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Figure numbering: 

 
Figures referenced as “Fig. D1, D2,…, D6” refer to graphical illustrations in the dissertation. 
In contrast, “Fig. 1, Fig. 2, … Fig. 8” refer to figures of the related papers.  
 
 
Disclaimer: 

 
All graphical illustrations and figures in the rest of the dissertation are my original figures 
and have not been published elsewhere. 
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Introduction 
 

“Until not many years ago, the "existence" of a mind or soul would have been 
passionately denied by most physical scientists. ... There are [however] several 

reasons for the return, on the part of most physical scientists, to the Spirit of 
Descartes' ''Cogito ergo sum" .... When the province of physical theory was extended 
to encompass microscopic phenomena, through the creation of quantum mechanics, 

the concept of consciousness came to the fore again: it was not possible to formulate 
the laws of quantum mechanics in a consistent way without reference to 

consciousness.”  
 

(Eugene Wigner, 1961) 
 

Nothing was further from Wigner’s science philosophy than panpsychism. It’s rather the 

opposite. He proposed that physical measurements involve the “conscious perception” of a 

human observer. He did not use the term information, but when “measurement” becomes data 

and data becomes information, that information does not exist outside the brain. It must be born 

in the brain. How information is created in the brain is the subject of this dissertation. 

 

Our brain is specialized for information processing, but there is no consensus among neuro- or 

cognitive scientists on the main driving force of the evolution of the nervous system. Many 

may think of “adaptation to the environment.” However, adaptation to the same environment 

produced different phenotypes, each equally fitting. Others think of the efficacy of information 

processing or the reduction of free energy (Friston, 2010). But information processing is just 

as efficient in the nervous system of jellyfish as in the human brain. Could it be a “more precise 

representation of the world”? Donald Hoffman argues with examples that evolution has nothing 

to do with improving the physical precision of our senses or the accuracy of neuronal 

representations of our environment (Hoffman, 2019). What about “predicting the future”? 

Humans championed that, and predictive coding is one cornerstone of Friston’s free-energy 

principle (Friston, 2010; Rao & Ballard, 1999). To predict the future, the nervous system, as 

an agent1, must discriminate between the environment's constant and variable features. 

 

The variable parts often exhibit specific rules. The agent with the nervous system must also be 

able to separate its behavioral impact from the state of the environment to capture the constant 

invariable aspects of it. Let’s call this the detection of invariances. We argue that the nervous 

system evolved partly under the pressure of extracting invariances because those invariances 

 
1 Agent means the organism is able to interact with the environment through the motor system by locomotion or 
by using actuators, limbs, tentacles, or antennae. 
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are keys for building stable neuronal representations of the surrounding space. In psychology, 

we group those invariances as “constancies,” such as color constancy and size constancy, all 

are crucial parts of object permanence. These examples illustrate that the physical feature may 

change with the context (illumination, viewing angle, appearance), but the biologically relevant 

features of objects (identity, material, spatial position) remain constant. The invariances that 

our brain can capture among the astronomical number of descriptive feature combinations must 

be reflected by consistent patterns of neuronal activity in the brain, called “sequences.” There 

seems to be no alternative to that principle. Hence, we naturally arrive at the question. Whether 

the observable invariant activity patterns “inside” are the mere imprints of permanent 

features “outside” or those apparent permanent features “outside” are projections of the 

recurring, hence invariant, activity patterns “inside?” Although this question is beyond the 

scope of this dissertation, it will reverberate through the chapters, and by the end, the reader 

may correctly guess my ambiguous answer of “both.” 

 

The quest for understanding the neuronal underpinning of thoughts, concepts, representations, 

intentions, emotions, and behavior is a daunting challenge, which requires an interdisciplinary 

approach including psychology, neuroscience, cognitive science, medicine, computer science, 

medicine, linguistics, various subfields of physics, mathematics, molecular biology, 

evolutionary biology, and genetics. My research was a continuous strive to resolve the 

fundamental dilemma of modern-day dualism (Eccles, 1994), seeking key neuronal 

mechanisms underlying the formation of mental representations. The task has been to define 

the most basic meaningful entity above the level of neurons. More specifically, determine the 

patterns that embody information and enable the separation of it from the biological medium 

by unlocking the mechanism to generate memories, concepts, emotions, imagery, symbols, 

intentions, feeling of agency, and predictions of the future states of the world around, 

fundamental constituents of consciousness. In this dissertation, I review the pursuit of the 

enigma of “engrams” through my research, motivated by the idea that stable representations 

can be created by the collective dynamics of neuronal activity above the level of individual 

neurons, the hallmark of synergy (Haken, 1983). I will cover this in 5 chapters and three steps.   

 

(1) First, we hypothesize that multi-neuronal firing patterns serve as the first meaningful 

level of cognition in the hierarchy of patterns, representations, concepts, narratives, and 

theorems that comprise the “language” of cognition (Fig. D1).  
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(2) Second, based on empirical evidence, we will argue that this level does not depend on 

the invariable contribution of individual neurons (Chapters 1-4).  

(3) Finally, we prove the above hypothesis (1) by demonstrating that exists a metric of 

neuronal activity that can more accurately predict the behavior of the agent than the 

firing rate. We show that applying Bayesian decoding on spike phases can recover the 

allocentric position. This metric (the phase of spiking activity) can localize oneself in 

space, regardless of whether the brain uses it (Chapter 5).   

 

In this dissertation, I summarize my endeavor of finding the meaning of these patterns in 

neuronal communication and the mechanism that generates them.  
 
 
  

 
 

 
 
 
Figure D1. The levels of information generation in the brain. The two middle panel represent the levels of 
signal (on the left) and levels of structural (on the right) complexity. We posit that at the level between the 
single neuron and micro-circuitry where action potentials self-organize themselves into spike patterns and 
sequences is where information separates from the biological medium and fundamentally different laws 
take control. The laws of computation and mathematics.   
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Chapter 1 

 
6. Sequences of spikes: what makes them, and what do they do? 

 
 

“I can now return to the digital character of this mechanism. The nervous pulses can clearly 
be viewed as (two-valued) markers, in the sense discussed previously: the absence of a pulse 

then represents one value (say, the binary digit 0), and the presence of one represents the 
other (say, the binary digit 1). This must, of course, be interpreted as an occurrence on a 

specific axon (or, rather, on all the axons of a specific neuron), and possibly in a specific time 
relation to other events. It is, then, to be interpreted as a marker (a binary digit 0 or 1) in a 

specific, logical role.” 
 

Furthermore, “… This is clearly the description of the functioning of an organ in a digital machine, 
and of the way in which the role and function of a digital organ has to be characterized. It therefore 

justifies the original assertion, that the nervous system has a prima facie digital character.” 
 

(Von Neumann, 1958) 
 
In his unfinished book “The Computer and the Brain,” John von Neumann drew a parallel 

between computers and the nervous system (Von Neumann, 1958). He capitalized on brains’ 

advantages in energy dissipation, size, and parallel computation and disadvantages in speed, 

while also pointing out the similarities, among which was the digital nature of computation. 

 

Neumann emphasized “prima facie,” as it was mounting evidence suggesting the digital nature, 

and he was right. One of the fundamental features of neural computation is the binary nature 

of action potentials, acknowledged since Sherrington (Sherrington, 1906) and predominates all 

models of the nervous system. However, a Polish physiologist, Adolf Beck, revealed another 

aspect of neuronal activity in 1890 (Coenen et al., 2014), followed by Hans Berger and his 

invention, the electroencephalograph or EEG (Berger, 1929). The EEG unraveled the 

importance of continuous oscillations in the brain. The most prominent oscillations, classified 

as delta, theta, alpha, beta, and gamma, appeared to correlate with behavioral states from sleep, 

dream, drowsiness, and active awake and attentive state, respectively. While these oscillations 

were evident from the scalp electrodes of EEG, the same oscillation frequencies were also 

discernible in vivo in animal preparations by recording almost anywhere inside the brain. The 

oscillations that we can discriminate from surface EEG were also recognized in the local field 

potentials (LFP) recorded from inside the neuronal tissue extracellularly as well as 

intracellularly as subthreshold membrane oscillations. It is reasonable to assume that the 

sources of oscillations observed in the scalp EEG are, at least partly, associated with the sum 

of cellular-level subthreshold oscillations expressed at a macroscopic scale due to population-
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wide synchrony. Alternatively, the most widely shared assumption relates LFP to the synaptic 

input or the phasic modulation of postsynaptic potentials (Logothetis, 2003; Mitzdorf, 1987). 

We must add the two hypotheses, the subthreshold potential origin and the synaptic origin, are 

not mutually exclusive.  

 

Action potentials and subthreshold membrane oscillations represent a combination of digital 

and analog modes of operation in the brain, respectively. Both are essential for information 

processing in the brain. If we experimentally abolish action potentials by a Na+ channel 

blocker, such as tetrodotoxin (TTX), the neuron stops relaying messages to the postsynaptic 

neurons (Narahashi, 2008). On the other hand, if we reduce the oscillations by 

 

Figure D2: Functional connectivity 
inferred from the independence vs. 
non-independence of neurons. (A) 
Two functional cell-assemblies 
superimposed (filled and open 
circles). Both contain cells that are 
connected and mutually dependent, 
but the two assemblies are 
independent from one another (no 
connections between them). The 
task is to separate the two cell-
assemblies based on their activities 
(bottom). Small buttons represent 
synaptic connections. (B) Network 
dynamics depends on the functional 
connectivity: (I) A subnetwork of 
neurons a à b à c generates a 
recurring “a-b-c” spike sequence 
(III) with a constant delay between 
spikes. (II) Changing a connection 
by adding dàc opens c for 
influences outside of the a à b à c 
circuitry. (IV) As a result, c will be 
active independently from a and b 
neurons. The connectivity change 
affects spike pattern as well as the 
cross-correlations in a subtle 
fashion by adding an extra bump to 
a-c and b-c cross-correlograms (V-
VI). In contrast, the three-fold joint-
peri-stimulus-time histogram 
(JPSTH) reveals the impact of the 
new connection on the dynamics in 
an explicit fashion (VII-VIII). 
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tetraethylammonium (TEA), the timing of action potentials becomes seriously affected 

(Desmaisons et al., 1999; Engel et al., 2008; C. J. Wilson et al., 2018). The information transfer 

depends on the interaction between the spikes and the resonant membrane properties expressed 

as the fluctuation of subthreshold membrane potential, and we will unravel how through a list 

of articles. 

 

My earliest paper addressing the temporal organization of action potentials was focused on 

spike sequences (Nadasdy et al., 1999; Z Nadasdy et al., 1998). We defined spike sequences 

as the temporal pattern of a small number of action potentials (2 < n < 20) generated by more 

than two neurons repeating the order of firing m > 1 times. To understand the underlying neural 

computation, we need to outline a group of cells in which the neurons are non-independent of 

one another and separate it from another group of cells in which the neurons are independent 

of one another (Fig. D2 A), or they may be dependent of each other within the group but 

independent of the former group (Fig. D2 B). This classification is consistent with Hebb’s 

concept of “cell assembly,” defined as a temporary coalition of neurons engaged in a 

synchronized or “reverberating” activity (Hebb, 2005). Hebb was intentionally vague about 

what a coalition represents. Was it the neurons, groups, or areas? The dependency of the 

neuronal states (firing, not firing) on other neurons within the assembly might distinguish an 

assembly from other networks. Therefore, the first method developed to identify this type of 

dependency was the cross-correlation method introduced by Moore et al. (Moore et al., 1970; 

Perkel et al., 1967a, 1967b). However, the cross-correlation method had many limitations, most 

notably the failure to detect higher-order dependency between more than two neurons. 

Regardless of how one breaks all pairwise cross-correlations down into a large (n * (n-1) / 2) 

matrix of pairwise cross-correlations, the higher-order correlations remain obscured (Fig. D2 

B) unless we use joint-peristimulus-time-histograms (JPSTH) for visualization of second order 

cross-correlations. Looking at the multi-neuronal activity through the aperture of pairwise 

cross-correlations is like listening to Bach's Toccata and Fugue in D minor after silencing all 

but two organ pipes. Would that be the same musical experience as with all the organ pipes 

sounding? Probably not. Obviously, we are interested in “listening to the whole melody” of 

multiple neurons as it unfolds and repeats like the verse and the refrain as signatures of a cell 

assembly.  

 

Despite its limitations, the cross-correlation method made a big splash in the field when Wilson 

and McNaughton demonstrated the reactivation of ensemble activity during sleep following 
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exploratory behavior in rats (M. A. Wilson & McNaughton, 1994). Cross-correlation also 

played a key role in the subsequent paper by Skaggs and McNaughton that defined firing 

sequences (Skaggs & McNaughton, 1996), even if calling two spikes a ‘sequence’ is arguably 

a bit of stretch. 

 

At the same time, when those two high-impact papers were published, I was working on 

generalizing the cross-correlation method to higher-order correlations under György Buzsáki’s 

supervision at Rutgers University. We collected the same type of datasets from multiple single-

cell rat electrophysiology as the above studies, except we did not map the spatial activity of the 

neurons. Our experiment consisted of three parts: (1) first sleep, (2) a subsequent active awake 

behavior (running in the wheel), followed by (3) a second sleep (Nadasdy, Hirase, Czurkó, et 

al., 1999). Let’s call this the S1-R-S2 paradigm. After establishing three conditions: (i) using 

silicon multiprobes, (ii) reliable spike sorting, (iii) and robust behavioral paradigm with 

stereotypical behavior (S1-R-S2), we were able to analyze the simultaneous activity of the 

same neuronal ensemble of 3-8 neurons under different behavioral conditions. For spike 

sorting, I introduced a multielectrode projection method, and I applied mean-field to resolve 

the neuronal sources relative to the geometry of the Michigan probes (Nadasdy et al., 1998). 

In addition, I developed a pattern-searching algorithm based on template matching that was 

defined by the combination of neurons co-firing within a 200 ms time window. The algorithm 

exhaustively matched the template with all the neuronal activity patterns within the critical 

time window. The method effectively extracted a rich collection of patterns that finally met the 

definition of “sequences” because they represented higher than first- or second-order 

correlations. The extracted sequences often captured patterns generated by 4-8 neurons 

(Nadasdy, 2000). Detecting sequences was the easy part. The more laborious part was to prove 

that these sequences were not a result of a by-chance process. To do that, I applied two 

methods: One to validate the higher order cross-correlations (a-b-c-d) by a three-fold cross-

correlation of the (a-b-c) triplets. Here, I introduced a template-based pattern-searching 

algorithm for the task in many respects similar to the problem of gene sequencing (Nadasdy, 

Hirase, Czurkó, et al., 1999). Found only later that the method was similar to the one published 

earlier by Legéndy and Salcman (Legéndy & Salcman, 1985).  The other method was to 

generate surrogate datasets by shuffling the inter-spike-intervals (ISI), the cellular identity, or 

theta field coherence. These manipulations altered different aspects of the original spike train 

leaving other features intact. (For instance, ISI shuffling leaves the firing rate unchanged but 

alters spike times.) After generating thousands of surrogate datasets, I ran the shuffling tests 
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day and night for two weeks per session on supercomputers. In the paper, I show through 

examples (Fig. 5 E, 6) and statistics that such sequences are improbable to be the results of a 

by-chance process (Nadasdy, Hirase, Czurkó, et al., 1999). Instead, they reflect the coordinated 

activity of a group of neurons, supporting Hebb’s definition of a cell assembly. These 

simulations with surrogate spike trains served as indispensable steps in validating the neuronal 

sequences. Still, they should not steal the spotlight from the four main findings we outlined in 

that paper: 

 

1. Recurring spike sequences involving four and more neurons in the rat hippocampus 

were detected. 

2. They emerged during active exploratory behavior and were replayed during subsequent 

sleep. 

3. The spike patterns recurred with 4-5 x compression during sharp wave activity. 

4. Sequences aligned with theta during the awake state while aligned with ripples during 

slow-wave sleep. 

 

 

The paper was the first rigorous demonstration that, beyond the level of single action potentials, 

exists a deterministic process that generates precisely coordinated spatiotemporal 

constellations of spikes. I capitalize on “deterministic” because all point-process models 

describing spike process before these studies postulated that neuronal firing is a stochastic 

process where only the probability of firing can be determined and neither the timing nor the 

order of spikes followed a deterministic rule (Shadlen & Newsome, 1994) (Georgopoulos et 

al., 1986). The dogma of stochastic firing has predominated the literature on neural coding for 

40 years as a legacy of Adrian (Adrian, 1954), even though Adrian has never argued that the 

control of firing rate is a stochastic process. The alternative idea, the precise coordination of 

action potentials across neurons, areas, and time intervals, was proposed by George Gerstein 

and colleagues (Perkel et al., 1967a, 1967b), all of them recording cortical neurons in rats and 

primates (Abeles & Gat, 2001; Diesmann et al., 1999; Shmiel et al., 2006). It was unexpected 

that the most substantial supporting evidence base for higher-order correlations and cell 

assemblies derived from the hippocampus (Harris et al., 2003; Nadasdy, Hirase, Czurko, et al., 

1999; Skaggs & McNaughton, 1996; M. A. Wilson & McNaughton, 1994), which forced to 

revise the statistical approach of cortical dynamics. The resistance to embracing the idea of 

precise temporal patterns beyond the firing rate statistics is still relatively strong. Statistical 

               znadasdy_144_23



 

 
 
14 

models of modulated Poisson spike processes and Gaussian or cosine tuning curves are still 

dominating the field, and they are taken as evidence for stochastic processes, despite neither 

Poisson nor Gaussian or cosine tuning curves implying random underlying processes. 

 

The take-home message of the paper on “sequences” were as follows:  

 

1. Recurring spike sequences involving four and more neurons were found: Regardless of 

shifting the viewpoint on spike processes, a new model of memory encoding and the 

neuronal underpinning of the concept of “engrams” emerged. The new model was 

consistent with Hebb’s prediction of cell assembly, which postulated that coalitions of 

neurons can be formed dynamically under functional or task constraints. These 

coalitions can emerge and dissolve, and new coalitions self-organize from the same 

pool of neurons to contribute to different functions by synchronizing other groups of 

neurons. This mechanism would unlock the capacity of the network of neurons beyond 

what was thought earlier because it enables information to be superimposed and 

multiplexed over the same network, a principle that enhances memory storage, reduces 

disruptive interference, and improves retrieval efficacy. 

2. Sequences emerge during active exploratory behavior and are replayed during 

subsequent sleep: Sleep has long been considered a process of memory consolidation 

(Buzsaki, 1989; Fosse et al., 2003; Wamsley & Stickgold, 2011). The paradigm of 

recording neuronal ensemble activity during three successive stages (S1-R-S2) has 

become a standard design. While many studies focused only on the awake-to-sleep 

comparison, the correct comparison is S1-to-awake and S2-to-awake because we only 

expect spike pattern replay from awake to S2 and not from awake to S1 (backward 

causation). In other words, the awake exploratory experience cannot be accounted for 

patterns already present in the first sleep.   

3. The spike patterns recur with 4-5 x compression during sharp wave activity: The 

compression of spike patterns is necessary to associate the spike patterns expressed 

during theta with the spike patterns observed during sharp wave ripples (SWR) as the 

time scales of the two types of events are quite different. The duration of one theta cycle 

is typically 140-250 ms, while a single SPW ripple is rectified within 50 ms. The other 

factor is the firing rate. During exploratory behavior, the average firing rate of 

pyramidal cells is less than 10 spike/s in contrast with the 40-100 spike/s rate during 

the short period of SWRs. The fraction of spike patterns recurring with the highest rate 
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spans over 1 or 2 theta cycles and aligns with the gamma oscillation phases (1-15 

gamma cycles).  If we rescale these gamma cycles to match the scale of SWR, the 

gamma bouts with spikes in them will co-register with the ripple time slots.  Hence the 

spike patterns during theta are reflected by the spike sequences observed during SWRs.  

The scaling factor is about 4-5 x, meaning that the predominant spike patterns observed 

during theta are replayed in a compressed fashion during SPW within a 4-5 times 

shorter time window. The 4-5 x is the same as the time scale difference between a theta 

cycle and a sharp wave event and the scaling factor between the gamma rhythm and the 

high-frequency ripples. The precise phase-locking between gamma oscillations and 

spikes was demonstrated more than 20 years later in my 2022 article (Nadasdy et al., 

2022).  

4. Sequences tend to align with theta during the awake state, while they align with the 

ripples of sharp waves during slow-wave sleep: This is a key point of the paper and has 

far-reaching implications. Together with other papers, it fertilized a whole new lineage 

of research investigating the conspicuous relationship between theta-embedded spikes 

and sequences of spikes replayed during sharp waves, including forward and reverse 

replays (Diba & Buzsáki, 2007; Nadasdy, Hirase, Czurkó, et al., 1999). 

 

This paper consolidated spike-field coherence in theta phase precession (O’Keefe & Recce, 

1993) with the sequence replay (Skaggs & McNaughton, 1996; M. A. Wilson & McNaughton, 

1994) as the mechanism for memory consolidation and facilitated the conceptual shift of 

integrating binary spike processes with continuous local field potentials (Nadasdy, Hirase, 

Czurkó, et al., 1999). While this conceptual shift was evident in hippocampal electrophysiology 

by the late ‘90s, it remained unorthodox in the primate cortical and sensory electrophysiology 

until 2010. 
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Replay and Time Compression of Recurring Spike Sequences in
the Hippocampus

Zoltán Nádasdy, Hajime Hirase, András Czurkó, Jozsef Csicsvari, and György Buzsáki

Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, Newark,
New Jersey 07102

Information in neuronal networks may be represented by the
spatiotemporal patterns of spikes. Here we examined the tem-
poral coordination of pyramidal cell spikes in the rat hippocam-
pus during slow-wave sleep. In addition, rats were trained to
run in a defined position in space (running wheel) to activate a
selected group of pyramidal cells. A template-matching method
and a joint probability map method were used for sequence
search. Repeating spike sequences in excess of chance occur-
rence were examined by comparing the number of repeating
sequences in the original spike trains and in surrogate trains
after Monte Carlo shuffling of the spikes. Four different shuffling
procedures were used to control for the population dynamics of

hippocampal neurons. Repeating spike sequences in the re-
corded cell assemblies were present in both the awake and
sleeping animal in excess of what might be predicted by ran-
dom variations. Spike sequences observed during wheel run-
ning were “replayed” at a faster timescale during single sharp-
wave bursts of slow-wave sleep. We hypothesize that the
endogenously expressed spike sequences during sleep reflect
reactivation of the circuitry modified by previous experience.
Reactivation of acquired sequences may serve to consolidate
information.

Key words: sharp waves; !; memory; coding; decoding; re-
trieval; network; sleep

Although it is a widely accepted notion that information is
distributed in cell assemblies rather than encoded by single cells,
the nature of coding in cell assembly has remained a major
challenge for neuroscience research. Several explanations have
been proposed on theoretical grounds, including frequency cod-
ing (Sherrington, 1906; Eccles, 1957; Barlow, 1972; Georgopoulos
et al., 1982), temporal coincidence coding (von der Malsburg and
Bienenstock, 1986; Singer, 1993), temporal delay of spikes
(O’Keefe and Recce, 1993; Buzsáki and Chrobak, 1995; Hopfield,
1995; Lisman and Idiart, 1995; Skaggs et al., 1996), and spatio-
temporal spike sequence coding (Buzsáki, 1989; Abeles, 1991). If
spatiotemporal patterns of neural activities serve to code and/or
decode information, one could look for evidence in the temporal
structure of activity within neuronal ensembles. Temporal coor-
dination of spike sequences, in relation to stimulus presentation,
has been described in various invertebrate (Dayhoff and Gerstein,
1983; Laurent et al., 1996; Marder and Calabrese, 1996) and
vertebrate (Strehler and Lestienne, 1986; Ts’o et al., 1986; Vaadia
and Abeles, 1987; Eckhorn et al., 1988; Gray and Singer, 1989;
Frostig et al., 1990b; Aertsen et al., 1991; Abeles et al., 1993;
Riehle et al., 1997) brains.

Because hippocampal pyramidal neurons discharge selectively
at certain spatial locations [“place” cells (O’Keefe and Nadel,
1978)], it is expected that they are activated sequentially while the

animal moves about in a structured environment (Wilson and
McNaughton, 1994; Skaggs and McNaughton, 1996; Brown et al.,
1998; Zhang et al., 1998). During sleep, on the other hand, there
is no external perceptual reference or motor behavior to drive
hippocampal cells. Therefore, if recurring spike sequences are
present during sleep, they are likely to be internally generated. In
a previous study, Pavlides and Winson (1989) examined pairs of
putative pyramidal cells recorded by the same single wire. When
one of the neurons in the pair was activated by confining the rat
to the spatial field of the unit, the firing rate of the neuron during
the subsequent sleep epoch increased relative to that of its pair. A
more recent study, however, failed to confirm the relationship
between firing rates in the awake and sleeping rat (Wilson and
McNaughton, 1994). On the other hand, neuron pairs, which
represented similar parts of the environment in the awake rat and
therefore fired together during exploration, showed an increased
correlation in their firing during the subsequent slow-wave sleep
episode compared with the preceding sleep episode (Wilson and
McNaughton, 1994; Skaggs and McNaughton, 1996). Pairwise
cross-correlograms, however, are not sufficient to analyze the
exact temporal structure of more than two cells (Hampson et al.,
1996; McNaughton et al., 1996; Moore et al., 1996; Quirk and
Wilson, 1998).

Here we examined the spatiotemporal firing patterns of hip-
pocampal CA1 principal neurons in awake and sleeping rats.
Spatiotemporal sequences of spike patterns were detected either
by a template-matching method or by the joint probability map-
ping of spikes. The results indicate that repeating spike sequences
are present in both the awake and sleeping animal in excess of
what is predicted by random coincidences. Furthermore, the spike
sequences observed in the behaving rat were “replayed” at a
faster timescale during sharp-wave bursts of slow-wave sleep.

Parts of this paper have been published previously (Nadasdy et
al., 1996, 1997, 1998).
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MATERIALS AND METHODS
The surgical procedures, electrode implantation, and spike sorting have
been described in detail previously (Csicsvari et al., 1999). Briefly, wire
tetrodes or silicon electrode arrays were implanted in the CA1 pyramidal
layer of 18 Sprague Dawley rats. Electrical activity was recorded while
the rat was in its home cage followed by exploration. Six rats were trained
to run in a wheel for a water reward (Czurko et al., 1999). The apparatus
was a 30 ! 40 ! 35 cm box with a glass front wall. The running wheel
(10 cm wide; 29.5 cm in diameter) was attached to the side of the box. A
drinking tube protruded from the back wall of the box 5 cm above the
floor. Five to 20 turns of the wheel triggered an acoustic “go” signal,
which indicated the availability of the water reward (Czurko et al., 1999).
After the task is learned, the behavior is stereotypic: running in the
wheel, approaching the waterspout, drinking, and returning to the wheel.
In the trained rats, electrical activity was recorded during sleep in the
home cage (session 1), followed by wheel running in an identical wheel-
running apparatus but in a different spatial location of the room (session
2) and a second recording session during sleep (session 3). Units were
separated on the basis of their spike amplitude and waveform using
principal component analysis and spatial clustering (Wilson and Mc-
Naughton, 1994; Nádasdy et al., 1998; Csicsvari et al., 1999). Only
pyramidal cells with clear cluster boundaries and "2 msec refractory
periods were included in the analyses (Fig. 1). For the extraction of
sharp-wave (SPW) ripple events during sleep, the wide-band recorded data
were bandpass filtered digitally (150–250 Hz). The power (root mean

square) of the filtered signal was calculated, and the beginning, peak, and
end of individual ripple episodes were determined. The threshold for ripple
detection was set to 7 SDs above the background mean power (Csicsvari et
al., 1999). ! epochs were detected by calculating the ratio of the ! (5–10 Hz)
and " (2–4 Hz) frequency bands in 2.0 sec windows. A Hamming window
was used during the power spectra calculations.

Neuronal spike times of simultaneously recorded neurons are referred
to as the “parallel spike train.” For the detection of invariant temporal
structures of spikes from parallel spike trains, two different methods were
used: (1) the template-matching method and (2) the joint probability map
method. Complex-spike bursts [#6 msec interspike intervals (Ranck,
1973)] were regarded as single events, represented by the time of the first
spike.

The template-matching method
The template-matching method was a modified version of the “sliding-
sweeps” algorithm introduced by Gerstein and colleagues (Dayhoff and
Gerstein, 1983; Abeles and Gerstein, 1988; Frostig et al., 1990a). The
search for repeating spike sequences was performed within a specific
time window, denoted as the template window w (Fig. 1d). The 0 point
of a w time window was assigned to a spike of the selected reference
neuron. The temporal positions of c spikes, detected from the spike train,
within the w time window were considered as a template. The T template
was represented by a temporal vector of p neurons and t spike positions
relative to the t(0) reference spike and the c $ 1 co-occurring spikes from

Figure 1. Spike sequence extraction methods. Panel a, Unit activity was recorded simultaneously from multiple tetrodes. Filtered recordings from a
single tetrode are shown (Ch1–Ch4 ). Panel c, Spike sorting resulted in 4–8 neurons/tetrode. Panel b, Superimposed waveforms of a single cell are shown.
Panel d, The parallel spike train (vertical tics; cells 0–4) was analyzed by a sequence-search algorithm for repeating spike sequences. All possible
sequences were considered as a template. The duration of the template window (w) was typically 200 msec. The tolerance of spike match (spike window;
dt) was 10 or 20 msec. Neur, Neuron. Panel e, Spike sequences of neurons a–d are represented as spatiotemporal vectors. For graphical illustrations,
repeating sequences are superimposed in subsequent figures. Panel f, The significance of sequence repetition was tested by Monte Carlo statistics. Panel
g, Spike triplets were also detected by the JPM method. The distribution of spike triplets (a, b, c; %tab, %tac) within the w time window was investigated
by constructing a joint peri-event time histogram. A difference map (Dij) was created by subtracting chance combinations, as predicted by the
corresponding spike doublets, from the joint peri-event time histogram. The pixels of the difference map (JPM) represent the probability of observing
a given triplet.
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the other spike trains: T & ( pi; tj). Here pdenotes the different cells as
p & ( pi, . . . , pn), where n is the number of parallel-recorded cells, and
t & (%tj, . . . , %tc$1) denotes the corresponding intervals between the
initial spike and subsequent spikes where %tc$1 # w. Next, the template
was shifted to successive spikes of the reference neuron throughout the
recording session, and recurrences of the T template were counted.
During the search, each spike sequence was considered as an exemplar
and compared with the T template sequence. A match between the
template and the exemplar was counted when spikes occurred within a
predetermined time window dT (or spike jitter; Fig. 1d). The spike time
window (dT ) was set at 10 or 20 msec in most searches because in
preliminary experiments the best separation between the real spike train
and shuffled spike trains was observed using 10–20 msec spike windows
(dT was varied between 2.5 and 20 msec; n & 2 rats). In each search, the
template window (w) and the spike window (dT ) were set by the exper-
imenter. The template window was typically set to 200 msec (Fig. 1d).
The dependent variables of the search were the number of spikes in a
given template (sequence complexity), the number of different sequences
(m), and the number of repetitions of a given sequence (r). During the
search, every spike was considered as a part of a template sequence of c
complexity, each template occurred at least once, and the entire spike
train was searched exhaustively by templates. The sequences were visu-
alized as temporal vectors (Fig. 1e).

The statistical significance of the observed repetition of spike se-
quences was assessed by comparing the repetition of the original se-
quences (rorig) with the repetition of the pseudorandom sequences (rrnd)
generated by spike shuffling. The null hypothesis was that the statistical
distribution of rorig is equal to that of rrnd. We reasoned that if rrnd of
every possible sequence in 100 simulated spike trains is smaller than the
rorig, the null hypothesis can be rejected with p # 0.01 probability (Fig.
1f ). In these comparisons, we assumed that in a shuffled parallel spike
train with the same first-order statistics (firing rate and population
covariance) as the original spike train, the number of repeating spike
sequences should reflect chance occurrences. Spike shuffling thus served
to eliminate the temporal correlation generated by an assumed biological
mechanism. Four randomization procedures were applied.

Within-spike-train random shuffling. Interspike intervals, derived from
the original spike trains, were exchanged between two pseudorandomly
selected positions from the first to the last interspike interval, and this
procedure was iterated (Fig. 2b). Within-spike-train shuffling preserves
the average firing rates of individual cells. However, it can eliminate
population synchrony among the simultaneously recorded spike trains,
present during ! and sharp-wave patterns.

Temporal displacement of spikes. This procedure is similar, in principle,
to the within-spike-train shuffling. However, in this procedure spikes
were displaced temporally by adding a pseudorandom interval from 0 to
50 msec. This range was used because this temporal displacement was
small enough to preserve population synchrony during both ! and sharp
waves (Fig. 2c).

Across-spike-train shuffling. Each spike of the spike trains was assigned
to a pseudorandomly selected cell (Fig. 2d). As a result, the population
level modulation of the firing rate in the surrogate spike trains remained
the same as in the original spike train. A caveat of this procedure is that
the differences in discharge frequencies of individual spike trains, which
may be present in the original spike trains, are reduced as a result of
spike shuffling across trains.

! phase-invariant shuffling. This procedure preserved the periodic mod-
ulation of discharge frequency both within and across the spike trains
(see Fig. 5a). First, the peaks of the field ! waves were identified. Second,
the spike times were converted to phases of the ! cycle (Csicsvari et al.,
1999). Third, the phase-encoded spikes within a given ! cycle were
exchanged with other pseudorandomly selected cycles within the same
spike train.

Joint probability map method
Repeating spike triplets were detected by the joint peri-event time
histogram method (JPTH) (Aertsen et al., 1989). The construction of a
joint peri-event time histogram was restricted to spike triplets co-
occurring within a w time window. The histogram displayed the repeti-
tion of the same triplet at all interspike intervals. First, all possible
n!/(n $ 3)! variations of temporal orders of triplets were determined,
where n is the number of parallel spike trains. All triplets T & ( p1, p2, p3;
%t1, %t2) with %t1 # %t2 and w $ %t2 were registered and represented as
pixels in a two-dimensional coordinate system at %t1 and %t2 as x and y
coordinates, respectively. For the estimation of the spurious occurrence

of triplets, the cross products of the (neuron1 neuron2), (neuron1 neu-
ron3), and the (neuron2 neuron3) cross-correlograms were constructed
and normalized by the total number of observed triplets (Fig. 1g). The
histogram of expected triplets was subtracted from the histogram of
observed triplets, resulting in a histogram of unexpected triplets [differ-
ence map or joint probability map (JPM)]. Each pixel of the JPM was
tested with the Fisher’s exact probability test (Frostig et al., 1990a,b). To
reduce the error inherent in repeated comparisons, the exact probability
was multiplied by the number of pixels of the JPTH. The difference map
is referred to as the JPM. Similar JPMs were constructed also from all
shuffled surrogate trains. In the next step, the incidences of significant
pixels in the JPM of the original and shuffled trains were compared
statistically. Again, we assumed that if the number of significant triplets
in 100 simulated spike trains is smaller than the observed number of
triplets in the original spike train, the null hypothesis can be rejected
with p # 0.01 probability. Because of the behavior-dependent time
compression of spike sequences (see Results), the temporal information
between spikes was discarded for this analysis.

Clustering artifacts
The reliable identification of spikes with individual neurons is a prereq-
uisite for sequence detection. False clustering can cause the dispersion of
single-unit activity to different clusters, and the spike train will be
erroneously decomposed to different spike trains. A potential source of
false clustering is the amplitude variation of extracellular units (Quirk
and Wilson, 1998). As a consequence, temporal regularities of action
potentials of a single neuron would lead to spuriously recurring multiple-
unit spike sequences in parallel spike trains. The potential contribution
of such an artifactual cause of the repeating spike sequences was tested
by dividing the original clusters into small-amplitude and large-
amplitude subclusters. As a result, the firing rate was reduced by 50% in
each of the newly created trains. According to the formula of Abeles and
Gerstein (1988), the number of spurious spike sequences should decrease
exponentially as a function of spike count. In contrast, we found that the
number of different sequences and the number of recurring sequences
decreased only slightly less than one-half, indicating that spike amplitude
variation cannot account for the repeating spike sequences. It is impor-
tant to emphasize that only well-identified spike clusters with clear
boundaries and refractory periods (Csicsvari et al., 1999) were included

Figure 2. Spike-shuffling methods. Panel a, Original parallel spike train.
Three repetitions of the same spike sequence (0, 1, 2, 3) are shown. Panel
b, Elimination of temporal correlation between the spikes by shuffling the
interspike intervals (ISI ) within each spike train. Gray tics indicate the
original spikes. Panel c, Spike displacement. Spikes of the original spike
train ( gray tics) are randomly shifted in time by 0–50 msec (%t; black tics).
Although the interspike intervals may change somewhat by this method,
the field modulation of the neurons is better preserved. Panel d, Shuffling
of spikes across spike trains. This method preserves population modula-
tion of spike timing but may reduce firing-rate differences between the
original spike trains. A fourth method (phase-invariant spike shuffling) is
illustrated below (see Fig. 5).
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in this study. In another approach, spikes that were part of the detected
spikes sequences were highlighted in the original unit clusters. The
rationale of this approach was that if spike sequences result as a conse-
quence of poor clustering, spikes of the detected sequences should either
reside near the cluster borders or coincide with small-amplitude spikes.
This backprojection method, however, clearly revealed that spikes that
were part of sequences were evenly distributed in the cluster clouds of
spikes.

Computation
The sequence search, spike train shuffling, and the Monte Carlo statistics
were run on an IBM SP2 scalable parallel computer with six nodes of
RS/6000, 120 MHz P2SC processors (IBM, White Plains, NY), on a
Silicon Graphics Onix2 with a 120 MHz MIPS R10000 processor (Silicon
Graphics, Mountain View, CA), and on a Sun Enterprise with two
UltraSPARC processors (Sun Microsystems, Palo Alto, CA). Identifica-
tion of repeating spike sequences in a 10-min-long file, containing five
parallel spike trains, typically required 175 min (Onix2) or 12.5 hr (SP2)
of central processing unit time. The complete hypothesis testing of a
single data set, including the generation of 100 surrogates and the
sequence search, required 175 ! 101 & 17,675 min (294.6 hr or '12 d)
on the Onix2.

RESULTS
The most prominent slow-wave sleep pattern in the hippocampus
is an irregularly occurring population burst of pyramidal cells,
associated with an SPW in the stratum radiatum and fast (150–
200 Hz) field oscillation in the pyramidal layer of the CA1 region.
Population activity of pyramidal cells between SPW events is
relatively quiescent (Csicsvari et al., 1999). The long-term firing
rates of pyramidal cells were similar during ! (1.4 ! 0.10 Hz) and
non-! (1.4 ! 0.09 Hz) behaviors. However, during SPW events,
the firing rates of pyramidal cells increased by sevenfold (Csics-
vari et al., 1999).

First, we examined whether participation of pyramidal neurons
in SPW bursts is stochastic. On average, a pyramidal cell partic-
ipated in 15% of successive SPWs. The probability of participa-
tion of individual neurons, however, varied extensively (2–40%;
Fig. 3A). In other words, some pyramidal cells discharged consis-
tently more reliably during SPW bursts than did others. The
participation probability of a pyramidal neuron during SPW could
be predicted from the firing rate of the cell during ! activity in
rapid-eye-movement (REM) sleep (r & 0.59; p # 0.0001; Fig. 3B).
These findings indicated that participation of pyramidal cells in
the SPW event is not random and that the probability of their
discharge in SPW correlates with the discharge frequency during
! behaviors.

Spike sequences in the awake and sleeping animal
The database for spike sequence analysis consisted of 10 sets of
parallel-recorded spike trains of physiologically identified pyra-
midal neurons (n & 4–13 cells) from six rats. Repetition of spike
sequences was observed in every animal investigated (Fig. 4).
Sequences were detected from neurons recorded from both a
single tetrode and neighboring tetrodes. Spike trains of larger
numbers of simultaneously recorded cells yielded more se-
quences, but spike sequences could be identified reliably in
records containing as few as four neurons. As expected, a large
number of repeating spike patterns were observed in the wheel-
running behavioral task, especially when two or more of the
recorded pyramidal cells were selectively activated in the wheel
(Czurko et al., 1999) (Fig. 4b). Importantly, repeating spike
sequences were also present during sleep, when no external
reference or motor behavior was available to generate repeating
discharge sequences (Fig. 4a). The fraction of repeating spike
sequences (r $ 2) and single (nonrepeating) patterns varied from

8 to 56%. The exact percentage depended on the choice of
sequence-search parameters (time window and spike jitter).

The number of repeating spike sequences detected also de-
pended on the reference (sequence “initiator”) neuron (Fig. 4).
The inequality of the number of repeating sequences for different
initiator neurons indicated that the sequences may reflect biolog-
ical mechanisms because, in a random parallel spike train, spikes
of a given neuron are expected to precede and follow spikes of
other neurons with equal probability regardless of the firing rates.
To examine further whether the repeating spike sequences re-
flected cellular interactions or simply Poisson coincidences of
random events (Abeles and Gerstein, 1988), we compared the
original spike trains with their shuffled surrogates.

Figure 3. Relationship between the firing rate during ! behavior and the
probability of spike participation in SPW. A, Probability of discharge of
single pyramidal neurons in SPW events. Note that the majority of
pyramidal neurons discharge #15% of all recorded SPWs. B, Relation-
ship between the firing rate during ! and the probability of discharge
during SPW events. Note that increased discharge rate during ! predicts
a higher incidence of participation in SPWs.
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The incidence of repeating spike sequences during wheel run-
ning was compared with surrogate trains obtained by each of the
four shuffling methods (n & 1 rat). The number of repeating
sequences extracted from the original spike train exceeded the
number of repeating sequences present in each of the 100 surro-
gate trains. Comparison between the original spike train and its !
phase-corrected shuffled surrogates (see ! phase-invariant shuf-
fling in Materials and Methods) is illustrated in Figure 5. The !
phase-corrected shuffling procedure preserved the phase relation-
ship between ! and the individual spikes, therefore reproducing
the population dynamics of the parallel spike train as revealed by
the identical ! phase-locked modulation and the similar cross-
correlograms of both original and shuffled spikes (Fig. 5b,c). This
procedure also preserved the within-spike-train dynamics of sin-
gle neurons, as indicated by the similar autocorrelograms of the
original and shuffled spike trains (Fig. 5d). Comparison of repeat-

ing spike sequences indicated that the number of repeating spike
sequences (r) was less for all sequences (m) in any of the 133
shuffled surrogates compared with the original spike train (Fig.
5e). Of the various shuffling methods, across-spike-train shuffling
resulted in the most spike sequence repetitions; therefore it may
be regarded as the most rigorous test. Figure 6 illustrates the
difference between repeating spike sequences obtained from
the original parallel spike trains recorded from five rats and the
Monte Carlo surrogates of those recordings (100 shuffled trains in
each case). Shuffling was performed across spike trains for these
tests because the spike trains contained both ! and non-! epochs
(see Across-spike-train shuffling; Fig. 2). For a given spike se-
quence (c), the number of spike sequences (m) that recurred at
least rmin number of times was determined, and the average of the
actual repetitions (r1, r2, r3, . . . , rn) was calculated. In all five
cases, the number of repeating spike sequences in the surrogates
was less than that in the original parallel spike trains ( p # 0.01)
in the entire range of ms–s.

A second method used for the evaluation of repeating spike
sequences was the JPM. In contrast to the template-matching
method, the complexity of the spike sequence was limited to three
in this analysis. On the other hand, the JPM detected all se-

Figure 4. Examples of the spike sequences during sleep ( a) and running
( b) sessions, detected by the template-matching method. Only spike
sequences of neurons, recorded by a single tetrode, are shown. The sleep
session preceded the run session. The sequence initiator neuron is indi-
cated by arrows. Recordings during sleep and running sessions were
obtained from a single rat. The spike window (dt) was set to 10 msec in
these searches. Different colors indicate different patterns. The gray lines
in b, top, indicate all nonrepeating (single) sequences for comparison. Cell
numbers refer to the same cells within the same behavioral category. m,
Number of different sequences; r, number of repetitions of a given
sequence. Also see: FTP://speedy2.md.huji.ac.il /pub/neuron.mid.

Figure 5. Comparison of repeating spike sequences in a parallel spike
train, recorded during wheel running, with its shuffled surrogates. a, Peaks
of ! oscillation were taken as a reference point, and the spike timing was
converted to phase values within the ! cycle. During shuffling, sets of
spikes within a given ! cycle were transposed randomly (arrows). b,
Phase-normalized spike density histograms during the ! cycle are shown.
c, Cross-correlogram between the negative peaks of local ! and unit
discharges is shown. d, Spike autocorrelograms of units are shown. Note
the similar spike dynamics in the original and shuffled spike trains. e,
Repetition curves of spike sequences in the original spike train and in its
shuffled surrogates are shown.
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quences of spike triplets within a predefined time window (w),
regardless of the specific temporal position of spikes (Fig. 1g). The
distribution of repeating spike triplets was visualized as cumula-
tive values in the bins of a joint peri-event histogram (Fig. 7a).
Cross-correlation histograms for spike doublets were also calcu-
lated (Fig. 7b), and the expected co-occurrences of the corre-
sponding spike doublets (i.e., random triplets) were subtracted
from the observed distribution of triplets, resulting in a histogram
of unexpected triplets (JPM, Fig. 7c; see Materials and Methods).
The statistical significance of the difference between the observed
and expected spike triplets was calculated by the Fisher’s exact

probability test. In the example shown in Figure 7a–d, a high
incidence of triplets occurred at the temporal positions between x
values of 50 and 80 msec and y values of 150 and 190 msec (e.g.,
3, 2, 0; 50, 180 msec). The Fisher’s exact probability test indicated
three significant ( p # 0.02) triplet positions in the corresponding
pixels [(3, 2, 0; 50, 182 msec), (3, 2, 0; 64, 173 msec), and (3, 2, 0;
72, 154 msec)]. Importantly, these time patterns were similar to
the repeating spike sequences detected independently by the
template-matching method from the same data set (Fig. 7d).

To examine the null hypothesis that significant spike triplets
are generated by random coincidences, 100 JPMs were created
from the shuffled surrogates and compared with the original data
sets shown in Figure 6. In these shuffling tests, the temporal-
displacement-of-spikes procedure was used to ensure that shuf-
fled spike trains have the same average firing rates and the same
joint probability as the original data. Spikes were displaced in
time by adding random intervals from 0 to 50 msec (see Temporal
displacement of spikes; Fig. 2). For each of the original and the
corresponding surrogate trains (total of 505 data sets), three
separate JPMs were created, using 5, 6.7, and 10 msec bins. The
number of repeating spike triplets in the original data sets was
significantly larger than that in the shuffled correlates in every rat
at the 6.7 and 10 msec bins (Fig. 7e). At 5 msec, more spike
triplets were detected from the shuffled spike trains in two ani-
mals than in the original spike trains ( j0-08 and k9-02). However,
the differences were not significant for either of the two animals.

Behavioral modification of spike sequences
Next, we addressed the issue whether behaviorally imposed se-
quences can modify the probability of occurrence of those same
sequences during subsequent slow-wave sleep. In two rats, stable
recordings from the same neurons were obtained during Sleep1,
Run, and Sleep2 sessions (Fig. 8). The similarity of spike se-
quence structure between any two states was tested in two steps.
First, the significant triplets at all possible temporal positions
were identified by the JPM method in each state. Second, the
number of shared repeating spike sequences in different states
was calculated, regardless of the exact temporal position of the
spikes. For example, if the sequence 2;1;4 had significant pixels at
any interspike intervals during the Run but not during the Sleep1
session, then it was not a common triplet between Run and
Sleep1. However, if the triplet 2;1;4 was significant at 3 and 15
different temporal positions (pixels) during Run and Sleep2 ses-
sions, respectively, then it was a common triplet. In the first rat, 13
pyramidal cells were recorded (Fig. 8). Only 87 of the 1716
possible triplets (5%) were common to both Sleep1 and Run
sessions (Fig. 8a). In contrast, 160 triplets (9%) were observed in
both Run and Sleep2 sessions (Fig. 8b; %2 & 21.58; p # 0.01). In
addition, the number of significant pixels of common triplets
correlated significantly between Run and Sleep2 sessions (Pear-
son r & 0.737; p # 0.001). In contrast, during the Run session,
triplet incidences during Sleep1 were independent from those in
Run and Sleep2 sessions (Pearson r & 0.393; r & 0.326; p " 0.05).
In the second rat four pyramidal cells were recorded in all three
sessions. In this animal, statistically significant spike triplets com-
mon to two testing conditions were detected only between Run
and Sleep2 sessions (Pearson r & 0.679; p # 0.001).

Both the template-matching and the JPM methods indicated
that the majority of spike sequences were either #50 or "100
msec. In general, short sequences dominated in slow-wave sleep,
whereas the longer sequences occurred in the awake animal or
REM sleep (e.g., Fig. 4a,b). To quantify this observation, we

Figure 6. Comparison of repeating spike sequences in real spike trains
(original) and their shuffled surrogates. a–e, Data from five different rats.
The y-axis indicates the number of different sequences (m), and the x-axis
indicates the average number of repeating sequences ( r); e.g, 50 different
sequences were repeated 16 times on average in rat k12-30 ( panel c). Note
that the repetition rate in the original spike train is higher than that in any
of the 100 shuffled surrogates ( p # & 0.01). In these comparisons,
shuffling was done across spike trains. Rats are identified in each top right
corner.
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Figure 7. Spike triplets detected by the JPM method. a, The JPTH of a spike triplet (3, 2, 0). Summed pixels in the x- and y-axes are also shown. b,
“Expected” JPTH, constructed on the assumption that triplets are random coincidences of spike doublets (see Materials and Methods). c, The excess
number of triplets expressed as the difference between the observed and expected JPTHs. Significant pixels (Fisher’s exact probability test) are f ramed
in boxes. d, Vector representation of 3, 2, 0 sequences extracted by the template-matching method. Note that the latencies of the triplets match the
significant pixels in the JPM. e, JPM maps constructed using three different pixel sizes (5, 6.7, and 10 msec) from the original and 100 shuffled surrogates
(same original data sets shown in Fig. 6). The number of significant pixels in the surrogate JPMs is expressed as a percentage of the significant pixels
in the original JPM. Color bars, Number of events.
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examined the EEG correlates of repeating spike sequences. The
independent variable in these tests was the length of the spike
sequences, irrespective of the behavioral state of the rat. Spike
sequences of the same pyramidal cells and temporal order were
selected and subdivided into two groups, one with sequence
termination #50 msec and one with termination "100 msec, and
the power spectra of their associated background field activity
were compared. Two different epochs were extracted from the
EEG. The shorter epochs (204.8 msec before the first spike of the
sequence) provided a more precise estimate of the exact EEG
state, whereas the longer ones ($819.2 to 2457.6 msec) were used
to assess the EEG power at lower frequencies. For these compar-
isons, spike sequences common to ! and SPW states were used.
Power spectra, calculated from the short and long EEG epochs
(0–300 and 0–20 Hz, respectively), revealed that short spike
sequences were associated with a significant peak at 140–200 Hz
(Fig. 9b), corresponding to field “ripples” in the EEG (Buzs&ki et
al., 1992). Conversely, the long spike sequences were associated

with increased power at ! frequency (Fig. 9a). These findings
suggested that sequences associated with ! behavior were re-
played during SPW-associated ripples in a time-compressed
manner.

DISCUSSION
Quantification of repeating spike sequences
The template method and the JPM detected similar spike se-
quences. Nevertheless, a critical issue that must be addressed is
whether the repeating spike sequences were generated by biolog-
ical mechanisms or emerged simply as a result of random coinci-
dences of spike trains. The reliability of the Monte Carlo test

Figure 8. Spike sequences during sleep are influenced by previous wheel-
running behavior. Histograms of significant triplets common to Sleep1
and Run sessions ( a), to Run and Sleep2 sessions ( b), and to Sleep1 and
Sleep2 sessions ( c). A sequence was considered to be “common” if it was
significant by the JPM method (Fig. 7) in both behavior sessions regard-
less of the interspike intervals (e.g., 4-1-2 at 50 and 80 msec and at 5 and
8 msec). Individual triplets are listed on the x-axis. The upward and
downward bars at any given location on the x-axis indicate the number of
significant pixels of the JPM of a common triplet in the two sessions,
respectively. Note that there were almost twice as many triplets common
to Run and Sleep2 sessions than to Sleep1 and Run sessions. The r values
(Pearson’s product moment correlation coefficient) indicate the correla-
tion of the number of common triplets between the respective two
sessions.

