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Chapter 1

Introduction

The present thesis is a summary of the scientific work I have done since receiving my PhD
degree in 2003. Three different topics are discussed: Chapter 2 is devoted to the examination
of a harmonically excited dry friction oscillator, Chapter 3 deals with the nonlinear analysis
of chip formation, and finally, the effects of sampling and quantization on the dynamics of
certain controlled mechanical systems are analysed in Chapter 4. These seemingly unrelated
dynamical systems have an interesting feature in common: all of them can exhibit chaotic
vibrations, but the irregular behaviour of the corresponding real systems is often attributed
by scientists and engineers to random noise – i.e., chaos is hidden in some sense.

• In case of the dry friction oscillator (Chapter 2), chaotic behaviour was detected only
if the static coefficient of friction was significantly larger than the kinetic one. Since
special – periodic, but asymmetric – solutions emerge as the friction coefficients become
different, the analysis of these orbits was the key to find the origin of chaos. Indeed,
chaotic solutions were found to bifurcate from the asymmetric ones. So far rather few
papers reported the existence of asymmetric oscillations, however, the traces of this
kind of motion can be detected even experimentally. My main scientific contributions
in this topic are the formulation of the conditions of having non-sticking symmetric
solutions, the derivation and stability analysis of non-sticking asymmetric solutions,
the extended bifurcation analysis of the system, and the detection of chaotic solutions
that hide in rarely examined parameter domains.

• The formation of chips during cutting (Chapter 3) is a remarkably complex thermo-
mechanical process. To understand this phenomenon, my colleague, Zoltán Pálmai put
forward several models to describe the variation of shear stress and temperature in the
so-called shear zone. During our cooperation, my task was the nonlinear analysis of the
models. I pointed out that chaotic (aperiodic) chips are formed in certain parameter
domains and that chaos is reached via period-doubling cascades, occuring according to
Feigenbaum’s ratio. Technological experts typically focus on stable periodic or equi-
librium solutions. Taking into account the elasticity of the tool or the workpiece,
the analysis showed that a small amplitude chaotic oscillation may be superposed on
equilibrium solutions, i.e, aperiodic unevenness may occur on the profile of continuous
chips. Thus, chaos is hidden in this case, too. The chip formation model was extended
further, to incorporate the effects caused by a gradually increasing and suddenly de-
taching built-up edge. I determined the largest Lyapunov exponent of the system
described by a set of piecewise smooth delay-differential equations, and showed that a
finite-dimensional chaotic attractor hides in the infinite-dimensional phase-space.

1
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2 CHAPTER 1. INTRODUCTION

• Micro-chaos (Chapter 4) is a phenomenon when the so-called digital effects turn the
neighbourhood of the desired state of a controlled mechanical system into one or more
small strange attractors or repellers. The corresponding small amplitude vibrations
are usually considered as noise in the practice, however, as we will see, the source of
these hidden chaotic vibrations is deterministic dynamics. Based on the concept of
micro-chaos, I gave complete proofs of chaos in case of two different two-dimensional
micro-chaos maps. In the presence of dry friction, the chaotic vibrations may disappear
after a finite time interval. I developed a method for the estimation of the mean lifetime
of transient chaos, based on the determination of the fractal dimension of the repeller.
Finally, since the phase-space of micro-chaos maps is naturally partitioned due to the
quantization, my PhD student Gergely Gyebrószki and I developed a new cell mapping
algorithm for the exploration of the global dynamics.

Certainly, the methods applied for the analysis of these systems are also similar, but
not entirely identical. For example, although the largest Lyapunov exponent is determined
in all of the three cases, different methods are applied for this purpose. It is also common
in the analysed problems that – besides exhibiting chaotic behaviour – there are parameter
domains where one encounters transient chaos, i.e., the trajectories escape from the so-called
repeller set and tend to an attractor or another repeller. This feature also contributes to the
hidden nature of chaotic oscillations.

It is important to emphasize that the found strange sets are not „hidden attractors”:
in mathematical terms, an attractor is called a hidden attractor if its basin of attraction
does not intersect with a certain open neighbourhood of equilibrium points. However, in the
considered cases the adjective „hidden” refers to the relatively small amplitude of the chaotic
vibrations that are difficult to distinguish from external noise.

Due to the differences between the three themes, the literature review of each topic is
provided in the first section of the appropriate chapter. The other parts of the chapters
discuss my own results, except for the last sections in each chapter, that present the joint
work with my former PhD students: Gábor Licskó and Gergely Gyebrószki.

To separate my achievements from those of others, references to my publications are
printed in boldface (e.g., [27]) and the last chapter (Chapter 5) of the thesis summarizes my
principal results. In order to improve the readability of the thesis, some technical details are
presented in appendices.

The main text is everywhere written in first person plural without distinction between
my independent work and the joint work with others. Nevertheless, the principal results
have been stated in singular or plural in accordance with the number of contributors.
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Chapter 2

Harmonically Excited Dry Friction
Oscillator

2.1 INTRODUCTION AND LITERATURE REVIEW

The effects of dry friction on the relative motion of contacting bodies are difficult to predict.
On the one hand, the underlying physical mechanisms are very complex. On the other
hand, various mathematical difficulties can appear during the analysis of frictional systems,
that require special tools to solve [7]. Moreover, friction models applied to characterise the
contact of rigid bodies can lead to indeterminate or self-inconsistent solutions [22, 164].

Several friction models have been introduced so far – typically as the generalization of the
Coulomb model [11, 45, 46, 61, 86, 87, 92, 93, 123]. However, even the Coulomb model poses
challanges to the dynamical systems’ researcher. This model is inherently non-smooth, since
the direction of the friction force F (v) is opposite to the relative velocity v of the examined
body, and sticking may occur at v = 0. The situation is even more complicated if the static
µ0 and kinetic µ coefficients of friction are different, as it is illustrated in Fig. 2.1.

Figure 2.1: The Coulomb friction characteristic. N denotes the (positive) normal force
pressing the contacting bodies together.

The nonlinear nature of friction implies that several different types of periodic solutions
can appear in the phase space of these systems. Moreover, certain sophisticated models (e.g.,
[6, 62]) exhibit chaotic behaviour. Naturally arises the question: which is the simplest dry
friction oscillator model where chaotic vibrations can occur and the friction characteristic
is the only source of nonlinearity? While the „simplicity” of a model cannot be rigorously
measured, a possible answer will be given to this question in the present chapter.

To understand the dynamics of frictional systems, two typical settings were often studied
in the literature: oscillators on a moving belt [56, 68, 89, 96, 118, 134] and harmonically
forced oscillators [51, 82, 83, 120, 136, 142]. Den Hartog [51], one of the pioneers in the

3
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4 CHAPTER 2. HARMONICALLY EXCITED DRY FRICTION OSCILLATOR

field of the theory of vibrations, obtained the exact, non-sticking solution of the steady
state motion of a harmonically excited single degree of freedom oscillator (see Fig. 2.2),
assuming that these solutions are symmetric. Hong and Liu [82, 83] and Pratt and Williams

Figure 2.2: Harmonically excited frictional oscillator

[136] extended Den Hartog’s work by the numerical examination of solutions which have
multiple sticking segments during a period. Shaw [142] made a further big leap towards the
understanding of frictional systems by considering different static and kinetic coefficients
of friction and complementing the previous studies with a linear stability analysis. Similar
results were published by Natsiavas [119] and Deimling [49] – the latter study is based on
the theory of differential inclusions (set-valued differential equations). As the details of the
so-called Filippov theory [7, 12, 65] had been elaborated and became widely known among
the researchers, several other papers were devoted to the analysis of dry-friction systems,
e.g., [101, 102]. Note, that the Filippov theory has several other areas of application, too,
e.g., in power electronics and control theory [100, 163].

In the present chapter, special responses of the harmonically excited block-spring system
shown in Fig. 2.2 are analysed. The equation of motion of this system assumes the form

mz′′ + cz′ + kz = F0 cos(ω0τ)− µmg f(z′), (2.1)

where m is the mass of the block, k is the spring stiffness, c is the coefficient of viscous
damping, F0 is the force amplitude, and ω0 is the angular frequency of excitation. ()′ denotes
the derivative d/dτ with respect to time τ . Coordinate z is measured from the untensioned
state of the spring and the friction characteristic is described by the function

f(z′) =


1 if z′ > 0

[−µ0/µ, µ0/µ] if z′ = 0
−1 if z′ < 0

, (2.2)

where µ and µ0 denote the kinetic and static coefficient of friction, respectively. Mechanically,
Eq. (2.2) is interpreted as follows: if the velocity is non-zero (i.e., the body slips), the kinetic
friction force always opposes the velocity. Thus, different differential equations describe the
motion at positive and negative velocities. This is why the zero-velocity subset of the phase
space is called switching manifold.

To make the treatise simpler, one can rescale time and displacement as t = τ
√

k/m,
x = zk/F0 [142] and introduce the parameter t0 such that time t is measured from one of
the turnaround instants – i.e., when the trajectory crosses the switching manifold [27]:

ẍ+ 2 α ẋ+ x = cos(Ω(t+ t0))− S f(ẋ), (2.3)

where (̇) denotes d/dt, α = c/(2
√
km), Ω = ω0

√
m/k, S = µmg/F0, and f(ẋ) ≡ f(z′), with

S0 = µ0mg/F0 > S. Since (2.3) is non-autonomous, its phase space is 3-dimensional with
state variables x, v ≡ ẋ and t.
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2.1. Introduction and Literature Review 5

Function f(ẋ) is meant to take (mathematically) indetermined values at zero – this
corresponds to the sticking phase, when the friction force adjusts itself to make equilibrium
with other external forces acting on the body. The transition from stick to slip is allowed
only if the magnitude of external forces reaches the maximal static friction force µ0N , while
the slip to stick transition can happen at any value of the friction force in the interval
[−µ0N,µ0N ]. The phase space domain where the oscillator sticks to the ground is referred
to as sliding manifold in mathematical terms. In Fig. 2.3, the blue, dotted area shows this
region. One can see in the lower subfigure that the green sticking segments of the numerically
determined trajectory indeed seem to slide on the v = 0 plane. However, engineers prefer
to focus on the physical properties of the motion. Consequently, we drop the mathematical
term of sliding manifold and refer to this region as sticking domain or sticking region.

Using the introduced notations, the condition of sticking can be formulated as follows:

|x− cos(Ω(t+ t0))| < S0 and ẋ = 0. (2.4)

It can be seen from this inequality, that the width of the sticking region is 2S0 everywhere
along the t axis, and the largest coordinate x, where sticking may occur equals 1 + S0. This
property is illustrated in Fig. 2.3.

x
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260
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1
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x

t
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1
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Figure 2.3: Numerically obtained solutions (red and green) and the sticking region (blue).
Upper panel: S = S0 = 0.15, Ω = 0.45. Lower panel: S = S0 = 0.9, Ω = 0.5.

Filippov [65] assumed that different vector fields govern the dynamics on opposite sides
of a switching manifold (the v = 0 plane in our case), and the convex combination of
these vector fields describes the behaviour of the oscillator in the sticking domain (sliding
manifold in mathematical terms). Unfortunately, the Filippov theory is difficult to apply in
cases when the static and kinetic coefficients of friction are different. As it was shown in
[109], this friction model cannot be treated as a differential inclusion, because this approach
would lead to the non-uniqueness of solutions. Thus, although the Filippov theory provides
an elegant framework for the analysis of non-smooth systems, we cannot rely on its results
if the friction coefficients are different.
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6 CHAPTER 2. HARMONICALLY EXCITED DRY FRICTION OSCILLATOR

It was shown in [49] that an additional positive viscous damping would result in a single
globally stable 2π/Ω-periodic solution, provided that the two friction coefficients are equal.
As follows, we focus on the case when the viscous damping is negligible, i.e., α = 0.

By exploiting the piecewise linear nature of Eq. (2.3), explicit solutions can be found
between the successive stops [27],[142]. If the velocity of the block is negative, the solution
assumes the form

x−(t) = A− cos(t) +B− sin(t) + L cos(Ωt) +K sin(Ωt) + S, (2.5)

while in case of positive velocity

x+(t) = A+ cos(t) +B+ sin(t) + L cos(Ωt) +K sin(Ωt)− S. (2.6)

The constants K and L can be expressed as

K =
sin(Ωt0)

Ω2 − 1
and L = −cos(Ωt0)

Ω2 − 1
. (2.7)

If the initial conditions are given, A− and B−, or A+ and B+ can be determined. For
example, if the initial phase t0 is chosen such that t = 0 corresponds to a turnaround
moment – when the initial displacement (and the amplitude) is x0, the velocity is zero and
the acceleration is negative – we obtain

x−(0) = A− cos(0) +B− sin(0) + L cos(Ω · 0) +K sin(Ω · 0) + S = x0, (2.8)
ẋ−(0) = −A− sin(0) +B− cos(0)− LΩ sin(Ω · 0) +KΩcos(Ω · 0) = 0. (2.9)

Thus,

A− = x0 − S − L = x0 − S +
cos(Ωt0)

Ω2 − 1
, and (2.10)

B− = −KΩ = −Ω sin(Ωt0)

Ω2 − 1
. (2.11)

Piecing together the solutions (2.5) and (2.6) provides a general solution. Unfortunately,
this matching cannot be done analytically in the general case, since the next turnaround
time t = θ1 can be determined using the following transcendental equation only:

ẋ−(θ1) = −A− sin(θ1) +B− cos(θ1)− LΩ sin(Ωθ1) +KΩcos(Ωθ1) = 0. (2.12)

There is still a possibility to find solutions analytically: by searching for specific solutions,
based on pre-defined requirements. In the aforementioned papers [51, 83, 142], the authors
exploited the assumption that the periodic solutions are necessarily symmetric both in time
and displacement. Our first goal is the revision of this symmetry assumption. As it will be
demonstrated in the subsequent sections, it is possible to find asymmetric periodic solutions
analytically.

In Section 2.2, we search for periodic, non-sticking solutions, using as few special assump-
tions about these solutions as possible [28]. The presented calculation leads to the same
results as it was published in [51] and [142], but the derivation is different since it focuses
on the conditions of symmetry. The validity of solutions is discussed in Section 2.2.2, that
is an extension of the similar results from [142]. The stability analysis of linearly marginally
stable solutions found in [142] is also extended by a third-order calculation, following [29].

Based on the aforementioned results, Section 2.3 is devoted to the formulation and anal-
ysis of asymmetric solutions [29]. Although the found special cycles exist in measure zero
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2.2. 2π/Ω-periodic, Non-sticking Symmetric Solutions 7

subsets of the parameter space, it is shown numerically in Section 2.4 that these special
parameter domains open up if the static coefficient of friction is larger than the kinetic one.

The transitions between the symmetric and asymmetric solutions are examined in Sec-
tions 2.5.1 and 2.5.2 using a customized continuation algorithm [31]. Certain gaps were
found in the determined one-parameter bifurcation diagrams where no stable periodic solu-
tions were detected. It is pointed out in Section 2.5.3 that chaotic solutions occur in the
corresponding parameter regions. Finally, Section 2.6 summarizes certain further results of
our joint work with Gábor Licskó [110].

2.2 2π/Ω-PERIODIC, NON-STICKING SYMMETRIC
SOLUTIONS

2.2.1 Analytical formulation of the solutions – non-resonant case

Suppose that the solutions are periodic with period T = 2π/Ω and one period of the motion
consists of two non-sticking segments that take the times θ1 and θ2, respectively, i.e., T =
θ1 + θ2. Without loss of generality, we assume that the velocity is negative in the first phase
and positive in the second one. According to these assumptions, ẋ−(θ1) = 0, and so we can
obtain another expression for A− besides (2.10):

A− = Ω
sin(Ω(t0 + θ1))− sin(Ωt0) cos(θ1)

sin(θ1)(Ω2 − 1)
. (2.13)

This expression is divergent if Ω→ 1 or sin(θ1)→ 0. The first case would correspond to the
resonance phenomenon in the frictionless system, but as it was proven by Den Hartog [51], a
sufficiently large friction coefficient S > π/4 leads to sticking solutions and finite amplitude
at Ω = 1. In the latter case (sin(θ1) = 0), an infinity of asymmetric solutions may appear,
as it will be shown in Section 2.3. Now we restrict ourselves to sin(θ1) ̸= 0 and Ω ̸= 1 – this
case will be referred to as non-resonant case [28].

If we substitute expressions (2.7), (2.11), and (2.13) into (2.5) and consider the time
instants t = 0 and t = θ1, we can formulate the initial position x0 and the displacement x1

at the next turnaround instant:

x0 =
Ω(sin(Ω(t0 + θ1))− sin(Ωt0) cos(θ1))− cos(Ωt0) sin(θ1)

sin(θ1)(Ω2 − 1)
+ S, (2.14)

x1 =
Ωsin(Ω(t0 + θ1)) cos(θ1)− cos(Ω(t0 + θ1)) sin(θ1)− Ω sin(Ωt0)

sin(θ1)(Ω2 − 1)
+ S. (2.15)

If the solution is symmetric, x1 = −x0. Thus, comparison of (2.14) and (2.15) leads to
the following condition of symmetry:

sin(θ1) (2S(Ω
2 − 1)− cos(Ω(t0 + θ1))− cos(Ωt0))

+ Ω (1 + cos(θ1)) (sin(Ω(t0 + θ1))− sin(Ωt0)) = 0. (2.16)

Since x+(θ1) = x1 and ẋ+(θ1) = 0, the coefficients A+ and B+ in (2.6) can also be
expressed:

A+ = 2S cos(θ1) + Ω
sin(Ω(t0 + θ1))− sin(Ωt0) cos(θ1)

sin(θ1)(Ω2 − 1)
, (2.17)

B+ = 2S sin(θ1)− Ω
sin(Ωt0)

(Ω2 − 1)
. (2.18)
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8 CHAPTER 2. HARMONICALLY EXCITED DRY FRICTION OSCILLATOR

According to our assumptions, one cycle of the periodic motion finishes at t = θ1 + θ2.
Consequently, x+(θ1 + θ2) = x0 and ẋ+(θ1 + θ2) = 0. Exploiting that θ1 + θ2 = 2π/Ω and
solving these equations for the friction parameter S, one obtains two expressions that are
necessarily equal. The comparison of these expressions leads to the following equation:(

sin(Ω(t0 + θ1)) + sin(Ωt0)
)(

sin(θ1) + sin(θ2)− sin(2π/Ω)
)
= 0. (2.19)

Thus, using that θ1 + θ2 = 2π/Ω and sin(θ1) ̸= 0, we obtain

sin(Ω(t0 + θ1)) = − sin(Ωt0), (2.20)

which implies
θ1 =

π

Ω
, and consequently θ2 =

π

Ω
. (2.21)

Solving ẋ+(θ1 + θ2) = 0 for sin(Ωt0) leads to

sin(Ωt0) =
S(Ω2 − 1) sin(π/Ω)

Ω (cos(π/Ω) + 1)
. (2.22)

Let us return to the examination of the condition of symmetry. Substituting θ1 = π/Ω
into (2.16) and solving the equation for sin(Ωt0), the result is the same as (2.22). Thus, the
quite trivial assumption about the period T = 2π/Ω implies that the non-sticking solutions
are symmetric, i.e.,

x1 = −x0, (2.23)

and the two phases of the cycles are of equal length – provided that Ω ̸= 1 and sin(θ1) ̸= 0.
This symmetry of solutions was usually assumed to fulfil in the literature [51, 83, 142] but
has not been proven until our proof was published in [28].

A simple expression can be obtained for x0 – the amplitude of the vibration– in the
following way. Using (2.22) and ẋ−(π/Ω) = 0, one obtains

cos(Ωt0) = x0(1− Ω2). (2.24)

Exploiting that cos2(Ωt0) + sin2(Ωt0) = 1, the amplitude x0 of the solution can be ex-
pressed as

x0(Ω, S) =

√
1

(Ω2 − 1)2
− S2 sin2(π/Ω)

Ω2 (cos(π/Ω) + 1)2
, (2.25)

that agrees with the corresponding formulas of Den Hartog [51] and Shaw [142]. This result,
together with (2.10) and (2.24) implies A− = −S.

The diagram described by formula (2.25) is similar to the frequency response diagrams
of undamped systems – especially at high values of Ω –, as illustrated in Fig. 2.4. Here the
amplitude values were calculated by numerical simulation, as well (see Section 2.4). However,
as we will see later, interesting dynamic phenomena can be expected at low values of the
dimensionless excitation frequency Ω (see Fig. 2.6).

2.2.2 Validity of results

We supposed that the periodic motion consists of two non-sticking phases and the sign of
the velocity is constant during each phase. To obtain non-sticking motions,

|x0 − cos(Ωt0)| ≥ S0 (2.26)
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Figure 2.4: Amplitude-frequency diagram for S = S0 = 0.5. N (orange columns) denotes
the number of sticking segments per period. Diamonds are the results of numerical simu-
lation, while the solid line represents the analytical expression of x0.

must be fulfilled. Using (2.24), a remarkably simple slipping (or non-sticking) condition was
given by Shaw [142]:

x0(Ω, S) ≥
S0

Ω2
. (2.27)

To check that the velocity changes sign twice during a period, we expressed the velocity
in the following form:

ẋ−(t) = S sin(t)− x0Ω sin(Ωt) +
S sin(π/Ω)(cos(Ωt)− cos(t))

1 + cos(π/Ω)
≤ 0, t ∈ [0, π/Ω]. (2.28)

Thus, the condition of two turnarounds per cycle can be formulated as

x0(Ω, S) ≥ S
sin(t) + sin(π/Ω) cos(Ωt) + sin(t− π/Ω)

Ω sin(Ωt)(1 + cos(π/Ω))
≡ SH(t,Ω), t ∈ [0, π/Ω]. (2.29)

Note, that this condition was not examined in [142]. Although the check of two turnarounds
can be found in Den Hartog’s paper [51], the performed study was restricted to the case of
equal static and dynamic coefficients of friction. It is straightforward to show the following
properties of the function H(t,Ω) that is defined by (2.29):

lim
t→0

H(t,Ω) =
1

Ω2
, (2.30)

H(t,Ω) = −H(π/Ω− t,Ω), (2.31)

lim
t→0

Ḣ(t, 1/(2n)) ≡ lim
t→0

∂H(t, 1/(2n))

∂t
= 0, and (2.32)

lim
Ω→1/(2n+1)±

(
lim
t→0

Ḣ(t,Ω)
)
= ±∞, n = 1, 2, . . . . (2.33)

According to these equations and numerical evidence, we can conclude that

• If Ω ≥ 1/2, H takes its maximum at t = 0 (Fig. 2.5/a). Thus,

max
t

H(t,Ω) ≡ Hmax = 1/Ω2 if Ω ≥ 1/2. (2.34)
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• As Ω is decreased below 1/2, the slope of H increases at t = 0. Since H(π/(2Ω),Ω) = 0
(see (2.31)), a local maximum appears in t ∈ [0, π/(2Ω)] (Fig. 2.5/b). Consequently,

Hmax ≥ 1/Ω2 if Ω < 1/2. (2.35)

• limΩ→1/3+ Hmax = ∞. The slope of H at t = 0 changes from ∞ to −∞ at Ω = 1/3.
Thus, the point of maximum jumps from [0, π/(2Ω)] to [π/(2Ω), π/Ω] (Fig. 2.5/c).

• The further decrease of Ω implies that the local maximum decreases as well, until Ω
reaches 1/4, where a new maximum Hmax = 1/Ω2 appears at t = 0 (Fig. 2.5/d).

As the excitation frequency Ω is decreased, further local maxima are born. A more detailed
investigation of function H(t,Ω) shows that its temporal global maximum is either at t = 0
or at the first local maximum (i.e., where t is the smallest), independently on the value of Ω.
Thus, a similar scenario describes the behaviour of H(t,Ω) between Ω = 1/4 and Ω = 1/6,
and generally, between Ω = 1/(2n) and Ω = 1/(2n + 2), (n = 1, 2, . . . ), too. Since some
maxima of H(t,Ω) are known to be at t = 0, Ω = 1/(2n), the other maxima, for Ω ̸= 1/(2n)
can be found quite easily using a continuation method. This is how Fig. 2.6 was generated.

Figure 2.5: Behaviour of function H(t,Ω)

It follows from the previous results [28] that

• if Ω ≥ 1/2, then H(t,Ω) takes its temporal maximum Hmax = 1/Ω2 at t = 0 (see
Fig. 2.5/a). Thus, (2.29) – the condition of two turnarounds – implies x0 ≥ S/Ω2.
Consequently, (2.29) is equivalent to (2.27) in this domain if S0 = S. Otherwise – if
S0 > S – the condition of two turnarounds has no importance: the slipping condition
(2.27) fails first in this domain.

• Consider now the parameter domain Ω ∈ [0, 0.5]. According to (2.35), SHmax ≥ S/Ω2

is fulfilled here. Thus, if S = S0 the condition of two turnarounds (2.29) determines
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2.2. 2π/Ω-periodic, Non-sticking Symmetric Solutions 11

whether the examined special solution exists or not. If S0 > S, both conditions must
be checked.

Table 2.1 summarizes the conditions of non-sticking solutions in different parameter domains.
If one of the conditions was proved to be stronger, the other one is not shown.

Table 2.1: Conditions of non-sticking solutions

Ω ≥ 0.5 Ω < 0.5

S = S0 x0 ≥ S
Ω2 x0 ≥ SHmax

S < S0 x0 ≥ S0

Ω2 x0 ≥ S0

Ω2 & x0 ≥ SHmax

Besides the cases shown in the table, there is one more relation that is worth to consider.
According to (2.25), x0 is independent on S at the frequencies Ω = 1/(2n), n = 1, 2, . . . ,
and assumes the value xn

0 ≡ x0(1/(2n), S) = (1 − 1/(4n2))−1. Since at the intermediate
frequencies x0 is smaller than 1/(1 − Ω2), it assumes its maximal value in Ω ∈ [0, 0.5] at
Ω = 0.5, while S0/Ω

2 has a minimum in this interval. Consequently, if x0(Ω, S) < S0/Ω
2

at Ω = 0.5, the condition of sliding fails for the whole interval Ω ∈ [0, 0.5]. Substituting
x0(0.5, S) = 4/3 into the condition of slipping (2.27) and solving for S0, one obtains S0 = 1/3.
Thus, sticking occurs in Ω ∈ [0, 0.5] if S0 > 1/3. Generalizing this result, we obtain the
following necessary condition of having non-sticking symmetric solutions in Ω ∈ [0, 1/(2n)]:

S0 ≤
1

4n2 − 1
. (2.36)

Fig. 2.6 illustrates the amplitude-frequency diagram (2.25), the limit curve of slipping
S0/Ω

2 and the limit curve of two turnarounds per period SHmax at S = S0 = 0.02 and
S = S0 = 0.3. As it can be seen, the conditions of validity can be approximated fairly well
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Figure 2.6: Amplitude-frequency diagram at S = S0 = 0.02 (left) and S = S0 = 0.3
(right); x0 was calculated according to (2.25). The orange-coloured columns show the
number of sticking segments per excitation period/10.

by x0 ≥ 1+S0 at these values of the friction coefficient. The analytically derived non-sticking
solutions were accurately found by numerical integration of the equation of motion, as well.
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The number of sticking segments per excitation period is also depicted in the figure, showing
the parameter domains where (2.25) is not valid.

There are several possible methods in the literature that can be used to check the stability
properties of the found periodic solutions. We applied two of them: an elegant, modern
approach is based on the Filippov theory and the introduction of so-called saltation matrices
[12, 65, 109]. (Appendix A.1), while the method developed by Shaw [142] (Appendix A.2)
is more conventional and requires slightly longer calculations.

Fig. 2.7 illustrates the response amplitude and the leading eigenvalue max |λi|, i = 1, 2
characterising the variational system of the non-sticking symmetric solution at S = 0.05.
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Figure 2.7: Theoretical amplitude x0 and stability of the symmetric non-sticking solution
at S = 0.05.

It can be seen in the figure that the periodic motion with amplitude (2.25) is linearly
asymptotically stable i.e., max |λi| < 1 in broad ranges of the excitation frequency. Moreover,
expression (2.25) assumes imaginary values close to the frequencies Ω = 1/(2n+1), implying
that the symmetric non-sticking solution does not exist in these parameter domains.

The results also show that the solution is only marginally stable (i.e., λ1 = 1 and 0 <
λ2 < 1) at Ω = 1, 1/2, 1/4, . . . . Thus, to clarify the stability properties of these special
cycles, we extended Shaw’s results in our paper [29] by a third-order nonlinear stability
analysis, that is described in details in Appendix A.3. The following normal form map was
obtained, assuming non-sticking solutions:

yi+1 = yi, (2.37)
τi+1 = λ2τi +Dy2i τi. (2.38)

This map also indicates marginal stability at Ω = 1/(2n), provided that the perturbation
does not lead to the appearance of sticking solutions.

2.3 ASYMMETRIC SOLUTIONS AT RESONANT
FREQUENCIES

2.3.1 Formulation of solutions

The main results of Section 2.2 – Eqs. (2.22) and (2.25) – are valid only for sin(θ1) ̸= 0 and
Ω ̸= 1, because (2.13) becomes divergent in the opposite case. In the present section, we
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search for the possible 2π/Ω-periodic non-sticking solutions in case of sin(θ1) = 0. Although
this condition is fulfilled only in a measure zero subset of the parameter space, we showed in
[29] that the frequency domain of the found special resonant solutions broadens if the static
and kinetic coefficients of friction are different. Just as in Section 2.2, we assume that there
are only two turnarounds per period, and the durations of the two phases of the motion are
θ1 and θ2, respectively. Condition sin(θ1) = 0 implies

θ1 = 2nπ and cos(θ1) = 1, where n = 1, 2, . . . , or (2.39)
θ1 = (2n+ 1)π and cos(θ1) = −1, n = 0, 1, 2, . . . . (2.40)

The appearance of sin(θ1) in the denominator can be avoided if (2.7) and (2.10) are
substituted into (2.12), and B− is expressed instead of A−:

B− =
cos(Ωt0) sin(θ1)− Ω sin(Ω(t0 + θ1))

cos(θ1)(Ω2 − 1)
+ (x0 − S) tan(θ1). (2.41)

In the case of sin(θ1) = 0, this expression reduces to

B− =
−Ω sin(Ω(t0 + θ1))

cos(θ1)(Ω2 − 1)
, (2.42)

which, clearly must be equal to (2.11). Comparing the two equations, one faces two cases:

• sin(Ωt0) = sin(Ω(t0+ θ1)) if cos(θ1) = 1 and consequently θ1 = 2nπ, n = 1, 2, . . . . This
case can be divided into two sub-cases:

a) θ1 = 2π/Ω and t0 ̸= 0. This case will be disregarded since we assume that the time
period is θ1 + θ2 = 2π/Ω.

b) θ1 = π/Ω and t0 = 0. Since θ1 = 2nπ,

Ω = 1/(2n). (2.43)

• sin(Ωt0) = − sin(Ω(t0 + θ1)) if cos(θ1) = −1 (and θ1 = (2n + 1)π)). The solution of
this equation is θ1 = π/Ω. Consequently

Ω = 1/(2n+ 1), n = 0, 1, 2, . . . . (2.44)

Thus, we can conclude that sin(θ1) = 0 implies Ω = 1/m and θ1 = mπ, m = 1, 2, . . . . Note,
that since the time period is T = 2π/Ω = 2mπ, the duration of the two segments of the
motion is the same:

θ2 = T − θ1 = mπ = θ1. (2.45)

Substituting (2.7), (2.10), (2.42) and t = θ1 into (2.5) gives the displacement at the
turnaround instant:

x1 =
cos(Ωt0)− Ω sin(θ1) sin(Ω(t0 + θ1))− cos(θ1) cos(Ω(t0 + θ1))

cos(θ1)(Ω2 − 1)
+

x0 − S

cos(θ1)
+ S. (2.46)

Exploiting that x+(θ1) = x1 and ẋ+(θ1) = 0, the coefficients A+ and B+ can be expressed
as

A+ = x0 − S + 2S cos(θ1) +
cos(Ωt0)

Ω2 − 1
, (2.47)

B+ =
cos(Ωt0) sin(θ1)− Ω sin(Ω(t0 + θ1))

cos(θ1)(Ω2 − 1)
+

(x0 − S) sin(θ1)

cos(θ1)
+ 2S sin(θ1). (2.48)
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Since one cycle of the periodic motion finishes at t = θ1 + θ2 ≡ T ,

x+(T ) = x0, and (2.49)
ẋ+(T ) = 0. (2.50)

Substituting (2.47) and (2.48) into (2.49) and (2.50) and exploiting that θ1 = θ2 = mπ and
Ω = 1/m, we obtain the following equations:

x+(T )− x0 = 2S
(
(−1)2m − (−1)m

)
= 0, (2.51)

ẋ+(T )

(
1

m
−m

)
= sin(t0/m) ((−1)m + 1) = 0. (2.52)

Eq. (2.51) can be satisfied only if m is even: m = 2n, n ∈ Z+. Thus, (2.52) implies that
sin(t0/m) = 0. Consequently, there can be two different cases:

t0 = 0 or t0 = mπ. (2.53)

Coefficients B−, B+, and K disappear in both cases. Using (2.10), (2.47) and (2.7), one
obtains

A− = x0 − S ± 1

Ω2 − 1
, (2.54)

A+ = x0 + S ± 1

Ω2 − 1
, (2.55)

L = ± 1

1− Ω2
, (2.56)

where the + and − signs correspond to t0 = 0 and t0 = mπ, respectively. As it will be shown
in Section 2.3.2, t0 = mπ leads to invalid solutions. Thus, here we present the displacements
and velocities for the t0 = 0 case, only:

x−(t) =

(
x0 − S +

1

Ω2 − 1

)
cos(t)− 1

Ω2 − 1
cos(Ωt) + S, (2.57)

x+(t) =

(
x0 + S +

1

Ω2 − 1

)
cos(t)− 1

Ω2 − 1
cos(Ωt)− S, (2.58)

ẋ−(t) = −
(
x0 − S +

1

Ω2 − 1

)
sin(t) +

Ω

Ω2 − 1
sin(Ωt), and (2.59)

ẋ+(t) = −
(
x0 + S +

1

Ω2 − 1

)
sin(t) +

Ω

Ω2 − 1
sin(Ωt). (2.60)

Fig. 2.9 shows a solution of this kind. It can be checked easily that

x−(0) = x0,

ẋ−(0) = 0,

x−(2nπ) = x+(2nπ) = x0 −
8n2

4n2 − 1
= x1, (2.61)

ẋ−(2nπ) = ẋ+(2nπ) = ẋ+(4nπ) = 0, and
x+(4nπ) = x0,

where n = 1, 2, 3, . . . . Note that these results are parametrized by the amplitude x0, which
means that a continuum of asymmetric solutions arise at these special frequencies.
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2.3.2 Validity of results

According to (2.51), we found that Ω = 1/(2n), n = 1, 2, . . . is necessary for the validity of
Eqs. (2.57)-(2.60). In addition to that, the condition of two turnarounds per cycle and the
condition of no sticking will also be checked in the present section [29].

The case t0 = 0

The condition of two turnarounds can be formulated as ẋ−(t) ≤ 0, t ∈ [0, 2nπ] and ẋ+(t) ≥ 0,
t ∈ [2nπ, 4nπ]. Using (2.59), one obtains that ẋ−(t) ≤ 0 can be expressed as(

1 + (S − x0)(1− Ω2)
)
sin(t) ≤ Ω sin(Ωt), t ∈ [0, π/Ω]. (2.62)

Taking into account that Ω = 1/(2n), this inequality can be transformed into

2n
(
1 + (S − x0)(1− 1/(4n2))

)
≤ sin(t/2n)

sin(t)
, if sin(t) ≥ 0, or (2.63)

2n
(
1 + (S − x0)(1− 1/(4n2))

)
≥ sin(t/2n)

sin(t)
, if sin(t) ≤ 0. (2.64)

Consider inequality (2.63) first. sin(t) ≥ 0 is fulfilled if t ∈ [0 + 2kπ, (2k + 1)π], while
t ∈ [0, π/Ω] ≡ [0, 2nπ] implies that sin(t/2n) is non-negative. To obtain a condition for x0,
the minimum of sin(t/2n)/sin(t) must be determined.

To make clear the ideas behind our calculation, we illustrate them via an example at
n = 3. In Fig. 2.8, the graph of sin(t/6)/ sin(t) can be seen, with the graph of sin(t/6).

1.5

1

0.5

0

-0.5

-1

-1.5
0

Figure 2.8: Illustration for the calculation (n = 3).

