → X such that ∑

(u,v)∈E

d(g(u), g(v))

is minimized. In the SCJ-small parsimony problem, X is a set of genomes
with the same labels, and d is the SCJ distance. If a tree is a star with 3
leaves, then the small parsimony problem is also called the median problem.
It is shown that the DCJ median and the reversal median problems are
already NP-hard [17, 88].

Enumeration problems in genome rearrangement

In the joint work with Heather Smith [122], we discussed several counting
problems that can be asked in any genome rearrangement model. Given any
rearrangement model, we can define the following five counting problems:

1. Pairwise rearrangement problem Given two genomes, G1 and G2,
and one of the rearrangement models,M , how many most parsimonious
rearrangement scenarios exist that transform G1 into G2? We will
denote this number by nM(G1, G2).

2. Most parsimonious median problem Given a series of genomes,
G1, G2 . . . Gk, and one of the rearrangement models, M , how many
genomes Gm exist that minimize

∑k
i=1 dM(Gi, Gm), where dM(G,G′)

denotes the minimum number of operations needed to transform G
into G′ under the model M . We call each Gm an optimal median. The
set of optimal medians will be denoted OM(G1, G2, . . . Gk).

3. Most parsimonious median scenarios Given a series of genomes,
G1, G2 . . . Gk, and one of the rearrangement models, M , how many
optimal median scenarios exist. That is, count for all optimal medians

37

 dc_2046_22

the number of possible rearrangement scenarios. With a formula, we
are looking for

∑
Gm∈OM (G1,G2,...,Gk)

k∏
i=1

nM(Gi, Gm).

4. Most parsimonious labeling of evolutionary trees Given one of
the rearrangement models, M , a rooted binary tree, T (V,E), where V
is the disjoint union of leaves L and internal nodes I. Furthermore,
given a function f : L → G that labels the leaves, where G denotes
the set of possible genomes. We are looking for how many functions
g : V → G exists such that for any v ∈ L, g(v) = f(v) and g minimizes∑

(u,v)∈E

dM(g(u), g(v)).

We denote this set of functions by O′
M(T, f).

5. Most parsimonious scenarios on evolutionary trees Given one
of the rearrangement models, M , a rooted binary tree T (V,E) and a
labeling function f as described above, we are looking for∑

g∈O′
M (T,f)

∏
(u,v)∈E

nM(g(u), g(v)).

1.2.3 Biological sequences

We will use the following notations. If Γ is a finite set of symbols, then
Γ∗ denotes the set of finite sequences from Γ. For A ∈ Γ∗, |A| denote the
length of the sequence. Indexed small case letters denote the characters of
a sequence denoted by a capital letter. For example, A = a1a2 . . . an. The
prefix of A is Ai := a1a2 . . . ai, and a suffix of A is Ai := ai+1ai+2...an . That
is, if writing sequences next to each other denotes sequence concatenation,
then for any A and i,

A = AiA
i.

DNA sequences can be modeled as sequences over the alphabet {A,C,G, T},
RNA sequences can be modeled as sequences over the alphabet {A,C,G, U}.
These letters encode small molecules called nucleotides or bases . Nucleotides

38

 dc_2046_22

can make covalent bonds to each other thus form a linear macromolecule.
Proteins can be modeled as sequences over the alphabet of 20 amino acids.
The DNA sequences are double stranded, the two strands are the reverse
complement of each other. RNA and protein sequences are single stranded
molecules, which can form complex 3-dimensional structures.

Obtaining the sequences of the biological sequences is quite cheap, how-
ever, finding their structure is still a tedious, money and time-consuming
laboratory work that needs lots of man-power, too. Therefore, the in silico
structure prediction is an important task in bioinformatics. The biological
structures can be modelled with stochastic models like Hidden Markov Mod-
els, Stochastic Regular Grammars and Stochastic Context-free Grammars.
The most likely generation is considered as the predicted structure. The
RNA structures are also have a biochemical model called the Zucker-Tinoco
energy model. In this model, the predicted structure is the one which has
the minimal free energy. For all the above-mentioned prediction methods,
dynamic programming algorithms are available. Still, there were a few open
algorithmic problems whose solutions are introduced in this thesis. In this
chapter, we introduce the mathematical models for the structure prediction
in details.

Biological structure prediction

Stochastic transformational grammars are frequently used in biological struc-
ture prediction. Transformational grammars have been invented by Noam
Chomsky [18]. Regular grammars are one of the simplest transformational
grammars as they are in the lowest level of the Chomsky hierarchy [19].
Stochastic versions of regular grammars are related to Hidden Markov Mod-
els [84, 10].

Definition 44. A regular grammar is a tuple (T,N, S, R), where T is a
finite set called terminal characters, N is a finite set called non-terminal
characters. The sets T and N are disjoint. S ∈ N is a special non-terminal
character, called starting non-terminal. R is a finite set of rewriting rules,
each in one of the following forms

W → xW ′ (1.31)

W → x (1.32)

W → ϵ (1.33)

39

 dc_2046_22

where W,W ′ ∈ N , x ∈ T , ϵ denotes the empty sequence. The shorthand for
the rules (1.31)-(1.33) is

W → xW ′ | x | ϵ.

A generation is a finite series of transformations

S = X0 → X1 → . . .→ Xk ∈ T ∗ (1.34)

where for each i = 1, . . . , k − 1, there exists a rule W → β and a word
Xp ∈ T ∗ such that Xi = XpW and Xi+1 = Xpβ. (Here β might be any
sequence appearing at the right-hand side of a rewriting rule.) T ∗ denotes
the finite sequences from T . The language LG ⊆ T ∗ contains those sequences
that can be generated by the grammar. A grammar is said to be unambiguous
if any sequence X ∈ LG can be generated in exactly one way. An ambiguous
grammar contains at least one sequence in its language that can be generated
in at least two different ways.

A generation is possible if there is a non-terminal in the intermediate
sequence. Once the sequence contains only terminal characters, the genera-
tion is terminated. This is the rationale behind the naming of terminals and
non-terminals.

Given a sequence X ∈ T ∗, the following questions can be asked:

(a) Is X ∈ LG?

(b) How many generations are there which produce X?

(c) Given a function w : R → R≥0, which generation G maximizes

k−1∏
i=0

w(Wi → βi)

where the rewriting rule Wi → βi is applied in the ith step of the
generation G generating X in k steps?

(d) Given a function w : R → R≥0, compute∑
Gi

ki−1∏
j=0

w(Wi,j → βi,j)

where the rewriting rule Wi,j → βi,j is applied in the jth step of the
generation Gi generating X in ki steps.

40

 dc_2046_22

As can be seen, non-terminals play the role of “memory” in generating
sequences. Above the non-terminals at the end of the intermediate sequences,
the generation is memoryless. We can consider the stochastic version of
regular grammars, and the memoryless property provides that the stochastic
versions of regular grammars are Markov processes. The stochastic regular
grammars can be defined in the following way.

Definition 45. A stochastic regular grammar is a tuple (T,N, S, R, π), where
(T,N, S, R) is a regular grammar and π : R → R+ is a probability distribution
for each non-terminal, that is, for each W ∈ N , the equality∑

β|(W→β)∈R

π(W → β) = 1 (1.35)

holds. (Recall that β is any of the sequences that might appear in the right-
hand side of a rewriting rule of a regular grammar, including the empty
sequence.) A stochastic regular grammar makes random generations

S = X1 → X2 → . . .

where in each rewriting step, the rewriting rule W → β is chosen randomly
following the distribution π.

The random generation in a stochastic regular grammar can be viewed as
a random process, in which the states are the intermediate sequences. This
process indeed has the Markovian property. That is, what the intermediate
sequence Xi+1 is depends only on Xi and does not depend on any Xj, j < i.
One can ask for a given sequence X ∈ T ∗ what the most likely generation
and the total probability of the generation are. This latter is the sum of the
probabilities of the possible generations. Both questions can be answered by
algebraic dynamic programming algorithms introduced in Chapter 2.

Stochastic regular grammars are closely related to Hidden Markov Mod-
els.

Definition 46. A Hidden Markov Model is a tuple (G⃗, START,END,Γ, T, e),

where G⃗ = (V,E) is a directed graph in which loops are allowed but parallel

edges are not, START and END are distinguished vertices in G⃗, START
has 0 in-degree, END has 0 out-degree, Γ is a finite set of symbols, called an

41

 dc_2046_22

alphabet, T : E → R+ is the transition probability function satisfying for all
u ̸= END ∑

v|(u,v)=e∈E

T (e) = 1.

and e : Γ×(V \{START,END}) → R≥0 is the emission probability function
satisfying for all v ∈ V \ {START,END}∑

x∈Γ

e(x, v) = 1

The vertices of G⃗ are called states. A random walk on the states is defined
by G⃗ and the transition probabilities. The random walk starts in the state
START and ends in the state END. During such a walk, states emit char-
acters according to the emission distribution e. In case of loops, the random
walk might stay in one state for several steps. A random character is emitted
in each step. The process is hidden in the sense that an observer can see
only the emitted characters and cannot observe the random walk itself. An
emission path is a random walk together with the emitted characters. The
probability of an emission path is the product of its transition and emission
probabilities.

If (u, v) is an edge, then the notation T (v|u) is also used, emphasizing
that T is a conditional distribution. Indeed T (v|u) is the probability that
the Markov process will be in state v in the next step given that it is in the
state u in the current step.

One can ask, for an X ∈ Γ∗, what the most likely emission path and the
total emission probability are. This latter is the sum of the emission path
probabilities that emit X. These questions are equivalent with those that can
be asked for the most likely generation and the total generation probability of
a sequence in a stochastic regular grammar, stated by the following theorem.

Theorem 47. For any Hidden Markov Model H = (G⃗, START,END,Γ, T, e),
there exists a stochastic regular grammar G = (T,N, S, R, π) such that Γ = T ,
LG is exactly the set of sequences that H can emit, and for any X ∈ LG, the
probability of the most likely generation in G is the probability of the most
likely emission path in H, and the total generation probability of X in G
is the total emission probability of X in H. Furthermore, the running time
needed to construct G is a polynomial function of the size of G⃗.

42

 dc_2046_22

The proof can be found, for example, in [115].
Due to their similarities, similar problems will be tractable for HMMs

than for stochastic regular grammars. The algorithms solving these prob-
lems are well known in the scientific literature. The algorithm finding the
most likely emission path is known as the Viterbi algorithm [93, 36] and the
algorithm summing the probabilities of possible emission paths is called the
Forward algorithm [9, 11]. It is also well-known in the Hidden Markov Model
literature that “the Viterbi algorithm is similar [...] in implementation to the
forward calculation” [72].

DNA sequences have a fixed chemical structure (the double stranded helix
structure), however, they still might have (functional) structure. For exam-
ple, DNA sequences have coding and non-coding regions. There are 34 = 64
possible triplets of the letters {A,C,G, T}. Only 61 of them codes an amino
acid (this is a surjective but not injective mapping from the 61 coding triplets
to the 20 amino acids), the remaining 3 are called stop codons and encode the
end of the coding region. A typical protein sequence contains several hun-
dreds of amino acids, thus, in the corresponding DNA coding regions, there
are several hundreds of consecutive coding triplets without any stop codon.
This is a statistical signal that provides the prediction of coding regions with
Hidden Markov Models. When a new species is sequenced, its DNA sequence
is obtained. Biologist would like to predict the protein sequences of this new
species by predicting the coding regions of its DNA sequence and translating
the coding triplets into amino acid sequences, that is, into proteins.

Also, some parts of the DNA sequences are rich in CpG motifs, called
CpG islands. A CpG motif is simply a CG substring in the DNA sequence,
the ’p’ notation is for emphasising that the two characters are on the same
strand of the DNA sequence. The non-CpG island parts are richer in other
substrings of length 2 due to chemical reasons not explained here. This is
again a statistical signal that provides the prediction of CpG islands. The
CpG islands play a central role in gene regulation.

Protein sequences have complex three dimensional structures, that can
be decomposed into smaller structural parts. We can distinguish α-helices,
β-sheets, and unstructured elements. These are called secondary structure
types. The amino-acid distribution in these three structural types are differ-
ent, and again, this allows the prediction of secondary structures of protein
sequences with Hidden Markov Models.

RNA sequences can fold back and make base-pairs using hydrogen bonds.
Above the standard, so-called Watson-Crick basepairs – A-U, C-G, G-C, and

43

 dc_2046_22

U-A – two further basepairs, G-U and U-G are possible. These base-pairs
stabilizes the structure.

Definition 48. Let S be an RNA sequence of length n, that is, a finite long
sequence over the alphabet {A,C,G, U}. A pseudoknot-free RNA secondary
structure is a collection of index pairs (i, j), i < j such that any index is
in at most one pair, for all pairs (i, j), (si, sj) is one of the following pairs:
(A,U), (C,G), (G,C), (U,A), (G,U), (U,G), and for all (i1, j1) and (i2, j2)
such that i1 < i2 either j1 < i2 or j2 < j1. That is, the pairs are either nested
or separated. A basepair (i, j) is called outermost on the substring from b to
e if there is no basepair (i′, j′) with i′ < i and j < j′.

We consider in this thesis only pseudoknot-free RNA secondary structures
and we simply call them RNA secondary structures or RNA structures.

We can construct a graph of an RNA structure, G(V,E), which is an edge
colored planar graph. The colors are represented by straight and dotted lines.
The vertex set V are the bases of the RNA sequence b1b2 . . . bn. There are
two types of edges. The edges with straight line represent the covalent bonds,
thus, for all 1 ≤ i < n, (bi, bi+1) ∈ E. The dotted lines represent the hydrogen
bonds. Therefore, for all basepairs (i, j), (bi, bj) ∈ E.

It is easy to see that G(V,E) is a planar graph. Indeed, if the vertices are
drawn along a line, the straight edges will be all along this line. The dotted
lines can be drawn by arcs (semicircles), and due to the definition of RNA
structures, they cannot cross each other (and they cannot cross the straight
lines, too). Furthermore, G(V,E) can unequivocally decomposed into cycles
and a path called null cycle such that each dotted line is in exactly two cycles
(or in a cycle and in the path). It can be obtained iteratively in the following
way.

1. The null cycle contains the basepairs which are outermost on the whole
RNA sequence and the covalent bonds between bi and bi+1 such that
no basepair (i′, j′) exists with i′ ≤ i and i + 1 ≤ j′. This null cycle
initiate the iteration, the iteration goes for each outermost basepair in
the current cycle.

2. Now for each basepair (i, j) that was outermost in the previous seg-
ment, there is a cycle that contains (bi, bj), all basepairs (i

′, j′) that are
outermost on the segment from i to j and all covalent bonds between bk
and bk+1 with i ≤ k, k+1 ≤ j such that no basepair (i”, j”) exists with

44

 dc_2046_22

i” ≤ k and k + 1 ≤ j”. We can classify these cycles in the following
way:

(a) If there is no outermost basepair (and thus, no basepair above (i, j)
in the current segment), then the cycle is called hairpin cycle.

(b) If there is one outermost basepair (i′, j′) and i+1 = i′ and j′+1 =
j, then the cycle is called stacking pair.

(c) If there is one outermost basepair (i′, j′) and i+1 = i′ or j′+1 = j
but not both equation holds, then the cycle is called bulge.

(d) If there is one outermost basepair (i′, j′) and neither i+1 = i′ nor
j′ + 1 = j, then the cycle is called internal loop.

(e) If there are more than one outermost basepairs, then the cycle is
called multiloop.

In the Zucker-Tinoco energy model [91], a free energy is assigned to each
cycle, and the free energy of the RNA structure is the sum of these free
energies. To get an energy model in which the minimal free energy can be
computed in O(n3) time, the functions assigning a free energy to internal
loops, bulges and multiloops are simplified in the following way.

Lyngsø et al. [62] considered that the free energy assigned to an internal
loop or bulge with basepairs (i, j) and (i′, j+) can be decomposed as

eL(i, j, i′, j′) = size(i′ − i+ j − j′ − 2) +

asymmetry(i′ − i− 1, j − j′ − 1) +

stacking(bi, bj) + stacking(b′i, b
′
j). (1.36)

Here, the stacking(·, ·) function depends on only the type of the bases and
not their positions. Furthermore, it is assumed that

asymmetry(k + 1, l + 1) = asymmetry(k, l) + f(k + 1). (1.37)

The free energy of a multiloop M is considered as

eM(M) =Mc +MI × interiorpair(M) +MB × unpaired(M) (1.38)

where Mc, MI and MB are constants, interiorpair(M) is the number of out-
ermost basepairs in the internal loops and unpaired(M) are the number of
unpaired bases in the internal loop [97].

45

 dc_2046_22

1.3 Results presented in this thesis

The results in this thesis are presented from the computational complexity
point of view. The thesis has four parts. It introduces problems for which
exact computations are possible in polynomial time and also problems for
which efficient approximations are possible. It introduces positive engineering
work, that is, Markov chains with non-trivial kernels and small diameters
and negative results: torpidly mixing Markov chains, #P-complete and non-
approximable problems. We introduce first the negative results, since in the
light of these negative results, it is easier to understand why the engineering
work can be considered as positive results.

1. Counting problems in FP. Most of the counting problems solv-
able in polynomial time have a dynamic programming solution. We
give an algebraic framework of dynamic programming and show that
many computational problems can be described as computing the ho-
momorph image of a certain semiring. We give two non-trivial applica-
tions: computing the moments of the Boltzmann distribution of RNA
secondary structures and performing Baum-Welch training in linear
memory. We also give solutions of two counting problems under the
SCJ model. Counting the most parsimonious scenarios between two
genomes under the SCJ model can be reduced to counting alternating
permutations. Counting most parsimonious medians can be reduced to
counting matchings in graphs with maximum degree 2.

2. Counting problems in FPRAS via rapidly mixing Markov chains.
The switch Markov chain is conjectured to be rapidly mixing for any
degree sequences. The degree sequences can be factorized using the
Thyskevich-decomposition and we showed that it is sufficient to prove
rapid mixing for each factor. We prove that the switch Markov chain
is rapidly mixing for P-stable degree sequences, and any degree se-
quence is P-stable if the degrees are between some linear bounds. We
show that this bound is tight, that is, there are non-P-stable degree
sequences above these linear bounds. The counterexample is given by
Thyskevich-product of certain factors. We show that one of the fac-
tor or its complement appears as an induced subgraph of a realization
in any class of non-P-stable sequences. We can prove that the switch
Markov chain is rapidly mixing on the realizations of this non-P-stable
factor. We show that the switch Markov chain is irreducible on the

46

 dc_2046_22

balanced realizations of a JDM, and this Markov chain is rapidly mix-
ing. Finally, we give an FPRAS to approximate the number of most
parsimonious rearrangement scenarios under the DCJ model.

3. Negative results: torpid mixing, #P-complete and non-approximable
problems

We show that the only known irreducible Markov chain on the most
parsimonious reversal scenarios is torpidly mixing. The torpid mixing
is caused by the necessity of large perturbations to get an irreducible
Markov chain.

We also give two negative results on SCJ rearrangement problems. We
show the non-approximability of counting the most parsimonious re-
arrangement scenarios on an evolutionary tree and also prove its #P-
completeness. We show that the problem remains #P-complete on star
trees, although we do not know whether or not the problem remains
non-approximable. Our results hold even for the case when the genomes
do not contain so-called conflicting adjacencies. Two adjacencies are
in conflict if they are different but share an extremity.

4. Non-trivial kernels and diameters of Markov chains. We have
a conjecture that a certain Markov chain with small perturbations is
irreducible on the most parsimonious reversal rearrangement scenarios
under the infinite site model. We prove this conjecture for the class of
permutations whose overlap graph has maximum degree 2.

We show how to cool down most parsimonious rearrangement scenarios
under the DCJ model to most parsimonious rearrangemnet scenarios
under the reversal model. Defining a topology using small perturba-
tions and using an energy model in which the minimum energy re-
arrangement scenarios are the reversal scenarios, we show that for a
large class of permutations, every local minimum is a global one. We
show that polynomial number of parallel chains are sufficient to achieve
high communication rate between parallel chains while having the uni-
form distribution in the hottest chain (that is, the uniform distribution
of DCJ scenarios) and significant fraction of reversal scenarios in the
coldest chain.

We give a Gibbs sampler of optimal SCJ labeling on an arbitrary evo-
lutionary tree.

47

 dc_2046_22

We give necessary and sufficient perturbations of half-regular factoriza-
tions of the complete bipartite graph as well as necessary and sufficient
perturbations of edge-colorings of bipartite graphs. In some sense, these
perturbations are large as they might affect arbitrary number of ver-
tices in the non-regular vertex class or arbitrary number of edges in the
edge coloring. On the other hand, these perturbations are small since
they perturbe at most three vertices of the regular vertex class or at
most three colors of the edge coloring. We prove that the inverse of the
acceptance ratio in the Metropolis-Hastings algorithm is polynomially
bounded. Also, we show that in both cases, the Markov chain has a
small diameter.

48

 dc_2046_22

Part I

Counting problems in FP

49

 dc_2046_22

 dc_2046_22

Chapter 2

Algebraic Dynamic
Programming

In this chapter we introduce the concept of the algebraic dynamic pro-
gramming and show two non-trivial applications: computing moments of
the Boltzmann distribution of RNA sequences and performing Baum-Welch
training in linear memory. This chapter is based on the second chapter
of the monograph Miklós, I. (2019) Computational Complexity of Count-
ing and Sampling, Chapman and Hall/CRC, ISBN 9781138035577 - CAT#
K31733 and two further publications: Miklós, I., Meyer, I.M., Nagy, B. (2005)
Moments of the Boltzmann distribution for RNA secondary structures Bul.
Math. Biol., 67(5):1031–1047 and Miklós, I., Meyer, I.M. (2005) A linear
memory algorithm for Baum-Welch training. BMC Bioinformatics 6:231.
In both paper, the author of this thesis proved the main theorems (Theo-
rems 50 and 51, Lemma 52 and Theorem 53).

2.1 Introduction to Algebraic Dynamic Pro-

gramming

The idea that the recursion and the actual computation can be separated
in dynamic programming algorithms appeared shortly after introducing the
concept of dynamic programming. The Aho-Ullman-Hopcroft textbook on
algorithms published in 1974 [1] already mentions that in optimization prob-
lems, the minimization and addition form a semiring. This is known today
as the tropical semiring, although this name was coined only in the ’80-s

51

 dc_2046_22

[80]. Jerrum and Snir in a paper published in 1982 talks about “universal
algorithms” where “the family of monotone computations are essentially the
same in any semiring” [53]. Helman and Rosenthal [48] partitioned problems
into “problem structure” and “optimization problem”, and they stated that
“we can use the same main program and simply redefine a single function”.
Although this method to dynamic programming is still not widespread, the
Cormen textbook on algorithms [23] mentions that some basic shortest path
algorithms like the Floyd-Warshall algorithm [35, 74, 95] can be considered
as matrix multiplication over the tropical semiring. The textbook discusses
other semirings, too, for example, the min-max semiring that can be used to
solve the widest path problem.

Bioinformaticians, especially those that worked with RNA structure pre-
diction also rediscovered that the problem structure can be separated from
the actual computations. They coined the name algebraic dynamic program-
ming [40, 41]. A generalization to this approach was presented in the mono-
graph on computational complexity by the author of this thesis [115]. Here
we give a simplified version of that work.

Let X be a finite alphabet and let X∗ denote the set of finite sequences
over X, including the empty sequence that we will denote by ε. Let ◦ denote
the sequence concatenation, that is,

a1a2 . . . an ◦ b1b2 . . . bm := a1a2 . . . anb1b2 . . . bm

Clearly, the sequence concatenation is an associative operation on X∗ and ε
is both a left and a right unit, therefore (X∗, ◦) is a non-commutative monoid.
This monoid is known in abstract algebra as the free non-commutative monoid
generated by the alphabet X.

Let X be the set of finite multisets of X∗. We define ⊕ on X as the union
of the corresponding sets, that is, for all A,B ∈ X, let

A⊕ B := A ∪ B,

where ∪ is the multiset union. Further, we define ⊙ as the “Minkowski
product” of two (multi)sets, that is, for all A,B ∈ X, let

A⊙ B := {A ◦B|A ∈ A, B ∈ B}.

Here any sequence in A or B is considered with multiplicity, that is, if A is
in A n1 times, and B is in B n2 times, then A ⊙ B contains A ◦ B n1 × n2

times.

52

 dc_2046_22

It is easy to see that (X,⊕) is a commutative monoid in which ∅ is a unit,
and (X,⊙) is a non-commutative monoid in which {ε} is the unit. Also, the
associative rules

A⊙ (B ⊕ C) = (A⊙ B)⊕ (A⊙ C)

and

(B ⊕ C)⊙A = (B ⊙A)⊕ (C ⊙ A)

holds. Furthermore, for all A ∈ X,

A⊙ ∅ = ∅ ⊙ A = ∅,

therefore, (X,⊕,⊙) is a semiring.

Theorem 49. Let (R,+,⊗) be an arbitrary semiring, and let f : X∗ → R
be a multiplicative function, satisfying that for all A,B ∈ X∗,

f(A ◦B) = f(A)⊗ f(B).

Then φ : X → R defined as

φ(A) :=
∑
A∈A

f(A)

is a semiring-homomorphism.

Proof. It is easy to see that both the addition and the multiplication is
preserved. Indeed,

φ(A⊕ B) =
∑

C∈A∪B

f(C) =
∑
A∈A

f(A) +
∑
B∈B

f(B) = φ(A) + φ(B).

Similarly,

φ(A⊙ B) =
∑

A,B|A∈A, B∈B

f(A ◦B) =
∑

A,B|A∈A, B∈B

f(A)⊗ f(B) =

=
∑
A∈A

∑
B∈B

f(A)⊗ f(B) =

(∑
A∈A

f(A)

)
⊗

(∑
B∈B

f(B)

)
= φ(A)⊗ φ(B).

53

 dc_2046_22

For example, if R is the semiring of the natural numbers, and

f(A) ≡ 1,

then φ(A) computes the size of A. If R is the tropical semiring, and

f(A) = |A|

for all A ∈ X∗, where |A| is the length of the sequence, then φ(A) computes
the length of the shortest sequence in A. If R is the polynomial semiring
over the natural numbers, N[x], and

f(A) = x|A|

then φ(A) computes the length statistics of A. That is, if

φ(A) =
∑
k

akx
k

then ak is the number of sequences of length k in A (with multiplicity).

Algebraic dynamic programming demonstrated on regular gram-
mars

In algebraic dynamic programming, the solution space is built as a (multi)set
of sequences. For example, consider a regular grammar (T,N, S,R), where
T is the finite set of terminal characters, N is the finite set of non-terminal
characters, S is the start non-terminal (sometimes called as axiom), and
R is the set of rewriting rules all in form W → aW ′|ε, where a ∈ T and
W,W ′ ∈ N . Given A ∈ T ∗, we are interested in the possible generation of
A = a1a2 . . . an via a series of rewriting:

S → a1W1 → a1a2W2 → . . .→ a1a2 . . . anWn → a1a2 . . . an.

Every such series of rewritings can be identified with the sequence of
rewritings, that is, a sequence over R∗. For each k ∈ [0, n] and W ∈ N , let
s(k,W) denote the set of series of rewritings from S to a1a2 . . . akW . Then
the initial conditions are

s(0,W) =

{
{ε} if W = S
∅ otherwise

(2.1)

54

 dc_2046_22

The main recursion is

s(k,W) =
⋃

W ′|(W ′→akW)∈R

s(k − 1,W ′)⊙ {W ′ → akW}. (2.2)

The termination is

s(n, ε) =
⋃

W |(W→ε)∈R

s(n,W)⊙ {W → ε}. (2.3)

Now letB be the Boolean semiring, ({True, False},∨,∧), and for all C ∈ R∗,

f(C) ≡ True,

Then for the corresponding φ : R∗ → B,

φ(s(n, ε)) = True

if and only if A is the part of the language generated by the grammar
(T,N, S,R). We can perform the computations in the Boolean semiring
B. That is, if φ(s(k,W)) is denoted by v(k,W), then the Equations 2.1-2.3
becomes

v(0,W) =

{
True if W = S
False otherwise

(2.4)

v(k,W) =
∨

W ′|(W ′→akW)∈R

v(k − 1,W ′) ∧ True (2.5)

v(n, ε) =
∨

W |(W→ε)∈R

v(n,W) ∧ True. (2.6)

In these equations, the ∧True is written for didactic reasons, highlighting
that the ⊙ operation is replaced by the ∧ operation and any non-empty set
is replaced by the True value. The Equations 2.4-2.6 are called the Viterbi
recursions .

Let w : R → R≥0 be a weight function. This is frequently a probability
distribution function such that for all W ∈ N ,

w(W → ε) +
∑

a,W ′|(W→aW ′)∈R

w(W → aW ′) = 1. (2.7)

55

 dc_2046_22

Now we consider the semiring of the non-negative real numbers (R≥0,+,×)
and we define for any r1r2 . . . rk ∈ R∗,

f(r1r2 . . . rk) :=
k∏

i=1

w(ri).

This is clearly a multiplicative function. The corresponding homomorphism
φ : R → R≥0 computes the sum of the weights of the generations of the
given A ∈ T ∗. If the weights are probability distributions in the sense of
Equation 2.7, then (T,N, S,R,w) is called a stochastic regular grammar ,
and φ(s(n, ε)) computes the generation probability of sequence A. Again,
we can perform the computations expressed in the Equations 2.1-2.3 in the
homomorph image. That is, if φ(s(k,W)) is denoted by f(k,W), then

f(0,W) =

{
1 if W = S
0 otherwise

(2.8)

f(k,W) =
∑

W ′|(W ′→akW)∈R

v(k − 1,W ′)× w(W ′ → akW) (2.9)

f(n, ε) =
∑

W |(W→ε)∈R

v(n,W)× w(W → ε). (2.10)

The dynamic programming algorithm expressed in Equations 2.8-2.10 is
known as the Forward algorithm of the stochastic regular grammars [27].

We can also consider the semiring (R≥0 ∪ {−∞},max,×). Then for a
weight function

f(r1r2 . . . rk) :=
k∏

i=1

w(ri).

if w is a probability distribution, then the corresponding homomorphism
computes the most likely generation of sequence A. We still can perform the
computations in the homomorph image. That is, if φ(s(k,W)) is denoted by
v(k,W), then

v(0,W) =

{
1 if W = S

−∞ otherwise
(2.11)

v(k,W) = max
W ′|(W ′→akW)∈R

{v(k − 1,W ′)× w(W ′ → akW)} (2.12)

v(n, ε) = max
W |(W→ε)∈R

{v(n,W)× w(W → ε)}. (2.13)

56

 dc_2046_22

S

W S

W W S S

S W W S

a c a b b a

Figure 2.1: The parse tree of a possible generation of sequence acabba
by the context-free grammar with rewriting rules S −→ WS|SS|a|b,
W −→ WW |SW |a|b|c.

Equations 2.11-2.13 is known as the Viterbi algorithm of the stochastic reg-
ular grammars [27].

Algebraic dynamic programming demonstrated on context free gram-
mars

Consider a context-free grammar G = (T,N, S,R), where T is the finite set
of terminal characters, N is the finite set of non-terminal characters, S is
the starting non-terminal and R is a finite set of rules in form W → β,
where W ∈ N β ∈ (T ∪ N)∗ \ {ε}. A context-free grammar is in Chomsky
Normal Form if all rules are in form W → W1W2|a, where W,W1,W2 ∈ N
and a ∈ T . It can be shown that any context-free grammar can be rewritten
into Chomsky Normal Form such that the rewritten form generates the same
language.

Let A ∈ T ∗, and we are interested in the possible generations of A by G.
Any generation can be described as a parse tree, see for example Figure 2.1.
The nodes of the parse tree can be visited in a dept first search, and thus can
be listed unequivocally. For example, the parse tree in Figure 2.1 corresponds

57

 dc_2046_22

to the sequence

S → WS, W → WW, W → SW, S → a, W → c,

W → a, S → SS, S → WS,W → b, S → b, S → a.

Then the parse trees can be represented as sequences from R∗. Let s(i, j,W)
denote the set of sequences from R∗ corresponding to parse trees that gener-
ate the substring aiai+1 . . . aj and is rooted inW . Then the initial conditions
are

s(i, i,W) =

{
{W → ai} if (W → ai) ∈ R

∅ otherwise
(2.14)

The main recursion is

s(i, j,W) =⋃
i≤k<j

⋃
W1,W2|(W→W1W2)∈R

[

s(i, k,W1)⊙ s(k + 1, j,W2)⊙ {W → W1W2}] (2.15)

The set of parse trees that generates A are in s(1, n, S), where n = |A|. We
can again plug-in several semirings into Equations 2.14 and 2.15 to decide if
A is part of the language generated by the context free grammar, to count
the parse trees generating A, to find the best scored parse tree or compute
the sum of multiplicative scores of parse trees that generate A. The deci-
sion/optimization algorithm is also known as the CYK algorithm and the
counting/summing algorithm is also known as the Inside algorithm in the
scientific literature [27].

2.2 Moments of the Boltzmann distribution

of RNA secondary structures

The Boltzmann distribution of RNA structures is defined such that the prob-
ability of a structure S at temperature T measured in Kelvin is

P (S) =
e−

G(S)
RT

Z

58

 dc_2046_22

where G(S) is the free energy of the structure measured in J/mol, R is the
universal gas constant, 8.314 J

mol×K
, and Z is called the partition function

defined as

Z :=
∑
S′

e−
G(S′)
RT ,

where the summation is over all possible structures S ′ of the given RNA
sequence. We are interested in computing the minimum free energy structure,
the partition function and the moments of the Boltzmann distribution. The
partition function and the moments of the Boltzmann distribution are always
calculated for a given temperature T .

Due to the Equations 1.36-1.38, the dynamic programming algorithm of
RNA structures can be rewritten into a context free grammarG = (T,N, S,R)
satisfying the following properties:

1. The grammar is in Chomsky Normal Form.

2. There is a one-to-one correspondence between the possible RNA struc-
tures and the generations of the RNA sequence by the grammar.

3. The rewriting rules of G can be scored by a function g : R → R in such
a way that for each parse tree generating A, the sum of the scores of
the rewriting rules is the free energy of the corresponding structure.

This allows to plug in appropriate semirings into the recursions of the
context free grammar. When we are interested in the minimum free energy,
the semiring is the tropical semiring. The score funtion f from R to R is set
f ≡ g. When the partition function is to be calculated, the semiring is the
real number semiring, and

f(r) = e−
g(r)
RT

Algorithms for computing the minimum free energy structure and the par-
tition function were well known in the scientific literature, see for example
[62]. Miklós, Meyer and Nagy presented a method to compute arbitrary mo-
ments of the Boltzmann distribution. The expected value in the Boltzmann
distribution by definition is

EB[G] :=
∑
S

e−
G(S)
RT G(S)

Z
,

59

 dc_2046_22

and the variance is

VB[G] :=
∑
S

e−
G(S)
RT (G(S)− EB[G])

2

Z
,

where the summation is over all the possible structures S that the RNA
sequence can take. By introducing the variables

X :=
∑
S

e−
G(S)
RT G(S)

and

Y :=
∑
S

e−
G(S)
RT G(S)2,

we get that

EB[G] =
X

Y
(2.16)

and

VB[G] = EB[G
2]− (EB[G])

2 =
Y

Z
− X2

Z2
(2.17)

Our aim is to give dynamic programming algorithms that compute X and
Y . For this, we introduce the following algebraic structure and prove that it
is a (semi)ring.

Theorem 50. Let R = R× R× . . .× R︸ ︷︷ ︸
d

= Rd. Let the operation ⊕ defined

as the coordiante-wise addition, that is

(x0, x1, . . . , xd−1)⊕ (y0, y1, . . . , yd−1) := (x0 + y0, x1 + y1, . . . , xd−1 + yd−1).

Let the operation ⊗ be defined such that if the product of x = (x0, x1, . . . , xd−1)
and y = (y0, y1, . . . , yd−1) is z = (z0, z1, . . . , zd−1), then for all k =
0, 1, . . . , d− 1,

zk :=
k∑

i=0

(
k

i

)
xiyk−i.

Then (R,⊕,⊗) is a commutatative ring with additive unite (0, 0, . . . , 0) and
multiplicative unit (1, 0, 0, . . . , 0).

60

 dc_2046_22

Proof. The coordinatewise addition is clearly a commutative group with
(0, 0, . . . , 0) being the additive unit. The multiplication is clearly a com-
mutative operation due to the commutativity of the multiplication of real
numbers and the symmetry of the binomial coefficients, that is for all i ≤ k,(
k
i

)
=
(

k
k−i

)
. It is also clear that (1, 0, 0, . . . , 0) is a multiplicative unit.

The associativity is not obvious, but can be shown by straightforward
calculation. Consider the product

(x⊗ y)⊗ z := w.

Then on the kth coordinate we have that

wk =
k∑

j=0

(
k

j

)(j∑
i=0

(
j

i

)
xiyj−i

)
zk−j =

∑
0≤i≤j≤k

(
k

k − j, j − i, i

)
xiyj−izk−j =

∑
i′,j′|0≤i′+j′≤k

(
k

i′, j′, k − i′ − j′

)
xi′yj′zk−i′−j′ ,

with i′ = i and j′ = j − i in the last sum. This expression is symmetric for
x, y and z, therefore, we get that

(x⊗ y)⊗ z = (y ⊗ z)⊗ x = x⊗ (y ⊗ z),

where the first equality is due to the symmetry, and the second equality is
due to the commutativity of the multiplication.

Proving the distributivity is also a straightforward calculation. In the
product

w := x⊗ (y ⊕ z)

on the kth coordinate we have

wk =
k∑

i=0

xi(yk−i + zk−i) =
k∑

i=0

xiyk−i +
k∑

i=0

xizk−i,

which is indeed the kth coordinate in

w := (x⊗ y)⊕ (x⊗ z).

61

 dc_2046_22

We use (R,⊕,⊗) with d = 3 to compute X and Y . With d > 3, we can
compute further moments of the Boltzmann distribution. For all rewriting
rules r ∈ R, we define

f(r) :=
(
e−

g(r)
RT , g(r)e−

g(r)
RT , . . . , gn−1(r)e−

g(r)
RT

)
. (2.18)

Theorem 51. With the f function defined in Equation 2.18, for any C ∈ R∗,
we have that⊗
r∈C

f(r) =

e−∑
r∈C g(r)

RT ,
∑
r∈C

g(r)e−
∑

r∈C g(r)

RT , . . . ,

(∑
r∈C

g(r)

)n−1

e−
∑

r∈C g(r)

RT


Proof. By induction. The statement is clearly holds for |C| = 1. Assume
that it holds for |C| = m, we would like to prove it for |C| = m + 1. Let
|C| = m+ 1, then C = C ′ ◦ r with |C ′| = m. Then⊗

r∈C

f(r) =

(⊗
r′∈C′

f(r′)

)
⊗ f(r).

On the kth coordinate, we have

k∑
i=0

(
k

i

)(∑
r′∈C′

g(r′)

)i

e−
∑

r′∈C′ g(r′)
RT g(r)k−ie−

g(r)
RT =

e−
g(r)+

∑
r′∈C′ g(r′)
RT

k∑
i=0

(
k

i

)(∑
r′∈C′

g(r′)

)i

g(r)k−i =

e−
g(r)+

∑
r′∈C′ g(r′)
RT

(∑
r′∈C′

g(r′) + g(r)

)k

=

e−
∑

r∈C g(r)

RT

(∑
r∈C

g(r)

)k

.

Thus, according to Theorem 49, we can plug-in the (semi)ring presented
in Theorem 50 into the Equations 2.14-2.15, and then s(1, n, S) computes a
vector in which the kth coordinate is∑

S

e−
G(S)
RT G(S)k.

62

 dc_2046_22

From these values, the partition function, the expected value and the variance
can be computed as indicated by the Equations 2.16 and 2.17.

2.3 Linear memory Baum-Welch training

The Baum-Welch training is an Expectation-Maximization algorithm for stochas-
tic grammars and Hidden Markov Models. Here we introduce it for Hidden
Markov Models. Let (G⃗, START,END,Γ, T, e) be a Hidden Markov Model,
and let A ∈ Γ∗, |A| = n. Then the Forward values are defined as

f(0, START) = 1, f(0, v) = 0 ∀v ∈ G⃗(V) \ {START},

f(i, v) =
∑

u∈G⃗(V)

f(i− 1, u)× T (u, v)× e(ai, v).

The Backward values are defined as

b(n,END) = 1, b(n, v) = T (v, END), ∀v ∈ G⃗(V) \ {END},

b(i, u) =
∑

v∈G⃗(V)

b(i+ 1, v)× T (u, v)e(ai+1, v).

The meaning of the Forward values is the f(i, v) is the sum of emission path
probabilities emitting prefix Ai such that the model is in state v, and v
already emitted character ai. The meaning of the Backward values is that
f(i, u) denote the sum of emission path probabilities emitting suffix Ai, such
that the model starts in u and u already emitted character ai.

The Baum-Welch training updates transition and emission probabilities.
The estimations for the transition and emission probabilities are

T̂ (u, v) =

∑n−1
i=1 f(i, u)T (u, v)e(ai+1, v)b(i+ 1, v)∑n

i=1 f(i, u)b(i, u)
(2.19)

and

ê(a, v) =

∑
i|ai=a f(i, v)b(i, v)∑n
i=1 f(i, v)b(i, v)

. (2.20)

It can be proved that the probability that the Hidden Markov Model
emits sequence A using probabilities T̂ and ê is always larger or equal than

63

 dc_2046_22

the probability that the Hidden Markov Model emits sequence A using prob-
abilities T and e [27].

The Baum-Welch training in the form of Equations 2.19 and 2.20 requires
f(i, u) and b(i, u) in the same time. It needs a large amount of memory
especially in gene prediction where A is a large genomic sequence: It needs
O(n|G⃗(V)|) memory, and O(n|G⃗(V)|(T̄ + |Γ|)) time where T̄ is the average
number of outgoing edges in the Hidden Markov Model.

Tarnas and Hughey [89] and Wheeler and Hughey [96] introduced a
reduced space Baum-Welch training using a divide & conquer technique.
Their method needs O(log(n)|G⃗(V)|) memory and O(n log(n)|G⃗(V)|T̄ +

n|G⃗(V)||Γ|)) time. Here we introduce a method that needs only |G⃗(V)|
memory and O(n|G⃗(V)|T̄ (|T |+ |G⃗(V)||Γ|)) time. The method can be easily
extended to pair-HMMs, where states emit characters into two sequences, and
the observer can see only the emitted sequences and not their co-emission
pattern. In that case, the original Baum-Welch training requires memory
proportional to the product of the two sequence lengths. Our method can
reduce it to linear memory, that’s why its name [67, 27].

Is is easy to see that for the denominator of the fractions in in Equa-
tions 2.19 and 2.20 it holds that

n∑
i=1

f(i, u)b(i, u) =
∑
p∼A

P (p)n(p, u), (2.21)

where p ∼ A denotes that path p emits A, P (p) is the probability of the
path (the product of the transition and emission probabilities in it with
multiplicity) and n(p, i) is the number of times u appears in p. Similarly, we
have that

n−1∑
i=1

f(i, u)T (u, v)e(ai+1, v)b(i+ 1, v) =
∑
p∼A

P (p)n(p, u→ v), (2.22)

where n(p, u→ v) is the number of transitions from u to v in path p, and∑
i|ai=a

f(i, u)b(i, u) =
∑
p∼A

P (p)n(p, u ∼ a), (2.23)

where n(p, u ∼ a) is the number of times u emits a in path p.
Using algebraic dynamic programming, we might move the computations

to the polynomial ring R[x], and assign to each path a monomial P (p)xn(p,u)

64

 dc_2046_22

(and similarly, P (p)xn(p,u→v) and P (p)xn(p,u∼a). Then using the universal

yield algebra |T |+ |G⃗(V)||Γ| times, we could compute polynomials for which
we are looking for the substitution x = 1 in their first derivative. In this
way, we arrive to an algorithm that runs in |G⃗(V)| ×M memory where M is
the memory requirement to store a polynomial needed in the computations,
since in the recursion for all i, we need the values with indices i− 1.

However, this approach would be be neither time efficient nor memory
efficient as the operations with polynomials cannot be performed in constant
time and the polynomials cannot be stored in constant memory. However,
we do not really need the polynomial only its substitution x = 1 in their first
derivative. It turns out that we can perform the computation in a homo-
morph image, where each step takes only constant time and needs constant
memory1. We state it in the following lemma.

Lemma 52. Let R1 = (R[x],+,×) be the (semi)ring of real polynomials. Let
R2 = (R[x]× R[x],+,×) be an algebra with addition

(p1, q1) + (p2, q2) := (p1 + p2, q1 + q2)

and multiplication

(p1, q1)× (p2, q2) := (p1 × q2 + p2 × q1, q1 × q2).

Let R3 = (R× R,+,×) be an algebra with addition

(x1, y1) + (x2, y2) := (x1 + x2, y1 + y2)

and multiplication

(x1, y1)× (x2, y2) := (x1 × y2 + x2 × y1, q1 × q2).

Then both R2 and R3 are (semi)rings, and

φ1 : R1 → R2, φ1(p) = (p′, p)

and
φ2 : R2 → R3, φ2((p, q)) = (p[1], q[1])

are both semi(ring)-homomorphisms, where p′ is the first derivative of p.

1Actually, there is a hidden poly(log(|A|)) factor both in the memory and the running
time due to the necessary number of digits of the numbers appearing in the recursions,
however, in practice, these factors can be omitted

65

 dc_2046_22

Proof. Proving that R2 and R3 are rings can be done in the same way. Here
we show it for R2.

It is trivial to check the commutativity and the associativity of the addi-
tion in R2. The associativity of the multiplication in R2 is a bit tedious but
straightforward:

[(p1, q1)× (p2, q2)]× (p3, q3) =

= [[(p1 × q2 + p2 × q1, q1 × q2)]× (p3, q3) =

(p1 × q2 × q3 + p2 × q1 × q3 + p3 × q1 × q2, q1 × q2 × q3).

Since it is symmetric for the three factors and it is easy to check that the
multiplication is commutative, we get that for any r1, r2, r3 ∈ R2,

(r1 × r2)× r3 = (r3 × r2)× r1 = r1 × (r2 × r3).

The distributive rule is also straightforward to verify:

(p1 + q1)× [(p2, q2) + (p3, q3)] =

= (p1, q1)× (p2+p3, q2+ q3) = (p1× (q2+ q3)+ q1× (p2+p3), q1× (q2+ q3)) =

(p1 × q2 + q1 × p2 + p1 × q3 + q1 × p3 =

[(p1 + q1)× (p2, q2)] + [(p1 + q1)× (p3, q3)] .

The mapping φ1 is a homomorphism since it holds for the derivation that

(p+ q)′ = p′ + q′

and

(p× q)′ = p′ × q + p× q′.

The mapping φ2 is a homomorphism since the addition and multiplication in
R2 and R3 defined in the same way, and substituting a value into a polynomial
in R[x] is a homomorphism from R[x] to R.

Therefore, we get that we can compute the right hand sides of Equa-
tions 2.21-2.23 in the homomorph image R3. In R3 both an addition and
a multiplication can be done in constant time. That is, we can use the
recursions for a specific state w given by the following Theorem.

66

 dc_2046_22

Theorem 53. Let w be a state in a Hidden Markov Model. Then∑
p∼A P (p)n(p, w) can be computed by the following recursion.

f(0, START) = 1, f(0, v) = 0 ∀v ∈ G⃗(V) \ {START},

f ′
w(0, v) = 0 ∀v ∈ G⃗(V),

f(i, v) =
∑

u∈G⃗(V)

f(i− 1, u)× T (u, v)× e(ai, v),

f ′
w(i, v) =

∑
u∈G⃗(V)

f ′
w(i− 1, u)× T (u, v)× e(ai, v), ∀v ̸= w,

f ′
w(i, w) = f(i, w) +

∑
u∈G⃗(V)

f ′
w(i− 1, u)× T (u,w)× e(ai, w).

Then ∑
p∼A

P (p)n(p, w) =
∑

u∈G⃗(V)

f ′
w(n, u)× T (u,END).

Proof. It is the straight consequence of Lemma 52, and the fact the we are
looking for the evaluation of the derivative of the appropriate generating
function at x = 1.

Similar recursions hold for
∑

p∼A P (p)n(p, u → v) and∑
p∼A P (p)n(p, u ∼ a).

67

 dc_2046_22

68

 dc_2046_22

Chapter 3

Two easy counting problems
under the SCJ model

In this chapter, we show that two of the five counting problems with genome
rearrangements models presented in the Preliminaries are in FP if the rear-
rangement model is the SCJ model. Computing the number of shortest SCJ
rearrangement scenarios was a joint work with Eric Tannier and Sándor Kiss.
Eric Tannier suggested the research based on the observation that matching
also play an important role in case of SCJ rearrangement scenarios as they
also play a central role in DCJ rearrangement scenarios (see also Chapter 6).
The author of this thesis developed a dynamic programming algorithm and
also observed that the number of SCJ scenarios sorting a component of the
adjacency graph are related to alternating (or zig-zag) permutations. The
original work has been published in Theoretical Computer Science, 552:83–
98, DOI: 10.1016/j.tcs.2014.07.027.

Comnputing the number of most parsimonious medians under the SCJ
model was a joint work with Heather Smith. The original work was publised
in BMC Bioinformatics, 16(Suppl 14): S6., https://doi.org/10.1186/

1471-2105-16-S14-S6.

69

 dc_2046_22

3.1 Pairwise rearrangement problem under

the SCJ model

3.1.1 A dynamic programming solution

According to Equation 1.30, it is easy to see that any most parsimonious
scenario transforming G1 into G2 has to cut all the adjacencies in G1 \ G2

and add all the adjacencies in G2\G1, and there are no more SCJ operations.
Drawing one solution is easy: first cut all adjacencies in G1 \G2, then join all
adjacencies in G2 \G1. But if we want to explore the solution space, we have
to observe that if an adjacency (a, b) exists in G1 \G2 and an adjacency (a, c)
exists in G2 \ G1, then first adjacency (a, b) must be cut to create telomere
(a), and then telomere (a) can be connected to telomere (c). Similarly, if
extremity c belongs to an adjacency in G1 \ G2, then it must be also cut
before connecting the two telomeres. Therefore there are restrictions on the
order of cuts and joins. If two adjacencies share an extremity, we call them
conflicting adjacencies .

The allowed order of cuts and joins can be read from the adjacency graph
(see the Preliminaries), introduced by [13] to compute the DCJ distance
between two genomes. It can be used to study SCJ scenarios as well.

When an SCJ operation acts on G1 and thus creates G′
1, it also acts on the

adjacency graph of G1 and G2 by transforming it into the adjacency graph
of G′

1 and G2. Therefore the transformation of G1 into G2 can be seen as a
transformation of the adjacency graph into trivial components. Recall that
trivial components of an adjacency graph are the cycles of length 2 and paths
with a single edge. We say that such an SCJ scenario sorts the adjacency
graph. As any SCJ operation in a most parsimonious scenario acts on a
single component, we say that the subsequence of SCJ operations acting on
that component sorts it if it transforms it into trivial components.

