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Az élet az anyagnak egy sajátsága, szerkezetének következménye.1 
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Rövidítések jegyzéke  
 

1SCF önkonzisztens tér számítás egy szerkezeti végpontra 
AIRE autoimmun regulátor fehérje 
AMBER Assisted Model Building and Energy Refinement, egy MM erőtér 
BD blind docking, a teljes célpontra kiterjesztett kötési mód keresés 
DL drug-likeness, gyógyszerszerűség 
DNS dezoxiribonukleinsav 
EI efficiency index, hatékonysági index 
Eteljes teljes (molekulamechanikai) potenciális energia 
FBD fragment blind docking, BD molekulafragmensekre alkalmazva 
HPC high performance computing, szuperszámítástechnika 
HTS high throughput screening, nagy áteresztőképességű szűrés 
ITC isothermal titration calorimetry, izotermális titrációs kalorimetria 
KEM krio-elektronmikroszkópia 
MD molekuláris dinamika 
MEP50 metiloszóma protein 50 
MM molekulamechanika 
NHA number of heavy atoms, a hidrogéntől eltérő atomok száma 
NMR mágneses magrezonancia 
Ntor azon torziós szögek száma, amelyek mentén a ligandum szabadon elforog 
OPLS Optimized Potentials for Liquid Simulations, egy MM erőtér 
PHD plant homeodomain, növényi homeodomén 
PM7 Parametric Method 7, egy szemiempírikus QM parametrizálás 
PMF potential of mean force, az átlagos erő potenciálja 
PRMT5 protein arginin metiltranszferáz 5 
PS pocket search, kötőzsebkereső 
PTM poszt-transzlációs módosulás 
QM kvantummechanika 
RKR röntgen-krisztallográfia 
SGCI sivatagi sáska kimotripszin inhibitor 
SSTR4 a szomatosztatin 4-es altípusú receptora 
TRP tranziens receptor potenciál 
ΔGb kötődési szabadentalpiaváltozás 
ΔHb kötődési entalpiaváltozás 
ΔSb kötődési entrópiaváltozás 
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1. Az értekezés tárgya 
 
A gyógyszertervezés célja a farmakodinámia szempontjából egy olyan ligandum meg- vagy 
kitalálása, amely erősen és szelektíven kötődik a célponthoz, hogy azon hatását kifejthesse. 
Farmakokinetikai elvárás, hogy a ligandum eljusson az adminisztráció helyétől  a célponthoz, 
majd pedig a megfelelő idő elteltével távozzon a szervezetből. A továbbiakban ligandum alatt 
értem nem csupán a gyógyszereket, de az élettanilag fontos endogén vegyületeket, 
xenobiotikumokat és általában a farmakológiai aktivitást mutató vegyületeket. A célpont 
többnyire egy fehérjemolekulát takar majd, de a dolgozat eredményei könnyen adaptálhatóak 
más bio- vagy makromolekuláris partnerekre is. A ligandumok teljes farmakológiai 
(farmakodinámiai és farmakokinetikai) hatékonysága alapvetően függ a szerkezetüktől és a 
célponttal, valamint testünk egyéb molekuláival való kölcsönhatásaik térbeli elrendeződésétől 
és erősségétől.  
Nem véletlen tehát, hogy munkám során Szent-Györgyi Albertnek az előző lapon olvasható 
gondolata volt az egyik fogódzóm. Az életfunkciók és a farmakológiai jelenségek valóban mind 
anyagszerkezeti alapokon nyugszanak, ezért leírásuk elsődlegesen a kémia hatáskörébe 
tartozik. Az anyag szerkezetének atomi felbontású ismerete nyújtja a biztos talajt a magasabb 
szinteken végbemenő élettani folyamatok legpontosabb értelmezéséhez és a patológiás 
események molekuláris szintű, gyógyszeres kezeléséhez is.  
Ennek megfelelően, dolgozatom elején  az anyagszerkezetre vonatkozó eredményeimet 
mutatom be, a célpont-ligandum kölcsönhatásokra fókuszálva. A ligandum farmakológiai 
profiljának felrajzolásakor, az atomi felbontású szerkezetek birtokában az első logikus lépés a 
célponttal kialakítható kölcsönhatások erősségének a meghatározása. Erre lehetőséget nyújt 
a szerkezeti alapú energiaszámítás és végső soron a termodinamikai potenciálfüggvények 
változásainak meghatározása a kölcsönhatás során. Dolgozatom második része ezért a 
célpont-ligandum kölcsönhatások energiájával foglalkozik. Mivel a szerkezeti számítások is 
igénylik egyes energiatípusok használatát, a szerkezet és energia területei természetesen 
átfednek. Az eredményeket így elsődleges jellegük szerint soroltam e két külön fejezetbe. Az 
energiáról szóló fejezetben azokat az eredményeimet is sorra veszem, amelyek az előzőekre 
épülve a ligandum farmakológiai hatékonyságával kapcsolatosak.  
A racionális, célpont-alapú gyógyszertervezés tehát a szerkezet-energia  kapcsolatok 
feltárásával és alkalmazásával  jut el jó eséllyel a farmakológialiag hatékony ligandumokig. A 
továbbiakban az említett kapcsolatokra épülő,  új eszközök kidolgozásáról, valamint a 
meglévők praktikus alkalmazásairól számolok be. Az MTA Kémiai Osztály Doktori Bizottsága 
vezetőségével történt egyeztetés alapján a jelen dolgozat a rövid értekezés formát követi. 
Ennek megfelelően tömörítve adom meg az elért eredmények értékelő összefoglalását. Az 
arányosság megtartása végett az egyes fejezetek bevezető szakaszaiban az irodalmi hátteret 
és a felhasznált módszertant is csupán vázlatosan ismertetem, a vonatkozó, válogatott 
alapművek és összefoglaló tanulmányok tételes hivatkozásával. 
A gyógyszerkutatás elméleti módszertana az értekezésben áttekintett közel két évtized alatt 
nagy változásokon ment keresztül, köszönhetően a rendelkezésre álló informatikai eszköztár 
fejlődésének is. Kezdetben jórészt személyi számítógépek álltak rendelkezésünkre és az 
alkalmazott szoftverek párhuzamosítása gyerekcipőben járt. Ma már a hazai 
szuperszámítógépes (high performance computing, HPC) központban is kihasználhatjuk a jól 
megírt, párhuzamosított kódok adta gyorsaságot, amely a hatékony, reprodukálható 
munkának is szükséges alapfeltétele lett.  
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2. Szerkezet 
 
E fejezetben olyan munkák eredményeiről számolok be, amelyeket konkrét gyakorlati igények 
motiváltak: többnyire a kísérletes szerkezetmeghatározás korlátai. A munka során a célpont-
ligandum komplexek szerkezeti számításainak fejlesztésére összpontosítottunk. Folytattuk és 
lényegében befejeztük az egyetemi doktori disszertációmban megkezdett munkát a 
számítógépes dokkolás területén, majd ennek eredményeire építettük a prerekvizit 
(előfeltételi) kötőhelyek feltérképezését. A fehérje-peptid komplexek és a hidrátszerkezet 
számítására irányuló eljárások a szerkezetmeghatározás nagy kihívásaira adnak válaszokat. 
Mielőtt rátérek az említett eredmények ismertetésére, röviden igyekszem bemutatni a 
motiváló előzményeket, valamint a felhasznált elméleti és módszertani hátteret. 
 