We divided the domain of definition into twelve intervals. The function sin(t) takes
positive and negative values in these intervals, alternately – it is shown by + or − signs. As
it can be seen in the figure, the function sin(t/6)/ sin(t) assumes positive values if sin(t) ≥ 0
and t ∈ [0, 2nπ], and its minimum is at t = 0. According to L’Hospital’s rule,

lim
t→0

sin(t/6)

sin(t)
=

1

6
. (2.65)

Similarly, sin(t/(2n))/ sin(t) takes its positive minimum also at t = 0, and

lim
t→0

sin(t/(2n))

sin(t)
=

1

2n
. (2.66)
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Thus, Eq. (2.63) is valid if

2n
(
1 + (S − x0)(1− 1/(4n2))

)
≤ 1

2n
, (2.67)

which implies
x0 ≥ 1 + S. (2.68)

Note, that x0 ≡ x(0) = 1 + S is exactly on the boundary of the sticking region if S = S0

and t0 = 0 (see Fig. 2.3).
The analysis of formula (2.64) is similar, but now the maximum of sin(t/6)/ sin(t) must

be found. As it can be seen in Fig. 2.8, sin(t) ≤ 0 implies that sin(t/6)/ sin(t) is negative,
and its maximum is at t = 6π, where the function takes the value −1/6. In the general case
it leads to

2n
(
1 + (S − x0)(1− 1/(4n2))

)
≥ − 1

2n
, (2.69)

which implies

x0 ≤
4n2 + 1

4n2 − 1
+ S. (2.70)

Using (2.60), the condition ẋ+ ≥ 0 assumes the following form:(
1− (x0 + S)(1− Ω2)

)
sin(t) ≥ Ω sin(Ωt), t ∈ [π/Ω, 2π/Ω]. (2.71)

Taking into account that Ω = 1/(2n), this inequality can be transformed into

2n
(
1− (x0 + S)(1− 1/(4n2))

)
≥ sin(t/2n)

sin(t)
, if sin(t) ≥ 0, (2.72)

or
2n
(
1− (x0 + S)(1− 1/(4n2))

)
≤ sin(t/2n)

sin(t)
, if sin(t) ≤ 0, (2.73)

where t ∈ [2nπ, 4nπ]. Here sin(t/2n) ≤ 0, thus, sin(t) ≥ 0 implies that sin(t/2n)/ sin(t) is
non-positive. In case of (2.72), the maximum of sin(t/2n)/ sin(t) must be found. As it is
illustrated in Fig. 2.8, this extremum value is −1/(2n). Thus, (2.72) implies

x0 ≤
4n2 + 1

4n2 − 1
− S. (2.74)

Similarly, inequality (2.73) leads to the search for the positive minimum of sin(t/2n)/sin(t)
in [2nπ, 4nπ]. This minimum value is 1/(2n), thus

x0 ≥ 1− S. (2.75)

Comparing (2.68), (2.70), (2.74), and (2.75), we obtain

1 + S ≤ x0 ≤
4n2 + 1

4n2 − 1
− S. (2.76)

According to (2.61), x1 = x0 − 8n2/(4n2 − 1). Consequently,

minx1 = minx0 −
8n2

4n2 − 1
= 1 + S − 8n2

4n2 − 1
=

1 + 4n2

1− 4n2
+ S = −maxx0, (2.77)

maxx1 = maxx0 −
8n2

4n2 − 1
=

4n2 + 1

4n2 − 1
− S − 8n2

4n2 − 1
= −1− S = −minx0. (2.78)

               csernak.gabor_124_23



2.3. Asymmetric Solutions at Resonant Frequencies 17

The condition of symmetric solutions is the following:

−x0 = x0 −
8n2

4n2 − 1
⇒ x0 =

4n2

4n2 − 1
=

1

1− Ω2
. (2.79)

Of course, the same amplitude can be obtained using (2.25). Thus, the symmetric solution
known from the literature (e.g., [51, 142]) is among the uncountable asymmetric solutions
(2.57), (2.58).

Finally, let us determine the validity of (2.76):

1 + S ≤ 4n2 + 1

4n2 − 1
− S ⇒ S ≤ 1

4n2 − 1
. (2.80)

The condition of sticking was not examined yet. If S = S0 and t0 = 0, the extremal value
of x0 (x0 = 1+S) is at the stick-slip boundary (see Fig. 2.3), thus, the condition of slipping
and the condition of having two turnarounds per period are equivalent. If S0 > S,

S0 ≤
1

4n2 − 1
(2.81)

must be fulfilled that agrees with (2.36) that was derived for the symmetric solutions. The
possible values of x0 are

1 + S0 ≤ x0 ≤
4n2 + 1

4n2 − 1
− S. (2.82)

Note, that only the lower bound changes with respect to (2.76), since this is influenced by
the slipping condition.

Thus, we can conclude that a one-parameter family of solutions exists if t0 = 0 with the
range given by Eq. (2.82), provided that condition (2.81) is satisfied.

For example, S0 < 1/3 must be fulfilled to have non-sticking (symmetric or asymmetric)
solutions at Ω = 1/2, and S0 must be less than 1/15 to find such solutions at Ω = 1/4.

The case t0 = mπ

It is straightforward to show that t0 = mπ (where m > 0 is an even integer number) implies
that the less-than and greater-than signs flip in Eqs. (2.63), (2.64), (2.72) and (2.73). Thus,
neither inequalities can be fulfilled in this case. Consequently, the resonant solutions (2.57)-
(2.60) exist only at t0 = 0.

2.3.3 Stability properties

The stability analysis discussed in Section 2.2.2 can be applied in the case of asymmetric
solutions, too. As we have shown in [29] and in Appendix A.3, the two equations of the
obtained normal form maps assume the form

yi+1 = yi (2.83)

and

τi+1 = λ2τi + Cyiτi or τi+1 = Cyiτi + Eτ 3i or τi+1 = Cyiτi + (E − AC)τ 3i , (2.84)

depending on the type of solutions (see (A.60)-(A.63)). These results indicate marginal
stability up to the third order terms if the perturbations are restricted to cases when no
sticking solutions appear. Small perturbations can lead to sticking solutions in the extremal
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Figure 2.9: An asymmetric solution with the sticking domain at S = 0.3 and Ω = 0.5.
The small sticking segments are encircled.

case (x0 = 1 + S) only. However, during the numerical simulations, the trajectories always
converged to the extremal asymmetric solution, with a single short sticking segment per
period. Fig. 2.9 shows such an asymmetric solution at Ω = 0.5.

To gain information about the effect of perturbations that push the extremal solution into
the sticking domain, we consider the case when the initial displacement is x̃0 = 1 + S − ε0,
as shown in Fig. 2.10. The new perturbed solution (dashed lines in the figure) begins with
a sticking segment and leaves the sticking domain with zero velocity at x̃0 and t = ts. Since

ε0ε1

ts

x0~

t1-2π/Ω

x1~

x

t

x

t

εi

εi+1
ε i+1

ε i
=

-1.5

-1.0

-0.5

0.5

1.0

-10 -5 5 10
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0.04
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0.1

Figure 2.10: An extremal asymmetric solution at S = 0.1, Ω = 0.5, a possible perturba-
tion, and the graph of the map describing the evolution of the perturbation.

t0 = 0 in the case of the non-perturbed asymmetric solutions, the boundary of the sticking
region can be given approximately as

xb(t) ≡ S + cos(Ωt) ≈ 1 + S − Ω2t2

2
. (2.85)

Exploiting that xb(ts) = x̃0, the time instant ts can be expressed by ε0. Now that the initial
conditions are known, one can determine the solution of the equation of motion (2.3) for
negative velocities, obtaining the expressions of x̃−(t) and ˙̃x−(t). By expanding ˙̃x−(t) into
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Taylor series about t = π/Ω, one can approximately determine the turnaround time tt and
turnaround displacement x̃t corresponding to ˙̃x−(tt) = 0. The solution of the equation of
motion for positive velocities leads to the expressions of x̃+(t) and ˙̃x+(t). Just as before,
the Taylor expansion of ˙̃x+(t) about t = 2π/Ω makes the determination of the next sticking
instant t1 and displacement x̃1 possible1. The difference between 1 + S and x̃1 defines the
value of ε1 as shown in Fig. 2.10, where the end of the obtained solution curve is depicted
such that it is shifted back in time by 2π/Ω. Using the described procedure, a discrete map
P : εi → εi+1 can be defined. We used a second order approximation, i.e., the cubic and
higher order terms of εi and t had been discarded in each step. The graph of the resulting
map is also shown in Fig. 2.10. The results show that the map assumes the following form,
independently on the value of the friction parameter: P : εi+1 = εi − 2ε2i . Thus, we can
conclude that the examined solution – that just touches the sticking region – is stable against
the considered perturbation type, in accordance with the aforementioned numerical results.

2.4 NUMERICS AND STICKING SOLUTIONS

Although non-sticking solutions can be found and analysed analytically, this does not seem
to be possible in case of sticking solutions, because of the appearance of transcendental
equations. Thus, to explore the possible solutions, we implemented an algorithm in C++,
which solves Eq. (2.3) numerically. The necessary duration of simulation can be estimated
using the stability eigenvalues (characteristic multipliers) λ1,2 (see Section 2.2.2) of the sym-
metric non-sticking solutions. As it is shown in Fig. 2.11, the decay of the relative error of
the amplitude is not uniform, but the graph has an envelope curve, whose slope equals the
logarithm of the modulus of the leading characteristic multiplier λmax. The characteristic
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Figure 2.11: Convergence to the symmetric solution at S = 0.1 and Ω = 0.98

multipliers are complex numbers in broad parameter domains. It means that – besides the
primary angular frequency Ω – a secondary frequency appears in the transients that is re-
lated to the argument φ of the characteristic multipliers: Ω2 = Im(log(λ1))/T = φ/T , where
T = 2π/Ω is the excitation period. The observed secondary period T2 of the transients is

T2 =
2π

Ω2

=
4π2

Ωφ
. (2.86)

1x̃1 is not to be confused with x1 in (2.61). The latter is the maximal displacement of the periodic cycle
in the negative direction, while x̃i, i = 1, 2, . . . denotes the subsequent positive displacements during the
transients of the perturbed solution.
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Note that – due to this phenomenon – the appropriate simulation time cannot be deter-
mined by measuring the difference between successive amplitudes.

In Fig. 2.12, the numerically determined frequency-amplitude curves and the number N
of sticking segments per period can be seen at four different values of the friction parameter
S = S0. At low values of S, sticking solutions appear only in the domain Ω ∈ [0, 1), and
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Figure 2.12: Frequency-response curves at some values of the friction parameter. (a)
S = 0.3, (b) S = 0.5, (c) S = 0.7, (d) S = 0.9. ♦ Numerically determined amplitude,

analytical result (Eq. (2.25)), number of sticking segments per period (divided
by 10 in case (d)).

the N(Ω) diagram is not monotone decreasing at very low values of the friction parameter
(see Fig. 2.12/a). As S is increased, the local maxima of the N(Ω) diagram disappear (Fig.
2.12/b). The further increase of S leads to the appearance of another sticking domain in
Ω ∈ (1,∞) (Fig. 2.12/c). Finally, these two domains of sticking solutions merge and the
amplitude assumes finite values at all values of Ω (Fig. 2.12/d).

The critical friction coefficient, where sticking solutions appear in Ω ∈ (1,∞), can be
estimated as follows [28]. At large values of Ω, we approximate sin(π/Ω) by π/Ω and
cos(π/Ω) by 1 in (2.25). Thus, (2.27) assumes the form

lim
Ω→∞

x0(Ω) = lim
Ω→∞

√
1

(Ω2 − 1)2
− S2π2

4Ω2
<

S0

Ω2
, that implies (2.87)

S >

(
S0

S
+

π2

4

)−1/2

. (2.88)

This result agrees with the calculations of Kowalczyk and Piiroinen [101] that were performed
by a continuation method for the case S0 = S.

To check the validity of (2.25), (2.27), and (2.29), we examined the frequency-amplitude
diagram at low values of the friction parameter. In Fig. 2.13, the amplitude of the symmetric
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solution (2.25), the stick-slip boundary (2.27), and the numerically estimated SHmax curves
are shown at S = S0 = 0.02, together with the numerically determined amplitude and the
number of sticking segments per excitation period.
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Figure 2.13: Amplitude-frequency diagram at S = S0 = 0.02; ♦ numerically deter-
mined amplitude; analytically determined amplitude (Eq. (2.25)). The number of
sticking segments is shown by orange columns.

As it can be seen in the figure, the numerically and analytically determined amplitude
curves exactly coincide in case of slipping motion, and the separation of these curves occurs
according to (2.27) and (2.29). The significance of (2.29) is clearly seen close to the values
Ω = 1/3, Ω = 1/5, etc., where the analytically calculated amplitude curves tend to zero,
while SHmax tends to infinity.

Note that there are two points that apparently do not fit into the series of the results at
Ω = 0.5 and Ω = 0.25. Only one sticking segment occurs at these parameters per period,
which means that the steady-state solutions are asymmetric, as it was predicted in Section
2.3. As Fig. 2.14 shows, the parameter domain of asymmetric solutions opens up if S0 > S.
This result indicates the possibility that asymmetric solutions can occur in real mechanical
systems of this kind. Indeed, the experimental investigation of a corresponding oscillator
(Marino and Cicirello, [112]) demonstrated the existence of asymmetric periodic cycles.

2.5 BIFURCATIONS AND CHAOS

2.5.1 Reformulation of the problem for the continuation method

In order to reveal the bifurcations leading to the emergence of asymmetric solutions among
the symmetric ones, the continuation method [2] was applied. The continuation method is
capable of the quick, reliable calculation of bifurcation diagrams. One of the most widely
used continuation software is AUTO [53]. Unfortunately, AUTO is not able to deal with non-
smooth systems. However, a recently implemented Matlab toolbox COCO (COntinuation
COre, [48]) provides the possibility for the analysis of these kinds of systems, too.

To be able to analyse a piecewise smooth system with COCO, one must have an initial
guess about the solution’s structure. It means that the temporal order of the subsequent
smooth segments in the periodic solution must be known, together with the switching con-
ditions – formulated as zeros of smooth functions. Physically, the oscillator can be in one
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Figure 2.14: Amplitude-frequency diagram at S = 0.2 and S0 = 0.24; ♦ numerically
determined amplitude; analytically determined amplitude (Eq. (2.25)). The number
of sticking segments is shown by orange columns.

of the following three states: sliding with positive speed, sliding with negative speed, or
sticking, as it is formulated by Eqs. (2.2) and (2.3).

As we saw in Section 2.1, the switching conditions between the sticking and sliding cases
are given by an equation and a non-smooth inequality:

ẋ ≡ v = 0 and |x− cos(Ωt)| < S0. (2.89)

Note that here we dropped parameter t0 since although it had been useful for the analytical
calculations, it is irrelevant if the solutions are sought numerically (cf. Eq. (2.4)). The
reformulation of these conditions as zeros of smooth functions is not a trivial task.

To solve this problem, we partitioned the three-dimensional (x, v, t) phase space into
domains in such a way that the sign change of a smooth event function (indicating that a
solution segment crosses a boundary) uniquely determines the type of the solution in the
next segment [31]. Taking this requirement into account the phase space was divided into
7 domains – 6 different sliding states and a sticking state – according to the values of v and
x. The corresponding domains are given in Table 2.2 and illustrated in Fig. 2.15. The

Table 2.2: The introduced phase space domains

Notation Condition 1 Condition 2

x+v+ x > cos(Ωt) + S0

v > 0x0v+ cos(Ωt)− S0 < x < cos(Ωt) + S0

x−v+ x < cos(Ωt)− S0

x+v− x > cos(Ωt) + S0

v < 0x0v− cos(Ωt)− S0 < x < cos(Ωt) + S0

x−v− x < cos(Ωt)− S0

x0v0 cos(Ωt)− S0 < x < cos(Ωt) + S0 v = 0
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Figure 2.15: Illustration of 6 sliding states and the sticking state, according to the values
of x, v and t (cf. Fig. 2.3).

domains are separated by three switching surfaces that are also depicted in Fig. 2.15. Two
of them separate the states with respect to the displacement x – these are the boundaries
F+ and F− of the sticking region, respectively. The third switching surface is the v = 0
plane. Thus, the corresponding event functions can be formulated as

• F+ : cos(Ωt) + S0 − x = 0,

• F− : cos(Ωt)− S0 − x = 0,

• v = 0.

If the actual state of the system is known, the triggering of an event function unam-
bigously indicates the next state that the system enters. For example, if the oscillator’s
state is x+v+ (see Table 2.2), two possible events are possible:

• F+ =⇒ x0v+,

• v = 0 =⇒ x+v−.

There are three possible switches from the state x0v+:

• F+ =⇒ x+v+,

• v = 0 =⇒ x0v0 (sticking),

• F− =⇒ x−v+.

The remaining four sliding cases (x−v+, x+v−, x0v−, x−v−) can be analysed similarly. If
the oscillator is in the sticking state x0v0, the collision with the boundary F− means that
the resultant of forces acting on the block becomes positive. Thus, the next state will be
x−v+. Similarly, crossing F+ leads to x+v−:

• F+ =⇒ x+v−,

• F− =⇒ x−v+.
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These two switches can happen only if the static coefficient of friction S0 is greater than the
kinetic one. In the opposite case, sliding in the opposite direction occurs. This possibility
will be excluded from the analysis due to its non-physical nature.

Once the states and event functions are properly defined, the bifurcations of the oscil-
lator can be explored by COCO. However, this process is not straightforward, since be-
sides the conventional bifurcations (e.g., period-doubling), several discontinuity-induced or
non-smooth bifurcations (e.g., grazing-sliding, crossing-sliding, switching-sliding or adding-
sliding) can occur. These bifurcations are accompanied by the change of the type and order
of segments – the so-called signature of the solution – during a period. Thus, one has to
make an educated guess about the possible order of states after each non-smooth bifurca-
tion. Besides the bifurcations, other events can also take place that are related to the order
of switches among the possible states shown in Table 2.2, but do not correspond to phys-
ically meaningful changes in the periodic solutions. For example, segments can appear or
disappear when a sliding solution curve touches one of the stick-slip boundary surfaces F+
or F−. This event is denoted by T in Fig. 2.17. The disappearance of segments could be
predicted by monitoring the durations of solution segments. To detect the appearance of
new segments inside an existing one, the validity of solutions had to be checked during each
run. Our experiences show that bifurcations often lead to a completely different solution
signature. While the local qualitative change of the trajectory can be known in these cases
as well, the signature of the whole periodic orbit is required for the continuation, that is
often difficult or practically impossible to predict.

For the initiation of the calculation, the analysis by COCO was accompanied by the
solution of the initial value problem, i.e., numerical simulation. Clearly, only stable solutions
can be found with this approach, but once a solution type is found by COCO, it can be
continued even after the loss of stability. Besides the calculation of the numerical solution,
several files must be initialized for COCO – these are also done automatically by the Matlab
code.2 In addition to the initialization, we also implemented utility functions for the proper
continuation from a previously obtained solution point, with the possibility to change the
signature of the solution.

As it will be shown, four different periodic solution types can be detected in large domains
of the examined parameter space. Each of these typical periods consists of 6 segments, thus,
the number of segments will be denoted only if it is different from 6. The four typical
solutions will be denoted by 2s, 0s, 2a and 1a, where 2, 1 or 0 shows the number of sticking
segments in a period, while ’s’ or ’a’ tells whether the solution is symmetric or asymmetric.

The bifurcation points or curves will be denoted accordingly. For instance, SN1a and
PD1a denote the saddle-node and period-doubling bifurcation of a 1-stick asymmetric solu-
tion, respectively. Sliding bifurcations lead to the change of the number of sticking segments.
In these cases only the symmetry property will be shown as CSs, SSa or ASa.

Since the symmetry plays an important role in the classification of solutions, the measure
of asymmetry was introduced as follows:

Ψ =

∣∣∣∣maxx+minx

maxx−minx

∣∣∣∣ . (2.90)

This quantity was also monitored during each continuation run.

2The first version of the initialization code was written by Gábor Licskó, whose help is acknowledged.
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2.5.2 One-parameter bifurcation analysis

Bifurcation parameter: S

It was shown by Kunze [103] that the examined system does not exhibit chaotic solutions
if the static and kinetic coefficients of friction are equal. Thus, to explore the possible
chaotic solutions, the dimensionless kinetic coefficient of friction S was chosen to be the
bifurcation parameter at a fixed static coefficient S0. Since the symmetric non-sticking
solutions are stable at the non-resonant excitation frequencies, it seemed to be reasonable
to search for chaotic solutions at the sub-harmonic resonant frequencies of the asymmetric
solutions (Section 2.3). Thus, the excitation frequency was chosen to be Ω = 0.5, while the
static coefficient of friction was fixed at S0 = 0.4, just as we did in [110]. An initial solution
guess was generated by numerical simulation at these parameters in Matlab – see Fig. 2.16.

0 2 4 6 8 10 12 14-2

-1

0

1

2

0 2 4 6 8 10 12 14-1

-0.5

0

0.5

1

x

v

t

t

stick/slip boundary F+

stick/slip boundary F-

Figure 2.16: The initial solution (thick line) generated numerically at S = S0 = 0.4 and
Ω = 0.5. Subsequent segments are printed in different colours.

The following solution types were detected [31]:

• The initial guess is symmetric and has the following structure at S = 0.4:

x0v+ → x0v0 (stick) → x+v− → x0v− → x0v0 (stick) → x−v+

This solution (denoted by 2s in Fig. 2.17) loses stability via a saddle-node (SN2s)
bifurcation at S ≈ 0.33358.

• Below this parameter, the initialization process found only a pair of stable solutions
(denoted by 1a). These solutions are asymmetric with one sticking segment per period.
One of them has the following structure:

x+v+ → x+v− → x0v− → x0v0 (stick) → x−v+ → x0v+

Certainly, the mirror image of this solution also exists at the same parameters. Both
solutions lose stability via a period doubling (PD1a) bifurcation at S ≈ 0.068.

• The emerging pair of double-periodic asymmetric solutions (denoted by 2a,14seg) con-
sist of 14 segments. One of these cycles has the following structure (the other is its
mirror image):
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Figure 2.17: Bifurcation diagrams I. Ω = 0.5, S0 = 0.4. Maximal displacement (top
left), positions of stops (top right) and asymmetry Ψ (bottom) versus parameter S. Green
symbols denote stable, red symbols denote unstable solution branches.

x+v+ → x+v− → x0v− → x−v− → x0v− → x0v0 (stick) → x−v+ → x0v+ →
x+v+ → x+v− → x0v− → x0v0 (stick) → x−v+ → x0v+.

The solution’s structure breaks down at S ≈ 0.05578, where the 11th solution segment
(x0v−) just touches the stick-slip boundary F−. This event – denoted by T in the
figures – is related to the change of the order and number of segments.

No stable periodic solution was found in the range S = [0.043479, 0.055787]. The nu-
merical initial problem solver detected a seemingly periodic solution, but it turned out
to be unstable according to COCO. This experience indicates that the found solution is
only slightly unstable, such that the stabilizing effect of the numerical algorithm could
overcome its instability. Since no attracting periodic solution was found, the existence
of multi-periodic solutions or chaos is expected in this parameter domain.

• In the range S = [0.035620, 0.043479], an asymmetric solution (1a,9seg) with one stick
per period was detected. This solution emerges at S = 0.043479 via a switching sliding
(SSa) bifurcation. It can be divided into 9 segments:

x+v+ → x+v− → x0v− → x−v− → x−v+ → x0v+ → x0v0 (stick) → x−v+ →
x0v+.

This solution could not be continued past the value S = 0.035620 due to the divergence
of the numerical method (point N in Fig. 2.17). No stable periodic solution was found
at even smaller values of S, where the occurrence of a chaotic domain is expected.
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Bifurcation parameter: Ω

As the previous calculation showed, asymmetric solutions (denoted by 1a in the figures)
appeared at S ≈ 0.33358 at the discontinuity of the bifurcation diagrams. In the present
section, we search for the origin of these asymmetric solutions. For this purpose, continuation
was initiated in the vicinity of their appearance, at S = 0.32 and S0 = 0.4, varying the
excitation frequency Ω near 0.5. The results are depicted in Fig. 2.18.
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Figure 2.18: Bifurcation diagrams II. S = 0.32, S0 = 0.4. Maximal displacement (top
left), positions of stops (top right) and asymmetry of solutions (bottom).

• The continuation is initiated at Ω = 0.5 with the numerically detected solution type

x0v+ → x+v+ → x+v− → x0v− → x0v0 (stick) → x−v+.

This asymmetric solution (1a) is stable in the range Ω ∈ [0.49182, 0.54191]. At the
lower end, a new solution (2a) with two sticking segments appears via a degenerate
crossing-sliding (CSa) bifurcation, when the second segment (x+v+) disappears as the
trajectory touches the v = 0 plane and the F+ boundary simultaneously. This bifur-
cation is asymmetric since no such event occurs at F−.

The stability of solution 1a is lost via a saddle-node (SN1a) bifurcation at Ω = 0.54191.
Finally, another crossing-sliding bifurcation (CSs) takes place at Ω = 0.53529, where
the solution becomes symmetric and both sticking segments touch the v = 0 plane and
the F+ or F− boundary simultaneously.

• The signature of solution 2a, that is born at Ω = 0.49182 via crossing-sliding, is
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x0v+ → x0v0 (stick) → x+v− → x0v− → x0v0 (stick) → x−v+.

This solution branch undergoes a saddle-node (SN2s) bifurcation at Ω = 0.48874. Here
the solution is just symmetric, thus, this bifurcation is the crossing point between two
coexisting asymmetric solutions that are each other’s mirror images.

• A symmetric solution (2s) also appears at the frequency Ω = 0.48874 with the same
segment structure as the asymmetric solution 2a. Solution 2s is stable below Ω =
0.48874, but unstable in the domain Ω ∈ [0.48874, 0.53529].

• At Ω = 0.53529, both sticking segments become sliding ones via crossing-sliding (CSs)
and the symmetric, non-sticking stable solution 0s appears with the signature

x0v+ → x+v+ → x+v− → x0v− → x−v− → x−v+.

This is the same parameter where the the asymmetric solution 1a branches out.

According to these results, the abrupt appearance of asymmetric solutions is related to
the fold bifurcation (SN1a) of solution 1a that emerges from the symmetric solution via a
crossing-sliding bifurcation CSs. At the critical parameter, where the symmetric non-sticking
solution disappears, the trajectory just touches the stick-slip boundaries on both the positive
and the negative side. However, the appearing symmetric sticking solution is unstable, while
a pair of asymmetric sticking solutions appears.

The bifurcation structure depicted in Fig. 2.18 remains qualitatively unchanged at larger
values of the kinetic friction parameter S, but the domain of asymmetric solutions shrinks
and disappears at S ≈ 0.38. However, significant changes occur if S is decreased: the
connection between the solutions 1a and 2a breaks, giving rise to multi-periodic and chaotic
solutions (see Fig. 2.19).
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Figure 2.19: Asymmetry of solutions versus parameter Ω at S = 0.22. Left: S0 = 0.4.
Multi-periodic and chaotic solutions exist between CSa and PD2a. Right: S0 = 0.3. The
domains of asymmetry are separated.

Similar bifurcation structures can be observed at higher values (S0 = 0.5, . . . , 0.9) of
the static coefficient of friction as well, but the frequency domain of asymmetric solutions
extends towards higher values of Ω. However, the reduction of parameter S0 leads to the
separation of the domains of the asymmetric solutions 1a and 2a, as it is shown in Fig. 2.19.
If S becomes larger, the two loops shrink and disappear at S = S0 = 0.3. If the static
coefficient of friction is reduced further (S0 = 0.2) , the loop in the diagram corresponding
to solution 1a persists at Ω = 0.5, but solution 2a disappears. Still, multi-periodic or chaotic
responses can be detected in the interval Ω ∈ (0.18, 0.38).
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2.5.3 Two-parameter bifurcation analysis and search for chaos

As it was mentioned earlier, the occurrence of multi-periodic or chaotic solutions is expected
in certain parameter domains. To localize these domains, two-parameter bifurcation analysis
was performed on the S −Ω plane at various values of the static friction parameter S0. The
obtained diagrams are shown in Figs. 2.20 - 2.21.
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Figure 2.20: Two-parameter bifurcation diagrams at S0 = 0.3 (left) and S0 = 0.4 (right)
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Figure 2.21: Two-parameter bifurcation diagrams at S0 = 0.5 (left) and S0 = 0.8 (right)

Perhaps the most important result of this analysis is that the switch from solution type 0s
to 1a via bifurcation SN1a happens during the reduction of the kinetic coefficient of friction
(see Fig. 2.20). Thus – quite counterintuitively – a smaller friction coefficient leads to the
appearance of sticking solutions in these cases.

Note, that we examined the same mechanical model with non-harmonic but periodic
excitation signals, too. The bifurcation structure remained qualitatively similar [31].

In addition to the bifurcation analysis with COCO, we wanted to check whether there
are chaotic solutions. An important feature of chaotic systems is the sensitivity to initial
conditions. It means that nearby trajectories of a chaotic system diverge at an exponential
rate as time passes, until the separation attains the characteristic size of the attractor.

To characterise the rate of separation, we estimated the largest Lyapunov exponent (LLE)
of solutions on grids of size 100 × 100 or 150 × 150 on the depicted Ω−S parameter planes.
During each run, the evolution of two nearby orbits was traced and the variation of their
phase space distance di → di+1 was monitored in time steps ∆t. In the simplest case, the
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LLE can be estimated as

λ ≈ 1

N

N∑
i=1

1

∆t
log
|di+1|
|di|

, (2.91)

where N denotes the number of steps. Note, that it may happen that one or the other
solution is just in a sticking phase at t = (i + 1)∆t for some index i. In this case, a later
time instant t = (i + j)∆t was chosen such that both solutions slide, and the distance di+j

was taken into account considering 1
j∆t

log(|di+j|/|di|) in the sum. This approach provides
adequate results, as it was pointed out in [8]. Moreover, a similar procedure was already
tested on the same system in [110] (see Section 2.6.1) and the results agreed well with the
Lyapunov exponents calculated by the robust method of Stefanski and Kapitaniak [147].

The initial conditions (x0, v0, t0) for the two solutions were (1 + 0.9S0, 0, 0) and (1 +
0.9S0 + 10−12, 0, 0), respectively. The value of LLE was estimated at each parameter set at
most until 600 exitation periods. The simulation finished earlier if the distance d reduced
below 10−18 or the relative error between subsequently calculated estimates dropped below
10−3. Since we are interested in chaotic responses, only parameter domains with positive
Lyapunov exponents are coloured in Figs. 2.20 - 2.21.

The results show that chaotic solutions are typically enclosed by the bifurcation curves
SN2s (where the 2-stick symmetric solution loses stability) and CSs (where the solution
curve just touches the border of the sticking domain on both sides, giving rise to asymmetric
solutions). Thus, the chaotic responses are bifurcating from asymmetric solutions, as we
expected earlier [110]. Since asymmetric solutions had been detected at Ω = 0.5 for the
case S = S0, this frequency was chosen in [110] to search for chaotic solutions. However,
our results clearly show that the choice Ω = 0.5 was rather unlucky and more pronounced
chaotic regimes can be found at lower values of the frequency Ω.

According to the results, quite simple connections can be found between the friction
coefficients and the location of the chaotic domain:

• Irrespectively of the exact value of the static coefficient (provided S0 > S), the fre-
quency domain of asymmetric solutions stemming from Ω = 0.5 – and the enclosed
domain of possible chaotic solutions – expands if the kinetic coefficient of friction S is
decreased. The same trend was observed near Ω = 0.25 at S0 < 1/15 (see Eq. (2.82)).

• The increase of the rescaled static coefficient of friction in the interval S0 ∈ [0.3, 0.8]
implies that the domain of multi-periodic or chaotic solutions is extended towards
larger frequencies.

It can also be seen in the figures that S < 0.2 is needed for chaotic responses at almost all
values of the static friction parameter S0. However, a narrow parameter regime was found
at S0 = 0.3 where the Lyapunov exponent is positive even at S ≈ 0.265. The corresponding
ratio S0/S ≈ 1.13 is quite realistic, thus, the occurrence of chaotic responses cannot be
excluded in similar models of real mechanical systems. Note, that the case S0 = 0.3 seems to
be an exception, since the further reduction of S0 does not lead to the increase of the chaotic
domain: only small islands of positive Lyapunov exponents were detected at S0 = 0.2.

According to our experiences, the introduction of a non-zero viscous damping leads to
the reduction of the LLE in the order of magnitude of the damping ratio. Thus, although
the considered Coulomb friction model is rather simple, certain theoretically derived solution
types could be observed even experimentally by Marino and Cicirello [112]. Since quite simple
qualitative rules could be established between the frequency domain of irregular solutions
and the coefficients of friction, these rules may be applicable to real mechanical systems,
too.
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2.6 FURTHER NUMERICAL RESULTS

In the present section, some results of the joint work with Gábor Licskó [110] are summa-
rized.

2.6.1 Monte Carlo bifurcation diagram

The continuation method-based bifurcation analysis presented in Section 2.5.2 was preceded
by the construction of the Monte Carlo bifurcation diagram, shown in Fig. 2.22.

The points on the diagram were determined by long numerical simulations. The sim-
ulation code was built up of functions written in MATLAB. No ODE solvers were needed
since the analytical solution between two consecutive stops of the oscillating block of mass is
known, according to Eqs. (2.5) and (2.6). Numerical approximation therefore is only needed
at points where the block’s velocity changes sign (turning points) or when the stuck block
starts moving again due to the excitation force (starting point). Between these points, the
solution can be calculated exactly. The switching point was determined by a relative toler-
ance of ϵ = 10−15. In order to find all the co-existing stable solutions, 10 simulations were
started with random initial conditions (from the ranges of x (0) ∈ [−1, 1], ẋ (0) ∈ [−1, 1],
t0 ∈ [−2π/Ω, 2π/Ω]) for each value of parameter S.

During simulation several quantities were recorded, for example, crossings of the Poincaré
surface defined by t = 2kπ/Ω, k = 1, 2, ..., and the last ten displacements where the block
stuck. Also vectors containing all time instants of sticking and turning were stored. On top
of Fig. 2.22, the recorded sticking displacements are shown versus the bifurcation parameter
S. The lower panel of the figure shows a corresponding diagram that was obtained by the
continuation method – a properly scaled part of Fig. 2.17 is depicted here. Comparing
this diagram with the Monte-Carlo diagram in the upper subfigure, one can see that the
non-sticking stops of the asymmetric solutions are not shown there.

To characterise the asymmetry of solutions, its measure Ψ was redefined since definition
(2.90) assumes that the stationary periodic solution is already known. For the evaluation of
numerical simulations, another formula is needed:

Ψ =

∣∣∣∣∣∣
n∑

i=1

∑
(ij)

x(t̂ij)

∣∣∣∣∣∣ ,
where t̂ij is the jth time instant during the ith excitation period when the velocity becomes
zero, i.e. ẋ(t̂ij) = 0 for t̂ij ∈

(
T0 + (i− 1)2π

Ω
, T0 + i2π

Ω

]
, i = 1, . . . n. Here T0 is chosen to be

beyond the initial transients. Summing up all these displacements in n subsequent periods
would result zero in case of symmetric solutions.

To characterise the chaotic solutions, two different numerical methods were applied to
obtain the maximal Lyapunov exponent. One of them is based on the divergence of nearby
trajectories – a similar method was used in Section 2.5.3. This direct method was easy to
apply, however, we used a more refined procedure, too, in order to validate the results.

This latter method was developed by Stefanski and Kapitaniak specifically for piecewise-
smooth problems [147]. It is based on the synchronisation of two chaotic systems, by imple-
menting a uni-directional coupling between the original system of equations and a secondary
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Figure 2.22: Monte Carlo bifurcation diagram at parameters S0 = 0.4 and Ω = 0.5,
depicting the sticking displacement (top) and asymmetry of solutions (middle). The bottom
panel (generated by continuation method) shows all the displacements where stops occured.

system. For our problem, the resulting set of first order equations is the following:

ẋ1 = x2,

ẋ2 = −x1 + cos (Ω (t+ t0))− Sf (ẋ1) ,

ẋ3 = x4 + q (x1 − x3) ,

ẋ4 = −x3 + cos (Ω (t+ t0))− Sf (ẋ3) + q (x2 − x4) ,

where q is the coupling coefficient. The minimal value of q for which we obtain full synchro-
nisation is an upper estimate of the largest Lyapunov exponent. To determine its value, we
had to carry out a brute-force bifurcation calculation taking q as a bifurcation parameter.
We had to watch when x1 − x3 vanished and recorded the corresponding value of q that
provided an estimate of the LLE. Fig. 2.23 presents a sample run with parameters S0 = 0.4,
S = 0.05 and Ω = 0.5 for which the system behaves chaotically. Above q = 0.0073 the two
coupled systems are fully synchronised and thus the estimated maximal Lyapunov exponent
is λ ≈ 0.0073. The application of this procedure is rather time-consuming because one has
to construct a second bifurcation diagram with respect to q. For this reason, we used the
synchronisation method only at certain points. We also have to note that the minimum
value for the coupling coefficient q cannot be less than zero. This is why we obtained λ = 0
for periodic solutions using this method.
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Figure 2.23: Monte Carlo diagram for the coupling parameter q as bifurcation parameter.
Synchronisation occurs at q = 0.0073, thus λ ≈ 0.0073. (S0 = 0.4, S = 0.05, Ω = 0.5)

In Fig. 2.24, we plotted the left part of the bifurcation diagram of Fig. 2.22 together with
the Lyapunov exponents. It is clearly visible that between S = 0.0436 and S = 0.0556, and
below S = 0.0356 the estimated maximal Lyapunov exponents are positive. The results of
the two methods correlate, however, there is a small deviation between the calculated values
since parameter q must be larger than the actual LLE for the synchronization of the two
subsystems.
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Figure 2.24: Bifurcation diagram and largest Lyapunov exponents for parameters S0 =
0.4 and Ω = 0.5. (Solid lines – direct numerical simulation of nearby trajectories, red circles
– method of Stefanski and Kapitaniak [147], blue circle – estimate based on a 1D map.)