We first give the way of computing the number of scenarios for sorting
one component. Then the number of scenarios for several components will
be deduced by a combination of scenarios from each component.

Let W (i) (respectively M(i), O(i) and C(i)) denote the number of most
parsimonious SCJ scenarios sorting aW -shaped path (respectivelyM -shaped
path, odd path, cycle) with i adjacencies in G1. The following dynamic pro-
gramming algorithm allows to compute all these numbers.

For a trivial component, no SCJ operation is needed so there is only one

70

 dc_2046_22

solution: the empty sequence. This gives

C(1) = 1 (3.1)

O(0) = 1 (3.2)

The smallestW -shaped path has 0 adjacency in G1 and one in G2. There
is a unique solution sorting it: add the adjacency. This gives

W (0) = 1 (3.3)

A scenario of any other component starts with cutting an adjacency in G1.
For a W -shaped path, this results in two W -shaped paths. For anM -shaped
path, this results in two odd paths. For an odd path, this results in an odd
path and a W -shaped path. For a cycle, this results in a W -shaped path.
Each emerging component has fewer adjacencies in G1, and hence, a dynamic
programming recursion can be applied: the resulting components must be
sorted and in case of two resulting components, the sorting steps on the
components must be merged. Hence the dynamic programming recursions
are

C(i) = i×W (i− 1) (3.4)

W (i) =
i∑

j=1

(
2i

2j − 1

)
W (j − 1)W (i− j) (3.5)

M(i) =
i∑

j=1

(
2i− 2

2j − 2

)
O(j − 1)O(i− j) (3.6)

O(i) =
i∑

j=1

(
2i− 1

2j − 2

)
O(j − 1)W (i− j) (3.7)

These dynamic programming recursions can be used for counting and sam-
pling by the classical Forward-Backward phases: in the Forward phase the
number of solutions is calculated, and in the Backward phase one random
solution is chosen based on the numbers in the sums.

So it is possible to computeW (i),M(i), O(i) and C(i) in polynomial time
and to sample one scenario from the uniform distribution. We can then count
and sample for several components by introducing a multinomial coefficient.
We arrived to the following theorem.

71

 dc_2046_22

Theorem 54. Let G1 and G2 be two genomes with adjacency graph AG. As-
sume AG contains i M-shaped paths, with respectively m1,m2, . . . ,mi adja-
cencies in G1; AG contains j W -shaped paths, with respectively w1, w2, . . . , wj

adjacencies in G1; AG contains k odd paths, with respectively v1, v2, . . . , vk
adjacencies in G1; and AG contains l cycles, with respectively c1, c2, . . . , cl
adjacencies in G1. The number of most parsimonious SCJ scenarios from
G1 to G2 is(∑i

n=1(2mn − 1) +
∑j

n=1(2wn + 1) +
∑k

n=1(2vn) +
∑l

n=1(2cn))
)
!∏i

n=1(2mn − 1)!
∏j

n=1(2wn + 1)!
∏k

n=1(2vn)!
∏l

n=1(2cn)!
×

×
i∏

n=1

M(n)

j∏
n=1

W (n)
k∏

n=1

O(n)
l∏

n=1

C(n) (3.8)

Sampling a scenario from the uniform distribution is then achieved by
generating a random permutation with different colors and indices, one color
for each component, and then wipe down the indices in order to get a per-
mutation with repeats. For each component, its sorting steps must be put
into the joint scenario indicated by the color of the component.

We can then state the following theorem settling the complexity of the
comparison of two genomes by SCJ. We will denote by MPSCJ the optimiza-
tion problem to find the minimum number of SCJ operations transforming
one genome into another. Here MP stands for most parsimonious. The
counting counterpart problem #MPSCJ is to count the most parsimonious
scenarios between two genomes.

Theorem 55. #MPSCJ is in FP and there is a polynomial algorithm sam-
pling from the exact uniform distribution of the solution space of an MPSCJ
problem.

3.1.2 Alternating permutations

The solutions to #MPSCJ for single components are linked to the number of
alternating permutations, for which finding a formula is an old open problem.
An alternating permutation of size n is a permutation c1, . . . , cn of {1, . . . , n}
such that c2i−1 < c2i and c2i > c2i+1 for all i [3]. For example, if n = 4,
the permutation 1, 3, 2, 4 is an alternating permutation but 1, 3, 4, 2 is not
because 3 is less than 4. The number of alternating permutations of size n
is denoted by An and finding these numbers is known as André’s problem.

72

 dc_2046_22

We show that computing SCJ scenarios is closely related:

Theorem 56.

M(k) = A2k−1

W (k) = A2k+1

O(k) = A2k

C(k) = k × A2k−1

Proof. We prove only the first line, the second and the third lines can be
proved the same way. The proof of the last line comes from the fact that a
cycle with k adjacencies can be opened in k different ways into a W-shaped
component with k − 1 adjacencies. Let the adjacencies in the G1 part of
the M -shaped component be (x1, x2), (x3, x4), . . . , (x2k−1, x2k). Any SCJ
scenario sorting these must cut all these adjacencies and must create adja-
cencies (x2, x3), (x4, x5), . . . , (x2k−2, x2k−1). Let us index the SCJ operations
in a scenario, and let π2i−1 be the index of the SCJ step which cuts the ad-
jacency (x2i−1, x2i), and let π2i be the index of the SCJ step which joins x2i
and x2i+1.

In any most parsimonious SCJ sorting theM -shaped component, π2i−1 <
π2i and π2i+1 < π2i, so π is an alternating permutation. Hence the number
of sorting scenarios is at most A2k−1.

On the other hand, for any alternating permutation of size 2k−1, we can
construct a sorting scenario in which the indexes come from the alternating
permutation. Since the sorting scenarios for different alternating permuta-
tions are different, the number of SCJ scenarios is at least A2k−1.

3.2 Most parsimonious medians

Feijão and Meidanis [32] proved that there is a unique optimal SCJ median
for 3 genomes. Their proof trivially extends to show that the optimal median
remains unique for arbitrary odd number of genomes: the optimal median
contains the set of adjacencies that can be found in the majority of the
genomes. Indeed, the SCJ distance between two genomesG1 andG2 is simply
|Π1∆Π2|, where Πi is the set of adjacencies in Gi. The key observation is
that it is impossible that two conflicting adjacencies are presented in more
than half of the genomes, therefore the genome that contains exactly the

73

 dc_2046_22

adjacencies that are presented in the majority of the genomes is a valid
genome.

When the number of genomes is even, each extremity might be in at
most two adjacencies that is presented in exactly half of the genomes. It is
easy to see that the optimal median contains the set of adjacencies that are
present in more than half of the genomes and any conflict-free subset of the
adjacencies that are present in exactly half of the genomes. The number of
optimal medians can be counted in the following way.

Given a set of genomes G = {G1, G2, . . . G2k} having the same synteny
blocks, we define the conflict graph C(V,E) in the following way: The vertices
V are the set of extremities presented in G and there is an edge between v1
and v2 if and only if the adjacency (v1, v2) is presented in exactly half of the
genomes.

Observation 57. The maximum degree of the vertices in C is 2.

Proof. This follows from the fact that any extremity can be in at most two
adjacencies which are present in exactly half of the genomes.

The consequence of Observation 57 is that C can be decomposed into
isolated vertices, paths and cycles. Any conflict-free subset of the adjacencies
is a matching (non-necessary maximum matching and possibly empty) of C.
The number of matchings is the product of the number of matchings on each
component. Therefore it suffices to calculate this number. It is well-known
[61] that the number of matchings in a path of length n is

⌊n
2 ⌋∑

k=1

(
n− k

k

)
and the number of matchings in a cycle of length n is

⌊n
2 ⌋∑

k=1

n

n− k

(
n− k

k

)
.

Since obtaining the conflict graph, decomposing it into paths and cycles,
estimating the number of matchings on each component and multiplying
these numbers all can be done in polynomial time, we can announce the
following theorem:

74

 dc_2046_22

Theorem 58. The number of optimal medians under the SCJ model is in
FP.

Although calculating the number of optimal medians is easy, Miklós and
Smith proved that the number of most parsimonious median scenarios is in
#P-complete (see Chapter 8). The proof uses a technique (modulo prime
number calculations) that is typically used in those #P-complete problems
that admit an FPRAS approximation. On the other hand, Miklós and Smith
also proved that a simple Markov chain that walks on the optimal median
genomes by adding or removing a random adjacency and converges to the
distribution proportional to the number of scenarios that the median genome
has by applying the Metropolis-Hastings algorithm [66, 44] is torpidly mixing
even if the number of genomes are fixed to 4, and only the size of the genomes
are allowed to grow (unpublished result). Therefore it is absolutely unclear
whether the number of most parsimonious median scenarios under the SCJ
model has an FPRAS approximation or an FPRAS approximation would
imply RP = NP. If the problem is in FPRAS, deeper understanding of the
solution space is necessary that is to be incorporated into a sophisticated
Markov chain method.

75

 dc_2046_22

76

 dc_2046_22

Part II

Counting problems in FPRAS
via rapidly mixing Markov

chains

77

 dc_2046_22

 dc_2046_22

Chapter 4

Sampling realizations of
bipartite degree sequences

In this chapter, we consider the following class of Markov chains on the real-
izations of bipartite degree sequences. Let Db be a bipartite degree sequence,
then theMDb

Markov chain on the realizations of Db is defined in the follow-
ing way. Let G = (U, V,E) be the current realization of Db. With probability
1
2
do nothing (that is, the Markov chain is Lazy). With probability 1

2
, select

{u1, u2} ∈
(
U
2

)
uniformly and {v1, v2} ∈

(
V
2

)
uniformly. If both (u1, v1) ∈ E

and (u2, v2) ∈ E (or alternatively, both (u1, v2) ∈ E and (u2, v1) ∈ E) and
both (u1, v2) /∈ E and (u2, v1) /∈ E (alternatively, both (u1, v1) /∈ E and
(u2, v2) /∈ E), then delete the existing edges and add the non-existing edges.
Otherwise, do nothing.

It is elementary to prove that the Markov chain MDb
converges to the

uniform distribution of the realizations ofDb. Indeed, according to the Corol-
lary 38, MDb

is irreducible. It is also aperiodic since it is Lazy. For any two
realizations of Db, G1 and G2, and for the transition probabilities of MDb

it
holds that

P (G2|G1) = P (G1|G2). (4.1)

Indeed, P (G2|G1) ̸= 0 if and only if G2 can be obtained from G1 with
a switch operation. The same holds for P (G2|G1). The probability of any
switch operation has probability

1

2
(|U |

2

)(|V |
2

) ,
79

 dc_2046_22

thus the Equation 4.1 holds. Since MDb
is irreducible, aperiodic and re-

versible w.r.t. the uniform distribution (due to Equation 4.1), it converges
to the uniform distribution from any starting point, according to Theorem 22.

It is conjectured that this class of Markov chain is rapidly mixing. In a
series of publications, we proved rapid mixing for several classes of degree
sequences. Here we prove the followings.

1. If a degree sequence can be decomposed into the so-called Tyshke-
vich product of degree sequences (see Section 4.1), then it is enough
to prove rapid mixing on each factor. The original work has been
published in Erdős, L.P., Miklós, I., Toroczkai, Z. (2018) Combina-
torics, Probability and Computing, 27(2):186-207, https://doi.org/
10.1017/S0963548317000499. The author of this thesis proved Theo-
rem 62.

2. The above-defined switch Markov chain is rapidly mixing on realiza-
tions of P -stable degree sequences (see Section 4.2). This is a large class
of degree sequences, it contains for example, all degree sequences on
n+n vertices in which all degrees are between 1

4
n and 3

4
n. The original

work has been published in Erdős, E.L. Mezei, T., Miklós, I., Soltész,
D. (2018) PLoS ONE, 13(8): e0201995, https://doi.org/10.1371/
journal.pone.0201995 and Erdős, E.L., Greenhill, C., Mezei, T. R.,
Miklós, I., Soltész, D., Soukup, L. (2022) Eur. J. Comb., 99:103421,
https://doi.org/10.1016/j.ejc.2021.103421. The author of the
thesis proved Theorems 64, 65 and 66 and also Theorem 67. In fact,
first rapid mixing of the switch Markov chain on the realizations of
degree sequences satisfying Equations 4.8 and 4.9 presented in Theo-
rem 65 was proved, and then it was observed that the generalization
to Theorem 64 is straightforward.

3. We also proved rapid mixing of the Markov chain for a class of degree
sequences that are not P -stable. The original work has been published
in Erdős, E.L., Győri, E., Mezei, T. R., Miklós, I., Soltész, D. (2021)
Electronic Journal of Combinatorics, 28:3 #P3.7, DOI: 10.37236/9652.
The two young postdocs of the paper generalized the results presented
in this thesis to any class of degree sequences Hk (see Definition 68),
here we show only the elementary proof for H1.

Large part of the work presented in this chapter was done using the fi-
nancial support of NKFIH under the contract number KH126853. This grant

80

 dc_2046_22

allowed hiring two postdocs, Tamás R. Mezei and Dániel Soltész who worked
under the joint supervision of the author of this thesis and Péter L. Erdős.
Their contribution is clearly indicated throughout this chapter. They also
worked further on this topic leading to several theorems, especially gener-
alizations of the presented results to simple and directed degree sequences.
The results of their work is briefly summarised at the end of the chapter.

4.1 Tyshkevich-decompositions

Definition 59. Let Db = (d1,1, d1,2, . . . , d1,n), (d2,1, d2,2, . . . , d2,m) and D′
b =

(d′1,1, d
′
1,2, . . . , d

′
1,n′), (d′2,1, d

′
2,2, . . . , d

′
2,m′) be two bipartite degree sequences. The

Tyshkevich product of Db and D
′
b is

Db ◦D′
b := (d1,1, d1,2, . . . , d1,n, d

′
1,1 +m, d′1,2 +m, . . . , d′1,n′ +m),

(d2,1 + n′, d2,2 + n′, . . . , d2,m + n′, d′2,1, d
′
2,2, . . . , d

′
2,m′) (4.2)

It is easy to see that the Tyschevich product is associative, but not com-
mutative, thus it forms a non-commutative monoid with the empty bipartite
degree sequence being the unit.

Observation 60. If both Db and D
′
b are graphic then Db◦D′

b is also graphic.
Furthermore, if both Db and D′

b are graphic, then every realization G̃ =
(U ∪ U ′, V ∪ V ′, Ẽ) of Db ◦D′

b is such that the induced subgraphs on (U, V)
and (U ′, V ′) are realizations of Db and D

′
b, respectively, the induced subgraph

on (U ′, V) is the complete bipartite graph Kn′,m and the induced subgraph on
(U, V ′) is the empty graph.

Proof. First we prove that the graphicality of Db and D
′
b implies the graph-

icality of Db ◦ D′
b. Let G = (U, V,E) be a realization of Db and let G′ =

(U ′, V ′, E ′) be a realization of D′
b. Then let G̃ = (U ∪ U ′, V ∪ V ′, Ẽ) is a

graph whose edge set is Ẽ = E ∪ E ′ ∪ {(u, v′)|u ∈ U ∧ v′ ∈ V ′}. Clearly,
this is a realization of Db ◦D′

b.
Now consider any switch operation on G̃. Since the induced subgraph on

(U ′, V) is the complete subgraph, on the other hand, the induced subgraph
on (U, V ′) is the empty graph, it follows that any switch operation operates
either on the subgraph induced by (U, V) or on the subgraph induced by
(U ′, V ′). What follows is that the graph obtained by a switch operation
still contains the complete subgraph on (U ′, V) and the empty subgraph on

81

 dc_2046_22

(U, V ′). Since any realization is obtainable from any realization of the same
degree sequence by a series of switch operations, all realizations of Db ◦ D′

b

contain the induced subgraphs as stated in the theorem.

A corollary of this observation is the following.

Corollary 61. Let Db = Db,1 ◦ Db,2 ◦ . . . ◦ Db,k. Furthermore for all i =
1, 2, . . . , k, let Nk be the number of realizations of Db,i. Then the number of
realizations of Db is

k∏
i=1

Nk.

Furthermore, there is a bijection between the realizations of Db and the direct
product of the set of realizations of the degree sequences Db,i. The bijection
is given by the Thyskevich product of the factors in the direct product.

When a state space is a direct product of smaller spaces, and the Markov
chain changes only one coordinate in one step, then the Markov chain is
rapidly mixing if the number of coordinates is not large and the Markov
chains restricted on each coordinate are rapidly mixing. Below we state this
theorem precisely and prove it.

Theorem 62. Let M be a class of Markov chains whose state space is a
k-dimensional direct product of spaces, and the problem size of a particular
chain is denoted by n.

Any transition of the Markov chain M ∈ M changes only one coor-
dinate. Coordinate i is chosen with probability pi, where we assume that
1
pi

= O(poly1(n)) (and thus, we indirectly assume a polynomial upper bound

on k, too). Furthermore, the transition probabilities do not depend on the
other coordinates. The transitions on each coordinate form irreducible, ape-
riodic Markov chains (denoted by M1,M2, . . .Mk), which are reversible with
respect to a distribution πi. Furthermore, each of M1, . . .Mk are rapidly mix-
ing, i.e., with the relaxation time 1

1−λ2,i
is bounded by a O(poly2(n)) for all

i. Then the Markov chain M converges rapidly to the direct product of the
πi distributions, and the second-largest eigenvalue of M is

λ2,M = max
i

{1− pi + piλ2,i}.

and thus the relaxation time of M is also polynomially bounded:

1

1− λ2,M
= O(poly1(n)poly2(n)).

82

 dc_2046_22

Proof. The transition matrix of M can be described as

k∑
i=1

[
i−1⊗
j=1

Ij

]
⊗ piMi ⊗

k⊗
j=i+1

Ij

where⊗ denotes the usual tensor product from linear algebra,Mi denotes the
transition matrix of the Markov chain on the ith coordinate, and Ij denotes
the identical matrix with the same size as Mj. Since all pairs of terms in the
sum above commute, the eigenvalues of M are{

k∑
i=1

piλji,i : 1 ≤ ji ≤ |Ωi|

}
where Ωi is the state space of the Markov chain Mi on the ith coordinate.
The second-largest eigenvalue of M is then obtained by combining a second-
largest eigenvalue with the other largest eigenvalues, i.e., with all others being
1s: ∑

j ̸=i

pj + piλ2,i = 1− pi + piλ2,i .

If g denotes the smallest spectral gap, ie., g = 1−maxi {λ2,i}, then from the
above, the second-largest eigenvalue of M is

1− pi(1− λ2,i) ≤ 1− pig

namely, the second-largest eigenvalue of M is at most O(poly2(n)) times
closer to 1 than the maximal second-largest eigenvalue of the individual
Markov chains.

It is easy to see that Theorem 62 can be applied to Tyshkevich products
of degree sequences on which the Markov chain is rapidly mixing. Indeed,
the inverse of the probability of choosing a switch operation on any factor of
the Tyshkevich product is polynomial bounded.

4.2 P-stable degree sequences

In this section, we define P-stable sequences, prove that the switch Markov
chain is rapidly mixing on realizations of P-stable sequences, and define a
class of non-P-stable sequences that can be find as the degree sequences of
induced subgraphs of realizations of non-P-stable sequences. First we define
P-stability.

83

 dc_2046_22

Definition 63. Let Db be a set of bipartite degree sequences. We say that
Db is P-stable if there exists a polynomial p ∈ R[x] such that for any x and
any bipartite degree sequence Db = (D1, D2) ∈ Db on n +m = x vertices we
have ∣∣∣∣∣∣G(Db) ∪

 ⋃
i∈[n], j∈[m]

G(D1 + 1i, D2 + 1j)

∣∣∣∣∣∣ ≤ p(x)|G(Db)|, (4.3)

where G(Ds) is the set of realizations of the bipartite degree sequence Db,
and 1i is the vector that contains 1 at coordinate i and 0 everywhere else.

Theorem 64. Let Db be a class of P-stable bipartite degree sequences. Then
the class of Markov chains M = {M(Db)|Db ∈ Db} is rapidly mixing.

Proof. The proof uses the multicommodity flow technique (Theorem 31).
To construct the appropriate path system given in Definition 30, we first
introduce the sweep of an alternating cycle [55].

Let G1 and G2 be realizations of the same bipartite degree sequence such
that G1∆C = G2, where C is a cycle and ∆ denotes symmetric difference.
That is, G2 can be obtained from G1 by flipping the edges and non-edges
along an alternating cycle of edges and non-edges in G1. We show how to
transform G1 = (V, U,E1) into G2 with (|C| − 2)/2 switch operations. Let
the vertices of C be u1, v1, u2, v2, . . . , uℓ, vℓ. Let the ordering of the vertices in
C be such that (u1, v1) /∈ E1. We will call u1 the cornerstone of the sweeping.
The meaning ot the name is that all switch operations contains this vertex.
Let vi be the first vertex along C such that (u1, vi) ∈ E. Such a vertex exists
because (u1, vℓ) ∈ E1. We can perform a series of switch operations on the
quadruple of vertices (u1, vi, ui, vi−1), (u1, vi−1, ui−1, vi−2), . . . , (u1, v2, u2, v1).
Indeed, (u1, v1) ∈ E1 and (u1, vi−1) /∈ E1 due to the definition of vi. Fur-
thermore, (vi, ui) /∈ E1 and (ui, vi−1 ∈ E1) since C is an alternating cycle
of edges and non-edges. After the switch operation on (u1, vi−1, ui−1, vi−2),
(u1, vi−1) ∈ E1, therefore the the next switch operation can be performed,
etc. After i−1 switch operations we arrive to a realization G′

1 which is either
G2 (if i = ℓ) or differs from G2 in a cycle of length 2ℓ−2i−2. Observe that G
can be transformed into G′ with a single switch operation if G∆G′ is a cycle
of length 4, therefore by induction, (|C|− 2)/2 switch operations is sufficient
to transform G1 into G2.

Now we can give the multicommodity flow. Let X and Y be the realiza-
tions of the same P-stable bipartite degree sequence Db. The cardinalities of

84

 dc_2046_22

the two vertex classes are denoted by n and m. Let H = X∆Y . For each

vertex w in H, there are
(

d(w)
2

)
! ways to pair the edges of X to the edges of

Y incident to v, where d(w) denotes the degree of w in H. For each possible
pairing on each vertex in H, we define a cycle decomposition on H. Let Φ
denote a fixed ensemble of pairings, and let φv(e) denote the pair of e in Φ
on vertex v. Let ui be the smallest index vertex in H that does not have
degree 0. Let vj be the smallest index vertex for which (ui, vj) is in H

⋂
Y .

Let (ui, vj) be denoted by e. Then define a circuit that starts with e, ends
with φui

(e), and contains edges

e = e1, e2, . . . , el

where for each ek = (uk, vk), ek+1 is defined as φvk(ek). Denote the so-defined
circuit by C1. If H \ C1 is not the empty graph, repeat the same on H \ C1
to get a circuit C2. The process is iterated till H \ (C1 ∪ C2 ∪ . . . ∪ Cs) is the
empty graph. Then each Ci is decomposed into cycles Ci,1, Ci,2, Ci,ji . The
cycle Ci,1 is the cycle between the first and second visit of w, where w is the
first revisited vertex in Ci (note that w might be both in U and V). Then
Ci,2 is defined in the same way in Ci \ Ci,1, etc. The path from X to Y is
defined by processing the cycles

C1,1, C1,2, . . . C1,j1 , C2,1, . . . Cs,sj

applying the sequence of switch operations sweeping the current cycle. Ob-
serve that the sweeping process can be obtained using any vertex as a corner
stone. Let u1 ∈ U be the corner stone that is in U and has minimum de-
gree in the induced subgraph on C (the current cycle on which the sweeping
process is applied) in the vertex class U .

For the so-obtained path γ, we define

f(γ) :=
π(X)π(Y)∏

w∈V (H)

(
d(w)
2

)
!
.

Let the number of realizations of Db be N . Observe that the length of any
path is less than nm due to the upper limit on the length of the sweeping
process. Furthermore, π is the uniform distribution, therefore, it holds that

1

Q(e)

∑
γ∋e

f(γ)|γ| <
(
n
2

)(
m
2

)
nm

N
∏

w∈V (H)

(
d(w)
2

)
!

∑
γ∋e

1.

85

 dc_2046_22

Therefore, if the number of paths in the path system going through any edge
is less than

poly(n,m)N
∏

w∈V (H)

(
d(w)

2

)
!

for some poly(n,m), then the switch Markov chain is rapidly mixing. Let Z
be a realization on a path γ going from X to Y obtained from the ensemble
of pairings Φ, and let e be the transition from Z to Z ′. Let MG denote the
adjacency matrix of a bipartite graph G, and let

M̂ :=MX +MY −MZ . (4.4)

Miklós, Erdős and Soukup proved that the path γ and thus X and Y can
be unequivocally obtained from M̂ , Φ, e = (Z,Z ′) and O(log(nm)) bits of
information. The crutial point to prove this is Theorem 5.10 in [117] proved
by Lajos Soukup. The corollary is that the number of paths going through
a particular e = (Z,Z ′) is upper bounded by

poly(n,m)|MZ |
∏

v∈V (H)

(
d(v)

2

)
! (4.5)

where MZ are the set of possible M̂ matrices defined in Equation (4.4).
Therefore, it is sufficient to show that the number of M̂ matrices is upper
bounded by

poly(n,m)N.

To prove this, first observe that M̂ has the same row and column sums as
the adjacency matrix of any realization of Db, and it might contain at most
3 values which are not 0 or 1, at most two of them are 2 and at most one of
them is −1. Indeed, if

Z = X∆C1∆C2∆ . . .∆Ck

then M̂ is a 0-1 matrix, and thus is an adjacency matrix of a realization of
Db. If Z is a realization during processing a cycle C, then there might be 3
chords of C (entries of M̂ for some pair u1 and vj in C) whose corresponding

values in M̂ are not 0 or 1. Particularly, there might be two 2 values and
one −1. A value 2 might appear when Z does not contain an edge which
is presented both in X and Y , and a −1 might appear when Z contains an

86

 dc_2046_22

edge which is neither in X nor in Y . Furthermore these “bad” values are in
the same line corresponding to the cornerstone of the sweeping process.

Assume that m̂1,j = 2. There must be an i′ such that m̂i′,j = 0 (otherwise

the row sum in M̂ would be larger than |V | which is absurd). Since d(u1)
is minimal in the induced subgraph on C in vertex class U , there must be a
j′ such that m̂(1, j′) < m̂(i′, j′). Now we create a M̂ ′ by subtracting 1 from
m̂(1, j) and m̂(i′, j′) and adding 1 to m̂(i′, j) and m̂(1, j′). Observe that this
does not change the row and column sums. Also, m̂′(1, j) = 1, m̂′(i′, j) = 1.
If m̂′(i′, j′) = 0, then m̂′(1, j′) must be −1. In that case, the −1 value is
moved to the row i′. In all other cases, either −1 remained in the same row,
or even might disappear if m̂′(1, j′) = −1 and m̂′(i′, j′) = 1. In conclusion,
M̂ ′ contains one less 2’s in its entries.

If there is another entry 2 in M̂ ′, then we can do the same procedure.
Therefore, after modifying at most 8 entries in M̂ , we arrive to a matrix that
has the same row and column sums than X and Y , and has at most one −1
entry, all other entries are 0’s and 1’s.

If there is a −1 in the so-obtained matrix, then change it to 0. Then
we get a matrix which is the adjacency matrix in G(D1 + 1x, D2 + 1y) for
some x and y. Otherwise, we get a matrix which is the adjacency matrix of
a realization of Db.

So how many M̂ might be there? We know that any matrix M̂ is at most
a Hamming distance 9 from

G̃ := G(Db) ∪

 ⋃
i∈[n], j∈[m]

G(D1 + 1i, D2 + 1j)

 ,

such that at the differing places it contains 0, 1, 2 or −1. But then it follows
that the number of M̂ matrices is upper bounded by some poly(n,m)N for
there can be at most

9∑
i=1

(
nm

i

)i

|G̃|

matrices being at most Hamming distance 9 from the set G̃ with entries 0, 1, 2
and −1. (This is a crude estimation as transforming M̂ into a matrix in G̃ is
done not arbitrarily changing at most 9 entries; however, for our purposes,
this estimation suffices.) Since |G̃| = O(poly(n,m))N , the claim follows.

Therefore, the number of paths going through on a particular edge in the

87

 dc_2046_22

Markov graph is upper bounded by the value in Equation (4.5), and thus

1

Q(e)

∑
γ∋e

f(γ)|γ| <

(
n
2

)(
m
2

)
nm

N
∏

w∈V (H)

(
d(w)
2

)
!

∑
γ∋e

1 ≤ poly(nm). (4.6)

By Theorems 25 and 31, this proves the rapid mixing of the Markov chain.

We denote by Db the complement of the bipartite degree sequence Db =
((d1,1, d1,2, . . . , d1,n), (d2,1, d2,2, . . . , d2,m)) such that for all i, d1,i := m − d1,i
and for all j, d2,j := n − d2,j. Observe that there is a bijection between the
realizations of Db and Db obtained by complementation. A consequence is
that we can define down-P-stability by subtracting 1 in both degree sequences
and modifying Equation 4.3 as∣∣∣∣∣∣G(Db) ∪

 ⋃
i∈[n], j∈[m]

G(D1 − 1i, D2 − 1j)

∣∣∣∣∣∣ ≤ p(x)|G(Db)|, (4.7)

and prove that the switch Markov chain is rapidly mixing on any class of
down-P-stable degree sequences.

We can say even more. In fact, a class of bipartite degree sequences are P-
stable if and only if they are down-P-stable. This theorem for bipartite degree
sequences and also an extension to simple degree sequences were proved by
Tamás R. Mezei (unpublished work).

The applicability of Theorem 64 is based on the fact that we can prove for
a large class of bipartite degree sequences that they are P-stable. The follow-
ing theorem is about the P-stability of linearly bounded degree sequences.

Theorem 65. Let Db be a class of bipartite degree sequences such that for any
degree sequence Db = (D1, D2) = ((d1,1, d1,2, . . . , d1,n), (d2,1, d2,2, . . . , d2,m)) ∈
Db the following holds. There are constants 0 < c1 ≤ c2 < n and 0 < d1 ≤
d2 < m satisfying the following properties:

c1 ≤ d1,i ≤ c2, ∀i ∈ [n]

d1 ≤ d2,j ≤ d2, ∀j ∈ [m]. (4.8)

Furthermore, assume that

(c2 − c1 − 1) · (d2 − d1 − 1) < 1 + max {c1(m− d2), d1(n− c2)} (4.9)

holds. Then Db is P-stable.

88

 dc_2046_22

Proof. Let G be a realization of (D1 + 1i, D2 + 1j) for some i and j. We
show that the adjacency matrix of G is at most a Hamming distance 8 from
the adjacency matrix of a realization of Db. If the adjacency matrix of G,
denoted by A, for the vertex pair (ui, vj) is 1 then by removing it, we get an
adjacency matrix of a realization of Db. Otherwise, by changing aui,vj from 0
to −1, we get an adjacency matrix whose row and column sums are the same
than the row and column sums of the adjacency matrix of any realization of
Db. By rearranging the rows and columns (relabeling the vertices of G), we
may assume that now au1,v1 = −1.

-1 1 · · · 1 0 · · · 0 0 · · · 0

1

...

1

0

...

0

0

...

0 · · ·





1
0/1

0/1 0

0/1

u1

U ′

U ′′

v1
V ′ V ′′

Figure 4.1: A is shown; each of the entries in the regions marked with 0/1
may be 0 or 1.

Let U ′ = {u ∈ U | au,v1 = 1} and V ′ = {v ∈ V | au1,v = 1}. If
∃(u, v) ∈ U ′ × V ′ such that au,v = 0, then by adding 1 to au1,v1 and au,v and
removing 1 from au1,v and au,v1 transforms A into an adjacency matrix. We
will call such change (adding 1 to one of the diagonals of a 2× 2 square and
removing one from the other diagonal) as the switch operation on u1, u and
v1, v.

Therefore suppose from now on, that ∀(u, v) ∈ U ′ × V ′ we have au,v = 1.
Let

U ′′ = {u ∈ U | ∃v ∈ V ′ : au,v = 0} and V ′′ = {v ∈ V | ∃u ∈ U ′ : au,v = 0}.

89

 dc_2046_22

Clearly, U ′′ ∩ U ′ = V ′′ ∩ V ′ = ∅. Suppose there ∃(u2, v2) ∈ U ′′ × V ′′ such
that au2,v2 = 1. By definition, there ∃(u1, v1) ∈ U ′ × V ′ such that au2,v1 = 0
and au1,v2 = 0. Clearly, at first the switch operation on u1, u2 and v1, v2, and
then the switch operation on u0, u1 and v0, v1 transforms A into an adjacency
matrix.

Lastly, suppose that ∀(u, v) ∈ U ′′ × V ′′ we have au,v = 0. This case is
shown in Figure 4.1.

We have

|U ′′| · (m− d1) ≥
∣∣{(u, v) ∈ U ′′ × V

∣∣ au,v = 0
}∣∣ =

= |U ′′ × V ′′|+
∣∣{(u, v) ∈ U ′′ × (V \ V ′′)

∣∣ au,v = 0
}∣∣ .

The right hand side can be estimated from below as follows. Since the row
and column sums of A are the same as the adjacency matrix of any realization
of Db, we have

|U ′| ≥ c1 − au1,v1 = c1 + 1, and |V ′| ≥ d1 − au1,v1 = d1 + 1.

For any v ∈ V ′ and u ∈ U \ U ′′, we have au,v = 1. Also, for any u ∈ U ′ and
v ∈ V \ V ′′, we have au,v = 1. Therefore

n− c1 − 2 ≥ |U \ U ′ \ {u0}| ≥|U ′′| ≥ n− c2,

m− d1 − 2 ≥ |V \ V ′ \ {u0}| ≥|V ′′| ≥ m− d2.

Clearly, if c2 ≤ c1 +1 or d2 ≤ d1 +1 (i.e., G is half-regular), we already have
a contradiction. We also have∣∣{(u, v) ∈ U ′′ × (V \ V ′′ \ {v1})

∣∣ au,v = 0
}∣∣ ≥

≥ (n− c2)(m− |V ′′| − 1)− |U \ U ′ \ U ′′| · |V \ V ′ \ V ′′ \ {v1}| .

Moreover, au,v1 = 0 for any u ∈ U ′′. Combining these inequalities, we get

|U ′′| · (m− d1) ≥ (n− c2) · (m− |V ′′|) + (c2 − c1 − 1) + |U ′′|(m− d1 − 1) +

+|V ′′|(n− c1 − 1)− (n− c1 − 1) · (m− d1 − 1).

Further simplying:

c1 + 1− c2 + |U ′′| ≥ |V ′′|(c2 − c1 − 1)− c2m+ (c1 + 1)m+

+(d1 + 1)n− (c1 + 1)(d1 + 1).

90

 dc_2046_22

Since we may suppose that c2 ≥ c1+2, we can substitute |V ′′| ≥ m− d2 and
|U ′′| ≤ n− c1 − 2 into the inequality.

(c2 − c1 − 1)(d2 − d1 − 1) ≥ d1(n− c2) + 1.

Symmetrically, a similar derivation gives

(c2 − c1 − 1)(d2 − d1 − 1) ≥ c1(n− d2) + 1.

The last two inequalities clearly contradict the inequality in Equation 4.9.
Therefore, there must exists u2 ∈ U ′′ and v2 ∈ V ′′ such that au2,v2 = 1. Then
two switch operations are sufficient to transform A into an adjacency matrix
of a realization of Db.

To see that the inequality in Equation 4.8 is indeed a linear bound on
the degrees, observe that c1 = 1

4
n, c2 = 3

4
n, d1 = 1

4
m and d2 = 3

4
m satisfies

the inequality. It can be seen that this bound is sharp, that is, for any ε > 0
the bounds c1 = 1

4
n, c2 = 3

4
n, d1 = 1

4
n and d2 =

(
3
4
+ ε
)
n does not give P-

stable degree sequences. The counterexample can be given by the Tyshkevich
product of three bipartite degree sequences. These degree sequences are the
following (in order of their product):

1. a 1
4
n-regular degree sequence on

(
1
2
− ε
)
n+

(
1
2
− ε
)
n vertices,

2. a bipartite degree sequence (1, 2, . . . , εn), (1, 2, . . . , εn) on εn+ εn ver-
tices

3. a 1
4
n-regular degree sequence on 1

2
n+ 1

2
n vertices.

Then the degrees in the first sequence are between 1
4
n and 3

4
n and in the

second sequence between 1
4
n and

(
3
4
+ ε
)
n. Observe that the second degree

sequence has exactly one realization. On the other hand, Dániel Soltész
proved that the bipartite degree sequence

(2, 2, 3, . . . , εn), (2, 2, 3, . . . , εn) (4.10)

has θ
(

3+
√
5

2

)εn
realizations. Since the number of realizations of a Tyshkevich

product is the product of the number of realizations of the factors, the class of
bipartite degree sequences containing the above-constructed degree sequences
are not P-stable.

We can also prove the following theorem.

91

 dc_2046_22

Theorem 66. Let Db be a class of degree sequences with the following prop-
erty. There exists a c ∈ N such that for all Db ∈ Db, for all realizations
G = (U, V,E) of Db and for all u ∈ U , v ∈ V such that (u, v) /∈ E, there is
a an alternating edge-non-edge path of length at most c from u to v starting
with an edge (and thus, ending with an edge). Then Db is P-stable.

Proof. LetDb = (D1, D2) ∈ Db on n+m vertices, and let x ∈ [n] and y ∈ [m].
Consider any realization G = (U, V,E) of (D1 +1x, D2 +1y). We prove that
the adjacency matrix A of G has a Hamming distance at most c from the
adjacency matrix of a realization of Db. If (ux, vy) ∈ E, then by removing
that edge, we get a realization of Db, thus A is from a Hamming distance 1
from an adjacency matrix of a realization of Db. Consider the realization G′

of Db whose adjacency matrix A′ minimizing its Hamming distance from A.
We claim that it has a Hamming distance at most c+ 1 from A and it is an
alternating path of edges and non-edges from ux to vy starting with an edge
and thus ending with an edge.

First we show that the symmetric difference of A and A′ but be a sin-
gle alternating path of edges and non-edges (0’s and 1’s). Clearly, A∆A′

can be decomposed into alternating cycles and an alternating path of edges
and non-edges (in sense of the corresponding realizations.) Then switching
any alternating cycle in G′ creates another realization of Db with smaller
Hamming distance. Therefore G∆G′ is an alternating path P1 from ux to vy
and in G′ it starts and ends with a non-edge. Due to the condition of the
theorem, there is an alternating path P2 of length at most c from ux to vy
starting and ending with an edge. Due to their different starts, P1 and P2

are edge-disjoint (although they might not be vertex disjoint). Flipping both
P1 and P2 in G′ we get a realization that is a Hamming distance at most c
from G.

Since for any Db = (D1, D2) ∈ Db, any x and y, and any realization G of
(D1 + 1x, D21y), the adjacency matrix of G is a Hamming distance at most
c from an adjacency matrix of a realization of Db, Db is not P-stable.

The reverse of Theorem 66 is interesting. Assume that Db is not P-stable.
Then for any d ∈ N and a ∈ R, there is a degree sequenceDb = (D1, D2) ∈ Db

on n+m vertices and i ∈ [n], j ∈ [m] such that

|G(D1 + 1i, D2 + 1j)|
|G(Db)|

> a(n+m)d. (4.11)

92

 dc_2046_22

Map each realization of (D1+1i, D2+1j) to a realization ofDb that minimizes
its Hamming distance. The symmetric difference must be an alternating path
from ui to vj that both starts and ends with an edge in the realization of
(D1 + 1i, D2 + 1j). That is, we map each realization of (D1 + 1i, D2 + 1j)
to a realization of Db by flipping a shortest alternating path from ui to
vj both starting and ending with an edge. Such path exists since Db is
graphic. If all such shortest paths were upper bounded by a small constant
(computable from a and d), then it would contradict to the inequality in
Equation 4.11. Indeed, in that case only a polynomial number of realizations
of (D1 + 1i, D2 + 1j) would be the inverse image of any realizations of Db.
If the bound of the length on the shortest path were sufficiently small, then
this polynomial number would be a smaller polynomial than the one in the
right hand side of Equation 4.11, a contradiction.

Thus, for any c ∈ N, there must be aDb, a realization G = (U, V,E) ofDb,
and a u ∈ U , v ∈ V such that (u, v) /∈ E, and the smallest alternating path
from u to v starting and ending with an edge has length > c. This smallest
alternating path is u = u1, v1, u2, v2, . . . , uℓ, vℓ = v. This path together with
the non-edge (u, v) is an alternating cycle that will be denoted by C. What
is the degree sequence of the induced subgraph on C? For all i = 1, 2, . . .
and j = ℓ, ℓ − 1, . . ., i < j (ui, vj) /∈ E, otherwise there would be a shorter
alternating path from u to v. Similarly, for all i = 1, 2, 3, . . . and j = ℓ, ℓ −
1, . . ., i < j, (vi, uj) ∈ E. Therefore, d(u1) = d(vℓ) = 1, d(u2) = d(vℓ−1) = 1,
d(u3) = d(vℓ−2) = 2, d(u4) = d(vℓ−3 = 3, . . ., d(uℓ−1) = d(v2) = ℓ − 2,
d(uℓ) = d(v1) = ℓ− 1. Thus, we arrived to the following Theorem:

Theorem 67. Let Db be a class of degree sequences which is not P-stable.
Then for all c ∈ N, there exists a Db ∈ Db and a realization G(U, V,E) of
Db, such that G(U, V,E) contains a cycle C, and the induced subgraph on C
has degree sequence ((1, 1, 2, 3, . . . , ℓ− 1), (1, 1, 2, 3, . . . , ℓ− 1)), where 2ℓ ≥ c
is the length of C.

Observe that ((1, 1, 2, 3, . . . , ℓ−1), (1, 1, 2, 3, . . . , ℓ−1)) is the complement
of the degree sequence in Equation 4.10 (with εn + 1 = ℓ). This highlights
why this degree sequence is interesting on its own. Dániel Soltész proved that
the class containing this degree sequence for all ℓ is non-P-stable. However,
the switch Markov chain on the realizations of it is still rapidly mixing[107].

93

 dc_2046_22

4.3 Rapid mixing of the switch Markov chain

on a family of non-stable degree sequences

In this section, we prove that the switch Markov chain is rapidly mixing on
the realizations of the bipartite degree sequence ((1, 2, . . . , n − 2, n − 1, n −
1), (1, 2, . . . , n− 2, n− 1, n− 1)).

We start with the definition of a class of degree sequences.

Definition 68. Let us define the bipartite degree sequences and class of bi-
partite sequences:

hk(n) :=

(
1 2 3 · · · n− 2 n− 1 n− k

n− k n− 1 n− 2 · · · 3 2 1

)
Hk :=

{
hk(n)

∣∣ n ∈ N
}

Let Un = {u1, . . . , un} and Vn = {v1, . . . , vn}, often denoted simply U and V .
We label the vertices of h0(n) such that U is the first and V is the second
vertex class, with degh0(n)(ui) = n + 1− i and degh0(n)(vi) = i for i ∈ [1, n].
The unique realization H0(n) is displayed on Figure 4.2.

u1 u2 ui un−1 un

vnvn−1viv2v1

Figure 4.2: The unique realization H0(n) of h0(n). Edges are denoted by
straight lines, non-edges are denoted by dashed lines.

The next observation is that h1(n) is the degree sequence of our interest
and the symmetric difference of any realization of h1(n) and the unique
realization of h0(n) is an alternating path from u1 to vn. Therefore, we
can identify any realization of h1(n) by this alternating path. Furthermore,
this alternating path is monotonously increasing: when it contains vertices
u1 = ui1 , vi2 , . . . , uiℓ , viℓ = vn, then for all odd j, ij ≤ ij+1 and for all even j,
ij < ij+1.

Even further, any switch operation i) moves one vertex in the alternating
path or ii) skips two vertices or iii) (as an inverse of the previous move) adds

94

 dc_2046_22

two vertices to a path. Indeed, let H0(n) denote the unique realization of
h0(n) and letH0(n)∆P1 andH0(n)∆P2 be two realizations of h1(n), where P1

and P2 are two paths from u1 to vn and ∆ denotes the symmetric difference.
If the two realizations differ by a switch operation, then their symmetric
difference is a cycle of length 4, C4, thus we get that

C4 = (H0(n)∆P1)∆(H0(n)∆P2) = P1∆P2.

If the symmetric difference of two paths is a C4, then they differ by either
two-two edges in both paths or one edge in one of the paths and three in the
other. It is impossible that all four edges comes from one path as the paths
are monotonously increasing, so no vertex is revisited. When the C4 contains
two-two edges from the two paths, the two paths differ by one vertex, when
C4 contains one edge from one path and three from the other, then one of
the paths have two consecutive vertices less than the other one, and all other
vertices are the same.

We need the following key lemma.

Lemma 69. Let X and Y be two realizations of h1(n), let PX := H0(n)∆X,
let PY := H0(n)∆Y and let x1, x2, . . . , xk and y1, y2, . . . , yℓ denote the vertices
in the path PX and PY , respectively. Then for all i = 2, 3, . . . , n − 1 there
exists a realization Z of h1(n) such that if the vertices of PZ := H0(n)∆Z
are z1, z2, . . . , zm, then z1 = y1, z2 = y2, . . . , up to all vertices whose indices
are smaller than i and going backward, zm = xk, zm−1 = xk−1, . . . , while the
indices of the vertices of PZ are larger than i.

Proof. Let y1, y2, . . . , ys be the vertices of PY with indices smaller than i, and
let xt, xt+1, . . . , xk be the vertices of PX with indices larger than i. If ys and
xt are in different vertex classes, then let PZ := y1, y2, . . . , ys, xt, xt+1, . . . , xm.
Otherwise let PZ := y1, y2, . . . , ys, wi, xt, xt+1, . . . , xm, where wi = ui if ys, xt ∈
V and wi = vi if ys, xt ∈ U .

We will denote by PY ◦i PX the path PZ constructed in the proof of
Lemma 69. We will also define PY ◦1 PX := PX and PY ◦n PX := PY .

We prove another lemma on these paths.

Lemma 70. Let X and Y be two realizations of h1(n), let PX := H0(n)∆X,
let PY := H0(n)∆Y . Then for all i = 1, 2, . . . , n − 1, either PY ◦i PX =
PY ◦i+1 PX or PY ◦i+1 PX can be obtained from PY ◦i PX by at most two
switch operations.

95

 dc_2046_22

Proof. If i = 1, then define ys = u1. Observe that PY ◦1 PX contains ys, and
ys = u1 in PY ◦2 PX . Therefore, both PY ◦i PX and PY ◦i+1 PX contains ys
for all i. Let xt′ = vn if i + 1 = n and let xt′ be the first vertex in the path
whose index is larger than i + 1. (xt′ might be xt+2 if both ui+1 and vi+1

is in PX .) Observe that xt′ = vn in PY ◦n−1 PX and PY ◦n PX contains vn.
Therefore, both PY ◦i PX and PY ◦i+1 PX contains xt′ for all i.

What follows is that the symmetric difference of PY ◦iPX and PY ◦i+1PX

can be restricted to the vertices ys, ui, vi, ui+1, vi+1 and xt′ . That is, the
symmetric difference of the two paths consists of at most two paths on these
six vertices. It is easy to see that two switch operations is sufficient, the
situation can be modeled on paths in h1(3).

We are ready to state and prove the following theorem.

Theorem 71. The switch Markov chain is rapidly mixing on H1.

Proof. We use the canonical path system method. Let X and Y be two
realizations of h1(n). We denote by Zi the realization H0(n)∆(PY ◦i PX),
and let Z̃i denote the intermediate realization between Zi and Zi+1 if Zi+1

can be obtained from Zi by two switch operations and let Z̃i be Zi if Zi+1

can be obtained from Zi by at most 1 switch operation.
We construct the series of realizations represented by their symmetric

difference with H0(n):

X = Z1, Z̃1, Z2, Z̃2, . . . , Z̃n−1, Zn = Y.

Clearly, any two consecutive realizations differ by at most 1 switch operation.
By removing realizations being identical with the previous realization in the
series, we get a canonical path between X and Y .

Now, we are going to prove that there is no edge in the Markov graph
that is heavily loaded, that is, in the Markov graph, the number of paths
going through on any edge (Zs, Zs+1) is upper bounded by a polynomial of n
times the number of realizations. To prove this, we introduceMi as PX ◦iPY .
For both Zi and Zi+1 we will callMi the auxiliary structure of the realization
of entry in the canonical path.

We have to prove that from Zs, Zs+1, Mi and from O(poly(log(n))) bits
of information, we can reconstruct X and Y . But this is obvious as we need
only the information of i, the information if PX and/or PY contained any
vertex from {ui, vi} and the switch operation from Zi to Z̃i if Zs = Z̃i for
some i.

96

 dc_2046_22

We get that we can reconstruct X and Y fromMi, Zs, Zs+1 and logarith-
mic bit of information. It follows that the number of paths going through
(Zs, Zs+1) in the Markov graph is upper bounded by a polynomial of n times
the number of realizations of h1(n). Since the target distribution of the
Markov chain is the uniform distribution, and the length of any path is up-
per bounded by a linear function of n, and the inverse of the probability of a
switch operation is also upper bounded by a polynomial of n we get that the
Markov chain is rapidly mixing due to Theorem 31. Indeed, Equation 1.23
simplifies to

κΓ := max
e=(u,v)∈E

∑
(x,y)∈V×V

∑
γ∈Γ(x,y):e∈γ

π(γ)
|γ|
P
, (4.12)

where P is the probability of a switch operation and π is the probability of
a realization in the uniform distribution, that is, the inverse of the number
of realizations. Since we have a polynomial upper bound on |γ|

P
, we get that

κΓ ≤ poly(n)

|G(h1(n))|
max

e=(u,v)∈E

∑
(x,y)∈V×V

∑
γ∈Γ(x,y):e∈γ

1. (4.13)

Since the number of terms in the summation is upper bounded by a poly(n)|G(h1(n))|,
we get a polynomial upper bound on κΓ, thus proved that the switch Markov
chain is rapidly mixing on the realizations of h1(n).

4.4 Further results

Here we list results extending and generalizing the results presented in this
thesis. The author of this thesis contributed to these results, however, the
main contributions were given by the above mentioned postdocs, Tamás R.
Mezei and Dániel Soltész.

• The P-stability has been extended to simple and directed degree se-
quences. We can define that a class of arbitrary degree sequences is
P-stable if any degree sequence d of n vertices in it satisfies

|{G|G ∈ G(d′) L1(d
′,d) ≤ 2}| ≤ poly(n)|G(d)|.

Then we can prove the following theorem:

97

 dc_2046_22

Theorem 72. [106] The switch Markov chain is rapidly mixing on
P-stable unconstrained, bipartite, and directed degree sequence classes.

We remark that in case of directed degree sequences, triple switches
are needed in the Markov chain that flips an alternating cycle of edges
and non-edges of a cycle of length 3.

