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Chapter 1 

1. Prologue 

1.1. Setting the stage 

We are living in an age which is characterized by a dominant extreme acceleration, in 
particular, in the field of technologies and engineering (Gosling, 2020). One indicator of the 
acceleration is shortening of the time periods of the emergence, culmination, and 
dissolution of subsequent industrial and social revolutions (Figure 1.1). The first 
publications about the fourth industrial revolution appeared in the mid-1980s, and reported 
on computerization and informatization of productive, managerial, and administrative 
industrial processes (Schwab, 2017). Though this trend continues to proliferate, many 
authors have reported on the advent of the fifth industrial revolution, which is being 
triggered by the revitalization of artificial intelligence research, the results of which 
permeate not only the industry, but the whole society, and trigger the propagation of tools 
and systems exploiting various forms of artificial intelligence (AI) (Pathak et al., 2019). 
While the first three industrial revolutions aimed at extending the physical capabilities of 
human beings, the fourth and fifth revolutions are orientated to augmenting informative and 
cognitive potentials of humans through systems engineering. The industrial revolutions 
brought about not only technological sophistication, but also growing complexity and 
heterogeneity of engineered systems. 

The intention of making intelligent systems has emerged well before our digital age. 
Nonetheless, intellectualization of engineered systems has become a probability and a 
possibility only at the time of the emergence of digital computing (Baier et al., 2023). 
Depending on the level of reproducing/mimicking the operation of the human brain, system 
intellect can be classified according to five levels, known as reflexive, imperative, adaptive, 
autonomous, and cognitive intellect. This is in line with the well-known levelling of human 

 

Figure 1.1: Orientation and shortening periods of industrial revolutions (in a quasi-
logarithmic scale of time) 
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intelligence. In this work, intellectualization of engineered systems is tackled as the process 
of equipping them with capabilities for computational problem-solving, i.e., making them 
able to possess, explore, aggregate, synthesize, share, and exploit knowledge and to reason 
with it towards fulfilling operational objectives (Miki and Yamakawa, 2008). In this sense, 
intellect is a computational subset of the overall human intelligence. However, 
intellectualization is a broader concept than rationalization. While rationalization works 
with logical constructs and symbolic mechanisms in computation, intellectualization works 
with semantic constructs and cognitive mechanisms. Rationalization was typical for the 
early knowledge-based systems (Baldassarre and Granato, 2020). Intellectualization is 
conjointly about the rational content (system knowledge) and the transformational agents 
(reasoning mechanisms). Intellectualized systems show various self-* features, such as self-
awareness, self-learning, self-reasoning, self-control, self-adaptation, self-evolution, and 
self-reproduction. These features make them nondeterministic, goal-orientated, context-
aware, causality-driven, reasoning-enabled, and retrospectively, inductively or abductively 
learning systems. 

Notwithstanding these, making truly intelligent systems has remained a tremendous 
challenge as well as an open issue for our days (Sheppard, 2019). Over the last six decades, 
a lot of efforts have been invested into artificial intelligence and various approaches have 
been proposed for its conceptualization and implementation. As a result of the world-wide 
intense efforts, the 'terra incognita' of artificial intelligence is gradually converted into a 
'terra quaestuosa', and even beyond. (Here, by using the Latin phrase 'terra incognita', I 
denote an unexplored field of knowledge, while by using the term 'terra quaestuosa' - 
literally means 'problem land' – I refer to the stage of progress that do need further inquiries 
and realizations in order to know more about what is probable and what is possible). 
However, cognition, intelligence, and systems research and engineering have not reached 
any culmination points yet, though some writers claim that they have already reached the 
so-called 'terra utilis', where the developed tools and systems have irreversible effects on 
the fundamentals and operation of science, economy, and society. In spite of the 
philosophies and forecasts mushrooming in current literature, the fact of the matter is that 
there is more ahead of us than behind in this field in all respects (Commuri et al., 2018). 

The field of AI is not unified by a shared theoretical foundation or a common goal, but 
by a class of loosely related problems. Research and development in artificial intelligence 
have spread over more than 100 domains of interest, without any shared theoretical 
foundation, common goals and criteria, or integrative conceptual and methodological 
frameworks. Wang (2006) stated that, as enabled by the current computational resources, 
artificial intelligence is not what it should be. He argued that the mainstream works in the 
field are on domain-specific perception and cognition problems and solutions, whereas AI 
is supposed to focus on general-purpose systems that are adaptive to their environments, 
and can work with insufficient knowledge and resources. I share his opinion that a complete 
AI research should result in: (i) a theory on the principles and mechanisms of intelligence, 
(ii) a formal model of intelligence based on the above theory, and (iii) a computer 
implementation of the above model. 

1.2. Scientific interests and objectives 

Introduced some fifteen years ago in the USA, the paradigm of cyber-physical 
systems (CPSs) is being implemented in many different forms and for many practical 
applications world-wide (Gill, 2006). After the initial euphoric excitement, ungrounded 
hype, and failed predictions concerning their key role in Industry 4.0, research and 
development of CPSs has come to a normal period, which is driven by rational and critical 
transdisciplinary thinking. As evidenced by the recent literature, not only current 
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possibilities, but also near-future ones are widely studied. In the meantime, many of the 
objectives formulated as progressive fifteen years ago, such as “use computations and 
communication deeply embedded in and interacting with physical processes to add new 
capabilities to physical systems”, has become quite insignificant by now. The paradigm is 
paving its own way further based on much broader theoretical and technological 
fundamentals. I strongly believe that our near future will be influenced deeply by the 
paradigm of CPSs, in particular by intellectualized, socialized, and personalized CPSs. 

Erwin Schrödinger wrote: “The task is not much to see what no one has yet seen, but to 
think what nobody has yet thought about that which everybody sees.” Having this 
inspiration, the primary goal of this dissertation is to present the outcomes of multiple 
interrelated studies and to synthesize fundamentals, frameworks, models, and methods 
worthwhile for both follow-up inquiries and practical developments. Towards this end, it 
reports on the investigations and propositions concerning the conceptual underpinning and 
methodological advancement of cognitive engineering of CPSs. More specifically, the 
dissertation addresses and elaborates on three interrelated domains of overall interest, 
namely (i) evolution of CPSs as a consequence of their growing intellectualization, (ii) 
studying and managing synthetic intellect (self-generated system knowledge and ampliative 
reasoning mechanisms) in a systematic manner, and (iii) dealing with operational 
opportunities and issues opened up by the affordances of intellectualization. 

The research presented in this dissertation has made an attempt to learn and construct a 
better understanding of a number of frontier issues that the discipline of CPSs design and 
engineering has been facing in the last decade and will presumably be facing in the coming 
decade. As the title indicates, the completed research has focused on the underpinning and 
advancing cognitive engineering of intellectualized CPSs and has tried to contribute to 
systems science and engineering. More specifically, it has dealt with synthetic system-
level knowledge that is the key constituent of the synthetic system intellect of CPSs, 
together with the associated ampliative computational mechanisms. Understanding its 
essence and facilitating its utilization within and across CPSs were in the focus of the work, 
rather than development and application of specific systems. Therefore, the work and its 
significance need to be assessed from the perspective of road-mapping in systems science, 
systems thinking, and systems engineering. 

Some of the research activities concentrated on phenomena and problematics (i.e., 
uncertainties and difficulties inherent in challenging problems and complicated situations) 
that still belong to the 'terra incognita', while others addressed those that are parts of the 
'terra quaestuosa'. The results are theoretical and methodological in nature, though they 
have been used in the development of certain demonstrative prototype systems. For the 
sake of clarity, having a different orientation and purpose, the work presented in this 
dissertation is not per se a contribution to the research and development of artificial 
intelligence. Nevertheless, some parts may be regarded as input for specific narrow fields of 
artificial intelligence research and utilization - as much as artificial intelligence research, 
development, and implementation have been playing a triggering and enabling role in 
intellectualization of engineered systems. 

At the focus of the dissertation are intellectualized cyber-physical systems (i*CPSs), 
which are often and interchangeably also referred to as smart cyber-physical systems 
(s*CPSs) (though the latter is just a subset of the former). Their current representatives are 
such as self-driving vehicle systems, medical operation theater systems, home care robotic 
assistance systems, and natural disaster avoidance systems. The dissertation discusses a 
number of recognized concern-domains that are relevant and important from the 
perspective of advancing to next generations of cyber-physical systems (NG-CPSs), which 
are supposed to be equipped with substantial intellectual capabilities. From the many 
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potential concern-domains, the research underpinning this dissertation concentrated on 
seven important phenomena and problematics, respectively. 

1.3. Overview of the contents 

The contents of the dissertation interlink and blend the outcomes of many related 
research works of contemporary literature and the own results of the author, which have 
been published previously. These concern both the fundamentals of CPSs and a 
generalizable interpretation of what system intellect is with a view to natural human 
intelligence and artificial narrow intelligence. The focus is on i*CPSs for everyday 
operation and servicing. The novelty of the results can be judged easily by comparing them 
with the contemporary literature. Many of them open up new trajectories of investigations 
and raise the need for follow-up research to extend and/or consolidate the explanations and 
specifications. In this context, usefulness has been preferred to completeness. 

Structurally, the dissertation is organized into nine chapters. It includes an introductory 
and a conclusive chapter, called Prologue and Epilogue, respectively. The main body is 
formed by seven chapters that present and discuss the findings and results of both the 
explorative and constructive research activities. The titles and the order of the chapters are 
shown in Figure 1.2. The first chapter elaborates on the different types of definitions of 
CPSs and on the paradigmatic features of non-intellectualized and intellectualized CPSs, 
respectively. The second chapter (i) presents a model of progression of CPSs, (ii) 
introduces the concept of system generations, and (iii) characterizes the various generations 
of CPSs. The third chapter explains the unique nature of system-level synthetic problem-
solving knowledge and demarcates it from the knowledge cultivated by alpha, beta, 
gamma, and delta sciences. Considering the current progress of generating synthetic system 
knowledge by means of, for instance, specific computational learning mechanisms, such a 
study is not only timely, but also indispensable from the point of view of further utilization 
of synthetic system knowledge. 

Reasoning with the different objectives of gnoseology and epistemology, the fourth 
chapter introduces 
sympérasmology as a 
possible conceptual 
framework and investigation 
approach of system-level 
problem solving knowledge. 
The fifth chapter clarifies the 
need for prognostic systems 
thinking (PST), and 
discusses its conceptual 
pillars and analysis concerns 
from the perspective of 
i*CPSs. The sixth chapter 
elaborates on the 
aggregation, transfer, and 
exploitation of synthetic 
knowledge self-acquired 
and/or self-generated by 
intellectualized systems as an 
industrial asset. Starting out 
from the co-emerging trends 
of complexification, 

 

Figure 1.2: The research topics addressed in the chapters 
of the dissertation 
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intellectualization, socialization, and personalization of CPSs, the seventh chapter addresses 
the nature of pluridisciplinary research approaches and proposes supradisciplinary 
research as a proper and necessary organizational and methodological framework for doing 
research in complex problematics and phenomena related to next-generation CPSs. The 
contents of the chapters are interrelated by the cross-domain research interest and 
investigations. The major scientific contribution of the discussed work concerns the novel 
disciplinary domain of cognitive engineering of systems. Parts of the remaining sections of 
this chapter have been compiled by reusing contents from the following peer-reviewed 
publications: H1, H2, H3, and H4 (see Appendix A.1.1). 

1.4. Cognitive engineering of systems 

Owing to the results of system science, artificial intelligence, cognitive engineering, and 
complex adaptive systems research, the family of intellectualized systems is becoming 
more and more powered by context-dependent knowledge and reasoning mechanisms 
(Lungarella et al., 2007). From the viewpoint of the knowledge possessed by i*CPSs, not 
only its human-embedded part plays an important role, but also the part that is self-acquired 
or self-synthesized by these systems. The additional chunks or bodies of human knowledge 
(and the related computational mechanisms) are supplemented incrementally to the 
possessed knowledge and mechanisms of an i*CPS at the discrete times of system updates 
or upgrades. The self-acquired knowledge and computational enablers of the system may 
evolve and become operationalized continually. Eventually, system knowledge that 
complements common-sense and scientific human knowledge is maturing into a 
productive asset for the various industries and for segments of the society (Woods, 1987). 

Cognitive engineering of systems (CES) is a relatively novel domain of scientific and 
professional interests (Wilson et al., 2013). It has been brought about by the need for 
systematic investigation and implementation of the (i) cognitive enablers, (ii) technological 
realizations, (iii) social relationships, and (iii) application opportunities of current and next 
generation systems. CES supports (i) equipping i*CPSs with application-specific 
knowledge, (ii) constructing computational reasoning mechanisms that elaborate on that 
knowledge, and (iii) embedding i*CPSs in real-life application environments. These 
together enable i*CPSs to (i) build awareness of the dynamic context of their operation and 
application, (ii) infer not pre-programmed 'intellect' (data, information, knowledge, meta-
knowledge) based on monitoring the states of the problems, their performance, and the 
embedding environment, (iii) reason about the goals and change them, (iv) develop and 
validate plans for reorganization to meet the goals of working, (iv) adapt, evolve, and 
reproduce themselves on their own as needed by a better operational performance, (v) 
enable the interaction with and among i*CPSs on multiple levels, and (vi) share tasks with 
and among i*CPSs and people in various contexts. In addition to designing genuine core 
functions of operation and behavior, such as awareness building, abductive reasoning, 
operation forecasting, apobetic interaction, and self-managed adaptation, and optimizing 
‘human-in-the-loop’ and ‘system-in-the-loop’ situations, CES is also interested in the 
interlinked processes of system intellectualization and designing physical, cognitive, and 
affective interactions of humans with intellectualized systems, and vice versa. 

Notwithstanding, the ‘science’ of self-managing systems is still in a premature stage of 
development and is deemed to be a rather unsettled domain of inquiry. In particular, this 
applies to self-management of system knowledge (Couch, 2023). An important issue is that 
neither an overall theory of system-level problem solving knowledge of intellectualized 
systems, nor a comprehensive methodology for purposeful intellectualization exists. This 
makes cognitive engineering of systems tentative and experimental. Some researchers 
suggest that time has come to establish a philosophically underpinned theoretical 
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framework. This motion is seconded by the on-going intelligence revolution, in which 
artificial intelligence becomes a productive power, an enabler of smart systems, and a 
strong transformer of social life. One of the novel contributions of this dissertation is a 
skeleton of the needed generic theory of system knowledge (and a possible new branch of 
philosophical studies). In full awareness of the accelerated scientific changes and the fast 
pace of technological innovations, it also deals with the issues of prognostic systems 
thinking and the conversion of distributed systems knowledge into a common asset. 

1.5. On the overall research approach 

A holistic theory but sufficiently articulated theory of CPSs is still in an early stage of 
development. Though the disciplinary field is a multidisciplinary or even transdisciplinary, 
the included disciplines (e.g. mechanics, electronics, computing, networking, and 
informatics) keep their knowing and working traditions and cultures. Instead, integrative 
and collaborative supradisciplinary research strategies are needed that purposefully 
interconnect monodisciplinary, interdisciplinary, multidisciplinary, and transdisciplinary 
approaches, methods, and knowledge (Funtowicz and Ravetz, 1993). In this dissertation, 
the idea of transdisciplinary research integration has been interpreted in line with the basis 
of prior literature, along with similar terms such as interdisciplinary and multidisciplinary 
research (Giri, 2002). Attempting a seamless procedural synthesis of these, 
supradisciplinary research would open up a multidimensional space of inquiry that is 
characterized by (i) concurrent dependence on multiple (physical, biological, human, social, 
computational, technological, etc.) domains of inquiry and investigations, (ii) various 
progression levels (discovery, description, explanation, prediction, and regulation) of 
knowledge with regard to the studied phenomenon (and problematics), and (iii) the need for 
synergy in terms of hardware, software, cyberware, brainware, etc. related knowledge. 
Evidently, such a methodological approach cannot be realized by one single researcher or a 
relatively small team of researchers. On the other hand, the completed research work 
features a broad perspective and a transdisciplinary flavor in the sense that the generated 
knowledge is above the level of the individual domains and can be projected to many of 
them (Horváth and Pourtalebi, 2015). 

At the outset of the research work, two fundamental principles were considered: (i) 
any attempt to specify what intellectualized systems are must start with defining what 
intelligence (and in particular system intelligence) is, before dealing with the process and 
forms of intellectualization, and (ii) the basis of a intellectualization of engineered systems 
is, first of all, human knowledge, but the growing amount and role of problem solving 
knowledge synthesized by system(s) must be taken into account at considering their near-
future manifestations. It is well-known for scientists that human intelligence is an extremely 
complex phenomenon with multiple appearances and we have arrived at neither a canonical 
interpretation nor a consensus definition yet. The diverse range of interpretations of the 
same concept causes more confusion than clarification. 

To have a starting point and to underpin the investigations, let us take the definition 
proposed by Gottfredson (1997) which says: (human) “intelligence is a very general mental 
capability that, among other things, involves the ability to reason, plan, solve problems, 
think abstractly, comprehend complex ideas, learn quickly and learn from experience. It is 
not merely book learning, a narrow academic skill, or test-taking smarts. Rather, it reflects a 
broader and deeper capability for comprehending our surroundings – ‘catching on’, 
‘making sense’ of things, or ‘figuring out’ what to do was preferred. In full agreement with 
Monett and Lewis (2020a – 2020b), my concern has been how we can construct 
intelligence-based systems and comprehend their behavior if we do not or cannot accurately 
define (i) what cognitive capabilities they have to provide, (ii) how intelligent behavior may 
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be realized, and (iii) how their intelligent performance can be assessed (measured) and 
enhanced. On the other hand, if the associated concepts are well defined, there is an 
opportunity for better understanding, robust investigations, and dependable 
implementations. 

In terms of its nature, the conducted research is combined secondary exploratory 
research (identifying new phenomena or problematics for research) and tertiary constructive 
research (conceptualization of theories for the studied phenomena and resolutions for 
problematics). An example of the former is the theory of CPS evolution through 
generations, while an example of the latter is a set of concerns about the operationalization 
of PST. These are discussed in detail in the related later chapters of the dissertation. 
Various methods were used in the completed research, such as (i) multi-focal literature 
review, (ii) critical systems thinking, (iii) computational modeling and simulation, and (iv) 
implementation of testable prototypes of modules and subsystems. The sources of input 
information were (i) openly accessible journal papers, (ii) professional books, (iii) 
conference proceedings and presentations, (iv) personal communications with international 
experts, (v) contents of Internet repositories and forum places (in particular, Research Gate 
and Academia), and (vi) collaborative work with staff colleagues, and Ph.D. researchers. 

The outcomes of different studies were also the subject of philosophical and 
methodological speculations. Due to these multi-methodological approaches and treatment, 
the overall character of the work and the dissertation is explorative, investigative and 
argumentative, rather than prescriptive or experiential. The flow of reasoning and 
argumentation meanders through theoretical concepts and practical facts, but also includes 
narrative thinking and untested personal opinions. It is hoped that the addressed topics, 
including the white and grey spots of knowledge, indeed deserve attention, or even a 
broader public debate. It is also expected that, towards a collective consolidation, follow-up 
works and discussions will extend the contents, resolve the open issues, provide more 
empirical and rational evidence, and rectify the factual slips and misunderstandings. 
  

               horvath.imre_37_22



8 

Chapter 2 

2. Paradigmatic features of intellectualized cyber-physical 
systems 

2.1. Research objectives and approach 

The main objective of this chapter is to provide a concrete distinguishing 
characterization of i*CPSs without introducing mathematical abstractions and symbolic 
constructs (Willems, 1991). The need for this was recognized from the perspective of 
public communications. As stated in the first chapter, the realm of engineered systems is 
wide and, evidently, all families of the implemented systems are different. This also applies 
to intellectualized systems. Figure 2.1 displays the most significant characteristics of 
engineered systems. As the double-arrowed lines indicate, the major characteristics usually 
appear as opposites of each other. By an apt combination of these characteristics, a system 
can be described with such a fidelity that uniquely distinguishes it from even resembling 
other systems. However, this is not as simple as it seems at first sight. There are three 
reasons for it: (i) the paradigm of CPSs has grown out from multiple well-established 
disciplines, such as embedded systems, mechatronics and robotics systems, complex 
adaptive systems, collaborative multi-agent systems, Internet of things systems, and hybrid 
information processing systems, and many of the definitions of CPSs reflect these roots, (ii) 
in addition to functional/structural complexity and variety, also a disciplinary heterogeneity 
is present in these systems, which has actually been further increased by the appearance and 
involvement of disciplines such as artificial intelligence, big data science/engineering, 
cognitive science, and social systems science, and (iii) the paradigm is being made dynamic 
by the concurrent intense increase and convergence of scientific knowledge, acceleration of 
technology synthesis, and widening of the application purposes and domains. 

The content of this chapter has been compiled from the following peer-reviewed 

 

Figure 2.1: Major characteristics of engineered systems 
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publications: H5, H6, H7, and H8 (see Appendix A.1.1). Considering the disciplinary 
convergence and the progress in technology integration, the interconnected goals of this 
investigation are (i) to get deeper insight into the essence and foundations of CPSs, (ii) to 
identify their paradigmatic features that distinguish them from other engineered systems, 
(iii) to cast light on the typical functionalities of CPSs, (iv) to make an inventory of the 
enabling technologies, and (v) to analyze their intellectualization from the point of view 
their behavioral characteristics. This study was stimulated by the fact that a large number of 
differing definitions which can be found in the literature are based on different 
interpretations and conceptualizations. Paradigmatic (notional modeling) features of CPSs 
have been deemed to be crucial elements of their identification, classification, and 
characterization. 

2.2. Cyber-physical systems from a birds-eye view 

The paradigm of CPSs emerged less than two decades ago. In the context of the 4th 
industrial revolution, they have been regarded as major technological and infrastructural 
enablers for productive and transformative industries (Ahmad et al., 2016), as well as 
crucial resources for the implementation of smart interconnected society (Colombo et al., 
2017), contributing by informatization, integration, and automation. In the context of the 
5th industrial revolution, they are seen as the basis of intellectualization, socialization, and 
humanization of engineered systems for societal and personal purposes. Technologically, 
this system paradigm implies a distinct category of complex, heterogeneous, data- and 
software-integrated, and intellectualized engineered systems. One trait of these engineered 
systems is that they complementarily operate in the physical, cyber, and mind realms, and 
perform various forms of self-control, self-adaptation, and self-evolution. It is a fact that the 
cyber world can gradually penetrate not only into the unanimated and animated natural 
worlds, but also the human perception, cognition, and affective domains through various 
miniaturized synergistic and organic technologies. By extrapolating from the latest 
progression in the field of complex systems, it can be claimed that the near-future (next-
generation) CPSs will largely be different because of their growing self-intellectualization 
and self-evolving capabilities (Weyns et al., 2021). 

Current industrial CPSs integrate signals and data obtained from dynamic and uncertain 
environments with data-driven software control, context-sensitive decision-making, and 
continuous physical changes (Gerritsen and Horváth, 2012). It has been recognized that, 
both in the society and in the industry, there will be a growing demand as well as numerous 
opportunities to utilize interacting CPSs, which are equipped with strong connectivity and 
collective problem solving abilities (Ansari et al., 2018). The CPSoS Consortium specified 
CPSs as complicated systems that exhibit the features of systems of systems, i.e., (i) large, 
often spatially distributed physical configuration with complex dynamics, (ii) distributed 
control, supervision, and management, (iii) partial autonomy of the sub-systems, (iv) 
dynamic reconfiguration of the entire systems on different time-scales, (v) continuous 
evolution of the systems during their operation, and (vi) possibility of emerging behaviors 
(CPSoS Consortium, 2015). In the view of (CPSoS Consortium, 2016), the majority of NG-
CPSs will manifest as cyber-physical systems of systems (CPSoSs). 

It must be mentioned that the different conceptualizations and different vocabularies of 
the involved disciplines create (i) particularity in specifications, (ii) ambiguities in 
communication, and (iii) borderlines in collaboration. Many publications have interpreted 
CPSs as: (i) functionally and technologically extended embedded systems, (ii) sophisticated 
implementations of Internet of things systems, (iii) augmented advanced mechatronics 
systems, or (iv) complex collaborative adaptive systems. For instance, Quadri et al., (2015) 
suggested that CPSs are next-generation embedded systems and explained this with the 

               horvath.imre_37_22



10 

accelerated development of sensing, networking, and communication technologies. 
Considering the number of shared functions, other researchers have argued that CPSs are 
not radically different to the Internet of things systems (Xu et al., 2018), or to the proactive 
digital twins (Koulamas and Kalogeras, 2018). 

Surprisingly, certain researchers emphasize loose connections - rather than tight 
functional and architectural connections or synergy - among the system’s constituents. 
According to Tan et al, (2008), “cyber-physical systems are a next-generation network-
connected collection of loosely coupled distributed cyber systems and physical systems 
monitored/controlled by user-defined semantic laws” and whose prototype architecture 
supports design goals such as (i) global reference time, (ii) event/information driven 
communication, (iii) quantified confidence indicators, (iv) publish/subscribe scheme, (v) 
semantic control laws, and (vi) secure networking technologies. Liu et al. (2017) argued 
that: “In fact, all defense systems (such as aircraft, spacecraft, naval vessels, ground 
vehicles, etc.) and subsystems in those systems are all CPS. Additionally, integrated 
circuits, micro-electro-mechanical systems (MEMS) and nano-electro-mechanical systems 
(NEMS) also belong to CPS.” These issues will be resolved in the rest of the dissertation. 

2.3. Cyber-physical systems as results of convergence 

Our age is characterized by the concurrency of convergence and divergence, and their 
dynamic interaction. It means that while certain disciplines are combining their inquiry 
objectives, methods, and knowledge, completely new investigation domains emerge within 
the integrated disciplines. By merging mechanics, electronics, and computing, mechatronics 
has been one of the typical examples of disciplinary convergence. Within this 
transdisciplinary branch of knowing and making, the coexistent divergence is exemplified 
by the abundance of research topics and approaches that belong to or form a part of none of 
the mentioned original disciplines. The National Research Council of the USA interpreted 
convergence as forms of domain-diverse research to mean an “approach to problem solving 
that integrates expertise from life sciences with physical, mathematical, and computational 
sciences, medicine, and engineering to form comprehensive synthetic frameworks that 
merge areas of knowledge from multiple fields to address specific challenges” (NRC, 
2014). Actually, this has happened as a combinatorial innovation in the field of CPSs. 
Notwithstanding, development of these systems is a transdisciplinarity challenge, implying 
the need for synthetic paradigms, comprehensive frameworks, and interests across 
boundaries. (Gooding et al., 2022). 

At the beginning of the 1970s, it was recognized that innovative and competitive 
systems, artifacts, and processes could not be developed relying on just one or two single 
disciplines. This has given impetus to the investigation of the foundations of convergence 
(by cross-disciplinary operations) and to facilitate technology-intensive and -sensitive 
constructive disciplines (by systematic meta-fusion of knowledge). Lipscomb et al. (2023) 
has characterized the 21st century as the era of rising convergence engineering, which 
operates on three levels: (i) at macro-level (where it concerns integration of philosophical 
platforms, grand theories, paradigms, and models), (ii) at meso-level (where it addresses 
organization of domain-diverse research projects that focusses on cultural homogenization, 
knowledge integration, and methodological cross-fertilization), and (iii) at micro-level 
(where it deals with the individual and team attitudes and competencies towards cross-
disciplinary collaboration and co-creation (Wetter, 2006). In this interpretation, 
convergence is a problem-solving approach on strategic, tactical, and operational levels. 
The meso-level interconnects translational research (transferring scientific knowledge into 
new systems technologies) and transformative research (transferring technological 
generalizations into new scientific models) (Xue et al., 2016).  
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This dissertation sees CPSs as one of 
the early tangible results of scientific and 
technological convergence. Specifically, 
the convergence of information 
technology, nanotechnology, 
biotechnology, cognitive sciences, and 
social sciences with conventional systems 
science, artifact engineering, and 
material/process technologies is paving 
the way to disruptive implementations. 
The integration culminates in fusing bits, 
atoms, neurons, genes, and memes (Figure 
2.2). This is often referred to as the bits-
atoms-neurons-genes-memes revolution 
(BANGM) (Horváth and Tavčar, 2021). It 
is a fact that the existing CPSs represent 
practical examples of the integration of 
bits and atoms in human and social 
contexts. The phenomenon of integration of atoms, bits, and neurons is exemplified by the 
emergence of cyber-biophysical systems (represented by assistive and corrective implants 
and artificial limbs/augmentations) and by the showcased results of gentelligent systems, 
biological analogies-based, and physically-driven neural network systems (Kumar et al., 
2021). 

This dissertation anticipates further disruptive achievements and drastic effects of the 
continuing technology synthesis on the possibilities of developing ‘disappearing’ (invisible) 
CPSs (Rai and Rai, 2015). Furthermore, it is believed that the growing interest in 
integration of neurons, genes, and memes will support extensive socialization, 
personalization, and personification of various industrial and non-industrial systems. As 
elements of a social culture and personal behavior passed from one individual to another by 
non-genetic means (e.g. learning, imitating, etc.), memes are digitalized by images, videos, 
sounds, notes, signs, rules, patterns, emoji’s, and other constructs. 

2.4. Epitomizing definitions of cyber-physical systems 

The science of CPSs is still in the formation stage and the procedural approaches and 
methodologies are heavily influenced by the reductionist and disciplinary thinking of the 
past. The publications on the theoretical fundamentals typically elaborate on domain 
theories concerning: (i) system control, (ii) system modelling, (iii) system architecting, (iv) 
system communication, (v) system security, and so forth. Only a few efforts have been 
reported in the contemporary literature concerning the development of comprehensive 
multidisciplinary (or transdisciplinary) theories for this family of systems. These theories 
can reduce the notional and methodological uncertainties (Chen, 2017). Nevertheless, 
practitioners have questioned their usefulness from the viewpoint of supporting their 
practices. 

The first step towards a general theory of CPSs is a comprehensive but discerning 
ontological definition that states what exists in the form of these systems. However, for the 
above-mentioned reasons, finding a robust definition of CPSs is not as obvious as it seems 
at first sight. One of the early definitions, introduced by Lee (2007), claimed: “cyber-
physical systems are integrations of computation and physical processes”. Over the years, 
several more articulated definitions have been proposed that reflect the newer scientific 
concepts, technologies, and functionalities. As though the current literature has not parsed 

 

Figure 2.2: Essence of the BANGM 
revolution 
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these definitions in detail, this has been a primary objective of our exploratory research. It 
has been found that the variety of the published formal definitions (specifications) could be 
classified into six categories, namely: (i) augmentative, (ii) descriptive, (iii) normative, (iv) 
predictive, (v) symbolic, and (vi) domain specific definitions. 

The augmentative definitions express in which sense CPSs are more than other 
comparable (more traditional) systems. That is, starting out from the characteristics of 
systems such as embedded systems, real-time systems, network-based systems, etc., they 
identify the characteristics which distinguish CPSs from the other system categories 
mentioned above. An example is the definition formulated by Marwedel (2021), which 
posited that CPSs are embedded systems plus a (dynamic) physical environment. The 
appropriateness of this definition is explained by the fact that sensors, actuators, and 
processors are often embedded in the physical parts of these systems (e.g., gentelligent 
systems) as well as in their direct environment. 

The descriptive definitions try to bring all (or at least a large number of so far 
experienced) common characteristics of CPSs into an exact holistic formulation in a 
specific context. A typical descriptive definition is: “In a cyber-physical system, a physical 
mechanism is controlled or monitored by computer-based algorithms, the physical and 
software components are deeply intertwined, able to operate on different spatial and 
temporal scales, exhibit multiple and distinct behavioral modalities, and interact with each 
other in ways that change with context” (Putnik et al., 2019).  

The normative definitions intend to capture a minimal set of criteria that specific 
implementations of CPSs should meet in order to be regarded as such. A typical normative 
definition claims that CPSs are supposed to: (i) manifest as complicated networked multi-
actor systems, (ii) implement multiple sensing-reasoning-learning-adapting loops, (iii) be 
realized normally as synergistic system of systems, (iv) be tailored to service provisioning 
and dynamic resource management, and are characterized by (v) deep penetration into real-
life physical processes, (vi) use data and patterns driven cyber-physical computing, (vii) 
capability to exploit a growing level of system intelligence, and (viii) provide benefits in 
applications in human, social and industrial contexts (Horváth, 2014). The specification of 
the CPSoS Consortium cited in the previous section is also a normative definition. 

The predictive definitions include tendencies, projections or perceptions to forecast 
distinguishing characteristics of future (next-generation) CPSs. For instance, (Dumitrache, 
2010) foresees that “The next generation of CPSs will integrate hardware and software 
designed by integration of dynamical properties of physical objects and advanced control 
strategies or even intelligent hybrid methodologies. The change in conception of CPSs will 
create new architectures of large-scale intelligent CPSs with new capabilities and improve 
the quality of production and life.” On the other hand, (Robinson, 2021) believes that 
“Future CPS will function like teams, where subsumption occurs with CPS merging and 
separating. They become one CPS, not because everything is managed centrally, but 
because they are collaborating as a team, sharing some higher levels of supervision. For 
instance, in terms of the supervision of safety, if an accident occurs, the law searches for 
one entity to take responsibility.” Though predictive definitions carry uncertainties, they are 
useful means to support vision forming or road mapping. 

The symbolic definitions, used in systems science and systems related theories, create 
canonical models or constructs in order to capture the essence of a family or an instance of 
a CPS using logical, mathematical, and information technological means (Togay, 2014). 
Due to the complexity and heterogeneity of CPSs, symbolic definitions and mathematical 
models are typically partial. For instance, interpreting an anthropomorphous robot as a 
CPS, Stepanov et al. (2020) proposed a set-theoretic model of the hardware-software 
complex of the architecture of a generic CPS in the following way: 
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S = ‹ F, A, G, Rl, T, D, O › 
where F = {fi} is a set of functional components, A = {ai} is a set of algorithms of 

component functioning dim(A) = na; G = { ‹fi, fj, rij(fi, fj)›| fi ∈ F, fj ∈ F, rij(fi, f j) = { 0|rk }, 
rk ∈ Rl, nR = dim(Rl), k = 1, nR,i = 1, nf,j = 1, nf } is a scheme (graph) of component 
interrelations; Rl = {r1, r2,..., rnR } is a set of component interrelations for the system; D = 

{ d|d = ‹p, c, m› }, d · m ∈ Cnm1 × Cnm2 × Cnm3 × Cnm4, d · c ∈ Cnc1 × Cnc2 × Cnc3, d · p ∈ 
{true, false} is a set of types of data information structures used for solving the tasks, where 
Cx is a x-dimensional space of complex numbers; P = { pi|pi ∈ {true, false}, pi = fpi(dx, dy) 
dx, dy ∈ D } is a set of the relations used in settings of the tasks being solved; O = {o|o = 

‹oc, os, or, od›, os = { d|d ∈ D}, or = {d|d ∈ D}, oc ⊂{{{d · p}∗} × Rl}, od ⊂ Rl } is a set of 

actions (operations) used for solving the tasks; T = { t|t = ‹tS, tR, tD›}, tS ⊂ D∗, tR ⊂ D∗, tD ⊂ 
{{{d · p}∗} ∪ Rl }, d ∈ D} is a set of tasks, where X∗ = X0 ∪ X1 ∪ X2 ∪ ... ∪ XN ∪ ..., X0 = ∅, 
tS = Src(t) are input data, tR = Rqr(t) are required results, tD = Dmnd(t) are requirements to the 
results of a t ∈ T task solution. 