Figure 9. Long and short repeating spike sequences are associated with
! and ripple field activity, respectively. The power spectra of background
field activity, associated with short and long sequences, were compared.
The first spike of the same long (termination " 100 msec; n & 47) or short
(termination # 50 msec; n & 78) spike sequences was regarded as the
reference event for extracting field EEG information. a, EEG power in
the low-frequency band surrounding long (solid line) and short (interrupt-
ed line) repeating spike sequences. Note the increased ! power during
long sequences. b, EEG power in the ripple frequency band (100–200 Hz)
surrounding long and short repeating spike sequences. Note the large
power peak at 160 Hz during short sequences. Insets, Long (in a) and
short (in b) sequences of the same neurons. Note the difference in
timescale; short sequences are shown at an enhanced timescale.
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depends critically on the choice of the proper shuffling method.
The ideal shuffling protocol should maintain the discharge fre-
quency of individual spike trains and should not alter the popu-
lation dynamics of the parallel-recorded neurons. Because none
of the known shuffling methods are universally applicable in all
situations, we used four different shuffling protocols.

If the dynamics of cortical neurons could be described by a
Poisson process (Bair and Koch, 1996; Shadlen and Newsome,
1998), then within-spike-train randomization of spike occur-
rences would be appropriate because this procedure does not
alter the average firing rate of the individual neurons. Unfortu-
nately, random shuffling within the same spike train (see Within-
spike-train random shuffling) may alter the population dynamics
of the parallel spike trains. This issue is very important, because
population synchrony of hippocampal pyramidal cells varies with
behavior and their dynamics do not follow simple Poisson statis-
tics (Csicsvari et al., 1999). Random shuffling across spike trains
(see Across-spike-train shuffling) preserved the population dy-
namics. However, this method tends to equalize the firing-rate
differences of individual neurons relative to the original spike
trains. This may be important because the number of repeating
spike sequences in random spike trains varies with discharge
frequency (Abeles and Gerstein, 1988). To retain both population
behavior and firing-rate changes, two additional shuffling proto-
cols were used. The temporal displacement method (see Tempo-
ral displacement of spikes) shifted spikes randomly within a 50
msec time window with the goal of retaining the population
synchrony across spike trains during both ! waves and SPWs. The
phase-invariant shuffling method (see ! phase-invariant shuffling)
preserved spike dynamics both within and across spike trains.
Regardless of the shuffling method used, excessively repeating
spike sequences were found in each of the parallel-recorded spike
trains. Furthermore, the number of different sequences, the num-
ber of repeating spike sequences, and the number of spikes within
a given sequence (complexity) varied even within the same data
set depending on the neuron that served as a sequence initiator.
Finally, the discharge probability of pyramidal cells in SPW
varied substantially from cell to cell. Together, these observations
indicate that the observed spike sequences cannot be accounted
for fully by random coincidences of neuronal discharges of hip-
pocampal cells.

Externally controlled and internally generated
recurring spike sequences
Spike sequences were observed in both the awake and sleeping
animal. The spatially distributed pattern of temporally precise
single pyramidal neuron spikes during sleep could be a conse-
quence of some hard wiring (Hampson et al., 1996) or may reflect
synaptic changes as a result of learning in the awake animal
(Wilson and McNaughton, 1994; Mehta et al., 1997). We hypoth-
esized previously that the behavior-dependent electrical changes
in the hippocampal formation (!- and SPW-associated states)
might subserve a two-stage process of information storage
(Buzsáki, 1989). Mnemonic information is assumed to be en-
coded in the recurrent and Schaffer collateral synapses of CA3
pyramidal cells during !-associated learning behavior. When the
network state of the CA3 matrix switches to SPW bursts during
consummatory behaviors and slow-wave sleep, synaptic connec-
tions that were active during the learning state are spontaneously
reactivated. Rapid reinstatement of the spatiotemporal patterns
of pyramidal cell activity in the CA3–CA1 regions and deep
layers of the entorhinal cortex (Chrobak and Buzsaki, 1994, 1996)

is hypothesized to transfer the stored representations in the
hippocampus to neocortical networks (Buzsáki, 1989; Wilson and
McNaughton, 1994; McClelland et al., 1995; Siapas and Wilson,
1998). Consistent with this speculation, the probability of SPW-
associated discharge of pyramidal neurons correlated with the
discharge frequency of these neurons during ! behavior. In addi-
tion, spike sequences that were observed in the wheel-running
task were observed in the subsequent slow-wave sleep episode at
a higher probability than during sleep before the wheel-running
session. These findings support and extend observations by Wil-
son and McNaughton (1994) and Skaggs and McNaughton (1996)
[but see also Hampson et al. (1996); McNaughton et al. (1996);
Moore et al. (1996)], who found that cell pairs with overlapping
place fields had an increased correlation during subsequent sleep.
Our findings also demonstrate that sleep-associated replay of the
sequences observed during ! behavior are mainly confined to
SPW bursts. It was demonstrated previously that the correlation
between cell pairs is significantly increased during SPW (Wilson
and McNaughton, 1994). However, such increased correlation
may be a spurious consequence of an increased firing rate during
SPW (Csicsvari et al., 1999). In the present study, the SPW-
associated time compression of spike sequences was demon-
strated by the correlation between the occurrence of short se-
quences and increased power at the ripple frequency. The effect
of increased discharge rate on the probability of sequences during
SPW was reduced or eliminated by shuffling across spike trains.
These observations support the suggestion that time-compressed
neuronal patterns during SPW bursts are generated within the
hippocampus and are a consequence of firing patterns in the wake
brain (Buzsáki, 1989; Chrobak and Buzsaki, 1994; Bibbig et al.,
1995; Hinton et al., 1995; McClelland et al., 1995; Skaggs and
McNaughton, 1996; Wallenstein and Hasselmo, 1997; Menschik
and Finkel, 1998; August and Levy, 1999). It may be argued that
both the slow and fast sequences were imposed onto the hip-
pocampal circuitry by the entorhinal input; thus the hippocampus
does not play an active role in generating endogenous repeating
spike sequences. This possibility is not likely because during sleep
SPW bursts are initiated in the CA3 region of the hippocampus
(Buzsáki, 1989). In fact, the incidence of SPWs increases dramat-
ically after entorhinal cortex lesion (Bragin et al., 1995).

Physiological role of spike sequence replay
What is the physiological importance of the recurring spike se-
quences (Lisman, 1998)? In a weaker formulation of the replay
hypothesis, the exact sequence of neuronal firing is not critical.
What is important is that neurons, which discharge in a tempo-
rally discontiguous manner during ! behavior and possibly en-
code different representations, are brought together during SPW
on the timescale of the time constant of NMDA receptors. From
this perspective, the function played by the time-compressed
replay of the active neurons in the awake animal is to ensure
Hebbian modification among pyramidal cells, which did not dis-
charge together within the critical time window of synaptic plas-
ticity during learning but nevertheless carry related information.
For example, during spatial behavior, various place cells are
activated as the animal explores its environment (O’Keefe and
Nadel, 1978). Because the same spatial position can be ap-
proached from various directions, hence associated by the activa-
tion of different neuronal sequences, most neurons do not dis-
charge together in time. During SPW bursts, these same neuron
sets may be endogenously reactivated within the time constant of
the NMDA receptors, providing an opportunity for Hebbian
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synaptic modification of the recurrent and Schaffer synapses of
the CA3 pyramidal cells.

Alternatively, one can argue that the replay of spike sequences
is critical for the activation of relevant target neurons downstream
from the hippocampus (Chrobak and Buzsáki, 1996; Siapas and
Wilson, 1998). This model assumes the existence of neuronal
mechanisms for decoding spike sequences with ripple frequency
(5 msec) resolution both within the hippocampus and in its
targets. Recent works on individual pyramidal neurons and their
network interactions suggest that pyramidal cells are equipped
with intrinsic oscillatory properties (Llinás, 1988; Leung and
Yim, 1991; Kamondi et al., 1998) and are embedded in an
oscillatory network of interneurons (Buzsáki and Chrobak, 1995;
Whittington et al., 1995). Within these oscillatory patterns, the
ratio of excitation and inhibition can vary substantially (Rudell et
al., 1980; Buzsáki et al., 1981; Csicsvari et al., 1999). We hypoth-
esize that the oscillatory network of neuronal assemblies may
provide “temporal windows of opportunity” to ignore or enhance
selectively the effectiveness of presynaptic activity. As a result,
individual spikes of a given spike sequence, as shown here, could
exert a differential impact on their postsynaptic targets, depend-
ing on the relationship between the spike and network activity.

Finally, it should be emphasized that the time-compression
effect is caused by the population dynamics of the hippocampal
network and that its mechanism is orthogonal to the formation of
spike sequences. During SPW bursts, the discharge probability of
pyramidal neurons increases several-fold (Csicsvari et al., 1999),
independent of whether a neuron is part of an observed spatio-
temporal spike sequence or not. Nevertheless, temporal coactiva-
tion of neurons, brought about by SPW bursts, is expected to
strengthen their synaptic weights. Direct demonstration of SPW-
induced synaptic changes, however, remains a future challenge.

Note added in proof. While this manuscript was under review, a
paper with relevant content has been published [Barnes CA,
McNaughton BL (1999) Reactivation of hippocampal cell assem-
blies: effects of behavioral state, experience, and EEG dynamics.
J Neurosci 19:4090–4101].
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Buzsáki G (1989) Two-stage model of memory trace formation: a role
for “noisy” brain states. Neuroscience 31:551–570.
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of hippocampal pyramidal cells by “space clamping” in a running wheel.
Eur J Neurosci 1:344–352.

Dayhoff JE, Gerstein GL (1983) Favored patterns in spike trains. I.
Detection. J Neurophysiol 49:1334–1348.

Eccles JC (1957) The physiology of nerve cells. Baltimore: Johns
Hopkins.

Eckhorn R, Bauer R, Jordan W, Brosch M, Kruse W, Munk M, Reitboeck
HJ (1988) Coherent oscillations: a mechanism of feature linking in the
visual cortex? Multiple electrode and correlation analyses in the cat.
Biol Cybern 60:121–130.

Frostig RD, Frostig Z, Harper RM (1990a) Recurring discharge patterns
in multiple spike trains. I. Detection. Biol Cybern 62:487–493.

Frostig RD, Frysinger RC, Harper RM (1990b) Recurring discharge
patterns in multiple spike trains. II. Application in forebrain areas
related to cardiac and respiratory control during different sleep-waking
states. Biol Cybern 62:495–502.

Georgopoulos AP, Kalaska JF, Caminiti R, Massey JT (1982) On the
relation between the two-dimensional arm movements and cell dis-
charge in primate motor cortex. J Neurosci 2:1527–1537.

Gray CM, Singer W (1989) Stimulus-specific neuronal oscillations in
orientation columns of cat visual cortex. Proc Natl Acad Sci USA
86:1698–1702.

Hampson RE, Byrd DR, Konstantopoulos JK, Bunn T, Deadwyler SA
(1996) Hippocampal place fields: relationship between degree of field
overlap and cross-correlations within ensembles of hippocampal neu-
rons. Hippocampus 6:281–293.

Hinton GE, Dayan P, Frey BJ, Neal RM (1995) The “wake-sleep” algo-
rithm for unsupervised neural networks. Science 268:1158–1161.

Hopfield JJ (1995) Pattern recognition computation using action poten-
tial timing for stimulus representation. Nature 376:33–36.
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Nadasdy Z, Bragin A, Buzsáki G (1996) Repeating spatio-temporal pat-
terns of neuronal activity in the hippocampus during sleep. Soc Neu-
rosci Abstr 22:445.11.

Nadasdy Z, Bragin A, Csicsvari J, Hirase H, Moore K, Buzsáki G (1997)
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tence, compression and behavioral induction of spike sequences in the
hippocampus. Soc Neurosci Abstr 24:362.18.
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Chapter 2 
 

7. Sequences in dissociated tissue cultures 
 
 

“The existence of a neuron chain, in any piece (column) of the cortex, routing 
the input through the local neuron network towards an output, is an obvious 

necessity and was implicit - from the very beginning - in all diagrams that tried 
to visualize the possible function of the cortex as a processor of information.” 

 
(János Szentágothai, 1978) 

 
 
While the concepts of spike sequences and replay were rapidly gaining traction in memory 

research, I took the opportunity to engage in collaboration with two outstanding colleagues 

from the late Jerry Pine’s lab at Caltech between 2003-2006. Their team just implemented a 

new protocol to record the multi-unit activity of dissociated tissue by multielectrode arrays 

(MEAs), unraveling a collection of stereotypical activity patterns these cultures spontaneously 

exhibit. They managed embryotic cortical neurons to grow on a thin layer of agarose gel for a 

few weeks, and having the neurons established a dense connectivity network, they turned the 

amplifiers on and recorded the entire tissue culture by a grid of 64 electrodes (Potter, 2001). 

Because tissue cultures develop dense recurrent connectivity and given that they are closed 

systems, we expected that spike sequences would evolve spontaneously. Owing to the method 

to keep the cultures alive and the recent advancement in the MEA technique made it possible 

for the first time to monitor the aggregate activity of thousands of neurons (Potter, 2001). I 

capitalize on “aggregate” because the MEA grid did not allow for the isolation of single-unit 

activity, but it was adequate for quantifying the mesoscopic-scale multi-unit activity. This 

project was funded by S.M.P.’s NIH grant, and D.A.W. did the experiments and data 

processing, while the data analysis and computational method development were done by 

D.A.W. and Z.N., the author of this dissertation (Wagenaar et al., 2006). 

Because the outcomes of this study are highly relevant to the narrative of my dissertation, I 

summarize them as follows:  

1. Dissociated neuronal tissue exhibits stereotypical activity patterns at a specific age of 

the culture, which are common across cultures. 

2. These stereotypical patterns consist of a two-level hierarchical pattern of bursts and 

superbursts (composed of 6-7 bursts). Superbursts spontaneously recur without any 

external trigger. 
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3. Superbursts are periodic, just like the individual bursts within the superburst.  

4. Individual bursts display specific propagation dynamics where the 1st burst differs from 

the 2nd and 3rd, and so on. On the other hand, the 1st bursts of every superburst are alike, 

and all the 2nd, 3rd, 4th, 5th, and 6th bursts are likewise.  If we assign letters to the burst 

sequence from the first to the sixth, we can describe this sequence composition as {A-

B-C-D-E-F-G}, …, {A-B-C-D-E-F-G}, where each letter denotes different propagation 

dynamics. 

5. The burst pattern generates a sequence of trajectories as the activity propagates through 

stereotypical paths like a cascade that reproduces itself. This activity pattern is 

persistent over days and weeks. 

6. Superbursts are all-or-none kind: once a super-burst is triggered, it will complete all 7 

bursts. 

7. Bursts are also all-or-none kinds: once a burst is triggered, it will proceed with 

propagation dynamics characteristic to the burst order in the sequence. 

8. Neurons are interchangeable: The contribution of individual neurons to the burst 

pattern varies but the population dynamics do not change. The population dynamic is 

invariant to the change of neurons.  

9. While these bursts are unlike any neuronal activity observed in vivo in the brain, they 

express the self-organizing nature of the neurons. The exact pattern is constrained by 

the 3D connectivity of the tissue culture, which can be very different from the organic, 

slice, or organotypic tissue cultures.   

An obvious question inspired by these results was whether these patterns are modifiable by 

external input such as micro-stimulation. If they do, that would be the signature of adaptative 

attractor dynamics, supporting the notion of dynamic engrams. The answer is not as simple as 

the question.  

The spontaneous emergence of these in vitro burst patterns is relevant because it proves the 

potential for cortical neurons to self-organize into circuitries that generate recurring 

spatiotemporal activity without any external trigger. Unless there is a mechanism to prevent 

that specifically, this should also happen in vivo. The recurrence of activity patterns is an 

embodiment of Hebb’s reverberatory circuitry that provides a sequential firing of an ensemble 

of neurons that Hebb also defined as “cell assembly.” Beyond the reverberatory activity, the 

temporal hierarchy of burst-superburst patterns and the distinct trajectories of A, B, C,.., and 
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G sub-bursts suggest that these are not just simple neuronal short circuits. Instead, these are 

complex trajectories that display the attributes of limit cycle behavior like strange attractors 

(Anishchenko & Strelkova, 1997), such as the Lorenz attractor. Whether we use Hebb’s 

terminology or not, these pattern formations provide a substrate to form dynamic attractors; as 

such, they can represent and maintain information. The three key features making attractor 

dynamics work are the renewal process, invariance, and multi-stability. All three are necessary 

to generate patterns that are self-triggered in the absence of external input (renewal process). 

They go through similar state transitions (invariance), stable over time but can switch states 

upon perturbation (multi-stability) (Dias et al., 2021). As a result of these properties combined, 

it can store and maintain information. Hence, these patterns adhere to the definition of engrams 

or memories. 

Regarding spike patterns as products of a renewal process generating invariant, multi-stable 

sequences of neuronal activity, there is a broad consensus that they follow attractor dynamics 

as a candidate mechanism to implement information storage in neuronal circuitries as 

Figure D2: The two hypotheses of sequence 
replay: (A-B) According to the ‘engram sequence’ 
hypothesis, external cues or objects elicit packets 
of spikes along the path of the animal as it 
encounters them. (A) When the animal runs in 
one direction, the rat encounters object “a” first 
and object “b” second, which elicits a train of 
action potential in place cell 1 and place cell 2, 
respectively. The cell1-cell2 spike sequence 
represents the route from (a) to (b) in the 
hippocampus. The repetitive activation of neuron 
1 followed by neuron 2 stabilizes the sequential 
association between them and enable the rat to 
anticipate object (b) upon departure from object 
(a). (B) The sequence of events and the 
sequential activation of neurons 1 and 2 are 
reversed when the rat is running in the opposite 
direction (redrawn from Nadasdy, 2000). (C-E) 
The alternative model suggests that new 
sequences are generated constantly during sleep 
(“preplay”) and the most likely order of neurons 
fire is determined by these attractors. When the 
animal explores a new environment, it is not the 
sequential order of stimulus, but the intrinsic firing 
sequence determines the replay. This attractor 
will serve as a string of placeholders for 
experience specific objects to link and it will also 
facilitate to replay and reverse-replay of these 
sequences (D and E) appearing the same as in 
(A and B).  
 
 

 

Figure D3: The two hypotheses of sequence replay: 
(A-B) According to the ‘engram’ hypothesis, 
external cues or objects elicit packets of spikes 
along the path of the animal as it encounters them. 
(A) When the animal runs in one direction, the rat 
encounters object “a” first and object “b” second, 
which elicits a train of action potential in place cell 1 
and place cell 2, respectively. The repeated 
coactivation of the two place cells instantiate an 
associative link between the locations and 
generates an engram of the route from (a) to (b). (B) 
The sequence of events as well as the sequential 
activation of neurons 1 and 2 are reversed when the 
rat is running in the opposite (b) to (a) direction. 
During free exploration, the rat may run in both 
directions, hence reinforcing both types of activation 
sequences between neuron 1 and 2 (redrawn from 
Nadasdy, 2000). (C-E) The alternative model 
suggests that new sequences are spontaneously 
generated during sleep (“preplay”) and the most 
likely sequence will predetermine the order of firing 
of these neurons during a run. When the animal 
explores a new environment, it is not the sequential 
order of sensory input that determines the firing 
sequence. Instead, the firing sequence is 
determined by a preexisting attractor. This attractor 
will serve as a string of placeholders for experience 
specific objects to fill and it will also facilitate to 
replay and reverse-replay of these sequences (D 
and E) appearing the same as in (A and B).  
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memories. However, we can distinguish between two approaches pursuing two different 

classes of models. First is the ‘engram sequence’ hypothesis, which considers the dynamic 

patterns of spike sequences as fingerprints of engrams. Accordingly, engrams encode and 

maintain information by the synaptic weights as imprints. This model assumes that sequences 

of action potentials evoked by precisely timed input can induce conservative synaptic 

remodeling. Synaptic remodeling is a well-understood second-messenger-mediated process 

involving mRNAs translation and protein synthesis necessary for stabilizing or growing new 

synaptic connections to accommodate memory by connectivity (Alberini & Kandel, 2015). The 

rewired network can recognize other inputs based on a partial or global overlap with the 

original input pattern that created the engram in the first place. This model was outlined in my 

paper in 2000 (Nadasdy, 2000), where I proposed that when a rat passes location (a) and 

location (b) en route to a goal, then place-cell-1 and place-cell-2 must fire at location (a) and 

(b), respectively, in a sequence, assuming that those two locations have overlapping place fields 

(Fig. D3 A-B). The activity of (a) and (b) neurons will drive a correlation between spikes at 

a(t1) and b(t2). After transiting through these locations several times, the coupling between a(t1) 

and b(t2) stabilizes and will be replayed during the subsequent slow wave sleep by sharp wave 

activity. This is also called the “forward replay.” While this working hypothesis was widely 

shared and consistent with experimental results (Dragoi & Buzsáki, 2006), it had two serious 

problems: It was too slow to enable rapid exploration and integration of new information. 

Second, the brain does not have a “clean slate” (tabula rasa) state in which the new input would 

impose itself like a fingerprint on a white paper. Instead, those neurons are active, exhibiting 

spontaneous patterns, far from random activity (see the tissue culture findings above.) At the 

same time, disconcerting results started to surface, indicating that many of the sequences 

detected during the first run and repeated over time, were already preexisting during sharp-

wave ripples in the preceding slow-wave sleep episodes. This model is called the “pre-play” 

hypothesis, which forces us to revise and update our mechanistic model. 

Now consider the following alternative explanation. What if spike sequences are continuously 

generated as spontaneous activity of the network of neurons? This spontaneous activity 

naturally unfolds sequentially due to the delays in the circuitry, pretty much how Hebb 

envisioned “reverberatory activity.” If such a reverberatory activity exists, it must prevail in a 

closed-loop neuronal architecture system such as dissociated cortical tissue culture. Then 

stimulation of the network (which may represent itself as pre-processed sensory input in vivo, 

cortico-cortical input projection, direct microsimulation, or optogenetic stimulation) will 
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perturb the sequential order of activity or the timing of activity in the network. By using 

dynamic system terminology, the input perturbation would shift the attractor of the network. 

As a result, the network will adhere to a slightly different setpoint or limit cycle, which 

accommodates the new sequence (Fig. D4). For instance, a network of neurons spontaneously 

generates the recurring A-B-C-D sequence without any external input. Then we repeatedly 

apply a stimulation that will force the sequence to take the A-B-E-F route. Depending on the 

flexibility of the attractors in that culture, if the A-B-E-F sequence is part of the repertoire 

supported by the network (i.e., consistent with one of the attractors), then it will replay as a 

new branch of the “persistent renewal” dynamics. If the A-B-C-D is a strongly wired attractor 

in the network, it may replay with a partial modification of A-B-C-D-F or A-B-C-E-F fashion. 

Empirical data from dissociated cortical tissue culture support the perturbation hypothesis for 

these attractor states (Madhavan et al., 2007; Pasquale et al., 2017). 

The first model has driven much ongoing research as a working hypothesis, such as the 

molecular, synaptic tagging during long-term potentiation and most synaptic engram models 

(Frey & Morris, 1997; Josselyn & Tonegawa, 2020; Tonegawa et al., 2015). Nevertheless, 

mounting evidence supports the second model (Dragoi & Tonegawa, 2011, 2013; Farooq et 

al., 2019; Grosmark & Buzsáki, 2016). Note that the two are not mutually exclusive. 

Accordingly, neurons generate deterministic pseudo-periodic sequences due to their intrinsic 

recurrent circuitry. These precursor sequences are relatively rigid and associated with the 

activity of fast-firing neurons in contrast with the sparse-spiking neurons that are flexible and 

generate trainable action potentials  (Grosmark & Buzsáki, 2016). We can consider these 

sequences as placeholders for the experience-dependent information to plug in. Let me 

illustrate this concept with the metaphor of a Christmas tree. The preformed sequences are the 

branches of the Christmas tree, and the experience would decorate them with ornaments. 

Although the branches limit the positions where ornaments can be placed, a virtually infinite 

number of ornament arrangements are possible. The heavier the ornament is, the more it bends 

the branch, hence more lighter ones can be placed on the same branch than heavier ones without 

bending it. The “bending metaphor” depicts the flexibility of these precursor sequences. Some 

branches can only hold lighter, and other branches can hold heavier ornaments. Likewise, some 

precursor sequences can be altered by weaker external input, some others can be altered only 

by a stronger input. Assuming an intrinsic renewal process, millions of those activity patterns, 

only different at a cellular level, can spontaneously be generated. Nevertheless, they derive 

from a few types of attractor-generating algorithms. Most importantly, individual neurons' 
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roles in reproducing those attractors are interchangeable within the network. This concept has 

recently reemerged as “representational drift” (Pinotsis & Miller, 2022). The intrinsic 

flexibility of cell assemblies, which allows the reproduction of attractors without re-

instantiating the same neuronal sequence, makes the neuronal representation much more robust 

(Katlowitz et al., 2018). It is redundant but improves stability and reproducibility, and we get 

noise tolerance out of it for free. In addition, by the spontaneous generation of attractors, the 

nervous system creates variations not unlike to how Darwinian evolution generates genetic 

variations and lets natural selection make the fittest survive. In our example, attractor variations 

that best reproduce external inputs will be pertinent, and other attractors vanish, a concept 

perfectly aligned with the premise of Darwinian neurodynamics (Szilagyi et al., 2017). 

A fundamental feature of spontaneous (self-initiated) attractor generation is the pattern-

generating mechanism that generates a variety of sequences without purpose. However, these 

purposeless sequences will be utilized by the external input (the arrangement of objects, fields, 

landmarks, visual and proprioceptive inputs, etc.) and modulate the attractor basins that will be 

transferred between different brain areas for consolidation (for instance, from the hippocampus 

to the entorhinal and other cortical areas). Instead of a physical transfer, the attractor will trigger 

copies of the same attractor by impinging on neurons in the target areas, which enables the 

target area to decode the information (like an engram) mapped to the attractor. With this 

mechanism, the neuronal networks can generate many different attractor states to transfer 

together with the stimulus-modulated signal, where the attractor states can act metaphorically 

as keys to unlock the code of sensory information. This principle foreshadows phase coding 

(chapter 3), where the idea of generating a reference wave for information reconstruction by 

oscillations will be further exploited.  
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Figure D4: Scheme of switching attractors in a balanced inhibitory-excitatory network. (A) Consider a 
network of 6 excitatory neurons (A-F) with their active (black) and latent connections (grey). For the sake 
of simplicity, we omitted inhibitory neurons from the figure. The state space of the network can 
accommodate two loops. One loop connects neuron AàBàCàD and another loop connects 
AàBàEàF. Since loop 1 connections are stronger, loop 1 attractor predominates the limit cycle for 
neuronal activity (red traces in D). (B and E) Stimulation of E and F can switch the attractor from loop 1 
to loop 2, which can alter the limit cycle of activity-flow to a new route (purple traces). In the absence of 
stimulation, the new route (loop 2) may stabilize as a co-existing attractor state C and F). Please note, 
that each loop of a given limit cycle (same color) may engage different sets of neurons to fire at a specific 
time without significantly changing the trajectory within the boundaries set by the limit cycle. Inset in (F) 
represent an empirical data as example of the limit cycle behavior of the neuronal activity in a tissue 
culture, an excerpt from Figure 5 of Wagenaar, Nadasdy and Potter (2006). (Small circles represent 
synapses, pink and purple lines are limit cycles representing attractor 1 and attractor 2).  
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Three remarkable features of the nervous system—complex spatiotemporal patterns, oscillations, and per-
sistent activity—are fundamental to such diverse functions as stereotypical motor behavior, working memory,
and awareness. Here we report that cultured cortical networks spontaneously generate a hierarchical structure
of periodic activity with a strongly stereotyped population-wide spatiotemporal structure demonstrating all
three fundamental properties in a recurring pattern. During these “superbursts,” the firing sequence of the
culture periodically converges to a dynamic attractor orbit. Precursors of oscillations and persistent activity
have previously been reported as intrinsic properties of the neurons. However, complex spatiotemporal patterns
that are coordinated in a large population of neurons and persist over several hours—and thus are capable of
representing and preserving information—cannot be explained by known oscillatory properties of isolated
neurons. Instead, the complexity of the observed spatiotemporal patterns implies large-scale self-organization
of neurons interacting in a precise temporal order even in vitro, in cultures usually considered to have random
connectivity.
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I. INTRODUCTION

In models of neural networks, attractor dynamics display-
ing complex reverberations emerge naturally if there are suf-
ficient feedback connections #1–3$. Donald Hebb proposed
that such reverberations may be used to encode and maintain
information in the nervous system #4$. Recurring short spa-
tiotemporal patterns of action potentials recovered from si-
multaneous recordings of multiple neurons in vivo, variously
called “sequences” #5,6$, or “synfire chains” #7$, may be sub-
samples of such dynamics. Recurring spatiotemporally com-
plex activity patterns has been observed in sensory systems
#8$, where they have been described in terms of attractor
dynamics #9$, as well as in motor systems #10$. There is
increasing evidence that even in vitro, excised brain slices
can repeatedly express patterns of activity that are conserved
for minutes or hours #11–14$.

To test whether specific cortical microstructure is required
for the emergence of precise spatiotemporal activity, we
studied the activity of cortical neurons in dissociated culture.
Neurons in dissociated culture retain many basic physiologi-
cal properties, but do not develop the typical layered colum-
nar organization of cortical tissue in vivo. The electric activ-
ity of such cultures is dominated by culture-wide bursts of

high-frequency action potential firing, separated by periods
of low firing rates #15–19$. Bursting in culture is reminiscent
of bursting observed in vivo in the developing cortex #20$
and elsewhere in the developing nervous system #21$, as
well as of sleep spindles in the thalamic reticular nuclei #22$
and subthalamic nucleus during slow wave activity #23$.
Here we report how at certain stages of development
burst patterns have a precisely defined spatiotemporal struc-
ture that recurs with great fidelity over an interval of many
hours. This shows that dissociated cortical networks in cul-
ture are capable of generating complex stereotypical behav-
iors that were previously believed to require specific network
architecture.

II. METHODS

A. Cell culture

Dense cultures of rat cortex were prepared on multi-
electrode arrays !MEAs" as described before #19,24$. Briefly,
cortices from E18 rat embryos were dissected and dissoci-
ated using papain and trituration. Cells—neurons and
glia—were plated at a density of 2500/mm2, on MEAs
coated with poly-ethylene-imine !PEI" and laminin. Cultures
were maintained in a serum-containing DMEM-based
medium. We recorded daily from 30 cultures from day 3 to
day 35 in vitro. Five cultures were followed for 2 to 3 days
continuously.
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B. Data analysis

1. Spike detection and sorting

Electrical signals from 59 electrodes were sampled at
25 kHz. Putative spikes were detected by thresholding the
electrode traces at 4.5" estimated RMS noise. Double detec-
tion of multiphasic spikes was prevented by discarding can-
didate spikes in a ±0.5 ms window around spikes of larger
amplitude.

Most subsequent analysis was performed using multi-unit
activity, obtained from 59 electrodes in a square grid with
200 #m spacing. In two cultures, we analyzed single-unit
activity, obtained by using an unsupervised spike sorting
method #25$ with cross- and autocorrelation verification.
Only the largest four spike clusters per electrode !i.e., four
neurons with highest firing rates" were included in the data
analysis. To ensure stability of clusters over time, the sorting
was done in data segments of 400 with 40 s overlaps.
The redundant clustering on the overlaps allowed us to
match spike clusters consistently across segments. Spike
clusters were tested for refractoriness. In both cultures the
sorting resulted in 236 putative neurons !59 electrodes " 4
clusters".

Cross-correlation analysis revealed that inter-electrode
spacing was such that cells did not evoke potentials on

more than one electrode. This also implied that using multi-
unit data does not compromise the spatial resolution of the
analysis.

2. Burst identification

Bursts were detected by means of the SIMMUX algo-
rithm #26$. Briefly, each electrode trace was searched for
burstlets: sequences of at least four spikes with all inter-
spike intervals less than a threshold !set to 1/4 of that elec-
trode’s inverse average spike detection rate, or to 100 ms,
whichever was less". Any group of burstlets across several
electrodes that overlapped in time was considered a burst.

3. Similarity indices

A superburst similarity index Ssuper was computed based
on the !multi-unit" firing rate summed over all electrodes.
For each superburst n, we computed this firing rate, fn!t", in
50 ms Gaussian sliding windows !sampled at 500 Hz". fn!t"
was set to zero for t$0 or t% !the duration of superburst n".
The similarity index Ssuper!n ,m" between two
superbursts n and m was then defined as the correlation co-
efficient between the functions fn and fm, optimally
time-shifted:

Ssuper!n,m" = max
& % & !fn!t" − fn"!fm!t + &" − fm"dt

'& !fn!t" − fn"2dt'& !fm!t" − fm"2dt( ,

where fn is the average of fn!t" over the duration of the
superburst.

A subburst similarity index Ssub was based on the times at
which individual electrodes started to record bursts. The on-
set time ton

c !n ,k" of electrode c in the kth subburst of the nth
superburst was defined as the moment when the baseline-
substracted firing rate first increased to 25% of its peak dur-
ing that subburst. #This use of relative thresholds ensured

that differences in firing rates between electrodes did not
cause a systematic bias in onset time estimation. We tested
the independence of onset time estimates and firing rates by
calculating the Pearson correlation coefficient, and found it
was negligible !r=−0.05, p=0.13; N=845".$ The similarity
index Ssub!n1 ,k1 ;n2 ,k2" between two subbursts !n1 ,k1" and
!n2 ,k2" was then defined as the correlation coefficient be-
tween onset times across electrodes:

Ssub!n1,k1;n2,k2" =

)
c

!ton
c !n1,k1" − ton!n1,k1""!ton

c !n2,k2" − ton!n2,k2""

')
c

!ton
c !n1,k1" − ton!n1,k1""2')

c
!ton

c !n2,k2" − ton!n2,k2""2
,
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where ton!ni ,ki" is the mean onset time of the kith subburst of
the nith superburst across electrodes. Only electrodes with
peak firing rates of at least 75 spikes per second were used in
this calculation !typically: 40 electrodes".

4. Return plots

We performed return plot analysis on the onset latencies
of individual electrodes in successive bursts, defined as 'n,k

c

* ton
c !n ,k"− ton!n ,k". After spike sorting, we repeated this

analysis at the level of single neurons. Return plots elucidate
higher order temporal relationship between successive
events, by recursively plotting the latency of the nth event
against the latency of the n+1st. The appearance of clusters
in return plots indicates a conserved temporal pattern in suc-
cessive events, and the spread of clusters reflects the preci-
sion of conservation. When comparing return plot correlation
coefficients at electrode level with those at single cell level,

FIG. 1. Development of bursting. !a" The fraction of spikes that
occur in large bursts !rather than during tonic dispersed firing"
grows with culture age #measured in days in vitro !div"$. Here,
“large” means at least 5 participating sites with a total of at least 50
spikes. !b" Fraction of cultures that fire superbursts exclusively
!black" or superbursts mixed with other bursts !dark gray". Light
gray indicates fraction of cultures that exhibits any kind of bursts.
Numbers on top indicate number of cultures studied at each age. !c"
Phase contrast micrograph of a superbursting culture at 9 div. Scale
bar: 200 #m.

FIG. 2. !a" An example of a 10 min data segment illustrates the
typical two-level temporal organization of population activity in
superbursts. Firing rates !FR" are culture-wide aggregates. Simulta-
neous raster plots from 59 electrodes reveal that nearly all elec-
trodes record from neurons participating in this structure. Note that
the beginning of each burst occurs at slightly different times at
different electrodes, defining a characteristic onset-time profile.
This is further explored in Figs. 3!d" and 3!e". !b" The distribution
of intervals between 195 superbursts recorded over a 35 h period
!inter-superburst intervals; ISBI". !c" The distributions of the inter-
vals between subbursts within superbursts !inter-burst intervals;
IBI". Histograms show all subburst intervals at a fixed ordinal po-
sition !indicated on top-left" in their superbursts. !d" Number of
active neurons !top" and average firing rate per active neuron !bot-
tom", per subburst. Spike sorting was performed using super-
paramagnetic clustering #25$.
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we balanced the sample size by randomly sub-sampling the
population spikes. Thus we obtained an unbiased estimate of
reproduction fidelity.

III. RESULTS

Bursting in dissociated cultures commenced after 5–8
days in vitro !Fig. 1", and persisted throughout a culture’s
lifetime !over one year #24$". During most of a culture’s
life, burst patterns were relatively unstructured. Burst
frequencies ranged from 1 to 30 per minute, and appeared
to be generated by a Poisson-like process modulated by a
refractory period of 1–5 s. However, a majority of cultures
!18 out of 30 cultures followed" passed through a develop-
mental period lasting 3–5 days during the second week
in vitro, during which burst patterns acquired a large degree
of structure. During such epochs, bursts occurred in
sequences of 5–12, with inter-burst intervals of 2–4 s
!Fig. 2!a" and Movie 1 #45$". These sequences, which we
call “superbursts,” were separated by 1–10 min with a
steady low firing rate !$0.2 spikes/electrode/second". In
contrast, the firing rate of the cells increased almost 100-fold
when transitioning from nonbursting to bursting mode,
implying that population-wide interactions of neurons
were only enabled during the bursting phases. The intervals
between superbursts were consistent with a Poisson process
modulated by refractoriness #Fig. 2!b"$. In contrast, the
intervals between the constituent bursts !“subbursts”" within
superbursts were highly stereotyped #Fig. 2!c"$. The number
of bursts per superburst was likewise strongly conserved
over long periods of time, though it varied considerably
from culture to culture. As for the constituent bursts
themselves, the first burst in a superburst typically contained
the largest number of spikes, followed by a gradual
decline, due to a reduction in the number of participating
neurons. Remarkably, single-neuron firing rates remained
nearly constant during most of the superburst #Fig. 2!d"$.
In Fig. 2 as well as in the following, we concentrate on
results obtained from the longest recorded superburst epoch
!63 h". Results from all extended recordings are summarized
in Table I.

The overall structure of superbursts in any given culture
persisted for hours, and any changes were usually discon-
tinuous. To quantify this observation, we measured the
array-wide aggregate of the firing rate in 50 ms sliding
windows. This yielded a firing rate profile for each super-
burst #Fig. 3!a"$. We defined a “superburst similarity index,”

Ssuper, between a pair of superbursts as the correlation coef-
ficient between their firing rate profiles !aligned to maximize
Ssuper, but not time-warped; see Methods". The similarity
index between consecutive superbursts was very high
!%90% on average", and remained high !%80% " between
pairs of superbursts separated by dozens of other superbursts
#Fig. 3!c"$. The matrix form of Ssuper of our longest recording
is characterized by a block-diagonal structure, indicating
that changes in the temporal structure of population firing
during superbursts occurred in discrete steps of varying size
#Fig. 3!b"$.

Like the global activity profile, the spatiotemporal dynam-
ics of the activity spreading across the culture were also pre-
served within and across superbursts. We quantified this by
the relative times at which individual electrodes started to
record each subburst, and combining those into a !59-
dimensional" vector, which constitutes an “onset-time pro-
file” for the subburst. We defined a “subburst similarity in-
dex,” Ssub, as the correlation coefficient between pairs of
such vectors !see Methods". This revealed considerable simi-
larity between subbursts within a superburst, particularly be-
tween the second and fifth subbursts #Fig. 3!d"$. Moreover,
homologous !like-numbered" subbursts had very similar on-
set profiles between consecutive superbursts #Fig. 3!e"$. Be-
tween the second and fifth subbursts, this “inter-superburst”
Ssub exceeded the “intra-superburst” Ssub. Comparing pairs of
superbursts with more time between them, the Ssub index
between the first subbursts was much reduced, indicating a
gradual change of the state of the network. In striking con-
trast, the Ssub index between the second and fifth subbursts
remained high, indicating that, despite this gradual change,
the superburst attractor is conserved, and that the attractor
trajectory can be reached from many different initial condi-
tions.

For another view of the dynamics of burst onset, we
constructed return plots of the onset latencies of individual
electrodes both between consecutive subbursts within a
superburst, and between homologous subbursts of successive
superbursts. After spike sorting, analogous plots were
constructed at the single-cell level, to help determine
whether the activity of specific neurons was crucial to the
structure of superbursts. If individual neurons play conserved
roles in different bursts, their relative burst onset latencies
should be conserved from burst to burst, causing the laten-
cies to line up along the diagonal of the return plot.
Moreover, the latencies of an individual cell should cluster in
a confined region along the diagonal. Both effects are indeed
evident in Fig. 4. The relative latencies of different elec-

TABLE I. Compendium of parameters for all five extended recordings.

CultureNo.1 No.2 No.3 No.4 No.5

Age !div" 10 19 9 8 12
Duration of superbursting !h" 63 11a 41 49 3a

Number of superbursts 292 49 94 154 24
Average number of subbursts 7 12 3 7 5
Superburst similarity index Ssuper !see text" 0.89 0.81 0.73 0.76 0.81
aThese cultures were still superbursting when the recording was terminated.
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trodes were consistent across successive component bursts
#r=0.55; p$0.01; Fig. 4!a"$. Individual neurons engage in
the successive bursts with similarly precise latency relative
to other neurons #r=0.58; p$0.01; Fig. 4!b"$. A neuron
that started bursting earlier than the population would always
be earlier than a neuron that started bursting later #Fig. 4!c"$.
The gross conservation of latencies was complemented by a
systematic drift in the onset latencies for a given neuron
across successive component bursts #Fig. 4!d"$. Relative
onset latencies of different neurons were also strongly
preserved between homologous components of consecutive
superbursts #r=0.57; p$0.01; Fig. 4!e"$. The observation
that the latency profile is consistent across subbursts and
superbursts implies that the transition from tonic to burst-
firing propagates across the culture following a similar
path each time. Since the burst onset order at cellular level
was slightly more consistent than at electrode level !r=0.58
verus r=0.55", we concluded that this path must be depen-
dent on the transmission between individual neurons. Given
that this difference was small, however, we mostly used
electrode-level dynamics for the subsequent analysis, since
that level allowed for higher precision !due to larger spike
counts".

After burst onset, the subsequent firing rate dynamics
were also conserved. We visualized the temporal evolution
of superburst dynamics with a phase plot of the aggregate
firing rate !in 100 ms sliding windows" during superbursts
#Fig. 5!a"$. The discrete bands formed by the orbits of
homologous subbursts are signatures of the distinctive
propagation dynamics that consistently recur with each
superburst. The systematic variation of subburst trajectories
suggests that the generation of superbursts is determined
by a higher order attractor that unfolds in different well-
defined propagation patterns for each subburst. The repro-
duction of the same dynamics in each subsequent superburst
cannot be explained by intrinsic oscillatory features of
individual neurons. Instead, the reproduction depends on
the state of the whole network, which imposes on each
neuron a precise input configuration that regenerates via
recurrent connections. The bands formed by the second
through fifth subbursts were much closer together than
the band of the first subbursts, re-affirming that the
initial stages of the superbursts were variable, while
subsequent bursts self-organized into a precise temporal
pattern—a dynamic attractor—that was stable for hours
or days.

All measures discussed so far focus on the temporal
structure of the observed recurring activity patterns, and
do not speak directly to their spatial structure. For a simple
metric of the spatial aspects of superburst dynamics, we
defined the horizontal differential firing rate of a culture
as the aggregate firing rate in the right half of the array
minus the aggregate firing rate in the left half of the array
!in 200 ms sliding windows". A vertical differential
firing rate was analogously defined. The orbits of superbursts
in the state space of differential firing rates show that
the preservation of burst shape increases from the first to
fifth subbursts #Fig. 5!b"$. The sixth subbursts, which
mark the end of the superburst structure for this culture,
have orbits of distinctly different shapes than the earlier
subbursts.

FIG. 3. Conservation of firing rates and activity propagation
between superbursts. !a" Aggregate firing rates of two pairs
!one pair black, one pair gray" of consecutive superbursts separated
by 30 h comprising 150 superbursts !not shown here". While
consecutive superbursts are seen to be almost indistinguishable in
shape the difference after 30 h is apparent. !b" A matrix of the
global similarity index !Ssuper; see text" between superbursts re-
corded over a 63 h period. Two main blocks of strongly conserved
similarity can be distinguished. Black and gray arrows mark
examples shown in !a". Gray bars mark portion of data used in
!c"–!e". !c" Even with dozens of intervening superbursts, the Ssuper
index between superbursts separated by many hours remains
very high. !Mean ± SEM for 170 superbursts." !d" Subburst
similarity index !Ssub; see text" between bursts within a superburst,
averaged over 170 superbursts. A conserved structure is observed
between subbursts 2 and 5. !e" Ssub index between homologous
subbursts across superbursts. Between consecutive superbursts
!black", the second through fifth subbursts are more conserved
than the first subburst. Between superbursts 30–60 min apart !dark
gray", 1 to 2 h apart !light gray" or 6–24 h apart !white", this effect
is even more pronounced.
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IV. DISCUSSION

The locations and connectivity of neurons in culture, at
least at the outset, is random. This is a consequence of
the method of dissociation and seeding onto the substrate;
we made no efforts to create defined structure in the net-
works, e.g., by using patterned or micromachined substrates
as others have #27–30$. The assumption has been that
activity in such ‘random’ networks will likewise be without
coherent structure. Nevertheless, self-organization of activity
patterns into a two-level structure of subbursts and
superbursts was consistently observed !Table I". While
superbursts appeared at irregular intervals, their internal
structure was highly regular and strongly conserved
for hours or days: Once a superburst had been initiated,
it generated a constant number of subbursts that each had
its own well-preserved geometry of propagation and

temporal dynamics. This preservation was found to be
precise at the single-neuron level. The spontaneous occur-
rence of superbursts shows that neurons and glia retain
an ability to self-organize into multicellular ensembles with
nontrivial functional structure, even when taken out of their
physiological context.

Bursting has been described in dissociated cortical culture
!e.g., #17,19,31–38$", but previously described bursts did
not exhibit the two-level structure of superbursts. In MEA
recordings from dissociated cultures of neonatal rat cortex,
Segev et al. #37$ found bursts that clustered into several
distinct types based on their spatiotemporal substructures,
and that these substructures were reproduced with high
fidelity over several hours. We similarly find conservation
of the spatiotemporal substructure of bursts, but in addition
find conservation of sequence: Figure 5 shows that the
substructures of all subbursts at a given ordinal position in

FIG. 4. !Color" Return plots #explained in !f" and !g"$, representing the temporal structure of burst propagation by recursively plotting
the latencies at which a cell or electrode starts to participate in one burst against its latency in the next !or next homologous" burst. !a"
Electrode-level return plot of burst onset latency from the fourth to the fifth subburst in successive superbursts. The diagonal represents exact
latency preservation. Electrodes are color-coded according to the inset. !b" The same return plot as in !a", but instead of combining all
spikes from a given electrode, we isolated the most active single unit from each electrode. Color code as in !a". Note how closely the
single-unit activity matches the multi-unit activity. !c" The burst onset latency return plot for two neurons, extracted from !b". One neuron
!blue" was selected that tended to burst early, and one !red" that tended to burst late. Inset shows the locations of the two neurons.
!d" Single-neuron return plots of burst latency across different subbursts, for the blue neuron in !c". Interval number is color-coded. !e"
Single–neuron level return between the fifth component-bursts across successive superbursts. !f" and !g" Explanation of return plots: !f" In
!a"–!d", features of successive subbursts within a superbursts are compared; !g" In !e", features of homologous subbursts of successive
superbursts are compared.
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their superbursts are similar to each other, and distinct
from those at different positions. Interestingly, in cortical
slices, a different kind of bursts has been observed, at a
shorter time scale, governed by a critical branching process
reminiscent of avalanches #12$. These bursts consisted
of precisely defined firing patterns lasting tens of millisec-
onds. A given slice could exhibit several different patterns,
each of which was conserved for multiple hours #13$.
Given the disparity of time scales, both kinds of bursts

could in principle co-exist in the activity patterns of a
neuronal ensemble, although we have no evidence of
preserved firing sequences on a millisecond scale in our
cultures.

In vivo, short conserved patterns of activity have been
described in several preparations, in terms of action poten-
tials #5,6$, or intracellular calcium increases #11,14$, and
fixed-point attractors have been observed in the form of up/
down state transitions #39$. Superbursts constitute much
longer and more detailed patterns, and are among the longest
conserved activity patterns observed in any neural system to
date. In in vivo experiments, such patterns may have re-
mained hidden because only a small fraction of the neurons
from a large ensemble were monitored, or because record-
ings were too short. By contrast, the use of dissociated cul-
tures permitted us to monitor and evenly sample an entire
intact network for weeks.

The coordination of cellular dynamics at the superburst
level indicates that information is maintained by a global
dynamic process which persists orders of magnitude longer
than the time constants of synaptic processing. This allows
the information to be protected from the interference of local
processing: Individual neurons can engage in multiple func-
tions without disrupting the recurring motif reverberating in
the larger-scale circuitry of the culture. Such globally orga-
nized and tightly orchestrated activity is of critical impor-
tance for any neuronal tissue that generates highly stereo-
typed sequential behaviors, from locomotion to language.
The same mechanism may also support a sensory persistence
and memory that does not require synaptic plasticity. In vitro
systems are ideal for studying in detail the conditions that
allow such activity patterns to emerge, and for testing math-
ematical models of neuronal pattern generation at a popula-
tion level with cellular precision. Moreover, the robustness
of the complex pattern generation behavior can open avenues
for computation and artificial intelligence applications such
as controlling hybrid neural-robotic systems #40–42$. We are
currently experimenting with triggering superbursts with
electrical stimulation #43$, and initial results look promising.
A critical issue for future study is whether an electrical
stimulation paradigm can be used to modify the attractors in
a controlled manner, as required for learning #44$.
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Chapter 3 
 

8. Can phase be the code? 
 

“But where is the information in this chaos? It can be shown that it (the hologram) is 
not as irregular as it appears. It is not as if grains of sand had been scattered over the 
plate at random. It is rather a complicated figure, the diffraction pattern of the object, 

which is repeated at random intervals, but always in the same size and same 
orientation.” 

 
(Dennis Gabor: Holography, 1948-1971, Nobel Lecture, December 11, 1971) 

 
I can hardly think of an idea more compelling than the notion that everything from subatomic 

particles through biological systems to the galaxies and beyond, including the history of the 

universe from one Big Bang to the next one, oscillates. The states of neurons in our brains are 

no exception. However, the adoption of the concept that oscillations constitute an integral part 

of neural computation took a long time. While in physics, the dual nature of particles is a well-

established fact (for instance in the dual-slit experiment, photons behave as continuous waves 

under one detection condition and as particles in another), a similar duality has long been 

denied in neuroscience for a long been. Many prominent neuroscientists are still skeptical about 

the role of oscillations in the brain and consider them as epiphenomena or byproducts of 

neuronal activity, but rhythms themselves are not causally related to the computational role of 

neurons. One of the biggest conceptual barriers in neuroscience today is the integration of 

oscillations with the discrete nature of neural computation. In this regard, phase coding may 

bridge the conceptual gap between continuous rhythms and the quantal nature of action 

potentials.  

  

The idea that the phase of action potentials encode information has surfaced in different 

contexts at different times in the last 50 years but was never fully integrated into a coherent 

theoretical framework. Likewise, it represents a methodologically diverse domain in the map 

of neural coding. My 2009 and 2010 papers were overt attempts to make a case for an integrated 

general theory of phase coding (Nadasdy, 2009, Nadasdy 2010). The theoretical foundation 

laid on four different models: 

 

I. Binding by synchrony 

II. Theta phase precession 

III. Latency coding 

IV. Synfire chains 

               znadasdy_144_23



 

 
 
24 

 

 

I. In chronological order, McCullough and Pitts proposed first that neurons may 

represent logical operators such as “AND” gates, “X OR” gates, and “NOT” gates, 

and the combination of those can implement any computation (McCulloch & Pitts, 

1943). This was inspired by the transistor technology in digital computers from 

early on. Even before McCullough and Pitts, Alen Turing defined how simple 

writing and reading of a tape can implement the algorithm of computability (Turing, 

1937). The common problem that all these approaches had to solve was 

segmentation of messages. The computer needs to know when a message starts and 

ends, and it needs to know whether the next number on the tape (or register) is an 

instruction or a piece of data. This was not an issue for Adrian who posited that 

sensory input in a peripheral nerve was decoded by spinal-cord neurons using a 

firing-rate code (Adrian, 1954) because everything those neurons relayed was data 

that spinal sensory neurons integrate over time continuously. However, it becomes 

an issue when sensory information enters the circuitries of the cerebral cortex. In 

cortical circuitries, there is neither time nor dedicated storage capacity to buffer the 

input of neurons to count spikes over time before deciding whether the average 

spike rate exceeds a threshold or not. Cortical neurons integrate the excitatory 

postsynaptic potentials over the entire dendritic space within a small time window 

(~15-20 ms) (Eyal et al., 2018). There is an obvious trade-off between the time 

window of obtaining a firing-rate estimate from a distribution of spikes and the 

precision of that estimate. The longer the time window is the more precise the firing 

rate estimate becomes. Therefore, we can assume that peripheral and sympathetic 

nerves integrate over a longer period and smaller dendritic space, while cortical 

neurons integrate over a shorter period and larger dendritic space. 