2.6.2 Transient chaos

We can observe in Fig. 2.24 that there is a negative spike at S ≈ 0.0465 in the Lyapunov
exponent plot and the chaotic band clears up here in the bifurcation diagram, opening a
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very narrow gap of periodic motion. Numerical simulation showed that the chaotic transient
at the beginning of the simulation suddenly turns into a period-three orbit (see Fig. 2.25).

1.5

2

1.5

2

Figure 2.25: Chaotic behaviour (left), that turns into a period-three motion (right).
(S = 0.0465, S0 = 0.4, Ω = 0.5)

To analyse this transient chaotic solution, we started simulations from several initial
states and detected every third sticking. We obtained a one-dimensional map (Fig. 2.26)
with three stable and an unstable fixed point. The chaotic trajectories can escape from the
repeller at the stable points, where the graph of the map has three very small segments.
One of these segments is shown in Fig. 2.26/b. We approximated the map by seven straight
line segments and used it to estimate the finite time Lyapunov exponent that is valid in the
transient phase. The trajectory of the piecewise-linear map started near the unstable fixed
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Figure 2.26: Cobweb diagram for S = 0.0465 with three fixed points ((a), red dots) and
the neighbourhood of the marked one (b). Piecewise-linear approximation of the map (c).

point (at x = 0.945). We calculated the probability that the solution hits the ith line segment
in an iteration step using the formula P (i) = n(i)/Ntot, where n(i) is the hit count of the ith

line segment and Ntot is the total number of iterations until escape. Having a constant slope
along each segment we could approximate the LLE, that is λmap =

∑7
i=1 Pi ln |ai| = 0.2167

in this case, where ai is the slope of the ith line segment. After scaling we obtained λflow =
λmap/τ̄ = 0.005748, where τ̄ is the mean time between two steps of the iteration. This value
fits in the series of calculated exponents – see the blue circle in Fig. 2.24. It is worth to note
that the experimental detection of irregular vibrations of a similar oscillator was reported
by Marino and Cicirello in [112]. Among the possible explanations, the authors mention the
occurrence of transient chaotic motions, too.
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Chapter 3

Nonlinear Analysis of Chip Formation

3.1 INTRODUCTION AND LITERATURE REVIEW

3.1.1 Sources of self-excited oscillations during cutting

The oscillations of the cutting machine-tool-workpiece system engages the attention of the
theoreticians and technological experts for more than 80 years [54]. The topic of self-excited
oscillations is especially important in the research efforts related to cutting technologies
[5, 158, 159]. These oscillations can be traced back to three primary sources:

a) During chip segmentation, the surface of the chip becomes rugged, as shown in Fig.
3.1. The chip’s pattern indicates that the cutting force and other characteristics of
the material formation oscillate. The phenomenon was described first by Piispanen

Figure 3.1: A lamellar (periodic) chip.

[132, 133]. Landberg [107] examined the phenomenon experimentally, but the detailed
analysis is due to Albrecht [1]. A limiting case of chip segmentation is the aperiodic
chip formation that was analysed in details by Field and Merchant [64]. In these cases,
the dynamics of chip formation is influenced by various thermo-mechanical effects that
can be coupled with the oscillations of the tool or the workpiece.

b) Built-up-edge (BUE) is the accumulation of the cut material on the rake face of the
tool, near its tip. BUE was first examined in details by Ernst and Martellotti [59], who
pointed out that the BUE continuously builds up and tears off, generating periodic
variations in the cutting force.

c) In the case of regenerative chatter, the thickness of the chip cut at time t is influenced by
the chip thickness during the previous cut, i.e., at t− T , where T is the characteristic
period of the machining process. Since the tool and the workpiece are not ideally

35
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rigid, this effect may lead to the loss of stability of the stationary cutting. This model
can be traced back to the important contributions of Tlusty [158] and Tobias [159]. A
comprehensive review of the modeling of nonlinear regenerative effects in metal cutting
was given by Stépán in [149]. Kalmár-Nagy and Moon [90] incorporated in their model
the displacements of the tool holder and the torsion of the tool, as well.

The analysis of machine tool vibrations has a vast literature: from experimental papers
and books to contributions proposing refined mathematical models. However, as it can be
seen from the literature review in [129], thermal effects are typically not taken into account
in the cutting models, although these effects have a great influence on the characteristics of
the material of the workpiece, and consequently, on the cutting process itself. An exception
in this respect is the continuum mechanical cutting model, introduced by Burns and Davies
[20]. Their calculations were verified both experimentally and numerically by the finite
element method, but the induced vibrations were not examined.

Following Burns and Davies, new, thermo-mechanical models of chip formation were put
forward by Zoltán Pálmai (see e.g., [127]). The present chapter deals with the analysis of
Pálmai’s three different models. Section 3.1.2 introduces Pálmai’s 4D chip formation model.
An extended model – see Section 3.1.3 – was also proposed by Pálmai that takes into account
the effect of the cutting speed variation induced by the vibrating tool or workpiece. Section
3.1.4 describes Pálmai’s third model that deals with the influence of a periodically varying
built-up edge on the dynamics of chip formation.

Our contributions are detailed in the subsequent sections of this chapter. The bifurcation
analysis of the 4D model is presented in Section 3.2, based on [32]. The results show that
the occurrence of chaotic behaviour is expected at the chosen parameter set. The analysis of
the case when the cutting speed can vary was published in [129] and is presented in Section
3.3, while Section 3.4 deals with the characterisation of the chaotic vibrations that occur as a
consequence of BUE [131]. Finally, a new model, incorporating both the thermo-mechanical
processes and the regenerative effect [74] is briefly described in Section 3.5.

3.1.2 Pálmai’s 4D chip formation model

The properties of the cutting phenomenon can be characterised by the chips formed during
the process. For the sake of simplicity, only three types of chips will be distinguished here:
continuous (Fig. 3.2/a), aperiodic (Fig. 3.2/b), and periodic (segmented or lamellar) chips
(Fig. 3.2/c).

(a) (b) (c)

Figure 3.2: Austenitic (stainless) steel chips formed at different cutting speeds. a) Contin-
uous chip, v = 0.3 m/s; b) Aperiodic (chaotic) chip, v = 0.58 m/s; c) Periodic (segmented
or lamellar) chip, v = 3.6 m/s. The experiments were conducted by Zoltán Pálmai.

Xie, Bayoumi and Zbib [168] found that the occurence of segmented (periodic) chips is
related to the phenomenon of thermoplastic instability, while Szalai, Stépán and Hogan [151]
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examined the process as a dynamical system of the tool and the workpiece. They explored
various types of bifurcations and demonstrated the existence of chaotic motion. Pálmai’s
model deals with the phenomena that can be derived from the characteristics of the material
of the workpiece.

The first version of the model consisted of five non-linear differential equations and a
constitutive equation [127], but later it was exchanged by a 4D model [32]. It is based
on Piispanen’s [133] result: in case of technologies that cause fast plastic deformation, the
deformation is concentrated into one or a few nearly adiabatic shear zones. According to the
observation of Luttervelt [111], two deformation bands can be identified in the shear zone.
The developed model of chip formation adopts this idea, as it is shown in Fig. 3.3. The
details of the derivation of the governing equations can be found in Appendix B.1.
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Figure 3.3: The model of chip formation.

The shear process is examined in two dimensions, assuming a so-called free cutting state,
which occurs in the so-called primary strain zone or shear zone. Two deformation bands of
thickness δ are introduced that are denoted by 1 and 2 in Fig. 3.3. Besides the bands 1 and
2, a ”quasi” layer (denoted by 0) is also introduced, where no plastic deformation occurs, but
this layer plays an important role in the thermal processes. The length of the shear zone is
h1 – this size characterises the bands, too.

The material of the workpiece first enters layer 0, where no plastic deformation occurs
yet, however, layer 1 is deformed and heated up, as a result of which heat flows from layer 1
to layer 0. A similar process occurs between layers 1 and 2, too. For the sake of simplicity, it
is assumed that the temperatures T0, T1 and T2 in layers 0, 1 and 2 are identical everywhere
within layers at a given moment, but – naturally – they are not necessarily equal, and all
vary in time. It is also assumed that the inclination angle Φ of the shear zone and rake angle
α of the tool are equal and constant. The material properties are taken into account by the
following constitutive equation [128]:

Fi(τi, Ti) ≡
γ̇i(t)

ε̇Φ
=

Ti + 1

TΦ + 1
exp

τi − 1 + a(Ti − TΦ)

b(Ti + 1)
, (i = 1, 2). (3.1)

Here γ̇i(t) denotes the deformation velocity in the ith shear zone at time t, ε̇Φ is the mean
deformation velocity in the case of continuous chips, while τi denotes the plastic shear stresses
in the layers i = 1, 2. a and b are constant terms characteristic of the material, and TΦ denotes
the temperature of the shear zone during the formation of continuous chips.

It is assumed that the plastic shear stress τi (i = 1, 2) occurring in the shear zone of
size h1 is in mechanical balance with the normal stress σ acting along the chip on length
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L, causing an elastic deformation ∆u (see Fig. 3.3), i.e., the inertial forces are neglected.
Pálmai introduced the characteristic time

K =
τΦh

2

ELv sin2(Φ) cos(Φ)
, (3.2)

with which a dimensionless time could be introduced. Here h is the thickness of the cut
layer, E is Young’s modulus and v is the cutting speed, while τΦ denotes the mean shear
stress [132] in the shear zone during the formation of continuous chips. According to the
generally accepted approximation of the cutting theory, τΦ can be considered as a material
constant. Exploiting the mechanical balance, the shear stresses along the deformation bands
can be expressed in the following dimensionless forms:

τ̇1 = p (1− (F1 + F2)) , (3.3)
τ̇2 = 1− (F1 + F2), (3.4)

where

p = 1 +

√
3δ

h
sin(Φ). (3.5)

Eqs. (3.3) and (3.4) imply τ̇1 = pτ̇2, thus

τ1 = pτ2 + s, (3.6)

where parameter s depends on the initial conditions.
The variation of the material’s heat content (cρṪ , where c means heat capacity and ρ is

density) during chip formation is composed of three elements: mechanical power, thermal
conduction and heat transfered by the moving material. Taking into account these effects (see
[127]), the energy balance equations for the three layers assume the following dimensionless
forms:

Ṫ0 = ζ(T1 − 2T0)− ξT0, (3.7)
Ṫ1 = ητ1F1(τ1, T1)− ζ(2T1 − T2 − T0)− ξ(T1 − T0), (3.8)
Ṫ2 = ητ2F2(τ2, T2)− (ξ + ζ)(T2 − T1), (3.9)

with the system parameters

η =
rKτΦv cos(Φ)

cρδTw

, ξ =
Kv sin(Φ)

δ
, ζ =

4Kλ

cρδ2
, (3.10)

where λ denotes the thermal conductivity, Tw is the absolute temperature of the workpiece,
and r is the energy ratio (r ≈ 0.95).

Thus, the mathematical model of chip formation consists of the autonomous differential
equations (3.4) and (3.7)-(3.9), together with (3.6) and the constitutive equations (3.1).

Equilibrium solutions of the governing equations correspond to the formation of contin-
uous chips, the emergence of periodic solutions means that segmented or lamellar chips are
formed, while chaotic solutions characterise the formation of aperiodic chips.

The parameters given by Eqs. (3.2), (3.5) and (3.10) can be interpreted as follows. The
characteristic time scale K is related to both the elastic and plastic material characteris-
tics and the technological parameters, and is inversely proportional to the most important
technological parameter, the cutting speed. Parameter ξ is the dimensionless velocity of
the chip, i.e., the reciprocal of the dimensionless time δt̂ during which the material of the
workpiece passes through the shear zone. Thus, ξ = 1/δt̂ and it does not depend on the
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cutting speed due to the scaling of the time by K. Parameter η – which can be rewritten
as η = ξ(rτΦ/cρTw) cotan Φ – describes the amount of energy input. This parameter is
related to the mechanical and thermal properties of the material and it is also independent
of the cutting speed. Only parameter ζ depends on the cutting speed, while parameter p is
determined by technological characteristics.

The dynamical system defined by Eqs. (3.4)-(3.9) can be characterised by 6 independent
parameters: a, b, TΦ, ξ η and ζ. Practically speaking, this six-dimensional parameter-space
cannot be fully explored. However, there are three parameters that are especially important
from the technological point of view: ξ, η, and ζ. To illustrate the rich dynamics of the
examined system, Pálmai focused on the case a = 0.3, b = 0.012, TΦ = 1 (see [111]), ξ = 4.8
and η = 4.4 since these parameter values correspond to the chips of austenitic steel shown
in Fig. 3.2. The system parameter ζ assumes the values a) ζ = 40, b) ζ = 21 and c)
ζ = 3.4 in the cases of the depicted continuous, aperiodic, and lamellar chips, respectively.
The dimensionless system parameters were determined according to the following physical
parameters of the austenitic steel: ρ = 7900 kg/m3, c = 500 J/(kg K), λ = 16 N/(msK)
The thickness of the cut layer is h = 0.35 mm, while the inclination angle of the shear zone
is Φ = 30o. Based on the results in [14], δ = 12.5 µm is a realistic approximation of the
thickness of the deformation bands, that implies p = 1.03, according to (3.5). The value of
K that corresponds to the formation of the periodic chips in Fig. 3.2 is K = 1.64 · 10−4 s.

Considering the formation of continuous chips as the initial condition, τ1,2(0) = 1 and
Ti(0) = 0, (i =0, 1 and 2) was chosen, which leads to s = 1 − p, i.e., s = −0.03 and
τ1 = pτ2 + 1− p.

3.1.3 Extension of the model to the case of a vibrating workpiece

In the basic model, described in Section 3.1.2, it is assumed that the cutting speed v is
constant. However, the cutting speed may vary during machining. The most obvious example
for such processes is the flat turning, but the taper-turning, the so-called back turning and the
special polygon-turning also lead to the variation of the cutting speed. Moreover, according
to the cutting examples described in [1, 98], the vibrations of the elastic machining system
have a considerable influence on the cutting speed and on the whole process. To take the
vibrations of the tool and/or the workpiece into account, Pálmai extended the 4D model of
chip formation to the case when the workpiece vibrates parallel with the cutting velocity.
The displacement of the workpiece is characterised by the dimensionless coordinate z that
is measured with respect to the reference distance

L̃ =
2τΦ
mr

K2
0 . (3.11)

ż is the velocity of the vibration of the workpiece such that ż > 0 leads to the reduction
of the effective cutting speed (see Fig. B.1). According to the derivation in Appendices B.2
and B.3, the following set of dimensionless equations was obtained:

τ̇2 = f

(
1− ż

V0f

)
(1− (F1 + F2)) , (3.12)

Ṫ0 = ζ(T1 − 2T0)− f

(
1− ż

V0f

)
ξT0, (3.13)

Ṫ1 = f

(
1− ż

V0f

)(
η(τ2p+ 1− p)F1(τ1, T1)− ξ(T1 − T0)

)
− ζ(2T1 − T2 − T0), (3.14)
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Ṫ2 = ηf

(
1− ż

V0f

)
τ2F2(τ2, T2)−

(
f

(
1− ż

V0f

)
ξ + ζ

)
(T2 − T1), (3.15)

z̈ = τ2 − Az. (3.16)

Parameter f denotes the ratio of the cutting speed v to a reference speed v0 = 3.6 m/s –
the latter is used to define the reference time scale as K0 = K(v = v0), while A = kK2

0/mr

is the dimensionless stiffness of the elastic workpiece having stiffness k and equivalent mass
mr. The dimensionless velocity V0 is defined as

V0 =
K0v0

L̃
=

mrv0
2τΦK0

. (3.17)

If the deformation of the tool was modeled instead of the deformation of the workpiece,
the same equations could be used, with the z axis reversed.

3.1.4 Effects of built-up edge induced oscillations

The models, analysed in the previous subsections, considered a constant cutting depth, but
this latter condition is not fulfilled if some parts of the cut material stick to the tool, forming
the so-called built-up edge (BUE). Built-up edge is typically formed during processes with

BUE
BUL 

0.5 mm

Figure 3.4: Scanning electron microscope picture of BUE and BUL (built-up layer) on a
high speed steel tool.

small cutting speeds, like drilling or turning [66]. BUE can be encountered even on the most
up-to-date tool materials (see Fig. 3.4). In principle, there is no BUE on tools with PVD or
CVD coating, but if the coating abrases, BUE can develop. This is why this phenomenon is
still subject to intensive research. The occurrence of BUE was first mentioned by Haussner in
1882 [79]. Later, Rosenhain and Sturney [140] realised that the built-up edge is often integral
with the chip. Rapatz [138] showed that not the cutting speed but the temperature on the
surface of the tool plays the primary role in the process. The formation of BUE was first
examined in details by Ernst and Martellotti [59]. They pointed out that the built-up edge
periodically increases and tears off, leading to harmful fluctuations of the cutting force and
thickness of cut layer, which provide an excitation for the workpiece-machine-tool system.
The frequency of this oscillation is 77-200 Hz, according to the measurements performed by
Shteinberg [143]. A detailed literature review about the built-up-edge is found in [131].

Pálmai put forward a time-delayed chip formation model (see Appendix B.4) that is able
to describe the cutting process in the case of varying thickness of the cut layer. This new
model can be used for the study of the effects of the formation of BUE on the type of the
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produced chips. As it will be shown in Section 3.4, the occurrence of BUE turns fixed point
solutions – that correspond to the formation of continuous chips – to chaotic vibrations,
leading to the deterioration of the surface quality.

The differences between the original 4D model and the new model can be summarized as
follows. In the previous model Pálmai neglected friction and assumed that the inclination
angle Φ of the shear zone and rake angle α of the tool were equal. In the new model, these
simplifying assumptions are disregarded: the shear stress is expressed such that it depends
both on the coeffcient of friction µ and the difference Φ − α (B.39). Instead of two defor-
mation layers, only a single shear band (active layer) is introduced that is characterised by
temperature T , shear stress τ and shear strain γ. There is also an inactive layer (charac-
terised by temperature T0), that plays a role in the thermal processes, only (see Fig. B.2).
The temperature, shear stress, deformation angle and time are transformed to dimensionless
form: T̂ = (T − Tw)/Tw, τ̂ = τ/τΦ,γ̂ = γ/εΦ, t̂ = t/K, where Tw denotes the temperature of
the workpiece, and the time-scale is

K =
(λ′ + 1)h2

0τΦ cos(Φ− α)

ELv sin2(Φ) cos(α)

1

1− µ tan(Φ− α)
. (3.18)

Here λ′ characterises the stress distribution along the surface of the tool (see (B.39)).
As it was shown in [129], the energy balance equation of the inactive layer assumes the

following dimensionless form:

dT̂0(t̂)

dt̂
= ζ(T̂ (t̂)− 2T̂0(t̂))−

1

δt̂
T̂0(t̂). (3.19)

During the motion of the material, heat flows from the inactive layer to the active layer.
In the new model [130] it is taken into account that time is necessary to cover the distance
δ, which corresponds to the thickness of the layer. Consequently, a delayed value of the
temperature T̂0(t̂− δt̂) must be used in the calculations. Therefore,

dT̂ (t)

dt̂
= ητ̂(t̂)F (t̂)− ζ(T̂ (t̂)− T̂0(t̂))−

1

δt̂
(T̂ (t̂)− T̂0(t̂− δt̂)), (3.20)

where the following dimensionless system parameters are introduced:

ζ =
4Kλ

cρδ2
,

1

δt̂
=

Kv sin(Φ)

δ
, and η =

rKτΦv cos(Φ)

cρδTw cos(Φ− α)
. (3.21)

F (t̂) denotes the deformation speed expressed with the help of the constitutive equation,
characteristic of the material of the workpiece [126]:

F (t̂) ≡ γ̇

ε̇Φ
=

T̂ + 1

T̂Φ + 1
exp

τ̂ − 1+εnΦγ̂
n

1+εnΦ
+ a(T̂ − T̂Φ)

b(T̂ + 1)
, (3.22)

where a, b, and n are constant values, characteristic of the thermal softening, the sensitivity to
velocity of deformation, and the strain-hardening, respectively. The deformation is described
by the following equation [126]:

dγ̂(t̂)

dt̂
=
[
F (t̂)− F (t̂− δt̂)

] 1

δt̂
. (3.23)

As the BUE periodically develops and tears off, the thickness of the cut layer varies
approximately according to a saw-tooth profile (see Section B.4.2), in the form

h(t̂) = h0[1 +Hf1(t̂)], (3.24)
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where H = ∆h/h0, and – by introducing parameter Ω that characterises the frequency of
BUE formation –

f1(t̂) =
Ω

2π

(
t̂ mod

2π

Ω

)
≡ Ω

2π
t̂m. (3.25)

Thus, the equation of mechanical balance (cf. (3.4)) turns into the following non-dimensional
formula:

dτ̂

dt̂
=

1− F (t̂)[
1 +H Ω

2π
t̂m
]2 − 2τ̂

H Ω
2π

1 +H Ω
2π
t̂m

. (3.26)

In summary, the new mathematical model of chip formation comprises the autonomous
differential equations (3.19), (3.20), (3.23) and (3.26), along with the expression of the de-
formation speed (3.22).

3.2 ANALYSIS OF PÁLMAI’S 4D MODEL

The governing equations of the chip formation model of Section 3.1.2 can be summarized as
follows:

τ̇2 = 1− (F1 + F2), (3.27)
Ṫ0 = ζ(T1 − 2T0)− ξT0, (3.28)
Ṫ1 = η(pτ2 + 1− p)F1(τ2, T1)− ζ(2T1 − T2 − T0)− ξ(T1 − T0), (3.29)
Ṫ2 = ητ2F2(τ2, T2)− (ξ + ζ)(T2 − T1), (3.30)

where

F1(τ2, T1) ≡
γ̇1(t)

ε̇Φ
=

T1 + 1

TΦ + 1
exp

pτ2 − p+ a(T1 − TΦ)

b(T1 + 1)
,

F2(τ2, T2) ≡
γ̇2(t)

ε̇Φ
=

T2 + 1

TΦ + 1
exp

τ2 − 1 + a(T2 − TΦ)

b(T2 + 1)
. (3.31)

To find the possible solutions, we used the continuation and bifurcation software AUTO
[53]. For the application of this software, a stable equilibrium-type solution must be found
first by numerical simulation. The variation of the location of equilibrium states can be
followed by AUTO as one of the parameters is varied. Moreover, the bifurcation points are
also detected during this process, making the search for periodic solutions also possible. To
explore the bifurcations that lead to the switches among the three chip types of austenitic
steel (Fig. 3.2), parameter ζ would be the most practical bifurcation parameter, since this
parameter depends on the cutting speed. Unfortunately, the software AUTO was unable
to find the fine details of the corresponding bifurcation diagram, thus, we chose another
approach. We determined bifurcation diagrams with respect to the bifurcation parameter
ξ, and then performed a two-parameter (ξ-ζ) analysis. A typical bifurcation diagram is
shown in Fig. 3.5 at ζ = 21. As it can be seen in the figure, the stable equilibrium loses
stability via a supercritical Hopf bifurcation at ξ = 4.42808, and becomes stable again at ξ =
11.8039. These Hopf bifurcation points are denoted by H in the figure. The unstable periodic
solutions emerging at these points undergo fold bifurcations (denoted by F) at ξ = −1.85529
and ξ = 13.5244 and become stable. Note, that negative values of parameter ξ are physically
unfeasible, but we had to extend our studies to this domain during the continuation process.

Stability changes again at ξ = 3.11285 and ξ = 10.6639, where double periodic solutions
appear (see Fig. 3.5/a). At these points cascades of period doubling bifurcations (denoted
by PD1 and PD2 in Fig. 3.5) begin, leading to chaotic behaviour. In Table 3.1, the detected
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Figure 3.5: Bifurcation diagram at ζ = 21. Solid lines and full circles denote stable equi-
libria and periodic solutions, respectively. Dashed lines and open circles denote unstable
solutions. (a) double periodic solution at ξ = 3.5, (b) chaotic solution at ξ = 4.8, corre-
sponding to the case shown in Fig. 3.2/b, (c) periodic solution at ξ = 11.

period doubling bifurcation points are listed, together with the ratio of the differences be-
tween the successive bifurcation parameter values. The results indicate that the bifurcation
points tend to follow each other according to the so-called Feigenbaum ratio [63]

δF = lim
i→∞

ξi − ξi−1

ξi+1 − ξi
≈ 4.6692. (3.32)

To check this possibility, we determined several points of the trajectory of the solution shown
in Fig. 3.5/b. Since map-like data can be analysed more precisely than flow-like data, we
performed a Poincaré-transformation: the values of τ2 were detected at the intersection
points of the trajectory and the T0 = 0.1 plane. The average time period between two
crossings was ∆t ≈ 0.558. The successive values of τ2 define a one-dimensional Poincaré

Table 3.1: Detected period doubling bifurcations

Bifurcations at PD1 Bifurcations at PD2

i ξ
(1)
i

ξ
(1)
i −ξ

(1)
i−1

ξ
(1)
i+1−ξ

(1)
i

i ξ
(2)
i

ξ
(2)
i −ξ

(2)
i−1

ξ
(2)
i+1−ξ

(2)
i

1 3.11285 - 1 10.6639 -
2 4.03007 3.84514 2 9.52126 3.57611
3 4.26861 4.21225 3 9.20174 4.34485
4 4.32524 4.57062 4 9.1282 4.58193
5 4.33763 - 5 9.11215 -
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map, as depicted in Fig. 3.6. The numerically obtained points clearly trace out an unimodal
map, thus, the corresponding period doubling sequence indeed must obey Feigenbaum’s law.

1.16

1

1.04

1.08

1.12

1 1.161.04 1.08 1.12

τ2
(i)

(i+1)τ2

Figure 3.6: One-dimensional Poincaré-map.

Consequently, the parameters corresponding to the onset of chaos – the limits of the
Feigenbaum sequences – can be estimated quite easily:

ξ
(1)
crit ≈ ξ

(1)
5 +

∞∑
j=1

ξ
(1)
5 − ξ

(1)
4

δjF
= 4.34074 (3.33)

gives the critical parameter belonging to the period-doubling cascade PD1, while the upper
boundary of the chaotic regime is expected to be near PD2, at

ξ
(2)
crit ≈ ξ

(2)
5 −

∞∑
j=1

ξ
(2)
5 − ξ

(2)
4

δjF
= 9.10808. (3.34)

In this way we found that chaotic solutions may occur in the parameter domain ξ ∈
(4.341, 9.108). This result implies that chaotic and stable equilibrium solutions coexist be-
tween ξ = 4.341 and ξ = 4.42808 (where the Hopf bifurcation occurs).

Note that the results provided by AUTO only indicate that chaotic solutions may ex-
ist. To characterise the numerically obtained solutions, we applied the TISEAN nonlinear
time series analysis software package [80] on the time series τ

(i)
2 of the Poincaré map, and

determined the largest Lyapunov exponent λ. The algorithm, implemented in TISEAN,
reproduces the topology of the whole phase-space using only a single scalar time series, then
measures how the distance of selected pairs of points changes over time [91]. By plotting
the logarithm of the distance S versus the number of iteration steps ∆n for five different
initial distances, we obtained the graph shown in Fig. 3.7. Since the curves have quite long
linear sections, we can state that the divergence of trajectories is exponential, indeed. Con-
sequently, the analysed solution – corresponding to the chip shown in Fig. 3.2/b – is chaotic.
The slope of the curves at the linear part is a good approximation of the Lyapunov exponent:
λLyap,map ≈ 0.361. This value characterises the Poincaré map. To find the maximal Lyapunov
exponent of the flow, we must take into account the dimensionless average time period ∆t
of the crossings of the Poincaré surface. Using this value, λLyap,flow = λLyap,map/∆t ≈ 0.647.
Dividing this number by the value of the characteristic time, one obtains the Lyapunov ex-
ponent expressed with respect to the real, physical time as λ = 0.647/K ≈ 3945 1/s. This
result indicates that the chaotic dynamics of thermo-mechanical processes is typically much
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faster than other typical dynamical mechanisms during cutting, e.g., the vibrations related
to the regenerative effect.

Δn
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Exponential divergence of trajectories
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Figure 3.7: Estimation of the Lyapunov exponent using TISEAN.

The bifurcation software AUTO is capable of the continuation of bifurcation points in
two parameters, as well. The bifurcations detected during the one-parameter bifurcation
calculations – like the ones shown in Fig. 3.5 – provide starting points for this two-parameter
analysis. The resulting bifurcation curves separate the domains of qualitatively different
solutions. In Fig. 3.8, the ξ − ζ parameter plane is shown.

0

 5

 10

 15

 20

 25

 30

 35

−5  0  5  10  15  20  25  30

 40
equilibrium

periodic

periodic

chaotic

chaotic

eq. + periodic

eq. + double periodic

a)

b)

c)

ζ

ξno stable solution periodic

double periodic

double periodic

eq. + chaotic

Figure 3.8: Possible solutions in the ξ − ζ parameter plane. The parameter values at
points a), b) and c) correspond to Figs. 3.2/a-c.

As it can be seen, there are domains where different types of solutions coexist, and strips
of double periodic orbits separate the found chaotic regimes. The boundaries of these latter
domains were approximated by the period doubling bifurcation curves where four-periodic
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solutions are born. It is worth mentioning that although the solutions have no physical
meaning at negative values of the parameters, the structure of the parameter plane can be
looked over more easily by extending the figure to include hypothetical parameter domains.
Point a) in the equilibrium domain, point b) in the chaotic domain and point c) in the
periodic domain correspond to the continuous, aperiodic, and lamellar chips shown in Figs.
3.2/a, 3.2/b and 3.2/c, respectively.

As the bifurcation diagram shows, there are parameter domains where a small change
of a parameter or initial condition may lead to an abrupt change in the dynamics of chip
formation, influencing the cutting process. This fact can be the explanation of certain
unexpected phenomena, which are well-known by technology experts, when the type of chip
formation suddenly changes, apparently without any external influence.

3.3 EFFECTS OF THE VIBRATIONS OF THE WORK-
PIECE

In the present section, the model described in Section 3.1.3 will be analysed, i.e., we consider
the case of turning and take into account that the workpiece is elastic. As a consequence, it
can perform vibrations that influence the cutting process according to Eqs. (3.12)-(3.16).

Three realistic technological examples are considered that correspond to the cases exam-
ined in Section 3.2. The system parameters of the model are a = 0.3, b = 0.012, TΦ = 1,
p = 1.03. The cutting speed is v1 ≡ v0 = 3.6 m/s (f1 = 1), leading to periodic solutions
by the 4D model, and ξ = 4.8, η = 4.4, and ζ = 3.4. The time scale is K0 = 1.64 · 10−4

s. We examined the system at two additional cutting speeds, too. At v2 = 0.58 m/s
(f2 = 0.58/3.6 ≈ 0.16), we obtained chaotic, while at v3 = 0.3 m/s (f3 = 0.3/3.6 ≈ 0.083)
fixed point solutions.

Let the turned workpiece be a steel beam of size ∅40×200 mm, with τΦ = 900 MPa. The
equivalent mass of this beam is approximately mr ≈ 0, 662 kg, with stiffness k ≈ 9.42 · 106
N/m, and eigenfrequency ν ≈ 600 Hz. Using these values, the reference length is L̃ =
0.0732 mm according to (3.11), while the dimensionless stiffness A and velocity V0 in Eq.
(3.16) are A = 0.383, and V0 = 8.07 (see (B.25) and (3.17)). The initial conditions were
chosen to be τ2(0) = 1, T0(0) = T1(0) = T2(0) = 0, z(0) = ż(0) = 0, like in the case of the
4D model.

3.3.1 Change of the stable periodic solution of the 4D model

The solution of the oscillator model, described in Section 3.1.3, can be seen in Figs. 3.9 and
3.10 at the cutting speed v1 = 3.6 m/s. The so-called principal cutting force – which is
parallel with the cutting speed – can be obtained using (B.21): Fv = 2τΦ = 1800 N. The
static deflection of the beam is L̃zstat = Fvk ≈ 1.9 · 10−4 m = 0.19 mm under this force.
As it can be seen in Fig. 3.9/a, the initial amplitude of the evolving oscillations is z ≈ 2.2,
corresponding to L̃z ≈ 0.16 mm. This value is a bit less than the static deflection. As
it is clearly visible, the amplitude increases initially, but the dynamics becomes stationary
at about t = 2000 (Figs. 3.9/b and 3.10/a). According to Fig. 3.10/a, the amplitude is
approximately z ≈ 18.25 in this state, that corresponds to very large deflections of 1.36
mm. Thus, the originally periodic process of chip formation may lead to harmful oscillations
in the case of certain workpieces with critical geometry. This fact is well known in the
engineering practice, so this result provides an evidence for the applicability of our model.
The eigenfrequency ν = 600 Hz of the workpiece and its harmonics are clearly visible in the
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Figure 3.9: Simulation results at v1 = 3.6 m/s: (a) Increasing amplitudes, (b) Stationary
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Figure 3.10: Quasiperiodic oscillations (a) and the power spectrum (b) at v1 = 3.6 m/s

power spectrum of the oscillations (Fig. 3.10/b), together with other large peaks at about
12000 Hz. Thus, we conclude that the motion became quasiperiodic as the oscillations of the
workpiece and the chip forming process superimposed. Note that the spectra of the other
variables are similar, but the spectrum of τ2 provided the most pronounced peaks. Although
the horizontal axis was transformed to show the frequency in Hz, the vertical axis was kept
dimensionless.

3.3.2 Change of the aperiodic (chaotic) solution of the 4D model

As it was shown in Section 3.2, the solution of the original 4D model is chaotic at the cutting
speed v2 = 0.58 m/s. We experienced chaotic behaviour during the initial part of the numeri-
cal simulation in the extended system, too, at f2 = 0.16 (Fig. 3.11/a). There is still a peak in
the spectrum at ν ≈ 600 Hz, but this is not dominant, and there are much more frequencies
in the vibration than in the previous case (Fig. 3.11/b). To analyse the chaotic behaviour, we
generated time series by numerical simulation and used the TISEAN software package [80, 91]
to characterise the divergence of nearby trajectories. In the examined case, the phase-space
is 6-dimensional with the variables τ2, T0, T1, T2, z, and ż. However, according to Takens’
embedding theorem [152] if the delayed values of a single variable of a time series are consid-
ered – for example, the subsequent maxima of τ2 – we can reconstruct the chaotic attractor
in the phase-space of delayed coordinates so that it will be topologically similar to its original
image in the real 6D phase space. To illustrate the phase-space reconstruction, we plotted a
2D projection of the reconstructed chaotic attractor in Fig. 3.12/a. The appropriate number
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Figure 3.11: Chaotic oscillations at v2 = 0.58 m/s: (a) Time series, (b) Power spectrum

of delayed coordinates – i.e., the embedding dimension m of the reconstructed phase-space
– can be estimated by the so-called false nearest neighbours method [91]. In the considered
case, we obtained m ≈ 10 . . . 12. These embedding dimensions were used to reconstruct the
phase-space from the time series of τ2, and to determine the maximal Lyapunov exponent.
Plotting the logarithm of the average distance (separation, S) for several initial distances and
embedding dimensions m = 10, 11, 12 against the number of iteration steps, the Lyapunov
exponent can be estimated as the slope of the linear parts of the curves (Fig. 3.12/b). Since
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Figure 3.12: Time series analysis of the chaotic part of the signal at v2 = 0.58 m/s: (a)
A projection of the attractor, (b) Estimation of the Lyapunov exponent

the distance of two trajectories cannot be larger than the size of the attractor, this is why a
saturation can be observed in the figure. Averaging the estimated slopes of the linear parts of
the curves, we obtained 0.22. The time step was 0.0005 during the simulation, there were on
average 930 steps between two maxima of τ2, and the time scale was K0/f2 = 1.025 · 10−3 s.
Thus, the Lyapunov exponent is λ ≈ 0.22/(0.0005 · 930 ·K0/f2) = 462 1/s. Since both the
linear parts of the curves and the saturation are clearly visible in Fig. 3.12/b, we can claim
that the examined solution is chaotic during the first part of the simulation. However, later
this chaotic state comes to an end as Fig. 3.13/a shows. The eigenfrequency ν ≈ 600 Hz
becomes dominant after t ≈ 1000 in the spectum (see Fig. 3.13/b), and there is another
high peak, too. Consequently, the chaotic motion switches to quasiperiodic vibration, i.e.,
we found transient chaotic behaviour. Note that since the stiffness parameter A usually in-
creases during the cutting process, we examined the behaviour of the system at larger values
of A, too. According to our experiences, the mean lifetime of transient chaos decreases as
parameter A is increased. Moreover, at sufficiently large stiffnesses the final solution becomes
an equilibrium, instead of a quasiperiodic vibration.
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Figure 3.13: Quasiperiodic vibrations after the chaotic part of the motion, at v2 = 0.58
m/s: (a) Time series of τ2 and z, (b) Power spectrum

3.3.3 Change of the equilibrium solution of the 4D model

At the cutting speed v3 = 0.3 m/s, the steady-state solution of the 4D model was an
equilibrium. However, we observed aperiodic vibrations in the extended model with f3 =
0.083. The deflection-time diagram can be seen in Fig. 3.14, showing that the real vibration
amplitudes L̃z are in the order of microns. To characterise these vibrations, we applied

100 110 120 130 140 150
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-0.03

-0.02

-0.01

0

z

t

Figure 3.14: Deflection-time diagram at v3 = 0.3 m/s

nonlinear time series analysis. We determined the minima of τ2 and plotted its subsequent
values in Fig. 3.15/a. The embedding dimension is m ≈ 8 . . . 9, according to the false
nearest neighbours method. The divergence of trajectories is shown in Fig. 3.15/b. The
slope of the linear part of the curves is approximately 0.17. The time step was 0.0005
during the simulation and the average number of steps between two minima was 507.4 at
the time scale K0/f3 = 1.97 · 10−3 s. Thus, the real value of the Lyapunov exponent is
λ ≈ 0.17/(0.0005 · 507 · K0/f3) = 340 1/s. It means that a chaotic, but small amplitude
unevenness occurs on the profile of continuous chips, as it often found in the practice.