2.1. A kísérletes szerkezetmeghatározás korlátai 
A célpont-ligandum komplexek atomi felbontású szerkezetének meghatározására több 
kísérletes eljárás is használható. Bár az egyes technikák állandó fejlődésen mennek keresztül, 
még ma sem megoldott a gyógyszertervezéshez elvárható nagy számú célpont-ligandum 
komplex szerkezet gyors és pontos előállítása. A következőkben a kísérleti eljárások ide 
vonatkozó főbb korlátait tekintem át a tervezés szemszögéből, mivel egyrészt ezek szolgáltak 
fő motivációként munkámban, másrészt viszonylag kevés tanulmány elemzi őket  ̶   
ugyanakkor az eljárások méltatásáról számos összefoglaló mű készült már.  A korlátokról írok 
elsősorban, de ezzel véletlenül sem azt szeretném sugallni, hogy a mérésekre már nincs vagy 
a közeljövőben nem lesz szükség. Sőt, a szerkezeti biokémia jelenlegi állapotának ismeretében 
és napi tapasztalataim alapján is teljes mértékben osztom például Moore, Hendrickson, 
Henderson és Brunger professzorok véleményét2 napjaink népszerű, a gépi tanulás elvén 
működő AlphaFold3 nevű számítógépes eljárásáról, amelyet nemrég a fehérjeszerkezet- 
meghatározás végső megoldásaként ünnepeltek. Véleményük ide vonatkozó részét szó szerint 
idézem: „... although structural predictions by AlphaFold and RoseTTAfold may be accurate 
enough to assist with experimental structure determination, they alone cannot provide the 
kind of detailed understanding of molecular and chemical interactions that is required for 
studies of molecular mechanisms and for structure-based drug design.” Az elméleti 
megközelítések tehát mindig is rá lesznek utalva a kísérleti eredményekre legalább a 
validálásuk végett  ̶   a kísérletek viszont a jó elmélet adta keretek között hasznosulnak igazán. 
Nota bene, az említett, ismeretalapú, gépi tanulásos eljárások eleve nem is létezhetnének 
kísérletileg kimért szerkezetek nélkül, hiszen ezeken történik a betanításuk.  
A kísérleti módszerek listájának legelején említeném a krio-elektronmikroszkópiát (KEM), 
amely a legfiatalabb eljárás (kémiai Nobel-díj, 2017)4, és a nagy méretű részecskék (fehérje-
komplexek, riboszóma, vírusok stb.)5–8 kimérésében lenyűgöző eredményeket ért el. 
Ugyanakkor fontos szerkezeti részletekben, mint például a ligandum kötődési módjának, vagy 
a vízmolekulák helyzetének9 meghatározásában a célponton sajnos még korlátozott a 
teljesítőképessége10–12. E korlátokat számszerűen elsősorban az jelzi, hogy a 2 Å-nál kisebb 
felbontást  ̶  amely a molekulatervezés e fontos részleteihez szükséges lenne  ̶   elméletileg a 
rendelkezésre álló KEM apparátusok el tudják érni, de rutinszerűen a gyakorlat még nem 
produkálja13, elsősorban mintaelőkészítési, homogenitási és stabilitási problémák miatt.  
A mai napig a röntgen-krisztallográfiás (RKR)14,15 eljárások adják a Fehérje Adatbankban16 
elérhető célpont-ligandum komplex szerkezetek zömét. A RKR és a KEM várhatóan még jó 
darabig komplementer technikák lesznek11,17.  Bár a célpont-ligandum komplexek és a 
gyógyszertervezés terén a RKR  szerepe vitathatatlan, e technika is számos, zavaró korláttal 
rendelkezik18,19, amelyek közül a következőkben néhány általános korlátot, majd pedig a 