 

Amongst the first few researchers who recognized the insufficiency of firing-rate 

models in cortical information processing was Moshe Abeles who wrote a seminal 

paper about cortical pyramidal neurons as coincidence-detectors (Abeles, 1982). 

This resonated strongly with the McCulloch-Pitts neuron model (McCulloch & 

Pitts, 1943) by placing the AND gate inside the neurons. With this mechanism, 

neurons are able to select the relevant information from the bombardment of input 

in real-time based on the temporal association of two or more inputs. This concept 
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was borrowed by von der Malsburg (Bienenstock & Malsburg, 1987) under a new 

cover name of “binding-by-synchrony” (BbS). The empirical evidence was 

provided by the experiments of Wolf Singer and Charles Gray (Gray & Singer, 

1989). They recorded V1 neurons in the lightly anesthetized cat and observed an 

increased gamma-band modulation evident from the autocorrelation of the LFP 

with a concomitant phase locking of unit-activity in response to coherently moving 

edges in the visual display. The result was concordant with the BbS framework, 

which predicted that invariant features of objects (contours, shapes, colors) can be 

captured by a subset of simultaneously activate neurons that are tuned to those 

features. The combination of simultaneously active neurons represents a 

combination of features invariant of our movement, or our eyes’ movements, or the 

object’s movement, rotation or other transformation. Hence, the role of gamma 

rhythm is to define the time window within which this simultaneity manifests. If 

neurons at next level receiving input from the feature detector cells act like 

coincidence detectors, they can keep track of the synchronized subset of neurons. 

Hence, those neurons that coactive in a gamma cycle “binds” a dissociated set of 

features into a “gestalt” shape, where the gestalt becomes the precursor of objects. 

This is how neurons embedded in a gamma rhythm can segment the visual input 

according to objects, foregrounds and backgrounds, shapes, planes and surfaces 

efficiently within a very short time by conjunctive combinations of features that 

move together (von der Malsburg, 1999).  

 

Synchronized gamma oscillations shared across neurons driven by iso-oriented 

drifting gratings provided the missing link, the time frame of coincidences, within 

which neurons downstream can read the output of coincidence detectors and extract 

correlating features. The surface texture of a moving object will elicit simultaneous 

activity in many neurons within V2 and that synchrony can be detected by 

downstream coincidence-detector neurons at each gamma cycle. This mechanism 

was able to explain any associative binding between stimuli that made up the 

concept of objects. Even multisensory inputs such as sound, touch, and visual cues 

can be combined in a flexible way by BbS. Pieces of this puzzle suddenly fell into 

place and the concept of BbS went viral in the early 90s. Wolf Singer devoted his 

research carrier to rigorously proving the idea that gamma-synchrony provides the 

fundamental organizing principle for neuronal coalition formation. The principle of 
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BbS is thrilling because it also explained multiplexing, the idea that synchronization 

between one subset of neurons can functionally link those neurons together for a 

period, while the same neurons can be part of other coalitions at another time. In 

addition, multiplexing of neuronal activity over neurons during different tasks, as 

we have seen in the previous chapter, was one of the unsolved issues. 

 

The concept that neurons form coalitions by synchrony fits nicely with Hebb’s 

concept of cell-assembly (Hebb, 2005). In addition, learning by adapting to that 

synchrony can be implemented by Hebb’s rule, which postulates that coincidence 

between synaptic input to a neuron enhances the efficacy of signal transmission 

through that synapse, i.e., amplify the impact of input conveyed by that connection, 

or, in simulations, strengthens the weight of that synapse: “neurons that fire together 

also wire together”. While all puzzle pieces seemed to fall in place, the BbS did not 

fulfill the promise of explaining all functions, and the empirical support for gamma 

synchrony was partial (Shadlen & Movshon, 1999; Tan et al., 2014). Gamma, in 

vivo in the mammalian brain is much more volatile than predicted by the models. 

It also forms propagating waves that destabilize standing waves, the necessary 

condition for a BbS (Bahramisharif et al., 2013). Propagating gamma waves make 

synchrony break down over a distance as opposite phases cancel when integrating 

gamma oscillations over a larger area. Therefore, the model of BbS fell short of 

fulfilling the premise of providing an all-encompassing model for neural 

computation. I argue that this was due to the limitation that BbS only considered 

standing waves, a notion that was never explicitly stated, but the traveling wave 

alternative was not considered. According to BbS, neurons either synchronize with 

gamma or desynchronize, but phase coherence, which allows for coupling between 

oscillators that are not synchronous was outside of the scope. This new direction 

motivated my paper in 2010 “Binding by Asynchrony” where I argued that instead 

of synchrony, the subtle asynchrony of phases may represent information, an idea 

we will unpack later in this chapter.  

 

II. During this academic debate between the temporal-coding models (BbS was one of 

them) and rate-coding models, mostly behind the back of the primate and cat 

electrophysiologists, a paradigm shift started. But instead of the context of sensory 

or motor systems, it started in the field of hippocampal electrophysiology tanks to 
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the rapidly advancing electrode and amplifier technology capable of recording 

stable multiple single-units and LFP on freely moving rodents during natural 

behavior relatively artifact-free. In rodents, the most prominent oscillation that 

correlates with the active exploratory behavior in the awake animal (but also during 

REM sleep) is theta. Theta derives from the medial septum cholinergic neurons and 

entraining rhythmic activity of hippocampal, parahippocampal, and entorhinal 

neurons. Theta has a major influence on pyramidal cell firing. By rhythmic 

depolarization and hyperpolarization of pyramidal cells in the dentate, CA1, CA2, 

and CA3 area, theta modulates the firing likelihood of these neurons. It defines the 

bouts of pyramidal cell activity. Theta phase locks to the whisking cycles (Grion et 

al., 2016), as well as provides temporal modulation for place cells firing with an 

initial phase-coupling, precession and decoupling stages (Souza & Tort, 2017).  

 

The most surprising discovery in context to theta rhythm was made by John 

O’Keefe and Michael Recce in 1993 (O’Keefe & Recce, 1993) when looking at 

correlations between place cell firing and ongoing theta rhythm recorded from the 

same electrode. This was not the first attempt to correlate neuronal firing with LFPs, 

as that was introduced 10 years earlier by a human neurosurgery team (Wyler et al., 

1982), but the first overt attempt to correlate them during precisely-defined 

behavioral events, such as place cell activity. It turned out that place cells fired at a 

specific phase of the theta cycle at a specific location of the apparatus. 

Conspicuously, the phase of the unit activity progressively advanced relative to the 

theta as the animal was advancing toward the center of the place field and continued 

advancing while the animal exited from the place field closing a full double-pi cycle 

of rotation until the activity declined to baseline. This was reproduced over repeated 

trials. The phenomenon is called “phase precession”. Although theta phase 

precession was mostly reported as phase advancement, progressive phase lagging 

has also recently been documented as “theta phase rolling” (Sloin et al., 2022). 

Whether phase precession is an epiphenomenon, i.e., a corollary effect of the 

interplay between local theta rhythm and the neuronal excitability, or it reflects the 

coordinated act of neurons to encode the precise location (within a few centimeters) 

beyond the granularity of place fields (20-60 cm), is still an open question (O’Keefe 

& Recce, 1993). Nevertheless, phase precession represents an explicit well-

reproducible example of phase coding, even though not a single study demonstrated 
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that perturbation of phase precession would interfere with the animal’s ability to 

localize itself or would entail any spatial navigation deficit. The journey of phase 

precession had two important updates: (1) A study by Chris Harvey and David Tank 

showed that intracellularly recorded action potentials do not exhibit phase-

precession with intracellular subthreshold theta oscillations (Harvey et al., 2009). 

This means that phase precession only exists relative to extracellularly measure 

theta oscillation field. If precession is evident only from extracellular theta, then 

precession cannot be considered a product of the spiking neuron but the product of 

the LFP field around it. Then, the logical assumption is that theta precession is 

caused by the drifting phase of theta, which is only possible if theta propagates. The 

proposal that theta propagates is not new since Lubenov et al. have shown by using 

multielectrode arrays implanted longitudinally in the hippocampus that theta forms 

recurring traveling waves along the long axis (Chiang & Durand, 2023; Lubenov & 

Siapas, 2008; Patel et al., 2012). (2) At the same time, several papers reported phase 

precession in other areas than the hippocampus such as visual and prefrontal 

cortices (Fournier et al., 2020; Jones & Wilson, 2005). As a result of the increasing 

number of reports documenting phase precession in different brain areas with 

diversely different functions, the premise that phase precession plays a critical role 

in neuronal information processing is getting inflated.  

 

I remark that the literature on phase precession shows a sign of denial. Numerous 

reports on theta phase precession included figures of progressive phase delay 

besides phase advancement, yet no published report was devoted to the subject until 

2022. Notably, the model of phase-coding in 2009 explicitly predicted the existence 

of progressive phase-lagging (Z Nadasdy, 2009) until the phenomenon was 

compellingly demonstrated by Eran Stark’s group (Sloin et al., 2022). 

 

III. At about the same time, in 1995, no other than John Hopfield published a relatively 

underrated theoretical article in the pages of Nature (Hopfield, 1995). With very 

little math Hopfield proposed the following model: subthreshold oscillations affect 

not only the likelihood of membrane potential reaching the threshold but also the 

latency when it crosses the threshold. Hence, continues Hopfield, when different 

intensity input depolarizes the same neuron at different levels, it will elicit an action 

potential with a latency proportional to the intensity (Zoltan Nadasdy, 2010a). 
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Therefore, a neuron downstream reading the input of the latency encoder neuron 

can recover the input intensity from the latency. Suppose that we have not one, but 

an array of neurons receiving simultaneously different intensity signals, like a 

distribution of light intensities over a photoreceptor array. Then, the temporal 

pattern of action potentials generated by the latency encoder neurons could encode 

the intensity and that code can be recovered with high precision. Fast-forward 13 

years and Tim Gollish and Markus Meister reported, using the flattened sheet of 

salamander retina over an MUA illuminated with a projection of an image, that they 

could recover the image from the latency pattern of spikes fired by the retinal 

ganglions (Gollisch & Meister, 2008) confirming Hopfield’s hypothesis. Hopfield 

and Meister were just one step away to generalize latency to phase, a metric much 

more suitable to the oscillatory landscape of neurons. 

 

IV. Another answer for the binding-problem was proposed by Moshe Abeles (Moshe 

Abeles, 1991), the synfire-chain model (SFC). In contrast with BbS, the SFC model 

disregarded oscillations and instead focused on evidence for the precise timing of 

multi-neuronal spikes in feed-forward neuronal network architectures. Abeles’ idea 

was similar to Hebb’s cell-assembly idea in the sense that he predicted precise 

sequences of action potentials recurring in correlation with behavior. Abeles proved 

with numerical simulations that such precisely synchronized spike volleys 

necessarily emerge in feed-forward networks sequences triggered by a random 

input (Aviel et al., 2004; Litvak et al., 2003). Because empirically we can sample a 

very small subset of these neurons, we may only capture a few spikes likely 

originating from different neurons following one another with a constant delay as a 

signature of synfire chains. The question was of course how to define “precise 

timing”. Abeles hypothesized a +/- 1 ms precision of cortical information 

processing. To prove that the detected recurring patterns are consistent with the 

hypothesis, Abeles used a jittering method suggested by Bienenstock and Geman 

(Hatsopoulos et al., 2003). With this method, one can determine the minimum 

temporal jitter of spikes (in ms) necessary to scramble the pattern such that the 

number of detected repeats is no different from by chance. He found spike triplets 

repeating with 2 ms precision in motor cortical single-unit recordings spike trains 

during motor tasks in monkeys, that were significantly unlikely to occur by chance.  
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I was honored to work with Abeles as a postdoc on these recordings of single unit 

activity from multiple electrodes and multiple sites including the motor- and 

somatosensory cortices while Abeles ran a triplet-searching algorithm on our spike 

train datasets. It was a “finding the needle in the haystack” type of problem, but the 

algorithm detected a few examples repeating at 1 ms precision, a few more with 2 

ms precision, and the number of triplets increased as the precision condition was 

relaxed. Then by applying a jittering analysis (Abeles & Gat, 2001; Hatsopoulos et 

al., 2003), Abeles showed that the likelihood of such 2 ms precise triplets to occur 

by chance is extremely low. Hence the time base of cortical computation is close to 

2 ms (Abeles & Gat, 2001; Shmiel et al., 2005). I have seen the data, and I ran my 

own pattern search and statistical analysis I have developed for the hippocampal 

recordings and found that the number of repeating triples increased nonlinearly and 

reached a plateau at 15-20 ms precision. We may see isolated examples of a few 

triplets repeating with 1-2 ms precision but the majority showed a larger jitter of 

15-20 ms consistent with the time window of the period duration of a gamma 

oscillation. Since then, I have growing confidence that the precision we are seeking 

as evidence for discrete-timescale cortical processing is ~20 ms, equivalent to one 

gamma cycle. However, in contrast with the standing-wave model of gamma that 

Singer and Gray proposed in their BbS model, I suggested considering propagating 

gamma waves that depolarize ensembles of neurons in sequential order and elicit 

firing sequences that can be reproduced by the same propagating gamma oscillation. 

This idea was further exploited by the phase coding model I proposed in 2009 and 

2010. 

 

 

Between 2007 and 2009 I submitted a manuscript to a few journals that reported phase coding 

relative to gamma LFP recorded from primary visual cortical neurons in the awake primate 

brain during a visual discrimination task (Nadasdy & Andersen, 2007, 2009). The manuscript 

was rejected because the phase differences that discriminated different stimulus features 

seemed “too small” according to the reviewers, nevertheless highly significant. One year later, 

Nikos Logothetis and Stefano Panzeri published a paper on phase-of-firing coding (phase-

coding in short) in the visual cortex of anesthetized monkeys, which left a significant footprint 

in the field (Besserve, Lowe, Logothetis, Schölkopf, & Panzeri, 2015; Montemurro, Rasch, 

Murayama, Logothetis, & Panzeri, 2008). That was followed by another publication where the 

               znadasdy_144_23



 

 
 

31 

same team applied the same approach to auditory cortical data and divided the 4-8 Hz LFP 

(Kayser et al., 2009) and a few years later in awake monkeys and gamma oscillations during a 

visual task but this time on awake primate and using a continuous phase of Hilbert transform 

on the 50-80 Hz gamma oscillations (Besserve et al., 2015). 

 

Let’s take a closer look at the Logothetis’ electrophysiology data analyzed by Panzeri 

(Besserve et al., 2015; Montemurro et al., 2008). The data consisted of continuous wide-band 

data with spikes. The monkeys in their experiment were watching movies, a continuous 

stimulus providing continuous LFP and single-unit data. They focused their approach on low-

frequency fluctuations (delta: 1-4 Hz) because that captured the episodic segmentation of the 

movies the best. Instead of computing the Hilbert transform to obtain instantaneous phases, 

they divided the delta cycles into 4 phase quadrants and relabeled each spike by the phase 

quadrant they appeared in. They found that by comparing the Shannon information computed 

from the firing rate about the movie with the information available from the phase of firing, 

the latter conveyed 54% additional information.  

 

For the phase to encode information requires a reference wave. The frequency of this oscillation 

has not been identified. We have discussed three candidates, gamma, theta, and delta, but there 

could be more. This reference wave must be present in both the sender neuron and the receiving 

neuron to support phase encoding and decoding. Suppose a neuron is receiving an input at time 

t0. This input, to be decoded as f0, has to be expressed relative to a wave with a starting and 

ending period. This starting and ending period of the reference wave must be shared between 

the sender and receiver neurons. Now consider the synaptic and conductive delay between the 

two neurons. This delay, even if only a few milliseconds, is not negligible and it will add to the 

phase at the receiver side. If the information sent was f0 , then by reception, it will be f0 + Dt. 

To compensate for the delay, the reference wave must be updated and adjusted by the Dt delay 

factor. The natural condition to compensate for the delay is the propagation of oscillation itself. 

We assume that the wave travels with a speed comparable to the speed of conductivity through 

synaptic transmission. Hence, the reference wave that decodes the information from the phase 

will remain aligned with the message to provide a correct phase readout. The search for the 

oscillation that would fulfill the role of fundamental common reference wave boils down to 

reliability and universality. There is only one oscillation ubiquitous and prevalent from insects 

to primates, ongoing during wakefulness, and does not reset upon external input, which is 

gamma. It is one of the highest-frequency oscillations in the brain, only ripples have a higher 
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frequency. We can discriminate between slow gamma (25-50 Hz) and fast gamma (50-80 Hz), 

which may play different roles in memory encoding and retrieval (Colgin et al., 2009).  

 

For the above reasons, I built my phase-coding model on gamma as a reference oscillation. 

Gamma is predominant in the retinal ganglia, and it is triggered by micro-saccades. It is also 

prevalent in the LGN and in V1. Gamma oscillations in retinal ganglions phase-lock to gamma 

in the LGN (Koepsell et al., 2009) and LGN gamma phase locks to gamma in V1 (Saleem et 

al., 2017; Schneider et al., 2021), hence V1 sporadically phase locks to V1. I remark again that 

phase locking does not mean synchrony.  It means coherence that permits a constant phase 

offset between two oscillations. It turns out that gamma cooccurs with theta in the hippocampus 

in all mammalian species. The only qualifying difference is that theta is more segmented in 

chiropterans and primates (including humans) relative to rodents. This is because processing 

sensory information is fundamentally different between rodents and chiropterans or primates 

(this topic will be discussed in the last chapter.) 

 

The propagation of gamma waves unlocks a wide array of computations (Z Nadasdy, 2009; 

Zoltan Nadasdy, 2010b, 2015). For instance, it does not matter what the exact phase of the 

subthreshold oscillation is at a given neuron at a given time because that phase is continuously 

changing by the wave spreading through a layer of neurons. However, if the whole layer 

receives the same input, there will be a few neurons that receive the input at the peak 

depolarization phase, therefore it will relay the input to the next layer of neurons. The 

topography of propagating gamma waves makes it necessary that neighbors of neurons will 

reach a peak depolarization phase with the same delay as the neighbor neurons in the sensory 

surface.  Hence, the neurons in the best position to decode the phase-encoded sensory 

information are the ones that have the same topographical relationship to the propagating 

gamma waves as the sensory neurons have in the sensory organ. A retinotopic activation of 

two adjacent ganglia at t0 and t1 will map on two closely situated neurons in V1 (given that 

V1 is retinotopically organized). Therefore, it does not matter which phase the input was 

encoded at, the decoding is possible based on the relative spatial phase distribution as long as 

the phase gradient of the oscillation is the same for the decoding layer as for the encoding layer.  

 

The generalization of this principle was outlined in my papers from 2009 and 2010 and a book 

chapter (Z Nadasdy, 2009; Zoltan Nadasdy, 2010b, 2015). The propagating gamma waves also 

explained why “gamma synchrony” received very limited empirical support to play a critical 
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role in feature binding. It turns out, instead of synchrony, coherence is what matters because 

coherence can be maintained between any asynchronous oscillators. The coherence of gamma 

can define cell assemblies by activating a synergistic group of neurons while separating other 

cell assemblies by decoherence. Synergy does not mean synchrony. Synergy means that the 

components interlock in smooth phase transitions. Those phase transitions are not synchronous, 

but they display subtle asynchrony. Hence the playful title of my second paper “Binding by 

asynchrony”. 
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provide a unifi ed framework to answer a diverse set of daunting 
problems (see Table 1 in Supplementary Material).

The indirect evidence for the tight relationship between AP 
timing and SMO derives from observations of high correlation 
between extracellular APs and LFP. High coherency between APs 
and LFP oscillations is predominant at the gamma and theta fre-
quency bands in the awake brain (Bragin et al., 1995; Chrobak and 
Buzsaki, 1998; Kamondi et al., 1998; Womelsdorf et al., 2007), and 
phase lock between APs and high frequency LFP occurs during 
slow wave sleep (Buzsaki et al., 1992; Chrobak and Buzsaki, 1996; 
Cisse et al., 2007). Gamma and theta oscillations also phase lock 
in the hippocampus and in the entorhinal cortex during active 
exploration of the environment and processing of sensory input 
(Chrobak and Buzsaki, 1998; Robbe et al., 2006). At the same time, 
APs phase lock with gamma oscillations (Chrobak and Buzsaki, 
1998). Moreover, gamma band LFP and AP coherence has been 
found to be sensitive to motor task (Mehring et al., 2003) and pre-
paratory activity during working memory (Pesaran et al., 2002) 
and related to selective visual attention (Fries et al., 2008). The 
autocorrelogram of multiunit activity in visual cortical areas of 
the cat is strongly modulated at 40–60 Hz and correlates with the 
gamma LFP, suggesting a functional link between AP generation 
and gamma oscillations (Gray and Singer, 1989). The multiunit–
multiunit and the multiunit–LFP coherences are both increased 
during visual stimulation in the gamma (Womelsdorf et al., 2007) 
and during decision making in the beta frequency bands (Pesaran 
et al., 2008). Although AP-LFP phase coherency has been observed 
within the low-frequency LFP bands in the primary visual cortex 
of anesthetized primates (Montemurro et al., 2008), the feature-
dependence of AP-LFP coherency in primary sensory areas is yet 
to be investigated. Notably, APs phase lock to 20–40 Hz LFP in the 
primate somatosensory cortex (Murthy and Fetz, 1996). The major-
ity of pyramidal cells fi re at the trough of the theta cycle and align to 

Information encoding and reconstruction from the phase of 
action potentials
Zoltan Nadasdy*
California Institute of Technology, Pasadena, CA, USA

Fundamental questions in neural coding are how neurons encode, transfer, and reconstruct 
information from the pattern of action potentials (APs) exchanged between different brain 
structures. We propose a general model of neural coding where neurons encode information 
by the phase of their APs relative to their subthreshold membrane oscillations. We demonstrate 
by means of simulations that AP phase retains the spatial and temporal content of the input 
under the assumption that the membrane potential oscillations are coherent across neurons 
and between structures and have a constant spatial phase gradient. The model explains many 
unresolved physiological observations and makes a number of concrete, testable predictions 
about the relationship between APs, local fi eld potentials, and subthreshold membrane 
oscillations, and provides an estimate of the spatio-temporal precision of neuronal information 
processing.

Keywords: neural coding, action potential, local field potential, subthreshold membrane potential oscillations, 
gamma

INTRODUCTION
Whatever code neurons use for encoding, transferring, and  decoding 
sensory information in the central nervous system (CNS) must 
be robust to a number of compromising factors. The integrity of 
the information transferred in massively parallel pathways of the 
brain is highly sensitive to distortions from different conduction 
delays (Rockland et al., 1997) and from intrinsic correlations due 
to the divergence and convergence of axonal projections (de la 
Rocha et al., 2007). Nevertheless, neuronal responses are increas-
ingly specifi c to objects and progressively invariant with respect 
to incidental physical features, the times of occurrences, and the 
spatial locations of stimuli as we follow the activation from the 
sensory neurons through the primary sensory and ultimately to 
associational cortical areas. The high specifi city of neuronal rep-
resentations in higher cortical and associational areas relies on an 
unknown mechanism that enables the generation of action poten-
tials (APs) in the same neuron consistently and independent of its 
neighbors (“sparse coding”) (Quiroga et al., 2005). This requires 
precise coincidences of membrane depolarization with the arrival 
of excitatory postsynaptic potentials (EPSPs) at the level of indi-
vidual neurons (Abeles, 1982). I investigated through numerical 
simulations whether the phase of APs relative to the intrinsic sub-
threshold membrane potential oscillations (SMOs) could encode 
and retain information with high spatial and temporal selectivity. 
Our model relied on two basic assumptions: fi rst, that the timing of 
AP initiation is dependent on the phase of the SMO (Llinas et al., 
1991); and second, that SMO is nearly synchronized with a phase 
gradient across a local population of neurons (Benucci et al., 2007; 
Bringuier et al., 1999; Grinvald et al., 1994; Prechtl et al., 2000). To 
relate the second assumption to empirical data, we further assumed 
that the SMO correlates with local fi eld potentials (LFP, Buzsáki 
et al., 2003; Lagier et al., 2004; Leung and Yim, 1986). The results 
derived from the model are consistent with empirical data, and they 
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the gamma (Bragin et al., 1995), and specifi c types of  interneurons 
also phase lock to gamma (Tukker et al., 2007). Moreover, pyrami-
dal cell fi ring in the hippocampus and entorhinal cortex of rodents 
also express a progressive theta phase precession consistent with 
the animal’s position relative to the place fi eld (O’Keefe and Recce, 
1993) leading to the proposal that the AP phase relative to theta may 
encode the precise location of the animal (O’Keefe and Burgess, 
2005; O’Keefe and Recce, 1993; Skaggs et al., 1996). All previous 
models of hippocampal phase coding assumed that phase preces-
sion is generated inside of the hippocampus as a result of inter-
action between two slightly different frequency theta oscillations 
(Blair et al., 2008; Lengyel et al., 2003; O’Keefe and Burgess, 2005); 
phase precession originating from the phase-coded sensory input 
and imposed on the hippocampus by the entorhinal cortex has not 
yet been proposed. Likewise, oscillatory interference models, relying 
on multiple oscillators, were proposed to explain grid cell behav-
ior in the entorhinal cortex (Burgess, 2008; Burgess et al., 2007). 
However, as we show, coincidences of phase-modulated sensory 
input with a single propagating oscillation fi eld are able to generate 
grid topography without further assumptions.

The mechanism by which local SMOs synchronize and gener-
ate coherent LFP relies on inhibitory interneurons (Lagier et al., 
2004; Soltesz and Deschenes, 1993; Traub et al., 1996). To simplify 
terminology, we refer to LFP as the extracellular indicator of SMO; 
however, the performance of the model does not depend on the 
equivalence of LFP and SMO.

The aim of this study is twofold. First, we present a model that 
explains how feature-dependent phase coding may be employed in 
sensory information processing. Second, we investigate potential 
benefi ts of phase coding through examples, including generaliza-
tion of 1-D phase coding to 2-D fi elds, information compression, 
selective reconstruction from combined representations, retaining 
stimulus invariants, and spatio-temporal transformations.

MATERIALS AND METHODS
COMPUTATIONAL MODEL
The core computational model consists of three layers, an input 
layer, a transformation layer, and an output layer. Each layer con-
tains n neurons arranged in a 1-D array or a 2-D grid structure. 
The sensory input (1-D or 2-D) maps to the fi rst layer. The fi rst two 
layers are connected through n one-to-one unidirectional connec-
tions. In contrast, the second and third layers are connected through 
a single channel. Thus, the complete architecture is an n-to-n to 
one-to-n feed-forward network. For the sake of simplicity, we fi rst 
consider a 1-D array of neurons to introduce the basic operations, 
and then we demonstrate that these operations are applicable to 
a 2-D grid as well.

I modeled neurons as deterministic state machines with binary 
AP or non-AP states and a real-valued baseline function ϕ(t) repre-
senting the voltage of the SMO. The state of each neuron is defi ned 
by the combination of these two parameters. Although time is a 
continuous variable in the model, for numerical simulations we 
applied a discrete timescale ∼0.2 ms (Tγ = 0.01).

We denote ϕ
i
(t) as a wave function with frequency γ and 

period T = 1/γ corresponding to each neuron’s SMO. We assume 
that ϕ

i
(t) is coherent among the neurons of a given layer with a 

constant phase offset d
i
∆Φ proportional to the distance of the 

 neurons from the origin of the oscillation (d
i
), like a  propagating 

wave

ϕ
i
(t) = ϕ

0
(t + d

i
∆Φ), (1)

where ∆Φ has units of time/distance. For an n-dimensional grid 
of neurons (n = 1, 2, 3), this phase gradient causes the neurons to 
express a coherent but phase-shifted n-dimensional oscillation fi eld, 
where the phase difference between grid points is proportional to 
the difference between their distances from the center of oscillation 
(Figure 2E). At grid points where the phase difference reaches 2π, 
neurons have a zero phase-lag difference. The phase gradient starts 
to increase from homogeneously distributed centers and attenuates 
at the edges where spreading oscillations derived from adjacent 
centers meet (Benucci et al., 2007; Rubino et al., 2006).

The sequence of events from encoding to decoding are as 
follows:

(1) Encoding phase (layer 1): First we generate a 1-D input pat-
tern S, a stimulus vector of length n representing the intensity 
of the stimulus acting on each of the respective n neurons 
(Figure 1 stage 1). We now defi ne A as the pattern of APs 
induced by S. A is an n × n binary matrix with elements a

i,t
, 

representing the time t at which each neuron i receives an 
input, that is computed by converting the intensity vector S 
to a latency vector such that a higher intensity input induces 
a shorter latency AP (Figure 1 stage 2) (Hopfi eld, 1995).

a
i,t

 = f(s
i
) (2)

 The function f assigns each input value s
i
 to a time t

i
, 

where

t
si

i

n=
⋅γ

 (3)

and γ is the frequency of SMO. The role of n is to scale the AP 
times to encompass multiple SMO periods. Importantly, the 
exact function in Eq. 2 does not matter as long as the latency 
is a monotonic function of the s

i
 input. Moreover, it does not 

matter whether the input is sensory or it was derived from 
another brain region; the model is only concerned with the 
pattern of APs that is induced by S.

(2) Transformation phase (layer 2): Now, we defi ne A′ as the 
gamma-aligned pattern of APs in A. More precisely, A is 
transformed into A′ by delaying each AP until the neuron 
reaches the local maximum of its SMO. As a result, each i-th 
neuron generates an AP at a peak of ϕ

i
(t). We implement this 

delay by aligning each binary AP event to the peak of the 
respective neuron’s intrinsic oscillation ϕ

i
(t) (Eqs. 4 and 5).

′ =a ai i ti, ,τ  (4)

where

τ ϕ ϕi i i t= [ ]( )−1 max ( )  (5)

and max is defi ned as the next local maximum of ϕ
i
(t) after 

the time of the received input a
i,t

. Here ′ai i,τ  are the elements of 
A′, a matrix with binary elements, where columns correspond 
to 0.1 ms time bins and rows correspond to specifi c neurons. 
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  At the same step, C was “cloned” to n copies and fed into 
the next layer of n neurons.

c
j
 = C,  (7)

where j = {1,…,n}. The information in C is transferred from 
the input layer to the target layer. Since all the information 
from the input layer neurons is collapsed into a single channel 
(stage 3), this information is vulnerable to errors deriving from 
different conductivity delays. Therefore, a redistribution of C 
over multiple channels is necessary to increase redundancy 
for error correction.

(4) Reconstruction (layer 3): The fi nal step is reconstruction. 
Here the task is to create a matrix A″ by assigning each indi-
vidual AP in C to a neuron such that there is a topographic 
mapping between A and A″, consequently recovering the ori-
ginal spatio-temporal structure of APs from the compressed 
code. To do so, we simultaneously broadcast the c

j
 copies to 

each k-th neuron (k = {1,…,n}) in the target layer. Neurons in 
the target layer will only generate APs if the input c

jt
 coincides 

with a peak of their membrane oscillation ϕ
k
(t) within a pre-

cision of ∆τ (Figure 1 stage 4 and Movie 1 in Supplementary 
Material). Given that the gamma phase gradients are iden-
tical between the source and the target (but see Figure 1 in 
Supplementary Material), these coincidences must occur in 
neurons at the same grid position within the target layer as 
the grid position of neurons stimulated in the input layer. 
Consequently, the topography and timing of the coinciden-
ces between the C and the SMO, which generates the APs at 
the target layer, will reproduce the topography and timing of 
the input APs. To implement this, we defi ne a matrix B with 
n × T/∆τ binary elements, where 1-s represent the positive 
peaks of SMO and 0-s represent all other voltage values, with 
a ∆τ precision:

bi
it d

,

, ( , )

,τ

γ
=

=



1 0

0

if mod 

otherwise,

+ ∆Φ
 (8)

where b
i,τ represents the binary state of the i-th the neuron at τ 

time. Since the input layer SMO is identical to the target layer 
SMO, it is necessary that the intersection A″ of B and C:

A″= B ∩ C (9)

will reproduce the original matrix A′ (Figure 1 stage 4). The 
output pattern A″ can be transferred as input to other target 
areas. Equation 9 will be referred to as the “interference opera-
tor”, and Equations 8 and 9 as the “interference principle”.

SELECTIVE RECONSTRUCTION FROM COMBINED PHASE CODES
Let us defi ne input images SA and SB and encode them separately 
as Aα and Aβ. Next, align Aα and Aβ to fi eld gradients ∆Φα and 
∆Φβ, respectively, and compress the aligned A″α and A″β matrices 
into corresponding Cα and Cβ representations. Next, we combine 
the two compressed representations as Cγ by simply merging and 
sorting the AP times in ascending order:

Cγ = Cα ∪ Cβ. (10)

FIGURE 1 | Flow chart of information encoding and reconstruction. 
Stages are numbered at the left from 1 to 4. (1) Input: An intensity-modulated 
signal is presented to the input of the neurons and encoded as an AP latency 
vector (ai,t) (Gollisch and Meister, 2008). (2) Source Area: The latency encoding 
AP vector, when interacting with a propagating fi eld of local oscillations, 
becomes aligned to the nearest SMO peaks (a′i,t). (3) Projection: The SMO-
aligned AP vector is collapsed into a single AP stream via convergent 
connections. At the same stage, the AP vector is distributed via divergent 
connections (not shown), and identical AP trains are transferred to the next 
stage (ct) (Dan et al., 1998). (4) Target Area: this area receives identical copies 
of the AP vector through parallel pathways. When APs interfere with the local 
waves of SMO, a single input AP evokes a single output AP only in neurons 
where the input AP coincides with the peak of the local SMO. Provided that 
the SMOs have the same voltage gradient at the input and target areas, it is 
guaranteed that the coincidence pattern will reconstruct the original spatio-
temporal pattern of the input (a″i,t). Output: As a result, the output AP vector 
reliably reproduces the phase aligned input vector.

A “1” in position ′ai i,τ  represents an AP for neuron i at time t 
while a “0” represents the lack of AP (Figure 1 stage 3).

(3) Transfer (layer 2–3): Then A′ is collapsed into an array C by 
summing across all neurons for each time bin.

c at i
i

n

i
= ′

=
∑ ,τ

1

 (6)

Since the sum is a binary function, C contains the APs derived 
from all neurons with their original time stamps. Although the 
neuronal specifi city is lost in the sum, the precise timestamps of 
APs unambiguously relate the individual APs to specifi c loca-
tions through their phases. Thus, the spatial information is 
retained by the relative phases of APs (Figure 1 stage 3).
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Given that ϕα(t) has a phase gradient ∆Φα and ϕβ(t) has a 
phase gradient ∆Φβ, the two different SMO fi elds must be able 
to  selectively reconstruct the two AP patterns, A″α and A″β, both 
retaining the main features of A′α and A′β, respectively:

A″α = Bα ∩ Cγ (11)

and

A″β = Bβ ∩ Cγ. (12)

With simulations (Figure 5) we demonstrated that given 
∆Φα ≠ ∆Φβ, A′α can be recovered from the interference of Bα and Cγ 
without confusion with A′β. Likewise, matrix A′β can be recovered 
from the interference of Bβ and Cγ without confusion with A′α.

This mechanism provides the capacity to combine information 
from different sources within the same target layer and selectively 
recall them by different SMOs.

NUMERICAL IMPLEMENTATION OF THE MODEL
Numerical simulations were implemented using Matlab (Mathworks 
Inc., Natick, MA, USA). For the numerical implementation, instead 
of simulating spiking neurons with incremental time, we computed 
the state of all neurons in time at once using matrix operations. 
We remark that it was unnecessary to introduce a spiking neuron 
model since all the state transitions were deterministic and the 
interactions were linear. Thus, the state changes of neurons, i.e., 
the AP times, at a given layer as a function of the state changes at the 
subordinate layer were analytically solvable. Therefore, numerical 
simulations were performed by computing the complete AP time 
vectors as a function of the AP time vectors in the previous layer 
instead of deriving the membrane voltage V

t
 at every time step 

recursively from V
t−1

.
Architecturally, the neuronal network consisted of three lay-

ers: input-layer, projection-layer and output-layer. The input layer 
contained n or n × n neurons, individually assigned to each pixel of 
the input image. We implemented the algorithm on feed-forward 
networks using three types of projections between layers: (i) A 1-D 
vector of n values (input vector) was projecting to a 1-D array of 
n input-layer neurons, which were connected through projection 
neurons to the same number of output-layer neurons. The connec-
tivity between the values of the input vector and input-layer neu-
rons was one-to-one; between the input-layer and projection-layer 
was n-to-one; between the projection-layer and output-layer was 
one-to-n. (ii) A 2-D input image, digitized as n × n pixels, projecting 
on a 1-D array of n2 input-layer neurons. The architecture from 
the input-layer to the output-layer was similar as in (i), however, 
the output was visualized in 2-D to compare the reconstructed 
pattern with the input image. (iii) A 2-D (n × n) input matrix was 
projecting on a 2-D grid of n × n input-layer neurons by emulating 
“receptive fi elds”. For this, the input matrix was partitioned into n 
subfi elds and the input-layer neurons were arranged into n non-
overlapping groups that processed the n input subfi elds separately. 
Likewise, the output-layer neurons were arranged into n number 
of groups, emulating a topographical projection from the sensory 
organ to a primary sensory cortical area. The precise connectivity 
pattern between the input matrix and input-layer group was repeat-
ing across the groups but it was varied from simulation to simula-
tion (see next paragraph). All neurons from a given group were 

 converging on a single projection neuron, which in turn,  terminated 
on all the neurons of a given output-layer group. Thus, each input-
layer group was interfacing with the corresponding output-layer 
group through a single projection neuron.

Operatively, the input was either a 1-D (n) or a 2-D (n × n) 
matrix mapped to the input-layer neurons. The correspondence 
between the input matrix elements and the input-layer neurons 
was one-to-one. The 1-D simulations always used random vec-
tors as input with the range of values from 0 to 2π and transferred 
to n neurons. As input to the 2-D simulations, we used a set of 
digitized images, including photos of people, animals, complex 
structures of rubber bands and grid patterns. They were selected 
to test the accuracy and geometric preservation of the recon-
struction. Images were digitized with 256 × 256 pixel resolution 
and converted to grayscale. We down-sampled them to fi t to the 
neuronal grid with a square geometry (16 × 16, 18 × 18, 32 × 32, 
36 × 36, 60 × 60) and input them to the neurons. The input layer 
contained n or n × n neurons, individually assigned to each pixel 
of the input image. As described earlier, the  projection-layer was 
different for the 1-D and 2-D network. For a 1-D solution, the 
projection-layer contained only one neuron (one channel). All 
the APs from the n input layer neurons were collapsed into a 
single channel, serving as a projection neuron. For the n × n 
solution, the projection layer contained n neurons (channels), 
thus the n × n grid of input layer was broken down into m sub-
fi elds (receptive fi elds) and the APs from all the input neuron 
of a given subfi eld were collapsed into a single channel. The 
combined m channels served as a projection pathway. All the 
neurons at a given subfi eld of the output layer received a common 
input from a single projection neuron, containing the combined 
activity from the input subfi eld. Different mappings between 
the input and input-layer neurons were implemented by con-
nection patterns, emulating different receptive fi eld geometries 
(for details on modeling different receptive fi eld architectures, 
see Supplementary Material).

The SMO was modeled by sinusoids. The phase gradient was 
either linear, emulating a propagating wave with a constant time lag 
of SMO between neighbor neurons, or non-linear, emulating oscil-
lations deriving from randomly dispersed sources (for details on 
constructing non-linear SMO fi elds, see Supplementary Material 
below). APs were modeled as binary events. The duration of these 
events was the smallest time unit of the simulation (∆τ), defi ned as 
a constant fraction of π, the half period of the SMO. Alignment to 
the nearest SMO peak was implemented by reassigning each AP to 
the nearest subsequent peak of SMO. Combining before transfer-
ring APs via the projection neurons was done by concatenating 
the AP time series. Coincidences at the output layer were detected 
when the latency difference between the incoming AP pulse and 
the peak of local SMO is < ∆τ. APs were assigned to neurons of 
the network where coincidences occurred. The output was the 
temporal pattern of APs on the grid of n × n neurons, converted 
to an image by an inverse of the image conversion applied to the 
image when it was converted to a temporal pattern. To quantify 
the effi ciency reconstruction, we computed Pearson’s correlation 
coeffi cients on the AP times between the input patterns and output 
patterns, neuron-to-neuron, as well as between the SMO-aligned 
input patterns and the output patterns. The implementation 
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of the algorithm for numerical simulations is described in the 
Supplemental Computational Methods. Demo codes written in 
Matlab are available at the following URL: http://www.vis.caltech.
edu/~zoltan/mcodes/phasecode.tgz

ALGORITHM AND BIOLOGICAL MOTIVATIONS
The model that we introduce explains how oscillations might be 
used in the brain to coordinate APs to encode and reconstruct 
information between distant cortical areas. First, we distinguish 
four information processing stages and corresponding neuronal 
layers representing the results of each stage (Figure 1): (1) Input 
layer: latency encoding; (2) Source layer: gamma alignment; (3) 
Projection: compression and distribution, (4) Target area: recon-
struction. The output of the target area may serve as an input to a 
connected area. The input layer may represent a group of  sensory 
neurons or a group of cortical pyramidal cells. Postsynaptic to 
these neurons are neurons that encode the input and exhibit 
intrinsic SMO. Postsynaptic to encoding neurons are the pro-
jection neurons, such as sensory ganglia or long-range cortico-
cortical connections. Postsynaptic to projection neurons are the 
target neurons, such as cortical layer-4 granule cells or layer 2–3 
pyramidal neurons, which are the ultimate targets of sensory or 
cortico-cortical projections.

Each neuron was described by its grid location and layer, its 
connections, and its state. The state was defi ned by three vari-
ables: a continuous oscillating membrane potential implement-
ing the SMO of the soma, a binary input, and a binary output, 
corresponding to AP or no AP. The probability of generating an 
AP was dependent on the input state and the actual SMO, which 
determined how close the membrane potential was to the thresh-
old. In the absence of input, the membrane potential remained 
subthreshold, by defi nition. The SMO for each neuron was mod-
eled by a sinusoid, and the grid of neuronal SMOs formed a 2-D 
fi eld (SMO fi eld) with a common frequency and a uniform phase 
gradient between adjacent neurons. Thus, the SMOs of neighbor-
ing neurons were near-synchronized, with a distance dependent 
phase delay, mimicking a spreading wave (Benucci et al., 2007; 
Bringuier et al., 1999; Grinvald et al., 1994; Prechtl et al., 2000). 
Each neuron generated an AP when the input, received from a 
presynaptic neuron (i.e., from an earlier stage), coincided with the 
neuron’s own local SMO maximum, where the neuron’s membrane 
potential is nearest threshold. We implemented a task in which 
these neurons encode and reconstruct an image using exclusively 
a feed-forward architecture in four steps corresponding to the four 
stages. For the sake of simplicity, we fi rst illustrate these steps on a 
1-D example, after which we extend it to 2-D examples using real 
images (see Section “Results”).

Encoding
First we generate a 1-D input pattern S that represents intensity 
values of an image (Figures 2 and 3A). Each element of the S vector 
is assigned to the input of a neuron. Next, we compute the neuronal 
responses to S. We employ a latency encoding scheme (Gollisch 
and Meister, 2008; Hopfi eld, 1995), which converts the intensity 
values to AP latencies, inversely proportional to the intensity of 
stimulus component, generating a spatio-temporal activity vector A 
(Eqs. 2 and 3).

Gamma alignment
The latency-encoded pattern A is transferred to the next layer of 
neurons exhibiting a coherent fi eld of SMOs. The SMO fi eld con-
sists of local oscillations spreading through the grid of neurons 
as a linear or radial wave with a neuron-specifi c phase gradient 
(Eq. 1). A neuron of this layer generates APs only when the sus-
tained input from a neuron at the previous layer coincides with its 
own next SMO maximum. As a result, the temporal pattern of A is 
transformed in an SMO aligned pattern A′ (Eqs. 4 and 5). Since we 
considered gamma oscillation as one of the main frequency com-
ponents of local SMOs, we refer to this operation as “gamma align-
ment” (Figures 1 and 2B), though phase coding does not depend 
on the frequency of SMO. Note, that with gamma alignment this 
model is critically different from synfi re chain (Abeles, 1991) and 
AP-latency encoding (Hopfi eld, 1995). Gamma alignment is pos-
sible through rapid spike-time-dependent-plasticity (Bi and Poo, 
1998; Cassenaer and Laurent, 2007; Markram et al., 1997).

Compression
A′ is then collapsed across all neurons into one AP sequence C by 
eliminating the neuronal identity (Figures 1 and 2C, and Eq. 6). 
This AP sequence represents all the APs pooled across all of the 
neurons. Pooling can be implemented by convergent feed-forward 
synaptic connections on a single neuron. Although neuronal identi-
ties are seemingly lost by collapsing APs over neurons, the spatial 
origin of the AP is still referenced by the timing, which associates 
the AP with the original location of the neuron through the gamma 
alignment. A phase difference of the local SMO, to which the AP 
is aligned, is preserved by the small latency differences between 
APs after collapsing them. The resulting new sequence is “com-
pressed” because information from all neurons were collapsed 
into a single sequence of APs of the same duration, and “compact” 
because it contains all the information about A′, including time 
and location.

Distribution
At the same stage, the collapsed AP vector is copied over the same 
number of projection neurons as in A (Eq. 7). Compression and 
distribution are accomplished in a single step within a feed-for-
ward network by convergent and divergent synaptic connections, 
respectively. As a result, all APs from the original A′ pattern are 
represented in all the projection neurons by pattern C, with a 
redundancy (Figures 1 and 2C). These packets of C patterns can 
be broadcasted to many neurons simultaneously or exchanged 
between distant cortical areas. Since all projection neurons carry 
the same AP sequence, any of them is able to broadcast the complete 
information indiscriminately to any brain area. Notably, after com-
pression the information content is no longer sensitive to different 
conduction delays. Errors deriving from differential conduction 
delays are self-corrected by synchronization of APs in crossed-over 
feed-forward pathways, typical in thalamo-cortical, callosal and 
long-range associational projection systems.

Reconstruction
This is the fi nal stage where the original information A′ (the gamma-
aligned representation of A) is reconstructed from the pattern C 
as input to this layer. The parallel pathway of projection neurons 

               znadasdy_144_23

http://www.vis.caltech.edu/~zoltan/mcodes/phasecode.tgz
http://www.vis.caltech.edu/~zoltan/mcodes/phasecode.tgz


Frontiers in Systems Neuroscience www.frontiersin.org July 2009 | Volume 3 | Article 6 | 6

Nadasdy Phase coding

broadcasts the complete C input to each neuron at the target layer, 
such as layer 4 of the cerebral cortex. The target layer neurons also 
express an SMO fi eld similar to the one at the input layer. Here, 
we apply a principle similar to the input layer, except a neuron 
only generates APs if the input coincides with the neuron’s SMO 
maxima within a ∆τ time window (Figures 1 and 2D). Such coinci-
dences between the input and the local SMO occur only in selected 
neurons, which are located at the same grid positions as the active 
input-layer neurons (Movie 1 in Supplementary Material). Since 
the relative timing of AP is preserved, the coincidences reproduce 
the original A′ pattern due to the “interference principle” (Eqs. 8 
and 9). Therefore, to achieve a near perfect reconstruction, it is 
assumed that the SMOs at the input layer and the target layer share 
similar spatial and spectral properties, including the frequency and 
phase gradient topography (but see isomorphic reconstruction and 
Figure 1 in Supplementary Material). Since the interference occurs 
at selected neurons, the input pattern C will activate a sparse set of 
neurons, with topographic positions similar to the original neurons. 
Therefore, it is necessary that the reconstructed pattern A″ resemble 
closely to the gamma-aligned original pattern A′ and consequently, 
the original pattern A as well. The reconstructed pattern can be 
combined with patterns deriving from other input structures and a 
new cycle of encoding, gamma-alignment, compression and recon-
struction is initiated that propagates the now combined representa-
tion to a different brain area (Figure 5).

RESULTS
For the sake of simplicity and algorithmic clarity, we fi rst used a 
1-D encoding and reconstruction example. A vector containing 
16 random real numbers from 0 to 1 was used as the input to the 
network. Next, this input was converted to latencies within the 
range of eight SMO cycles (Figure 2A). This pattern was aligned to 
the neurons’ own SMO which slightly altered the precise temporal 
pattern of APs relative to the original latency code (Figure 2B). 
This spatio-temporal pattern was collapsed into a single AP train 
by removal of the spatial dimension. At the same time the result-
ing AP string was distributed over 16 neurons which transferred 
the code from one brain structure to another with redundancy 
(Figure 2C). One of these AP strings was applied as input to a 
target network, consisting of 16 neurons. In addition to the input, 
we rendered each neuron with an SMO that shared the same phase 
gradient and frequency as the SMO fi eld at the input layer. Although 
each individual neuron received the same AP sequence as input, 
due to the interference principle (Eqs. 8 and 9) only those APs that 
“precisely” coincided with the neuron’s own SMO were effective in 
generating output APs (Figure 2D). We quantify the precision of 
coincidence later. As a result the ouput-layer neurons reproduced 
the spatio-temporal pattern of the original gamma-aligned input 
with high fi delity.

To demonstrate the algorithm in 2-D we used a set of gray-
scale images sampled at neuron resolution and projected them 
on the input-layer neurons so that each neuron processed one 
pixel, allowing no interactions between neurons of the same layer 
(Figure 3). By varying the precise projection between the image 
pixels and neurons we were able to test different receptive fi eld 
confi gurations (see Supplementary Material on modeling differ-
ent receptive fi eld architectures). Each set of input-layer neuron 

processed the  receptive fi eld independently throughout the four 
stages, and at the end, the reconstructed patterns were combined 
from each set. Finally, AP latencies were converted to grayscale 
values (Figures 3A,E). The close resemblance of the output image 
to the original implies that most of the information encoded from 
the input were correctly recovered from the phase of APs alone, 
thus phase coding is effi cient.

BIOLOGICAL SIGNIFICANCE OF MODEL PARAMETERS
The effi ciency of reconstruction was sensitive to a number of param-
eters, including the connectivity, the input size, the density of neu-
rons, the SMO oscillation, and the time window of coincidence. The 
operative range of these parameters must be consistent with that 
measured in the living brain in order for the model to be biologi-
cally relevant. To understand how these parameters infl uence the 
reconstruction effi ciency, we performed simulations. The independ-
ent variables were the number of neurons, the number of gamma 
cycles (i.e., the duration of reconstruction), the temporal resolution 
∆τ (equivalent to the time window of coincidence), the phase gra-
dient ∆Φ of gamma oscillation, the connectivity pattern, and the 
complexity of receptive fi elds (the number of pixels covered). The 
dependent variable was the reconstruction effi ciency, quantifi ed as 
the pixel-to-pixel Pearson’s correlation coeffi cients either between 
the original image A and the reconstructed image A″ (r = r

A, A″) or 
between the gamma-aligned image A′ A″ (r′ = r

A′, A″).
First, r and r′ were tested against combinations of number of 

neurons and number of gamma cycles. The reconstruction effi -
ciency is expected to inversely scale with the number of neurons 
since the more neurons’ APs are combined in a single projection 
neuron, the more confusion occurs due to spurious interferences 
(aliasing errors). A few gamma cycles were expected to be suf-
fi cient to reconstruct the most of the information and certainly 
less gamma cycles than neurons are necessary. The steep expo-
nential function [f(x) = 22.45 × x0.3 − 13.83; R2 = 0.99; root mean 
square = 0.78] of the signifi cant correlations (six cycles over the 
increase of 800 neurons) suggests that as few as 64 neurons and 
three to four gamma cycles (75∼100 ms) were suffi cient to retain 
the information with r > 0.9 (Figure 4A); consistent with the reac-
tion time across species.