• Theorem 65 can be extended to simple and directed degree sequences.
That is, the switch Markov chain on the realizations of the class of
linearly bounded simple and directed degree sequences is rapidly mixing
[106].

• Tamás Mezei proved [106, 109] that a randomly generated Erdős-Rényi
graph G(n, p) is almost surely P-stable if

p, 1− p ≥ 5 log n

n− 1
,

and a randomly generated Erdős-Rényi bipartite graph is almost surely
P-stable if

p, 1− p ≥ 4

√
2 log n

n
.

• Dániel Soltész gave the asymptotic growth of |hk(n)| for all k, and
showed that for all k, Hk is a non-P-stable class of degree sequences.
Still, Theorem 71 can be extended to any Hk [107] (main theorems
were proved jointly by Tamás R. Mezei and Dániel Soltész).

98

 dc_2046_22

Chapter 5

A decomposition based proof
for fast mixing of a Markov
chain over balanced realizations
of a joint degree matrix

It turns out that a graphic JDM always have a balanced realization, that is,
a realization in which all induced bipartite subgraphs of pair of vertex classes
as well as all induced subgraphs on any vertex class are almost regular. It
also turns out that the switch Markov chain remains irreducible on these
realizations. Here we prove the rapid mixing of this Markov chain. The
proof is based on a general theorem on the mixing of Markov chains on
factorized state spaces. This is a joint work with Péter L. Erdős and Zoltán
Toroczkai (Erdős, P.L., Miklós, I., Toroczkai, Z. (2015) SIAM Journal on
Discrete Mathematics, 29:481–499.). The auxiliary graph in Figure 5.4 was
given by E.L.P. The author of this thesis proved Theorems 74 and 78.

5.1 Mixing of Markov chains on factorized

state spaces

Intuitively, when there is a partitioning of the state space of a Markov chain,
the Markov chain is rapidly mixing on the partitions, and the Markov chain is
rapidly mixing among the partitions, too, then the Markov chain is rapidly
mixing on the whole space. In this section we provide a mathematically

99

 dc_2046_22

rigorous description of this intuitive observation and prove it. The theorem
and its proof were given by Erdős, Miklós and Toroczkai [110].

First, we need a generalization of the Cheeger inequality (the lower-
bound).

Lemma 73. For any reversible Markov chain, and any subset S of its state
space,

1− λ2
2

min{π(S), π(S)} ≤
∑

x∈S,y∈S

π(x)T (y|x) . (5.1)

Proof. The right-hand side of Equation (5.1) is symmetric due to the re-
versibility of the chain. Thus, if π(S) > 1

2
, then S and S can be switched. If

π(S) ≤ 1
2
, the inequality is simply a rearrangement of the Cheeger inequality

(the left inequality in Theorem 33.). Indeed,

1− 2

∑
x∈S,y∈S π(x)T (y|x)

π(S)
≤ 1− 2Φ ≤ λ2 . (5.2)

Rearranging the two ends of the inequality in Equation (5.2), we get the
inequality in Equation (5.1).

Now we are ready to state and prove a general theorem on rapidly mixing
Markov chains on factorized state spaces.

Theorem 74. Let M be a class of reversible, irreducible and aperiodic
Markov chains whose state space Y can be partitioned into disjoint classes
Y = ∪x∈XYx by the elements of some set X. The problem size of a particular
chain is denoted by n. For notational convenience we also denote the element
y ∈ Yx via the pair (x, y) to indicate the partition it belongs to. Let T be the
transition matrix of M ∈ M, and let π denote the stationary distribution of
M. Moreover, let πX denote the marginal of π on the first coordinate that
is, πX(x) = π(Yx) for all x. Also, for arbitrary but fixed x let us denote by
πYx the stationary probability distribution restricted to Yx, i.e., π(y)/π(Yx),
∀y ∈ Yx. Assume that the following properties hold:

i For all x, the transitions with x fixed form an aperiodic, irreducible and
reversible Markov chain denoted byMx with stationary distribution πYx.
This Markov chain Mx has transition probabilities as Markov chain M
for all transitions fixing x, except loops, which have increased probabil-
ities such that the transition probabilities sum up to 1. All transitions

100

 dc_2046_22

that would change x have 0 probabilities. Furthermore, this Markov
chain is rapidly mixing, i.e., for its second-largest eigenvalue λMx,2 it
holds that

1

1− λMx,2

≤ poly1(n).

ii There exists a Markov chain M ′ with state space X and with transition
matrix T ′ which is aperiodic, irreducible and reversible w.r.t. πX , and
for all x1, y1, x2 it holds that∑

y2∈Yx2

T ((x2, y2)|(x1, y1)) ≥ T ′(x2|x1). (5.3)

Furthermore, this Markov chain is rapidly mixing, namely, for its second-
largest eigenvalue λM ′,2 it holds that

1

1− λM ′,2
≤ poly2(n).

Then M is also rapidly mixing as its second-largest eigenvalue obeys:

1

1− λM,2

≤ 256poly21(n)poly
2
2(n)(

1− 1√
2

)4
Proof. For any non-empty subset S of the state space Y =

⋃
x

Yx of M we

define
X(S) := {x ∈ X | ∃y, (x, y) ∈ S}

and for any given x ∈ X we have

Yx(S) := {(x, y) ∈ Y | (x, y) ∈ S} = Yx ∩ S.

We are going to prove that the ergodic flow F (S) (see Equation (1.26)) from
any S ⊂ Y with 0 < π(S) ≤ 1/2 cannot be too small and therefore, neither
the conductance of the Markov chain will be small. We cut the state space
into two parts Y = Y l ∪ Y u, namely the lower and upper parts using the
following definitions (see also Fig. 5.1): the partition X = L ⊔ U is defined
as

L :=

{
x ∈ X

∣∣∣∣π(Yx(S))π(Yx)
≤ 1/

√
2

}
,

U :=

{
x ∈ X

∣∣∣∣π(Yx(S))π(Yx)
> 1/

√
2

}
.

101

 dc_2046_22

Furthermore, we introduce:

Y l :=
⋃
x∈L

Yx and Y u :=
⋃
x∈U

Yx ,

and finally let

Sl := S ∩ Y l and Su := S ∩ Y u.

Yl Yu

Figure 5.1: The structure of Y = Y l⊔Y u. A non-filled ellipse (with a simple
line boundary) represents the space Yx for a given x. The solid black ellipses
represent the set S with some of them (the Sl) belonging to the lower part
Y l, and the rest (the Su) belonging to the upper part (Y u).

Since M ′ is rapidly mixing we can write (based on Theorem 33):

1− 2ΦM ′ ≤ λM ′,2 ≤ 1− 1

poly2(n)
,

or

ΦM ′ ≥ 1

2poly2(n)
.

Without loss of generality, we can assume that poly2(n) > 1 for all positive
n, a condition that we need later on for technical reasons. We use this lower
bound of conductance to define two cases regarding the lower and upper part
of S.

102

 dc_2046_22

1. We say that the lower part Sl is not a negligible part of S when

π(Sl)

π(Su)
≥ 1

4
√
2poly2(n)

(
1− 1√

2

)
. (5.4)

2. We say that the lower part Sl is a negligible part of S when

π(Sl)

π(Su)
<

1

4
√
2poly2(n)

(
1− 1√

2

)
. (5.5)

Our plan is the following: the ergodic flow F (S) is positive on any non-empty
subset and it obeys:

F (S) = F ′(Sl)
π(Sl)

π(S)
+ F ′(Su)

π(Su)

π(S)
,

where

F ′(Sl) :=
1

π(Sl)

∑
x∈Sl,y∈S̄

π(x)T (y|x)

and

F ′(Su) :=
1

π(Su)

∑
x∈Su,y∈S̄

π(x)T (y|x).

In other words, F ′(Sl) and F
′(Su) are defined as the flow going from Sl and

Su and leaving S.
The value F (S) cannot be too small, if at least one of F ′(Sl) or F ′(Su)

is big enough (and the associated fraction π(Sl)/π(S) or π(Su)/π(S)). In
Case 1 we will show that F ′(Sl) itself is big enough. To that end it will be
sufficient to consider the part which leaves Sl but not Y l (this guarantees
that it goes out of S, see also Fig. 5.2). For Case 2 we will consider F ′(Su),
particularly that part of it which goes from Su to Y l \Sl (and then going out
of S, not only Su, see also Fig. 5.3).

In Case 1, the flow going out from Sl within Y l is sufficient to prove that
the conditional flow going out from S is not negligible. We know that for
any particular x, we have a rapidly mixing Markov chainMx over the second
coordinate y. Let their smallest conductance be denoted by ΦX . Since all
these Markov chains are rapidly mixing, we have that

max
x

λMx,2 ≤ 1− 1

poly1(n)

103

 dc_2046_22

Yl Yu

Figure 5.2: When Sl is not a negligible part of S, there is a considerable flow
going out from Sl to within Y l, implying that the conditional flow going out
from S cannot be small. See text for details and rigorous calculations.

or, equivalently:

ΦX ≥ 1

2poly1(n)
.

However, in the lower part, for any particular x one has:

πYx(Yx(S)) =
π(Yx(S))

π(Yx)
≤ 1√

2
,

so for any fixed x belonging to L it holds that

1

2poly1(n)
min

{
πYx(Yx(S)),

(
1− 1√

2

)}
≤

≤
∑

(x,y)∈S,(x,y′)∈S̄

πYx((x, y))T ((x, y
′)|(x, y))

using the modified Cheeger inequality (Lemma 73). Observing that

πYx((x, y)) =
π((x, y))

π(Yx)
,

104

 dc_2046_22

we obtain:

1

2poly1(n)
π(Yx(S))

(
1− 1√

2

)
≤

≤ 1

2poly1(n)
min

{
π(Yx(S)), π(Yx)

(
1− 1√

2

)}
≤

≤
∑

(x,y)∈S,(x,y′)∈S̄

π((x, y))T ((x, y′)|(x, y)) .

Summing this for all the x’s belonging to L, we deduce that

π(Sl)
1

2poly1(n)

(
1− 1√

2

)
≤

∑
x|Yx(S)⊆Sl

 ∑
(x,y)∈S,(x,y′)∈S̄

π((x, y))T ((x, y′)|(x, y))

 . (5.6)

Note that the flow on the right-hand side of Equation 5.6 is not only going
out from Sl but also from the entire S. Therefore, we have that

F (S) ≥ π(Sl)

π(S)
× 1

2poly1(n)

(
1− 1√

2

)
.

Either π(Sl) ≤ π(Su), which then yields

π(Sl)

π(S)
=

π(Sl)

π(Sl) + π(Su)
≥ π(Sl)

2π(Su)
≥ 1

8
√
2poly2(n)

(
1− 1√

2

)
after using Equation 5.4, or π(Sl) > π(Su), in which case we have

π(Sl)

π(S)
>

1

2
≥ 1

8
√
2poly2(n)

(
1− 1√

2

)
.

(Note that poly2(n) > 1.) Thus in both cases the following inequality holds:

F (S) ≥ 1

8
√
2poly2(n)

(
1− 1√

2

)
× 1

2poly1(n)

(
1− 1√

2

)
.

In Case 2, the lower part of S is a negligible part of S. We have that

105

 dc_2046_22

Yl Yu

Figure 5.3: When Sl is a negligible part of S, there is a considerable flow
going out from Su into Y l \Sl. See text for details and rigorous calculations.

πX(X(Su)) ≤
1√
2

otherwise π(Su) > 1/2 would happen (due to the definition of the upper
part), and then π(S) > 1/2, a contradiction.

Hence in the Markov chain M ′, based on the Lemma 73, we obtain for
X(Su) that

1

2poly2(n)
min

{
πX(X(Su)),

(
1− 1√

2

)}
≤

∑
x′∈X(Su)
x∈X(Su)

πX(x)T
′(x′|x). (5.7)

For all y for which (x, y) ∈ Su, due to Equation (5.3), we can write:

T ′(x′|x) ≤
∑
y′

T ((x′, y′)|(x, y)) .

Multiplying this by π((x, y)), then summing for all suitable y:

π(Yx(S))T
′(x′|x) ≤

∑
y|(x,y)∈Su

∑
y′

π((x, y))T ((x′, y′)|(x, y))

(note that x ∈ U and thus Yx(S) = Yx(Su)) and thus

T ′(x′|x) ≤
∑

y|(x,y)∈Su

∑
y′ π((x, y))T ((x

′, y′)|(x, y))
π(Yx(S))

.

106

 dc_2046_22

Inserting this into Equation 5.7, we find that

1

2poly2(n)
min

{
πX(X(Su)),

(
1− 1√

2

)}
≤

≤
∑

x∈X(Su),x′∈X(Su)

πX(x)

π(Yx(S))

∑
y|(x,y)∈Su

∑
y′

π((x, y))T ((x′, y′)|(x, y)).

Recall that πX(x) = π(Yx), and thus πX(x)
π(Yx(S))

≤
√
2 for all x ∈ X(Su).

Therefore we can write that

1

2poly2(n)
min

{
πX(X(Su)),

(
1− 1√

2

)}
≤

√
2
∑

(x,y)∈Su

 ∑
(x′,y′)|x′∈X(Su)

π((x, y))T ((x′, y′)|(x, y))

 .

Note that π(Su) ≤ πX(X(Su)) < 1, and since both items in the minimum
taken in the LHS are smaller than 1, their product will be smaller than any
of them. Therefore we have

1

2
√
2poly2(n)

π(Su)

(
1− 1√

2

)
≤

≤
∑

(x,y)∈Su

 ∑
(x′,y′)|x′∈X(Su)

π((x, y))T ((x′, y′)|(x, y))

 .

This flow is going out from Su, and it is so large that at most half of it
can be picked up by the lower part of S (due to reversibility and due to
Equation 5.5), and thus the remaining part, i.e., at least half of the flow,
must go out of S. Therefore:

π(Su)

π(S)
× 1

4
√
2poly2(n)

(
1− 1√

2

)
≤ F (S) .

However, since Su dominates S, namely, π(Su) >
π(S)
2

, we have that

1

8
√
2poly2(n)

(
1− 1√

2

)
≤ F (S).

107

 dc_2046_22

Comparing the bounds from Case 1 and Case 2, for all S satisfying 0 <
π(S) ≤ 1

2
, we can write:

1

16
√
2poly2(n)poly1(n)

(
1− 1√

2

)2

≤ F (S).

And thus, for the conductance of the Markov chainM (which is the minimum
over all possible S)

1

16
√
2poly2(n)poly1(n)

(
1− 1√

2

)2

≤ ΦM .

Applying this to the Cheeger inequality, one obtains

λM,2 ≤ 1−

(
1

16
√
2poly2(n)poly1(n)

(
1− 1√

2

)2)2

2

and thus
1

1− λM,2

≤ 256poly21(n)poly
2
2(n)(

1− 1√
2

)4
which is what we wanted to prove.

Martin and Randall [64] have developed a similar theorem. They assume
a disjoint decomposition of the state space Ω of an irreducible and reversible
Markov chain defined via the transition probabilities P (y|x). They require
that the Markov chain be rapidly mixing when restricted onto each parti-
tion Ωi (Ω = ∪iΩi) and furthermore, another Markov chain, the so-called
projection Markov chain P (i|j) defined over the indices of the partitions be
also rapidly mixing. If all these hold, then the original Markov chain is also
rapidly mixing. For the projection Markov chain they use the normalized
conditional flow

P (j|i) = 1

π(Ωi)

∑
x∈Ωi,y∈Ωj

π(x)P (y|x) (5.8)

as transition probabilities. This can be interpreted as a weighted aver-
age transition probability between two partitions, while in our case, Equa-
tion (5.3) requires only that the transition probability of the lower bounding

108

 dc_2046_22

Markov chain is not more than the minimum of the sum of the transition
probabilities going out from one member of the partition (subset Yx1) to the
other member of the partition (subset Yx2) with the minimum taken over all
the elements of Yx1 . Obviously, it is a stronger condition that our Markov
chain must be rapidly mixing, since a Markov chain is mixing slower when
each transition probability between any two states is smaller. (The latter
statement is based on a comparison theorem by Diaconis and Saloff-Coste
[25].) Therefore, from that point of view, our theorem is weaker. On the other
hand, the average transition probability (Equation (5.8)) is usually hard to
calculate, and in this sense our theorem is more applicable. Note that Martin
and Randall have also resorted in the end to using chain comparison tech-
niques (Sections 2.2 and 3 in their paper) employing a Metropolis-Hastings
chain as a lower bounding chain instead of the projection chain above. Our
theorem, however, provides a direct proof of a similar statement.

5.2 Balanced realizations of a JDM

A symmetric matrix J with non-negative integer elements is the joint degree
matrix (JDM) of an undirected simple graph G if the element Ji,j gives the
number of edges between the class Vi of vertices all having degree i and the
class Vj of vertices all with degree j in the graph. In this case we also say
that J is graphic and that G is a graphic realization of J . Note that there
can be many different graphic realizations of the same JDM.

Given a JDM, the number of vertices ni = |Vi| in class i is obtained from:

ni =
Ji,i +

∑k
j=1 Ji,j

i
, (5.9)

where k denotes the maximum number of degrees. This implies that a JDM
also uniquely determines the degree sequence, since we have obtained the
number of nodes of given degrees for all possible degrees. For sake of unifor-
mity we consider all vertex classes Vi for i = 1, . . . , k; therefore we consider
empty classes with ni = 0 vertices as well. A necessary condition for J to
be graphic is that all the ni-s are integers. Let n denote the total number
of vertices. Naturally, n =

∑
i ni and it is uniquely determined via Equa-

tion (5.9) for a given graphic JDM. The necessary and sufficient conditions
for a given JDM to be graphic are provided in the following theorem

109

 dc_2046_22

Theorem 75. [104] A k × k matrix J is a graphic JDM if and only if the
following conditions hold:

1. For all i = 1, . . . , k

ni :=
Ji,i +

∑k
j=1 Ji,j

i

is integer.

2. For all i = 1, . . . , k

Ji,i ≤
(
ni

2

)
.

3. For all i = 1, . . . , k and j = 1, . . . , k, i ̸= j,

Jij ≤ ninj.

Let dj(v) denote the number of edges such that one end-vertex is v and
the other end-vertex belongs to Vj, i.e., dj(v) is the degree of v in Vj. The
vector consisting of the dj(v)-s for all j is called the degree spectrum of vertex
v. We introduce the notation

Θi,j =

{
0, if ni = 0 ,
Ji,j
ni
, otherwise,

which gives the average number of neighbors of a degree-i vertex in vertex
class Vj. Then a realization of the JDM is balanced iff for every i and all
v ∈ Vi and all j, we have

|dj(v)−Θi,j| < 1 .

The following theorem is proven in paper [104] as Corollary 5:

Theorem 76. Every graphic JDM admits a balanced realization.

A restricted switch operation (RSO) takes two edges (x, y) and (u, v)
with x and u from the same vertex class and switches them with two non-
edges (x, v) and (u, y). The RSO preserves the JDM, and in fact forms an
irreducible Markov chain over all its realizations [104]. An RSO Markov
chain restricted to balanced realizations can be defined as follows:

110

 dc_2046_22

Definition 77. Let J be a JDM. The state space of the RSO Markov chain
consists of all the balanced realizations of J . It was proved by Czabarka et
al. [104] that this state space is connected under restricted switch operations.
The transitions of the Markov chain are defined in the following way. With
probability 1/2, the chain does nothing, so it remains in the current state (we
consider a lazy Markov chain). With probability 1/2 the chain will choose
four, pairwise disjoint vertices, v1, v2, v3, v4 from the current realization (the
possible choices are order dependent) and check whether v1 and v2 are chosen
from the same vertex class, and furthermore whether the

E \ {(v1, v3), (v2, v4)} ∪ {(v1, v4), (v2, v3)}

switch operation is feasible. If this is the case then our Markov chain per-
forms the switch operation if it leads to another balanced JDM realization.
Otherwise the Markov chain remains in the same state. (Note that exactly
two different orders of the selected vertices will provide the same switch oper-
ation, since the roles of v1 and v2 are symmetric.) Then there is a transition
with probability

1

n(n− 1)(n− 2)(n− 3)

between two realizations iff there is a RSO transforming one into the other.

Here we prove that such a Markov chain is rapidly mixing. The conver-
gence of a Markov chain is measured as a function of the input data size.
Here we note that the size of the data is the number of vertices (or number
of edges, they are polynomially bounded functions of each other) and not
the number of digits to describe the JDM. This distinction is important as,
for example, one can create a 2 × 2 JDM with values J2,2 = J3,3 = 0 and
J2,3 = J3,2 = 6n, which has Ω(n) number of vertices (or edges) but it needs
only O(log(n)) number of digits to describe (except in the unary number
system). Alternatively, one might consider the input is given in unary.

Formally, we state the rapid mixing property via the following theorem:

Theorem 78. The RSO Markov chain on balanced JDM realizations is a
rapidly mixing Markov chain, namely, for the second-largest eigenvalue λ2 of
this chain, it holds that

1

1− λ2
= O(poly(n))

where n is the number of vertices in the realizations of the JDM.

111

 dc_2046_22

Note that the expression on the LHS is called, with some abuse of nota-
tion, the relaxation time: it is the time is needed for the Markov chain to
reach its stationary distribution. The proof is based on the special structure
of the state space of the balanced JDM realizations. This special structure al-
lows the following proof strategy: if we can prove that some auxiliary Markov
chains are rapidly mixing on some sub-spaces obtained from decomposing the
above-mentioned specially structured state space, then the Markov chain on
the whole space is also rapidly mixing. We are going to prove the rapid mix-
ing of these auxiliary Markov chains, as well as give the proof of the general
theorem, that a Markov chain on this special structure is rapidly mixing,
hence proving our main Theorem 78.

In order to describe the structure of the space of balanced JDM realiza-
tions, we first define the almost semi-regular bipartite and almost regular
graphs.

Definition 79. A bipartite graph G(U, V ;E) is almost semi-regular if for
any u1, u2 ∈ U and v1, v2 ∈ V

|d(u1)− d(u2)| ≤ 1

and
|d(v1)− d(v2)| ≤ 1.

Definition 80. A graph G(V,E) is almost regular, if for any v1, v2 ∈ V

|d(v1)− d(v2)| ≤ 1.

It is easy to see that the restriction of any balanced realization of the JDM
to vertex classes Vi, Vj, i ̸= j can be considered as the coexistence of two
almost regular graphs (one on Vi and the other on Vj), and one almost semi-
regular bipartite graph on the vertex class pair Vi, Vj. More generally, the
collection of these almost semi-regular bipartite graphs and almost regular
graphs completely determines the balanced JDM realization. Formally:

Definition 81 (Labeled union). Any balanced JDM realization can be rep-
resented as a set of almost semi-regular bipartite graphs and almost regular
graphs. The realization can then be constructed from these factor graphs as
their labeled union: the vertices with the same labels are collapsed, and the
edge set of the union is the union of the edge sets of the factor graphs.

112

 dc_2046_22

It is useful to construct the following auxiliary graphs. For each vertex
class Vi, we create an auxiliary bipartite graph, Gi(Vi, U ;E), where U is a set
of “super-nodes” representing all vertex classes Vj, including Vi. There is an
edge between v ∈ Vi and super-node uj representing vertex class Vj iff

dj(v) = ⌈Θi,j⌉ ,

i.e., iff node v carries the ceiling of the average degree of its class i toward the
other class j. (For sake of uniformity, we construct these auxiliary graphs
for all i = 1, . . . , k, even if some of them have no edge at all. Similarly, all
super-nodes are given, even if some of them have no incident edge.) We claim
that these k auxiliary graphs are half-regular, i.e., each vertex in Vi has the
same degree (the degrees in the vertex class U might be arbitrary). Indeed,
the vertices in Vi all have the same degree in the JDM realization, therefore,
the number of times they have the ceiling of the average degree toward a
vertex class is constant in a balanced realization.

Let Y denote the space of all balanced realizations of a JDM and just
as before, let k denote the number of vertex classes (some of them can be
empty). We will represent the elements of Y via a vector y whose k(k +
1)/2 components are the k almost regular graphs and the k(k− 1)/2 almost
regular bipartite graphs from their labeled union decomposition, as described
in Definition 81 above. Given an element y ∈ Y (i.e., a balanced graphic
realization of the JDM) it has k associated auxiliary graphs Gi(Vi, U ;E),
one for every vertex class Vi (some of them can be empty graphs). We will
consider this collection of auxiliary graphs for a given y as a k-dimensional
vector x, where x = (G1, . . . ,Gk).

For any given y we can determine the corresponding x (so no particular
y can correspond to two different xs), however, for a given x there can be
several y’s with that same x. We will denote by Yx the subset of Y containing
all the y’s with the same (given) x and by X the set of all possible induced
x vectors. Clearly, the x vectors can be used to define a disjoint partition on
Y : Y =

⋃
x∈X

Yx. For notational convenience we will consider the space Y as

pairs (x, y), indicating the x-partition to which y belongs. This should not
be confused with the notation for an edge, however, this should be evident
from the context. A restricted switch operation might fix x, in which case it
will make a move only within Yx, but if it does not fix x, then it will change
both x and y. For any x, the RSOs moving only within Yx form a Markov
chain. On the other hand, tracing only the x’s from the pairs (x, y) is not

113

 dc_2046_22

a Markov chain: the probability that an RSO changes x (and thus also y)
depends also on the current y not only on x. However, the following theorem
holds:

Theorem 82. Let (x1, y1) be a balanced realization of a JDM in the above
mentioned representation.

i Assume that (x2, y2) balanced realization is derived from the first one
with one restricted switch operation. Then, either x1 = x2 or they differ
in exactly one coordinate, and the two corresponding auxiliary graphs
differ only in one switch operation.

ii Let x2 be a vector differing only in one coordinate from x1, and fur-
thermore, only in one switch within this coordinate, namely, one switch
within one coordinate is sufficient to transform x1 into x2. Then there
exists at least one y2 such that (x2, y2) is a balanced JDM realization
and (x1, y1) can be transformed into (x2, y2) with a single RSO.

Proof. (i) This is just the reformulation of the definitions for the (x, y) pairs.
(ii) (See also Fig. 5.4) By definition there is a degree i, 1 ≤ i ≤ k such that
auxiliary graphs x1(Gi) and x2(Gi) are different and one switch operation
transforms the first one into the second one. More precisely there are vertices
v1, v2 ∈ Vi such that the switch transforming x1(Gi) into x2(Gi) removes edges
(v1, Uj) and (v2, Uk) (with j ̸= k) and adds edges (v1, Uk) and (v2, Uj). (The
capital letters show that the second vertices are super-vertices.) Since the
edge (v1, Uj) exists in the graph x1(G1) and (v2, Uj) does not belong to graph
x1(Gi), therefore dj(v1) > dj(v2) in the realization (x1, y1). This means that
there is at least one vertex w ∈ Vj such that w is connected to v1 but not
to v2 in the realization (x1, y1). Similarly, there is at least one vertex r ∈ Vk
such that r is connected to v2 but not to v1 (again, in realization (x1, y1)).
Therefore, we have a required RSO on nodes v1, v2, w, r.

Thus any RSO on a balanced realization yielding another balanced real-
ization either does not change x or changes x exactly on one coordinate (one
auxiliary graph), and this change can be described with a switch, taking one
auxiliary graph into the other.

We are going to apply Theorem 74 to prove that the RSO Markov chain is
rapidly mixing on the balanced JDM realizations. We partition its state space
according to the vectors x of the auxiliary graph collections (see Definition
81 and its explanations). The following result will be used to prove that all

114

 dc_2046_22

Vi v1 v2 v1 v2

w

r

Vj

Vk

Vi

Uj

Uk

Figure 5.4: Construction of the auxiliary bipartite graph Gi and a RSO
{(v1, w), (v2, r)} 7→ {(v1, r), (v2, w)} taking (x1, y1) into (x2, y2).

derived (marginal) Markov chainsMx are rapidly mixing. Next, we announce
two theorems that are direct extensions of statements for fast mixing switch
Markov chains for regular degree sequences (Cooper, Dyer and Greenhill
[22]) and for half-regular bipartite degree sequences (Erdős, Kiss, Miklós and
Soukup [108]).

Theorem 83. The switch Markov chain on the realizations of almost regular
degree sequences is rapidly mixing.

Theorem 84. The switch Markov chain on the realizations of almost half-
regular bipartite degree sequences is rapidly mixing.

We are now ready to prove the main theorem.

Proof. (Theorem 78) We show that the RSO Markov chain on balanced re-
alizations fulfills the conditions in Theorem 74. First we show that condition
(i) of Theorem 74 holds. When restricted to the partition Yx (that is with
x fixed), the RSO Markov chain over the balanced realizations walks on the
union of almost semi-regular and almost regular graphs. By restriction here
we mean that all probabilities which would (in the original chain) leave Yx
are put onto the shelf-loop probabilities. Since an RSO changes only one
coordinate at a time, independently of other coordinates, all the conditions
in Theorem 62 are fulfilled. Thus the relaxation time of the RSO Markov
chain restricted onto Yx is bounded from above by the relaxation time of the
chain restricted onto that coordinate (either an almost semi-regular bipartite

115

 dc_2046_22

or an almost regular graph) on which this restricted chain is the slowest (the
smallest gap). However, based on Theorems 83 and 84, all these restrictions
are fast mixing, and thus by Theorem 62 the polynomial bound in (i) of

Theorem 74 holds. (Here K = k(k+1)
2

, see Definition 81 and note that an
almost semi-regular bipartite graph is also an almost half-regular bipartite
graph.)

Next we show that condition (ii) of Theorem 74 also holds. The first
coordinate is the union of auxiliary bipartite graphs, all of which are half-
regular. The M ′ Markov chain corresponding to Theorem 74 is the switch
Markov chain on these auxiliary graphs. Here each possible switch has a
probability

1

n(n− 1)(n− 2)(n− 3)

and by Theorem 82 it is guaranteed that condition 5.3 is fulfilled. Since,
again all conditions of Theorem 62 are fulfilled (mixing is fast within any
coordinate due to Theorems 83 and 84), the M ′ Markov chain is also fast
mixing. The condition in Equation (5.3) holds due to Theorem 82. Since all
conditions in Theorem 74 hold, the RSO switch Markov chain on balanced
realizations is also rapidly mixing.

116

 dc_2046_22

Chapter 6

Approximating the number of
Double Cut-and-Join scenarios

In this chapter, we give an FPAUS algorithm to almost uniformly sample
most parsimonious DCJ sorting scenarios transforming one genome into an-
other. We obtain it in three steps. First, we decompose the problem into an
“easy” and “hard” part (Lemma 86), and we show that this hard part has
the same computational complexity than the whole problem (Theorem 86).
In the second step, we show that an FPAUS can be achieved via sampling
matchings of a complete bipartite graph following a certain distribution (The-
orem 94). In the third step, we prove the rapid mixing of a Markov chain
converging to this certain distribution of matchings (Theorem 99). The prov-
ing technique is the canonical path method by Sinclair [82], and is based on
upper and lower bounds on the number of certain types of most parsimonious
DCJ sorting scenarios (Theorem 93). We use these estimations to give upper
bound on the so-called Poincaré coefficient defined in Equation 1.23 using
Lemma 98.

Since counting the most parsimonious DCJ sorting scenarios is a self-
reducible counting problem, the number of most parsimonious DCJ scenarios
can also be approximated by an FPRAS algorithm.

This was a joint work with Eric Tannier. Eric Tannier proposed the work,
and initially we worked on the easy part, following the results of Braga and
Stoye [14]. Surprisingly, proving rapid mixing for the easy part seems to be
harder, and it is still an open problem. The author of this thesis proved
Lemma 98, which is the key lemma to prove the rapid mixing of the Markov
chain as well as Theorem 93 that is used in the key lemma. The original

117

 dc_2046_22

work has been published in Theoretical Computer Science, 2012, 439:30-40,
doi: 10.1016/j.tcs.2012.03.006.

6.1 Preliminaries

First, we define the computational problem.

Definition 85. The Most Parsimonious DCJ sorting scenario (MPDCJ)
problem for two genomes G1 and G2 is to compute dDCJ(G1, G2), that is, the
minimum number of DCJ operations necessary to transform G1 into G2. The
#MPDCJ problem asks for the number of scenarios of length dDCJ(G1, G2),
denoted by #MPDCJ(G1, G2).

MPDCJ is an optimization problem, which has a natural correspond-
ing decision problem asking if there is a scenario with a given number of
DCJ operations. So we may write that #MPDCJ ∈ #P, which means that
#MPDCJ asks for the number of witnesses of the decision problem “Is there
a scenario for G1 and G2 of size dDCJ(G1, G2) ?”.

A DCJ operation on a genome G1 which decreases the DCJ distance to a
genomeG2 is called a sorting DCJ forG1 andG2. It is possible to characterize
the effect of a sorting DCJ on the adjacency graph of genomes G1 and G2

(see subsection 1.2.2 for the adjacency graph and its components). It acts
on the vertex set V1 and has one of the following effects ([14]):

• splitting a cycle into two cycles,

• splitting an odd path into a cycle and an odd path,

• splitting an M -shaped path into a cycle and an M -shaped path,

• splitting an M -shaped path into two odd paths,

• splitting a W -shaped path into a cycle and a W -shaped path,

• merging the two ends of a W -shaped path, thus transforming it into a
cycle,

• combining an M -shaped and a W -shaped path into two odd paths.

118

 dc_2046_22

Note that trivial components are never affected by these operations, and
all but the last type of DCJ operations act on a single component of the
adjacency graph. The last type of DCJ acts on two components, which are
M and W -shaped paths.

In this context, sorting a component involving the set of adjacencies and
telomers in G2, denoted by A, means applying a sequence of sorting DCJ op-
erations to vertices of this component in G1 so that the resulting adjacency
graph has only trivial components involving the adjacencies and telomers of
A. In a minimum length DCJ scenario, every component is sorted indepen-
dently, except M and W -shaped paths, which can be sorted together. If in
a DCJ scenario one operation acts on both an M and a W -shaped path,
we say that they are sorted jointly; otherwise we say that they are sorted
independently.

6.2 Decomposing the #MPDCJ problem

The complexity status of #MPDCJ in general is not known. It is solvable in
polynomial time when the genomes are co-tailed [14, 70], or more generally
in the absence of M and W -shaped paths. Therefore the hard part seems to
be dealing with M and W -shaped paths. We show here that for the general
case, we may restrict ourselves to this hard part, and suppose that there are
only M and W -shaped paths in the adjacency graph.

Given two genomes G1 and G2 with the same label set, let AG be the
adjacency graph of G1 and G2. Denote by G∗

1 the genome which has the
adjacencies and telomeres of G1 whenever they are in an M or W -shaped
paths of AG, and those of G2 when they are in another component of AG.
By definition the adjacency graph between G1 and G∗

1 has no M and W -
shaped paths, while the adjacency graph between G∗

1 and G2 has only trivial
components and M and W -shaped paths.

Lemma 86. dDCJ(G1, G2) = dDCJ(G1, G
∗
1) + dDCJ(G

∗
1, G2).

Proof. Recall the characterization of the effect of DCJ operations on the
adjacency graph implies that in a minimum length DCJ scenario between
G1 and G2, a DCJ operation never acts on two vertices involved in different
components of AG, except if these two components are M and W -shaped
paths. This implies that the DCJ operations of a minimum length scenario

119

 dc_2046_22

are of two kinds: those which act on the vertices involved inM andW -shaped
paths, and the others.

The subsequence of DCJ operations of the first kind transforms G1 into
G∗

1, and the complementary subsequence transforms G∗
1 into G2. This proves

the lemma.

Definition 87. The #MPDCJMW problem asks for the number of DCJ
scenarios between two genomes when their adjacency graph contains only
trivial components and M and W -shaped paths.

The correspondence between solutions for #MPDCJMW and #MPDCJ
is stated by the following lemma.

Lemma 88.

#MPDCJ(G1, G2) =
dDCJ(G1, G2)!

dDCJ(G∗
1, G2)!

∏
i(ci − 1)!

∏
j(lj − 1)!

×
∏
i

cci−2
i

∏
j

l
lj−2
j ×#MPDCJMW (G∗

1, G2) (6.1)

where i indexes the cycles of the adjacency graph of G1 and G2, ci denotes
the number of vertices in vertex set V1 belonging to the ith cycle, j indexes
the odd paths of the adjacency graph, lj is the number of vertices in vertex
set V1 belonging to the jth odd path.

Proof. As M and W -shaped paths and other components are always treated
independently, we have

#MPDCJ(G1, G2) =

(
dDCJ(G1, G2)

dDCJ(G∗
1, G2)

)
× #MPDCJ(G1, G

∗
1)×#MPDCJMW (G∗

1, G2)

For the genomes G1 and G∗
1, whose adjacency graph do not contain M

and W -shaped paths, we have from [14] and [70] that

#MPDCJ(G1, G
∗
1) =

∏
i

cci−2
i

∏
j

l
lj−2
j × dDCJ(G1, G

∗
1)!∏

i(ci − 1)!
∏

j(lj − 1)!
.

These two equations together with Lemma 86 give the result.

120

 dc_2046_22

The following theorem says that the hardness of the #MPDCJ problem
is the same as the #MPDCJMW problem.

Theorem 89.

#MPDCJMW ∈ FP ⇐⇒ #MPDCJ ∈ FP (6.2)

#MPDCJMW ∈ #P-complete ⇐⇒ #MPDCJ ∈ #P-complete (6.3)

#MPDCJMW ∈ FPRAS ⇐⇒ #MPDCJ ∈ FPRAS (6.4)

#MPDCJMW ∈ FPAUS ⇐⇒ #MPDCJ ∈ FPAUS (6.5)

Proof. Both the multinomial factor and the two products in Equation 6.1. can
be calculated in polynomial time. Thus the transformation between the
solutions to the two different counting problems is a single multiplication or
division by an exactly calculated number. This proves that #MPDCJMW

is in FP if and only if #MPDCJ is in FP, as well as #MPDCJMW is in
#P-complete if and only if #MPDCJ is in #P-complete.

Such a multiplication and division keeps the relative error when the solu-
tion of one of the problems is approximated. This proves that #MPDCJMW

is in FPRAS if and only if #MPDCJ is in FPRAS.
Concerning the last equivalence, the⇐ part is trivial because #MPDCJMW

is a particular case of #MPDCJ. Now we prove that #MPDCJMW ∈
FPAUS ⇒ #MPDCJ ∈ FPAUS. Suppose an FPAUS exists for #MPDCJMW ,
and let G1 and G2 be two arbitrary genomes. The following algorithm gives
a FPAUS for #MPDCJ.

• Draw a DCJ scenario between G∗
1 and G2 following a distribution p

satisfying

dTV (p, U) ≤ ϵ

where U is the uniform distribution over all possible most parsimonious
DCJ scenarios between G∗

1 and G2.

• Generate a DCJ scenario between G1 and G∗
1, following the uniform

distribution. This scenario can be sampled sharply uniformly in poly-
nomial time: (1) there are only cycles and odd paths in the adjacency
graph of G1 and G∗

1, so the number of scenarios can be calculated
in polynomial time; (2) there is a polynomial number of sorting DCJ
steps on each component, and a sorting DCJ operation results in an
adjacency graph that also only has cycles and odd paths.

121

 dc_2046_22

• Draw a sequence of 0s and 1s, containing dDCJ(G
∗
1, G2) 1s and dDCJ(G1, G

∗
1)

0s, uniformly from all
(
dDCJ(G1,G2)
dDCJ(G

∗
1,G2)

)
such sequences.

• Merge the two paths contructed at the two first steps, according to the
drawn sequence of 0s and 1s.

Note that the DCJ scenario obtained transforms G1 into G2. Let us denote
the distribution of paths generated by this algorithm by p′, and the uniform
distribution over all possible DCJ scenarios between G1 and G2 by U ′. Let
Xs denote the set of all possible scenarios drawn by the above algorithm
using a specific scenario s between G∗

1 and G2. Then∑
s′∈Xs

|p′(s′)− U ′(s′)| = |p(s)− U(s)| (6.6)

Using Equation 6.6 we get that

dTV (p
′, U ′) =

1

2

∑
s

∑
s′∈Xs

|p′(s′)− U ′(s′)| = 1

2

∑
s

|p(s)− U(s)| = dTV (p, U)

(6.7)
This proves that the above algorithm is an FPAUS for #MPDCJ, proving
the left-to-right direction in Equation 6.5.

We will show that #MPDCJMW is in FPAUS, thus #MPDCJ is in
FPAUS. As MPDCJ is a self-reducible problem (there is a polynomial time
reduction of the decision problem to the search problem), the FPAUS implies
the existence of an FPRAS [54]. The FPAUS algorithm for #MPDCJMW will
be defined via a rapidly mixing Markov chain. And first, we have to recall
or prove some properties on the number of independent and joint sortings of
M and W -shaped paths.

6.3 Independent and joint sorting of M and

W -shaped paths

Our goal is to show that the number of DCJ scenarios in which an M and a
W -shaped path are sorted independently is a significant fraction of the total
number of scenarios sorting these M and W -shaped paths (independently or
jointly). We build on the following results by [14].

122

 dc_2046_22

Theorem 90. [14]

• The number of minimum length DCJ scenarios sorting a cycle with
k > 1 vertices in G1 is kk−2.

• The number of minimum length DCJ scenarios sorting an odd path with
k > 1 vertices in G1 is kk−2.

• The number of minimum length DCJ scenarios sorting aW -shaped path
with k > 1 vertices in G1 is kk−2.

• The number of minimum length DCJ scenarios sorting an M-shaped
path with k > 0 vertices in G1 is (k + 1)k−1.

Theorem 91. The number of DCJ scenarios that independently sort a W
and an M-shaped path is

(
k1+k2−1
k1−1

)
kk1−2
1 (k2 + 1)k2−1 where k1 and k2 are the

number of vertices of G1 in the W and M-shaped paths, respectively.

Proof. It is a consequence of the previous theorem. The W -shaped path is
sorted in k1−1 operations, and theM -shaped path is sorted in k2 operations.
Thus there are

(
k1+k2−1
k1−1

)
ways to merge two scenarios.

Theorem 92. The number of DCJ scenarios that jointly sort a W and an
M-shaped path is less than 2(k1+k2)

k1+k2−2, where k1 and k2 are the number
of vertices of G1 in the W and M-shaped paths, respectively.

Proof. Let tW1 and tW2 be the two telomeres of the W -shaped path, and tM1
and tM2 be the two telomeres of the M -shaped path. Let G′

1 and G′
2 be

constructed from genomes G1 and G2 by adding a gene g, with extremities
gh and gt, and replacing the telomeres of G1 by adjacencies (tW1 , g

t), (tW2 , g
h)

and the telomeres of G2 by adjacencies (tM1 , g
t), (tM2 , g

h). In addition let G′′
1

and G′′
2 be constructed from G1 and G2 also by adding a gene g, and replacing

the telomeres of G1 by adjacencies (tW1 , g
t), (tW2 , g

h) and the telomeres of G2

by adjacencies (tM1 , g
h), (tM2 , g

t). In both cases the M and W -shaped paths
in G1 and G2 are transformed into a cycle with k1 + k2 adjacencies in both
genomes. Call the cycles C ′ for the first case, and C ′′ for the second.

We prove that any scenario that jointly sort the W and M -shaped paths
has a corresponding distinct scenario either sorting the cycle C ′ or sorting
the cycle C ′′. This proves the theorem, because there are (k1 + k2)

k1+k2−2

scenarios sorting each cycle.

123

 dc_2046_22

A scenario jointly sorting the M and W -shaped paths can be cut into
two parts: the first contains DCJ operations which act only on the M or
only on the W -shaped path; the second part starts with a DCJ operation
transforming an M and a W -shaped path into two odd paths, and continues
with operations independently sorting the two odd paths.

In the first part, either a DCJ operation acts on two adjacencies of the
M orW -shaped path, and the corresponding operation acts on the same two
adjacencies on C ′ or C ′′, or it acts on an adjacency and a telomere of the W -
shaped path, and the corresponding operation acts on two adjacencies of C ′

or C ′′, one of them containing an extremity of g. So there is a correspondance
between being a telomere in the W -shaped path, and being adjacent to an
extremity of g in C ′ or C ′′.

Now the corresponding operation of the DCJ transforming the two paths
into two odd paths has to create two cycles from C ′ or C ′′. Choose C ′ or
C ′′ so that it is the case. Now sorting an odd path exactly corresponds to
sorting a cycle, by replacing between being a telomere in the path by being
adjacent to an extremity of g in the cycle.

So two different scenarios jointly sorting the M and W -shaped paths
correspond to two different scenarios sorting either C ′ or C ′′. Then the
number of scenarios jointly sorting the M and W -shaped paths is less than
2(k1 + k2)

k1+k2−2.

Theorem 93. Let T (k1, k2) denote the number of DCJ scenarios jointly
sorting a W and an M-shaped path with respectively k1 and k2 vertices G1.
Let I(k1, k2) denote the number scenarios independently sorting the same
paths. We have that

T (k1, k2)

I(k1, k2)
= O

(
k1.51 k1.52

(k1 + k2)1.5

)
(6.8)

I(k1, k2)

T (k1, k2)
= O (k1 + k2) (6.9)

Proof. To prove Equation 6.8 it is sufficient to show that

2(k1 + k2)
k1+k2−2(

k1+k2−1
k1−1

)
kk1−2
1 (k2 + 1)k2−1

= O

(
k1.51 k1.52

(k1 + k2)0.5

)
(6.10)

124

 dc_2046_22

Using Stirling’s formula, we get on the left hand side of Equation 6.10

2
√

2π(k1 − 1)
(
k1−1
e

)k1−1√
2π(k2)

(
k2
e

)k2
(k1 + k2)

k1+k2−2√
2π(k1 + k2 − 1)

(
k1+k2−1

e

)k1+k2−1
kk1−2
1 (k2 + 1)k2−1

(6.11)

After simplifications and algebraic rearrangement, we get

2

√
2π(k1 − 1)k2
k1 + k2 − 1

(
k1 + k2

k1 + k2 − 1

)k1+k2−1(
k1 − 1

k1

)k1−1(
k2

k2 + 1

)k2 (k1(k2 + 1)

k1 + k2

)
(6.12)

from which Equation 6.10 follows with applying (1 + 1/n)n tends to e, and
(1− 1/n)n tends to 1/e.

To prove Equation 6.9 consider the subset of DCJ scenarios jointly sorting
the W and M -shaped paths, and starting with a DCJ operation which acts
on a telomere of the W -shaped path, and on an adjacency which is link
with a telomere of the M -shaped path. The result is two odd paths with
respectively k1 and k2 adjacencies and telomeres in G1. They can be sorted
in respectively k1 − 1 and k2 − 1 steps, in kk1−2

1 and kk2−2
2 different ways.

Since we can combine any two particular solutions in
(
k1+k2−2
k1−1

)
ways, I(k1,k2)

T (k1,k2)

is bounded by (
k1+k2−1
k1−1

)
kk1−2
1 (k2 + 1)k2−1(

k1+k2−2
k1−1

)
kk1−2
1 kk2−2

2

. (6.13)

After minor algebraic simplification, this expression is equal to

k1 + k2 + 1

k2

(
1 +

1

k2

)k2−1

k2, (6.14)

which is clearly O(k1 + k2).

6.4 The Markov chain on DCJ scenarios

Assume that there are n W -shaped paths and m M -shaped paths, and con-
sider the complete bipartite graph Kn,m. Let M be a matching of Kn,m,
which might range from the empty graph up to any maximum matching.
A DCJ scenario is said to be M-compatible when an M -shaped and a W -
shaped path are sorted jointly if and only if they are connected by an edge
of M.

125

 dc_2046_22

We denote by {Pi}i set of degree 0 vertices in M, and by {MiWi}i the
set of edges in M. Let l(Pi) be the minimum length of a DCJ scenario
independently sorting Pi, and l(MiWi) be the minimum length of a DCJ
scenario jointly sortingMi andWi. We can calculate N(Mi,Wi), the number
of joint sortings ofMi and Wi, in polynomial time [14]. Denote by N(Pi) the
number of independent sortings of a path Pi. The number of M-compatible
scenarios is

f(M) =

(
(
∑

i l(MiWi) +
∑

i l(Pi))!

l(Mi,Wi)!, . . . , l(Pi)!

)
ΠiN(Mi,Wi)ΠiN(Pi),

and we can compute it in polynomial time. Define a distribution θ over the
set of all matchings of the complete bipartite graph Kn,m as

θ(M) ∝ f(M) (6.15)

We first show that sampling DCJ scenarios from the uniform distribution
is equivalent to sampling matchings of Kn,m from the distribution θ.

Theorem 94. Let a distribution q over the scenarios of n W -shaped paths
and m M-shaped paths be defined by the following algorithm.

• Draw a random matching M of Kn,m following a distribution p.

• Draw a random M-compatible DCJ scenario from the uniform distri-
bution of all M-compatible ones.

Then

dTV (p, θ) = dTV (q, U) (6.16)

where θ is the distribution defined in Equation 6.15, and U denotes the uni-
form distribution over all DCJ scenarios.

Proof.

dTV (q, U) =
1

2

∑
x scenario

|q(x)− U(x)|

We may decompose this sum into

1

2

∑
(M matching of Kn,m)

∑
(x M−compatible scenario)

|q(x)− U(x)|

126

 dc_2046_22

∑
(x M−compatible scenario) q(x) is p(M) since x is drawn uniformly among the

scenarios compatible with M, and
∑

(x M−compatible scenario) U(x) is θ(M).

Furthermore, both q(x) and U(x) are constant for a particular matching M,
thus

1

2

∑
(M matching of Kn,m)

∑
(x M−compatible scenario)

|q(x)− U(x)| =

1

2

∑
(M matching of Kn,m)

|p(M)− θ(M)| = dTV (p, θ) (6.17)

yielding the result.

So we are going to define an MCMC on matchings ofKn,m converging to θ.
The rapid convergence of this MCMC will imply that #MPDCJWM admits
an FPAUS, and hence #MPDCJ ∈ FPAUS, and then #MPDCJ ∈ FPRAS.
The primer Markov chain walks on the matchings of Kn,m and is defined by
the following steps: suppose the current state is a matching M, and

• with probability 1/2, the next state of the Markov chain is the current
state M;

• with probability 1/2, draw a random i ∼ U [1, n] and j ∼ U [1,m]; if
ij ∈ M, then remove ij fromM ; else if degM(i) = 0 and degM(j) = 0,
then add ij to M.

It is easy to see that this Markov chain is irreducible and aperiodic. We
apply the standard Metropolis-Hastings algorithm on this chain [66], namely,
when we are in state M, we propose the next state Mnew according to the
primer Markov chain, and accept the proposal with probability

min

{
1,
f(Mnew)

f(M)

}
(6.18)

The obtained Markov chain is reversible and converges to the distribution
θ defined in Equation 6.15. Furthermore, this is a lazy Markov chain (due
to remaining in the current state with at least probability 1/2 in each step),
providing that all its eigenvalues are positive real numbers (see also Theo-
rem 26).

An important property of this Markov chain is that

127

 dc_2046_22

Observation 95. The non-zero transition probabilities as well as their in-
verses are polynomially bounded.