               hetenyi.csaba_83_23



9 
 

célpont-ligandum komplexekre és a hidrátszerkezetre vonatkozó speciálisabb problémákat 
érintek.  
Az első és legnagyobb probléma rögtön a fehérje célpont előállíthatósága és 
kristályosíthatósága. A genetikusok jelenleg kb. 20 ezerre teszik20 a humán DNS-ben kódolt 
fehérjék számát. (Megjegyzem, hogy pár évtizteddel ezelőtt ez az adat nagyságrendekkel 
nagyobb volt21 és a pontos számot ma sem ismeri senki, de növekedni már biztos nem fog, 
ami   ̶  a gyógyszertervezés szempontjából nézve  ̶  elég aggasztó.) E nem túl nagy 
fehérjekészletnek csak olyan 10-14 %-a alkalmas szerkezetileg a gyógyszertervezésre 
(druggable)22 és ennek is csak egy része köthető kórélettanilag valamely betegséghez, így véső 
soron, jó ha mintegy 1500 humán fehérje alkalmas tervezési célpontként. Ugyanakkor a 
fehérjekészlet18 és az aktív  gyógyszerek célpontjai esetében22 is ezek jó harmada 
membránfehérje (receptor, ioncsatorna, transzpoter). Mivel a membránfehérjék 
kristályosítása oldhatósági okokból körülményes23, így az említett csoport nagy hányadának a 
szerkezetmeghatározása nem rutin feladat. Megjegyzendő, hogy a KEM a fehérjék oldhatósági 
problémáitól kevésbé függ24, így bizonyos membránfehérjék esetében kiválthatja a RKR-t, de 
a minta inhomogenitása ez esetben is kritikus tényező lehet. A membránfehérjék példája 
mellett a fehérjék izolálásának vagy expressziójának, tisztításának25 és kristályosítás 
„művészetének” számos egyéb buktatója is van, amelyekre itt nem térek ki. Ráadásul, a 
kristályos állapot természetszerűleg különbözik a fehérjék élettani közegétől és így gyakran 
kristályosodási műtermékek keletkezhetnek, például olyan intermolekuláris kapcsolatok, 
amelyek a sejtben vagy oldatban nem jönnének létre. Ezt a jelenséget az említett 
membránfehérjék meghatározásánál használt detergensek felerősíthetik26 és mindezek miatt 
külön metodika vált szükségessé27 e műtermékek felderítésére. A kristály birtokában maga a 
mérési adatgyűjtés viszonylag gyorsan lezajlik. Ennek kapcsán a nagy energiájú sugárzás 
okozta mintaroncsolódás és részben az ennek megakadályozására gyakran alkalmazott 
alacsony hőmérsékletű (90-120 K-en végzett) mérés során jelentkező kriosztatikus 
műtermékek problémáját említem28. E nem kívánt műtermékek főleg az oldószerhez kapcsolt 
folyamatok során képződhetnek és érinthetik a hidratációs egyensúlyok eltolódása mellett az 
erősen hidratált oldalláncok konformációs változásait és a gyenge ligandum kötődéseket is. 
Természetszerűleg hasonló problémák a KEM esetében is előfordulhatnak. A kristályosítás és 
emellett a kriosztatikus körülmények miatt természetes, hogy a RKR bizonyos kivételektől 
eltekintve29,30 nem térképezi fel a rendszerek időbeli evolúcióját, különösen nem azok 
hosszabb távú molekuláris dinamikáját, amely az élettani körülmények között természetes 
jelenség, akár nagyobb, például domén mozgások szintjén is. Ehelyett pillanatfelvételt rögzít31, 
amelyről többnyire hallgatólagosan elfogadjuk, hogy a legjobban megközelítheti a valóságot. 
A mérési adatok interpretálása és az atomi pozícióknak az elektronsűrűség-térképbe történő 
illesztése viszonylag gyors, algoritmizált folyamat, amelyhez több kiváló szoftver32–35 
alkalmazható. A fehérjék inherens molekuláris dinamikája (az anizotróp mozgások miatti 
diszkrét konformációs állapotokból eredő szerkezeti heterogenitás) azonban a szoftverek által 
biztosított gyors illesztések mellett is eredményez egy természetes bizonytalanságot36 a 
kapott szerkezeti modell tekintetében és ezt  ̶  különösen az alacsonyabb felbontású 
szerkezetek interpretálásakor  ̶  célszerű észben tartani. Emellett a problémásabb 
elektronsűrűség-térképek illesztésekor szükséges lehet a kutató manuális beavatkozása is, ami 
természetesen lassítja és további hibával terhelheti a folyamatot. 
A fent vázolt általános problémák mellett a célpont-ligandum komplexek esetében a 
nagyáteresztőképességű RKR mérések37 fejlődése viszont bíztató tendencia. Az adatgyűjtés 
egy kristályról a szinkrotronban kevesebb mint 2 percet vesz igénybe, majd a szerkezet 
megoldása és finomítása további egy órát11. Az ilyen nagy áteresztőképességű projektek 
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leginkább a fragmens alapú tervezést segítik38, amennyiben rendelkezésre áll például 500, 
különböző ligandum-fragmenst tartalmazó fehérjekristály, úgy az adatgyűjtés és kiértékelés 
ezekre egy nap és egy hét alatt elvégezhető11. Az áteresztőképesség korlátja a célpont-
ligandum komplex szerkezetek esetében tehát nem maga a diffrakciós adatok gyűjtése és 
feldolgozása, hanem a kristályok előállítása, amint azt az általános korlátoknál már 
említettem. A komplex kristályait leginkább úgy állítják elő, hogy a ligandumot a fehérjével 
együtt kristályosítják, vagy pedig a kész fehérje kristályt a ligandum oldatába áztatják. Mindkét 
esetben számos paraméter ideális beállítása szükséges, amit hosszú próbálgatás előz meg és 
még így is nagyon alapos manuális ellenőrzés szükséges ahhoz, hogy a kristályosodási 
műtermékeket kizárják és csak a valódi komplex-szerkezeteket tartalmazó kristályokat 
értékeljék ki39.  
A célpont-ligandum komplexek hidrátszerkezet-meghatározásának legfontosabb technikája 
már régóta40 szintén a RKR. A tervezés szempontjából legfontosabb vízmolekulák a célpont 
felszínén és a célpont-ligandum interfészben helyezkednek el, amelyek pontosabb 
kiméréséhez is legalább az említett 2 Å felbontás elérése lenne szükséges41–43.  
A vízszerkezet finomítására több számítógépes eljárás születik folyamatosan44,45. A viszonylag 
régóta folyó fejlesztések46 ellenére a mai napig nem tekinthető rutin feladatnak a vízmolekulák 
komplexbeli pozíciójának meghatározása, elsősorban azok nagy mobilitása és összességében 
sok szabadsági foka miatt. A teljes rendszer mérete befolyásolja a vízszerkezet pontosságát is, 
kisebb fehérjék esetén az atomi pozíciók illesztése az elektronsűrűség-térképbe könnyebb, 
mint nagy rendszereknél42.  A vízmolekulák esetében további nehézséget jelent, hogy az 
egyedülálló oxigén atomjaik elektronsűrűség-csúcsai rendszerint kisebbek, mint a célpont 
szomszédos atomcsoportjaié, valamint a hidrogén atomoknak is igen kicsi szórása, ami nem 
javít a helyzeten42.  Ilyen módon egy víz rendszerint sokkal kisebb értelmezhető jelet produkál, 
mint a környezete és sokszor nehéz attól elkülöníteni. Az izoelektronos ionok is tovább 
nehezítik az adott csúcs hozzárendelését45. A fehérjék hidrátszerkezete a kristályban sokszor 
nagyon eltér az oldatban tapasztalhatótól47, amelynek okozói sokszor a kristályban létrejövő 
művi fehérje-fehérje kapcsolatok. E kapcsolatok interfész felszíne elérheti akár az oldatban 
hozzáférhető teljes fehérjefelszín 30-40 %-át is kisebb fehérjék esetében48, tehát a 
vízszerkezet igen nagy hányada műterméknek tekinthető és korlátozottan használható ez 
esetekben. A kriosztatikus körülmények okozta  ̶  már említett  ̶  problémák a vízszerkezet 
esetében fokozottan érvényesek28. Előfordul ugyanakkor az is, hogy a szerkezeti finomítások 
során a kedvezőbb illesztési statisztika túlzott mértékben befolyásolja a végeredményt43. A 
neutron-diffrakciós technikák49,50 sokat segíthetnek a hidrátszerkezetek megbízhatóságának 
javításában51, ugyanakkor e technikák komplexitása és hozzáférhetősége lényegesen 
korlátozza52,53 még azok használatát.   
Végezetül, de nem utolsó sorban megemlíteném a mágneses magrezonancia spektroszkópiát 
(NMR)54,55, amelynek főként kisebb fehérjék esetében van jelentősége és igen hasznos 
információkat nyújt a rendszerek molekuláris mozgásairól, valamint a célpont-ligandum 
kölcsönhatások forró pontjairól is. A hidrátszerkezet esetében számszerűen kevesebb 
eredményt szolgáltatott eddig, viszont annak dinamikáját ígéretes módszerekkel jellemzi56,57.  
Mindent összevetve,  a kísérletes szerkezetmeghatározási eljárások használatának korlátai 
monetáris és technikai jellegűek. Az elmúlt évtizedekben mindkét területen pozitív elmozdulás 
volt észlelhető, egyrészt a gyógyszerfejlesztésbe áramló tőke, másrészt a folyamatos 
módszerfejlesztői munka révén. E tendencia remélhetően megmarad, ugyanakkor az egyes 
módszereknek mára kirajzolódtak olyan technikai korlátai is, amelyek csak nagyon nehezen, 
vagy egyáltalán nem haladhatók meg. Különösen e reménytelennek tűnő esetekben, valamint 
a szerkezetmeghatározás és -finomítás gyorsaságának növelésében (a monetáris erőforrások 
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hatékonyabb felhasználásában) segítenek a következő szakaszokban ismertetett elméleti 
megközelítések. 
 
2.2. A felhasznált elméleti megközelítések 
A következő szakaszokban a munkám során felhasznált elméleti eljárásokról nyújtok egy 
vázlatos áttekintést. E fejezetben a molekulamechanikai (MM) szintre szorítkozom, a 
kvantumkémai (QM) módszereket a 3. fejezetben fogom érinteni az energiaszámításhoz 
kapcsolódóan.  Az MM szintű modellezés részletes ismertetésére sem vállalkozom e szűk 
keretek között. E területről magyar58 és angol59,60 nyelvű könyvek, könyvfejezetek, 
összefoglaló szakcikkek nagy számban elérhetők. A molekulamechanika elméletének csupán 
a legfontosabb kiindulópontjait és az eredményeim értelmezéséhez szükséges elemeit 
tárgyalom, valamint külön szólok a vízmodellekről. 
 
2.2.1. Molekulamechanika 
A molekulamechanika kiindulópontjának D. H. Andrews 1930-as cikkét61 szokás tekinteni, 
amely posztulátumaiban megfogalmazza a Raman spektrumok értelmezésének klasszikus 
mechanikai alapjait. Ezt követték N. L. Allinger és mások úttörő munkái62–65, és az 1950-es 
évektől a fejlődés a számítástechnikai háttér kiépülésével párhuzamosan egyre rohamosabb 
lett66. Egy nagy ugrással megemlítem még a 2013-as kémiai Nobel-díjat, amely a terület 
általános elismertségét fémjelzi67–69.  
A molekulamechanikai eljárások fizikai-kémiai kódját az erőterek (force field), matematikai 
motorját pedig a kereső algoritmusok adják. E két alkatrész egyaránt nélkülözhetetlen és ma 
is nagy fejlődésen mennek át70. Az erőtér molekulamechanikai értelemben egy 
potenciálisenergia-függvényt és a benne szereplő, atomtípusoktól függő paraméterkészletet 
jelenti. A molekulamechanika klasszikus megközelítése tehát atomtípusokra épül és (szemben 
a kvantummechanikával) nem foglalkozik az elektronszerkezet leírásával. Az erőtereket 
osztályokba szokás sorolni a bennük alkalmazott megközelítések alapján71–73.   
Az 1. osztály erőtereit használjuk leggyakrabban a biomolekuláris célpontok és ligandum-
komplexeik számításában. Jellemzőjük, hogy a kötés nyújtási és kötésszöghajlítási tagokra 
harmonikus megközelítést alkalmaznak, kereszt-tagokat nem használnak, valamint a 
másodlagos kötésekkel atompáronként számolnak el. Mindezek a számítógépidő 
nagymértékű csökkenését teszik lehetővé az akár több 10-100 ezer atomos (vagy még 
nagyobb) rendszerekre.  Az Assisted Model Building and Energy Refinement (AMBER, 1. 
egyenlet)74–78 klasszikus példája az 1. osztályba tartozó erőtereknek. 