Second, we systematically varied the temporal resolution ∆τ 
between 0.1 and 2.5 ms and the phase gradient ∆Φ between adja-
cent neurons from 0.012 to 5 ms. Since the reconstruction effi -
ciency relies on the neuronal specifi city recovered from the AP 
phases, the temporal resolution of phase, i.e., the precision of APs, 
is critical. This resolution determines whether neurons at the target 
area are able to discern the close succession of input APs and detect 
coincidences between APs and gamma peaks selectively. Likewise, 
the gamma phase gradient between adjacent neurons determines 
the specifi city of AP-gamma coincidences with respect to the neu-
ron’s position and with respect to the wavelength of the spreading 
oscillation. Since ∆τ and ∆Φ are independent parameters of the 
model while both contributing to the precision of coincidences, 
we expected a tight relationship between them. Our simulations 
confi rmed a monotonic relationship between temporal resolu-
tion and reconstruction effi ciency from 0.1 to 1.5 ms and uncov-
ered a surprising non-linear relationship between the gamma 
phase gradient and coding effi cacy. At ∆τ > 1.5 ms no  precise 
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FIGURE 2 | Stages of information encoding, transfer, and reconstruction 
illustrated on a 16-neuron simulation. (A) INPUT: Neurons at the input layer 
convert the stimulus, represented by an analog intensity vector (left), to a 
latency vector where the delay of AP (red markers) is inversely proportional to 
the intensity of input. Oscillations in adjacent neurons are phase shifted by a 
constant 0.1 π relative to each other (green ticks mark oscillation peaks). (B) 
GAMMA ALIGNMENT: AP generation is most likely when the input pattern 
coincides with the maxima of the ongoing SMO (blue markers). Time is shifted 
one period at each stage. (C) TRANSFER: All APs from all neurons are collapsed 
into a single sequence of APs, and this sequence is distributed over an array of 
projection neurons (red markers). (D) OUTPUT: When one of the AP sequences 
is transferred to the target layer, it provides the same input to each neuron 

(dashed lines). However, only those APs that coincide with at least one neuron’s 
membrane oscillation maximum are effective in generating AP (red markers). 
Given that the membrane oscillations at the output layer share the same spatial 
gradient as that of the input layer, the topography and timing of the output layer 
interferences will reproduce the topography and timing of input layer APs (B). 
(E) The scheme of the spatio-temporal distribution of SMOs in a grid of neurons 
(fi lled circles). Each neuron’s membrane potential is affected by a radial spread of 
SMO φi(t) that has a constant spatial voltage gradient, causing a ∆Φ phase lag 
between the SMO peaks of adjacent neurons (red and orange neurons and 
corresponding traces of SMO). Examples in (A–D) related to a linear array of 
neurons (within the dark gray rectangle) sorted according to phase, but the 
same algorithm can be generalized to a 2-D grid (light gray area).

reconstruction was possible, thus setting a boundary for precise 
information processing consistent with empirical data (Shmiel 
et al., 2005). The lowest temporal resolution, or the largest time 
window of coincidence, which allowed a near perfect reconstruc-
tion (r > 0.9) was <0.72 ms, as precise as the duration of an AP. 

The fi rst peak of the corresponding gamma phase gradient was 
∆Φ = 0.4 ± 0.1 ms, followed by a series of subharmonics from 0.6 
to 1.59 ms (Figures 4B,C). Given that the average pyramidal cell 
density in layer 4 of the cerebral cortex is near 2.4 × 104 (Holmgren 
et al., 2003) and 2.5 × 104 cells/mm3 (Peters and Yilmaz, 1993), 
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FIGURE 3 | Topographic preservation of reconstruction. (A) The original digital 
grayscale image (left panel) was downsampled to an 18 × 18 matrix and 
partitioned into 18 sub-regions mimicking receptive fi elds (RFs) (second panel, 
only four receptive fi elds are shown). The total of 18 RFs were projecting on 
18 groups of neurons of the input layer, each consisting of 18 neurons. The 
inputs from the RFs (covering 3 × 6 pixels; color coded on the second panel) 
were vectorized and mapped on separate arrays of neurons (color coded 
rectangles on the third panel). The reconstruction using the “interference 
operator” (Eq. 9) retained most of the information from the input (forth panel). 
(B) Examples of encoding the input by four RFs [color bars relate the codes to 
corresponding RFs on (A)]. The gray levels within RFs were converted to AP 
latency vectors in the corresponding neurons (red markers). (C) APs were 

aligned to the nearest subsequent maxima of the local SMO oscillation (blue 
markers). (D) The spatiotemporal pattern of APs from each group was collapsed 
into a single sequence and combined in 18 AP sequences (red markers) to 
transfer through projection neurons. The sinusoid traces correspond to the fi rst 
neuron’s SMO of a given receptive fi eld in (C). The fi rst four traces correspond to 
the RFs on (A). (E) Reconstruction of the information from the compressed 
code in (D). The interference between the input and the neuron’s intrinsic SMO 
peaks generated patterns (red markers) that reproduced the original gamma-
aligned patterns. To compare the reconstruction with the original input, we 
converted the AP latencies from all the neurons to gray level pixels (A; fourth 
panel). Note that the reconstruction of the original phase relationship between 
the APs and local SMO is near perfect (C,E and A fourth panel).

the average nearest cell-to-cell distance derived by Monte Carlo 
 simulations was ∆x = 42 µm (for details on computing neuron-
to-neuron distance, see Supplementary Material), and that the 
optimal phase gradient was 0.4 ± 0.1 ms between adjacent neurons, 

we estimated the speed of SMO  propagation (v) and the  diameter 
(d) of the cortical cylinder that would be covered by a radial wave 
of a single SMO cycle of f frequency and v speed. Assuming that 
f

gamma
 ≈ 40 Hz and Tπ ≈ 12.5 ms, and applying v = ∆x/∆Φ we 
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FIGURE 4 | The effi ciency of reconstruction depends on the number of 
neurons, gamma cycles, temporal resolution and phase gradient. 
(A) Average correlation coeffi cients (r) between original and reconstructed 
images (grayscale) as a function of number of gamma cycles (abscissa) and 
number of neurons (ordinate). The right side of the exponential curve 
represents combinations of number of neurons and gamma cycles that enabled 
precise reconstructions (P < 0.001). (B-C) Average r as a function of temporal 
resolution (DT) and gamma phase gradient between adjacent neurons (∆Φ). 
Unit is [ms/∆x] where ∆x is the average nearest neighbor distance between 
pyramidal cells (D). (C) A higher resolution simulation within parameter ranges 

of ∆Φ = 0–0.8 and ∆τ = 0.01–1.52 ms [the rectangular area in (B)] revealed the 
optimum phase gradient ∆Φ = 0.4. The contour line represents the P = 0.001 
confi dence limit. (D) Estimating the cortical area of precise reconstruction. Given 
∆x ≈ 42 µm average nearest-neuron distance and ∆Φ ≈ 0.4 ms at gamma 
frequency (from B–C), we extrapolate d ≈ 1,250 µm as the diameter of a 
cylindrical cortical volume comprising a neuron population necessary and 
suffi cient to reconstruct the complete information transferred within a single 
gamma cycle. Filled triangles represent neurons, cosine functions represent 
phases of a spreading gamma wave and arrows represent radial propagation of 
gamma waves.

 calculated v = 0.1 mm/ms as the speed of propagation, which is 
consistent with the 0.09–0.4 mm/ms expansion speeds of SMO 
measured from various species, cortical and allocortical areas 
(Benucci et al., 2007; Bringuier et al., 1999; Grinvald et al., 1994; 
Prechtl et al., 2000). To estimate d, we extrapolated how far a single 
radial oscillation period (T) would propagate as λ = T × v. Given 
that T = f −1 ≈ 25 ms and v ≈ 0.1 mm/ms the estimated diam-
eter range of integrative cortical units are d = λ/2 ≈ 1,250 µm 
(Figure 4D), consistent with the 900–1,000 µm center-to-center 
distance of iso-orientation columns in the cat V1 (Lowel et al., 
1988; Peters and Payne, 1993). Considering that the reconstruction 

effi ciency is near perfect at as low as ∆Φ = 0.1 ms and does not 
improve beyond ∆Φ = 0.8 ms, a broader range of spatial domains 
(578 µm < d < 4.6 mm) could satisfy gamma frequency integra-
tion. This range is consistent with the 590 µm center-to-center 
distance of cytochrome oxidase blobs (Murphy et al., 1998), 
the 430 ± 139 µm center-to-center distance of cortical biocytin 
patches in primate V1 and 600 µm in cat V1 (Lund et al., 1993) 
and 1.5–2.7 mm, the space constant (d = 2 × space constant) of the 
radial spread of stimulus induced transmembrane voltage change 
(Grinvald et al., 1994). The estimated d was also consistent with the 
reported range of cortical columns 600–900 µm (Jones, 2000) and 
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FIGURE 5 | Reconstruction of individual images from combined 
representations. (A,C) Two different images were digitally sampled at 18 × 18 
pixel resolution and grayscales were encoded by AP phases relative to SMO 
fi eld by using slightly different phase gradients ∆ΦA for image A and ∆ΦB for 
image B. The third panel represents the projection of input on a non-
topographically organized array of neurons. The fourth panel is the reconstruction 
when only image A was applied. The receptive fi eld was a 3 × 6 rectangle. 
Turquoise rectangles highlight the projection of a receptive fi eld on the neurons. 
(B) APs collected from a single receptive fi eld were collapsed into a single 
stream and processed by one of the 18 projection neurons. The left panel 

represents the phase code of APs derived from image A projected on the SMO 
fi eld. The middle panel represents the same, derived from image B. The right 
panel represents the result after combining the two codes into one. This 
compressed AP sequence is transferred to the site of reconstruction. The last 
two images on (C) represent the reconstruction from the combined code with 
using ∆ΦA vs. ∆ΦB. (D) Correlations between: input image B and its 
reconstruction from the combined code; input image B and SMO aligned pattern 
B′; the SMO aligned pattern B′ and reconstruction of image B from the 
combined code; and the SMO aligned pattern A′ and reconstruction of image A 
from the combined code.

350–400 µm (Favorov et al., 1987), and the 400–500 µm projection 
fi eld of layer 2/3 and layer 4 neurons in the rat barrel cortex (Lubke 
et al., 2003). Notably, the relationship between oscillation λ and 
column diameter is further supported by the observation that the 
dominant LFP in the primate motor cortex (area 4) is 20–25 Hz 
(Rubino et al., 2006), half of that of V1, while the center-to-center 
distance of cortical biocytin patches is twice of that of V1 (Lund 
et al., 1993). In summary, the operative ranges of model parameters 
satisfy the dynamic and structural constraints of the brain.

INFORMATION RECONSTRUCTION FROM COMBINED CODES
We thought it would substantially increase the performance of 
phase coding if neuronal architectures were able to combine codes 
of independent inputs into one compressed stream of APs and 
selectively reconstruct these representations at the target location 
by the same pool of neurons. Therefore, we asked whether the inter-
ference operator (Eq. 9) is able to recover multiple representations 
from a superimposed phase code of different input patterns. We 
used two different images, image Sα and image Sβ and two slightly 
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 different fi eld gradients, ∆Φα and ∆Φβ (Figures 5A–C). First, 
processing image Sα generated the Aα latency code, transformed 
into A′α by gamma alignment to a fi eld with gradient ∆Φα. The 
pattern A′α was collapsed into Cα and reconstructed S′α at the target 
using ∆Φα (Figure 5A). Likewise, we processed image Sβ with the 
fi eld gradient ∆Φβ and computed A′β and Cβ (Figures 5B,C). Next, 
before the reconstruction, we combined the two compressed codes 
C α ∪ C β = Cγ, so that APs encoding image Sβ were interleaved with 
APs encoding image Sα (Eq. 10). The combined code included both 
sequences of APs, derived from two different input images, with-
out labeling them according to the neuron of origin (Figure 5B). 
Next, we transferred the combined code Cγ to the target, where the 
postsynaptic neurons successfully recovered image S′α and image 
S′β from the mixed code by applying fi eld gradients ∆Φα and ∆Φβ, 
respectively (Eqs. 11 and 12, Figure 5C). The reconstruction effi -
ciency, quantifi ed as the correlation between the gamma-aligned 
input and the recovered image, was near perfect (r′ > 0.9, P < 0.001) 
when compared with the original input (Figure 5D). Since the vari-
ance of the correlation between the original and the gamma-aligned 
input was the same as the variance of the correlation between the 
original and reconstructed image, most of the differences between 
the original and reconstructed images were attributed to the gamma 
alignment rather than to the reconstruction.

The reconstruction from the combined phase code has intrinsic 
limitations. If the difference between the oscillation fi eld gradients 
is small, the delay by which the two oscillation peaks reach adjacent 
neurons may be smaller than ∆τ, causing the neurons to confuse 
the input APs originating from different images. Spurious phase 
coincidences of the two fi elds may also occur if the two fi eld gra-
dients are very different. In order to avoid this, for a given phase 
gradients ∆Φα the second phase gradient ∆Φβ should be less than 
∆Φα/(n × ∆τ). Since n is relatively small (<9), especially when the 
architecture is partitioned into small receptive fi elds, this condition 
is easy to meet and does not compromise reconstruction.

Storing and retrieving multiple representations from the same 
pool of neurons by cueing them with slightly different SMO oscilla-
tions can be utilized as a very effi cient mechanism for storing long-
term memories. For the sake of algorithmic clarity, we postulated 
the independence of APs and SMO. However, in living tissue, large 
synchronized EPSPs and IPSPs may reset the fi eld of SMOs, thus 
allowing selective cueing of information.

REAL-TIME MOTION PROCESSING WITH PHASE
Under natural conditions, images on the retina change rapidly 
either due to objects and the observer moving relative to each other 
or due to the observer’s eye movements. A sequence of images, when 
presented with a frame rate ≥16 frame × s−1, is perceived as motion, 
(Wertheimer, 1912) and motion percept does not improve beyond 
48 frame × s−1. This implies that under specifi c condition, single 
gamma cycles should be suffi cient to process information from 
individual frames to generate a motion percept. It also implies that 
the human visual system does not benefi t from a frame rate of higher 
than one frame per gamma cycle. We asked how phase coding would 
implement compression and reconstruction of a complete frame 
within a single gamma period with a rate of 40 frame × s−1, in order 
to remain consistent with human motion perception. According 
to our simulations, a single SMO cycle is capable of capturing 

and retaining signifi cant quality of the  original image (r = 0.87 
P < 0.01) and nearly complete representation of the gamma-aligned 
image (r = 0.92, Figure 6). In this simulation we used a 36 × 36 
neuron architecture with 6 × 6 receptive fi elds converging to 36 
projection neurons and reconstructed on a 36 × 36 neuron layer 
at the destination. For the SMO fi eld we used a predefi ned set of 
24 phase gradients. The SMO fi eld gradients were generated by 
three randomly dispersed gamma sources slowly drifting frame-
by-frame with Brownian motion. The input was a 24-frame segment 
extracted from an Eadweard Muybridge movie clip. Input frames 
were presented iteratively and each reconstruction was computed 
independently from the previous frame. The ∆τ was 0.001, and a 
single gamma oscillation period was used for encoding. Because a 
faithful reconstruction of grayscale image requires n > 4 oscillation 
periods (Figure 4A), phase coding within a single oscillation period 
allowed to retain only the binary values per pixel (black-and-white) 
with no grayscale qualities processed (Figure 6A). Despite the 
black-and-white representation, the spatial reconstruction of the 
original frames was relatively good (r = 0.874, Figure 6C), which 
confi rmed that sampling continuous motion by single SMO cycles 
is necessary and suffi cient to encode a motion sequence. Notably, 
most differences between the original and the reconstructed image 
frames derived from the AP alignment (Figure 6C). The limited 
capacity to process textural details and motion at the same time is 
consistent with the anatomical and functional segregation of fast 
achromatic magno-cellular motion pathway and slow chromatic 
parvo-cellular pathway (Conley and Fitzpatrick, 1989; Fitzpatrick 
et al., 1985; Michael, 1988; Perry et al., 1984).

PHASE CODE GENERATES GRID REPRESENTATIONS
Since the discrimination time window is limited to one SMO cycle, 
the largest discriminative power is comprised in an area corre-
sponding to λ (the distance that SMO travels in one oscillation). 
Beyond that diameter, representations likely repeat because spuri-
ous interferences will activate neurons that share the same SMO 
phase as they are multiples of λ apart. If the same input pixel is 
reconstructed by multiple neurons, separated by λ distances, as our 
model predicts, then it is necessary that different inputs are recon-
structed by the same neuron, assuming fi nite input and neuron 
spaces. Consequently, individual neurons must endow multiple 
receptive fi elds, just like grid cells do in the medial entorhinal cor-
tex (MEC) of rodents (Hafting et al., 2005). To provoke multiple 
cortical representations by spurious interferences, we performed 
pattern reconstructions on an image, tracking a prolonged interval 
of 144 gamma cycles with increased phase gradient (∆Φ = 0.1) 
(Figure 7). The reconstruction, as predicted, yielded multiple 
representations of the original image (Figure 7E). This was due 
to systematic reconstruction errors caused by spurious interfer-
ences that occurred at neurons near λ distances apart within the 
neuronal matrix. The confusion of AP times across neurons of 
the output layer is clearly seen as clusters offset of the identity 
line of the input–output AP latency correlogram (Figure 7F). The 
consequence of these errors is twofold: (i) they generate multiple 
cortical representations of the same spatial location, as seen in 
Figure 7E; and (ii) these errors must make a given output layer 
neuron active not only when the input image is at the original 
position, but also a number of other positions that are multiple 
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of a constant distance away from the original position. In order 
to test this hypothesis, we kept track of the activity of an arbitrar-
ily selected output-layer neuron (red arrow in Figure 7E) while 
circular shifting the original image matrix in 36 × 36 different 
positions. If the image on Figure 7A represents a square-shaped 
spatial environment from the rat’s point of view, then shifting the 
image emulates an exhaustive exploration of this environment in 
a rat-centered coordinate system. For example, moving the image 
by 5 pixels north and 6 pixels east is equivalent to the rat mov-
ing 5 units south and 6 units west, where the unit is  proportional 
to the rat’s size. Next we plotted the fi ring probability of this 

neuron according to the  positions of the rat in the environment 
(Figure 7G). Confi rming the prediction (ii), the fi ring probability 
revealed a multifold periodic receptive-fi eld architecture, where 
receptive fi elds were constant distance apart, reproducing false-
colored copies of the original image, evenly tessellating the space. 
This architecture is consistent with the periodic architecture of 
the spatial fi ring fi elds of MEC neurons (Hafting et al., 2005). 
Moreover, the model provides a physiological meaning to the 
constant spatial separation of the observed fi ring fi elds by relat-
ing it to the λ of SMO within the MEC. In addition to grid cells, 
according to (i), the model predicts that the actual spatial location 
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FIGURE 6 | Motion processing by successive SMO cycles. (A) An example 
frame of a 24-frame original movie segment by Muybridge capturing the motion 
of two women (left), a 36 × 36 pixel down-sampled input (middle) and the 
reconstruction of the frame (right). (B) APs evoked by image at the input layer 
(left), after alignment to SMO (middle) and the reconstructed APs (right). Only 
one row of neurons is shown. Red markers represent the APs, and waves 

represent the ongoing SMO per neuron. Scale bar indicates one SMO period. 
(C) Correlations between the latency-encoded input and the reconstructed AP 
times (left); between the latency-encoded input and the aligned APs (middle); 
and between the aligned APs and reconstructed APs (right). Correlation values 
are shown on the top. Note that most of the variances derive from the 
alignment to SMO. Time units are relative to the length of an SMO cycle.
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FIGURE 7 | Construction of multiple cortical representations by spurious 
interferences. (A) A 36 × 36 grayscale image was used as input and partitioned 
into 36 non-overlapping receptive fi elds, which were mapped on a 36 × 36 input 
neuron matrix. (B) The activity pattern of a row of neurons [between arrowheads 
in (A)] that receives input from a single receptive fi eld. Blue-fi lled circles represent 
the APs by neurons (ordinate) after the gamma alignment, spreading through 108 
cycles (abscissa). Applying a relatively steep SMO gradient (∆Φ = 0.1π) ensured 
that multiple neurons shared identical (< ∆τ SMO phases, thus facilitating 
interferences of individual APs of the compressed code with multiple target 
neurons. (C) The activity of 1,296 neurons total was compressed into 36 channels 
(one receptive fi eld per neuron). APs are represented by red dots. (D) The spatio-
temporal pattern of APs (red-fi lled circles) after the reconstruction. Note the 
spatially periodic structure of the APs (a complete period is shown within the 

vertical bracket). (E) As a result of multiple interferences, the reconstructed image 
retains multiple representations of the original input. The original 36 × 36 
reconstruction (within the white square) was expanded to a 72 × 72 neuron 
architecture to make the multiple representations more apparent. (F) The 
interference that led to multiple reconstructions is evident from the correlation plot 
between the original input AP times and the reconstructed AP times. The dot 
clusters different from the diagonal are the results of spurious reconstructions, 
which led to the multiple representations on (E). The abscissa represents input AP 
times, the ordinate represents reconstructed AP times in SMO cycles. (G) Firing 
fi eld of a neuron (marked by a red arrow on E) in spatial coordinates. Colors 
represent the probability of APs generated while the neuron is exposed to a given 
image displacement. Construction of the plot is explained in the text. Note the 
grid-cell like periodic receptive fi eld architecture.

of the rat activates not one but multiple grid cells with shared 
 fi ring fi elds, and these neurons must be anatomically arranged in 
a grid-like periodic architecture over the entorhinal cortical sheet 
(Figure 7E) that mirrors the periodic receptive fi eld architecture 
of individual grid cells. Consistent with the proposed relationship 
between the grid cell geometry and phase coding, the frequency 
of SMO in MEC neurons, and thus λ, has been reported to scale 
with grid cell fi eld spacing (Giocomo et al., 2007). We remark 
that the periodic structure of reconstruction necessarily occurs in 
1-D but that the exact geometry in 2-D depends on the location 
of neurons where spurious interferences occur. Most likely, the 
spurious interferences generate confusions of different degrees. 
Neurons that are integer cycles apart share nearly identical SMO 
phases. Consequently, when APs are reconstructed from phases, 
these neurons generate confusions, which manifest in reproduc-
tion of the original image in nearly perfect copies. These neu-
rons represent the main-grid points of the output representation 
(seen as the multiple images of the photographer in Figures 7E,G). 

Other neurons generate only partial confusion. These neurons 
are usually half the distance of the main-grid points and they 
partially reproduce the original input (seen as phantom images 
of the photographer in the upper right and lower right corners of 
the area within the white frame in Figure 7E). Because the partial 
and complete confusion grids have the same period but with a 
half-period offset between them in both X and Y coordinates, the 
superposition of the two grid structures constitutes an elongated 
hexagonal grid topography (Figures 7E,G). Since there are also 
other ways of achieving a hexagonal structure, this may or may 
not be the mechanism by which the stereotypical grid cells in the 
MEC acquire precisely such geometry.

PHASE CODE EXHIBITS AP PHASE PRECESSION
Among the most prevalent evidence for the behavioral signifi -
cance of systematic phase variation is the phase precession of 
hippocampal pyramidal cell fi ring relative to the local theta oscil-
lation while a rat traverses through the place fi eld of the neuron 
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(O’Keefe and Recce, 1993). These pyramidal neurons also exhibit 
theta frequency SMO (Leung and Yim, 1986). Since our model 
requires nothing more than that AP timing be dependent on a 
coherent oscillatory drive (SMO) that propagates in space, we 
investigated whether phase precession can occur without further 
assumptions. We implemented the spatial navigation condition 
by defi ning a 16 × 16 matrix of topographically arranged place 
cells where neuron a

ij
 at the ith column and jth row was driven by 

the input corresponding to the rat being at the location defi ned 
by its X

i
 and Y

j
 coordinates. Thus, the place fi eld of the rat when 

moving through X
i
Y

j
 was modeled by neuron a

ij
 being exposed to 

a transient stimulus. Theoretically, this is equivalent to a transient 
stimulus, defi ned as a 2-D Gaussian, moving through the recep-
tive fi eld of a neuron (Figure 8A). This is similar to the real-time 
motion processing example in Figure 6, except that the SMO here 
represents theta instead of gamma. The complete path of the rat 
was modeled by a series of 20 frames consisting of 16 × 16-pix-
el-resolution  snapshots, in which the 2-D Gaussian advanced one 
pixel per frame. Since the diameter of the Gaussian was larger than 
the place fi eld of a neuron, the rat’s position evoked activity in 
adjacent place cells proportional to the amplitude of the Gaussian 
intersecting with their place fi elds. The square area outlined in 
Figure 8A covers the place fi elds of nine neurons. Multiple neurons 
were activated when the rat was crossing this area. The phase-coded 
APs of these neurons were combined into a compressed code and 
shared among the nine neurons before reconstruction. When we 
tracked the activity of these neurons while the location of the rat 
changed across frames, the compressed AP sequences displayed a 
systematic phase precession as a function of the distance from the 
center of the Gaussian, consistent with the empirical phase pre-
cession of hippocampal end entorhinal cortical neurons (Hafting 
et al., 2008; O’Keefe and Recce, 1993). We controlled only one 
parameter in these simulations, the phase gradient of the SMO 
fi eld. Figures 8B–E shows that the direction of phase precession 
depended on the geometry of the SMO fi eld applied to both input 
encoding and reconstruction. When unidirectional propagating 
waves (traveling waves) were applied, depending on the direc-
tion of propagation relative to the activation sequence of place 
cells, we observed different monotonic phase precession effects. 
Wave propagation in the direction opposite of the place cell acti-
vation sequence enabled progressive phase advancement, while 
wave propagation in the direction of place cell activation sequence 
enabled progressive phase delay (Figures 8B,D, respectively). By 
reducing the SMO phase gradient ten times decreased the slope 
of phase precession 10 times from 280° to 28° (Figures 8B,C). 
Furthermore, when a radial propagation of SMO fi eld was applied 
(from a single or from multiple sources) the precession started 
with increasing phase advancement until the animal, i.e., the center 
of the Gaussian, reached the center of the neuron’s place fi eld, 
followed by a progressive phase delay as the animal was leaving 
the center of place fi eld (Figure 8E). The dependency of phase 
precession angle on the SMO gradient relative to the activation 
sequence of the place cells suggests that hippocampal pyramidal 
neurons may be able to “read out” the rat’s heading direction from 
the phase precession, assuming that the local SMO fi eld gradi-
ent does not change rapidly over time (Huxter et al., 2008). In 
summary, phase precession derives naturally from phase coding, 

without making any additional assumptions, such as asymmetric 
synaptic potentiation (Mehta et al., 2000) or dual-oscillator drive 
(Blair et al., 2008; Burgess, 2008; Lengyel et al., 2003). Phase preces-
sion is controlled by a single parameter, the SMO fi eld gradient. 
Furthermore, consistent with experimental data, phase precession 
in our model does not require multiple trials to develop but it 
does require SMO (Hafting et al., 2008). Since object locations in 
the environment, according to this model, are originally encoded 
by phase, we propose that phase precession (phase advancement 
and phase delay) is expressed in all cortical and limbic structures, 
including the MEC (Hafting et al., 2008) and primary sensory areas 
of the neocortex where the spatial representations are continuously 
updated due to behavior.

MODELING STIMULUS INVARIANTS
In order to represent stable objects in a dynamic world, neurons 
must encode object features invariantly with respect to a few com-
mon transformations such as position, rotation and time. In order 
to address whether or not phase coding is able to retain some of 
these features in spite of spatial or temporal discontinuities, we 
modeled four different types of invariant stimulus conditions: (i) 
space-time invariant 1-D stimulus, (ii) 2-D stimulus embedded in 
random background noise, (iii) 2-D transposition-invariant stimu-
lus and (iv) character recognition. We classifi ed these invariants with 
respect to either temporal or spatial transformations. Among the 
invariants we tested, (i) and (ii) were time invariant, while (iii) and 
(iv) were invariant to spatial transformations. (Implementations 
of the ii, iii and iv types of invariant preservations are described in 
the Supplementary Material.)

For (i) we constructed a 1-D random vector R containing 
32 values [r

1
,…,r

32
]. Next we defi ned “frames” as the possible sub-

sets of this vector containing 16 adjacent values. We then began 
an iterative cycle, where fi rst we inputted the fi rst frame [r

1
,…,r

16
] 

to a network of 16 neurons [s
1
,…,s

16
] and performed all four 

phases of information processing from encoding to reconstruc-
tion. During each of the next 16 cycles, we incremented the frame 
position by one step [s

1
,…,s

16
] = [r

i
,…,r

i+15
], where i = {2,…,17}, 

and performed all four phases of information processing. Thus 
in each iteration, 15 out of 16 frame values remained identical to 
the values in the previous frame, but each of the 15 values was 
projected onto a different neuron at each exposure (Figure 9A). 
Presenting the neurons with only part of the complete pattern 
in each cycle, such that each neuron’s input value changes every 
cycle, allowed us to address how a constant (time-invariant) spatial 
pattern is represented by the phase code in the array of neurons 
over time (Figures 9B–E). When we superimposed the temporal 
patterns of APs of the compressed codes (transfer stage) from all 
of the 17 successive trials, we observed a marked conservation of 
AP latencies along with sudden transitions of gamma re-align-
ments (Figure 9D). The conservation of time-invariant patterns 
is refl ected by the temporal consistency of APs over time. This 
consistency was quantifi ed by correlating the AP times (wrapped 
around 3π) from one frame with the AP times of the next frame 
and comparing it to the correlation obtained when the stimulus 
frames were uncorrelated random patterns (i.e., when there was no 
overlap between successive frames). The return plots in Figure 9F 
summarize these correlations. As seen on the left return plot, 
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FIGURE 8 | Phase code exhibits phase precession. (A) The input to 
hippocampal place cells was modeled by generating a 20-frame translation of a 
2-D Gaussian representing the rat’s position (rendered with colors) relative to 
the environment (rectangle). The area was evenly tiled with place fi elds 
individually mapped on a 16 × 16 grid of input layer neurons. The size of the 
Gaussian was chosen such that 9–12 neurons were simultaneously exposed to 
the rat’s location, but the composition of neurons driven by a given input frame 
changed with the rat’s location. The four blue and red framed panels represent 
the four processing stages of the initial and terminal frames, respectively: (I) the 
rat’s location, represented by a 2-D Gaussian, (II) the discrete sampling of the 
input by the grid of neurons (input), (III) the input phases in grayscale after APs 
are aligned to the SMO, and (IV) the reconstructed activity pattern of neurons 
encoding the rat’s own location. The outlier pixels in both frames are 
reconstruction errors. (B–E) Effects of SMO fi eld topography on phase 
precession. Left panels represent the SMO ((B–D) in time-neuron and (E) in 
neuron space). Second and third panels represent snapshots of the activity of 
three projection neurons at different magnifi cations. These neurons in the model 
represent hippocampal pyramidal cells with adjacent place fi elds within the 

outlined area [dashed rectangle on (A)]. The APs evoked by consecutive frames 
are projected between the SMO waves of adjacent neurons and color-coded 
according to the input frame in (A) corresponding to the rat’s location. The 
abscissa represents the time of the APs. The forth panels represent the phase of 
APs during a single run as a function of the rat’s location. (B) When a traveling 
wave SMO fi eld gradient was applied the neurons expressed a monotonically 
advancing AP phase precession spanning 280° theta phase angle. (C) By 
reducing the phase gradient of SMO ten times the AP phase precession angle 
decreased proportionally to 28°. In both examples (B,C) the traveling direction of 
SMO was set to be the opposite to the place cell activation sequence. (D) We 
reversed the direction of phase precession relative to (B,C) from monotonically 
increasing advancements to monotonically increasing delays by changing the 
SMO phase gradient such that it traveled in the direction of the activation 
sequence of neurons. (E) A bidirectional AP phase precession was enabled by a 
radially propagating SMO fi eld, where the AP phases advanced continuously 
until the animal reached the place fi eld center [outlined area in (A)] and 
developed an increasing delay as the animal exited. Phase scale bars represent 
¼ π. Arrows signify the directions of phase precessions.
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 invariant stimulus frames evoke AP patterns in the compressed 
code that are highly correlated across frames, despite phase transi-
tions and despite the fact that each neuron receives a different input 
from each frame. In contrast, uncorrelated frames evoke APs that 
are uncorrelated across successive frames. This conservation of the 
AP pattern for an invariant stimulus has implications for visual 
information processing. For example, we predict that V1 projecting 
LGN neurons should generate self-similar and stimulus-dependent 
AP sequences for slowly moving images. These AP sequences are 

expected to be invariant of position shifts of the whole image on 
the retina within a certain range of eye movements.

DISCUSSION
We presented theoretical support for phase coding in the CNS with 
the following two questions in focus: How can the precise spatio-
temporal structure of a stimulus be encoded by the phase of APs, 
and how then can it be recovered from the phase of APs? The model 
outlined above interprets phase locking as a mechanism by which 

FIGURE 9 | Phase coding is sensitive to stimulus invariance. (A) A 16-sample-
wide window (S) was applied to a stimulus vector (R) containing 32 intensity 
values and the result inputted to 16 neurons of the input layer. The window was 
slid across R, one sample at a time, to generate 17 successive frames. In this 
fi gure we illustrate only 5 of the 17 frames using different grayscales. The 
network processed each frame as an independent stimulus vector from the 
encoding to the reconstruction stage (B–E). (B) Superposition of the AP patterns 
induced by all 16 frames. The grayscale values of fi lled circles correspond to the 
frame in (A). (C) The temporal variability of APs is reduced after aligning them to 
gamma oscillations. (D) The compressed AP streams, superimposed across 
frames, show a preserved temporal pattern with sudden phase transitions (open 

arrows) at points where APs from a new frame are assigned to the next gamma 
cycle. (E) Superimposed traces of the reconstructed patterns. (F) Return plots 
represent the recurrence of AP-times from frame i to frame i + 1. The left return 
plot was calculated from the AP pattern in (D) when stimulus (A) was presented. 
The right return plot was calculated from an example where consecutive frames 
were uncorrelated. Although each neuron processed different input from every 
frame, the temporal patterns of APs across successive frames were highly 
correlated (left). In contrast, when input frames were random and independent 
from one another the AP patterns became uncorrelated (right). Both plots contain 
the same number of data points. AP latencies were wrapped around 3π. 
(The r and P values are shown above the plots.)
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from the n input layer neurons to a single channel and a 1-to-n 
dimensionality expansion by information reconstruction at the 
target layer. This extreme information compression was feasi-
ble within the parameter space specifi ed in Figure 4 (Section 
“Biological Signifi cance of Model Parameters”). However, con-
sidering parameters closer to the physiological condition, such 
as a large n with intrinsic noise in membrane potential affecting 
AP generation, combined with certain variance of oscillations, 
and heterogeneous axonal composition within the projection 
pathways, the n-to-1 reduction is neither necessary nor feasible. 
This has two consequences. First, a substantial saving in axonal 
volume can still be achieved with an n-to-m mapping, where 
n > m ≥ 1, which would not be possible without phase coding. 
Second, by clustering neurons into m groups, where instead of 
n a smaller n′ = n/m neurons converges on a single channel, the 
need for m projection neurons would still substantially improve 
the reconstruction  effi cacy, consistent with the known convergence 
of  sensory input on single neurons that constitutes for receptive 
fi elds (Figure 3).

Another limiting factor is the precision of neural code. The phase 
coding model requires neurons to resolve ∼1.5 ms  coincidences 
between input and intrinsic SMO under the assumption that SMO 
is 40 Hz. Whether or not the CNS is able to maintain this high preci-
sion has been argued (Shadlen and Newsome, 1998; Shmiel et al., 
2005). Since the ∼1.5 ms precision would guarantee that neighbor-
ing neurons do not confuse the origin of two input APs coinciding 
with their slightly different SMO, this precision is most likely to 
be verifi ed in the cross-correlograms of nearby neurons. Another 
factor of precision is the frequency of SMO. In structures where 
the predominant SMO has a less than 40 Hz frequency, such as the 
5–7 Hz in the entorhinal cortex (Giocomo et al., 2007), the required 
precision is proportionally less, only ∆t < 12 ms. Thus ∼1.5 ms pre-
cision is the most extreme requirement for precision.

the phase of APs encodes the precise spatiotemporal structure of the 
visual input using gamma oscillations as a reference. Utilizing the 
phase the brain is able to keep different stimulus features separated 
within the same code (impossible with rate coding) until these fea-
tures are separated by individual neurons upstream, consistent with 
sparse coding (Figure 5). At the same time the phase code allows 
simultaneous information to be bound together by referencing 
them to the same gamma cycle, which allows a smooth tracking 
of sensory input, such as that illustrated on the example of motion 
processing at a physiological rate (Figure 6). Aside from the capabil-
ity of modeling thalamo-cortical and cortico-cortical information 
processing, phase coding demonstrates a remarkable fl exibility in 
reproducing known functional features of the allocortex, such as 
the grid cells of the entorhinal cortex and the phase precession 
of hippocampal pyramidal cells (Figures 8 and 9, respectively). 
Moreover, phase coding allows the extraction of stimulus features 
that are invariant with respect to spatial and temporal transforma-
tions (Figure 9 and Figure 2 in Supplementary Material).

Remarkably, phase coding does not contradict with rate cod-
ing. The two encoding schemes are compatible (Ahissar et al., 
2000), they may coexist (O’Keefe and Burgess, 2005) and/or may 
complement each other (Gollisch and Meister, 2008; Kayser et al., 
2009) simply because the likelihood of coincidences between the 
presynaptic AP and postsynaptic SMO scales with the frequency 
of APs. Moreover, modulation of fi ring rate is concomitant with 
changing the phase structure of APs (Margrie and Schaefer, 2003). 
Immediate predictions made based on phase coding are summa-
rized in Table 1.

Nevertheless, the robustness of the model depends on a number 
of limiting factors, which remain to be investigated. One is the 
dependency of phase coding on the need for compression before 
transmission. A key assumption we made for the sake of theoretical 
clarity in the 1-D model was the n-to-1 dimensionality  reduction 

Table 1 | Predictions based on the phase coding model. Phase coding, a common oscillatory reference with a fi eld gradient, and the AP-SMO coincidence 
are the three cornerstones of the model. They are also highly interdependent, which enables to make these predictions.

# Predictions

1  Gamma LFP must show a phase gradient (v = ∼0.1 mm/ms) between adjacent neurons within a cortical column. This can be conceived as 
propagating waves or radial spread of gamma activity from multiple generator foci.

2  The phase gradient is dependent on the wavelength of characteristic LFP at a given region, and this wavelength is proportional to the average 
columnar center-to-center distance (Giocomo et al., 2007; Lund et al., 1993). Thus, the radius of cortical columns must scale with the wavelength of 
dominant LFP oscillations. A supportive evidence is that grid cell spacing has been reported to scale with the theta frequency SMO in layer-II 
entorhinal cortical neurons (Giocomo et al., 2007).

3  Among simultaneously recorded neurons, those that are exposed to their preferred stimulus should exhibit a more precise phase lock of APs with the 
local gamma recorded from the same electrode than neurons exposed to a suboptimal stimulus.

4  The precision of AP to AP cross-correlation between excitatory neurons in the superfi cial cortical layers should be an order of magnitude higher 
(∼1.5 ms) than the precision of the autocorrelations (15–25 ms).

5  High magnitude of zero time-lag cross-correlations should be most expressed between layer-4 granule cells of the neocortex because they are the 
recipients of the compressed code. In contrast, supra granular layer pyramidal neurons should generate much smaller (but more precise; see Section 
“Discussion”) cross-correlations because their outputs represent the reconstructed sparse code. The average fi ring rate of these neurons is expected 
to be also lower than that of granule cells in layer-4.

6  Intervention of SMO propagation is expected to disrupt information reconstruction, thus altering perception. Similarly, disruption of spike timing 
relative to the gamma oscillation must perturb perception.

7  According to our simulations, an interval of four gamma cycles is suffi cient to retain more than 90% of the information, thus 100 ms processing time 
after the fi rst APs reaching V1 (∼60 ms) should be suffi cient to make complex perceptual decisions (Thorpe et al., 1996).
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Binding by asynchrony: the neuronal  
phase code
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Neurons display continuous subthreshold oscillations and discrete action potentials (APs). 
When APs are phase-locked to the subthreshold oscillation, we hypothesize they represent two 
types of information: the presence/absence of a sensory feature and the phase of subthreshold 
oscillation. If subthreshold oscillation phases are neuron-specific, then the sources of APs can 
be recovered based on the AP times. If the spatial information about the stimulus is converted to 
AP phases, then APs from multiple neurons can be combined into a single axon and the spatial 
configuration reconstructed elsewhere. For the reconstruction to be successful, we introduce 
two assumptions: that a subthreshold oscillation field has a constant phase gradient and that 
coincidences between APs and intracellular subthreshold oscillations are neuron-specific 
as defined by the “interference principle.” Under these assumptions, a phase-coding model 
enables information transfer between structures and reproduces experimental phenomenons 
such as phase precession, grid cell architecture, and phase modulation of cortical spikes. This 
article reviews a recently proposed neuronal algorithm for information encoding and decoding 
from the phase of APs (Nadasdy, 2009). The focus is given to the principles common across 
different systems instead of emphasizing system specific differences.

Keywords: neural code, oscillations, gamma, LFP, spike

PHASE CODING IN DIFFERENT SYSTEMS OF 
THE BRAIN
Ever since the correlation between the theta 
phases of pyramidal cell firing in the hippocam-
pus and the position of the rat in a linear track 
was observed (O’Keefe and Recce, 1993), the 
question has lingered whether the phase of action 
potentials (APs) relative to local field potentials 
(LFPs) encode information or if this correlation 
is a mere epiphenomenon. Encoding implies that 
information available from the phase is decoded 
by neurons downstream, as their AP generation 
depends on this information. Numerous mecha-
nisms have been proposed that could potentially 
generate phase precession relative to the theta 
oscillation. One class of models includes the dual 
oscillator interference model (O’Keefe and Recce, 

1993; O’Keefe and Burgess, 2005; Blair et al., 2008) 
and the somato-dendritic dual oscillator model 
(Kamondi et al., 1998; Harris et al., 2002; Lengyel 
et al., 2003; Huhn et al., 2005). The key assump-
tion in both models is that phase precession is 
generated by the interaction between two theta 
oscillations with slightly different frequencies. 
Another class of models focuses on the dendritic 
mechanisms (Magee, 2001), assumes a depolari-
zation ramp (Mehta et al., 2002), or proposes 
network-level mechanisms (Jensen and Lisman, 
1996; Tsodyks et al., 1996; Wallenstein and 
Hasselmo, 1997). Nevertheless, all of these models 
share the key assumption that the cause of phase 
precession is localized within the hippocampus. 
In contrast, we proposed an alternative model, 
which considers phase coding as  originating 
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from sensory processing, after which the code 
is transferred to the cortex where it is decoded 
and re-encoded before it is further propagated to 
the associated systems, including the entorhinal 
cortex (EC) and hippocampus (Nadasdy, 2009). 
Recent studies reporting AP phase modulation in 
the prefrontal (Montemurro et al., 2008; Kayser 
et al., 2009; Siegel et al., 2009), auditory (Kayser 
et al., 2009), visual (Montemurro et al., 2008), 
and EC (Hafting et al., 2008) are consistent with 
this view. Despite the differences in physiological 
characteristics, cell types, the input–output con-
nectivity and predominant oscillation frequencies 
across these systems, we argue that the sensory, 
thalamo-cortical and limbic systems are sharing 
the common language of phase coding. In this 
review without the capacity of describing system 
specific implementations we overview the com-
mon mechanism of AP phase coding.

ACTION POTENTIALS AND SMO
When we record a neuron intracellularly while 
injecting different levels of current pulses, the 
current will drive the subthreshold membrane 
potential oscillations (SMOs) toward the thresh-
old potential, evoking APs upon threshold crossing 
(Llinas et al., 1991). The larger the depolarizing 
current is, the more likely the membrane poten-
tial is to cross the threshold and generate APs. 
This is the mechanism by which the intensity of 
a sensory signal is converted to a firing rate code. 
Intriguingly, the level of input current in these 
experiments will not only affect the firing rate 
but also the phase of APs, as phases advance sys-
tematically with increasing depolarization, even 
after the firing rate has been saturated (Figure 1). 

Using the phase, neurons are endowed with a 
broader dynamic range for encoding informa-
tion than they are with the firing rate. A similar 
sensory encoding scheme has been proposed and 
experimentally observed in the salamander retina 
(Gollisch and Meister, 2008). If neurons encode 
information using the phase of APs, how will that 
information be read out?

OSCILLATIONS: TEMPORAL AND SPATIAL 
COHERENCE OF NEURONAL OSCILLATIONS
The fluctuation of neuronal membrane poten-
tial around the mean without generating APs is 
known as SMO. This oscillation has a power spec-
trum with peaks at regionally specific resonant 
frequency bands, for instance olivary neurons 
∼5 Hz (Devor and Yarom, 2002a), entorhinal cor-
tical neurons 4–7 Hz (Giocomo et al., 2007), and 
cortical neurons ∼40 Hz (Llinas et al., 1991; Silva 
et al., 1991). The most likely sources of such oscil-
lations are specific intrinsic conductances (White 
et al., 1998; Dickson et al., 2000; Fransen et al., 
2004). However, the coherency of SMOs across 
neurons depends on electrotonic interactions 
between neurons (Devor and Yarom, 2002b). A 
number of mechanisms, including gap junctions, 
electrotonic synapses, ephaptic conductivity, and 
glial transfer (Yeh et al., 1996), have been proposed 
to mediate SMOs between neurons. These mech-
anisms allow the SMO to propagate in a radial 
spread or traveling waves, depending on the net-
work architecture. Moreover, near- synchronized 
activity of interneurons impinging on different 
parts of principal cells may also sculpt such oscil-
lations (Buzsaki and Chrobak, 1995).

Regardless of whether they are imposed or 
exchanged, we assume that these oscillations are 
not independent between neurons. Instead, oscilla-
tions of adjacent neurons stabilize themselves into 
a near-synchronized state. A number of studies 
confirmed the propagation of membrane oscilla-
tions and LFPs as either radial or traveling waves 
(Bringuier et al., 1999; Prechtl et al., 2000; Benucci 
et al., 2007; Lubenov and Siapas, 2009).

Based on the prevalence of SMOs, we fur-
ther assume that the extracellular sum of such 
population-wide, near-synchronized rhythms 
contributes to the LFP. Although LFPs are con-
sidered to be derived from the sum of synap-
tic activity at the dendritic regions of neurons 
(Mitzdorf, 1985; Logothetis et al., 2001), a 
significant oscillatory component of LFP may 
also be derived from the sum of SMOs within 
a 250-µm (Katzner et al., 2009). This is sup-
ported by the shared theta frequency oscillation 
between intracellular SMOs and LFPs within 
the EC and in the frontal lobe (Alonso and 

10
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FIGURE 1 | The scheme of intracellular current clamp recordings from a neuron being 
depolarized by different levels of current injection. As the level of depolarizing current increases 
(gray levels), the amplitude of subthreshold membrane potential oscillation increases with it. At the 
moments when the oscillations reach the threshold (dashed line), the neuron generates action 
potentials (vertical lines represent truncated action potentials). Near the threshold the action 
potential generation is probabilistic. The number of action potentials (0, 1, 3, 3) increases with the 
level of depolarization. At the same time, with the increasing current, the phases of action potentials 
relative to the membrane oscillations advance (left pointing arrows). The range of the phase change 
is bound to π. Note that while the number of action potentials saturates at 3, the phase still 
advances. (Scale bar is at bottom left.)

Subthreshold membrane potential 
oscillations
The fluctuation of neuronal membrane 
potential around the mean, while the 
neuron does not fire any action 
potentials.
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The interference principle guarantees a  consistent 
mapping of an input AP pattern on a spatial lay-
out of neurons, which reproduces the original 
temporal pattern of APs (Nadasdy, 2009). For 
a faithful spatial reconstruction, we must fur-
thermore assume an isomorphism between the 
sensory and target SMO fields. We remark that 
the interference principle should not be confused 
with the “oscillatory interference model” (O’Keefe 
and Burgess, 2005; Burgess et al., 2007).

The interference principle is applied twice, 
first when the sensory input is converted to the 
phase code (stage 1) and second at the target area 
(the cerebral cortex in mammals) where informa-
tion is reconstructed from the phase code (stage 
4). However, neurons that convert the input to 
phase may operate at a lower threshold than neu-
rons that detect coincidences. The next section 
will summarize a four-stage model of informa-
tion encoding and reconstruction. Then we will 
discuss possible realizations of the interference 
principle in sensory and limbic information 
processing that are consistent with a number of 
empirical data.

FOUR STAGES OF INFORMATION ENCODING 
AND RECONSTRUCTION
We propose that in all sensory systems, phase 
encoding and decoding takes place by a four-stage 
transformation. Stages 3 and 4 are also applicable 
to cortico-cortical information transfer. We will 
illustrate the four stages on the mammalian visual 
system, but the same principles can be generalized 
to other sensory systems.

(1) Latency encoding: sensory neurons sample 
the physical environment by converting 
energy to APs, which represent the intensity 
and the time of a receptor-specific feature. 
A third dimension is indirectly provided by 
the position of the sensory receptor rela-
tive to the entire array of sensory recep-
tors, although the meaning of the position 
varies from one sensory modality to ano-
ther. While, in the visual system, stimulus 
times are coarsely sampled due to the rela-
tively slow adaptation of sensory receptors 
(>20 ms on vertebrates and ∼100 ms on pri-
mates; Glantz, 1991; Torre et al., 1995; Yeh 
et al., 1996; Rebrik et al., 2000; Holcman 
and Korenbrot, 2005), stimulus intensity is 
accurately represented by the frequency and 
latency of APs with a precision of <40 ms 
(Gollisch and Meister, 2008). Thus, the 
retinal ganglia use low (>25 ms) temporal 
resolution to encode sensory event times 
but high (<25 ms) temporal resolution to 

Llinas, 1989; Llinas et al., 1991), as well as by 
the high correlation between LFP and intracel-
lular SMO (Tanaka et al., 2009). The high cor-
relation between LFP and SMO accomplishes 
a conceptual link between LFP and SMO and 
enables an important experimental shortcut of 
estimating the SMO based on the LFP.

The following two sections outline the princi-
ples of the phase-coding model.

INTERFERENCE PRINCIPLE
Subthreshold membrane potential oscillations 
play critical roles in phase coding during both 
encoding and decoding. The periodic ampli-
fication of the excitatory postsynaptic poten-
tials (EPSP) by the SMO, which causes sensory 
neurons to convert input to AP phases during 
encoding, also makes the decoding-neurons 
highly selective for the timing of EPSPs. A presy-
naptically evoked EPSP that coincides with the 
depolarizing phase of the SMO is more potent 
in evoking APs than EPSPs outside of that time 
window. Due to the electrotonic propagation of 
SMO, there is a  distance-dependent phase differ-
ence in membrane oscillations between most neu-
rons, which, in a sufficiently large network, covers 
the entire 180° phase range. Thus, coincidences 
between input APs and SMO peaks are spatially 
restricted and neuron-specific. Conversely, for 
any input AP time there will be a neuron that 
is most activated by the AP–SMO coincidence. 
We call this the interference principle (Figure 2). 

1

A B C

time

t1, t2 t1, t2
2 3 4

5

FIGURE 2 | Interference principle. (A) The top panel illustrates the times of two APs generated by 
two adjacent neurons (1) after their alignments to the intracellular SMO (2). Because the only APs 
that survive are the ones that coincide with the peak of SMO, the propagating oscillation will 
convert the spatial distance between the two neurons into a slight delay (t1, t2) between the two 
APs (2). (B) At the transfer stage, due to convergent and divergent synaptic connections, APs from 
a subset of neurons will merge on a set of projection neurons with low thresholds. Projection 
neurons sharing input from the same pool will replicate the same compressed AP train (3). (C) The 
compressed code projects to a large pool of target neurons. Since target neurons have a similar 
propagating SMO, the projected APs will generate a new AP only on neurons where the AP 
precisely coincides with the SMO peak (4). This is the interference principle. The red circles 
represent these coincidences, while open circles are the mismatches. As a result, the APs pattern 
(t1, t2) recovered the original input pattern from (2).