The domain-specific definitions specify CPSs that are concurrently influenced by the 
generic paradigm and the specificities of the target application domain. These domains are 
such as (i) manufacturing, (ii) transportation, (iii) agriculture, (iv) horticulture, (v) delivery, 
(vi) urban, (vii) medical, (viii) homecare, (ix) sports, (x) crowd management, and so forth. 
They may be considered both broadly or narrowly. For instance, Deka et al. (2018) derived 
a specification for transportation CPSs as a generic descriptive definition so as “systems 
with embedded software (as part of devices, buildings, means of transport, transport routes, 
production systems, medical processes, logistic processes, coordination processes and 
management processes), which: (i) directly record physical data using sensors and affect 
physical processes using actuators, (ii) evaluate and save recorded data, and actively or 
reactively interact both with the physical and digital world, (iii) are connected with one 
another and in global networks via digital communication facilities (wireless and/or wired, 
local and/or global), (iv) use globally available data and services, and (v) have a series of 
dedicated, multi-modal human-machine interfaces”. Complementarily, Sampigethaya and 
Poovendran (2013) specified an aeronautics transportation CPS so as “it (i) has self-
monitoring and self-correcting aircrafts, (ii) autonomously optimizes and supports decision-
making in all aspects of fuel efficiency, (iii) inter-flight separation during landing, take-off, 
or in-air to optimizing operational revenue, and (iv) providing a personalized experience to 
passengers which will include their desired relaxing/working environment while on board 
or at airports”. 

Deemed to be the most representative, the discussed attempts provide a formwork for an 
evidence-based and formalized definition of the essence of CPSs. They also give a basis for 
the following conclusions: The published definitions are subjective and reflect different 
viewpoints and perspectives. Their narratives typically capture generalizations and 
abstractions (with the exception of the symbolic definitions). They are disconnected from 
the physical implementation of systems, and are not sufficiently concrete to reflect the 
diverse purposes of systems. Moreover, they are incomplete and have limitations in terms 
of rendering the entirety of systems, and do not propose instruments for a systematic 
comparison of systems. Their actuality is not unconditional, and, in reality, largely depends 
on the stage of scientific understanding, technology development, and system engineering 
principles. Equally important is that the majority of the definitions are narrative 
circumscriptions, which are composed of a set of qualitative linguistic constructs 
(descriptive characteristics), but usually lack specific quantifiable performance indicators 
and relationships. This is why additional means of specification have been sought for. 

               horvath.imre_37_22



14 

2.5. Paradigmatic system features and profiles 

Recently, Putnik et al. (2019) posited that “... a more demanding definition of CPS 
requires features that both physical and computational system affects and change each 
other, making a system with systemic relationship, implying a totally new implementation 
paradigm, and for which the former definition is just a special case. ...”. Having recognized 
this alternative way of characterizing CPSs, our research has targeted a more expressive 
means of capturing their essence and found it in the form of a paradigmatic systems feature 
profile. Based on the outcomes of studying already implemented systems, the first 
constructive step included the conceptualization, exemplification, and classification of their 
(physical implementation independent) distinguishing characteristics, called paradigmatic 
system features. Here the word ‘paradigmatic’ is used to emphasize that only those 
quantitatively or qualitatively assessable (measurable or computable) characteristics have 
been considered, which are permanent as long as the underpinning system paradigm 
(ontological model) is permanent, and change only when it changes.  

For Pourtalebi et al. (2014), the point of departure was that systems have both 
paradigmatic features and manifestation features. The corresponding abstraction levels are 
shown in Figure 2.3. Paradigmatic system features (PSF) can be both logically-based and 
physically-based abstractions of a system or a dominant part thereof, as a whole. In other 
words, they can be derived by abstracting or generalizing from the various sets of 
manifestation features of the instance systems. These features are related to the purpose or 
disposition of a system and either differentiate it from other comparable systems, or make it 
paradigmatically congruent with them. By this process, a kind of system genotypes are 
actually established. 

Many survey papers have interpreted system features starting out from the conceptual 
map of CPSs, first presented by the Cyber Physical Systems Organization (CPSO, 2009). 
For this reason, I could observe a somewhat blurry picture again. For instance, Togay 
(2014) regarded: (i) tightly integrated, (ii) heterogeneously networked, (iii) multi-aspect 
adaptability, (iv) automation capability, (v) non-functional requirements, (vi) distributed 
architecting, (vii) multidisciplinary engineering, (viii) limited resources, (ix) time 
awareness, (x) general dependability, (xi) predictability and determinism, and (xii) risk of 
casualties as paradigmatic features. Talsania et al. (2017) identified: (i) closely integrated, 

(ii) cyber capability in every physical component, 
(iii) networked at multiple scales, (iv) temporal and 
spatial complexity, (v) dynamic reorganization and 
reconfiguration, (vi) high degree automation based on 
close control loops, and (vii) dependable and certified 
operation as features - most of which are associated 
with cyber-physical computations. With a view to 
s*CPSs, Horváth (2021) extended these with: (i) 
multi-level cooperative openness, (ii) system-level 
reasoning and learning capabilities, (iii) system 
operation in dynamic contexts, (iv) semantic, 
pragmatic and apobetic interactions, (v) self-
supervised planning and adaptation, and (vi) ensuring 
multi-aspect dependability. 

The paper by (Horváth and Gerritsen, 2012) 
presented altogether 16 paradigmatic system features 
that were deemed to have a selective nature at the 
time of doing the background research. 

 

Figure 2.3: Interpretation of the 
features of system 
constituents 
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F1 CPSs are designed and implemented to support human activities and well-being by 
distributed cooperative problem solving, in harmony with the techno-socio-economic 
environment, 

F2 CPSs are functionally and structurally open systems, with blurred overall system 
boundaries, 

F3 CPSs have the capability to change their boundaries and behavior dynamically, and to 
reorganize and reconfigure their internal structure, 

F4 CPSs consist of a digital cyber-part and an analog physical-part, which are supposed to 
work together towards a high-level functional and structural synergy, 

F5 CPSs are articulated and heterogeneous, and are constructed of very diverse sets of 
components, which can enter and leave the collective at any time, and may encounter 
other systems with similar or conflicting objectives, 

F6 CPSs, as well as their components, manifest on various extreme spatial scales (from 
intercontinental to nano-scales) and temporal ranges (from instantaneous to quasi-
infinite), and beyond, 

F7 components are hybrid structures, encapsulating various (spatial) compositions of 
physical (material) entities and embedded cyber (software and knowledge) entities that 
provide real-time information processing capability, 

F8 components have either predefined or ad-hoc functional connections, or both, with 
other components at multiple levels, 

F9 components may operate according to different problem solving strategies (plans) 
towards achieving the overall objective of the system, 

F10 components are knowledge-intensive and able to handle both built-in formal 
knowledge, the knowledge obtained by their sensors, and the knowledge generated by 
their reasoning and learning mechanisms, 

F11 components are able to make situated decisions and strive for automated problem 
solving by gathering descriptive information and applying context-dependent causal 
and procedural reasoning, 

F12 components are able to memorize and learn from history and situations in an 
unsupervised manner and to specialize themselves based on smart software agents and 
emergent synthetic intellect, 

F13 components are able to reorganize themselves in response to an unpredictable 
(emergent) system state or environmental circumstances, as well as to execute non-
planned functional interactions and to act proactively, 

F14 overall decision-making is distributed over a large number of components, and is based 
on the reflexive interactions among the components and on multi-criteria analysis 
(optimization), 

F15 different sophisticated strategies are applied in order to manage resources and maintain 
security, integrity and reliability of the components and the CPSs as a whole, 

F16 next-generation (molecular and bio-computing-based) CPSs are supposed to have some 
level of reproductive intelligence. 

Since every feature is formulated as a partial narrative definition, the above list itself is 
an extendable meta-definition. This extendibility is useful from the viewpoint of 
adaptation to new developments. However, no matter how complete the lists of 
hypothesized paradigmatic system features are, they do not go beyond what is eventually 
offered by proper narrative definitions. They fail to consider the fact that any particular 
paradigmatic feature characterizing a family of systems may be strongly or only vaguely, 
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fully or partially, or explicitly or implicitly pertinent 
(valid) for a particular system. For instance, though it 
stands in general, not every CPS needs to be open, 
adaptive or cognizant. A significant part of the 
paradigmatic features discussed above imply specific 
operations to be achieved by intellectualization. In 
order to capture the set of PSFs of a particular instance 
CPSs or a family of such systems, and to 
proportionally quantify the relevance of individual 
PSFs for a system, the concept of paradigmatic 
feature profile (PFP) has been introduced. With 
regard to the individual PSFs, it is a unit normalized 
(measurable) indicator diagram. An imaginary 
graphical representation is visualized in Figure 2.4. A 

PFP diagram can be used not only for a posteriori PSF analysis of multiple systems, but 
also in a priory conceptualization of the PSF of a system at the time of starting its 
development. Further research is needed to find general methods for: (i) defining the 
thresholds and ceiling quantities/qualities of the indicators of a paradigmatic system feature 
to qualify as such, and (ii) specifying the threshold and ceiling values for each feature in the 
case of a particular CPS. 

The combined observational and rational specification of paradigmatic system features 
cannot be separated from human comprehension and the scientific/technological 
progression. There is no theory on the horizon that could provide an absolutely objective 
view and formulation. Paradigmatic system features usually change when novel 
technological possibilities and engineering principles are operationalized. They may be 
seen also from different viewpoints. These raise the issue of inherence of system features 
between subsequent generations. In a subsequent generation of CPSs, the system features of 
the preceding generation may be preserved, partly modified, or completely replaced by 
novel ones. This process is referred to as the onward transfer of paradigmatic system 
features. Pourtalebi and Horváth (2016) argued that a robust taxonomy of paradigmatic 
system features can be derived by considering a limited set of generic system properties. 
Their starting point was that all systems are characterized by four foundational properties, 
which can be used for identification: (i) the identity property, (ii) the unity property, (iii) the 
hierarchy property, and (iv) the equilibrium property (Vegetti et al., 2021). 

The identity property eventually concerns the (computational) intellect of operation 
and declares that changes and conversions in material, energy, information, and intellect 
processes are the essence of the operation of all CPSs. This property allows identifying (i) 
transforming, (ii) informing, (iii) reasoning, and (iv) hybrid types of CPSs (which produce 
outputs in the physical, digital, and cognitive realms or in all of these). The unity property 
designates existence in space and time and asserts that a system is a unique collection of 
components, which are more strongly bound to each other than to the surrounding 
environment. This property makes the boundary and the foundational rules of a CPS local. 
The hierarchy property is about the architecture and internal connectivity. It states that a 
system is a hierarchical composition of stable constituents that are architecturally 
interlocked and operationally synergetic. This property makes a CPS “more than the sum of 
its parts” and eventually leads to compositionality through composability. The equilibrium 
property is about the offerings (the benefits) of CPSs. It claims that outputs of a system are 
in balance with its inputs (that is, the laws of conservation of mass and energy, and laws of 
distribution of information and knowledge apply). This property is associated with the 
operational embedding of a CPS in its environment as well as with the use of signals/data 

 

Figure 2.4: Imaginary feature 
profiles of CPSs 
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and resources. In addition, it also appears related to efficiency, problem solving, 
supervision and automation issues. Apparently, these four foundational properties designate 
the proper dimensions of deriving paradigmatic system features. However, while it can be 
done relatively easily in retrospective analyses of past implementations of CPSs, it is 
challenging in the case of predictive investigation of future generations. 

2.6. Smartness as a realistic goal of intellectualization 

As discussed above, natural intelligence, computational intelligence, and systems 
intelligence are still largely open issues and topics for the 'terra quaestuosa'. There is an 
ongoing and unsettled debate about the very essence of system intelligence, beyond its 
current computational implementations and applications. This debate has been out there for 
almost 60 years, or even more, but the light cannot be seen yet at the end of the tunnel. 
Hollnagel (1993) posited that “(T)here is one main problem in defining what an intelligent 
system is: there are no good definitions of intelligence. There is generally more agreement 
on the behaviors referred to by the term (the phenomenology of intelligence) than on how 
they can be interpreted or categorised”. Nevertheless, there are some constructive 
definitions, for instance that of the American Institute of Aeronautics and Astronautics, 
which interprets the necessary properties of system intelligence as: (i) learning (acquiring 
new behaviors based on past experience), (ii) adaptability (adapting the response to 
changing environment or internal condition, (iii) robustness (consistency of response across 
a broad set of circumstances), (iv) abstraction (turning data into information and then into 
actionable knowledge and wisdom), and (v) extrapolation (acting reasonably when faced 
with not previously experienced circumstances). 

Some 25 years ago, Shaw (1998) argued that “(T)he ultimate goal of intelligent system 
design is the creation of autonomous systems which can perform complex control tasks 
under all operating conditions of a plant or process, even in the presence of failures, without 
human intervention or supervision. In this case, it will be sufficient to tell the system what 
to do but not how to perform the task given”. The lack of generic definitions of human 
intelligence, the uncertainties of defining what system intelligence ultimately means, and 
the current stage of the technologies enabling intellectualization of engineered systems 
forced us, i.e., the researchers at the Section for Cyber-Physical System Designs of the 
Faculty of Industrial Design Engineering, at the Delft university of Technology, to follow a 
less ambitious goal. This aimed at the development of theoretical fundamentals, 
computational enablers, and practical application cases for s*CPSs. 

The line of reasoning of the conceptualization process has interrelated the three phases 
of architectural, functional, and computational specification. It originated from the 
frequently cited 5C layered architectural model of CPSs (Figure 2.5). This model, which 

 
Figure 2.5: The 5C layered architectural framework  

               horvath.imre_37_22



18 

is actually a generic framework by its nature, includes a cognitive layer that is dedicated to 
supporting implementation and utilization of intellectualization (Pivoto et al., 2021). 
However, practical operationalization of the cognitive level constituent of the framework 
needs specific functionality. In practice, it meant revisiting the generalized functional 
structure of CPSs and extending it with a computational reasoning orientated subset of 
functions. As shown in Figure 2.6, three main functions, namely (i) smart inferring in 
context, (ii) massive data analytics and mining, and (iii) planning and controlling 
adjustment have been defined. In the stage of specification of the computational and 
resources, the computational mechanisms and algorithms have been determined and 
exemplified.  

Insisting on the aforementioned pragmatic treatment, the ideal of overall systems 
intelligence was dropped as a target of the research activities. Instead, system intellect-
based smartness has been used both as a starting point and a finishing point of the then 
ongoing research inquiries and development attempts concerning intellectualization. To 
sharply demarcate it from the concept of intelligence, smartness has been defined as a 
specific, localized, and purposeful ability to know, to do, and to make. As a reasonable goal 
of intellectualization of CPSs, equipping them with sufficient smartness for real-life 
problem solving has been targeted. In my view, smartness also implies that decisions are 
made with the involvement of humans in the creative, transformative, or informative 
operations, rather than solely by computational reasoning mechanisms of a system 
(Schirner et al., 2013). Eventually, smartness has been regarded as a measure of the ability 
to act efficiently in emergent situations based on innate or acquired competences, 
knowledge, and information. 

There has been a reasoning model proposed to capture the essence of system smartness 
(Figure 2.7). This has been not only published, but also operationalized in various projects 
with the involvement of staff members and Ph.D. students. This reasoning model assumes 
that smartness concurrently manifests in a (computational) internal operation space (IOS) 
and an (observational) external operation space (EOS). The IOS is populated by the 
problem-solving core-functions enabling smart operation of a system. These functions 
include: (i) multi-source sensing and monitoring, (ii) awareness building of the state of the 
system, environment, and problem, (iii) ampliative reasoning based on system knowledge, 

 

Figure 2.6: Generic functionality of i*CPSs 
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(iv) strategic leaning 
from processes and 
results, (v) assessing and 
planning the optimal 
operation, (vi) run-time 
adaptation and validation, 
and (vii) actuating the 
generative, 
transformative, and 
informative processes. In 
Figure 2.7, the spiraling 
curve depicts system 
smartness as an evolving 
phenomenon enabled by 
evolving problem-solving 
mechanisms and 
algorithms. 

It is an important 
insight from behavioral science that smartness arises when problem-solving intelligence 
meets application and observational contexts. This demarcates the IOS and EOS spaces in 
the overall manifestation space of system smartness. System smartness is also a judgment 
from a non-functional (experiential) perspective. The EOS space is where the smart 
problem solving qualities are experienced and assessed. This space also accommodates the 
reflections on the impacts and effects that the operation of a smart system evokes. This 
judgment may come from any actor of the application environment, including humans and 
other systems. The experiences of the system stakeholders reflect the observed ‘goodness’ 
(e.g., efficiency) of the applied problem solving functions/methods, as well as the 
impressions raised by the operationalization of para-functions. A non-subjective judgment 
of the experienced system’s performance requires objective and proper measures. These are 
not available in the literature yet. Nevertheless, we regarded: (i) ingenuity (inventiveness in 
human context), (ii) dexterity (agility), (iii) convincingness (proficiency), and (iv) 
dependability (reliability) as observable non-functional characteristics in the context of 
impressionable problem solving performance of s*CPSs [1]. This reasoning is based on the 
analogy of experiencing smartness in human problem solving. The mentioned 
characteristics interconnect (i) the observed sophistication of system functionalities, (ii) the 
experienced quality of smart problem solving, and (iii) the subjective assessment of the 
stakeholders of the system. 

Due to its complexity, only parts of the above-discussed reasoning model have been 
implemented and tested in Ph.D. research projects. For instance, awareness building, 
ampliative reasoning, and context dependent informing have been implemented in the 
promotion research of Li, Y. (2019). Ampliative reasoning, strategic learning, operation 
planning, and effector actuation was implemented in the work of Li, C. (2016). Multi-
source sensing, strategic learning, operational scenario planning, and run-time adaptation 
were studied by the promotion research of Ruiz-Arenas, S. (2018). The studies of Abou 
Eddahab, F.-Z. (2020) connected big data processing with semantic information generation 
and exemplified smart functions for next-generation intellectualized systems. The research 
of Tepjit, S. (2022) can be placed on the border between the space of the smart problem 
solving functions and the space of human experience and interaction with a CPS. It 
addressed the issues of system-assisted development of reasoning mechanisms for smart 
CPSs. The promotion research of van Doorn, E. (2018) dealt with information engineering 

 

Figure 2.7: The dual-space of manifestation of system 
smartness 
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for supporting situation awareness in a specific context. Pourtalebi, S. (2017) contributed to 
the development of the concept of the system paradigmatic features as well as to its 
operationalization in the design of genotypes, phenotypes, and prototypes as transitive 
models of CPSs. The work of Du Bois, E. (2013) contributed a stakeholder-centered, 
designerly methodology to pattern-based software development for smart systems. The 
synthesis of the novel findings revealed that it is not enough for smart systems to be able to 
purposefully apply computational reasoning and to solve complicated problems. They 
should also be able to raise the impression in the stakeholders and the whole environment 
that both their behavior and the solution are smart. This can be facilitated by accompanying 
para-functional abilities. 

2.7. Cyber-physical systems for everyone 

The title of this section does not want to suggest that every human being should possess 
one or more complicated and expensive CPSs in the near future. It is more about the 
opportunity of orientation of the objectives of development and application towards non-
industrial utilization. This idea popped up more than a decade ago, and smart cars, grass 
cutters, kitchen assistants, bathroom cleaners, stroke rehabilitators, autonomous learning 
aids, etc. are proving its feasibility and usefulness. Everyone may and must benefit from the 
context-dependently tailored services of CPSs (Suh et al., 2014). Talsania et al. (2017) 
argued that CPSs are an opportunity for humans to get closer to nature by means of the 
cyber world or ubiquitous computation. Research on socially embedded CPSs as well as on 
cyber-physical-social systems has also been intensified (Zhou et al., 2019). 

In the previous decade, CPSs have mainly been conceptualized and implemented as 
industrial enablers, integrating industrial Internet of things systems, process management 
and monitoring systems, computer aided design and manufacturing systems, and 
data/information management and deposition systems. As argued above, next generation 
CPSs will manifest not only in the form of large-scale complex and plant-type industrial 
systems of systems, but also in socialized and personalized interconnected systems formed 
by interoperating smart actor nodes of interconnected systems (Wan et al., 2011). As such, 
they will be able to (i) deeply penetrate into real life processes, (ii) collect massive amounts 
of data, (iii) develop operation plans run time, (iv) optimize their operations and services, 
and (v) adapt themselves to dynamically varying environmental circumstances or 
operational states, in addition to (vi) guaranteeing dependability, safety, and privacy. 

The above-mentioned functionalities are becoming the distinguishing characteristics of 
smart CPSs for everyday applications. In the case of such systems, it can be expected that 
the focus of design will shift from a functionality orientation to an affordance orientation. 
The largely autonomous systems will decide on what affordances can be useful in a 
particular application context and how these affordances can be transformed into context-
specific operations. Yamanobe et al. (2017) posited that the concept of affordance could 
be a key to realize human-like advanced manipulation intelligence, especially in unknown 
situations. In fact, only our creative imagination and the technological and economic 
opportunities may constrain the varieties of systems that can be developed for the 
exploitation of functional and technological affordances in various non-industrial 
applications. The growing number of related publications evidences the interest in 
developing and studying such application systems. 

In everyday applications, smart CPSs need novel (i) computational mechanisms to 
recognize operational affordances in a concrete problem solving process, (ii) abilities to 
adapt themselves according to a possible realization of a particular operational affordance, 
and (iii) resource management and additional/different resources for operationalization. We 
have investigated the computational implementation opportunities of these and published 
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the results (Li et al., 2014). The proposed procedure includes: (i) identification of states of 
the system and the environment based on run-time sensed signals/data, (ii) recognition of 
the changes in the state of the system and the environment as events, (iii) inferring about 
situations characterizing the system and the environment based on the whole of the 
temporary events, (iv) building awareness through monitoring the situations, (v) assessment 
of the performance of the system with regards to its operational/servicing objectives, (vi) 
devising alternative performance enhancement options by prognostic reasoning, (vii) 
adaptation of the constituents and the whole system according to the best enhancement 
option, (viii) devising and scheduling the implied interventions in the system and the 
environment, and (ix) actuating the concerned effectors and controls. These activities are 
driven by the principles of the system-in-the-loop (Hartmann et al., 2017) and the 
environment-in-the-loop (Falkenberg et al., 2018) approaches, rather than by the principles 
of the human-in-the-loop approach. 
  

               horvath.imre_37_22



22 

Chapter 3 

3. Trend of progression of intellectualized cyber-physical 
systems 

3.1. Research objectives and approach 

The literature of CPSs mirrors a perpetual shift in terms of the scientific fundamentals 
and the derived concepts used in this family of systems. The situation characterizing the last 
decade was described by the National Academies of Sciences, Engineering, and Medicine 
(NASEM, 2016) as “today’s practice of CPS system design and implementation is often ad 
hoc, not taking advantage of even the limited theory that exists today, and unable to support 
the level of complexity, scalability, security, safety, interoperability, and flexible design and 
operation that will be required to meet future needs”. The researchers of different 
institutions or platforms have provided differing interpretations of this shift and have 
formulated different visions of its destination. 

It is not incidental to find publications whose authors underpin their work with theories 
and methodologies that belong more closely to other fields of system engineering, such as 
embedded systems, application software, wireless networks, or digital twins. In other 
words, dissimilar system categories have been referred to as CPSs or constituents of these. 
This phenomenon can be explained by the fact that the different emerging categories of 
CPSs have not been identified uniquely. Socialized robotic systems, agent-based actor 
systems, complex adaptive systems, Internet-of-things systems, and the like, are put into the 
same functional basket and their names are often used interchangeably. Furthermore, the 
distinguishing functionalities, capabilities, and features of the successive implementations 
of CPSs have not been described in a consistent manner. The differences between smart, 
aware, responsive, intelligent, context-driven, proactive, autonomous, etc., CPSs are not 
made explicit. Certain early implementations of CPSs have already been identified as 
intelligent systems, while they are just advanced implementations according to the criteria 
of other researchers (Claudi et al., 2013). 

The goal of this research was to devise a reasoning model considering the generation-
shift hypothesis as a theoretical basis. Acknowledging the usefulness of parsimony, our 
intention was to find a minimal number of aspects which a robust categorization may rest 
on. The specific goal of the investigations was to logically demarcate various kinds of CPSs 
based on these aspects and the observed or supposable paradigmatic features and to identify 
non-isomorphic generations (i.e. distinct taxonomical categories that cannot be mapped 
onto each other). The concept of ‘system generations’ and the proposed reasoning model 
will be further elucidated in sections 3.2 and 3.3, respectively. Sections 3.4 - 3.8 discuss the 
main characteristics of the zeroth, first, second, third, and fourth generation systems, while 
section 3.9 addresses some open issues deemed important for near-future progression. The 
contents of this chapter have been compiled from the following peer-reviewed publications: 
H9, H10, and H11 (see Appendix A.1.1). 

3.2. Determinants of progression 

The aforementioned findings of our preceding research have raised a number of 
research questions such as: ‘What characterizes the progression of CPSs?’ ‘What 
differentiates past, current and future CPSs?’ and ‘What milestones are in the process of 
progression?’ Answering the first question boils down to identification of the determinants 
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of the progression and how they actually influence the manifestation of CPSs. Obviously, 
the overall progression is framed by the industrial revolutions, which combine the results of 
(i) advancement of science, (ii) development of technologies, (iii) changes in industrial, 
commercial, societal demands, as well as the effects of (iv) alteration of human thinking, 
and (v) the affordances and limitations of the environments. The associated theories are 
rarely specified in enough detail to enable systematic evaluation of their assumptions, 
mechanisms, factors, and outcome. The only exception is technological development, in 
particular computational technology development, where many deep-going trend analyses, 
quantitative technology forecasts, model-based predictions, and convergence assumptions 
are available. This applies to the development of artificial intelligence and 
intellectualization of systems (Brundage, 2015). Nevertheless, at the beginning of the 2010s 
when we completed our explorative research, we could not find any model that would have 
characterized the progression of CPSs. Typically, static categorizations are available, like 
the one proposed by Thekkilakattil and Dodig-Crnkovic (2015), which systematized the 
types of CPSs as: (i) automatic, (ii) semi-automatic, (iii) semi-autonomous, and (iv) 
autonomous systems. 

Towards such a model, we started out with two general hypotheses. We hypothesized 
that capturing anthropic potentials could lead to a relevant basis for modeling the 
progression of systems. If systems are working in the physical (mechanical, biological, 
physiological) domain as well as in the cyber (digital, virtual, logical) domain, then they 
must be able to organize the physicality and to manage the intellectuality simultaneously. 
We contemplated the analogies of the body and brain. In this line of reasoning, we have 
identified self-organization capability and self-intelligence capability as determinants of the 
progression of CPSs (Figure 3.1). We have implicitly assumed that their interaction at 
various progression levels is what actually defines the manifestation of systems. This aligns 
with the principles of cybernetics, which identifies first, second, and third order regulatory 
systems. Our analysis has explored that it is not necessary to consider self-autonomy as a 
determinant of progression, since it is an outcome of possessing the respective higher levels 
of self-intelligence and self-organization (whereas it cannot go beyond the respective forms 
of automatism or automation at lower levels of these capabilities). 

3.3. Proposed reasoning model of progression 

Our second hypothesis also rests on the natural world, more specifically, on the 
biological realm. In this realm, succession is typically characterized by the appearance of a 
new generation and by the genetic differences between the subsequent generations. This 
analogy has already been applied and tested in genetic computing. Our assumption has been 
that the historical development of CPSs can be properly described by the concept of system 
generations, like in the natural 
word. It has also been postulated 
that the emergence of generations 
can be brought into direct 
relationship with the shift of system 
paradigms. A ‘generation’ of CPSs 
has been defined as the total of 
differentiating system concepts, 
paradigmatic features, architectural 
principles, functional abilities, 
technological implementations, and 
offered services. Some or all 
paradigmatic features of the 

 

Figure 3.1: Assumed determinants of the 
progression of CPSs 
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antecedent systems 
may be preserved in 
the paradigmatic 
features set of a 
particular 
generation, but they 
can also be replaced 
or supplemented by 
specific novel 
features. This 
interpretation of 
subsequent 
generations assumes 
aggregation and 
substitution 
mechanisms rather 
than abrupt changes 
behind the 
transitions of 
generations. This 
kind of progressions 
obey the principle 

of the ‘shift of paradigms’. As a structural term, ‘generation of CPSs’ means a 
‘technological and engineering cohort’ of different individual manifestations of systems. 
Like biological generations, which may exist in similar or different periods of time, 
generations of CPSs may also be coexisting or having overlapping existence. This is 
another aspect of the ‘shift of paradigms’. 

Based on the above considerations, a conceptual advancement model (CAM) has been 
conceptualized, a graphical representation of which is shown in Figure 3.2. This is both a 
conceptual framework and an explanatory scheme. As a framework, it proposes a logical 
arrangement of the successive implementations of CPSs according to their growing 
intellectual and organizational abilities. As an explanatory scheme, it makes the envisaged 
stages of progression perceptible through a limited number of major generations. These 
have been named (and indicated by acronyms) such as zeroth (0G-CPSs), first (1G-CPSs), 
second (2G-CPSs), third (3G-CPSs), and fourth (4G-CPSs) generation systems, 
respectively. The detailed specification and description of the five generations of CPSs 
happened based on underpinning facts and conjectures published in the literature in the 
mid-2010s. 

Without going into the technical details which are presented in the next sessions, the 
differences between the generations can be highlighted as follows (Figure 3.2). The 0G-
CPSs include look-alike engineering systems and partial implementations of CPSs. The 1G-
CPSs include systems with self-regulation and self-tuning capabilities, while the 2G-CPSs 
have the capability to operationalize self-awareness and self-adaptation. The 3G-CPSs are 
equipped with the capabilities of self-cognizance and self-evolution. Only the 4G-CPSs are 
supposed to achieve self-consciousness and self-reproduction in the form of creating a 
system of systems. 4G-CPSs will be based on an integrated model of intelligence, which, 
however, needs to be implemented at full-scale. Addressing both architecture (structural) 
and operation (intellectualization) issues, the next sections further analyze and discuss the 
paradigmatic characteristics of these generations. 

 
Figure 3.2: The conceptual advancement model 
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3.4. Alternatives of self-organization 

Self-organization is realized differently by the different generations of CPSs (Figure 
3.3). This simultaneously concerns the interrelated functionality/operations and 
architecture/configuration of the systems. Every point of the initial system space (ISS), the 
extended system space (ESS), and the reproduced system space (RSS) represents a 
particular functional and architectural organization of the system. Below, I am going to 
interpret the alternatives of self-organization as it influences the operation of the system. 
1G-CPSs always work within the designed operation space (DOS) and remain inside the 
ISS, which is enabled by the predefined resources possessed by the system (Figure 3.3.a). 
An exception can be malfunctioning of the system. The DOS can be anywhere on the ISS, 
assuming that each of the selected individual operational states is feasible (and meaningful). 
The system can self-tune itself by selecting alternative operation states, and find a relative 
optimal operation state by setting all system parameters accordingly. It may happen that the 
operation of the system remains sub-optimal due to the fact that it cannot extend the space 
of possible operations due to the restrictions in terms of the system parameter values, or the 
limitations emerging due to resource constraints. 

2G-CPSs may extend the ISS in order to achieve a new optimal objective. Based on its 
adaptation abilities, it can create an extended system space (Figure 3.3.b). Starting from the 
DOS, it may search for an optimum operation space (OOS) not only on those parts of the 
ISS, which are enclosed by the ESS, but also on the whole of the ESS. Certain parts of the 
ISS may lose their relevance to searching for an OOS, due to the system parameters which 
become obsolete as a result of the adaptation. It means that, in some cases, extension of the 
ISS may actually mean (i) expansion, (ii) contraction, and (iii) a combination of space 
expansion and contraction. The continuity of the ESSs is maintained, that is, no new system 
parameters are introduced. The multiplicity of the ESSs makes adaptive self-organization 
possible. 

3G-CPSs may sub-sequentially extend their ISS to various ESSs multiple times and 
according to various contexts, and may dynamically search for the OOS on any one of these 

 
Figure 3.3: Alternatives of self-organization 

               horvath.imre_37_22



26 

EESs (Figure 3.3.c). That is, the OOS can be found on any one of the ESSs. As before, 
certain parts of the ISS and some ESSs may lose their relevance to searching for an OOS. 
The continuity of the ESSs is not maintained, that is, new system parameters are 
introduced. This process allows extensive search and learning processes. The multiplicity of 
the ESSs, the new system parameters, and the learning abilities lend themselves to an 
evolutionary self-organization. 

4G-CPSs may generate multiple RSSs, which may be completely disconnected (Figure 
3.3.d). Each of the RSSs represents different operational objectives and operational system 
parameters. They are managed by sophisticated reproduction strategies. The self-
organization process of the systems starts with the establishment of variant(s) of the system 
that correspond to the RSS(s), and then the search for an OOS is executed. These may be 
repeated multiple times, according to some dynamic objectives. The reproduced EESs may 
be decentralized and distributed replicas of the ISS. The above overview shows that the 
various approaches to self-organization create CPS generations of rather different 
behaviors. 

In the last two decades, both designing for adaptation and designing for self-adaptation 
have become protruding design methodological issues in application contexts. The fact of 
the matter is this is a hot research topic in the literature related to software systems. It is 
also influenced by the high variance of types and applications of i*CPSs. Recently, system 
adaptation has been identified as a key technology towards autonomous driving (Haböck et 
al., 2016). In addition to traffic management, energy provisioning, and manufacturing 
environments, adaptive systems have been penetrating into the domain of medical systems 
too (Abbod et al., 2002). Brown (2006) elaborated on the application of complex adaptive 
systems theory to clinical practice in rehabilitation. At the same time, among others, Weyns 
et al. (2022) considered the opportunities of designing self-organization-based evolutionary 
software systems. 

3.5. Features of zeroth generation cyber-physical systems 

As the literature shows, the majority of the industrial 0G-CPSs are the result of 
incremental automation. This generation of quasi-CPSs includes system implementations 
whose architecture and operation resemble those of the truly ‘cyber-physical’ systems, but 
partiality and incompleteness can be observed commonly with regards to the full functional 
spectrum. Typical 0G-CPSs are such as embedded hardware/software systems, software-
integrated plant systems, Internet of things systems, complicated production systems, 
medical monitoring systems, machine assembly robots in the automobile industry, and so 
forth (Leitão et al., 2016). Many such systems have been produced by including multiple 
sensing-computing-actuating loops. This has been termed as cyber-physical augmentation 
(CPA). They typically consist of one or more traditional ‘plant-type’ subsystems or 
monolithic artifacts, such as advanced robots, that form the physical subsystems. 

With a view to their architectural and operational characteristics, 0G-CPSs are 
functionally and architecturally closed systems and do not lend themselves to any run-time 
variation. They are controlled by predefined (preprogrammed) closed loop control and 
optimization subsystems. The control is typically model-based, generated based on the 
principles of classical control theory. In many cases, it involves networked control. The 
applied classical control theory assumes that the controller continually or periodically 
extracts continuous or discrete-time signals concerning the state of the physical processes 
and the system as a whole, and continually or periodically actuates the effectors in order to 
achieve the objectives of the system’s operation. The primary objective of using a closed-
loop control subsystem is achieving accuracy, stability, and reliability. To handle the 
realities of software and networks, adapting control theory is also applied, but it is an 
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unsolved issue for many systems (Hou and Wang, 2013). 

3.6. Features of first generation cyber-physical systems 

Shown in Figure 3.2, the distinguishing paradigmatic features of 1G-CPSs are self-
regulation and self-tuning. Feedback-based self-regulation and self-tuning characterize the 
lowest level of proactive and deliberate system smartness and adaptability, respectively. 
Typically, 1G-CPSs are closed and software-integrated systems. A set or network of 
sensors measures the parameters of physical processes, and the measurements are processed 
in the cyber subsystems, which provide data for driving the actuators that affect the 
physical processes. These systems include algorithms and software components that collect 
the sensor data and react on them by issuing control signals via the actuators to the physical 
effector components. With regard to the dynamics of the operational conditions and system-
level interactions, the control subsystem needs to cope with the dynamic phenomena of 
software and networks, such as: (i) timing jitter in communications and computation, (ii) 
packet losses in networks, or (iii) resource contention having profound effects on the 
performance and stability of the physical subsystems. However, the control system applied 
in 1G-CPSs is neither adaptive, nor predictive. Typically, 1G-CPSs can handle only 
anticipated changes, that is, changes that occur within the operational domain for which the 
system has been built (Wu and Kaiser, 2012. 