Indeed, the transition probability from M to Mnew, if non zero, is at
least

1

2× n×m

f(Mnew)

f(M)
.

M and Mnew vary by at most one edge MiWi, and on this edge, according
to Theorem 93, the ratio of number of scenarios jointly and independently
sorting Mi and Wi is polynomial. Furthermore, the combinatorial factors
appearing in f(M) and f(Mnew) due to merging the sorting steps on different

components are the same. So f(Mnew)
f(M)

as well as its inverse are polynomially
bounded.

We now prove the rapid convergence of this Markov chain using the mul-
ticommodity flow technique [82], see also Section 1.1.7.

6.5 Fast convergence of the MCMC

In this section, we prove that the constructed Markov chain rapidly converges
to its stationary distribution. From its construction, this distribution is θ as
defined in Equation 6.15.

To prove that the Markov chain we defined on bipartite matchings has
a polynomial relaxiation time, we need to construct a path system Γ on the
set of matchings of Kn,m, such that κΓ is bounded by a polynomial in N , the
number of markers in G1 and G2.

In our case the path system between two matchings X and Y is a unique
path with probability 1. Here is how we construct it.

Fix a total order on the vertex set of Kn,m. Take the symmetric difference
of X and Y , denoted by X∆Y . It is a set of disjoint paths and cycles.
Define an order on the components of X∆Y , such that a component C is
smaller than a component D if the smallest vertex in C is smaller than the
smallest vertex in D. Now we orient each component in the following way:
the beginning of each path is its extremity with the smaller vertex. The
starting vertex of a cycle is its smallest vertex, and the direction is going
towards its smaller neighbour.

We transform X to Y by visiting the components of X∆Y in increasing
order. Let the current component be C, and the current matching is Z (at

128

 dc_2046_22

first Z = X). If C is a path or cycle starting with an edge in X , then the
transformation steps are the following: delete the first edge of C from Z,
delete the third edge of C from Z, add the second edge of C to Z, delete the
5th edge of C from Z, add the 4th edge of C to Z, etc.

If C is a path or cycle starting with an edge in Y , then the transformation
steps are the following: delete the second edge of C from Z, add the first
edge of C to Z, delete the 4th edge of C from Z, add the third edge of C to
Z, etc.

This path has length at most nm, and κΓ can be written:

κΓ ≤ nm max
e=(u,v)∈E

∑
(x,y)∈V×V :e∈Γx,y

θ(x)θ(y)

Q(e)
.

By Observation 95, the inverse of the transition probabilities is bounded by
a polynomial in N , so we get

κΓ ≤ O(poly(N)) max
e=(u,v)∈E

∑
(x,y)∈V×V :e∈Γx,y

θ(x)θ(y)

θ(u)
. (6.19)

We then have to show that
∑ θ(x)θ(y)

θ(u)
can be bounded by a polynomial in

N . Let Z → Z ′ be an edge on the path from X to Y . We define

M̂ := X∆Y∆Z (6.20)

Lemma 96. The couple M̂ and Z → Z ′ determines X and Y.

Proof. It is obvious that
M̂∆Z = X∆Y (6.21)

hence, Z and M̂ determine the symmetric difference of X and Y . From
the transition Z → Z ′, we can trace back which transition steps have been
already made in the following way. The order of the components of X∆Y is
determined, and from the transition Z → Z ′ we know the current component.
We also know the beginning and the direction of the component, be it either
a path or a cycle, hence, we know which edges have been changed in the
component so far, and which ones not yet. From these, we can reconstruct
X and Y .

Lemma 97. A matching can be obtained from M̂ by deleting at most two
edges.

129

 dc_2046_22

Proof. On each component in X∆Y , we delete at most two edges before
putting back one. Hence M̂ contains at most either 4 consecutive edges along
a path or 2 pair of edges, and all remaining edges are independent. Therefore
it is sufficient to delete at most two edges from M̂ to get a matching.

Denote this matching by M̃.

Lemma 98.
θ(X)θ(Y)

θ(Z)
= O(poly(N))θ(M̃) (6.22)

Proof. We prove that

f(X)f(Y)

f(Z)f(M̃)
= O(poly(N)) (6.23)

It proves the lemma, as θ(·) and f(·) differ only by a normalizing constant.

M̃∆Z differs at most in two edges from X∆Y . These edges appear in
X∆Y , but not in M̃∆Z. The two vertices of any missing edges correspond
to components which are independently sorted either in Z or M̃, but jointly
in either X or Y . Amongst these two vertices, one of them correspond to a
W -shaped component A, the other to an M -shaped component B. Let k1
be the number of adjacencies and telomeres of G1 in A, and k2 the number
of adjacencies and telomeres of G1 in B. The ratio on the left-hand side of
Equation 6.23 due to such difference is

T (k1, k2)

(k1 + k2 + 1)!

/ I(k1)I
′(k2)

k1!(k2 + 1)!
(6.24)

where I(x) denotes the independent sorting of aW -shaped component of size
x, and I ′(x) denotes the independent sorting of an M -shaped component of
size x. However, it is polynomially bounded, since

I(k1)I
′(k2)(

k1+k2+1
k1

) = I(k1, k2) (6.25)

and we can apply Theorem 93.

These results together lead to the following theorem:

Theorem 99. The Metropolis-Hastings Markov chain on the matchings de-
fined above converges rapidly to θ.

130

 dc_2046_22

Proof. From Lemma 98, Equation 6.19 may be written

κΓ ≤ O(poly(N)) max
e=(u,v)∈E

∑
(x,y)∈V×V :e∈Γx,y

θ(M̃).

By Lemmas 96 and 97, a matching M̃ may appear only a polynomial number
of times in this sum. So

κΓ ≤ O(poly(N))
∑
M̃

θ(M̃),

and as
∑

M̃ θ(M̃) = 1, κΓ is bounded by a polynomial in N . This proves the
theorem.

Using this result, we can prove the following theorem

Theorem 100. #MPDCJMW ∈ FPAUS

Proof. The above defined Markov chain on partial matchings is an aperiodic,
irreducible and reversible Markov chain, with only positive eigenvalues. Fur-
thermore, a step can be performed in running time polymonial with the size
of the graph. For any start state i, log(1/θ(i)) is polynomially bounded with
the size of the corresponding genomes G∗

1 and G2, since there are O(N
2) DCJ

operations, the length of the DCJ paths is less than N , thus the number of
sorting DCJ paths are O(N2N), and the inverse of the probability of any
partial matching is less than this. Thus, the relaxation time is polynomial
in both N and log(1/ϵ), according to Theorem 25. This means that in fully
polynomial running time (polynomial both in N and − log(ϵ)) a random
partial matching can be generated from a distribution p satisfying

dTV (p, θ) ≤ ϵ (6.26)

But then a random DCJ path can be generated in fully polynomial running
time following a distribution q satisfying

dTV (q, U) ≤ ϵ (6.27)

according to Theorem 94. This is what we wanted to prove.

Now we are ready to conclude by our main theorem:

Theorem 101. #MPDCJ ∈ FPRAS

Proof. #MPDCJMW ∈ FPAUS according to Theorem 100. Then #MPDCJ ∈
FPAUS according to Theorem 89. Since #MPDCJ is a self-reducible count-
ing problem, it is in FPRAS [54].

131

 dc_2046_22

6.6 Conclusion

Sampling from reversal scenarios has been conjectured to be #P-complete
[124], but almost all counting problems on genome rearrangement scenarios
have an open complexity status. We conjecture that sampling from DCJ
scenarios is also #P-complete, and we proved in this chapter that it admits
an FPRAS. Braga and Stoye [14] proved that altering three consecutive
steps in a DCJ sorting path is sufficient to get an irreducible Markov chain.
Such a Markov chain can be also used in a Metropolis-Hastings algorithm
to converge to the uniform distribution of all DCJ sorting scenarios. We
conjecture that it is also a rapidly mixing Markov chain, which would give
a more direct proof of our results. Interestingly, proving the rapid mixing of
this chain seems to be a technically very hard task even for genomes whose
adjacency graph does not contain any M orW-shaped path. This is surprising
given that for these cases exact enumeration results are known.

132

 dc_2046_22

Part III

Negative results: torpid
mixing, #P-complete and
non-approximable problems

133

 dc_2046_22

 dc_2046_22

Chapter 7

The Metropolized Partial
Importance Sampling MCMC
mixes slowly on minimum
reversal rearrangement paths

Markov chain Monte Carlo has been the standard technique for inferring the
posterior distribution of genome rearrangement scenarios under a Bayesian
approach. We present here a negative result on the rate of convergence of
a generally used Markov chain in genome rearrangement. We prove that
the relaxation time of the Markov chains walking on the most parsimonious
reversal sorting scenarios might grow exponentially with the size of the signed
permutations, namely, with the number of syntheny blocks.

This was a joint work with Bence Mélykuti and Krister Swenson. KS
showed a permutation similar to the first part of the permutation on Fig-
ure 7.1. In a previous work with Timothy Brooks Paige, we found permuta-
tions whose reversal sorting solution space contained big gaps (see the text
in this chapter for details), however, with a much more complicated struc-
ture of their solution space. The permuations we found with KS have a very
simple solution space providing an easy proof of the main theorem presented
in this work. BM contributed in the discussions and careful reading and
correcting of this manuscript. The original manuscript has been published
in IEEE/ACM Transactions in Computational Biology and Bioinformatics,
2010, 4(7):763-767, doi: 10.1109/TCBB.2009.26.

135

 dc_2046_22

7.1 Partial Importance Sampling

Sometimes each point in the state space of a Markov chain Monte Carlo
can be represented as a vector, and the primary Markov chain modifies the
current state, xt, by changing a subset (or window) of its coordinates, w.
Let w′ denote the newly drawn coordinates of y proposed from xt. Then the
Equation 1.12 in the Preliminaries becomes

π(y)T (xt, w
′|y)

π(xt)T (y, w|xt)
(7.1)

where T (a, w|b) tells the probability of proposing a from b by choosing
and modifying the coordinates w. When the newly drawn coordinates of
y do not depend on the respective coordinates of xt, the algorithm is called
Metropolized Partial Importance Sampling .

In the case of genome rearrangements, the state space of MCMC is the
set of allowed transition paths (or rearrangement scenarios) between two
genomes, g1 and g2, typically restricted to shortest rearrangement scenarios.
Such a state space can be considered as being comprised of (d(g1, g2) + 1)-
tuples of genomes, where d(g1, g2) is the distance between genomes g1 and
g2. (g1, intermediate genomes connecting g1 to g2, and g2). A Metropolized
Partial Importance Sampler cuts out a subpath from the current path, which
is framed by genomes gk and gℓ and draws a new subpath transforming gk
into gℓ. This subpath is drawn from a distribution that does not depend on
the cut out subpath. In published implementations [28, 58, 59, 114, 118, 100],
the new subpath is drawn step by step, drawing a new intermediate genome
by considering the list of mutations that act on the current intermediate
genome. If the allowed transition paths are the minimum reversal sorting
paths, then the next intermediate genome is drawn by applying a random,
uniformly distributed sorting reversal on the current intermediate genome.
Formally, we can define this Markov chain in the following way.

Definition 102. Let π be a signed permutation. The state space of the
M(π) Markov chain is the sortest reversal sorting paths of π, represented by
the sequences of signed permutations, π = π0, π1, π2, . . . , πk = id, where k is
the reversal distance of π. Let p be an arbitrary, but fixed distribution of the
substrings of 0, 1, 2 . . . , k of length at least 3. The primary transitions of the
Markov chain are defined by the following algorithm:

1. Select a substring of 0, 1, 2, . . . , k following the distribution of p, i, i +
1, . . . , j.

136

 dc_2046_22

2. Let σ0 := π−1
j πi, and let m = 0.

3. While σm ̸= id, choose a sorting reversal of σm, trm following the
uniform distribution of the sorting reversals of σm. Let σm+1 = σm◦trm,
and increase m by 1.

4. The proposed new sorting path is

π0, π1, . . . , πi, πi◦tr0, πi◦tr0◦tr1, . . . , πi◦tr0◦tr1◦. . .◦trj−i = pj, pj+1, . . . , πk.

5. The Metropolis-Hastings algorithm is applied on the primary Markov
chain so it converges to the uniform distribution of all shortest sorting
paths.

In the next section, we prove that this kind of MCMC mixes slowly in
the worst case.

7.2 ParIS mixes slowly on minimum reversal

paths

In this section, we prove the torpid mixing of the above defined Markov chain
using the Cheeger inequality defined in Equation 1.28.

Theorem 103. The Markov chainM(π) defined in Definition 102 is torpidly
mixing in the sense as defined in Definition 29 for any window distribution
p.

Proof. For each n ∈ N we construct a signed permutation of length 13n− 2.
Fig. 7.1. shows the general structure of the permutation from our example.
Its graph of desire and reality can be split into two parts. The first part is a
single component that consists of 4n− 2 rainbow motifs, each chained to the
next, with a cycle of length 6 chained to the end. The second part contains
n repeats of cycles of length 10 being equivalent to the −1, −2, −3, −4
permutation. Such permutation exists for every n. The general permutation
of the first part is shown in Fig. 7.2, the second part contains the numbers
in the identical order, one positive sign is followed by four negative signs,
namely, the second part of the permutation is

8n− 1, −(8n), −(8n+ 1), −(8n+ 2), −(8n+ 3), 8n+ 4, . . .

137

 dc_2046_22

Figure 7.1: The general structure of the graph of desire and reality of the
signed permutation that we generated. See main text for details.

6n−2, 6n−3, 1, 6n−4, 6n−1, 6n−5, 2, . . . k, 6n−2k−2, 6n+k−2, 6n−2k−3, k+1, . . .
2n−2, 2n+2, 8n−4, 2n+1, 2n−1,−(8n−2), 2n, 8n−3, 8n−1

Figure 7.2: The general form of the signed permutation for the first compo-
nent on Fig. 7.1

It is easy to show that the first part of the permutation needs 4n reversals
to get sorted, and it has exactly two most parsimonious sorting paths by
reversals. Moreover, these two sorting paths have only the start and end
genome in common, all the intermediate genomes of the two sorting paths
are different. Indeed, there are two cycle-increasing reversals on the cycle
of length 6, both of them are sorting reversals. It causes the last rainbow
cycle becomes a twisted cycle and the cycle of length 6 is split into a trivial
cycle and a twisted cycle. In the second step, however, only the twisted cycle
that was a rainbow cycle at the beginning can be the subject of a sorting
reversal, since the reversal on the other cycle causes no black vertex in the
overlap graph. That is, it is not a sorting reversal. It causes a rainbow cycle
becomes twisted and the other twisted cycle becomes a rainbow cycle. The
only sorting reversal in the third step is applied on the twisted cycle, and
causes two twisted cycles overlapping at the end of the chain. This patterns
continues: in every even step, there are two twisted cycles (except in the
last step), and only on one of them there is a sorting reversal. In every odd
step, there is one twisted cycle on which a sorting reversal might act. In
the last step, there is only one twisted cycle, and the reversal on it sorts the
permutation.

Each cycle of length 10 in the second part of the permutation needs 4
reversals to get sorted, and each of them has 26 most parsimonious sorting
paths. Of these 26, 4! = 24 paths reverse single numbers one by one, and
they form a four-dimensional hypercube, i.e. they have 14 common interme-
diate genomes in addition to the start and end genomes. The remaining two

138

 dc_2046_22

sorting paths reverse the first or last three numbers of the permutation alter-
nately, twice each (see also Example 1 on page 32). The Hannenhalli-Pevzner
theorem says that all sorting paths of a permutation are combinations of the
sorting paths over its components, therefore there are

|ID| = 2× 26n × (8n)!

(4n)!(4!)n
(7.2)

sorting paths of the nth member of the series. This set of paths can be
partitioned into two, equal size parts based on which path they use for sorting
the first component. Let SD be one of these sets. We are going to show
that F (SD)/πD(SD) converges to 0 exponentially fast with n, and hence,
exponentially fast with |D| = 13n− 2.

The first observation is that

F (SD)

πD(SD)
=

1

|SD|
∑

x∈SD,y∈ID\SD

PD(y|x) (7.3)

since πD is the uniform distribution. We proceed by cutting SD into three
parts such that the first two parts are ‘negligibly‘ small (that is, exponen-
tially small compared to the whole solution space), and the third contains
an ergodic flow towards the complement of SD that is too small. Let SD,1

be the subset of SD which contains the paths in which there are less than(
7 + 9

11

)
n intermediate genomes between the first and last sorting reversals

of the first component. Since each sorting path contains 8n reversals and 4n
reversals sort the first component, there exists a c1 > 1 for which

|SD,1|
|SD|

= O

(
1

cn1

)
(7.4)

since the reversals sorting the first component can be positioned without
constraints in

(
8n
4n

)
ways into each complete sorting path, and in less than((7+ 9

11)n
4n

)
ways if all these mutations must be put in a window of length less

than
(
7 + 9

11

)
n, and the number of possible windows in a series of reversals

of length 8n is O(n2).
The remaining set SD\SD,1 contains sorting paths in which the complete

sorting of at least 9
11
n cycles of length 10 are between the first and the last

sorting reversals of the large component. Let SD,2 be the subset of SD\SD,1

that contains paths in which at most 3
4
n cycles of length 10 are sorted with

139

 dc_2046_22

single number reversals between the first and the last sorting reversals of the
large component. It is obvious that there exists a c2 > 1 for which

|SD,2|
|SD|

= O

(
1

cn2

)
(7.5)

since the number of cycles of length 10 that are sorted with single number
reversals are binomially distributed with mean 24

26
k with k ≥ 9

11
n. Hence

3
4
n < 24

26
k, and we can apply the Chernoff inequality.

Let SD,3 be SD\ (SD,1 ∪ SD,2). We have

F (SD)

πD(SD)
=

1

|SD|

(∑
x∈SD,1,y∈ID\SD

PD(y|x)+∑
x∈SD,2,y∈ID\SD

PD(y|x)+∑
x∈SD,3,y∈ID\SD

PD(y|x)
)

(7.6)

|SD,1| and |SD,2| are upper bounds for the first and the second sum, hence

F (SD)

πD(SD)
= O

(
1

min{c1, c2}n

)
+

1

|SD|
∑

x∈SD,3,y∈ID\SD

PD(y|x) (7.7)

Recall that

PD(y|x)=
∑
w

TD(y, w|x)min

{
1,
πD(y)TD(x,w

′|y)
πD(x)TD(y, w|x)

}
=
∑
w

min {TD(y, w|x), TD(x,w′|y)} (7.8)

and hence, PD(y|x) can be bounded by

PD(y|x) ≤
∑
w

TD(x,w
′|y) (7.9)

Let c = min {c1, c2}, and we have

F (SD)

πD(SD)
≤ O

(
1

cn

)
+

1

|SD|
∑
w

∑
x∈SD,3,
y∈ID\SD

TD(x,w
′|y) (7.10)

140

 dc_2046_22

where the first sum runs only on windows w that contain the first and the
last reversal sorting step of the large component. The inner sum sums for
all y the probability that such a subpath is proposed in the w′ window that
transforms y into in the SD,3 set. For a particular y, there is a c3 > 1 such
that the probability of the transformation towards any x ∈ SD,3, namely,∑

x∈SD,3
TD(x,w

′|y) is O
(

1
cn3

)
. This is because at least 3

4
n cycles of length

10 should be sorted by single number reversals for a successful transition.
However, in the proposal distribution the number of cycles of length 10 that
are sorted by single number reversals is binomially distributed with mean
4
6
k = 2

3
k (since 4 of the possible 6 sorting reversals on −1,−2,−3,−4 are

single number reversals) for k smaller than n and we can again apply the
Chernoff bound. The number of ys in the subset ID\SD is exactly |SD|, the
number of possible windows is only O(n2), hence for some 1 < c∗3 < c3

F (SD)

πD(SD)
= O

((
1

min{c1, c2, c∗3}

)n)
(7.11)

7.3 Discussion and Conclusion

In this chapter we showed that the Metropolized Partial Importance Sampler
might mix slowly on the set of minimum reversal paths. The cause of slow
mixing are the big gaps in the most parsimonious sorting paths, like the gaps
between the two most parsimonious sorting paths of the large component in
our example. Due to these big gaps, large portions of the actual sorting path
should be replaced in the proposal to get an irreducible chain. The large
changes cause small acceptance ratios, and eventually slow mixing. One
might argue that the Metropolized Partial Importance Sampling could be
improved on the above mentioned example if it resampled mutations only on
one component (whose mutations might not be consecutive on the current
path). However, big gaps are common in genome rearrangements paths, for
example, it can be shown that hurdle-cutting and hurdle merging [45] sorting
paths are disjoint except for the start and the end genome. Both the hurdle-
cutting and the hurdle-merging paths might be numerous, and we conjecture
that the Metropolized Partial Importance Sampler might mix slowly even on
sorting two hurdles.

141

 dc_2046_22

Our result does not prove but suggests that the similar MCMC methods
on the posterior distribution of all sorting paths [28, 58, 59, 114, 118, 100]
might also mix slowly. Indeed, the key point in our proof is that the back-
proposal probability is vanishingly small for the majority of the set of paths
SD, and we saw similar behavior in the case of the posterior distribution
of rearrangement paths. The BADGER software [81, 59] has a pre-burn-
in phase in which the proposal and backproposal probabilities are omitted
from the Metropolis-Hastings ratio, and this makes the likelihood improve
significantly. If that pre-burn-in phase is switched off, the burn-in phase
remains at low likelihood values and no convergence is obtained. Indeed, our
experiments [105] showed that without this pre-burn-in phase, the Markov
chain does not converge on Yersinia phylogenies. Therefore we had to use
the BADGER software instead of our software, which does not apply this
pre-burn-in trick [118].

However, this proof does not imply in any sense that no fast mixing
Markov chain exists for sampling from the uniform distribution of minimum
reversal sorting paths or posterior distributions of genome rearrangement
paths under a Bayesian framework. Indeed, there are at least two possible
ways to improve the mixing of Markov chains: with novel proposals that
might destroy bottlenecks and with parallel chains that exchange informa-
tion. We show one example for each.

• Let a reversal be described as a double cut-and-join (DCJ) muta-
tion. The DCJ representation of a reversal tells which adjacencies are
changed in the signed permutation. Let sorting paths be described by
their series of reversals in DCJ representation. For example, the sorting
path:
+3,+4,−1,−2 → +1,−4,−3,−2 → +1,+2,+3,+4
is represented by (0, t3|t1, h2) (h1, h4|t2, 5), where h and t denote the
head and tail, that is, the end and the beginning of a directed edge.
This means that before the first reversal, the beginning of gene 3 was
at the beginning of the permutation (represented as 0), the beginning
of gene 1 was in adjacency with the end of gene 2, and the first reversal
swapped the positions t3 and t1. Similarly, the second reversal breaks
the adjacencies between h1 and h4 and between t2 and the end of the
permutation by swapping h4 and t2. Note that (a, b|c, d) means the
same reversal as (d, c|b, a), but differs from, for example, (b, a|c, d).
Let the vertices of a graph be the minimum reversal paths of a signed

142

 dc_2046_22

permutation. Let two points of this graph be connected iff at most
four, not necessarily consecutive reversals can be removed from each
of their DCJ representations such that the remaining patterns will be
the same (note that the remaining representations of DCJ mutations
might not represent valid DCJ operations). Our conjecture is that the
graph will always be connected if the signed permutation contains only
oriented components. Above this conjecture, it is an open question if
such fixed number of removals holds for all signed permutations, and if
so, the so-obtained Markov chain (namely, remove a fixed number of not
necessarily consecutive reversals and put back reversals not necessarily
to the same place) can be transformed into a rapidly mixing MCMC.
The hope that such a Markov chain might be rapidly mixing is due to
the fact that in such Markov chain there is a polynomial lower bound
for the backproposal probabilities (and hence for the acceptance ratio)
while the diameter of the Markov chain will grow also polynomially
with the problem size.

The conjecture is proved for a class of permutations in Chapter 9.

• For a signed permutation of length n that can be sorted in k steps, we
create a Markov chain whose states are k+1-tuples. The first coordinate
of any element in the state space contains the signed permutation, and
the lth coordinate contains a transformation path from the given signed
permutation to an other signed permutation that can be sorted in l−1
steps.

We define a Markov chain on this set that changes two consecutive
coordinates, the lth and l + 1st in the following way. The new lth co-
ordinate is the shortened path in the old l + 1st coordinate, and the
new l + 1st coordinate is a random extension of the old lth coordi-
nate. Applying the appropriate Metropolis-Hastings ratio, the Markov
chain will converge to the uniform distribution. We could prove that
this Markov chain on its own generally will not converge rapidly to the
equilibrium distribution [116], however, the mixing is rapid on Yersinia
data if the following inside-swapping step is also added to the transition
kernel of the Markov chain. The inside-swapping step swaps two con-
secutive commuting reversals on one of the sorting paths. To do such a
step, we first choose a random i between 2 and k+1, then we count all
the neighboring reversals in the sorting path in the ith coordinate that

143

 dc_2046_22

can be swapped. We select a random pair, calculate how many com-
muting reversal neighbors there are after swapping them, and calculate
the corresponding Metropolis-Hastings ratio with which we accept the
change. We compared this Markov chain with the Importance Sam-
pling method of Ajana et al. [4], and showed that this latter method
explores only a negligible part of the possible sorting reversals. Since
the Partial Importance Sampling method applies the same Importance
Sampling transition kernel, this again suggests that the slow conver-
gence of the Markov chain we described in this manuscript might be a
general problem in case of real data, not only for the example we gave.

We also would like to highlight that a commonly used method, Parallel
Tempering [39], also known as (MC)3 [73] will not work. Indeed, in this
chapter, we showed that an MCMC might mix slowly even if the target dis-
tribution is the uniform one, and the uniform distribution cannot be further
heated.

144

 dc_2046_22

Chapter 8

Hardness results on SCJ
problems

In this chapter, we prove that two counting problems from the five on re-
arrangement models defined in the Preliminaries are hard under the SCJ
model. We prove that counting most parsimonious evolutionary histories
on an evolutionary tree under the SCJ model is #P-complete, and does
not have an FPRAS approximation if RP ̸= NP. Miklós, Tannier and Kiss
proved the non-approximability in Theoretical Computer Science, 552:83–98,
DOI: 10.1016/j.tcs.2014.07.027. Here we present a modified proof based on
the work of Miklós and Smith. This modified proof also proves the #P-
completeness.

We also prove that counting the most parsimonios median scenarios is
#P-complete. This was a joint work with Heather Smith. The author of the
thesis suggested to prove the theorem using the Chinese reminder theorem.
The detailed computations presented in Table 8.2 was done by Heather Smith
using the guidance of the author of this thesis. The original work has been
published in Advances in Applied Mathematics102:18–82.

8.1 Counting the most parsimonious substi-

tution histories on an evolutionary tree

In this section, we are going to introduce a #P-completeness proof based on
the work of Miklós, Tannier and Kiss [126] and Miklós and Smith [123]. The
small parsimony problem is defined in the following way.

145

 dc_2046_22

Definition 104. (SP-Tree) Given a finite alphabet Γ, a rooted binary tree
T = (V,E), where L ⊂ V denotes the leaves of the tree and f : L → Γk, a
function assigning a sequence of length k to each leaf of the tree. The SP-tree
problem is to compute a function g : V → Γk such that g(v) = f(v) for all
v ∈ L, and the score ∑

(u,v)∈E

H(g(u), g(v)) (8.1)

is minimized, where H denotes the Hamming distance of the sequences, that
is, the number of positions in which the two sequences differ.

The SP-Tree problem is known to be an easy optimization problem,
and the number of functions g minimizing the score in Equation (8.1) can be
found in polynomial time. However, the counting problem becomes hard if
we would like to obtain the number of most parsimonious scenarios instead
of labelings of the internal nodes. There are H(g(u), g(v))! number of ways
to transform the sequence labeling vertex u to the sequence labeling vertex v
using H(g(u), g(v)) substitutions (a substitution changes one character in a
sequence). Therefore, if G denotes the set of functions minimizing the score
in Equation (8.1), then we would like to compute∑

g∈G

∏
(u,v)∈E

H(g(u), g(v))! (8.2)

We will denote this counting problem #SPS-Tree (small parsimony sce-
nario on trees). We are going to show that computing this number is #P-
complete even if the problem is restricted to an alphabet of size 2. First we
need the following lemma. Recall that a conjunctive normal form is a logical
function expressed as a conjunction of disjunctive clauses, each clause is a
disjunction of literals, a literal is either a logical variable or its negate. When
each clause is a disjunction of 3 literals, we call the logical function a 3CNF
.

Lemma 105. For any 3CNF Φ, there exists a 3CNF Φ′ such that the fol-
lowing hold:

1. Φ′ can be constructed in polynomial time, particularly, the size of Φ′ is
a polynomial function of the size Φ.

2. Φ and Φ′ have the same number of satisfying assignments.

146

 dc_2046_22

3. Φ′ contains an even number of variables, and in any satisfying assign-
ments of Φ′, exactly half of the variables have a logical value TRUE.

Proof. Let x1, x2, . . . xn be the variables in Φ. Φ′ contains the variables
x1, x2, . . . , xn, y1, y2, . . . yn, and is defined as

Φ′ := Φ ∧
n∧

i=1

((xi ∨ yi ∨ xi+1) ∧ (xi ∨ yi ∨ xi+1)∧

(xi ∨ yi ∨ xi+1) ∧ (xi ∨ yi ∨ xi+1)) (8.3)

where the index of xi+1 is taken modulo n, that is, xn+1 is defined as x1.
The assignments of the xi variables in any satisfying assignment of Φ′ also

satisfies Φ, therefore, it is sufficient to show that any satisfying assignment
of Φ can be extended to exactly one satisfying assignment of Φ′. But this
is obvious: the conjunctive form in Equation (8.3) forces that yi must take
the value of xi. This provides also that in any satisfying assignment of Φ′,
exactly half of the values will take the TRUE value.

We need the following theorem.

Theorem 106. The #3SAT problem, that is, counting the satisfying assign-
ments of a 3CNF is #P-complete.

The proof can be found, for example, in [115]. To prove that computing
the quantity in Equation (8.2) is #P-complete, we give a polynomial running
time algorithm which for any 3CNF formula Φ, constructs a problem instance
p ∈ #SPS− TREE with the following property: The number of solutions of
p can be written as a+by, where y is the number of satisfying assignments of
Φ, b is an easy-to-calculate positive integer, and 0 < a≪ b. Thus, if s is the
number of solutions of p, then

⌊
s
b

⌋
is the number of satisfying assignments of

Φ.
Let Φ be a 3CNF, and let Φ′ be the 3CNF that has as many satisfying

assignments as Φ and in all satisfying assignments, the number of TRUE and
FALSE values are the same. Let n denote the number of logical variables in
Φ′ and let k denote the number of clauses in Φ′. We are going to construct a
tree denoted by T ′

Φ, and to label its leaves with sequences over the alphabet
{0, 1}. The first n characters of each sequence correspond to the logical
variables xi, and there are further, auxiliary characters. The number of

auxiliary characters are 148k
(⌈

(k log(n!) + n log(2))/ log(2
20

312
)
⌉
+ 1
)
. The

147

 dc_2046_22

construction is such that there will be 2n most parsimonious labelings of the
internal nodes, one for each possible logical assignment. Each labeling is such
that the labeling of the root completely determines the labelings at the other
internal nodes. The corresponding assignment is such that the value of the
logical variable xi is TRUE if there is a character 1 in the sequence at the
root of the tree in position i. The characters in the auxiliary positions are 0
in all the most parsimonious labelings.

If an assignment is a satisfying assignment, then the corresponding la-
beling has many more scenarios than the labelings corresponding to non-
satisfying assignments. Furthermore, for each satisfying assignment, the cor-
responding labelings have the same, easy-to-compute number of scenarios.

For each clause cj, we construct a subtree Tcj . The construction is done
in three phases, illustrated on Figure 8.1. First, we create a constant-size
subtree, called the unit subtree, using building blocks we call elementary
subtrees. Then in the blowing-up phase, this unit subtree is repeated sev-
eral times, and in the third phase it is amended with another constant-size
subtree. The reason for this construction is the following: the unit subtree
is constructed in such a way that if a clause is satisfied, the number of sce-
narios on this subtree is large, and is always the same number not depending
on how many literals provide satisfaction of the clause. When the clause is
not satisfied, the number of scenarios is a smaller number. The blowing up
is necessary for sufficiently separating the number of solutions for satisfy-
ing and non-satisfying assignments. Finally, the amending is necessary for
achieving 2n most parsimonious labelings on each Tcj and to guarantee that
the number of most parsimonious scenarios is the same for each satisfying
assignment. The amending is slightly different for those clauses that come
from Φ and those that are in Φ′ \ Φ.

We detail the construction of the subtree for the clause cj = x1 ∨ x2 ∨ x3,
denoted by Tcj . Subtrees for the other kinds of clauses are constructed sim-
ilarly. The unit subtree is built from 76 smaller subtrees that we will call
elementary subtrees. On each elementary subtree, the sequences labeling
the leaves contains 0 at almost all the positions, except the positions corre-
sponding to the literals of the clause and the position of the possible auxiliary
character. Only 14 different types of elementary subtrees are in a unit sub-
tree, but several of them have given multiplicity, and the total count of them
is 76, see also Table 8.1. Some of the elementary subtrees are cherry motives
(two leaves connected via an internal node, see also Fig. 8.2.a)) for which
we arbitrarily identify a left and a right leaf. For some of these cherries, we

148

 dc_2046_22

... elementary subtrees

...

6 7 4 4 4 4 4 8 4 4 4 4 4

unit subtrees

blowing up

6 7 4 4 4 4 4 8 4 4 4 4 4

amending

6 7 4 4 4 4 4 8 4 4 4 4 4

...

...

Figure 8.1: Constructing a subtree Tcj for a clause cj. The subtree is built
in three phases. First, elementary subtrees are connected with a comb to
get a unit subtree. In the second phase the same unit subtree is repeated
several times, “blowing up” the tree. In the third phase, the blown-up tree
is amended with a constant size, depth 3 fully balanced tree. The smaller
subtrees constructed in the previous phase are denoted with a triangle in the
next phase. See also text for details.

149

 dc_2046_22

introduce one or more auxiliary characters, which are 1 only on the indicated
leaf of the cherry and 0 everywhere else in the tree. So the edges connect-
ing these leaves to the rest of the entire tree TΦ′ will contain one or more
additional substitutions in all the most parsimonious solutions.

The constructed unit subtree will be such that if the clause is not satisfied,
the number of possible most parsimonious scenarios for the corresponding
labeling on this unit subtree is 2136 × 376, and if the clause is satisfied, then
the number of possible most parsimonious scenarios for each corresponding
labeling is 2156 × 364. The ratio of the two numbers is 220/312 > 1. We will
denote this number by γ.

Below we detail the construction of the elementary subtrees and also
give the number of most parsimonious scenarios on them since the number
of scenarios on the unit subtree is simply the product of these numbers.
This part is quite technical, however, the careful reader might observe the
following. The number of scenarios for a fixed labeling on a unit tree is the
product of the number of scenarios on the elementary trees. These numbers
are always in 2x3y form, and we need a (linear) combination of unit trees such
that the sum of the exponents both on 2 and 3 is the same for all satisfying
assignments and different for the non-satisfying assignment; furthermore, the
number of solutions for the non-satisfying assignment is smaller than for any
of the satisfying assignments. Such combinations can be found by some linear
algebraic considerations not presented here; below we just show one possible
solution.

For each elementary tree, we give the characters at positions of the three
literals. The elementary trees which are cherries are the following:

• There are four cherries on which the left leaf contains 1 in an extra
position, and the characters in the positions of the three literals on the
left and right leaf are given by

011, 100
101, 010
110, 001
000, 111.

The first column shows the characters in the positions corresponding
to the literals on the left leaf, while the second column shows those

150

 dc_2046_22

characters on the right leaf. Observe that there are 16 most parsi-
monious labelings of the root of the cherry motif and each needs 4
substitutions. However, 8 of them contain a character 1 in the auxil-
iary position, which will not be a most parsimonious labeling on TΦ′ ,
as we discussed. So we have to consider only the other 8 labelings,
where the characters are all 0, except the positions corresponding to
the literals.

The number of scenarios on one cherry is 24 if the sequence at the root
of the cherry is the same as on the right leaf. Indeed, in that case, 4
substitutions are necessary on the left edge, and they can be performed
in any order. If the number of substitutions are 3 and 1, respectively,
on the left and right edges, or vice versa, the number of solutions is
6. Finally, if both edges have 2 SCJ operations, then the number of
solutions is 4.

• There is one cherry motif without any extra adjacency, and the char-
acters in the positions corresponding to the literals are

000, 111.

There are 8 most parsimonious labelings at the root, and each needs 3
substitutions. If the labeling at the root corresponds to a non-satisfying
assignment, the number of scenarios on this cherry is 6; if all logical
values are true, the number of scenarios is still 6; in any other case, the
number of scenarios is 2.

This elementary subtree is repeated 3 times.

• Finally, there are 3 types of cherry motifs with a character 1 at one-one
auxiliary positions on both leaves. These are two different adjacencies,
so both of them need one extra substitution on their incoming edge.
The characters in the positions corresponding to the literals are

011, 100
101, 010
110, 001.

151

 dc_2046_22

There are 8 possible labelings of the root which are most parsimo-
nious in TΦ′ , and each needs 5 substitutions. If all substitutions at the
positions corresponding to the 3 literals falls onto one edge, then the
number of scenarios is 24, otherwise the number of solutions is 12.

Each of these elementary subtrees is repeated 15 times.

The remaining elementary subtrees contain 3 cherry motifs connected
with a comb, that is, a completely unbalanced tree, see also Figure 8.2. For
the cherry at the right end of this elementary subtree, there is one or more
auxiliary positions that have character 1 at one of the leaves and 0 everywhere
else in TΦ.

There are 3 elementary subtrees of this type which have only one auxiliary
position. On these trees, the sequence at the right leaf of the rightmost cherry
is all 0, and the sequence at the left leaf of the rightmost cherry motif is all
0 except at the auxiliary position and exactly 2 positions amongst the 3
positions corresponding to the literals.

The remaining leaves of these elementary subtrees are constructed in
such a way that there are 8 most parsimonious labelings, each needing 7
substitutions, see the example in Figure 8.2. The number of substitutions is
0 or 1 at each edge except the two edges of the rightmost cherry motif. Here
the number of substitutions might be 3 and 0, 2 and 1, or 1 and 2, yielding
6 or 2 scenarios, see also Table 8.1.

Each of these elementary subtrees are repeated 3 times.

Finally, there are 3 elementary subtrees of this type which have one aux-
iliary position for the left leaf of the rightmost cherry motif, and there are
2 auxiliary positions for the right leaf of the rightmost cherry motif. The
sequence at the right leaf of the rightmost cherry is all 0 except at the 2 aux-
iliary positions, and the sequence at the left leaf of the rightmost cherry motif
is all 0 except at the auxiliary positions and exactly 2 positions amongst the
3 positions corresponding to the literals.

The remaining leaves of these elementary subtrees are constructed in
such a way that there are 8 most parsimonious labelings, each needing 9
substitutions, see the example in Figure 8.2. The number of substitutions is
0 or 1 on each edge except the two edges of the rightmost cherry motif. Here
the number of substitutions might be 1 and 4, 2 and 3, or 3 and 2, yielding
24 or 12 scenarios, see also Table 8.1.

Each of these elementary subtrees are repeated 5 times.

152

 dc_2046_22

011 101 110 000 011 101 110 000 011 101 110 011 101 110
1 1 1 1 3 3 3 3 5 5 5 15 15 15

000 6 6 6 6 63 63 63 63 125 125 125 1215 1215 1215

100 24 4 4 4 63 23 23 23 125 125 125 2415 1215 1215

010 4 24 4 4 23 63 23 23 125 125 125 1215 2415 1215

110 6 6 6 6 23 23 23 23 125 125 245 1215 1215 2415

001 4 4 24 4 23 23 63 23 125 125 125 1215 1215 2415

101 6 6 6 6 23 23 23 23 125 245 125 1215 2415 1215

011 6 6 6 6 23 23 23 23 245 125 125 2415 1215 1215

111 4 4 4 24 23 23 23 63 245 245 245 1215 1215 1215

Table 8.1: The number of scenarios on different elementary subtrees of the
unit subtree of the subtree Tcj for clause cj = x1∨x2∨x3. Columns represent
the 14 different elementary subtrees, the topology of the elementary subtree
is indicated on the top. The black dots mean extra substitutions on the
indicated edge due to the characters in the auxiliary positions; the numbers
represent the presence/absence of adjacencies on the left leaf of a particular
cherry motif, see text for details. The row starting with # indicates the
number of repeats of the elementary subtrees. Further rows represent the
logical true/false values of the literals, for example, 001 means x1 = FALSE,
x2 = FALSE, x3 = TRUE. The values in the table indicate the number of
scenarios, raised to the appropriate power due to multiplicity of the elemen-
tary subtrees. It is easy to check that the product of the numbers in the first
line is 2136 × 376 and in any other lines is 2156 × 364.

153

 dc_2046_22

1: 1
2: 1
3: 1
x: 0

1: 1
2: 0
3: 1
x: 0

1: 1
2: 1
3: 0
x: 0

1: 1
2: 0
3: 0
x: 0

1: 0
2: 1
3: 1
x: 1

1: 0
2: 0
3: 0
x: 0

c)

b)

a)

Figure 8.2: a) A cherry motif, i.e., two leaves connected with an internal
node. b) A comb, i.e., a fully unbalanced tree. c) A tree with 3 cherry
motifs connected with a comb. The assignments for 4 adjacencies, α1, α2,
α3 and αx are shown at the bottom for each leaf. αi, i = 1, 2, 3 are the
adjacencies related to the logical variables bi, and αx is an extra adjacency.
Note that Fitch’s algorithm gives ambiguity for all adjacencies αi at the root
of this subtree.

In this way, the roots of all 76 elementary subtrees have 8 most parsimo-
nious labelings corresponding to the 8 possible assignments of the literals in
the clause. We connect the 76 elementary subtrees with a comb, and thus,
there are still 8 most parsimonious labelings at the root of the entire subtree,
which is the unit subtree. If the labeling at the root corresponds to a satis-
fying assignment of the clause, the number of scenarios is 2156 × 364, if the
clause is not satisfied, the number of scenarios is 2136×376, as can be checked
on Table 8.1. The ratio of them is indeed 220/312 = γ. The number of leaves
on this unit subtree is 248, and 148 auxiliary positions are introduced.

This was the construction of the constant size unit subtree. In the next
step, we “blow up” the system. Similar blowing up can be found in the semi-
nal paper by Jerrum, Valiant and Vazirani [54], in the proof of Theorem 5.1.
We repeat the above described unit subtree ⌈(k log(n!) + n log(2))/ log(γ)⌉+1
times, and connect all of them with a comb (completely unbalanced tree). It
is easy to see that there are still 8 most parsimonious labelings. For a solu-
tion satisfying the clause, the number of scenarios on this blown-up subtree
is

X =
(
2156 × 364

)⌈ k log(n!)+n log(2)
log(γ) ⌉+1

(8.4)

154

 dc_2046_22

and the number of scenarios if the clause is not satisfied is

Y =
(
2136 × 376

)⌈ k log(n!)+n log(2)
log(γ) ⌉+1

. (8.5)

It is easy to see that

X

Y
= γ⌈

k log(n!)+n log(2)
log(γ) ⌉+1 ≥ γ

log(n!)k)+log(2n)
log(γ) = n!k2n, (8.6)

and
X

Y
= γ⌈

k log(n!)+n log(2)
log(γ) ⌉+1 ≤ γ

log(n!)k)+log(2n)
log(γ)

+2 = n!k2nγ2, (8.7)

since for any positive number x,

x
1

log(x) = e. (8.8)

Let all adjacencies not participating in the clause be 0 on this blown-up
subtree.

We are close to the final subtree Tcj for one clause, cj. In the third
phase, we amend the so-far obtained tree with a constant-size subtree. The
amending is slightly different for clauses coming from Φ and for those that
are in Φ′ \ Φ. We detail the amending for both cases.

If the clause contains only x logical variables, say, the clause is x1∨x2∨x3,
then construct two copies of a fully balanced depth 6 binary tree, on which
the root has 64 most parsimonious labelings corresponding to the 64 possible
assignments of the literals participating in the clause and their corresponding
logical variables of the y type (namely, y1, y2 and y3). This can be done with
a construction similar to the left part of the tree on Figure 8.2.c).

In one of the copies, all other characters corresponding to logical variables
not participating in the clause are 1 on all leaves, and thus, in each most
parsimonious labelings of the root. In the other copy, those characters should
be all 0.

In the copy, where all other characters are 0, the construction should be
done in such a way that going from the root of the tree, first the y logical
variables must be separated, then the x ones. Namely, characters at the
position corresponding to y1 should be the same (say, 0) on each leaf of the
left subtree of the root and should be the other value on each leaf of the
right subtree of the root. Similalry, for each of the four grandchildren of the
root, the leaves must take the same value at the position corresponding to

155

 dc_2046_22

y2, and these values must be different for the siblings. The same rule must
be applied for the grand-grandchilden of the root. There is an internal node
of this subtree such that on all of its leaves, each character at each position
corresponding to y variables is 0. Replace the subtree at this position with
the blown-up subtree. Connect the two copies with a common root. The so
obtained tree is Tcj .

Observe that there are 2n possible most parsimonious labelings of Tcj .
We have the following lemma on them.

Lemma 107. For any most parsimonious labelings, if Φ′ and thus, particu-
larly, the clause cj is satisfied, then the number of scenarios on Tcj is

X ×
((

n− 6

2

)
!

)2

≥ Y × (n!)k × 2n ×
((

n− 6

2

)
!

)2

. (8.9)

If the clause cj is not satisfied, then the number of scenarios is at most
Y × (n− 6)!. If the clause cj is satisfied, however, Φ′ is not satisfied, then
the number of scenarios is at most X × (n− 6)!.

Proof. There are 3 logical x variables in the clause and there are 3 corre-
sponding y variables. For the remaining n − 6 variables, there are n − 6
substitutions on the two edges of the root. If Φ′ is satisfied, then for each
i, exactly one in the couple (xi, yi) has the TRUE value and the other has
the FALSE value. Therefore, there are n−6

2
substitutions on both edges of

the root. On all remaining edges of the amending, there is either 0 or 1
substitution. Finally, the number of scenarios on the blown-up tree is X.

Therefore, the number of scenarios is indeed X ×
((

n−6
2

)
!
)2

if Φ′ is satisfied.
The inequality in Equation (8.9) comes from Equation (8.6).

If the clause is not satisfied, then the number of scenarios on the blown-up
tree is Y . The substitutions on the two edges of the root might be arbitrarily
distributed, however, in any cases, the number of scenarios is at most (n−6)!.
This extremity is taken when all the substitutions fall onto the same edge.

If cj is satisfied, however, Φ
′ is not, then the number of scenarios on the

blown-up tree is X, and the number of scenarios on the two edges of the root
is at most (n− 6)!.

If the clause is in the form xi ∨ yi ∨ xi+1 (some of the literals might be
negated), then the amending is the following. Construct two copies of a fully
balanced depth 4 binary tree, on which the root has 16 most parsimonious

156

 dc_2046_22

labelings corresponding to the 16 possible assignments of logical variables
xi, yi, xi+1 and yi+1. On one of the copies, all other characters are 0, while
on the other copy, all other characters must be 1. On the copy, where all
other characters are 0, the construction should be such that there must be
an internal node such that at all of its leaves, the characters at the position
corresponding to yi+1 are 0 and the subtree has depth 3. Replace this subtree
with the blown-up tree. Connect the two copies with a common root. This
is the final Tcj tree.

For this tree, a lemma similar to Lemma 107 can be proved.

Lemma 108. For any most parsimonious labelings, if Φ′ and thus, particu-
larly, the clause cj is satisfied, then the number of scenarios on Tcj is

X ×
((

n− 4

2

)
!

)2

≥ Y × (n!)k × 2n ×
((

n− 4

2

)
!

)2

. (8.10)

If the clause cj is not satisfied, then the number of scenarios is at most
Y × (n− 4)!. If the clause cj is satisfied, however, Φ′ is not satisfied, then
the number of scenarios is at most X × (n− 4)!.

Proof. The proof is similar to the proof of Lemma 107, just now there are
n−4 substitutions that must be distributed on the two edges of the root.

For all k clauses, construct such a subtree and connect all of them with a
comb. This is the final tree TΦ′ for the 3CNF Φ′. It is easy to see that TΦ′ has
2n most parsimonious labelings corresponding to the 2n possible assignments
of the logical variables. For these labelings, we have the following theorem.

Theorem 109. If a labeling corresponds to a satisfying assignment, then the
number of scenarios is

Xk ×
((

n− 4

2

)
!

)2n

×
((

n− 6

2

)
!

)k−2n

≥

Y k ×
(
n!k × 2n

)k × ((n− 4

2

)
!

)2n

×
((

n− 6

2

)
!

)k−2n

. (8.11)

If a labeling corresponds to a non-satisfying assignment, then the number of
scenarios is at most

Xk−1 × Y × (n− 4)!2n × (n− 6)!k−2n ≤
Y k ×

(
n!k × 2n × γ2

)k−1 × (n− 4)!2n × (n− 6)!k−2n. (8.12)

157

 dc_2046_22

Particularly, the number of scenarios corresponding to non-satisfying assign-
ments is at most

Y k ×
(
n!k × γ2

)k−1 × (2n)k × (n− 4)!2n × (n− 6)!k−2n ≤

Y k ×
(
n!k × 2n

)k ≪
Y k ×

(
n!k × 2n

)k × ((n− 4

2

)
!

)2n

×
((

n− 6

2

)
!

)k−2n

. (8.13)

Proof. If Φ′ contains n logical variables, then there are 2n clauses in Φ′ \ Φ
and k − 2n clauses in Φ. Based on this, the number of scenarios for any
labelings corresponding to a satisfying assignment can be easily calculated
from Lemmas 107 and 108.

If Φ′ is not satisfied, then at least one of the clauses is not satisfied causing
a smaller number of scenarios on the corresponding subtree. However, the
number of scenarios on other subtrees corresponding to other clauses might
be higher due to the uneven distribution of the substitutions falling onto
the two edges of the root of the subtrees. The upper bounds are based on
Equation (8.7) considering that γ = 220

312
< 2 and n ≥ 6.

What follows is that⌊
s

Xk ×
((

n−4
2

)
!
)2n × ((n−6

2

)
!
)k−2n

⌋
(8.14)

is the number of satisfying assignments of Φ where s is the number of most
parsimonious scenarios on TΦ′ . Since both the size of the tree TΦ′ and the
length of the sequences labeling the leaves of TΦ′ is a polynomial function of
size Φ, furthermore, TΦ′ together with the sequences labeling its leaves can
be constructed in polynomial time, we get the following theorem.

Theorem 110. The counting problem #SPS-TREE is in #P-complete.

8.2 Counting the most parsimonious substi-

tution histories on a star tree

We learned in Section 8.1 that counting the most parsimonious scenarios on
an evolutionary tree is in #P-complete. Here we show that the problem
remains #P-complete if the binary tree is replaced to a star tree. Below we
define this problem.