 

𝐸𝑡𝑒𝑙𝑗𝑒𝑠 = ∑ 𝐾𝑟(𝑟 − 𝑟𝑒𝑞)
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A teljes potenciális energiát (Eteljes)  ̶  amely értelemszerűen a rendszerben lévő összes atom 
helyvektorától függ  ̶   a kovalens kötésben részt vevő atomok közötti (bonding, felső sor), 
valamint az alsó sorban feltüntetett másodlagos (nonbonding) kölcsönhatások összegeként 
írja fel. A felső sorban Kr és Kθ a kötés nyújtásra, kötésszög deformációra vonatkozó 
erőállandók, Vn a rotációs energiagát nagyságától függő torziós paraméter, req és θeq az 
egyensúlyi kötéstávolság és kötésszög, n a multiplicitás és γ a torziós fázisszög. Az aktuális 
geometriát a r kötéstávolságok, θ kötésszögek, és ϕ torziós szögek írják le, valamint a 
másodlagos kötések (alsó sor) esetében a Rij kötéstávolságok az i és j sorszámú atomok között.  
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A másodlagos kötések közül a parciális töltések (q) közötti, páronkénti kölcsönhatást leíró 
Coulomb-formulát és a Lennard-Jones potenciált alkalmazza az erőtér (alsó sor), ahol ε a 
dielektromos állandó,  A és B a kölcsönható i-j atompárok típusától függő Lennard-Jones 
paraméterek. Az 1. egyenletet a szerzők által többször (újra)közölt formában adtam meg.  A 
hidrogénkötésekre az újabb AMBER erőterek már nem tartalmaznak külön kifejezést. 
Korábban a Lennard-Jones 12-10-es függvényt használták erre a célra. Az AMBER ma is az egyik 
leggyakrabban használt erőtér, folyamatosan jelennek meg újabb fejlesztései79–81 és 
általánosított verziója82, amelyek mintegy félszáz atomtípust tartalmaznak. Ennél jóval több, 
ténylegesen használható atomtípust csak ritkán találunk erőterekben. Bár például az Universal 
Force Field83 névlegesen a teljes periódusos rendszerre alkalmazható, ez a valóságban csak 
korlátozottan igaz. Az erőterek parametrizálásának aktuális kérdéseire nem térnék itt ki 
részletesen, ennek a meglehetősen összetett területnek a jelenlegi állapotáról például van der 
Spoel professzor közölt nemrég egy áttekintést70. Az AMBER mellett gyakrabban használt 
erőterek az 1. osztályban a CHARMM84,85 és az OPLS86,87.  A 2. osztályba tartozó erőterek 
rendszerint nagyobb számítási igényű függvényeket és kereszt-tagokat tartalmaznak, mint 
például az MM1-388–91, MM492, CFF93,94, MMFF95. A 3. osztályba tartozó erőterek polarizációs 
és hiperkonjugációs effektusok kezelésére képesek96,97, ilyen például az AMOEBA98,99 erőtér. 
Amennyiben az adott molekuláris rendszerhez rendelkezésünkre áll az erőtér és benne a 
szükséges paraméterkészlet, úgy elvégezhető a rendszer szerkezeti optimalizálása. Az 
optimalizálás során az említett Etotal függvényen (1. egyenlet) kell elvégezni a minimumhelyek 
megkeresését. Az optimalizálási probléma alapvetően két kihívással küzd a biológiai 
rendszerek nagysága és komplexitása miatt. A számítási kapacitás korlátja egy tecnikai kihívás, 
amely egy N atomból álló rendszer esetében, például a fent említett (1. egyenlet) másodlagos 
kötéseknél O(N2) rendű operációt takar. E kapacitási probléma párhuzamosított kódok 
alkalmazásával és a hazánkban is elérhető HPC infrastruktúra alkalmazásával részben 
kezelhető. A másik, elméleti probléma a nagy számú, egymástól sokszor nehezen 
megkülönböztethető mélységű minimumvölgyek feltérképezése. Ez lokális vagy globális100 
kereső módszerek segítségével tehető meg. A lokális keresők, mint például a gradiens 
módszerek közé tartozó legmeredekebb csökkenés101,102, konjugált gradiens103–105, az Eteljes 
második deriváltját is felhasználó Newton-Raphson106 vagy a kvázi-Newton107 eljárások egy, a 
kiindulási ponthoz közeli minimum megtalálására alkalmasak. Ezzel szemben a globális 
keresők tágabb értelmezési tartományon dolgoznak, a minimumvölgyek között 
energiagátakon is átjuthatnak és alapvetően sztochasztikus vagy determinisztikus stratégiákat 
követnek. A sztochasztikus stratégiák alapvetően (pszeudo) véletlenszámok generálására108 
épülnek és eredetileg Neumann János nevéhez fűződnek, aki a monakói kaszinóvárosról 
Monte-Carlo módszereknek nevezte el ezeket. A véletlenszám-generátorok többnyire 
egyenletes vagy normális eloszlású számokat állítanak elő az egyes programozási nyelvek 
függvényeibe vagy különálló programokba implementálva109. A véletlenszámok felhasználást 
nyerhetnek a determinisztikus eljárásokat megelőző kiindulási molekulageometriák vagy 
sebességek előállításakor is, valamint az evolúciós alapú, genetikus algoritmusokban110,111 
molekula-sokaságok mintáinak (a generációknak) a legyártásakor. A gyógyszertervezésben a 
Monte-Carlo módszerek és a genetikus algoritmusok főként a gyors molekuláris dokkoló 
eljárásokban hódítottak teret112–115, amelyek rendszerint egy pontozó (scoring) függvényen 
keresnek minimumokat. E pontozó függvények sokszor az Eteljes függvény (1. egyenlet) 
egyszerűsített és/vagy kiegészített verziói (lásd még 3. fejezet).  Munkánk során igen gyakran 
alkalmaztuk a globális keresők másik nagy csoportjába tartozó  determinisztikus eljárást, a 
molekuláris dinamikát (MD)116–120 is. Amíg a Monte-Carlo szimulációk során az atomok időbeli 
mozgását nem tudjuk nyomonkövetni, az MD a newtoni mechanika törvényei szerint a 
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rendszer teljes trajektóriáját szolgáltatja számunkra. A globális keresések hatékonysága 
tovább növelhető a konformáció-sokaságokat hatékonyan mintázó eljárásokkal121 mint 
például a szimulált anelláció122, vagy a replika kicserélődés123.   
 