Reconstruction
When the original spatial information 
encoded at the source (sensory 
neurons/cortex), is transferred in a 
compressed fashion and reproduced at 
the target area (cortex) by principal 
neurons.
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latency code to a phase code involves aligning 
the APs to the local intracellular SMO. This 
conversion is naturally accomplished by the 
interference principle because, in response 
to the input AP burst, the first postsynaptic 
neuron will generate an AP only when the 
input AP coincides with the neuron’s SMO 
peak (Figure 3B). This will reduce the input 
burst to a single AP output. As a result of this 
“gamma alignment,” APs will be synchroni-

encode intensities (Koepsell et al., 2009). 
The important fact is that retinal ganglion 
cells register local luminance with a burst 
of one to six APs, where the burst frequency 
is proportional and latency is inversely 
proportional to the stimulus luminance 
(Figure 3A).

(2) Gamma alignment (alignment of APs to the 
SMO, however the frequency of SMO may 
not necessarily be gamma): Conversion of the 
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FIGURE 3 | Sensory encoding. (A) Stage 1: Luminance changes in the visual input evoke bursts of APs in the retina, 
where the burst frequency is proportional and burst latency is inversely proportional to the luminance. Bursts are 
numbered in the order of generation time. (B) Stage 2: bursts are filtered by the SMOs of a layer of neurons. The SMOs 
propagate within the transversal plane with a radial spread and depolarize the neurons in a specific order. Only single AP 
components of bursts will pass the layer, specifically those APs that coincide with the SMO peaks of the given neuron. 
Gray patches represent neurons with SMOs. As a result, APs will be aligned to the intrinsic SMO of these neurons. (C) 
The complete burst sequence is converted to a sparse AP phase code, with the topography preserved. The latency of the 
action potential in SMO cycles is inversely proportional to the luminance and the spatial coordinate of the action potential 
generating neuron is encoded by the phase relative to any single instance of SMOs (phase code).

Gamma alignment
The phase-lock of the action potentials 
to the neuron’s own subthreshold 
membrane potential oscillation. The 
main frequency of oscillation is not 
necessarily gamma, but instead, often 
theta, alpha, or beta.
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convergence forces all APs from all projecting 
 neurons to collapse onto a single/few chan-
nels/neurons, synaptic divergence distributes 
the same compressed AP code to multiple 
axons terminating in V1. Thus, the target 
area (V1) will receive a compressed code 
from each individual axon, while the parallel 
projection of the same APs via multiple axons 
will provide high redundancy. (For details on 
modeling the receptive field projections on 
V1 see Nadasdy, 2009). The next stage, recon-
struction, is devoted to the decoding of the 
spatial information using the combined AP 
series with neuron-level specificity.

(4) Reconstruction: This is the final stage where 
information is decoded from AP phases. 
The decoding, again, relies on the interfe-
rence principle. The compressed code rea-
ches cortical neurons, such as granule cells 
in a V1 column, through multiple parallel 
axons, each terminating on individual neu-
rons. We assume that cortical neurons, like 
sensory neurons, generate spatially and 
temporally coherent SMOs that propagate 
in a radial fashion. For the sake of simpli-
city, we further assume that the frequency 
and spatial phase gradient of this SMO field 
are the same as the SMO field at the sensory 
organ. Although each layer-4 neuron recei-
ves the same AP sequence, individual APs 
within the sequence may originate from 
different sensory neurons. The task of the 
cortical network is to sort these APs accor-
ding to their origin and route them to spe-
cific supragranular layer neurons that will 
reproduce the input activity pattern. This 
may seem like an extremely complicated 
task considering the combinatorial com-
plexity, but it is easily accomplished using 
the interference principle. By projecting 
the input APs on the SMO field and letting 
their coincidences select the neurons capa-
ble of firing an AP, the network will gene-
rate a coherent spatio-temporal pattern 
(Figure 2). Provided there is topographical 
isomorphism between the input SMO field 
and the target SMO field, any given AP 
from the input sequence will precisely coin-
cide with the SMO peak of a neuron that 
represents the same anatomical distance as 
the input neuron to which it was originally 
aligned in Stage 2 (Figure 5). As a result, the 
output of these neurons in the supragra-
nular layer of the cortex will reproduce the 
original sensory input and form a sparse 
representation (high spatial specificity and 
low firing rate; Sakata and Harris, 2009).

zed with the intracellular SMOs (Koepsell 
et al., 2009). With this simple operation, the 
originally independent stimulus dimensions 
of space, and quality will be converted to 
anatomical distances of neurons and AP time 
dimensions, where the time encodes not 
only quality but also the anatomical distance. 
To keep stimulus quality and space separated 
in time, APs will encode information on two 
different time scales: quality will be encoded 
by an integer number of gamma cycles prece-
ding the AP (n × 25 ms), and the anatomical 
distance will be encoded by the phase within 
the gamma cycles (2 π ≈ 25 ms). Since the 
gamma alignment makes the phase of an AP 
specific to the neuron that generates it, the 
phase will associate the AP with the location 
of the neuron relative to the field of SMOs. 
Hence, phase will represent anatomical 
distance. Evidence supports that the spatial 
distance between ON and OFF ganglia gene-
rates a temporal difference between their 
burst firing during the early development of 
the retina that is controlled by propagating 
waves (Kerschensteiner and Wong, 2008). 
This  space-time conversion in the visual 
system may generate temporary redundancy 
because space is represented twice, first by 
the anatomical distance between neurons 
and second by the phase. Therefore, the tar-
get topography of axonal projections is free 
to disperse because the phase unambiguou-
sly identifies the original location of the AP 
generating neuron. This saves the projection 
neurons from isomorphic projection of 
fine details and frees capacity to be utilized 
in the next stage to improve the reliability 
of transmission. (For motion processing, 
stimulus time replaces stimulus quality; 
Nadasdy, 2009).

(3) Compression: The major advantage of 
gamma alignment is that it allows all APs to 
be lossless compressed into a single or small 
number of channels/axons. By reducing the 
number of channels transferring different 
codes, the projection neurons are able to uti-
lize the rest of the channels for transferring 
redundant codes, which in turn, enhances 
reliability. The redundant transfer is neces-
sary for preserving the integrity of the code 
during long-range transmission to the cortex 
or between cortical areas. The compression 
of APs from multiple channels is accom-
plished by the massively divergent/conver-
gent connections between presynaptic and 
postsynaptic neurons in the sensory nuclei 
of the thalamus (Figure 4). While synaptic 

Compression
A dimensionality reduction of the 
neural code when action potentials 
from multiple presynaptic neurons, 
dispersed in time, converge on a neuron 
and the merged action potential 
sequence is transmitted to the next 
postsynaptic neuron on a single axon as 
a single spike train.
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information reconstruction from the phase code 
is nearly perfect within as few as four gamma 
cycles and 100 neurons, given the isomorphism 
of the SMO phase gradients at the sensory input 
and the target area (Nadasdy, 2009). Although this 
latter assumption may seem difficult to maintain 
under physiological conditions, there is substan-
tial morphological and functional evidence in 
support of it. For example, multiple loops of the 
thalamo-cortical projection pathway through the 
thalamic reticular nucleus provide low- and high-
frequency (gamma) links between the thalamus 
and cortex (Jones, 2002). Visual cortical areas 17 
and 18 also synchronize to LGN with a 2.6-ms 
delay on anesthetized cats (Castelo-Branco et al., 
1998). Moreover, a global retina-LGN-cortex syn-
chronization is evident in the high gamma band 
(Castelo-Branco et al., 1998). On the one hand, 
incoherency between the encoding and decoding 
SMO fields would compromise phase coding. On 
the other hand, a systematic topographic (but not 
temporal) incoherency of SMO phase gradients 

We emphasize that perfect reconstruction is 
neither the goal nor the final stage of information 
processing. When the sensory-cortical neurons 
reconstruct information from the phase code, 
they also add information to it. Reconstruction 
in the real brain is not an exact reproduction of 
the sensory information, since the input coming 
from the sensory thalamic nuclei is combined 
with inputs from a number of associated corti-
cal areas. Rather, reconstruction is the stage at 
which important transformations, such as topo-
graphical and coordinate transformations and the 
combination of information from other cortical 
areas, take place. The reconstruction stage is also 
the starting point for cortico-cortical informa-
tion transfer.

COMPUTATIONS WITH PHASE CODE
Above we described a conceptual model for neural 
encoding, information transmission, and decod-
ing (for numerical simulations, see Nadasdy, 
2009). For the sake of simplicity, we proved that 
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FIGURE 4 | Transferring the phase code (from Figure 3) between structures. The upper left is the phase-encoded AP 
pattern from Figure 3C. In this code AP time represents the luminance of the image in the receptive field and the position 
of neuron represents geometry. When the phase code enters a structure that relays the information (middle), the 
divergent and convergent connections will cause the APs to be dispersed and projected on a set of output neurons. As a 
result of the dispersion, all of the APs from each connected neurons will be combined with all other APs. The output AP 
trains will represent the combined APs from all the neurons. On the one hand, this code is compressed at the cellular 
level because it contains all the APs from all the neurons. On the other hand, the code is redundant across neurons. 
Underneath, middle row is the potential correspondence with the retina, LGN, and V1. Bottom, potential correspondence 
of the compression and transfer scheme with the cortico-cortical information transfer.

               znadasdy_144_23



Nadasdy The neuronal phase code

Frontiers in Neuroscience www.frontiersin.org September 2010 | Volume 4 | Article 51 | 7

Moreover, an arsenal of interneurons is deployed 
to provide fine tuning of the SMO, not unlike to 
the hippocampus, where each interneuron type 
specifically calibrates the location and frequency 
of membrane resonance, thus tuning the SMO in 
individual neurons to the gradient of the larger 
SMO field (Cobb et al., 1995).

DIFFERENT SOLUTIONS FOR PHASE CODING
One of the critical features of phase coding is 
that it allocates different frequency bands for 
different types of information by utilizing the 

between the encoding and decoding structures 
is where transformations and computations can 
be implemented. For example, transformations 
between retinal and head-centered and between 
head- and body-centered coordinates can be per-
formed by gain fields (Zipser and Andersen, 1988) 
or by tuning the SMO field, which transforms 
the map of interferences. According to the phase-
coding model, the location of AP–SMO coinci-
dences, i.e., the interference pattern smoothly 
shifts depending on the relative phases of APs 
from concurrent inputs reaching the neuron. 
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FIGURE 5 | Information reconstruction from phase of APs in the cortical 
column, predicted based on the “interference principle.” (A) Cortical column 
(center). The x–y plot at the left represents the input APs entering the column, 
and the x–y plot at the right represents the expected activity of cortical neurons. 
In all x–y plots x is time and y is neuron number. The column in this example, for 
the sake of simplicity, contains only three neurons – without layer specificity. 
Above the columns are top views. Circular rings represent the radial propagation 
of SMO. (B) The first volley of APs arrives at t1 (the output in Figure 4). Although 
the input depolarizes all receiving neurons (red axons), the only neuron in which 
the excitatory postsynaptic potential is able to generate an AP is the one at the 
center where the SMO is near a peak (red cell body). The AP generated by this 
neuron appears on the right x–y plot. (C) As time progresses, the first radial 
SMO wave reaches the periphery and the second wave starts while the second 

AP volley arrives (t2). Again, the input APs depolarize all the neurons. However, 
the only neuron capable of generating an AP is the one near peak SMO. Since 
the only neuron at peak SMO is the second neuron, located farther from the 
center, this neuron will generate an AP while the first is in the refractory period 
and the third’s membrane potential is still approaching SMO peak. As a result, a 
second AP appears in the diagram at t2. (D) When the third volley arrives at t3 
and depolarizes all the postsynaptic neurons, the depolarization will coincide 
with the peak SMO in the third neuron, located at the periphery of the column. 
When this neuron fires an AP, it will be the third AP generated by the third 
neuron at t3. This sequence of events implements the “interference principle” 
by which the output of the neurons in the column reproduces the original input 
from the phase code as [AP1t1

n1, AP2t2
n2, AP3t3

n3], where t is time and n is 
the neuron ID.
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freely moving animal’s hippocampus and com-
puting the phase of spikes relative to ongoing 
theta LFP oscillations. In similar experiments, the 
AP phase systematically advances relative to the 
theta cycles, defined as phase precession (O’Keefe 
and Recce, 1993; Skaggs et al., 1996; Harris et al., 
2002). However, recording theta not only from 
a single electrode but also from a larger volume 
around the place cell should reproduce what we 
found by modeling. Namely, APs should always 
phase-lock to the intracellular SMO (Harvey 
et al., 2009), but the direction of phase preces-
sion (advancement vs. lagging) will depend on 
the propagation direction of global SMO/LFP 
field around the neuron (Nadasdy, 2009). The 
assumption of SMO field propagation is consist-
ent with the observation of traveling waves in the 
hippocampus on freely moving rats (Lubenov and 
Siapas, 2009). The phase-lock between the APs 
and the intracellular SMO has been confirmed 
during behavior (Harvey et al., 2009). Combining 
SMO, LFP, and AP measurements from multiple 
neurons separated by different distances would 
elucidate the underlying network dynamics and 
test the interference principle.

Among the predictions that can be derived 
from the phase-coding model is the phase mod-
ulation of spikes in the cortex in relationship to 
stimulus or behavioral manipulations. We ear-
lier argued that reconstruction takes place in the 
supragranular layer of the neocortex. According 
to our model, layers 2–3 and 4b pyramidal cells 
vigorously respond to the granule cell input only 
if the time of input APs coincides with the cell’s 
intracellular SMO peaks. In our simulations the 
optimal coincidence time window was ∼1 ms 
(Nadasdy, 2009). Empirically, however, this time 
window is a probability function, rather than 
a binary function, allowing neurons to fire less 
frequently when the input is away from the peak 
but still reaches threshold. When the stimulus is 
optimal for the neuron, the AP will be generated 
reliably near the intracellular SMO peak (LFP 
trough). The same neuron may also respond, 
although less likely, to a suboptimal stimulus. If 
the suboptimal stimulus is optimal for another 
neuron, it will drive that neuron at the exact intra-
cellular SMO peak. However, due to the slight 
phase difference between the two intracellular 
SMO processes, the same depolarization that 
drives the other neuron at exact SMO peak will 
drive the first neuron at a slightly different SMO 
phase than would its own optimal stimulus. As 
a result we shall observe a modest phase differ-
ence between spikes of the same neuron when we 
vary the stimulus parameters within the receptive 
field. Studies are in progress to test this prediction. 

spatially and temporally coherent SMOs shared 
between coupled networks. One such frequency 
band is the range of phases within each oscilla-
tion period. The other frequency band is the fre-
quency of SMO itself. It has been demonstrated 
that information can effectively be encoded and 
decoded by multiplexing the code in these two fre-
quency bands (Nadasdy, 2009). The assignment 
of frequencies to features may vary across brain 
structures. Likewise, at the stage of sensory encod-
ing and gamma alignment different scenarios are 
possible. The scenario we described earlier was 
that the spatial/anatomical location is encoded by 
phase and luminance is encoded by period cycles. 
However, these two features are interchangeable 
and phase can represent luminance and period 
cycles can represent the spatial/anatomical loca-
tion. Within the visual system the magno, parvo, 
and konio cellular pathways represent the hetero-
geneity of these coding solutions. For instance, it 
is conceivable that since the magno cellular path-
way is specialized to effectively transfer motion 
and orientation while the parvo cellular pathway 
transfers luminance and color with high spatial 
acuity, the former one encodes motion in phase, 
while the latter one encodes the spatial position 
or spatial frequency in phase. Thus, qualitative 
and spatial stimulus features are given differ-
ent priorities in the different pathways of the 
visual system.

Another remarkable feature of phase coding is 
that with only a few parameter adjustments we 
can obtain different solutions to represent space 
and time. For example, if the cortical cytoarchi-
tecture is homogeneous, such as in the EC, and if 
it allows an unconstrained propagation of SMO 
waves over multiple spatial SMO wavelengths, 
then multiple representations of the same input 
develop because of the spatial aliasing inherent to 
the interference principle (Nadasdy, 2009; also see 
a different solution by Burgess, 2008). Conversely, 
the same EC neuron exhibits spatial tuning to 
multiple, equidistant spatial locations, consistent 
with the definition of grid cells. The missing link 
between the spatial maps and network architec-
ture could be the spatially and temporally periodic 
SMO field. Based on our simulations, the phase-
coding model predicts that the phase-gradient 
map in the EC is coalescent with the topography 
of the grid cell map, i.e., with the matrix of grid 
cells that share space fields (Nadasdy, 2009).

The third important feature of phase cod-
ing becomes evident when we track the activity 
of a neuron relative to the SMO cycles under a 
dynamic input condition while also varying the 
propagation direction of the SMO field. This 
emulates the condition of recording place in a 
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the phase-coding model and cries for defining 
the transfer function between population SMO 
and LFP.

Last, the noise tolerance of phase coding is 
unknown. Different types of noise need to be 
considered. One is the noise generated by the 
movement of sensory organs themselves, which 
affects the sensory sampling. Second is the noise 
level of intrinsic SMO oscillations. Third is the 
temporal incoherency between source and tar-
get structures. Fourth is the spatial incoher-
ency between the neuronal source and target. 
While spatial incoherency can implement use-
ful transformations in the reconstruction, the 
temporal incoherency is highly detrimental for 
the reconstruction. The effects of these con-
cerns need to be investigated by simulations and 
tested empirically.

QUESTIONS LEFT OPEN
Because our understanding of the relationship 
between SMO and LFP is still incomplete, it 
leaves the question open: what is the timescale 
of phase modulation in the brain? The frequency 
of SMO and LFP consistently varies along the 
fronto-temporo-occipital axis, dominated by 
gamma in the occipital regions of the cortex, 
alpha in the frontal areas, and theta in the EC, 
hippocampal, and parahippocampal regions. In 
addition, gamma power is high and oscillations 
are phase-locked to hippocampal theta. Although 
hippocampal phase precession is defined relative 
to theta, we anticipate phase precession relative 
to gamma oscillations as well, while APs should 
be phase-locked to the intracellular gamma SMO. 
We also anticipate a similar relationship between 
EC theta and gamma. The phase modulation of 
spikes relative to alpha/theta LFP (Montemurro 
et al., 2008; Kayser et al., 2009) and relative to 
gamma LFP (Nadasdy and Andersen, 2009) in 
the visual cortex is still unclear. One of the most 
important questions is whether or not the inter-
ference principle would work at multiple times-
cales to allow information to be encoded relative 
to multiple frequency bands of ongoing oscilla-
tions and whether or not these frequency bands 
carry content-specific information. There is much 
to learn about the collective resonant property of 
the nervous system in the next few years that will 
complete our understanding of how the activ-
ity of millions of neurons is orchestrated, and 
this orchestration may happen in a much more 
deterministic fashion than the “noisy” brain 
models suggest.

Finally, as stated in the title, the phase-coding 
model suggests a critical revision of the concept 
of binding by synchrony. Accordingly, the key 

Prefrontal cortical neurons in a working memory 
task exhibit memory item dependent phase off-
set relative to the slow oscillations (Siegel et al., 
2009). Other studies investigating the auditory 
and visual cortex found feature-dependent phase 
differences relative to theta in auditory (Kayser 
et al., 2009) and relative to alpha in primary visual 
cortex (Montemurro et al., 2008) and to gamma 
(Nadasdy and Andersen, 2009) also in primary 
visual cortex. It is also conceivable that the phases 
of local SMOs shift relative to the LFP, which inte-
grates oscillations over a larger cell population 
(Harvey et al., 2009). We anticipate an increasing 
amount of data to arise in support of these so-far 
isolated examples in cortical recordings.

CONCERNS ABOUT THE GENERAL THEORY OF 
PHASE CODING
For phase coding and decoding to work, the 
subsystems of brain have to meet with specific 
dynamic conditions. One such condition is the 
high coherency between the SMOs at the encod-
ing and decoding stages. For instance, the effi-
cacy of visual information reconstruction in the 
cortex is highly dependent on the phase coher-
ence between the LGN and V1. We postulated 
based on simulations that this coherency must 
approach a precision of 1 ms (Nadasdy, 2009), 
which is consistent with the coherency provided 
by the thalamo-cortical loop (Jones, 2002). The 
empirical precision of synchrony between corti-
cal and LGN SMOs is yet to be determined. We 
also showed that the precise topographic mapping 
between the input and output is where the sys-
tem can implement coordinate transformations 
between representations (Nadasdy, 2009).

The second condition is the compatibility of 
SMO frequencies across and within structures. 
While the hippocampal LFP is dominated by 
coherent theta and gamma oscillations, the hip-
pocampal pyramidal cells express mainly theta 
frequency SMOs. If phase coding in the hippoc-
ampus relies on theta, it is not clear what role 
gamma oscillations may play. Likewise, entorhinal 
cortical neurons express theta frequency SMOs. 
In contrast, sensory organs and primary sen-
sory areas are dominated by gamma oscillations. 
Notably, we observed visual feature-dependent 
spike phase modulation relative to the gamma 
band LFP and not to alpha, while other studies 
reported phase modulation relative to alpha band 
LFP (Belitski et al., 2008).

Although the correlation between SMO and 
LFP is high, they are not identical. The extent 
at which LFP is a good approximation of SMO 
is still unknown. The correlation between LFP 
and SMO is critical for the empirical testing of 
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Chapter 4 
 

 
9. Grid cells 

 
“As already pointed out (Szentagothai & Arbib 1974 p. 386) the parallel shift in 

discrete steps (i.e. in those of the columns) against another of apparently irregular 
but repetitive arborization patterns may create a new regularity in the sense seen in 

the so-called 'Moire patterns'.” 
 

(Szentágothai, 1978) 
 

 
Arguably, one of the most thrilling discoveries in post-millennium age neuroscience was the 

discovery of grid cells. Grid cells revealed a complementary aspect of spatial specificity 

defined by place cells and head direction cells. In contrast with place cells, grid cells express 

multiple firing fields, where the firing fields are defined in allocentric coordinates aligned with 

the environment; the firing fields register with the vertices of a hexagonal tessellation pattern; 

and the grid distance is invariant to the size of the environment, but grid distance varies 

systematically along the septo-temporal axis of the dorsomedial entorhinal cortex. While the 

discovery triggered a rapid frenzy to posit the causal mechanism of grid cell generation, it also 

marked the beginning of an insatiable search for new cell types. As a result, grid cells were 

soon followed by border cells, object vector cells, conjunctive head direction cells, and time 

cells. Among all these cell types, grid cells stand out with a combination of very attractive 

properties that inspired a whole generation of computational neuroscientists, mathematicians, 

and physicists alike. Namely, it had been reported to express a set of abstract features, such as 

hexagonal geometry, scale invariance, and allocentric reference frame (Hafting et al., 2005). 

These features were widely replicated by numerous labs with certain refinements and 

qualifying parameters (Barry et al., 2009; Hafting et al., 2005; Jacobs et al., 2013; Krupic et 

al., 2015; Nadasdy et al., 2017a; Yartsev et al., 2011), but no major challenges or contradictions 

were found. Importantly, grid cells were discovered in the lateral aspect of the dorsomedial 

entorhinal cortex first and later were inferred from fMRI in the ventromedial prefrontal cortex 

and orbitofrontal cortex (Doeller et al., 2010a; Kaplan et al., 2017; Raithel & Gottfried, 2021). 

 

Despite its vague conceptual grounding, the hexadirectional modulation of activity has been 

interpreted by many researchers as an unmistakable signature of grid cells and it was ready to 

be generalized further as a fundamental principle of neuronal representations in the human 

brain. While, besides rodents, it was found also in bats and in monkeys (Barry et al., 2009; 
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Hafting et al., 2005; Jacobs et al., 2013; Krupic et al., 2015; Zoltan Nadasdy et al., 2017a; 

Yartsev et al., 2011) the validation by human electrophysiology was lagging despite the fierce 

competition. The stake was so high, that the paper explicitly reporting human grid cells for the 

first time provided only very circumstantial evidence by fMRI (Doeller et al., 2010a). Doeler 

et al., found that the mesial temporal lobe in human subjects performing a spatial memory task 

expressed a hexadirectional modulation of blood-oxigene-level-difference (BOLD) depending 

on the heading direction of the avatar on a plateau of a virtual 3D terrain. Obviously, a cellular-

level resolution is unattainable by fMRI therefore a remarkable conceptual leap was made in 

the absence of a physiological link to relate BOLD data to grid cells. The conceptual leap made 

was that spatial navigation along radial directions involves across-grids passing in 0, 60, 120, 

180, 240, and 300-degree directions and between grids passing in 30, 90, 150, 210, 270, and 

330-degree directions. Let’s call the former set of directions the A series and the latter set of 

directions as B series. According to the authors of the article, the high BOLD response to the 

directions defined by the A series was due to the activation of most frequent grid nodes 

encountered along the pathways running in 0, 60, 120, and 180 degrees, etc., while the troughs 

of BOLD were due to the lack of grid nodes in the B direction series. However, this model 

incorrectly assumed that the minimum number of grids were crossed along the B direction. 

Instead, it is easy to see that the directions in the B series are crossing a secondary set of grid 

points, which is evident when we draw the nodes in a hexagonal grid (Fig. D5). The directions 

where we would not cross grid nodes would be the 15, 45, 75, 105, …, 345 degrees. Therefore, 

the grid cell geometry did not explain the hexadirectional sine-wave-like modulation of BOLD. 

Nevertheless, the study inspired a whole new generation of experiments including local field 

potential proofs of the hexadirectional modulation (Maidenbaum et al., 2018). Over the last 5 

years, the hexadirectional modulation has been extended beyond spatial navigation and the 

hexagonal grid-geometry became a putative underpinning of any conceptual classification, 

including category formation and semantics (Constantinescu et al., 2016). 
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Three years later a direct electrophysiology validation was done by Josh Jacobs in UCLA and 

my group at UT. A short report by the UCLA group demonstrated grid cell activity evident 

from from human entorhinal cortical single unit data recorded during the patients playing a 

videogame (Jacobs et al., 2013). While the UCLA group published the result first, we carried 

out a more elaborated study that, beyond validation, unraveled the fundamental differences 

between rodent and human grid cell activity. Our experiment also using a virtual reality spatial 

navigation task, but in contrast with the Jacobs’ study, we tested the key findings reported from 

rodents by recording the unit activity of same cells across 4 different virtual environments. The 

four VR environments were varied in size, aspect ratios, coverage of the spaces, and interior 

of the space. The results were summarized by our 2017 paper (Nadasdy et al., 2017b). Our key 

findings were: 

  
1. Neurons in the medial entorhinal cortex (mEC) of the human brain display similar spatially 

periodic activity characteristic of grid cells in the rodent mEC.  

2. The grid distances exhibited by human grid cells scale with the size of the environment, in 

contrast with grids produced by rat entorhinal cortical neurons.  

3. Human grid orientation aligns with the corners of the environment, as opposed to being 

anchored to distant or local cues. 

 

Figure D5: The model of hexadirectional modulation of BOLD. (A) A virtual surface of navigation 
with a hexagonally arranged grid nodes. The grid nodes are colorcoded according to primary (0o 
,60o ,120o, 180o, 240o, 300o), secondary (30o ,90o, 150o, 210o, 270o, 330o) and tertial grid nodes as 
green, orange and pink, respectively. (B) The observed and expected hexadirectinal modulation of 
BOLD. An accurate model of activation of grids along any straight navigation path should generate 
a pattern with large bumps of BOLD for the primary directions and smaller bumps between the 
large ones for the secondary directions. Instead, all studies reported hexadirectional modulation 
patterns (observed) and none reported the expected.   
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4. Human grid cells display Cartesian (orthogonal grids) as often as hexagonal geometry. 

 

We concluded that in contrast with rodents where grid cells are context-independent (Hafting 

et al., 2005; Moser et al., 2014; Rowland et al., 2016), human grid cells are context-dependent 

as they express remarkable flexibility in scaling, anchoring, and geometry. All makes sense if 

we consider the differences in the spatial behavioral strategies between rodent and primate 

orders. Primates (including humans) live in environments where motor coordination and 

locomotion happen at vastly different timescales. Humans skillfully handle sewing needles and 

walk miles or drive cars and traverse large distances in a short period of time. The variance of 

spatial scales that human behavior spans through is enormous. Hence, a mechanism that 

renders scalable neuronal representations of space in entorhinal cortical neurons must be in 

place. Secondly, we humans predominantly rely on vision. We collect survey data from our 

surroundings by making saccadic eye movements and foveating on landmarks and targets of 

the environment. The sequence of saccadic eye movements is a surrogate of the exploratory 

process rodents perform by locomotion. The rat constructs the cognitive map step-by-step 

exploration of the area around its body, largely relying on somatosensory input from whiskers, 

olfactory input identifying smells, eventually acoustic, and lastly visual information. In 

contrast, a human observer does not need to locomote in space to capture the cognitive map of 

the environment. A few saccadic eye movements can efficiently complete that task. Hence, 

when the human subjects in our experiment started the navigation in a virtual environment, 

they looked around first with their avatar, then started walking toward the target while their 

entorhinal cortex produced spikes at precisely spaced often equidistant or square-grid-like 

locations. There was no dispersion of spikes or gradual building up of the distributions typically 

observed in rats. The first few spikes generated by grid cells in the rat entorhinal cortex are 

quite random. It takes 20 minutes for the grid pattern to manifest. In contrast, grid cells in the 

human brain produce spikes at locations during the first 5 minutes that are already defined by 

grids. Eye movements and active vision supported by a flexible oculomotor system in primates 

replaced the incremental construction of cognitive maps typical in rodents. 

 

The visual strategy also explained the orientation relative to corners. Corners define the 

geometry of space. This framework also makes Elizabeth Buffalo’s results self-evident, that 

primates express grid cell activity in the entorhinal cortex by mapping the spikes to eye 

movements during passive observation of photos of scenes (Killian et al., 2012, 2015). If we 

assume that eye movements became the surrogate of locomotion, the fact that tracking eye 
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movements instead of locomotion could reveal the same types of grids of spikes as grid cells 

in rodents is less surprising. 

 

It is quite remarkable that 18 years after the discovery of grid cells we still do not have a 

satisfactory model of the mechanism generating grid cell activity. Eighteen years is way 

beyond the honeymoon when researchers can only see grid cells and they see them everywhere 

(Constantinescu et al., 2016; Doeller et al., 2010b; Kaplan et al., 2017; Kunz et al., 2015). This 

distance should provide us with the perspective, clarity, and context to better understand. 

Despite the abundance of models and the lack of a general mechanism, by considering the 

diversity of grid cell types and their spatial behavior across species I arrived at the following 

conclusion.  

(1) The only common feature between the dorsomedial entorhinal cortical neurons in 

the rat and the MEC neurons in the human brain is the spatially periodic activity. 

Hexagonal rotation symmetry is not an identifying attribute of grid cells.  

(2) The method of spatial autocorrelation that was used by the original Hafting study 

became a gold standard is biased and is not an adequate method to define grid cells. 

It is prone to generate false positives because the spatial autocorrelation of any three 

firing fields will generate a hexagonal tessellation pattern. Spatial periodicity 

should be characterized by spectral methods. 

(3) Stochastic aggregation of grid cell activity is not necessary. After the cognitive map 

is formed a single running path will activate grid cell activity with precisely defined 

firing locations.   

(4) Grid cell activity may adapt to culturally defined structural features such as the 

predominantly Cartesian coordinate systems of our cities and buildings and we also 

learn to organize our thoughts in Cartesian tables school. 

 

 

Models of grid cells activity can be classified according to the following five models:  

 

• The continuous attractor model (Burak & Fiete, 2009; Welinder et al., 2008).  

• The oscillatory interference model (Burgess et al., 2007; Burgess & O’Keefe, 2011) 

• Combined oscillatory and attractor model  (Hasselmo & Brandon, 2012)  

• Moiré interference (Blair et al., 2007) 
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• Phase coding model (Nadasdy, 2009, 2010a):  

 

According to the last model in the list, grid cells are the byproducts of interferences that occur 

in multiple neurons and multiple locations in space due to an aliasing error deriving from the 

course temporal resolution that maps spatial information on phase. Neurons in the entorhinal 

cortex that are one gamma cycle apart spuriously recover the same location from the phase. 

Therefore, different neurons in one gamma period apart will represent the same spatial location. 

Due to the one-to-many and many-to-one mapping between neurons and space, the same 

neuron will also represent multiple spatial locations, at exactly integer multiples of gamma 

cycles apart. This is what we can observe as grid cells. According to this model, grid cells 

provide a local spatial coordinate system that covers the grid node and its immediate 

surrounding. The information grid cells can store from one grid field is useless in the adjacent 

grid field (Figure 7 in (Z Nadasdy, 2009). For a deeper understanding of the relationship 

between grid cells and phase coding, see Nadasdy et al 2022 in this volume (Nadasdy et al., 

2022).       
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The spatially periodic activity of grid cells in the entorhinal cortex
(EC) of the rodent, primate, and human provides a coordinate system
that, together with the hippocampus, informs an individual of its
location relative to the environment and encodes the memory of
that location. Among the most defining features of grid-cell activity
are the 60° rotational symmetry of grids and preservation of grid
scale across environments. Grid cells, however, do display a limited
degree of adaptation to environments. It remains unclear if this level
of environment invariance generalizes to human grid-cell analogs,
where the relative contribution of visual input to the multimodal
sensory input of the EC is significantly larger than in rodents. Patients
diagnosed with nontractable epilepsy who were implanted with
entorhinal cortical electrodes performing virtual navigation tasks to
memorized locations enabled us to investigate associations between
grid-like patterns and environment. Here, we report that the activity
of human entorhinal cortical neurons exhibits adaptive scaling in grid
period, grid orientation, and rotational symmetry in close association
with changes in environment size, shape, and visual cues, suggesting
scale invariance of the frequency, rather than the wavelength, of
spatially periodic activity. Our results demonstrate that neurons in
the human EC represent space with an enhanced flexibility relative
to neurons in rodents because they are endowed with adaptive
scalability and context dependency.

grid cell | spatial memory | entorhinal cortex | single unit | human

Neurons in the hippocampus and entorhinal cortex (EC)
exhibiting spatially modulated activity are highly relevant in

research and medicine because they construct an agent-independent
(allocentric) metric of space for localizing and remembering
places, often referred to as the cognitive map (1–4). Beyond their
scientific relevance, the hippocampus and EC are clinically im-
plicated in Alzheimer’s disease (5, 6), where these structures
show the earliest expression of plaques and tangles and concomi-
tant progressive cell death, causing spatial disorientation and spa-
tial memory loss. Coincidentally, the two structures, as part of the
mesial temporal lobe, are highly susceptible to epileptic seizure (7).
These cells offer a glimpse into how the brain integrates multi-
modal and movement-dependent sensory inputs and converts them
into a coherent environment-referenced neuronal representation.
Among the neurons with the greatest spatial specificity are the
place cells of the hippocampus (2), head direction cells of the pre-
and postsubiculum (8), border cells in the subiculum and EC (9),
and grid cells in the medial EC (10). Although a place cell is only
activated when the animal traverses through a unique location in
its environment (2), grid-cell activity is elicited in multiple locations
that the animal visits (11), and these locations span the environ-
ment periodically as vertices of a hexagonal grid formation (10).
The two neuroanatomical subsystems are thought to complement
each other such that individual place cells represent specific spatial
locations and grid cells provide an environment-invariant metric
upon which to reference the agent’s (animal or human) location

(12). Although the adaptive flexibility of spatial tuning of neurons in
the rodent hippocampus is evident from remapping their receptive
fields when switching between environments (13–17), the association
between grid patterns of cells in the EC and the environment is less
clear (13, 18–20). Here, we focus on three main features of grid-cell
patterns: scale invariance, orientation, and rotational symmetry.
The robust grid scale invariance across differently sized (10) and

shaped (20) environments is one of the key characteristics of grid
cells in the rodent EC. It has repeatedly been shown that the
distance between grid nodes remains constant when the animal is
transferred between environments of different size (10) and shape
(20). However, past studies have demonstrated that although grid
distances are rigid, they are not completely inflexible. Barry et al.
(19) showed that manipulations to the width and length of a fa-
miliar enclosure resulted in similar transformations of the rodents’
grids: When the familiar environment was elongated, the grid
patterns elongated similarly. Also in rats, grids have been shown to
display expansion upon introduction to a novel environment and
then relax back to the original scale when the environment
becomes familiar (18). Combined, these results suggest that grid
cells might have a default scale but that the default scale could be
influenced by experience in the given environment.
Another key characteristic of grid cells is the alignment of

grids with environmental cues. For a given environment, an animal’s
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grid-cell population shares the same grid orientation, seemingly
aligned and “anchored” to a particular landmark. Rotation of a
distal visual cue, serving as a landmark, resulted in similar rota-
tions of the rodents’ grids in a feature-poor circular enclosure (10).
Meanwhile, if proximal cues, such as the edges and boundaries of
noncircular environments, are available, they may also function as
anchors to which the grids become aligned (20). Consistent with
the reliance on local cues, the orientation of grids in square-shaped
environments tends to align with the walls at an angle that mini-
mizes symmetry with respect to boundaries (21). Hence, the ori-
entation of grids seems to rely primarily on local cues, but it can be
based on distant cues when local cues are ambiguous or absent.
A third key characteristic of grids in the medial EC is their 60°

rotational symmetry (10). Accordingly, grids recorded in circular or
symmetrical enclosures tend to exhibit a narrow range of 60 ± 5°
rotational symmetry quantified from autocorrelograms (ACs) (18).
However, a comprehensive analysis of spatial periodicity evident
from cells in the presubiculum and medial EC of rats revealed that
only about 35–50% of medial EC cells exhibited canonical 60° ro-
tational symmetry (12% and 28% in the presubiculum and para-
subiculum, respectively) (11, 22), whereas a significant fraction of
medial EC neurons (43%) displayed spatially periodic activity dif-
ferent from the 60° rotational symmetry (11). Nonhexagonal grid
structures were most prevalent in enclosures with polarized geom-
etry (20). The modulation of rotational symmetry was also evident
in the two other studies that manipulated the size and geometry of
the environment (19, 20). The control of grid rotational symmetry
remains a subject of active research in rodents, although it is un-
explored in the human brain.
The task of informed spatial navigation is an evolutionary problem

posed to all animals. The study of human grid cells is especially
interesting because it might reveal specific evolutionary adaptations
beyond those adaptive features seen in lower level animals. For one
thing, humans’ visual faculties are far more advanced than rodents’
visual faculties. If grid-cell activity depends on the predominant
sensory input to the EC, we would expect this fact to be reflected in
the nature of grid formation, perhaps with increased variability in
grids according to an individual’s visual appraisal of the environment.
For instance, the rat’s reliance on active exploration for the forma-
tion of place fields in the hippocampus indicates that kinesthetic and
proximal cues are more crucial for this process in rats than visual
cues are (23, 24). Consistent with this finding, rat exploration in
virtual environments, where kinesthetic and proximal cues are ab-
sent, compromises the spatial specificity of their place cells (24). The
opposite might be true in humans, where the likely predominance of
visual input to the EC in the human brain might compensate for the
otherwise kinesthetic-deprived sensory experience during virtual
navigation. Despite the overall similarity between the anatomies of
the rat and human EC, primate data suggest that the human EC
receives a larger contribution from higher visual cortical areas (25).
In primates, behavior as restricted as eye movements over static vi-
sual displays is sufficient to elicit spatially periodic (“grid-like”) pat-
terns of neuronal activity that correlate with saccade direction (26,
27). Interspecies differences in sensory processing make the spatial
representations of place cells display marked variability. Chirop-
terans, for example, distinctly rely on spatioacoustic cues, developing
uniquely 3D place fields as opposed to the 2D place fields seen in
other animals (28, 29). In humans, then, it is plausible for a visually
presented virtual environment to elicit place cell (30) and grid-like
activity in the EC (31) without proprioceptive and kinesthetic cues.
The predominance of visual cues in spatial navigation makes human
subjects less dependent on the hippocampus and EC except when
spatial memory is involved. After mesial-temporal lobectomy, pa-
tients were still able to perform path integration (32). Studying the
grid scale invariance in humans in light of the differences in the
sensory input organization of the EC between rodents and primates
may elucidate aspects of spatial awareness that remain hidden in
rodents and are specific to our species.

Here, we investigated the influence of virtual (i.e., purely visual)
surroundings on the spatially periodic activity of neurons in humans
by exposing the same set of EC neurons to four different virtual
environments in a spatial memory task. Specifically, we addressed
how parameters of the spatially periodic activity changed in re-
sponse to independent variables of environment size, environment
length-to-width ratio, and availability of spatial environmental cues.
To understand these effects, we analyzed how these independent
variables correlated with dependent variables: grid quality (“grid-
ness”), grid scale, grid orientation, and grid rotational symmetry. If
the dependent variables (i.e., the parameters of spatially periodic
activity) show dependence on environmental features, that would
suggest that the increased reliance on visual cues in the human EC
allows for quick adaptation (or rescaling) of the neuronal co-
ordinate system to the environment, a behavior that expands
models developed based on animal studies. To ascertain the scal-
ability of neuronal representations of space in the human brain, our
goal was to quantify the environmental dependency of the spatially
periodic activity of EC cells and to test for the consistency of
environment-dependent changes of grid-like activity over time and
their consistency between subjects. To attain a relatively unbiased
estimate of spatially periodic activity, we constructed three main
neuronal datasets and two subsets within each dataset, resulting in a
total of six datasets. The largest dataset included neurons classified
as displaying significant spatially periodic activity based on spatial
spectral analysis of the single units. The other two smaller datasets
were both classified as “putative grid cells” (PGCs) based on their
conformity of gridness scores to the definition used in studies and
referred to herein as the Barry–Krupic (BK) method (11, 18). The
difference between the second and third datasets was that the third
dataset, in addition to being defined based on the BK method, was
subjected to a thorough validation against theta modulation and
directional tuning. In addition, we constructed two subsets of each
of the three main datasets that included cells maintaining significant
spatial periodicity or gridness scores in at least three of the four
environments. Because we analyzed these datasets separately and
the results were highly concordant among them, we posit that the
spatially periodic and grid cell-like activity in the human EC is
analogous to the grid cells described in rodents but with markedly
increased variations.

Results
Two male epilepsy patients, H and K (aged 33 y and 40 y, re-
spectively; SI Appendix, Table S1.2), who previously consented to
participate in the experiment and to allow publication of data and
MRI images, were implanted with microelectrode arrays in layer
2/3 of their medial EC (Fig. 1A) in preparation for surgical re-
section of epileptic foci. During their days of clinical recording in
the hospital epilepsy monitoring unit, participants H and K were
asked to perform a virtual, memory-aided navigation task on a
tablet computer in four environments each day and for 7 or
8 consecutive days, respectively. Accordingly, the dataset was or-
ganized by day (days 1–8) and environment (environments 1–4).
Electrophysiology was recorded from the EC and spike-sorted
offline. All four environment trials were recorded in single file
with maintained electrode stability, allowing us to monitor how
individual cells behaved with progression through each environ-
ment (SI Appendix, SI Experimental Procedures). In the following
sections, we compare the environmental dependency of neuronal
activity (i) within each day across game environments (/environ-
ments) (ii) and across games played in the same environment but
on different days (/days). Each game’s objective was to locate
randomly placed space aliens and return them to their spaceship
waiting at remembered locations (SI Appendix, SI Experimental
Procedures and Movie S1). We constructed realistic 3D models of
four different environments with accurate sizes relative to the
average adult eye height and modeled the first-person visual ex-
perience of walking in these environments with an average step
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size and constant walking speed. The environments consisted of a
large open space (OS) with a boundless horizon and minimal
external cues, a small open-air backyard (BY), a medium-sized
area modeled after the Louvre’s courtyard (LV), and a medium-
sized covered space modeled after the main hall of the Temple of
Luxor in Egypt (LX) (Fig. 2 A and B and SI Appendix, SI Exper-
imental Procedures, Properties of Environments and Fig. S1). These
environments were designed to differ in several salient features,
including but not limited to size (area), aspect ratio (shape),
boundaries, obstacles, and external landmarks (cues) (SI Appen-
dix, Table S1.1).
From these two patients, we recorded single-unit activity over

successive days. We isolated 397 single units (neurons) over
7 and 8 consecutive days from patients H and K, respectively
(average overall firing rates between 0.02 Hz and 1 Hz). By
keeping track of these cells’ activity across four environments, a
database of 1,588 single-unit spike trains (trials) was created,
with each trial representing a single-unit activity in one envi-
ronment. Because we sampled a different subset of electrodes
each day, we treated single units recorded from different days as
independent. Only single units obtained within the same day
were treated as being produced by the same cells in different
environments (SI Appendix, SI Experimental Procedures). Each of
the 1,588 trials associated with a navigation pathway was con-
verted to a firing rate map and AC using the BK method (11, 18).

Despite the aperiodic patterns of movement trajectories (Fig.
1C), as much as 52% of total trials (824 trials from 206 neurons)
resulted in significant spatially periodic activity patterns based on
a 2D spectral analysis (11) after validation of their spectral pe-
riodicity scores against ACs of a randomly displaced collection
of 2D Gaussian firing rate clusters (SI Appendix, Experimental
Procedures and Fig. S3H). We could rule out the possibility that
spatial periodicity was a result of spike-sorting artifact (33, 34) by
including only single units, which produced nonoverlapping
waveform clusters with an average Mahalanobis intercluster
distance of >20 (meanMahal_d = 230; SI Appendix, Figs. S2 and
S10–S28). We refer to these 824 trials from 206 neurons as
spatially periodic cells (SPCs; SI Appendix, Fig. S35 and Table
S2). Among SPCs, 92 (45%) exhibited spatial periodicity in all
three environments with architectural landmarks (BY, LX, and
LV). We refer to this subclass of cells as persistent spatially

A

C D

FE

B

Fig. 1. Grid-cell expression in the human EC. (A) Position of EC electrode strip
(yellow arrow) revealed on an axial MRI section. (Inset) Electrode location in the
brain. The electrode design is magnified at the lower part of the image. Blue
circles numbered from 1 to 6 are macroelectrode contacts. Dots grouped in
square quartets and numbered from 7 to 22 are the microelectrodes. (B) Single-
unit clusters (Left) and corresponding spike waveforms (Right). The separation
of single-unit activity (SUA; red markers) from multiunit activity (MUA; black
markers) is indicated by the Mahalanobis distance (d). (C) Trajectory of the
subject’s navigation in an environment overlaid with the SUA (red circles; same
neuron as in B). Yellow and blue circles indicate the positions of spaceship
targets, and the green diamond indicates an example target location (SI Ap-
pendix, SI Experimental Procedures). (Inset) Neuron’s firing rate at different
heading directions. (D) Average firing rate map. Color scale (spike * s−1). (E)
Spatial AC of SUA computed from D. (F) Two-dimensional autoperiodogram of
the AC from E. The X and Y axes represent frequency.
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Fig. 2. Adaptive rescaling of grids in different virtual environments. Screen-
shots (A), with space alien target objects and scale layouts (B) of the four
different environments. Filled circles are space ships. Empty circles in LX are
columns. (C) Spatial ACs from the same cell across all four environments cap-
ture the spatial periodicity of spikes generated by the same cell across the four
environments. (D–F) Boxes represent the distribution of grid periods from four
datasets. (D) Environment-associated differences in grid distances derived from
four datasets: SPCs (all cells), n(trials,cells) = 824,206 (blue boxes); PGChi-confs,
n(trials,cells) = 262,65 (light-green boxes), pSPCs and pPGChi-confs active in all
three confined environments, n(trials,cells) = 276,92 (dark-green boxes) and
n(trials,cells) = 260,65 (yellow boxes), respectively. (E) Grid distances produced by
pPGCs and pPGChi-confs that were active in the BY and at least one of the large
environments (LX, LV, and OS) (n = 20) (red and yellow boxes, respectively).
(F) Comparing grid distances of pPGCs and pPGChi-confs between LX and LV
environments (n = 5) when the cells were active in both environments. The
horizontal lines in boxes are medians, and boxes contain the 25th through
75th percentiles. Whiskers cover the most extreme data points and + signs are
outliers. Grid periods were combined from both subjects during navigation in
all four environments. The daily sequence of environments was randomized.
***P < 0.001. NS, not significant.
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periodic cells (pSPCs). Among those pSPCs, 47 displayed 60 ± 10°
rotation symmetry. Moreover, to classify grid cell-like activity, we
further subjected the 206 SPCs to a quantification of their gridness
relative to their own time-shuffled spike ACs strictly following the
BK method (11, 18). To meet the definition of grid cells, we
constrained this analysis by selecting cells that displayed 60 ± 10°
rotation symmetry (10). This analysis resulted in 73 neurons from
the two subjects (nsubj-H = 40 and nsubj-K = 33) with significant
grid-like quality, 35% of the total 206 spatially periodic neurons.
We further refer to this dataset as PGCs because they shared all
attributes with grid cells classified in the rodent medial EC. All
PGCs were a subset of SPCs. Although none of the PGCs
exhibited significant gridness in all four environments (and very
few in three environments), 39 of the 73 PGCs (53%) exhibited
significant gridness in at least two environments. We refer to these
cells as persistent putative grid cells (pPGCs) (SI Appendix, Fig.
S3I, Table S2, and Movie S1).
Additionally, to reduce the chance of detecting false-positive

results brought about by nonlocal covariates in our sample, such as
theta modulation, spiking bursts, or direction tuning, we isolated a
subset of PGC activity that was tested against a combination of
theta and alpha modulations, bursting firing pattern, and di-
rectional tuning (SI Appendix, SI Experimental Procedures). Al-
though directional tuning did not covary with the environments
(SI Appendix, Fig. S33 and Tables S9.1–S9.3), to ensure the im-
munity of grids to direction tuning, we isolated a subset of spatially
modulated single units that passed the BK test against direction-
tuned and theta-modulated surrogate spike trains.
Single units with significant gridness relative to the temporally

and directionally modulated null yielded a population denoted as
high-confidence putative grid cells (PGChi-confs; n = 262, nsubj-H =
118, nsubj-K = 144). Similar to the pPGC dataset, we separated a
subset of PGC neurons, including only those PGC neurons that
displayed significant spatial modulation in at least two differently
sized environments (BY-LV or BY-LX), and denoted them as
persistent high-confidence putative grid cells (pPGChi-confs). This set
included n = 65 single units active in at least two nonequally sized
environments and n = 28 single units active in all three environ-
ments with spatial cues (BY, LV, and LX).
The purpose of the pSPC, pPGC, and pPGChi-conf datasets was to

enable us to compare grid parameters between environments using a
repeated measures design. To enhance robustness, all statistical
analyses were performed separately on six datasets: SPC, pSPC,
PGC, pPGC, PGChi-conf, and pPGChi-conf. Although all six
datasets exhibited significant spatial periodicity of firing patterns,
by definition, as quantified based on a spectral method (11), only
the PGC and pPGC subsets qualified as “canonical” grid cells de-
fined by traditional methods (10, 11, 18). PGChi-conf and pPGChi-conf
datasets further extended the BK method by applying a more
stringent null for computing gridness.
Because the clinical time constraints limited the test times to

5 min per environment, there was a concern that the stability of
grid patterns might be compromised. Therefore, the temporal
stability and stationarity of periodic patterns and grid patterns
were tested by applying a twofold cross-validation and statio-
narity analysis for all of the cells in the SPC and PGChi-conf
datasets, and both tests confirmed at the population level the
stability and stationarity of grid patterns [Wilcoxon test on two-
fold cross-validation: for the SPC dataset, P(n = 879) = 4.726e−49
and for the pSPC dataset, P(n = 285) = 1.4887e−19; SI Appendix,
Figs. S5 F and G, S36, and S37 and Table S10].