Note that it may also happen that the effective cutting speed veff = fv0− ż drops to zero
or – hypothetically – to negative values due to the high frequency vibration of the workpiece.
In these cases the cutting process becomes interrupted and the tool leaves the workpiece.
This process may lead to impacts and other undesired effects that are not discussed here.

We found that the detachments of the tool and the workpiece are typically short, but lead
to very large variations in the stresses. Fig. 3.16 depicts the pattern on the (A, f) parameter
plane where the aforementioned phenomenon was detected by numerical simulation within
6000 dimensionless time steps. In the cases analysed in this section, the effective cutting
speed was always positive.
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Figure 3.15: Time series analysis of the chaotic part of the signal at v3 = 0.3 m/s: (a) A
projection of the attractor, (b) Estimation of the Lyapunov exponent.
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Figure 3.16: The effective velocity was always positive in the green parameter domains,
while interrupted cutting was detected in the red regions.

3.4 ANALYSIS OF THE EFFECT OF BUE ON CHIP
FORMATION

This section is devoted to the analysis of the delayed chip formation model – described in
Section 3.1.4 –, that takes the effect of the periodic formation and breaking of the built-up
edge into account during turning.

3.4.1 Numerical simulation

We performed numerical simulation of the model defined by Eqs. (3.19), (3.20), (3.23), (3.26)
and (3.22). These equations were applied as follows: only the shear stress could change in
the initial interval t̂ = 0 . . . δt̂, according to (3.26), with initial condition τ̂(0) = 0. This
part of the solution corresponds to the formation of the deformation band. The other three
variables remain zero in this period: T̂0(t̂) = 0, T̂ (t̂) = 0, γ̂(t̂) = 0. For times t̂ > δt̂, the
solution previously obtained for the shear stress provides the time history for the delayed
differential equations.

The used parameters correspond to Pálmai’s experiments, described in Appendix B.4.2.
The experimental material was soft steel – its chemical composition is given in Table B.1.
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The physical and mechanical properties of the chips can be characterised by the following set
of dimensionless parameters: a = 0.3; b = 0.012; n = 0.2; TΦ = 1.2; εΦ = 2.44. The cutting
speed, feed rate, rake angle, approach angle, shear angle and speed of the chip assumed the
values v = 0.5 m/s, ffeed = 0.3 mm/rev, α = 6o, κr = 0o, ϕ = 25.7o and vchip = 0.23 m/s,
respectively. Consequently, the dimensionless technological parameters are δt̂ = 0.4, η = 4,
and ζ = 30. The parameters describing the formation of BUE were chosen to be H = 0.1
and Ω = 0.18. We found that the solution of the set of differential equations quickly tends to
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Figure 3.17: Solution curves without (a) and with (b) built-up edge.

an equilibrium point (Fig. 3.17/a) if the formation of BUE is not taken into account, i.e., if
H = 0. However, the response becomes chaotic in the opposite case. Fig. 3.17/b shows the
first few periods of the formation of the BUE, where h(t̂)/h0 =

[
1 +Hf1(t̂)

]
(see (3.24)).

As depicted in Fig. 3.17/b, the effect of the excitation with period 2π/Ω ≈ 34.9 is clearly
visible on the solution curves. There is an irregular oscillation with increasing amplitude at
the beginning of each period that finally leads to extremely large deformations. According
to numerical evidence, the duration of the extremal deformations is just equal to the delay
time δt̂ – this is the time period that is spent by the material of the workpiece in the shear
zone. The variables return near to their equilibrium value at the end of each cycle.

3.4.2 Nonlinear analysis of the solutions

To show that the solutions are indeed chaotic, we applied two different numerical procedures
for the determination of the largest Lyapunov exponent. The main difficulties with delay-
differential equations (DDE) are originated from the fact that the phase-space of these equa-
tions is infinite dimensional. We used a special procedure that was developed by Farmer [60]
in order to determine a finite dimensional approximation of the Lyapunov spectrum. For the
application of the method, we rewrote the set of differential equations to a high-dimensional
map, according to the Euler integration scheme. The time step was chosen to be ∆t̂ = δt̂/N
(where δt̂ is the delay), and the state of the system was approximated by N samples from
the interval [t̂, t̂− δt̂]:

x = [x1, x2, . . . , x4(N+1)] =[τ̂(t̂), τ̂(t̂−∆t̂), . . . , τ̂(t̂−N∆t̂),

T̂0(t̂), T̂0(t̂−∆t̂), . . . , T̂0(t̂−N∆t̂), (3.35)

T̂ (t̂), T̂ (t̂−∆t̂), . . . , T̂ (t̂−N∆t̂),

γ̂(t̂), γ̂(t̂−∆t̂), . . . , γ̂(t̂−N∆t̂)].

To partially determine the Lyapunov spectrum, the evolution of the so-called orthogonal
initial separation vectors ∆xi, i = 1, . . . , 4(N + 1) was also followed by the algorithm,
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according to the variational equation

d

dt̂
∆xi = J∆xi, i = 1, ..., 4(N + 1), (3.36)

where J denotes the Jacobian matrix of the discretized differential equations. By rewriting
Eq. (3.36) according to the Euler scheme, one obtains another high-dimensional map. To
apply the method, the 4(N +1)-dimensional map describing the evolution of the system and
the 42(N + 1)2-dimensional map describing the evolution of the elements of the separation
vectors are iterated simultaneously. These latter vectors must be renormalized after a couple
of iteration steps using the Gram-Schmidt orthogonalization procedure. The individual
Lyapunov exponents can be determined as the rate of stretching of the separation vectors.

The practical application of the method is rather difficult since the time step is ∆t̂ =
δt̂/N ; thus, the shorter the stepsize, the larger the dimension of the problem. Moreover,
Eqs. (3.19), (3.20), (3.23) and (3.26) form a stiff and piecewise smooth set of differential
equations. We implemented the algorithm in Matlab and divided the time intervals of length
∆t̂ into even smaller intervals using a 3rd order variable stepsize Runge-Kutta integration
scheme for the evaluation of the system’s state. Several different values of parameter N
were applied. The Gram-Schmidt procedure was performed after GS = 10 . . . 60 iteration
steps. We found that this latter parameter did not have significant influence on the results.
Since the algorithm provided an approximation of the Lyapunov spectrum λi, the so-called
Kaplan-Yorke dimension could also be determined [60]:

DKY = j +

∑j
i=1 λi

|λj+1|
, (3.37)

where j is the largest integer for which λ1 + . . . λj ≥ 0, if the exponents are arranged in a
decreasing order.

The results of the calculations are listed in Table 3.2. As Fig. 3.18 shows, the value of
the largest Lyapunov exponent tends to λ1 ≈ 2.8 if N = 120. Moreover, the system is hyper-
chaotic, since even the second Lyapunov exponent is positive: λ2 ≈ 0.9. The examination of
the case N = 120 required the simultaneous solution of 484 differential equations for each of
the 484 separation vectors. Consequently, the computation took weeks. Since our goal was
merely to show that the system was chaotic, we did not run further simulations for the more
exact determination of the maximal Lyapunov exponent.

N GS λ1 λ2 DKY time
10 11 4.76 1.93 3.65 1000
20 10 4.49 1.60 3.64 1000
40 20 3.72 1.48 3.60 690
60 30 3.43 1.32 3.51 315
100 40 2.96 1.04 9.03* 555
120 60 2.81 0.9 5.15* 132

Table 3.2: The two largest Lyapunov exponents, the Kaplan-Yorke dimension and the
duration of simulation in dimensionless time. (*: Slow convergence, unreliable result.)

The calculation of the Kaplan-Yorke dimension provided less precise results due to the
rather slow convergence of the smaller Lyapunov exponents. The convergence was especially
slow in the case N = 100. We partially overcame this problem by tuning the initial stepsize
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Figure 3.18: The convergence of the two largest Lyapunov exponents. (a) N = 100, (b)
N = 120.

of the Runge-Kutta integration in the case N = 120. In summary, we can claim that the
dimension of the attractor is finite, since DKY < 6.

Although Farmer’s method seemed to be applicable for the examined set of stiff, piecewise
smooth differential equations, we checked our results with another procedure, too. Stefan-
ski, Kapitaniak and Dabrowski [147, 148] developed an algorithm that is capable of the
determination of the largest Lyapunov exponent of piecewise smooth delayed systems. This
method is based on the synchronization of the identical systems ẋ = f(x(t),x(t − τ)) and
ẏ = f(y(t),x(t− τ)), by a feedback mechanism:

ẋ = f(x(t),x(t− τ)) +Q(y(t)− x(t)), (3.38)
ẏ = f(y(t),x(t− τ)). (3.39)

where Q = diag[q, q, . . . , q] ∈ Rk and x ∈ Rk, y ∈ Rk, if the set of equations comprises
k equations. The synchronization occurs when q is greater than the greatest Lyapunov
exponent. In order to apply the method, we numerically integrated the set of Eqs. (3.19),
(3.20), (3.23) and (3.26), coupled to an identical system and varied the value of q according to
the bisection method. If the systems synchronized (i.e., the difference between the variables
became negligible) in the interval 0 < t̂ < 300, the value of q was reduced. Otherwise, it
was increased. The threshold value of the coupling coefficient provided an estimate for the
largest Lyapunov exponent: λ1 ≈ 2.78. The obtained value is quite close to the Lyapunov
exponent calculated by Farmer’s method.

3.5 CHIP FORMATION WITH SURFACE REGENER-
ATION EFFECT

Pálmai’s 4D chip formation model (Eqs. (3.19), (3.20), (3.23), (3.26), and (3.22)) was com-
bined with the traditional linear orthogonal turning model in the framework of a joint work
[74]. This latter model takes the surface regeneration effect into account: besides the feed
per revolution h0, the actual chip thickness h(t) depends also on the difference of the actual
and one period earlier position of the tool: h(t) = h0 − x(t) + x(t− τ). Here τ denotes the
time delay, i.e., the period of spindle rotation.

Expressing the cutting coefficient by the shear stress τ2 at the root of the chip, one obtains
the following delay-differential equation in dimensionless form, with the time scaled by the
angular natural frequency ωn of the tool:

ẍ(t) + 2κẋ(t) + x(t) = τ2(t)(h0 − x(t) + x(t− τ)), (3.40)
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where κ is the damping ratio. According to (3.2), the timescale K used in the chip formation
model depends on the actual chip thickness h(t), providing a coupling between the two mod-
els. To match the temporal scaling of these models, the right-hand side of each differential
equation in Pálmai’s model was divided by K(h(t))ωn.

As Fig. 3.19/a shows, the shear stress is constant at low feed rates, corresponding to
the formation of continuous chips without meaningful dynamical phenomena. However,
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Figure 3.19: (a) Minimum, maximum and average values of τ2 (b) Domains of stability

segmented chips are formed at higher feed rates. In this case, the oscillation of the shear
stress is several orders of magnitudes faster than the motion of the tool. Thus, it was
sufficient to use the average value of τ2 to reveal the effects of the periodic chip formation
dynamics on the stability of the turning process.

The results of the stability calculation are depicted in Fig. 3.19/b on the parameter
plane of feed h0 and dimensionless chip width Hw. The red domain of stability corresponds
to τ2(h) = const, i.e., when the chip formation dynamics is neglected. The blue domain was
obtained using the coupled system of equations, but the term ∂τ2(h)/∂h0 was neglected in
the characteristic equation of (3.40). The consideration of this term led to a further increase
of the domain of stability, shown in green colour. It is important that these results are valid
only if the shear stress is positive – see the red boundary line in the figure.

In summary, it was found that in case of chip segmentation the increase in chip thickness
may lead to the reduction of both the average shear stress in the shear layer and the cutting
force. Moreover, the segmentation radically improves the stability properties of the turning
process according to this simple model.
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Chapter 4

Micro-Chaos in Digitally Controlled
Systems

4.1 INTRODUCTION AND LITERATURE REVIEW

Parallel with the fast development of computer technology, more and more commercial prod-
ucts are operated using digital control loops. For the design of these devices, engineers must
take into account that the stability properties of digital and analog control systems are differ-
ent due to the so-called digital effects (see e.g., [81]). The main digital effects are sampling,
processing delay and quantization. Sampling means that the control system receives data
about the measured state variables periodically, according to a certain sampling period. Since
some time is necessary to compute the control feedback, the processing delay between signal
measurement and control effort output is unavoidable. The signals measured by sensors are
often represented in a finite amount of bits, just like the numbers in digital processors. The
corresponding limited precision leads to rounding (or quantization) in calculations.

The consideration of sampling and delay during the design of control systems is a routine
tasks among electrical engineers. Still, digital control systems often exhibit strange, irregular
behaviour [24, 50, 104]. The occuring small amplitude vibrations are usually considered as
stochastic noise in practice [166], however, as we will see, their source may be deterministic
chaotic dynamics, due to the quantization.

The stochastic approach to quantization can be traced back to the seminal work of
Widrow [165], who described the phenomenon in the frequency domain. Bertram [13] focused
on the upper bound – the so-called Bertram bound – of the quantization error. It is calculated
as the sum of the responses to unit impulses at the inputs of the system, multiplied by
the maximum error in one quantizing operation. Bertram’s calculation was improved later
by several researchers, e.g., [4, 144, 146]. The chaotic nature of the quantization-induced
vibrations was unclear to the researchers until the end of the 1980s, when Ushio and Hsu
[162] showed that output quantization may lead to chaos.

In the present chapter, we will supplement the literature results in three areas:

1. analysis of transient chaotic solutions of digitally controlled systems,

2. exploration of their phase-space structure, and

3. development of advanced numerical methods for the analysis of the global dynamics.

On the following pages, simple models of digitally controlled mechanical systems will
be analysed, where both the mechanical model and the control scheme are linear, and the
desired state of the uncontrolled system is unstable. We consider full-state feedback systems

55
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with sampling period τ . It is assumed that the control force u is kept constant between
two successive sampling instants tj ≡ jτ and tj+1 ≡ (j + 1)τ , according to the so-called
zero-order hold scheme (Fig. 4.1).

tj tj+1

tj tj+1 tj+2

x
or
v

tj+3

tj+3

Δu
Δu
Δu
Δu
Δu
Δu

τ τ

tj+2

tj-1

j-1t t

t
u

Figure 4.1: Sample and hold (or zero-order hold) control scheme with negligible processing
delay and quantized, scalar-valued control force u.

The control effort may depend also on earlier values of the state variables. For example,
the speed is often expressed by the actual and delayed values of the displacement, using a
difference scheme. The corresponding processing delay is an integer multiple of the sampling
period in the general formulas of Section 4.2, but the multiplier will be 0 (neglected processing
delay) or 1 in the examples discussed in this chapter.

The notion of micro-chaos was introduced by George Haller and Gábor Stépán [78]. They
found that digital control leads to small amplitude chaotic vibrations during the sliding
motion of a block if the contact is characterised by Stribeck friction. The velocity xj of the
block was described by a one-dimensional map – a so-called micro-chaos map:

xj+1 = a xj − b Int(xj), j = 1, 2, . . . , (4.1)

where the Int() function rounds towards the origin, representing the effect of quantization.
The fixed points x∗

m = xj = xj−1 of the map can be determined by the following formula:

x∗
m =

bm

a− 1
, if 0 ≤ m ≤ x∗

m < m+ 1 or 0 ≥ m ≥ x∗
m > m− 1, (4.2)

where m stands for the integer part of x∗
m. If 0 ≤ m ≤ x∗

m < m+ 1 or 0 ≥ m ≥ x∗
m > m− 1

do not fulfil, the corresponding point x∗
m is a virtual fixed point, i.e., its calculated value

does not correspond to a valid equilibrium position.
Fig. 4.2 illustrates the graph of the map with the cobweb diagram of a trajectory. The

graph consists of an infinity of small line sections in the intervals defined by the integer
numbers. If a > 1, the fixed points are unstable. However, on large scales, we see that the
trajectories tend to the neighbourhood of the origin, provided that |a− b| < 1. This locally
unstable, but globally stable behaviour is the source of chaos. The concepts behind this
simple model can be extended to other areas of science, too. For example, similar models
were introduced in population dynamics [114] and neurology [21].

It follows from the proof in [78] that the 1D micro-chaos map (4.1) is chaotic in Devaney’s
sense [52]: there exists an attracting set that is topologically transitive under the application
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Figure 4.2: Graph of the micro-chaos map (4.1) at a = 3.5 and b = 2.8. All the regular
fixed points are shown for positive x values. x∗8 = 8.96 (regular fixed point), but x∗9 =
10.08 > 10 (virtual fixed point).

of the map, there exists an infinity of periodic orbits that are dense in the set, and the
system’s behaviour sensitively depends on the initial conditions.

As it will be shown in Section 4.2, it is straightforward to prove in the general, finite-
dimensional case that there exists a finite size absorbing sphere – global attractor – in the
phase-space of the micro-chaos maps. Moreover, if an unstable equilibrium is to be stabilized
by the control, the largest Lyapunov exponent is positive, corresponding to the sensitive
dependence on initial conditions. However, the proof of topological transitivity and the
existence of an infinity of unstable periodic orbits is usually rather difficult. There are a few
examples for proof of chaos in similar, higher dimensional systems [9, 70, 116, 161, 171, 172],
but these proofs were typically performed by computers, using interval-arithmetic.

Stépán’s PhD student, Enikov attempted to give an analytical proof of chaos in the case
of a 3D micro-chaos map [58]. Although the proof is incomplete, the introduced formalism
and certain results proved to be useful during the further analysis of micro-chaos maps.

Certain micro-chaos maps exhibit transient chaos: an escaping route opens on the chaotic
attractor that turns to a repeller set. The chaotic oscillations disappear suddenly [44, 155]
when the trajectory leaves the repeller, provided that it does not tend to another strange set.
The probability that a trajectory has not yet escaped from the repeller decays exponentially
in time, and the exponent κ is called escape rate. The mean number of iteration steps
before the trajectories escape from the repeller – the escape number N̄esc that characterises
the settling time of the control system – is approximately the reciprocal of the escape rate:
N̄esc ≈ 1/κ. However, it was shown in [35] that the accurate relation can be formulated as

N̄esc =

∑∞
n=1 ne

−κn∑∞
n=1 e

−κn
=

1

1− e−κ
. (4.3)

We developed a recursive method for the exact calculation of N̄esc in the case of a 1D
piecewise linear micro-chaos map [34], and this lifetime estimation method was extended to
a 2D case, too [36]. Although these methods provide exact results, their application is very
complicated and requires the detailed analysis of the dynamical system.

To facilitate the discussion of the micro-chaos phenomenon, two general forms of the
micro-chaos maps are introduced in Section 4.2, and certain general properties of these
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maps are pointed out. After that, specific micro-chaos maps are analysed.
Section 4.3 deals with a 1D transient chaotic micro-chaos map. A lifetime estimation

method is introduced that is based on the fractal dimension of the repeller [33, 35]. If one
takes into account a processing delay that is just equal to the sampling period, the micro-
chaos map becomes two-dimensional, but the attractors can be covered by one-dimensional
sets. The proof of chaos is presented for this map in Section 4.4, following [38]. Note, that
a similar 2D map was introduced in [69] as a model of hysteresis. In Section 4.5, a detailed
proof of chaos is given for another 2D micro-chaos map – a model of a PD controlled linear
oscillator [42]. The examined map is a multi-baker map, i.e., its phase-space structure is
composed of neighbouring baker’s maps. As a consequence of this property, several small
disconnected strange attractors may coexist far from the desired state of the system, showing
that the digital effects can have a significant influence on the control error [43].

The discovery of disconnected attractors revealed that the thorough exploration of the
phase-space requires a numerical method which is capable of extending its domain of exam-
ination. This is why we developed the so-called Clustered Simple Cell Mapping method in
the framework of a joint work with Gergely Gyebrószki [72] – see Section 4.6.

Finally, certain further results related to the micro-chaos phenomenon are summarized
in Section 4.7, based also on the cooperation with Gergely Gyebrószki [75, 76, 77].

4.2 PROPERTIES OF MICRO-CHAOS MAPS

4.2.1 Generalization of the micro-chaos concept

The behaviour of periodically sampled systems can be described by discrete maps. If there is
no quantization and no delay, and both the model of the mechanical system and the control
scheme are linear, the general form of these maps is

xj+1 = Axj +Buj

uj = Kxj

}
⇒ xj+1 = (A+BK)xj ≡ Sxj, (4.4)

where xj ∈ Rn denotes the state vector at the jth sampling instant, A ∈ Rn×n and B ∈ Rn×l

are the coefficient matrices, u ∈ Rl is the vector of control signals and K ∈ Rl×n is the matrix
of feedback gains. We consider systems whose y = 0 state is unstable without control, thus,
at least one of the eigenvalues of matrix A is outside the unit circle on the complex plane. If
the delayed values of the state are also used by the control system, we distinguish between
the physical state vector xj of coordinates and velocities, and the extended state vector yj

that is built up of the actual and earlier values of xj. As it is shown in Appendix C.1, the
map assumes the same form in this case, too:

yj+1 = Syj, (4.5)

where we kept the same notation for the coefficient matrix S, to highlight that it assures the
stabilization of the state y = 0, i.e., the moduli of its eigenvalues are less than one.

Linear systems cannot exhibit complicated behaviour, so we examine cases where the
quantization is the source of nonlinearity. There are basically two analog-digital transfor-
mations during the operation of a control system: on the one hand, the state of the system
is measured – this will be considered as the input of the control system – and the measured
values are quantized. On the other hand, the calculated control signal – the output – can
assume also only a finite number of values. While certain results about the input quantiza-
tion and the so-called twofold quantization are discussed in Sections 4.3, 4.7 and Appendix
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C.2, this thesis focuses on the effects of output quantization. Thus, the rounding during the
measurement of state variables is neglected compared to the rounding of the control effort
signal. For example, this assumption is valid in case of an Arduino Mega microcontroller
that has 8-bit Pulse Width Modulation (PWM) resolution, while 12-bit analog-to-digital
resolution is achievable by oversampling.

The elements of the calculated control vector uj = [u1j u2j . . . ulj]
T can be quan-

tized with different resolution values. In this case, the diagonal matrix

RO = diag[rO1 rO2 . . . rOl] (4.6)

contains the values of the resolutions for the l control effort signals. Each signal must be an
integer multiple of the corresponding resolution value. It is shown in Appendix C.2.1 that if
d delayed values of the state are taken into account in the control effort as

uj = K0xj +K1xj−1 + · · ·+Kdxj−d, (4.7)

the evolution of the extended state vector yj = [xj xj−1 . . . xj−d]
T can be formulated as

yj+1 = A+yj + b+
j . (4.8)

However, this formula can be rewritten as

xj+1 = Axj +BROInt

(
R−1

O

d∑
i=0

Kixj−i

)
≡ Axj +BRO


mj1

mj2

...
mjn

 ≡ Axj + bj, (4.9)

where the function Int : Rl → Zl is an element-wise integer part function, rounding the
elements of the output towards zero. This function corresponds to the so-called mid-tread
quantizer with double deadzones. Thus, the behaviour of the analysed systems can be
described by piecewise affine maps (4.9) that will be referred to as micro-chaos maps.

If there is only one control signal, i.e., vector uj is one-dimensional with resolution rO, a
single integer number mj characterises the quantization at each sampling instant:

xj+1 = Axj +BrOInt

(
r−1
O

d∑
i=0

Kixj−i

)
≡ Axj + bmj, (4.10)

where b = BrO. According to Eq. (4.9), if the elements of the state vector are small (e.g.,
each element of R−1

O

∑d
i=0Kjxj−i is less than one), the quantization can radically reduce the

value of the intended control effort, while vector bj becomes small compared to Axj. Thus,
the dynamics will be dominated by matrix A, reflecting that the origin is locally unstable.

On the other hand, if the system’s state is far from the origin, the effect of quantization
is negligible. In these cases one may consider the quantization as a small perturbation to
the non-quantized system. Thus, instead of adding the integer parts of the control terms to
the state-space model of the uncontrolled system, it is possible to consider the controlled,
non-quantized system and subtract the fractional parts of the control effort:

xj+1 = (A+BK0)xj +B
d∑

i=1

(Kixj−i)−BRO Fj, (4.11)
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where the vector of fractional parts Fj ∈ Rl can be expressed as

Fj = R−1
O

d∑
i=0

(Kixj−i)− Int

(
R−1

O

d∑
i=0

(Kixj−i)

)
. (4.12)

These fractional parts do not influence considerably the behaviour of the system if the
arguments of the Int function (i.e., the elements of xj−i) are large. Thus, the trajectories
tend towards the origin in these cases. Reformulating the micro-chaos map as

xj−(d−1)

...
xj−1

xj

xj+1


︸ ︷︷ ︸

yj+1

=


0 I 0 . . . 0

0 0 I . . . 0
...

...
... . . . ...

0 0 0 . . . I

BKd BKd−1 . . . BK1 A+BK0


︸ ︷︷ ︸

S


xj−d

...
xj−2

xj−1

xj


︸ ︷︷ ︸

yj

−


0

0
...
0

BROFj


︸ ︷︷ ︸

cj

(4.13)

we see that the neighbourhood of the locally unstable origin behaves like an attractor on
large scales, since the „stable” matrix S (cf. (4.4) and (4.5)) governs its large-scale behaviour.
Certainly, if the control vector uj is only one-dimensional, i.e., l = 1, vector Fj is reduced
to a scalar value χj. Consequently, there is only one non-zero value in vector cj, and the
micro-chaos map can be expressed as

yj+1 = Syj − cχj. (4.14)

Note that since the eigenvalues of matrix S are inside the unit circle, map (4.13) is a con-
traction. Consequently, it defines an iterated function system, like Barnsley’s tree [10].

It is shown in Appendix C.2 that the micro-chaos maps assume the forms (4.9) and (4.13)
in case of input quantization and twofold quantization, as well.

4.2.2 Fixed points

Since unstable fixed points and periodic orbits form the skeletons of strange attractors, their
location influences the phase-space structure. Moreover, as it was illustrated in Fig. 4.2, the
regular fixed points are often accompanied by virtual fixed points. In the examined low-
dimensional cases the virtual fixed points’ unstable manifolds often form the natural borders
of the attractor, leading the trajectories back towards the origin.

The fixed points’ positions of the map (4.10) with scalar control effort can be expressed
as follows. Let us denote the fixed point corresponding to m = Int

(
r−1
O

∑d
i=0Kixj−i

)
by

x∗
m. Substituting xj+1 = xj = · · · = xj−i = x∗

m into (4.10) one obtains

x∗
m = Ax∗

m +BrOInt

(
r−1
O

d∑
i=0

Kix
∗
m

)
≡ Ax∗

m + bm, (4.15)

where
∑d

i=0Kix
∗
m ≡ K̃x∗

m. Thus,

x∗
m = (I−A)−1bm. (4.16)

For the validity of this expression, it is required that

m ≤ r−1
O K̃x∗

m < m+ 1 if m > 0,
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−1 < r−1
O K̃x∗

m < 1 if m = 0, (4.17)

m− 1 < r−1
O K̃x∗

m ≤ m if m < 0.

The maximal index m with which a regular fixed point can be found is

mfix,max = Int

(
1

K̃(I−A)−1br−1
O − 1

)
= Int

(
1

K̃(I−A)−1B− 1

)
. (4.18)

The neighbouring virtual fixed point is at the index mfix,max + 1. Regular p-periodic orbits
can be found in a similar manner:

xmp ≡ xm0 = (I−Ap)−1
(
m0A

p−1 +m1A
p−2 + · · ·+mp−1A

0
)
b, (4.19)

where xmj
, j = 0, 1, . . . , p− 1 must be in the band characterised by mj, as in (4.17).

4.2.3 Sensitive dependence on initial conditions

The linear term of the micro-chaos maps (4.9) or (4.10) is of the form Ax, everywhere in
the domain of definition. Thus, A is the Jacobian matrix of the system, consequently, the
Lyapunov exponents are the logarithms of the singular values of A:

λi = log σi(A), i = 1, 2, . . . , n. (4.20)

We assumed that at least one of the eigenvalues of A is larger than one in modulus. This
is true for the delayed micro-chaos map (see (4.8) and (C.10)), as well, since the eigenvalues
of A appear among the eigenvalues of the extended matrix A+, according to the Leibniz
formula for determinants. Since A is not a normal matrix in general, its eigenvalues and
singular values are not equal. However, the greatest singular value is not less than the
spectral radius, i.e., σmax ≥ |λmax|. Thus, the micro-chaos maps have at least one Lyapunov
exponent that is greater than zero, indicating sensitive dependence on initial conditions.

4.2.4 Existence and size of an absorbing sphere

From the practical point of view, the most important characteristics of micro-chaotic be-
haviour are the expected amplitude of the oscillations (size of the attractor) and the maxi-
mal possible control error. The quantization-related vibration amplitude is typically small,
hence the name micro-chaos. However, it was found [38, 40] (see Section 4.5), that several
disconnected strange attractors may coexist in certain cases, even rather far from the origin.
Nevertheless, all the attractors can be found inside a finite domain, in a so-called absorbing
sphere. To estimate the size of this sphere, we rewrite the map yj+1 = Syj − cj (4.13) as

yj+1 = Sjy0 −
j−1∑
k=0

Skck. (4.21)

The maximal possible norm |y∞| of the vectors yj in the limit j →∞ provides an estimate
for the size of the attracting domain at the origin [58].

Unfortunately, matrix S is typically not a normal matrix, i.e., its norm (the greatest
singular value) can be larger than 1. Still – since S is chosen such that its largest eigenvalue
µmax is less than one in modulus –, limj→∞ ||Sj|| = limj→∞ µj

max = 0 is fulfilled [38]. Thus,

|y∞| = max

∣∣∣∣∣
∞∑
k=0

Skck

∣∣∣∣∣ . (4.22)
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|y∞| is necessarily finite, since |µmax| is less than one. Thus, there exists a finite attracting
domain for each version of the micro-chaos map in the neighbourhood of the origin. Its size
can be approximated by the methods from the literature [4, 13], or by the approaches that
we developed in [43]. We found only slight differences between the results.

A positive Lyapunov exponent and the existence of an attractor are only necessary con-
ditions of chaotic behaviour: it is also required that the micro-chaos map must be topologi-
cally transitive and the periodic points must be dense on the attractor. Still, the two proven
properties of the micro-chaos maps are quite strong indicators of chaos. In the subsequent
sections, simple versions of the micro-chaos map will be analysed.

4.3 ESCAPE RATE OF THE 1D TRANSIENT MICRO-
CHAOS MAP

4.3.1 Mechanical model

The mechanical model of a polishing machine can be seen in Fig. 4.3. It consists of a revolving
cylinder sliding on the surface of a fixed block. The velocity v of the shaft (feed) can be
controlled, while the circumferential velocity of the polishing tool v0 = Rω0 is constant.

Besides the dry friction force C acting on the shaft, a mixed dry-viscous friction force
Nµ(vrel) also acts on the polishing tool of mass M , where N denotes the normal force
between the revolving tool and the workpiece. This Stribeck-like friction force depends on
the relative velocity vrel = v0+ v. At low relative speeds, the effective friction coefficient µ is

C
M

Figure 4.3: The mechanical model of the computer-controlled polishing machine

locally decreasing as the relative velocity v0 + v increases (see Fig. 4.3). As a consequence,
the state with zero feed (v = 0) becomes unstable. As it was derived in the PhD thesis [30],
applying digital control with differential gain D, sampling period τ , and a finite resolution h
in the velocity measurement, the dynamics of this system can be expressed by the following
piecewise linear map:

xj+1 ≡ f(xj) =


axj − b Int(xj)− c if c/a < xj,

0 if −c/a ≤ xj ≤ c/a, and
axj − b Int(xj) + c if xj < −c/a,

(4.23)
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where xj = v(j)/h, v(j) denotes the velocity at the jth sampling instant, and

a = e
gNτ
M > 1, b =

D

gN

(
e

gNτ
M − 1

)
> 0, (4.24)

c =
(
e

gNτ
M − 1

) C

gNh
> 0, g = |µ′(v0)| = −

dµ(vrel)

dvrel

∣∣∣∣
v0

> 0. (4.25)

Map (4.23) is a transient chaotic version of the micro-chaos map (4.1): while the error is not
detected at small velocities, the Coulomb friction stops the shaft before the next sampling
instant. Comparing this map with the general formulas of Section 4.2, one obtains that
A = a, b = −b and K = 1. Note that there is practically no difference between input and
output quantization in the 1D case because the state variable (input) is proportional with
the control force (output). The fixed points of the map can be determined similarly to (4.2):

x∗
m =

bm+ c

a− 1
, if 0 ≤ m ≤ x∗

m < m+ 1, or

x∗
m =

bm− c

a− 1
, if 0 ≥ m ≥ x∗

m > m− 1. (4.26)

The assumption a > 1 implies that all the fixed points are unstable. However, since the
points on the interval [−c/a, c/a] are mapped to the zero value, the occurrence of transient
chaos is expected. Fig. 4.4 illustrates the graph of the map, together with the cobweb
diagram of a transient chaotic trajectory that escapes from the repeller set.

cc/a 0
*

=

c

2

1.5

1

0.5

0
0 0.5 21 1.5

Irep

Figure 4.4: A long trajectory at a = 1.5, b = 1.2, and c = 0.133̇ (|I0| = 0.1).

We consider the special case when the map has only one fixed point in the domain x ≥ 0.
In such cases, the chaotic repeller of the map is confined in the interval Irep ≡ [x∗

0, a − c),
where x∗

0 is the fixed point: x∗
0 = c/(a− 1), while a− c = lim

xj→1−
f(xj) (see Fig. 4.4).

It can be seen in Fig. 4.4 that there is a sub-interval I0 just left of the fixed point which
is directly reachable from the right by a trajectory. If a solution arrives at I0, the transient
chaotic behaviour is over. The size of I0 can be given as

|I0| = a
c

a− 1
− (a− b). (4.27)

We introduce |I0| to be a new parameter instead of c, because it characterises the system
better than the rescaled friction parameter c, and it is uniquely related to that.
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In the thesis [30], we determined the mean lifetime of chaotic transients in limited pa-
rameter domains. Later, the developed procedure was reformulated and generalized as a
recursive method in [34]. In the present work, we use another approach published in [35]
that is based on the approximation of the fractal dimension of the repeller. To find a good
approximation, the structure of the repeller must be explored.