2.2.2. Vízmodellek 
Ahogy a 2.1 szakaszban is láttuk, a hidrátszerkezet kimérése ma sem triviális feladat és időben 
kivitelezhetetlen lenne elméleti, informatikai segítség nélkül. Ráadásul a pontos 
gyógyszertervezés során szükségünk lenne mind a mobilisabb tömbfázisbeli (bulk), mind a 
határfelületi, statikusabb hidrátszerkezetek vízkölcsönhatásainak modelljeire. M. Levitt már 
az 1983-as tanulmányában118 is részletesen kitér a fehérje-számítások során alkalmazott 
vízmodellek fontosságára és az in vacuo számítások korlátaira. Megemlíti azt is, hogy a víznek, 
mint közegnek merőben más hatása van az apoláris és a poláris molekularészletek124 
kölcsönhatásaiban. Utóbbi esetben a nagy dipólusmomentummal rendelkező 
vízmolekuláknak az elektrosztatikus kölcsönhatásokra kifejtett árnyékoló hatása érvényesül. E 
hatást legegyszerűbben a távolságtól (Rij, 1. egyenlet) függő relatív permittivitás 
(dielektromos állandó) függvényekkel125–129 lehet figyelembe venni, az Eteljes függvényben a 
Coulomb-tagban az  ε helyén alkalmazva ezeket.  
A kontinuum oldószermodellek között az előbbieknél szofisztikáltabb formalizmussal 
rendelkeznek az általánosított Born130–133- vagy a Poisson-Boltzmann134–136-egyenletekre 
épülő implicit137 vízmodellek. Ezek a szolvatációs szabadentalpiaváltozás elektrosztatikus 
komponensének számítására alapoznak. Az implicit vízmodelleknél  ̶  ahogy az elnevezések is 
sugallják  ̶  tehát a vízmolekulák atomi szinten nincsenek reprezentálva a számítás során, 
hanem hatásuk együttesen, kontinuumként számolódik el. A vízmolekulák atomi 
reprezentációjának hiánya természetszerűleg az implicit modellek használhatóságát jócskán 
korlátozza138 főleg olyan kölcsönhatásoknál, amikor az oldószer főszerepet játszik. Ilyenek 
például a gyakran előforduló hálózatos rendszerek, amelyeket a vízmolekulák egymással és az 
oldott anyaggal139 alkotnak, vagy a hidrofób effektus140–144 alapját képező klatrát (kalitka) 
szerkezetek változásainak leírása az apoláris csoportok körül. Az explicit vízmodellek esetében 
e kölcsönhatások modellezésére esély kínálkozik, mivel ezek a vízmolekula valós geometriáját 
és töltésviszonyait atomi szinten reprezentálják. A legnépszerűbb explicit vízmodellek 
többnyire merev vízmolekulát alkalmaznak, ponttöltésekkel és páronkénti, additív 
kölcsönhatásokkal145 számolnak. Ilyenek a Transferable Intermolecular Potential (TIP)146 és a 
Simple Point Charge (SPC)147 családok legtöbb tagja. A vízmodellek területe messze nem lezárt, 
amit jól jeleznek a flexibilitás és polarizálhatóság irányába138 tett fejlesztések, valamint a 
megjelent összehasonlító tanulmányok148,149 konklúziói. 
 
2.3. Eredmények 
A továbbiakban az elmúlt évek saját eredményeit tárgyalom a szerkezet témakörben 
megjelent közleményeim alapján, amelyeket az egyéb irodalomtól eltérően szögletes 
zárójellel hivatkozok meg a szövegben és a dolgozat elején külön jegyzékben soroltam fel. 
 
2.3.1. A ligandumok kötési módjainak feltérképezése  [D1-D7] 
A gyógyszertervezés központi eleme a ligandumok hatásának (farmakodinámia) előrejelzése. 
A ligandumok rendszerint egy vagy több célponthoz kötődve fejtik ki hatásukat. E célpontok 
legtöbbször fehérjék, kisebb hányadban nukleinsavak vagy maga a sejtmembrán. A 
kötődéskor a ligandum felvesz egy adott térbeli pozíciót, orientációt és konformációt, 
amelyeket együttesen kötési módnak nevezhetünk. A ligandumok hatásának előrejelzésekor 
a kötési módok kiszámítása kulcsfontosságú. Amennyiben a kötőzseb ismert, a kötési módot 
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fókuszált molekuláris dokkolással állíthatjuk elő, amelynek során a számításba a kötőzseb 
környékét vonjuk csak be (1. ábra).  
 

 

 

 

 

 
1. ábra  A fenilalanil-tRNS-szintetáz (kék szalagok, balra és középen) célponton a fókuszált 

dokkoláskor a keresés a kötőzseb körüli szűk térrészre (kis piros doboz, balra) korlátozódik, míg a 
blind docking (BD) során a teljes célmolekula felszínére (nagy piros doboz) kiterjed.  A BD rendszerint 

több kötési módot eredményez egy adott ligandumra a célpont teljes felszínén (az L- fenilalanin 
ligandum [D1] tanulmányban megtalált kötési módjai sárga felszínnel jelölve, középen), így lehetőség 
nyílik az allosztérikus kötési módok feltérképezésére is. A dokkolással megtalált, a pontozó függvény 

által az élre sorolt (sárga vonalas ábrázolás, kiemelve, középen) és a kísérletileg kimért (piros vonalak) 
ortosztérikus kötési módok kiváló egyezést mutatnak. A korábbi150 és a jelen disszertációban tárgyalt 

[D1] tanulmányunkat is címlapra emelték (jobbra). 