158

 dc_2046_22

Definition 111. (#SPS-Star) Given a multiset of sequences of the same
length over the same alphabet S = {A1, A2, . . . An}. The #SPS-Star problem
is to compute the value defined as

∑
M∈M

n∏
i=1

H(Ai,M)! (8.15)

where M is the set of sequences that minimizes the sum of Hamming dis-
tances from the sequences in S. Namely, for any M ∈ M,

n∑
i=1

H(Ai,M) (8.16)

is minimal.

Surprisingly, this problem is #P-complete, even if the size of the alphabet
is 2, although finding the size ofM is trivial. It is easy to see thatM consists
of the sequences that contain the majority character for each position. The
majority character might not be unique; the size of M is the product of the
number of majority characters in each position. If the size of the alphabet is
2, say, it is {0, 1}, then the size ofM is 2m, wherem is the number of positions
where half of the sequences in S contain 0 and the other half of them contain
1. Sequences in M are called median sequences. For each median sequence
M ,

∏n
i=1H(Ai,M)! is the number of corresponding scenarios.

Below we present a proof that #SPS-Star is in #P-complete based on
the work of Miklós and Smith [123]. The proof is based on reducing #3SAT
to #SPS-Star using modulo prime number calculations.

Let Φ be a 3CNF with n variables and k clauses, and let p be a prime
number between min 300, n+ 5 and 5min 300, n+ 5. We are going to con-
struct a multiset S containing 2+2n+50k sequences, each of them of length
2n+ 2(q + 4) + 2n(q + 3) + k(75 + 50), where q = p− n+ 5. Each sequence
is in the form

a1b1a2b2 . . . anbne1e2 . . . et(p), (8.17)

where t(p) = 2(q + 4) + 2n(q + 3) + k(75 + 50q). The ai and bi characters
correspond to the logical variable xi in Φ, and the ej characters are additional
characters. In these additional positions, all sequences contain character
0 except one of them. We will say that a sequence contains x additional
ones, which means that there are x additional positions where the sequence

159

 dc_2046_22

contains 1s. The sequences come in pairs such that they are the complement
of each other in the first 2n positions. What follows is that there are 22n

median sequences. The sequences are the following.

1. There is a sequence that contains all 0 characters in the first 2n posi-
tions and has q + 4 additional ones. Furthermore, there is a sequence
that contains all 1s in the first 2n positions and contains q+4 additional
ones. We denote these sequences as A and A.

2. For each index i = 1, . . . n, there are a couple of sequences. For one of
them ai = bi = 1, and for all other j ̸= i ai = bi = 0, and the sequence
contains q+3 additional ones. The other sequence is the complement of
the first one in the first 2n positions and also contains q+3 additional
ones. We denote these sequences by Ai and Ai.

3. For each clause, there are 50 sequences, see Table 8.2. Each sequence
differs in the characters corresponding the logical variables participat-
ing in the clause, in the characters corresponding to other logical vari-
ables and in the number of additional ones. In Table 8.2, column A
gives the characters ai1 , bi1 , ai2 , bi2 , ai3 and bi3 for each sequence if the
clause is (xi1 ∨ xi2 ∨ xi3). If some of the literals are negated, the cor-
responding a and b values must be swapped. In each sequence, for all
j ̸= i1, i2, i3, all characters aj and bj are the same. Column B tells if
it is 1 or 0. Each sequence has q additional ones plus the number that
can be found in column C. These 3 columns completely describe the
sequences; the remaining columns in the table are explained later.

It is easy to see that there are 22n median sequences; the first 2n char-
acters might be arbitrary, and the characters in the additional positions
must be 0. We set up three properties on the medians.

Property 1. Exactly n of the characters are 1 in the median.

Property 2. For each i, ai + bi = 1.

Property 3. For each i, ai + bi = 1, and the assignment

xi =

{
TRUE if ai = 1
FALSE if ai = 0

(8.18)

satisfies Φ.

160

 dc_2046_22

It is easy to see that these properties are nested, namely, if a median
sequence has Property i, then it also has Property j for each j < i. We prove
the following on the median sequences.

If a median sequence M does not have Property 1, then the number of
corresponding scenarios can be divided by p. Indeed, in such a case, either
H(M,A) ≥ p or H(M,A) ≥ p and thus either H(M,A)! or H(M,A)! can be
divided by p.

A B C M1 M2 M3 M4 M5 M6 M7 M8
1 1 1 1 1 0 1 0 1 0 1 1 1 0 0 0 1 0 0 0 1 0 0 0

01 00 00 0 +3 p− 1 p− 1 p− 1 p− 3 p− 1 p− 3 p− 3 p− 3
00 01 00 0 +3 p− 1 p− 1 p− 3 p− 1 p− 3 p− 1 p− 3 p− 3
00 00 01 0 +3 p− 1 p− 3 p− 1 p− 1 p− 3 p− 3 p− 1 p− 3
10 11 11 1 +0 p− 6 p− 6 p− 6 p− 4 p− 6 p− 4 p− 4 p− 4
11 10 11 1 +0 p− 6 p− 6 p− 4 p− 6 p− 4 p− 6 p− 4 p− 4
11 11 10 1 +0 p− 6 p− 4 p− 6 p− 6 p− 4 p− 4 p− 6 p− 4
10 10 00 0 +2 p− 5 p− 5 p− 3 p− 3 p− 3 p− 3 p− 1 p− 1
10 00 10 0 +2 p− 5 p− 3 p− 5 p− 3 p− 3 p− 1 p− 3 p− 1
00 10 10 0 +2 p− 5 p− 3 p− 3 p− 5 p− 1 p− 3 p− 3 p− 1
10 10 00 0 +2 p− 5 p− 5 p− 3 p− 3 p− 3 p− 3 p− 1 p− 1
10 00 01 0 +2 p− 3 p− 5 p− 3 p− 1 p− 5 p− 3 p− 1 p− 3
00 10 01 0 +2 p− 3 p− 5 p− 1 p− 3 p− 3 p− 5 p− 1 p− 3
10 01 00 0 +2 p− 3 p− 3 p− 5 p− 1 p− 5 p− 1 p− 3 p− 3
10 00 10 0 +2 p− 5 p− 3 p− 5 p− 3 p− 3 p− 1 p− 3 p− 1
00 01 10 0 +2 p− 5 p− 1 p− 5 p− 3 p− 3 p− 1 p− 5 p− 3
01 10 00 0 +2 p− 3 p− 3 p− 1 p− 5 p− 1 p− 5 p− 3 p− 3
01 00 10 0 +2 p− 3 p− 1 p− 3 p− 5 p− 1 p− 3 p− 5 p− 3
00 10 10 0 +2 p− 5 p− 3 p− 3 p− 5 p− 1 p− 3 p− 3 p− 1
10 01 00 0 +2 p− 3 p− 3 p− 5 p− 1 p− 5 p− 1 p− 3 p− 3
10 00 01 0 +2 p− 3 p− 5 p− 3 p− 1 p− 5 p− 3 p− 1 p− 3
00 01 01 0 +2 p− 1 p− 1 p− 3 p− 1 p− 5 p− 3 p− 3 p− 5
01 10 00 0 +2 p− 3 p− 3 p− 1 p− 5 p− 1 p− 5 p− 3 p− 3
01 00 01 0 +2 p− 1 p− 3 p− 1 p− 3 p− 3 p− 5 p− 3 p− 5
00 10 01 0 +2 p− 3 p− 5 p− 1 p− 3 p− 3 p− 5 p− 1 p− 3
01 01 00 0 +2 p− 1 p− 1 p− 3 p− 3 p− 3 p− 3 p− 5 p− 5
01 00 10 0 +2 p− 3 p− 1 p− 3 p− 5 p− 1 p− 3 p− 5 p− 3

Continued on next page

161

 dc_2046_22

Table 8.2 – continued from previous page
A B C M1 M2 M3 M4 M5 M6 M7 M8

1 1 1 1 1 0 1 0 1 0 1 1 1 0 0 0 1 0 0 0 1 0 0 0

00 01 10 0 +2 p− 3 p− 1 p− 5 p− 3 p− 3 p− 1 p− 5 p− 3
10 10 11 1 +1 p− 6 p− 6 p− 4 p− 4 p− 4 p− 4 p− 2 p− 2
10 11 01 1 +1 p− 4 p− 6 p− 4 p− 2 p− 6 p− 4 p− 2 p− 4
11 10 01 1 +1 p− 4 p− 6 p− 2 p− 4 p− 4 p− 6 p− 2 p− 4
10 01 11 1 +1 p− 4 p− 4 p− 6 p− 2 p− 6 p− 2 p− 4 p− 4
10 11 10 1 +1 p− 6 p− 4 p− 6 p− 4 p− 4 p− 2 p− 4 p− 2
11 01 10 1 +1 p− 4 p− 2 p− 6 p− 4 p− 4 p− 2 p− 6 p− 4
01 10 11 1 +1 p− 4 p− 4 p− 2 p− 6 p− 2 p− 6 p− 4 p− 4
01 11 10 1 +1 p− 4 p− 2 p− 4 p− 6 p− 2 p− 4 p− 6 p− 4
11 10 10 1 +1 p− 6 p− 4 p− 4 p− 6 p− 2 p− 4 p− 4 p− 2
10 01 11 1 +1 p− 4 p− 4 p− 6 p− 2 p− 6 p− 2 p− 4 p− 4
10 11 01 1 +1 p− 4 p− 6 p− 4 p− 2 p− 6 p− 4 p− 2 p− 4
11 01 01 1 +1 p− 2 p− 4 p− 4 p− 2 p− 6 p− 4 p− 4 p− 6
01 10 11 1 +1 p− 4 p− 4 p− 2 p− 6 p− 2 p− 6 p− 4 p− 4
01 11 01 1 +1 p− 2 p− 4 p− 2 p− 4 p− 4 p− 6 p− 4 p− 6
11 10 01 1 +1 p− 4 p− 6 p− 2 p− 4 p− 4 p− 6 p− 2 p− 4
01 01 11 1 +1 p− 2 p− 2 p− 4 p− 4 p− 4 p− 4 p− 6 p− 6
01 11 10 1 +1 p− 4 p− 2 p− 4 p− 6 p− 2 p− 4 p− 6 p− 4
11 01 10 1 +1 p− 4 p− 2 p− 6 p− 4 p− 4 p− 2 p− 6 p− 4
01 01 11 1 +1 p− 2 p− 2 p− 4 p− 4 p− 4 p− 4 p− 6 p− 6
01 11 01 1 +1 p− 2 p− 4 p− 2 p− 4 p− 4 p− 6 p− 4 p− 6
11 01 01 1 +1 p− 2 p− 4 p− 4 p− 2 p− 6 p− 4 p− 4 p− 6
01 01 01 0 +1 p− 2 p− 3 p− 3 p− 1 p− 5 p− 5 p− 5 p− 7
10 10 10 1 +2 p− 6 p− 4 p− 4 p− 4 p− 2 p− 2 p− 2 p

Table 8.2: Constructing the 50 sequences for a clause.
See text for explanation.

If a median sequence M has Property 1, but does not have Property 2,
then the number of corresponding scenarios can be divided by p. Indeed,
let i be such that ai + bi = 0 or ai + bi = 2. Then either H(M,Ai) = p or
H(M,Ai) = p, making the corresponding factorial dividable by p.

If a median sequence M has Properties 1 and 2, but does not have Prop-

162

 dc_2046_22

erty 3, then the number of corresponding scenarios can be divided by p.
Assume that cj = (xi1 ∨ xi2 ∨ xi3) is the clause that is not satisfied by
the assignment defined in Equation (8.18). Then ai1 = ai2 = ai3 = 0 and
bi1 = bi2 = bi3 = 1. In that case, the Hamming distance between M and the
sequence that is defined for clause cj in the last row of Table 8.2 is p. It fol-
lows that the number of corresponding scenarios can be divided by p. If some
of the literals are negated in a clause not satisfied by the assignment defined
in Equation (8.18), the same arguing holds, since both in the constructed
sequences and in M , some of the a and b values are swapped.

If a median sequence M satisfies Property 3, then the number of corre-
sponding scenarios are

(p− 6)!7k(p− 5)!6k(p− 4)!12k(p− 3)!12k(p− 2)!6k+2n(p− 1)!7k+2 (8.19)

which cannot be divided by p. Indeed, if Property 3 holds, then H(M,A) =
H(M,A) = p − 1 and for each i, H(M,Ai) = H(M,Ai) = p − 2. Since a
clause cj = (xi1∨xi2∨xi3) is satisfied, characters ai1 , ai2 and ai3 inM are one
of the combinations that can be found in the 7 columns in Table 8.2 labeled
by M1–M7 and the corresponding b characters are the complements. Then
the Hamming distances between M and the 50 sequences defined for cj are
the values indicated in the appropriate column. It is easy to verify that in
each column from M1 to M7, there are 7 − 7 (p − 6) and (p − 1), 6 − 6
(p− 5) and (p− 2), and 12 − 12 (p− 4) and (p− 3). If some of the literals
are negated in a clause, then both in the constructed sequences and in the
median sequences, the corresponding a and b values are swapped, and the
same reasoning holds.

What follows is that only those median sequences contribute to the num-
ber of scenarios modulo p that have Property 3. Therefore,∑

M∈M

∏
A∈S

H(M,A)! ≡ s(Φ)(p− 6)!7k(p− 5)!6k(p− 4)!12k ×

×(p− 3)!12k(p− 2)!6k+2n(p− 1)!7k+2 mod p (8.20)

where s(Φ) is the number of satisfying assignments of Φ. Since all the calcu-
lations in the reduction can be done in polynomial time, we get the following
theorem.

Theorem 112. The counting problem #SPS-STAR is in #P-complete.

163

 dc_2046_22

Proof. For each 3CNF Φ with n logical values and prime number p > n, we
can create a problem instance in #SPS-STAR such that from the solution of
the #SPS-STAR problem instance, the number of satisfying assignments of
Φ modulo p can be computed in polynomial time. The number of satisfying
assignmnts of Φ is between 0 and 2n. Therefore if for sufficiently many
prime numbers p, we compute the number of satisfying assignments modulo
p, there will be only one solution between 0 and 2n modulo the product of
the prime numbers due to the Chinese Reminder Theorem. It is well known

that the product of the prime numbers up to t is at least
√
2
t
and at most

4t [30]. Therefore, the product of the prime numbers between n and 6n is
surely at least 2n. These prime numbers can be found in polynomial time, as
well as the computations needed in the Chinese Reminder Theorem can be
done in polynomial time. That is, the #3SAT problem is polynomial time
reducible to the #SPS-STAR problem, therefore, the #SPS-STAR problem
is #P-complete.

164

 dc_2046_22

Part IV

Non-trivial kernels and
diameters of Markov chains

165

 dc_2046_22

 dc_2046_22

Chapter 9

Proving the pressing game
conjecture for linear graphs

The negative result presented in Chapter 7 motivated the search of alternative
Markov chains which are irreducible on the shortest reversal sorting paths.
One possible way is the approach presented at Section 7.3 that considers the
shortest reversal sorting paths as a sequence of DCJ operations. The kernel
of a Markov chain perturbs a sequence of DCJ operations s into a sequence
of DCJ operations s′ such that the longest common subsequence of s and
s′ is at least their common length minus 4. The four reversal conjecture is
that such a Markov chain will be irreducible. A weaker conjecture is that the
conjecture holds for signed permutations coming from the infinite site model
(see Definition 113 below). The biological relevance of the infinite site model
was discussed on page 36 in the Preliminaries.

In this chapter, we prove the conjecture for signed permutations from the
infinite site model whose overlap graphs are linear, that is, the components
of their overlap graphs are paths. This was a common work with two under-
graduate students of the BSM, Eliot Bixby and Toby Flint. The author of
this thesis suggested the presented proving strategy, the students worked out
the details. The original paper was published in Involve, 9(1):41-56, DOI:
10.2140/involve.2016.9.41.

Definition 113. A signed permutation π is called a permutation from the
infinite site model if its graph of desire and reality contains only cycles of
length 4 and length 2, and furthermore, each component of its overlap graph
contains at least one black vertex.

167

 dc_2046_22

The vertices of the simplified overlap graph of a permutation π from the
inifinite site model are the cycles of length 4. Two vertices are neighbors if
their corresponding cycles overlap. A vertex is black if the desire edges in its
corresponding cycles overlap, otherwise it is white.

Let G = (V,E) be a vertex colored simple graph, the vertices are colored
by black and white. The pressing of v ∈ V means that

• all neighbors of v change color, that is, black vertices become white,
white vertices become black,

• all pair of neighbors of v changes neighborhood. That is, for all pair
u,w ∈ N (v) if (u,w) is an edge in the graph before the pressing, (u,w)
will not be an edge after the pressing and vice versa,

• the vertex v is replaced by two isolated, white vertices.

A successful pressing sequence of a G is a series of pressing of its black
vertices transforming G into an all-white, empty graph (empty means no
edges).

Theorem 114. Let π be a signed permutation from the infinite site model.
Then there is a one-to-one correspondence between its shortest reversal sort-
ing paths and successful pressing sequences of its simplified overlap graph.
The bijection between a shortest reversal sorting path π = g0, g1, . . . , gk = id
and a pressing sequence v1, v2, . . . , vk is that for each i, the reversal trans-
forming gi−1 to gi acts on the desire edges of the cycle corresponding to vi.

Proof. First of all, we observe the following. If G is the simplified overlap
graph of a signed permutation π from the infinite site model, and v is a
black vertex in G, then pressing vertex v yields a simplified overlap graph
of permutation π′ that can be obtained by applying a reversal on the desire
edges of the cycle corresponding to v. This is proved, for example, in [12].

Let A be the set of shortest reversal sorting paths of π, and let B be the set
of successful pressing sequences of G. We show that the mapping f : A→ B
that maps each shortest reversal sorting path π = g0, g1, . . . , gk = id to a
sequence v1, v2, . . . , vk such that for all i, vi represents the cycle on which
the reversal transforming gi−1 to gi is indeed a mapping from A to B, and
in fact, is an injection. Since dREV (π) = n+ 1− c(π), where n is the length
of the signed permutation π, and c(π) is the number of cycles in its graph of
desire and reality, and the c(id) = n+ 1, each sorting reversal must increase

168

 dc_2046_22

the number of cycles by 1. This can be achieved only by applying a reversal
on the desire edges of a cycle whose desire edges intersect. Therefore, this
cycle and its corresponding vertex v exists. Such a reversal creates another
signed permutation from the inifinite site model, thus, so exists the sequence
v1, v2, . . . , vk. Since the simplified overlap graph of id is the all-white, empty
graph, v1, v2, . . . , vk is indeed a successful pressing sequence. Therefore f
is indeed a mapping from A to B. Since a shortest reversal sorting path
is unequivocally determined by its sequence of reversals, the mapping is an
injection.

Now we set a mapping g : B → A such that the image of v1, v2, . . . vk
is π = g0, g1, . . . , gk = id such that for each i, gi is obtained by applying
the reversal indicated by vi on the permutation gi−1. Since id is the only
permutation whose simplified overlap graph is the all-white, empty graph,
gk is indeed id, and thus π = g0, g1, . . . , gk = id is a reversal sorting path.
Since in each step, the number of cycles is increased by 1, it is indeed a
shortest reversal sorting path, that is, g is indeed a mapping from B to A.
This mapping is also an injection, since a shortest reversal sorting path is
unequivocally determined by its sequence of reversals. Furthermore, g = f−1,
thus f (and so g) is indeed a bijection.

The correspondence between the shortest reversal sorting paths and suc-
cessful pressing sequences motivated the study of successful pressing se-
quences on black and white graphs.

Let G = (V,E) be vertex colored simple graph with colors black and
white and consider the set of vertices as an alphabet. Any sequence over this
alphabet is called a pressing sequence. It is a valid pressing sequence when
each vertex is black when it is pressed, and it is successful if it is valid and
leads to the all-white, empty graph. The length of the pressing sequence is
the number of vertices pressed in it. The following theorem is also true.

Theorem 115. Let G be a black-and-white graph such that each component
contains at least one black vertex. Then every successful pressing sequence
of G has the same length.

The proof can be found in [46]. We are ready to state the pressing se-
quence conjecture.

Conjecture 2. Let G be a black-and-white graph such that each component
contains at least one black vertex. Construct a metagraph, M whose vertices

169

 dc_2046_22

are the successful pressing sequences on G. Connect two vertices if the length
of the longest common subsequence of the pressing sequences they represent is
at least the common length of the pressing sequences minus 4. The conjecture
is that M is connected.

The conjecture means that with small alterations, we can transform any
pressing sequence into any other pressing sequence, regardless of the under-
lying graph. By “small alteration” we mean that we remove at most 4 (not
necessarily consecutive) vertices from a pressing sequence, and add at most
4 vertices, not necessarily to the same places where vertices were removed,
and not necessarily to consecutive places.

In this paper, we prove the pressing game conjecture for linear graphs. In
addition, we can prove the metagraph will be already connected if we require
that neighboring vertices have a longest common subsequence at least the
common length of their pressing sequences minus 2.

9.1 Proof of the Conjecture on Linear Graphs

The proof of our main theorem is recursive, and for this, we need the following
notations. Let G be a black-and-white graph, and v a black vertex in it. Then
Gv denotes the graph we get by pressing vertex v. Similarly, if P is a valid
pressing sequence of G (namely, each vertex is black when we want to press
it, but P does not necessarily yield the all-white, empty graph), then GP
denotes the graph we get after pressing all vertices in P in the indicated
order. Finally, let P k denote the suffix of P starting in position k + 1.

The convenience of linear graphs is their simple structure and further-
more, their self-reducibility:

Observation 116. Let G be a linear black-and-white graph and v a black
vertex in it. Then Gv consists of a linear graph and the separated white vertex
v.

Since any separated white vertex does not have to be pressed again, it is
sufficient to consider Gv \{v}, which is a linear graph. We are ready to state
and prove our main theorem.

Theorem 117. Let G be an arbitrary, finite, linear black-and-white graph,
and let M be the following graph. The vertices of M are the successful press-
ing sequences on G, and two vertices are adjacent if the length of the longest

170

 dc_2046_22

common subsequence of the pressing sequences they represent is at least the
common length of the pressing sequences minus 2. Then M is connected.

Proof. It is sufficient to show that for any successful pressing sequences X
and Y = v1v2 . . . vk, there is a series X1, X2, . . . Xm such that for any i =
1, 2, . . .m − 1, the length of the longest common subsequence of Xi and
Xi+1 is at least the common length of the sequences minus 2, and Xm starts
with v1. Indeed, then both Xm and Y start with v1, and both X1

m and Y 1

are successful pressing sequences on Gv1 \ {v1}. We can use induction to
transform Xm into a pressing sequence which starts v2, then we consider its
suffix which is a successful pressing sequence on Gv1v2 \ {v1, v2}, etc.

Furthermore, it is sufficient to show that v1 can be moved to some earlier
position in some series of small alterations of the sequence, provided the
intermediaries are also valid pressing sequences.

We first show that if v1 is not in X, there exists some valid X ′ containing
v1, and X

′ differs from X by exactly one vertex. This is true for any vertex
in any arbitrary overlap graph G and we state it in a separate lemma since
we are going to use it again later.

Lemma 118. Assume that X is a successful pressing sequence on G and that
vertex v is not a separated vertex in G. Then either v is in X or there exists
some valid X ′ containing v, and X ′ differs from X by exactly one vertex.

Proof. Let X = u1u2 . . . uk. Assume that v is not in X. Vertex v has at
least one neighbor in G and none in GX, therefore there exists at least one
vertex in X which, when pressed, is adjacent to v. Consider the last such
vertex, which is in position i, and call it ui; by definition none of the vertex
pressings in X i affect the adjacencies or color of v, so after pressing ui, v
must be a white disconnected vertex. It follows that in Gu1 . . . ui−1, v and ui
have exactly the same neighbors, and as such u1 . . . ui−1vui+1 . . . uk is a valid
pressing sequence.

We now assume that v1 is part of the current pressing sequence, which
we denote by P1w1v1P2, where both P1 and P2 might be empty.

Case 1. If w1 and v1 are not neighbors in GP1, then P1v1w1P2 is also
a valid pressing sequence, and one of the longest common subsequences of
P1w1v1P2 and P1v1w1P2 is P1w1P2, one vertex less than the original pressing
sequences. In this way, we can move v1 to a smaller index position in the
pressing sequence, and this is what we want to prove.

171

 dc_2046_22

Case 2. If w1 and v1 are neighbors in GP1, then v1 is white in GP1, and
then pressing w1 makes it black again. However, v1 is black in G, since it is
the first vertex in the valid pressing sequence Y . As such there must exist
at least one vertex in P1 which was adjacent to a black v1 when pressed. Let
w2 be the last such vertex in P1, and let us denote P1 = P1aw2P1b.

We claim that none of the vertices in P1b are neighbors of w2 in GP1a.
Indeed if there were such a neighbor, call it w3, after pressing w2, w3 would
be adjacent to v1. Note that w3 cannot have already been adjacent to v1
by linearity of GP1a. As such, pressing w3, would change the color of v1,
meaning either v1 was black prior to pressing w1 – a contradiction – or there
were further vertices in P1b which were adjacent to a black v1 when pressed,
another contradiction.

Since P1b does not contain a vertex which is a neighbor of w2 in GP1a,
we move w2 next to w1. The new pressing sequence P1aP1bw2w1v1P2 is still a
valid and successful pressing sequence and the longest common subsequence
of P and P1aP1bw2w1v1P2 is P1aP1bw1v1P2, one vertex less than the common
length of the sequences.

For sake of simplicity, we denote P1aP1b by P
′
1 and now we can assume the

pressing sequence is of the form P ′
1w2w1v1P2, with P

′
1 and P2 both potentially

empty. Since after pressing w2, w1 and v1 become neighbors with w1 being
black and v1 being white, the topology and colors of w2, w1 and v1 in GP

′
1 is

one of the following:

w1 w2 v1 w1 v1 w2
Case 2a. Assume that P2 is not empty. The {w1, w2, v1} triplet has at

least one neighbor (and at most two) in GP ′
1; call them u1 and u2. Further-

more, either (1) one of u1 and u2 is pressed in P2, or (2) we can replace some
vertex in P2 with u1 or u2, such that the resulting sequence is still valid, and
successful on GP ′

1w2w1v1, due to Lemma 118. As such, we can assume that
at least one neighbor of the {w1, w2, v1} triplet is pressed in P2.

Without loss of generality, say u1 is pressed before u2 in P2 and let P2 =
P2au1P2b. Note that we can press v1 instead of w2w1v1, and the resulting
sequence GP ′

1v1P2a will be valid, as none of the vertices in P2a are neighbors
of w2, w1, or v1. Next note from Figure 9.1, that the colors of u1 and u2 are
identically altered in the pressing of either v1 or w2w1v1, and so we can press
u1. Figure 9.2 shows that the color of u2 and a possible second neighbor of

172

 dc_2046_22

w1 w2 v1u1 u2 w1 v1 w2u1 u2

w1 w2u1 u2 w1 v1u1 u2

v1u1 u2

u1 u2

w1 w2u1 u2 w1 v1u1 u2

v1u1 u2

u1 u2

v1

v1 v1

v1w2 w2

w1 w1

Figure 9.1: In the indicated two configurations, the neighbors of the
{w1, w2, v1} triplet, u1 and u2, change color in the same way by pressing
only v1 and pressing w2w1v1. The color change on u1 and u2 is indicated
with the flipping of their crossing line.

u1 denoted by u3 will be the same in GP ′
1w2w1v1P2au1 and GP

′
1v1P2au1w1w2.

Therefore P ′
1v1P2au1w1w2P2b will also be a successful pressing sequence on

G, since no more vertices are affected by the given alteration of the pressing
sequence. One of the longest common subsequences of P ′

1w2w1v1P2au1P2b and
P ′
1v1P2au1w1w2P2b is P ′

1v1P2au1P2b, 2 vertices less than the entire pressing
sequences. As intended, we have shown that v1 is in a smaller index position
of the pressing sequence.

Case 2b Finally, assume that P2 is empty. Then GP ′
1w2w1v1 is the all-

white empty graph, and thus, GP ′
1w2w1 contains the separated black v1 and

all separated white vertices, or contains a black v1 connected to another black
vertex and all separated and white vertices.

What follows is that GP ′
1 contains at most 4 non-isolated vertices, 3 of

which are w2, w1, and v1. Call the fourth u. If u exists, it must be black
and adjacent to v1 when v1 is pressed. There are only 4 such cases, given the
possible topologies for w2, w1, and v1. If w1 and w2 are adjacent, then u is
either black and adjacent to v1 in GP

′
1 or it is adjacent to w2 and is white. If

w2 and w1 are not adjacent, then u can be adjacent to either w2 or w1, and
must be white in both cases.

Note that all of these topologies can be described as follows; all neighbors

173

 dc_2046_22

w1 w2u1 u2 u1 u2

w1 w2 u2

w2 u2

u2

u1

w1

w2

u2

u3

u3

u3

u3

u3

u3

u1

Figure 9.2: The color of u2 and u3 changes in the same way on the two
indicated configurations. See text for details.

of v1 are black, v1 is black, and all other vertices are white. This motivates
the following lemma:

Lemma 119. If GP is such that all neighbors of v1 are black, v1 is black, and
all other vertices are white, and furthermore, there is a successful pressing
sequence on G that starts with v1, then there exists at least one vertex u in
P such that when u is pressed u is not adjacent to v1.

Proof. Suppose instead that every vertex in P is adjacent to v1 when pressed.
P cannot be empty since then GP would be G and pressing v1 in G would
create an all-white non-trivial graph, contradicting that there exists a suc-
cessful pressing sequence starting with pressing v1. Furthermore if all vertices
in P are neighbors of v1 when pressed, then P must contain an even number
of vertives since v1 is black both in G and GP .

Let P = P ′
1u2u1. In order for u1 and u2 to be adjacent to v1 when pressed,

and for GP to fit the given criteria, GP ′
1 must also have v1 and all neighbors

black, and all other vertices white. By repeated application, we see that G
must also fit these criteria. By assumption then, there are no black vertices
not adjacent to v1, and as such, pressing v1 results in an all-white non-trivial

174

 dc_2046_22

graph. However this is a contradiction, as there exists a successful pressing
sequence for G in which v1 is pressed first.

From the above lemma, we have that there exists some vertex in P ′
1 not

adjacent to v1 when pressed, and there are vertices which are adjacent to
v1 when pressed. For technical reasons, we have to separate them in the
pressing sequence, which is doable due to the following lemma.

Lemma 120. Let Pxu be a valid pressing sequence on G such that x is a
neighbor of some v in GP and u is not a neighbor of v in GPx. Then Pux
is a valid pressing sequence on G and GPxu = GPux.

Proof. It is sufficient to show that x and u are not neighbors in GP . If x and
u were neighbors, then the two neighbors of x would be u and v, causing u
and v to become neighbors in GPx, a contradiction.

Due to Lemma 120 it is possible to ’bubble up’ vertices that are not
neighbors of v1 in the pressing sequence so that the pressing sequence be-
comes PuPnv1 where Pu contains the vertices that are not neighbors of v1
when pressed and Pu contains the vertices that are neighbors of v1 when
pressed. Each bubbling up step is allowed as the length of the longest com-
mon subsequence of two consecutive sorting sequences is their common length
minus 1. We know that neither Pu nor Pn is empty due to Lemma 119 and
due to the fact that w1 and w2 are in Pn.

Let u be the last vertex in Pu and let Pu = P ′
uu. Without loss of generality,

we can assume that u is on the left hand side of v1 in GP ′
u and then GP ′

u is

v1 y1xi+1 x1x2xi-1xiuxk

...
y2 yl

The vertices on the left hand side of v1 are denoted by x1, x2 . . . xk and
we distinguish u amongst them. The vertices on the right hand side of v1 are
denoted by y1, y2, . . . yl.

Obviously, no x is a neighbor of any y when pressed, so we can bub-
ble up the y vertices in Pn such that first the y vertices are pressed and
then the x vertices. After a finite number of allowed alterations, Pn =
y1y2 . . . ylx1x2 . . . xk.

Similarly to the previous cases, we can move down vertex u in the pressing
sequence before xi. We know that v1 is black in GP ′

uu since it is black in G

175

 dc_2046_22

and neither of its neighbors is pressed in P ′
uu. We are going to press some of

the vertices amongst the x and y vertices provided that v1 will be black after
that series of pressing. We consider the graph GP ′

uy1 . . . ylx1 . . . xi−1 if v1 is
black in it (the runs of x vertices might be empty if i = 1), and otherwise the
graph GP ′

uy1 . . . ylx1 . . . xi−2 (also the runs of x vertices might be empty if
i = 2) or GP ′

uy1 . . . yl−1 if i = 1 and the number of y vertices is odd (if i = 1
and the number of y vertices is even, then v1 will be black in GP ′

uy1 . . . yl).
We have one of the following graphs

v1 ylx2 x1uxk

...

v1xi+1 xiuxk

...

v1xi+1 xi-1uxk

...
xi

on which uxi . . . xkv1, uxi−1 . . . xkv1, ylux1 . . . xkv1 is the current successful
pressing sequence, respectively.

A successful pressing sequence replacing uxi . . . xkv1 is v1xi . . . xku, as can
be seen on the left hand side of Figure 9.3. The length of the longest com-
mon subsequence of the two pressing sequences is 2 less than their common
length, as required. The pressing sequence ylux1 . . . xkv1 can be replaced by
ux1ylx2 . . . xkv1 since yl is a neighbor of neither u nor x1. Then this pressing
sequence can be replaced by v1x1ylx2 . . . xku, as can be seen on the right
hand side of Figure 9.3. The length of the longest common subsequence of
ux1ylx2 . . . xkv1 and v1x1ylx2 . . . xku is again 2 less than their common length.

Finally, the pressing sequence uxi−1 . . . xkv1 can be replaced in two steps,
first it is changed to xixi+1uxi−1xi+2 . . . xkv1, then to xixi+1v1xi−1xi+2 . . . xku,
as can be checked in Figure 9.4. In both steps, the length of the longest
common subsequences of two consecutive pressing sequences is 2 less than
their common length as required.

176

 dc_2046_22

!!"#"! "#$"%

###

"#"! "#$"%

###
!!

"#"! $"%

###
"#

"#&!

!! '("$ "!$"%

###

!!

'("$ "!$"%

###

'("$ $"%

###
"!

"$ $"%
"!

Figure 9.3: Alternative pressing sequences for two cases. See text for details.

v1xi+1 xi-1uxk

...
xi

xi

v1xi+1 uxk

...
xi-1

v1xi+2 uxk

...
xi-1

xi+1

v1xi+2xk

...
xi-1

u

xi-1

v1xi+1 xi-1uxk

...
xi

xi

v1xi+1 uxk

...
xi-1

v1xi+2 uxk

...
xi-1

xi+1

xi+2xk

...
u

xi-1

v1

xi-1

Figure 9.4: Changing the pressing sequence uxi−1 . . . xkv1 in two steps such
that v1 is in a smaller index position. See text for details.

177

 dc_2046_22

We proved that in any case, v1 can be moved into a smaller index position
with a finite series of allowed perturbations. Iterating this, we can move v1
to the first position. Then we can do the same thing with v2 on the graph
Gv1 \ {v1}, and eventually transform X into Y with allowed perturbations.

9.2 Discussion and Conclusions

In this chapter, we proved the pressing game conjecture for linear graphs.
Although the linear graphs are very simple, this proof technique provides a
direction for proving the general case. Indeed, it is generally true that if a
vertex v is not in a successful pressing sequence P , then a successful pressing
sequence P ′ exists which contains v and the length of the longest common
subsequence of P and P ′ is only 1 less than their common length. Case 1 in
the proof of Theorem 117 holds for arbitrary graphs, and in an unpublished
paper, we were able to prove that the conjecture is true for Case 2a using
linear algebraic techniques similar to that one used in [46]. The only missing
part is Case 2b, which seems to be very complicated for general graphs, for
example, Lemma 120 cannot be generalized for arbitrary graphs.

A stronger theorem holds for the linear case that is conjectured for the
general case. One possible direction above proving the general conjecture is to
study the emerging Markov chain on the solution space of the pressing game
on linear graphs. We proved that a Markov chain that randomly removes
two vertices from the current pressing sequence, adds two random vertices to
it, and accepts it if the result is a successful pressing sequence is irreducible.
Using Markov chain Monte Carlo, it is easy to set the jumping probabilities
of the Markov chain such that it converges to the uniform distribution of the
solutions. The remaining question is the speed at which this Markov chain
converges.

178

 dc_2046_22

Chapter 10

Cooling down DCJ scenarios to
reversal scenarios

One of the main criticism of the DCJ model is that it allows mixed genomes
containing both linear and circular chromosomes. Although such genomes do
exist, most of the species contain either all circular or all linear chromosomes.
Particularly, the vast majority of multicelluar Eukaryotes contains only linear
chromosomes. Therefore, biologists prefer a genome rearrangement model
that does not create mixed genomes. We can clearly see here a trade-off
between model fidelity/accuracy and its computability. Indeed, the DCJ
model describes the genome rearrangement less accurately, however, there is
an FPAUS algorithm to sample almost uniformly most parsimonious DCJ
scenarios between two genomes (see also Chapter 6). The reversal model is
more accurate, however, the complexity status of almost uniformly sampling
most parsimonious reversal scenarios is unknown.

In this chapter, we present an idea that the DCJ model can actually be
used to sample almost uniformly shortest reversal sorting scenarios. The orig-
inal work was a joint work with Eric Tannier and was published in Bioinfor-
matics, 26: 3012-3019, https://doi.org/10.1093/bioinformatics/btq574.
The author of this thesis conjectured that all local minima in the energy sur-
face defined below are global minima, in which Eric Tannier did not believe
first. He set up cases that seemed to be local but not global minima, and the
author of this thesis wrote a computer program that used stochastic search
to find a direction from those points to the global minima. From these ex-
amples, they proved the conjecture together. Theorem 125 was proved by
the author of this thesis.

179

 dc_2046_22

We introduce a parallel Markov chain method, in which a series of Markov
chains converges to the Boltzmann distribution of most parsimonious DCJ
scenarios between two linear, unichromosomal, hurdle-free, co-tailed genomes,
Π and Γ. Hurdle-free means that in the overlap graph of the signed permu-
tation Γ−1Π, there is no non-trivial, all-white component. Co-tailed means
that the two genomes have the same telomers. For such genomes,

dDCJ(Π,Γ) = dREV (Γ
−1Π). (10.1)

That is, the shortest reversal sorting paths of Γ−1Π is a subset of the shortest
DCJ sorting paths from Π to Γ.

The hypothetical “energy” of a most parsimonious DCJ scenario is set
in such a way that the minimum energy scenarios are the shortest reversal
sorting paths of Γ−1Π. Since the two genomes have the same telomers, the
adjacency graph of Γ and Π contains only cycles. Therefore, any sorting
DCJ operation cuts two adjacencies and creates two new ones. In terms
of manipulating the chromosomes, it is either a reversal or cutting out a
circular chromosome from a chromosome or fusing a circular chromosome
into another chromosome. If a DCJ sorting path contains only reversals,
then there is no circular chromosome presented in any of the intermediate
genomes. This motivates the following definition.

Definition 121. For a DCJ scenario S between genomes Π and Γ, denote by
S(i) the DCJ at the ith position on S. Let Π/s denote the genome obtained by
applying the DCJ operation s on genome Π, and let ΠS

i := Π/S(1)/ . . . /S(i)
for 0 ≤ i ≤ dDCJ (ΠS

0 = Π and ΠS
dDCJ

= Γ). Let

c(S) :=

dDCJ (Π,Γ)−1∑
i=1

circ(ΠS
i) (10.2)

be the energy of the scenario S, where circ(Π) is the number of circular
chromosomes in genome Π.

For any DCJ scenario S between two unichromosomal co-tailed genomes,
c(S) ≥ 0 and S is a scenario of reversals if and only if c(S) = 0.

On co-tailed, unichromosomal linear genomes, DCJs are either reversals,
or fusions or fissions of chromosomes involving at least one circular chromo-
some. A fission of a chromosome into two, immediately followed by the fusion

180

 dc_2046_22

of these two chromosomes (with different points of fusions) is called a gen-
eralized block-interchange. In the literature of genome rearrangements, the
block-interchange means the swap of two, non-necessarily consecutive blocks.
When the circular chromosome is fused back to the original chromosome in
a reversed order, then the overlap graph of the so-obtained permutation will
not contain an all-white non-trivial component. In this thesis, the generalized
block-interchanges are called block-interchanges for short.

The following two results are corollaries of the Hannenhalli-Pevzner the-
orem [45].

Corollary 122. For two hurdle-free co-tailed unichromosomal genomes Π
and Γ, there is a DCJ scenario of size dDCJ(Π,Γ) which contains only rever-
sals.

Corollary 123. In any DCJ scenario between two co-tailed unichromosomal
genomes Π and Γ of size dDCJ(Π,Γ), there is no reversal involving gene
extremities of an unoriented component (of the graph of desire and reality of
Γ−1Π).

The number of different DCJ scenarios between two hurdle-free co-tailed
unichromosomal genomes Π and Γ can be easily computed [70], while com-
puting the number of DCJ scenarios containing only reversals, as well as only
reversals and block-interchanges, are open problems.

For two scenarios S1 and S2, we define d(S1, S2) as the smallest integer d
such that there exists k verifying:

For all i ̸∈ [k, k + d− 1], S1(i) = S2(i).

In other words, d(S1, S2) ≤ d if it is possible to replace d consecutive DCJs
of S1, by d other DCJs to obtain S2.

10.1 Transforming DCJ scenarios to reversal

scenarios with small perturbations

In this section, we prove that small perturbations are sufficient to transform
any DCJ scenario to a reversal scenario in such a way that the energy function
of the scenarios are monotonously decreasing. With other words, if we define
a topology of DCJ scenarios such that two scenarios are neighbours if small
perturbations are sufficient to transform one another, then all local optima
in this topological space are global ones.

181

 dc_2046_22

Theorem 124. For two hurdle-free co-tailed unichromosomal genomes Π
and Γ, let S1 be a DCJ scenario transforming Π into Γ. There exists a finite
sequence S1S2 . . . Sk of DCJ scenarios, such that

• for all i, d(Si, Si+1) ≤ 3;

• for all i, c(Si) ≥ c(Si+1);

• Sk is a reversal scenario.

Proof. Let S1 = ρ1 . . . ρk be a scenario between unichromosomal co-tailed
hurdle-free genomes Π and Γ such that c(S1) > 0. We prove that there
always exists a finite sequence S1S2 . . . Sl such that c(Sl) < c(S1) and for all
i, d(Si, Si+1) ≤ 3 and c(Si) ≥ c(Si+1). This proves the theorem.

A DCJ scenario that is not a reversal scenario contains fissions and fu-
sions. If in a DCJ scenario every fission is immediately followed by a fusion,
then we say it is a reversal/block-interchange scenario. The first step of our
proof shows that any DCJ scenario can be transformed into a scenario of this
type. The second step of the proof shows that this can further be transformed
into a reversal scenario.

Case 1. Not all fission is immediately followed by a fusion.
Let ρp be the first (with minimum p) such fission in S1. So ΠS1

p−1 is a unichro-

mosomal genome. The DCJ ρp fissions the unique chromosome of ΠS1
p−1 into

two chromosomes C1 and C2. Let G1 (resp. G2) be the set of gene extremities
in C1 (resp. C2). Now let ρq be the first DCJ after ρp in S1 which involves
gene extremities both from G1 and G2. It exists as Γ is unichromosomal, and
by hypothesis q > p+ 1.

By hypothesis on ρq, ρq−1 involves either only gene extremities from G1

or only gene extremities from G2. Suppose w.l.o.g. that it is G1. If ρq and
ρq−1 commute, let ρ′q−1 = ρq and ρ

′
q = ρq−1. If they do not commute, let ρq−1

be (a, b|c, d) and let ρq be (a, c|e, f), with a, b, c, d being gene extremities of
G1 and e, f being gene extremities from G2. Now let ρ′q−1 = (a, b|e, f) and
ρ′q = (c, d|f, b)). In both cases the scenario

S2 = ρ1 . . . ρq−2ρ
′
q−1ρ

′
qρq+1 . . . ρn

is composed of valid DCJ operations, we trivially have d(S1, S2) ≤ 2 and we
also have c(S2) ≤ c(S1) because

• For all i ̸= q − 1, ΠS1
i = ΠS2

i ;

182

 dc_2046_22

• Clearly |circ(Π) − circ(Π/ρ)| ≤ 1 for any genome Π and DCJ ρ, so
circ(ΠS1

q−1) ≥ circ(ΠS1
q−2)− 1;

• The DCJ ρ′q−1 is a chromosome fusion so circ(ΠS2
q−1) = circ(ΠS2

q−2)− 1,

yielding circ(ΠS1
q−1) ≥ circ(ΠS2

q−1).

Now in S2, ρ
′
q−1 is the first DCJ after ρp which involves gene extremities

both from G1 and G2. Applying this transformation again to S2 decreases
the index q of the first DCJ after ρp which involves gene extremities both
from G1 and G2. We may apply the same transformation until q = p + 1,
which means that ρpρp+1 is a block-interchange.

Applying the same transformation to every ρp fission which is the first
DCJ of a non-block-interchange type eventually gives a reversal/block-interchange
scenario.

Case 2. The scenario S1 is a reversal/block-interchange scenario.

Note that in that case the number of circular chromosomes in a scenario
— its energy — is also the number of block-interchanges. So the goal will
be to get progressively rid of all block-interchanges and arrive at a reversal
scenario.

First, if for a block-interchange ρpρp+1 (both operations are DCJs), the
pemutation (ΠS

p+1)
−1ΠS

p−1 have an oriented component, then ρpρp+1 can easily
be replaced by two reversals, as a direct consequence of Corollary 122. Doing
this yields a scenario which is distant from the initial one of at most two, and
the number of circular chromosomes is deceased by one, proving the theorem.

So we may assume that all block interchanges ρpρp+1 are unoriented,
which means the graph of desire and reality of (ΠS

p+1)
−1ΠS

p−1 and has only
unoriented components.

Let now ρr and ρb be a reversal and a block interchange in the scenario
S. We note Π− the genome before the application of the first event among
ρr and ρb, and Π+ the genome after the application of the last one. We say
that ρr and ρb cross if the extremities on which ρr andρb act are in the same
component of the overlap graph of (Π+)−1Π−. It is easy to see that if they
are consecutive and do not cross, then they commute and swapping their
position yields a scenario which is distant of 3 from the original one, and has
the same score (the reversal stays a reversal, the block-interchange stays a
block interchange).

183

 dc_2046_22

Choose now ρr and ρb which cross, and such that there are as few DCJs
as possible between them in S. These exist because else the reversals and
block-interchange would act on different components, which is not possible
because there is no unoriented component in Γ−1Π.

From now we assume that ρr is before ρb, but a symmetric reasoning
yields the proof for the opposite case.

Suppose there are rearrangements between ρr and ρb. If among those
rearrangements, there is a reversal which is immediately before a block inter-
change, then by hypothesis on ρr and ρb, they do not cross. So it is possible
to swap them without changing the score of the scenario, nor the crossing
properties of any pair or reversal and block-interchange. Iteratively apply-
ing this allows to assume that all reversals occur after all block-interchanges
between ρr and ρb.

Now ρr occurs before a block-interchange, and if it is not ρb, then they
don’t cross. So it is possible to swap them. This has the effect of applying a
block-interchange to Π−. As this block-interchange does not cross any rever-
sal applied before ρb, it cannot change the crossing properties of reversals and
block-interchanges, so it is possible to repeatedly apply this procedure while
there are block-interchanges between ρr and ρb, there are only reversals left.
In the same way, as ρb occurs after a reversal, if it is not ρr then they don’t
cross and it is possible to swap them without changing the crossing proper-
ties of reversals and block-interchanges. After repeating this procedure there
are no rearrangement anymore between ρr and ρb and they are immediately
consecutive. The following observation yields the theorem in that case.

In a scenario S, let ρr and ρb be respectively a reversal and a block-
interchange that are consecutive (in any order) and crossing. Then it is
possible to replace them by three reversals in S.

Indeed, by Corollary 123 the component of Π− and Π+ containing the
gene extremities involved in ρr and ρb is is oriented since there is a scenario
with a reversal transforming Π− into Π+. So by Result 122 there are three
reversals transforming Π− into Π+, which proves the result.

10.2 Parallel tempering

The Parallel Tempering is a Markov chain Monte Carlo technique in which
parallel Markov chains are given. The ith Markov chain converges to the

184

 dc_2046_22

distribution

πi(R(Π,Γ)) ∝ e
− c(R(Π,Γ))

Ti (10.3)

R(Π,Γ) is a most parsimonious DCJ scenario between Π and Γ, and Ti is the
hypothetical temperature of the chain. It is easy to see that swapping the
states of two consecutive chain with acceptance probability

min

1,
e
− c(Ri)

Ti+1 × e
− c(Ri+1)

Ti

e
− c(Ri)

Ti × e
− c(Ri+1)

Ti+1

 (10.4)

does not change the equilibrium distribution of the states [39].
In this section, we prove the following theorem, showing that with a non-

negligible probability, the MCMC can diversify efficiently in the solution
space of reversal scenarios:

Theorem 125. For any pair of hurdle-free, co-tailed, linear genomes Π and
Γ with n genes, k = O(n3 log(n)) parallel chains sampling from most parsi-
monious DCJ scenarios following target distributions given by Equation 10.3
with the following properties:

• The temperature of the 1st chain is infinite,

• The swapping probability between any two consecutive chains given by
Equation 10.4 is at least 1

2
,

• The probability of a reversal scenario in the target distribution of the
kth chain is at least 1

2
.

The first property provides that all most parsimonious DCJ scenarios are
equally probable in the target distribution of the 1st chain. We proved that
it is easy to sample from this distribution with Markov chains, see Chapter 6,
and if the genomes are co-tailed, exact sampling is also possible [70]. The
second property provides that the information change between the parallel
chains is not negligible. The third property provides that a few samples from
the kth chain is sufficient to get reversal scenarios. Although these together
do not prove fast mixing of our method, it is definitely takes us closer to a
final proof.

The theorem is proved using the following lemmas.

185

 dc_2046_22

Lemma 126. For any most parsimonious DCJ scenario S between Π and
Γ,

c(S) ≤ n(n− 2)

4
(10.5)

Proof. Since Π and Γ are linear, circ(Π) = circ(Γ) = 0. |circ(Π′)−circ(Π/ρ)| ≤
1 for any genome Π′, thus c(S) is maximal, if the number of circles increases
till the middle of the path, and then dicreases. Since the maximum length
of the path is n− 1, Equation 10.5 immediately holds.

Lemma 127. The number of most parsimonious DCJ scenarios between Π
and Γ is at most (4n2 − n)n−1.