The main architectural and operational characteristics of 1G-CPSs are as follows. They 
are usually designed as independent (self-reliant) systems. However, some of them make 
the first step from simple independent systems towards interlinked system(s) of systems. 
The term ‘self-regulation’, used in Figure 3.2, refers to the ability of reaching a very limited 
(low level, preprogrammed, or self-acquired) of system ‘intelligence’ in given contexts 
(based on syntactic rules or processing probabilities). Self-regulation is exemplified by the 
traditional feedback type of control or learning enhanced control, which enables self-tuning. 
This expresses the restricted potential for functional and architectural adjustments 
according to different operational conditions (without any serious change in the goals, 
architecture, and operations). Typical is self-resilience, which usually means activating 
redundant components in the case of a heavy working conditions, malfunctioning or 
intrusion (for instance, think of a lorry, which lets a third rear wheel-pair down when 
overloaded and lifts it up when no extraneous payload is there, but can reduce rolling 
friction this way. Resilience is the persistence of service delivery that can justifiably be 
trusted when facing changes, i.e., the persistence of dependability when facing changes. 
Resilient 1G-CPSs are the next challenge – adding new dimensions of complexity to 
manage (Chaterji et al., 2019). The control strategies implemented in the cyber subsystems 
need to achieve self-tuning (responding to changing operational conditions). However, they 
usually do not have capabilities for a predictive behavior (anticipating changes in the 
physical, communication, and computational processes). 

3.7. Features of second generation cyber-physical systems 

Developers of 2G-CPSs strive after handling unanticipated changes, such as anomalies 
outside their operational domain, and emergence of new goals or new technologies. Self-
awareness and self-adaptation have been regarded as distinguishing paradigmatic features 
of 2G-CPSs. Between these two, there is a functional relationship established by the 
operational/servicing objectives. Self-awareness of intellectualized systems is often reduced 
to the possession of information and inferring based on this information in different 
contexts. Therefore, it is often manifests as computational self-monitoring. Self-adaptation 
may be necessary due to (i) the growing complexities of system operations and servicing, 
(ii) the limitations of taking all possible changes in the system and the environment into 
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consideration at the design phase, and (iii) the uncertainties/alterations of the operational 
objectives, environments, circumstances, and human interactions. 

One of the challenging questions today’s research is facing is how to get to and 
operationalize actionable insights through and by systems themselves (Endsley, 2018). 
Regarding self-awareness of 2G-CPSs, it is of importance to differentiate between 
extensional awareness (that includes reference to an extensive knowledge structure on the 
state of the system and its environment) and intentional awareness (that includes a natural 
consciousness based insight into the state of the system and its environment). Thus, as 
formulated in our research, the working definition of system awareness states that it is a 
computational capability and complex mechanism that: (i) captures local word related, (ii) 
purpose and task dependent, and (iii) context and situation influenced information 
construct(s), and gradually builds up (iv) a comprehensive and semantically rich model, and 
(v) an operational ‘mimicked understanding’ in a particular system. The main issue is that 
there are multiple stimulants (e.g. topical interest, body language, eye contact, facial 
expression, etc.) in the case of humans that support building awareness through back-
channel feedback and nonverbal cues (Greenberg et al., 1996). These cause the real 
complications for modeling and computation, since they cannot be captured directly as 
para-functional abilities and transformed into information structures and procedures in a 
straightforward manner. 

Self-awareness assumes a near-zero-time processing of perceptional information and 
knowledge, and a kind of spontaneous recognition of objects and events, even in 
dynamically changing situations and contexts. Context information processing by 2G-CPSs 
should amalgamate: (i) run-time elicitation and structuring of context information, (ii) 
modeling and analysis of context variability, (iii) run-time integration of context 
information with reasoning/decision making procedures, (iv) reconfiguration, rebinding, 
and dynamic-composition of changing context information, and (v) use of concept 
ontologies for disambiguating and discriminating context information at run-time. Low-
level context can be represented with data entities and data constructs, which are extracted 
by filters from sensor data or generated based on computed data. A representative example 
of this is a CPS that has been developed for detecting and enhancing short term engagement 
of stroke patients in rehabilitation exercises (Li et al., 2016). Traditional context models are 
not sophisticated enough to qualify as the basis of relevant computational approaches. 
High-level contexts can be represented properly only by dedicated informational structures, 
which capture semantic and pragmatic relations, constraints and rules (Mylonas et al., 
2009). This entails the need for more sophisticated transformers and schemes, which can 
nevertheless be processed in quasi-real time. 

Adaptivity is the measure of the change potential that a system has in order to meet pre-
set or possible (emerging) system objectives (Black et al., 2014). An adaptive system can 
provide gains if it has an excess of resources and components that can be rearranged, 
replaced, combined, or interchanged easily. System adaptivity depends on (i) the types and 
number of components, (ii) the degree of connectedness and the variety of the interfaces, as 
well as on (iii) the software components involved in processing dynamic contexts and in 
logical/semantic reasoning. Modularity has been identified as the relative measure of a 
system’s ability to remove, add, or rearrange components at various levels of 
(de)composition. These factors together also enable moving towards self-evolution. 

The current generation of adaptive systems are closed systems, and suffer from 
limitations with regards to the theoretical adaptation of functionality (modes of operation) 
and architecture (management of resources). 2G-CPSs take the first step towards opening 
the system boundaries from both architectural and operational aspects. They typically use 
run-time acquired data in addition to the data stored in the system’s operation model (and 
control model) for system control. However, neither of these is a trivial problem, and the 
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literature is incomplete and fragmented about resolving these issues. Having the 
aforementioned operational characteristics, 2G-CPSs bring the idea of smartly behaving 
engineering systems to reality. They are implemented as software- and knowledge-intensive 
systems, which are able to: (i) process dynamic context information, (ii) modify the 
architecture and operation runtime, and (iii) exploit run-time variability in achieving its 
objectives (Gabor et al., 2016). Not only is the ‘designability’ of 2G-CPSs influenced by 
their dynamic adaptation character, but also the opportunities for verification and validation 
of their self-adaptation as discussed in Chapter 4. 

3.8. Features of third generation cyber-physical systems 

With regards to the definitional conventions, 3G-CPSs are still less discussed (and 
perhaps, less studied) than the second generation of these systems. Their highest-level 
paradigmatic features have been defined as self-cognizance and self-evolution. It was 
discussed in the previous section that, in the order of mention, awareness and cognizance, 
represent different levels of intellectualization. Then, what is the essence of systems 
cognizance? To clarify this, we should start out with the phenomenon of human 
consciousness (subjective experience) (Signorelli, 2017). In the case of human beings, 
consciousness is a glorified, all-embracing impression and perception of the world around 
us. In a sense, consciousness means a fundamental state and informatization of the human 
brain. Human cognizance represents the manifestation of its specific implications in the 
cognitive space. Human cognizance is typically derived and distributed over many 
individuals working together towards a shared purpose or objective. Though it is shared by 
the concerned individuals, it may reflect differences in terms of their personal 
understanding and can be time-wise articulated. Thus, cognizance and awareness are two 
differently scoped insights and mindsets associated with local worlds and related reasoning. 
Cognizance is eventually a move towards consciousness (Demetriou et al., 2018). It 
assumes a changing scope from local to global comprehensiveness. 

While self-awareness of CPSs is supposed to be the potential of a system to build a 
world model effective in given situations, self-cognizance is supposed to enable the 
development of multiple (but a restricted number of) models of the external world from 
various perspectives. Thus, self-cognizance is interpreted as the capability to capture and 
assess what the relationships in a given local word and environment are and what is 
happening in them. It should offer multiple computable models of the system and its 
environment from various perspectives. This is the basis of a ‘pseudo-understanding’, 
which: (i) is less global than what may be expected from system consciousness, (ii) largely 
depends on the perspectives and contexts of interpretation, and (iii) may manifest just as a 
specific volatile computational understanding. 2G-CPSs still face limitations to replicate 
understanding conveyed by genuine human cognizance and implement different 
representative mental models even for pseudo-understanding. 

In the case of 3G-CPSs, evolvability is continuous development towards extended 
functionality and improved performance. Current engineered systems are far from such a 
level of dynamic reorientation and reconfiguration while executing. The evolvability of 3G-
CPSs appears as a run-time performance criterion, rather than as a challenge during the 
time of designing. According to the interpretation of Tackett et al., (2014), an evolvable 
system follows emerging objectives of system operation as often as needed. On the other 
hand, systems need proper resources to be able to evolve, which may be provided by 
system developers on request, or self-developed by the concerned systems. Notwithstanding 
these facts, the degree to which a 3G-CPS should be made evolvable while in service is a 
strategic choice in the time of designing. In the context of run-time optimizing a system 
design, evolution is interpreted as repeated controlled (a non-disruptive series of) 
reconfigurations. Some CPSs may specifically be designed to evolve, while others may 
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have done it serendipitously. 
The reason is that the 
(probable and possible) 
evolutionary transformations 
of a particular CPS may or 
may not be known during the 
design process, and may or 
may not be reversible. With a 
few exceptions, research on 
evolutionary methods for 
systems has been based on 

discrete (one-time) evolution. 
The evolvability of a CPS has been defined as the potential ability (enthalpy or internal 

energy) to progress from one stable system configuration to another, and from one multi-
functionality state to another in response to changes in the requirements, goals, environment 
and the system itself, by using system excess and modularity (Borches and Bonnema, 
2008). A self-managed long term evolution of CPSs is necessitated by the emergence of 
new technologies and protocols/codes. The need is seconded by the fact that it is becoming 
prohibitively difficult to predict all future operating scenarios and features of the system 
and the hosting environments in the design stage of CPSs. Self-evolution is also closely 
connected to hardware, software, and cyberware resources and to availing these during the 
entire life-cycle of cognizant CPSs. This extends to (i) knowledge resources, (ii) knowledge 
development resources, (iii) reasoning resources, and (iv) reasoning mechanisms 
development resources (Figure 3.4). Combined with intense resource management, self-
evolution provides an opportunity to repose the system objectives and the concepts of 
operations in harmony with long term technological, social and environmental changes. No 
quantitative model of system evolvability is published in the literature (i.e. let alone 
concerning a framework to successfully accommodate substantial changes in run-time). In 
fact, handling such changes requires evolution of the computing system. Although 
significant progress has been made on automating the deployment and integration of new 
elements, software evolution remains in essence a human-driven activity.  

It is obvious that 3G-CPSs should have excess (resources) for enabling their self-
evolution. Self-constructing software research and development offered some first 
solutions, but the problem is much more complex than just reusing these in the context of 
3G-CPSs (Oreizy et al., 1999). In addition, there is a need also for evolvable cyberware and 
hardware. Both the hardware and the software have to be able to dynamically and 
autonomously reconfigure themselves as needed (Higuchi, 1993). This would be a dynamic 
evolution, resembling that of living systems. One possible approach to such a system is to 
use two parallel system units. A primary unit is applied for normal runtime operation of an 
application, while a secondary unit keeps evolving in parallel. If the performance of the 
secondary unit becomes better than the primary unit, they are exchanged. Thus, the unit 
giving the best performance at the moment is enabled. Together with evolvability, there is a 
need for another ingredient called recoverability (Frei et al., 1999). Towards this end, 3G-
CPSs should have redundancy of resources for protecting themselves, but also sufficient 
excess for the intrinsic ability to recover. The system excess should also be present in the 
knowledge possessed by these systems. The current system designs have no such 
capabilities. 

3.9. Features of fourth generation cyber-physical systems 

Though the literature is permeated with the idea of intelligent automated systems, the 
fact of the matter is that this creates more confusion than clarity (Tyagi et al., 2021). 

 
Figure 3.4: Aspects of resource management for i*CPSs 
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Mentioned earlier, one of the key reasons is the lack of a shared transdisciplinary 
understanding and generally-accepted exact definitions, which are difficult to state due to 
the varying interpretations of intelligence. As Hunt and Jaeggi (2013) argued, the intense 
research in many academic fields related to intelligence has not resulted in a commonly 
understandable specification of what intelligence and, in particular, of what system 
intelligence is. Rating intelligence of systems based on how well they can do what humans 
do may be not only misleading, but also illogical. I share the opinion of Erickson (2014) in 
that the notion of “intelligence” can be used only for comparisons within a similar group, 
and not within the ontologically different populations of humans and systems. 

For the above reasons, a kind of ‘critical soberness’ should be present in talking about 
4G-CPSs. In the conceptual advancement model, self-consciousness and self-replication 
were claimed as the highest-level distinguishing paradigmatic features. These are 
simultaneously direct foundations and manifestations of system intelligence. However, the 
abstractness of these notions has to be resolved. As conceived, system consciousness would 
be a fully featured replica of human consciousness, which is global and decontextualized. 
Actually, this demands a comprehensive and deep implementation of system intelligence 
(including traditional capabilities such as machine perception, situation awareness, 
computer vision, machine learning, etc., but also many new ones). Computational system 
consciousness necessitates the potential of deriving and/or maintaining a large (but still 
infinite) number of computer-internal world models during run-time, even in cross-context 
perspectives (Reggia, 2013). This is deemed to be a principal difference in comparing 3G-
CPSs with 4G-CPSs. Current research has not reached further than seeking for the potential 
theoretical fundamentals. 

One candidate for this purpose is the information integration theory (IIT) that 
primarily intends to explain the mechanisms of forming consciousness in the human brain. 
The work of Tononi (2012) implies, and the IIT specifically claims, that consciousness 
corresponds to the capacity of a system to semantically integrate information. This implies 
two key phenomenological properties of consciousness: (i) differentiation, i.e. the 
availability of distinguishing a very large number of conscious experiences, and (ii) 
integration, i.e. the ability to arrive at the unity of each such experience. The information 
engineering principles of how a conscious system can be constructed with non-neural 
ingredients cannot be directly derived from these. Therefore, IIT leaves questions such as 
‘What can be a substitute for the higher neurons of the brain, which differentiates and 
integrates the input from sensors, and which handles and sorts out the extraordinarily large 
number of possible states?’ unanswered.  

If we accept that human consciousness is everything that we experience and conjecture, 
system consciousness is everything that a system can experience and conjecture. Of course, 
this is rather intangible. This explains why no comprehensive computational methodologies 
of system consciousness exist (at least according to my best knowledge). However, one 
general principle is implied by the IIT, namely that a CPS should be able to distinguish a 
large repertoire of possible constituents of the existing reality (differentiation) without 
decomposing it into a collection of causally independent constituents (integration). In order 
to generate consciousness, 4G-CPSs should not focus on the details of the constituents, but 
on the stored similar ‘images’ of constituents and their relationships. Integration (i.e. 
realization of the unity of each conscious experience) assumes the availability and run-time 
parallel processing of a huge amount of causally effective constructs of represented 
information. Moreover, a similarly important feature of 4G-CPSs is the evolution of 
knowledge, which seems to be necessary for evolutionary self-reproduction. 

It is still philosophically debated what the concept of fully autonomous intelligent 
systems means. I advocate that CPSs can be called intelligent if, and only if, they have 
reached the level of intelligence, autonomy, symbiosis and sociality that is comparable with 
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that of human individuals, and more importantly, of (productive) human communities. The 
reasoning behind it is as follows: The ultimate forms of self-intelligence (consciousness) 
and self-organization (evolutionary reproduction) are not all-or-none properties. Even if the 
issue of resource provisioning is completely ignored (but ought not to be), it is still rather 
unclear how the path from evolutionary reproduction does lead to autonomous 
reproduction, and how it needs to be supervised (should it be needed) (Andry et al., 2001)? 
Consequently, in a critically sober framework of thinking, there remains nothing else but to 
regard these as possible long term objectives (and strategic developments), rather than 
immediate targets of CPS development. 

3.10. Reflections and open issues 

Though the proposed notion of ‘system generation’ is speculative, it is both logical and 
pragmatic with regard to the rapid development of CPSs. The model clarifies that 
generations of CPSs will mainly differ (i) in the level of intellectualization (i.e. self-
regulation, self-awareness, self-cognizance, and self-consciousness), and (ii) in the potential 
alteration of functionalities (i.e. functional, architectural, and behavioral self-tuning, self-
adaptation, self-evolution and self-reproduction). 

 The usefulness of the proposed CAM originates in three affordances. First, from an 
ontological point of view, the proposed conceptual advancement model lends itself to a 
robust categorization of the various contemporary and subsequent implementations of 
CPSs. Second, it offers means to capture the research and development trends and 
milestones of CPSs and is useful with regard to academic education and industrial 
advisory practice. Third, it casts light on conceptual/terminological inconsistences and 
can contribute to notional clarifications and to formation of a shared vocabulary. Fourth, 
as a kind of ‘future framing model’, it can support road mapping and scenario 
development for both industrial and everyday applications. 

 The above conceptual analysis implies that we face a rapidly growing uncertainty and 
knowledge gap as we move towards the 4G-CPSs. Three major sources of uncertainties 
are: (i) the unpredictable development of cognitive and sentiment technologies, (ii) the 
socially and commercially unjustified saturation by NG-CPSs, and (iii) the undecidable 
nature of the need for near-human intelligence, consciousness, socialization, and 
personalization of NG-CPSs. 

 From a methodological point of view, the conceptual model suggests that system 
development needs to abandon the traditional (multidisciplinary) system engineering 
approaches and to move towards truly transdisciplinary (even supradisciplinary) 
approaches that consider hardware, software, cyberware, and brainware aspects 
simultaneously and synergistically. 

 The generations-oriented thinking also raises some paradoxical issues since classical 
system design has a definitively targeted (prescribed and fixed) end goal, but this is not 
really necessary according to the CAM. A growing part of the design activities can be 
delegated to systems. 

 From a pragmatic point of view, the reasoning model shows that we need much more 
research and knowledge about transferring cognition from humans to complex systems 
with emergent functionality and characteristics. We have to identify the issues that can 
be addressed and resolved in the design phase by designers, and those that are to be 
managed by the CPSs based on their inherent characteristics. Notwithstanding the 
existence and influences of these, the conceptual advancement model should be 
augmented, since it ignores a number of things. For instance, it captures neither the 
varying human relationships with the different generations of CPSs, nor the social issues 
associated with them (Ning et al., 2016).  
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Chapter 4 

4. Distinguishing nature of system-level problem-solving 
knowledge 

4.1. Research objectives and approach 

This chapter presents the results of the study of the nature and essence of the problem-
solving knowledge possessed by i*CPSs and puts it in a broader context. The motivation 
for the investigation came from the work of Machlup (1980, 1982, 1984), who studied 
humanities, science, and social science, and identified them as three distinct fields of 
academic learning and knowing. He used the words alpha, beta, and gamma to differentiate 
the bodies of knowledge associated with them, in addition to general knowledge (Figure 
5.1). The conducted research also found that Gilles and Paquet (1989) had identified a 
fourth type of disciplinary knowledge and labeled it as the delta. This includes the specific 
knowledge of creative disciplines such as design, law, and economy. 

As the preceding chapters touched upon it, various concepts and manifestations of 
system-possessed knowledge have also appeared since the time of these road-paving works. 
That gave the basis and the legacy of research questions concerning the existence and 
evolution of knowledge in intellectualized engineered systems, which are supposed to 
collect, infer, or extract a massive amount of knowledge based on some pre-programmed 
human knowledge. Problem solving and behavioral knowledge can be aggregated 
longitudinally (in one system over time) or transversally (over multiple systems or on a 
system of systems level). The guiding hypothesis of the background study was that system-
generated and aggregated synthetic knowledge (SSK) was not covered by the 
aforementioned four genres of knowledge. The conducted, broadly-based literature study 
underpinned this claim. In fact, it represents a new genre and can be termed as epsilon-
knowledge. This proposal has been extensively discussed by the peer reviewers of the 
papers published on this topic, but also in the public media. The contents of this chapter 
have been compiled from the following peer-reviewed publication: H12 and H13 (see 

 

Figure 5.1: Three genres of human knowledge according to Machlup. F. 
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Appendix A.1.1). In order to make them comparable with delta- and epsilon-knowledge, the 
next sections summarize and reflect on the characteristics of alpha-, beta-, and gamma-
knowledge. The chapter also provides a concise overview of the sources of SSK. 

4.2. Alpha-knowledge 

Representatives of humanities (also called alpha-disciplines) are such as art, 
archaeology, folklore, history, journalism, linguistics, literature, logic, metaphysics, music, 
philosophy, ethics, and theology. It is well-known that humanities conduct studies of how 
people express, understand, process, document, and record human experience in various 
modalities. These modalities include beliefs, speculations, language, literature, music, faith, 
creative art, performing art, history memos, to name but the most evolved ones (Agresto, 
1983). The knowledge delivered by humanities has both an expressional and a sensational 
perspective. They together create potential connections between humans uttering 
experience and humans perceiving the utterance, over space, time, and mind-sets. 
Humanities reflect not only experience, but also diverse ideologies, cultures, heritages, 
traditions, and histories (Levi, 1983). Myers (1967) emphasized that there is vagueness and 
uncertainty about the nature of the contribution of humanities to the academic community 
and to the wider world of human affairs. 

For the reason that the humanities are not merely academic disciplines, but also 
important intellectual components of societies, the knowledge associated with them is 
rather versatile and often carries abstract concepts (Vaziri et al., 2019). Alpha-knowledge is 
varied according to the disciplines of humanities. Broderick (1983) argued that humanities 
embrace areas of human knowledge that feature the following characteristics: (i) central 
concern is human beings rather than the processes of nature or the structures of society, (ii) 
primary focus is on the individual rather than on the group, (iii) awareness (quite self-
conscious awareness) of how we know what we know, (iv) attention to moral values, 
whether drawn from God, man, or nature, and (v) insistence that the process of intellectual 
growth calls for forthright moral judgments as an equal part. Humanities work through four 
insubstantial mechanisms: (i) immersion, (ii) embeddedness, (iii) socialization, and (iv) 
reflectiveness. Typical methods of dealing with alpha-knowledge are interpretational 
(criticism), comparative (affects), and speculative (contemplation) in nature, though 
anthropology, archaeology, and jurisprudence use methods which have scientific flavor. 

Alpha-knowledge is descriptive knowledge, which may appear in many alternative 
representations (text, movie, stage play, etc.). A part of humanities knowledge rests on facts 
and causalities, while the other part on ideas and visions, or a mixture of these (Boas, 
1957). Furthermore, many disciplines of humanities reflect the duality of art and craft 
(Smith, 2015). It is also worth mentioning that several studies refuted the universality of 
knowledge in the humanities and social sciences, and that the contextuality of knowledge 
affirms “the social construction of knowledge” or “the enacted social knowledge”, though 
they do not object that belief is a necessary condition for knowledge (Wray, 2007). 

4.3. Beta-knowledge 

Like humanities, natural science is also a philosophical category that (i) aims at 
understanding the natural world existing around us, (ii) produces and accumulates 
scrutinized knowledge as an end, and (iii) facilitates doing and making (Lakatos, 1970). 
After a long period of steady progression, the diversification and articulation of science 
accelerated in the last century (Popper, 1962). Modern science has not only empirical and 
rational bases, but also computational inferences and massive data streams as bases 
(Džeroski et al., 2007). It provides us with the epistemologically most warranted statements 
on the natural world, human beings, human societies, human physical constructions, and 
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human thought constructions that can be deemed as reliable at the time of being. The 
scientific approach of inquiry entails the embodiment of commitment to evidence in the 
process. In other words, the process of inquiry is featured by the quest for the “rationally 
agreeable and empirically evidential” truth in the scientific disciplines. Disciplines of 
formal science deal with proof, while natural and applied sciences seek evidence. 

Machlup (1982) called the knowledge explored and aggregated by the scientific 
disciplines as beta-knowledge. This genre of knowledge has a strong epistemology that 
clarifies not only its sources, but also the way of coming to know it, and the issues related 
to its justification, validation, and consolidation (French, 2007). What makes the various 
bodies of scientific knowledge scientific is that they are: (i) objective, (ii) rational, (iii) 
systematic, and (iv) universal. Objective means that: (i) phenomena are studied in an 
unbiased manner by alternative methods, (ii) the findings are scrutinized against empirical 
evidence, and (iii) the agreement of the concerned scientific community is sought to accept 
results as “properly justified correct belief” or “relative scientific truth”. Rational expresses 
the condition that any research work and its results should be reproducible either in a 
concrete or in an abstract way, or in both. Systematic implies that the results are supposed 
to be generated in a systematic way to match an existing paradigm or to create a new one. 
Universal means that the results of scientific research are expected to be universally 
applicable and the conditions of usability have to be precisely stated. These, together with 
commitment to evidence, are often referred to as foundational criteria of scientific 
knowledge. 

Epistemologists typically distinguish three kinds of scientific knowledge: (i) 
acquaintance knowledge, (ii) knowledge-how, and (iii) propositional knowledge (French, 
2007). Beta-disciplines are concerned with propositional knowledge, which is considered 
historically as properly justified correct belief (Gordon, 2012). In line with the progression 
of studying “scientific” phenomena, scientific theories may convey (i) discovery, (ii) 
description, (iii) explanation, (iv) prediction, and (v) regulation (Horváth and Duhovnik, 
2005). Scientific theories include statements that (i) explain all the facts in a given context, 
(ii) logically relate the facts based on their content, (iii) make the applicability of the theory 
clear, (iv) indicate what is left over of the theory, and (v) trigger hypotheses that can extend 
the theory to cover a broader field. In the correspondence view of science, scientific laws 
capture the fundamental relationships concerning phenomena and describe what happens, 
whereas scientific theories explain why and how a phenomenon happens. 

Individuals and teams may initiate research data, hypotheses, and theories, but the 
consolidation of their scientific value is in the hands of the scientific community and the 
users. This is an element of the process of social construction of scientific knowledge 
(Mendelsohn, 1977). Though based on empirical evidence, according to the consensus view 
of science, beta-knowledge is tentative, theory-laden, view related, and technology 
dependent (Rosenberg, 2000). Science philosophy and epistemology have addressed many 
issues of synthesizing individualistic and social perspectives, as well as various social 
aspects of processes and developments related to scientific knowledge. Although there are 
several studies on social construction of knowledge and enacted social knowledge, little has 
been done with respect to “social utilization of knowledge” (Stehr, 1996). At the same time, 
the Internet created new opportunities and technological capabilities for structuring and 
refinement of raw scientific data and knowledge. 

4.4. Gamma-knowledge 

Among others, education, economics, environmental science, law, politics, sociology, 
and statistics represent present-day gamma-disciplines. These specific disciplines of social 
sciences are in different stages of their development – the arrow of which is pointing from 

               horvath.imre_37_22



36 

an experimental character to an abstract character. Social sciences are orientated to studying 
the human society and social relations. Social scientific realism assumes that social realities 
exist independently from thinking, observation, and behavior of observers. In the middle of 
the last century, Mises (1942) discussed that the foundations of the modern social sciences 
were laid in the eighteenth century, starting with history, and that a radical change took 
place by picking up phenomena that belonged to political economy, human action/conduct, 
and social cognition/moral. He indicated the restrictions on experiencing or formal 
modeling and argued: “What makes natural science possible is the power to experiment; 
what makes social science possible is the power to grasp or to comprehend the meaning of 
human action”. He is among the first ones whose work identified the interpretative nature 
of social sciences and the role of logical fallacy in justification. Later on, it was extended by 
the introduction of the concepts of pragmatism, critical theory, and pluralist thinking 
(Bohman, 2002). 

Tang (2011) argued that there were 11 foundational paradigms in the social sciences. 
He identified nine bedrock paradigms: (i) materialism, (ii) ideationalism, (iii) 
individualism, (iv) collectivism, (v) anti-socialization, (vi) socialization, (vii) biological 
evolution, (viii) harmony, and (ix) conflict, and two integrative paradigms such as (x) social 
system paradigm and (xi) the social evolution paradigm. Each of these can only shed light 
on a limited area of human society. Therefore, in order to understand human society and its 
history adequately, all of them should be deployed. Social sciences have always been 
multiperspective and multicultural in nature. This gave floor to various claims about how it 
is best to investigate and to understand the social world. Philosophy of social sciences deals 
with the generalized meaning of things and attempts to consider notions such as 
objectivism, normativity, replicability, quantifiability, explanation, demonstration, and 
prioritization. 

Social sciences are centered on the sharing of experience about the social world in 
which perspectives of people differ from one another. Valsiner (2019) stated that social 
sciences are crucial in our understanding of the increasingly globalizing ways of living in 
the twenty-first century, which is characterized by the conflict of rapid technological 
advancements and the resistance of the traditional social orders to them. Reber and Bullot 
(2019) discussed the difficulty of drawing a clear demarcation line between science and 
evidence-based advocacy in the social sciences and humanities. They identified several 
open research issues such as (i) motivated testing, (ii) including and weighting values, (iii) 
side effects, (iv) intuitive judgments, (v) relativism and reductionism, and (vi) conditional 
objectivism. For instance, conditional objectivism claims that researchers have to (i) 
acknowledge value plurality, (ii) consider multiple standpoints for drawing practical 
conclusions, and (iii) reason based on counterfactual conditional statements. 

As philosophical positions with remarkable influence on community psychology, Tebes 
(2017) considered: (i) perspectivism, (ii) pragmatism, (iii) feminism, and (iv) critical 
theory. These positions (i) seek to base their claims on empirical evidence, which is 
accepted within a given scholarly community, (ii) accept constructivism as the basis for 
knowledge claims to varying degrees, (iii) recognize that knowledge claims are flawed and 
dependent on culture, history, and unique contexts, and (iv) seek to use knowledge claims 
variously as the basis for action. Gamma-disciplines have things in common with sciences 
as well with humanities. The goal of social science is to understand and explain social 
phenomena around us, of which we ourselves are a part. Compared with the beta-
disciplines, social sciences seek knowledge differently and offer different knowledge. For 
example, instrumentalists commit themselves to the view that social sciences, like 
engineering, should conduct only applied research and should devote its capacities to the 
creation of innovative solutions for real-world problems. 
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Certain fields of social science are often criticized as unscientific because of their 
limitations in formulating general laws and universal theories governing human societies. 
Mayntz (1990) posited that natural science concepts and models have had significant 
influence on theoretical developments in the social sciences, especially on sociology, in 
terms of building of theories, formal modeling, and transfer of theories. Driven by the 
intention of establishing a common physics foundation for all fields of social and natural 
science, Wayne (2013) made an attempt to formulate five new physics laws, which are 
qualitative, related to decision-making, and connect particular research domains of natural 
and social sciences. Rittel and Webber (1973) argued that a significant difference between 
natural science and social science is that the former has developed to deal with “tame” 
problems, whereas the latter usually faces “wicked” problems that cannot be definitively 
described. 

4.5. Delta knowledge 

Some elements and levels of constructivism have appeared in gamma-disciplines and -
knowledge. On the other hand, the operationalization and utilization of truly creative 
knowledge is rooted in intellectual aptitudes such as heuristics, intuition, instinct, 
serendipity, inception, trial-error, perception, clairvoyance, and karma. These words 
implicitly express interrelatedness of the potency of creating and the intention of creating 
that are closely related to humans and their designerly behavior (Gedenryd, 1998). They are 
not about what is, but about what might be. This explains why they have not been used in 
the literature in the context of ABG disciplines. Having recognized the unique 
characteristics of design knowledge, Gilles and Paquet (1989) suggested differentiating 
socio-cognitive inventive knowledge as a fourth genre. Referred to as delta-knowledge, this 
genre supplements the knowledge of the ABG disciplines. It includes the intellect of 
various creative disciplines such as fine arts, performing arts, industrial design, product 
design (customer durables), as well as that of sustainability, law, and economy (Giard and 
Gilles, 2001). 

Design science has been defined as a body of knowledge produced by rigorous research 
about what, why, and how to design. What makes (engineering) design research different to 
that of science is (the necessity of) abandoning the explicit commitment to evidence, though 
not neglecting physical principles and critical thinking (Eekels and Roozenburg, 1991). In 
the process of design, evidence about the properness of the outcome may not be logically 
possible since the design problem and the designers’ intellect evolves with the design 
solution, and vice versa (Frayling, 1993). Another essential characteristic of design 
knowledge is that it is closely related to disciplinary practice. As stated by Friedman 
(2017), design practice is a significant method of creating new knowledge and deepening 
existing knowledge by practitioners. 

Delta-knowledge differs from common-sense knowledge since it has rich professional 
content. It also differs from alpha-knowledge because of its dynamically evolving nature. 
With regard to beta-knowledge, the main difference lies in the different roles of and 
relationships to formal theories, and in the dominance of validation in context over logical 
justification of proper beliefs. In comparison with gamma-knowledge, the difference is in 
the dominantly creative and predictive nature, and not in a descriptive and explanatory 
nature (Van Aken, 2005). Delta-knowledge shares the pragmatic nature of gamma-
knowledge, and reflects the particular, rather than the general. It may exist in two forms. 
First, it can manifest in a noticeable higher sophistication (or quality) of the subject of 
making, doing, acting, and deciding, in particular, when the mentioned activities occur in a 
recurring manner. Second, it can also manifest in the mind-set and skills of the maker, doer, 
actor, and decision-maker and may enable a successful task completion, but it conflicts with 
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beta-knowledge neither on a fundamental nor on an applied level. It is gaining an important 
place as part of the transdisciplinary innovation assets of change-maker disciplines (Cross, 
2001). 

Systematic inquiries toward design knowledge may address any phenomenon related to 
(i) artifacts (products, systems, services, and experiences) created by design, (ii) people 
(involved in or influenced by design), (iii) processes (involving all creative, operational, 
use, and change activities), (iv) environments (in which design-related changes take place), 
and (v) intellect (cognition associated with intelligent behavior). In each of these categories, 
knowledge may ideate, describe, explain, predict, and/or regulate natural or created 
phenomena. In addition to dedicated inquiries, a basic mechanism of acquiring delta-
knowledge is generalization from practical cases and situations, as direct or indirect 
reflection in action (Schön, 1988). Direct reflection assumes a conversation with the 
subject and the situation, and an intuitive or systematic evaluation of the findings and 
experiences. Indirect reflection focuses on the implications of design decisions and dealing 
with wicked-problems that often happen in design, policy, and planning (Graham and 
Dickinson, 2007). From a structural perspective, delta-knowledge is composite knowledge. 
It purposefully blends knowledge of (i) natural sciences, (ii) engineering sciences and 
technology, (iii) social and behavioral sciences, (iv) creative and applied arts, (v) 
humanities and liberal arts, and (vi) human professions and services. 

Other issues of delta-knowledge are related to understanding its typology and possible 
taxonomies. For instance, Uluoğlu (2000) approached the type of design knowledge from 
the perspective of communication and distinguished (i) reflective, (ii) operative, (iii) 
contemplative, (iv) directive, and (v) associative types of knowledge. As fundamental ones, 
Narváez (2000) considered (i) empirical– analytical, (ii) hermeneutical–historical, and (iii) 
socio-critical types of knowledge. Cross (2001) distinguished three categories of design 
knowledge: (i) knowledge of people (of outstanding designers), (ii) knowledge of design 
processes, and (iii) knowledge of design artifacts. Van Aken (2005) made a distinction 
between (i) object knowledge (knowledge about properties of the artifacts and 
technologies), (ii) ideation process knowledge (knowledge about the design processes to 
produce object or realization designs), and (iii) realization knowledge (knowledge about the 
processes to realize artifacts). Considering system cognition, Radermacher (1996) proposed 
a general knowledge framework that includes four levels: (i) physical, (ii) neuronal, (iii) 
symbolic, and (iv) model knowledge levels. 

4.6. Epsilon-knowledge 

The primary goals of the fifth industrial revolution are to develop artificial narrow and 
general intelligence as a society-level productive asset and to utilize it in productive 
systems. Based on what the current trends project forward, many experts expect disruptive 
changes in the twenty-first century (Sheng et al., 2019). Partly, such changes will be caused 
by i*CPSs and other resembling systems. As mentioned earlier, a strong driver of this is the 
on-going and intensifying trend of blending fundamental entities and processes (Canton, 
2004). As the BANGM technologies evolve, a true synthesis of the physical, biological, 
cognitive, digital, cyber, and social realms becomes possible. Through this synthesis, 
various levels of intelligence also become naturally integrated into engineered systems. 
This creates opportunities for basically different systems and applications beyond artificial 
narrow intelligence systems, collaborative agent-based software systems, and smart cyber-
physical–social systems. As a result, intellectualized (a.k.a. smart) and highly-
intellectualized (a.k.a. intelligent) engineered systems will be available for numerous 
conventional and unconventional applications (Liu et al., 2004). 
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What makes highly-intellectualized systems different to well-known knowledge-
intensive systems is their continuously evolving (not fully pre-programmed) system 
intellect (intelligence). The intellect of systems evolves through the growing amount of 
synthetic knowledge acquired by them and the sophistication of the related ampliative 
reasoning mechanisms. Systems equipped with these resources will be able to aggregate, 
produce, learn, transform, employ, and experience intellect over time, in addition to using 
their initially existing intellect in system-level problem-solving (Sumari and Ahmad, 
2017). Considering these facts, the major claim has been that the massive SSK, which is 
generated and aggregated by multiple systems (such as intellectualized cyber-physical 
system of systems), is going to grow into a fifth genre of knowledge. It will be a fully-
fledged complement of the ABGD-genres of knowledge. Therefore, it can be called 
“epsilon-knowledge” (Figure 5.2). The rapidly improving knowledge generation and 
acquisition capabilities of intellectualized engineered systems intensively support dynamic 
formation of this new genre of knowledge. 