 
Ez történik például a legtöbb nagy áteresztőképességű szűrő (high throughput screening, HTS) 
projektben. Korábbi munkánk során a keresést a teljes fehérje célpont felszínére 
kiterjesztettük, és peptid ligandumokon teszteltük e megközelítésünket, amelyet blind 
docking (BD)150 névre kereszteltünk. A BD elnevezése abból adódott, hogy a keresés vakon 
indul el a célmolekula körüli térben, a molekuláris dokkolást nem korlátozzuk a lehetséges 
kötőzsebre (1. ábra), mivel annak helyét nem ismerjük.  E tanulmányban150  vizsgáltuk meg a 
BD lehetőségét szisztematikusan151,152 kis peptid ligandumokon, majd alkalmaztuk a 
megközelítésünket az Alzheimer-kór fontos célpontjára, a β-amiloidra153,154. A tanulmányt150 
többek között M. Parrinello csoportja is hivatkozta155. A mai napig többen alkalmaznak és 
fejlesztenek156–160 BD eljárásokat a korábbi és alább ismertetendő munkáinkra építve.  
Tekintettel a BD iránti érdeklődésre és a probléma megoldatlanságára, a PhD értekezésemben 
megkezdett munkát150,153,154 tovább folytattuk és ennek eredményeit a [D1-D5] 
közleményekben publikáltuk. Először azt vizsgáltuk meg, milyen célmolekula méretig releváns 
egyáltalán BD-t alkalmazni. Az első, idevágó [D1] tanulmányban viszonylag kisebb méretű, 
kompaktabb (gyógyszer jellegű) ligandumokkal dolgoztunk, így a kereső számára a kihívást 
főleg a célmolekula mérete jelentette. A munkát az AutoDock 3161 nevű gyors molekuláris 
dokkoló eljárással végeztük, amely a globális kereséshez (2.2.1. fejezet) genetikus algoritmust 
alkalmaz. Az AutoDock szemi-sztochasztikus keresője és igen egyszerű pontozó függvénye 
ellenére az eredményeink azt mutatták, hogy kisebb, gyógyszer-méretű ligandumok esetében 
akár ezer aminosavas fehérjéken is érdemes elvégezni a keresést a teljes célmolekulán. Apo 
fehérjéket is vizsgálva azt találtuk, hogy kis mértékű indukált illeszkedés mellett a BD még 
elfogadható eredményeket ad (ez a kis molekulás gyógyszereknél gyakran teljesül). 
Kimutattuk, hogy a BD egyszerre több kötőhely feltérképezésére is alkalmas, különösen, ha 
egymás után több körben alkalmazzuk úgy, hogy a már megtalált ligandum kötési módot a 
célmolekula részeként kezeljük a következő körben, akkumulatív módon. Ez az eredmény  adta 
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a későbbiekben az alapötletet a BD probléma szisztematikus megoldásához a [D4] 
tanulmányban (lásd részletesen később). Az említett több kötőhelyes szituáció számos 
esetben előfordul gyógyszertanilag fontos receptoroknál162, így ezek feltérképezése alapvető. 
A fent részletezett [D1] tanulmányunk megkapta a Febs Letters folyóirat címlapját (1. ábra), 
hasonlóan a korábbi alapcikkhez150.  
A BD alkalmazásai során időközben több lehetőség és korlát felmerült, amelyeket egy újabb 
Protein Science tanulmányban elemeztünk ki [D2]. Itt főként olyan rendszereket vizsgáltunk, 
amelyeken a BD korábban sikertelennek bizonyult. Az AutoDock4163,164 mellett az 
EADock165,166 programot, valamint kötőzseb-kereső (pocket search, PS) módszereket is 
vizsgáltunk. Utóbbiak között voltak egyszerűsített erőtér alapján (Sitehound167, Q-
SiteFinder168), valamint pusztán geometriai elven (Pocket-Finder169, Pass170) működők is. Amíg 
az AutoDock4 előzetes PS nélkül használható BD céljára, az EADock egy Ligsite-os171 PS után 
fókuszált dokkolást végez, tehát két különböző BD stratégiát is vizsgáltunk. Érdekes módon azt 
kaptuk, hogy egyes PS módszerek használatának létjogosultsága van a precízebb BD mellett 
is. Ez abból adódik, hogy nem függenek az adott ligandumtól, hanem a kötőzsebet rendszerint 
próba atomokkal töltik meg és ezekre együttesen számolnak (például a Sitehound) egy teljes 
kölcsönhatási energia értéket, amely több ligandum(konformáció) kötési lehetőségét fejezi ki 
az adott zsebhez egy számértékkel. A tanulmányban emellett a másodlagos ligandumok és 
kötőhelyek, valamint a szerkezeti vízmolekulák szerepét is vizsgáltuk a BD során. Utóbbiak (az 
explicit vízmodell) hiánya alapvető korlátja a gyors BD eljárásoknak. Mindkét faktor esetében 
elmondható, hogy bár technikailag (látszólag) problémát jelentenek a BD probléma 
megoldása szempontjából, ugyanakkor vizsgálatuk a ligandum kötési módjáról és a 
kötőzsebek funkciójáról hasznos információkat szolgáltat (lásd még a 2.3.3 fejezetet). A 
tanulmányban [D2] végül arra jutottunk, hogy egy ortoszterikus kötőhely azonosítását nagy 
biztonsággal jelzi, ha azt az első osztályban (Rank 1) legalább 2 különböző BD eljárással vagy 
egy BD és egy PS eljárással megtaláltuk (konszenzusos találatok). A PS eljárások ilyen módon 
igen jól használhatók a BD eredmények megerősítésére.  
A BD megközelítésünket mi is alkalmaztuk [D3] a szex szteroidok kötési hálózatainak 
feltérképezésre a humán ösztrogén receptor α-n. Itt a klasszikus kötőzseb mellett a BD 
azonosította az alternatív kötőzsebet a vizsgált szteroidok (17-β-ösztradiol és egy ösztrén) 
esetében. Az alternatív kötőzseb létezését korábbi tanulmányok172–174 is vizsgálták. A mi 
tanulmányunkban azonban úgy azonosítottuk a klasszikus és alternatív kötőzsebeket az első 
két legerősebb kötődést mutató osztályban, hogy a teljes ösztrogén receptoron végeztük el a 
keresést a BD megközelítésnek megfelelően, tehát minden előzetes információ, 
irányítás/befolyásolás nélkül. Ezen túlmenően kimutattuk, hogy a klasszikus kötőzsebbe 
történő ligandumkötődés, valamint a koaktivátor peptid hiánya elősegítik a szteroidok 
alternatív kötőzsebbe történő  kötődését. A ligandumok disszociációjának követése explicit 
vízmodelles MD számításokkal lehetővé tette a kötési dinamika részletes leírását beleértve az 
egyes zsebeknél képződő komplexek kinetikus stabilitásának kvantitatív összehasonlítását, 
valamint kötőzsebeknél megfigyelhető csapóajtó-mechanizmus atomi szintű magyarázatát. 
A BD megközelítéssel foglalkozó tanulmányaink számos kutatócsoport érdeklődését 
felkeltették175–210 és az ortoszterikus kötőhely-keresésen túl a BD alkalmazást nyert 
alloszterikus211,212 (másodlagos, többszörös)213–217 kötőhelyek esetében is. Ezen a ponton 
felmerült a kérdés, hogy lehetne-e egy olyan eljárást kidolgozni, amely a gyors dokkoló 
módszerek korlátait (a globális kereső algoritmusok tökéletlensége, az explicit vízmodell 
hiánya, a célpont merevsége) meghaladva egy  végső megoldást nyújtana a BD problémára az 
összes lehetséges kötési mód megtalálásával. A kérdés megválaszolására szisztematikus 
módszert dolgoztunk ki [D4], amelyet Wrap ‘n’ Shake névre kereszteltünk. Ahogy a módszer 

               hetenyi.csaba_83_23



16 
 

neve is jelzi, alapvetően a csomagoló (Wrapper) és a rázó (Shaker) fázisokból tevődik össze. A 
legnagyobb kihívás a csomagoló algoritmus kidolgozása volt. Ennek során ugyanis a célpont 
teljes felszínét a ligandumnak egy monomolekuláris rétegével vonjuk be minél 
hézagmentesebben, több BD ciklus során (2. ábra). 
 

 
 

2. ábra  A Wrap ‘n’ Shake módszer csomagoló algoritmusa a célpontot (zöld) a ligandum (piros) 
másolataival több ciklusban, monomolekulás, hézagmentes réteggel vonja be. 

 
 Ahogy a fentiekben utaltam rá, már a korábbi [D1] tanulmányunkban megmutatkozott a BD 
több ciklusban történő alkalmazásának haszna, amelynek során a már dokkolt ligandum 
molekulákat a célmolekula részeként kezeljük. Gyorsan kiderült azonban, hogy a ligandum 
másolatainak korrekt elhelyezése egy monomolekuláris rétegbe nem triviális, olyan módon, 
hogy azok ugyan a célmolekulával kölcsönhassanak de egymással ne képezzenek 
aggregátumokat a célmolekula felszínén. A cél érdekében  ̶  egy sor próbálkozást követően  ̶  
egy új atomtípust definiáltunk azoknak a célmolekula atomoknak, amelyek a már dokkolt 
ligandumok körül helyezkednek el. Ezeknél az atomoknál az elektrosztatikus kölcsönhatást 
kikapcsoltuk a töltések nullázásával (1. egyenlet, második sor) és a Lennard-Jones 
kölcsönhatást pedig gyenge taszítóra kalibráltuk, amellyel a kívánt (hézagmentes) 
monomolekuláris, N ligandumból álló rétegbe végül sikerült a célmolekulákat becsomagolni. 
Az így előállt célmolekula-ligandumN komplexről aztán explicit vizes MD számításokban és 
szűrő lépésekben ráztuk le a gyengén kötött ligandum-másolatokat és a megmaradt kötési 
módokat listáztuk. E monomolekuláris beterítés és a disszociatív MD szűrési lépések végül egy 
jól reprodukálható módszert eredményeztek, amely tekinthető a BD probléma szisztematikus 
megoldásának gyógyszer méretű ligandumok esetében. A Wrap ‘n’ Shake módszerünk jó 
visszhangot218–221 kapott. Technikai részleteit és használati útmutatását a népszerű Methods 
is Molecular Biology sorozatban részletesen publikáltuk [D5].   
A ligandumok ortoszterikus kötőhelyhez történő vándorlása során gyakran több prerekvizit 
(előfeltételi) kötőhelyhez is aszociálódnak, amelyek rendszerint kisebb kötési erősséget 
nyújtanak a végső kötőhelynél. E prerekvizit kötési módok jórészt tranziensek és így kísérletes 
technikákkal nehezen kimérhetők. Ugyanakkor kétségtelenül fontosak, hiszen a ligandum 
horgonyzását biztosítják és így a kötődés szükséges állomásai. Tanulmányainkban [D6, D7] 
megmutattuk, hogy a kísérletes technikákat igen jól kiegészítik a számítások e prerekvizit 
kötési módok feltérképezésében. A kovalens kötésmódú ligandumoknál a kovalens kötés 
kialakulása előtt nyilvánvalóan szükség van egy másodlagos kötésekkel kialakuló kötési módra, 
amely a ligandum robbanófejét (warhead) a célmolekula reaktív csoportja felé írányítja. Ez a 
szituáció áll elő a tranziens receptor potenciál ankyrin 1 (TRPA1) nevű polimodális nociszenzor 
esetében is222–224, amelyet kovalensen kötő agonisták225,226 aktiválnak. A prerekvizit 
kötőhelyek feltérképezése után megmutattuk [D6], hogy a kovalens agonisták esetében az 
ezekhez történő kötődés módja előrejelzi a végső, kovalens kötési mód kialakulását. 
Megállapítottuk, hogy a prerekvizit kötési módok az agonisták asszociációs/disszociációs 
mechanizmusainak fontos mérföldkövei, például az A-hurok régió felnyílásának szabályozásán 
keresztül. Ezen túlmenően a mechanizmus-alapú tervezéshez is fontos információt 
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szolgáltatnak, új célpont aminosavakat azonosítanak az ortoszterikus kötőhely aminosavain 
túl. A TRP receptorok egyébként a fájdalomérzet molekuláris mechanizmusának központi 
szereplői és vizsgálatuk az utóbbi évtizedekben előtérbe került, amelyet a 2021-es Nobel-díj227 
is fémjelez.  
A prerekvizit kötőhelyek a mechanizmus-alapú gyógyszertervezés fontos elemei, amennyiben 
egymással és az ortoszterikus kötőhellyel fennálló kapcsolataikat jellemezni tudjuk. E célból 
kidolgoztuk [D7] a NetBinder nevű eljárást, amellyel nem csupán feltérképezzük, de 
osztályozzuk és hálózatba is kapcsoljuk a prerekvizit kötőhelyeket. Az eljárás tesztelésére a 
miozin II enzimet választottuk, amelynek hosszú, belső kötőcsatornájában a blebbisztatin nevű 
inhibitor vándorlása során több prerekvizit kötőhelyen megtapad és végül a csatorna mélyén 
lévő végső kötőzsebekhez jut el217,228. A fent részletezett Wrap ‘n’ Shake módszer segítségével 
a kötőhelyeket azonosítottuk, majd kötési hálózatot, ebből pedig kötési útvonalakat 
állítottunk elő, teljes képet kapva a blebbisztatin kötési mechanizmusáról. Az eljárás 
segítségével a teljes kötési mechanizmust feltártuk, a fehérje felszínéről elindulva egészen a 
végső (ortoszterikus) kötőzsebig. Az MD alkalmazása lehetővé tette a fehérje 
konformációváltozások precíz követését is. Kijelöltük a kulcsfontosságú prerekvizit 
kötőhelyeket is, amelyek a későbbi tervezésben mint új célpont használhatók fel, ezzel is 
növelve az inhibitortervezés lehetőségeit a miozin II-höz hasonlóan hosszú, belső üreggel 
rendelkező célpontokon (ioncsatornák, egyes receptorok).   
 