Dependence of Grid Period on Environment. Grid period is the
distance between adjacent grid nodes as determined based on
the spatial AC (SI Appendix, SI Experimental Procedures). Al-
though grid periods were uniform across all electrode positions
and neurons, they varied by environment (three-way ANOVA:
Psubj-H < 0.001, Psubj-K < 0.001; Fig. 2 and SI Appendix, Tables

S3.1 and S3.2). Studies in rodents using environmental manip-
ulations, such as partitioning and transformation (10, 13, 19),
suggest that the grid period produced by a particular grid cell is
conserved across environments and only changes after trans-
formation of a familiar environment (18, 19). To investigate what
specific feature of the environment could best explain the ob-
served variation (Fig. 2C and SI Appendix, Fig. S29), we sought
to determine whether any of the varying spatial features of the
four environments had a strong correlation with grid periods
displayed by individual neurons. To do so, we quantified the
grid’s spatial frequency from the 2D spectral density of the AC
(Fig. 1F). In contrast to rodent data (10), we observed a signif-
icant difference in average grid periods between environments in
all of our six datasets (Fig. 2 D and E), including the spatial
periods of the complete SPC dataset (Kruskal–Wallis test, P =
2.498e−134; Fig. 2D and SI Appendix, Table S3.5). The grid scale
difference was also significant when we compared the spatial
behavior of the same neurons across the four environments
within the pSPC dataset [Friedmann test, P(n = 73) = 8.4344e−32;
Fig. 2D and SI Appendix, Table S3.8]. The difference in average
grid distance in the pSPC dataset was significant when the
smallest environment was contrasted against any of the three
larger environments or all three combined [Friedman’s test,
P(n = 115) = 2.1748e−26; Fig. 2D and SI Appendix, Table S3.9], but
grid distance was no different between large environments (SI
Appendix, Table S3.11). The PGC dataset reflected the same
pattern (SI Appendix, Fig. S7). Additionally, we compared the
average grid periods of pPGCs between the small and large
environments. Because not all PGCs were active in both the
small and large environments, we compared a subset of PGCs,
including only those PGCs that were active in both. To achieve
sufficient statistical power, we selected neurons that were active
in both the smallest environment (BY) and in at least one of the
two larger environments with well-defined spatial landmarks (LV
and LX) and compared their grid periods (n = 19). The average
grid period of PGCs determined in the small environment showed a
significant expansion when probed in the larger environments
[Wilcoxon signed rank test, P(n = 19) = 1.2937e−04; Fig. 2E and SI
Appendix, Table S3.10]. No significant difference in grid periods
between the large environments (LV and LX) was found owing
to the similarity of their dimensions [Wilcoxon signed rank test,
P(n = 5) = 0.3125; Fig. 2F and SI Appendix, Table S3.11]. To
verify the validity of grid scale dependence on environment
size, we repeated the test in our PGChi-conf dataset (SI Ap-
pendix, Fig. S8). Both PGChi-conf and pPGChi-conf datasets ac-
curately reproduced the significant grid rescaling between small
and large environments seen in the other four datasets [Kruskal–
Wallis test on PGChi-conf: Psubj-H(n = 113) = 1.0719e−14, Psubj-K(n = 85) =
3.7179e−15; Friedmann’s test on pPGChi-conf: compared across three
environments, interpolated, and combined between subjects,
P(n = 10) = 5.5560e−06; compared between the small and any of
the larger environments, P(n = 10) = 0.0016; SI Appendix, Tables
S3.9.1–S3.9.3]. Conversely, no grid rescaling was observed be-
tween the two similarly sized (LX and LV) environments [Wilcoxon
signed rank test P(n = 32) = 0.5475; SI Appendix, Table S3.9.4]. Hence,
the neurons in our sample tested against spike trains endowed with
theta modulation and directional tuning retained a significant
environment-dependent rescaling of grid distance, no less than those
neurons tested against Poisson spike time shuffling (Fig. 2 D–F).
The described grid-scale differences were consistent between

the two subjects (Fig. 3A and SI Appendix, Fig. S8 A and B and
Table S3.15) and remarkably stable over successive days (Fig. 3B).
Grid distances within a specific environment displayed substantially
less variation across different days than across environments
(Kruskal–Wallis one-way ANOVA, Psubj-H > 0.05 and Psubj-K > 0.05;
Friedman’s test, the exact P values are listed in SI Appendix, Tables
S3.6 and S3.7, respectively). Because the grid periods did not differ
between the two subjects with respect to any of the three datasets
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(P > 0.05, Wilcoxon rank-sum test), we combined the same type of
datasets from the two subjects for statistical evaluation. The effect of
the environment was consistent over all three datasets (Kruskal–
Wallis test with independent samples on the SPC dataset, P < 0.001,
SI Appendix, Table S3.5; Friedman’s test with repeated measures on
the same cells’ pSPC dataset, P < 0.001, SI Appendix, Table 3.8; and
Wilcoxon signed rank tests on the pPGC dataset, P < 0.001, SI
Appendix, Tables S3.10 and S3.11). The grids transformed in a
fashion similar to what is found when rodents are presented with a
transformed version of a familiar environment (19); the rescaling was
proportional to the edge length of the environment because it was
smallest in BY, larger in LX and LV, and largest in OS (Fig. 3B and
SI Appendix, Figs. S6A and S7C and Table S3.10). LX and LV were
not different (SI Appendix, Table S3.11). We reasoned that if grid
periods linearly scale with the size of environment (Fig. 3A and SI
Appendix, Figs. S5A, S6A, and S7A), then normalizing them to the
size of the environment should reduce the grid period differences
across environments (SI Appendix, Figs. S6B and S7B). This hy-
pothesis was confirmed because the environment size-normalized
average grid period difference either disappeared, as it did in the
SPC, pSPC, and PGC datasets [two-way ANOVA, P(df = 3,6) > 0.3,
and Kruskal–Wallis test, P(df = 3,6) = 0.0509, compare SI Appendix,

Tables S3.1 and 3.2 with SI Appendix, Tables S3.3 and S3.4; PGC
dataset: two-way ANOVA, Psubj-K = 0.4547 and Psubj-H = 0.3819, SI
Appendix, Table S3.14] or was greatly reduced in the pPGC dataset
between small and large environments when comparing the differ-
ence between before [Friedman’s test, P(BY-LV, LX, OS) = 1.2937e−04;
SI Appendix, Table S3.10] and after [P(BY-LV, LX, OS) = 0.011; SI
Appendix, Figs. S6B and S7B and Table S3.12] normalization. Nor-
malization of grid periods did not affect the similarity of grid dis-
tances between large environments [Friedman’s test, P(n = 5) = 0.91;
SI Appendix, Table S3.13]. For both subjects, correlations between
grid periods and environment sizes in both types of datasets, SPC and
pPGC, were high (SPC: Pearson’s rsubj-H = 0.877, P < 0.0001; pPGC:
Pearson’s rsubj-K = 0.879, P < 0.0001, Fig. 3A; pPGC combined:
Pearson’s r = 0.5139, P < 0.0001, SI Appendix, Figs. S6A and S7A)
and displayed an average grid period-to-environment dimension ratio
of 0.3954 [f(x)subj-H = 0.4047x-2.81] and 0.3509 [f(x)subj-K = 0.3509x-
0.6187] and 0.4108 [f(x)subj-H = 0.4108x-0.241] and 0.4153 [f(x)subj-K =
0.4153x-4.218) in the SPC (Fig. 3A) and pPGC datasets (SI Appendix,
Fig. S7A), respectively.
The variation in grid period might have also been affected by

factors such as covariance with the cells’ gridness, the firing rate
difference between environments, and the unequal coverage of en-
vironments by exploration. However, no consistent covariations of
gridness scores and environments were observed across datasets.
Although the general spatial periodicity (gsp score; Materials and
Methods and SI Appendix, Experimental Procedures) decreased with
increasing environment sizes in the large SPC dataset (P < 0.001,
ANOVA with independent measures; SI Appendix, Fig. S30 A and B
and Table S4.1), other datasets (pSPC and PGC) did not confirm
any environmental dependency of the magnitude of spatial period-
icity [pSPC: one-way ANOVA, P(n = 26)

subj-H = 0.4248 and P(n =

24)
subj-K = 0.2575; SI Appendix, Fig. S31 A and B and Table S4.2], not

even when gridness scores were determined based on the BK
method [P(n = 12)

subj-K = 0.1258 and P(n = 16)
subj-H = 0.1330; SI Ap-

pendix, Table S4.3]. The firing rate was also uniform across envi-
ronments for all datasets (SPC, pSPC, and pPGC; SI Appendix,
Tables S5.1–S5.3, respectively) across different environments (SI
Appendix, Fig. S30C).
Differences in environment coverage was inherent in the task

design because the areas of modeled environments varied between
324 m2 and 4,900 m2. This variation naturally affected the cov-
erage (SI Appendix, Tables S6.1–S6.3) because the large environ-
ments received an average of 60% of the coverage of the smallest.
To compensate for the effect of uneven coverage across envi-
ronments, in a separate analysis, we shortened the navigation
trajectories in the BY environment by 50% of their original length
(hence, the duration of navigation as well) and recomputed the
grid distances of all 1,588 segments (397 neurons). This manipu-
lation reduced the difference in path density across all environ-
ments (SI Appendix, Fig. S9A), whereas it left the average gridness

scores, ðĝÞ= 1
n

Pn

i= 1
gsp, and environmental grid scale differences

unaffected relative to the complete datasets [gridness scores:
two-sample t test, ĝsubj-Khalfpath = −0.1000, ĝsubj-K = −0.1454,
P(n = 59,8) = 0.2594; ĝsubj-Hhalfpath = −0.2064, ĝsubj-H = −0.2817,
P(n = 58,33) = 0.2165; grid distances: Kruskal–Wallis test, Psubj-H

(n = 79) = 5.8221e−14, Psubj-K(n = 164) = 4.2568e−26; SI Appendix, Fig.
S9 B–D and Table S6.4]. The average slope and y-intercept of the
regression line [f(x) = 0.4130x-3.7295] reproduced the f(x) =
0.3954 regression line observed in datasets, including the complete
navigation path. Hence, the increased coverage in the smallest
environment did not account for the smaller grid distances con-
sistently observed across all six datasets.
Altogether, the consistency of the environment-specific mag-

nitude of grid rescaling across datasets and between the two
subjects, the independence of grid scale from the variations of
firing rate and gridness scores, and the invariance of the effect of
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Fig. 3. Grid period is environment-dependent and stable over days. (A) Grid
periods are shown as a function of the size of the environment. Data were
combined over multiple days from navigation trials in the same four envi-
ronments and are displayed according to environments (BY, LX, LV, and OS)
and subjects (patients K and H) (n = 436 and n = 388 segments, respectively).
The length of the shorter axes of given environments (X) is plotted against
the grid period (Y). The sparse-dashed lines represent identity lines. The fine-
dashed lines are extrapolations of slopes. (B) Average grid periods from the
two subjects grouped according to the environments (layouts on top) and
consecutive days (days 1–8). The variation of grid periods over days was in-
significant relative to the variation across environments. Error bars represent
SEM. ***P < 0.001. NS, not significant.
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environmental coverage speaks strongly to the overall environ-
ment dependency of grid scaling in the human EC.

Grid Orientation.Rodent grids normally orient themselves relative
to distant or local landmarks, whichever provides the most consis-
tent spatial cue in repeated visits to an environment. Because grid
orientation was a stable feature of grid cells in rodents (10, 21), we
sought to determine if this grid orientation was preserved in hu-
mans. Aside from OS, all of our environments had two types of
spatial landmarks available: initial orientation and architectural
cues. Because each navigation session in the same environment
always started from the same location and facing the same di-
rection, thus providing unambiguous initial visual orientation cues
(SI Appendix, Fig. S1), our subjects could orient themselves in each
environment based on the initial orientation cues, except in the OS,
where those cues were lacking. The consistency of spatial references
at the start of each trial had the theoretical possibility of providing
sufficient input to the neurons in the EC to anchor their grid ori-
entation. Therefore, we calculated the principal orientation of ACs
for all recorded single units with significant spatial periodicity, in-
cluding the SPC and PGC datasets. Due to the poor orientation
cues available in the OS environment (SI Appendix, Fig. S1) and
lower gridness scores (SI Appendix, Fig. S30A), we excluded the OS
environment from this analysis. In the remaining three environ-
ments with rich visual cues, where grid orientation could be de-
termined more accurately, we found that neurons in all datasets
tended to adopt environment-specific orientations (Fig. 4 A and B).
Grid orientations in the SPC dataset displayed a predominantly 45°
alignment in the two square-shaped environments relative to the
main axes defined by the architecture (BYSubj-H: 45.24°, LXSubj-H:
46.84°, n = 311; BYSubj-K: 44.21°, LXSubj-K: 47.47°; n = 376; SI
Appendix, Fig. S32). In contrast, the only rectangular environment
(LV) generated grid orientations close to 33° (LVSubj-H: 38.28°,
LVSubj-K: 33.92°). Neither of these orientations were aligned with 60°,
the initial orientation of the avatar (SI Appendix, Fig. S1). Instead, the
average grid orientations reflected the 45° direction of corners in both
square-shaped environments (BY and LX). If grid orientation aligns
with the corners, then we expect a deviation from the 45° angle in the
rectangular environment (LV). Consistent with this hypothesis, we
observed an average 34.89° grid orientation that closely matches the
33° direction of corners in the LV environment relative to the cen-
ter and the east–west cardinal axis of the environment (Fig. 4B and
SI Appendix, Figs. S1A and S32), which also served as the axis of
the ACs. Cells maintained these orientation differences across
days of recording [two-way circular ANOVA on the SPC dataset,
P(df = 2,5)

subj-H < 0.0001 and P(df = 2,6)
subj-k < 0.0001, Fig. 4C; two-way

circular ANOVA in the pSPC dataset, P(df = 2,4)
subj-H < 0.02 and

P(df = 2,4)
subj-K < 0.02, SI Appendix, Figs. S12–S28 and Tables S7.1 and

S7.2, respectively]. Closer examination of the polar histograms
revealed that the distribution of grid orientations in the rectangular
environment (LV) was bimodal and divided between 30° and 45° (SI
Appendix, Fig. S32).
Furthermore, the grids seemed to adopt very similar grid orien-

tations between the patients [Watson–Williams test, P(n = 49) > 0.05;
SI Appendix, Tables S7.3 and S7.6 for the pSPC dataset], a possible
indication that both patients used the same landmark in each en-
vironment to anchor grids. This finding allowed us to combine both
subjects’ data and gain the necessary statistical power for the
analysis of grid orientation in the pPGC dataset as well. With the
grouped data, the average grid orientations displayed by the same
cells (pPGC dataset; SI Appendix, Table S7.5) inside the two square-
shaped environments, BY and LX, were 56° and 61°, respectively;
neither was significantly different from 60° or from one another (SI
Appendix, Table S7.7). Note that a hexagonal grid with a 60° ori-
entation is in perfect alignment with the east–west axis of both
environments and reflects the avatar’s initial orientation. However,
both of those average grid orientations were significantly different
from the 36.22° mean grid orientation displayed by the same cells in

the rectangular environment (LV) (circular ANOVA and circular
test for mean grid orientation, P < 0.05; SI Appendix, Tables S7.7,
S7.8, and S7.13 for pPGC, pSPC, and pPGChi-conf datasets, re-
spectively). These grid orientation-related differences between
square-shaped and rectangular environments were significant in all
datasets (SPC, pSPC, PGC, pPGC, PGChi-conf, and pPGChi-conf)
and stable over days when comparing them by circular ANOVA
using independent and repeated samples, respectively (days effect:
P(pSPC) > 0.05; environment effects: P(SPC) < 0.001, P(pSPC) < 0.05,
and P(pPGC) < 0.05, SI Appendix, Tables S7.1, S7.2, and S7.4;
P(PGChi-conf) < 0.01, SI Appendix, Tables S7.9 and S7.10; and
P(pPGChi-conf) < 0.05, SI Appendix, Tables S7.11–S7.13). The
specificity of grid orientation to the aspect ratio of the envi-
ronment and consistency of adopted grid orientations over days,

A

B

C

Fig. 4. Environment-dependent grid orientation. (A) ACs of two example
neurons (cells 1 and 2) with their grid orientations in each environment within
the same day of recording. The white line and corresponding α-values (in an-
gular degrees) indicate grid orientation. (B) Population plots of grid orienta-
tions from all cells of the SPC dataset color-coded according to environments
from the two subjects (Left and Center) and the same for the pPGC dataset
(Right). comb., combined. Vectors in gray-shaded quadrants represent angular
averages of the corresponding population of grid orientations, according to
environments. (C) Grid orientations from the SPC dataset grouped according to
environments (large groups) and consecutive recording days (individual filled
symbols) from the two subjects (Left and Right, n = 311 and n = 376 segments,
respectively). Error bars indicate angular dispersion. Colored lines represent
grand averages of grid orientation associated with the three environments.
Dashed lines are confidence intervals. Asterisks represent statistical significance
of differences (*P < 0.05, ***P < 0.001). [rad], radian.

6 of 10 | www.pnas.org/cgi/doi/10.1073/pnas.1701352114 Nadasdy et al.

               znadasdy_144_23

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1701352114/-/DCSupplemental/pnas.1701352114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1701352114/-/DCSupplemental/pnas.1701352114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1701352114/-/DCSupplemental/pnas.1701352114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1701352114/-/DCSupplemental/pnas.1701352114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1701352114/-/DCSupplemental/pnas.1701352114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1701352114/-/DCSupplemental/pnas.1701352114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1701352114/-/DCSupplemental/pnas.1701352114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1701352114/-/DCSupplemental/pnas.1701352114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1701352114/-/DCSupplemental/pnas.1701352114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1701352114/-/DCSupplemental/pnas.1701352114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1701352114/-/DCSupplemental/pnas.1701352114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1701352114/-/DCSupplemental/pnas.1701352114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1701352114/-/DCSupplemental/pnas.1701352114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1701352114/-/DCSupplemental/pnas.1701352114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1701352114/-/DCSupplemental/pnas.1701352114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1701352114/-/DCSupplemental/pnas.1701352114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1701352114/-/DCSupplemental/pnas.1701352114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1701352114/-/DCSupplemental/pnas.1701352114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1701352114/-/DCSupplemental/pnas.1701352114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1701352114/-/DCSupplemental/pnas.1701352114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1701352114/-/DCSupplemental/pnas.1701352114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1701352114/-/DCSupplemental/pnas.1701352114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1701352114/-/DCSupplemental/pnas.1701352114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1701352114/-/DCSupplemental/pnas.1701352114.sapp.pdf
www.pnas.org/cgi/doi/10.1073/pnas.1701352114


as well as between the two subjects, strongly suggest that grid
orientation is dependent on the geometry of the environment
(Fig. 4C). We could rule out that the consistency of grid orien-
tation with environment geometry depended on the neurons’
directional tuning, because we did not observe any difference in
directional tuning between neurons active in multiple environ-
ments [repeated measures ANOVA on resultant vectors with the
factors of /days and /environments, F(4,2) =1.2264, P(n = 74) =
0.758; SI Appendix, Fig. S32 and Tables S9.1–S9.3]. This result
further corroborates the result that grid cells align their orien-
tation to the virtual environment as opposed to the patient’s
actual orientation in the hospital or respond uniformly to dif-
ferent environments.

The Rotation Symmetry of Grid Patterns. Despite the consistent co-
ordination of the grid orientation with the geometry of the envi-
ronment, grid angles in the square-shaped environments differed
between the two datasets, pSPC and pPGC, with a notable 12.73°
(mean βpSPC = 45.85° and βpPGC = 58.59°). Because grid geometry
(i.e., square, hexagon, pentagon) may affect grid orientation, the
variation of rotational symmetry of spatially periodic activity pat-
terns in different environments was investigated next. We focused
this analysis on the SPC dataset (Fig. 5A), because the gsp scores
[SI Appendix, SI Experimental Procedures, Quantifying “General
Spatial Periodicity” (gsp Score) and Fig. S3G] were agnostic to
rotational symmetry, thus allowing for quantification of a broader
range of 15–90° rotation symmetries, and not only 60° (±10°).
We were surprised to observe that a substantial fraction of

spatially periodic activity deviated from the hexagonal geometry
(11). In addition to a number of data segments with pre-
dominantly 60° rotational symmetry, characteristic of grid cells in
the rodent brain, we observed a significant number of non-
hexagonal grid-like patterns (Fig. 5 B and C). We classified these
cells as SPCs to discriminate them from the PGCs of our PGC
population. Many of the SPCs displayed variants of rectangular or
octagonal grid geometry with a 90° or 45° rotational symmetry,
respectively (SI Appendix, Figs. S13, S15–S20, S22, S23, and S25–
S28), which is undocumented in rodents and primates to date. The
fraction of SPCs deviating from the 60° rotational symmetry
accounted for 65% of neurons with significant spatially periodic
activity (SI Appendix, Fig. S3I). Overall, the population mean of
rotational symmetries for the complete dataset did not conform to
60° [circular one-sample test for specified mean direction, subject
H: P(n = 435) > 0.05, subject K: P(n = 387) > 0.05], and the distri-
bution was asymmetrical around the median [circular symmetry
test, subject H: P(n = 435) = 0.0078, subject K: P(n = 387) = 0.0412].
Next, we investigated whether or not an environmental de-

pendency of the rotational symmetry of the ACs may underlie the
heterogeneity of grid geometry displayed by the same or a mixed
population of neurons (pSPCs and SPCs) during navigation in
different environments (Fig. 5B). We focused the analysis on the
rotational symmetry of the ACs computed from the SPC dataset.
The comparison of rotational symmetry across environments
revealed a predominant 60° angle of rotational symmetry in the
BY, our smallest virtual environment. In contrast, a significant
decrease in the proportion of hexagonal grids was evident in the
other environments, consistent between both subjects [Fig. 5B; one-
way circular ANOVA, P(n = 213)

subj-H < 0.001 and P(n = 214)
subj-K <

0.001; SI Appendix, Tables S8.1 and S8.3]. No significant difference
between the circular means of rotational symmetry between the
two similarly sized larger environments (LV and LX) was found
[circular ANOVA, P(1,132)subj-H = 0.8875, P(1,136)subj-K = 0.1640; SI
Appendix, Table S8.2]. However, differences in rotational symmetry
between environments of much different sizes were significant in
both subjects’ datasets [circular ANOVA, BY and LV: P(1,102)subj-H <
0.005 and P(1,160)subj-K < 0.005; circular ANOVA, LX and OS:
P(1,106)subj-H < 0.001 and P(1,92)subj-K < 0.001]. In general, the pro-
portion of cells expressing the canonical 60° angle of rotational

symmetry negatively correlated with the dimensions of the en-
vironment (Pearson’s rsubj-H = −0.4293, P < 0.0001 and Pearson’s
rsubj-K = −0.3915, P < 0.0001; Fig. 5D and SI Appendix, Table
S8.3). The dependency of grid rotation symmetry on environ-
ments was confirmed within the pSPC dataset containing neu-
rons that displayed persistently significant spatial periodicity
in all three environments (with well-defined external cues)
during the same session (BY, LX, and LV; SI Appendix, Table
S8.4). Although the negative correlation was consistent over
days and subjects [two-factor circular ANOVA: environment
effect, P(n = 74)

subj-H < 0.01 and P(n = 71)
subj-K < 0.001; days effect:

P(n = 74)
subj-H = 0.4871 and P(n = 71)

subj-K = 0.1571; SI Appendix,
Table S8.5], factors such as the differing complexity of environ-
ments, the relative position invariance of external cues in larger
environments, or the decreasing reliance on external cues and lack
of boundaries in the OS environment, might have also played a role
separately or in combination. Other factors, such as the partial
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Fig. 5. Rotational symmetry of spatial periodicity. (A) Distribution of gsp
score per subject determined based on the spectral method. We selected
neurons with gsp scores >0.33, the 5% confidence interval of the randomized
spatial ACs (SI Appendix, SI Experimental Procedures and Fig. S3H). (B) Distri-
butions of angles of rotational symmetry from the two subjects over all en-
vironments using a 2° bin size. The n values indicate the number of data
segments. (C, Left) Box and whisker plots for grid rotational symmetries ob-
served in each environment color-coded according to environments. (C, Right)
Rotated histograms show the composition of rotation symmetries according to the
environment. Note that in addition to data segments displaying ∼60° rotational
symmetries (black bracket), comparable numbers of data segments exhibited
rotational symmetry at other angles (gray brackets). **P < 0.01, ***P < 0.001.
(D) Angle of rotational symmetry negatively correlated with environment size.
Significant differences in angles of rotational symmetry were found across
environments, except between LV and LX, consistent between both subjects (SI
Appendix, Tables S8.1–S8.5). Error bars represent angular variance (Subjects H
and K, n = 214 and n = 213 segments, respectively).
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coverage of larger environments, could have also contributed to in-
complete grid formations. Therefore, we also tested the rotational
symmetry of grids under a balanced coverage condition. Even after a
50% reduction of navigation paths in the BY environment, the 60°
rotational symmetry of cells prevailed, whereas other rotation sym-
metries predominated in the larger environments [circular ANOVA:
F(3,75) = 9.034 P(n = 78) < 0.001; F(3,134) = 23.7839, P(n = 140) < 0.001;
SI Appendix, Tables S8.6 and S8.7]. Hence, among other factors, we
can rule out that the significant deviation from 60° rotational sym-
metry in the larger environments was a result of incomplete spatial
coverage of these environments.

Discussion
Context-dependent spatial representations in the hippocampus of
various species have been widely documented. Neurons in CA1 and
CA3 remap their place fields upon changes made in the environment,
as demonstrated in rodents (13–17), Chiroptera (35), and primates
(36). Because the adaptive remapping of hippocampal place fields is a
relatively fast and EC-dependent process (13, 37), it is plausible to
assume that neurons in the EC are endowed with some degree of
flexibility. Contrary to this hypothesis, initial reports on grid cells
based on rodent experiments suggested a universal metric for path
integration-type navigation (10, 12). This metric appeared to be scale-
invariant with respect to the geometry and size of the environment,
despite having been challenged by a number of rodent studies (18–
20). One such challenge involved moving the walls of the enclosure,
which induced temporary elastic changes of the grid geometry (19). In
a more common scenario, mere environment novelty elicited ex-
panded grids (18), while neither novelty nor stretching affected bor-
der cell activity (9). Likewise, grid cells in rats exploring polarized
asymmetrically shaped (trapezoidal) enclosures develop heteroge-
neous gridness of activity between different parts of the enclosure in
contrast to the homogeneous gridness typical in symmetrical enclo-
sures (e.g., square, rectangle). Nevertheless, grid distances in trape-
zoid enclosures remained uniform (20). Although the grid scale
invariance might be robust across species of the rodent order, com-
paring it with the human analog might reveal aspects of neuronal
representation of space that are specific to the human brain.
We obtained stable recordings of different neurons in the human

EC across spatial navigation trials in multiple virtual environments
(Fig. 2) over successive days. More than half of the neurons dis-
played spatially periodic activity (a fraction of those neurons spe-
cifically displayed grid-like activity), and they did so consistently
and specifically for given environmental features, independent of
the order of presentation of the environments and day of recording
(SI Appendix, Figs. S2 and S5). Convincingly, these effects of the
environment were consistent between the two subjects.
The observed proportion of neurons with spatial tuning is

consistent with data from the rat EC (11), but larger than ob-
served in the primate EC during visual tasks (35) and in the
human EC during other virtual navigation tasks (31). Because
our electrodes were nonmoveable, selective sampling could not
bias this ratio. The relatively high ratio of neurons displaying
spatially periodic activity has two implications. First, consistent
with earlier results (31), neurons in the human EC are able to
form neural representations of space in a virtual reality envi-
ronment induced by a small, handheld display (25.6 cm diagonal
and ∼23° horizontal visual field) in the absence of proprioceptive
and kinesthetic cues. Second, these neural representations, re-
lying mainly on visual cues, showed adaptive scaling.
The spatial periodicity of neuronal activity was not uniform

across all four studied environments. Instead, spatial periodicity
systematically decreased with the increasing size of the envi-
ronments (SI Appendix, Fig. S30 A and B). However, this finding
was not confirmed by the gridness of PGCs (SI Appendix, Fig.
S31 A and B). Although we could rule out partial coverage as a
potentially confounding factor contributing to cells in the OS
environment showing less spatial periodicity than in any other

environment, other factors, such as the lack of orienting spatial
cues or the lack of polarity of the environment (20), might have
played a role. We remark that in the absence of orienting distal
cues, the grids were less consistently aligned.
Besides gridness, a key factor regarding the effect of the envi-

ronments on grids is the parameter of grid scale. Although the
original report of grid cells in rodents documented scale in-
dependence of grids (10), other studies have found an experience-
dependent rescaling of grid cells under special conditions, such as in
response to distortion of the aspect ratio of a familiar environment
(19, 20) and transient rescaling during exposure to a novel envi-
ronment (18). Similar to the grid transformations brought about by
adjusting environments, we observed elastic transformations of grids
across environments (Figs. 2 and 3). The EC neurons in both
patients investigated over multiple days showed a consistent
environment-dependent preservation of grid geometry and orienta-
tion over days with small variance, suggesting that each grid type was
optimal for the environment it was applied to. We can rule out both
effects: the distortion effect, because our subjects were fully aware of
the switch between the environments, and the novelty effect, because
none of the investigated grid parameters changed over time. How-
ever, we cannot rule out the contribution of proprioceptive cues to
the scale invariance of grids observed in rodents and the effect of
eliminating those cues in the virtual navigation condition.
The second key feature of the observed grids was the preserved

orientation of the main grid axis across repeated trials in an envi-
ronment. These data suggest that, as in rats, human grids utilize
cues, such as environment geometry, to anchor grid orientation
(20). However, in our virtual navigation task, there were three in-
dependent but consistent orienting cues available. The first was the
starting orientation of the avatar relative to the walls (SI Appendix,
Fig. S1A), the second was the constant presence of architectural
cues (except in the OS environment), and the third was the memory
of the environment. The starting orientation of the avatar was the
same relative to the X–Y axes in all environments (SI Appendix, Fig.
S1A), which may have predisposed the grids toward assuming a
similar orientation within each environment. In contrast, compari-
sons between the three enclosed environments showed that average
grid orientation in LV differed significantly from average grid ori-
entation in BY and LX (Fig. 4 and SI Appendix, Fig. S32). Although
grids of SPCs in square-shaped environments aligned with the angle
of a 45° orientation, they tended to align at an angle of 33° in a
rectangular environment relative to the same cardinal axes (SI
Appendix, Fig. S1A). Because both angles represent the direction
toward the corner of the actual environment from the starting po-
sition, the difference suggests that the geometry of the environment
determines grid orientation rather than the avatar’s starting orien-
tation or architectural cues. The environmental dependency of grid
orientation is in agreement with studies on rodents showing that
grid orientation is aligned with the boundaries of the enclosure (20,
21); however, in contrast to the findings of rodent EC, which
minimizes the symmetry of grid angles relative to the walls (21),
human EC grids tend to align with the corners of environments.
The third key grid feature we investigated was the rotational

symmetry of grids. Studies in rodent EC have described neurons
with firing fields organized in periodic bands (11), in addition to
cells with canonical hexagonal grids. We quantified the distribu-
tion of grid rotational symmetry for neurons from human EC and
observed a wide range of symmetries (Fig. 5 B and C), with a
strong negative correlation between the angle of symmetry and
environment size (Fig. 5D). With a post hoc analysis of balanced
environmental coverage, we were able to rule out that the higher
prevalence of hexagonal grids in the smallest environment (BY)
was only due to the more complete coverage relative to the larger
areas of the other environments. Nevertheless, the incomplete
coverage might have compromised the interpretation of these
factors. Whether the relatively large proportion of noncanonical
symmetry observed in our human grid cells compared with the
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rodent’s grid cells reflects an adaptation to a predominantly
Cartesian organization of our human-made environments, or if it
is constrained by other physiological mechanisms, is beyond the
scope of this study.
On several occasions, we omitted one trial to double the time

spent in another environment, which helped to affirm that none
of the rescaling effect was due to the limited sampling time and
poor spatial coverage. To compensate for the poor spatial cov-
erage and increase our confidence in the sparse sampling of grid-
cell activity, one can combine spikes of neurons from the same
electrode (SI Appendix, Fig. S10) and confirm the hexagonal
tessellation on the firing rate maps consistent with rodent, pri-
mate, and human studies (10, 26, 31, 38).
Contrary to rats, in which grid fields initially expanded in novel

environments (18), all three monitored grid features were stable
across 7–8 d and showed no systematic variation over time (Fig. 3
and 4 and SI Appendix, Figs. S7C and S8B). Nodes of spatial
periodicity (putative grid vertices) were also stable over time
within the same environment during the same session, as illus-
trated by individual examples of spatial mapping of single-unit
activity between the first and fourth segments of a 20-min re-
cording session (SI Appendix, Fig. S5 A–E). Moreover, the stabil-
ity and stationarity of grids in the firing rate maps were confirmed
at a population level by cross-validation and stationarity analysis
that included both SPC and PGChi-conf datasets (SI Appendix, Fig.
S5 F and G). Consistent with the stability of grid nodes, the
environment-dependent scaling and rescaling in our human data-
sets were instantaneous. We observed no gradual adaptation within
each day (SI Appendix, Fig. S5) or across days of recordings (Fig.
3B and SI Appendix, Tables S3.6 and S3.7). The rapid adaptation to
environmental parameters suggests a dynamic reconfiguration of
neuronal activity consistent with attractor switching (39–41) or
oscillatory interference (42–44) models.
The advantage of a visual system in spatial navigation is mul-

tifold. First, endowed with a larger visual information-processing
capacity with which to assess an environment, humans are able to
form a cognitive map or a “survey representation” of their envi-
ronment without the need for visiting all parts, and adapt grids
based on visual spatial cues accordingly. Second, the dimensions of
the environments can be ascertained by a few saccadic eye
movements prior to physical exploration. Third, considering the
complexity and scalability of human environments, humans might
rely on extracting information from optic flow more efficiently
than rats do, given that there is theoretically sufficient information
available from optic flow for grid formation (45). The pre-
dominance of visual input in the human brain allows detection and
mapping of spatial cues more quickly and may influence grid
parameters to a greater degree than is possible in the rat brain
(35–37). It might also allow the human hippocampus and EC to
perform more naturally in virtual navigation tasks, where pro-
prioceptive and kinesthetic cues are absent (30, 31, 46, 47).
Nevertheless, our results corroborate evidence that a visually

cued, active navigation task in a virtual reality environment
provides sufficient input to the human EC to elicit spatially co-
herent localized activity, similar to the spatially coherent local-
ized activity found before in humans (31) and rodents (10, 38,
48). This discovery is intriguing because it occurs despite the
conflict between the patient’s simulated self-motion and natural
vestibular and proprioceptive signals, as well as an awareness of
the patient’s true location relative to the hospital. As initial ev-
idence of sufficient stimulation, we observed that the baseline
activity of EC neurons substantially increased when the pa-
tients began playing the game.
Despite the common cellular mechanisms in rodent and hu-

man brains, spatial navigation and spatial memory may involve
slightly different networks in the human brain. For instance,
human subjects are able to perform path integration without the
hippocampus and EC (32), except when the navigation involves

memory recall of places like in our task. The human EC may also
contribute to the formation of declarative/semantic memories or
abstract conceptual representations (49) as a part of the mesial
temporal lobe that cannot be studied adequately in the rodent
brain. With the help of virtual reality (30, 46), our experimental
paradigm establishes a common ground to compare neural
mechanisms of representing space across different species and to
study the evolution of spatial navigation in the mesial temporal
lobe in relation to memory and perception of locations and more
abstract visual spaces (26). Furthermore, with instructed naviga-
tion in virtual reality environments, we will be able to investigate
the relationship between memory and anticipation experimentally
(50), which is currently unattainable by neuroimaging techniques.
We argue that with these experiments, the virtual reality paradigm
is not only well-suited for investigating the complex environmental
determinants of neuronal representations, including grid forma-
tion, but that these complex environmental determinants may also
help us to understand the neural representation of spatial, epi-
sodic, and semantic memory, which are fundamental aspects of
our internal model of reality.

Materials and Methods
Subjects. One female and three male patients with epilepsy (ages: 33–41 y, av-
erage age of 38.5 y; SI Appendix, Table S1.2), who had previously provided in-
formed consent, were implanted with microelectrode arrays in their EC (Fig. 1A)
in preparation for surgical resection of epileptic foci. All surgical and experi-
mental procedures were approved by the Seton Institutional Review Board. From
two patients (subjects H and K), we could record well-isolated single-unit activity
throughout a 7-d period and an 8-d period in the hospital’s epilepsy monitoring
unit while they performed a virtual navigation task on a tablet computer.

Tasks. The subjects’ task was to play a computer game on a tablet they held on
their lap. The game’s objective was to locate space aliens and return them to
their spaceship parking at memorized locations (SI Appendix, SI Experimental
Procedures). Four different virtual environments were modeled: BY, LV, LX, and
OS (Fig. 2 A and B and SI Appendix, Fig. S1). These environments differed in
several features, including scenery, size, aspect ratio, and presence of obstacles or
boundaries (SI Appendix, SI Experimental Procedures, Table S1.1, and Movie S1).

Recordings. Single-unit activity was obtained from five microelectrodes
implanted in layers II and III of the medial EC in the right hemisphere. Mi-
croelectrodeswere integrated or plug-in components of amacroelectrode strip
made by Ad-TechMedical and PMT. The electrode strip was placed and secured
by the neurosurgeon at the surface of the EC such that only the blunt tip of
microelectrodes penetrated the pia. The wide-band signal was recorded at a
sampling frequency of 24 kHz and bandpass-filtered between 300 and 6,000Hz.
Spike sorting was done off-line on the continuous recording (including all
environments) using WaveClus software (51) on MATLAB (MathWorks), and
spike trains were segmented according to environments later. Only single units
with Mahalanobis distances of >20 separations were included.

Analysis of Grid Parameters. Firing rate maps, spatial ACs, and autoperiodo-
grams were computed using standard methods (11). We quantified the grid-
ness scores, grid orientation, and grid rotational symmetry (52, 53) by precisely
following the method outlined by Barry et al. (18), Sargolini et al. (54), and
Krupic et al. (11) (SI Appendix, SI Experimental Procedures and Fig. S3 A–F).
Grid distance was determined based on the autoperidogram and manually
cross-validated with the ACs. To compute confidence intervals for statistical
significance of gridness scores, we applied a standard Poisson bootstrap
method and shuffled spike times 1,000 times (SI Appendix, Fig. S3G), as well as
theta, alpha, and direction-modulated surrogate spike trains. Validation of
spatial periodicity against the by-chance was done using a Monte Carlo
method by comparing the spectral modulation depth (gsp scores; SI Appendix,
SI Experimental Procedures) of each AC against the distribution of gsp scores
of 1,000 randomized ACs generated from mixtures of 2D Gaussians.

If X and Y are the coordinates of the largest peak near the center in the
autoperiodogram, the grid distance is defined as the Euclidean distance of
the peak from the center: λ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 +Y2

p
. After λ was computed, it was and

manually cross-validated with the ACs.
Grid orientations were computed from the autoperiodograms (SI Appen-

dix, SI Experimental Procedures and Fig. 1F). Given X and Y as the coordinates of
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the largest peak on the 2D autoperidogram, the principal orientation (β) is
defined as β= arctan

"
X
Y

#
.

The angle of rotational symmetrywas defined by the angle (γ) of rotation that
maximized the Pearson’s correlation between the original and rotated AC [SI
Appendix, SI Experimental Procedures, Quantifying “Gridness” (Gridness Score)].

Datasets and Statistical Methods. Based on the spatial spectral analysis,
gridness scores, and persistence of single-unit activity in different environ-
ments, we constructed six datasets: SPC, pSPC, PGC, pPGC, PGChi-conf, and
pPGChi-conf (SI Appendix, Table S2). To compare gridness scores and grid
periods across environments for the SPC, PGC, and PGChi-conf datasets, the
general linear model ANOVA and its nonparametric version, the Kruskal–
Wallis test (MATLAB), were applied. The main factor was the environment

(BY, LV, LX, and OS), and the dependent variables were gridness and grid
period. For the pSPC, pPGC, and pPGChi-conf datasets, ANOVA with repeated
measures or its nonparametric version, the Friedman test, was used. To
compare grid orientations and grid symmetry between environments, we
applied circular ANOVA (Watson–Williams test) on von Mises distributions
(53) or the Wheeler–Watson test as an alternative when von Mises distri-
butions did not qualify (55). We performed Rayleigh tests for testing non-
uniformity of circular data and Watson’s goodness-of-fit test for testing
conformity with the von Mises distribution (MATLAB Circular Statistics
Toolbox) (53) (SI Appendix, SI Experimental Procedures).
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Chapter 5 
 

5. Phase coding and grids 
 
 

“Whatever the case, these diffuse connections may participate in the emergence of 
dynamic patterns of largely sub-threshold activities, which may modify the supra-

threshold functions of the network, by adding some neurons here or subtracting 
(through inhibition) some other neurons there, to or from the active population. This 

system of initially sub-threshold patterns, superimposed upon or underlying the 
conventional operations of the neural connections and networks, might be what 

makes the difference between the nervous system and even our most sophisticated 
electronic hardware systems.” 

 
(Szentágothai, 1978) 

 
Szentágothai’s vision was far ahead of its time. Those words could have been written today as 

neuroscientists still struggle to make sense of sub-threshold activity. 

 

The premise of the previous two chapters was that the very same property that enables neurons 

to encode information by the phase of action potentials is the same that endows them with the 

self-organizing capability to form grid-like spatial representations. If information is encoded 

by the phase, then we should be able to decode that information from the phase. Hence, if 

neurons in the medial entorhinal cortex (MEC) encode location, then we should be able to 

decode the location from the phase. This was the tenet of my 2018 and 2022 papers (Nadasdy 

et al., 2018, 2022). The experiment involved only two subjects, but those subjects devoted their 

time to run the experiment in seven and eight sessions on different days to generate sufficiently 

large datasets. 

 

First, we had to establish a firm methodological ground for recording grid cell activity. That 

was accomplished by our 2017 PNAS paper (Nadasdy et al, 2017). Second, we had to define 

the frequency bands that could serve as references for defining the phase of firing. We had two 

candidates, theta and gamma, based on previous literature (Bragin et al., 1995; Chrobak & 

Buzsaki, 1998; Colgin et al., 2009; Colgin & Moser, 2010; Fernández-Ruiz et al., 2021; Harris 

et al., 2003; Hinman et al., 2016; Jensen & Lisman, 2000; Lenck-Santini & Holmes, 2008; 

Penttonen et al., 1998; Qasim et al., 2021; Senior et al., 2008; Tingley & Buzsáki, 2018; 

Umbach et al., 2020; Yartsev & Ulanovsky, 2013). Most of the prior research in this field 

implicated theta because theta provides reproducible correlations with behavior in rodents. 

However, theta in primates (including humans) is intermittent in contrast with the continuous 
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theta observed in rodents. It forms bouts rather than a sustained oscillation, and these bouts of 

theta often align with eye and body movements (Killian et al., 2012; M. Aghajan et al., 2017). 

 

In contrast to theta, the gamma rhythm is continuous, and the gamma phase does not reset on 

any behavioral events, such as starting or stopping motion (Tallon-Baudry & Bertrand, 1999). 

We computed spike phases relative to both the theta (2-8 Hz) and slow-gamma (25-45 Hz) 

LFPs separately and worked with both. It was striking from the beginning that gamma provided 

a significantly narrower phase tuning of the same action potentials than theta recorded from 

the same cell. Gamma phases of spikes expressed sharp von Mises distributions with often 

discrete arms (Zoltan Nadasdy et al., 2022). A methodological innovation key to this project 

was to color-code the phase of spikes in the 2D plane of navigation. This is a non-trivial task 

because the trajectory of navigation could be relatively sparse, and it does not cover large parts 

of the navigable area. We had to partition the area into square shape bins to compute the 

average phase and variance of spike phases per bin and show both features plus the 2D map in 

the same figure. Altogether 4 dimensions. Each tile was color-coded according to the mean 

phase of the spikes relative to theta or gamma. In addition, the inverse variance of phase was 

represented by the hue of the color. The larger the variance, the darker the color of that tile 

was. Hence, the bright colors represented phases where the phase was reliably defined across 

multiple crosses of the same bin. This new type of “phase map” representation revealed the 

hidden topography of the firing phase structure beyond what can be ascertained from firing 

rates (Zoltan Nadasdy et al., 2022).  

 

An unanticipated outcome of converting the two-dimensional neuronal activity to phase maps 

was that a larger proportion of entorhinal cortical neurons exhibited grids with respect to the 

phase than to the firing rate. Could phase be a more reliable feature of the neuronal code than 

the firing rate? That is an empirical question for future research to address. 

 

Let's take a broader and more distant perspective to understand how neurons encode space by 

the phase of spikes. Millions of neurons are tracking our position while we move. The three 

main types of spatially tuned neurons are place cells, head direction cells, and grid cells. While 

place cells fire at specific spatial locations and head direction cells fire when the head turns in 

a certain direction (hence the name), grid cells fire at the vertices of a spatially oriented periodic 

grid, where each class is defined in allocentric coordinates. Let’s focus on the grid cells. 

Although several theories have been proposed, we do not have a coherent narrative of how this 
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grid-like coordinate system contributes to encoding our actual location. We addressed this 

question by recording grid cells from the medial entorhinal cortex of human subjects during 

navigation in virtual environments. The participants were patients diagnosed with epilepsy 

performing spatial memory tasks while they were implanted with microelectrodes in the 

entorhinal cortex to determine the sources of seizures for surgical intervention.  

 

To understand the spatial encoding of grid cells, we correlated the avatar's position with the 

phase of neuronal activity. Cells in the MEC, in addition to firing at grid positions, temporally 

align their firing to intrinsic ongoing neuronal oscillations, such as theta (2-8 Hz), and slow 

gamma (25-45 Hz) oscillations, the two most prevalent oscillations of the LFP spectrum. The 

phase alignment of spikes with slow gamma is surprisingly precise, as cells tend to fire at 

specific phases of the oscillation while the subject’s avatar traverses between locations. 

Conspicuously, each cell represents the closed space with ~7 locations on average. We 

observed that every time the avatar crossed any of those locations, neurons fired action 

potentials at the same phase relative to the ongoing gamma as they did the last time at the same 

place. Considering that the paths we take when we navigate are not entirely deterministic as 

we don’t cross the same place at precisely determined times, we don’t assume to traverse a 

specific place in sync with any hypothetical internal neuronal clock either. Rather the opposite: 

instead of aligning our path with an internal clock, our brain aligns the speed of the internal 

clock to our location. Assuming that gamma is that clock, the alignment of that clock can be 

achieved by the modulation of frequency, i.e., by speeding up or slowing down gamma. As a 

result, the phase of gamma oscillations changes as a function of location. To utilize the 

information built in the gamma oscillations for self-localization, the gamma phase should 

topographically be anchored to the environment. Therefore, we must assume a 3D landscape 

of the gamma field where the X and Y axes represent the two orthogonal directions in the 

horizontal plane referenced to the environment (virtual or real), and the Z axis represents the 

phase of gamma (Fig. D6). When we (or the avatar) move across a familiar room, gamma 

rhythm climbs the phase landscape and makes the neuron fire at the peak positions of the 

membrane depolarization.  

 

The scenario is a bit different when we record single-unit activity from the brain. We do not 

have direct access to individual neurons’ subthreshold oscillation. However, we can 

approximate that with the LFP that we typically record from a different electrode. While 

according to the model, action potentials are aligned with the neuron’s subthreshold membrane 
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oscillation, empirically, they are offset relative to the oscillatory component of the LFP, which 

is the average of a population of neurons’ SMO sampled from a separate electrode. This was 

also the scenario during our recording of entorhinal cortical neurons in the human brain. 

Because the single-unit activity and gamma LFP were recorded from separate electrodes, the 

spikes from other electrodes appeared to coincide with various gamma phases. Despite the 

spread of phases, the average phases were consistent with the locations the avatar visited. They 

were expected to be consistent because the phases of local gamma waves were locked to the 

environment; hence phase was specific to that location, as predicted by the phase coding model 

(Z Nadasdy, 2009).  

  

That was just a model, but it took years to test it empirically. The testbed was our experiment 

described in Chapter 4 (Nadasdy et al., 2017b). In these experiments, we recorded entorhinal 

cortical neuronal activity from the human brain in patients undergoing surgical resection of 

brain tissue to control seizures. Among the more than 100 macroelectrodes, we implanted a 

small array of 4 x 4 microelectrodes in the medial entorhinal cortex (MEC) and asked the 

patients to play a computer game that involved spatial navigation in virtual environments using 

a tablet computer. One of the 16 microelectrodes was dedicated to recording the LFP, and we 

used that to extract theta and gamma oscillations. The other 15 electrodes were used to record 

single-unit activity. By tracking the avatar’s trajectory during virtual navigation, we could map 

the neuronal activity in space, not only in one but across multiple environments. This provided 

unmatched flexibility in studying the behavior of grid cells under transformations of the 

environment unattainable in rodent experiments or in real life. We used this paradigm to 

validate the existence of grid cells in the human brain. This was the second direct 

electrophysiological evidence for grid cells in the human brain and the first to show that grid 

cells in the human brain are fundamentally different from those of rodents. These experiments 

leveraged the unparalleled potential of VR that we also used in our later experiments. For 

analyzing the contribution of phase coding to the grid cell activity, we returned to the data from 

our 2017 experiment (Nadasdy et al., 2017b). We showed (1) a precise phase locking between 

gamma oscillations and spikes and (2) by converting the spike times to the instantaneous phases 

of ongoing gamma and theta oscillations, we arrived at stable phase maps (Nadasdy et al., 

2022). The plots we published (Fig. 1-4) show the topography of phases combined with the 

variance, hence providing a measure of confidence associated with these phase maps. These 

phase maps revealed that phase-encoded positions in an allocentric coordinate system and 

phases were locked to the environment, just like our model predicted.        
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We took this result one step further and asked: If the coupling between the avatar’s location 

and the grid cell’s firing phase is as strong as observed, can we predict the avatar's location 

based on the phase of firing relative to the gamma oscillation? The gamma reference can be 

selected arbitrarily because only the relative phase differences matter when changing location. 

This is exactly what we found. Using a Bayesian decoding model, we could predict the position 

of the avatar at the upcoming spike with +/- 1 virtual m precision based on the phase probability 

map (as prior probability). Considering that these cells were not place cells from the 

hippocampus but grid cells supposedly providing an internal coordinate system, it was 

surprising that they also contribute to self-localization. Or perhaps that is their primary job, and 

providing the coordinate system is just a byproduct of encoding location. Let’s leave that 

question open for future research.  

 
 
 
 
 
 
  

 

 

Figure D6. Schematic of the 
model behind phase of spike 
encoding location of the avatar 
in the environment. From left to 
right: gamma oscillations form 
a dynamically changing local 
field in the human EC, which 
updates the phase as the 
avatar walks across the field. 
This field renders the phase of 
SMO of the grid cells, including 
those that are activated by the 
avatar moving across the area. 
While each grid cell fires at the 
peak of its SMO, that peak is 
different from the peaks of LFP 
recorded from a distant 
electrode (“common gamma 
reference”). Hence, relative to 
the common gamma 
reference, the phase 
modulation of cells 
representing the avatar’s 
position (different colors) 
enable neurons downstream to 
decode the position of the 
avatar solely from the relative 
phase (not shown).      
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N E U R O S C I E N C E

Phase coding of spatial representations in the human 
entorhinal cortex
Zoltan Nadasdy1,2,3*, Daniel H. P. Howell2,4, Ágoston Török5, T. Peter Nguyen6, Jason Y. Shen7,8, 
Deborah E. Briggs7,8, Pradeep N. Modur7,8, Robert J. Buchanan2,7,9,10

The grid-like activity pattern of cells in the mammalian entorhinal cortex provides an internal reference frame for 
allocentric self-localization. The same neurons maintain robust phase couplings with local field oscillations. 
We found that neurons of the human entorhinal cortex display consistent spatial and temporal phase locking 
between spikes and slow gamma band local field potentials (LFPs) during virtual navigation. The phase locking 
maintained an environment-specific map over time. The phase tuning of spikes to the slow gamma band 
LFP revealed spatially periodic phase grids with environment-dependent scaling and consistent alignment with 
the environment. Using a Bayesian decoding model, we could predict the avatar’s position with near perfect 
accuracy and, to a lesser extent, that of heading direction as well. These results imply that the phase of spikes 
relative to spatially modulated gamma oscillations encode allocentric spatial positions. We posit that a joint spa-
tiotemporal phase code can implement the combined neural representation of space and time in the human 
entorhinal cortex.

INTRODUCTION
The entorhinal cortex (EC) is an integral part of the medial tempo-
ral lobe of the mammalian brain and plays a critical role in memory- 
guided spatial navigation in rodents (1, 2) and in humans (3–6). 
Grid cells, border cells, and conjunctive head direction cells in the 
medial EC (mEC), along with place cells and head direction cells in 
associated areas of the hippocampus and subiculum, are key cellular 
constituents of the functional network underlying allocentric spa-
tial navigation and enable individuals to localize themselves relative 
to the environment (7–9). However, grid cells, defined on the basis 
of the grid-like pattern of their firing rate (FR), account for less than 
30% of cells in the rodent dorsomedial EC (2) and less than 25% in the 
human EC (4, 6). Those cells in the rodent also include conjunctive 
cells (10). The rest of the neurons (>70%) include head direction 
cells (58%) (11) and time cells (20%) (10, 12). The network of func-
tionally heterogeneous classes of neurons implies a combined spatial- 
directional-temporal coding scheme to be prevalent at a cellular 
level in the EC, yet no such unified code has been identified (13).