Proof. n genes have 2n extremities, forming at most 2n telomeres and ad-
jacencies. There are at most 2 DCJs acting on a given pair of telomeres
and/or adjacencies, having an upper bound of 2

(
2n
2

)
DCJs acting on a pair

of telomers/adjacencies. Above these, there are fissions involving one adja-
cency. The number of them is at most n, thus the number of DCJs applicable
for a genome with n genes cannot be more than 4n2 − n. The length of a
most parsimonious DCJ scenario is at most n− 1, thus the number of most
parsimonious DCJ scenario is a most (4n2 − n)n−1.

The following lemma sets the largest temperature we need.

Lemma 128. If the inverse of the temperature of the Markov chain is greater
than (n− 1) log(4n2 − n), then the probability of the reversal scenarios is at
least 1

2
in the target distribution.

Proof. c(S) is at least 1 for any non-reversal path, thus the probabilty of
any non-reversal path is at least (4n2 − n)n−1 times smaller than that of a
reversal path. Since there are less than (4n2−n)n−1 times more non-reversal
paths than reversal paths, the probability of the reversal paths in the target
distribution is at least 1

2
.

The following lemma tells what difference between the temperature of
neighbour chains is necessary for a swapping probability greater or equal
than 1

2
.

Lemma 129. If the difference between the inverse temperatures is 4 log 2
n(n−2)

,

then the swapping probability given by Equation 10.4 is at least 1
2
.

186

 dc_2046_22

Proof. Let ∆c denote the difference between c(Ri) and c(Ri+1) and let ∆T
denote 1

Ti+1
− 1

Ti
. Equation 10.4 can be simplified as

min
{
1, e−∆c∆T

}
(10.6)

Since ∆c is at most n(n−2)
4

, the swapping probability is at least 1
2
.

Proof of Theorem 125. We set the temperature of the first chain to infinite,
as prescribed, and the temperature of the i+ 1st chain as

Ti+1 :=
1

4 log 2
n(n−2)

+ 1
Ti

(10.7)

The swapping probability between two chains will be at least 1
2
, based on

Lemma 129. The chain with index
⌈
n(n−1)(n−2) log(4n2−n)

4 log 2
+ 1
⌉
will have tem-

perature at most 1
(n−1) log(4n2−n)

, and thus, the probability of the reversal

scenarios in its target distribution is at least 1
2
.

187

 dc_2046_22

188

 dc_2046_22

Chapter 11

Gibbs sampling of optimal SCJ
labelings on arbitrary binary
trees

The number of most parsimonious scenarios on evolutionary trees under the
SCJ model is known to be computationally intractable. Miklós and Smith
proved that it is #P-complete and Miklós, Tannier and Kiss proved that it
does not have an FPRAS approximation assuming RP ̸= NP (see Chapter 8).
On the other hand, the number of most parsimonious labeling of evolution-
ary trees has an unknown computational complexity. One optimal labeling
can be found by applying the Fitch algorithm [34] on each adjacency, and
choosing the absence of the adjacency at the root when the Fitch algorithm
says that both the presence and absence of the adjacency give the minimum
number of necessary SCJ mutations for that particular adjacency. Feijão and
Meidanis [32] proved that the so-obtained genomes will always be valid. It is
known that the Fitch algorithm cannot find all most parsimonious solutions
for a particular character. The Sankoff-Russeau algorithm [78] is a dynamic
programming algorithm that is capable to find all optimal solutions for a
particular character, in case of SCJ model, for an adjacency. However, it
is easy to show that solutions might be in conflict, as conflicting adjacen-
cies might be assigned to a genome labeling an internal node (making the
genome and thus the solution invalid), therefore, the solution space of opti-
mal labelings is only a subset of the set that the Sankoff-Russeau algorithm
gives. It is known when there is no constraint among the characters, the
number of optimal labelings is in FP, and the number of most parsimonious

189

 dc_2046_22

scenarios is not in FPRAS assuming that RP ̸= NP even for constraint-
free characters [126]. Therefore the computational intractability of counting
the number of most parsimonious scenarios on binary trees under the SCJ
model by no means implies that the counting of most parsimonious labeling
would be a hard computational problem. On the other hand, the constraints
among the adjacencies make the counting problem more complicated than
the constraint-free version. It is unclear if this particular counting problem
is in FP or #P-complete and should it be in #P-complete whether or not
it has an FPRAS approximation. In this chapter, we give a Gibbs sampler
exploring the solution space of the most parsimonious labeling that seems to
be rapidly mixing on some real life data. However, these examples can give
only experimental evidence of rapid mixing only suggesting that the problem
might have an FPRAS approximation.

This was a joint work with Heather Smith. The original work has been
published in BMC Bioinformatics, 16(Suppl 14): S6., https://doi.org/

10.1186/1471-2105-16-S14-S6. The author of the thesis suggested the
research topic, constructed the example in Figure 11.1 d) and developed
the main concept on conflicting adjacencies. All lemmas and theorems were
proved jointly.

11.1 Gibbs sampling of most parsimonious

labeling of evolutionary trees under the

SCJ model

The Gibbs sampling is a special version of Markov chain Monte Carlo, when
the multivariate target distribution is hard to sample from, however, the
conditional distribution of each variable is easy to sample [38]. This is exactly
the case for the most parsimonious labelings of an evolutionary tree under
the SCJ model, as we show below.

11.1.1 Description of the Gibbs sampler

Let a rooted binary tree, T (V,E) be given, together with a function f map-
ping genomes under the SCJ model to the leaves of the tree, L. We assume
that all genomes appearing as an image for some leaf has the same labels for
their edges. Let A represent the set of all adjacencies in ∪v∈Lf(v). Let an

190

 dc_2046_22

arbitrary indexing on A be given, then each genome G can be represented as
a 0-1 vector x where xi is 1 if and only if ai ∈ A is in G. A 0-1 vector of length
|A|, x, is called valid if for all pairs of coordinates satisfying xi = xj = 1,
adjacencies ai and aj do not share an extremity. Each valid vector represents
a valid genome.

Genomes labeling the vertices of T are represented by such 0-1 vectors,
and the Gibbs sampler works on these representations. The target distribu-
tion is the uniform distribution of the possible most parsimonious labelings.
Consider any most parsimonious labeling as a set of vectors representing the
genomes labeling the tree T . Choose one coordinate, i, then Gibbs sam-
pling is to sample uniformly from all possible most parsimonious labelings
that have the same coordinates than the current labeling except coordinate
i, which might be the same or might be different.

Formally, given a most parsimonious labeling of the internal nodes, a
Gibbs sampling step is the following:

1. Draw a random coordinate i uniformly from 1, 2, . . . |A|.

2. Consider the ith coordinates of the vector representations of the genomes
labeling the leaves, and on these 0-1 characters, do the Sankoff-Russeau
dynamic programming algorithm, described below. For each leaf l,
assign the value s(l, k) = 0 if k is the character assigned to l and
s(l, k) = ∞ otherwise.

For each vertex v with children u1 and u2, the recursion is

s(v, 0) = min {s(u1, 0), s(u1, 1) + 1}+
min {s(u2, 0), s(u2, 1) + 1} (11.1)

s(v, 1) = min {s(u1, 0) + 1, s(u1, 1)}+
min {s(u2, 0) + 1, s(u2, 1)} (11.2)

3. Create a directed metagraph M , whose vertices are s(v, 0) for each
vertex v of the tree, and also those s(v, 1) for which writing 1 into the
ith coordinate of the vector representing the genome labeling vertex
v still a valid vector. Draw a directed edge from s(u, k) to s(v, k′) if
s(u, k) gives the minimum for s(v, k′) in Equations (11.1) and (11.2).
See also Fig. 11.1. c) and d).

4. Do an enumeration dynamic programming on M . Let m(w) = 1 if
w = s(l, k), k ∈ {0, 1} and l is a leaf. For other nodes, do the following.

191

 dc_2046_22

Let w = s(v, k), k ∈ {0, 1}, and let the two children of v in the tree
T be u1 and u2. Let U1 denote the set of in-neighbors of w that are
s(u1, k), k ∈ {0, 1} and U2 denote the set of in-neighbors of w that are
s(u2, k), k ∈ {0, 1}. Then

m(w) =

(∑
z1∈U1

m(z1)

)
×

(∑
z2∈U2

m(z2)

)
(11.3)

m(w) is called the weight of w.

5. If there is only one vertex in the metagraph M that is s(root, k), k ∈
{0, 1}, choose that one at the root. Otherwise, choose randomly from
the two vertices following the distribution proportional to their weights.
For the chosen vertex w, m(w) is not 0, therefore it has at least 1 in-
neighbor from both U1 and U2. From both in-neighbor sets, choose a
random vertex from the distribution proportional to their weight, or
the only one if only one vertex is in a set. Propagate down this process
along the tree, thus one vertex from M is selected for each vertex of
the tree T . Update the ith coordinates of the vectors according to
the selected meta-graph vertices: if w = s(v, k) was selected for vertex
v then write k into the ith coordinate of the vector representing the
genome labeling vertex v.

It is well-known that the number of most parsimonious labelings by one
character can be calculated by Equation (11.3) [115], and when some of the
solutions should be excluded due to some constraints, they simply should
be omitted from the calculations. This is how the metagraph M was con-
structed. It is also a folklore that following the distribution proportional to
the weights calculated in a recursion leads to the uniform distribution over
the cases that the recursion calculates, and the uniform distribution is the
one what we would like to sample from in the Gibbs sampling.

11.1.2 Irreducibility of the Gibbs sampler

The Gibbs sampler, as a Markov chain, will converge to the prescribed dis-
tribution if the Markov chain is irreducible, that is, any most parsimonious
labeling can be transformed into any another by a finite number of Gibbs
sampling steps. Due to the constraints on the coordinates, it is far not trivial.

192

 dc_2046_22

0 1 1 0 0

{0,1}

{1}

{0,1}

{0}

0 1 1 0 0

1

1

0

0

0 1 1 0 0
s(0)=0 s(1)=0 s(1)=0 s(0)=0 s(0)=0

s(1)=1 s(0)=1

s(1)=1 s(0)=2

s(0)=2

s(0)=2

0 1 1 0 0

0

0

0

0

a) b)

c) d)

Figure 11.1: A rooted binary tree with two most parsimonious labelings of
internal nodes. a) The B functions of the Fitch algorithm calculated in the
bottom-up phase. b) The (canonical) Fitch solution. c) The values calcu-
lated in the Sankoff-Russeau algorithm and the edges in the metagraph M
(see text for details). Due to sake of readability, only those values are indi-
cated that contribute in estimating the number of most parsimonious solu-
tions. Also, vertices of the tree are not indicated, i.e. s(k) are written instead
of s(v, k). From positioning, it should be obvious which s value belongs to
which vertex. d) The most parsimonious solution that can be obtained only
by the Sankoff-Russeau algorithm and not by the Fitch algorithm.

193

 dc_2046_22

Below we prove irreducibility by proving that any most parsimonious label-
ing can be transformed to a canonical labeling, the one was described by
Feijaõ and Meidanis [32]. Below we define formally this most parsimonious
labeling. First, we recall the Fitch algorithm.

Definition 130. The Fitch algorithm [34] is a greedy algorithm for finding
a most parsimonious labeling of a tree, given a rooted binary tree, and the
leaves of the tree is labeled by characters from some finite set. It has two
phases (see also Fig. 11.1 a) and b)).

1. (Bottom-up phase) for each leaf v assign a set B(v) = {c} where c
labels v. Then for each internal node v with children u1 and u2

B(v) =

{
B(u1) ∩B(u2), if B(u1) ∩B(u2) is not empty

B(u1) ∪B(u2), otherwise
(11.4)

2. (Top down phase) Choose any member from B(root) that labels the root.
This is denoted by F (root). Then propagate down characters labeling
internal nodes on the tree using the following recursion, where v is the
parent of u

F (u) =

{
F (v) ∩B(u), if F (v) ∩B(u)is not empty

any member from B(u), otherwise

(11.5)

Although Equation (11.5) might be ambiguous for alphabets with size
larger than 2, for 0-1 alphabet, there is no ambiguity. Ambiguity for 0-1
alphabet might happen only at the root when B(root) = {0, 1}.

Definition 131. Given a rooted binary tree, T (V,E) and genomes labeling
the leaves of the tree. Assume that each genome is represented as a 0-1
vector indicating which adjacency can be found in the genome, as described
above. Then the canonical solution for the most parsimonious labeling of the
tree under the SCJ model is given by applying the Fitch algorithm for each
position of the representing vectors, and choosing 0 at the root whenever
B(root) = {0, 1}. The so-obtained values are the coordinates of the vectors
representing the genomes labeling the internal nodes of the tree.

194

 dc_2046_22

Feijaõ and Meidanis proved that the so-obtained vectors are always valid,
thus they indeed give a most parsimonious labeling of the internal nodes [32].
Below we show that any solution to the most parsimonious labeling of the
internal nodes under the SCJ model (which might be a solution that cannot
be obtained by the Fitch algorithm just by the Sankoff-Russeau algorithm,
see for example, Fig. 11.1. d)) can be transformed into the canonical solution
by a finite series of Gibbs sampling steps. First we have to prove a lemma re-
garding the values calculated in the Fitch algorithm and the Sankoff-Russeau
algorithm.

Lemma 132. Assume an arbitrary rooted binary tree, leaves are labelled
by 0s and 1s. Then for any internal node v, B(v) = {0, 1} if and only if
s(v, 0) = s(v, 1).

Proof. The ⇒ direction was proved in [126]. The ⇐ direction is proved
by strong induction on h, the height of v. We prove the equivalent form
B(v) ̸= {0, 1} =⇒ s(v, 0) ̸= s(v, 1). When h = 0, v is a leaf, and the
statement is true as s(v, 0) ̸= s(v, 1) and B(v) ̸= {0, 1}.

For any node h ≥ 1, assume that the statement holds for any node with
height k < h. If B(v) ̸= {0, 1} then either B(v) = {0} or B(v) = {1}. The
two cases are symmetric, so we might assume that B(v) = {0}, the proof for
the other case is symmetric.

If B(v) = {0} and u1 and u2 are the children of v, then either B(u1) =
B(u2) = {0} or B(u1) = {0}, B(u2) = {0, 1} or B(u1) = {0, 1}, B(u2) = {0}.

If B(u1) = B(u2) = {0}, then by the induction, s(u1, 0) ̸= s(u1, 1),
and since the Fitch algorithm gives a most parsimonious solution, s(u1, 0) <
s(u1, 1). Similarly for the other node, s(u2, 0) < s(u2, 1). Then s(v, 0) <
s(v, 1), according to Equations (11.1) and (11.2).

If for one of the children, the B function takes {0, 1}, then for that node u,
s(u, 0) = s(u, 1). For the sibling node u′, s(u′, 0) < s(u′, 1), and it is easy to
check (by considering Equations (11.1) and (11.2)) that s(v, 0) < s(v, 1).

Lemma 133. Given a most parsimonious labeling L of a tree T (V,E) under
the SCJ model. Assume that the genomes are given in a binary vector rep-
resentation as described above. Let v be the minimum height node for which
some adjacency α, Bα(v) = {0}, however, α is presented in the genome
labeling v (Bα(v) is the set that the Fitch algorithm calculates for the ver-
tex v when the algorithm is applied to the presence/absence of adjacency α).
Change the current labeling in the following way. Remove α from the genome

195

 dc_2046_22

labeling the node v and propagate down the presence-absence of adjacency α
below the subtree rooted in v according to the Fitch algorithm as v was the
root of the tree. Then the so obtained new labeling L′

a) contains valid genomes

b) also a most parsimonious labeling.

Proof. Changing any presence to absence cannot turn a valid genome into
invalid. The only case when the genome might become invalid is when an ab-
sence is turned into presence (a possible example for this is on Fig. 1. d) and b),
d) is a Sankoff-Russeau solution, b) is the canonical Fitch solution). This
might be the case when

• for some node u below v, Bα(u) = {1} or

• on connected parts C of the tree where for all nodes, u ∈ C, Bα(u) =
{0, 1}, except for the root of C, r, for which Bα(r) = {1}.

If Bα(u) = {1} then for all adjacencies β being in conflict with α, Bβ(u) =
{0} (Lemma 6.1. in [32]). But then β must be absent in the genome labeling
u otherwise it would contradict to the minimum height of v.

For any connected part of the tree, C with the above described property,
we prove that for any adjacency β being in conflict with α, β is absent in the
genomes labeling the vertices of C. For the root r, it holds as Bα(u) = {1},
thus Bβ(u) = {0}. For any node u ∈ C, for whose parent w, we showed
that β is absent in the genome labeling w, we show that β also absent in the
genome labeling u. If Bβ(u) = {0}, then β is absent in the genome labeling
u due to the minimal height of v. If Bβ = {0, 1}, then sβ(u, 0) = sβ(u, 1).
Then in a most parsimonious labeling, it cannot be the case that β is absent
in the genome labeling w but is presented in the genome labeling u. Indeed,
such a labeling would have a parsimony score 1 for the edge (u, v), and a cost
sβ(u, 1) below the subtree rooted in u. On the other hand, if we change the
labeling at the node u that β is absent in the genome labeling u, and on the
subtree below u, we can change the presence/absence of β to get a parsimony
score sβ(u, 0). Then the parsimony score regarding β for the edge (u, v) is 0,
hence this new labeling has a smaller total cost on the tree compared to the
current one, a contradiction. By induction, on the whole connected part C,
β is absent in the genomes labeling the vertices of C.

196

 dc_2046_22

We proved that the new labeling L′ contains valid genomes. We are going
to prove that it is also a most parsimonious labeling. Since Bα(v) = {0}, it
follows that sα(v, 0) < sα(u, 1). Hence, in the old labeling L, the parsimony
score regarding α on the subtree rooted in v was greater than in the modified
labeling. On the edge connecting v to its parent, the new score might be 1,
the old score might be 0, and then here the parsimony score might increase
by 1, however, this loss cannot be greater than the gain we obtained on the
subtree rooted at v. (And if the old labeling L was most parsimonious it
turns out that the old parsimony score regarding α on edge connecting v to
its parent was 0.)

Since the number of adjacencies as well as the height of the tree is finite,
in a finite number of steps, any labeling can be transformed into a labeling
such that for all vertices v and all adjacencies α, Bα(v) = {0} indicates
that adjacency α is absent in the genome labeling v. Next, we consider
transforming such labelings.

Lemma 134. Given a most parsimonious labeling L of a tree T (V,E) un-
der the SCJ model. Assume that the genomes are given in a binary vector
representation as described above. Furthermore, assume that for all vertices
w and all adjacency α, Bα(w) = {0} indicates that adjacency α is absent in
the genome labeling w.

Let v be the minimum height node for which some adjacency α, Bα(v) =
{1}, however, α is absent in the genome labeling v. Change the current
labeling in the following way. Add α to the genome labeling the node v and
propagate down the presence-absence of adjacency α below the subtree rooted
in v according to the Fitch algorithm as v was the root of the tree. Then the
so obtained new labeling L′

a) contains valid genomes

b) also a most parsimonious labeling.

Proof. The proof of validity in Lemma 134. is exactly the same than the
proof of Lemma 133. except each reasoning ”if Bβ(u) = {0}, then β is absent
in the genome labeling u due to the minimal height of v” should be replaced
to ”if Bβ(u) = {0}, then β is absent in the genome labeling u due to the
given conditions”.

Proving that the new labeling L’ is also most parsimonious is exactly the
same than the proof of Lemma 133. just 0 and 1 should be switched.

197

 dc_2046_22

Hence any most parsimonious labeling can be transformed to a most
parsimonious labeling such that for each node v and each adjacency α,
Bα(v) = {0} indicates the absence of α in the genome labeling v, and
Bα(v) = {1} indicates the presence of α in the genome labeling v. Fur-
thermore, each transformation is a possible Gibbs sampling step, since one
coordinate is changed from a most parsimonious labeling to another most
parsimonious, valid labeling. During these transformations, when the label-
ing was changed below a vertex v, for which Bα(v) ̸= {0, 1} for some α, the
new labeling is the canonical Fitch labeling. What about the subtrees below
vertices v and adjacencies α, for which Bα(v) = {0} and the adjacency α
was absent in the initial labeling or Bα(v) = {1}, and the adjacency α was
presented in the initial labeling? The following lemma claims that for such
subtrees, the initial labeling was already the Fitch labeling.

Lemma 135. Assume that in a most parsimonious labeling, Bα(u) = {0, 1}
and α is presented (respectively, absent) in the genome labeling the parent of
u. Then α is presented (respectively, absent) in the genome labeling u.

Proof. Assume that the presence/absence of α in u and its parent is differ-
ent. Then the parsimony score on the edge connecting u to its parent is
1. However, sα(u, 0) = sα(u, 1), hence switching the presence/absence of
α is possible without changing the parsimony score on the subtree rooted
at u (changing the presence/absence of α in genomes labeling vertices be-
low u might be needed). On the other hand, the parsimony score on the
edge connecting u to its neighbor could decrease by 1, a contradiction to the
assumption that we start with a most parsimonious labeling.

The consequence of the Lemma 135. is that we can transform by finite
series of Gibbs sampling steps any most parsimonious labeling to a labeling L′

such that for all vertices u and all adjacencies α, for which Bα(u) ̸= {0, 1} or
a vertex v above u (v is not necessarily the parent of u, it might be arbitrary
higher node above u) exists such that Bα(v) ̸= {0, 1}, the genome labeling
u is the Fitch canonical solution regarding adjacency α. These labelings
are almost in the Fitch canonical solutions, except for connected parts C
containing the root of the tree on which for some α, Bα(v) = {0, 1}, ∀v ∈ C.
The next lemma claims that they can be transformed into the Fitch canonical
solution.

Lemma 136. Given a most parsimonious labeling L of a tree T (V,E) un-
der the SCJ model. Assume that the genomes are given in a binary vector

198

 dc_2046_22

representation as described above. Furthermore, assume that for all vertices
w and all adjacency α, Bα(w) = {0} indicates that adjacency α is absent
in the genome labeling w and Bα(w) = {1} indicates that the adjacency is
presented in the genome.

Consider any adjacency α, and let C denote the connected subset C con-
taining the root for which Bα(v) = {0, 1}, ∀v ∈ C. (C might be the empty
set.) Change the current labeling L such that in the new labeling L′ adjacency
α be absent in each genome labeling any vertex v ∈ C, and do not change the
labeling otherwise. Then the new labeling

a) is a valid labeling

b) is also a most parsimonious labeling

Proof. Changing the presence to absence cannot make an invalid genome,
therefore proving the validity is trivial.

For any vertex v, B(v) = {0, 1}, the B function for both children is also
{0, 1} or for one of the children, it is {1} and for the other child, it is {0}.
Extend C to C ′ such that we add to C all cherry motifs (pair of children) for
which one of the children, the Bα function is {1} and for the other child, it is
{0}. We know from the condition that α is presented in the genome labeling
one of the children and is absent in the genome labeling the other child. If we
do not change the current labeling at the leaves of C ′, there are two possible
most parsimonious labelings regarding adjacency α: i) α is presented in all
genomes labeling the internal nodes, ii) α is absent in all genomes labeling
the internal nodes. This later is what L′ contains.

We are ready to prove the main lemma.

Lemma 137. Given a most parsimonious labeling L of a tree T (V,E) under
the SCJ model. Then L can be transformed into the canonical Fitch solution
by finite series of Gibbs sampling steps.

Proof. In the first phase, while there is a vertex v and adjacency α such that
Bα(v) = {0}, however α is presented in the genome labeling vertex v, find
the α and v with the minimal height, and do the Gibbs sampling indicated
in Lemma 133.

After the first phase, in the second phase, while there is a vertex v and
adjacency α such that Bα(v) = {1}, however, α is absent in the genome

199

 dc_2046_22

labeling v, find the α and v with the minimal height, and do the Gibbs
sampling indicated in Lemma 134.

After the second phase, in the third phase, while there is an adjacency α,
for which the connected part C containing the root with the property that
∀v ∈ C, Bα(v) = {0, 1} is not the empty set, and α is presented in any
of the genomes labeling any of the vertices v ∈ C, choose one of the such
adjacencies, and remove from all genomes labeling the vertices in v. Since it
yields a most parsimonious labeling, it is also a Gibbs sampling step.

After the third phase, the labeling is the Fitch canonical labeling.

The main lemma directly leads to the following theorem.

Theorem 138. Any most parsimonious labeling of a tree under the SCJ
model can be transformed into any another most parsimonious labeling by
finite series of Gibbs sampling steps.

Proof. A most parsimonious labeling L1 can be transformed into the canon-
ical labeling Lc and also labeling L2 can be transformed into Lc by Gibbs
sampling steps. Note that the inverse of a Gibbs sampling step is also a
Gibbs sampling step, thus L1 can be transformed into L2 by first transform-
ing L1 into Lc then transforming LC into L2 by the invers transformation
that moves L2 into Lc.

200

 dc_2046_22

Chapter 12

Markov kernels with large
perturbations and large
acceptance ratios

In Chapter 7, we showed that large perturbations might cause small accep-
tance ratios in the Metropolis-Hastings algorithm causing torpid mixing of
the resulting Markov chain. Here we give examples of Markov kernels that
perturb a non-constant part of the current state, however, when they are
plugged into a Metropolis-Hastings algorithm, the inverse of the acceptance
ratio is still upper bounded by a polynomial. The first such a Markov kernel
we are aware of was given by Jacobson and Matthew [51] for sampling Latin
squares. It is easy to see that for any prime number p > 3, any transition
kernel is not irreducible if it perturbs at most two rows of a Latin square.
On the other hand, perturbing at most 3 rows is sufficient for irreducibility.
However, the number of entries in these three rows are not bounded.

Latin squares can be considered as factorizations of the complete bipar-
tite graphs into 1-factors. With other words, edge colorings of the complete
bipartite graph. Here we present two generalizations. In a joint work with
two BSM students, Kathleen Zhu and Mark Aksen, we gave an irreducible
Markov chain on the half-regular factorizations of complete bipartite graphs.
In that Markov chain, at most 3 factors are perturbed in a single step. Al-
though, there is no restriction on how many edges are affected, the inverse of
the accpeptance ratio is still upper bounded by a polynomial. The original
work has been published in Discrete Applied Mathematics, 230:21-33, DOI:
https://doi.org/10.1016/j.dam.2017.06.003. The author of this thesis

201

 dc_2046_22

suggested the definition of exeedance number, developed the Markov chain
Monte Carlo algorithm, proved the theorem on it and contributed to the
proofs of all other lemmas and theorems.

In a joint work with a BSM student, Carina Hong, we gave an irreducible
Markov chain of edge colorings of bipartite graphs. In each step, at most
three colors are altered. Although there is no restriction how many edges
change color, the inverse of the accpetance ratio is still upper bounded by
a polynomial. The original work is under review at the moment. Carina
Hong proved Lemma 156 in case of regular bipartite graphs, and the author
of this thesis extended the proof for arbitrary bipartite graphs. The author
of this thesis developed the Markov chain Monte Carlo method and proved
the theorems on it.

12.1 Half-regular factorizations of the com-

plete bipartite graph

12.1.1 Preliminaries

In this section, we will work with realizations of half-regular degree matrices,
defined below.

Definition 139. A bipartite degree sequence D = ((d1, d2, . . . dn), (f1, f2, . . . fm))
is a pair of sequences of non-negative integers. A bipartite degree sequence
is graphic if there exists a simple bipartite graph G whose degrees correspond
exactly to D. We say that G is a realization of D.

Definition 140. A bipartite degree matrix M = (D,F) is a pair of k × n
and k × m matrices of non-negative integers. A bipartite degree matrix is
graphic if there exists an edge colored simple bipartite graph G(U, V,E) such
that for all color ci and for all uj ∈ U , the number of edges of uj with color ci
is di,j and for all vl ∈ V , the number of edges of vl with color ci is fi,l. Such
graph is called a realization of M. A bipartite degree matrix is half-regular
if for all i ≤ k and j, l ≤ n, di,j = di,l.

The rows of M are bipartite degree sequences that are also called factors
and the edge colored realization of M is also called an M-factorization.

We consider two problems. One is the existence problem which asks if
there is a realization of a given half-regular degree matrix. The other is the

202

 dc_2046_22

sampling problem, which considers the set of all realizations of a half-regular
degree matrix and asks how to sample uniformly a realization from this set.
Markov Chain Monte Carlo (MCMC) methods are generally applicable for
such problems, and we are also going to introduce an MCMC for sampling
realizations of half-regular degree sequences.

12.1.2 The existence problem

Definition 141. Let G(V,E) be a multigraph, and for each u, v ∈ V , let
f(u, v) be

f(u, v) :=

{
0 if (u, v) /∈ E

m(u, v)− 1 otherwise
(12.1)

where m(u, v) denotes the multiplicity of edge (u, v). The exceedance number
of graph G is defined as

ex(G) :=
∑
u,v∈V

f(u, v) (12.2)

Clearly, the exceedance number is 0 iff G is a simple graph.

Theorem 142. Let

M = {{d1,1 = d1,2 = . . . = d1,n}, {f1,1, f1,2, . . . f1,m}
{d2,1 = d2,2 = . . . = d2,n}, {f2,1, f2,2, . . . f2,m}

...

{dk,1 = dk,2 = . . . = dk,n}, {fk,1, fk,2, . . . fk,m}} (12.3)

be a half-regular bipartite degree matrix. The bipartite complete graph Kn,m

has an M-factorization iff

1. ∀i, ndi,1 =
∑m

j=1 fi,j

2.
∑k

i=1 di,1 = m

3. ∀j,
∑k

i=1 fi,j = n.

Proof. ⇒ If Kn,m has an M-factorization, then clearly all factors are graphic
and the degrees sum to the degrees of the complete bipartite graph. Condi-
tions 2 and 3 explicitly state that the sum of the degrees in the factors sum

203

 dc_2046_22

up to the degree of the complete bipartite graph. Condition 1 states that in
each factor, the sums of the degrees in the two vertex classes are the same,
which is a necessary condition for a graphic degree sequence.

⇐ Conditions 2 and 3 also say implicitly that for each i, di,1 ≤ m and for
each i, j, fi,j ≤ n. Together with condition 1, they are sufficient conditions
that a half-regular bipartite degree sequence be graphic. Namely, the theorem
says if all factors are graphic and the sums of the degrees are the degrees of
the complete bipartite graph, then Kn,m has such a factorization.

For each i, let Gi be a realization of the degree sequence
(di,1, . . . di,n), (fi,1, . . . fi,m). Let G = ∪k

i=1Gi. Color the edges of G such that
an edge is colored by color ci if it comes from the realization Gi. G might be
a multigraph, however, for each color ci and each pair of vertices u, v, there
can be at most one edge between u and v with color ci. If ex(G) = 0, then
G is a simple graph, and due to the conditions, it is Kn,m, thus we found an
M-factorization of Kn,m.

Assume that ex(G) > 0. Then there is a pair of vertices (u, v) such that
there is more than one edge between u and v. Fix one such pair (u, v), and
let V0 denote the set {v}. Since the degree of v in G is n, there must be a u′

such that there is no edge between u′ and v. Let C0 denote the set of colors
that appear as edge colors between u and v. Since for each color ci, u and
u′ have the same number of edges with color ci, there must be at least one
vertex v′ such that there are more edges with colors from C0 between u

′ and
v′ than the edges with colors from C0 between u and v′. Let V ′ denote the
set of vertices for which this condition holds. There are three possibilities
(see also Figure 12.1):

1. There is a vertex v′ ∈ V ′ such that there are more than one edge
between u′ and v′.

2. There is a vertex v′ ∈ V ′ such that there is only a single edge between
u′ and v′. However, there is no edge between u and v′.

3. For each vertex v′ ∈ V ′, there is only a single edge between u′ and v′,
and there is at least one edge between u and v′.

If case 1 holds, then let ci0 be a color in C0 such that there is a ci0-colored
edge between u′ and v′ and there is no ci0-colored edge between u and v′.
Remove the edge between u and v and also between u′ and v′ and add a ci0
colored edge between u′ and v and also between u and v′. Note that Gi0 ,

204

 dc_2046_22

u

u’

v

C0

V’V0

v’

C1

��0, ��1, …∅

u

u’

v

C0

V’V0

v’

��0∅

u

u’

v

C0

V’V0

v’

��0∅

∅

u

u’

v

C0 ∖ ��0

V’V0

v’

C1 ∪{ ��0}

��1, …��0

u

u’

v

V’V0

v’

��0 ∅

C0 ∖ ��0
��0 u

u’

v

V1V0

{ v’ ,…}

C1

C0∅

C0

Case 1 Case 2 Case 3

C1 ≠∅

Figure 12.1: The three possible cases when there is more than one edge
between vertices u and v. See text for details.

the graph with color ci0 remains a simple graph with the prescribed degree
sequence. f(u, v) decreases by 1. f(u′, v) remains 0, since the edge with color
ci0 is the only edge between them. f(u′, v′) decreases by 1. f(u, v′) might
increase by 1 if there was already at least one edge between them before the
change, but otherwise it remains the same. In total, ex(G) is decreased at
least by 1.

If case 2 holds, then do the same edge changing as in case 1. This causes
a decrease in f(u, v) by one, and no change in f(u′, v), f(u, v′) and f(u′, v′).
In total, ex(G) decreases by 1.

In case 3, select a subset V1 from V ′ such that the colors of edges between
u′ and the vertices in V1 are exactly the set C0. This is possible, since for
each vertex v′ ∈ V ′, there is only one edge between u′ and v′. Furthermore,
the union of colors of edges between u′ and V ′ must contain a subset C0.
Let C1 denote the (possibly multi)set of colors that appear as edge colors
between vertex u and the set of vertices V1. The multiset of colors between
u and V0 ∪V1 is C0 ⊎C1, where ⊎ denote the multiset union, while the set of
colors between u′ and V0 ∪ V1 is C0. Therefore, there is at least one vertex
v′ /∈ V0 ∪ V1 such that the number of edges with colors from C1 between u′

205

 dc_2046_22

and v′ is more than the number of edges with colors from C1 between u and
v′. Let V ′ denote the set of vertices with this property. If case 3 holds, then
we can select a subset V2 from V ′ such that the multiset of colors between
vertex u′ and V2 is exactly C1. Then the multiset of colors between u and
V0 ∪ V1 ∪ V2 is C0 ⊎ C1 ⊎ C2, while the multiset of colors between u′ and
V0 ∪ V1 ∪ V2 is C0 ⊎ C1.

Therefore, while case 3 holds, we can select the subset of vertices v′ /∈
∪j−1

i=0Vi such that the number of edges with colors from Cj−1 between u′ and
v′ is more than the number of edges with colors from Cj−1 between u and
v′, and from this set, we can select an appropriate subset Vj. Since there are
finite number of vertices in Vj, for some j, case 1 or 2 must hold (see also
Figure 12.2). Let v′ be the vertex for which case 1 or 2 holds, and let cij−1

be the color such that there is an edge with color cij−1
between v′ and u′ and

there is no such edge between u and v′. Remove the edge between u′ and v′

and add it between u and v′. Let vj−1 ∈ Vj−1 be a vertex such that there is
an edge between u and vj−1 with color cij−1

. Remove that edge and add it
between u′ and vj−1. Let the color between u′ and vj−1 be cij−2

. Remove it
and add it between u and vj−1. (Note that due to the definition of V ′ and due
to case 3 held in the j − 1st iteration, before the change, there was no cij−2

colored edge between u and vj−1. Thus after the change, all edges between u
and vj−1 have different colors.) Iterate this process; in the lth iteration, let
vj−l be a vertex in Vj−l such that there is an edge with color cij−l

between u
and vj−l. Remove that edge and add it between u′ and vj−l, and remove the
edge with color cij−l−1

between u′ and vj−l and add it between u and vj−l.
Finally, remove the edge with color ci0 between u and v and add it between
u′ and v. Let this new graph be G′. Then in G′, f(u, v) decreases by 1,
while f(u′, v) remains the same. For each i = 1, . . . j − 1, neither f(u, vi)
nor f(u′, vi) is changed since the total number of edges between them is not
changed. Finally, f(u, v′)+f(u′, v′) is not increased. Altogether, ex(G′) is at
least 1 less than ex(G), see Figure 12.2. It is easy to verify that all vertices
participating in the modification of G, the same colored edges were removed
and added. Therefore, G′ is still the union of realizations of the prescribed
degree sequences.

Since the exceedance number is a non-negative finite integer, after a finite
number of steps, the exceedance number will be 0, thus we get Kn,m as an
M-factorization.

It is clear that one of the colors might encode “non-edge”, namely, we

206

 dc_2046_22

u

u’

v

C0

V1V0 V2 Vj-1 Vj

[… C1 …]

[… C0 …] [… C1 …]

[… C2 …] [… Cj-1 …]

[… Cj-2 …]

v1 v2 vj-1 v’

cij-1
or

{ cij-1
,c’, …}

cij-2
ci1ci0∅

Cj{ ci1
, …} { ci2

, …} { cij-1
, …}

u

u’

v v1 v2 vj-1 v’

∅ or {c’, …}cij-1
ci2ci1

Cj ∪ cij-1
{ ci0

, …} { ci1
, …} { cij-2

, …}

ci0

C0

�� ∖ ci0

Figure 12.2: An illustration of Case 1 or Case 2 after j iterations, where
[. . . Cl . . .] indicates that the (possibly multi)set of colors between u and Vl
is Cl and the (possibly multi)set of colors between u′ and Vl is Cl−1, for all
l = 1, . . . j − 1. From the set of vertices Vl, a vertex vl is selected such that
there is one edge between u′ and vl with color cil−1

and there is at least one
edge between u and vl including an edge with color cil . See text for details.

207

 dc_2046_22

can delete those edges and get a realization of a half-regular degree matrix
obtained by deleting one row from M. Therefore, the following theorem also
holds.

Theorem 143. Let

M = {{d1,1 = d1,2 = . . . = d1,n}, {f1,1, f1,2, . . . f1,m}
{d2,1 = d2,2 = . . . = d2,n}, {f2,1, f2,2, . . . f2,m}

...

{dk,1 = dk,2 = . . . = dk,n}, {fk,1, fk,2, . . . fk,m}} (12.4)

be a half-regular bipartite degree matrix. Then M has a realization iff

1. ∀i, ndi,1 =
∑m

j=1 fi,j

2.
∑k

i=1 di,1 ≤ m

3. ∀j,
∑k

i=1 fi,j ≤ n.

Proof. It is clear that equality in condition 2 holds iff equality in condition 3
holds for all j. In case of equality, the statement follows from Theorem 142.
In case of inequality, let

dk+1,1 = dk+1,2 = . . . dk+1,n = m−
k∑

i=1

di,1

and let

fk+1,i = n−
k∑

j=1

fj,i ∀i = 1, 2, . . .m.

Extend M with this k + 1st row, and this matrix will satisfy the conditions
of Theorem 142. Find a realization of this extended matrix, and delete the
edges with the (k + 1)st color, thus obtaining a realization of M.

In the following subsection, we consider the solution space of realizations
of half-regular degree matrices. Since there is no difference between realiza-
tions of half-regular degree matrices and M-factorizations of the complete
bipartite graph Kn,m, we will consider the latter. Namely, we consider non-
edges as (k + 1)st colors when non-edges exist.

208

 dc_2046_22

12.1.3 The connectivity problem

In this subsection, we give necessary and sufficient perturbations to transform
any realization of a half-regular bipartite degree matrix, M, into another
realization ofM. First, we extend the space of graphs on which perturbations
are applied. We show how to transform a realization of M into another
realization in this extended space, then we show how to transform realizations
into each other, while remaining in the space of realizations. The concept
is very similar to the concept applied in [51], but different perturbations are
necessary to temporarily extend the space of graphs. First, we introduce
a necessary definition, the (+c1 − c2) deficiency. We will extend the space
of graphs that have at most 3 vertices with deficiency. We show how to
transform G1, a realization of M into another realization G2, via graphs
having at most 3 vertices with deficiency. In doing so, we first arrange the
colored edges of a vertex u0 ∈ U so that they agree with realization G2. Then
we fix these edges and reduce the problem to a similar, smaller problem. Note
that U is the regular class, and if we fix (technically: remove) the vertex u0
together with its edges, the remaining graph is still half-regular. Finally, we
prove how to transform realizations of M into each other remaining in the
space of realizations of M.

First, we define deficiency.

Definition 144. Let M be a bipartite degree matrix, and let G be an edge
colored bipartite graph. We say that a vertex uj in G has a (+ci1 − ci2)-
deficiency w.r.t. M if the number of its ci1 colored edges is di1,j + 1, the
number of its ci2 colored edges is di2,j − 1 and for all other i ̸= i1, i2, the
number of ci colored edges of uj is di,j.

Then we define an auxiliary graph that will be used repeatedly.

Definition 145. Let G(U, V,E) be an edge colored bipartite graph in which
the edges are colored with colors c1, c2, . . . ck, and let u and u′ be two vertices
in U . Then the directed, edge labeled multigraph K(G, u, u′) is defined in the
following way. The vertices of K are the colors c1, c2, . . . ck, and for each
v ∈ V , there is an edge going from ci to cj, where ci is the color of the edge
between u and v and cj is the color of the edge between u′ and v. Such an
edge is labeled with v.

The next two lemmas show how to handle graphs with a small amount
of deficiency.

209

 dc_2046_22

Lemma 146. Let G be such an edge colored simple graph of Kn,m which is
almost a factorization of a half-regular bipartite degree matrix M = (D,F)
in the following sense:

1. For each color ci and vertex vj, the number of edges with color ci is fi,j.

2. For each color ci and vertex uj the number of edges with color ci is di,j
except for two colors ci1 and ci2 and two vertices uj1 and uj2, where uj1
has a (+ci1 − ci2)-deficiency and uj2 has a (+ci2 − ci1)-deficiency.

Then there exists a perturbation of G that affects only edges of uj1 and uj2
and transforms G into a realization of M.

Proof. Consider K(G, uj1 , uj2). For each vertex ci, i ̸= i1, i2 of the graph
K(G, uj1 , uj2), the number of incoming and outgoing edges are the same,
while ci1 has two more outgoing edges than incoming and ci2 has two more
incoming edges than outgoing. Therefore, there is a trail from ci1 to ci2 due
to the pigeonhole principle. For each edge eh labeled by vh along the trail,
swap the corresponding edges in G, namely, the edge between uj1 and vh and
the edge between uj2 and vh. This transforms G into a realization of M.
Indeed, uj1 will have one less edge with color ci1 and one more edge with
color ci2 while the effect on uj2 is the opposite. The number of edges with
other colors are not affected, since in the trail, the number of incoming and
outgoing edges are the same for all colors not ci1 and not ci2 , and swapping
the edges in G is equivalent with inverting the direction of the corresponding
edges in K(G, uj1 , uj2).

Lemma 147. Let G be such an edge colored simple graph of Kn,m which is
almost a factorization of a half-regular bipartite degree matrix M = (D,F)
in the following sense:

1. For each color ci and vertex vj, the number of edges with color ci is fi,j.

2. For each color ci and vertex uj, the number of edges with color ci is di,j
except for three colors ci1 , ci2 and ci3 and three vertices uj1, uj2 and uj3,
for which uj1 has (+ci1 − ci2)-deficiency, uj2 has (+ci2 − ci3)-deficiency
and uj3 has (+ci3 − ci1)-deficiency.

Then there exists a perturbation of G that affects only edges of ui2 and ui3 and
transforms G into an edge colored simple graph of Kn,m satisfying conditions
1 and 2 in Lemma 146.

210

 dc_2046_22

Proof. Consider the graph K(G, uj3 , uj2). For each vertex ci, i ̸= i1, i2, i3 of
the graph K(G, uj3 , uj2), the number of incoming and outgoing edges are the
same, while ci3 has two more outgoing edges than incoming and ci1 and ci2
has one-one more incoming edges than outgoing. Therefore there is a trail
from vertex ci3 to ci2 (and also to ci1) due to the pigeonhole principle. Take a
trail from ci3 to ci1 , and for each edge along the trail, swap the corresponding
edges in G, namely, the edge between uj2 and vh and the edge between uj3
and vh. This transforms G into a graph satisfying conditions 1 and 2 in
Lemma 146. Indeed, u3 will have one less edge with color ci3 and one more
edge with color ci1 , namely, the transformation cancels its deficiency. Vertex
u2 will have one more edge with color ci3 and one less edge with color ci1 ,
therefore its (+ci2 − ci3) deficiency becomes a (+ci2 − ci1) deficiency. The
number of edges with other colors are not affected, since in the trail, the
number of incoming and outgoing edges are the same for all colors not ci1
and not ci3 , and swapping the edges in G is equivalent with inverting the
direction of the corresponding edges in K(G, uj3 , uj2).

The following is the key lemma in transforming a realization into another
realization. As we mentioned above, the strategy is to transform a realization
G1 into an intermediate realizationH, such that the colors of edges of a vertex
u0 in the regular class agrees with the colors of the edges of u0 in the target
realization G2. We have to permute the edges, and the basic ingredient of
a permutation is a cyclic permutation. The following lemma shows how to
perturb a realization along a cyclic permutation.

Lemma 148. Let G1 and G2 be two realizations of the same half-regular
bipartite degree matrix M. Let V ′ be a subset of vertices such that for some
u ∈ U , each possible colors appears at most once on the edges between u and
V ′ in G1, furthermore, there exists a cyclic permutation π on V ′ such that for
all v ∈ V ′, the color between u and v in G1 is the color between u and π(v)
in G2. Then there exists a sequence of colored graphs G1 = H0, H1, . . . , Hl

with the following properties

1. For all i = 1, . . . , l− 1, Hi is a colored graph satisfying either the prop-
erties 1 and 2 in Lemma 146 or the properties 1 and 2 in Lemma 147.

2. For all i = 0, . . . , l − 1, a perturbation exists that transforms Hi into
Hi+1 and perturbs only the edges of two vertices in U .

211

 dc_2046_22

3. Hl is a realization of M such that for all v′ ∈ V ′, the color of the
edge between u and v′ is the color between u and v′ in G2, and for all
v ∈ V \ V ′, the color between u and v is the color between u and v in
G1.

Proof. Let (vi1 , vi2 , . . . vir) denote the cyclic permutation, and for all l =
1, 2, . . . r, let cjl be the color of the edge between u and vil in G1. Since G2 is
a realization of M, there is a u′ such that the color between u′ and vi1 is cjr .
Indeed, the color between u and vi1 in G2 is cjr (the permutation π moves vir
to vi1). Thus, vi1 has an edge with color cjr . Swap the edges between u and
vi1 and between u′ and vi1 . This will be H1, which satisfies the conditions 1
and 2 in Lemma 146. Indeed, u has a (+cjr − cj1) deficiency, while u

′ has a
(+cj1 − cjr) deficiency. Clearly, H0 and H1 differ only on edges of u and u′,
furthermore, all edges of u has the same color than in G1 except the edge
between u and vi1 .

Assume that someHt is achieved for which conditions 1 and 2 in Lemma 146
are satisfied with u having (+cjr − cjs) deficiency and with some u′ having
(+cjs −cjr) deficiency and for all vertices vi1 , vi2 , . . . , vis , the edges between u
and these vertices have a color as in G2. Furthermore, all other edges between
u and v ̸= vi1 , vi2 , . . . , vis did not change color. The color between u and vis+1

in G2 is cjs , therefore, there is a u” such that the color between u” and vis+1 is
cjs in Ht. Swap the edges between u and vis+1 and between u” and vis+1 . This
will be the graph Ht+1. Clearly, Ht and Ht+1 differ only on edges of u and
u”. If u′ = u”, then u has (+cjr − cjs+1) deficiency, and u

′ has (+cjs+1 − cjr)
deficiency, hence Ht+1 satisfies conditions 1 and 2 in Lemma 146. We can
rename Ht+1 to Ht and iterate the chain of transformations.

If u′ ̸= u”, then u has (+cjr − cjs+1) deficiency, u” has (+cjs+1 − cjs)
deficiency and u′ has (+cjs − cjr) deficiency. Thus, the conditions 1 and 2 in
Lemma 147 hold. Due to Lemma 147, there exists a perturbation that affects
only edges on u′ and u” and transforms Ht+1 to an Ht+2 for which conditions
1 and 2 in Lemma 146 hold with u having (+cjr − cjs+1) deficiency and u”
having (+cjs+1 − cjr) deficiency. We can rename Ht+2 to Ht and iterate the
chain of transformations.

With this series of transformations, we can reach Ht which satisfies con-
ditions 1 and 2 in Lemma 146 with u having (+cjr−cjr−1) deficiency and with
some u′ having (+cjr−1−cjr) deficiency, furthermore, all vertices vi1 , vi2 , . . . vir−1 ,
the edges between u and these vertices have a color as in G2, while all other
edges of u did not change color. There is a u” such that the color of the edge

212

 dc_2046_22

between u” and vir is cjr−1 . Ht is transformed into Ht+1 by swapping the
edges between u and vir and between u” and vjr . If u

′ = u”, then this trans-
formation leads to a realization of M, and we are ready, namely, Ht+1 = Hl.
Otherwise, Ht+1 satisfies the conditions 1 and 2 in Lemma 146 with u′ having
(+cjr−1 −cjr) deficiency and u” having (+cjr −cjr−1) deficiency. According to
Lemma 146, Ht+1 can be transformed into Hl with a perturbation affecting
only edges on u′ and u”.

Since Hl is also a realization of M, it is desirable to have a series of
transformation from G1 to Hl such that all the intermediate graphs are real-
izations of M. To do this, we need a slightly larger perturbation modifying
the edges of three vertices in the regular vertex set, as stated in the following
lemma.

Lemma 149. Let G1, G2, V
′ and π be the same as in Lemma 148. Then

there exists a sequence of colored graphs G1 = H ′
0, H

′
1, . . . H

′
l′ with the follow-

ing properties

1. For all i = 1, . . . l′, H ′
i is a realization of M.

2. For all i = 0, . . . l′ − 1, a perturbation exists that transforms H ′
i into

H ′
i+1 and perturbs only the edges of at most three vertices in U .

3. H ′
l′ is a realization of M such that for all v′ ∈ V ′, the color of the

edge between u and v′ is the color between u and v′ in G2, and for all
v ∈ V \ V ′, the color between u and v is the color between u and v in
G1.

Proof. Consider the series of colored graphs H0, H1, H2, . . . Hl obtained in
Lemma 148. Find the largest t1 satisfying ∀0 < t′ < t1, Ht′ has two vertices
with a deficiency. Due to the construction, for all t′, these two vertices are
the same, and G1 and Ht′ differ only in edges of these two vertices, u and
u′. If t1 = l, then G1 and Hl differ only on edges of two vertices of U , thus
G1 = H ′

0, H
′
1 = Hl will suffice. Otherwise, Ht1 has deficiency on 3 vertices,

u, u′ and u”. Ht1+1 has deficiency on 2 vertices, u and u”, and G1 differ from
Ht1+1 on edges of three vertices, u, u′ and u”. Apply Lemma 146 on Ht1+1,
the so-obtained graph will be H ′

1. H
′
1 is a realization of M and differ from

G1 only on edges of 3 vertices in U .
Iterate this construction, find the largest tj such that ∀tj−1 < t′ < tj,

Ht′ has two vertices with deficiency. If tj = l, then l′ = j, and H ′
l′ = Hl.