2.3.2. Fehérje-peptid komplexek számítása [D8-D13] 
A fehérje-peptid komplexek szerkezetének kiszámítása a mai napig nem triviális feladat. A 
peptidek a kisméretű gyógyszermolekulákhoz képest sokkal kezelhetetlenebb ligandumok, a 
méretük, nagy flexibilitásuk (torziós szabadsági fokuk) és kiterjedt hidratáltságuk miatt. A 
kisebb peptidek esetében a gyors dokkoló módszerek sikeresek lehetnek150, ám a 
tetrapeptidektől nagyobb ligandumoknál gyakran nem eredményeznek pontos 
szerkezeteket229–231. Amíg a fizikai-kémiai alapokon működő dokkoló eljárások korlátait az 
erőtér és a kereső eljárások tökéletlensége okozza (lásd előző fejezetek), addig az ismeret 
alapú (knowledge-based) módszereknél a tanuló szettek mérete és összetétele szabják meg a 
teljesítőképességük természetes határát. A hisztonok fehérjékkel képzett komplexei tipikus 
példák a fent említett nehézségekre. A hisztonok fontosságát az adja, hogy kulcsszerepet 
játszanak az epigenetikai regulációban azáltal, hogy a kromatinban a DNS-sel, valamint 
különféle fehérje partnerekkel is kölcsönhatnak és poszt-transzlációs módosulásaik (PTM) 
definiálják az ún. „hiszton kódot”232,233, amelynek  a genetikai kódhoz mérhető a jelentősége 
számos betegség pathomechanizmusában234,235  ̶ erről bővebben összefoglaló 
tanulmányunkban [D8] írtunk.  
A hisztonok terminális peptid szakaszai a nukleoszómák felszínéről antennaként kinyúlva236 
hatnak kölcsön a kódot olvasó/író fehérjékkel. E terminális peptid szakaszok lineáris, 
rendezetlen szerkezetűek, így a komplexeik kimérése elég nagy kihívást jelent és sok esetben 
csak a láncvégi aminosavakra szorítkozik. Ugyanakkor a hiszton kód megfejtéséhez és a 
kapcsolódó gyógyszertervezésekhez számos ilyen komplex szerkezet előállításra lenne 
szükség tekintettel a nagy számú PTM variációra (többféle módosulás, több aminosav 
pozícióban). Ezek az igények inspirálták munkánkat e területen, amelynek során többféle 
megközelítéssel állítottunk elő ilyen problémás fehérje-peptid komplex szerkezeteket. 
Peterson professzor Tartuban (Észtország) keresett meg azzal az eredménnyel, hogy az 
autoimmun regulátor (AIRE) transzkripciós aktivátor fehérje a kísérleteik szerint a H3-as 
hisztonhoz μM-os affinitással kötődik, egész pontosan annak H3K4me0, azaz a K4 helyen 
metilálatlan formájához. Ugyanakkor kimutatták azt is, hogy a metil csoportok számának 
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növelésével a kötéserősség fokozatosan elenyészik és a H3K4me3 esetben gyakorlatilag már 
nem mérhető. Tapasztalataikat atomi szintű komplex szerkezettel nem tudták alátámasztani, 
az NMR mérésekkel csupán a kötésben részt vevő aminosavakra tudtak rámutatni amelyek az 
AIRE PHD ujjára estek.  A meglévő szerkezetek kombinálásával, hasonlósági alapon és MM/MD 
szinten modellezésssel előállítottam [D9] a hiszton H3 peptid  AIRE PHD ujjal alkotott 
szerkezetét atomi felbontásban, amelyen már jól látszott a kötődés módja. Megállapítottam, 
hogy a  hiszton H3 peptid gerince az AIRE PHD ujjban meglévő, két sávból álló  antiparallel β-
redőzött réteg mellé orientálódva egy harmadik, antiparallel lefutású sávot képezve 
kapcsolódik. A peptidgerincek közti H-hidakon túlmenően a két molekula kölcsönhatását (3. 
ábra) az egyes oldalláncok közti sóhidak és hidrofób effektusok tovább erősítik.  