Beside their spatial modulation of FR, mEC neurons also exhibit 
a robust phase tuning relative to intracellular subthreshold oscilla-
tions (14, 15) and local field potentials (LFPs) primarily within two 
harmonic bands: theta and gamma (16). Theta (2 to 12 Hz) and 
gamma (25 to 60 Hz) oscillations were found to be most prominent 
during active exploratory behavior and rapid eye movement sleep in 
rodents (17) and intermittent but still prevalent in the human medial 
temporal lobe during both real and virtual navigation (3, 18–22). 

The spatial periodicity of grid cell activity is also critically dependent 
on theta band oscillatory drive by the medial septum (23, 24), and 
inactivation of the septal input was shown to reduce the theta fre-
quency coding of running speed (25). On the other hand, gamma 
frequency communication between the EC and dentate gyrus under-
lies spatial and object learning (26). In addition, theta and gamma 
tend to phase couple in the rodent and human medial temporal lobe 
(27–30), and both gamma-to-theta and spike-to-theta phase coher-
ence are instrumental for encoding and recall (31–33). Despite the 
indisputable role of grid cells in the allocentric spatial navigation 
across the range of mammalian species (2, 4, 6, 34, 35) and the de-
pendency of spatial behavior on theta rhythm, our understanding of 
the relationship between spatially modulated spike rate, spike phase, 
and ongoing LFP oscillations during unconstrained two-dimensional 
(2D) spatial navigation is incomplete, especially in the human brain 
(15, 36–40).

Efforts to model grid cell properties from the combination of 
spatial and oscillatory features led to the oscillatory interference 
model, which explained the emergence of equidistant FR nodes, 
and a further extension of the model hypothesized that the phase of 
velocity-controlled oscillations relative to the baseline theta rhythm 
encodes the distance traveled along a specific direction (41). Ele-
gantly, the same model explained phase precession (42–44). Other 
models posited that spatial information encoded by the spike phase 
naturally generates spatially distributed periodic activity patterns as 
a by-product of the inherent ambiguity of decoding locations from 
phases (45). However, neither the predicted phase patterns nor allo-
centric interference patterns have been observed. The challenge was 
to integrate the phases of spikes over spatial locations and recover 
the map of phase modulation in two dimensions over the area of the 
environment. The 1D approach by mapping the phase of spikes rel-
ative to theta component of the LFP while the rat is running in a 
linear track revealed systematic phase precession in the hippocam-
pus (46–48) and in the mediolateral EC (49, 50). However, because 
the neuronal mechanism of phase precession and the role it plays in 
encoding space are still debated (51–56), the questions of whether 
phase coding contributes to the construction of cognitive maps and 
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the specific frequency band of intrinsic oscillation involved in this 
coding are still open. Despite various reports of decoding the ani-
mal’s position and heading direction from theta phase precession of 
hippocampal place cells (57, 58) or the animal’s position from the 
activity of mEC grid cells (43, 44) during unconstrained 2D naviga-
tion, the concept of 2D phase maps (i.e., the spatial distribution of 
phases) across the entire environment previously only existed in 
simulations (42–44). Nevertheless, leveraging the theta phase pre-
cession using a Bayesian maximum likelihood method afforded 
moderate decoding performance of the animal’s position relative to 
the center of the place field (57) or the head direction of the animal 
(58). The common features of these approaches were, regardless of 
predicting location or direction of the animal, to hinge the decoding 
on theta phase precession and place cell activity (44, 57–59). On the 
other hand, previous studies that concerned phase precession in 
grid cell activity were unable to detect directional or field-specific 
phase coding (43, 44). A complete empirical 2D reconstruction of 
phase maps has not been accomplished, neither with respect to 
theta nor to gamma band LFP.

Since these earlier studies limited the analysis of motion trajectories 
either by using a linear track (49) or by extracting omnidirectional 
trajectory segments from the 2D navigation (43), the location-invariant 
nature of phase coding remained hypothetical (45). Conservation of 
phase upon unconstrained reentry to a location from different di-
rections, the ultimate proof of phase coding, has not been shown. In 
addition, earlier experiments did not validate the decoding perform-
ance against randomized spike phases dispersed along the actual 
trajectories to provide an unbiased estimate of decoding. Moreover, 
although it has long been suggested (46), an allocentric 2D spike phase 
code across a full environment has never been demonstrated, neither 
in animals nor in humans. Last, none of the previous studies inves-
tigated gamma band LFP as a potential reference for phase coding.

Therefore, we investigated the cellular-level phase coding relative 
to theta and gamma LFP during unconstrained spatial navigation in 
2D environments from the human EC. We were able to derive phase 
maps to decode the avatar’s movement from the phase of spikes, vali-
dated the phase decoding against randomized phases, and, lastly, 
compared the decoding performance between spike phases and FR.

Since spikes of mEC neurons maintain high temporal coherence 
with local theta and gamma oscillations during locomotion (60), for 
the same cells to express grid-like spatial periodicity in the environ-
ment, a 2D map of the spike to LFP phase coherence must conform 
with the spatially periodic topography, similar to the FR grids. Given 
that single-unit activity of the human mEC expresses grid-like firing 
patterns (4, 6) and the human EC shows intermittent but robust 
oscillatory LFP both at theta (18, 19, 32) and gamma frequency 
bands (29, 30), we sought evidence of spatially organized phase 
maps in data recorded from two patients (subjects 1 and 2) performing 
spatial navigation tasks in four different virtual environments. These 
environments were a backyard (BY), a courtyard of the Louvre (LV), 
a model reconstruction of the main hall of the Luxor (LX) Temple 
in Egypt, and a large open space (OS) with a boundless horizon and 
minimal external cues. Both patients in our study underwent intra-
cranial monitoring of epileptiform activity in their medial temporal 
lobe before the surgical resection of the seizure focus. Because theta 
frequency modulations correlate with running speed in the rodent 
and the human (61–63), the walking speed of the avatar in our vir-
tual navigation experiment was set to be constant to eliminate the 
potential confound of speed affecting the phase of LFP.

RESULTS
Definition of phase maps
Grids of 16 microelectrodes (Fig. 1, A and B) were implanted in the 
right EC of two previously consented subjects along with different 
configurations of macroelectrode strips (Table 1). The locations of 
electrodes were verified by postsurgical magnetic resonance imaging 
(MRI) and computed tomography (Fig. 1A). We analyzed the single- 
unit activity (Fig. 1C) from 525 putative neurons isolated with 
99% confidence based on their intercluster Mahalanobis distances 
(64) and verified by >5-ms refractoriness of spike times. LFPs were 
recorded simultaneously from a separate electrode to rule out con-
tamination of LFP by spike waveforms (Fig. 1B). The two subjects 
performed spatial navigation tasks in four virtual environments for 
30 min each day over seven to eight consecutive days, resulting in a 
total of 2100 data segments (Table 2). Each data segment was asso-
ciated with 30 min of navigation in four different virtual environ-
ments, spending 5 or 10 min in each. The spike phase analysis was 
focused on the two most prominent frequency bands of the LFP 
that significantly deviated from the 1/f spectral function: 2 to 2 Hz 
and 25 to 35 Hz (slow gamma). We identified the former as theta 
and the latter frequency range as slow gamma or gamma for short 
(Fig. 1D and fig. S1) (13). Building on previous findings (4, 6, 13) of 
grid cells expressing allocentric spatially periodic firing patterns in 
humans (Fig. 1, F and G) while maintaining firing phase coherence 
with LFP [including phase precession (65)], we hypothesized that 
average aggregate spike phases should unravel spatially periodic 
patterns when resolved in the 2D space of navigation (Fig. 1H). Al-
though our analysis was agnostic to the frequency band of the LFP, 
the theta and gamma frequency band LFP references generated dif-
ferent maps from the same spike train. To determine the optimal 
frequency band to serve as reference, we compared the temporal 
stability of the resulting phase maps between theta and gamma 
band LFP. Furthermore, we were also aware that spike trains may 
not reveal consistent phase maps beyond the by-chance joint prob-
ability of spatial and temporal patterns.

To determine the phase of spikes, we first bandpass-filtered the 
wide-band LFP at theta (2 to 12 Hz) and gamma (25 to 35 Hz) 
frequency bands and then computed the Hilbert transforms of the 
filtered signals separately (Fig. 1E). The Hilbert transforms of LFP 
defined the instantaneous phases of spikes relative to theta and 
gamma band LFP with less than 1° resolution at 1-ms sampling 
frequency. The 1-ms precise intersections of spike times with the 
two phase transforms defined two phase vectors converting the 
spike times to spike phases (f), one vector relative to theta and 
the other vector relative to gamma, referred herein as gamma 
phases and theta phases, respectively (Fig. 1E) (13). While the 
distributions of spike phases for most cells were nonuniform, three 
times as many (19%) neurons expressed deviation from uniform 
phase distribution relative to gamma as to theta (6.21%) [Fig. 1I and 
figs. S3 and S6E; Rayleigh(gamma)P < 0.05: 94 of 478 cells or 376 of 
1914 epochs; binomial test, P = 2.3066 × 10−43 and Rayleigh(theta)P < 
0.05: 23 of 370 cells or 92 of 1480 epochs; binomial test, P = 0.0274] 
and 10 times as many f with Rayleigh(gamma)P < 0.01. Moreover, 
the average single-unit f, examined individually or combined 
across electrodes 1 to 4, displayed notable polarization relative to 
gamma [Figs. 2B, 3 (A to E), and 4 (A to D, third column) and figs. 
S3 and S9J] but distributed uniformly relative to theta (Figs. 3F and 
4E, third column; Rayleigh P values are indicated above the circu-
lar histograms).
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To elucidate the spatial distribution of f, we binned the area 
of each virtual environment into uniform size proportionate square 
units (.7 by .7, 2 by 2, and 3 by 3   m ̄   , where   m ̄    is virtual meter) and 
computed the circular mean and circular variance of f over the vis-
ited units [equivalent of computing the resultant vector of f (48)]. 

By integrating f over the visited areas, we computed a variance- 
weighted spatial distribution of phases (“phase map” hereinafter) 
denoted by F (Figs. 1H and 2C) (13). Moreover, we computed tra-
ditional FR maps (Figs.  1G and 2A), phase tuning histograms 
(Figs. 1I and 2B), maps of mean heading direction denoted by r 

Fig. 1. Construction of phase maps. (A) Postsurgical MRI verification of the electrode position in the right EC. The electrode strip (e) is accentuated. (B) Schematic of the 
4 by 4 microelectrode grid (interelectrode spacing is 1 mm). A designated electrode (#6) served as the source of LFP, while other electrodes recorded single-unit activity. 
Circular waves illustrate propagating gamma waves. (C) Spike waveforms and clusters extracted from 20 min of data with the shortest intercluster Mahalanobis distance 
indicated. (D) Average spectral density of LFP sampled at 2 to 50 Hz during a 10-min spatial memory task. The two most prominent frequency components at theta (2 to 
12 Hz) and slow gamma (25 to 35 Hz) are labeled (shaded area represents SEM). (E) Computation of phase of spikes relative to LFP (1-s data). From the top: spike event, 
broad-band LFP (bandpass filtered, 0.1 to 300 Hz) displaying theta-modulated gamma oscillations, and gamma LFP (bandpass filtered, 25 to 35 Hz) and its Hilbert trans-
form (purple trace). The phase of a spike is defined by the intersection of spike time (red line) with the Hilbert transform (red arrow) of the bandpass-filtered LFP. (F) A 3D 
representation of the mean FR map overlaid on the mean phase map (bin size = 4 virtual   m ̄   2) and their respective orthogonal views (G and H). For phase maps, the hue 
and luminance correspond with mean phase and variance of phase, respectively. (I) Radial histogram of spike phases (f) relative to gamma LFP combined and (J) sepa-
rated according the four quadrants of the phase spectrum. The r and P values correspond to Pearson’s correlation coefficients between phase and avatar’s trajectory and 
their significance. (F and J) Plots are based on recording of one cell in one environment. (K) Comparisons of grid scores between FRs and gamma phases (f) by combining 
all data from two subjects (blue and green represent subjects 1 and 2, respectively). ***P < 0.001.
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(Fig. 2D), the resultant vector length (RVL) of the heading direc-
tion, and the correlation of F with heading direction and with RVL 
from daily navigation sessions for each cell in four different envi-
ronments (Fig. 2E and fig. S7, fourth column). According to these 
correlations, most cells expressed strongly nonuniform phase dis-
tributions, clustered heading directions to phase relationship 
(Fig. 2E, “BY” environment, and fig. S7) and occasional dependency 
of phase f on heading directions (Pc2 < 0.0001; Fig. 2E, “LV” envi-
ronment; and figs. S7, A and C, and S8, A to E).

Despite the large positional and directional variability of trajec-
tories within and across environments, the F phase maps revealed 
environment-aligned periodic clusters of iso-phase densities with 
smooth phase transitions between clusters (fig. S11). The stability of 
iso-phase clusters was tested by cross-validation (fig. S5). The pat-
terns of iso-phase nodes resembled those of grid cell FR maps (2). 
The spatially periodic pattern was prevalent even if the cell’s F grids 
did not coregister with the FR grids (Figs.  1, G and H, and 
2, A and C). The composition of iso-phase nodes in F was consist-
ent with a grid-like pattern expressing a constant spatial shift 
between F nodes after decomposition of f according to phase 
quadrants (Figs. 1J and 2C and fig. S10, C, E, and F). Moreover, 
phase grids displayed sharper clusters than FR grids as the variance 
of grid scores computed from the F-values of all cells was signifi-
cantly smaller than those computed from FR maps [coefficient of 
variation CVFR−gridmod = 0.5997 and CVphase−gridmod = 0.2623 and 

two-way analysis of variance (ANOVA): Fsubject = 0.73, P(1,2094) = 
0.3917 and FFR, f = 143.02, P(1,2094) = 0.00097; Fig. 1K].

Environment-dependent scaling of phase maps
To examine the environmental dependence of F, we calculated the 
average distance between iso-phase nodes (Fig. 2C) within each en-
vironment across the six to nine sessions played per subject and 
found a monotonic increase of iso-phase distances with the size of 
environments (Fig.  2,  F  to  H; BY  =  5.462   m ̄   , LX  =  15.812   m ̄   , 
LV = 18.242   m ̄   , and OS = 19.119   m ̄   ). Although the FR grids did not 
necessarily coregister with the iso-phase nodes of F, as mentioned 
earlier (Fig. 2, A to C), the average iso-phase distance and its scaling 
with the size of the environment were consistent with the FR grid 
scaling (Fig. 2, F and H) (6, 13). The average iso-phase distance 
scaled linearly with the size of the environment (  √ 

_
 ab   ) [Fig. 2G; sub-

ject 1: R2 (coefficient of determination) = 0.5448, root-mean-square 
error (RMSE) = 4.711, f(x) = 0.2835x + 0.669; subject 2: R2 = 0.2026, 
RMSE = 7.395, f(x) = 0.1834x + 3.087]. The slope of iso-phase grid 
scaling (0.2835 and 0.1834) was slightly smaller but comparable to 
the slope of FR grids (subject 1 = 0.4108 and subject 2 = 0.3509; 
Fig. 2H) (6, 13).

Because of the low FRs of cells (<1 Hz for n[0...1 Hz] ≥ 80% of 
cells), most of the EC neurons generated sparse phase maps 
(Figs. 3, B to E, and 4, B to D; and fig. S4). To increase the spatial 
coverage of these neurons and unravel the spatial pattern of F 

Table 1. Patients’ data, diagnoses, and recording information.  
Patient no. Diagnosis Symptoms Hemisphere of 

seizure origin
Dominant 

Hemisphere
Electrode 

implantation
Number of 

recording days
Subject 1 Multifocal epilepsy 

due to cavernous 
angiomas in the 

right mesial 
temporal lobe and 

in the inferior 
aspect of the right 

frontal lobe.

Intractable seizures Right Left An array of subdural 
electrodes over the 

right convexity 
temporal lobe and 

EC. Bilateral 
hippocampal depth 

electrodes.

8

Subject 2 Multifocal epilepsy Intractable seizures Right Left An array of subdural 
electrodes over the 

right convexity 
temporal lobe and 

EC. Bilateral 
hippocampal depth 

electrodes.

7

Table 2. Dimensions and features of the virtual environments. N/A, not applicable. 
Environments Size (m) Area (m2) Bin size (m) Shape Boundaries Obstacle External cues Topology 

(roof)
BY 18 by 18 324 .7 by .7 Square ✓ None ✓ Open
LV 50 by 70 3500 2 by 2 Rectangle ✓ None ✓ Open
LX 52 by 52 by 10 2704 2 by 2 Square ✓ ✓ ✓ Closed
OS (70 by 70)* 4900 3 by 3 N/A None None Spaceships Open

*The OS environment did not have visible boundaries, nevertheless above dimensions apply to the navigable area. D
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Fig. 2. Environment-dependent scaling of phase maps. (A) FR maps of a combined set of single units (n = 4) monitored in four different virtual environments (BY, LV, 
LX, and OS). The axis scaling in virtual meters (  m ̄   ) reflects the dimension of environments. Black horizontal lines on scale bars indicate mean FR. (B) Polar histograms of 
gamma phase tuning (f) of combined unit activity per environment. P values represent the significances of Rayleigh tests for circular nonuniformity. (C) Variance-weighted 
gamma phase maps (F described in Fig. 1). The r values represent correlation coefficients between gamma f and RVL of heading, along with the corresponding 
P values. Circles highlight near-p (purple) iso-phase nodes close. Iso-phase distances are indicated. (D) Local RVL and r of heading directions. Larger arrows represent 
smaller variance. (E) Heading direction (r) and gamma f covariance. Red symbols depict the local heading direction (−p < dir < p) as a function of f. Histograms capture 
the marginal distributions. Asterisks above the plot indicate the nonindependence of phase and heading direction (c2 = 107.5121, P = 0.0005). (F) Comparison of FR grid 
and F grid scaling across environments. The boxplot triplets from left to right represent the distribution of mean distances between FR grid centers and mean distances 
between iso-phase grid centers for subjects 1 and 2 (boxes represent the median, 25th, and 75th percentile of the data). Color rectangles depict scale proportional layouts 
of the four environments. (G) Phase grid scaling as a function of environment size in virtual meters (  m ̄   ) (subjects 1 and 2). Pearson’s correlation coefficients between iso-
phase distance and environment sizes are indicated. (H) Comparison of slopes of the environment-dependent scale functions of F relative to FR grids. (A to E) Examples 
from a single subject in the same day in four different environments. (F to H) Population data from both subjects over all days and environments combined.
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Fig. 3. Dependence of spike phase on electrode position. (A to F) FR maps and phases of single units grouped by electrodes (examples from a single environment from 
one subject and 1 day over multiple electrodes). Phases were computed relative to gamma (A to E) and theta (F). (A and F) Spikes combined over four electrodes (n = 2908 
spikes). (B to E) Units combined over single electrodes. Electrode position varied. First column: Spatial configurations of the microelectrode grid. Gray shading illustrates 
the theoretical gamma phase difference between electrodes. Second column: FR maps. Arrowheads on scale bars represent average FRs. Third column: Polar histograms 
of f relative to gamma LFP, except that (F) is relative to theta. Blue angles represent a constant rotation of f between electrodes, and red angles signify the angular span 
of the phase distribution. Fourth column: Spatial phase maps (F) relative to gamma and theta (A to E and F, respectively). Local mean phase and phase variance are rep-
resented by colors and darkness, respectively. Asterisks above f indicate the significance of the Rayleigh test of directionality; under f heading represent c2 test of phase 
RVL covariance. (G) Summary of phase rotation. Polar histogram represents the interelectrode rotation angles combined over days and sessions from both subjects be-
tween electrode pairs. (H) Bar chart represents the difference between counts of rotation angles between electrode pairs when the angles fall within bins defined as in-
teger multiples of 30° and between those. P value indicates the significance of the binomial test between the two counts. (A to F) Examples from one subject, 1 day, one 
environment, one electrode, and different units. Spatial dimension of pixels is 0.7 by 0.7   m ̄   . P values of polar histograms under f represent the Rayleigh test of direction-
ality. The polar histograms were binned by 5°, and phase maps and average velocity maps were binned by 0.7 by 0.7   m ̄    bins.
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despite low FR units, we merged the spike times of 16 putative neu-
rons (four units from four electrodes) before computing the average 
phase map that evolved during each 5-min navigation session and 
compared that with the phase maps of individual single units. The 
angular distribution of gamma or theta phases f across all spatial 

locations was typically uniform when combined across all four elec-
trodes during 5-min navigation in a given environment (Rayleigh 
P > 0.05; Fig. 2B and fig. S4A). In contrast, the same set of neurons 
displayed highly polarized spatial distributions of F when the 
phases were displayed in the 2D area of virtual navigation (Fig. 2C 

Fig. 4. Dependence of spike phase on single-unit identity. (A to E) Phase differences across single units isolated from the same electrode with respect to gamma (A to 
D) and theta (E). First column: Schematics of putative single neurons recorded from 1 of the 16 microwire electrodes. Second to fourth columns: Same as in Fig. 3, except 
that f and F represent the activity of individual neurons isolated from the same electrode. Red angles under f indicate differences in phase between discrete phase 
tuning modes. Color and darkness in F represent phase and variance, respectively, as in Figs. 1 to 3. (All examples were recorded simultaneously from one subject, 1 day, 
one environment, one electrode, and different units. Same subject and same environment as in Fig. 3 but different day and electrode.) Spatial dimension of pixels is 0.7 
by 0.7   m ̄   . P values of polar histograms under f represent the significance of Rayleigh test of directionality. The polar histograms were binned by 5°, and phase maps and 
average velocity maps were binned by 0.7 by 0.7   m ̄    bins.
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and fig. S4A, third column), regardless of the choice of LFP reference 
gamma or theta (Fig. 3, A and F). Whether the topography of the F 
is stable in the given environment or changing over time is crucial 
for the reliability of allocentric spatial representations. The stability 
of F maps over time and their robustness to spike sampling were 
tested using two independent cross-validation methods, blockwise 
and subsampling, each applied to a 5-min interval of game playing 
(fig. S5, A, B to D, and E to G). The correlations between the subsam-
pled spikes confirmed the stability and robustness of phase maps to 
spike sampling [Pearson’s r = 0.403, P(1,359) < 0.0001 and r = 0.239, 
P(1,359) < 0.0001 for stability and robustness, respectively].

Phase maps are different from by-chance phase coincidences
To test the statistical significance of spatial organization of F against 
by-chance pattern formation and to elucidate the feature that con-
trols the topography of phase maps, we applied two types of surro-
gate tests: interspike interval (ISI) shuffling and phase permutation 
of the LFP (fig. S6, A to C). Both types of surrogate spike trains re-
tained the average FR and the original ISI histograms of neurons. At 
the same time, both methods effectively eliminated any systematic 
temporal relationship between spikes and LFP. Although the 2D 
entropy of F and its correlation with navigation were immune to 
the ISI shuffling, entropy increased, and behavioral correlation de-
creased after phase permutation of LFP (Table 3). The concordance 
of the two results suggests that the spatial pattern of the LFP phase, 
as a 2D projection of the collective membrane potential oscillation 
dynamics, may effectively control the spike timing of grid cells.

Next, we compared the spatial organization of F between gam-
ma and theta with respect to entropy, prominence of low spatial 
frequency components of phase autocorrelograms, and the correla-
tion of phase maps with the avatar’s movement directions in space. 
Although both theta and gamma F-values displayed equally high 
correlations with the avatar’s movement directions [Kruskal-Wallis 
test, P = 0.4528, r(F, dir) > 0.5, P(F, dir) > 0.0001], gamma F displayed 
a significantly higher-order spatial structure (smaller entropy) 
and larger power in the low-frequency spatial harmonics than theta 
F (Kruskal-Wallis tests, Pc2 < 0.0001; fig. S6D and Table 4).

Phase relationship between distant groups of neurons
In all previous examples, we combined single-unit activity across 
electrodes to increase the spatial coverage of neuronal activity and 
elucidate the phase maps in their entirety (fig. S4). However, by do-
ing so, the contribution of single cells to the average phase maps 
remained obscured by the contribution of the entire cell popula-
tion. To tease apart the effects of single neurons to the average phase 
map, we compared F across different electrodes and across individ-
ual neurons isolated from the same electrode. First, we identified a 
recording from a single 5-min session of one environment from one 
subject and day where we could isolate 16 single-unit spike trains 
from four different electrodes (four neurons per electrode) and in-
vestigated the phase composition of f-values and F-values by merging 
the spike trains at the electrode level. The phase was computed rela-
tive to gamma and theta LFP, where the LFP was always recorded 
from a separate electrode to ensure that the phase and frequency of 
LFP were uncontaminated by the harmonic components of single- 
unit activity (Fig. 3, A to F, and figs. S7 and S8). When electrodes 
and units were combined, the f polar histogram displayed a high-
ly nonuniform phase distribution (Rayleigh P < 0.001; Fig. 3A). 
Despite the moderate FR gridness scores (g = 0.014, P > 0.05), the 

gamma F expressed strong periodicity in alignment with the 
environment (Fig. 3A). Comparisons of phase differences (bij) be-
tween pairs of electrodes 1 and 2, 1 and 5, and 1 and 3 revealed 
a rotation series of 60°, 120°, and 180° rotation of phases (Fig. 3, 
B and C, B to D, and B to E), respectively. Hence, the phase spec-
trum rotates with 60° increments with every electrode position 
as the Euclidean distance increases between the electrodes, whereas 
the 150° span of the phase tuning was invariant to the electrode po-
sition (Fig. 3, B to E, and fig. S7, red angles). Notably, the observed 
phase tuning was specific to gamma band LFP (Rayleigh P < 0.001; 
Fig. 3, A to E). On one hand, the distance-dependent rotation of f 
suggests a spatially nonlinear but constant interelectrode delay of 
gamma phases, which is consist ent with a propagating gamma 
fields dynamics (Fig. 3, first column), also evident from the de-
layed correlation analysis of gamma and theta between electrode 
pairs (figs. S1 and S2). On the basis of the known interelectrode 
distance, the angle of phase rotation, and the predefined gamma fre-
quency, the speed estimate of gamma field propagation was between 
0.135 and 0.189 mm/ms. To demonstrate that the discrete and con-
stant phase rotation between electrodes was not an isolated example, 
we combined the phase rotations between pairs of electrodes where 
the two phase distributions allowed for unambiguous identifica-
tion of the corresponding peaks and histogrammed them with 
15° bins (Fig. 3G). The polar histogram revealed a discrete se-
quence of angles that represent integer multiples of 30° phase rota-
tions, consistent with the propagation delay between electrode 
pairs of the evenly spaced multielectrode grid. The interelectrode 
phase rotations of 30°, 60°, or 90° between electrodes were repro-
ducible across virtual environments, days, and subjects with very 
few exceptions (binomial test, P < 0.00001; Fig. 3H). Moreover, 
the gamma phase of combined single-unit activity on each elec-
trode expressed a significant dependency on the avatar’s heading 
direction (c2 test, P < 0.05), but no similar relationship was ob-
served between heading and theta phases (c2 test, P = 0.1157) (fig. 
S8F, rightmost column).

Phase relationship between nearby neurons
Next, we examined the contribution of individual neurons to the 
average phase composition of a group of neurons recorded from the 
same electrode over a 5-min duration of navigation in one environ-
ment (Fig. 4, A to E). Single units were verified by their high isola-
tion coefficients [Mahalanobis distance between nearest clusters 
dn > 50 ≥ 20 corresponds with >99% confidence (6, 13, 64)] and >5-ms 
refractory period in their ISI histograms. The second column of 
fig. S8 represents typical examples of single-unit f-values isolated from 
a group of neurons simultaneously recorded from the same elec-
trode, each displaying highly polarized phase tuning. The first neu-
ron displayed a strong 30° polarity with relatively high FR (mean = 7 
spikes/s, Rayleigh P < 0.0001; Fig. 4A, f). The second neuron with 
low FR (mean  =  0.1 spikes/s) displayed five equiangular phases 
with 72° rotational symmetry (Rayleigh P = 0.8961; Fig. 4B, f). 
Whereas the other two neurons displayed only two components of 
the pentangular phase tuning, one with 144° and another with 72° 
between the peaks, both of these neurons’ phase tuning histograms 
were highly polarized (Rayleigh P ≤ 0.0001), conformed with the 
fivefold symmetry (Fig. 4, C and D, f and F), and retained a precise 
coregistration with firing phases of all the other cells from this elec-
trode. The highly polarized f, typical of gamma LFP, was in stark 
contrast with the lack of phase tuning expressed with respect to theta 
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(Fig. 4E). Despite the dispersed spatial scattering, each cell maintained 
the association of iso-phase nodes with spatial locations relative to 
the environment (Fig. 4, A to D, F). Although theta f was homoge-
neously distributed across the phase spectrum (Rayleigh P = 0.627), 
it displayed a clear dependency on the direction of heading [c2 
test, P(n = 196) = 7.3819 × 10−6; Fig. 4E, f heading].

In summary, distant groups of neurons show a distance-dependent 
rotation of their phase spectrum, while the shape of the phase spec-
trum does not change (Fig. 3, A to E, and fig. S12A). In contrast, 
individual neurons within the same local assembly display discrete 

equiangular phase distributions with preserved absolute angle of 
peaks but different prominence of certain angles (Fig. 4, A to D, and 
fig. S12B). These two observations suggest that while the absolute 
phases of the group of neurons cannot encode information, the phase 
difference between neurons potentially could. If gamma oscillations 
manifest as traveling waves through the EC, then the absolute phase 
of spikes has no physiological meaning because it depends on where 
we measure gamma, except when taking the neuron’s own sub-
threshold gamma oscillation as a reference. However, the relative 
spike phase differences between neurons are maintained across the 

Table 3. The statistics of surrogate analysis. Nos. 1 and 2 are the difference between original and ISI-permuted dataset and between original and phase-
randomized LFP dataset with respect to the correlation between phase and resultant vector length (RVL) of movements. No. 3 represents the medians of data 
per datasets (from left to right) in the original dataset and the ISI-permuted LFP and phase-permuted LFP datasets separately for subject 1 and subject 2. Nos. 4 
and 5 represent the entropy difference between the original and ISI-permuted datasets and between the original and phase-randomized LFP datasets. No. 6 
contains the median entropy values of original data and ISI-permuted LFP and phase-permuted LFP datasets. Nos. 7 and 8 represent the statistical difference in 
the low-frequency power of the 2D spectrum between the original spatial phase and the ISI-permuted phase and between the original spatial phase and 
phase-randomized LFP phase patterns. No. 9 lists the median power corresponding to the low-frequency power of original and ISI-permuted LFP and 
phase-randomized LFP datasets. 

No. Test Variable P Ha 
P < 0.05 zval n P Ha P < 0.05 zval n Supplementary 

figure

1 Rank sum PH-VELO-ISI 0.5348 0 −0.6207
910

0.8165 0 0.2321
1004

fig. S6A
910 1004

2 Rank sum PH-VELO-
REVLFP 0 1 10.5241

910
0 1 7.8262

1004
fig. S6A

909 1003
3 Medians 0.4982 0.5046 0.3965 0.5575 0.5586 0.4905

4 Signed 
rank

PH-GRID-
ENTR-PHGRID-
ENTR-ISI

0.7487 0 0.3204 910 0.3619 0 0.9118 1004 fig. S6B

5 Signed 
rank

PH-GRID-
ENTR-PHGRID-
ENTR-REVLFP

0 1 −10.51 910 0.0026 1 −3.0143 1004 fig. S6B

6 Medians 0.1544 0.1525 0.1621 0.0923 0.1 0.1015

7 Signed 
rank

PH-GRID-
POWER-
PHGRID-
POWER-ISI

0.0072 1 2.6879 697 0 1 11.8777 1004 fig. S6C

8 Signed 
rank

PH-GRID-
POWER-
PHGRID-
POWER-
REVLFP

0.0956 0 1.6668 697 0 1 8.6097 1004 fig. S6C

9 Medians 0.0551 0.0532 0.0544 0.0821 0.0654 0.0708

Table 4. The Kruskal-Wallis nonparametric ANOVA of theta to gamma phase map comparison. Data from the two subjects were combined. First row: 
Comparison of spike phase to heading direction correlations between spike phases derived from gamma versus theta oscillations showed no significant 
difference. Second row: Kruskal-Wallis test comparing gamma and theta phase maps with respect to entropy indicated significantly lower entropy for gamma 
phase maps. Third row: Kruskal-Wallis test comparing the power of low-frequency components of the 2D spectra between gamma and theta phase maps 
indicated significantly larger low-frequency power in the gamma phase maps. 
No. Statistics Theta-gamma df n c2 test P Sign Supplementary figure

1 Kruskal-Wallis Phase heading r 1 3396 0.5637 0.4528 fig. S6D, left
2 Kruskal-Wallis Entropy e 1 3396 24.3 8.24 × 10−7 *** fig. S6D, middle
3 Kruskal-Wallis Low-frequency 

power
1 3396 41.61 1.12 × 10−10 *** fig. S6D, right
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population regardless of the actual phase of the gamma field. Therefore, 
the next question we address is whether we can decode the spatial infor-
mation from the relative phase differences between neurons.

Decoding positional information from phase
If the phase of spikes relative to gamma encodes allocentric localization 
information (position and/or direction), then given that the same 
gamma oscillation is shared with downstream neurons, it follows 
that they can decode the avatar’s position/direction from the phase 
itself as precisely as our subjects were able to localize their avatar in 
the virtual environment. However, because of the spatial periodicity 
of phase maps, multiple locations can be associated with a given 
gamma phase. To reduce the ambiguity of localization, our goal was to 
use the avatar’s actual position at a time of the spike for predicting 
the impending spatial position at the next spike (xspikei+1, yspikei+1) 
and the heading direction (aspikei, i+1) within the neighborhood 
defined by the 20 forthcoming spikes xk ∈ i1…20, yk ∈ i1…20 (fig. S13, 
C to F). Although the decoding was performed relative to the previ-
ous spike, both (a) and position (x, y) estimates were computed in 
environment-referenced, allocentric coordinates (fig. S13, E and F). 
Following the Bayesian decoding framework, we used the actual po-
sition of the avatar at the time of a predicate spike (x0, y0), the phase 
of the next spike f1, the phase probability map F, and the probabil-
ity of the avatar being at that position pA(x, y). The goal of decoding 
was to predict the position of the subsequent spike (x1, y1) from the 
phase f1 given F and pA(x, y). We captured the direction decoding 
errors in a circular histogram (fig. S13G) and in a form of a confu-
sion matrix (CM) (fig. S13H), comprising the predicted positions or 
directions as a function of observed positions or heading directions 
of the avatar, respectively. To increase the spatial density of spikes 
for reliable spike phase estimates of Fprior, we combined the spikes 
across all neurons and electrodes but kept the days and navigation 
sessions (environments) separate. To ensure that the gamma compo-
nent of the LFP was uncontaminated by the spikes, we recorded the 
LFP and the spikes from different electrodes separated by at least 
1 mm. For decoding the avatar’s position or direction from the 
phase of spike, we sought to determine the spike with the maximum 
likelihood arg max (p(fT∣x, y)), where (x, y) was the estimated allo-
centric coordinate. The tangent of the shortest Euclidean path be-
tween successive spike positions relative to the opposite and adjacent 
walls provided the heading direction as a = tan−1(dx/dy) of the avatar, 
where dx = x1 − x0 and dy = y1 − y0. We iterated the process for every 
spike in the test set per session and computed the average CM for each 
session and day (fig. S13H). The mean decoding error matrices of di-
rection [a(error)], positions [x, y(error)], and path lengths [l(error)] were 
averaged across environments and days, but the two subjects’ data were 
kept separated (Fig. 5). Correlations between decoded and actual 
movement parameters including heading direction, position, and path 
length were all significant (circ rdir = 0.347, P < 0.001 and circ rdir = 0.332, 
P < 0.001 for subjects 1 and 2, respectively; rpos = 0.838, P < 0.001 and 
rpos = 0.688, P < 0.001 for subjects 1 and 2, respectively; rlength = 0.714, 
P < 0.001 and rlength = 0.625, P < 0.001 for subjects 1 and 2, respective-
ly). Representative decoding performances are illustrated in Fig. 5 (A and 
B, insets) and fig. S14. Nevertheless, to compensate for the decoding 
bias deriving from the narrow dispersion of spikes along straight trajecto-
ries, we applied two interventions. First, we excluded straight movement 
trajectories from the analysis by limiting the analysis to r <15   m  ̄  , where r 
is the radius of path curvature. Second, we computed a CM [M(Null)] 
using the original spike time data and movement trajectory but shuffled 

the spike phases across the spikes and subtracted the shuffled phase CM 
MNull from the observed phase CM Mobs for directions [a(error)] and for 
positions x, y(error) separately (Fig. 5, A and B). The corrected CMs retained 
a near-perfect decoding performance for allocentric positions (Fig. 5B; 
Pearson’s rsubj1 = 0.3220, P = 0.005 and rsubj2 = 0.1957, P = 0.0046, 
and areas under receiver operating characteristic (ROC) curves for both 
subjects were above 0.99; Fig. 5D and see fig. S15 for the construc-
tion of ROC curves) but partly lost predictability for directions (Fig. 5A; 
rdir = 0.092, P = 0.0001 and rdir = 0.037, P = 0.120 for subjects 1 and 2, re-
spectively) as also evident from the differential dispersion of the distribu-
tions of CMs. At the same time, the diagonal distribution of the true 
phase CM was narrower than that of the phase-shuffled Null for 
data from both subjects (Kolmogorov-Smirnoff test after Benjamini- 
Hochberg correction for multiple comparisons).

The results deriving from the corrected CMs suggest that posi-
tion information encoded by phase is accurate within 2 by 2   m  ̄   (Fig. 5B, 
diagonal histograms), and the likelihood of getting a phase readout 
by chance at this level of accuracy is Psubj1 = 0.0323 and Psubj2 = 
0.0417. We conclude that in contrast with the heading direction, the 
position information of the avatar from the phase of spikes is avail-
able to neurons downstream, whether it is used.

Comparing position and direction decoding between 
phase and FR
To assert whether decoding the phase of spikes has any benefit rel-
ative to FRs, we compared the position and direction decoding per-
formances of the gamma phase with the decoding from FR. Since 
the spatial FR distribution of EC grid cells is also spatially periodic, 
the Bayesian decoding algorithm that we applied to the gamma 
phase was applicable to FRs with minor modifications. Because un-
like phase, FR is bounded to a frequency range between 0 and the 
maximum FR of the cell, it had to be z-transformed over the area of 
navigation before using it for decoding. If FR is just as efficient for 
encoding positions and directions as the phase of firing, then the 
decoding performance of spike phase could be accounted for by the 
topography of spike density as opposed to the spike phase relative to 
LFP. However, the CMs of FR indicated a moderate yet significant 
decoding power from FR as compared to the gamma phase for both 
features, allocentric position and allocentric direction in both sub-
jects’ data (  c subj1,dir  2   = 1.4339 , Psubj1,dir = 0.2311; rsubj1,dir = 0.1356, 
Psubj1,dir = 2.36 × 10−08;   c subj1,pos  2   = 8.4044 , Psubj1,pos = 0.0037; rsubj1,pos = 
0.0235, Psubj1,dir = 0.2399;   t (TP−FP)  subj1   = 4.2297 , df = 99, P = 5.2276 × 
10−0.5;   c subj2,dir  2   = 0.09164 , Psubj2,dir = 0.7621; rsubj2,dir = 0.01262, 
Psubj2,dir = 0.60496;   c subj2,pos  2   = 23.5638 , Psubj2,pos = 1.2084 × 10−06; 
rsubj2,pos = 0.0295, Psubj2,dir = 0.1390;  tsta  t (TP−FP)  subj2   = 2.2087 , df = 99, 
P = 0.0295, where TP and FP denote true positive rate and false 
positive rate, respectively; fig. S16). The areas under ROC curves 
(AUC) of position decoding from FR for subjects 1 and 2 were 
AUCsubj1 = 0.7072 and AUCsubj2 = 0.6150, respectively, smaller than 
for gamma phase decoding (fig. S16). In summary, FR provided less 
information about direction and position of the avatar than the F.

DISCUSSION
Spike-LFP phase coherence has been extensively studied within 
(66–68) and across cortical areas (69). A special class of spike-LFP 
phase coherence, the theta phase precession, has elucidated the in-
tricate interplay between spikes and the theta oscillation observed 
in the rodent hippocampus and EC during traversing a place field 

D
ow

nloaded from
 https://w

w
w

.science.org on July 28, 2022
               znadasdy_144_23



Nadasdy et al., Sci. Adv. 8, eabm6081 (2022)     4 May 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

11 of 21

Fig. 5. Bayesian decoding of heading direction and position from the phase of spikes. (A) Panels from the left to right are normalized population average of CMs of 
the decoding of the heading direction before (a) and after trajectory bias correction (a-b), respectively. Left and right blocks represent data (combined across all days, from 
all environments, and cells) from subjects 1 and 2, respectively. (B) Same panels as in (A) except decoding the avatar’s position. Possible positions were limited to a 6 by 
6   m ̄    space. Tilted histograms represent the distributions of position decoding errors (median errors are indicated) with respect to identity lines (dashed line). Insets in (A) 
represent data points magnified. White numbers are the positive bin counts per quadrant. Trajectory plots at the far right represent single-session examples of direction 
decoding (top plot) and position decoding (bottom plot). Gray lines are true trajectories, and black arrows and black lines represent the decoded directions and positions, 
respectively. Examples derived from merging all single units per session in the same environment. (C) Histograms show the prevalence of correct position decoding (gray 
bars) relative to by-chance decoding from phase-shuffled spikes (black bars) for subjects 1 and 2 separately. ***P < 0.001. (D) ROC curves capture the ratio of spikes cor-
rectly decoding the position from phase (true positive) relative to spikes decoding the correct position by chance (false positive). The curve is the aggregate of data points 
over all experiments grouped by subjects. AUC, area under the curve. (E) Distributions of P values of the Kolmogorov-Smirnov tests when comparing the cumulative 
probability density functions between the observed prediction errors and the errors deriving from 100 shuffled spike phase datasets relative to the identity lines of the 
CMs. The P values represent the false discovery rate after Benjamini-Hochberg correction. Dashed lines represent the P = 0.05 level of confidence.
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(46, 49, 70) as well as in the human hippocampus (65). While previous 
studies have investigated the spike phase within a 1D framework by 
using linear mazes (49), constraining the analysis to omnidirection-
al passes in open environments (43, 71), analyzing the theta phase 
during approaching navigational goals (72), or predicting trajectories of 
the animal from 1D theta phase precession of neurons in the CA1 area 
of the hippocampus and lateral septum (47, 48, 58), none of these studies 
extended the scope to reveal the 2D map of spike phase modulation. In 
contrast, by introducing three manipulations—(i) expressing the 
same spike phases relative to gamma and theta, (ii) computing the 
spatial average of phases within 2D environment- aligned bins, and 
(iii) allowing for 2D navigation—we were able to combine the naviga-
tion trajectories into a 2D map and observed grid-like discrete gamma– 
iso-phase nodes with systematic phase transitions between nodes 
(Figs. 1, H and J, and 2C and figs. S4 and S11).

By comparing phases of the same spikes when referencing them to 
gamma versus theta band LFPs, we found that 3 to 10 times as many 
neurons expressed significant environment-specific phase nonuni-
formity relative to gamma than to theta (13). In addition, gamma 
phase tuning showed an increased polarization (Figs. 3, A to E, and 
4, A to D) relative to theta (Figs. 3F and 4E), and iso-phase node dis-
tances in gamma phase were smaller than those constructed from the-
ta (figs. S3, A to D, and S9, E and K), contrary to other approaches 
focusing only on theta (18, 43, 71). Not only the gamma phase tuning 
was more articulated than theta but also the low- frequency components 
of spatial autocorrelograms computed from gamma phase maps had 
a larger power than those of theta phase maps. Moreover, the spatial 
distribution of gamma phase maps, as quantified by entropy, was over-
all more clustered than that of the theta phase maps (fig. S6, D and E). 
The enhanced spatial coherence of gamma phase maps relative to the 
theta phase maps could, at least partly, be accounted to the increased 
phase variance deriving from the theta phase precession, an explana-
tion that requires further validation.

The third main observation was that the coefficient of variation 
of population-wide gamma phase modulation was smaller than that 
of the FR grids’ (Fig. 1K), suggesting that the spike phase can en-
code information under either extremely low or high FR conditions 
when no grids can be extracted from FRs. This observation was sup-
ported by our result showing the immunity of phase maps to ISI 
shuffling, while the phase randomization of LFP was able to com-
promise the spike phase maps significantly (fig. S6B) (13).

The fourth main observation was that the interelectrode phase 
shift (Fig. 3, B to E) was consistent with the model of propagating 
gamma waves (40, 67, 73), which also can explain why the activities 
of cells recorded from two adjacent electrodes display a constant 
phase difference. Moreover, we observed that gamma phases from 
both multiple neurons recorded from the same electrode and single 
neurons resulted in discrete multimodal phase distributions (Figs. 3, 
B to E, and 4, A to D, respectively) (13).

Fifth, we demonstrated that both position and direction infor-
mation can reliably be read out from the phase of spikes (Fig. 5), 
which raises the intriguing hypothesis that downstream neurons, in-
cluding pyramidal cells in the hippocampal CA1 and CA3 areas, 
may be able to decode position and direction information from the 
phase of action potentials given a shared gamma oscillation, as pre-
dicted by the model of gamma phase coding (45, 74).

Last, we showed that gamma phase coding provides a surplus of 
information relative to the information available from FR alone by 
comparing the precision by which Bayesian decoding can predict the 

direction and position of the avatar from FR versus gamma phase (Fig. 5 
and fig. S16). We concluded that gamma phase decoding far exceeded 
the performance of decoding the FR; hence, there must be information 
contained by the phase that is not available from the FR alone.

The joint representation of direction and location observed in our 
experiment over the same neuron population is a defining feature of 
conjunctive cells in layers 3 and 5 of the mEC of the rodent (75) with the 
qualification of head-directional tuning, which should not be confused 
with the heading direction tuning of phase in our study. However, head 
direction and heading direction in our experiment were inseparable be-
cause the avatar was always facing in the heading direction. Therefore, 
it is conceivable that a class of grid cells in the human EC also jointly rep-
resent direction and location, consistent with reports on goal-specific 
spike-LFP phase coding found in the human hippocampus relative to 
theta oscillations (72). Although speed was constant in our experiment, 
location and direction combined with speed could provide a complete 
positional representation of the agent relative to the navigation space.

In summary, beyond simple phase tuning, we demonstrated a 
2D modulation of spike-LFP phase relationship that is (i) periodic 
in space, (ii) strongest at slow gamma LFP, (iii) persistent, (vi) scales 
with the environments, (v) allocentric, and (vi) jointly encodes 
heading direction and relative location. To prove the efficacy of this 
code, we applied Bayesian decoding on the phases of spikes gener-
ated by EC neurons, which demonstrated a reliable readout of posi-
tions with a ±1   m ̄    precision in both x and y dimensions. Given the 
areas of the mid-size virtual environments (52 by 52 and 50 by 70   m  ̄  ) 
and the average seven subdomains within which spike phases 
uniquely associated with specific locations were observed (i.e., the 
number of iso-phase nodes), the probability of correctly guessing 
the location of the impending spike based on the spike phase is less 
than 0.01, a likelihood worth to consider. To attain this level of con-
fidence, spike phase coding is critically dependent on the frequency 
and phase of gamma oscillations. On the basis of the dynamic fea-
tures shared between the human EC neurons and grid cells in the 
rodent mEC, we posit that the phase of spikes enables the agent to 
localize itself relative to an allocentric reference frame within the 
subspace defined by the phase grids with precision exceeding that of 
FR grids. Whether the two kinds of information encoded by spike 
phases and FRs are redundant, complementary, or represent dis-
junct readouts altogether remains to be determined. Regardless of 
the precise relationship between phase grids and FR grids, the spa-
tial modulation of spike phases by the slow gamma rhythm suggests 
a new mechanism by which EC acquires stable allocentric represen-
tations via the subtle interaction between spiking neurons and the 
propagating field of gamma oscillation in the human brain.

MATERIALS AND METHODS
Subjects
Two male patients (ages 33 and 40; average, 36 and a half years; 
Table 1), diagnosed with multifocal epilepsy, were previously con-
sented and implanted with microelectrode arrays in their EC in prepa-
ration for surgical resection of epileptic foci. From these two patients 
(subjects 1 and 2), we could record well-isolated single-unit activity 
with one channel LFP throughout a 7- and 8-day period in the hospital’s 
epilepsy monitoring unit, while they performed a virtual navigation 
task that required spatial memory on a tablet computer (Table 1). 
All surgical and experimental procedures were approved by the 
Seton Institutional Review Board.
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Tasks
The subjects were asked to play a computer game on a tablet they 
held on their lap. The game’s objective was to locate randomly dis-
persed space aliens in four different environments and return them 
to preassigned spaceships parking at memorized locations. The four 
virtual environments included a BY, a courtyard of the LV, a model 
reconstruction of the main hall of the LX Temple in Egypt, and a 
large OS with a boundless horizon and minimal external cues (6). 
These environments differed in several features, including scenery, 
size, aspect ratio, and presence of obstacles or boundaries (Table 2). 
The virtual reality environments were designed using Unity 3D 
(version 3.5.6) and were compiled for Android 4.0. The game 
rendered the 3D environment from the player’s point of view. The 
player was constrained to the flat ground surface of each map, and 
their movement speed was a constant 5   m ̄   /s, unless the “GO” button 
was released or an obstacle inhibited the movement.

Game control
The task was performed on a tablet PC (ASUS Transformer 201 
running Android 4.0 at 1280 by 800–pixel resolution). Subjects ma-
neuvered by pressing a GO button with their left thumb and con-
trolled the direction by pressing either a “LEFT” or “RIGHT” button 
with their right thumb. Before experimental data were collected, 
subjects were allowed to practice playing the game until they were 
accustomed to the game controls. The subjects’ virtual trajectory 
and heading (relative to the north-south axis in each game environ-
ment) were recorded (6, 13).

Implementation of the task
Our subjects performed virtual spatial navigation tasks implemented 
as video games using a tablet computer, for a 5- or 10-min duration 
per game in four different environments (see the “Tasks” section), a 
total of 40 min/day. The four environments differed in size, geome-
try, architecture, indoor, outdoor space, and the richness of spatial 
landmarks (6). The subjects viewed these scenes from the first-per-
son point of view (further referred to as the “avatar’s view”). The 
avatar’s movement was controlled by touch screen buttons, allow-
ing movement controls of advancing along a straight or a curved 
trajectory by pressing GO and/or LEFT or RIGHT buttons at the 
same time, respectively. The touch screen control enabled also stop-
ping (when not pressing GO) and turning while stopping. The ava-
tar moved by emulating real walking with a constant step size and a 
constant speed of 1.4   m ̄   / s , where   m ̄    denotes for virtual meter. The 
objective of the game was to locate randomly placed space aliens, 
pick them up one by one, and deliver them to one of the two space-
ships parked at constant locations within the space. The game pro-
gram kept track of the avatar’s movements with a 16-ms sampling 
rate synchronized with the display frame rate. The pickup and de-
livery of a space alien were displayed on the screen giving continu-
ous feedback to the subject on his/her performance. We motivated 
the subjects to exceed his/her last day’s performance. Our subjects 
were able to complete as many as 50 space alien deliveries per day, 
with an average of 2 space aliens/min (6, 13).

Synchronizing spatial navigation with neuronal data logging
The subjects’ navigation data, recorded on the tablet, was associated 
with the neuronal data by sending a 25-ms duration frequency- 
modulated waveform from the tablet’s audio output port to the 
analog auxiliary input port of the data acquisition system each time 

the “START” button for the game was released and periodically 
afterward. The precision of data synchronization between the tablet 
and the neuronal data logging was <2 ms (SD, 1 ms). This resulted 
in a spatial localization error of less than 2.5-cm virtual distance 
(<0.048% of average map width) (6, 13).