Epsilon-knowledge includes the total of knowledge associated with the operation of 
intellectualized engineered systems either as system-level problem-solving or systems state 
maintaining knowledge. It has its own features, methods, and appearances. The main 
constituents of massive SSK are (i) codified human knowledge (pre-programmed in 
individual systems), (ii) illative/inferential knowledge (self-generated by individual 
systems), and (iii) aggregated meta-knowledge (generated based on the contributions of the 
linked individual systems). Codification of human knowledge establishes an implicit 
(interpretative) relationship between genuine human beliefs and system knowledge. The 
process of codification includes aggregation, filtering, structuring, representation, and 
validation of the raw knowledge elicited from relevant human stakeholders. In combination, 
it involves both external and internal knowledge engineering. The latter has dominance 
after the booting up stage of systems. This is a typical situation in the case of using digital 
twins related to i*CPSs (Boschert et al., 2018). If the internal knowledge engineering 
process is an intense one, then a rapid growth of SSK can obviously be anticipated. This 
means that the actual system knowledge will be very different from the start-up knowledge 
after a longer period of operation. A practical example is automated training of deep 

 

Figure 5.2: Epsilon-knowledge as a fully-fledged complement of the ABGD-genres 
of knowledge 
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learning neural network mechanisms. 
In addition to generic attributes (such as 

transferable, traceable, duplicable, 
augmentable, evolvable, and experiencible), 
SSK has distinguishing key attributes, 
namely: (i) system-produced, (ii) codifiable, 
(iii) ampliative, (iv) compositional, (v) 
explainable, and (vi) inferable. These unique 
and exclusive characteristics are shown in 
Figure 5.3. The term ‘system-produced’ means 
that this knowledge is essentially artificially 
(synthetically) created by systems for given 
purposes by complementary knowledge 

generating and fusing actions. It can be explicit (like a rule base) or implicit (like a model 
learnt by machine learning). The original start-up information (like training data) has a 
minor or no role in the whole of SSK. ‘Codifiability’ represents the opportunity and extent 
to which a given knowledge item can be reduced to information by means of drawings, 
formulae, numbers or words. The attribute ‘ampliative’ describes the ability to derive 
additional knowledge that is explicitly not included in a given body of SSK. The attribute 
‘compositional’ implies that the constituents of SSK are functionally and/or semantically 
(cognitively) dependent on each other and are thus inseparable. The attribute ‘explainable’ 
refers to the possibility of discovering, analyzing, and clarifying explicit or implicit 
nonfigurative relationships between unconnected, causal, and/or abstracted constituents of 
SSK directly or indirectly. Lastly, ‘inferable’ means that SSK complies with the principles 
of epistemic knowledge (logical rationality) and allows multiple forms of reasoning without 
the need for a system to know explicitly what it knows implicitly. 

The chunks and bodies of SSK may be represented explicitly and implicitly. Explicit 
knowledge representations capture the functional elements and the logical and semantic 
arrangement of knowledge by means of language constructs and procedural structures. 
Implicitly knowledge representations are abstract information patterns or models generated 
by computational learning and reasoning mechanisms (Ziori, 2004). The forms of 
representation are inseparable from the kinds of the associated computational 
mechanisms, which are available for application problem solving and/or for self-
construction and management of synthetic knowledge. The latter needs dedicated 
knowledge, which complements the problem-solving knowledge. In addition to intra-
system mechanisms, also inter-system knowledge aggregation and processing mechanisms 
can also be expected in the near future. The cognitive mechanisms for self-management 
include computational mechanisms for context modeling, awareness building, situation 
analysis, decision-making, and communication management, which are naturally given in 
the case of human cognition. 

4.7. Computational construction of epsilon-knowledge 

The traditional way of constructing system knowledge is pre-programming filtered and 
structured human knowledge by a team of knowledge engineers. The approaches of 
preprocessing and coding human knowledge are commonly known from the knowledge 
engineering practice of knowledge-intensive systems (Aikins, 1983). Beyond these, several 
ways of producing SSK from a variety of sources have been developed. They can be sorted 
into two categories: (i) acquiring, inferring, learning, and managing knowledge by system-
specific computational mechanisms, and (iii) aggregating and deriving meta-knowledge by 
cross-systems computational mechanisms. As far as the sources used for synthetic 

 
Figure 5.3: Key attributes of epsilon-

knowledge 
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knowledge generation in 
i*CPSs are concerned, actually 
anything can be a source 
presumed it can be accessed 
and processed by some 
computational mechanisms. 
Figure 5.4 shows the most 
important general content 
sources. 

The ampliative mechanisms 
of the system transform the 
contents (signals, data, and 
relations) elicited from the 
sources into problem/task 
specific or generic knowledge. 
This content-transformation 
process results in new 
knowledge chunks, which 
appear either in explicit or 
implicit forms and are 
deposited in knowledge repositories. Thus, the derived knowledge chunks can be used 
immediately as input for reasoning. The direct coupling between the sources and the 
repositories makes the content transformation process recurring. Well recognized 
challenges of a fully automated knowledge elicitation and processing are (i) diversity and 
variability of the representations of the contents obtained from the mentioned sources, (ii) 
extracting the semantic meaning in a context-sensitive manner, (iii) efficient transformation 
of the input contents into useful chunks of knowledge, (iv) synthesizing the chunks into 
coherent bodies of knowledge, (v) assigning meta-knowledge to the various bodies of 
knowledge, and (vi) the need for interoperable computational mechanisms, which may or 
may be not linked procedurally and semantically. 

The mentioned general knowledge sources offer a wide range of input for i*CPSs 
development as well as for knowledge transformation. For example, analog and digital 
sound recordings include noise, speech, and music signals and data. Analog and digital text 
documents may include traditional text carriers and local digital or network hypertext files. 
Having both visual and auditory contents, video recordings may be real-time streams or 
stored recordings. Visual images include drawings, images, photos, and displayed contents. 
Relational constructs are entries of digital databases and digital models, while semantic 
constructs are arrangements such as scripts, frames, decision tables, agent intellect, and rule 
structures. Event order data represent logical and temporal (historical) relationships among 
events. Physical sensing provides descriptive characteristics (signals and data) of physical 
phenomena, while software sensing provides data associated with computational 
phenomena and actions. Ontological specifications carry descriptive and associative 
characteristics in structured (or standardized) language formats. 

The cross-systems computational mechanisms of complex system-of-systems (SoSs) 
will extract, structure, consolidate, and store meta-knowledge in online warehouses. 
Toward this end, their operation may resemble what is done by collaborative multi-agent 
systems. As simple examples of meta-knowledge orientated knowledge processing, we may 
consider: (i) a smart parking assistance system, (ii) indoor fire evacuation system, or (iii) 
building-integrated vertical greenhouse system. In the case of the smart parking assistance 
system, the problem-solving computational mechanisms select, optimize, and apply the 

 
Figure 5.4: Examples of sources of data, information 

and knowledge contents for i*CPSs  

               horvath.imre_37_22



42 

parking strategy, whereas the meta-knowledge deriving mechanisms can learn the features 
of the successfully chosen and applied motion paths, or can rank their appropriateness with 
regard to concrete cases. Based on this knowledge, problem-solving mechanisms can be 
improved to operate more efficiently in future cases. In the case of a smart in-house fire 
evacuation system, the problem-solving computational mechanisms can build situation 
awareness, develop an effective evacuation strategy, and work out a smartphone-based 
informing plan, while the meta-knowledge deriving mechanisms can learn the rate and way 
of obedience of the people to the obtained information/instructions and offer this 
information for optimizing the messages sent to them real time and the whole messaging 
the during the evacuation process. In the case of the building-integrated vertical greenhouse 
system, the problem-solving mechanisms can learn the patterns of the variable sunlight, 
lighting, and humidity conditions and adjust the irrigation accordingly, whereas the meta-
knowledge deriving mechanisms may monitor the consumption habit and optimize the 
planting and growing accordingly, or take overuse or underuse into consideration in 
planning. 

4.8. Reflections and open issues 

Jashapara (2010) stated that knowledge is “an intrinsically ambiguous and equivocal 
term”. This chapter argues that SSK is not covered by the four genres of knowledge which 
have been known so far. The conducted literature study underpins this claim. It is proposed 
to regard this rapidly increasing knowledge as a new genre, called epsilon-knowledge. The 
dissertation refers to sympérasmology as the proper conceptual framework for studying this 
genre of knowledge. In simple words, what is argued in this chapter is that SSK must be 
regarded as an emerging complement of Machlup’s types of disciplinary knowledge. This 
knowledge shows a specific development pattern. At the beginning of the aggregation 
process, this knowledge is “triggered” by some pre-processed (filtered, structured, 
represented, and coded) chunks of human knowledge. During the operation of 
intellectualized systems, this knowledge is supposed to be significantly extended, even 
possibly replaced by the associated computational mechanisms (Epstein et al., 2018). Based 
on the research, the key propositions are as follows: 

• It is important to differentiate epsilon-knowledge from the knowledge that is used by the 
developers in designing and architecting the application specific reasoning mechanisms 
and knowledge repositories these systems. This latter is beta-/delta-knowledge, rather 
than epsilon-knowledge. An example of this delta-knowledge is the data constructs 
describing the feature sets used for training a deep-learning neural network.  

• Epsilon-knowledge has different features than the bodies of knowledge that are related to 
human inquiries in the alpha-, beta-, and gamma-disciplines as well as to those related to 
human inventions in the delta-disciplines. It is associated with the evolution of 
intellectualized engineered systems that are made capable of reasoning with digitally 
coded human knowledge and to acquire, synthesize, learn, extract, aggregate, and 
restructure knowledge on their own. 

• Epsilon-knowledge is influenced by human knowledge, decisions, and designs only 
implicitly and in a restricted manner. Its uniqueness originates in that it is produced for 
application problem solving and optimization of system performance. 

• Epsilon-knowledge is differentiated by six key attributes: (i) inferable, (ii) system 
produced, (iii) ampliative, (iv) codifiable, (v) compositional, and (vi) explainable. They 
can be projected onto all forms of SSK. 

• Epsilon-knowledge is sufficiently explored and explained yet neither from an ontological 
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nor a methodological point of view. Therefore, it needs further systematic investigations. 
On the other hand, it may become an additional productive asset if sufficiently 
understood and supported by management and exploitation strategies. 

• Intellectualized engineered systems should be seen in the near future not only as AI-
enabled problem-solving systems, but also as knowledge growing and harvesting 
systems. This will increase their functional complexity, but it will also offer new 
affordances and business advantages. 

• Managing epsilon-knowledge implies the need for semantic and pragmatic knowledge 
fusion frameworks and system-independent methods and meta-methods, well beyond the 
issues of unification and conversion of knowledge models and representations. 
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Chapter 5 

5. An approach to investigation of system-level problem-solving 
knowledge 

5.1. Research objectives and approach 

Explanation, typifying, and examination of the essential features of the types of human 
knowledge has a long historical tradition. There are abundant definitions and interpretations 
of human knowledge that has been categorized according to a large number of aspects. One 
genre is called common-sense knowledge (or individual knowledge). The philosophical 
stance of this kind of knowledge was addressed extensively over the centuries, but it is still 
the subject of many ongoing discussions in the specialist literature. As a broad and multi-
faceted genre of human knowledge, individual knowledge includes three basic categories: 
(i) empirical knowledge (obtained by sensing, sensations, signals, trial-errors, 
measurements, observations, etc.), (ii) intuitive knowledge (obtained by beliefs, 
conjectures, self-evident notions, gut feelings, faiths, acquaintances, conventions, etc.), and 
(iii) authority knowledge (obtained by social norms, expertise, codified constructs, de facto 
rules, propaganda, ideology, etc.). A shared characteristic of these categories is that they are 
closely connected to human individuals or groups of individuals. The mentioned categories 
of knowledge are also characterized by (i) incompleteness and uncertainty, (ii) strong 
subject-dependence, (iii) situation-sensitiveness, (iv) context-reliance, (v) time-relatedness, 
and (vi) limitations in generalization. They are not, or not completely, factual and teachable 
forms of knowledge. 

Another genre of human knowledge is generalized knowledge (which is generic, 
complete, justified, and universally applicable in context). This knowledge is mainly related 
to scientific inquiry and is the subject of epistemic thinking, which is committed to the 
scientific study of perceptive, cognitive, and linguistic processes by which knowledge and 
understanding are obtained and shared. Rigorous criteria are set to distinguish scientific 
knowledge from common knowledge, sensations, memory, introspection, and reasoning, 
though these are regarded as the ultimate sources of belief. Opposing weakly grounded 
knowledge, scientific knowledge is a complex formation that includes laws of nature, 
empirical facts, tested theories, formal models, speculations, and hypotheses, all originated 
and formulated by humans. These all coexist, evolve, and compete with each other. That 
explains why gnoseological and epistemological efforts coexist and strive for a deeper and 
more complete understanding of the genres of human knowledge. Seminal publications 
agree that knowledge is a productive asset, no matter if human knowledge or system 
knowledge is concerned. The same viewpoint is taken further in this dissertation. 

Owing to the results of research in system science, artificial intelligence, and cognitive 
engineering, engineered systems are becoming more and more powered by SSK. Both the 
possibilities of generating epsilon-knowledge and the amount of SSK captured by 
intellectualized engineering systems are growing. Complementing common-sense and 
scientific knowledge, SSK is maturing into a crucial productive asset. These conclusive 
claims were stated at the end of the preceding chapter. It was also mentioned that an overall 
theory of epsilon-knowledge does not exist yet. Theoretical frameworks, explanatory 
theories, and methodological approaches for investigation and utilization of this genre of 
knowledge are not offered by the literature. In turn, these deficiencies have an objectionable 
effect on the status of SSK. Nevertheless, forward-looking researchers have argued that 
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time has come to establish a philosophically underpinned theoretical framework. Their 
motion is legitimated by the on-going intelligence revolution, in which artificial intelligence 
becomes a productive power, a primary enabler of smart systems, and a strong transformer 
of social life. 

In line with the above motion, systematic investigations have been made concerning the 
needed theoretical framework and, even further, towards a possible new branch of 
philosophical studies. The expectations for this theoretical framework were to outline and 
support the study of the overall nature, specific characteristics, internal relationships, 
probable impacts, ways of exploitation, and the future role of epsilon-knowledge has also 
been conceptualized. These results and other findings are presented in this chapter. First, 
the logical studies of the types of human knowledge and existing notional platforms for 
rigorous scientific studies of the various types of human knowledge are reviewed. Light is 
cast on their limitations from the viewpoint of the specific characteristics of SSK. Then, the 
proposed novel reasoning framework is introduced, including its origins and assumptions. 
Its foundational concepts are clarified and the primary investigation domains are discussed. 
The last part of the chapter projects the aspects of investigation to SSK and offers 
additional information about it. The contents of this chapter have been compiled based on 
the following peer-reviewed publications: H12, H14, and H15 (see Appendix A.1.1). 

5.2. Gnoseological study of individual human knowledge 

Historically, the Greek word “gnosis” has been used as an idiomatic term to name the 
common forms of “knowing” (Nguyen, 2015). This term is said to have multiple meanings, 
such as: “individual knowledge”, “perceptual knowledge”, “acquaintance”, “explicit 
opinion, belief, and trust”, and the Greek distinction of “doxa”. From the words “gnōsis” 
(for knowledge) and “logos” (discussion), the term “gnoseology” was coined to name the 
various studies concerning what can be known about common things and practices in a 
truly concrete sense. In the 18th-century, the Latin term “gnoseologia” was used by 
Baumgarten (1986) to name the study of non-teachable and not objectively testable 
knowledge related to aesthetic values and positions. For some scholars, (classical) 
gnoseology is the metaphysical theory of knowledge or the metaphysics of truth and it 
became coextensive with the whole of metaphysics. Lately, gnoseology has also been 
defined as (i) the philosophy of knowledge, (ii) the philosophic theory of knowledge, (iii) 
the theory of human faculties for learning. In addition, it has been seen by many scholars as 
the theory of cognition, due to its lack of interest in foundations, generalizations, and 
abstractions. Gnoseology has been focused on socially premised and historically loaded 
human sensory and affective cognition, viewing it as a process of achieving knowledge, the 
highest form of which is science. Consequently, one can also understand gnoseology as a 
way of knowing practical knowledge, reflexive knowledge, local knowledge, etc. without 
general and absolute cogency and validity. As such, it could even cover understanding of 
knowledge gained though meditation.  

There are four aspects of inquiry in which the philosophic theory of knowledge is 
interested, namely: (i) the basis of knowledge, (ii) the nature of knowledge, (iii) the validity 
of knowledge, and (iv) the limits of knowledge. Gnoseology goes beyond “hermeneutics”, 
that is, the interpretation of beliefs, but does not concentrate on “epistemics”, that is, on 
evidential justification of beliefs. At large, it focuses on the socio-cognitive aspects of 
common individual knowledge, and addresses (i) the process by which the subject is 
transferred to a state of knowledge, (ii) the human faculties for perceiving, thinking and 
learning, (iii) the universal relationship of common knowledge to reality, (iv) the conditions 
of its authenticity and truthfulness, (iv) the role and manifestation of human cognition, and 
(v) the preconditions and possibilities of cognition. Though it has a tight connection with 
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the theory of cognition, it differs from it (i.e., from the study of the mental processes and 
information generation and processing of the mind). In the interpretation of Li (2013), a 
gnoseological study may deal with people’s spiritual and psychological phenomena, such as 
impressions, emotions, and meanings, in particular with people’s value psychology, value 
perception, value concepts, and value evaluation. Interestingly, Nikitchenko (2011) 
proposed to use a gnoseology-based approach for developing methodological, conceptual, 
and formal levels of foundations of informatics. 

Though the history of gnoseology is relatively long, it has not become common in 
philosophy and education for reasons that are difficult to uncover. The term is almost never 
used by English language philosophers. For the reason that intuitive and/or instinctual 
knowledge plays a less significant role in the productive segment of the industrialized 
society, the original concept of gnoseology too plays a less significant role. There are 
publications that refer to gnoseology as the theory of non-human-rooted knowledge. As a 
conclusion, gnoseology is primarily concerned with non-universal (i.e., particular, 
incomplete, non-justified) knowledge. As it focuses on non-scientific knowledge (or the 
whole complement of scientific knowledge), it is often seen as the theory of partial 
approximate knowledge. It addresses scientifically not-justifiable domains of knowledge, 
such as instinctual, heuristic, intuitive, common-sense, instinctual, sensual, axiological, 
experienced, etc. knowledge of individuals. Besides concrete individual beliefs, gnoseology 
has many source fields, such as daily life, social interaction, culture, education, religion, 
politics, authority, and profession, from the perspective of what it means to “know” in these 
fields. My understanding is that gnoseology can be deemed to study knowledge from a 
priori point of view, and epistemology from a posteriori point of view. In this vein, the 
concept of gnoseology is a broader and looser concept than that of epistemology. 

5.3. Epistemological study of general human knowledge 

Epistemological thinking may transcend gnoseology by means of its level of analysis, 
as it takes care of the specific conditions of production and validation of scientific 
knowledge (historical, psychological, sociological circumstances, and justification criteria). 
The exact criteria to distinguish generalized (scientific) knowledge and common 
(individual) knowledge are not really known (where does qualitative knowledge become 
scientific?) and the border line is blurred. Historically, we cannot find traces of modern 
epistemology until the last two centuries. This is in line with the consolidation of science as 
a social establishment and clarifies why epistemology has become a more operational 
concept over the centuries. 

Introduced by the Scottish philosopher, Ferrier (1866), the term “epistemology” refers 
to the theory of well-grounded (testable and learnable) knowledge, which has been captured 
by the Greek word ‘episteme’. In a narrow sense, epistemology is understood as the study 
of the conditions of production and validation of scientific knowledge. It accepts beliefs as 
the basis and necessary condition of a scientific system of knowledge, though certain 
epistemologists argue over whether belief is the proper truth-bearer. In our post-modern 
times, it is interpreted both as the branch of philosophy that studies the origin, nature, 
kinds, validity, and limits of human knowledge, and as the theory of knowledge, especially 
with regard to its scope, methods, and validity, and the distinction between justified belief 
and personal opinion. Epistemology is normative and critically evaluative, rather than 
descriptive and explanatory. Goldman (1986) conceived two interrelated fields of 
epistemology: (i) individual epistemology (related to cognitive sciences) and (ii) social 
epistemology (related to social sciences). Epistemology accepts four theories of knowledge, 
namely: (i) connectionist (associative), (ii) cognitive, (iii) constructivist, and (iv) 
behaviorist theories. Connectionist approaches focus on the presence or absence of 

               horvath.imre_37_22



47 

associations and their quantity, while constructivist theories contemplate the reasons of 
knowledge such as causality, probability, and context. Behaviorist theories interpret 
knowledge as behavioral responses to different external stimuli, but do not contemplate 
internal cognitive (thought) processes. In several cognitive theories, knowledge is treated as 
integrated and abstracted structures of information of various kinds. Hjørland (2009) 
proposed that there are four basic epistemological approaches to knowledge organization, 
namely: (i) empiricist, (ii) rationalist, (iii) historicist, and (iv) pragmatist. 

As the theory of knowledge, epistemology has an extremely wide range of concerns. It 
poses questions and tries to find defendable answers to them. One family of questions is 
about the very essence (nature) of knowledge: (i) What is sensory experience? (ii) What are 
beliefs? (iii) What is the rationality of beliefs? (iv) How do beliefs turn into knowledge? (v) 
What are the criteria for knowledge? and (vi) What is the nature of knowledge? A second 
family is about how humans can come to know: (i) What are the sources of knowledge? (ii) 
What is consciousness? (iii) What is the role of memory? (iv) What is the truth of reason? 
(v) What are the kinds of testimony? (vi) How do we know that we know? (vii) What is the 
relationship between the acquired knowledge and the knower? (viii) What is the role of 
skepticism? and (ix) How does language construct knowledge? 

A third family is about the conditions of knowledge: (i) What is justification? (ii) When 
is a belief justified? (iii) What makes justified beliefs justified? (iv) What is truth? (v) 
When is knowledge true? (vi) What is correctly proven true belief? What is correct 
inference and reasoning? (vii) When is knowledge coherent? (viii) What is dogmatism? (ix) 
What is the grounding of scientific knowledge? (x) What is moral knowledge? and (xi) 
What is religious knowledge? Lastly, a fourth family of questions is about the insinuations 
of knowledge: (i) When do we know something? (ii) What is fallibility? (iii) How do we 
ensure valid knowledge? (iv) What is belief-less knowledge? (v) What is common sense? 
(vi) What is evidence? (vii) What is abstraction? (viii) What is context? (ix) What are 
possibilities for knowledge integration? (x) What is intelligence? and (xi) What is wisdom? 
It is difficult to make any prioritization in terms of the questions as most of them are 
interrelated. 

In the last two decades, epistemology-oriented thinking and striving for an 
epistemology of complex systems have penetrated into systems science and system 
engineering. Only some illustrative contributions can be mentioned here. Hooker (2011) 
argued that, ultimately, the goal of science philosophy is to develop mature 
foundations/philosophy of complex systems, but attempting this is premature at this time. 
Helmer and Rescher (1959) discussed the need for a new epistemological approach to the 
inexact sciences, since explanation and prediction in the case of these sciences do not have 
the same logical structure as in the exact sciences. As new methodological approaches, they 
mention system simulation and expert judgment. Ratcliff (2013) exposed a specific 
application of epistemology to support system engineering. Figueiredo (2008) argued that 
the developing epistemologies of design and engineering contribute to a renewed 
epistemology of science. Boulding (1987) concluded that the primary obstacle to the 
development of robust knowledge platforms for engineering systems is the lack of 
developmental and operational predictability. Möbus (1996) posited that hypothesis testing 
plays a fundamental role in a cognitive-science-orientated theory of knowledge acquisition 
as well as in handling problem-solving knowledge in intelligent problem-solving 
environments. 

Based on the above considerations, the following can be concluded. As Figure 5.1 
shows, gnoseology deals with (everyday, non-generalized) human individual knowledge 
possessed by individuals. Epistemology investigates generalized human knowledge, which 
manifests in the form of justified scientific knowledge. Epistemology may address 
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composite engineering knowledge, 
assuming that it is a combination of 
everyday and generalized human 
knowledge. However, neither 
gnoseology nor epistemology has 
shown interest in a fully-fledged 
study of dynamically changing SSK. 
Actually, they are not ready to host 
the emerging genre of epsilon-
knowledge for teleological and 
historical reasons. The fact of the 
matter is that we are in a situation 

where the state of the art of systems knowledge is ahead of the state of understanding. 
Stokes (1997) argued, “knowledge finds its purpose in action and action finds its reason in 
knowledge”. Thus, (synthetic) systems knowledge should be interpreted concurrently as an 
acquired cognitive capacity and as an actionable potential in context. 

5.4. Revisiting the enablers of system intellect 

Like human intelligence, system intelligence is a complex, multi-faceted, and yet not 
completely understood phenomenon and concept. Seeing it from outside, it stretches into 
two dimensions, as shown in Figure 5.2. The vertical dimension includes the two enablers 
of system intelligence (a dynamic body of application/operational knowledge and a set of 
associated reasoning mechanisms that purposefully alter and interact with each other while 
operating on this knowledge). The horizontal dimension includes the two sources of system 
intelligence (human-provided part and self-acquired part). Looking at them from inside, the 
reasoning mechanisms and the problem-solving knowledge are functionally and 
methodologically interconnected and thus inseparable. Knowledge and mechanisms are also 
computationally interconnected and make, for instance, CPSs capable of solving application 
problems and maintaining the efficiency of their operation. The synthetic intelligence 
primarily comprises self-acquired and/or self-generated application-specific knowledge and 
processing (reasoning) mechanisms, but it is not absolutely independent from the human-
provided part. As mentioned above, I focus on synthetic system intellect in this dissertation, 
which is regarded as a subset of synthetic system intelligence. 

Mentioned earlier, the knowledge possessed by systems typically blends (i) structured, 
formalized, and pre-programmed human knowledge, and (ii) knowledge that is acquired by 

a system during run-time using its own resources. 
The relative amount and significance of the human 
created initial (inputted) part usually decreases 
during the operation of systems. On the other hand, 
the relative volume and significance of the system-
produced part - the authentic synthetic system 
knowledge (SSK) - grows through the useful life-
cycle of systems. Thannhuber (2005) proposed to 
consider system knowledge both from a microscopic 
and a macroscopic perspective, which can be 
extended to the associated reasoning mechanisms 
too. Microscopically, knowledge is given by 
implementation level procedures or actable 
coordination processes (microscopic actions of a 
system). Macroscopically, knowledge is given by the 

 

Figure 5.1: Studies of categories of knowledge 

 

Figure 5.2: Dimensions of system 
intelligence 
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constraints and control of the declarative assembly mechanism that provides a meaningful 
system response to a given stimulus. 

Synthetic system knowledge is not the knowledge that is needed to specify, design, 
implement, use, and recycle systems. Instead, it is the knowledge that is needed by systems 
to achieve the operational purposes or objectives, or in other words, it is the knowledge 
needed to function (solving problems). Thus, system knowledge is identical neither with 
engineering knowledge (the knowledge of making), nor with technological knowledge (the 
knowledge of enabling), though some elements of both are present in systems knowledge. 
System knowledge is a representative form of epsilon-knowledge including (i) chunks and 
bodies of generic scientific knowledge (facts, definitions, and theories), (ii) specialized 
professional knowledge (principles, heuristics, and experiences), and (iii) everyday 
common knowledge (rule of thumbs). A recently recognized issue is the balance between 
application neutrality/specificity and performance dependability/efficiency that concerns 
both the system knowledge and the processing mechanisms (Aussenac-Gilles et al., 2020). 

Human reasoning is the progenitor model of computationally implemented inferring and 
reasoning processes. It is an intricate mental process of making logical conclusions and 
predictions from available knowledge in various application contexts (Stenning and Van 
Lambalgen, 2012). It can be both intuitive (heuristic) and formal (systematic), but both 
forms are influenced by the actor, purpose, problem-specific knowledge, and context 
information. The overall formal mechanisms of reasoning are underpinned by 
computational thinking. It is characterized by a logical procedure that involves the 
following steps: (i) specification (choosing and formulating a problem), (ii) decomposition 
(breaking a complex problem down to smaller and manageable sub-problems), (iii) 
patterning (identifying and representing a structure or a trend within the problem), (iv) 
abstraction (identifying specific similarities and differences among resembling problems), 
(v) algorithmizing (developing step-by-step instructions for solving the problem at hand), 
and (vi) analysis (reflecting on the characteristics of finding a solution for the problem). 

With regard to computational reasoning, three core features are to be considered, 
namely, (i) moving from multiple inputs to a single output, which can be a conclusion or an 
action, (ii) making multiple steps through a state space to achieve a final outcome (in 
numerous ways), and (iii) processing the objectives, a mixture of previous knowledge, 
novel information, and the dynamic contexts (Mohaghegh and McCauley, 2016). Usually, 
search space-based (retrieval) and additional content deriving (ampliative) 
computational reasoning mechanisms (CRM) are differentiated. Ampliative CRMs are 
mechanisms that produce additional knowledge based on the knowledge externally 
embedded in or internally acquired by the system. Systems engineering also distinguishes 
system-level and constituent-level reasoning mechanisms. 

The processing (reasoning) mechanisms can either be task-independent mechanisms or 
task-dependent mechanisms. Historically, five major families of computational mechanisms 
have been developed. First, symbolist approaches, such as (i) imperative programming 
language-based (procedures-based) reasoning, (ii) declarative logical language-based 
reasoning, (iii) propositional logic-based inferring, (iv) production rule-based inferring, (v) 
decision table/tree-based inferring. Second, analogist approaches, such as (i) process-based 
reasoning, (ii) qualitative physics-based reasoning, (iii) case-based reasoning, (iv) 
analogical (natural analogy-based) reasoning, (v) temporal (time-based) reasoning, (vi) 
pattern-based reasoning, and (vii) similarity-based reasoning. Third, probabilistic 
approaches, such as: (i) Bayesians reasoning, (ii) fuzzy reasoning, (iii) non-monotonic 
logic, and (iv) heuristic reasoning. Fourth, evolutionist approaches, such as: (i) genetic 
algorithms, (ii) bio-mimicry techniques, and (iii) self-adaptation-based techniques. Fifth, 
connectionist approaches, such as: (i) semantic network-based, (ii) swallow-learning neural 
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networks, (iii) smart multi-agent networks, (iv) deep-learning neural networks, (v) 
convolutional neural networks, and (iv) extreme neural networks. Logical, retrospective, 
probabilistic, deductive, and inductive approaches represent the traditional approaches to 
the generation of deterministic knowledge. They have recently been extended by various 
learning and abductive approaches. Six main methods are known for reasoning with 
imperfect knowledge: (i) Bayes theory-based, (ii) Dempster-Shafer theory-based, (iii) fuzzy 
set theory-based, (iv) measure of (dis)belief theory-based, (v) inductive probabilities-based, 
and (vi) non-monotonic reasoning-based methods. Their application and operationalization 
in problem solving depends on the type and representation of the concerned chunks of the 
system knowledge. 

System related knowledge may manifest in different forms and can be classified in 
multiple ways. The literature interprets: (i) declarative knowledge (which captures 
descriptors and attributes of facts, concepts, and objects), (ii) structural knowledge (which 
establishes semantic relations between facts, concepts, and objects, (iii) procedural 
knowledge (which captures the know-how of doing or making something), (iv) abstracted 
knowledge (which generalizes both “what is” and “how to” types of knowledge within or 
over contexts, (v) heuristic knowledge (which represents intuitive, emergent, uncertain, 
and/or incomplete knowledge in a context, and (vi) meta knowledge (which apprehends 
wisdom and decisional knowledge about other types of knowledge) can be differentiated as 
the main categories. The types of knowledge used in problem-solving are (i) declarative, 
(ii) procedural, (iii) schematic, (iv) strategic, (v) situational, (vi) metacognitive, and (vii) 
problem-translating knowledge. From the perspective of computational problem solving, (i) 
problem-environment (context) knowledge, (ii) problem-scheme (framework) knowledge, 
and (iii) problem-solving (content) knowledge have been identified (Solaz-Portolés and 
Sanjosé, 2008). Each one of these may be implanted into systems by knowledge engineers, 
or may be acquired and generated by the systems themselves during run-time. Proper 
syntactic or semantic representation schemes are needed to be associated with the 
individual knowledge categories. It is still a concern how representations can guarantee the 
synergy and compositionality of system-level knowledge. The related problem can be 
traced back to the unavoidable decomposition into primitives for computational processing. 

5.5. Assumptions and objectives of sympérasmology 

In order to initiate a specific theory of SSK, I proposed ‘sympérasmology’ as a 
comprehensive field of research and a conceptual framework for dealing with epsilon-
knowledge. The name ‘sympérasmology’ has been derived by putting together the Greek 
term ‘sympérasma’ (which refers to inferred/reasoned knowledge), and the Greek term 
‘logos’ (which is used to express the logic and reasoning in crafting a defendable piece of 
knowledge and the typically accompanying process of bringing up demonstrative logical 
cases). Besides referring to knowledge that is deductible and concluded, this term also has a 
second meaning, which expresses a bottom line of knowing or a consolidated conclusion. I 
took the liberty to use the term ‘intellectualization’ to refer to various grades of self-
managed intellect in engineered systems. Sympérasmological investigations can help 
separate the overlapping concepts of system intelligence (i.e., intelligence reproduced by 
mimicking human intelligence) and system intellect (system intelligence by computational 
knowledge synthesis and reasoning) and the competing concepts of (self-managed) 
intellectualization and intelligentization. 

The major assumption of sympérasmology is that an overwhelming part of the SSK is 
“sympérasma”, that is, knowledge conjectured, inferred, constructed, or otherwise derived 
during the operation of systems. This part is becoming dominant during longer operation of 
i*CPSs. Three basic requirements have been posed for sympérasmology. Namely, it must 
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be: (i) intelligible, i.e., comprehendible by professionals working on SSK, (ii) robust, i.e., 
allow for the future developments of the domain, and (iii) distinguishing, i.e., should 
maintain its conceptual uniqueness and utility. The practical objective of sympérasmology 
is to become the staircase to the ‘mind’ (the inferred intellect) of IESs. Towards this end, it 
must address theoretical and conceptual issues of dealing with epsilon-knowledge in the 
context of system intelligence, rather than only methodological, technological, and 
engineering ones. It must consider logical, computational, semantic, pragmatic, apobetic, 
human, and social discourses. 

Sympérasmology cannot be implemented as a simple augmentation of gnoseology or 
epistemology, since it is based on different fundamental concepts and principles originating 
in the very nature and processing mechanisms of SSK. The importance of 
sympérasmological studies of samples of epsilon-knowledge comes from the vision of 
knowledge growing and harvesting systems. Sympérasmology is supposed to provide a 
constructive and pluralistic theory of epsilon-knowledge. It must investigate its entirety, 
and not only the bodies of knowledge acquired by various system-level processing 
mechanisms. The issue is: if beliefs, truths, justification, foundationalism, and coherentism 
are the main conceptual pillars of contemporary epistemology, what will these be in the 
theory of SSK? In this sense, sympérasmological investigations go beyond the known 
methodological approaches (informed speculation, comparative analyses, and rational 
examinations) of gnoseology and epistemology. The methodological approach of 
sympérasmology may rely on methods such as: (i) critical literature studies, (ii) 
experimental investigations, (iii) prognostic systems thinking, (iv) cross-cases practical 
studies, and (v) contemplative validations. 