4.3.2 Structure of the repeller

Fig. 4.5 presents the structure of a part of the domain of definition of map (4.23). The
number of steps needed to escape – i.e., to reach the interval I0 – is naturally known in case
of the pre-images of I0. Some of these numbers are shown in the figure. Certain pre-images
of the fixed point x∗

0 are also depicted, to guide the eye. These points divide the depicted
part of the domain of definition into the intervals A, B and C. Points in interval C are
mapped into A or B in one step, so we focus on the interval A ∪B.

f -1( )f -1( ) f -2( )
a-c

F1 F f(F)

21

Figure 4.5: The structure of the domain of definition at a = 1.5, b = 1.3, and |I0| = 0.25.
The numbers show how many steps are needed to reach I0.

I0 has one first pre-image in A, which is denoted by I1 in Fig. 4.5. I1 has two pre-images
in A∪B, one in the interval A – it is denoted by I2 – and another one in the interval B. As
it is shown in the figure, two steps are needed to escape from these intervals. Similarly, I2
has a pre-image in A and another one in B. Each interval A, B, and C contain an infinity of
sub-intervals of size |I0|/aj, from where j steps are necessary to escape. These intervals and
numbers will be referred to as fundamental escape intervals and escape numbers, respectively.
The intervals between the fundamental escape intervals are denoted by shaded coloumns in
the figure and will be referred to as fundamental fractal intervals Fj because a part of interval
C is mapped on them, leading to self-similar structures. Intervals Fj are the jth pre-images
of interval F , that is found between I1 and I2. The size of F ≡ F0 is

|F | = a |Irep| − b

a2
, (4.28)

while the size of the jth pre-images of F can be given as |Fj| = |F |/aj.
The right border of the repeller practically never coincides with the right border of a

fractal interval: usually a truncated sub-interval appears at the right border of the repeller
– see Fig. 4.5, where the border of the repeller (red line) cuts a fractal interval in two parts.
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Since f(F ), the image of F , appears at the right border of the repeller, a truncated
sub-interval can be found at the right border of F , too. Thus, the fractal intervals are not
exactly self-similar. There are two possibilities to achieve exact self-similarity: the truncated
sub-interval can be completed or deleted – see Fig. 4.6. As a consequence, the structure of
the new interval becomes similar to that of A or A \ I1.

(a) (b)

Figure 4.6: Completion or deletion of the truncated intervals. a) truncated fractal interval,
b) truncated escape interval at the right border of F .

The fractal dimension of the repeller can be estimated as follows. Set A, set F , and an
infinity of smaller copies of F has a similar structure. The scaling factor of F is between

C1 =
|F |

|A| − |I1|
= 1 +

b

a(|I0| − b)
and C2 =

|F |
|A|

= 1− a|I0|+ b

ab
, (4.29)

while the scaling factors of the other intervals are between

rj1 = C1 a−j and rj2 = C2 a−j. (4.30)

Thus, the repeller is a multi-scale fractal, with an infinity of scaling factors rj = Ca−j. The
fractal dimension D0 of multi-scale fractals can be calculated by solving the equation

N∑
j=1

rD0
j = 1, (4.31)

where N denotes the number of different scales and the rj’s are the scaling factors [154]. In
the present case, Eq. (4.31) can be rewritten as

∞∑
j=0

a−jD0 = C−D0
i , i = 1, 2. (4.32)

Solutions of Eqs. (4.32) provide lower and upper limits for the fractal dimension D0.

4.3.3 Escape rate and mean escape number

For the calculation of the escape rate, Pesin’s identity [155] can be applied:

κ = (1−D1)λ, (4.33)
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where λ is the Lyapunov exponent and D1 denotes the information dimension of the repeller.
Using (4.20), the Lyapunov exponent can be calculated as the logarithm of the slope of

the map: λ = log(a). Since it is constant, dimension D1 is equal to the fractal dimension
D0 [154, 155]. Thus, after solving Eqs. (4.32) numerically, upper and lower limits can be
calculated for the escape rate, using (4.33).

The mean escape number N̄esc can be obtained by Eq. (4.3). The results of this calculation
N̄esc(a) are shown in Fig. 4.7 at b = 1.3 and |I0| = 0.25. According to (4.28), the fractal
intervals shrink to discrete points and the fractal dimension tends to zero at

acrit =
b

|Irep|
≈ 1.238. (4.34)

Nesc

13

12

11

10

9

8

7

6

5
1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

a
acrit

Figure 4.7: Estimation of the mean escape number at b = 1.3 and |I0| = 0.25.

To check the fractal dimension-based results, we measured the escape rate using the so-
called ensemble method [155], and determined the mean escape number by our recursive
method [34], too (Fig. 4.7). This latter procedure provides the exact value of the mean
number of steps necessary to escape, by exploiting the self-similarity of the repeller.

As it can be seen in Fig. 4.7, the results of the recursive method differ from the other
results, and this difference decreases as parameter a is increased. The reason of this phe-
nomenon is that the rate of escape is not exactly exponential at low values of parameter
a, since many trajectories visit only fundamental escape intervals. It means that relation
(4.3) does not provide exact result for the mean escape number in such cases, not even if the
escape rate is precisely estimated. However, we do not need to assume exponential escape
for the application of the recursive method to obtain the value of the mean escape number.

We found that the fractal dimension increases with parameter a and decreases with
parameter |I0| in the considered parameter range, this is why the difference between the
results of the lifetime estimation methods disappears as a is increased or |I0| is decreased.

Our considerations can be extended to the so-called border state of transient chaos [155],
too, i.e., when the fundamental fractal intervals shrink to discrete points [33]. In this case,
f−1
1 (x∗

0) > a− c (cf. Fig. 4.5), thus, f(F ) also shrinks to zero size. Consequently, interval I1
will be at the right border of the non-strange ”repeller” with size |I1| = a− c− 1. The mean
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escape number can be obtained by calculating the corresponding weighted sum:

N̄esc = |I1|
∑∞

i=1 ia
1−i

|Irep|
=

a

a− 1
, (4.35)

thus, the result does not depend on |I0| or b. Note, that the fractal dimension is zero in this
case, leading to κ = (1 − D0) log(a) = log(a). Substituting this expression into (4.3), one
obtains N̄esc = a/(a− 1) that agrees with the previous result.

Interestingly, the quickest escape is obtained at the critical parameter acrit, i.e., when the
fractal intervals shrink to discrete points.

4.4 2D MICRO-CHAOS MAP WITH DELAY

In the present section, we neglect the dry friction in the physical model of the 1D micro-chaos
map (4.23), but take a processing delay (equal with the sampling period) into consideration.
It means that not the actual state xj, but a one step earlier state xj−1 of the system is used
for the calculation of the control effort [38]:

xj+1 = a xj − b Int(xj−1). (4.36)

The underlying physical system can be the same machine that is depicted in Fig. 4.3.

4.4.1 Fundamental properties of the 2D delayed micro-chaos map

Eq. (4.36) can be formally rewritten as a 2D map f : R2 → R2 by introducing the state vector
yj ≡ [xj−1 xj]

T :

yj+1 ≡

[
xj

xj+1

]
= f(yj) ≡

[
0 1

0 a

][
xj−1

xj

]
+

[
0

−b

]
Int(xj−1) ≡ A+yj + b+m. (4.37)

where m denotes Int(xj−1). This map can be rewritten to the form of (4.10) with the
coefficients rO = 1, B = b = −b, A = a, K0 = 0, and K1 = 1. Our goal is to prove that this
version of the micro-chaos map is chaotic in large (non-zero measure) sets of the parameters.

For this purpose, we determine the parameter domain where the origin can be stabilized
if the quantization is disregarded. The corresponding map assumes the following scalar form:

xj+1 = a xj − b xj−1. (4.38)

In this case the origin is the single fixed point, which – according to Jury’s criterion [104],
i.e., the Moebius-transformed Routh-Hurwitz criterion – is stable if

(a, b) ∈ G =
{
(α, β) ∈ R2| α > 1, β < 1, β > α− 1

}
, (4.39)

where we exploited that a > 1, according to (4.25).
During the analysis of (4.37), we will restrict ourselves to the domain of stability G (see

Fig. 4.8), and will focus on cases when the variables are positive (xj−1 > 0, xj > 0).
Now we return to the analysis of the quantized map (4.37), that is equivalent to a multi-

valued version of the 1D micro-chaos map – see Fig. 4.9. The successive iteration steps can
be followed on a modified cobweb diagram: starting from an initial point, the next point
is found by projecting the point ”horizontally” to the diagonal, then ”vertically” to the line
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G

1

0 1 2
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Figure 4.8: The stable parameter domain G if the quantization is neglected.

section of the attractor. In the multi-valued domains the appropriate branch is selected
according to the previous value of the coordinate xj−1.

To examine the properties of (4.37), we divided the plane (xj−1, xj) into parallel bands,
according to the integer part of xj−1, as shown in Fig. 4.9. The fixed points can be given as
y∗
m = [x∗

m x∗
m]

T , where the index m is the integer number m = Int(x∗
m). According to (4.16),

x∗
m =

mb

a− 1
. (4.40)

y∗
m is a regular fixed point if 0 ≤ m ≤ x∗

m < m+ 1 or m− 1 < x∗
m ≤ m ≤ 0. Otherwise, the

fixed point is virtual. Since b > a− 1 in the domain of stability, virtual fixed points appear
farther from the origin than the band their belong to.

There can be at most one regular fixed point in each band and all of them are hyperbolic
according to the eigenvalues of A+: λ1 = 0 and λ2 = a > 1. The unstable manifold of
the fixed point y∗

m can be formulated as Um : xj = axj−1 − bm. A direct consequence of
the definition of map (4.37) is that any point yj = [xj−1 xj]

T in band m = Int(xj−1) is
mapped to yj+1 = [xj axj − bm]T , i.e., to the manifold Um of the fixed point y∗

m. Since the
trajectories immediately reach these manifolds, a possible strange attractor must consist of
segments of certain unstable manifolds, as shown in Fig. 4.9.

The intersection point of the manifold Um and the line xj−1 = n (n ≥ 0) is denoted by

pm
n ≡

[
xm
n

ymn

]
≡

[
n

an− bm

]
, (4.41)

where the upper index refers to the serial number of the unstable manifold, while the lower
index shows the first coordinate of the point. Since points in the mth band are mapped onto
the unstable manifold of y∗

m, the leftmost point that can be reached from Um is

f(pm
m) ≡ pm

inf ≡

[
xm
inf

yminf

]
=

[
(a− b)m

(a2 − ab− b)m

]
(4.42)

(see p2
2 and p2

inf in Fig. 4.9). Moreover, since pm
m+1 belongs to the band where Int(xj−1) =

m+ 1, its ”upper” image

f(pm
m+1) ≡ pm

sup ≡

[
xm
sup

ymsup

]
=

[
(a− b)m+ a

(a2 − ab− b)m+ a2

]
(4.43)
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Figure 4.9: Attractor of the 2D micro-chaos map, a = 1.5, b = 0.6. Black solid line
segments are the basic branches of the unstable manifolds Um of the fixed points y∗

m,
m = 1, 2, 3, 4. Their thick parts belong to the attractor.

is the rightmost accumulation point of the points that can be reached from Um (see p1
2 and

p1
sup in Fig. 4.9). The points pm

sup fit to a line L+, while points pm
inf are on another line L0

that passes through the origin. According to these results, the basic branch [156] of the fixed
point y∗

m, i.e., the continuous piece of its unstable manifold is the line section between pm
inf

and pm
sup. We found that there are finite domains in the parameter plane (a, b), where parts

of the basic branches of certain fixed points form the attractor of the system.

4.4.2 Proof of chaos

In this section we will prove that map (4.37) has chaotic solutions in finite parameter do-
mains. Since the sensitive dependence on initial conditions and the existence of an attracting
set have already been shown in Section 4.2, now we examine the topological transitivity.

Topological transitivity

We focus on the parameter domains shown in Fig. 4.10, where the structure of the attractor
is particularly simple. We require that (a, b) ∈ G, variable xj cannot assume negative values,
and points of the mth basic branch cannot be mapped on the unstable manifolds Um+1 and
Um−1 outside the interval bounded by the lines L+ and L0. We also require that there are
no finite sections inside the basic branches that are unreachable, and maximum two basic
branches can overlap. It is shown in Appendix C.3.1, that there exist integer numbers mmin

and mmax in this case, such that the attractor consists of mmax − mmin + 3 parallel line
segments and its rightmost accumulation point is

f(pmmax
sup ) ≡

[
xr

yr

]
=

[
(a(a− b)− b)mmax + a2

axr − b(mmax + 1)

]
, (4.44)
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Figure 4.10: Considered parameter domains and their boundary curves (Appendix C.3.1).

while the leftmost point of the attractor can be obtained as

f(pmmin
inf ) ≡

[
xl

yl

]
=

[
(a(a− b)− b)mmin

axl − b(mmin − 1)

]
, (4.45)

where
mmin = Int

b

a2(b+ 1− a)
, and mmax = Int

b(a2 − 1)

a2(b+ 1− a)
. (4.46)

”Full” basic branches exist on Um (from pm
inf to pm

sup) that belong to the attractor if
mmin ≤ m ≤ mmax. The images of the extremal endpoints of these basic branches (f(pmmin

inf )
and f(pmmax

sup )) form the borders of the attracting set A, like in Figure 4.9, where mmin = 2
and mmax = 3.

It can also happen that mmin = mmax + 1 (see Figure 4.11). In this case the attractor
consists of two truncated basic branches that are shorter than the segment from pm

inf to pm
sup.

In both cases, the attractor consists of segments of the lines xj = axj−1 − bk, where

xj−1 ∈ (xl, x
mmin−1
sup ), k = mmin − 1 (4.47)

xj−1 ∈ (xmmin
inf , xmmin

sup ), k = mmin (4.48)
...

xj−1 ∈ (xmmax
inf , xmmax

sup ), k = mmax (4.49)
xj−1 ∈ (xmmax+1

inf , xr), k = mmax + 1. (4.50)

We restrict ourselves to the case when there are only two basic branches, on the manifolds
U0 and U1. The corresponding parameter domain is denoted by ’01’ in Figs. 4.10 and C.3.
Our goal is to show that there are certain subdomains in ’01’ where the attractor A can
be partitioned in such a way that the partition is irreducible and primitive [139]. In such a
partition, every region can be reached from any other region and there is at least one region
whose image fully covers at least two other regions. As an example, consider the attractor
of map (4.37) at parameters a = 1.3 and b = 0.66 (see Fig. 4.11).

The partition of the attractor is constructed as follows: the open intervals on the basic
branches between the line xj−1 = 1 and the lines L0 or L+ are the basic regions, denoted
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Figure 4.11: Partition of the attractor (a = 1.3, b = 0.66)

by BL ≡ I4 and BU ≡ I9 on the lower and upper branches, respectively, in Fig. 4.11. The
subscripts 4 and 9 are the serial numbers of these regions. The outermost endpoints of the
regions coincide with the endpoints of the corresponding basic branches, according to our
requirements. Thus, these basic regions are well defined. The pre-images of these segments
form the remaining regions. The inverse of f is not unique, thus, we define the inverse
function f−1

m such that it maps to the mth basic branch (here m = 0 or 1):

f−1
m

([
z1

z2

])
=

[
z2+bm

a2
+ bm

a
z2+bm

a

]
. (4.51)

As it can be seen in Fig. 4.11, the fourth pre-image of region BL on the lower branch
would stretch over (xr, yr), this is why the rightmost region – region I1 – consists of region
f−3
1 (BL) and the remaining part of the branch. This construction ensures that the closure

of the image of region I1 fully covers region f−2
1 (BL), whose image also fully covers region

f−1
1 (BL), etc. It is also important that the image of region BU fully covers region I1 – this

is not a consequence of the introduced construction, thus, must be checked.
The upper branch – Branch 0 – can be partitioned in a similar way: certain pre-images of

section BU are marked in the figure: f−1
0 (BU), f−2

0 (BU), and f−3
0 (BU). As it can be observed,

the image of region BL, i.e., f(BL), fully covers region f−3
0 (BU) and the remaining part of

the upper basic branch. The condition of this situation must also be checked. To construct
a primitive partition, it is enough to form only a single additional region I5 on the left hand
side of Branch 0. According to this partitioning, every region can be reached from any other
region and the image of region I4 fully covers two other regions. The conditions for the
construction of similar irreducible and primitive partitions are derived in Appendix C.3.2.
It is shown there that there is a finite parameter domain (see Fig. C.3), where the necessary
conditions are fulfilled.

Denoting the ith region in the partition by Ii, i = 1, . . . , r, we can introduce the transition
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matrix P ∈ Rr×r of the partition as

Pij =

{
1 if f(Ii) ⊃ Ij

0 otherwise
. (4.52)

In the example shown in Fig. 4.11, there are r = 9 regions, and the transition matrix can be
written as

P =



0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 1 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0


. (4.53)

In the examined parameter domain, the structure of the partition and the transition
matrix is similar to the example, i.e., there is one non-zero element in every row and column,
not in the main diagonal, and there is an additional non-zero element Pkj:

Pi(i+1) = 1, i = 1, . . . , r − 1

Pr1 = 1, (4.54)
Pkj = 1, where k ̸= j, k + 1 ̸= j.

These matrices are irreducible and primitive, as well, i.e., there exists an integer number
N > 0, such that every element of PN is positive. This property can be proved as follows:
in the case shown above, P 2

(k−1)j > 0 (i.e., the (k − 1, j) element of P2 is positive) if k > 1,
or P 2

rj > 0 if k = 1, and P 2
k(j+1) > 0 if j < r, or P 2

k1 > 0 if j = r. Thus, the existence of the
additional non-zero element Pkj implies the appearance of two additional non-zero elements.
Moreover, P 2

i(i+2) > 0 if i < r − 1, or P 2
i1 > 0 if i = r − 1, or P 2

i2 > 0 if i = r. Thus, the
diagonal non-zero elements are simply shifted to the right. It can be proved by induction,
that the number of non-zero elements increases at least by one during the multiplication
by P. Thus, PN contains only positive elements, where N ≤ r2 − r. In the example,
N = 65 < 92 − 9 = 72.

The time evolution can be given by semi-infinite symbol sequences that describe which
regions of the attractor are visited. It is obvious, that to every such symbol sequence corre-
sponds at least one point on the attractor. However, there may exist points (e.g., those that
are mapped from I4 to I7), whose itinerary cannot be described by the symbolic dynamics
on the introduced partition. Let us introduce the subset L of the attractor that correspond
to a symbol sequence. The proved property of the transition matrix P implies that the
micro-chaos map is topologically transitive on L and there exists a countable infinity of
periodic orbits, an uncountable infinity of nonperiodic orbits and a dense orbit (see [78]).
Thus, according to e.g. [139, 167], the 2D micro-chaos map is chaotic on the set L.

4.5 2D MICRO-CHAOS MAP WITHOUT DELAY

Since micro-chaos phenomenon can occur if an unstable state is stabilized by a digital control
system, the present section is devoted to the analysis of the simplest 1DoF mechanical system
with unstable equilibrium: the linearized inverted pendulum.
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4.5.1 Mathematical model

Consider an oscillator with negative stiffness, whose equation of motion is linearized about
the unstable equilibrium. Taking into account a control force u(x̃, ˙̃x), the equation of motion
assumes the following form:

M ¨̃x(t) + d ˙̃x(t)− kx̃(t) = u(x̃, ˙̃x), (4.55)

where x̃ is the general coordinate, M denotes (generalized) mass, d ≥ 0 is the damping
coefficient, and k > 0 characterises the (generalized) stiffness. Digital PD control is applied
in order to stabilize the position x̃ = 0, ˙̃x = 0.

Effect of sampling

If quantization is not considered, the equation of motion of the digitally controlled system
becomes piecewise linear on the intervals t ∈ [jτ, (j + 1)τ) between the sampling instants:

¨̃x(t) +
d

M
˙̃x(t)− k

M
x̃(t) = − P̃ x̃j + D̃ ˙̃xj

M
, (4.56)

where ˙̃xj = ˙̃x(jτ), j ∈ N, while P̃ and D̃ denote the proportional and differential gains,
respectively. Thus, the control force can be given as uj = −(P̃ x̃j + D̃ ˙̃xj), t ∈ [jτ, (j + 1)τ).

Let us introduce a dimensionless displacement coordinate x = x̃/h̃, where h̃ is a reference
distance – to be defined later –, and a non-dimensional time T = t/τ , where τ is the sampling
period and t is the physical time. With this new time variable, □̇ ≡ d

dt
□ = 1

τ
d
dT
□ ≡ 1

τ
□′,

thus, denoting the differentiation with respect to T by prime, one obtains the equation of
motion for T ∈ [j, (j + 1)):

1

τ 2
h̃x′′(T ) +

dh̃

Mτ
x′(T )− kh̃

M
x(T ) = −

P̃ h̃τxj + D̃h̃x′
j

Mτ
. (4.57)

After rearranging terms, the equation assumes the following dimensionless form:

x′′ + 2βx′ − α2x = −
(
Pxj +Dx′

j

)
, (4.58)

where

β =
dτ

2M
, α = τ

√
k

M
, P =

P̃ τ 2

M
, D =

D̃τ

M
. (4.59)

As it can be seen, the reference distance h̃ does not influence the form of the equation
of motion and the dimensionless variables. It is worth noting that parameter α is the ratio
of the sampling period and the characteristic time constant of the oscillator. Its value is
usually kept very small in practical applications (in the order of 10−2 . . . 10−5) by increasing
the sampling frequency. Introducing the notation γ =

√
α2 + β2, the general solution of Eq.

(4.58) assumes the following form in T ∈ [j, (j + 1)):

x(T ) = C1e
(γ−β)T + C2e

(−γ−β)T +
Pxj +Dx′

j

α2
. (4.60)

Using the matching conditions x(j) = xj and x′(j) = x′
j, the coefficients – and con-

sequently, xj+1 and x′
j+1 – can be expressed by xj and x′

j. Thus, one can construct the
map

xj+1 = Sxj, (4.61)
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where

S =
1

eγ

[
(α2−P )(βs+γc)+Peγ

α2

α2s−(βs+γc−eγ)D
α2

(α2 − P ) s γc− (β +D)s

]
, (4.62)

while xj ≡ [xj x′
j]
T , s ≡ sinh(γ), c ≡ cosh(γ), and e ≡ exp(β).

According to our assumption, the eigenvalues of S are less than one in modulus, i.e.,
the origin of the sampled system is asymptotically stable if the round-off is not taken into
account. It is shown in Appendix C.4.1 and in [42] that the borders of the domain of stability
are P = α2, D = Db0, and D = Db1, where the expressions of Db0 and Db1 are given by Eq.
(C.47). The maximal value of P in the domain of stability (see Fig. 4.12) can be determined
as the intersection point of these boundary curves:

Pmax =
α2 (1− 2ce− 3e2)

1− 2ce+ e2
. (4.63)

It can also be shown that the equilibrium can be asymptotically stabilized at every positive
value of the sampling time τ with properly chosen gains P and D.

D(Pmax)

Figure 4.12: The domain of asymptotic stability of the desired state x = 0 without
processing delay and quantization at α = 0.8 and β = 0.3.

Quantization – round-off at the output

If the output of the control system is quantized, the rounded control force must be an integer
multiple of a certain resolution rO ≡ ∆F (cf. Fig. 4.1):

¨̃x(t) +
d

M
˙̃x(t)− k

M
x̃(t) = −∆F

M
Int

(
P̃ x̃j + D̃ ˙̃xj

∆F

)
, t ∈ [jτ, (j + 1)τ). (4.64)

The odd function Int() rounds towards the origin. Introducing the new dimensionless
variables T = t/τ and x = Mx̃/(∆Fτ 2) (i.e., the appropriate choice of the reference distance
is h̃ = ∆Fτ 2/M , cf. Eq. (4.57)), one arrives at the equation

x′′(T ) + 2βx′(T )− α2x(T ) = −Int
(
Pxj +Dx′

j

)
, (4.65)

where T ∈ [j, (j + 1)), and the parameters are the same as in (4.59). The dynamics of the
quantized system can be described by the following mapping:

f(xj) ≡ xj+1 = Axj + b Int
(
Pxj +Dx′

j

)
≡ Axj + bm, (4.66)
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where m = Int
(
Pxj +Dx′

j

)
, xj = [xj x

′
j]
T ,

A =
1

eγ

[
γc+ βs s

α2s γc− βs

]
, b =

[
e−c
eα2 − βs

eγα2

− s
eγ

]
and K = [P D], (4.67)

according to the notations of Section 4.2. Since the resolution became unity due to the
scaling of the variables, B = b is fulfilled, thus, S = A+ bK.

The local stability properties of the mapping are determined by the matrix A with
eigenvalues λ1,2 = exp(−β ± γ). Since γ > β, the origin is locally unstable and all the
existing fixed points are saddle points. The eigenvectors – showing the directions of the
stable and unstable manifolds of fixed points, respectively – are

es =

[
1

−γ − β

]
and eu =

[
1

γ − β

]
. (4.68)

The evolution of the state of the system can be described by another map, as well:

yj+1 = Syj − bχj, (4.69)

where S is given by (4.62) and −1 < χj < 1 is the fractional part of the control force. Thus,
the fractional part of the control force is subtracted in this case, instead of the addition of
its integer part.

4.5.2 Bands, fixed points and strange sets

The domain of definition of (4.66) can be divided into discrete bands, according to the value
of the number m. The computer sends out the same output signal within such a band, due
to the round-off. The bands are separated by the lines

SWm : x′ =
m− Px

D
, |m| = 1, 2, 3, . . . , (4.70)

thus, these switching lines cross the line x′ = 0 at x = m/P . The direction field of the
mapping, the switching lines, fixed points and example trajectories are shown in Fig. 4.13.

The fixed points of map (4.66) can be given according to (4.16):

x∗
m ≡ (I−A)−1 bm =

[m
α2

0
]T

. (4.71)

If the fixed point x∗
m crosses the switching line SWm+1, i.e.,

P = α2 |m|+ 1

|m|
, (4.72)

a border collision bifurcation occurs (see Fig. 4.14) and the fixed point becomes virtual. The
maximal index where a regular fixed point can exist can be determined using (4.18). Since
the phase-space is symmetric to the origin and the origin is always a regular fixed point, the
number of regular fixed points is

Nfixed = 2 Int

(
α2

P − α2

)
+ 1. (4.73)

The notions of regular and virtual fixed points are also illustrated in Fig. 4.13, where the
outmost regular fixed point x∗

2 is in band m = 2 and the virtual fixed point x∗
3 is in band
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Figure 4.13: The direction field of the mapping with switching lines (SW1 . . .SW5)
and fixed points (x∗

0 . . .x∗
3) with stable and unstable manifolds (dashed lines) at α = 0.8,

β = 0.3, P = 0.9, and D = 0.4. Three regular fixed points and one virtual fixed point (x∗
3)

are depicted. Two trajectories are also shown, leading to the same attractor. The points
of the trajectories are connected with continuous line segments for better visualization.

m = 4. Even two communicating chaotic repellers are depicted that together form a chaotic
attractor. As it will be shown, the distribution of disconnected attractors and repellers is
closely related to the structure of fixed points [43]. This is why the parameter dependence
of the number of regular fixed points is important to understand the dynamics of the system.

According to (4.73), the number of fixed points tends to infinity as P → α2, while the
origin is the single regular fixed point if P > 2α2. Even ”supervirtual” fixed points can born
by further border collisions of the virtual fixed point at values P = nα2, n = 2,3,. . . .

The minimal possible number of fixed points at a given α, β pair – if P is chosen from
the domain of stability – can be found by substituting P = Pmax (see (4.63)) into (4.73).
The results are depicted in Fig. 4.14. In practical applications, the damping parameter β
is usually small. Thus, at relatively large values of α (α ≳ 2), the phase-space structure
becomes rather complicated with several fixed points. On the other hand, if α is sufficiently
small, e.g., 3α2 < P , the supervirtual fixed points – situated several bands away from the
regular fixed points – can influence the dynamics in the neighbourhood of the origin.

The control force is in equilibrium with other forces at the fixed points. Thus, if a phase-
space point is farther away from the origin than the fixed point (i.e., larger control force
would be necessary), but in the same band (i.e., the control force is the same), the dynamics
will push the trajectory even farther, to the next band. Since the control force is one unit
larger there, the dynamics will lead back to the band that is closer to the origin. Because
switches occur at the sampling instants, trajectories can cross the switching lines and the
actual switching may happen well inside the bands, resulting in the mixing of trajectories.

According to the reasoning above, the appearance of strange sets is expected between
the neighbouring fixed points x∗

m−1 and x∗
m, at the crossings of the switching lines (4.70) and

the x′ = 0 line (see Fig. 4.13), i.e., at

xm =
m

P
. (4.74)
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Figure 4.14: Left: the number of fixed points at α = 1.8 and β = 0.3 and the border
collision bifurcation curves (vertical dashed lines). Right: the minimal number of fixed
points if the gains P and D are chosen from the domain of stability. The maximal possible
number of fixed points is unbounded.

Thus, the strange sets can be indexed by the corresponding integer indices m of switching
lines. Since there is a possible attractor or repeller between the ”last” regular fixed point
with

m = mfix,max ≡ Int

(
α2

P − α2

)
(4.75)

(see (4.18) and (4.73)) and the ”first” virtual fixed point at m = mfix,max+1, the index mmax

of the strange structure that is farthest from the origin is

mmax = mfix,max + 1 = Int

(
α2

P − α2

)
+

P − α2

P − α2
= Int

(
P

P − α2

)
. (4.76)

Depending on the parameters, the evolving structures may be chaotic attractors or repellers
with transient chaotic dynamics.

4.5.3 Smale horseshoes

The sensitive dependence on initial conditions and the existence of an attractor follows
from the general proofs in Sections 4.2.3 and 4.2.4. To complement the proof of chaos, we
searched for Smale horseshoe structures. As initial domains, we chose the parallelograms
Qr = L ∪ R, r ∈ N \ {0} defined by the stable and unstable manifolds W S

L , WU
L , W S

R and
WU

R of neighbouring fixed points x∗
l and x∗

r (see Fig. 4.15).
Here r denotes the index of the switching line SWr between the two fixed points. l and

r are the integer numbers corresponding to the integer part of the control force in the bands
next to the switching line SWr. Each parallelogram is divided into two trapezoids (denoted
by R on the right and L on the left, see the crosshatched regions in Fig. 4.15) by a switching
line. The vertices of the trapezoid L are the fixed point x∗

l , the intersection point PRULS

of the manifolds WU
R and W S

L , the intersection point PRUSW of WU
R and the switching line,

and the crossing point PLUSW of manifold WU
L and the switching line, as shown in Fig. 4.15.

The vertices of the right trapezoid are PLUSW , PRUSW , x∗
r, and PLURS. The coordinates of

the aforementioned points can be obtained by straightforward analytical calculation:

PRULS =

(
−β + (2m− 1)γ

2α2γ
,− 1

2γ

)
,
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SWr

xl* xr*

m=l=r  1

Figure 4.15: Schematic picture of the horseshoe-structure in the parallelogram Qr = L∪R.
The figure was generated at r = 4, α = 0.8, β = 0.3, P = 0.7 and D = 0.6. The switching
lines and stable manifolds are parallel in this case. This property is not exploited in the
derivations, but helps the visualization of the Smale horseshoe structure.

PRUSW =

(
(α2 +D(−β + γ))m

α2(−βD +Dγ + P )
,− (β − γ)m (α2 − P )

α2(−βD +Dγ + P )

)
,

PLUSW =

(
D(β − γ)(−1 +m)− α2m

α2(βD −Dγ − P )
,
(β − γ) (α2m+ P −mP )

α2(βD −Dγ − P )

)
,

PLURS =

(
β + (2m− 1)γ

2α2γ
,
1

2γ

)
.

The images of trapezoids L and R can be calculated by restricting the dynamics to
the corresponding band, i.e., to the case m = l or m = r. Thus, we can introduce the
restricted versions of the micro-chaos map (4.66): fl = f |m=l and fr = f |m=r. The images of
the quadrangles fr(R) and fl(L) are stretched along the unstable manifolds, while the pre-
images f−1

r (R), f−1
l (L), f−1

l (R) and f−1
r (L) are stretched along the stable manifolds. One

must be careful during the determination of pre-images, since e.g. f−1
r (L) = f̃−1

r (L) ∩ R,
where

f̃−1
r (L) =

{
x̃ | x̃ = A−1(x− br),x ∈ L

}
. (4.77)

Thus, it may happen that some parts of the calculated pre-image set f̃−1
r (L) are cut away

by the switching line SWr.
The crossing images and pre-images of the sets R and L in Fig. 4.15 indicate the existence

of a Smale horseshoe structure. Moreover, since fl(L) \ Qr ̸= ∅, i.e., fl(L) is stretched out
from the initial parallelogram, the correspondig set is a transient chaotic repeller. Several
different attractors and repellers may coexist at certain parameters. For instance, Fig. 4.16
shows four strange objects next to each other. Two of them (at SW4 and SW7) are repellers,
while the images of the parallelograms do not stretch out from the initial domain at m = 5, 6,
thus, two separated attractors exist here. Thus, the phase-space structure of the map can
be described as a series of baker’s maps that reside between fixed points.

To get a better insight into the complexity of the examined system, we determined the
topological entropy h0 at various values of parameter P by the algorithm given in [23]. The
initial regions were chosen to be the parallelograms Qm, defined previously, at several values
of the index m. If the invariant set (or conditionally invariant set in case of transient chaos)
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Figure 4.16: Horseshoe-structures at the switching lines SW4,5,6,7 at α = 0.8, β = 0.3,
P = 0.7, D = 0.6. Two trajectories are also shown, leading to disconnected attractors. The
points of the trajectories are connected by lines to guide the eye.

is larger than Qm, the results provide a lower estimate for the topological entropy. Fig. 4.17
shows the results obtained in the neighbourhood of the switching line SW3.

Num. results

Figure 4.17: Topological entropy (h0) versus parameter P at m = 3, α = 0.77, β = 0.02
and D = 0.83.

The images and pre-images of the parallelogram Qm can be calculated analytically. We
determined the second pre-images and the third images of the trapezoids on either side of
SW3 at the parameters given in the caption of Fig. 4.17. Parameter P was chosen at three
different plateaus of the topological entropy curve. The results are depicted in Fig. 4.18.

In Fig. 4.18(c) the images and pre-images fully intersect, forming a Smale horseshoe
structure. The numerically obtained topological entropy is very close to h0 = log(2) at this
parameter. Indeed, a binary symbolic dynamics can be introduced with symbols denoting
the bands on the left and on the right of the switching line. Thus, the examined dynamical
system is conjugate to a full binary shift [139]. This property implies that the trajectories are
sensitive to initial conditions, the map is topologically transitive and there exists a countable
infinity of periodic orbits, an uncountable infinity of nonperiodic orbits and a dense orbit.
Thus, map (4.66) is indeed chaotic in a finite parameter domain.

To have a subsystem in the neighbourhood of a certain switching line that is conjugate
to a binary shift, the images of the trapezoids L and R (see Fig. 4.15) must stretch out from
the initial parallelogram. That is, fl(PLUSW ) and fl(P

RUSW ) must be to the right of the
manifold W S

R (see Fig. 4.15), while fr(P
LUSW ) and fr(P

RUSW ) must be to the left of the
manifold W S

L . The fulfilment of these four escape conditions also ensures that the calculated
pre-images are in the appropriate bands, i.e., f̃−1

l (R) ∩ R = ∅ and f̃−1
r (L) ∩ L = ∅ (cf. Eq.

(4.77)). The parameter domains where the aforementioned conditions fulfil, are shown in
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Figure 4.18: Second pre-images and third images of the trapezoids left (red) and right
(blue) of the switching line SW3. α = 0.77, β = 0.02 and D = 0.83. (a) P = 0.655, (b)
P = 0.67, (c) P = 0.71, corresponding to Fig. 4.17.

Fig. 4.19, according to Eqs. (C.48)-(C.51).
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Figure 4.19: Parameter domains where the dynamics can be described by a full binary
shift at parameters α = 0.77 and β = 0.02 at the switching lines SW2,3,4,5. Lines with the
same colour correspond to the four escape conditions evaluated at the same value of m.

If fl(P
LUSW ) or fl(P

RUSW ) cross the stable manifold W S
R of x∗

r, a boundary crisis bi-
furcation occurs and trajectories escape from the quadrangle L ∪ R away from the origin.
This situation is shown in Fig. 4.15. However, if fr(PLUSW ) or fr(P

RUSW ) cross the stable
manifold W S

L of x∗
l , trajectories escape towards the origin. Consequently, the attracting and

repelling properties of the phase-space objects between the fixed points can be determined
by evaluating the positions of the aforementioned image points. Note, however, that as
parameters are changed, points PLURS and PRULS can be shifted to a neighbouring band,
distorting the results. This phenomenon is also a special bifurcation whose conditions can
be checked easily – typically, the corner points tend to be in a “wrong” band if parameter P
is large.