Surgical procedures and electrode implantation 
and explantation
We recorded wide-band signals from no deeper than layers 2 and 3 
(given the <0.8-mm tissue penetration and the average 5-mm corti-
cal thickness of human EC, although lacking histological verification) 
of the mEC. Ad-Tech macro/micro subdural electrodes (catalog 
code: CMMS-22PX-F478), custom made per our specifications, 
were surgically implanted in the right hemisphere of two patients. 
The macro/microelectrode assembly consisted of six macroelec-
trodes and 16 microelectrode wires arranged in a 4 by 4 grid be-
tween the macroelectrodes. The microelectrodes were made of 
35-mm platinum-iridium wires arranged in a 4 by 4 wire grid with 
1-mm spacing between nearest electrodes. Electrodes were cut to 
0.8 mm in length from the electrode base and with a nominal im-
pedance of <3 megohm. Craniotomy and electrode implantation 
were performed under general anesthesia. After craniotomy, the 
electrodes were inserted subdurally to the surface of the EC by the 
neurosurgeon with stereotactic control. The dura was hermetically 
closed in a watertight fashion, and the bone flap was reattached. The 
patient remained in the hospital intensive care unit under continuous 
epilepsy monitoring for 5 to 14 days following the surgery. After 
sufficient evidence for seizure origin had been collected, electrode 
explantation and surgical resection of the seizure foci were per-
formed under general anesthesia (6, 13).

Recording neuronal data
Simultaneous single-unit activity was obtained from 5 of 16 micro-
electrodes at 24-kHz sampling frequency using an FHC Guideline 
4000 system, a Food and Drug Administration–approved amplifier 
for neuronal data acquisition in the human brain. The five electrodes 
varied across the days and were selected before the recording ses-
sion based on the largest amplitude and most promising single-unit 
isolation. The 5- or 10-min traces were bandpass-filtered (300 to 
6000 Hz) using a noncausal elliptic filter offline. Because we selected 
5 of 16 electrodes with the highest unit activity each day before data 
logging, we are unable to claim the identity of single units across 
different days. Simultaneous LFP was sampled from all the five elec-
trodes filtered digitally by a noncausal filter (“filtfilt” function in 
MATLAB) between 1 and 300 Hz (6, 13).

Spike detection
We applied Wave_clus offline spike detection and spike sorting (76). 
Spike detection was followed by isolation of single-unit activity us-
ing an unsupervised spike-sorting method. For spike detection, we 
applied a threshold fitted to the median SD of the data (Eq. 1)

   Thr = 4  s  n  ;  s  n   = median {     ∣x∣ ─ 0.6745   }     (1)

where x is the bandpass-filtered signal and sn is an estimate of 
the SD of the background noise. In cases when the amplitude 
threshold did not provide a clear separation between single and 
multiunit activity, the multiunit activity generated a large “noise 
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cluster” in the wavelet coefficient space at near-zero amplitude. 
This isolated noise cluster enabled us to separate single-unit clusters 
from noise with high confidence. We only included single-unit 
activity in our dataset if it was separated from the noise cluster by 
d > 20, where d is the Mahalanobis distance (6, 13).

Spike sorting
Spikes different from noise were sorted using the WaveClus method 
that uses superparamagnetic clustering as a nonparametric classify-
ing engine (76). WaveClus is the second most popular semisuper-
vised method worldwide, used by more than 110 publications, and 
the most efficient among the bench-marked spike sorting methods 
(77). The wavelet transform is defined as the convolution between 
the signal x(t) and a Haar wavelet functions ya,b(t)

  WyX(a, b ) = x(t ) ∣ y  a,b  (t)  (2)

where ya,b(t) is dilated (contracted) and shifted versions of a unique 
wavelet function y(t)

    y  a,b  (t ) =  ∣a∣    1 _ 2   y (     t − b ─ a   )     (3)

where a and b are the scale and translation parameters, respectively. 
Last, we obtained 12 wavelet coefficients and reduced those to four 
dimensions with the highest multimodality and deviation from nor-
mal distribution. These were the dimensions best discriminating the 
spikes in wavelet coefficient space. Each spike was associated with a 
combination of these k most informative wavelet coefficients and 
hence represented by a point in the k-dimensional space. The data 
using superparamagnetic clustering resulted in clusters associated 
with spikes of similar waveforms, where k = 12 for all present data-
sets. The spike times of classified waveforms were tested against 
4-ms refractoriness before being associated with putative neurons. 
We only included neurons where the Mahalanobis distance between 
the centroid of the noise cluster and the elements of a single-unit 
cluster or between the centroid of a given single-unit cluster and the 
elements of another cluster was d > 20. We refer to these single-unit 
clusters as the activity of putative “neurons” (Fig. 1A). Spike times 
were rounded to the nearest 1-ms interval and expressed in 1-ms 
precision (6, 13).

Computational methods
Characterizing the avatar’s movement in space
The subject’s task in the game was to navigate the avatar to pick up 
randomly displaced space aliens and reach memorized targets with 
them. During the navigation, some areas were visited more often than 
others, resulting in an inhomogeneous distribution of sampling of 
the environment. The    v ̄    (x,y)    expressed the distribution of direction 
crossing at (x,y) area of the environment. The map of directions 
   v ̄    (x,y)    and the RVL ( s   v ̄    (x,y)   ) quantified the avatar’s movement in four 
dimensions as the X-Y location, the mean heading direction    v ̄    (x,y)    
(angle), and the RVL of heading direction  1 / s   v ̄    (x,y)    (the inverse of 
the variance of directions), given that the avatar was moving with a 
constant speed. The mean heading direction quantified the angular 
mean direction of all pathways taken by crossing a unit area regard-
less of the uniformity of directions, whereas the RVL quantified the 
unidirectionality of those crosses (6, 13).

Computing heading direction and resultant vectors
The X-Y coordinates of the avatar’s movements and heading direc-
tions in the environments were up-sampled to 1 kHz by cubic spline 
interpolation to match with the temporal resolution of neuronal 
data. Data synchronization was achieved through audio trigger 
pulses generated by the tablet and recorded through an analog aux-
iliary input of the data acquisition computer [for method details, 
see (6)]. From the positions and facing directions (in angular de-
grees), we constructed a probability density of visits over each unit 
area of an environment during each game. For the construction 
of these maps, we divided each environment uniformly by a square 
grid that was proportional to the size of environments (0.7   m ̄    by 
0.7   m ̄    for the small BY, 2 m by 2 m for the large LX and LV, and 3 m 
by 3 m for the largest OS environments). Next, we determined the 
total amount of time spent in each square area, the number of cross-
ings in that area, the circular mean direction of movement    w ̄    k    from 
a set of vectors representing the avatar passing through at a given ij 
unit area, and the resultant vector of all passes. The length of the 
resultant vector served as an estimate of the consistency of heading 
directions over an area. Conversely, the inverse of the RVL de-
scribed the variance of directions of passing. The average direction 
   w ̄    ij   = 1 / N  ∑ k=1  N     w  k    was defined as the mean direction of vectors at a 
given unit area. The mean direction informed us how stereotypical 
the view was from that location, and the RVL informed us directly 
about the variance of the directions the avatar took by crossing the 
place. Given the average constant speed of the avatar, a small result-
ant vector mij indicated a large variance of directions, while large 
mij implied consistent directions. Direction and resultant vectors were 
all normalized by the number of vectors in the area. Four types of 
correlations with phase of spikes were computed: (i) circular cor-
relation between phase angles and motion direction angles (78), 
(ii) circular to linear correlation between the spike phases and RVL, 
(iii) independence of spike phase and motion direction distribu-
tions vectors using c2 tests, and (iv) independence of spike phase 
and RVL distributions using c2 tests (6, 13).
Circular to linear correlation between spike phase 
and movement resultant vectors
To correlate the average neuronal activity (FRs or spike phases) with 
movement parameters (heading direction or resultant vector) at 
any spatial location, we counted the spikes and trajectory segments 
over small areas each environment was divided into. All trajectory 
segments crossing a given area were aggregated, and average direc-
tion and resultant vectors were computed. Likewise, all spikes with-
in that area were aggregated, and the mean circular phase of spikes 
was computed. Next, we computed the correlation between mean 
spike phases and the RVL as circular to linear correlation (78). If 
our data consist of n pairs of movement velocity (m11, m12, m1n) and 
spike phase angle (a21, a22, a2n), then the circular correlation is de-
fined (79).

   r  c   l =    ∑ k=1  n   (sin(  w ̄    1k   ) −  m  1,1   ) (sin(  w ̄    2k   ) −  m  2,1  )   ────────────────────────    
 √ 

________________________________
     ∑ k=1  n   (si n   2 (  w ̄    1k   ) −  m  1,1   ) (si n   2 (  w ̄    2k   ) −  m  2,1  )  

    (4)

Correlation between movement direction and spike phase
Let assume our data consist of n pairs of movement angular velocity 
(w11, w12, w1n) and spike phase angle (w21, w22, w2n). The circular 
correlation is defined (79, 80).
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   r  c   =    ∑ k=1  n   sin(  w ̄    1k   −  W  1,1   ) sin(  w ̄    2k   −  W  2,1  )   ─────────────────────   
 √ 
____________________________

    ∑ k=1  n   si n   2 (  w ̄    1k   −  W  1,1   ) si n   2 (  w ̄    2k   −  W  2,1  )  
    (5)

where W1,1 and W2,1 are the grand mean direction of the movements 
and spike phases, respectively. The estimated P value associated 
with the correlation is based on the assumption that zr is distributed 
as standard normal

   z  r   =  r  c    √ 
_

   n  l  20    l  02   ─  l  22        (6)

and

   l  ij   =   1 ─ n     ∑ 
k=1

  
n
   si n   i ( a  1k   −  T  1,1   ) si n   j ( a  2k   −  T  2,1  )  (7)

where T1,1 and T2,1 denote appropriate angular sample means.
Binning the space for FR maps and phase maps
To elucidate the spatial aspect of spike phase (f), the navigation are-
na was divided into uniformly sized (1 m by 1 m, 2 m by 2 m, or 3 m 
by 3 m) squares (unit areas) proportional to the total area of the 
environment. The size of the unit area did not influence the results 
within a range of 0.5 m by 0.5 m to 3 m by 3 m (6). For each of those 
areas, we determined the times of visiting and the number of spikes 
generated inside the area. The computation of FR maps and phase 
maps is described in the “Computing spike to LFP phase” and “Spa-
tial FR maps” sections, respectively (13).
Computing 2D entropy
Instead of using traditional grid-score metrics (81, 82), we used en-
tropy for comparing phase maps of original spike trains with surro-
gate spike and LFP processes [(13). The advantage of entropy over 
gridness is that it is (i) more general than gridness; (ii) less sensitive 
to specific features such as rotational symmetry; (iii) agnostic to the 
grid distance and rotation symmetry unlike gridness, while it is still 
sensitive to the periodic structure of the 2D image; and (iv) easy to 
interpret and straightforward to compute. If p(zi) is the gray-level 
histogram of the phase map, then the entropy of the image is (83)

  e − ∑ p( z  i  )  log  2   p( z  i  )  (8)

Analysis of grid parameters
FR maps, spatial autocorrelograms (ACs), and autoperiodograms 
were computed using standard methods (6, 75, 81, 82, 84). We 
quantified grid scores by precisely following the method outlined 
by Barry and Bush (81), Sargolini et al. (75), and Krupic et al. (82). 
Grid distance was determined on the basis of the autoperiodo-
gram and manually cross-validated with the ACs. To compute the 
confidence intervals for statistical significance of gridness scores, 
we applied a standard Poisson bootstrap method and shuffled 
spike times 1000 times (not to be confused with the method of gen-
erating surrogate spike trains for phase maps in the “Generating 
surrogate spike trains” section). Validation of spatial periodicity against 
the by-chance was done using a Monte Carlo method by comparing 
the spectral modulation depth of each AC against the distribution 
of gridness scores of 1000 randomized AC generated from mix-
tures of 2D Gaussian distributions (6, 13).

Computing the FR grid period (grid distance)
Grid period is the wavelength of the spatially periodic single-unit 
activity. It is equivalent with distance between adjacent nodes of the 
AC. Since ACs are periodic by construction, this spatial wavelength is 
defined as the inverse of the predominant spatial frequency compo-
nent and could also be measured by hand as the average grid distance 
(2). Grid distances were measured following the method outlined 
in Nadasdy et al. (6). Briefly, after the removal of the central peak 
from the AC (nonspecific to the spatial pattern), we computed the 2D 
spectral density of the ACs by taking the complex conjugate of the 
inverse 2D Fourier transform (82). We next averaged the 2D spectral 
distribution across the X and Y coordinates and determined the larg-
est amplitude peak positions. The peak position corresponds to the 
predominant spatial frequency component of the grid. This method 
was chosen because it is more precise and less biased than measuring 
the distance between the nodes by hand. Dividing the dimensions of 
the AC by the spatial frequency provided the distance of the X-Y peak 
in spatial bins. We then computed the Euclidean distance of the peak 
(defined by its X and Y coordinates) from the origin, the center of the 
autoperiodogram. This distance was multiplied by the scalar bin size 
(in meters) to give the main grid period l. Grid frequencies were 
computed for ACs generated by each neuron and compared between 
environments. Not to confuse the FR grid distance with the “grid phase 
node distances” (described in the “Computing grid iso-phase node dis-
tance” section) (6, 13).
Computing grid iso-phase node distance
In the lack of a standard method for quantifying the spatial distribu-
tion of spike phases projected onto a 2D plane, we applied a manual 
method. First, we plotted the color-coded phase maps for every single 
unit that exceeded an average FR of 1 Hz, providing n ≥ 300 spikes 
during a 5-min navigation session. The justification for the 1-Hz FR 
threshold was empirical, as it provided the sufficient coverage for gen-
erating continuous phase gradients and discernible iso-phase nodes, 
i.e., areas where the same phase repeats. We calibrated each phase 
map according to the size of the virtual environment and digitized 
the position of iso-phase nodes relative to the edges of the envi-
ronment. Defining iso-phase nodes started with dividing the phase 
spectrum to four equal segments (1° to 90°, 91° to 180°, 181° to 270o, 
and 271° to 360°) corresponding roughly to blue, red, yellow, and 
green colors of the hue, saturation, value (HSV) color map. Next, 
we asked unbiased volunteers to mark the centroids of areas on 
the phase maps where one of the four colors is represented by at 
least three connected pixels and enter the coordinates into separate 
spreadsheets. To avoid a bias, the volunteers were blinded to the pur-
pose of the study and the goal of measurements. Once the phase maps 
were digitized, we computed the Euclidean distances between each 
node (N) of the same color and determined the inter node distances 
between them. The total number of distances within an iso-phase 
node graph is  N =  n * (n − 1) _ 2   . Next, we constructed the distribution of 
these distances. For a periodic graph, the distribution of internode 
distances formed several prominent peaks with subharmonics. The 
first peak in the distribution provided the average nearest neighbor 
internode distance [  d ̄   ; the mean of   d ̄    across the four phase ranges 
(color) was used to express the iso-phase distance (  D ̄   )] (13).
Datasets and statistical methods
To compare grid scores and grid periods across environments, the 
general linear model ANOVA and its nonparametric version the 
Kruskal- Wallis test (MATLAB, MathWorks, Nattick, MA) were ap-
plied. The main factor was the environment (BY, LV, LX, and OS), 
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and the dependent variables were grid period and phase internode 
distance (6, 13). We performed Rayleigh tests for testing nonuniformity 
of circular data and Watson’s goodness of fit test for testing conformity 
with the von Mises distribution [MATLAB Circular Statistics 
Toolbox (78)].
Processing LFPs
Wide-band signals were recorded from all five electrodes, but we 
computed the phase of single-unit activity relative to the LFP from 
only a single dedicated electrode, referred to as El 5. For this elec-
trode, we down-sampled the original wide-band recording from 24 
to 1 kHz and digitally filtered the LFP between 1 and 300 Hz for 
broad spectrum overview using a noncausal, zero phase digital filter 
implemented in MATLAB as filtfilt (www.mathworks.com/help/
signal/ref/filtfilt.html). LFP was then further filtered at specific fre-
quency bands by also using filtfilt for theta (2 to 12 Hz) and gamma 
(25 to 35 Hz). These frequency intervals were determined on the 
basis of the prominent frequencies of the fast Fourier transform 
(FFT) (Fig. 1B). We selected epochs for the phase analysis when 
the spectral density function at theta or gamma band deviated by ± 2 
standard deviations from the 1/f regression. Hence, the num-
ber of epochs included in the theta and gamma phase analysis dif-
fered (13).
Computing spike to LFP phase
To get a precise phase estimate of the spikes, we sampled the spike 
waveform at a 24-kHz sampling rate. We determined the spike time 
based on the largest first derivative of the positive going component 
of action potentials. This time point was then rounded to the near-
est 1-ms scale and associated with the LFP also sampled at 1 kHz. 
Next, to obtain the instantaneous phase, the Hilbert transforms of 
both theta and gamma frequency-filtered signals were computed 
using the “hilbert” function of MATLAB (www.mathworks.com/
help/signal/ref/hilbert.html). The Hilbert phase at spike times (both 
defined at 1-ms precision) served as instantaneous phase estimate 
of spike relative to the theta or gamma oscillation (13).
Spatial FR maps
The spatial tuning of single-unit activity was characterized by FR 
maps and their spatial autocorrelation functions. For the FR map, 
the game area was divided into 1 m–by–1 m, 2 m–by–2 m, or 3 m–
by–3 m spatial bins, depending on the size of the virtual environ-
ment (Table 2). For each of those spatial bins, we determined the 
duration of time spent and the number of spikes generated during 
crossings. By normalizing the number of spikes by the time spent, 
we obtained the FR in spikes per second (in Hertz). Binning had no 
significant effect on the grid parameters (6, 13).
Computing phase maps
Besides the local FRs, the circular average phase of spikes (f) rela-
tive to the theta and gamma bandpass-filtered LFP was computed. 
Because the frequency of visits varied area to area, including no vis-
it at all, the reliability of (f) estimate also varied with the number of 
visits. Therefore, we computed the mean and variance (sf) of the 
phase estimate for each area. By spatially integrating the local phase 
estimates, we constructed a global map (   ̂  s   f   ), where the mean phase 
estimate [   ̂  f   (x,y)   ] at any given area was associated with a color of the 
HSV color cylinder (red = −p, green = 0, and red = p), while [  s (x,y)  f   ] 
was represented by the value (smax = 2p= black and smin = 0 = maxi-
mum hue) (Figs.  1H and 2C). We refer to the variance-weighted 
spatial distribution of a phase plot as phase map denoted by (F) 
(13). The variance-weighted representation of phase is equivalent to 
the resultant vector of spike phase (48).

Computing autocorrelation
To compute the autocorrelation, the FR map was first smoothed with 
a Gaussian filter [5 by 5 bin neighborhood, (s = 0.8)], and non-
visited bins, originally assigned with NaN, were replaced by FR = 0 
spikes/s. Autocorrelograms were computed as follows. Given that 
the original FR map is f and the number of overlapping bins be-
tween the original and shifted FR maps at a given tx, ty offset is n, 
the equation for the 2D discrete autocorrelation is as follows

 r( t  x  ,  t  y   ) =   n∑ f(x, y ) f(x −  t  x  , y −  t  y   ) − ∑ f(x, y ) f(x −  t  x  , y −  t  y  )    ──────────────────────────────────────     
 √ 

___________________
  n∑ f  (x, y)   2  −  (∑ f(x, y ))   2     √ 

________________________________
   n∑ f  (x −  t  x  , y −  t  y  )   2  −  (∑ f(x −  t  x  , y −  t  y   ))   2   
   

 (9)

where r(tx, ty) is the autocorrelation. Correlations were estimated 
for all values of n. The central peak of the autocorrelogram was re-
moved before computing the gridness (84, 85).
Computing grid scores
We quantified canonical “gridness” based on the autocorrelograms 
(ACs) by computing a 60° gridness score (g) step by step following 
the exact procedure outlined by Barry and Bush (81), Sargolini et al. 
(75), and Krupic et al. (82) as described in our earlier study (6). We 
first normalized the FR maps by the sizes of environments that al-
lowed for equal spatial resolutions for the ACs of different environ-
ments, but we kept the aspect ratio differences. Next, we computed 
the 2D ACs by applying 2D cross-correlation to the FR maps (6). 
After centering and clipping the AC to a 100 by 100 matrix, we 
located the largest peak after the removal of central peak, which de-
fined a concentric ring containing the circular or ellipsoid arrange-
ment of the first set of autocorrelation peaks at radius R. The outer 
radius of the ring was, based on the Barry-Krupic (BK) method, chosen 
to be 2.5R (6, 13, 75, 81, 82). For the computation of gridness scores, 
we followed the method by Sargolini et al. (75). Accordingly, we 
filtered the AC with the above-defined ring. Then, we rotated the 
extracted ring from 1° to 180° and computed the Pearson’s correla-
tion coefficients     r ̄     (  1°…180°   )     between the original and rotated matrix 
with an eight-point moving average applied to it. We determined 
gridness g as the difference between the minimum of r60° or r120° 
and the maximum of r30°, r90°, or r150°. This function of gridness as-
sumed a 60° modulation of AC as it expresses the modulation depth 
relative to 60° rotation symmetry. Because r modulation extended 
between 0 and 1, therefore, g was also bounded between 0 and 1.
Generating surrogate spike trains
For testing the deterministic spike-LFP phase relationship against 
by-chance phase coincidences, we generated surrogate spike trains. 
To preserve the ISI statistics of the original spike train yet decouple 
spike times from the phase of LFP, we resampled the ISIs from the 
ISI histogram and distributed them randomly during the interval of 
the LFP. We refer to this surrogate as “ISI shuffling.” The first ISI of 
the original spike train was considered relative to time 0. ISI shuf-
fling provided a Null to test the topographical consistency of 
spike-LFP phase relationship. We reasoned that if the observed 
spike-LFP phase coupling is topography preserving, then random-
izing the phase relationship while retaining the statistics of both ISIs 
and LFP should lead to a dispersion of topography. Phase topography 
preservation was tested by cross-validation (see the “Testing the con-
sistency of phase topography by cross-validation” section). Even if 
spike trains were highly periodic (with a narrow ISI histogram) and 
potentially increase the by-chance phase coupling between spikes 
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and LFP, the ISI shuffling would retain that by-chance coupling. In 
addition, to test whether periodic spike processes are sufficient to 
model the observed spike to LFP phase relationship, we created 
spike trains with uniform ISIs by determining the average ISI (1/f) 
and distributed the same number of spikes evenly within the re-
corded interval. Because trajectories were controlled by the non-
deterministic placements of navigation targets, we can rule out 
any systematic or periodic coupling between the avatar’s positions 
and spike processes. Hence, the periodic spike processes alone 
cannot account for topography-preserving spike-LFP phase rela-
tionship (13).
Generating surrogate LFP
Testing the deterministic contribution of LFP to the observed spike 
to LFP phase relationship, we generated LFP surrogates by phase 
randomization of the LFP. We applied a phase decomposition of the 
original LFP, which preserved the original power spectral density, 
except that the phases of oscillatory components were randomly shifted 
relative to the original. If spike processes were coordinated with the 
phase of any LFP component, then that relationship was dissolved 
by phase randomization. As a result, the observed topographic struc-
ture of spike to LFP phase relationship should have been com-
promised in the surrogate. To remove the low-frequency coherence 
between spikes and LFP, we reversed the phase-randomized LFP in 
time. As a result, the phase-randomized and time-reversed LFP 
should destroy any systematic phase relationship between spikes 
and LFP (13).
Comparing phase maps of original to surrogate spike and LFP
We compared the original (F) with those of constructed from sur-
rogate spike trains and surrogate LFP with respect to (i) correlation 
of phase f(x, y) and variance of heading direction [ s   v ̄    (x,y)   ] (the inverse 
of RVL), (ii) grid entropy, and (iii) the power of the low-frequency 
components of the autocorrelation of (F). Statistics were summa-
rized in Table 4. While random LFP phases significantly decreased 
the covariance of local spike phase with the RVL [zvalsubj1 = 10.5241, 
P(n = 910)= 0.0 and zvalsubj2 = 7.8262 P(n = 1004) = 0.0], ISI permutation 
did not [zvalsubj1= − 0.6207, P(n = 910) = 0.5348 and zvalsubj2 = 0.2321, 
P(n = 1004) = 0.8165] (fig. S5A). Similarly, random LFP phase increased 
the entropy of (F), while ISI permutation did not [zvalsubj1=0.3204, 
P(n = 910) = 0.7487 and zvalsubj2 = 0.9118, P(n = 1004) = 0.3619] (fig. S5B). 
Moreover, the original (F) patterns displayed a significantly larger 
low-frequency power of the 2D Fourier transform of phase maps 
than the ISI-shuffled and phase-randomized LFP [ISI shuffling: 
zvalsubj1=2.6879, P(n = 697) = 0.0072 and zvalsubj2 = 11.8777, P(n = 1004) = 
0.0; phase-randomized LFP: zvalsubj2 = 8.6097, P(n = 1004) = 0.0], 
except subject 2 for LFP phase randomization [zvalsubj1 = 1.6668, 
P(n = 697) = 0.0956] (fig. S5C).
Testing the consistency of phase topography by 
cross-validation
To test for temporal stability, we split a 300-s spike and LFP data 
into two nonoverlapping 150-s duration epochs and computed an 
element-to-element correlation between the phase maps (fig. S4, A 
to D). We excluded the nonvisited areas from the correlation that 
would otherwise generate spurious correlation. For the 2D cross- 
correlation, we applied Pearson’s correlation between the two vec-
torized maps following 2D cross-correlation formula

   r(A, B ) =   1 ─ N − 1     ∑ 
i=1

  
N

    (      A  i   −  m  A   ─  s  A     )   (      B  i   −  m  B   ─  s  B     )     (10)

where r(A, B) is the cross-correlation; A and B were matrices repre-
senting the two phase maps; mA and sA are the mean and SD of A, 
respectively; and mB and sB are the mean and SD of B. For circular 
correlation, the same formula was used as above except that (w11, 
w12, w1n) and (w21, w22, w2n) are the gamma phases of corresponding 
elements in the two matrices mA and mB representing the means and 
sA and sB were the variance of A and B matrices, respectively (79).

For testing the robustness of the spike-gamma phase association, 
first, we eliminated the odd numbered spikes followed by the even 
numbered spikes and then constructed phase maps A and B. First, 
we eliminated the odd numbered spikes, then the even numbered 
spikes second, and then constructed phase maps A and B (fig. S4, A 
and E to G). Next, we computed the element-wise 2D correlation 
coefficients between the two matrices, similar to what we did to the 
split-half dataset above (13).
Generating autocorrelograms of surrogate spike to LFP phases
The topographic maps of spike to LFP phase relationship are affected 
by the inhomogeneous coverage of space by the time-limited navi-
gation, regardless of whether we were using the original spike trains 
and LFPs or the surrogate counterparts. All reflected the pattern of 
spatial coverage, hence increased the correlation between original 
and surrogate patterns (path correlation). To remove the path cor-
relation confound when evaluating the difference between surrogate 
and original spike and LFP processes, we constructed autocorrelo-
grams between the spike-LFP phase maps. The nonvisited areas of 
maps were rendered by random phase values, hence resulted in low 
average correlations, while visited areas reflected true correlations 
between original spike/LFP and surrogate spike/LFP. We constructed 
autocorrelograms of true spike to LFP phase maps, surrogate spike to 
true LFP phase maps, and true spike to surrogate LFP phase maps (13).
Computing the speed of propagation of gamma field
We were interested to compute the speed of gamma wave propaga-
tion between electrodes. The 4 by 4 microelectrode grid represents 
120 (n = 16 × 15/2) speed measurement options between any two 
electrodes i and j. Given the known electrode grid geometry and inter-
electrode distances (l), the frequency of the gamma carrier wave (fg), 
and the time difference of nearest gamma peaks detected on the 
electrode pair ij, we can compute the local speed of propagation as 
the fraction of distance over time

   v ̄   = Dx / Dt  (11)

where Dx = l and Dt = (fi − fj)/2p × 10e2/fg. Given that the gamma 
spectrum was set to low gamma (between 25 and 60 Hz) and that 
the nearest interelectrode distance of our microelectrodes was 0.9 mm, 
the fi − fj = 60°, and the speed of propagation was found to be 
between 0.3241 mm/ms (at 60 Hz) and 0.1350 mm/ms (at 25 Hz), 
also consistent with the literature (45).
Decoding of position and heading direction from spike phase
In preparation for phase decoding, we assume that all spike time 
data (T) have been converted to spike phase data (f)

   T  i   ⇒  f  i    (12)

It was also assumed that the navigation area was divided into 
spatial bins as described earlier, except that for all four environments, 
we used a uniform 2 by 2   m ̄    binning of the area. Hence, the notation 
ij refers to the ith and jth position of the area of navigation. For 
predicting the next position of the avatar, we used the actual position 
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at the time of spike (xTi, yTi), the phase of the subsequent spike fTi+1, 
and the phase probability map F (including the variance). To ob-
tain a reliable estimate of the phase distribution in space (F) at each 
visited spatial bin, we combined the spikes across all units and elec-
trodes for given navigation session per day and per environment

   f  (ij,1…n)   =    ∑ k=1  E    ∑ l=1  N     f  kN+l    ─ EN    (13)

where E is the number of electrodes and N is the number of units 
detected from each electrode.

To ensure that the spike pool used for constructing the phase 
probability map (F) was nonoverlapping with the test set, i.e., 
the spike pool f used for decoding, we used every even and odd 
numbered spike for the test set and for the phase probability map, 
respectively

  f ∉ F  (14)

Next, we integrated the phases across spatial bins of ij into a phase 
probability map by computing the circular average of spike phases F

  F =  ∫i  
L
    ∫j  

M
     f  (ij,1,3,5…n)    (15)

where L and M defines the size of the environment. Next, we com-
puted the von Mises mean of phases in the space over each spatial 
bin that provided the phase probability map Fprior

   F  ij   =   
 ∑ k=1   n  ij       f  ijk  

 ─  n  ij      (16)

The Bayesian decoding started by reading the first spike position 
(xT1, yT1) of the vector of positions and the phase of the second spike 
f2 of the phase vector and loading the phase vector of the next 20 
(i = 2…21) spikes from the average phase map F(2…21) based on their 
[x(2…21), y(2…21)] spatial bin coordinates. The upcoming position of 
the avatar was predicted as the position with the largest Bayesian 
probability of positions among the next 20 positions. The Bayesian 
probability of the avatar’s position at x,y given that the spike was 
fired at a phase of fi was defined as the product of the likelihood of 
that phase at that location (Fx, y and the prior probability of visiting 
that location divided by the marginal likelihood of that specific phase 
occur relative to all the phase values)

  p( x  i  ,  y  i  ∣ f  i   ) =   p(f∣ x  i  ,  y  i   ) p( x  i  ,  y  i  )  ──────────── p(f)    (17)

Since we already computed the phase probability map F, the sim-
plified Bayesian probability is the weighted product of F and the prob-
ability of occupying the x, y position divided by the probability of phase

  p( x  i  ,  y  i  ∣ f  i   ) =   p( F  x,y   ) p( x  i  ,  y  i  )  ─ p(f)    (18)

where fi was the observed phase of the ith spike and Fx, y was the 
average phase at the (x, y) spatial bin of the environment. The predicted 
position was the maximum of the Bayesian probabilities among 
the 20 upcoming spikes

   ( x  i  ,  y  i   ) = arg max (  p( x  (i,…i+20)  ,  y  (i,..i+20)  ∣ f  (i,…i+20)  )   (19)

From (xi, yi) and (xi − 1, yi − 1), we computed the direction of 
heading as

  a = atan( x  i   −  x  i−1  ,  y  i   −  y  i−1  )  (20)

The reason we used only 20 as opposed to all of the spikes was 
that phase maps were periodic; hence, the same phase value could be 
mapped to multiple spatial locations. The choice of 20 spikes ensured 
that the Bayesian prediction will find a local solution within the 
proximity of the previous spike. We always predicted the upcoming 
position of a spike relative to the actual spike; hence, we were able to 
generate vectors of heading directions, which were directly compared 
to the actual heading direction allowing for statistical estimates 
of the decoding performance to be made (fig. S12, C to F).
Decoding of position and heading direction from FR
While the firing data are prepared differently, ultimate decoding of 
position and heading direction information from FRs followed the 
same procedure as from spike phase (see the “Decoding of position 
and heading direction from spike phase” section). Because spike 
density for most neurons was sparse as the pyramidal neurons’ FR 
is less than 1 Hz, we first estimated the continuous FR function 
from the actual spike times by computing the instantaneous FR at 
the time of spike FRi = (ti − ti − 1)/1000 in hertz and resampled the 
nonuniform data at 1.0 kHz by the “resample” function of MATLAB 
(MathWorks, Nattick, MA), which uses a polyphase anti-aliasing 
filter. Next, we resampled the data again in 100-ms intervals using 
the Savitzky-Golay filter, a generalized moving average with filter 
coefficients determined by an unweighted linear least squares re-
gression and a polynomial model of second degree

  ( T  i   ⟹  t  resampled   ⟹ F R  i  )  (21)

Then, we treated FRi exactly as fi and Eqs. 15 to 20 from the 
“Decoding of position and heading direction from spike phase” sec-
tion was applied. Note that FR is a bounded variable between 0 and 
max(FR), as opposed to phase, but the rest of the data analysis and 
the Bayesian decoding model was agnostic to this difference.
Construction of CMs of position and heading direction 
from spike phase
To compare predicted position with observed position, and likewise 
the predicted heading direction with observed heading direction, 
we computed the CMs. The CMs represent the observed values 
(position or direction) on the x axis and the predicted values (posi-
tion or direction) on the y axis. The resulting 2D histograms repre-
sent the aggregate of the pairs of the observed and predicted values 
at the observed (x) and predicted (y) coordinates for each spike. The 
scale of the heading direction CM was x = y = [1...360]°, while the 
position was [0...60]   m ̄   .
Construction of angular histograms of aggregate difference 
between the observed and predicted heading directions
The aggregate differences between actual heading direction vectors 
and predicted direction vectors constructed a von Mises distribu-
tion. The mean of the difference was close to zero if the prediction 
was correct. We also computed the 360° CM between the predicted 
and observed directions of heading.
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Dependency of decoding on the curvature of trajectories
Because the avatar’s movement depended on the location of pro-
grammed targets, such as the alien and the spaceships, the avatar’s 
trajectory varied between straight lines and sharp turns. Hence, the 
spatial distribution of the spikes along the trajectory as potential 
targets of the next move (among the 20 upcoming spikes) was highly 
sensitive to the curvature. As a result, when the trajectory was close 
to a straight line, the 20 upcoming spikes, as possible targets, lined 
up along the trajectory with a relatively small variation in heading 
directions and a larger variation in position, while the effect of the 
large curvature trajectory segments was the opposite. Consequently, 
the curvature affected the prediction error for direction and for 
position in an opposite fashion. Small curvature made direction 
errors small and position errors large, owing to the small directional 
variance and large positional variance of spike scatter along the 
straight trajectory. Hence, straight trajectories introduced a direc-
tion decoding bias during navigation, while highly curved trajecto-
ries introduced a position decoding bias. To compensate for these 
biases without changing the trajectory, we introduced two inter-
ventions: to constrain the decoding to mid-range trajectories and to 
generate a surrogate spike train (Null) as a control spike dataset 
described below.
Computing path curvatures
Curvature was defined on every Pi − 1, Pi, Pi + 1 triplet of trajectory as 
ki = 1/Ri; hence, Ri = 1/ki, where R is the radius as estimated by the 
circumcenter of the triangle defined by the three points on the osculat-
ing circle (by A. Mjaavatten, MathWorks File Exchange). Regarding 
the curvature constraints on decoding, we selected trajectory seg-
ments where the radius of curvature was larger than 0 and smaller 
than 15 m and performed all the decoding on these segments. This 
treatment of using paths with middle-range curvatures served to 
minimize the influence of curvature on the phase decoding.
Construction of the Null spike dataset
To compensate for any behavioral bias, including the trajectory cur-
vature bias, we generated a dataset (Null) that contained the same 
number of spikes and same time stamps as in the real data except 
that spike phases were shuffled. The Null dataset eliminated the 
association between the spike phase and the avatar’s location. To 
obtain an unbiased estimate of the decoding performance from the 
shuffled phase dataset, we constructed a CM from the Null. The 
CM depicted the density of combinations of all observed and de-
coded movement directions in 360° space and position differences 
relative to the axes of the environment. When we subtracted the 
Null from the observed CM (Fig. 4, A and B), the difference repre-
sented the unbiased CM. We quantified the decoding by the resul-
tant vector of the polar distribution of angle difference between 
decoded and true angles. Last, we computed the Kuiper two-sample 
statistic of the original and Null CMs, as well as the correlation and 
statistical difference between the decoded true positions and posi-
tions decoded from the Null dataset.
Determine precision of position decoding
If Dpos represents the precision of location decoding from phase, A1, 
A2, A3, and A4 are the areas of four different environments, and ngrids 
represent the average number of grid nodes, then the P(dx, dy∣f) 
probability of the location given a specific spike phase is

  P(dx, dy∣f ) =    D  pos   * 1 / 4 * ( A  1   +  A  2   +  A  3   +  A  4  )   ─────────────────   n  grids      (22)

Because the Dpos was different for each individual subjects and the 
rest of the parameters were fixed, the 1/4 * (A1 + A2 + A3 + A4) = 
2857 and ngrids = 8, the formula of computing the probability of by 
chance, i.e., getting the correct location right from a random code is 
P(dx, dy∣f) = Dpos * 357.1250.
Statistical evaluation of CMs by c2 statistics
We constructed four different CMs for both subjects (a total of 
eight CMs), representing the direction decoding from phase, posi-
tion decoding from phase, direction decoding from FR, and position 
decoding from FR. For a statistical evaluation of these CMs, first, we 
eliminated the negative values resulted from subtracting the ran-
domized contingency matrices from the original ones

  CM =  √ 
_

  (M ∘ M)  ij      (23)

Second, we split the CM into 2 by 2 quadrants (Q1, Q2, Q3, Q4) 
and summed the values within each quadrant generating a 2 by 
2 contingency table (nq1, nq2, nq3, nq4). Then, the test of independence 
boils down to a c2 statistics. If the decoding of position or direction 
as an expected variable was independent from the avatar’s observed 
position or direction, then the observed quantities in (nq1, nq2, nq3, 
nq4) quadrants should be no different from the expected distribu-
tion based on the marginal sums. However, if the decoding works 
and the expected and observed values are concordant, then the 
diagonal sum (NB, NC) should be significantly larger than chance. 
With the c2 test, we computed the probability of rejecting H0: the 
independence of true and decoded movement parameters, i.e., 
position or direction

   c   2  =   ∑ 
k=1

  
n
       ( O  k   −  E  k  )   2  ─  E  k      (24)

where Ok is the observed and Ek is the expected value in the kth 
quadrant (n = 4). We remark, while c2 test quantitatively confirmed 
the visual observation of the CMs, the 50 by 50 CMs contain much 
more information than that captured by the 2 by 2 c2 test.
Statistical evaluation of CMs by Kolmogorov-Smirnov test
To compare the true CMs with the CMs obtained from the Null 
dataset, we used the Kolmogorov-Smirnov tests. The Kolmogorov- 
Smirnov test computes the distance between the two cumulative 
probability distributions of the two samples and tests the Null 
hypothesis that the two samples were drawn from the same distri-
bution against the alternative that they are not

   D   *  =  max  x   (∣   ̂  F    1  (x ) −    ̂  F    2  (x ) ∣)  (25)

where     ̂  F    1  (x)  and     ̂  F    2  (x)  are the empirical distribution functions rep-
resenting the proportion of ×1 values less than or equal to x and     ̂  F    2  (x)  
the ×2 values less than or equal to x, respectively. If the D* statistics 
is larger than the critical value, then we reject the Null and accept 
the H1 that the two samples were deriving from two different dis-
tributions. Our hypothesis was that if the phase of spikes is in-
formative about the position of the avatar, then the pairs of 
decoded and actual positions will distribute near the unity line of 
the CM, while the phase randomized dataset will distribute broadly. 
Because we generated 100 Null dataset with randomized phases, 
we obtained not only one but also the statistics of 100 Kolmogorov- 
Smirnov tests, the distribution of which was computed as a bar chart 
of P values.
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Statistical evaluation of CMs by ROC test
In addition to c2 statistics and Kolmogorov-Smirnov test, we quan-
tified how well an ideal observer would discriminate the decoding 
performance of spike phase code from the decoding of random 
(shuffled) phases. If the difference between the two distributions is 
discernible, then the ROC analysis should be able to determine the 
specificity and sensitivity of the phase code. First, we partitioned the 
CM to two areas: (i) the diagonal strip defined as x = y ± 2s, also 
called the identity line; and (ii) everything else around it. If the spike 
phase decoder worked perfectly, then all the decoded positions or 
directions would have concentrated along the diagonal. All other 
scenarios would generate a dispersion of x ≠ y values. Since we sub-
tracted the random phase CM from the true phase CM to reduce 
trajectory bias, if the decoder was operating by chance, then the 
diagonal confidence interval would have contained close to equal 
number of positive and negative values, i.e., values reflecting surplus 
correct decoding and values where the random spike phases would 
yield to correct position estimates, respectively. Hence, an excess 
number of positive values would represent a surplus of correctly 
decoded directions or positions (fig. S15C). In contrast, the negative 
values would represent correct by-chance decoding performance 
from random phase distributions, i.e., the false positives (fig. S15D). 
Likewise, positive values outside of the confidence interval would 
represent targets missed by the decoder, while negative values off- 
diagonal represent correctly undetected targets, i.e., negative surplus 
values from random phase decoding. To compute the ROC curves 
and the area under that, we plot the function of the number of sx, y < 
0 values of false positives (fig. S15D) against the number of correctly 
decoded direction or position parameters (fig. S15C). If the area 
under the curve is significantly larger than 0.5, then we have a good 
reason to believe an ideal observer could easily discriminate be-
tween decoding of real location or heading direction from decoding 
randomized spike phase data. The ROC curve enables us to quanti-
fy how an ideal observer would be able to discriminate between the 
two distributions.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/sciadv.
abm6081
View/request a protocol for this paper from Bio-protocol.
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Summary 
 

 
  
This dissertation captures the central narrative of my research journey spanning 30 years in the 

intersection of neuroscience, cognition, and computational neuroscience, searching for “the 

neural code.” It is not the sole narrative but a personal one that renders my key publications by 

a coherent story in theoretical end experimental neuroscience. The story revolved around the 

question: “What is the smallest meaningful unit of information contained by the neuronal 

activity? This “unit” must transcend single neurons and single spikes because the spikes of 

single neurons are identical, and they don’t represent specific information without the context 

of the other spikes. The context can be defined by anatomy and/or behavior. We sought the 

smallest meaningful unit, which, in addition to the signal itself, contains sufficient context, to 

interpret the message. By rephrasing the above question, “If action potentials were the alphabet 

of the brain’s language, what would the words be?”. This question boils down to defining the 

simplest meaningful combinations of action potentials with cognitive functions starting with 

the concept of spike sequences (Nadasdy 1999, Nadasdy 2000) and arriving at phase coding 

(Nadasdy 2009, 2010, 2022). 

 

In the first chapter, we discussed various model realizations of spike sequences and their fit 

with empirical data. One was Moshe Abeles’ synfire chain model (Abeles, 1991; Aviel et al., 

2004), which remains purely theoretical until its predictions become widely replicated (Shmiel 

et al., 2005). Another model realization was the hippocampal replay of place cell and non-place 

cell activity termed “forward replay” and “reverse replay.” Both have been widely 

demonstrated and replicated on rodents running linear tracks and primates, including humans 

as well (Diba & Buzsaki, 2007; Foster & Wilson, 2006; Ji & Wilson, 2007; Nadasdy, Hirase, 

Czurko, et al., 1999; Skaggs & McNaughton, 1996; Vaz et al., 2020). While the association of 

these sequences with the intrinsic local theta rhythm was conspicuous from the beginning, 

recognizing their coherence with slow-gamma oscillations had to wait almost two decades 

(Nadasdy et al., 2022; Pfeiffer & Foster, 2015). 

 

The next chapter (Chapter 2) addressed whether spike sequences were products of the self-

organizing nature of neurons. The spontaneous formation of self-organized attractor dynamics 

was evident in dissociated tissue cultures by using multi-electrode array (MUA) technique. We 

unraveled the emergence of coherent oscillatory population activity without external drive 
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(Wagenaar et al., 2006). This intrinsic oscillatory activity always converged to a stereotypical 

and stable two-level dynamic of bursts and superbursts. Most importantly, the activity 

propagation in the dish was an ordered sequence consistent with the physics of traveling waves. 

However, the contribution of individual neurons to the repeating activity motifs was variable. 

We concluded that spike sequences do not recur precisely with the participation of the same 

set of neurons. Instead, the dynamics will unfold by taking alternate routes involving different 

neurons. Hence, the contribution of neurons to the sequences is variable. This observation also 

challenged the basic assumption of the synfire chain model that hypothesized the repetition of 

sequences in cortical circuitries with a cellular precision.       

 

The third chapter, “Can Phase be a code?” was a theoretical journey of integrating spike 

sequences with neuronal oscillations. It posited that the phases of continuous subthreshold 

oscillations self-organize into waves (just like in tissue cultures), and these waves play a critical 

role in resolving (discretizing) information for encoding and associating the spikes with 

neurons (a spatial code) during decoding. Phase coding postulates that (1) gamma (or other 

sufficiently coherent) oscillations play a fundamental role in information encoding; (2) action 

potentials tend to cohere with the subthreshold oscillation of the neuron; (3) subthreshold 

oscillations combine into traveling waves; (4) the topography of those oscillations can control 

the information-flow within the circuitry; (5) given a sufficient match of oscillation parameters 

between the encoding and decoding sites, the recovery of information from phase code is near 

perfect. The encoding and decoding concept is quite similar to the principle of holography, 

where a laser beam is applied as a reference wave for scanning the surface of an object, and 

the same reference laser beam is used for decoding the information from the phase imprint 

generated by interferences (Gabor et al., 1971). If the two reference waves are identical, the 

recovery of the surface is possible with a small margin of error. The phase coding model made 

predictions that were tested in Chapter 5. Moreover, it was a pivotal prediction of the phase 

coding model that gamma and theta oscillations propagate in the cortex and hippocampus as 

traveling waves (Nadasdy, 2009). These traveling waves since then have been widely reported 

(Das et al., 2022; Hangya et al., 2011; Lubenov & Siapas, 2009; Muller et al., 2018; Zhang et 

al., 2018; Zhang & Jacobs, 2015). 

 

Chapter 4 was devoted to the experimental validation of the human brain's grid cells and laid 

the foundation for recording single neuronal activity to unravel circuitry dynamics in a well-

controlled virtual environment (Nadasdy et al., 2017c). We discovered that (1) about 25-30 % 
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of human medial entorhinal cortical cells (MEC) express grid cell properties. (2) However, 

these cells represent spatial relations differently from grid cells in the rodent brain because (i) 

grid distances in human MEC neurons scale with the size of the environment; (ii) grids orient 

relative to the corners; and (iii) they express Cartesian grid geometry in addition to hexagonal. 

(3) We also showed that these grids are formed instantly due to the reliance on scanning the 

environment by saccadic eye movements as opposed to by locomotion, as typical in rodents. 

(4) The novel Cartesian grids (iii) may represent a neuronal solution specific to humans, an 

interesting avenue to explore further and clarify the role of culture and education in forming 

cognitive maps. While this discovery was concerned mainly with establishing a firm 

experimental paradigm to study neural coding of space in patients during seizure monitoring, 

it set the stage for validating phase coding in the human brain (Chapter 5).  

 

I consider Chapter 5 the real testbed for phase coding. Previously, I have shown by simulation 

that information can be recovered from phase (Chapter 3) (Nadasdy, 2009, 2010c, 2015). 

However, this theoretical possibility had not been proven in vivo until we showed that 

cognitive content, such as the allocentric spatial position of the agent, can be decoded from the 

phase with a precision unattainable by firing rate metric (Kayser et al., 2009; Montemurro et 

al., 2008). We tested the hypothesis that information about the spatial position of the agent can 

be recovered from the phase of the single-unit activity (Nadasdy et al., 2018, 2022). To do that, 

we developed a new method to visualize the information associated with the phase of spikes. 

By leveraging that tool, we showed that (1) the 2D phase maps unraveled a hidden allocentric 

topography of the firing phase that was conserved over time. (2) This allocentric topography 

was more prevalent in the population of MEC cells than the grid cell firing property from the 

firing rate. (3) The firing phase of cells was better tuned to slow-gamma LFP than theta, and 

phase maps of slow-gamma were more reproducible than phase maps of theta. (4) The phase 

maps of slow-gamma were more precisely aligned with the environment than the spatial 

variance of spikes. (5) The self-preserving microstructure of the gamma field is more critical 

for map formation than the spikes. This last finding puts the microstructure of gamma 

oscillations in the focus of computation as it shifts our attention from the activity of individual 

neurons to the field generated by a population of neurons.   

 

Based on these findings, a new view of neural dynamics is shaping up. According to this view, 

neurons and spikes are interchangeable entities of the neural code. At the same time, the local 

field of subthreshold oscillations (LFO) are the placeholders for information by modulating the 
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spike probability. Information is still conveyed by action potentials, but the spatial-temporal 

granularity of information (i.e., which neuron fires and when) encoded by spikes (i.e., which 

neuron fires and when) is defined by the dynamics of the LFO.  

 

Let me illustrate this with an example. Suppose we daisy-chain a group of neurons from a to h 

where a provides input to b, b provides input to c, …, and h provides input to a by closing the 

loop. Each neuron’s firing pattern is denoted by zeros and ones, such as in the example below 

(left side).  We observe the activity of these cells at times t1 and t2 for the duration of 8 

consecutive state readouts, which generates an 8-bit binary word (such as 10000000 and 

01000000 in the first row). Despite the t2 - t1 delay in the readouts, the two patterns sampled at 

t1 and t2 are identical as generated by the same neuron with a time shift. Because neuron b 

receives the input from neuron a plus a delay, the state of b at t1 will be identical to the state of 

neuron a at t2. Hence, seeing the binary code “00000010” will identify neither the neuron nor 

the time when the neuron’s state was read. However, suppose we introduce a periodic function 

marked as ‘_’, which tags the beginning of each binary word on all eight neurons 

simultaneously at any time. In that case, the readout of neuron a at t2 (01000_00) will not be 

confused with the readout of neuron b at t1 (0100_000) relative to the periodic marker. The 

periodic marker provides a reference, such as a start or stop bit. Oscillations may naturally play 

such a role in information segmentation.2 
 
 
 without periodic marker  with periodic marker 
neuron t1      t2     t1  t2 
 ¯     ¯  ¯    ¯ 
a 10000000 01000000  1000_000 01000_00                 

b 01000000                 00100000  0100_000                 00100_00 

c 00100000 00010000  0010_000 00010_00 
d 00010000 00001000  0001_000 00001_00 
e 00001000 00000100  00001000 00000100 
f 00000100 00000010  0000_100 00000_10 
g 00000010 00000001  0000_010 00000_01 
h 00000001 10000000  0000_001 10000_00 

 
 
Neuronal cooperation expresses the same principle from the dissociated neuronal cell culture 

to the human MEC. Using a metaphor, consider neurons musicians in a symphonic orchestra. 

 
2 A very similar model and explanation was put forward by Buzsáki in his “neural syntax” article (Buzsáki, 
2010). 
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Individual musicians (together with their instruments) might be interchangeable during a 

performance. The violinists may exchange seats within the sting section and, likewise the 

trombonists. Nobody would notice the difference in sound. However, if the percussionists swap 

seats with the trombonists, not to mention replacing the entire string section with a brass section 

would make a noticeable difference. Likewise, neurons play interchangeable roles in 

generating recurring firing patterns because the population activity and/or the external input 

may coordinate the rhythm that recruits neurons on the fly. Just like how the conductor dictates 

the rhythm for the orchestra and makes the music piece reproducible from one performance to 

another every night in the concert hall. That should disappoint neither musicians nor neurons.  

 

For a while, we believed that neurons simply sum their dendritic input and relay a sequence of 

action potentials if the sum exceeds a constant threshold. This meant neurons did not see 

beyond their synaptic inputs. This view needs to be updated. Mounting evidence, including our 

results, suggests that neurons are embedded in a highly structured conductive media, enabling 

them to propagate electric current in waves due to ephaptic or volume conductance far beyond 

their synaptic connections. This media, in addition to neurons, contain highly conductive 

passive and active elements such as glial cells and astrocytes (Ashhad & Narayanan, 2019), 

and they articulate the complex terrain of traveling waves at different frequencies, propagation 

speeds, and directions. These oscillations modulate the subthreshold membrane oscillations of 

neurons such that, in turn, they affect dendritic integration and modulate neurons’ likelihood 

of firing action potentials. Hence, neurons see far beyond their synaptic neighbors and sense 

the larger context of the current-source landscape, unlocking a whole different level of 

complexity and computation we have not even considered. When neurons start talking to other 

neurons beyond their immediate contact is a prerequisite for self-organization and catalyzes 

conative functions to emerge. 
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