The benefits of conducting studies according to the principles of sympérasmology are 
not only in a clearer academic view, but also in the opportunity of more dependable 
innovation strategies and better engineering decisions concerning the proper 
intellectualization of systems for industrial and social applications. It may even have a 
disruptive influence on the design, engineering, application, and utilization processes of 
smart (and intelligent) systems. It is foreseen that the sympérasmological theory of massive 
system knowledge will condense and evolve in accordance with the progression of systems 
science, systems technologies, and systems engineering. The sympérasmological insights 
will be instrumental for forwarding epsilon-knowledge towards a scientific, technological, 
and commercial asset. 

5.6. Domains of sympérasmological investigations 

Sympérasmological investigations may extend to a large number of interest-domains 
and may address many phenomena and problematics within and over multiple domains. A 
domain is interpreted as a specific topical area within a discipline. Domains of interest 
maintain a separation of the concerns and create a specific conceptual framework for 
organization of the inquiry efforts. The structural decomposition of sympérasmology into 
possible investigational domains is shown in Figure 5.3. These domains can be sorted into 
four categories called: (i) rudiments, (ii) principles, (iii) faculties, and (iv) implications. 
Due to the holism of SSK, many of the subjects/aspects of studies in the four domains are 
interrelated, dependent on the others, or even overlapping. The domain-specific phenomena 
and problematics are investigated from the perspective of holism, but attention is given to 
the dialectic relationships of convergences and divergences. Like in the case of 
epistemological studies, abundant sets of concrete inquiry questions can be formulated 
related to each domain. 

The domain called ‘rudiments’ lends itself to the study of the basics, namely, (i) the 
nature and essence, (ii) the sources and channels, (iii) the models and representations, (iv) 
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the computational (non-human) awareness and cognizance, and (v) the properness in 
context of systems knowledge. The domain of ‘principles’ includes explorative and 
explanatory analyses into (i) computational interpretation and semantics, (ii) computational 
rationale and pragmatics, (iii) computational intentionality and apobetics, (iv) 
computational system intelligence (including aspects of learning, adaptation, and 
evolution), and (v) computational meta-constructs and notions. The domain of ‘faculties’ 
addresses SSK as an asset by focusing on (i) the distinguishing computational 
characteristics, (ii) the theoretical and practical manifestations in systems, (iii) the variety of 
processing mechanisms, (vi) the handling the synthesized knowledge in systems and across 
systems, and (v) the forms and limitations of human supervision. 

The domain of ‘implications’ concerns inquiries about (i) problem solving affordances 
and potentials, (ii) reliability and dependability, (iii) compositionality (augmentation and 
integration), (iv) the ethical and other social norms, and (v) future progression and 
opportunities. The knowledge-centered investigations also consider the related cognitive 
processes and technological enablers. Sympérasmology is closely related to computing, but 
has a different viewpoint. As an example: the main issue for sympérasmological 
representation (syntax) studies is not what representations exist for different purposes and 
how to represent a particular body of knowledge digitally, but how the various 
representations relate to the very nature and essence of SSK. From a methodological 
viewpoint, sympérasmological investigations apply both ‘a posterior’ (experimental) and ‘a 
priori’(interpretative) methods similar to those of epistemology and gnoseology. Normative 
questions are also posed concerning what and how people should view and approach SSK. 
The typical experimental method is individual case or case ensemble implied reasoning. 

5.7. Rudiments of synthetic system knowledge 

The word 'rudiments' is used to express the basics and essentials of the systems 
knowledge phenomenon, which make its existence, identification, treatment, and utilization 
possible, and from which other concepts are derived. Evidently, the rudiments are 
developing due to the changes in the SSK phenomenon and may be reformulated due to the 
unceasing progress of knowing. The essence of epsilon-knowledge (synthetic system 
knowledge) is empowering and endowing engineered systems with problem-solving power 
(rational intellect). Based on this, an intellectualized system can select the best sequence of 
actions leading to one of its goals as directly as possible. As handled by the system, this 
knowledge is rather a blend of problem-solving affordances, than a roadmap to or a receipt 

 

Figure 5.3: The proposed investigation domains of sympérasmology 
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of arriving at a solution. Several publications demarcate (i) domain knowledge (aggregated 
factual knowledge about domain entities, attributes, relations, etc.), and (ii) problem solving 
knowledge (including procedural, reasoning, and regulatory knowledge) (Bratianu and 
Andriessen, 2008). With regard to sources of knowledge, an issue is that current systems do 
not have conscious beliefs in the same way as humans do. The sensors, memories, and/or 
algorithms are not true equivalents of the sources of natural human knowledge. They are 
primarily technological means, which do not stand in the same synergetic relationship with 
the processors/software, as the human senses are with the mind, and processors cannot be 
compared to the brain. This means, different than analogical contemplation is needed to 
identify and explain the sources of SSK. 

Ultimately, systems knowledge is captured in formal, in-process representation using 
digitally manageable constructs. This representation is not working knowledge, though it is 
supposed to convey both the proxy meaning and the problem-solving potential of it. While 
syntactic representations of data and information has reached a level of sophistication, 
knowledge level representations are still suffering from the implications of the necessity of 
syntactic formalization and the limitations of capturing the intrinsic working potential of 
problem-solving knowledge in a direct manner. A context-dependently actionable problem-
solving potential requires purposeful inferring from computable representations. Main 
issues for sympérasmological studies are how: (i) representations relate to the nature and 
essence of systems knowledge, (ii) syntactic representations can be exceeded, (iii) 
descriptive, relational, procedural, abstracted, heuristic, and meta-knowledge 
representations can be unified, and (iv) the problem-solving potential can be optimized. 

As knowledge is a self-conscious act, consciousness, self-awareness, and a sense of self 
are supposed to be explained and approximated in intellectualized engineering systems. 
However, this cannot be studied by way of analogies. As for now, reproduction of natural 
human consciousness is deemed to be a mission impossible for reasons such as (i) there is 
no real demand, only weak curiosity behind it, (ii) it cannot be studied as a phenomenon by 
traditional reductionist approaches of empirical science, (iii) no transdisciplinary theory is 
in formation that would be able to explain all aspects of its formation/emergence beyond all 
question, (iv) its computational implementation would probably need resources that not 
available today. That is why the issue of non-conscious awareness is an important one for 
sympérasmological studies. Awareness is not only having information about something, but 
also being perceptually, cognitively, and emotionally involved in that. It is the ability of 
systems to make their behavior proper and rightly dependent on some knowledge and the 
environment. A challenge in this context is that awareness and sentience (the capacity of 
feeling, perceiving, or experiencing subjectively) are in a close coupling, but computational 
sentience is almost neglected in system\ studies. 

Trueness and preserving truth in reasoning in changing context is currently the subject 
of both pragmatic and philosophical debates. It is unclear what makes SSK ‘justified’ or 
‘warranted’ and how this can be achieved by systems themselves. If needed, what can 
replace the causally grounded, justificationally grounded, and epistemically grounded 
principles of justification in intellectualized systems? Pragmatists claim that truth of 
systems knowledge forms a relative category, which can only be vindicated in terms of its 
properness for the purpose it serves. However, it concerns both intentional properness (due 
to the changes in purposes/problems) and conditional properness (due to the life cycle and 
obsolesce of knowledge). 

5.8. Principles of synthetic system knowledge 

The term ‘principle’ is used to express the assumed relationships among the inherent 
characteristics and the observable manifestations and performances of SSK. Principles 
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serve as the foundation for reasoning. For instance, forming meaning and making sense are 
essential characteristics of SSK. These are related to its semantics. In this context, the goals 
of sympérasmological studies are: (i) capturing (decoding) meaning, (ii) interpretation of 
meaning by systems, (iii) aggregating different meanings, and (iv) consequences of 
meanings. There is a lack of underpinning theories. Currently, it is deemed a rational 
position that digital computers are not (and perhaps will never be) able to understand the 
meaning of any body of knowledge. It is also widely debated if intellectualized systems can 
or not behave intelligently without understanding meaning. Not excluding these, semantic 
studies may intend to explore how knowledge of systems conveys meanings in different 
situations and contexts, how processing of meanings is possible, and how to activate 
meanings in decision making. Management of meaning is also associated with 
representational issues. Though there are automatically generated semantic knowledge 
graphs, the currently used knowledge graphs need human interpretation. 

Since application problems should be solved by the available knowledge, systems 
knowledge induces pragmatics. In the framework of sympérasmology, pragmatics is the 
study of practical aspects of system operation, problem solving, goal attainment, and in 
particular the role of synthetic knowledge in these. The major concern of 
sympérasmological pragmatics is what ways knowledge can be used efficiently or 
optimally in various contexts of problem solving. It deals with these issues based on 
theoretical rather than practical considerations. Pragmatics of system-level knowledge is a 
kind of meta-semantics, which informs about the problem solving potentials in application 
contexts. Various pragmatic relations are to be investigated, such as adequacy, modality, 
parsimony, handover, correspondence, and dialogue relations, which are usually contextual 
and agent-dependent. 

Like sympérasmological pragmatics, sympérasmological apobetics is concerned with 
relations, which are about the effects of attainment and not about the ways of attaining a 
goal. Apobetics discloses and explains relations from a purposive, goal, effect, association, 
implication, and/or feeling aspects. Apobetic studies of sympérasmology are interested in 
the outcomes of realization of an intended operation based on given bodies of knowledge. It 
also studies the reflections triggered by successful or unsuccessful problem solving and the 
role played by the structure and quality of the synthetic knowledge in that. The studied 
relations are such as (i) corporeal, (ii) perceptive, (iii) cognitive, (iv) affective, and (v) 
combined apobetic relations. 

The multi-faceted phenomenon of system-level intelligence is waiting for clear 
definitions and consolidation from sympérasmology. Whereas an exact definition of its 
possible gradations (degrees of intellectualization, such as smart, cognizant, intelligent) is a 
taxonomical opportunity, providing a theory of optimal problem-solving intelligence is a 
basic practical necessity. In the quest for clarifying system-level intelligence, this domain of 
sympérasmological studies largely overlaps and complements artificial intelligence research 
and development, but it also has its legacy due to its focus on the probabilities and 
possibilities of system-level knowledge with or without system consciousness, cognizance, 
feelings, emotions, instincts, and values. Furthermore, the relationship of system-level 
intelligence and (unsupervised) automation also lends itself to useful sympérasmological 
studies. In this context, the notion of ‘artificial wisdom’ deserves attention, which is 
deemed indispensable for turning externally provided control to internally provided 
supervision, as the basis of automation. 

As the ability to act critically or practically in any given situation, artificial wisdom 
shifts the focus from ‘knowing what’ and ‘knowing how’ to’ knowing why’, and by doing 
so, it leads to some sort of meta-knowledge concerning the overall operation of 
intellectualized engineered systems. Meta-knowledge involves complex logical, pragmatic, 
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ethical, etc. judgments, decision-making, and anticipating (seeing beyond the present). As 
the literature evidences, current research efforts aim at replacing system wisdom by meta-
knowledge constructs, which may remain external (separated from the synthetic 
knowledge) and internal (combined with synthetic knowledge). 

5.9. Faculties of synthetic system knowledge 

As a study domain in sympérasmology, the plural noun, ‘faculties’, has been used to 
express the whole (total) of inherent, acquired or engineered intellectual or physical, 
generic or specific features, abilities, capacities, and power that synthetic knowledge and 
system intelligence, respectively, own. The permanency of faculties is not supposed. 
Attributes are intrinsic, constitutive, and substantial qualities, features, or abilities of an 
entity (but are not its functional/structural parts). Holsapple (2004) defined knowledge 
attributes as dimensions along which different instances of knowledge can vary. An 
attribute dimension comprises a range of categorical and nominal values. Categorical values 
are, for instance, names of types of knowledge, and these may form multi-level taxonomies. 
The total of the attribute dimensions forms an attribute space. Every point of this space 
represents one particular instance of knowledge and disposition, which leads to abilities 
under certain conditions. Key attributes are unique, exclusive, and differentiating 
characteristics of an entity (such as a unique name or identifier). In practice, a combination 
of them can uniquely describe (and thus differentiate) an entity. Usually, a body of system 
knowledge can be characterized by a large number of shared attributes, while the key 
attributes are limited in terms of their cardinality. They form a differentiating attribute 
profile. 

Manifestation of knowledge is about how the problem solving power of knowledge is 
conceptually rendered, and not about its alternative formal or informal representations. In 
an abstract way, manifestation can be understood as ‘embodiment for purpose’, which rests 
on using different realization principles. Manifestations are realized by some process of 
logical, conceptual, semantical, etc. modelling Aamodt, A. (1995). The sympérasmological 
study of knowledge manifestations focuses on how the (problem solving) power of 
knowledge is captured and operationalized in a specific manifestation (a concrete model). It 
may identify general principles for establishing the corpus of knowledge, as an extensive 
large collection of semantically interrelated knowledge elements. Thus, from a practical 
point of view, knowledge manifestations can be viewed as conceptual constructs (and 
formalized as semantic frameworks) of computational representations of that part of the real 
world which the concerned system is to reason about. A manifestation of knowledge may 
render a range of pertinent knowledge models that are fit for purpose. 

From a computational viewpoint, system-level intelligence is the result of synergistic 
interoperation of bodies of synthetic knowledge and the associated processing mechanisms. 
The relationships among synthetic knowledge, processing mechanisms, and application 
problems lend themselves to sympérasmological studies naturally. A (problem-solving) 
mechanism is behind a purposefully arranged set of computational algorithms and a chosen 
set of chunks of knowledge. In this disposition, the notion of mechanisms follows the 
classical interpretation of Descartes as operational essences of the physical world. Implicit 
mechanisms are sought to explain how a phenomenon is produced, while explicit 
mechanisms are created to facilitate carrying out some tasks. By studying the relationship 
of synthetic knowledge and the intellectualized operations of systems, sympérasmology 
intends to understand the causal and operational synergy of the system constituents. As a 
sort of cognitive equipment for knowledge processing, both non-ampliative and ampliative 
mechanisms have been studied recently. 

Handling of knowledge is traditionally a task of knowledge engineering and knowledge 
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management. However, they handle knowledge at statistical, syntactic, and partially 
semantic levels. Knowledge engineering considers the objective and structure of the 
problems to identify how a solution or decision can be reached through knowledge 
processing, whereas knowledge management focuses on the process of defining, 
structuring, retaining, and sharing knowledge and experience of humans in order to improve 
efficiency and to save resources. The interest of sympérasmology is not in pre-processing, 
representation, and distribution of human knowledge, but in treating it as an intellectual 
artefactual object. The theoretical and conceptual perspectives on handling synthetic 
knowledge establish two interplaying viewing windows: (i) the relevance of the various 
handling operations to a particular synthetic knowledge, and (ii) the influence of the nature 
of the synthetic knowledge on the handling operations. As an example, sympérasmological 
studies are supposed to find answers to questions such as: ‘What criteria should raw system 
knowledge fulfil?’ and ‘What correspondence, coherence, and consistency conditions are to 
be satisfied?’ These show that the concept of handling is more a cognitive act, than a 
technological one for sympérasmology. 

Likewise, system supervision may appear as a sympérasmological topic, and not only as 
a computational, organizational, or social one. What underpins the importance of 
sympérasmological studies in this direction is the growing intellectualization level of 
engineered systems that changed their relationship to humans as well as to other systems. 
This domain of interest has the human–system (or system-human) relationship in the focus 
and investigates it from the perspective of the increasing synthetic knowledge of 
intellectualized systems. New issues concerning these systems originate in that they: (i) 
operate as alert and proactive actors in multiple contexts, (ii) initiate contacts in various 
forms with human stakeholders, (iii) interact with the embedding environments and the 
tasks, (iv) obtain control information from real life processes, (v) perform certain level of 
functional, structural, and/or behavioral self-adaptation, (vi) alter the goal of operation 
towards a more favoring ones, (vii) establishing social relations within and outside the 
embedding environment, and (viii) show personalized behavior towards other natural 
and/or artificial actors. Handling these needs dedicated self-supervision knowledge, which 
differs, but is not completely separable from problem-solving knowledge. 

5.10. Implications of synthetic system knowledge 

The general term ‘implications’ is used to refer to capturing consequences which are not 
explicitly stated or suggested, but can be drawn as cause-effect relations from knowing the 
phenomenon (synthetic system knowledge). Implications express the possible significance 
of the phenomenon, the need to do something, or the effect that an action or decision will 
have on something else in the future. Thus, the consequence can be a need for action or for 
a state to get involved in. 

The word ‘potentials’ concerns the total of the inherent physical, cognitive, perceptive, 
and emotional capabilities that can be operationalized by a system to be able to execute 
problem-solving actions. In terms of problem-solving, these together are often referred to as 
‘power of a system’, and understood as a permanently available but varying characteristic. 
As an example: a neural network always learns a model (even if it is incorrect with regard 
to the features of data), but the system has the potential to improve the learnt model when it 
is a subject of refined training. System potentials are relative to some target problems and 
may include (i) abilities, (ii) affordances, and (iii) dispositions. For each of them, a stimulus 
condition (as a causal relationship) is needed to exhibit its power, as potentials, abilities that 
may exist even when they are not concretely displayed. Affordances are those possibilities 
that are recognized by a system in the process of problem solving (in spite of the fact that 
they are not predefined). Disposition carries the tendency of a system to act in a certain 

               horvath.imre_37_22



57 

manner under given circumstances (e.g. the disposition of ice to melt when heated by some 
means). In principle, the ‘will of action’ can be viewed as a proper form of potentials, as 
long as it is interpreted as an independent decision of an agent in the course of performing 
actions. 

Dependability is the overall quality of realizing the defined functions (operations and 
services) of a system. From the perspective of sympérasmology, dependability is projected 
onto the synthetic knowledge of a system. It predicts and measures how reliably and 
persistently an assigned body of knowledge can provide proper solutions for target 
problems. As a complex indicator, dependability also concerns the reasoning mechanisms 
working on the synthetic knowledge. Dependability may be expressed in terms of a limited 
set of specific, context-dependent indicators such as (i) availability, (ii) resilience, (iii) 
controllability, (iv) maintainability, (v) performance, and (vi) accuracy. Dependability is of 
crucial importance in the case of self-adaptive intellectualized systems, where problem-
solving knowledge intertwines with self-adaptation knowledge. 

Complex intellectualized systems become compositional through their problem-solving 
knowledge. At system level, this should be a holistic whole, rather than an aggregate of 
discrete chunks of knowledge. Compositionality of knowledge structures and inferring 
procedures is largely analogous to linguistic compositionality. Tani (2014) has shown that 
compositionality is necessary for higher order cognitive tasks and can be acquired by means 
of self-organizing hierarchical dynamic structures. In essence, compositionality is about 
combinatorial manipulations of concepts, objects, actions, plans, and problems in order to 
synthesize consistent and dependable knowledge through cognitive mechanisms. 

As a fundamental concept, ‘norms’ are measures first created in the social sciences. In 
general, norms are accepted or acceptable standard ways or qualities of behaving or doing 
things. Common sense incorporates implicit norms which go with the very use of such 
notions as ‘belief’, ‘knowledge’ or ‘judgment’. Sympérasmology should create and assess 
norms in an explicit and reflexive way, and should evaluate system intelligence and SSK in 
light of these norms. From the perspective of sympérasmological studies, a norm may 
express both (i) the kind of generic expectation to be reached in each individual case, and 
(ii) a designated or wishful level to act accordingly on knowledge level. 
Sympérasmological norms may be prescriptive (encouraging positive system operation), or 
proscriptive (discouraging negative system operation). There are many categories of norms 
that are relevant in the context of IESs and need to be considered in sympérasmological 
studies. Some of these (in alphabetical order) are: (i) cognitive norms (quality of problem 
solving potential), (ii) ecological norms (measure and rules of environmental impacts), (iii) 
ethical norms (the impacts of operation and fulfilment of moral expectations), (iv) practical 
norms (latent informal, de facto, or tacit norms underlying the practices), (v) social norms 
(societal rules or expectations for contextual behavior), and (vi) technological norms 
(principles of right problem solving operations 

Advancement is one of the most intricate and challenging concepts for comparing two 
states of an intellectualized system. Advancement of synthetic knowledge concerns 
qualitative rather than only quantitative characteristics. It is more obvious to trace past 
advancements based on retrospective analysis, than expectable advancement that needs 
analysis of the overall scientific, technological, social, etc. trends as well as generating 
realistic visions. The central questions for sympérasmological investigations are whether (i) 
the conventional separation of ‘human-imitating systems’ and ‘an-ideal-rationality’ oriented 
systems will exist, (ii) the demarcation line between ‘reasoning-centered systems’ (“think 
like humans”) and ‘behavior-centered systems’ (“act like humans”) continues to fade away, 
(iii) will a symbiosis be formed between human intelligence and artificial intelligence, or 
(iv) the ‘intelligence explosion’ reaches a state (‘superintelligence’) that goes beyond 
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human supervision in the future. These may imply radical changes in the kind of system 
knowledge, with the possibility of not generating and using anthropometric models. 

5.11. Reflections and open issues 

Sympérasmology has been proposed as an investigation domain and theory of epsilon-
knowledge, which is represented by the ever-growing, complexifying, and becoming-
independent SSK. Its fundamental concepts and principles have their roots in the very 
nature and procession mechanisms of SSK, and system-level intelligence in general. It is 
supposed to complement gnoseology and epistemology. Both the proposed conceptual 
framework, and the range, scope, and the domains and approaches of the investigation need 
further elaboration. Sympérasmology has the potential to make genuine and useful 
theoretical, methodological, and praxiological contributions different to those of systems 
science, technology management, and systems engineering. The release of the idea of 
sympérasmology for a broad public debate and encouraging all interested scientists, 
engineers, philosophers, and practitioners to address the proposed or any other relevant 
issues and questions may create its own literature. The benefits of dealing with 
sympérasmology are not only in a clearer academic view and a comprehensive 
underpinning theory, but also in the opportunity of more dependable innovation strategies 
and better engineering decisions about proper intellectualization of systems for industrial 
and social applications. In follow-up research and debates, the following issues need to be 
addressed:  

• Formulation of a philosophically correct designation and specification of the objectives, 
interest, cognitive engine, and approaches. 

• Dispositioning with regards to ontology and methodology as branches of science 
philosophy, as well as to gnoseology and epistemology. 

• Consolidation of the spectrum of the relevant domains of interest and further articulation 
of an indicative study program. 

• Acknowledging the principle of inseparability and strategizing the refinement of dealing 
with the whole (and not only the two interrelated constituents) of system-level 
intelligence. 

• Deepening the knowledge concerning all intrinsic domains of interest with a view to 
their dependency, causality, as well as to their ampliative and implicative relationships. 

• Establishing quality and dependability criteria for sympérasmological investigations and 
their outcomes. 
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Chapter 6 

6. Enabling prognostic systems thinking 

6.1. Research objectives and approach 
System thinking is a holistic approach to analyzing how the constituent parts of a 

complicated system interrelate and how the system works over time and within the context 
of larger systems (Checkland, 2000). The current propagation of intellectualized and 
socially embedded engineered systems raises many novel and crucial technological, 
managerial, social, organizational, business, environmental, human, and so forth, issues. It 
has been recognized that traditional systems thinking is not able to consider many new 
aspects and to provide reliable forecasts on accelerated developments. It has been argued in 
the literature that there is a need for prognostic systems thinking (PST) that considers not 
only the observable manifestation of systems, but also the trends of their overall 
development. It is also argued in the literature that there is a growing need for prognostic 
normative reasoning (Oh et al., 2013). Based on a comprehensive literature study and 
concept relationship analysis, the research reported in this chapter: (i) critically analyzed 
the status of systems thinking, (ii) identified new influencing factors, and (iii) rendered a 
semantic network as a basis of prognostic reasoning. In line with other published efforts, 
the ultimate goal of the study was to derive a comprehensive set of investigational concerns 
on the basis of an extended conceptual framework. 

This chapter (i) explains the reasons for the aforementioned need, (ii) identifies the 
pillars of contemporary analytic systems thinking (AST) as well as a set of up-and-coming 
new pillars, (iii) presents a first iteration of the novel conceptual framework, (iv) discusses 
the proposed investigation concerns for prognostic systemic analysis, and (iv) casts light on 
their implications with regard to prognostic system thinking. Furthermore, some currently 
open issues (such as determination of the boundaries of systems, completeness/sufficiency 
of a given set of concerns, and ranking/preference of concerns) and research opportunities 
(such as methodological support of deriving concerns, objective concerns assessment in 
various application contexts, and computer support of PST) are suggested. 

The inspiration for this work came from the recognition that it had always been the best 
practice in natural sciences, especially in physics, to reconsider the existing theories time-
to-time in light of the progression, and to take into account the emerging paradigms that 
generated new insights. The concrete goal was stated as to take a step towards the 
indispensable enablers (principles, frameworks, and guides) of PST that assume the 
identification and interrelation of the essential characteristics of next-generation 
intellectualized systems as well as the related societal issues. Some of these are addressed - 
among others - in (Straus, 2021) and (Waddock, 2016). As a starting point, it was assumed 
that the prognostic conceptual framework should be based on an adapted conceptual 
framework that considers (i) the shifting system paradigms, (ii) the outcomes, interplays, 
and implications of the trends of system realization, and (iii) the different humans-systems 
and systems-systems relationships (Hammond, 2005). Rendered as a semantic network, this 
conceptual framework rests on a set of foundational concepts (semantically interconnected 
pillars). The proposed conceptual framework rests on a limited set of foundational concepts 
(semantically interconnected pillars) and their joint implications. The reported research is 
based on a comprehensive literature study, concept relationship analysis, and mind 
mapping. The contents of this chapter have been compiled from the following peer-
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reviewed publications: H16 and H17 (see Appendix A.1.1). 

6.2. Fundamentals of analytic systems thinking 

System thinking was introduced as a new paradigm of thinking about complexities and 
heterogeneities, opposing the reductionist thinking that is typically pursued in 
monodisciplinary sciences. For this reason, it is in juxtaposition with and complements 
scientific thinking, which imposes reductionism rather than holism in its view (Albright and 
Runehov, 2013). Historically, the roots of modern system thinking can be traced back to the 
1950s. As discussed by Forrester (1990), an important milestone was when the Systems 
Dynamic Group at the Sloan School of Management of MIT was founded in 1956. There 
are many originators of systems thinking who offer new insights and principles, and many 
refiners who contribute to improving existing insights, definitions, and models (Monat and 
Gannon, 2015). Richmond (1991) defined the term ‘systems thinking’ as the art and science 
of making reliable inferences about behavior by developing an increasingly deep 
understanding of the underlying structure. Systems thinking has become the major enabler 
of complex (transdisciplinary) system analysis and assessment (Richmond, 1993). 

A specific form of systems thinking is the investigation approach of traditional 
reductionist system analysis, which studies systems by breaking them down into separate 
elements (Zexian and Xuhui, 2010). System thinking is variously interpreted in the 
literature. For instance, as (i) an ontological platform, (ii) a methodological framework, (iii) 
a means of enhancement, (iv) a model of holistic comprehension, (v) a knowledge sharing 
mechanism, (vi) a set of disciplinary principles, and (vii) a construct of learnt competences. 
It has placed the emphasis on comprehensive, diagnostic, and critical reasoning about 
complex situations, which resulted in its overall analytic nature. Often, elements of design, 
societal, and computational thinking as well as pragmatism can be identified in systems 
thinking, which is a kind of indication of the overlaps of the various thinking paradigms. 

Systems scientists have made diverse and divergent attempts to place the theory and 
methodology of systems thinking onto various philosophical platforms. Some of them have 
tried to provide a universal description of its goals and principles (Buckle Henning and 
Chen, 2012). Five major philosophical platforms of systems thinking have been identified 
in the related literature recently, namely (i) functionalist, (ii) interpretivist, (iii) 
postmodernist, (iv) emancipatorist, and (v) transdiciplinarist, as shown and exemplified in 
Figure 6.1. From the perspective of the theory and practice of operational research, 
(Jackson, 2009) provided a comprehensive historical overview of the functionalist, 
structuralist, and interpretivist applied systems thinking. Senge (2006) defined systems 
thinking as a specific discipline that offers a way of thinking about and understanding the 
effects and interrelationships that shape systems, and a language for describing their 

 

Figure 6.1: Philosophical platforms and main approaches of analytic systems thinking 
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behavior. Consequently, the precise meaning of systems thinking as a model of holistic and 
critical human thinking has remained ambiguous and has been characterized by Cabrera et 
al. (2015) as the field of a baffling array of methods and approaches. 

As forecasted by the literature and also this dissertation, even near-future systems will 
essentially differ from those that were regarded as references at the time of making the first 
road-paving efforts to develop all-embracing system theories, frameworks, and 
methodologies (Fazey et al., 2020). The current popularity and proliferation of highly 
intellectualized and socially deeply embedded engineered systems raise many novel 
technological, managerial, social, organizational, business, environmental, human, and so 
forth, questions about the present and future of systems. It is strongly believed that the 
power of the systems paradigm can improve the way people exist and operate in the 
existing world (Steels and López de Mantaras, 2018). On the other hand, application of the 
traditional system thinking frameworks and principles for studying phenomena and 
situations related to emerging systems typically results in limitations and incompleteness 
(Ulrich, 2013). 

In overall, the ontology and epistemology of contemporary systems thinking is a loose, 
broad, and eclectic collection of theories and methodologies, mirroring the divergence of 
systems engineering practice (Wan, 2011). The main assumptions of traditional systems 
engineering are: (i) absoluteness, (ii) unambiguity, (iii) sequentiality, (iv) rational actors, 
(v) reductionist, (vi) central controlling, (vii) static solution, (viii) mechanistic factors, (ix) 
deterministic behavior, (x) context independence (Pennock and Wade, 2015). Systems 
thinking has been regarded as a management discipline that concerns understanding of 
defined systems by examining the linkages and interactions between the components that 
comprise their entirety (Hürlimann, 2009). In the field of management science and practice, 
the view of holistic systems thinkers is sharply contrasted with the view of event-oriented 
thinkers. The latter thinkers assume that each event (or in other words, solving a related 
problem) has a specific cause and handling an event means finding the cause and fixing the 
problem according to that. 

Keating and Gheorghe (2016) argued that analytic systems thinkers see a problem (the 
structure and internal/external interactions of the system) entirely differently, namely as the 
cause of any regular behavior or misbehavior, and use potential feedback loops to achieve 
the goal. Stave and Hopper (2007) argued that seven systems thinking characteristics are 
required and are sufficient to describe systems, which include (i) recognizing 
interconnections, (ii) understanding dynamic behavior, (iii) identifying feedback, (iv) 
differentiating types of variables and flows, (v) using conceptual models, (vi) creating 
simulation models, and (vii) devising testing policies. The contemporary professional 
literature does not offer a concrete methodology to apply these general principles to 
(evolving) intellectualized engineered systems. 

As summarized above, a determining trend is that the number and kinds of engineered 
systems are rapidly growing, in particular, in the realm of intellectualized engineered 
systems (Wendt et al., 2009). New opportunities are offered by this, but also new 
challenges (uncertainties and incompleteness) are created for system science and 
engineering (Drack and Apfalter, 2007). Many of these challenges have been recognized 
and various efforts have been made to adapt the theory and practice of systems thinking to 
them (Mahmoudi et al., 2019). To understand the behavioral patterns that arise in systems 
of different systemic structures, the concepts and models of system archetypes were 
introduced (Kim & Anderson, 1998). The importance of system archetypes is in that they 
can be used both diagnostically (to gain insights into the behavioral structure of a system) 
and prospectively (to help foresee intended or unintended behavioral consequences) (Braun, 
2002). The system archetypes concept needs to be updated with regard to intellectualized 
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engineered systems. 
In investigative systems thinking, a phenomenon to be explained is viewed as part of a 

larger whole, a ‘system’, and is explained in terms of its role in that ‘system’ (Daellenbach 
et al. 2012). The ‘system’ is the kernel of the process of understanding the real world 
(Jaradat and Keating, 2016) and has been applied, among many others, to the study of 
medical, environmental, political, economic, human resources, and educational systems. 
Behl and Ferreira (2014) clarified the difference between ‘individual systems thinking’ 
(that is based on the ability of an individual engineer to demonstrate systems thinking) and 
‘collaborative (team) systems thinking’ (that is based on an emergent behavior resulting 
from the interactions of team members and utilizing a variety of thinking styles, design 
processes, tools and communication media to consider the system, its components and 
dynamics towards executing systems design. 

6.3. Legacy of prognostic systems thinking 

The above overview has cast light on four important issues (namely, objectives, 
characteristics, mechanisms, and competences), which need to be operationalized at 
investigating systems from a managerial, organizational, social, developmental, or another 
viewpoint. Notwithstanding the importance of these, we must ignore neither the dramatic 
changes, nor the implied issues that have been taking place (both in the conceptual realm of 
systems and in our daily life thinking) due to the human endeavor to create systems that 
reproduce parts of human intelligence in various forms, or to create intellectualized 
autonomous systems. Possessing system-level synthetic problem solving intellect, the latter 
systems rely on processing application-specific SSK by ampliative reasoning mechanisms. 
Currently, fast advancements can be witnessed in both mentioned domains of interest, 
culminating in knowledge and resource exchange among cooperating systems. It can be 
foreseen that the next generation of intellectualized systems will largely differ from the 
current socio-technical systems and move towards socialized and personalized smart CPSs. 
The difference will be not only in their (i) functional complexity, (ii) architectural 
heterogeneity, (iii) level of intellectualization, (iv) operational smartness/intellect, (v) 
natural/social/societal embedment, (vi) personal interrelationships, but also in the (vii) 
services, values, and experiences provided by them. 

Dealing with systems equipped with system-level problem-solving intellect raises the 
need for different reasoning models and aspects of investigation. These kinds of systems are 
deemed to (i) operate collaboratively in an environment with other systems, (ii) possess 
cognitive abilities such as perception, action control, deliberative reasoning, or language 
use, (iii) follow behavioral principles based on rationality and social norms, and (iv) have 
the capacity to adapt through learning. These are why it is necessary to lay down the 
foundation of a novel systems thinking that will support not only reflective, but also 
prognostic problem assessment and solving. Future systems thinking is supposed to be 
proactive and to provide new strategies and blueprints for moving to a highly-
intellectualized (perhaps intelligent) systems future. Due to the inability of the conventional 
approaches to address forthcoming challenges, prognostication is expected to become a new 
affordance of future systems thinking. That is, future ST models, frameworks, narratives, 
renderings, etc. are supposed to capture not only the (operational and managerial) 
complexity and problems associated with next-generation systems, but also the shifts of 
paradigms, the observed trends of changes, the varied manifestations, realizations, and 
interactions of systems. 

As introduced above, PST differs from both predictive systems thinking and critical 
systems thinking (Baker, 2007).). The former one focuses on the phenomena expectable in 
a particular states of systems, whereas the latter one is regarded as a multi-methodology 
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that combines methods and practices from various systems thinking domains, such as 
system dynamics, soft systems methodology, sociotechnical systems, and others, in order to 
better understand and address a recognized problem. It also differs from soft systems 
thinking, which pursue tackling unstructured problems (soft problems) to achieve 
improvement to the system through a multistage process of information gathering, 
description, analysis and debate. For instance, in the field of human activity systems 
(Burge, 2015). 

Thus, the goal of my work has been to devise prognostic analytic enablers and skills 
considering the perpetual and accelerated changes of the paradigms and trends. My 
intension was to move towards a system thinking that takes into account all rapid changes 
that influence how we see, treat, and benefit from complex systems, no matter if they are 
natural, fully or partially engineered, or hybrid systems. I also intended to obtain new 
insights into systems thinking - closer to the state and the truth of today - by means of new 
interpretations and elaboration of a novel conceptual framework. These are the main 
ingredients of the novelty of my approach. Be that as it may, it is fair to remark that, in spite 
of its novelty, my work is not unique in terms of rethinking systems thinking. Other authors 
have made similar efforts, in particular in the field of social science (Gradinarov, 2015), but 
they typically started out from different assumptions or had different purposes. 