Fig. 4.20 shows how the attracting/repelling properties of structures at the switching lines
vary as the proportional gain is changed. The continuous curves show the attractor/repeller
positions at several values of index m, according to (4.74). Possible attractors disappear via
border collision bifurcations at P = mα2/(m − 1), this is why curves with higher index m
are shorter. Arrows above the curves indicate the attracting or repelling property of the
corresponding structure in the direction away from the origin, while arrows below the curves
show these properties in the direction towards the origin. Based on these properties, various
types of attractors can be defined. A single attractor that is confined to the neighbourhood
of the switching line SWm – i.e., no escape is possible in either direction – is denoted by Sm.
If two or more adjacent repellers merge, e.g., that reside in the neighbourhoods of switching
lines m − 1, m and m + 1, the corresponding large attractor is denoted by Mm−1,m,m+1.
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Figure 4.20: The attracting/repelling properties of phase-space structures at α = 0.8,
β = 0.3 and D = 0.6, by the crisis-based prediction. Shading indicates various attractors.

The aforementioned attractors are designated by shaded areas in Fig. 4.20. Note, that a
special attractor exists at P ≈ 1.3, denoted by MV−2,−1,1,2. At these parameters, the first
virtual fixed point is x∗

1, thus, no strange set is expected in the position indexed by m = 2.
Although there is a repeller at the switching line SW1, numerical results indicate that the
global dynamics leads back towards the origin, resulting in a larger attractor.

It can be shown that if the parameters are chosen from the domain of stability, the
increase of parameter P increases the attractivity of the origin. This trivial result implies
that as P is increased, the arrows can flip downwards, only (cf. Fig. 4.20). Consequently,
there are only two different scenarios possible at a certain value of m: both arrows are
directed upwards at small P . As P is increased, either the lower or the upper arrow flips
downward. If the upper arrow flips first, a single attractor is born. However, if the lower
arrow flips, the structure will repel in both directions. Finally, at even larger values of the
proportional gain, the other arrow flips, too, giving rise to a repeller directing the trajectories
towards the origin. We could also show analytically that no escape away from the origin is
possible close to the border collision bifurcation points, i.e., at the right endpoints of the
lines the upper arrows always point downwards.

It must be emphasized that the classification of the strange sets based on their attracting
or repelling properties is not always accurate, especially near the borders of the domain of
stability. As we pointed out in [43], there are two major sources of the inaccuracies: either
not all the parts of the theoretically predicted attractor are visited by the trajectories, or
the trajectories ”jump over” whole bands instead of arriving in a neighbouring band. It can
be shown that the damping strongly influences this kind of behaviour: the length of jumps
is approximately proportional to eγ−β.

In a real control system the sampling period is significantly shorter than the shortest
characteristic time of the mechanical system. Consequently, the realistic values of α, β, P
and D – and the sizes of the attractors – are rather small and the effect of one iteration step
of map (4.66) on the trapezoids L and R is hard to visualize. However, the topology of the
phase-space is similar to the one shown in Fig. 4.16. The results of a simple cell mapping
technique [85], [42] are depicted in Fig. 4.21 at parameters of a real experimental device [58]
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– an inverted pendulum with mass moment of inertia M = 0.042 kgm2 and length l = 0.5m.
The parameters of digital control are τ = 0.001 s and ∆F = 0.024Nm. The maximal control
error is about 0.08 rad ≈ 4◦. The colours in the figure characterise the number of steps
necessary to reach an attractor. The triangular red regions in the upper right and lower left
corners correspond to points that leave the computational domain in a couple of steps.
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φ/rad
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Number of steps to reach an attractor:

Figure 4.21: Cell mapping results showing the domains of attraction (coloured domains)
of 12 tiny disconnected attractors (covered by the black points) at parameters α = 6.8511 ·
10−3, β = 0, P = 5.4997 · 10−5, and D = 2.5665 · 10−3. The switching lines (solid, white)
and the stable and unstable manifolds (dashed, white) are also shown.

As this figure illustrates, there are parameter domains where several disconnected chaotic
attractors coexist in the phase space. Although the diameter of these sets is usually negligibly
small in practice, they can reside very far from the origin, leading to remarkable deviance
from the desired state. This is why the size of the absorbing sphere can be important for
applications: it provides an upper limit of the control error.

It is worth to mention that a secondary digital effect occured at small values of α (α <
0.01): during the simulation of the micro-chaos map certain trajectories could escape from
attractors far from the origin. This phenomenon is clearly related to the finite number of
digits used during the simulation [55].

4.5.4 Control error estimation

The simplest estimation of the size of the absorbing sphere is based on the topological
considerations, described in Section 4.5.2. According to the results presented there, the
attractor that is farthest from the origin can be located at the mmaxth switching line (see
(4.76)), at position xSW

max:

mmax = Int

(
P

P − α2

)
, xSW

max =
mmax

P
. (4.78)

These results are valid if the diameters of the attractors are small compared to the distance
of switching lines, i.e., no jumps or other escaping mechanisms occur. In this case

xSW
max ≈

1

P − α2
(4.79)
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provides a conservative estimate for the maximal control error. Note, that we developed an
estimation method in [43] that leads to a similar result

xmax =

[
1

P−α2

0

]
, (4.80)

provided that the leading eigenvalue of S is positive. In case of complex eigenvalues, only
rather crude error estimates can be obtained analytically. Typically truncated series are
evaluated to obtain an upper bound [4], [43]. The micro-chaos map was also derived in
the case of an inverted double pendulum [75]. The results support the applicability of the
general formulae of Section 4.2.

4.6 CLUSTERED CELL MAPPING METHOD

4.6.1 Introduction

Cell Mapping methods (or shortly CM methods) were introduced by C.S. Hsu [84, 85], to
make the quick and thorough global analysis of nonlinear mechanical systems possible. He
applied the mathematical background of cell mapping even in case of digitally controlled
systems [162].

Cell mapping methods discretize a region of the state space, thus creating the so called
cell state space. For each cell one or more image cells are assigned (to where the dynamics
lead from that cell), and by analysing the resulting graph or Markov-chain, periodic orbits,
fixed points and their domains of attraction can be found. Consequently, as we demonstrated
in Section 4.5.3, CM methods can provide valuable information about the global dynamics
of systems with complicated phase-space structure.

The simplest CM method is the Simple Cell Mapping (SCM) and in the simplest case
the cell state space is an n-dimensional grid of cells of the same size. The basic idea of the
SCM method is that each cell has a single image, which is usually determined using the
Centre Point Method [85], namely, a single trajectory from the centre of the cell domain is
examined. In other words, all states within a cell are mapped to a single cell. Due to this
property, the method is able to classify cells either as periodic cells (belonging to a periodic
group) or transient cells (leading to a periodic group). The successful classification of all
cells forms the solution of the SCM.

There are many variations of the CM methods, usually a relatively fast CM method (for
example SCM) is applied to the initial state space region, then further analysis is carried out
at certain locations, using more advanced methods (Generalized Cell Mapping, for instance),
typically with a refined cell state space [169], [173]. These methods are excellent if the
interesting region of the state space is known, but if that is not the case, a method capable
of automatically extending the analysed state space region could be more suitable. As a
result of a joint work with Gergely Gyebrószki, we extended the Simple Cell Mapping with
such capability in [72].

To emphasize the relevance of adaptive state space extension, one can recall the following
situations:

• The dynamical system has an expectedly complex state space and the enclosing region
of state space objects is not known.

• The dynamical system has more than one attractors, and not all of them are found in
the initial state space region. Escaping trajectories indicate the possible direction of
other attracting structures.
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• A lower dimensional state space object, e.g., a basin boundary is being followed.

• Examination of global bifurcations or crises in dynamical systems in cases when the
structure and/or the size of state space objects change abruptly during the variation
of certain parameters.

• Analysing diffusion-like processes, for example intermittent maps [97].

Our approach to solve the problem of state space extension is to find an adjacent region
to the initial state space, to where most of the trajectories escape. Afterwards, a separate
CM solution is calculated on that region and the two solutions are joined. Upon the joining
procedure, new state space objects residing on the boundary of the two cell state spaces are
also discovered. The developed method of joining separate SCM solutions to a cluster of
SCM solutions is referred to as Clustered SCM method [72].

As an example of application, we show the analysis of the 2D micro-chaos map without
delay that was introduced in Section 4.5. The behaviour of this piecewise smooth system
fits into most of the aforementioned situations, as it exhibits a pattern of chaotic attractors
and crisis phenomena with the appearance or disappearance of chaotic attractors/repellers.

Definitions and abbreviations

This section describes the basics terms, definitions and properties related to the Simple Cell
Mapping (see Figure 4.22).

• Cell state space (CSS): the bounded and discretized state space region, which is con-
tinuously covered by arbitrary cell domains. In the simplest case n-dimensional rectan-
gular cuboids of the same size can be used to discretize an n-dimensional state space.

• Cell domain: bounded domain of the state space, part of the cell state space. In the
simplest case it can be represented by a centre point in the state space and lengths
along each dimension.

• Cell : object having its unique index referencing to a cell domain and various properties
(e.g. image, pre-image).

• Cell index (or shortly index ): cell property; a unique identifier.

• Image: property of a cell, one or more references to other cells. The dynamics from
the cell domain corresponding to the cell lead to the cell domain(s) indexed by the
image(s).

• Pre-image: property of a cell, one or more references to other cells. The dynamics from
the cell domain(s) indexed by the pre-image(s) lead to the cell domain corresponding
to the cell.

• Sink cell (SC): a special cell indexing the unbounded region of the state space outside
the CSS. Once a trajectory enters the sink, its evolution is no longer followed. To
express this property, the image of the sink is itself by definition.

• State-to-index (or shortly index()) function: is a surjective function returning the index
corresponding to the cell domain covering the given point in the state space.

• Index-to-domain (or shortly domain()) function: is a bijective function returning the
cell domain representation for the given index.
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• Cell sequence: A set of cells formed by tracking the image of cells subsequently.
(See cells {7, 2, 4, 11, 18, 24, 16} in Figure 4.22.)

Figure 4.22: Explanation of the definitions

• Periodic group (PG): A part of a cell sequence, that might constitute a periodic motion.
A periodic cycle of n cells forms a periodic group, with periodicity n (or shortly an
n-P group). Each cell within the PG is a periodic cell with period n, or shortly n-P
cell [85]. (For example, the sink cell is a 1-P cell and forms a 1-P group.)

• Transient cell : Cell sequences leading to an n-P cell contain an n-P group at the end
of the sequence. All other cells within the sequence are transient cells leading to that
periodic group, forming a transient cell sequence.

• Transient cell sequence: cell sequences with their destination n-P cells removed form
a transient cell sequence, see Figure 4.22.

• Group number (g): For each periodic group a unique group number is assigned. All
periodic cells within a PG and all transient cells leading to that PG have the same
specific group number assigned.

• Step number (s): property of a cell, the number of steps required to reach a PG.
Periodic cells’ step number is s = 0, while transient cells’ step number is s > 0.

• Domain of Attraction (DoA): the DoA of a PG with group number g is the set of
(transient) cells with the same group number g and step number s > 0. The Domain
of Attraction is a discretization of the Basin of Attraction [122].

• SCM solution: After the successful execution of the SCM method, besides the initial
cell properties, the group number and step number properties are assigned to each cell.
At this stage all periodic groups and their domains of attraction are found, and we call
the cell state space and its properties the SCM solution.

4.6.2 Joining two SCM solutions

This section describes the procedure of joining two SCM solutions with non-overlapping cell
state spaces. No other restrictions apply to the cell state spaces, even non-adjacent regions
can be joined. First, the possible relationships between cells of the SCMs are examined, then
the algorithm of joining is explained. We adopt the following conventions to aid the joining
procedure:
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• Group number g = 0 is assigned to the sink cell. Also the sink cell’s index is 0.

• A new property, called cell mapping index (shortly: cmid) is assigned to each cell as
an extension to its group number indicating which SCM contains the group referenced
by the group number. Initially all SCM solutions have a unique cmid, and all cells
within an SCM solution have the same cmid.

• Cells have an auxiliary state property, which can take any of the following three values:
untouched, under_processing, processed. This property is used to keep track
of the solution procedure.

Relationship of two SCM solutions

Upon joining two SCM solutions, transient cell sequences leading to the sink cell are exam-
ined, because these cell sequences might enter the other SCM’s cell state space and lead to
an object within the united cell state space – the union of the two cell state spaces. The
state space region outside the united cell state space is called reduced sink. While examining
an SCM solution’s transient cell sequences that lead to its original sink, the following cases
can occur (Figure 4.23):

1. The transient cell sequence leads to a known destination:

(a) the reduced sink or

(b) a periodic or transient cell with group number g > 0 of the other SCM.

2. The transient cell sequence leads to a cell of the other SCM, which belongs to the
domain of attraction of its original sink (so the cell’s group number is g = 0). This
means that the final destination of the sequence is not known yet.

Considering the above cases, only Case 2 requires further analysis. Otherwise, transient
cell sequences can be updated with a new group and step number (along with a new cell
mapping id), corresponding to their new destination.

The procedure of joining two SCM solutions is therefore divided into two stages. Stage
1 enumerates all transient cell sequences and also updates those corresponding to Case 1.
Stage 2 analyses the remaining sequences of Case 2.

Cell tree mapping

It is clear, that cell sequences leading to the other SCM’s sink cell’s domain of attraction
(Case 2) will arrive eventually at one of the already existing periodic groups (including the
reduced sink), or they might form a new periodic group – possibly with some extra transient
cells leading to that PG.

This calls for the idea of mapping these remaining transient cell sequences onto each
other (or onto some already determined cell). Transient cell sequences form trees called cell
trees that lead to a single cell (which belongs to the other SCM), therefore these trees can be
handled just like cells in SCM. The image of a cell tree is either a cell which was updated in
the first stage of the joining procedure (Case 1), or a member cell of another cell tree of the
other SCM. Tracking the images of cell trees creates tree sequences. A tree sequence either
leads to an already existing periodic group or forms a new periodic group and some transient
cells leading to that group. Figure 4.24 illustrates the procedure of cell trees mapping.

Shortly, the SCM method can be applied to the cell trees. If a tree sequence leads to a
previously processed cell, all of its member cells can be tagged with the appropriate cmid,
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Figure 4.23: Joining of previously calculated SCM solutions. Cell sequences leading to
a known destination can be updated in Stage 1 (green cells), while sequences leading to
another unclassified sequence or transient cell need further analysis in Stage 2 (orange cells).
As a result, new periodic groups can be found near the boundary of SCM1 and SCM2.

group and step numbers. Otherwise the trees form a graph containing a single cycle – the
new periodic group – and branches which are transient cells belonging to that group, hence
the cmid, group and step numbers can be updated. (The new periodic groups obtained this
way must be added to one of the SCM solutions to have a valid cell mapping index.)

Figure 4.24: Illustration of the notion of cell tree mapping. Cell trees 1 and 2 are mapped
to each other. The graph formed by them contains a cycle (new periodic group), and all
other branches are transient cells leading to that group.

The algorithm of joining

The algorithm of joining two SCM solutions consists of three steps: preprocessing, and two
stages of classifying cell sequences which previously led to the sink cell. The details of these
steps are described in Appendix C.4.4 with pseudo codes.
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During preprocessing, the cells corresponding to the domain of attraction of the sink cell
for both SCM solutions are identified. This can be done by selecting cells with group number
0. Checking the step number is not necessary, since all cells with group number 0 must be
transient cells. For the pseudo code of the preprocessing see Algorithms C.3 and C.4.

Once the domain of attraction of the sink cell is identified for each SCM solution, the
first stage of joining examines transient cell sequences and updates cells that belong to Case
1, according to Algorithm C.5.

In the second stage, cell sequences belonging to Case 2 are analysed and a cell tree
mapping is carried out (Algorithm C.6). In the end of Stage 2, all cell trees are processed
and new periodic groups (if any) with their domain of attraction (transient cells) are found.
The complete procedure of joining is summarized in Algorithm C.7.

Complexity of joining

The complexity of calculating an SCM solution is O(n) where n is the number of cells in
its cell state space. This comes from the fact that every cell needs constant amount of
operations for initialization, and their state changes twice: first to under_processing
then to processed (Algorithm C.8).

The complexity of preprocessing (Algorithm C.3) is also linear, since a constant amount
of operations must be performed for each cell. For SCM solutions with n and m cells, the
complexity of preprocessing is O(n+m).

During the first and second stages of the joining procedure (Algorithms C.5 and C.5),
every cell is tagged with a new state maximum twice. Thus, these are also linear in terms
of the number of cells to be processed. The linear nature of the joining procedure can also
be seen in the computation times presented in Table 4.1.

4.6.3 Application and Results

The Clustered SCM method was applied to the micro-chaos map (4.66) at α = 0.078, β = 0,
P = 0.007, D = 0.02. The phase-space (or state-space) of the map is illustrated in Figure
4.25, showing two regions that are joined by the developed method. The resulting cluster

0 x

0x'

-20

20

600 1200

Figure 4.25: The state space of micro chaos map. Dashed blue lines: stable and unstable
manifolds of saddle points. Three example trajectories leading to chaotic attractors are
shown; their subsequent points are connected with line sections for better visibility. The
green and blue rectangles show the initial and the adaptively chosen state space regions,
respectively (see Figure 4.26).

of two SCM solutions is illustrated by coloured images in Figures 4.26-4.28. Red colour
indicates transient cells leading to the sink, other coloured regions illustrate the domain of
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attraction of other periodic groups. The periodic groups residing at the intersections of the
x-axis and the switching lines are denoted by black dots. These PGs correspond to very
small chaotic attractors of the micro-chaos map. White lines indicate the switching lines
and dashed white lines denote the stable and unstable manifolds of the saddle points of the
map. The initial state space region is placed on the left and the new subregion is on the
right side, since the right adjacent state space region contains the most escaping trajectories.

Figure 4.26: Initial SCM solutions before the joining procedure. The image on the left
shows the initial state space region, the one on the right is the adaptively selected region.
Both regions contain 3 chaotic attractors, denoted by black points.

Figure 4.27: SCM solutions after Stage 1 of the joining procedure. Cell sequences leading
to a PG of the other SCM are updated (recoloured with the colour of the corresponding
periodic group). The initial region contains some transient cell sequences which are stored
for further processing in Stage 2. (See red bands at the top of the left image.)

Comparison of real computational efforts

To support the statements in Section 4.6.2, computation times for Example are provided
using the Clustered SCM and an SCM solution over the full region is calculated for com-
parison (see Table 4.1 and Figure 4.29). Since the calculation of scm1 and scm2 can be
done in parallel, the total processing time is calculated as ttotal = max(tSCM1, tSCM2)+ tjoining.
(Computations were carried out using 2 cores of an Intel Core™ i7-4700MQ CPU.) The
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Figure 4.28: SCM solutions after Stage 2 of the joining procedure. Examined cell trees
are mapped to already processed cells (corresponding to the PGs with green and orange
domain of attraction).

joining time only depends on the number of cells and the state space topology, while the
computation time of SCM solutions also depends on the effort needed to calculate the image
cells. For systems, where greater effort is necessary for the calculation of images (e.g. flows),
the computation time of joining is relatively smaller compared to the complete procedure.

Number of cells
CPU time [ms]

tSCM1 tSCM2 tjoining ttotal scm on full region
500000 395 386 89 484 844
1000000 780 791 190 981 1573
2000000 1550 1551 418 1969 3316
4000000 3234 3225 897 4131 6752
8000000 6638 6720 1935 8655 13389

Table 4.1: Computation times in the example. (See Figures 4.26-4.28.)

4.6.4 Advantages of the proposed method

Clustering has the following remarkable advantages.

• The method allows the adaptive extension of the SCM solution towards new state
space regions. Solving an SCM for a new region and incorporating it into the cluster
is cheaper than solving an SCM over the whole extended state space (see Table 4.1).

• Parallelization is trivial as separate SCM solutions can be generated independently
before the joining procedure. Also Stage 1 of the joining procedure (for each previously
calculated SCM solution) can be done in parallel.

• The method is useful in real-time situations, where the region of interest is changing
as a parameter is varied. Clustered cell mapping handles screen panning well, as a
separate SCM solution at the (narrow) state space region entering into the computer’s
screen can be calculated quickly and joined to the already existing cluster.
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Figure 4.29: Comparison of computation times listed in Table 4.1.

• The proposed approach helps to overcome memory limitations by dividing large prob-
lems into smaller ones. During the generation of a clustered SCM solution, if all
adjacent regions of a cluster are already examined, the SCM solution corresponding to
the inner (fully surrounded) cluster can be written to disk and freed from memory.

4.7 EXTENSIONS AND EXPERIMENTAL RESULTS

This section discusses further results related to the micro-chaos phenomenon, which we
obtained in the framework of our joint work with Gergely Gyebrószki [72, 75, 76, 77].

4.7.1 The effect of dry friction

Real-world systems are all subject to various types of dissipating mechanisms. While viscous
damping was taken into account in Section 4.5, it is natural to ask whether does micro-chaos
persist if dry friction is present?

In order to answer this question, the equation of motion of the inverted pendulum (4.65)
was supplemented by a dry friction term. After algebraic transformations, we obtained that
if the sign of the dry friction term does not change between the jth and j + 1st sampling
instants, the following map describes the dynamics [77]:

xj+1 = Axj + b

Int(P̂ xj + D̂ x′
j)︸ ︷︷ ︸

mi

+sgn(x′
j) µ̂︸ ︷︷ ︸

µj

 . (4.81)

Here mi is the control effort, µi is the friction force and Int(·) denotes the integer part
function representing the quantization of the control effort. This quantization is a map-like
switching in the system: the controller updates the control effort at sampling instants, only.
At µ̂ = 0 (i.e., no friction), there is no other discontinuity in the system, so (4.81) fully
describes the evolution of the solutions. However, the signum function corresponding to
friction is a flow-like switching, because the sign of the friction force changes at every time
instant when the velocity changes sign – regardless of the sampling. The combined effects
of these two kinds of switching phenomena were also analysed by Budai et. al. [16, 17, 18],
focusing on the stability and special (but non-chaotic) vibrations of mechatronic systems.

To handle the case when the velocity changes sign within the jth sampling interval, the
micro-chaos map was divided into three steps: 1) time evolution until the velocity becomes
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zero at time instant T0,j (to be determined), 2) change of the sign of friction force (or
sticking), and 3) time evolution until the next sampling interval. As a result, we obtained
the so-called hybrid micro-chaos map [77]. The phase-space structure of this map was
analysed by the Clustered Simple Cell Mapping (C-SCM) [72] introduced in Section 4.6.
The results depicted in Fig. 4.30 show that certain chaotic attractors may persist if dry
friction is present, while others are absorbed by sticking zones.

200
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Figure 4.30: C-SCM results for α = 6.53× 10−3, β = 0, P = 5.5× 10−5, D = 2.5× 10−3,
Top: µ̂ = 0, Bottom: µ̂ = 0.095. Chaotic attractors are indicated by black dots, their
basins of attraction are coloured regions. The fixed points’ manifolds are shown as white
dashed lines. The basins of attraction of sticking zones are grey; the bottom subfigure
shows the case, when the outermost chaotic attractors are absorbed by sticking zones.

4.7.2 Twofold quantization

In the micro-chaos models analysed in the previous sections, only the quantization of the
control effort was considered. However, in real systems, both the input (e.g., measured
displacement and velocity) and the output are quantized. Fig. 4.31 illustrates the case when
the input – coordinate x̃ – is measured with resolution rI, while the output – the control
effort u – is sent out according to the resolution rO, and the sampling period is τ .

It was shown in [75] for the case of an inverted pendulum that the effects of input
quantization are similar to those that can be experienced if the output is quantized. However,
chaotic vibrations are typically superimposed on a larger-scale periodic solution (see Fig.
4.32). The effects of twofold quantization were analysed in [76] via the extension of the
model (4.57). Introducing the dimensionless time T = t/τ , the equation of motion can be
given as

x̃′′(T ) + 2βx̃′(T )− α2x̃(T ) = − rO τ 2 Int

(
P rI
rO

Int

(
x̃j

rI

)
+

D rI
τ rO

Int

(
x̃′
j

rI

))
, T ∈ [j, j + 1),

(4.82)
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Figure 4.31: Illustration of the quantization at the input (coordinate x̃) and output
(control signal u) of the control system, and the zero-order-hold scheme.

where the quantization is applied to both the input and the output.
In real applications, the velocity is usually calculated from measured displacement values,

by a finite difference scheme. There are several possible choices, but all of these schemes use
the earlier values of the displacement, too. To avoid the corresponding delay in the equation
(that would result in the increase of the dimensionality of the problem), we assume that the
velocity x̃′ is also measured, and its resolution is rI/τ . Thus, according to the definition of
the dimensionless time T , one can write

dx̃

dt

τ

rI
=

x̃′

rI
. (4.83)

This results in the same dimension in displacement and velocity with the same quantization
resolution rI at the input.

10-10 -5 5

1

2

-1

-2

0 0

x'

x

-3

-2

-1

0

1

2

3

275 285

x'

x

Figure 4.32: Attractors obtained by inner quantization (left) at P = D = 0.25, α = 0.45
and double quantization (right) at P = 0.007, D = 0.02, α = 0.074 and ρI = 2
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In some cases, one of the quantizations is dominant over the other, and therefore the
quantization with higher resolution can be neglected, and one of the single quantization
models can be used (where either the input, or the output is quantized) [38]. In order to
reduce the number of resolution parameters, we rescale the space coordinate with a properly
chosen characteristic displacement.

Using the scaling x = x̃/XO, where XO = rO τ 2, the equation of motion assumes the
following form:

x′′(T ) + 2βx′(T )− α2x(T ) = −Int
(
P rI
rO

Int

(
xj rO τ 2

rI

)
+

D rI
τ rO

Int

(
x′
j rO τ 2

rI

))
.

Introducing ρI = rI/(rO τ 2) = rI/XO one can write:

x′′(T ) + 2βx′(T )− α2x(T ) = −Int
(
P τ 2 ρI Int

(
xj

ρI

)
+D τ ρI Int

(
x′
j

ρI

))
.

For the sake of simplicity, we introduce the parameters P̂ = Pτ 2 and D̂ = Dτ . By the abuse
of notation, the hat symbols can be discarded, leading to

x′′(T ) + 2βx′(T )− α2x(T ) = −Int
(
P ρI Int

(
xj

ρI

)
+DρI Int

(
x′
j

ρI

))
. (4.84)

Note, that another possible scaling is x = x̃/XI, where XI = rI. In Eq. (4.84) a single
quantization ratio (ρI) characterises the ratio of input and output quantization resolutions.
For large ρI, the input quantization dominates, and the outer quantization can be practically
neglected. Similarly, for small ρI values, the output quantization is more significant.

Solving the equation of motion between the subsequent sampling instants, one obtains
the following micro-chaos map:

yj+1 = Ayj + buj, where uj = Int (ρI (P Int(xi/ρI) +D Int(x′
i/ρI))) if X = XI. (4.85)

Here uj is the control effort between the dimensionless sampling instants T = j and T = j+1.
It is clear, that the quantization causes the control effort uj to be a piecewise constant

function over the state space, which consists of domains, each corresponding to a specific
uj value. When the output-quantization is dominant, uj = Int

(
P xj +Dx′

j

)
. Thus, the

aforementioned domains are parallel bands separated by parallel switching lines

x′ =
m− Px

D
, m ∈ Z, (4.86)

as we saw in Section 4.5. For the input-quantization case, however, these domains are
rectangular areas since uj = P Int(xj) + D Int(x′

j). Consequently, the quantization results
in a grid of horizontal and vertical switching lines (see Fig. 4.33).

To illustrate the phase-space structure if both quantizations are present, the switching
lines corresponding to relatively small values of ρI are shown in Fig. 4.34. If the input
quantization is less significant compared to the output quantization, the switching lines
become jagged, and the evolving stairs-like lines more or less follow the straight lines of the
output-only quantization case.

However, as parameter ρI is increased, the input quantization will be more pronounced,
and the size of the steps on the switching lines increase. At a certain value of ρI, two switching
lines touch each other. This new bifurcation is referred to as switching line collision (SLC).
The collision of neighbouring switching lines is the first order SLC, while the collision of
SWm and SWm+n is referred to as nth order SLC.
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Figure 4.33: Left: Switching lines and control effort bands in case of output quantization.
Right: Switching line grid and control effort tiles in case of input quantization.
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Figure 4.34: Switching lines at P = 2/5, D = 2/9 and ρI = 1.0 (left), ρI = 1.65 (right).
The latter value is slightly above ρL,iI = 1/(P + D) ≈ 1.61. Black lines indicate the
switching lines for the output quantization case, orange gridlines indicate the ρI-spaced
grid corresponding to the input quantization. Red point highlights switching line collision.
Green region indicates control effort band u = 2 which becomes disconnected due to SLC.

It can be showed, that there is a lowest quantization ratio for a first order switching line
collision to appear at a value x = iρI in the state space:

ρL,iI = 1/(P +D), (4.87)

When ρI ≥ ρL,iI , first order SLCs are present in the state space and by increasing ρI, they
become more and more frequent (Fig. 4.35). Moreover, there is a critical quantization ratio:

ρ1,iI = 1/P. (4.88)

When ρI = ρ1,iI , every switching line collides with its neighbour at x = i ρI, for all i. Note,
that it does not imply that collision occurs for every x′ = k ρI, too (see Fig. 4.35 left).

Similarly, one can introduce the highest quantization ratio corresponding to the disap-
pearance of first order switching line collisions:

ρH,i
I = 1/(P −D) when 0 < D < P. (4.89)
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Figure 4.35: Switching lines at P = 2/5, D = 2/9 and critical quantization ratios
ρI = ρ1,iI = 1/P (left), ρI = ρ2,iI = 2/P (right). Trajectories going through intersection
points may bypass certain control effort bands. Orange points: 2nd order SLC’s.

When ρI > ρH,i
I , first order switching line collisions no longer present, because higher order

collisions take their place.
Another critical quantization ratio can be derived if one wants a collision for every x′ =

kρI (but not necessarily for every x = i ρI):

ρ1,kI = 1/D. (4.90)

Combining Eqs. (4.88) and (4.90), one can express a combined critical quantization ratio:

ρ1I = max(ρ1,iI , ρ1,kI ) = max(1/P, 1/D). (4.91)

If ρI ≥ ρ1I , switching line collisions occur for all i and k. Expressing higher order switching line
collisions in a similar fashion, one can arrive at the formulae of nth order critical quantization
ratios for the collision of SWm and SWm+n at ∀ i ∈ Z and ∀ k ∈ Z, respectively:

ρn,iI = n/P, ρn,kI = n/D. (4.92)

It is important to note, that due to the double deadzone of the mid-tread quantizer, switching
line collisions of SW−1 and SW+1 are 2nd order ones.

Another effect of twofold quantization – the so-called deadzone crisis – was also revealed
in [76]. Deadzone crisis is an event, when a chaotic attractor turns to a transient chaotic
repeller due to the change of the corresponding switching line’s shape. The term deadzone
crisis is originated from the observation, that this event is strongly related to the variation
of input-deadzones in case of the 2D micro-chaos map. It was shown that this crisis event
can strongly influence the maximal possible control error in the system, as it is illustrated
in Fig. 4.36. At ρI ≈ 1.3, the outermost chaotic attractors, while at ρI ≈ 2.4, the innermost
attractors disappear due to deadzone crisis (denoted by X). At ρI ≈ 4.7 the chaotic attractors
merge (denoted by arrows) on both sides and lastly at ρI ≈ 12 they merge again resulting
in a single recurring orbit with superimposed chaotic vibrations. The colour code shows the
attractor sizes along the x direction. The results show that even the increase of a resolution
parameter rI or rO can lead to smaller control error in certain cases.

4.7.3 Experimental detection of micro-chaos

Based on the generalizations discussed in the present section, a controlled inverted pendulum
was built (see Fig. 4.37), utilizing an ST Nucleo L476 microcontroller unit (80 MHz processor
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Figure 4.36: Transition from output quantization to twofold quantization.

frequency, 12-bit DAC), an ST VNH5019 motor driver (operating voltage: 5.5-24V, contin-
uous 12A current), CUI Devices AMT102 rotary encoder (with 2048 pulse-per-revolution)
and a lightweight aluminium tube directly attached to a brushed DC-motor.

Figure 4.37: Experimental device and the detected micro-chaotic behaviour

The resolution of the encoder is rI = 2π/8096 = 7.76× 10−4 rad, while the control effort
resolution is rO ≈ 1.5× 10−4Nm. In order to emphasize the digital effects, these resolutions
were artificially lowered with a factor up to 200; reffectiveI = N rI, reffectiveO = M rO,
N,M ∈ Z. The control time step was τ = 20ms.

The angular velocity was determined by using the original, more accurate positions (rI)
with a first order numerical differentiation scheme and then artificially rounding the angular
velocity to match the theoretical resolution of reffectiveI /τ .

Fig. 4.37 shows a chaotic attractor surrounding a saddle point at x = −310 (in di-
mensionless position units), whose structure is familiar from numerical simulations (cf. Fig.
4.32).
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Chapter 5

Principal Results

Principal result 1.

I analysed the asymmetric solutions of the harmonically forced oscillator with Coulomb
friction damping and linear spring characteristic.

(a) I revised the assumption often exploited in the literature that the non-sticking
trajectories of the frictional oscillator are symmetric, and found a family of non-
sticking asymmetric solutions at the frequency ratios 1/(2n), n = 1, 2, . . . , where
the symmetry conditions fail.

(b) I derived that the aforementioned non-sticking asymmetric solutions exist if

S0 ≤
1

4n2 − 1
,

where the rescaled static coefficient of friction S0 is the ratio of the maximal
static friction force and the forcing amplitude. I pointed out that almost all of
the asymmetric solutions are marginally stable according to a third order normal
form approximation. I proved that the special asymmetric solutions that just
touch the boundary of the sticking region are stable with respect to perturbations
towards the sticking zone. I demonstrated by numerical simulation that the zero-
measure parameter domains of asymmetric solutions turn to finite parameter sets
if the static coefficient of friction is greater than the kinetic one.

Related publications: [28, 29]. Related sections of the thesis: 2.2, 2.3, 2.4.

Principal result 2.

I examined the bifurcations and chaotic solutions of the oscillator described in Principal
result 1, with different static and kinetic coefficients of friction.

(a) I formulated new switching conditions for the examination of the dry friction
oscillator by the continuation method. I pointed out that symmetric periodic
solutions turn to asymmetric ones via crossing-sliding or saddle-node bifurcations.

(b) I localised the parameter domains where the occurrence of chaotic solutions can
be expected, estimated the value of the largest Lyapunov exponent in broad pa-
rameter domains and pointed out that

• irrespectively of the exact value of the static coefficient (provided it is larger
than the static one), the frequency domain of asymmetric solutions stemming
from Ω = 0.5 – and the enclosed domain of possible chaotic solutions –
expands if the kinetic coefficient of friction is decreased.

98
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• The increase of the rescaled static coefficient of friction in the interval S0 ∈
[0.3, 0.8] implies that the domain of multi-periodic or chaotic solutions is
extended towards larger excitation frequencies.

(c) (Joint work with Gábor Licskó.) We performed a brute-force bifurcation analysis
to identify the parameter domains where the solutions are chaotic. We used two
independent methods for the determination of the largest Lyapunov exponent in
these domains. Based on these results, we found a narrow parameter regime where
the solutions exhibit transient chaos and estimated the value of the largest finite-
time Lyapunov exponent using a third method, approximating the dynamics by
a piecewise linear 1D map.
My contribution was decisive in the selection and implementation of the calcu-
lation methods of the Lyapunov exponent, and also in the construction of the
piecewise linear approximation function.

Related publications: [31, 110]. Related sections of the thesis: 2.5, 2.6.

Principal result 3.

I analysed Zoltán Pálmai’s thermo-mechanical models of chip formation using the tools
of nonlinear dynamics.

(a) I showed by the analysis of a four-dimensional model of chip formation that a
period-doubling cascade leads to chaotic solutions at parameters corresponding
to the cutting of austenitic steel. I also demonstrated that the period-doubling bi-
furcation points follow each other according to the Feigenbaum ratio. I localised
the parameter domain of the dimensionless velocity of the chip where chaotic
solutions exist and showed that the maximal Lyapunov exponent is positive at
the parameters corresponding to the formation of aperiodic chips. I compiled
a bifurcation diagram on the plane of two dimensionless technological parame-
ters and identified several bistable domains where the dynamics is sensitive to
perturbations. These domains should be avoided in practice.

(b) I examined the chip formation model of point (a) that takes the oscillation of
a turned workpiece into account besides the thermo-mechanical effects. I could
conclude that

• the originally periodic cutting process becomes quasiperiodic,
• the originally chaotic solution becomes transient chaotic leading to quasiperi-

odic vibrations, and
• the original equilibrium solution turns to small amplitude chaotic vibrations

at the examined parameters, and
• the oscillations of the workpiece can lead to interrupted cutting in several

elongated regions on the cutting speed-stiffness parameter plane.