213

 dc_2046_22

Otherwise, Htj has 3 vertices with deficiency, and differ from H ′
j−1 only on

the edges of these 3 vertices. Htj+1 has two vertices with deficiency, on which
Lemma 146 is applied to get H ′

j. H ′
j differs from H ′

j−1 only on edges of 3
vertices, since H ′

j−1 differs from Htj−1+1 on the edges of the same 2 vertices
that have deficiency for all Ht′ , tj−1 < t′ < tj.

After a finite number of iterations, tj = l, and then j = l′, H ′
l′ = Hl, and

this finishes the construction.

Theorem 150. Let G1 and G2 be realizations of the same half-regular bi-
partite degree matrix M. Then there exists a sequence of colored graphs
G1 = H0, H1, . . . Hl = G2 with the following properties.

1. For all i = 0, . . . l, Hi is a realization of M.

2. For all i = 0, . . . l − 1, a perturbation exists that transforms Hi into
Hi+1 and perturbs only the edges of at most three vertices in U .

Proof. Consider a vertex u in the regular vertex class U , and define the
following directed multigraph K. The vertices of K are the colors c1, c2, . . . ck
and the edges are defined by the following way. For each vertex v ∈ V , there
is an edge going from ci to cj, where ci is the color of the edge between
u and v in G2 and cj is the color of the edge between u and v in G1 (if
ci = cj, then this edge will be a loop). Label this edge with vertex v. Since
G1 and G2 are realizations of the same degree matrix M, K is Eulerian
and thus, can be decomposed into directed cycles. If all cycles are trivial
(loops), then for all vertices v ∈ V , the colors of the edges between u and v
in G1 and G2 are the same. If there is a nontrivial cycle C, then each color
appears in this cycle at most once, and the edges of a cycle define a cyclic
permutation on a subset of vertices V . Let (vi1 , vi2 , . . . vir) denote this cyclic
permutation π. By the definition of K, the color between u and v in G1 is
the color between u and π(v) in G2, for all v = vi1 , vi2 , . . . vir . Therefore, we
can apply Lemma 149 to transform G1 into H ′

l′ . Now if we construct the
same directed multigraph K considering H ′

l′ , G2 and the same vertex u, then
cycle C becomes separated loops for all of its vertices, while other edges are
not affected (recall the second half of condition 3 in Lemma 148, ”for all
v ∈ V \ V ′, the color between u and v is the color between u and v in G1.”).
While there are non-trivial cycles in K, we can apply Lemma 149, and in a
finite number of steps, G1 is transformed into a realization H ′ such that for
all vertices v ∈ V , the color of the edge between u and v in H ′ and G2 are the

214

 dc_2046_22

same. Furthermore, in all steps along the transformation, the intermediate
graphs satisfy the two conditions of the lemma.

Fix the edges of u both in H ′ and G2. Technically, this can be done by
deleting vertex u and its corresponding edges from both H ′ and G2. Then
these reduced graphs will be realizations of the same half-regular degree
matrix that can be obtained from M = (D,F) by deleting a column from
the row-regular D (which thus remains row-regular) and modifying some
values of F according to the edge colors of u. On these reduced graphs, we
can consider a vertex u from the regular vertex class U , and do the same.
Once there is one remaining vertex in U , the two realizations will be the
same, and thus, we transformed G1 into G2.

Theorem 150 says that perturbing the edges of at most three vertices in
the regular vertex class is sufficient to connect the space of realizations of a
half-regular degree matrix M, namely, a finite series of such perturbations is
sufficient to transform any realization into another such that all intermediate
perturbed graphs are also realizations of M. A natural question to ask is if
such perturbations are also necessary. The answer is in the affirmative. Latin
squares can be considered as 1-factorizations of the complete bipartite graph
Kn,n. The corresponding degree matrixM = (D,F) satisfies the definition of
half-regular degree matrices. Indeed, both D and F are n×n, all-1 matrices.
It is well-known that even some 5 × 5 Latin squares cannot be transformed
into each other via Latin squares if only two rows are perturbed in a step,
and the same claim holds for any p× p Latin squares, where p is prime and
p ≥ 5 [51].

12.1.4 Markov Chain Monte Carlo for sampling real-
izations of a half-regular degree matrix

In this subsection, we give a Markov Chain Monte Carlo (MCMC) method
for sampling realizations of a half-regular degree matrix M. Theorem 150
says that the perturbations that change the edges of at most 3 vertices of the
regular vertex class are irreducible on the realizations of half-regular degree
matrices. A näıve approach would make a random perturbation affecting the
edges of 3 vertices, and would accept this random perturbation if it is a real-
ization of M. Unfortunately, the probability that such random perturbation
would generate a realization ofM would tend to 0 exponentially quickly with
the size of M, making the MCMC approach very inefficient. Indeed, there

215

 dc_2046_22

were an exponential waiting time for an acceptance event, that is, when the
random perturbation generates a realization of M.

Even if the random perturbation generates a realization of M with prob-
ability 1, the Metropolis-Hastings algorithm applying such random perturba-
tion might generate a torpidly mixing Markov chain if the acceptance ratios
are small. An example when this is the case can be found in [119] (see also
Chapter 7).

In this subsection, we design a transition kernel that generates such per-
turbations and its transition probabilities satisfy the property that the inverse
of the acceptance ratio bounded by a polynomial function of the size of M.
To do this, we first have to generate random circuits and trails in auxiliary
graphs that we define below.

Definition 151. Let K(G, u, u′) be the directed, edge labeled multigraph of
the edge colored bipartite graph G as defined in Definition 145. Let cs and
ce be two vertices of K such that for any vertex c ̸= ce of K, the number of
outgoing edges of c is greater or equal than the number of its incoming edges,
and cs has more outgoing edges than incoming edges if cs ̸= ce. We define
the following function f(K, cs, ce) that generates a random trail from cs to ce
when cs ̸= ce and a random circuit when cs = ce.

1. Select uniformly a random outgoing edge e of cs which is not a loop.
Let the sequence of labels P := v, where v is the label of e, namely, P
be a sequence containing one label. Let c be the endpoint of e.

2. While c ̸= ce, select uniformly a random outgoing edge e of c which is
not a loop and does not appear in P . Extend P with the label of e, and
set c to the endpoint of e.

Note that due to the pigeonhole principle, this random procedure will even-
tually arrive at ce, since for any vertex c ̸= ce reached by the algorithm, there
exists at least one outgoing edge of c which is not a loop and is not in the
sequence P .

The probability of a trail T = cs, c1, c2, . . . cr, ce or circuit C = (cs, c1, c2, . . . cr)
generated by f(K, cs, ce) consists of the product of the inverses of the avail-
able edges going out from cs, c1, c2, . . . cr. These probabilities will be denoted
by P (C) and P (T).

We are going to perturb the graphs along the circuits and trails defined
below.

216

 dc_2046_22

u

u’

u”

c0

c1

c1

c2

cl-1

c

c

c’

c0

c’ 1

c’ 1

c’ 2

c’ i

c

c’

c” 1

c” 1

c” 2

c” j

c0

…

…

…

u

u’

u”

c1

c0

c2

c1

c

cl-1

c’

c

c’ 1

c0

c’ 2

c’1

c

c’ i

c” 1

c’

c” 2

c” 1

c0

c” j

…

…

…

G

G’

Figure 12.3: This figure shows how Algorithm 1, case II.(c)-(e) perturbs G
into a G′. Vertices u, u′ and u” are the vertices whose edges are perturbed.
Pairs of colors are swapped in three trails (see also Definition 151), further-
more a pair of colors c and c′ are swapped. Some colors are boxed in order to
help understand that the perturbation yields a realization of M, see also the
proof of Theorem 153. The transformation swapping the columns until the
first vertical line yields G̃, until the second vertical line yields Ḡ. Note that
for sake of readability, all color changes are indicated in separate columns,
however, it is allowed that a column is used several times during the pertur-
bation. Also note that due to readability, columns are in order as they follow
each other in a trail, however, they might not be necessarily consecutive ones
in G.

Definition 152. Let C (resp., T) be a random circuit (resp., random trail)
generated by f(K(G, u, u′), cs, ce). Then the transformation G∗(C, u, u′) (G∗
(T , u, u′)) swaps the colors of the edges between u and v and between u′ and
v for all edge labels v in C (T).

With these types of perturbations, we are going to define the random
algorithm that generates a random perturbation.

Algorithm 1. Let G(U, V,E) be a realization of the half-regular degree ma-
trix M. Do the following random perturbation on G.

I With probability 1
2
, do nothing. This is technically necessary for the

Markov chain to be aperiodic. Any constant probability would suffice,
1
2
is the standard choice for further technical reasons not detailed here

(see, for example, [83]).

217

 dc_2046_22

u

u’

u”

c0

c1

c1

c2

cl-1

c’

c

c’ 1

c’ 1

c’ 2

c’ i

c0

c’

c

c

c” 1 c” 2

c” 1

c0

c” j

u

u’

u”

c1

c0

c2

c1

c’

cl-1

c’ 1

c

c’ 2

c’ 1

c0

c’ i

c

c’

c” 1

c c” 1

c” 2

c” j

c0

…

…

…

…

…

…

G

G’

Figure 12.4: This figure shows how Algorithm 1, case III.(c)-(e) perturbes G
into a G′. Vertices u, u′ and u” are the vertices whose edges are perturbed.
Couples of colors are swapped in three trails (see also Definition 151), fur-
thermore a pair of colors c and c′ are swapped. Some colors are boxed in
order to help understand that the perturbation yields a realization of M, see
also the proof of Theorem 153. The transformation swapping the columns
until the first vertical line yields Ḡ, until the second vertical line yields G̃.
Note that for sake of readability, all color changes are indicated in separate
columns, however, it is allowed that a column is used several times during
the perturbation. Also note that due to readability, columns are in order
as they follow each other in a trail, however, they might not be necessarily
consecutive ones in G.

218

 dc_2046_22

II With probability 1
4
, do the following

(a) Draw uniformly a random ordered pair of vertices u and u′ from
the vertex set U . Construct the auxiliary graph K(G, u, u′), draw
uniformly a random color c0 and draw a random circuit C using
f(K(G, u, u′), c0, c0).

(b) Chose a random integer l uniformly from [1,m]. If l ≥ |C|, then
let G′ be G∗(C, u, u′). G′ is the perturbed graph, exit the algorithm.

(c) If l < |C|, do the following (see also Figure 12.3). Let e1, e2, . . .
denote the edges of circuit C starting with the edge going out from
c0. Let T be the trail with edges e1, e2, . . . el. Perturb G to G ∗
(T , u, u′). Draw uniformly a u” from U\{u, u′} and also uniformly
a vertex v from the subset of V satisfying the condition that the
color of the edge between u and v in G ∗ (T , u, u′) is the last color
in the trail T . Let c′ denote the color of the edge between u” and
v . Swap the colors of the edges between u and v and between u”
and v. Note that c′ might equal to c, and in that case, swapping
the colors has no effect. Denote the thusfar perturbed graph G̃.

(d) Construct K(G̃, u′, u”), and draw a random trail T1 using function
f(K(G̃, u′, u”), c0, c). Let Ḡ be G̃ ∗ (T1, u

′, u”).

(e) Construct K(Ḡ, u, u”), and draw a random trail T2 using function
f(K(Ḡ, u, u”), c′, c0). Let G

′, the perturbed graph be Ḡ∗(T2, u, u”).

III With probability 1
4
, do the following.

(a) Draw uniformly a random ordered pair of vertices u and u” from
the vertex set U . Construct K(G, u, u”), draw uniformly a ran-
dom color c0, and draw a random circuit C ′ = (c0, c1, . . .) using
f(K(G, u, u”), c0, c0).

(b) Draw uniformly a random integer from [1,m]. If l ≥ |C ′|, then let
G′ be G ∗ (C ′, u, u”). G′ is the perturbed graph, exit the algorithm.

(c) If l < |C ′|, do the following (see also Figure 12.4). Let T ′ be the
trail from c0 to cl, and let Ḡ = G ∗ (T ′, u, u”), and let c′ denote
cl. Draw uniformly a random vertex u′ from U \ {u, u”}. Build
K(Ḡ, u”, u′), and draw a random trail T ′

1 using f(K(Ḡ, u”, u′), c0, c
′).

Let T ′
1 [i] denote the prefix of the trail T ′

1 containing only the first i
edges of the trail. Let ei denote the ith edge of trail T ′

1 . Construct

219

 dc_2046_22

the set of vertices V ′ which contains all vertex vi such that the
label of ei is vi and in the graph Ḡ∗ (T ′

1 [i], u”, u
′), there is a vertex

v such that the color of the edge between u and v is c′, the color
of the edge between u” and v is the color of the edge between u′

and vi. Furthermore, c is the first occurrence in the trail, that is,
T ′
1 [i− 1] does not contain c.

(d) If V ′ is empty, then terminate the algorithm, let the perturbed
graph be the original graph. Otherwise, draw a random vertex v
from V ′. Shorten T ′

1 such that the last edge have label v. Let T1”
denote this trail. Let G̃ be Ḡ ∗ (T1”, u”, u

′). If u” has a deficiency
(+c − c′) for some c in G̃, then draw uniformly a vertex among
the vertices v” for which the color of the edge between u and v” is
c′ and the color of the edge between u” and v” is c. Modify G̃ by
swapping the colors of these two edges.

If u” has no deficiency in G̃, then rename c′ to c.

(e) BuildK(G̃, u, u′), and draw a random trail T ′
2 using f(K(G̃, u, u′), c, c0).

Let G′, the perturbed graph be G̃ ∗ (T ′
2 , u, u

′).

Theorem 153. The random perturbation in Algorithm 1 has the following
properties.

1. The generated G′ is a realization of M, thus this random perturbation
is the transition kernel of a Markov chain on the realizations of M.

2. The perturbations are irreducible on the realizations of M

3. The perturbations form a reversible kernel and for any G and any G′

generated from G,
T (G|G′)

T (G′|G)
≥ 2

m5
(12.5)

where m is the number of vertices in V . Furthermore, if this reversible
kernel is used in a Metropolis-Hastings algorithm, the expected waiting
time (that is, how many Markov chain steps is necessary to leave the
current state) at any state is bounded by 2m5.

Proof.

1. When l ≥ |C| or l ≥ |C ′| (cases II.(b) and III.(b) in Algorithm 1), the
constructed G′ differs on edges of two vertices of U , u and u′ (or u and

220

 dc_2046_22

u”). Since the swapped colors are along a circuit in the auxiliary graph
K, the effects of color swaps cancel each other, and we get a realization
of M.

When l < |C| (case II.(c)-(e) in Algorithm 1), G is transformed into an
intermediate graph G̃, which has deficiency on three vertices u, u′ and
u”. Vertex u has (+c′ − c0)-deficiency, u

′ has (+c0 − c)-deficiency, and
u” has (+c − c′)-deficiency (see also the boxed colors on Figure 12.3).
The randomly generated trail T1 on K(G̃, u′u”) goes from c0 to c. In
Lemma 147, we proved that any such trail transforms G̃ into a graph
satisfying the conditions of Lemma 146. The random trail T2 generated
in K(Ḡ, u, u”) is from c′ to c0, and Lemma 146 proves that swapping
the edge colors along such trail transforms the graph into a realization
of M.

When l < |C ′| (case III.(c)-(e) in Algorithm 1), G is transformed into a
Ḡ, in which u has a (+c′ − c0)-deficiency and u” has a (+c0 − c′) defi-
ciency (see also the boxed colors on Figure 12.4). Then Ḡ transformed
into a G̃, in which two cases is possible. Either u” has a (+c − c′)-
deficiency and then u has a (+c′−c0)-deficiency and u′ has a (+c0−c)-
deficiency or u” has no deficiency and then u has a (+c′−c0)-deficiency
and u′ has a (+c0 − c′)-deficiency. In the former case, a pair of colors
c and c′ are swapped between u and u” causing u” has no deficiency
and u has (+c− c0) deficiency, which are cancelled by the perturbation
along the trail T ′

2 , thus arriving to a realization of M. In the later
case, the perturbation along the trail T ′

2 directly leads to a realization
of M.

2. It is sufficient to show that the algorithm generates the perturbations
appear in Theorem 150, which are actually the perturbations appear
in Lemma 149. There are two types of perturbations in Lemma 149.
The simpler one swaps the colors of edges along a cycle. This happens
when t1 = l in the proof of Lemma 149 and also when tj = l. Since a
cycle is a circuit, and any circuit in the auxiliary graph K constructed
in the algorithm can be generated with non-zero probability, this type
of perturbation is in the transition kernel.

The larger perturbation in Lemma 149 first swap the colors of edges of u
and u′ along a path, then swap the colors of two edges between u and v
and u” and v for some v, then swap the edges of u′ and u” along a path

221

 dc_2046_22

to eliminate the deficiency of u”, finally, swap the color of the edges
u and u” along a path to eliminate their deficiencies, thus generate a
realization. Since any path is a trail, the given algorithm can generate
such perturbations when l < |C| (case II.(c)-(e) in Algorithm 1).

3. We show that for any perturbation of G to G′, there exists a per-
turbation from G′ to G, and we also compare the probabilities of the
perturbations. Recall that the number of vertices in U is n, the number
of vertices in V is m, and the number of colors is k; n, m and k will
appear in the probabilities below several times.

When the perturbation affects the edges of only two vertices, u and
u′ or u and u” (cases II.(b) or III.(b) in Algorithm 1), the algorithm
first draws these vertices with probability 1

n(n−1)
, where n = |U |. Also

a random color c0 is drawn with probability 1
k
. Then a random circuit

C = (c0, c1, c2, . . . cr) is generated with probability P (C). Finally, a
random l ≥ r is generated, this happens with m−r−1

m
probability, where

r = |C| and the color of the edges indicated by the circuit are swapped.
The so-obtained G′ can be generated not only in this way, but an
arbitrary such ci can be generated as the starting point of the circuit
which is visited only once in the circuit.

To perturb back G′ to G, we first have to select the same pair of vertices
u and u′, with the same, 1

n(n−1)
probability. Then the random circuit

C ′ = (c0, cr, cr−1, . . . c1) must be generated in the constructed auxiliary
directed multigraph K ′. Since for all color, the auxiliary graph K
constructed from G has the same outgoing edges than the auxiliary
graph K ′ constructed from G′, P (C) = P (C ′). Furthermore, this claim
holds for all possible circuits having the possible starting colors ci.
Finally, generating the same l has the same probability, thus we can
conclude that for this type of perturbation, P (G′|G) = P (G|G′), thus
Equation 12.5 holds.

When the perturbation affects the edges of three vertices, u, u′ and
u”, then G is first perturbed to G̃, G̃ is perturbed to Ḡ and finally
Ḡ is perturbed to G′, or the third type of perturbation is applied in
the algorithm where G first perturbed into Ḡ then G̃ and finally G′

(case II.(c)-(e) and III.(c)-(e) in Algorithm 1). We show that these two
types of perturbations are inverses of each other in the following sense.
For any perturbation generated in case II.(c)-(e) in Algorithm 1, its

222

 dc_2046_22

inverse can be generated in case III.(c)-(e) in Algorithm 1, and vice
versa, for any perturbation generated in case III.(c)-(e), its inverse can
be generated in case II.(c)-(e).

First we consider the perturbation generated by Algorithm 1 in case
II.(c)-(e). In that case, first the ordered pair of vertices (u, u′) is gener-
ated with probability 1

n(n−1)
and a random color c0 with probability 1

k
.

A circuit C = (c0, c1, . . . cl, . . . cr) is generated together with a random
number l with probability 1

m
. The generated number l must be smaller

than |C|, and thus, only the trail T = c0, c1, . . . cl is important. The
probability of the trail consists of the product of the inverses of the
number of available outgoing edges. Let P (T) denote this probability.
The colors along the trail are swapped. Then random u” is generated
from the appropriate set of vertices in U \ {u, u′} with probability 1

n−2

and also a vertex v is generated with probability 1
dj,1+1

where j is the

index of color cl. The colors c(= cl) and c′ are swapped. Therefore,
P (G̃|G) = 1

n(n−1)(n−2)km(dj,1+1)
P (T). Then a trail T1 is generated from

c′ to c0 in the auxiliary graph K(G̃, u′u”), and G̃ is transformed to
Ḡ = G̃ ∗ (T1, u

′, u”) Thus, P (Ḡ|G̃) = P (T1). Finally, a random trail T2

from c′ to c0 is generated in K(Ḡ, u, u”) with probability P (T2), which
is P (G′|Ḡ). Since

P (G′|G) = P (G̃|G)P (Ḡ|G̃)P (G′|Ḡ)

we get that

P (G′|G) = 1

n(n− 1)(n− 2)km(dj,1 + 1)
P (T)P (T1)P (T2). (12.6)

To transform back G′ to G, first G′ should be transformed back to Ḡ,
then Ḡ back to G̃ and finally G̃ back to G. This can be done in case
III.(c)-(e) by first drawing the same u and u”, then drawing a T ′ which
is exactly the inverse of T2, then the same u′ must be selected and the
trail T1” must be the inverse of T1, the same edges with color c and
c′ must be swapped, and finally the trail T ′

2 must be the inverse of T .
First we show that these trails can be inverses of each other.

T is a shortening of a circuit with start and end vertex c0. As such, it
contains c0 only once, but might contain c several times. T ′

2 is a trail

223

 dc_2046_22

from c to c0. Therefore, it can contain c several times, but contains c0
only once. Thus, the inverse of any T might be a T ′

2 and vice versa.

T1 is a trail from c0 to c. Therefore, it might contain c0 several times,
but contains c only once. T ”1 is a shortening of a trail from c0 to c′.
It might contain c0 several times, but can contain c only once, due to
its definition (see case III.(c)-(d) of Algorithm 1). Hence, the inverse
of any T1 can be a T ”1, and vice versa.

T2 is a trail from color c′ to c0. It might hit c′ several times, but only
once c0. T ′ is a shortening of a circuit with start and end vertex c0.
As such, it contains c0 only once (as start and end vertex), but might
contain c′ several times. Thus the inverse of any T2 might be a T ′ and
vice versa.

We are going to calculate the probability of a random perturbation
in case III.(c)-(e). First, the ordered pair of vertices u and u” should
be selected with probability 1

n(n−1)
. The auxiliary directed multigraph

K(G′, u, u”) is constructed, a random c0 is selected, and a random
circuit (c0, c1 . . . c

′, . . . cr′) in K(G′, u, u”) is generated. The proba-
bility that the randomly generated l is exactly the index of the ap-
propriate occurrence of c′ in the trail T ′ is 1

m
. Then only the trail

T ′ = c0, c1, . . . c
′ is interesting. Thus, transforming back G′ to Ḡ has

probability 1
n(n−1)km

P (T ′). T ′ in K(G′, u, u”) is the inverse of the trail

T2 in K(Ḡ, u, u”) and K(G′, u, u”) and K(Ḡ, u, u”) differs in invert-
ing the trail T2. Therefore P (T2) and P (T ′) differ in the number of
outgoing edges from c0 at the begining of the trail T2 and the number
of outgoing edges from c′ at the beginning of the trail T ′. Since the
number of outgoing edges might vary between 1 and m, the ratio of
the two probabilities bounded by

1

m
≤ P (T ′)

P (T2)
≤ m (12.7)

After swapping the colors along the trail T ′, u′ should be randomly
generated, it has probability 1

n−2
. A random trail T ′

1 is generated using

f(K(Ḡ, u′, u”), c0, c
′). A random v from the subset V ′ is generated in

III.(d) of the algorithm. This has probability 1
|V ′| . Then the trail T ′

1 is

shortened to T1”, and G̃ is obtained by transforming Ḡ along this trail.

224

 dc_2046_22

It is not easy to calculate exactly the probability P (G̃|Ḡ) since the set
V ′ depends on the generated trail T ′

1 . However, the size of V ′ cannot
be greater than m and lower than 1, therefore the following inequality
holds:

1

m
P (T1”) ≤ P (G̃|Ḡ) ≤ P (T1”)

The trail T1” is the inverse trail T1, therefore, the ratio of their proba-
bilities is also between 1

m
and m.

Finally, the same edge colors c and c′ must be swapped back, and G̃
must be transformed back to G along the trail T ′

2 . The probability
that the selected v” in III.(d) of the Algorithm 1 is a particular vertex
depends on the number of vertices from which v” is selected. Therefore
this probability is again between 1

m
and 1. Altogether, the probability

of the backproposal probability is bounded between

1

n(n− 1)(n− 2)km3
P (T ′)P (T1”)P (T ′

2) ≤ P (G|G′) ≤

≤ 1

n(n− 1)(n− 2)km
P (T ′)P (T1”)P (T ′

2) (12.8)

Comparing Equations 12.6 and 12.8, and also considering that the ratio
of the probabilities of the trails and corresponding inverse trails are
between 1

m
and m, we get for the ratio of proposal and backproposal

probabilities that

2

m5
≤ P (G|G′)

P (G′|G)
≤ m4 (12.9)

Case II. is chosen with probability 1
4
. Given that case II. is selected,

the probability that Algorithm 1 generates a realization being different
from the current realization is 1. If edges of two vertices in U are
perturbed, then the perturbation is accepted with probability 1. If
edges of three vertices in U are perturbed, then the perturbation is
accepted with probability

P (G|G′)

P (G′|G)
≥ 2

m5

225

 dc_2046_22

according to Equation 12.9. Thus, the probability that the Markov
chain defined by the Metropolis-Hastings algorithm does not remain in
the same state is greater or equal than 1

2m5 . The expected waiting time
is upper bounded by the inverse of this probability, that is, 2m5.

12.2 Edge colorings of bipartite graphs

12.3 Preliminaries

First, we start with some basic definitions in graph theory.

Definition 154. A path in a simple graph is a sequence of edges that joins a
sequence of distinct vertices. A walk in a simple graph is a sequence of edges
that joins a sequence of (non-necessarily distinct) vertices. Throughout this
paper we consider only walks in which the edges are all distinct, though the
vertices might be repeated. A cycle in a simple graph is a walk in which the
only repeated vertices are the first and the last vertices.

Observe that in any path, the edges are also distinct for the vertices are
distinct.

12.3.1 Almost edge k-colorings

Next, we introduce the almost edge k-colorings and an important lemma on
them. We define formally edge k-colorings and almost edge k-colorings:

Definition 155. An edge k-coloring of a graph G = (V,E) is a map C :
E → {c1, c2, . . . , ck} such that there is no adjacent monochromatic edges.

In a map C : E → {c1, c2, . . . , ck}, a vertex v ∈ V has a (+c − c′)-
deficiency if there are exactly two c-edges incident to v, all other incident
edges have different colors, and there is no c′-edge incident to v. A vertex
is not deficient if all of its incident edges have different colors. We say that
a vertex v has an at most a (+c− c′)-deficiency if either v has a (+c− c′)-
deficiency or v is not deficient and has no incident edge with c′ color.

An almost edge k-coloring of G = (V,E) is a map C : E → {c1, c2, . . . , ck}
such that at most two vertices have deficiency and all other vertices have no
adjacent monochromatic edges.

226

 dc_2046_22

If c ∈ {c1, c2, . . . , ck} and C is a coloring of G then G
∣∣
C,c

is the subgraph

that contains only the edges colored by c.

Observe that a deficient vertex in an almost edge k-coloring might have
both (+c − c′)-deficiency and (+c − c′′)-deficiency for some colors c′ ̸= c′′ if
the degree of the vertex is smaller than k. We also would like to highlight
that any edge k-coloring is also an almost edge k-coloring

We show how to transform almost edge k-colorings to edge k-colorings.

Lemma 156. Let C be an almost edge k-coloring of a bipartite graph G
with one or two deficient vertices. Then C can be transformed to an edge
k-coloring by flipping colors along at most two alternating paths with some
colors c and c′ (and possibly with colors c′′ and c′′′, that is, the two alternating
paths do not have to share any color).

Proof. Let v1 be a (+c− c′)-deficient vertex, and let e and f be its incident
edges with color c. Consider one of the longest alternating walks with colors
c and c′ that contains e. That is, a walk that contains the edge e, contains
edges with alternating colors c and c′, and cannot be extended at either of
its ends. Assume that this walk revisits some vertex w. Then, the walk first
arrives via an edge with color c1 (such first arrival exists if w ̸= v1) and leaves
w via an edge with color c2. Since the graph is bipartite, the walk can arrive
back to w only via an edge with color c1. Observe that w cannot be v1 since
v1 does not have an incident edge with color c1 = c′. Furthermore, the walk
must stop there, since it should leave via an edge with color c2. This would
mean that w has two incident edges with color c1 and also two incident edges
with c2. However, such a vertex does not exist in an almost edge coloring.
Still, w has a deficiency, which must be the other deficient vertex v2.

If the walk does not return to any vertex, then it stops at a vertex u. The
walk either arrives to u via an edge with color c, in which case u does not
have an incident edge with color c′, or it arrives via an edge with color c′, in
which case u does not have an incident edge with color c.

To conclude, the longest alternating walk we select with colors c and c′

is either a path that ends in the aforementioned vertex u or is a walk that
ends in the second visit of the other deficient vertex v2 and no other vertex
is revisited.

Now we flip the colors of the edges along the path between v1 and u or
between v1 and the first visit of v2. We claim that this perturbation eliminates

227

 dc_2046_22

the deficiency of v1 and does not create a new deficiency (although the type
of deficiency of v2 might be changed).

Indeed, the color of the edge e is changed from c to c′, and this eliminates
the +c − c′-deficiency of v1. All intermediate vertices in the path have two
edges in the path, one with color c and one with color c′. Flipping the colors
of the edges does not create deficiencies on these vertices. If the last vertex is
u, only one of its incident edges change color. However, this does not create
a deficiency because the path is a longest one. Finally, assume the case when
the last vertex in the path is v2. Before the flip, v2 has two incident edges
with color c1 and one incident edge with c2. After flipping the colors, v2 has
two incident edges with color c2 and one incident edge with color c1. That
is, the flip changes the (+c1 − c”)-deficiency of v2 to a (+c2 − c”)-deficiency.

If there is one more deficient vertex remaining after the first flip, we do the
same procedure with it. Observe that in this case the longest alternating walk
must be a path because the almost edge coloring has exactly one deficient
vertex.

12.4 A Markov chain Monte Carlo on the

edge k-colorings of a bipartite graph

Below we define a Markov chain on the edge k-colorings of a bipartite graph
G = (V,E). We are going to prove that this Markov chain is irreducible,
its diameter is at most 2k|E|, and when applied in a Metropolis-Hastings
algorithm, the inverse of the acceptance ratio is bounded from above by a
cubic function of |V |.

Definition 157. Let G be a bipartite graph, and let k ≥ ∆, where ∆ is the
maximum degree of G. We define a Markov chain M(G, k) on the edge k-
colorings of G. Throughout this definition, whenever it is impossible to select
a given object since there is none, then the algorithm does nothing. Let the
current coloring be C. Then draw a random edge k-coloring in the following
way.

1. With probability 1
2
, we do nothing (so the defined Markov chain is a

Lazy Markov chain).

2. With probability 1
4
, we select two colors c and c′ from the set of colors

uniformly among the
(
k
2

)
possible unordered pairs. Consider the sub-

228

 dc_2046_22

graph of G with colors c and c′; let it be denoted by H. Its non-trivial
components are paths and cycles. Then we select one of the followings:

(a) With probability 1
3
, we do nothing.

(b) With probability 1
3
, we uniformly select a subpath or a cycle of

H from all paths and cycles in H. That is, a subpath might be
selected from a cycle, too.

(c) With probability 1
3
, we uniformly select two distinct subpaths of

H from all possible pairs of subpaths such that each of them has
exactly one end vertex which is also an end vertex in H.

We flip the colors in the selected subpaths or possibly a cycle. If there
are two deficient vertices, we select one of them uniformly, then we
select one of the edges with the same color incident to the selected vertex
uniformly and change its color from c to c′ or c′ to c. If there is only
one deficient vertex with a deficiency (+c− c′), then with probability 1

2
,

we select this deficient vertex, then we select one of the edges with the
same color incident to it uniformly and change its color from c to c′

or c′ to c. We denote this subcase by (i) for reference (we will refer to
these roman number indexes in the proof of Theorem 159). Otherwise,
with probability 1

2
, we select uniformly a c′-edge from all the c′-edges,

and change its color to c. We denote this subcase by (ii) for reference.

If there is no deficient vertex, then with probability 1
2
, we select either

a c-edge or a c′-edge uniformly from all edges with color c and c′, and
change its color to the opposite (c′ or c) (we denote this subcase by
(iii) for reference) and with probability 1

2
, we do nothing. We eliminate

all deficiencies by flipping the colors on appropriate alternating path,
selecting uniformly from the two neighbor edges with the same color
incident to the deficient vertices.

3. With probability 1
4
we select three colors uniformly from all possible

(
k
3

)
unordered pairs, and select uniformly one from the three colors. Let
the distinguished color be denoted by c′′, and let the other two colors be
denoted by c and c′. Consider the subgraph consisting of the colors c
and c′; let it be denoted by H. Its non-trivial components are paths and
cycles. Then we select one of the followings:

(a) With probability 1
3
, we do nothing.

229

 dc_2046_22

(b) With probability 1
3
, we uniformly select a subpath of H from all

subpaths such that at least one of its end vertices is not an end
vertex in H. Furthermore, if both ends of the selected subpath is
not an end vertex from the selected path, then the edges incident to
the end vertices of the subpath must have different colors. These
subpaths can also be selected from cycles.

(c) With probability 1
3
, we uniformly select two distinct subpaths of H

from all possible pair of subpaths such that each of them has exactly
one end vertex which is also an end vertex in H. Furthermore, the
end vertices which are not end vertices in H must have incident
edges with different colors in the subpaths.

We flip the colors in the selected subpaths. If there are two deficient
vertices, we select one of them uniformly, and denote it by v. If there is
only one deficient vertex, then with probability 1

2
we select it and denote

it by v, and with probability 1
2
, we select uniformly a non-deficient vertex

among those which are incident to both a c′′-edge and at least one of a
c- or a c′-edge and denote it by v. If there is no deficient vertex, then we
select uniformly a non-deficient vertex among those which are incident
to both a c′′-edge and at least one of a c- or a c′-edge and denote it by
v.

If there is a (+c−c′)-deficient vertex above v, and there is an alternating
c′-c′′ path P from v to that deficient vertex, then exclude P from finding
a maximal path or cycle in the following procedure.

If there is a (+c−c′)-deficient vertex above v, then we do the followings.
If there is an alternating c′-c′′ cycle on v, we select it. Otherwise, we
select one of the maximal alternating c′-c′′ paths containing v; if there
are two of them, we select one of them uniformly. We flip the colors
in this path or cycle. We denote this subcase by (iv) for reference.

If there is no deficient vertex above v (we do not require v be a deficient
vertex), then we do the followings. If v is incident to both a c and a
c′-edge, then we select one of the colors uniformly, and denote it by
c̃. Otherwise, let the incident color be denoted by c̃. If there is an
alternating c̃-c′′ cycle on v, we select that cycle. Otherwise, we select
one of the maximal alternating c̃-c′′ paths containing v, if there are two
of them, we select one of them uniformly. We flip the colors in this
path or cycle. We denote this subcase by (v) for reference.

230

 dc_2046_22

We eliminate all deficiencies by flipping the colors on appropriate al-
ternating path, selecting uniformly from the two neighbor edges with the
same color incident to deficient vertices.

First we prove thatM(G, k) is irreducible and has a small diameter. That
is, the perturbations presented in it are sufficient to transform any edge k-
coloring C1 to another edge k-coloring C2 of a bipartite graph G = (V,E) in
at most 2k|E| steps. Our strategy is given below:

1. Fix an order of colors appearing in C2: c1, c2, . . . , cl. We will have
that C1 is transformed via milestone realizations, i.e. edge colorings,
C1 = K0, K1, K2, . . . , Kl−1 = C2 such that for each i = 1, 2, . . . , l−2 and
each 1 ≤ j ≤ i, G

∣∣
Ki,cj

= G
∣∣
C2,cj

. Furthermore, whenKi is transformed

into Ki+1, no edge with color c1, c2, . . . , ci changes color. These Ki are
called large milestones. Milestones are always edge colorings.

2. For each i = 1, 2, . . . , l− 2 we consider Hi := G
∣∣
Ki−1,ci

⊕
G
∣∣
C2,ci

where⊕
denotes the symmetric difference. The maximal degree in Hi is

2, hence Hi can be decomposed into isolated vertices, paths, and cy-
cles. Let the non-trivial components of Hi be ordered and denoted by
N1, N2, . . . , Nm. The milestone Ki−1 is transformed into Ki via mile-
stones Ki−1 = L0, L1, . . . , Lm = Ki such that for all j, Lj contains color
ci only in Hi, agrees with Ki in color ci on components N1, N2, . . . , Nj,
and agrees with Ki−1 in color ci on components Nj+1, Nj+2, . . . , Nm.
These Li are called small milestones. The last transition from Kl−2 to
Kl−1 = C2 is handled in a separate way.

3. For each j = 1, 2, . . . ,m, the transformation from Lj−1 to Lj goes in
the following way. In the description of transformations, we use almost
edge colorings (see Definition 155), in which at most two vertices are
incident to two edges with the same color. First we give a transforma-
tion via such almost edge colorings A1, A2, · · · using transformations
f1, f2, · · · . Then we show how to transform these almost edge colorings
to edge colorings X1, X2, · · · using transformations φ1, φ2, · · · . The
transformation between edge colorings Xt and Xt+1 is the composition
of transformations φt+1 ◦ ft+1 ◦ φ−1

t (see also Figures 12.5 and 12.6).
Here the φ−1 transformations generate deficiencies, thus, creating al-
most edge colorings, and the φ transformations eliminate these defi-
ciencies.

231

 dc_2046_22

Lj−1 A1 A2 · · · · · · Ae−2 Ae−1 Lj

X1 X2 · · · · · · Xe−2 Xe−1

f1 f2

φ1 φ2

f3 fe−2 fe−1

φe−2

fe

φe−1φ−1
1 φ−1

2 φ−1
e−2 φ−1

e−1

Figure 12.5: The transformation between two small milestones. See the text
for details.

4. Transforming Kl−2 to C2 is done in the following way. Consider H =
G
∣∣
Kl−2,cl

⊕
G
∣∣
C2,cl

. The non-trivial components of H are paths and

cycles, each of which is colored alternately with colors cl−1 and non-
cl−1 in Kl−2. For each component, we change the non-cl−1 colors to cl
and then flip the colors of the edges. This transforms Kl−2 to C2.

The precise description of the transformations from Lj−1 to Lj is given
by the following lemma and by Lemma 156.

Lemma 158. Let L be an edge coloring of a bipartite graph G with k ≥ 3
colors, and let N be a connected subgraph of G with maximal degree 2 and
s edges. Assume that there exists a color c such that the colors of the edges
in N are alternating between c and non-c. We further assume that for a
path N , if any of its end edges have non-c color then N cannot be extended
with a c-edge, and if any of the end edges have color c then that vertex has
degree less than k. Then L can be transformed into an edge coloring L′ via
almost edge colorings in at most 2s steps such that G

∣∣
L,c

⊕
G
∣∣
L′,c

= N with

the conditions below:

1. There exists a c′ such that each intermediate almost edge coloring

(a) either has no deficient vertex, that is, it is an edge-coloring or

(b) has one deficient vertex with (+c − c′)-deficiency or (+c′ − c)-
deficiency or

(c) has two deficient vertices, one of them is (+c − c′) deficient, the
other (+c− c′)-deficient or (+c′ − c)-deficient

2. At each step one of the following transformations is performed:

(a) Changing the color of an edge from c to some c′. The edge is
incident to a vertex that has a (+c− c′)-deficiency.

232

 dc_2046_22

L N e1

e2

e3

e4

f1

φ1 ◦ f1

A1

φ1

X1

A2 X2

f2

φ2

φ2 ◦ f2 ◦ φ−1
1

A3 X3

f3

φ3

φ3 ◦ f3 ◦ φ−1
2

A4 X4

f4

φ4

φ4 ◦ f4 ◦ φ−1
3

f5

f5 ◦ φ−1
4

L′

Figure 12.6: Transformation of the edge coloring L to the edge coloring L′.
See the text for details.

233

 dc_2046_22

(b) Changing the color of an edge from some c′ to c. The edge is
incident to a vertex which is at most (+c′ − c)-deficient.

(c) In a path or a cycle containing edges alternately colored by c′ and
c′′ for some colors c′, c′′ ̸= c, flipping the color of each edge from c′

to c′′ and vice versa. If there is a (+c′− c)-deficient vertex v, then
the path or cycle contains v. If a path is changed it is maximal
unless one of its end is a (+c− c′)-deficient vertex. In that case,
the path is maximal only at its non-deficient end. Its other end
is either the (+c′ − c)-deficient vertex if exists or a non-deficient
vertex if a (+c′ − c)-deficient vertex does not exist. In both cases,
the path arrives to this vertex via a c′′-edge.

(d) Colors not presented in G
∣∣
L,c

⊕
G
∣∣
L′,c

are never changed during

the process.

Before we prove Lemma 158, we give an example illustrated on the left
hand side in Figure 12.6. In this example, an edge coloring L is transformed
into an edge coloring L′ via almost edge colorings in five steps. The compo-
nent N is a 4-cycle of alternating red and non-red edges, labeled by e1, e2,
e3, and e4. First the color of e1 is changed from blue to red. Then the color
of e2 is changed from red to blue. Then colors of the edges in the alternating
cycle of blue and green edges containing e3 are flipped. Then the color of e3
is changed from blue to red. Finally the color of e4 is changed from red to
blue.

Proof of Lemma 158. We have that N is either a path or a cycle. In both
cases, the colors of its edges alternate between c and non-c in L. Order the
vertices of N by traveling around a cycle or from one to the other end for a
path. Start the walk along the cycle by a non-c-edge or from the end with
a non-c-edge if such an end exists in the path. Otherwise start with a c-
edge. Let the vertices along the walk be denoted by v1, v2, . . . , vs, vs+1 with
vs+1 = v1 if N is a cycle. We prove the two cases (N is a cycle or a path)
independently.

We first start with the case when N is a cycle. The first step is to flip
the color of (v1, v2) from its non-c color c′ to c. This makes each of v1 and v2
have a (+c′ − c)-deficiency.

Now we are going to change the color of the edges along the walk with
the operations described in the lemma and we prove inductively that the pre-

234

 dc_2046_22

scribed properties of the almost edge colorings are maintained. The following
cases are possible during the process:

1. The index i is even. We are going to change the color of the edge
(vi, vi+1) from c to c′. In this case, the vertex v1 has a (+c − c′)-
deficiency and vi also has a (+c− c′)-deficiency.

2. The index i is odd. We are going to change the color of the edge
(vi, vi+1) from c′ to c. In this case, the vertex v1 has a (+c − c′)-
deficiency and vi has at most a (+c′ − c)-deficiency.

3. The index i is odd. We are going to change the color of (vi, vi+1) from
c′′ to some c′ by flipping the colors along an alternating c′, c′′ path or
cycle. In this case, the vertex v1 has a (+c − c′)-deficiency and vi has
at most (+c′ − c)-deficiency.

In case 1, we flip the color of (vi, vi+1) from c to c′. This eliminates the
deficiency of vi. After the flip, there can be two possible cases: either vi+1

has a (+c′ − c)-deficiency or vi+1 does not have a deficiency and also has
no incident edge with color c. The former happens if vi+1 has an incident
edge with color c′ before the flip. The latter happens if vi+1 does not have
an incident edge with color c′. That is, vi+1 has at most (+c′ − c)-deficiency
after the change. Index i + 1 is odd, so we arrive to one of the cases 2, 3,
depending whether the color of the edge (vi+1, vi+2) is c

′ or c′′.

In case 2, we flip the color of (vi, vi+1) from c′ to c. As vi has at most
(+c′ − c)-deficiency, this flip eliminates it, and vi becomes a non-deficient
vertex. Furthermore, vi+1 becomes (+c − c′)-deficient. The index i + 1 is
even, thus we arrive to case 1.

Case 3 happens if the color of (vi, vi+1) is some c′′ ̸= c, c′, where v1 has a
(+c− c′)-deficiency. We have the following claims:

• An alternating c′-c′′ walk starting from vi via a c′′-edge cannot reach v1
for the graph is bipartite and v1 does not have an incident edge with
color c′.

• An alternating c′-c′′ walk starting from vi via a c′-edge can arrive to v1
via a c′′-edge. The walk must end in v1 in this case as v1 does not have
an incident c′-edge.

235

 dc_2046_22

• If v1 has (+c′ − c)-deficiency, there are two disjoint alternating c′-c′′

walks starting from vi via a c′-edge. Since they are disjoint, only at
most one of them can arrive to v1.

We do the followings. Consider the alternating c′-c′′ walk starting from vi
with a c′′-edge. If it is a cycle, let this cycle be denoted by X. Otherwise, the
walk stops in a vertex u1. Now if vi has a (+c′ − c)-deficiency, consider that
alternating c′-c′′ walk starting from vi with a c′-edge that does not reach v1.
If there are two such walks, choose any of them. Let the end vertex of this
walk be u2. If vi has no deficiency, consider an alternating c′-c′′ walk starting
from vi via its c′-edge. (Observe that such edge exists, it is (vi−1, vi).) If it
ends not in v1, then let its end vertex be u2, otherwise let u2 be vi. Let the
alternating c′-c′′ path from u1 to u2 be denoted by X. Now, whatever is X
(path or cycle), we flip the color of the edges along X. It changes the color
of (vi, vi+1) from c′′ to c′, and makes vi at most (c′ − c)-deficient. Thus, we
arrive to case 2.

In the last step, we change the color of the edge (vs, v1) from c to c′. This
eliminates the deficiency of both v1 and vs.

The transformation is simpler if N is a path since there is at most one
deficient vertex during the process. The first step is to flip the color of (v1, v2)
from c′ to c or from c to some c′ such that v1 does not have an incident edge
with color c′ before the flip. Such color c′ must exist due to the assumptions
in the lemma. Also due to the assumptions, the vertex v1 will not have a
deficiency after the flip. The vertex v2 becomes either (+c− c′)-deficient or
at most (+c′ − c)-deficient. Then the following cases are possible during the
process:

1. We are going to change the color of (vi, vi+1) from c to c′. In this case,
the vertex vi has a (+c− c′)-deficiency.

2. We are going to change the color of (vi, vi+1) from c′ to c. In this case,
the vertex vi has at most (+c′ − c)-deficiency.

3. We are going to change the color of (vi, vi+1) from some c′′ to c′. In
this case, vi has at most (+c′ − c)-deficiency.

In case 1, flipping the color of (vi, vi+1) removes the deficiency of vi and
makes vi+1 at most (c′ − c)-deficient, thus we arrive to case 2 or 3 depending
on the color of (vi+1, vi+2) or vi+1 is the last vertex that we will handle
separately.

236

 dc_2046_22

In case 2, flipping the color of (vi, vi + 1) makes vi no longer deficient,
and makes vi+1 (+c − c′)-deficient, thus we arrive to case 1 or vi+1 = vs+1,
and then vi+1 is not deficient.

In case 3, we consider a maximal walk of alternating colors c′ and c′′

containing the edge (vi, vi+1) and containing only one edge incident to vi
with color c′. Since vi might be the only deficient vertex (or it is at most
(c′ − c)-deficient), we can conclude that this walk is either a cycle or a path.
We flip the colors along this path or cycle. It does not change the deficiency
of vi, however, it makes the color of (vi, vi+1) be c

′. Now we arrived to case 2.
If the last edge (vs, vs+1) does not have color c, then it has color c′ or

applying the case 3 its color becomes c′. Then the last step is to change
this color from c′ to c. It makes vs not deficient, and does not create a new
deficiency for the path is maximal.

If the last edge (vs, vs+1) has color c, then after flipping its color from c to
c′, vs+1 might be (+c′ − c)-deficient. However, since the degree of vs+1 is less
than k (recall it is a condition of the lemma), vs+1 is also (+c− c′′)-deficient
for some c′′ ̸= c. Consider the longest alternating c′-c′′ walk staring from vs+1

via its c′-edge. We flip the color of the edges along this path. It makes vs+1

be a non-deficient vertex.
Every second edge, unless it is the last one, can be transformed in one step,

and every other edge can be transformed in at most two steps, furthermore,
the first edge can be transformed in one step, and the last in at most two
steps, hence the number of steps is indeed at most 2s steps.

We are ready to state and prove the theorem on irreducibility and small
diameter.

Theorem 159. Let C1 and C2 be two edge k-colorings of the same bipartite
graph G = (V,E). Then C1 can be transformed into C2 in at most 2k|E|
steps in the Markov chain M(G, k).

Proof. First we show that these transformations are sufficient, then we prove
the upper bound on the number of necessary transformations.

Observe that from K0 to Kl−2, any large milestone is also a small mile-
stone. Therefore, it is enough to show that the listed perturbations are
sufficient to transform one small milestone to the next small milestone and
they are sufficient to transform Kl−2 to Kl−1. Observe that the listed per-
turbations contain the case when the colors are flipped along a maximal
alternating path or cycle. Indeed, in case (2)(b) in Definition 157, a maximal

237

 dc_2046_22

subpath or a cycle can also be selected. These transformations are sufficient
to transform Kl−2 to Kl−1.

Any step between two small milestones is a transformation of the form
φt+1 ◦ ft+1 ◦ φ−1

t or φ1 ◦ f1 or fe ◦ φ−1
e−1, where φ is a transformation given

in Lemma 156 and f is a transformation given in Lemma 158 (see also Fig-
ures 12.5 and 12.6.). A transformation φ corrects the deficiency of at most
two vertices by flipping the edges along at most two maximal alternating
paths. Therefore, its inverse creates at most two deficiencies along at most
two alternating paths, and these deficiencies appear at the end of the path
that could be extended. With some probability, no deficiency is created, thus
providing the transformations of type φ1 ◦ f1.

A transformation f achieves the followings:

(i) It changes the color of an edge which is adjacent to an edge with the
same color and there is another deficient vertex. This happens when
the component N described in the proof of Lemma 158 is a cycle, and
the color of an edge is changed from c to c′ or from c′ to c, and the
previous edge in the component N has also color c or c′, or

(ii) It changes the color c′ to c of an edge incident to an at most (+c′ − c)-
deficient, but otherwise not deficient vertex. Furthermore, there is a
(+c − c′)-deficient vertex in the almost edge coloring. This happens
when the component N described in the proof of Lemma 158 is a cycle,
or

(iii) It changes the color of an arbitrary edge if there is no deficient vertex.
This happens in the first step of transforming the component N as
described in the proof of Lemma 158 and when N is a path, and the
edge whose color is changed is incident to an at most (+c′−c)-deficient
but otherwise not deficient vertex, or

(iv) It flips the colors along an alternating c′-c′′ path or cycle such that
there is also a (+c − c′)-deficient vertex in the almost edge coloring.
This happens when the current edge e (as described in the proof of
Lemma 158 has color c′′ and its component N is a cycle, or

(v) It flips the colors along an alternating path or cycle and there is no
additional (+c − c′)-deficient vertex. This happens when the current
edge e (as described in the proof of Lemma 158 has color c′′, and its
component N is a path.