In my interpretation, first of all, an evidence-based conceptual framework (CFW) is 
needed that can serve as a guide to (holistic) systems thinking scenarios and models, and 
that can facilitate prognostic analyses (without pretending being a technological roadmap to 
the world of intelligent systems). One of the requirements is that the conceptual framework 
should include ontological and methodological concepts that synergistically complement 
those discussed by Pickel (2007). In addition, the CFW should provide adequate view and 
knowledge on next-generation systems independent of their genre, and should make it 
possible to formulate relevant and accurate predictions about their manifestations, 
realizations, behaviors, and changes. Furthermore, the CFW should provide a high-level 
reasoning mechanism for PST. Obviously, the framework cannot be restricted to the 
paradigmatic features of one particular system. Instead, it may cover all systems that do not 
contradict the conceptual pillars that the CFW is based on. However, the intension 
resonates with that presented in Sun et al. (2014). 

The main expectations for PST are as follows: A primary task is to help identify 
emergent patterns conducive to explanation and prediction of future systems, and not only 
to their systems theoretical/engineering description and identification. PST enables, even 
forces, the different observers to look beyond what is in front of them and to see what is 
probable and what is possible. PST complements the currently identified three levels of 
descriptive systems thinking, that is: (i) the basic level (involving the recognition of 
interconnections, identifying feedback, and understanding dynamic behavior), (ii) the 
intermediate level (adding the differentiation of flows and variables, and using conceptual 
models to the basic level), and (iii) the advanced level (including the creation of simulation 
models, and testing policies). It introduces three additional levels associated with a 
fundamental understanding of the patterns that characterize next-generation systems and 
with the explanation and prediction of their behavior under various circumstances. 
Furthermore, it also introduces novel system archetypes which help model the essence, 
operations, and implications of intellectualization of engineered systems. Actually, these 
archetypes are already captured implicitly in the conceptual framework that describes the 
paradigmatic characteristics as well as activities/behaviors. 

6.4. Pillars of a conceptual framework 

It is well-known from the literature that systems thinking revolves around a handful of 
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concepts that anyone who is determined to learn can master, with study and practice. In the 
process of devising the proposed conceptual framework, the key concepts of analytic 
systems thinking have been reused as traditional conceptual pillars. The conceptual 
framework has been specified as a combination of the widely accepted conceptual pillars of 
traditional systems thinking and a finite set of the up-and-coming (emergent) conceptual 
pillars. The pillars have been formulated in an abstract and general manner in order to keep 
them applicable to different types of systems and to others. In the above conceptualization, 
the key elements of prognostic reasoning are not causal relations, but semantic relations of 
the conceptual pillars. The traditional conceptual pillars have been reused in the 
following interpretations: 

boundedness system has a domain of realization and operation defined by its 
individual boundaries 

causality system behavior is due to the transitive relationships of parts as 
influenced by the environment 

compositionality system as an entirety is more than the sum of its parts 
consolidation system changes towards a sustainable existence over time 
distinctiveness system has a purpose that defines its distinct functionality, 

manifestation, and/or realization 
equilibrium system’s overall behavior is the result of triggering and balancing 

processes that may lead to stable or emergent phenomena 
holism systems should be thought about seeing the big picture rather than 

the parts of it 
impact systems with multiple outputs exert cumulative patterned effects on 

their embedding environment and stakeholders 
interconnectedness system is an arrangement of a finite number of purposefully 

interrelated parts 

The above specifications reconfirm the fact that the traditional conceptual pillars of 
system thinking are about how systems manifest, rather than about how they evolve or are 
(self-)transformed over subsequent generations. They also disclose that traditional systems 
thinking neither focuses on evidential reasoning about possible and probable long-term 
developments, nor serves as an adaptive basis for reasoning about changing humans-
systems relationships. These are supposed to be provided by additional pillars. 

Altogether, eleven evolving concepts have been considered to capture the influence of 
specific trends, such as growing intellectualization, self-management of resources, 
increased autonomy, deep social embedding, and so forth. These non-forever-valid 
concepts establish the additional pillars of the extended conceptual framework. The sources 
of these conceptual pillars are varied, as well as the concerns implied by them (discussed in 
the next section). The sources of them are, for instance: (i) theories produced by empirical 
research, (ii) trends and implications of observed technological developments and societal 
demands, (iii) principles derived from and by philosophical speculations, (iv) postulates, 
conjectures, and assumptions concerning future situations, (v) economic conditions and 
projections, (vi) political initiatives and policies and (vii) subjective personal beliefs, 
inceptions, and opinions. In the specification of the additional conceptual pillars, these 
sources have been considered with a preference/emphasis indicated by the order of mention 
above. Thus, in an alphabetical order, the set of additional conceptual pillars of the 
proposed system thinking framework includes the following concepts: 

annihilation systems reflect the disappearance of thingness in terms of physicality 
of their constitutional entities 
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complementariness systems complement delimited humans and humans complement 
delimited systems 

exploitation reasoning mechanisms and synthetic knowledge of systems 
aggregate into a shared industrial asset 

ineptitude systems are constrained in terms of replication of genuine human 
abilities such as cognition, abstraction, feeling, and affection 

inseparableness systems may not entangle their purpose of existence, behavior, and 
performance from human will and meaning 

intelligence intellectualization of systems extends the cognitive capabilities 
concurrently in the perceptive, reasoning, and communicative 
domains 

naturalization intellectualization, organization, socialization, and personalization of 
systems are coexisting dimensions of progression 

organization systems are interconnected with each other in arrangements like 
systems, swarms, and/or societies of systems 

personalization functional capabilities of systems are extended with human 
behavioral traits and para-functional abilities 

self-management systems are capable of purposefully changing themselves towards 
improved overall performance based on reflective learning 

socialization social embedment of systems may range from socially interacting to 
socially behaving systems 

The total of the traditional pillars and the additional pillars are graphically shown in Figure 
6.2. The former ones are drawn by thick lines, and the latter ones by thinner lines. They 
together identify the primary attention points for prognostic systems studies. Moreover, 
they help analyze the changes in terms of their manifestations and impacts on systems in a 
holistic way – even over their subsequent generations (that is, beyond the life cycle of a 
particular system). 

A pertinent question has been how the compiled set of conceptual pillars can be 
transferred into concrete interrogative statements for the targeted systematized inquiries? It 
has been hypothesized that the conceptual pillars individually, or their pairwise or multiple 
relations, imply one or more chunks of information for the investigations. These chunks of 
information have been called concerns and textually formulated as arguable statements. 
Eventually, the conceptual framework has been constructed based on the semantic 
relationships of the particular pillars and interpreting the implications of their interplay. It 
facilitates follow-up knowledge exploration, chunking, and association, and eventually 
leads to a semantic network. 

6.5. Framework as a network of semantic relationships 

In the literature, framing the knowledge constructs associated with systems thinking and 
the development of logical frameworks are widely addressed issues. By definition, a 
framework is a construct of assumptions, concepts, values, and/or practices that represents a 
part of the existing or imaginary reality and constitutes a specific way of dealing with it. A 
framework holds chunks of knowledge logically and semantically together for a particular 
purpose. The most frequently occurring types of frameworks are (i) conceptual (logical), 
(ii) taxonomic (architectural), (iii) methodological (procedural), and (iv) practice oriented 
(model-based) frameworks (Tepjit et al., 2019). An agreement seems to exist that a 
conceptual framework is a logical arrangement of a set of physically or theoretically 
supported concepts and values that constitutes a way of viewing reality and serves as a 
frame of reference. It lends itself to making conceptual distinctions and to organizing a set 
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of concepts according to their semantic relationships. 
The pillars can be sorted into three sub-groups, which carry information about three 

influential factors: (i) recent trends of progression, (ii) paradigmatic features of 
(intellectualized) systems, and (iii) relationships with humans. The conceptual framework 
for PST has been specified as a logical construct defined by the semantic relationships 
between pairs of pillars. A visual rendering of the semantic network of the proposed 
conceptual framework is shown in Figure 6.3. Implicative semantic relations may connect 
(i) two traditional pillars, (ii) a traditional pillar and an emergent pillar, and (iii) two 
emergent pillars. They do not have any importance over each other. Each relation may 
imply an arbitrary number of concerns according to the complexity of the interrelated 
concepts. The derived concerns are actually the means of operationalization of the proposed 
conceptual framework in PST. 

The whole of the conceptual framework reflects an abstract view on the factors that are 
to be considered in current and near-future systems thinking. In the analysis, the concerns 
are projected onto the concrete situations that are considered as complicated systems. In 
practice, the projection means formulation of inquiry questions. This method supports 

 
Figure 6.2: The traditional and the additional pillars combined with the traditional 

pillars of systems thinking 

 

Figure 6.3: The proposed conceptual framework as a semantic network 
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forward-looking projections and reasoning prognostically over multiple evolving stages of 
systems. The trustworthiness of the prognostication is linearly proportional to the amount of 
the used data, information, rules, and human experiences. 

6.6. Concerns-driven prognostic assessment 

The term ‘concern’ has been used to refer to various essential thoughts, matters of 
interest, and important issues related to the conceptual pillars and to their interplay. 
Concerns have been explored and formulated based on extensive literature study and 
semantic concept analysis. There have been different numbers of concerns identified about 
the various pillars. A challenge was to define the concerns on the same abstraction and 
comprehensiveness level. In the lack of objective measures or comparison methods, this 
was based on subjective judgment. 

The concerns serve as guides to developing sets of questions to collect and analyze 
information for PST and deriving up-to-date mental and action models. In a somewhat 
different context, a similar work was done by Dorani et al. (2015). Depending on the 
system to be dealt with, it may be sufficient to consider a subset of the concerns, but there 
might be a need for the consideration of more or more articulated concerns in the case of a 
low-level comprehensive analysis. Obviously, prognostication becomes more factual when 
a large set of all relevant concerns are taken into account. For each edge of the semantic 
network, one or more concrete questions can be stated, based on which a concrete systems 
thinking model can be developed. On the other hand, system assessment and decision 
making eventually remain dependent on human views and interpretations. 

To impose a simple structuring on the pile of the identified concerns, I have sorted them 
into three categories according to the classification of the pillars explained above. The 
categories of concerns are associated with (i) the traditional conceptual pillars and their 
interactions, (ii) the interrelated traditional and emergent conceptual pillars and their 
interactions, and (iii) the additional conceptual pillars and their interactions. In the 
background research, the exploration of all important concerns came along as an 
unexpectedly tough nut to crack due to the wide range of engineered systems and possible 
interests of human stakeholders. It is clear that explaining the concerns with one or more 
concrete practical examples would be helpful for the reader of the dissertation. 
Notwithstanding, this could not be achieved due to the obvious page limitation. 
Nevertheless, it is believed that connecting the presented textual formulation of the 
concerns to real life examples will not be challenging for systems researchers. Even a 
complete overview of the first inventory of concerns, which has been published in the 
article underpinning this chapter, could not be included here. Below, only representative 
examples of this extensive set of concerns are given. 

Representative concerns associated with the traditional conceptual pillars and their 
interactions are: 
C03,0: distinctiveness <==> causality: 

C03,1: local and remote interconnections and interplays of the constituents and parts 
as a reason for the observed operation and manifestation of the behavior of a 
system 

C03,2: direct and indirect influence of the environment as a reason for the observed 
operation and manifestation of the behavior of a system  

C07,0: compositionality <==> interconnectedness: 
C07,1: methods and overheads of how new constituents can connect to and 

connected constituents can leave a system of higher-level arrangement  
C07,2: methods and overheads of how an open boundary system of higher-level 
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arrangement can handle operational and structural dynamics 
C11,0: causality <==> equilibrium: 

C11,2: lasting deterministic behavior (i.e., the next state of the system and the 
environment is not or not completely determined by their current states and 
the completed actions) 

C11,2: lasting stochastic behavior (i.e., the next state of the system and the 
environment is not or not completely determined by their current states and 
the completed actions) 

Representative concerns associated with the interrelated traditional and emergent 
conceptual pillars and their interactions are: 
C14,0: equilibrium <==> ineptitude: 

C14,1: incapability for adaptation due to the quasi-equal effects of reinforcing and 
balancing factors and processes 

C14,2: possibility of pre-emptive reaction to state changes before they occur based 
on forecasting the changes in system level 

C16,0: consolidation <==> naturalization: 
C16,1: compliance with the AI control problem (i.e. acknowledgment of the 

problematics of building AI-enabled systems that aid rather than harm their 
creators) 

C16,2: corrective self-reflection based on information about the effectiveness of the 
used computational approaches, the system's own overall behavior, and the 
historical successes and failures in solving application problems 

C20,0: ineptitude <==> impact: 
C20,1: exertion of cumulative, patterned effects by a system having multiple 

varying outputs for its embedding environment and stakeholders 
C20,2: indicators of the limitations and constrains of a system with regard to 

replication/reproduction of genuine human traits such as thoughts, 
abstraction, feelings, and affection 

C20,3: capacity of an intellectualized system and its constituents to have 
computational (artificial) sentience for positive and negative experiences 

Lastly, representative concerns associated with the additional conceptual pillars and their 
interactions are: 
C24,0: exploitation <==> intelligence: 

C24,1: accelerating and decelerating factors (barriers and drivers) of adoption of a 
type of intellectualized system in various sectors 

C24,2: importance and convincingness of intellectualized (or intelligent) system 
characteristics from an investment point of view 

C24,3: relationship between the achieved level of intellectualization and the socially 
demanded level of intellectualization 

C25,0: ineptitude <==> intelligence: 
C25,1: limits or deficiencies of implementation and aggregation of overall 

intelligence in an engineered system and synthesizing system intelligence on 
higher-level system arrangements 

C25,2: limits or deficiencies of replication of cognitive abilities such as cognition, 
abstraction, feeling, and affection  

C25,3: potentials and impacts of a system that is capable or has no capability of 
supervised, semi-supervised, and/or unsupervised learning 
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C32,0: inseparableness <==> complementariness: 
C32,1: measure of the system's insistence on or deviating from the human-stated 

overall purpose in the case of or towards (more favoring) opportunities and 
affordances 

C32,2: cooperation of systems that are not organized for success in the same way or 
are (or not) equally committed to successful goal achievement 

C32,3: guaranties that the system behaves as a robust (stable) transition system even 
under heavily dynamic operational and environmental circumstances 

C39,0: self-management <==> socialization: 
C39,1: ability to bridge the cognitive-social-technical gap between what and how 

the self-managing intellectualized system does and what a segment of 
society wants 

C39,2: involvement of social components such as human, culture, organization, 
context of use, usefulness, policies, and regulations by a self-managing 
intellectualized system 

C39,3: principles, norms, rules, laws, and ethics of socialization of self-adaptive, 
self-evolving, and self-replicative intellectualized systems 

6.7. Reflections and open issues 

Systems thinking has been proposed to extend our mental models to render 
comprehensive, whole-system perspectives. Thinking about systems is like viewing a 
(double-sided) coin. On the obverse side of the coin is the question about what constitutes 
systems thinking, whereas on the reverse side is the question about what enablers, 
knowledge, and capabilities a systems thinker should have in order to be efficient. The 
contribution of this chapter can be placed on the edge of the coin because it connects the 
principles of next-generation systems to the knowledge that system analysts should be 
aware of. The pillars and concerns have been interpreted from a pragmatist standpoint. This 
has its legitimacy because, as Gradinarov (2015) argued: “To a great extent, systematic 
thinking is constructivist in nature, as is modelled not by specific preliminarily set and 
axiomatically adopted basic principles but is dependent on the subject and must include a 
preliminary analytical stage”. This degree of freedom plays an important role in converting 
the reasoning model into PST models serving different applications and contexts. 

Prognostic systems thinking is seen in this work as an investigative thought process that 
is framed according to the particular subject matter, purpose, and context. Approaches of 
traditional systems thinking assume permanency and slow overall changes of the 
investigated systems, and look at them in a retrospective way or in a snapshot. When 
characteristics and manifestations of systems evolve rapidly, the need for PST emerges. The 
objective of the presented research was to (i) identify concepts that characterize both static 
and dynamic systems, (ii) construct a framework that semantically associate these concepts, 
and (iii) explore topics (issues) for a prognostic conceptualization or investigation of 
evolving systems. The trends and implications of their developments have been taken into 
account for a broad spectrum of intellectualized systems. 

 PST enables a systematic examination and validation throughout all stages of activities 
from the formulation of problems, through the implementation of solutions, to the 
evaluation of outcomes. The proposed method of analysis assumes evidence-based 
systematic reasoning and an objective decision-making approach. 

 A prognostic investigation of a system includes (i) deriving arguable goals and 
assumptions, (ii) specification of the set of pertinent concerns, (iii) compiling expressive 
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sets of indicators and measures, (iv) determining the extent of the investigated system, 
(v) comprehensive examination of the concerns, (vi) discerning influencing factors and 
their effects/implications, (vii) linking and evaluation of the findings, and (viii) 
reflections and projecting out propositions.  

 The completed research could provide only a first inventory of the possible concerns of 
analysis and obviously further studies are needed towards its completion, consolidation, 
and validation. Though the proposal allows seeing intellectualized systems and their 
evolution processes as a whole, it does not offer support for handling complexities. 

 Development of computational tools may reduce the challenge and efforts needed. The 
conceptual frameworks and analysis models of traditional systems thinking are criticized 
for their (i) static, (ii) descriptive, (iii) not ampliative, and (iv) non-resilient character. 
The proposed extendable conceptual framework and set of concerns can be extended as 
needed by the near-future state of system intelligence, autonomy, technology, and 
socialization. 

 Handling the hottest issues, such as (i) the growing functional automation and 
naturalization of systems in terms of organization, behavior, and socialization, (ii) self-
management of personalization, organization, socialization, and cognition, and (iii) 
exploration of their effects on humans, organizations, and society as a whole, needs 
further research efforts. 

 Discussed in recent literature, traditional systems thinking does not have a structured 
‘semantic language’ that can harmonize thinking and facilitate communications across 
the various domains of natural, social, and (intellectualized) technical systems. The 
concept of pillars and derivation of concerns are a step forward in this direction. This 
also strengthens the transdisciplinary character of PST. Nevertheless, there is a likely 
need for extension and further refinement since there have been several open theoretical 
and methodological issues recognized. 
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Chapter 7 

7. Aggregation and utilization of synthetic system intellect as an 
industrial asset 

7.1. Research objectives and approach 

Knowledge is one of the rare resources that becomes more if shared. That is why 
aggregation, combination, and distribution of individual (tacit) and general (scientific) 
human knowledge have received so much attention over the centuries. Schools, libraries, 
and conferences, as well as the Internet and digital warehouses make knowledge accessible 
for everyone. Can something similar happen with SSK? Can intellectualized systems 
increase the epsilon-knowledge by aggregating, blending, and reusing SSK? By what 
approaches and resources can this goal be achieved? Can system-level knowledge 
eventually manifest as a profitable industrial asset? These were the questions stimulating 
the background research, the latest results of which are presented in this chapter. 

Chapters 3 and 4 presented the trends of intellectualization of CPSs and argued that 
system knowledge and reasoning mechanisms are the most essential enablers, which make 
such systems able to solve application problems and to maintain their efficient operation. 
This chapter looks into the near future. It claims that SSI can be converted to a new 
industrial asset and utilized as such. In comparison with the state of exploitation of the 
various genres of human knowledge, the exploitation of epsilon-knowledge as an industrial 
asset is still in an embryonic stage, but forward-thinking researchers and managers have 
already cast light on some opportunities, challenges, and benefits. Unfortunately, no overall 
theory of synthetic system intelligence exists and its conceptual framework, management 
strategy, and computational methodologies are still in a premature stage. These are the main 
reasons why no significant progress has been achieved in this field, contrary to the latent 
potentials. 

This chapter is intended to contribute to the understanding of the roots of the system 
intelligence transfer problem and places system intelligence in the position of a new 
industrial asset. The presented material is based on a critical literature study and many 
formal and informal discussions with researchers. Various technological options for 
transferring system intellect to several other systems have been scrutinized. In fact, four 
families of analogical approaches to SSI transfer are briefly analyzed: (i) knowledge 
transfer based on repositories, (ii) transfer among agents, (iii) transfer of learning resources, 
and (iv) transfer by emerging approaches. They are seen as starting points of the 
development of dedicated computational technologies and management approaches. An 
attempt was made to include these technologies in a technological framework that is able to 
cover the heterogeneity of the systems and their system-level intelligence. The last section 
presents this overall procedural framework and discusses various issues of provisioning 
synthetic system intelligence as an industrial asset. The procedural framework identifies the 
generic functionalities needed for a quasi-autonomous handling of synthetic systems 
intellect as an industrial asset. 

As discussed in Section 6.4, system intelligence is a complex problem-solving and state 
management power that is based on representation of factual data, information, and 
knowledge, and goal and context-dependent computational reasoning. It has a human-
created initial part and a system-produced (becoming dominating over time) part, which has 
been referred to as synthetic system intellect (SSI). The initial intelligence of systems is 
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usually incrementally 
modified or 
supplemented according 
to the foreseeable or 
actually experienced 
changes to operational 
conditions by human 
knowledge engineers.  

However, 
autonomous systems 
are supposed to adapt 
their intelligence 
automatically under 
such circumstances or 
when, due to new goals, 
the elements of the 
initial intelligence may 

become outdated. What it means is that this part of the system intelligence can become not 
only significantly supplemented, but also partially or completely replaced by an evolving 
part that is self-acquired or self-generated by the system over its useful lifetime. The 
principle of this phenomenon is illustrated in Figure 7.1. The issue is how this 
autonomously managed synthetic part of system intelligence can be converted into a new 
industrial asset and utilized as such in an across-systems manner. Similar attempts were 
also made in the realm of exchanging human knowledge at enterprise level some 50 years 
ago (O'Leary, 1998), and in the realm of data and information management in the last three 
decades (Collins and Smith, 2006). This chapter emphasizes that time has come for the 
needed systematic studies and technology development in the context of aggregation, 
compilation, fusion, transfer, and reuse of the constituents of SSI. The content of this 
chapter has been compiled from the following peer reviewed publications: H12, H15, and 
H18 (see Appendix A.1.1). 

7.2. Roots of the system intellect transfer problem 

The origins of transferring various forms and resources of system intellect can be traced 
back to the 1970s. This was the time when it was recognized that system intelligence could 
be a problem-solving power. While the transfer of symbolic knowledge possessed by 
knowledge-based systems was in the center in the 1970s, the transfer of learning resources 
and models of machine/deep learning systems is of distinguished importance nowadays. 
Among the first efforts in the fields of knowledge-intensive systems and artificial 
intelligence development and use, was the paper of Chandrasekaran (1986). This seminal 
work addressed the use of high-level structured knowledge blocks for expert systems. 
Attempting to move beyond the capabilities of contemporary KBSs mandates knowledge 
bases that are substantially larger than those we have today. McDermott (1990) described 
how artificial intelligence research could make software development easier by writing 
programs “to act as frameworks for handling instances of problem classes in software 
engineering”. 

The need for and the possibility of knowledge exchange between engineered systems 
was also addressed in the seminal work of Neches et al. (1991). They identified three 
possible forms of knowledge sharing: (i) communication of the principles of knowledge 
bases to facilitate their reimplementation, (ii) facilitation through the inclusion of source 
specifications into new knowledge components, and (iii) run-time invocation of external 

 

Figure 7.1: Overall changes in the proportion of the human 
embedded and the self-produced knowledge of 
intellectualized systems 
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modules or services. On the other hand, they also identified four impediments: (i) 
heterogeneous representations, (ii) dialects within language families, (iii) lack of 
communication conventions, and (iv) model mismatches at the knowledge level. Smith and 
Poulter (1993) recognized the need for open knowledge-based systems and proposed an 
open infrastructure that permitted the integration and interoperability of different 
knowledge-based systems (KBS) and ensured that each system could utilize whichever 
representation for knowledge is appropriate to its tasks. As elements of an open KBS 
infrastructure, they defined: (i) standard knowledge representations, (ii) knowledge 
interchange format, (iii) knowledge manipulation and query language, (iv) common shared 
ontology, and (v) agent-based software engineering framework. The open KBS 
infrastructure supported run-time sharing of complexly structured knowledge between 
knowledge bases and their associated inference engines even if they used different 
knowledge representation formalisms and different inference mechanisms.  

There were parallel efforts that yielded the Initial Graphics Exchange Specification 
(IGES) and the now international standard (ISO 10303) Standard for Exchange Product 
Data a decade later. The latter has been under development since 1984 and in use since 
1994 (Pratt, 2005). The initial parts of the standard were orientated towards transferring 
voluminous artifact and process model data (CAD CADE, CAPP, and CAXX data) 
between multiple design and engineering systems using neutral representation formats. The 
latter parts, such as the ISO 10303-239 (application protocol for product life cycle support - 
STEP PLCS), have covered the entire product development and use process from 
conceptual design to recycling. 

Like other productive resources, system intellect resources can be (i) shared among 
similar systems, (ii) adapted and combined on purpose, (iii) warehoused and archived, and 
(iv) retailed as a cognitive product. Over the years, many technologies have emerged that 
can support the real-life implementation of all of these general options. At the same time, 
exchange and reuse of system intelligence of i*CPSs has not obtained due attention in the 
literature yet, nor has it been addressed in large-scale projects. In principle, it can happen: 
(i) in a human-assisted manner, (ii) in a systems-planned autonomous manner, and (iii) in a 
hybrid manner. Since there is a high probability of an autonomous extension of the 
functional profile of i*CPSs, SSI transfer may become a practical technological solution for 
obtaining the needed intellectual resources. However, it should be seen as a partial solution 
because the whole spectrum of resources (interoperating analogue and digital hardware, 
system-level and application-oriented software, and signals, data and information) are to be 
availed (acquired in run-time) too. Runtime resource management is the major issue for 
adaptive and, in particular, for evolving i*CPSs. 

7.3. System intellect as a new industrial asset 

The SSI self-acquired or self-generated by intellectualized engineered systems is 
becoming an important complement of human knowledge and problem-solving intellect. In 
addition, generating, exporting and/or importing, and reusing SSI via intellectualized 
systems have become possible technologically and necessary economically. Contrary to its 
growing importance and volume, the general methodological underpinning and the strategy 
of practical exploitation of SSI are still underdeveloped. Actually, the whole field of 
interests has not received sufficient attention. This situation triggers many questions to 
which the studied literature fails to give convincing answers. 

According to the traditional interpretation of the knowledge transfer problem, there is a 
need to identify the highest common denominator among the knowledge representation 
and interchange mechanisms of the systems to be integrated. In contrast with this, the 
completed research pointed at the opportunity of applying a different approach to utilizing 
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system intelligence, which may be based on the principle of ‘share it if you have or need it’. 
For instance, recommender systems may collect information about the exchangeable SSI as 
well as meta-information about the demands and supplies. One issue of taking steps 
towards exchanging and using SSI as a system-independent asset is disconnecting it from 
the original producer system. This warrants attention because, on the one hand, SSI should 
be made transferable in the simplest way, and, on the other hand, its problem-solving power 
should be preserved as much as possible. It calls for intelligence-oriented networking of 
i*CPSs, well beyond their physical and communicative networking. This is a new 
problematics, which has yet been scarcely studied, likewise the issue of adaptation and 
operationalization of the knowledge and mechanisms constituents of SSI imported from 
multiple source systems to one target i*CPSs. 

In general, there is a strong interconnection between the problem-solving knowledge 
and the processing mechanisms of i*CPSs. Typical examples are such as: (i) production 
rules <─> inference engine, (ii) analogy-based cases <─> case comparator, (iii) fuzzy rules 
<─> fuzzy reasoning engine, (iv) chromosome constructs <─> genetic algorithms, and (v) 
training data sets <─> artificial neural network. Due to their inseparable nature, these 
constituents of the SSI should be captured together and considered as duals for an effective 
SSI transfer. At the same time, this duals-orientated intellect transfer needs different 
packaging mechanisms than the neutral interchange format-based mechanisms typically 
applied in the case of traditional knowledge-based systems. It can be assumed that i*CPSs 
will be able to computationally manage such packaging mechanisms of duals. 

This above-sketched inter-systems knowledge sharing may open up a new direction for 
utilization of SSI and may amplify the problem-solving potential of i*CPSs as has 
happened with human knowledge and companies. Some pioneering researchers believe that 
such cooperative systems, or systems of systems, have the potential to be a game changer in 
multiple creative and productive domains. For the purpose of this work, intelligence 
transfer is understood as all of the structured activities related to separating application-
specific knowledge and processing mechanisms from one system and embedding them into 
several interoperating systems. Due to the obvious space limitations, the main features of 
the particular approaches can be presented only from a birds-eye-view. However, this is 
deemed sufficient to understand the overall conceptual relationships and the logic of 
reasoning. 

7.4. Transfer based on repositories 

The first examples of transferring intellect between systems are related to the symbolic 
and analogical methods of artificial intelligence research and system development. During 
the 1980s, it was recognized that building new knowledge-based systems usually entailed 
constructing new knowledge bases from scratch. Therefore, the scope of the built systems 
remained restricted, their development needed a lot of time, and the costs and efforts ran 
high. As a solution, proposals were made to assemble reusable knowledge components by 
system developers and to make succeeding systems able to interoperate with existing 
systems and use them to perform some of their reasoning tasks. In this way, declarative 
knowledge, problem-solving techniques, and reasoning services could all be shared among 
systems. However, both specific technologies and sophisticated infrastructures are needed 
to realize the repository concept on a large scale. 

The idea of repository-based knowledge exchange has gone through a number of 
developmental stages, such as (i) database sharing, (ii) semantic networks, (iii) symbolic 
rule-fact bases, (iv) analogical example libraries, (v) relational knowledge-bases, (vi) 
resource description frameworks, (vii) web ontology languages, and (viii) knowledge fusion 
frameworks. Common characteristics of these milestone concepts are that they (i) formalize 
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and structure human knowledge chunks, (ii) assume various description or specification 
languages, (iii) provide opportunity for external queries, and (iv) are not, or not directly, 
related to application cases. These approaches allow transferring knowledge content from 
the repository to one system, but do not support direct knowledge sharing among 
application-oriented systems. Not only the knowledge engineering process, but also the 
knowledge acquisition (retrieval or extraction) process is human dependent. 

The pioneering knowledge transfer approaches rested on agreements concerning (i) a 
standard syntax and semantics, (ii) a knowledge interchange format, (iii) a set of protocols 
to query a virtual knowledge base, (iv) a common shared ontology content, (v) a vocabulary 
and constraints on the well-formed use of contents, and (vi) an agent-based software 
engineering framework. Typical implementations concern (i) computational routine 
libraries, (ii) chunks of procedural knowledge, (iii) rule interchange format, (iv) labelled 
case libraries, (v) annotated object repositories, and (vi) product and service catalogues. 
The examples indicate that repository-based transfer may include both content knowledge 
and processing mechanisms. In practice, repository-based SSI transfer may concern three 
purposes (i) transferring SSK only, (ii) transferring reasoning mechanisms only, and (iii) 
transferring synthetic systems intellect. Artificial intelligence research comprehensively 
studies the various application-independent, but task-driven forms of computational 
reasoning approaches. 

7.5. Transfer among agents 

The second example is taken from the field of multi-agent collaborative systems. 
Multi-agent systems are decentralized structures formed by autonomous computational 
entities that communicate and share data, information, and state-maintaining and problem-
solving knowledge with each other (Leitão et al., 2016). Agents represent real-world or 
virtual entities with varying levels of fidelity, intellectualization, commitment, and 
socialization. They are implemented as intellectualized entities, which have sufficient 
intellect and capacity for (i) building situational awareness, (ii) making logical decisions, 
and (iii) performing functional agency. Therefore, many works consider them ‘intelligent’ 
entities (Rudowsky, 2004). Informally, their rational intelligence is seen as the ability to 
achieve goals in a complex environment, whereas their social intelligence is the ability to 
successfully interact in an environment full of other agents (Insa-Cabrera and Hernández-
Orallo, 2013). Agents act, learn, negotiate, and adapt autonomously and try to understand 
their environment in order to pursue their goal. With regard to the autonomy of the agents, 
important issues are goal delegation and goal adoption, which are seen as ingredients of 
organization, social commitment, and contract of the agents, and then of the knowledge 
exchange process. 

In multi-agent systems or system-of-systems, the issue of transferring intelligence, 
resources, and/or knowledge from one actor agent to others has been known for a long time 
(Sycara et al., 1996). To communicate, the agents are supposed to comply with output 
guaranties and input assumptions - otherwise their interoperability cannot be provided. 
While there are papers discussing in-process communication and information exchange 
among agents, much less is published on transferring aggregated knowledge from one agent 
to others (Allen et al., 2002). The inter-agent transfer of intelligence among hardware and 
software agents concerns not only signals, data, and pieces of information, but also chunks 
of knowledge and experiences that they have individually learnt according to their 
operation strategy. Transfer can be initiated both by a receiver agent and by a sender agent 
when knowledge and logic required to perform an activity is unavailable, incomplete, or out 
of date. The knowledge shared by the agents constitutes beliefs proven individually or 
collectively by the collaborating agents. As a result of this, multiple collaborating agents 
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build distributed intelligence. 
The transfer of the necessary knowledge and processing logic may enable an agent to 

execute a new task or to execute a given task better (Iglesias et al., 1998). The process 
includes three main steps: (i) packing and decoupling the knowledge and algorithms from 
the sender agent, (ii) routing and transferring, and (iii) unpacking and embedding in the 
receiving agents. Alternatively, when the knowledge is processed by local algorithms of the 
receiver systems, (iv) activation of the various local algorithms has to happen. As a whole, 
the multi-agent system may harmonize the package sending and processing over all sender 
and receiver agents, or may leave it on their own decision which depends on their 
programmed objectives, social character, and local context (Cardoso and Ferrando, 2021). 
As explained by O’Neill and Soh (2022), the subsequent steps of the process are: (i) 
triggering the messaging actions either by a pre-programmed timer poll or by an event- 
drive framework, (ii) building local situational awareness according to data obtained from 
own sensors or memory, or received by communicating with other agents, (iii) 
understanding the meaning of between-agent communications (Williams, 2004), (iv) 
making a decision based on the logical image and the built situational awareness, (v) 
execution of the decision locally or in cooperation with other concerned agents, (vi) 
consulting as an action carried out locally or potentially by some other agent through a 
cooperative or delegated process. The level of situation awareness depends on whether the 
agent only aggregates data, or actuates its functional model by time-wise obtained data. 

Smart agents can migrate from one system to another, taking their knowledge with 
them, and can continue their operation after hospitalization in the target system from where 
they left off. The principle of agent hopping as a transfer mechanism may contribute to 
finding a solution to the system intelligence utilization problem where the system's actors 
can be agentized. The pioneers, such as Bharat and Cardelli (1995) developed the principles 
of how application migration could be implemented at the programming 
language/environment level. They proposed to include two complementing elements, 
namely suitcases and briefings. A suitcase is the long-term memory of the agent that 
contains all pieces of knowledge that the agent can take with it. It may include own-
knowledge to share and own-tasks to execute. The briefings are chunks of knowledge that 
the migrating/migrated agent receives from the target system. The contents of these 
containers are updated before every migration. Thus, suitcases and briefings are the 
enablers of the interoperation of an agent with other hosting agents (Xu and Qi, 2008). 
Smart software agents of i*CPSs can diagnose the opportunities for migrating and can 
make decisions on the execution and timing of a migration autonomously, based on the 
possessed data and obtained communications (hop instruction). Agents may duplicate 
themselves and send their copies to multiple target systems. A recognized issue is that 
agents with diverse ontologies may assign different meanings to the same concept, or 
consider different concepts and messages with the same meaning (Athanasiadis, 2005). 
Coordination of nearly concurrent migrations of agents is an additional computational issue, 
as well as the negotiation protocol development for autonomous multi-agent systems. 

7.6. Transfer of learning resources 

A third evolving example of technological opportunities for knowledge transfer 
between intellectualized systems is the transfer of learning resources (data, models, 
mechanisms, rules) (Zhuang et al., 2020). Actually, two complementary forms of 
computational learning deserve attention. One approach, referred to as transfer learning, is 
associated with the recently developed sophisticated computational mechanisms of machine 
and deep learning (Neyshabur et al., 2020). The most basic form of transfer learning is fine 
tuning a pre-trained model. In addition to the mentioned transfer learning, federated 
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learning also deserves 
attention. It also aims at 
transferring learning 
resources, but 
differently 
(AbdulRahman et al., 
2020). 