(c) I determined the so-called Kaplan-Yorke dimension characterising the chaotic
attractor of a time-delayed and piecewise smooth system that models the effects
of the periodically forming and tearing built-up edge on chip formation during
turning of soft steel. The results show that the solutions are chaotic and the
dimension of the strange attractor of this infinite-dimensional system is finite.

Related publications: [32, 129, 131]. Related sections of the thesis: 3.2, 3.3, 3.4.
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Principal result 4.

I determined dynamical characteristics of digitally controlled, full-state feedback sys-
tems, assuming that the open-loop system is linear with an unstable equilibrium, the
sampling period is constant, zero order hold scheme is applied, and the elements of the
measured state or the exerted control effort are quantized by constant resolutions.

(a) I showed that the dynamics of the considered systems can be described by piece-
wise affine maps, so-called micro-chaos maps. I provided general formulas for the
determination of the regular fixed points and periodic orbits of the micro-chaos
maps.

(b) I developed a specific method for the estimation of the mean lifetime of transient
chaos in a one-dimensional (1D) micro-chaos map, that is based on the determi-
nation of the fractal dimension of the repeller.

(c) I showed that the consideration of processing delay (that is equal to the sampling
period) turns the 1D micro-chaos map into a two-dimensional (2D) map and
proved that the resulting map is chaotic in finite parameter domains.

(d) I proved that the 2D micro-chaos map describing the behaviour of a digitally PD-
controlled linear oscillator with output quantization is chaotic in finite parameter
domains. I showed that the structure of its phase-space is like phase portraits of
several local baker’s maps next to each other, and strange attractors or repellers
are formed between each neighbouring pair of fixed points. I set up an algorithm
for the determination of the attractor/repeller property of the strange sets, based
on the consideration of boundary crisis bifurcations.

(e) (Joint work with Gergely Gyebrószki.) We developed a new Simple Cell Mapping
(SCM) algorithm, the so-called Clustered Simple Cell Mapping, that is able to join
separate SCM solutions and makes the adaptive extension of the analysed state
space region possible, in any dimension. We showed that the joining procedure
is linear in terms of the number of cells, and its main steps can be calculated in
parallel.
My contribution was decisive during the selection of the method suitable for the
investigation of systems with separated attractors – the cell mapping method –,
the setting up of the requirements related to the operation of the algorithm, and
the formulation of the definitions enabling the formal description of the procedure.

Related publications: [35, 38, 42, 43, 72]. Related sections of the thesis: 4.2,4.3, 4.4,
4.5,4.6.
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Appendix A

Stability Analysis of the Dry Friction
Oscillator

A.1 FILIPPOV THEORY AND SALTATION MATRI-
CES

One of the most contemporary stability calculation methods is based on Filippov theory
and the application of so-called saltation matrices [12, 65, 109]. To apply this approach, we
rewrite the equation of motion (2.3) into first order form:

Ẋ ≡

[
ẋ

v̇

]
=

{
F+(x, v, t) if v > 0,

F−(x, v, t) if v < 0,
(A.1)

where

F±(x, v, t) =

[
v

cos(Ω(t+ t0))− x∓ S

]
. (A.2)

The switching surface is defined by h(x, v) ≡ v = 0, thus, its normal vector on the [x v] plane
is n = [0 1]T . Let us consider a perturbation Y that is superposed on a known periodic
solution XP . The evolution of the perturbation can be characterized by the variational
equation

Ẏ = J(t,XP )Y, (A.3)

where the Jacobian matrix of the periodic solution is independent on the direction of the
velocity:

J(t,XP ) =

[
0 1

−1 0

]
. (A.4)

The fundamental set of solutions of the variational equation can be obtained by introducing
linearly independent initial conditions: Y1(0) = [1 0]T and Y2(0) = [0 1]T . The so-called
fundamental solution matrix consists of the corresponding solutions in its columns:

Φ(t) =

[
cos(t) sin(t)

− sin(t) cos(t)

]
. (A.5)

This matrix is valid only between two crossings of the switching surface, because the funda-
mental solution matrix exhibits discontinuities when the sign of the velocity changes from
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negative to positive (− → +) or vice versa. These jumps can be described be the so-called
saltation matrices [12]:

S(−→+) = I+
(F+ − F−)n

T

nTF−
, (A.6)

S(+→−) = I+
(F− − F+)n

T

nTF+

, (A.7)

where I is a unit matrix. The stability of the 2π/Ω-periodic symmetric solution derived in
Section 2.2.1 can be characterized by the matrix

C = S(+→−)Φ(π/Ω)S(−→+)Φ(π/Ω), (A.8)

where the motion in both directions and the two crossings of the switching surface are taken
into account. The periodic solution is stable if the Floquet multipliers – the eigenvalues
λ1,2 of C – are inside the unit circle on the complex plane. The results are illustrated in
Fig. 2.7 at S = 0.05. Apparently, the symmetric solutions are only marginally stable at the
frequencies Ω = 1/(2n), n = 1, 2, . . . . Thus, the analysis of these special solutions requires
a nonlinear stability calculation.

A.2 SHAW’S METHOD

Shaw [142] performed a more conventional stability analysis. His method provides the same
Floquet multipliers as the Filippov theory, but this approach can be extended much easier
with a nonlinear calculation. Shaw introduced the following Poincaré map P :

P :

(
xi

ti

)
→

(
xi+1

ti+1

)
, (A.9)

where xi and ti denote the coordinate and the time at the ith stop. According to our
notations, t1 = t0 + θ1 and t2 = t0 + θ1 + θ2 = t1 + θ2. Consequently, θi = ti − ti−1. The
map P is not known explicitly, since the turning point times are roots of transcendental
equations like (2.12). However, an approximating map can be constructed using implicit
differentiation. We are interested in the propagation of errors as the initial coordinate and
time are changed. Thus, we need the derivatives of t1 and x1 with respect to t0 and x0 [142].

For the calculation of ∂t1/∂t0, we use the expressions x−(θ1) = x1 (see (2.5), (2.10) and
(2.11)) and ẋ−(θ1) = 0 (2.12). These equations can be expressed by the new variables ti as
follows:

x−(θ1) =

(
x0 − S +

cos(Ωt0)

Ω2 − 1

)
cos(t1 − t0)−

Ω sin(Ωt0)

Ω2 − 1
sin(t1 − t0)−

Ωcos(Ωt1)

Ω2 − 1
+ S = x1.

(A.10)

ẋ−(θ1) =

(
S − x0 −

cos(Ωt0)

Ω2 − 1

)
sin(t1 − t0)−

Ω sin(Ωt0)

Ω2 − 1
cos(t1 − t0) +

Ω sin(Ωt1)

Ω2 − 1
= 0.

(A.11)

Differentiation of (A.11) with respect to t0 leads to an equation that can be used to determine
∂t1/∂t0. The expression of ∂t1/∂x0 can be obtained similarly, by differentiation of (A.11)
with respect to x0. The next step is the differentiation of (A.10) with respect to t0. Taking
into account that t1 also depends on t0, one obtains ∂x1/∂t0 and ∂x1/∂x0. The derivatives
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of t2 and x2 with respect to t1 and x1 can be calculated similarly: only the indices must be
increased by one in (A.10) and (A.11).

Let us denote the turning point times and coordinates of the known periodic solution
by t̃i and x̃i, while ti and xi will denote the corresponding quantities in case of a perturbed
motion. This way, an error vector can be defined:(

ξi

ηi

)
=

(
xi − x̃i

ti − t̃i

)
. (A.12)

The propagation of errors during a half cycle can be approximated as follows:(
ξi+1

ηi+1

)
=

(
xi+1 − x̃i+1

ti+1 − t̃i+1

)
=

(
∂xi+1

∂xi

∂xi+1

∂ti
∂ti+1

∂xi

∂ti+1

∂ti

)(
xi − x̃i

ti − t̃i

)
= Ri+1

(
ξi

ηi

)
. (A.13)

The derivatives are considered at the corresponding times t̃i and coordinates x̃i of a chosen
solution. The stability of a periodic solution can be determined by constructing the error
matrix R = R2 ·R1. The condition of stability is that the eigenvalues λ1,2 of matrix R must
be inside the unit circle.

A.3 EXTENSION OF SHAW’S METHOD

To determine the asymptotic behaviour of linearly marginally stable solutions at Ω = 1/(2n),
a non-linear stability analysis was performed. For this purpose, we extended Shaw’s calcu-
lations and approximated the elements of the error vector (A.12) by Taylor polynomials.
Taking into account second and third order terms, we obtain

ξ1 = x1 − x̃1 ≈
3∑

k=1

∑
i+j=k

1

i!j!

∂i+jx1

∂xi
0∂t

j
0

ξi0η
j
0 =

∂x1

∂x0

ξ0 +
∂x1

∂t0
η0

+
1

2

∂2x1

∂x2
0

ξ20 +
∂2x1

∂x0∂t0
ξ0η0 +

1

2

∂2x1

∂t20
η20 (A.14)

+
1

6

∂3x1

∂x3
0

ξ30 +
1

2

∂3x1

∂x2
0∂t0

ξ20η0 +
1

2

∂3x1

∂x0∂t20
ξ0η

2
0 +

1

6

∂3x1

∂t30
η30

and

η1 = t1 − t̃1 ≈
3∑

k=1

∑
i+j=k

1

i!j!

∂i+jt1

∂xi
0∂t

j
0

ξi0η
j
0. (A.15)

Similarly,

ξ2 = x2 − x̃2 ≈
3∑

k=1

∑
i+j=k

1

i!j!

∂i+jx2

∂xi
1∂t

j
1

ξi0η
j
0 (A.16)

and

η2 = t2 − t̃2 ≈
3∑

k=1

∑
i+j=k

1

i!j!

∂i+jt2

∂xi
1∂t

j
1

ξi0η
j
0. (A.17)

Taking into account that t1 − t0 = t2 − t1 = π/Ω and Ω = 1/(2n), the derivatives can be
obtained – see Equations (A.18)-(A.35)
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∂t1
∂t0

=
(S − x0 + 1)(1− Ω2)

(S − x0)(1− Ω2) + (1 + Ω2)
, (A.18)

∂2t1
∂t20

=
∂t1
∂x0

=
∂2t1
∂x2

0

=
∂3t1
∂x3

0

=
∂3t1

∂x0∂t20
= 0, (A.19)

∂3t1
∂t30

=
2(Ω6 − Ω4)((Ω2 − 1)2(x0 − S)3 + (x0 − S)(3Ω4 − 4Ω2 − 3) + 6Ω2 + 2)

((S − x0)(1− Ω2) + (Ω2 + 1))4
, (A.20)

∂2t1
∂x0∂t0

=
2Ω2(Ω2 − 1)

((S − x0)(1− Ω2) + (Ω2 + 1))2
, (A.21)

∂3t1
∂x2

0∂t0
=

−4Ω2(Ω2 − 1)2

((S − x0)(1− Ω2) + (Ω2 + 1))3
, (A.22)

∂x1

∂x0

= 1, (A.23)

∂x1

∂t0
=

∂3x1

∂t30
=

∂2x1

∂x2
0

=
∂2x1

∂x0∂t0
=

∂3x1

∂x3
0

=
∂3x1

∂x2
0∂t0

= 0, (A.24)

∂2x1

∂t20
=

2Ω2(x0 − S − 1)

(x0 − S)(1− Ω2)− (1 + Ω2)
, (A.25)

∂3x1

∂x0∂t20
=

−4Ω4

((x0 − S)(1− Ω2)− (1 + Ω2))2
, (A.26)

∂t2
∂t1

=
(x1 + S + 1)(1− Ω2)

(x1 + S)(1− Ω2) + (1 + Ω2)
, (A.27)

∂2t2
∂t21

=
∂t2
∂x1

=
∂2t2
∂x2

1

=
∂3t2
∂x3

1

=
∂3t2

∂x1∂t21
= 0, (A.28)

∂3t2
∂t31

=
−2(Ω6 − Ω4)((Ω2 − 1)2(x1 + S)3 + (x1 + S)(3Ω4 − 4Ω2 − 3)− 6Ω2 − 2)

((S + x1)(Ω2 − 1)− (Ω2 + 1))4
, (A.29)

∂2t2
∂x1∂t1

=
2Ω2(Ω2 − 1)

((S + x1)(1− Ω2) + (Ω2 + 1))2
, (A.30)

∂3t2
∂x2

1∂t1
=

−4Ω2(Ω2 − 1)2

((S + x0)(1− Ω2) + (Ω2 + 1))3
, (A.31)

∂x2

∂x1

= 1, (A.32)

∂x2

∂t1
=

∂3x2

∂t31
=

∂2x2

∂x2
1

=
∂2x2

∂x1∂t1
=

∂3x2

∂x3
1

=
∂3x2

∂x2
1∂t1

= 0, (A.33)

∂2x2

∂t21
=

−2Ω2(x1 + S + 1)

(x1 + S)(1− Ω2) + (1 + Ω2)
, (A.34)

∂3x2

∂x1∂t21
=

−4Ω4

((x1 + S)(1− Ω2) + (1 + Ω2))2
. (A.35)

Substituting these expressions into Equations (A.14)-(A.17), and substituting ξ1 and η1
into (A.16) and (A.17), one obtains a high-order polynomial. Neglecting fourth and higher
order terms, ξ2 and η2 can be expressed in the following form:

ξ2 = λ1ξ0 + Aη20 +Bξ0η
2
0, (A.36)
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η2 = λ2η0 + Cξ0η0 +Dξ20η0 + Eη30, (A.37)

where A, B, C, D, and E are lengthy algebraic expressions.
Thus, an iterative map can be defined by redefining the subscript as the serial number

of the consequtive cycles of the periodic motion:

ξi+1 = λ1ξi + Aη2i +Bξiη
2
i , (A.38)

ηi+1 = λ2ηi + Cξiτi +Dξ2i ηi + Eη3i . (A.39)

To transform these equations into normal form [121], the resonant conditions must be
examined:

λq1
1 · λ

q2
2 = λ1, (A.40)

λq1
1 · λ

q2
2 = λ2, (A.41)

where 2 ≤ q1 + q2 ≤ 3. The integer numbers q1 and q2 are the exponents of the new,
transformed variables yi and τi in the normal form.

A.3.1 Symmetric solutions

In case of symmetric solutions, λ1 = 1 and 0 < λ2 < 1. Thus, the possible solutions of
(A.40) are

q2 = 0 and q1 = 2, 3. (A.42)

q2 = 0 means that the second variable (τi) can be eliminated from the first equation, while
q1 = 2, 3 implies that the square and the cube of the first variable (yi) will appear in the
transformed equation. (A.41) is fulfilled if

q2 = 1 and q1 = 1, 2, (A.43)

that can be interpreted similarly. Consequently, the normal form of (A.38)-(A.39) is

yi+1 = yi + αy2i + βy3i , and (A.44)
τi+1 = λ2τi + γyiτi + δy2i τi. (A.45)

In the next step, the coefficients α, β, γ, and δ are to be determined. Assume that the
variables ξi and ηi can be written in the following form:

ξi = yi + ayyy
2
i + ayτyiτi + aτττ

2
i + ayyyy

3
i + ayττyiτ

2
i + ayyτy

2
i τi + aττττ

3
i (A.46)

ηi = τi + byyy
2
i + byτyiτi + bτττ

2
i + byyyy

3
i + byττyiτ

2
i + byyτy

2
i τi + bττττ

3
i . (A.47)

Similar equations can be written for ξi+1 and ηi+1, as well. Using (A.44) and (A.45), the left
hand sides of (A.38) and (A.39) can also be expressed by yi and τi.

Substituting (A.46) and (A.47) into the right hand sides of (A.38) and (A.39), ξi+1 and
ηi+1 can be expressed by the new variables yi and τi, again.

After neglecting fourth and higher order terms and taking into account that C = 0 in
(A.39) in the symmetric case, (A.38) and (A.39) lead to the following equations for the
unknown parameters of the transformation (A.46), (A.47):

−αy2i + ayτ (1− λ2)yiτi + (A+ aττ (1− λ2
2))τ

2
i − (β + 2ayyα)y

3
i+

(ayyτ (1− λ2)− ayτ (γ + αλ2) + 2Abyy)y
2
i τi + (ayττ (1− λ2)+ (A.48)

ayττ +B + 2Abyτ )yiτ
2
i + (aτττ (1− λ3

2) + 2Abττ )τ
3
i = 0,
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byy(λ2 − 1)y2i − γyiτi + λ2byy(1− λ2)τ
2
i + (byyy(λ2 − 1)− 2byyα)y

3
i+

(D − δ − byτ (αλ2 + γ))y2i τi + (byττλ2(1− λ2)− 2bττλ2γ)yiτ
2
i + (A.49)

(E + bτττλ2(1− λ2))τ 3i = 0.

Since these equations must be valid for any pair of yi and τi, every coefficient must be
zero. Consequently, α = β = γ = 0, δ = D, and

yi+1 = yi, (A.50)
τi+1 = λ2τi +Dy2i τi. (A.51)

The normal form (A.50) shows, that the periodic symmetric solutions are marginally stable
in this third order approximation.

A.3.2 Asymmetric solutions

A similar calculation can be performed in case of the asymmetric solutions, too. λ1 = 1
and 0 < λ2 < 1 fulfils for almost every asymmetric solution. C ̸= 0 in these cases, and the
normal form reads:

yi+1 = yi, (A.52)
τi+1 = λ2τi + Cyiτi. (A.53)

Thus, for (4n2 + 1)/(4n2 − 1)− S < x0 < 1 + S, we found a continuum of solutions that are
marginally stable in this third order calculation. Higher order terms might have a stabilizing
effect, but we expect that the whole family of these solutions is marginally stable to all
orders due to the fact that these asymmetric periodic solutions are dense in a subsurface of
the phase space.

Finally, consider the extremal asymmetric cases, x0 = 1 + S and x0 = (4n2 + 1)/(4n2 −
1)− S. Since the eigenvalues are λ1 = 1 and λ2 = 0 in these cases, the resonance condition
(A.40) fulfils if

q2 = 0, and q1 = 2, 3, (A.54)

and (A.41) is valid if

q1 = 0, and q2 = 2, 3, (A.55)
q1 = 1, and q2 = 1, 2, (A.56)
q1 = 2, and q2 = 1. (A.57)

Thus, the normal form can be written as

yi+1 = yi + αy2i + βy3i , (A.58)
τi+1 = γyiτi + δy2i τi + ετ 2i + κyiτ

2
i + µτ 3i . (A.59)

The coefficients α, β, γ, δ, ε, κ, and µ can be determined similarly as in the case of Eqs.
(A.44), (A.45). Taking into account that A = 0 and B = −1/2 in case of x0 = 1 + S, we
obtain

yi+1 = yi, (A.60)
τi+1 = Cyiτi + Eτ 3i , (A.61)

while in case of x0 = (4n2 + 1)/(4n2 − 1)− S, we arrive at

yi+1 = yi, (A.62)
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τi+1 = Cyiτi + (E − AC)τ 3i . (A.63)

Note, that in the extremal asymmetric cases the solution touches the stick-slip boundary.
This result means that Eqs. (A.60)-(A.63) are valid only for perturbations that push the
solution away from the boundary and towards non-sticking responses. In the opposite case,
i.e., when the solution is pushed into the sticking region, another approach must be used,
that is described in Section 2.3.3.

Since Eqs. (A.50)-(A.53) are valid for arbitrary small perturbations, this third order
calculation leads us to the conjecture that families of equally marginally stable solutions
exist at frequencies Ω = 1/(2n).
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Appendix B

Pálmai’s Chip Formation Models

B.1 DERIVATION OF THE 5D MODEL

The derivation of the equations (3.3)-(3.10) can be summarized as follows: the plastic shear
stress τi (i = 1, 2) occurring in the shear zone of size h1 is in mechanical balance with the
normal stress σ acting on length L (see Fig. 3.3), i.e., the inertial forces and the elastic
deformation are neglected. Thus,

σL = τ2h1 ≡
τ2h

sin(Φ)
. (B.1)

The normal stress σ causes an elastic normal strain ∆u/h1 in the chip, parallel with the
direction of the deformation layers. Thus, σ = E∆u/h1, i.e, σ̇ = E sin(Φ) u̇/h, that implies

τ̇2 =
EL sin2(Φ)

h2
u̇, (B.2)

where E denotes the Young modulus and u̇ is the deformation velocity parallel to the defor-
mation layers. u̇ is not equal to the corresponding component

v cos(Φ) ≡ δε̇Φ (B.3)

of the cutting speed v, due to the plastic deformation of the material. The velocity of the
plastic deformation is γ̇δ, thus, u̇ = δε̇Φ − δγ̇. The consideration of two deformation layers
implies

u̇ = δε̇Φ

(
1− γ̇1

ε̇Φ
− γ̇2

ε̇Φ

)
. (B.4)

Thus, substituting to (B.2),

τ̇2 =
ELv

h2
sin2(Φ) cos(Φ)

(
1− γ̇1

ε̇Φ
− γ̇2

ε̇Φ

)
. (B.5)

To simplify the equations, a nondimensional time t̂ = t/K and a nondimensional shear stress

τ̂i =
τi
τΦ

(B.6)

were introduced, where τΦ is the mean shear stress [132] in the shear zone during the forma-
tion of continuous chips. According to the generally accepted approximation of the cutting
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theory, τΦ can be considered as a material constant. The nondimensional time was chosen
to be

K =
τΦh

2

ELv sin2(Φ) cos(Φ)
. (B.7)

Using the new time scale and the notation

Fi ≡
γ̇i
ε̇Φ

, (B.8)

the equation of mechanical balance on the boundary of layers 0 and 1 turns to the differential
equation

τ̇2 = 1− (F1 + F2), (B.9)

where the hat symbol showing the dimensionless nature of the variable τ is discarded and
dot means differentiation with respect to the dimensionless time.

On the boundary of the two deformed layers, the plastic stress σpl in layer 2 must also
be taken into account. Consequently, the mechanical equilibrium leads to

τ1h1 = σL+ σplδ.

Pálmai assumed that σpl ≈
√
3τpl in the plastic state, where τpl = τ2. Thus, the differen-

tial equation of the nondimensional shear stress in layer 1 assumes the form

τ̇1 = p (1− (F1 + F2)) , (B.10)

where

p = 1 +

√
3δ

h
sin(Φ). (B.11)

The determination of the parameter p is necessary for the application of the mathemat-
ical model. Unfortunately, the standard deviation of the data, found in the literature and
measured in Pálmai’s experiments about the thickness of the shear zone, is rather large.
Most of the measurements published in the literature [94, 125] provide information about
the state of the shear zone just after the interruption of the cutting process. The circum-
stances during the process were examined by Black [14] by electronmicroscope. Taking into
account these results, one can choose δ = 12.5 µm as a realistic approximation. Exploiting
the definitions of ξ and ζ, one obtains the following expression:

δ =
ξ

ζ

4λ

cρ

1

v sin(Φ)
. (B.12)

In the considered case, δ = 1.278 ·10−5 m, which well agrees with the measured value. Thus,
p = 1.03, according to (3.5). The time scale K can be determined in two different ways, which
makes the validation of the model possible. Measuring the mean width ∆c of the lamellas of
the periodic chip (Fig. 3.2), the real time period tc can be determined as tc = ∆c/(v sin(Φ)).
In the mathematical model, K = tc/t̂c, where t̂c is the dimensionless time period. According
to the measurements, ∆c = 0.28 mm, while using the mathematical model (3.4)-(3.9) in the
case ζ= 3.4 (Fig. 3.2/c.), one obtains t̂c = 0.95. Thus, K = 1.64 · 10−4 s.

Parameter K can also be determined using the definition of parameter η, exploiting
that τΦ = 0.9 GPa for the chip material of austenitic steel [174]. Taking into account that
Tw = 300 K and r = 0.95, one obtains K = 1.52 · 10−4 s, which satisfactorily agrees with the
previous value.
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B.2 VARIATION OF THE CUTTING SPEED

To extend the 4D model to the case of varying cutting speed, one must take into account that
the time scale K depends on the cutting speed v. Using this parameter for the expression
of dimensionless equations is inappropriate if v can vary during the cutting process. Thus,
a reference velocity v0 is introduced to express the time scale:

K0 =
τΦh

2

EL sin2(Φ) cos(Φ)

1

v0
, (B.13)

with which the dimensionless time can be obtained as t̂ = t/K0.
The actual cutting speed can be expressed as the multiple of the reference value: v =

v0f(t). Substituting v = v0f into (B.5), one obtains

dτ̂2

dt̂
= f (1− (F1 + F2)) . (B.14)

Since the expressions of the system parameters η and ξ contain the velocity v, these param-
eters are also reformulated to depend on v0, the reference speed. If the cutting speed differs
from v0, these parameters must be multiplied by f . Thus, the energy balance equations
(3.28)-(3.29) turn to the forms

Ṫ0 = ζ(T1 − 2T0)− fξT0,

Ṫ1 = fη τ1F1(τ2, T1)− ζ(2T1 − T2 − T0)− fξ(T1 − T0), (B.15)
Ṫ2 = fη τ2F2(τ2, T2)− (fξ + ζ)(T2 − T1).

Thus, in the case of varying cutting speed, the mathematical model of chip formation
– derived by Pálmai [129] – consists of the constitutive equations (3.31), together with the
differential equations (B.14) and (B.15). The constants, the system parameters and the
initial conditions remain unchanged.

B.3 OSCILLATION OF THE WORKPIECE OR THE
TOOL

The machine-tool-workpiece system performs elastic vibrations as the cutting force varies.
For the sake of simplicity, Pálmai neglected the elasticity of the machine and assumed that
one end of the beam-shaped workpiece is fixed in the chuck of the turning machine. The
velocity of the motion related to the oscillation of the workpiece and/or the tool is added to
the cutting velocity.

Introduce the coordinate z that is measured parallel with the cutting speed, according
to Fig. B.1. If the workpiece moves with velocity ż, the effective cutting speed will be
veff = (fv0 − ż). Clearly, if the tool oscillates, one obtains veff = (fv0 + ż). Substituting
v = veff into (B.3) and (B.4) leads to

ε̇Φ =
fv0 cos(Φ)

δ

(
1− ż

fv0

)
(B.16)

and
u̇ = fv0 cos(Φ)

(
1− ż

fv0

)(
1− γ̇1

ε̇Φ
− γ̇2

ε̇Φ

)
. (B.17)
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Figure B.1: Relations among the velocity components in the elastic workpiece-tool system.

Thus, τ̇2 can be expressed as

τ̇2 =
EL

h2
sin2(Φ)fv0 cos(Φ)

(
1− ż

fv0

)(
1− γ̇1

ε̇Φ
− γ̇2

ε̇Φ

)
. (B.18)

Using the time scale K0 and stress scale τΦ, one obtains (prime denotes differentiation w.r.t.
dimensionless time):

τ̂ ′2 = f

(
1− z′

K0fv0

)
(1− F1 − F2) . (B.19)

To determine the motion law of the workpiece z(t̂), the workpiece is modeled as a beam
with one fixed end, and the principal cutting force is applied at the other end of the beam.
The oscillation of this 1DoF system can be described by the differential equation

mrz̈ + kz = Fv, (B.20)

where mr denotes the equivalent mass of the workpiece (or the tool if the tool’s elasticity is
considered), reduced at the point of action of the force, and k (N/m) is the spring stiffness.
The principal cutting force Fv can be approximated as

Fv ≈ cF · τ, where (B.21)
cF ≈ (cotan(Φ) + cotan(ρΦ)) · q.

Here τ denotes the shear stress in the shear zone in plastic state, while q denotes the area
of the cross section of the cut layer. ρΦ is the angle of ”internal friction”, which can be
defined in the shear zone, and can be expressed by the angle of friction ρ̄ between the
workpiece and the tool. Usually ρΦ = π/2 − (Φ − α + ρ̄), while in our case ρΦ = π/2 − ρ̄,
i.e., cotan(ρΦ) = tan(ρ̄) = µ, where µ denotes the usual Coulomb coefficient of friction.
In the examples discussed in Section 3.3, the area of the cross section of the cut layer is
q = 0.73 mm2 and the corresponding angles are Φ = 30o and ρΦ = 45o, thus, cF ≈ 2.

It is characteristic of turning processes that the point of action of the force usually
approaches (or rarely, moves away from) the fixed end of the workpiece. Consequently, the
spring stiffness k increases, and may assume a rather large value during the final part of the
process. However, this variation is slow, and we suppose in our model that k=const. To
rewrite the equations to dimensionless form, we introduce the notation

z = L̃ · ẑ (B.22)

where the appropriate choice of L̃ is

L̃ =
2τΦ
mr

K2
0 . (B.23)
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Discarding the special symbols showing the dimensionless nature of the quantities, we obtain

z̈ + A · z = τ, (B.24)

where
A =

kK2
0

mr

. (B.25)

According to what we have mentioned above, the final value of A may be several times larger
than its initial value. The equivalent mass mr of the beam is approximately mr ≈ m/3 for
the workpiece fixed at one end.

The period of the free oscillations of the beam can be obtained as

Tper =
2π√
A

= 2π

√
mr · k
K0

, (B.26)

while the natural angular frequency is

ω =

√
A

K0

. (B.27)

Pálmai estimated the order of magnitude of A based on a cutting experiment, performed at
the Faculty of Technology of the Kecskemét College. The angular frequency was ω = 2π·1800
rad/s, which corresponds to Tper = 1/1800 s = 5.56 · 10−4 s.

Consequently,
√
A = 1800 · 2πK0 = 1.1304 · 104K0. For example, at K0 = 1.769 · 10−4 s

we obtain A = 4. The velocity of the workpiece, related to the oscillation is denoted by ż.
According to Fig. B.1, this velocity must be subtracted from the circumferential velocity v
– i.e., from the nominal cutting speed – to obtain the effective cutting speed veff . In the
extremal case, when ż is equal to the circumferential velocity, no chip is produced.

Using the length scale z = L̃ẑ, Equation (B.19) turns to

τ̂ ′2 = f

(
1− ẑ′L̃

K0fv0

)
(1− F1 − F2) . (B.28)

Introducing the notation

V0 =
K0v0

L̃
=

mrv0
2τΦK0

, (B.29)

the differential equation of the shear stress can be rewritten to

τ̂ ′2 = f

(
1− ẑ′

V0f

)
(1− F1 − F2) . (B.30)

The energy equations, describing the variation of the temperatures, are also modified: pa-
rameters ξ and η must be multiplied by f

(
1− ẑ′

V0f

)
that takes the variation of velocity into

account.
The described transformations lead to the set of differential equations (3.12) - (3.16) if

one discards the special symbols that denote the dimensionless nature of the variables.

B.4 PÁLMAI’S TIME-DELAYED MODEL OF CHIP FOR-
MATION

B.4.1 Variation of the thickness of the cut layer

The most important phase of the formation of chips is the development of an active deforma-
tion zone between the workpiece and the chip (Fig. B.2), where the plastic shear deformation
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Figure B.2: The model of chip formation (from [131]).

is dominant. This process is responsible for 80% of the total energy consumption of the tech-
nology [141]. The remaining 20% is mostly devoted to the friction between the tool and the
chip. In the previous models [127],[129] Pálmai neglected friction and assumed that the
inclination angle ϕ of the shear zone and rake angle α of the tool were equal. In the new
model, these simplifying assumptions are disregarded. It was assumed in the technological
model [127], that the workpiece and the tool are rigid, the chip is elastic and the active shear
zone of thickness δ is in plastic state. An inactive layer of thickness δ was also considered
between the shear zone and the workpiece, which plays a role in thermal transfer processes
only. It is expedient to rewrite the temperature, shear stress, deformation angle and time
in dimensionless form: T̂ = (T − Tw)/Tw, τ̂ = τ/τΦ,γ̂ = γ/εΦ, t̂ = t/K, where Tw denotes
the temperature of the workpiece and K is the time-scale. The appropriate choice of K is
given in Eq. (B.49). During the formation of the so-called continuous chips with uniform
thickness, the temperature of the shear zone is TΦ, the shear stress is τΦ, and the strain is

εΦ =
cos(α)

sin(Φ) cos(Φ− α)
, (B.31)

while the strain rate [141] is,

ε̇Φ =
v

δ

cos(α)

cos(Φ− α)
. (B.32)

As we have already shown [129], the energy balance equation of the inactive layer assumes
the following dimensionless form:

dT̂0(t̂)

dt̂
= ζ(T̂ (t̂)− 2T̂0(t̂))−

1

δt̂
T̂0(t̂), (B.33)
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where T̂0 and T̂ denote the temperature in the inactive and active layers, respectively.
During the motion of the material, heat flows from the inactive layer to the active layer.

In the new model [130] it is taken into account that time is necessary to cover the distance
δ, which corresponds to the thickness of the layer. Consequently, a delayed value of the
temperature T̂0(t̂− δt̂) must be used in the calculations. Therefore,

dT̂ (t)

dt̂
= ητ̂(t̂)F (t̂)− ζ(T̂ (t̂)− T̂0(t̂))−

1

δt̂
(T̂ (t̂)− T̂0(t̂− δt̂)). (B.34)

where the following dimensionless system parameters were introduced:

ζ =
4Kλ

cρδ2
1

δt̂
=

Kv sin(Φ)

δ
, and η =

rKτΦv cos(Φ)

cρδTw cos(Φ− α)
. (B.35)

where c denotes the heat capacity, ρ is the density, λ is the thermal conductivity and r is
the energy ratio (r ≈ 0.95). F (t̂) denotes the deformation speed expressed with the help of
the constitutive equation, characteristic of the material of the workpiece [126]:

F (t̂) ≡ γ̇

ε̇Φ
=

T̂ + 1

T̂Φ + 1
exp

τ̂ − 1+εnΦγ̂
n

1+εnΦ
+ a(T̂ − T̂Φ)

b(T̂ + 1)
, (B.36)

where a, b, and n are constant values, characteristic of the thermal softening, the sensitivity to
velocity of deformation, and the strain-hardening, respectively. The deformation is described
by the following equation [126]:

dγ̂(t̂)

dt̂
=
[
F (t̂)− F (t̂− δt̂)

] 1

δt̂
. (B.37)

It is also necessary to describe the mechanical equilibrium with another equation that
takes the variation of the depth of cut into account as the built-up edge develops.

The so-called card model is used for setting up the equation of mechanical balance [133].
According to Fig. B.2, pressure p(x, t) acts on the surface of the tool, which can be described
by the empirical formula p ≈ p0(1−x/L)λ

′ along the surface of the tool [174], where λ′ = 2÷3.
As a consequence, normal stress σ = p cos(Φ−α) develops in the neighborhood of the shear
zone. This normal stress is in equilibrium with the shear stress τ occurring in the shear zone
during the plastic deformation:

[cos(Φ− α)− µ sin(Φ− α)]w

∫ L

0

p(x)dx = τ
wh

sin(Φ)
, (B.38)

where µ denotes the friction coefficient, h is the depth of cut, while w is the chip width.
After integration, Eq. B.38 can be rewritten as

τ = [1− µ tan(Φ− α)]
L

1 + λ′ sin(Φ)
σ

h
. (B.39)

According to [19], the projection of the cutting velocity to the shear plane

vΦ = v
cos(α

cos(Φ− α)
(B.40)

can be decomposed into two parts: vΦ = ẏpl+ ẏel. As depicted in Fig. B.2, ypl is the displace-
ment in the shear zone, related to the plastic deformation, i.e., the γ̄ plastic deformation
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angle: ∆ypl = δγ̄, while yel denotes the elastic deformation in the chip parallel with the
shear zone:

∆yel =
hσ

E sin(Φ)
, (B.41)

where E denotes Young’s modulus. Using (B.32), we obtain

ẏel = vΦ − δγ̇ = vΦ

[
1− δ

vΦ
γ̇

]
= vΦ

[
1− γ̇

ε̇Φ

]
= vΦ(1− F (t)), (B.42)

where F (t) ≡ γ̇/ε̇Φ , according to the constitutive equation (B.36). The differentiation of
(B.41) leads to

ẏel =
ḣσ + hσ̇

E sin(Φ)
(B.43)

which – together with (B.42) – makes the formulation of σ̇ possible:

σ̇ =
EvΦ sin(Φ)[1− F (t)]

h
− σḣ

h
. (B.44)

As the BUE periodically develops and tears off, the thickness of the cut layer can be
given in the form

h(t) = h0[1 + f(t)]. (B.45)

Using (B.39) and (B.44), we obtain

dτ

dt
= [1− µ tan(Φ− α)]

ELv sin2(Φ) cos(α)

(λ′ + 1)h2 cos(Φ− α)
[1− F (t)]− 2

τ

h

dh

dt
. (B.46)

It is expedient to rewrite the equation to dimensionless form:

dτ̂

dt̂
= [1− µ tan(Φ− α)]

ELv sin2(Φ) cos(α)

(λ′ + 1)h2
0τΦ cos(Φ− α)

K
1− F (t̂)

[1 + f(t̂)]2
− 2

τ̂

h

dh

dt̂
. (B.47)

By the appropriate choice of the time-scale K, the equation of mechanical balance turns
to the following non-dimensional formula in the case of varying depth of cut h(t̂):

dτ̂

dt̂
=

1− F (t̂)

[1 + f(t̂)]2
− 2

τ̂

h

dh

dt̂
, (B.48)

where

K =
(λ′ + 1)h2

0τΦ cos(Φ− α)

ELv sin2(Φ) cos(α)

1

1− µ tan(Φ− α)
. (B.49)

In summary, the new mathematical model of chip formation comprises the autonomous
differential equations (B.33), (B.34), (B.37) and (B.48), along with the expression of the
deformation speed (B.36). These equations should be applied as follows: only the shear
stress changes in the initial interval t̂ = 0 . . . δt̂, according to (B.48), with initial condition
τ̂(0) = 0.. This part of the solution corresponds to the formation of the deformation band.
The other three variables remain zero in this period: T̂0(t̂) = 0, T̂ (t̂) = 0, γ̂(t̂) = 0. For
times t̂ > δt̂, the solution previously obtained for the shear stress provides the time history
for the delayed differential equations.
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(b) (a) (b)(a)

Figure B.3: Formation of built-up-edge and its influence on the cut chip. (←→ 1 mm):
(a) free-cutting steel and (b) free-cutting steel+Pb+Te.