238

 dc_2046_22

These are exactly the five subcases given in Definition 157.
Finally, the transformation φt+1 eliminates all the deficiencies, if they

exist.
For each color, the number of edges in the components is at most |E|.

That is, for each color, the number of necessary steps is at most 2|E|. Al-
together, 2k|E| is an upper bound on the number of steps necessary for
transforming any edge coloring to any other one.

As an example, we show how to generate the transformations in Fig-
ure 12.6 by the transformations in Definition 157.

1. φ1 ◦ f1: We select two colors, red and blue, then we do nothing (case
(2)(a)). Since there is no deficient vertex, we can change the color of
edge e1 from blue to red. Then we eliminate all deficiencies by flipping
the colors along a maximal alternating path between the two deficient
vertices emerged. We can conclude that P (φ1◦f1) = 1

4
× 1

3
× 1

3
× 1

2
× 1

8
× 1

2
.

Indeed, 1
4
is the probability of case (2), there are

(
3
2

)
= 3 possible

pair of colors, 1
3
is the probability of subcase (a) in case (2), 1

2
is the

probability of changing the color of an edge when there is no deficient
vertex (referenced as iii)), and there are 8 edges with color blue or
red, and finally, we select the path with which A1 and X1 differ with
probability 1

2
.

2. φ2 ◦ f2 ◦ φ−1
1 : We select two colors, red and blue, then we select the

subpath with which X1 and A1 differ (case (2)(b)). We flip the colors
along this path. There are two deficient vertices incident to the edge e1,
and we select the vertex incident to both e1 and e2, and then we select
the edge e2 and flip its color from red to blue. Finally, we eliminate
all deficiencies by flipping the colors along a maximal alternating path.
We can conclude that P (φ2◦f2◦φ−1

1) = 1
4
× 1

3
× 1

3
× 1

57
× 1

4
× 1

2
. Indeed, 1

4

is the probability of case (2), there are
(
3
2

)
= 3 possible pairs of colors,

1
3
is the probability of subcase (b) in case (2), there are

(
8
2

)
×2 subpaths

in the subgraph with colors blue and red and 1 cycle, thus we have to
select one of the 57 possibilities, selecting the edge e2 has probability
1
4
(selecting uniformly one of the deficient vertices and uniformly one

of the edges with repeated color), and finally, we select the path with
which A2 and X2 differ with probability 1

2
.

239

 dc_2046_22

3. φ3 ◦ f3 ◦ φ−1
2 : We select three colors, red, blue and green, and we

select green as the distinguished color c′′. Then we select the path
with which X2 and A2 differ, and swap the red and blue colors. We
select the alternating blue-green cycle containing the edge e3 and flip
the green and blue colors in it. Then we eliminate the deficiencies by
flipping the colors along the path with which A3 and X3 differ. We
can conclude that P (φ3 ◦ f2 ◦ φ−1

2) = 1
4
× 1

3
× 1

3
× 1

57
× 1

4
× 1

2
. Indeed,

the probability of case (3) is 1
4
, there is one way to select three colors,

and there are three ways to select one of them distinguished, 1
3
is the

probability of subcase (b) in case (3), there are
(
8
2

)
× 2 subpaths in

the subgraph with colors blue and red and 1 cycle, thus we have to
select one of the 57 possibilities, selecting the edge e3 has probability
1
4
(selecting uniformly one of the deficient vertices and uniformly one

of the edges with repeated color), and finally, we select the path with
which A3 and X3 differ with probability 1

2
.

4. φ4◦f4◦φ−1
3 : We select two colors, red and blue. Then we select the path

with which X3 and A3 differ and flip the colors of the edges in it. Then
we select e3 and flip its color from blue to red. Finally, we eliminate all
deficiencies by flipping the colors along a maximal alternating path. We
can conclude that P (φ4◦f4◦φ−1

3) = 1
4
× 1

3
× 1

3
× 1

26
× 1

4
× 1

2
. Indeed, 1

4
is the

probability of case (2), there are
(
3
2

)
= 3 possible pair of colors, 1

3
is the

probability of subcase (b) in case (2), there are
(
4
2

)
×2×2 = 24 subpaths

in the subgraph with color blue and red and 2 cycles, thus we have to
select one of the 26 possibilities, selecting the edge e3 has probability
1
4
(selecting uniformly one of the deficient vertices and uniformly one

of the edges with repeated color), and finally, we select the path with
which A4 and X4 differ with probability 1

2
.

5. f5 ◦ φ−1
4 : We select two colors, red and blue. Then we select the path

with which X4 and A4 differ and flip the colors of the edges in it. Then
we select e4 and flip its color from red to blue. We can conclude that
P (f5◦φ−1

4) = 1
4
× 1

3
× 1

3
× 1

26
× 1

2
. Indeed, 1

4
is the probability of case (2),

there are
(
3
2

)
= 3 possible pair of colors, 1

3
is the probability of subcase

(b) in case (2), there are
(
4
2

)
× 2 × 2 = 24 subpaths in the subgraph

with color blue and red and 2 cycles, thus we have to select one of
the 26 possibilities, selecting the edge e4 has probability 1

2
(selecting

uniformly one of the deficient vertices and uniformly one of the edges

240

 dc_2046_22

with repeated color has probability 1
4
, however, the edge e4 can be

selected in two different ways).

We can put M(G, k) into a Metropolis-Hastings algorithm to design a
Markov chain Monte Carlo converging to the uniform distribution of edge k-
colorings of a bipartite graph. We can use the variant introduced by Lunter
et. al [113], that is, when an edge coloring C2 is proposed from C1 in a
way w, we obtain the inverse way w′ transforming C2 back to C1, and use
the probabilities P (C1, w

′|C2) and P (C2, w, |C1) in the Metropolis-Hastings
ratio. Here a way consists of a combination of operations φ−1

1 , f and φ2

with the following meaning. The operation φ−1
1 perturbs the the coloring

C1 into an almost edge coloring X1 as described in (2)(b-c) and (3)(b-c)
in the Definition 157. Then comes the operation f which is either flipping
an edge from c to c′ or flipping the edges along a c′-c′′ path or cycle or
doing nothing. Thus, operation f transforms the almost edge coloring X1

into another almost edge coloring X2. Finally, the φ2 operation corrects all
deficiencies to get a new coloring C2. The inverse way of φ2 ◦ f ◦ φ−1

1 is
simply φ1 ◦ f−1 ◦φ−1

2 , which transforms C2 first back to X2, then to X1 then
to C1. See also Figure 12.6. Furthermore, since the target distribution π is
the uniform one, g can be set to any constant function, and is cancelled in
the Metropolis-Hastings ratio, which simply becomes

P (C1, w
′|C2)

P (C2, w|C1)
,

where the edge k-coloring C2 is proposed from the edge k-coloring C1 via the
way w. Observe that the smallest acceptance probability is the minimum of
the Metropolis-Hastings ratio, so the maximum of the inverse of the accep-
tance ratio is the maximum of the inverse of the Metropolis-Hastings ratio,
and due to symmetry, it is simply the maximum of the Metropolis-Hastings
ratio. Below we give upper bound for this maximum when M(G, k) is used
in the Metropolis-Hastings algorithm.

Since for all C1 and C2 and possible transformation ways w between them,
P (C1, w

′|C2) ≤ 1, the maximum of the Metropolis-Hastings ratio is at most

1

P (C2, w|C1)
.

This already would give a polynomial upper bound for the inverse of the
acceptance ratio, however, with a more careful analysis, a better upper bound
could be found.

241

 dc_2046_22

If nothing is done in the Markov chain, then the Metropolis-Hastings ratio
is 1. Otherwise, a step in the Markov chain does the followings:

1. It selects either 2 or 3 colors. Then based on the selected colors, it
creates at most two deficient vertices. We denote this transformation
by φ−1

1 .

2. It perturbs the current configuration. We call this perturbation f .

3. It eliminates all the deficiencies. We denote this transformation by φ2.

Observe that in the reverse transformation, the same colors must be se-
lected. Therefore, the probability of selecting the particular colors cancels
in the Metropolis-Hastings ratio. Let P̃ (φ−1) denote the probability of a
perturbation φ−1 omitting the probabilities of selecting a particular set of
colors. The Metropolis-Hastings ratio simplifies to

P̃ (φ−1
2)P (f−1)P (φ1)

P̃ (φ−1
1)P (f)P (φ2)

We give individual upper bounds on
P̃ (φ−1

2)

P (φ2)
, P (f−1)

P (f)
and P (φ1)

P̃ (φ−1
1)

, and their

product is an upper bound on the Metropolis-Hastings ratio.
We claim that

P̃ (φ−1
2)

P (φ2)
≤ 1

P (φ2)
≤ 4.

Indeed, any probability is at most 1, thus the first inequality holds. The
transformation φ2 eliminates at most two deficiencies. It must select uni-
formly one of the edges with the same color incident to a deficient vertex,
and it has probability 1

2
. Once the edge is selected, the maximal alternating

path with the two prescribed colors is defined unequivocally, and thus with
probability 1. Since an edge incident to a deficient vertex must be selected
during the procedure φ2 at most twice, the probability of φ2 has a minimum
1
4
, and thus the second inequality.
Now we show that

P (φ1)

P̃ (φ−1
1)

≤ 1

P̃ (φ−1
1)

≤ 12

(
|V |
2

)
.

The reasoning for the first inequality is the same as above. The transfor-
mation φ−1

1 creates at most two deficient vertices by selecting at most two

242

 dc_2046_22

alternating subpaths or a cycle in the subgraph H defined by the two colors
and flipping the colors along these paths. When nothing is selected (subcases
(2)(a) and (3)(a)), the inequality holds. If one path or a cycle is selected,
then this option is chosen with probability 1

3
. After this, a subpath is se-

lected uniformly. A subpath in a path is defined by its end vertices, and if it
comes from a cycle, then also a direction must be selected. Therefore, there
cannot be more than 2

(|V |
2

)
subpaths coming from paths. Furthermore, the

number of cycles is at most |V | ≤
(|V |

2

)
. Thus, the probability of selecting

one subpath or cycle is at least 1

3(|V |
2)

. If two subpaths are selected, then this

option is chosen with 1
3
probability. In this case, both of the subpaths must

have an end vertex which is an end vertex also in H. Thus only the other
end points must be selected, and there are 2 options for this. Therefore, the
number of pairs of subpaths with the required properties is at most 4

(|V |
2

)
, so

the probability of selecting one of them is at least 1

4(|V |
2)

. Therefore, it indeed

holds that

1

P̃ (φ−1
1)

≤ 1

1
3
×min

{
1

3(|V |
2)
, 1

4(|V |
2)

} = 12

(
|V |
2

)
.

Finally, we show that

P (f−1)

P (f)
≤ 1

P (f)
≤ 4|V |.

The reasoning for the first inequality is the same as above. The transforma-
tion f does one of the followings:

1. When two colors are selected and there is a deficient vertex, it selects
a deficient vertex, then it selects one of its edges causing deficiency,
then it flips its color. It has probability at least 1

4
(1
2
for selecting

uniformly from two deficient vertices and 1
2
for selecting uniformly from

two edges).

2. When two colors are selected and there is no deficient vertex, then with
probability 1

2
, it selects uniformly an edge with one of the two prescribed

colors, and it flips its color. Observe that the number of edges in the
subgraph induced by any two colors is at most the number of vertices
in an edge coloring. Therefore, the probability of this transformation
is at least 1

2|V | .

243

 dc_2046_22

3. When two colors are selected and there is no deficient vertices, it does
nothing with probability 1

2
.

4. When three colors are selected then either a deficient vertex is selected
with at least probability 1

2
or a non-deficient vertex is selected with

at least probability 1
2|V | . If a deficient vertex is selected, then one of

the edges causing deficiency is selected with probability 1
2
, then colors

are flipped along an unequivocally defined alternating path (recall that
a path P might be excluded as described in the Definition 157). If a
non-deficient vertex is selected, then the colors are flipped along one of
at most two paths. The path on which the colors are flipped is selected
with at least probability 1

2
.

Therefore, P (f) is indeed bounded from below by 1
4|V | , thus its inverse is

bounded from above by 4|V |.

As discussed, an upper bound on the Metropolis-Hasting ratio is also an
upper bound on the inverse of the Metropolis-Hastings ratio. Therefore, we
have just proved the following theorem.

Theorem 160. Let M(G, k) be the Markov chain on the edge k-colorings on
the bipartite graph G = (V,E). Then the inverse of the acceptance ratio in
the Metropolis-Hastings algorithm applied with the constant function g and
with the Markov chain M(G, k) is bounded from above by 96|V |2(|V | − 1).

12.5 Latin rectangles

Definition 161. A Latin rectangle is a k × n table such that each row is a
permutation of [n] and each column has no repeats. When k = n we call it a
Latin square. The completion of a k×n Latin rectangle R is an n×n Latin
square such that its first k rows are R.

Observation 162. For any (n−k)×n Latin rectangle R, there is an k-regular
bipartite graph G with n vertices in both vertex classes such that completions
of R and edge k-colorings of G are in one-to-one correspondence.

Proof. Let the two parts of vertices of G be A1, A2, . . . , An and B1, B2, . . . , Bn

and define AiBj ∈ E if and only if number i does not appear in the j-th

244

 dc_2046_22

column of R. This gives us a desired k-regular graph for any given Latin
rectangle R.

Indeed, it is clear that each Bi is of degree k. For Ai’s, observe that they
all have degree at least k. Otherwise, suppose that number i0 is missed in
less than k columns (i.e. it appears in at least n− k+1 columns). We know
that there are only n − k rows, so by the Pigeonhole principle there must
be two i0’s in the same row, which contradicts our assumption that R is a
Latin rectangle. Because |E| = nk and the total degree of Ai’s is nk, no Ai

can have degree more than k, thus every vertex of G is of degree k and G is
k-regular.

Now we give the bijection: if and only if number i is filled in the (n −
k + ℓ, j)-grid in R’s completion, we color the edge AiBj using color cℓ in G.
For one direction, the above discussion for G already shows the pre-image is
a completion of R. Indeed, due to the rules of edge colorings, each number
appears in each row exactly once. Furthermore, each column contains the
necessary missing numbers for the completion. On the other hand, first of
all, every Bj is adjacent to one cℓ-colored edge for all ℓ. Because each number
appears k times in the last k rows of the table by the k-regularity of G each
Ai also has exactly one edge for every color. Thus the image is an edge
k-coloring.

Remark 2. These objects are also in one-to-one correspondence with half-
regular factorizations of complete (k+n)-bipartite graphs with edge n-colorings,
connecting our work to [102].

We now give a simplified version of the Markov chain described in Def-
inition 157 on the solution space of edge k-colorings of k-regular bipartite
graphs, that is, Latin square completions of (n− k)× n Latin rectangles. In
that, we utilize the following observation.

Observation 163. Let C be an almost edge k-coloring of a k-regular bipartite
graph with at least one deficient vertex. Then there are exactly two deficient
vertices in C, furthermore, they are the endpoints of a maximal alternating
path with two colors.

Proof. Let the underlying bipartite graph be G = (U, V,E). First we observe
that due to the k-regularity and bipartite property, if there is a deficient
vertex, then there must be at least two deficient vertices otherwise it would
be impossible to have the same number of edges with each color in the two

245

 dc_2046_22

vertex classes. By definition, there cannot be more than two deficient vertices
in C. Furthermore, if one of the deficient vertices is v ∈ V and has a
(+c − c′)-deficiency then either the other deficient vertex is u ∈ U with a
(+c− c′)-deficiency or v′ ∈ V with a (+c′ − c)-deficiency.

Let e be one of the edges with color c incident to v. Consider a alternating
c-c′ walk leaving v via the edge e. It cannot return to v as it could do it only
via a c′-edge due to the bipartite property. It can only return to a deficient
vertex. However, it can reach v′ only via its c′-edge, and then the walk stops
there, or it can reach u only via a c-edge and then the walk stops there. That
is, this alternating walk is a path connecting the two deficient vertices.

A consequence is that any φ operations always eliminates two deficient
vertices by flipping the colors along an alternating path. This allows us to
simplify the Markov chain in Definition 157 to get an irreducible Markov
chain on the edge k-colorings of k-regular bipartite graphs. We also need the
following observation.

Observation 164. Let C be an almost edge k-coloring of a k-regular bipartite
graph G = (U, V,E) such that v1 has a (+c − c′)-deficiency and v2 has a
(+c′ − c)-deficiency. Furthermore, assume that v1 and v2 are both in V . Let
c′′ ̸∈ {c, c′} be a third color. Then the longest alternating walk with colors c′

and c′′ that starts with color c′′ at v2 is a cycle.

Proof. Since the graph is k-regular, each non-deficient vertex has exactly
one c′-edge and one c′′-edge. That is, the walk continues until it arrives at
a deficient vertex or it travels back to v2. Since v1 and v2 are in the same
bipartite vertex class, the alternating walk could arrive at v1 with a c′-edge,
however, v1 does not have an incident c′-edge. Therefore, the walk arrives
back at v2.

Observations 163 and 164 help simplify the Markov chain. Indeed, regu-
larity provides that

1. each component now is a cycle,

2. any almost edge coloring between two milestones have exactly two de-
ficiencies

3. These two deficiencies can be corrected by a single alternating path

246

 dc_2046_22

4. when the color of an edge must be changed from c′′ to c′, it always can
be done by flipping the colors along an alternating c′-c′′ cycle.

Definition 165. Let G be a k-regular equi-bipartite graph. We define a
Markov chain M(G, k) on the edge k-colorings of G. Let the current coloring
be C. Then draw a random edge k-coloring in the following way.

1. With probability 1
2
, we do nothing (so the defined Markov chain is a

Lazy Markov chain).

2. With probability 1
4
, we select two colors c and c′ from the set of colors

uniformly among the
(
k
2

)
possible unordered pairs. Consider the sub-

graph of G with colors c and c′, let it be denoted by H. Note that H
consists of disjoint alternating cycles. Then we select one of them:

(a) With probability 1
2
, we do nothing.

(b) With probability 1
2
, we uniformly select one of the possible con-

nected subgraphs of H which is a subpath or a cycle.

We flip the colors in the selected subpath, or the cycle if one was se-
lected. If there is any deficient vertex, then we select one of them uni-
formly, we select the edge with the same color incident to the selected
vertex uniformly, and change its color from c to c′ or c′ to c. Otherwise,
with probability 1

2
, we select either a c-edge or a c′-edge, uniformly from

all edges with color c and c′, and change its color to the opposite (c′

or c), and with probability 1
2
, we do nothing. Eliminate all deficien-

cies by flipping the colors on the appropriate alternating path, selecting
uniformly from the two neighbor edges with the same color incident to
deficient vertices.

3. With probability 1
4
we select three colors uniformly from all possible

(
k
3

)
unordered pairs, and select uniformly one from the three colors. Let
the distinguished color be denoted by c′′, and let the other two colors be
denoted by c and c′. Consider the subgraph consisting of the colors c
and c′ and let it be denoted by H. Its non-trivial components are again
cycles. Then we select one of the followings:

(a) With probability 1
2
, we do nothing.

(b) With probability 1
2
, we uniformly select a subpath of H with even

length (even number of edges).

247

 dc_2046_22

We flip the colors in the selected subpath. The number of deficiencies
must be even. If there are two deficient vertices, then we select one of
them uniformly. If there is no deficient vertex, then we select uniformly
a non-deficient vertex.

If a deficient vertex v is selected, let its repeated color be denoted by
c̃. Consider the maximal alternating cycle with colors c̃ and c′′ that
contains v (from Observation 164 we know that this cycle exists). We
flip the colors in this cycle.

If a non-deficient vertex is selected, let its incident edge with color c′′

be denoted by e. We select uniformly from the incident edges with color
c or c′, and let it be denoted by f and its color be c̃. Take the maximal
alternating cycle with colors c′′ and c̃ that contains e and f . We flip
the colors in this cycle.

We eliminate all deficiencies by flipping the colors on the appropriate
alternating path, selecting uniformly from the two neighbor edges with
the same color incident to deficient vertices.

We can state the following upper bounds on the diameter and the inverse of
the acceptance ratio.

Theorem 166. Let M(G, k) be the Markov chain on the edge k-colorings
of a k-regular bipartite graph G = (V,E). Then the diameter of M(G, k) is
bounded from above by 3|E| and the inverse of the acceptance ratio in the
Metropolis-Hastings algorithm with the uniform distribution is bounded from
above by 48|V |(|V | − 1).

Proof. In each subgraph Hi and in each non-trivial component, half of the
edges have color ci in C2. Indeed, observe that each non-trivial component
is an alternating cycle with edges having color ci in C1 and C2. Therefore,
the total number of edges of the non-trivial components in all Hi’s is at most
2|E|. Each component is an even cycle of length s (and thus s is even), and
can be transformed in at most 3

2
s steps. See also the proof of Lemma 158.

Therefore, 3|E| steps are sufficient to transform any edge coloring to any
other one.

We can decompose the proposal and reverse proposal probabilities in
the same way as we did in case of Theorem 160. Then the probabilities of
selecting colors again cancel. We still have the bound

P̃ (φ−1
2)

P (φ2)
≤ 4.

248

 dc_2046_22

However, we can give a better upper bound on

P (φ1)P (f
−1)

P̃ (φ−1
1)P (f)

≤ 1

P̃ (φ−1
1)P (f)

≤ 24

(
|V |
2

)
.

If nothing is selected (subcases (2)(a) and (3)(a)), the inequality holds. Since
G is k-regular and its edges are colored with k colors, there are deficient
vertices after the transformation φ−1

1 if and only if an alternating path is
selected and the edges are flipped. The probability for that is at least 1

2×3(|V |
2)

.

Indeed, 1
2
is the probability for choosing the option to select a path or cycle,

and there are at most 2
(|V |

2

)
possible paths, since the two end vertices and a

direction in the cycle define the alternating path unequivocally (recall that
the two colors in the alternating path are fixed) and there are at most |V | ≤(|V |

2

)
cycles. In such a case, there are two deficient vertices, one of them

is selected uniformly and one of its edges with duplicated colors is selected
uniformly, and the color of this edge is changed in a prescribed way. Note
that this change is the transformation f . Therefore, in this case, P (f) = 1

4
.

We get that

P (φ−1
1)P (f) ≥ 1

24
(|V |

2

) (12.10)

If no path is selected, then the probability for that is 1
2
. Then a non-

deficient vertex is selected uniformly, its probability is 1
|V | . Then one of the

edges incident to the selected vertex and having one of the two prescribed
colors is selected uniformly. This has probability 1

2
. The color of the selected

edge is changed in a prescribed way. Therefore, we get that

P (φ−1
1)P (f) ≥ 1

4|V |
(12.11)

Since |V | ≥ 2, we have 4|V | ≤ 24
(|V |

2

)
.

Putting the inequalities together, we obtain the claimed bound.

12.6 Conclusion

We consider the solution space of edge colorings of any general bipartite graph
and explicitly constructed an irreducible Markov chain M(G, k) on the edge
k-colorings of a bipartite graph G. We have shown that the diameter of

249

 dc_2046_22

M is linearly bounded from above by the number of edges and also by the
number of colors, and when we apply the Metropolis-Hastings algorithm to it
so that the modified chain, M̃(G, k), converges to the uniform distribution,
the inverse of acceptance ratio is bounded from above by a cubic function of
the number of vertices. A special case of our work provides a Markov chain
Monte Carlo method to sample completions of Latin squares.

Possible further work includes investigating the speed of convergence of
the Markov chain M̃(G, k), that is, whether it is rapidly mixing or not. The
natural conjecture is that M̃(G, k) is rapidly mixing, based on the proved
properties on the diameter and the bound on the inverse of the acceptance
ratio. The Markov chain M̃(G, k) is similar to the Markov chains invented by
Jacobson and Matthew [51] and Aksen et al. [102] (see section 12.1). Neither
of these chains have been proved to be rapidly mixing, although rapid mixing
is conjectured. The fact that the rapid mixing is a more than 25 year old open
question in case of the Jacobson-Matthew Markov chain on Latin squares
indicates that resolving these open questions might be extremely hard. A
special case of the Markov chain introduced in this paper is the Markov
chain on completions (n − 3) × n Latin rectangles, or equivalently, on edge
3-colorings of 3-regular bipartite graphs. The structure of the solution space
of edge 3-colorings of 3-regular bipartite graphs might be simpler than the
structure of the Latin squares. Therefore, there is a hope that proving rapid
mixing of the Markov chain on edge 3-colorings of 3-regular bipartite graphs
might be easier.

Another possible direction is to extend the results of this section to bi-
partite multigraphs.

250

 dc_2046_22

Bibliography

[1] Aho, A., Ullman, J., Hopcroft, J. (1974) The Design and Analysis of
Computer Algorithms, Addison Wesley, Reading, Massachusetts.

[2] Agrawal, M., Kayal, N., Saxena, N. (2004) PRIMES is in P. Annals of
Mathematics, 160(2):781–793.

[3] André, D. (1881) Mémoire sur les permutations alternées. Journal de
mathématiques pures et appliquées, 7:167—184.

[4] Ajana, Y., Lefebvre, J.-F., Tillier, E.R.M., El-Mabrouk, N. (2002) Ex-
ploring the Set of All Minimal Sequences of Reversals - An Application
to Test the Replication-Directed Reversal Hypothesis. Lecture Notes in
Computer Science, vol. 2452, pp. 300–315.

[5] Aldous, D.J. (1982) Some inequalities for reversible Markov chains. Jour-
nal of the London Mathematical Society, vol. 2 num. 25, pp. 564–576.

[6] Babai, L. (2015) Graph Isomorphism in Quasipolynomial Time arXiv:

1512.03547.

[7] Babai, L., Luks, E.M. (1983) Canonical labeling of graphs. In:Proceedings
of the 15th Annual ACM Symposium on Theory of Computing, 171–183.

[8] Bader, D.A., Moret, B.M.E., Yan, M. (2001) A linear-time algorithm
for computing inversion distance between signed permutations with an
experimental study. J. Comp. Biol., vol. 8, num. 5, pp 483–491.

[9] Baum, L.E., Egon, J.A. (1967) An inequality with applications to statis-
tical estimation for probabilistic functions of a Markov process and to a
model for ecology. Bulletin of the American Mathematical Society , 73:360–
363.

251

 dc_2046_22

[10] Baum, L.E., Petrie, T. (1966) Statistical Inference for Probabilistic
Functions of Finite State Markov Chains. The Annals of Mathematical
Statistics, 37(6):1554–1563.

[11] Baum, L.E., Sell, G.R. (1968) Growth functions for transformations on
manifolds. Pacific Journal of Mathematics, 27(2):211–227.

[12] Bergeron, A. (2001) A very elementary presentation of the Hannenhalli-
Pevzner theory. Proceedings of CPM2001, 106–117.

[13] Bergeron, A., Mixtacki, J., Stoye, J. (2006) A Unifying View of Genome
Rearrangements. Lecture Notes in Computer Science, 4175:163–173.

[14] Braga, M.D.V., Stoye, J. (2010) The Solution Space of Sorting by DCJ.
Journal of Computational Biology, 17(9):1145–1165.

[15] Brémoud, P. (1999) Markov Chains: Gibbs Fields, Monte Carlo Simu-
lation, and Queues, Texts in Applied Mathematics, Springer, New York.

[16] Brightwell, G., Winkler, P. (1991) Counting linear extensions is #P-
complete. In: Proceedings of the 23rd Annual ACM Symposium on Theory
of Computing, 175–181.

[17] Caprara A. (2003) The reversal median problem. INFORMS Journal on
Computing, 15:93–113.

[18] Chomsky, N. (1955) Transformational Analysis, PhD thesis, University
of Pennsylvania

[19] Chomsky, N. (1959) On Certain Formal Properties of Grammars. Infor-
mation and Control, 2:137–167.

[20] http://www.claymath.org/sites/default/files/pvsnp.pdf

[21] Cook, S. (1971) The Complexity of Theorem Proving Procedures. Pro-
ceedings of the 3rd Annual ACM Symposium on Theory of Computing,
151–158.

[22] Cooper, C., Dyer, M., Greenhill, C. (2007) Sampling regular graphs
and a peer-to-peer network. Combinatorics, Probability and Computing,
16(4):557–593.

252

 dc_2046_22

[23] Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C. (2009) Introduc-
tion to Algorithms, The MIT Press, Cambridge, Massachusetts.

[24] Darwin, C. (1859) On the Origin of Species by Means of Natural Selec-
tion, or the Preservation of Favoured Races in the Struggle for Life. John
Murray, London.

[25] Diaconis, P., Saloff-Coste, L. (1993) Comparison theorems for reversible
Markov Chains. The Annals of Applied Probability, 3(2):696–730.

[26] Diaconis, P., Stroock, D. (1991) Geometric bounds for eigenvalues of
Markov chains. The Annals of Applied Probability, 1(1):36–61.

[27] Durbin, R., Eddy, S.R., Krogh, A., Mitchison, G. (1998) Biological
Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids.
Cambridge University Press, Cambridge.

[28] Durrett, R., Nielsen, R., York, T.L. (2004) Bayesian estimation of ge-
nomic distance. Genetics, vol. 166, pp. 621–629.

[29] Edmonds, J. (1965) Paths, trees, and flowers. Canadian Journal of Math-
ematics, 17:449–467.

[30] Erdős, P. (1932) Beweis eines Satzes von Tschebyschef. Acta Litt. Ac.
Sci. Regige Univ. Hung. Fr.-Jos Sect. Sci. Math. 5:194–198.

[31] Erdős, P., Gallai, T. (1960) Graphs with vertices of prescribed degrees
(in Hungarian) Matematikai Lapok, 11: 264–274.

[32] Feijão, P., Meidanis, J. (2011) SCJ: A Breakpoint-Like Distance that
Simplifies Several Rearrangement Problems. IEEE/ACM Transactions on
Computational Biology and Bioinformatics 8(5): 1318–1329.

[33] Felsenstein, J. (1980) Evolutionary trees from DNA sequences: a maxi-
mum likelihood approach. J Mol Evol., 17:368–376.

[34] Fitch, W M 1(971) Toward defining the course of evolution: minimum
change for a specified tree topology. Systematic Zoology 20:406–416.

[35] Floyd, R. W. (1962). Algorithm 97: Shortest Path. Communications of
the ACM. 5(6):345.

253

 dc_2046_22

[36] Forney, G.D. (1973) The Viterbi algorithm. Proceedings of the IEEE,
61:268–278.

[37] Gale, D. (1957) A theorem on flows in networks. Pacific J. Math. 7 (2):
1073–1082.

[38] Geman, S, Geman, D. (1984) Stochastic relaxation, Gibbs distributions
and the Bayesian restoration of images. IEEE Transactions on Pattern
Analysis and Machine Intelligence 12:609–628.

[39] Geyer, C.J. (1991) Markov chain Monte Carlo maximum likelihood. In:
Keramigas, E., Editor, Computing Science and Statistics: The 23rd Sym-
posium on the Inference, Interface Foundation, Fairfax, pp. 156–163.

[40] Giegerich, R. (2000) A Systematic Approach to Dynamic Programming
in Bioinformatics. Bioinformatics, 16:665–667.

[41] Giegerich, R. Steffen, P. (2002) Implementing algebraic dynamic pro-
gramming in the functional and the imperative programming paradigm.
In E.A. Boiten and B. Möller, editors, Mathematics of Program Construc-
tion, Lecture Notes in Computer Science, 2386:1–20.

[42] Gúıñez, F., Matamala, F.M., Thomassé, S. (2011) Realizing disjoint
degree sequences of span at most two: A tractable discrete tomography
problem, Discrete Appl. Math. 159(1):23–30.

[43] Hakimi, S.L. (1962) On the realizability of a set of integers as degrees
of the vertices of a simple graph. SIAM Appl. Math., 10:496–506.

[44] Hastings, W. K. (1970) Monte Carlo sampling methods using Markov
chains and their applications. Biometrika, 57:97–109.

[45] Hannenhalli, S., Pevzner, P.A. (1999) Transforming cabbage into turnip:
polynomial algorithm for sorting signed permutations by reversals. Journal
of the ACM, 46(1):1–27.

[46] Hartman, T., Verbin, E. (2006) Matrix Tightness: A Linear-Algebraic
Framework for Sorting by Transpositions. Proceedings of SPIRE’06, pp.
279–290.

[47] Havel, V. (1955) A remark on the existence of finite graphs. (in Czech),
Časopis Pěst. Mat., 80:477–480.

254

 dc_2046_22

[48] Helman, P., Rosenthal, A. (1985) A comprehensive model of dynamic
programming. SIAM Journal on Algebraic Discrete Methods, 6(2):319–
333.

[49] Hopcroft, J.E., Karp, R.M. (1983) An n5/2 algorithm for maximum
matchings in bipartite graphs. SIAM Journal on Computing, 2(4):225–
231.

[50] Huelsenbeck, J.P., Ronquist, F. (2001) MRBAYES: Bayesian inference
of phylogeny. Bioinformatics, 17:754–755.

[51] Jacobson, M.T., Matthews, P. (1996) Generating uniformly distributed
random latin squares. J. Combin. Des., 4(6):404–437.

[52] Jerrum, M. (2003) Counting, Sampling and Integrating: Algorithms and
Complexity. Lectures in Mathematics. ETH Zürich. Birkhäuser Verlag,
Basel, Switzerland.

[53] Jerrum, M., Snir, M. (1982) Some Exact Complexity Results for
Straight-Line Computations over Semirings. Journal of the ACM,
29(3):874–897.

[54] Jerrum, M., Valiant, L., Vazirani, V. (1986) Random generation of com-
binatorial structures from a uniform distribution. Theoretical Computer
Science, 43:169–188.

[55] Kannan, R., Tetali, P., Vempala, S. (1999) Simple Markov-Chain Algo-
rithms for Generating Bipartite Graphs and Tournaments, Random Struc-
tures Algorithms, 14(4):293–308.

[56] Karp, R.M. (1972) Reducibility among combinatorial problems. in: R.
E. Miller and J. W. Thatcher (eds.) Complexity of Computer Computa-
tions. 85–103. Plenum, New York

[57] Karzanov, A., Kachiyan, L. (1991) On the conductance of order Markov
chains. Order, 8:7–15.

[58] Larget, B., Simon, D.L., Kadane, B.J. (2002) Bayesian phylogenetic
inference from animal mitochondrial genome arrangements. J. Roy. Stat.
Soc. B., 64(4):681–695.

255

 dc_2046_22

[59] Larget B, Simon DL, Kadane JB, Sweet D. (2005) A Bayesian anal-
ysis of metazoan mitochondrial genome arrangements. Mol. Biol. Evol.,
22(3):486–495.

[60] Lawler, G.F., Sokal, A.D. (1988) Bounds on the L2 spectrum for Markov
chains and Markov processes: A generalization of Cheeger’s inequality.
Transactions of the American Mathematical Society, 309(2):557–580.

[61] Lovász, L, Plummer, MD (1986) Matching Theory. Amsterdam, Nether-
lands: North-Holland.

[62] Lyngsø, R., Zuker, M., Pedersen, C. (1999) Fast evaluation of internal
loops in RNA secondary structure prediction. Bioinformatics, 15(6):440–
445.

[63] Ma, J., Ratan, A., Raney, B.J., Suh, B.B., Miller, W., Haussler, D.
(2008) The infinite sites model of genome evolution PNAS, 105(38):14254–
14261.

[64] Martin, R., Randall, D. (2006) Disjoint decomposition of Markov chains
and sampling circuits in Cayley graphs. Combinatorics, Probability and
Computing, 15:411–448.

[65] McCaskill, J.S. (1990) The equilibrium partition function and base pair
binding probabilities for RNA secondary structure. Biopolymers 29, 1105–
1119.

[66] Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H.,
Teller, E. (1953) Equations of state calculations by fast computing ma-
chines. J. Chem. Phys., 21(6):1087–1091.

[67] Meyer, I.M., Durbin, R. (2002) Comparative ab initio prediction of gene
structures using pair HMMs. Bioinformatics, 18(10):1309–1318.

[68] Needleman, S. B., Wunsch, C. D. (1970). A general method applicable
to the search for similarities in the amino acid sequence of two proteins.
Journal of Molecular Biology, 48(3):443–453.

[69] Nussinov, R., Jacobson, A.B. (1980) Fast algorithm for predicting the
secondary structure of single-stranded RNA. Proceedings of the National
Academy of Sciences of the United States of America, 77(11):6309–6313.

256

 dc_2046_22

[70] Ouangraoua, A., Bergeron, A. (2010) Combinatorial Structure of
Genome Rearrangements Scenarios. Journal of Computational Biology,
17(9):1129–1144.

[71] Papadimitriou, C.H. (1994) Computational Complexity, Addison-
Wesley, Reading, Mass.

[72] Rabiner, R.L. (1969) A tutorial on hidden Markov models and selected
applications in speech recognition. Proceedings of the IEEE, 77(2):257–
286.

[73] Ronquist, F., Huelsenbeck, J.P. (2003) MrBayes 3: Bayesian phyloge-
netic inference under mixed models Bioinformatics, 19:1572–1574.

[74] Roy, B. (1959). Transitivité et connexité (in French). C. R. Acad. Sci.
Paris 249: 216–218.

[75] Ryser, H. J. (1957) Combinatorial properties of matrices of zeros and
ones. Can. J. Math. 9: 371–377.

[76] Sankoff, D. (1972) Matching sequences under deletion/insertion con-
straints. Proceedings of the National Academy of Sciences of the USA,
69(1):4–6.

[77] Sankoff, D., Kruskal, J., Mainville, S., Cedergren, R. (1983) Fast algo-
rithms to determine RNA secondary structures containing multiple loops.
In: Sankoff, D., Kruskal, J. (Eds.), Time Warps, String Edits, and Macro-
molecules: The Theory and Practice of Sequence Comparison. Addison-
Wesley, Reading, MA, pp. 93–120.

[78] Sankoff, D, Rousseau, P (1975) Locating the vertices of a Steiner tree
in an arbitrary metric space. Mathematical Programming, 9:240–246.

[79] Sellers, P.H. (1974) On the theory and computation of evolutionary
distances. SIAM Journal on Applied Mathematics, 26(4):787–793.

[80] Simon, I. (1988) Recognizable sets with multiplicities in the tropical
semiring. Mathematical Foundations of Computer Science 1988. Lecture
Notes in Computer Science. 324:107–120.

257

 dc_2046_22

[81] Simon, D., Larget, B. (2004) Bayesian Analysis to Describe Genomic
Evolution by Rearrangement (BADGER), version 1.01 beta. Department
of Mathematics and Computer Science, Duquesne University

[82] Sinclair, A.J. (1992) Improved bounds for mixing rates of Markov chains
and multicommodity flow. Combinatorics, Probability and Computing,
1:351–370.

[83] Sinclair, A., Jerrum, M. (1989) Approximate counting, uniform genera-
tion and rapidly mixing Markov chains, Inform. and Comput., 82:93–133.

[84] Stratonovich, R.L. (1960) Conditional Markov Processes. Theory of
Probability and its Applications, 5(2):156–178.

[85] Sturtevant, A.H., Novitski, E. (1941). The homologies of the chromo-
some elements in the genus Drosophila. Genetics 26: 517–541.

[86] Sturtevant, A.H., Tan, C.C. (1937). The comparative genetics of
Drosophila pseudoobscura and Drosophila melanogaster. J. Genet. 34:
415–432.

[87] Tannier, E., Bergeron, A., Sagot, F-M. (2007) Advances on sorting by
reversals. Discrete Applied Mathematics, 155(6-7):881–888.

[88] Tannier, E., Zheng, C., Sankoff, D. (2009) Multichromosomal median
and halving problems under different genomic distances. BMC Bioinfor-
matics, 10:120.

[89] Tarnas C, Hughey, R (1998) Reduced space hidden Markov model train-
ing. Bioinformatics, 1998, 14:401–406.

[90] Thorne, J.L., Kishino, H., Felsenstein, J. (1991) An evolutionary model
for maximum likelihood alignment of DNA sequences. J. Mol. Evol.,
33:114–124.

[91] Tinoco, I.J., Borer, P., Dengler, B., Levine, M., Uhlenbeck, O. (1973)
Improved estimation of secondary structure in ribonucleic acids. Nat. New
Biol. 246:40–41.

[92] Valiant, L.G. (1979) The Complexity of Computing the Permanent. The-
oretical Computer Science, 8(3):189–201.

258

 dc_2046_22

[93] Viterbi, A.J. (1967) Error bounds for convolutional codes and an asymp-
totically optimum decoding algorithm. IEEE Transactions on Information
Theory, 13(2):260–269.

[94] Wagner, R.A., Fischer, M.J. (1974) The string-to-string correction prob-
lem. Journal of the ACM, 21(1):168–173.

[95] Warshall, S. (1962). A theorem on Boolean matrices. Journal of the
ACM. 9(1):11–12.

[96] Wheeler R, Hughey R (2000) Optimizing reduced-space sequence anal-
ysis. Bioinformatics,16(12):1082–1090.

[97] Wuchty, S., Fontana, W., Hofacker, I., Schuster, P. (1999) Complete sub-
optimal folding of RNA and the stability of secondary structures. Biopoly-
mers 49, 145–165.

[98] Yancopoulos, S., Attie, O., Friedberg, R. (2005) Efficient sorting of
genomic permutations by translocation, inversion and block interchange.
Bioinformatics, 21(16):3340–3346.

[99] Yang, Z., Rannala, B. (1997) Bayesian phylogenetic inference using DNA
sequences: a Markov chain Monte carlo method. Molecular Biology and
Evolution. 14:717–724.

[100] York, T.L., Durrett, R., Nielsen, R. (2002) Bayesian estimation of in-
versions in the history of two chromosomes. J. Comp. Biol., 9:808–818.

[101] Zuckerkandl, E., Pauling, L. (1965) Molecules as documents of evolu-
tionary history. J. Theor. Biol., 8(2):357–66.

259

 dc_2046_22

260

 dc_2046_22

Publications by the author of
the thesis

[102] Aksen, M., Miklós, I., Zhu, K. (2017) Half-regular factorizations of
the complete bipartite graph. Discrete Applied Mathematics, 230:21–33.

[103] Bixby, E, Flint, T, Miklós, I., (2016) Proving the Pressing Game
Conjecture on Linear Graphs Involve, 9(1):41–56.

[104] Czabarka, É., Dutle, A., Erdős, P.L., Miklós, I. (2014) On Re-
alizations of a Joint Degree Matrix. Discrete Applied Mathematics,
181(30):283–288.

[105] Darling, A., Miklós, I., Ragan, M. (2008) Dynamics of genome re-
arrangement in bacterial populations. PLoS Genetics, vol. 4, num. 7.,
e1000128.

[106] Erdős, E.L., Greenhill, C., Mezei, T. R., Miklós, I., Soltész, D.,
Soukup, L. (2022) The mixing time of the switch Markov chains: a unified
approach, Eur. J. Comb., 99:103421.

[107] Erdős, E.L., Győri, E., Mezei, T. R., Miklós, I., Soltész, D. (2021)
Half-graphs, other non-stable degree sequences, and the switch Markov
chain, Electronic Journal of Combinatorics, 28:3 #P3.7.

[108] Erdős, P.L., Kiss, Z.S., Miklós, I., Soukup, L. (2015) Approximate
Counting of Graphical Realizations. PLoS ONE, 10(7):e0131300.

[109] Erdős, E.L. Mezei, T., Miklós, I., Soltész, D. (2018) Efficiently sam-
pling the realizations of bounded, irregular degree sequences of bipartite
and directed graphs. PLoS ONE, 13(8): e0201995.

261

 dc_2046_22

[110] Erdős, P.L., Miklós, I., Toroczkai, Z. (2015) A decomposition based
proof for fast mixing of a Markov chain over balanced realizations of a
joint degree matrix. SIAM Journal on Discrete Mathematics, 29:481–499.

[111] Erdős, P.L., Miklós, I., Toroczkai, Z. (2018) New classes of degree
sequences with fast mixing swap Markov chain sampling Combinatorics,
Probability and Computing, 27(2):186–207.

[112] Hong, L., Miklós, I. (2022) A Markov chain on the solution space
of edge-colorings of bipartite graphs. Discrete Applied Mathematics, ac-
cepted.

[113] Lunter, G.A., Miklós, I., Drummond, A.J., Jensen, J.L., Hein, J.J.
(2005) Bayesian Coestimation of Phylogeny and Sequence Alignment.
BMC Bioinformatics, 6:83

[114] Miklós, I. (2003) MCMC Genome Rearrangement. Bioinformatics,
19:ii130–ii137.

[115] Miklós, I. (2019) Computational complexity of counting and sam-
pling, CRC Press.

[116] Miklós, I., Darling, A. (2009) Efficient sampling of parsimonious in-
version histories with application to genome rearrangement in Yersinia
Genome Biology and Evolution, 1(1):153–164.

[117] Miklós, I., Erdős, P.L., Soukup, L. (2013) Towards random uniform
sampling of bipartite graphs with given degree sequence, Electronic J.
Comb., 20(1):#P16.

[118] Miklós, I., Ittzés, P., Hein, J. (2005) ParIS genome rearrangement
server. Bioinformatics, 21(6):817–820.

[119] Miklós, I., Mélykúti, B., Swenson, K. (2010) The Metropolized Par-
tial Importance Sampling MCMC mixes slowly on minimum reversal re-
arrangement paths ACM/IEEE Transactions on Computational Biology
and Bioinformatics, 4(7):763–767.

[120] Miklós, I., Meyer, I.M. (2005) A linear memory algorithm for Baum-
Welch training. BMC Bioinformatics 6:231

262

 dc_2046_22

[121] Miklós, I., Meyer, I.M., Nagy, B. (2005) Moments of the Boltzmann
distribution for RNA secondary structures Bul. Math. Biol., 67(5):1031-
1047

[122] Miklós, I., Smith, H. (2015) Sampling and counting genome rear-
rangement scenarios, BMC Bioinformatics, 16(Suppl 14): S6.

[123] Miklós, I., Smith, H. (2019) The computational complexity of cal-
culating partition functions of optimal medians with Hamming distance.
Advances in Applied Mathematics, 102:18–82.

[124] Miklós, I., Tannier, E. (2010) Bayesian sampling of genome rearrange-
ment scenarios via Double Cut and Join. Bioinformatics, 26: 3012–3019.

[125] Miklós, I., Tannier, E. (2012) Approximating the number of Double
Cut-and-Join scenarios, Theoretical Computer Science 439:30–40.

[126] Miklós, I., Tannier, E., Kiss, Z.S. (2014) On sampling SCJ rearrange-
ment scenarios. Theoretical Computer Science, 552:93–98.

263

 dc_2046_22

Subject Index

MPSCJ, 72
#MPSCJ, 72
#P, 9
#P-complete, 9
#P-hard, 9
#SAT, 9
3CNF, 146

acceptance probability, 18
adjacency graph, 29

M -shaped path in an , 29
W -shaped path in an, 29
odd path in an, 29
trivial components of an, 31, 70

algebraic dynamic programming, 52
alternating permutations, 72
aperiodic Markov chain, 16

Backward algorithm, 63
bases (of RNA and DNA sequences),

38
Baum-Welch training, 63
biological structure prediction, 39
bipartite degree matrix, 202
Boltzmann distribution, 58
BPP, 10

canonical path system, 23
Cheeger inequalities, 24

Chomsky Normal Form, 57
chromosome, 28

circular, 28
linear, 28

computational problem, 5
conductance of a Markov chain, 24
conflicting adjacencies, 70
conjunctive normal form, 146
CYK algorithm, 58

DCJ, 28
distance, 31
model, 28
operation, 29
sorting ∼, 118

decision problem, 5
degree sequence, 25

almost regular, 112
almost semi-regular, 112
bipartite, 25, 79, 202
factorization, 202
P-stability, 84

detailed balance, 17
directed degree sequence, 25
discrete tomography, 27
dynamic programming algorithm, 70,

191

edge coloring, 226

264

 dc_2046_22

Expectation-Maximization, 63

feasibility of an algorithm, 5
Fitch algorithm, 194
Forward algorithm, 43, 56
FP, 9
FPAUS, 13
FPRAS, 12
free non-commutative monoid, 52
function problem, 9

genome, 27
co-tailed ∼s, 180
hurdle free ∼s, 34, 180
multichromosomal, 28
unichromosomal, 28

genome rearrangement, 27
shortest path, 28
shortest scenario, 28

Gibbs sampling, 190
granulation function, 14
graph of desire and reality, 33

desire edges of the, 33
reality edges of the, 33

graphic degree sequence, 25
greedy algorithm, 194

Havel-Hakimi realization, 25
Havel-Hakimi theorem, 25
Hidden Markov Model, 41

emission path of a, 42
hurdle (in sorting by reversals), 34

infinite site model, 36, 167
Inside algorithm, 58
irreducible Markov chain, 16

JDM, 26, 109
balanced realization of a ∼, 110

Jerrum-Valiant-Vazirani theorem, 15
Joint Degree Matrix, 26

labeled union, 112
Latin rectangle, 244
Latin squares, 201
load of an edge, 23

Markov chain, 16
Lazy, 16
Markov graph of a ∼, 23
transition matrix of a, 16

Markov chain Monte Carlo, 17
Metropolis-Hastings algorithm, 18
Metropolis-Hastings ratio, 18
Metropolized Partial Importance Sam-

pling, 136
Millennial problems by the Clay In-

stitute, 8
most parsimonious

DCJ sorting, 118
labeling of evolutionary trees, 38,

190
median problem, 37, 73
median scenarios, 37, 158
rearrangement problem, 37, 135
scenarios on evolutionary trees, 38,

145
SCJ sorting, 72

multicommodity flow, 23

non-terminal characters, 39
NP, 7
NP-complete, 8
NP-hard, 8
nucleotides, 38

overlap graph, 33

P, 7

265

 dc_2046_22

P vs. NP, 8
p-relation, 14
p-relations, 14
Papadimitriou’s theorem, 12
parse tree, 57
partition function, 59
path system, 23
Poincaré coefficient, 23
polynomial reduction, 7
principle of parsimony, 2
problem instance, 5

rapid mixing, 22
realization of a degree sequence, 25
relaxation time, 17
reversal, 31

distance, 33
sorting, 34
sorting by ∼s, 31, 135

RNA secondary structure, 44
RP, 11

sampling problem, 13
Sankoff-Russeau algorithm, 191
SCJ, 36

distance, 36
second-largest eigenvalue, 22
second-largest eigenvalue modulus, 19
self-reducible counting problem, 14
self-reducible counting problems, 14
semiring, 53
sequence, 38

concatenation, 38
prefix of a, 38
suffix of a, 38

signed permutation, 32
small parsimony problem, 37, 145
solution, 5

spectral gap, 22
stationary distribution, 16
switch operation, 25

restricted, 110
synteny block, 28

extremities of, 28

terminal characters, 39
torpid mixing, 22
total variation distance, 13
tractability of an algorithm, 5
transformational grammar, 39

ambiguous, 40
generation in a, 40
language generated by a, 40
regular, 39
rewriting rules of a, 39
stochastic regular, 41, 56
unambiguous, 40

Tyshkevich product, 81

unary coding of data, 6

Viterbi algorithm, 43, 55

witness, 5

266

 dc_2046_22