Transfer learning 
has been proposed to 
enable modification of 
the architecture of deep 
learning networks by 
pre-trained layers and to 
solve the problem of 
insufficient training data 
(Pan and Yang, 2010). 
The architecture 
modification is typically 
a focused action, i.e. it involves editing only the last few layers of the target network, as 
opposed to modifying the layers in the command line. This way, the output functionality of 
a network can be changed, for instance, from classification to clustering, as happens in the 
case of MatLab (Figure 7.2). This form of computational learning also supports cases where 
training data are expensive or difficult to collect, and makes it possible to provide labelled 
deep learning data or to change the algorithmic elements of the learning mechanism (Torrey 
and Shavlik, 2010). In this way, data and algorithms can be used more efficiently and aptly 
in other application cases, having a number of characteristics in common and being not 
prone to negative transfer. As an example of the latter, Zhang et al. (2018) posited that 
recommender systems often suffer from the data sparsity problem that is prevalent in 
newly-launched systems having had not enough time yet to amass sufficient data. To solve 
this knowledge insufficiency problem, these systems apply cross-domain knowledge 
transfer (i.e., transfer relevant data and relationships from a rich source domain to assist 
recommendations in the target domain). 

Like multi-task learning, transfer learning also exploits relations between different 
learning tasks (Zamir et al., 2018). In contrast to multi-task learning, which simultaneously 
(jointly) solves many related individual learning tasks, the methods of transfer learning 
operate in a sequential fashion and solve the learning tasks consecutively. Transfer learning 
is enabled by constructing regularization terms for a learning task by (re)using the results of 
a previous learning task (Weiss et al., 2016). A popular implementation is deep transfer 
learning. Deep learning mechanisms attempt to learn high-level features from mass data by 
automatically extracting data features by unsupervised or semi-supervised feature learning 
and hierarchical feature extraction, and to use the learnt features to classify objects. Deep 
transfer learning is often categorized based on the computational approaches used. Based 
on these, the following categories are identified: (i) instances-based (utilizing instances in 
the source domain by appropriate weight), (ii) mapping-based (mapping instances from two 
domains into a new data space with better similarity), (iii) network-based (reuse the partial 
of network pre-trained in the source domain), and (iv) adversarial-based (use adversarial 
technology to find transferable features that both suitable for two domains). Deep learning 
has a very strong dependence on massive training data compared to traditional machine 
learning methods. 

The term ‘federated learning’ (FL) was first introduced in McMahan (2016) to name 

 

Figure 7.2.: The overall procedure of reusing pre-trained layer 
components of deep neural networks 
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the approach of collaboratively training a machine learning model based on distributed 
resources. Strictly speaking, FL is an umbrella term for ML/DL methods that train models 
in a collaborative fashion. Opposing the other centralized approaches, FL is a distributed 
machine learning approach, which keeps raw data decentralized, or in other words, without 
being moved to a single server or data center (Khan et al., 2021). That is, the mechanism of 
FL brings the code to the data, instead of bringing the data to the code. On the other hand, it 
coordinates the distributed trainers to carry out the training process of machine learning 
efficiently (Sattler et al., 2020). There are three aspects in which FL differs from other 
centralized learning approaches: (i) it allows transferring the learnt (intermediate) data 
among the distributed computing resources, while avoiding the transfer of training (direct 
raw) data, (ii) it exploits the distributed computing resources in multiple regions or 
organizations, (while the centralized approach generally only utilizes a single server or a 
cluster in a single region, which belongs to a single organization), and (iii) FL generally 
takes advantage of encryption or other defense techniques to ensure the data privacy or 
security, while the centralized approach pays little attention to these security issues (Smith 
et al., 2017). 

FL is formally defined as a machine learning approach where multiple clients 
collaborate in solving a machine learning problem, while the raw data is stored locally 
and is neither exchanged nor transferred (Shaheen et al., 2018). Federated learning does not 
allow communication (while the centralized approaches have no restrictions), because it 
addresses the fundamental problems of privacy, ownership, and locality of data. The 
concept of FL was extended to three data scenarios, i.e., horizontal, vertical, and transfer 
(Zhang et al., 2021). The distributed machine learning implemented according to the 
horizontal data scenario of FL addresses decentralized data of the same features, while the 
identifications are different. Features are those properties (predictors) of a data construct 
that can be measured or computed in an automated fashion. For example, colors are features 
of a pixel in a bitmap image. The vertical data scenario handles decentralized data of the 
same identifiers with different features. The hybrid data scenario deals with data of 
different identifiers and different features. Network coding techniques have been applied to 
the design and analysis of FL methods (Sarcheshmehpour et al, 2021). The various 
approaches of transfer and federated learning offer mechanisms that can be used as 
analogical in the case of system intelligence and knowledge transfer. 

7.7. Transfer by emerging approaches 

As a fourth example of the current approaches of knowledge transfer between 
intellectualized systems, computational approaches of knowledge graphs (KGs) reuse 
(Hogan et al., 2021) and collective intelligence have been taken into consideration. The 
term ’knowledge graph’ (like the term ‘semantic network’) was introduced in the literature 
at the beginning of 1970s (Schneider, 1973). It has been revitalized by commercial 
companies at the beginning of 2010s (Noy et al., 2019). The reason for this revival is that 
graphs provide an intuitive and concise abstraction for a variety of knowledge domains, 
where nodes, edges, and paths capture different, potentially complex relations between the 
chunks of knowledge. Knowledge bases and knowledge graphs show some similarities. The 
relational records of a knowledge base are replaced by single- or double-orientated entity-
relation/predicate-entity constructs of knowledge graphs. Though versatile, KGs are also 
not always sufficient for problem-solving by i*CPSs (Abu-Salih, 2021). That is why they 
have many different forms of extension mechanisms. 

Conceptually analogous to a non-hierarchical concept map, KGs are seen as more 
complex than image or text data types, which are characterized by (i) lack of reference 
points, (ii) arbitrary size, and (iii) diverse network topology. In principle, knowledge graphs 

               horvath.imre_37_22



79 

can be constructed without any underpinning predefined ontology schema. Nevertheless, 
the literature does not report on computational methods for automated graph construction, 
only on graph processing (e.g., on transformation of entities and relations into a continuous 
vector space). In this arrangement, the knowledge graph is the knowledge container and the 
machine learning mechanisms may avail its content for use by different systems. Typical 
models of KGs are (i) directed edge-labelled graphs, (ii) heterogeneous information 
networks, (iii) entity-property-value graphs, (iv) graph meta-datasets, and (v) stratified 
hyper-graphs. Reasoning can be (i) inductive symbolic reasoning (e.g., self-supervised rule-
mining and axiom-mining), and (ii) inductive numeric reasoning (e.g., unsupervised graph 
analytics, self-supervised embeddings, and supervised graph neural networks). 

Since the real-world knowledge graphs are large and highly incomplete, inferring new 
facts based on them is challenging. Being a network of entities and their relations in their 
simplest form, KGs embed discrete but linkable elements of knowledge and can be 
extended with various reasoning and learning mechanisms (Tiwari et al, 2021). Direct 
processing of knowledge graphs includes (i) knowledge graph embedding in vector spaces, 
(ii) knowledge representation learning, (iii) knowledge graph completion, (iv) extraction of 
relation paths, and (v) knowledge graph completion (Ji et al., 2021). The knowledge graphs 
stored on a cloud, a fog, or an edge are actually not shared, but directly accessed by 
multiple systems even concurrently. 

Machine learning mechanisms can learn the interrelated knowledge hiding in the 
relational structures within domain-specific or domain-independent heterogeneous KGs 
(Tian et al., 2022). By embedding a graph in a vector space, its logical representation can be 
transferred to (a dense) numerical representation. For instance, Liu et al. (2022) extended a 
given knowledge graph representation with machine learning. The encoding of KGs can be 
executed by deep learning through relational graph convolutional network (GCN). The 
entity and relationship constructs are embedded using translational models such as TransE, 
ConvE, ComplEx, RotatE, QuatE, and AutoSF. Many researchers share the opinion that 
knowledge graphs can become a confluence of technologies from different areas with the 
common objective of maximization of knowledge which can be distilled from diverse 
sources at a large scale using a graph-based data abstraction (Hur et al., 2021) 

As discussed by (Lykourentzou et al., 2011), the idea of collective intelligence (CI) and 
collective intelligence systems (CISs) has emerged in the context of producing higher-
order intelligence, solutions, and innovation by large groups of cooperating individuals. 
However, the attention has twisted to the implementation of synthetic collective intelligence 
in the last decade. In the formulation of Sulis (1997), a CIS consists of a large number of 
quasi-independent, stochastic agents, interacting locally both among them, as well as with 
an active environment, in the absence of hierarchical organization but in the presence of 
adaptive behavior. The three principles (stochastic determinism, interactive determinism, 
and nonrepresentational contextual determinism) and the two major behavioral control 
processes (non-directed communication and stigmergy) he identified in a different context, 
have logical links to swarms of systems and their swarm intelligence. Gunasekaran et al. 
(2015) proposed a theory of collective intelligence that mimics the communication process 
typically occurring in the collaboration of human entities in self-managing multi-actor 
systems. It attempts to explain the emergence of intelligent collective behaviors, among 
others, in social systems. Musil et al., (2015) proposed a multi-layer model that includes 
three constituents: (i) human actors as proactive components, (ii) a single, homogeneous CI 
artifact network as a passive component, and (iii) reactive/adaptive component for 
computational analysis, management and dissemination. 

Passive and active CISs have been distinguished. Zhang and Mei (2020) presented a 
constructive model for collective intelligence, which continuously executes exploration, 
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integration, and feedback in computational loops. The idea of CISs can be extrapolated to 
the transfer of synthetic system intelligence based on adaptation of the previously proposed 
approaches and introducing new ones. Artificial collective intelligence is seen as a new 
perspective on AI, which is enriching computational intelligence techniques (Williams, 
2021). The latest implementations of this technology seek to merge human and machine 
intelligence with the aim of achieving results unattainable by either one of these entities 
alone (Smirnov et al., 2019). From a practical point of view, it facilitates achieving the 
goals of a multi-actor system at a collective (group or crowd) level. The elements of the 
overall knowledge transfer process are (i) discussion, (ii) argumentation, (iii) negotiation, 
and (iv) decision making.  

Leitão et al. (2022) completed an extensive literature study concerning the concept and 
features of collective intelligence in an agent-based CPS. According to them, the concept of 
collective intelligence provides an alternative way to design complex systems with several 
benefits, such as modularity, flexibility, robustness, and re-configurability to condition 
changes, but it also presents several challenges to be managed (e.g., non-linearity, self-
organization, and myopia). What differentiates CISs from multi-agent systems is that the 
shared knowledge is transformed, cross-fertilized, moderated, and consolidated through a 
series of discursive interactions among the actors. Notwithstanding, each included entity 
has its own personal intelligence. Chunks of crowdsourced information and collective 
intelligence can be used as input into learning mechanisms. Zheng et al., (2018) proposed a 
computational platform to support the development of multi-agent-based reinforcement 
learning for artificial collective intelligence. 

7.8. Technological framework for managing SSI 

Sections 7.3 - 7.7 presented seven already consolidated or currently developing 
computational technologies that show affinity to a comprehensive and robust SSI transfer 
process as well as to each other. These are: (i) distributed (intelligence) repository 
management, (ii) collaborative multi-agent-based transfer, (iii) migrating multi-agent-based 
transfer, (iv) transfer of learning resources, (v) decentralized federated learning, (vi) 

knowledge graphs-based 
transfer, and (vii) collective 
intelligence-based transfer. It 
is probable that none of them 
alone will be sufficient for all 
SSI transfer problems of 
i*CPSs. As an intermittent 
stage in research and 
development, a subset, the 
whole set, or an extended set 
of the above-discussed 
technologies should be 
integrated procedurally and 
computationally into tailored 
and orchestrated transfer 
technologies (Figure 7.3). It 
should also be taken into 
account that there are several - 
yet in sprouting - technologies, 
such as knowledge transfusion 
and knowledge distillation, but 

 

Figure 7.3: Potential technological processes of utilizing 
SSI as an industrial asset 
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it is not clear how they can contribute to solving the problem of transferring synthetic 
system intelligence. 

It is fair to mention that this set of probable technologies reflects a (subjective) 
conjecture of the author. Nevertheless, these technologies are supposed to get further 
developed by domain experts and to reach that high level of maturity, which is required in 

  

Figure 7.5: The technological processes of utilizing SSI as industrial asset 

 
Figure 7.4: The technology related conceptualization of utilizing SSI as industrial asset 
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the context of transferring SSI. The main concepts underpinning the utilization of SSI as an 
industrial asset are shown in Figure 7.4. 

From a technological point of view, the overall asset management process of SSI can 
be divided into local processes and a global interoperation process (Figure 7.5). The 
outcome of the global process is the generic SSI distributed over all interoperating systems. 
There are two types of local processes named neutralization process and naturalization 
process. The neutralization sub-process is about separation of transferable SSI from the 
generating system, while the naturalization sub-process is about the integration of 
transferred SSI with the native SSI of a system. The outcome of the local neutralization 
sub-process is a package of SSI self-generated by a source system (called exported SSI), 
whereas the outcome of the local naturalization sub-process is an SSI packet integrated with 
the native SSI of the target system (called imported SSI). Both the export and import SSIs 
include task-oriented problem solving knowledge and processing mechanism combinations. 

The neutralization sub-process is a (tail) extension of the local intelligence management 
process. Thus, this extends: (i) self-acquiring problem solving knowledge, (ii) self-
acquiring processing mechanisms, (iii) self-construction of problem solving knowledge, 
(iv) self-construction processing mechanisms, and (v) operationalizing SSI in application 
context with (vi) creating intelligence exchange packets (IEPs), (vii) assigning 
applicability meta-information to IEPs, (viii) warehousing exportable IEPs, (ix) brokering 
with exportable IEPs, and (x) dispatching exportable IEPs for external use.  

The naturalization sub-process is a (front) extension of local intelligence management 
processes. It appends (i) recognizing the need for importable IEPs, (ii) searching for 
importable IEPs in warehouses, (iii) qualifying IEPs for use in tasks, (iv) importing 
qualified IEPs, (v) pre-testing and adaptation of imported IEPs, (vi) integrating the contents 
of imported IEPs with native SSI used for problem solving activities and self-management 
activities by the host system. The activities of the global transfer sub-process are: (i) 
registration of interoperating systems and their resources, (ii) handshaking and monitoring 
the transfer traffic of IEPs, (iii) offering small scale sampling opportunity, (iv) managing 
protocols and standards, (v) extracting meta-information for improvements, and (vi) 
managing overall security. 

Implementation of SSI transfer means extra overheads for intellectualized systems from 
four aspects: (i) operationalization, including (a) pretesting, (b) integration, and (c) 
refinement, (ii) long-term wrangling, including (a) evaluation, (b) filtering, (c) chunking, 
and (d) extension, and (e) structuring, (iii) enrichment, including (a) annotating, (b) 
contextualization, and (c) tailoring, and (iv) packaging, including (i) assembling, (ii) 
labelling, and (iii) standardization. 

7.9. Provisioning as an industrial asset 

The increase in industrial revenues and social benefits poses a continual need for novel 
innovations and new assets. Traditionally, an asset is a resource owned and controlled by an 
individual, a production or servicing company, or a government. It is a result of past or 
current activities, the enabler of economic benefits. In the past, multiple forms of human 
knowledge (scientific, technological, enterprise, educational, etc.) have been used as 
industrial assets. What constitutes human knowledge assets are (i) the outputs of the 
knowledge transformation processes, and (ii) the accumulated depository of skills, 
knowledge and experience of human professionals. Knowledge produced by artificial 
intelligence has also reached this status.  

In comparison with the conventional assets, SSI has unique characteristics since it is: (i) 
intangible, (ii) sharable, (iii) reproductive, (iv) evolutionary, and (v) context-valued. It can 
be possessed as a property, and/or accessed as a service. Thus, SSI contrasts the traditional 
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(narrow sense) interpretation of industrial assets as means (equipment, tools, chemicals, 
vehicles, infrastructure, computers, materials, etc.) deployed to convert inputs to industry 
outputs, which can then be marketed as products, services, and experiences, with the 
expectation that they will generate future cash flows. Handling SSI may become a part of 
the practice of asset management, because it has the potential to grow in volume and value, 
and to increase total wealth over time. The reasoning regarding the logic of provisioning 
SSI as an industrial asset may start out from the key properties of an asset. Typically, three 
properties are identified: (i) ownership/access, (ii) economics, and (iii) supply. In addition 
to the technological and business issues, these important issues also need further attention. 

For instance, ownership seems to be a simple matter in view to the current status quo of 
engineered systems and the concerned legal regulations, but in fact it is not. According to 
the latter, the responsible owner of the SSI is the original developer and/or the actual owner 
of the system producing the asset, as contracted. However, this is not so straightforward in 
the case of autonomous systems of the near future, which produce their synthetic 
resources/assets largely independent of humans, or at least not under the direct control of 
human stakeholders. The other side of the coin of the ownership of SSI is that (i) 
proprietary, (ii) shared, and (iii) open forms of possession may take place. Proprietary SSI 
means that the body of knowledge and the processing mechanisms belong inseparably to a 
system (or to the owner of similar systems). This knowledge is primarily stored in the 
repositories of the system or on those of the owner company (e.g. on edge computing 
devices or a private cloud of the company or third party, with no or limited access to other 
enterprise and partner networks, and retaining a high degree of control, privacy, and 
security). Shared SSI means that the body of knowledge is jointly aggregated by 
cooperating systems and/or their owner companies over multiple systems. It is managed 
either on shared edge networks or on a community cloud whose infrastructural elements 
and processing rights are shared by several organizations or third parties which share 
concerns, common objectives, and optimization of benefits. Open SSK means that a body 
of knowledge is made openly accessible, processable, and usable for the systems, 
developers, and researchers of a large industry group, academic organization, and 
eventually, the broad public. In other words, the historically aggregated and maintained 
intelligence may reside on publicly accessible clouds or may be availed by a cloud service 
provider, enabling standardized data and application portability. 

As well, the economic value of the exchanged, sold, or obtained SSI assets is a 
complicated matter (Amin et al., 2018). Assets are associated with ownership and can 
eventually be turned into cash and cash equivalents for the owners. Ultimately, it means 
that the total amount of investments should be less than the total amount of financial return 
(profit). The investments include all (primary) costs of (i) the implementation of the system 
shell, (ii) the knowledge engineering in the set-up stage, including the preparation of the 
reasoning and control mechanisms, (iii) the processing (extraction) of system intelligence 
during operation of a source system, (iv) transferring system intelligence to a target system 
or to a warehouse, and (v) reactivation of the transferred system intelligence in a target 
system. The returns include the (primary) income based on (i) selling and maintaining the 
system shell, (ii) vending knowledge engineering means and services, (iii) selling system 
intelligence, (iv) sharing the benefits of reusing transferred system intelligence by the target 
system(s). Here, only the direct and indirect costs and benefits are thought of, and the 
secondary costs and benefits are ignored. Both the investment side and the return side 
involve complex activity flows, whose financial consequences are difficult to capture in 
detail and, therefore, comprehensively forecast and quantify. The evaluation is even more 
complicated if multiple (large number of) systems (or a dynamic system of systems) are 
considered which have different commitments and involvement in asset generation and 
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utilization, and may show different levels of successful and unsuccessful operations. 
The supply aspect of converting SSI into an industrial asset involves not only 

opportunities, but also challenges. Traditionally, the concept of asset convertibility is used 
to classify assets according to how easy or difficult they are to be supplied and to get 
converted into cash. The primary issue would be the motivation of the owners of 
autonomous systems to make positive decisions on collaboration and to equip their systems 
up-front, or augment them in use time, with facilities for SSI management. However, 
utilization of SSI as a novel industrial asset is supposed to happen not only over the 
boundaries of systems, but also over the borders of companies and enterprises. This novel 
form of asset exploitation is deemed to be part of their information technological (IT) asset 
management. It must complement the combined practices of technological, financial, 
inventory, and contractual functions within the IT environment, and help strategic decision-
making, optimization of spending, and support lifecycle management. 

7.10. Reflections and open issues 

In a sense, history repeats itself: In the 1970s-1980s, the need for technological 
solutions for transferring product data and inference knowledge among dissimilar systems 
was a stimulant of information systems research. In the years of the 2010s and 2020s, the 
need (and the opportunity) for technological solutions to transfer synthetic knowledge 
among intellectualized systems has given orientation to a part of CPS research. The overall 
assumption of the background research was that shared SSK and reasoning/learning 
mechanisms can eventually become a valuable industrial asset. As an intellectual capital, 
SSI can contribute to the net working capital of a company or even to the problem-solving 
potential of the whole society. This chapter of the disseration was intended to present the 
thoughts of the author concerning a number of recognized issues and technological 
affordances – with an obvious incompleteness.  

It is well-known to scientists that the process of learning and knowing a yet unknown 
research phenomenon goes through such stages as discovery, description, explanation, 
prediction, and regulation. Since the emerging phenomenon of managing synthetic system 
intelligence is novel even on a conceptual level, the research could focus only on the 
identification and the characterization of this complex, multi-faceted phenomenon. 
Therefore, a larger part of the contents presented in this position paper belongs to the stage 
of discovery and description, and only a smaller part to the stage of explanation and 
prediction. Due to the newness of the phenomenon, the literature is rather scarce and 
unspecific. Thus, the intention of the structured literature study was to get deeper insights 
into the state of science and practice. 

 The completed survey informed us about the lack of generic theories, conceptual 
frameworks, and methodological approaches. Many of my own concepts and ideas are 
only work-in-progress and they still must be addressed extensively from the perspective 
of an industry-wide implementation. Thus, a supplementary goal of the work has been to 
stimulate and encourage research and development efforts in this direction. As good 
research questions imply new questions, cutting-edge prognostic research should 
encourage many strands of follow-up research. 

 Like patents and copyrights, SSI is to be treated as a (i) partially-physical, (ii) intangible, 
(iii) liquid, (iv) functional, and (v) net identifiable potential asset that needs a socio-
technical process to get converted into cash. The road to an industrial solution for 
utilization of SSI will most probably be long, curvy, and bumpy. Nevertheless, it is wise 
to deal with it in the framework of digital transformation, which has rapidly turned itself 
to a digital disruption in terms of intellectualization of engineered systems (Vial, 2021). 
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 This chapter has made an attempt to provide procedural framing of the process of 
transforming SSK into a common industrial asset and capital. Obviously, there are many 
fundamental unanswered questions concerning the vision of SSI and utilizing it as a new 
industrial asset. For instance: What is the true future of system intellect (or intelligence)? 
Where does SSK go? Where do the computational reasoning mechanisms go? But 
nothing can be an obstacle to imagination, design, and planning. 

 Not surprisingly, this chapter also closes with questions, rather than with definitive 
answers. The main questions are: ‘Have the investigated transfer mechanisms enough 
potential to serve a wide range of intelligence transfer problems of i*CPSs equally 
well?’ Or, ‘Should they be extended or substituted by some other (currently known or 
unknown) mechanisms that will serve better for the purpose?’ However, these questions 
cannot be answered without implementation as a computational prototype. 

 As the analysis showed, there are at least seven ‘carriages’ needed to move ahead on the 
road: (i) obtaining deep scientific insights into the overall phenomenon, (ii) elaboration 
of the fundamentals (underpinning knowledge and specifications), (iii) creation of 
conceptual, procedural, and methodological frameworks and models, (iv) working out 
the across-systems intellectual and computational mechanisms and resources of SSI 
transfer, (v) implementation of the technological, engineering, and organizational 
enablers, and (vi) realization of demonstrative prototypes with the involvement of 
autonomous i*CPSs, (vii) identification and propagation of the best practices among 
i*CPSs developers. 
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Chapter 8 

8. Framing supradisciplinary scientific research for 
intellectualized cyber-physical systems 

8.1. Diversification of cyber-physical systems 

As touched upon in Chapters 2 and 4, the last decades have witnessed, and the 
forthcoming decades will most probably witness, the intensifying processes of scientific 
convergence, technology integration, and large scale systematization (Tanik et al., 2021). 
Offering new opportunities and affordances, the progression in fusing bits, atoms, neurons, 
genes, and memes in engineered systems is everyday evidence of this happening. It is 
conceived that this will lead to a postdisciplinary (holistic) science of systems and 
technologies. Likewise, the many current attempts to implement sophisticated CPSs for 
industrial and non-industrial applications are the indicators of the proliferation and 
implications of such a science. One of the induced phenomena is complexification, which 
leads to higher system complexities. The term ‘system complexity’ is used to express the 
total of a system’s quantitative and qualitative characteristics, which can be traced back to 
the growth of (i) the elements of the systems, (ii) the relations among the elements, and (iii) 
the interactions of the elements (and/or the system as a whole) with the embedding local 
world. The new discipline of complexity science is emerging and addresses objectives such 
as: (i) getting cross-disciplinary insights into complex systems, (ii) explaining emergent 
structures and self-organization, (iii) generating effective abstractions and models, and (iv) 
providing control methods for complex systems. Current knowledge offered by complexity 
science is still in its infancy and unable to explain how to conceive, manage, and reduce 
aggregative complexities. 

System complexity has two major constituents, which are physical complexity and 
cybernetics complexity. I have differentiated five types of physical complexities: (i) static 
complexity (the number and relationships of the elements that do not change with time), (ii) 
dynamic complexity (the number and relationships of components that change with time), 
(iii) self-organizing complexity (the variation of instances into which open systems can 
reorganize themselves), (iv) evolving complexity (the stage variations through which open 
systems can evolve in time into different systems) and (v) co-evolving complexity (two-
way interplay between the changing system and its environment). These together are also 
referred to as aggregative physical complexity. Cybernetic complexity has three 
constituents: (i) the amount and kind of cyberware (data, information, knowledge, and 
experience) that is needed to design, implement, and sustain a system, (ii) the amount and 
kind of cyberware that is human-embedded into or self-acquired/generated by a system, and 
(iii) the amount and kind of cyberware a system is interconnected with the local world. The 
first item is related to the pluridisciplinary intelligence that is conveyed by all concerned 
scientific domains and is also referred to as disciplinary complexity. The second item is 
associated with the intellectual complexity of systems, which influences their smartness, 
autonomy, and evolvability of the system. Involving various modalities, channels, and 
levels, the third item points at a communicative complexity. 

While the physical, virtual, and cognitive resources are converging, three trends of 
diversification of CPSs can also be recognized. They are termed: (i) intellectual 
diversification, (ii) disciplinary diversification, and (iii) application diversification (Figure 
8.1). Intellectual diversification is happening due to the perpetual increase of cognitive 
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capabilities of systems (Horváth et al., 2017). Current 2G-CPSs offer smart behavior based 
on their dynamic situation assessing and self-adaptation capabilities, whereas third 
generation CPSs will be characterized by some level of cognizance of the probable and 
possible objectives and performance, and will enhance themselves by self-evolution. 
Application diversification simply means that CPSs have a growing range of functionalities 
and, based on these, they are able to provide dedicated functional services for more and 
more application domains and penetrate into real life processes in these domains. 

Strongly application orientated CPSs are typically distinguished by the acronym X-
CPSs where X stands for the name (or only the first letter of the name) of the application 
field. Disciplinary diversification is associated with the variety of foundational knowledge 
and disciplinary resources that are used for the implementation of various CPSs. As 
mentioned above, bodies of knowledge of social, human, biological, nano, etc. disciplinary 
domains are considered in their conceptualization and design to make them suitable to 
tackle problems that could not be handled otherwise. Systems embodying such disciplinary 
bodies of knowledge are referred to as CPX systems, where X stands for the name of the 
discipline, for instance, cyber-physical-social and cyber-physical-cognitive systems. 

8.2. Research objectives and approach 

In the context of conceptualization and design of new CPSs, many socially-based 
problematics/phenomena have been emerging. Representative examples are such as: (i) 
coexistence of the natural intelligence-based and the artificial general intelligence-based 
realms of the society, (ii) addressing global societal demands in the light of the current 
technological affordances and economic situation, (iii) investigation of the role of i*CPSs 
in the fabric of Industry 4.0 and 5.0, (iv) exploring application opportunities for a family of 
smart (aware and adaptive) CPSs, (v) ideation of next generation home-care servicing CPSs 
with alternative cost profiles, (vi) aggregation and distribution of SSK from and to a fleet of 

 

Figure 8.1: Dimensions of diversification of CPSs 
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CPSs, (vii) intellect resource warehouses and upgrade mechanisms for self-evolving CPSs, 
(viii) complex solutions for transferable cyber-physical-social-human systems, (ix) effect of 
smart-everything systems of human life and well-being, and (x) opportunities for alternative 
living environments. All related in one way or other to cyber-physical-social-human 
systems, the textual formulation of these problematics suggests the need for different 
research approaches than those typical in system engineering practice nowadays. 

The above changes have been creating new situations and challenges for both 
theoretical and empirical research. Consequently, CPSs research is currently one of the 
most flourishing fields of academic and industrial interests. Research in conceptualization 
and design of NG-CPSs is concerned with (i) integration of existing knowledge across the 
involved disciplines, and (ii) exploration and synthesis of novel knowledge by the 
involvement of all concerned disciplines. Based on literature studies, outcomes of 
workshop sessions, and critical mind mapping, it has been postulated that the most 
influential current trends of evolution of the paradigm of CPSs are: such as: (i) disciplinary 
complexification, (ii) synthetic intellectualization, (iii) behavioral socialization, and (iv) 
adaptive personalization (Figure 8.2). These pave the way to intellectualized, socialized, 
and personalized cyber-physical systems (cisp*CPSs). Such systems can be realized only 
by blending the relevant bodies of scientific, engineering, social, human, cultural, and 
application knowledge into a postdisciplinary body of knowledge. In turn, exploration and 
synthesis of postdisciplinary CPS knowledge assumes a combined use of collective 
interdisciplinary, multidisciplinary, and transdisciplinary research, while it does not reduce 
the role of unidisciplinary individual investigators. Supradisciplinary research emerged as 
a new doctrine of combining these research approaches from epistemological, 
methodological, and procedural perspectives. However, no methodology can be found in 
the literature that could facilitate the practical execution of supradisciplinary research 
programs and projects.  

This issue has been addressed in the background research which has had a combined 
explorative and constructive nature. This chapter discusses the concepts of problematics, 
pluridisciplinary and postdisciplinary research approaches, their methodological and 
epistemological features, and operationalization of supradisciplinary research in the specific 
context of CPSs. It is based on the following published papers: H19, H20 and H21 (see 
Appendix A.1.1). In addition to the investigation of the fundamentals of pluridisciplinary 

 
Figure 8.2: Recent trends in the evolution of CPSs 
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research approaches, the principles of team science, and other issues of conducting 
supradisciplinary research, a conceptual framework has also been proposed, which can be 
used as a blueprint for operationalization of such undertakings. The framework rests on six 
generic pillars: (i) problematics, (ii) infrastructure, (iii) methodics, (iv) stakeholders, (v) 
operations, and (vi) knowledge. It specifies the major concerns that have to be taken into 
consideration in a systematic manner at developing executional scenarios for 
supradisciplinary research. The framework arranges the concerns in a procedural logic - as 
they should be considered by the research managers and CPS developers. 

8.3. Problematics of early stage collective research for cyber-physical 
systems 

The above-described multidimensional diversification of CPSs raises many new 
challenges to cope with. In addition to the already known challenges (such as aggregative 
complexity, technological heterogeneity, functional dependence, stakeholder involvement, 
operational resilience, and safety and security), a partly research methodological and partly 
engineering epistemological challenge is also raised. There are two sources of this latter 
challenge. The first one is in the need to explore and synthesize proper cross-disciplinary 
(holistic) knowledge for conceptualization, design, and engineering of novel CPSs (Simon 
and Schiemer, 2015). The second one is in the traditional reductionist culture of system 
development that separates the tasks of system development and allocates them to distinct 
departments (Horváth, 2015). These two phenomena eventually boil down to the need for 
collective research and feeding the development process with synthesized disciplinary 
knowledge. In turn, this gives floor to the abovementioned research methodological and 
engineering epistemological challenge (Horváth, 2004). The two main questions are: ‘How 
to conduct postdisciplinary research in the early stages of CPSs development?’ and ‘How to 
synthesize the knowledge during the research process towards the most reliable and useful 
shared intellect? 

The main conjecture (and working hypothesis) underpinning the research has been that 
a pluridisciplinary or postdisciplinary research approach may fulfil the requirement. These 
inquiry approaches require two or more disciplines to combine their knowledge, methods, 
and expertise to jointly explore, confirm, and deliver research outcomes (e.g. theories, laws, 
facts) appropriate for a common subject area. The remaining part of the chapter argues that, 
in line with the multidimensional diversification of CPSs, a supradisciplinary research 
approach is indeed needed to explore and scrutinize knowledge for their development in the 
conceptualization and design stages. Though the concept of supradisciplinary research is 
known and addressed in the related literature, apart from the general methodological 
dispositions, no specific conceptual frameworks, framing methodologies, or process 
scenarios have been presented, in particularly not in the context of research activities and 
knowledge demands in the early developmental stages of cisp*CPSs (Balsiger, 2004). The 
author interprets it as a ‘problematics’ in itself, which involves intertwined scientific, 
technological, procedural, social, human, and business aspects. 

The current literature is scarce on publications that would explain this ‘problematics’ 
and would offer a receipt for dealing with it. As posited in Horváth (2022), the science of 
CPSs is still in the stage of formation and the methodologies of doing pluridisciplinary 
research in this field have not yet reached further than their embryonic stage. Concerning 
the development of comprehensive multidisciplinary or transdisciplinary theories, only a 
few efforts have been reported in the contemporary literature (Horváth and Pourtalebi, 
2015). Therefore, based on a synthesis of the outcomes of his previous research work, a 
multi-focal literature survey and expert interrogations, critical systems thinking and 
philosophical and methodological speculations, as well as on retroductive reasoning 
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(Ochara, 2022), the author proposes a generic framework for conducting supradisciplinary 
research in multidimensionally diversified CPSs. The importance of this work and the 
proposed framework lays in the foreseen even more intense diversification of the next 
generation of CPSs. The next section analyses the methodological convergence of the 
various research approaches. Afterward, the main tenets of team science are discussed, and 
the different forms of research co-working are presented. The last part of the chapter 
presents the six domains of concern and the blueprint of the proposed framework. 

8.4. Convergence of individual and collective research approaches 

The 21st century science is concurrently driven by transdisciplinary convergence, 
structural reorganization, and social transformation (NASEM (2019). The fact of the matter 
is that both convergence and divergence are perpetually present and interoperate in science, 
knowledge, and technology. Consequently, new competing research philosophies and 
strategies are emerging that have not been consolidated yet. The last decades have seen the 
transition from the so-called Mode 1 science to Mode 2 science (Nowotny et al., 2003). 
The former is the old paradigm of scientific inquiry and (i) is characterized by the 
hegemony of theoretical and experimental discoveries, (ii) establishes an internally-driven 
taxonomy of branches and disciplines of science, and (iii) acknowledges the autonomy of 
individual scientists and their host institutions. It is characterized by an analytical thinking 
approach that has its roots in reductionism (Horváth, 2017). The latter (i) is a new paradigm 
of socially distributed knowledge production, (ii) has a pluridisciplinary, collaborative, and 
application-oriented nature, (iii) is the subject of multiple accountabilities, and (iv) is 
typically considered in technological, social, political, and economic contexts. Analytic and 
prognostic systems thinking play an important role in practicing Mode 2 science. Systems 
thinking (i) explains the manifestation and behavior of systems as a whole, (ii) is dominated 
by abstraction and synthesis, and (iii) studies emerging and relational properties. It is 
supposed to be extended to the human behavioral domains (cognition, communication, 
leadership, etc.) (Horváth, 2023). As a consequence, systems thinking increases all forms of 
complexity and heterogeneity, but facilitates addressing sustainability of the environment, 
economy, and society. The overview of the latest theoretical and methodological 
developments in scientific research also needs (critical) systems thinking (Rousseau, 2017). 