Quality Charge # C % Mn % Si % P % S % Pb % Te % Al %
AS1 89694 0.08 0.91 0.05 0.098 0.208 - - 0.02

AS1 Pb Te 89746 0.08 1.1 0.05 0.103 0.218 0.15 0.04 0.04

Table B.1: Chemical composition of the experimental materials.

B.4.2 Refinement of the model based on experimental results

To validate and refine the model, Pálmai used a material that can be cut both with and
without the formation of BUE during the application of the same technology: the free-cutting
steel. A Hungarian metallurgical company produced a new steel type by alloying free-cutting
steel with Pb and Te. These components behave as lubricants during cutting, preventing
the formation of BUE. The chemical composition of these two steel types is quite similar, as
it is shown in Table B.1. These steel materials were turned in rolled state with high-speed
steel tools. After the abrupt interruption of the process, the chips depicted in Fig. B.3 were
obtained. Picture B.3/a shows the occurrence of BUE in the case of free-cutting steel, while
continuous chips were produced without BUE as a consequence of the Pb and Te content,
according to picture B.3/b.

The periodic formation and breaking off of the BUE can be observed well in Fig. B.3/a,
where a previously torn off part of the BUE can be seen together with the actually forming
BUE at the root of the chip. According to Fig. B.4 that shows a blow-up of Fig. B.3/a,
the BUE formed at the tool tip tears off only partially, and a large portion of the material
accumulates on the tool permanently, increasing its size. The periodic formation and tearing
off of the BUE leads to the periodic variation of the depth of cut by ∆h – see Fig. B.4.
The depth of cut h gradually – approximately linearly – increases during the formation of
the BUE. Then, the BUE tears off at a certain ∆h value, and the thickness of the cut layer
becomes h0, again. Thus, the actual depth of cut h(t) varies according to a saw-tooth profile.
The frequency of the phenomenon can be determined by the examination of produced chips.
Thus, Eq. (B.45) can be rewritten as

h(t̂) = h0[1 +Hf1(t̂)], (B.50)

where H = ∆h/h0, and the saw-tooth profile is given by the function

f1(t̂) =
Ω

2π

(
t̂mod

2π

Ω

)
≡ Ω

2π
t̂m. (B.51)
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Δh

0.1 mm

Figure B.4: Variation ∆h of the depth of cut.

Here Ω = Kω, and ω is the angular frequency of the development of the BUE. Thus, the
final form of Equation (B.48) is

dτ̂

dt̂
=

1− F (t̂)[
1 +H Ω

2π
t̂m
]2 − 2τ̂

H Ω
2π

1 +H Ω
2π
t̂m

. (B.52)
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Appendix C

Micro-chaos Map

C.1 STATE-SPACE MODEL OF FULL-STATE FEED-
BACK

We consider systems described by first order linear differential equations, i.e.,

ẋ =Ãx+ B̃u, (C.1)
u =Kx,

where x ∈ Rn denotes the state vector, Ã ∈ Rn×n and B̃ ∈ Rn×m are the coefficient matrices,
u ∈ Rm is the vector of m control signals and K ∈ Rm×n is the matrix of feedback gains.

In the case of sampling with sampling period τ , zero-order-hold control scheme and
neglected processing delay, the solution of the differential equations can be given in the form

xj+1 = Axj +Buj

uj = Kxj

}
⇒ xj+1 = (A+BK)xj ≡ Sxj. (C.2)

where the coefficient matrices of the discrete system can be calculated as A = exp(Ãτ) and
B =

∫ τ

0
exp(Ãz)dz B̃, where A ∈ Rn×n and B ∈ Rn×m.

In real control systems, the derivatives (speed, angular velocity, etc.) are typically deter-
mined using a difference scheme. In the simplest case, when the feedback delay is neglected
in a 1DoF system, the speed v at time instant t = jτ can be expressed by the actual and
one step earlier value of the displacement x as

vj =
xj − xj−1

τ
. (C.3)

As a consequence, the delayed values of the displacement appear in the governing equation
of the system. If the control effort u depends on delayed values of the state, the state-space
model can be given as

xj+1 = Axj +Buj, (C.4)
uj = K0xj +K1xj−1 + · · ·+Kdxj−d.

To facilitate the stability analysis of the system, we complement the actual state vector
xj by its earlier values, resulting in a new state vector yj = [xT

j−d . . . xT
j ]

T , i.e., yj ∈ R(d+1)n

if the largest delay is dτ . Using this extended state vector, the governing equation can be

119
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rewritten as

yj+1 ≡


xj−(d−1)

...
xj−1

xj

xj+1

 =


0 I 0 . . . 0

0 0 I . . . 0
...

...
... . . . ...

0 0 0 . . . I

BKd BKd−1 . . . BK1 A+BK0




xj−d

...
xj−2

xj−1

xj

 ≡ Syj. (C.5)

The size of each unit matrix is I ∈ Rn×n. If there is no quantization, the general form of the
map – with or without delay – is

yj+1 = Syj. (C.6)

C.2 POSSIBLE TYPES OF QUANTIZATION

C.2.1 Quantization at the output

In this case, we assume that there is no round-off at the input, but the elements of the
calculated control vector uj = [u1j u2j . . . umj]

T are sent out with different resolution
values. The diagonal matrix

RO = diag[rO1 rO2 . . . rOl] (C.7)

contains the values of the resolutions for the l control effort signals. Each signal must be an
integer multiple of the corresponding resolution value. In this case,

xj+1 = Axj +BROInt
(
R−1

O uj

)
, (C.8)

where
uj = K0xj +K1xj−1 + · · ·+Kdxj−d, (C.9)

and the function Int : Rl → Zl calculates the integer parts of the elements of the output,
rounding towards zero. Thus, the following map describes the evolution of the state instead
of Equation (C.5):

yj+1 ≡


xj−(d−1)

...
xj−1

xj

xj+1

 =


0 I 0 . . . 0

0 0 I . . . 0
...

...
... . . . ...

0 0 0 . . . I

0 0 . . . 0 A




xj−d

...
xj−2

xj−1

xj

+



0

0
...
0

BROInt
(
R−1

O

∑d
i=0 Kixj−i

)


≡ A+yj + b+

j . (C.10)

This expression can easily be reduced to

xj+1 = Axj +BROInt

(
R−1

O

d∑
i=0

Kixj−i

)
≡ Axj + bj, (C.11)

where A denotes the coefficient matrix of the uncontrolled system, with at least one eigen-
value outside the unit circle. If there is only one control signal, i.e., vector uj is one-

               csernak.gabor_124_23



C.2. Possible Types of Quantization 121

dimensional with resolution rO, integer numbers mj describe the quantization at each sam-
pling instant, leading to

yj+1 = A+yj + b+mj, and xj+1 = Axj +BrOInt

(
r−1
O

d∑
i=0

Kixj−i

)
≡ Axj + bmj.

(C.12)

C.2.2 Quantization at the input

If the measured inputs xj are quantized instead of the output uj, the values of the resolution
for the n state variables can be given by the n-dimensional diagonal matrix

RI = diag[rI1 rI2 . . . rIn]. (C.13)

Only integer multiples of the resolutions rIk, k = 1, . . . , n are used by the control system for
the calculation of the exerted control effort. Using matrix RI , micro-chaos maps similar to
(4.8) and (C.10) or to (4.13) can be formulated.

If one wants to emphasize the local unstable behaviour, the coefficient matrix of (C.10)
can be used, and the map can be formulated similarly as (4.9):

xj+1 = Axj +B
d∑

i=0

KiRIInt
(
R−1

I xj−i

)
≡ Axj + bj, (C.14)

where the element-wise integer-part function Int maps from Rn to Zn. The alternative form
of the map that emphasizes the global attractive property of the origin assumes the form
yj+1 = Syj + cj that is similar to Eq. (4.13) with the same coefficient matrix S, and the
shift vector

cj =


0

0
...
0

B
∑d

i=0KiRIFj−i

 . (C.15)

The fractional part vectors’ elements are between -1 and 1, since

Fj−i = R−1
I xj−i − Int

(
R−1

I xj−i

)
. (C.16)

C.2.3 Twofold quantization at the input and output

It is straightforward to combine the input and output quantization cases to obtain the
corresponding micro-chaos maps:

xj+1 = Axj +BROInt

(
R−1

O

d∑
i=0

KiRIInt
(
R−1

I xj−i

))
≡ Axj + bj. (C.17)

Using the other approach, i.e., substracting the fractional parts, the coefficient matrix S
is the same as in (4.13), and the shift vector will be also similar:

cj =


0

0
...
0

BROFj

 . (C.18)
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Note, however, that the definition of vector Fj is different from (4.12):

Fj = R−1
O

d∑
i=0

(
KiRIInt

(
R−1

I xj−i

))
− Int

(
R−1

O

d∑
i=0

(
KiRIInt

(
R−1

I xj−i

)))
. (C.19)

Thus, we found that independently on the type of round-off, the discrete map describing
the evolution of the system can be given as yj+1 = Ayj + bj or yj+1 = Syj − cj.

C.3 2D MICRO-CHAOS MAP WITH DELAY

C.3.1 Restrictions about the basic branches

(A) If ymsup > x∗
m+1 and m ≥ 0, the trajectory can jump from the mth basic branch to that

part of the next (m + 1st) basic branch that is on the other side of the fixed point y∗
m+1.

Consequently, the solution may reach the (m + 2nd) basic branch, as well. This situation
may occur if

b < nm
sup,+ ≡

a2(a− 1)(m+ 1)

ma2 + 1
. (C.20)

For example, n2
sup,+ ≈ 0.614 > b in the case a = 1.5, b = 0.6, shown in Figure 4.9. Thus,

p2
sup is ”over” the fixed point y∗

3. Consequently, the solutions can reach band M4 as they
move away from y∗

3, and finally, they reach the unstable line of y∗
4. Since n3

sup,+ ≈ 0.58 < b,
the solutions cannot go further, to the unstable line of y∗

5 .
Similarly, if condition yminf < x∗

m−1 is fulfilled at m > 0, which means that

b > nm
inf,+ ≡

a2(a− 1)m

ma2 − 1
, (C.21)

the solutions can jump from the mth basic branch over the fixed point of the (m−1)st basic
branch. Thus, the (m−2)nd branch can be reached by them. At a = 1.5 and b = 0.6 (Figure
4.9), n3

inf,+ ≈ 0.587 < b, and p3
inf is under the fixed point y∗

2. Consequently, the solutions
can reach band M1 as they move away from y∗

2, and finally, they reach the basic branch of
y∗
1. Note that if y1inf < x∗

0, the positive solutions may jump to the negative domain. This
situation occurs if b > n1

inf,+ ≡ a2/(a+ 1).
The corresponding formulae if negative coordinates are considered:
– if yminf < x∗

m−1 and m ≤ 0,

b < nm
inf,− ≡

a2(a− 1)(m− 1)

ma2 − 1
, while (C.22)

– ymsup > x∗
m+1 and m ≤ 0 implies

b > nm
sup,− ≡

a2(a− 1)m

ma2 + 1
. (C.23)

(B) If ymsup > ym+1
m+2 and ym+1

m+2 > m+2, the rightmost accumulation point on the branch of
Um+1 is not f(pm+1

m+2) = pm+1
sup , but f(pm

sup). The condition of the occurrence of this situation
is

b < gmsup,+ ≡ a2(1 +m)− a(m+ 2)

am− 1
if m > 0, and (C.24)

b > g0sup ≡ 2a− a2 if m = 0. (C.25)
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Figure C.1: ”Overstretching” of a basic branch at a = 1.55 and b = 0.8.

For example, if a = 1.55 and b = 0.8 (see Figure C.1), g0sup = 0.6975 < b, thus, the rightmost
accumulation point on the branch of U1 is not p1

sup, the basic branch ”stretches over” this
point.

The same problem occurs if yminf < ym−1
m−1 and m ≥ 1. In this case,

b > gminf,+ ≡
a2m+ a(1−m)

am+ 1
, (C.26)

and the lower endpoint of the (m− 1)st branch is not f(pm−1
m−1), but f(pm

inf).
The corresponding formulae for negative solutions:
– ymsup > ym+1

m+1 and m ≤ −1:

b > gmsup,− ≡
a2m+ a(1−m)

am
. (C.27)

– yminf < ym−1
m−2 and m < 0:

b < gminf,− ≡
a2(m− 1)− a(m− 2)

am+ 1
. (C.28)

(C) The basic branch on Um (m > 0) falls into smaller pieces (becomes dashed) if

f(pm−1
sup ) =

[
(a2 − ab− b)(m− 1) + a2

a(a2 − ab− b)(m− 1) + a3 −mb

]
(C.29)

is such that its second coordinate is less than ym−1
m . This is the case if

b > dm ≡ am(a2 − 1)

(m− 1)(a2 + a) + 1
. (C.30)

The basic branch on U0 becomes dashed if f(p1
inf) is above p1

1, which leads to the following
condition:

b < d0 ≡ a(a2 − 1)

a2 + a− 1
. (C.31)
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Figure C.2: Dashed basic branch at a = 1.1 and b = 0.5.

For example, see Figure C.2, where d1 = 0.231 < b = 0.5, and f(p0
sup) is below p0

1. As a
consequence, a gap appears on the basic branch belonging to U1.

(D) Note, that there are cases when more than two basic branches overlap. The condition
of k-fold overlap of branches is ymm+1 > ym+k−1

m+k−1, which leads to

b > lk ≡ a(k − 2)

k − 1
. (C.32)

If conditions (C.20)-(C.23) are not fulfilled, the basic branches of y∗
m+1 or y∗

m−1 become
mangled, since the solution cannot jump to the other side of the corresponding fixed point.

Thus, the maximal and minimal numbers m, with which whole basic branches occur are

mmin = Int
b

a2(b+ 1− a)
, (C.33)

mmax = Int
a2(a− 1)− b

a2(b+ 1− a)
+ 1. (C.34)

The rightmost accumulation point of the attractor can be obtained as f(pmmax
sup ):[

xr

yr

]
=

[
a(a− b)− b)mmax + a2

axr − b(mmax + 1)

]
. (C.35)

The leftmost point of the attractor is f(pmmin
inf ):[

xl

yl

]
=

[
a(a− b)− b)mmin

axl − b(mmin − 1)

]
. (C.36)

The introduced points are shown in Figure 4.9, together with the auxiliary lines L0 :
xj = a2−ab−b

a−b
xj−1 and L+ : xj = a2−ab−b

a−b
xj−1 +

ab
a−b

, passing through the endpoints of the
basic branches.

For the sake of simplicity, we restrict ourselves to the cases when (a, b) ∈ G, the basic
branches are not dashed, solutions cannot assume negative values, and the endpoints of
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the basic branches are pm
inf and pm

sup, respectively. Certain parameter domains, where these
conditions are fulfilled, are shown in Figure 4.10.

The greatest domain, denoted by ”01”, corresponds to the parameter values where the
basic branches lie on the unstable lines of the fixed points y∗

0 and y∗
1. The boundary curves

of this domain are n0
sup,+ = a2(a − 1), n1

inf,+ ≡ g1inf,+ = a2(a − 1)/(a2 − 1), d1 = a(a2 − 1),
and d0 = a(a2 − 1)/(a2 + a− 1).

Similarly, if the parameters are found in the domain ”012”, the attractor consists of
three branches; the third branch is on the unstable line U2. The boundary curves are
d0 = a(a2 − 1)/(a2 + a − 1), d2 = 2a(a2 − 1)/(a2 + a + 1), n1

sup,+ = 2a2(a − 1)/(a2 + 1),
g0sup = 2a− a2, and g2inf,+ = (2a2 − a)/(2a+ 1).

C.3.2 Conditions of the construction of irreducible and primitive
partitions

In order to find the parameter domain where irreducible and primitive partitions can be
constructed, introduce the following notation: f0(p1

1) = [a− b a(a− b)]T denotes the right-
most accumulation point of f0(BL) – this is the image of the point p1

1. Point f0(p
1
1) is in a

pre-image of BU
|9 . f0(B

L) fully covers at least two pre-images of BU
|9 if f−3

0 (f0(p
1
1)) is still on

the upper branch. This condition can be formulated as follows:

a− b

a2
≥ yl ≡ a(a2 − ab− b), thus (C.37)

b ≥ cum ≡
a(a4 − 1)

a4 + a3 − 1
. (C.38)

For example, at a = 1.3, b ≥ cum = 0.5953.
f1(p

0
1) = [a a2−b]T denotes the leftmost accumulation point of f1(BU) – this is the image

of the point p0
1. Point f1(p

1
1) is in a pre-image of BU

|9 . f1(B
U) fully covers one pre-image of

BL
|4 if f−2

1 (f1(p
0
1)) is still on the lower branch. This condition means that

a+ b

a
≤ yr ≡ a3 − b, thus (C.39)

b ≤ cls ≡
a4 − a

a+ 1
. (C.40)

For example, at a = 1.3, b ≤ cls = 0.6766. If b ≥ cum, the image f0(B
L) covers at least two

regions on the upper branch. Moreover, if b ≤ cls, the image f1(BU) covers at least one region
on the lower branch. Thus, the partition is irreducible and primitive.

The conditions, implying that the image of the basic region BL covers at least one region
on the upper branch and the image of the basic region BU covers more than one region on
the lower branch, can be obtained in a similar way:

b ≥ cus ≡
a4 − a

a3 + a2 − 1
. (C.41)

b ≤ clm ≡
a(a4 − 1)

1 + a+ a2
. (C.42)

The parameter domains, where conditions (C.38) and (C.40) or (C.41) and (C.42) are
fulfilled, are shown in Figure C.3.
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Figure C.3: Parameter domains, where primitive partitions can be constructed.

C.4 2D MAP WITHOUT DELAY

C.4.1 Domain of stability

The origin x = 0 is asymptotically stable with respect to the map (4.61) if the roots of the
characteristic equation

µ2 +
(sD − 2γc)α2 − P (γ(e− c)− βs)

eγα2
µ+

γα2 −Desα2 − P (eβs− eγc+ γ)

e2γα2
= 0

reside inside the unit circle on the complex plane.
To check this condition using the Routh-Hurwicz criterions, we applied a Möbius trans-

formation, i.e., introduced a new variable η as µ = (η + 1)/(η − 1). After substitution, we
obtained another characteristic equation (Re(η) < 0⇐⇒ |µ| < 1) in the form

b2η
2 + b1η + b0 = 0, (C.43)

where

b2 = (P − α2)γ(2ce− 1− e2),

b1 = −α2(−2sDe+ 2γ(1− e2))− 2P (ecγ − esβ − γ), (C.44)
b0 = α2(γ(e2 + 1 + 2ce)− 2sDe)− P (2esβ + γ(1− e2)).

The origin is stable if these coefficients are greater than zero. At b2 = 0 one of the charac-
teristic multipliers becomes 1 (saddle node bifurcation in the nonlinear system). At b0 = 0
one of them becomes -1 (period doubling), while at b1 = 0 the characteristic roots become
complex with unit modulus (Neimark-Sacker bifurcation).

The differential gain along the curves b0 = 0 and b1 = 0 can be expressed as

Db0 =
α2 (1 + 2ce+ e2) γ + P ((−1 + e2) γ − 2βes)

2α2es
,

Db1 =
α2 (γ − e2γ) + P ((−1 + ce)γ − βes)

α2es
. (C.45)
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These two lines cross each other at the rightmost corner of the stability domain, at

Pmax =
α2 (1− 2ce− 3e2)

1− 2ce+ e2
, (C.46)

D(Pmax) =
(−3e+ 2c2e+ e3 + c (−1 + e2)) γ

(2ce− e2 − 1) s
+

(1− 2ce− 3e2) β

(2ce− e2 − 1)
. (C.47)

Note, that since exp(β) > 0 and γ > 0, 2ce − 1 − e2 > 0 is fulfilled. It means that the
condition b2 > 0 corresponds to P > α2, independently of the damping. Thus, the minimal
admissible proportional gain is Pmin = α2.

If the stable domain disappears during the continuous variation of parameters, the three
border lines must have a common intersection point. This situation would arise only at
β → −∞. According to the formulae, the domain of stability would disappear at α = 0,
too. However, solution (4.60) and the stability calculation are not valid if α = 0. For the
treatment of this case, see [38] and [40]. Thus, if parameter α is strictly positive and β is
finite, the equilibrium can be asymptotically stabilized at every positive value of the sampling
time τ – with properly chosen gains P and D. It is worth noting here that the equation of
motion of a real inverted pendulum is nonlinear. Thus, if one wants to keep the pendulum
in the vicinity of the upright position in order to apply the linearized equations, parameter
α – and consequently, the sampling period τ – must be rather small.

C.4.2 Conditions of boundary crisis bifurcations

The crossing of fl(PLUSW ) and fl(P
RUSW ) with W S

R will be denoted by Out+ and Out−,
while the crossing of fr(PRUSW ) and fr(P

LUSW ) with W S
L will be denoted by In+ and In−,

respectively. These four families of crisis bifurcation curves at various values of index m form
straight lines on the PD parameter plane, as illustrated in Figure 4.19. The corresponding
formulae can be derived in a straightforward way.

Out+:

D = −βe+ γ(e+ 2(c+ s)(m− 1))

α2e
P +

2γm(c+ s)

e
. (C.48)

In+:

D = −(β + γ)e− 2 exp(γ)γ

α2e
P − 2γm exp(γ)

e
. (C.49)

Out−:

D =
γ((c− e)(β + γ)− 2cγm) + (α2 + β(β + γ)− 2γ2m)s

(β − γ)(α2s+ (β + γ)(cγ − eγ + βs))
P (C.50)

+
2mα2(c+ s)γ2

(β − γ)(α2s+ (β + γ)(cγ − eγ + βs))
.

In−:

D =
γ2(s+ c)(2m− 1)− γ2e+ βγ(c− e+ s)

(β − γ)(α2s+ (β + γ)(cγ − eγ + βs))
P (C.51)

− 2mα2(c+ s)γ2

(β − γ)(α2s+ (β + γ)(cγ − eγ + βs))
.
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C.4.3 Eigenvalues of matrix S

If the eigenvalues of S are real, the number of sign changes in the characteristic equation
(C.43) is equal to the number of positive eigenvalues, according to Descartes’s sign rule. The
coefficient of µ changes sign if the gain D assumes the value

D1 =
2cγα2 + (eγ − cγ − βs)P

α2s
, (C.52)

while the constant term changes sign at

D0 =
γα2 + (ceγ − γ − βes)P

α2es
. (C.53)

The eigenvalues µ1,2 are complex if the differential gain is between these two values:

D±
c =

γ (P − 2α2) (e− c)− Pβ s

α2s
± 2

γ
√

(α2 − P ) (−2 ec+ 1 + e2)

α s
. (C.54)

We are interested in cases when the eigenvalues are inside the unit circle. It means that –
since D+

c |P=α2 = D−
c |P=α2 is fulfilled – D−

c does not intersect the domain of stability. It can
be shown after some algebra that

µ1,2 ∈ C if Db1 < D < D+
c ,

µ1,2 > 0 if D+
c < D < D0,

µ1 > 0 and µ2 < 0 if D0 < D < Db0 , (C.55)
µ1,2 < 0 if D+

c < D < D0,

µ1µ2 < 0 and D < D1 ⇒ µ1 > |µ2|.

The domains of various pairs of eigenvalues in the domain of stability are shown in Figure
C.4. Topologically, the arrangement of these domains is invariant to the changes in the
parameters: curve D+

c is tangent to Db0 and Db2 at the rightmost and lower left apexes
of the triangular domain, respectively. D0 is tangent to D+

c , and D1 passes through this
tangent point and the upper left corner of the domain.

It is worth to mention that both eigenvalues are zero at the intersection point of D0 and
D1 – this point corresponds to the quickest convergence towards the equilibrium position, if
there is no quantization. The proportional gain assumes the value

Pquick =
α2(1− 2ce)

1− 2ce+ e2
(C.56)

at this special point.
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Figure C.4: The domain of asymptotic stability (|µ1,2| < 1) of the desired state x = 0
without considering processing delay and quantization at α = 0.8 and β = 0.3. The sub-
domains of various pairs of eigenvalues are also shown.

C.4.4 The algorithm of joining in the C-SCM method

This subsection describes the algorithm of joining adjacent SCM solutions. The algorithm is
divided into preprocessing and two stages of classifying cell sequences which previously led
to the sink cell.

For the sake of simplicity, object oriented notation is used, with simple classes for de-
scribing the cell and SCM solution including the cell state space. See Algorithms C.1 and
C.2 for these classes. In the pseudo codes the . (dot) operator is used to access data or
function members of these objects. For instance scm.cells[i].index accesses the index of
the i-th cell of the scm object. Furthermore, ▷ indicates clarifying comments.

Algorithm C.1 Class for cell
class Cell

index ⊂ N
image ⊂ N
domain
group ⊂ N
step ⊂ N
type ⊂ { unknown, transient, periodic }
state ⊂ { untouched, under_processing, processed }

end class

Algorithm C.2 Class for simple cell mapping
class SCM

cell array of Cell objects
cellCount ⊂ N ▷ the number of cells in the cell state space
periodicGroupCount ⊂ N ▷ the number of periodic groups in the SCM solution
index(...)
domain(...)

end class
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During preprocessing the cells corresponding to the domain of attraction of the sink
cell for both SCM solutions are identified. This can be done by selecting cells with group
number 0, which belong to the 1-P group of the sink cell. Checking the step number is not
necessary, since all cells with 0 group number must be transient cells. For the pseudo code
of preprocessing see Algorithms C.3 and C.4.

Algorithm C.3 Identification of sink cell’s domain of attraction
Input : scm object representing an SCM solution
Output : array of indices of sink cell’s domain of attraction
GetSinkDomainOfAttractionscm

1: sinkDoA← ∅ i← 1, scm.cellCount scm.cell[i].group = 0
2: sinkDoA← sinkDoA ∪ i
3: scm.cell[i].state← untouched ▷ invalidate previously processed cell
4: sinkDoA

Algorithm C.4 Preprocessing of two SCM solutions
Input : objects representing SCM solutions
Output : array of indices for both sink’s domain of attraction Preprocessscm1, scm2

1: sinkDoA1← GetSinkDomainOfAttraction(scm1)
2: sinkDoA2← GetSinkDomainOfAttraction(scm2)
3: {sinkDoA1, sinkDoA1}

Once the domain of attraction of the sink cell is identified for each SCM solution, the
first stage of joining examines transient cell sequences and updates cells in Case 1 of Section
4.6.2, see Algorithm C.5.
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Algorithm C.5 Stage 1 of the joining procedure
Input : Examined SCM solution and its DoA of sink, other SCM solution
Output : Updated SCM solution object scm, cell trees which require further processing
Stage1scm, sinkDoA, otherScm

1: cellT rees← ∅ i← 0, sinkDoA.size
2: seq ← ∅
3: z ← sinkDoA[i] scm.cell[z].state = untouched
4: ▷ Create new cell sequence
5: seq ← seq ∪ z
6: left← false left = false
7: imz ← scm.cell[z].image imz ̸= 0
8: cmimz ← scm.cell[imz].cmid cmimz = cmid scm.cell[imz].state = un-

der_processing
9: ▷ This sequence touches another sequence under processing

10: left← true
11: ct← scm.cell[imz].cellT reeIndex
12: Tag cells in seq as under_processing, assign ct as cellT reeIndex
13: ▷ The current sequence is prepended to cell sequence/tree with index ct
14: cellT rees[ct]← seq ∪ cellT rees[ct] scm.cell[imz].state = processed
15: ▷ This sequence touches an already processed cell (Case 1.b)
16: left← true
17: g ← scm.cell[imz].group
18: cm← scm.cell[imz].cmid
19: Tag cells in seq as processed and assign new group number g and cmid cm
20: ▷ Append cell to sequence and continue
21: seq ← seq ∪ imz
22: z ← imz
23: ▷ This sequence touches another sequence transiting to the other SCM (Case 1)
24: left← true
25: g ← scm.cell[imz].group
26: cm← scm.cell[imz].cmid
27: Tag cells in seq as processed and assign new group number g and cmid cm
28: ▷ This sequence leaves the cell state space (imz = 0)
29: left← true
30: ▷ Get image using the other SCM’s cell state space
31: imz ← otherScm.index(step(scm.cell[z].center)) imz ̸= 0
32: ▷ This sequence enters other SCM solutions cell state space
33: g ← otherScm.cell[imz].group g ̸= 0
34: ▷ This sequence touches a periodic group with g > 0 (Case 1.b)
35: cm← otherScm.cell[imz].cmid

The for loop in line 1 starts a new cell sequence by taking the next untouched cell
from the domain of attraction of the sink cell. The while loop in line 6 builds the cell
sequence and updates all cells accordingly. If the condition in line 7 is true, then the cell
sequence is still within the original cell state space. In this case the cmid is checked in line
8. If the currently examined cell has the same cmid, the current cell sequence either touches
another cell sequence (line 9) and prepended to that cell sequence (thus forming a cell tree),
or touches an already processed cell (line 15) in which case the cell sequence can be updated
accordingly, or touches an untouched cell (line 20) which results in continuing the current
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36: Tag cells in seq as processed and assign new group number g and cmid cm
37: ▷ This sequence touches a transient cell of the other SCM’s sink,
38: ▷ save this sequence for further analysis (Case 2)
39: Tag cells in seq as under_processing and assign new group g and cmid cm
40: cellT rees← cellT rees ∪ seq
41: ▷ This sequence leads to the reduced sink (Case 1.a)
42: Tag cells in seq as processed
43: ▷ skip cell
44: cellT rees

sequence by examining that cell’s image.
If the condition in line 8 (cmid check) yields false, the cell sequence touches another cell

sequence transiting to the other SCM’s state space, therefore the current sequence can be
updated accordingly. In cases, when imz = 0 is fulfilled (line 27), the cell sequence leaves
the cell state space. Line 31 checks whether the current cell sequence enters the cell state
space of the other SCM. In this case the sequence either touches a cell with g ̸= 0 (line 33)
when the current sequence is updated, or touches a cell with g = 0 (line 36) when the current
cell sequence (seq) is stored in the array of cell trees (cellT rees) for further analysis. Lastly,
if both cell state spaces have 0 (sink) index for the cell (see line 40), the current sequence
leads to the reduced sink.

In the second stage, for Case 2 in Section 4.6.2 a cell tree mapping is carried out (Algo-
rithm C.6). The for loop in line 1 starts examining an untouched cell tree and the while
loop in line 6 builds a sequence of cell trees (see variable: treeSequence). While examining
the image tree (ctImage) of the current cell tree (cellT rees[i]), the following cases can occur:

• The image of the current cell tree is a cell which was updated in Stage 1 of the procedure
(line 6). All cells in the sequence of trees can be updated.

• The image tree of the current cell tree is processed (line 11), the sequence of trees
touches a known destination, and all cells in the sequence of trees can be updated.

• The image tree of the current cell tree is under_processing (line 15), and a new
periodic group and transient cells are found. All cells within the sequence of trees are
examined and tagged as periodic (cycle in the sequence of trees) or transient (branches).
See Figure 4.24.

• The image tree of the current cell tree is untouched (line 20), the image tree is ap-
pended to the sequence of trees, and the examination of the tree sequence is continued.

In the end of Stage 2, all cell trees are processed and new periodic groups (if any) with
their domain of attraction (transient cells) are found. The complete procedure of joining is
summarized in Algorithm C.7. The two SCM solutions joined this way form a cluster of cell
mapping solutions, which can be extended further similarly.
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Algorithm C.6 Stage 2 of the joining procedure
Input : Cell Sequences Tree arrays and SCM objects
Output : Updated SCM solutions Stage2cellT rees1, cellT rees2, scm1, scm2

1: cellT rees ← cellT rees1 ∪ cellT rees2 i ← 0, cellT rees.size cellT rees[i].state = un-
touched

2: ▷ Start examining sequence of cell trees
3: cellT rees[i].state← under_processing
4: treeSequence← ∅ ∪ i
5: processing ← True
6: ctImage← cellT rees[i].imageTree processing ctImage = null
7: ▷ There is no sequence image, image cell must be already processed in Stage 1
8: imageCell← cellT rees[i].cell[0].image
9: Update all cells in each cell tree of the current treeSequence

10: Tag all cell tree in treeSequence as processed
11: ▷ Cell tree mapping cellT rees[ctImage].state == processed
12: ▷ The sequence of trees leads to a known destination
13: Update all cells in each cell tree of the current treeSequence
14: Tag all cell tree in treeSequence as processed
15: processing ← False cellState[ctImage].state = under_processing
16: ▷ New periodic group and transient cells are found
17: g ← nextGroupNumber()
18: Update all cells in each cell tree of the current treeSequence
19: Tag all cell tree in treeSequence as processed
20: processing ← False
21: ▷ cellT rees[ctImage].state == untouched
22: ▷ Tag this cell tree as under_processing,
23: ▷ append to treeSequence and continue
24: treeSequence← treeSequence ∪ ctImage
25: cellT rees[ctImage].state← under_processing
26: ▷ Get next image sequence
27: ctImage = cellT rees[ctImage].imageSeq cellT rees[i].state = processed
28: ▷ Skip already processed cell tree
29: {scm1, scm2}

Algorithm C.7 Procedure of joining two SCM solutions
Input : SCM objects representing SCM solutions
Output : updated SCM objects Joinscm1, scm2

1: {sinkDoA1, sinkDoA2} ← Preprocess(scm1, scm2) ▷ See Algorithm C.4
2: cellT rees1← Stage1(scm1, sinkDoA1, scm2) ▷ See Algorithm C.5
3: cellT rees2← Stage1(scm2, sinkDoA2, scm1)
4: {scm1, scm2} ← Stage2(cellT rees1, cellT rees2, scm1, scm2) ▷ See Algorithm C.6
5: {scm1, scm2}

C.4.5 Complexity of Simple Cell Mapping

The number of times of execution and cost for some lines are denoted at line endings in
Algorithm C.8. The for loop is executed n + 1 times, let tz be the number of times the
while loop is executed for that value of z. Let sz be the length of the sequence accumulated

               csernak.gabor_124_23



134 APPENDIX C. MICRO-CHAOS MAP

Algorithm C.8 Simple Cell Mapping
Input : Cell State space
Output : SCM solution Number of execution, cost

1: g ← 0 z ← 0, n n+ 1, 1 state[z] = untouched
2: processing ← True
3: sequence← ∅ ∪ z
4: im← z processing

∑n−1
z=0 tz, 1 state[im] = processed

5: Tag cells in sequence as processed and transient
∑n−1

z=0 1, sz
6: processing ← False state[im] = under_processing
7: ▷ New periodic group and possibily some transients found

∑n−1
z=0 1, sz

8: Examine sequence, starting with im and tag cells as periodic, assign group g and step 0
9: Tag remaining cells as transient, assign group← g and calculate step numbers

10: g ← g + 1
11: processing ← False
12: ▷ state[im] = untouched, continue along the image track

∑n−1
z=0 tz, 1

13: state[im]← under_processing
14: sequence← sequence ∪ im
15: im← image[im]
16: ▷ Skip this cell

starting with cell z. By examining the algorithm, one can see, that sz = tz, since no branches
of the if-else structure append new cell to the sequence or terminates the while loop at the
same time. New cells are only appended to the sequence in line 14, while the processing of
a sequence is either terminated at line 6 (reaching an already determined destination) or at
line 11 (finding a new PG and transient cells). Therefore the cost of the algorithm is

CSCM = n c1 +
n−1∑
z=0

(2 sz + tz c2) = (2 + c1)n+
n−1∑
z=0

tz c2 = O(n),

where the sum of the length of sequences
∑n−1

z=0 sz = n, c1 is the total cost of constant-cost
operations in the for loop outside the while loop, and c2 is the total cost of constant-cost
operations within the while loop.
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