It is known that the terms interdisciplinary, multidisciplinary, and transdisciplinary are 
ambiguously defined and interchangeably used in the literature. Therefore, it seems to be 
useful to elaborate on the interpretation and use of these terms in this part of the Chapter. 
With this in mind, a comprehensive landscape of generic research approaches is shown in 
Figure 3. As an overall trend, the move from an individual focused unidisciplinary research 
approach, through pluridisciplinary ones, toward postdisciplinary approaches has been 
identified (Parker, 2008). In practice, it means that pluridisciplinary programs are also 
conducted in addition to monodisciplinary research programs. A research approach is 
"multiple disciplinary" if more than one discipline is involved, but the nature of their 
involvement is unknown or unspecified. 

As a common term, pluridisciplinary refers to research that may involve 
interdisciplinary, multidisciplinary, and transdisciplinary research programs and approaches 
(Scholz and Steiner, 2015a and 2015b). While monodisciplinary research inquiries are 
conducted from the perspective of a single discipline, pluridisciplinary programs make 
attempts to investigate phenomena and problematics from multiple perspectives in an 
integrated manner. Supradisciplinarity is the descriptor of the doctrine of hybridization 
between knowledge domains. It means conducting monodisciplinary, interdisciplinary, 
multidisciplinary, and transdisciplinary research programs or activities simultaneously and 
purposefully in concert. While monodisciplinary research can be best characterized by the 
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word ‘distributed’, a single-word descriptor for interdisciplinary research is ‘interactive’, 
for multidisciplinary it is ‘additive’, and for transdisciplinary it is ‘holistic’. As a recently 
conceptualized realization of a postdisciplinary philosophy, supradisciplinary research can 
be depicted as a ‘combinatorial’ approach. 

The unidisciplinary approach practiced by individual investigators is a historical 
development. It counts on the insights and talents of individual researchers, working 
independently or in groups. Typically, doctoral (promotion) research regulations and 
frameworks still strictly follow the ideal of unidisciplinary, single-investigator research 
approaches. Notwithstanding, due to institutionalization of scientific research, it has been 
scaled up to large monodisciplinary projects based on team formation and collaboration. 
Though it is often deemed as exhausted from a praxiological perspective, it remains an 
indispensable kernel of doing scientific research. Neither modern pluridisciplinary nor 
postdisciplinary (or metadisciplinary) research philosophies are against this. 

Interdisciplinarity assumes creating links between disciplines and a coordinated inquiry 
approach, including the establishment of a shared knowledge and method platform for 
launching projects (front-end integration) (Buanes and Jentoft, 2009). Interdisciplinarity is a 
subject of philosophical argumentation (Schmidt, 2008). Interdisciplinary research 
addresses phenomena that are not directly and completely covered by the concerned 
disciplines (Klein, 2010). It assumes close interaction in co-working and assumes the 
agreement of the investigators from different disciplines on the objectives and the different 
analysis and synthesis methods (CohenMiller and Pate, 2019). An interdisciplinary research 
approach involves the interaction and coordination between more than one discipline, 
aiming at (i) development of knowledge in each of the concerned disciplines, (ii) 
transferring knowledge from one discipline to another, and (iii) transforming knowledge of 
one discipline under the influence of another discipline (Fiore, 2008). These assume 
collaboration and the emergence of a new thought style (Darbellay, 2015). 

Multidisciplinarity draws on knowledge from different disciplines, but stays within their 
boundaries (Alvargonzález, 2011). Multidisciplinary research projects are carried out 
independently by unidisciplinary researchers, but they are informed about the work of the 
other disciplines throughout the process. New knowledge is learned through the individual 
interest windows of the included disciplines, and evaluated and combined in the conclusive 
stage of research projects. In other words, the novel knowledge is synthesized and 
consolidated at the end of the conducted projects (back-end integration). No specific 

 

Figure 8.3: Overview of the generic research approaches 
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execution methodologies have been publicized for this purpose. Multidisciplinary research 
collaboration involves: (i) collective determination of the goals, (ii) working out a 
strategy/approach for achieving the goals, (iii) sharing physical, intellectual and intangible 
resources, and (iv) building common grounds and consensus. Multidisciplinary research 
teams are supposed to produce (i) a coherent picture of the subject matter of the scientific 
study, (ii) a description/explanation of (parts of) the problematics or phenomenon, and (iii) 
a set of ranked theories to underpin potential theories or solutions. 

Transdisciplinarity integrates natural, social, and technical sciences in a social context 
and transcends their traditional boundaries (Bergmann et al., 2012). Transdisciplinarity also 
signifies lively interactions between stakeholders and crossing the boundaries between 
scientific and non-scientific communities (representatives of industry, government, and/or 
civil organizations) with the goal of reaching out to the entire society (Ashby et al., 2018). 
Practicing transdisciplinarity is usually a challenging task because it needs an 
epistemological and organizational framework (Giri, 2002). Transdisciplinary research is a 
blending of interdisciplinary perspectives to produce a hybrid perspective of two or more 
disciplines (Mobjörk, 2010). Researchers from different backgrounds have to find each 
other, get acquainted, and derive a common motivation (Brown, 2015). They should form 
linked research teams and research communities. A successful research conduct assumes an 
explicit specification of the goals as well as a widely-based knowledge and process 
synthesis (front-end integration) (Burgin and Hofkirchner, 2017). 

That is, before the start of their collaborative work, the investigators have to synthesize 
a common platform of shared knowledge (Nicolescu, 2014). This knowledge is subject to 
new types of quality control and extra-scientific social criteria, including public review 
(Jahn and Keil, 2015). The researchers, who are co-working in teams and communities, 
must learn to understand and appreciate each other’s perspectives, forerunning work, and 
new results. They should work out procedural and administrative scenarios for long term 
cooperation or coadunation. Without these, they cannot reap the extra benefits of 
collaborating across disciplinary boundaries. (Cilliers and Nicolescu, 2012). Working in a 
transformative manner has also been identified as a paradigmatic characteristic of 
transdisciplinary research programs and projects (Lawrence et al., 2022). 

Supradisciplinary research is deemed a conceptually and empirically grounded 
constitutional element of Mode 2 knowledge production, or simply as if it was the same 
thing as Mode 2 science. It blends knowledge of more than one discipline and interlaces 
their research approaches. It assumes that the involvement of disciplinary investigators is 
designed, planned, and specified before launching any research program or project. 
Supradisciplinary research has ontological, epistemological, methodological, and 
praxiological conditions. The ontological condition is that its paradigm is accepted as 
trustful and realistic. The epistemological condition is that a preliminary knowledge 
synthesis (Hoffmann et al., 2017), as well as an unbiased synthesis of the novel findings, is 
possible (Defila and Di Giulio, 2015). The methodological condition is that a conceptual 
framework/platform can be created together with a pool of complementary research 
methods. The praxiological condition is about overstepping the (research) cultural 
boundaries by a holistic relational process, in which knowledge is produced through 
transactions of stakeholders and a supporting communal project management (Tebes et al., 
2014). Consequently, the knowledge created by supradisciplinary research is understood to 
be: (i) reflexive with regard to social accountability, (ii) traceable back to its starting point 
in societal needs, and (iii) servicing its social ‘stakeholders’ and applied research. In other 
words, it offers a genre of knowledge that manifests in the contexts of applications and, 
therefore, cannot be classified according to a distinction between branches. 
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8.5. From phenomena to problematics and from problematics to 
phenomena 

The term ‘problematics’ is eventually an abstraction. It is used to refer to the existence 
of multiple, extensive, holistically evolving and interacting practical research challenges 
that are (i) uncertain or not settled, (ii) complicated to handle and solve, (iii) difficult to 
decide upon, and (iv) their future state is open to debate (Osborne, 2015). The essence of 
problematics is a set of inherently intertwined wicked scientific problems of the same 
nature, which appear, for instance, in the demand for sustainable living or in the 
uncontrolled proliferation of artificial intelligence (Pohl, 2005). Other examples of these 
multi-factorial challenges are such as climate change, energy provisioning, circular 
production, extreme social stratification, ecological sustainability, informational smog, 
well-being, pandemics and chronic diseases, profitable recycling, socio-technological 
problematics cannot be reduced to component problems due to their innate holism. 

From the perspective of making systematic inquiries, all problematics are associated 
with and caused by the interaction of a number of underlying natural phenomena and 
artificial (synthetic) phenomena. As a simple example of a natural phenomenon, we may 
consider the CO2 absorbing capability of plants and the C02 production of vehicles powered 
by internal combustion engines as an artificially created phenomenon. The interaction of 
these phenomena creates an ‘everyday problematics’ that manifests itself as air pollution. 
Like capturing natural and artificial phenomena, a comprehensive description, explanation, 
prediction, or regulation of problematics also requires evidence-based scientific theories. 
However, establishing these theories is a complicated matter because of the reason that the 
involved phenomena (or parts thereof) are usually studied within different disciplines. 
Technologically, economically, or societally created problematics need collective scientific 
inquires and novel research approaches (such as computational modeling-based holistic 
simulations and multi-level massive data processing). 

8.6. Team science to assist the formation of Mode 2 science 

According to a widely accepted definition, team science (TS) is a collaborative effort to 
address a scientific challenge that leverages the strengths and expertise of professionals 
trained in different fields (NRC, 2015). TS is one of the set of strategies and efforts that 
advance convergence (Ledford, 2015). It utilizes the core principles and best practices of 
community psychology to enable the current transformation in science and to develop 
research competencies for groups and communities. One of the main objectives is to 
develop general principles and trustworthy effective practices for both co-located and 
dislocated (online) co-working (Mâsse et al., 2008). TS is not against the traditional single-
investigator driven research approaches, but wants to learn from their limitations and 
augment them towards group- and community-oriented research approaches. It studies how 
coordinated teams of diverse skills and knowledge can tackle complex scientific and 
societal problematics and emergent issues (Boardman and Ponomariov, 2014). It promotes 
both intra-personal competencies (attitudes, knowledge, skill, experiences) and inter-
personal competencies (socialization, communication, empathy, trust). TS also studies 
elements of team and community processes (common vision, communal mission, tactical 
goals, shared understanding, responsible roles) and institutional infrastructure and policies 
(hiring, promotion, experiences, desires, interdependence, organization, funding 
opportunities, data management, networking, road mapping) (Stokols et al., 2008). 
Furthermore, it studies the broader influences of co-working (e.g., history, cooperation 
framework, publishing forums, academic events, and industrial relations) (Vogel et al., 
2013). 
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Undertaking research in a collaborative way is called upon by convergence. TS intends 
a generic theory to explain multi-scale collaboration in a level- and context-independent 
manner (Yu et al., 2019). The primary conjecture is that a research team- or community-
based approach is the proper organizational form and one key strategy for tackling complex 
problems across boundaries. However, it is challenged by the difficulties of establishing 
partnerships across multiple local and international institutions. It remains a task for top 
managements of these institutions to recognize, institutionalize, and operationalize team 
science. They have to think of both horizontal integration (bringing together disciplines that 
share common features, methodological approaches, and overlapping background 
knowledge) and vertical integration (linking disciplines across multiple types and levels of 
analysis and synthesis). Insights from the social and behavioral sciences help form and 
sustain effective research teams and communities. In addition, bridging across interrelated 
research interest areas is also supported by international personal networks and individual 
investigators, who have broad expertise in more than one area and embody the idea of 
convergence. 

Convergence transcends disciplinary boundaries, even extending beyond what is 
traditionally regarded as science. Reportedly, (i) raising public/professional awareness of 
convergence, (ii) building common grounds and consensus, and (iii) establishing scientific 
cultures that support convergence are catalysts of new scientific knowledge and 
applications. Formation of integration (from incidental partnership to strategic alliance) is a 
nondeterministic, interest-driven process. In current practice, integration of collective work 
is usually emergent and volatile, driven by project calls and the interest of funders. Theories 
of team science should be more articulated with regard to the various practical 
manifestations of collective work, which can be: (i) cooperation (involving information 
sharing and supporting organizational research outcomes), (ii) coordination (harmonizing 
research activities and support of mutual benefits), (iii) collaboration (giving up some 
degree of research independence in an effort to realize a shared goal), and (iv) coadunation 
(achieving the state or condition of being united by gradual synergy forming and growth in 
research) (Figure 8.4). Theories must also explain the time-dependence of the drivers (e.g., 
temporal changes in complex societal needs, advancement of technologies, novel business 
models, diversification of knowledge, and time-influenced organizational principles.) and 
the obstacles of co-working (e.g., culture of coping alone, attitudinal disinterest, IP 
protectionism, insufficient competencies, fear of transparence). 

Scientific research has been heavily institutionalized over the last century and typically 
conducted in hierarchical organizations. Its structural reorganization proceeds according to 
the concept of organizational heterarchy that establishes interdependence, even 
independence, relationships of the stakeholders of research. In addition to extensive 
academic research collaboration, addressing complex societal challenges also needs 
collaboration with various public stakeholders (Melo and Caves, 2020). The paradigmatic 
model has been multi-institutional project-based research collaboration in cooperating 

teams. In such projects, 
collective competence and 
wisdom has been deemed 
more essential than 
individual ingenuity and 
diligence. Typically 
experienced in research 
cooperation over 
geographic, economic and 
cultural boundaries, the 

 

Figure 8.4: Forms of co-working in pluridisciplinary 
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term ‘cultural diversity’ has been used widely to refer to the differences of humans/societies 
in a specific region. It is reflected in the mental models and behavioral styles, and results in 
different value systems. Cultural diversity in research is a difficult matter to deal with, 
because reasoning, decision making, behavioral and interaction models are all involved. 
The literature also informs us about the fact that many multi-national collaborative research 
projects have suffered from ‘research cultural clashes’ in the lack of a common ground, 
building awareness, showing openness, and exercising patience. 

8.7. Related organizational, management, and social issues 

Pluridisciplinary research approaches consider some observable problematics (or 
phenomena) from different disciplinary viewpoints and intend to neatly merge and integrate 
relevant parts (concepts, models, methods, findings) of different scientific disciplines in 
systematic inquiries (Lawrence, 2015). These approaches require understanding the 
previous research and perspectives of the others with whom they intend to work and go 
together with a confrontation of the scientific concepts, models, methods, and findings of 
the concerned disciplines. They are epistemologically and socially constructivist 
approaches that highlight the emergent, recursive, and communal nature of knowledge 
production. The various approaches have different positions with regard to integration, and 
attempts have been made to develop formal composition methodologies and methods for 
fusing harmonizing theories (Wiek, 2007). They advocate that much knowledge emerges 
through academic interaction during the research process and through social action itself 
and recognize informal social and cultural integration mechanisms as essential. The need 
for synthesizing and sharing knowledge is present and important during the early 
negotiation phases of research projects in order to build up the required redundancy, as well 
as at the conclusion phases of research projects in order to consolidate the new knowledge 
(Wiesmann et al., 2008). 

The establishment process of supradisciplinary research programs and projects offers 
opportunities for addressing social issues and enhancing the social skills of the involved 
researchers representing multiple disciplinary domains. The specific goals of social 
management are visualized in Figure 8.5. Stimulated by the work of (Tebes and Thai, 
2018), this model considers six stages of academic and public socialization of research. The 
goal in the first stage is to learn and interlink the subject knowledge, methodological know-
how, and working culture of the researchers representing the involved competence 
domains. The goal of the second stage is sharing mental models and conceptual frames, 
whereas the goal of the third stage is exchanging interdisciplinary synthetic skills and 
experiences. These two processes contribute to the development of collaborative social 
skills. The specific goals of the fourth stage are to establish a hybrid virtual knowledge base 
and a virtual method warehouse, with the intension of helping the involved individual 
researchers and research teams to familiarize themselves with the bodies of knowledge and 
the arsenal of methods, tools, and instruments used by others. Together with activities in the 
two preceding stages, this creates a so-called professional reference space for all 
researchers and teams. In the fifth stage, a joint problematics space is created and 
maintained. This makes it possible for the involved researchers to address the same 
problematics, while they look at and interpret it from their own perspectives. As an 
outcome, epistemic translations take place which offer deeper insights and blur the 
boundaries if they still exist in the professional reference space. The last stage is the actual 
organization and management of supradisciplinary research programs and projects, which is 
facilitated by the growing social awareness and managerial competencies. 

Pluridisciplinary research approaches direct attention to dimensions such as research 
management, partnership, sharing, productivity, and exploitation (Hadorn et al., 2008). 
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Actually, they place the layers of organization, management, and utilization above the 
layers of competence development, execution of inquiry, and dissemination of the results. 
Successful program/project management also assumes exposing academic leadership. In 
general, research leaders should (i) address the barriers of effective professional and social 
convergence, and strong partnerships within and across institutions, (ii) develop policies, 
guidelines, and practices to support and evaluate convergent research, (iii) utilize the 
expertise of economic, social, and behavioral sciences to realize best practices, (iv) master 
program management and strategic planning when forming a research initiative, (v) be 
aware of the most effective recruitment practices, research support policies, risk analysis 
and recovery models, cost and revenue allocation models, including catalytic seed 
funding’s, and (vi) apply comparative evaluation policies, tenure and promotion 
advancement, and unique evaluation criteria for rewarding both professional and social 
achievements. 

8.8. Domain of concerns and a blueprint of the proposed framework 

Organization of problematics-driven design research for the development of next 
generation CPSs is a new challenge. Due to its complexity, it can be addressed only by a 
supradisciplinary research approach that enables collective knowledge exploration and 
integration processes. As discussed in the preceding sections, such an approach is 
influenced by a large number of factors. Of paramount importance are: (i) the organization 
theory of holistic co-processes, (ii) the principles and recommendations of team science, 
(iii) the praxiological issues of 21st century (Mode 2) science, (iv) the societal 
epistemology of emerging problematics, and the (v) psychologic theory of creative 
communities (Figure 8.6). Operationalization of a supradisciplinary research approach 
needs a conceptual framework, which is supposed to specify both the ontological pillars and 
the methodological-procedural concerns. Based on what has been discussed in the 
preceding sections of the dissertaion, six ontological pillars have been identified, namely: 
(i) the investigated complex problematics (or phenomena), (ii) the integrated and shared 

 
Figure 8.5: Creating joint intellectual spaces 
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research infrastructure, (iii) the 
applied research methodics, (iv) the 
involved academic and public 
stakeholders, (v) the establishment 
and execution inquiry operations, 
and (vi) the input and output 
knowledge. Shown in Figure 8.7, 
these ontological pillars of 
supradisciplinary research are 
actually strongly interlinked, even 
intertwined. 

In simple words, the main 
requirement concerning the 
conceptual framework is to explain 
what the associated concerns are, 
and in which order they should be 
taken into consideration at 
organizing supradisciplinary 
research (McComb and Jablokow, 2022). As the upright pillars supporting a building are 
made up of bricks, the ontological pillars of the framework are built from conceptual 
building blocks. In fact, these building blocks are concerns of realization. This means that 
the structure of the conceptual framework has been defined by the ontological pillars, 
whereas its specific content has been compiled from the related concerns of realization. 

The blueprint of the conceptual framework is shown in Figure 8.8. Based on their 
intertwined nature, no ordering logic can be imposed on the ontological pillars. On the other 
hand, the order of the blocks of the pillars shows a procedural order. For instance, selection 
of the problematics for study commences with exploring the space of relevant complex 
problematics (or phenomena) and finding the most appropriate one (first choice) for 
common research interest, and concludes with planning and starting the exploitation of the 
novel intellectual assets. The establishment of a shared research infrastructure starts with 
the overview of the existing research facilities and the planning of the additionally needed 
facilities towards a functional integration of laboratories, and finishes with designing and 
provisioning security and safety services. The elaboration of the research methodics 
(designing the inquiry processes, defining sets of research methods and instruments, and 
stating the applicability and performance criteria, without a common underpinning theory) 
starts with a research task analysis and concludes 
with coherence and correspondence analysis of 
the outcome theories. 

The stakeholder integration starts with 
partnering strategy development, involving both 
academic and public stakeholders, and concludes 
with the enhancement of synthetic professional 
and social skills. The establishment and execution 
of inquiry operations starts with the elaboration of 
the principles of efficient operative leadership and 
extends to the management of progress reporting 
and reviews. The engineering and management of 
input and output knowledge commences with 
studying the past activities and background 
knowledge of the partners, and concludes with the 

 

Figure 8.7: Six pillars of 
implementation of 
supradisciplinary research 

 

Figure 8.6: Main factors influencing a framework 
of supradisciplinary research 
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internal and external consolidation of the new knowledge. In practice, working on the six 
ordered groups of concerns happens concurrently and interdependently. 

The proposed framework advises on how to organize and execute supradisciplinary 
research, but it does actually not describe what to study. Therefore, it should be seen as a 
kind of meta-research design that has to be combined with specific research models that are 
foreseen results of addressing the dedicated concerns in the thread of methodics. An 
associated research model or multiple integrated research models can convey information 
about complex problematics or phenomena that have significance and do indeed need 
supradisciplinary research approach, including team- and community-based inquiry efforts. 

 
Figure 8.8: The blueprint of the proposed supradisciplinary research framework 
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8.9. Reflections and possible follow up research 

A novel narrative is emerging for 21st century science that believes in interpersonal 
transactions while working in teams and communities, as well as in active engagement of 
public stakeholders by researchers in research programs or projects addressing socially-
based problematics (Kläy et al., 2015). The objectives of these postdisciplinary research 
approaches are to: (i) holistically investigate and resolve complex problematics of the real 
world, (ii) provide different perspectives on and approaches to such complex problematics, 
(iii) offer holistic theories to answer research questions posed by multiple disciplines, (iv) 
develop consensus about definitions, principles, and guidelines to deal with non-reducible 
complicated systems, and (v) provide novel and comprehensive services for knowledge 
exploration and synthesis. In this chapter, I have discussed the concepts of pluridisciplinary 
and postdisciplinary research approaches, their methodological and epistemological 
features, and operationalization of supradisciplinary research in the specific context of 
CPSs. 

 Supradisciplinary research opens up a multidimensional space of inquiry that is 
characterized by (i) concurrent dependence on multiple (physical, biological, human, 
social, computational, technological, etc.) domains of inquiry and investigations, (ii) 
various progression levels (discovery, description, explanation, prediction, and 
regulation) with regard to the studied phenomenon (problems), and (iii) need or synergy 
in terms of hardware, software, cyberware, brainware, etc. related knowledge. 

 Doing supradisciplinary research is not trivial due to the growing overall complexity, 
functional and technological heterogeneity, and knowledge-driven nature of engineered 
systems. It has been learnt that acceptance of transdisciplinary research is negatively 
influenced by (i) the growing versatility of professional knowledge and complexity of 
academic cooperation, (ii) the historical compartmentalization of the scientific 
landscape, (iii) the sectoral division of responsibilities in contemporary society, and (iv) 
the increasingly diverse nature of the societal contexts. 

 Based on informed assumptions, a six-pillar conceptual framework has been proposed. It 
clarifies the concerns associated with the establishment and execution of community-
based supradisciplinary research programs/projects. Though the framework has been 
developed with a view to the specific application field, it is general enough to be 
transferable to other similar fields with or without adaptation. 

 The framework rests on six generic pillars: (i) problematics, (ii) infrastructure, (iii) 
methodics, (iv) stakeholders, (v) operations, and (vi) knowledge. It specifies the major 
concerns that have to be taken into consideration in a systematic manner at developing 
executional scenarios for supradisciplinary research. The framework arranges the 
concerns in a procedural logic - as they should be considered by the research managers 
and CPS developers. 

 Though its importance is recognized, in its current form, the framework does not cover 
the specific societal and personal issues of a successful organization of the inquiry at 
individual researchers, research teams, and research community levels. Notwithstanding, 
the framework can facilitate (i) management of research program and project 
organization tasks, (ii) joint formation of shared research infrastructure, (iii) setting up 
concrete research programs, projects, and processes, (iv) academic partnering and public 
stakeholder involvement, (v) process flow management and capacity/competence 
allocation, and (iv) knowledge synthesis, assessment, and consolidation in a holistic 
manner.  
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 Follow-up community-based research may focus on (i) the practical application and 
testing of the framework in concrete cases – a task that an individual researcher cannot 
address, (ii) the general principles and concrete methods of organizing effective 
knowledge sharing and long term postdisciplinary work of multiple research teams or a 
research community. 

 There is a paradoxical situation with the research reported in this chapter. The source of 
the paradox is the juxtaposition between the form of the inquiry used to produce 
knowledge for the cognitive framework and the form of the work that would have been 
needed for a full-scale operationalization of the framework in practice and to validate it 
through its implications over multiple application cases. The inquiry could be done by 
one individual investigator who has sufficient knowledge of multiple disciplines 
(domains of interest) such as research theory and methodology, engineering and 
technologies of CPSs, and systems science and thinking (Dawson, 2013). However, 
projection of the contents of the conceptual framework to real life problematics and 
completion of the necessary supradisciplinary research would need multiple 
collaborating research teams or even a research community. Therefore, execution of the 
activities proposed by the conceptual framework cannot be done and the contents and 
implications of the proposed framework have not been rigorously scrutinized. 
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Chapter 9 

9. Epilogue 

9.1. Scientific propositions of the dissertation 

The reported research has been done to enrich knowledge and improve the approaches 
of cognitive design and engineering of cyber-physical systems. This emerging 
disciplinary domain is interested in the problem-solving intellect of this family of systems, 
and intends to explore knowledge, methods, and tools to support their intellectualization 
processes and synthetic intellect-based application-specific operations (Srinivasan, 2013). 
Though it has some overlap with artificial intelligence research and reuses parts of the 
knowledge and means developed by intelligence researchers, the above objectives 
demarcate it from that. Cognitive engineering addresses emerging, complicated, prognostic, 
but influential general subject matters, rather than issues related to specific system 
implementations and applications. It focuses on facilitation of the development of next-
generation CPSs, rather than on systems reproducing parts and forms of human intelligence. 
It is unconcerned with the dilemma if human intelligence can, may, must, or will sooner or 
later be replicated (Bostrom, 2014). But it is concerned with how people can benefit from 
the services of complexificated, intellectualized, socialized, and personalized systems. 
Consequently, the presumed aim of the reported research was, on the one hand, to 
contribute to the disciplinary domain of cognitive engineering and, on the other hand, to 
explore probabilities and possibilities for generating benefits. Based on the completed work 
and the obtained results, the following scientifically significant propositions could be 
stated: 

Proposition 1: 

The use of paradigmatic system features and paradigmatic feature profiles for a generic 
characterization of existing CPSs or prescriptive specification of new ones is preferable to 
textual, visual or symbolic formulation of augmentative, descriptive, normative, predictive 
or domain-specific definitions. Δ 

Proposition 2: 

The implementation of smart CPSs requires a computational model that brings together: 
(i) sensing and monitoring based on multiple sources, (ii) awareness of the state of the 
system, the environment, and the problems, (iii) ampliative reasoning based on the system’s 
knowledge, (iv) strategic learning from the processes and results, (v) evaluation of the 
actual and planning the optimal operation, (vi) runtime planning and validation of the 
system’s adaptation, and (vii) actuating the modified generative, transformative, and 
informative core-functions, and that complements the latter with parafunctions such as (i) 
sociality, (ii) personality, (iii) ingenuity, (iv) dexterity, (v) convincingness, and (vi) 
dependability, which are indicators of the system's smart behavior. Δ 

Proposition 3: 

The successive generations of CPSs can be differentiated based on their (interrelated) 
level of self-intelligence and level of self-organization and, according to the introduced 
paradigm advancement model, they can be identified as zero, first, second, third or fourth 
generation. Δ 
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Proposition 4: 

The system-level synthetic problem-solving knowledge acquired and/or produced by 
intellectualized CPSs represents a unique genre of knowledge that must be distinguished 
from the known alpha, beta, gamma, and delta (ABGD) genres of knowledge. This epsilon-
knowledge is becoming a fully-fledged complement of the ABGD genres of knowledge. Δ 

Proposition 5: 

Being not addressed directly by gnoseology or epistemology, scientific investigation of 
system-level synthetic problem-solving knowledge requires a new theoretical foundation, 
methodological approach, and investigational structure. The concept of sympérasmology 
has been outlined to provide these means and to address four specific study areas, namely 
(i) the fundamental notions, (ii) the basic principles, (iii) the capabilities, and (iv) the 
implications, each of which is broken down into multiple interrelated aspects of 
investigation. Δ 

Proposition 6: 

The elaborated prognostic systems thinking approach, which supplements the 
conceptual pillars of traditional analytical systems thinking with prognostic conceptual 
pillars in a framework, interpreted as a semantic network, and which supports forward-
looking examination of systems with a structured and expandable library of analysis 
aspects, is indispensable from the point of view of the prognostic examination of internal 
and external changes, relationships, and effects of dynamically evolving systems. Δ 

Proposition 7: 

System-level synthetic problem-solving knowledge can be shared among and exploited 
by similar CPSs if (i) the knowledge transfer methods which are associated with 
knowledge-bases/repositories, implemented by software agents, used in transfer/distributed 
learning, and belonging to knowledge graphs/collective intelligence are integrated and 
necessarily supplemented, (ii) the system-level synthetic problem-solving knowledge and 
the related reasoning mechanisms are included in uniform transfer packages, and (iii) the 
transfer process is broken down into local neutralization, global transfer, and local 
naturalization sub-processes. Δ 

Proposition 8: 

In order to effectively explore, describe, and explain complex phenomena and 
problematics which are associated with conceptual design and implementation of next-
generation CPSs, investigations going beyond the disciplinary boundaries are needed whose 
organizational, executional, and managerial framework is to be provided by the 
methodology of community work-based, societally-orientated, and epistemologically 
holistic supradisciplinary research. Δ 

Proposition 9: 

The ontological basis of supradisciplinary research conducted in the context of 
intellectualized, socialized, and personalized CPSs is formed by (i) the investigated 
phenomena or problematics, (ii) the associated underpinning knowledge, (iii) the shared 
research infrastructure, (iv) the complementary research activities, (v) the overall research 
methodics, and (vi) the stakeholders of research, and, by taking these into account, shared 
intellectual spaces can be created and specific collective implementation scenarios can be 
developed. Δ 
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9.2. Own reflections on the work and results 

The overwhelming majority of the research work presented in the dissertation has been 
completed within the last six years. The results of some of the efforts have been released for 
public debate in international journals only in the last three years. The latest publications 
are still in ‘print online’ status. Whereas the earlier publications have been cited time 
proportionally, this can only be expected to happen for the most recent publications. 
Obviously, the external interest in them depends not only on their freshness, but also on the 
contributed novelty, utility, and implications of the knowledge they are delivering to the 
public, in addition to their academic and practical values. Interests may be expected for the 
reason that cognitive engineering of CPSs belongs to two of the five challenges of systemic 
digitalization that, according to (Ochara, 2023), includes (i) the circular economy, (ii) 
cyber-physical systems, (iii) sharing economy, (iv) digital transformation, and (v) smart 
systems. Whereas Industry 4.0 strategized the evolution of productive and servicing 
industries toward an extensive use of CPSs and to optimize their output thereby, the 
maturing idea of Society 5.0 concerns the necessary evolution of society toward sustainable 
socio-cyber-physical systems (Miller, 2022). In addition, intellectualized CPSs have been 
forecasted to play a growing role in education both as supporting means of self-managed 
autonomous learning and as a target of transdisciplinary systems education and professional 
training (Tang et al., 2020). 

With regards to novelty, my subjective reflection is that most of the presented research 
work is related to phenomena or problematics whose investigation is still in an early stage, 
no matter if analytic explorative studies or constructive knowledge synthesis studies are 
concerned. In the case of several issues, it was not possible to find publications on the exact 
topic or on largely similar approaches at the beginning of my work. Since that, remarkable 
progress has been achieved in certain themes, while much less in others, though their 
importance is being emphasized. Many of the investigated topics (such as paradigmatic 
system features, cognitive engineering of systems, smart and intelligent operation of CPSs, 
application-specific problem solving knowledge and computational reasoning mechanisms, 
prognostic systems thinking, and reuse of SSK), are directly associated with (frontline) 
issues which do not have direct precedents. The reflections of manuscript reviewers and 
experts received so far indicate that the presented research work is considered forward-
looking even in an international context, as it extends the boundaries of knowledge to 
important new areas and creates new innovation opportunities. Notwithstanding, further 
extensive studies of the topics discussed are equally important from the point of view of 
scientific cultivation, innovation stimulation, industrial development and enhancement of 
social welfare. 

More specifically, the novel scientific contributions of the dissertation can be 
summarized as follows: (i) introducing and using paradigmatic system features profiles for 
identification and characterization of CPSs, (ii) constructing a self-intelligence and self-
organization-based model of generational evolution of CPSs, (iii) distinguishing system-
level synthetic problem-solving knowledge (SLS-PSK) from other genres of (human) 
knowledge, (iv) proposing sympérasmology for systematic investigation of SLS-PSK, (v) 
specification of a conceptual framework, constructs, and means for enabling prognostic 
systems thinking, (vi) developing a theoretical underpinning and computational 
methodology for aggregation and utilization of system-level intellect as an industrial asset, 
and (vii) framing supradisciplinary collective research for CPSs. Contrary to these, every 
research action has remained an open story in my eyes. This impression is with me not only 
because of the diversity and broadness of the phenomena and problematics studied, but also 
as a consequence of the many things learnt and recognized during the focused inquiry 
processes. 
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Regarding the implications of the knowledge shared in the dissertation, two possible 
areas of direct utilization can be identified. One of these is the inclusion of the systematized 
conceptual fundamentals, models and frameworks in the development of a consistent and 
coherent disciplinary educational curriculum. The other utilization possibility is the 
integration of the results into the design methodology of human- and system-centered 
complex, intellectualized, socialized and personalized CPSs. These are expected to lay the 
foundation for a broader innovation, and through this, will have an impact not only on the 
relevant sector of the industry, but also on people's everyday lives. I believe that the thesis 
and the dissertation contribute to both in a balanced way and stimulate further efforts. 
Important to note that the research results and the published papers related to the 
fundamentals, overview, and conceptualization of cyber-physical systems have proved to be 
very useful in regular education (more precisely, in the M.Sc. elective course titled Cyber-
physical systems design, as well as in discipline-related Ph.D. courses) in the period from 
2013 to 2020, but also in occasional on-line courses. With regard to the earlier published 
research results, beyond the academic reactions, the industrial impact and the extent of 
utilization of the results are not directly measurable yet. 
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Appendix 2 

Glossary 
AGI artificial general intelligence 

AI artificial intelligence 

ANI artificial narrow intelligence 

ARM(s) ampliative reasoning mechanism(s) 

ASI artificial super intelligence 

ASRM application-specific reasoning mechanism 

AST analytical systems thinking 

BANGM bits, atoms, neurons, genes, memes 

CAM conceptual advancement model 

CES cognitive engineering of systems 

cisp*CPS(s) complexificated, intellectualized, socialized, and 
personalized CPS(s) 

CPAS(s) cyber-physical agricultural system(s) 

CPCS(s) cyber-physical care system(s) 

CPMS(s) cyber-physical medical system(s) 

CPmS(s) cyber-physical military system(s) 

CPNS(s) cyber-physical nautical system(s) 

CPPS(s) cyber-physical production system(s) 

CPA cyber-physical augmentation 

CPS(s) cyber-physical system(s) 

CPSoS(s) cyber-physical system(s) of systems 

CPSS(s) cyber-physical-social system(s) 

CPTS(s) cyber-physical transportation system(s) 

CRM(s) computational reasoning mechanism(s) 

DOS designed operation space 

EOS external operation space 

ESS extended system space  

i*CPS(s) intellectualized cyber-physical system(s) 

I4.0 industry 4.0 

I-CPS(s) intelligent cyber-physical system(s) 

IEP(s) intelligence exchange packet(s) 
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IES(s) intellectualized engineered system(s) 

IOS internal operation space 

IoT Internet of things 

ISS initial system space  

IT information technology 

KBS(s) knowledge-based system(s) 

MEMS(s) micro-electro-mechanical systems  

NASEM National Academies of Sciences, Engineering, and Medicine 

NEMS nano-electro-mechanical systems 

NG-CPS(s) next-generation cyber-physical system(s) 

NRC national research council 

OOS optimal operation space 

p-CPS(s) personalized cyber-physical system(s) 

PFP paradigmatic feature profile 

PSF(s) paradigmatic system feature(s) 

PST prognostic systems thinking 

RSS reproduced system space 

s*CPS(s) smart cyber-physical system(s) 

SAI super artificial intelligence 

s-CPS(s) socialized cyber-physical system(s) 

SSI synthetic system intellect 

SSK synthetic system knowledge 

xG-CPS(s) x-generation cyber-physical system(s) 
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