 
 

3. ábra Az autoimmun regulátor (AIRE, kék) fehérjének a H3-as hiszton N-terminális peptidjével 
(narancs) alkotott komplexének számított és mért atomi felbontású szerkezetei 

 
A számított szerkezetet NMR-es és irányított mutagenezises kísérletek már ebben [D9]  a 
közleményben megerősítették, majd az NMR-es mérések további finomításával a következő 
évben a kísérletesen kimért, atomi felbontású szerkezet is közlésre került237, amely kiváló 
egyezést mutatott az egy évvel korábban közölt [D9] számított szerkezettel (3. ábra). A 
H3K4me0 komplex szerkezet előállításán túl  molekuláris dinamikai számításokkal sikerült azt 
is megmutatni [D9], hogy a K4-metilációk során a metil csoportok térigénye miatt nem tud 
kialakulni a kötés az AIRE PHD ujj kötőzsebével, a H3K4me3 esetében már fizikailag nem fér 
be a kisebb méretű PHD kötőzsebbe a K4me3 oldallánc. 
Szintén modellezéssel, a hiszton H4 peptid fragmensek in situ, a kötési felszínen történt  
összeépítésével állítottuk elő [D10] a hiszton H4 protein arginin metiltranszferáz 5 (PRMT5) és 
metiloszóma protein 50 (MEP50) partnerekkel alkotott komplexének atomi felbontású 
szerkezetét. A PRMT5 értelemszerűen író funkciót tölt be a fent említett hiszton kód 
kialakításában és főként a hiszton lineáris, N-terminális szakaszán lévő aminosavakra helyezi 
el az oldallánc-módosító metil csoportokat.  A tanulmány célja az volt, hogy magyarázatot 
adjunk a PRMT5 T80 helyen történt foszforilációja során kísérletileg tapasztalt megnövekedett 
metiltranszferáz aktivitásra, valamint arra, hogy a PRMT5 miért csak a hiszton H4 szabad 
(nukleoszómához nem kötött) formáját metilálja. A komplex konstrukciója mellett a vad típusú 
és foszforilált szerkezetek MD számításait is elvégeztük és a célkitűzésben megfogalmazott 
kérdésekre ezek segítségével adtunk választ. Az PRMT5-MEP50-H4 komplex megépített 
szerkezetéből jól látszik [D10], hogy az említett PRMT5:T80-as aminosav a hiszton oldalon a 
H4:R45 aminosavval és környezetével kerül kapcsolatba. E kölcsönhatás az aktív centrumtól 
távol (a H4 átellenes oldalán) alakul ki és a foszforilált T80 esetében sóhíd formájában tovább 
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erősödik, stabilizálva az enzim-szubsztrát komplexet és növelve a metiltranszferáz aktivitást. 
A hiszton H4 nukleoszómában kimért szerkezetéből megállapítottuk, hogy az említett H4:R45 
aminosav részt vesz a hiszton DNS-hez történő horgonyzásában, elsősorban a DNS foszfát 
csoportjaival kialakított sóhidakon keresztül, nagyon hasonlóan a foszforilált  PRMT5:T80 fent 
említett esetéhez. Értelemszerűen így a nukleoszómában kötött H4 esetében pont a PRMT5-
höz történő kötődésben résztvevő H4:R45 aminosav kerül blokkolásra, amelyhez így a PRMT5 
nem tud hozzáférni és ez a szerkezeti magyarázata annak, hogy a H4 szabaddá válása 
szükséges a metiláláshoz.  
A fentiekben elemzett két tanulmányunkban [D9, D10] sikeresen tudtuk kombinálni a meglévő 
kísérletileg kimért, homológ és/vagy töredékes szerkezeteket új hiszton komplexek 
előállítására. Kimért szerkezetek azonban a nagy számú lehetséges PTM miatt nem mindig 
állnak rendelkezésre és sokszor csak a célmolekula (író/olvasó fehérje) hozzáférhető a Fehérje 
Adatbankban, valamint a kötődés tényét tudják megállapítani kísérletileg, például kötődési 
esszék segítségével. Ilyenkor a hiszton peptid ligandumot elméleti úton lehet a 
célmolekulához illeszteni. A hisztonok kötésben részt vevő, terminális peptid szakasza a 
bevezető sorokban említettek miatt különösen problematikus ligandumok a dokkolás 
szempontjából. Mivel a tapasztalatok azt mutatják, hogy a „klasszikus” gyors dokkoló 
eljárásokkal többnyire a tetrapeptid mérettartományig lehet elfogadhatóan dokkolni a peptid 
ligandumokat, így a probléma megoldására a terminális hiszton peptidet kisebb méretű 
fragmensekre vágtuk a fragmens blind docking (FBD) eljárást közlő tanulmányunkban [D11]. 
Itt a célmolekulák teljes felszínét beterítettük a fenti Wrap ‘n’ Shake módszerben kifejlesztett 
módon di-, tri-, és tetrapeptidekkel. Azt tapasztaltuk, hogy a legpontosabban a dipeptid 
fragmensek dokkolódtak, így az FBD következő szakaszában ezeket kapcsoltuk, majd 
hegesztettük  össze a kovalens kapcsolódási pontokon. A fragmensek kapcsolása nem triviális 
ez esetben, hiszen a célmolekula teljes felszínét beterítettük mindkét összekapcsolandó (a 
hiszton szekvenciájában egymást követő) dipeptid fragmenssel. Egy automatizált 
algoritmussal a dipeptid fragmensekből párokat, triádokat és tetrádokat képeztünk és ezeket 
rangsoroltuk. Ezt követően a kialakítandó peptidgerinc szomszédos torziós szögei mentén 
történő szisztematikus keresés  után hegesztettük össze a dipeptid darabokat az amid kötés 
mentén, majd a komplex szerkezetet MM szintű optimalizációval finomítottuk. 
A fragmens alapú dokkoló eljárásoknak, így az FBD-nek is a legkényesebb része a fragmensek 
kovalens összekapcsolása. Ez fokozottan igaz, ha a célpont nagy felszínén vagy  ̶  mint az FBD 
esetében  ̶  a teljes célponton történik a keresés és ha a célpont-ligandum kölcsönhatás nem 
túl erős, mint a hiszton ligandumok esetében, ahol a Kd legtöbbször a μM-os tartományba esik. 
Mivel a dipeptid hiszton fragmensek kötési módját az AutoDock 4.2.6 jól és gyorsan megtalálja 
[D11], így e fragmensekre építettük a PepGrow [D12] nevű protokollunkat, amely az említett, 
problematikus összekapcsoló lépés kihagyásával dolgozik. A PepGrow a bedokkolt hiszton H3 
dipeptid fragmenseket horgonyként kezeli, amellyel a hiszton ligandum a célmolekulához 
kapcsolódik. E horgonyzó dipeptidekből (magokból) „növeszti meg” a teljes hiszton 
ligandumot in situ  a célmolekula kötőzsebében a homológia modellezésben alkalmazott gyors 
fehérjelánc építő program segítségével, több száz kötési módot generálva le rövid idő alatt 
egy-egy dipeptid magból kiindulva. Ezt követően az összes legenerált komplex szerkezetre 
kiszámításra  kerül a célmolekula-ligandum kölcsönhatási energia, amely az alapját képezi a 
reprezentáns kötési mód kiválasztásának. Ilyen módon tehát a PepGrow kiküszöböli a 
problematikus kapcsolási lépést a fragmens dokkolás során, helyette a „fragmensből 
növesztés” stratégiáját követve. Protokollunkat tíz másik módszerrel összehasonlítva a vizsgált 
hiszton komplexek esetében a legjobb eredményeket szolgáltatta. Ugyanakkor a 
szisztematikus összehasonlításainkból az is kiderül, hogy a jelenleg alkalmazott gyors dokkoló 
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eljárások mindegyike igen rossz a megkapott kötési módok rangsorolásában. Ez leginkább a 
pontozó függvényeik (2.2.1. fejezet) korlátaira vezethető vissza, amit súlyosbít az explicit 
vízmodell (2.2.2. fejezet) hiánya, valamint a célmolekula flexibilitásának korlátozott 
figyelembe vétele is. 
Az említett hiányosságok részben feloldhatók, ha a PepGrow által előállított célpont-ligandum 
komplex szerkezetet MD segítségével finomítjuk tovább. Ezt a megközelítést alkalmaztuk a 
szomatosztatin nevű endogén peptid 4-es altípusú receptorával (SSTR4) képzett komplexének 
előállításakor [D13] is. Ez esetben sem a receptor, sem a komplex szerkezete nem állt 
rendelkezésre a Fehérje Adatbankban. A Wrap ‘n’ Shake beterítő eljárását alkalmazva, a 14 
aminosav hosszúságú szomatosztatin peptid ligandum csúcsi részén lévő FWKT tetrapeptidet 
tartalmazó fragmenssel térképeztük fel a kötőhelyeket az SSTR4 teljes felszínén. Magának az 
SSTR4 célpontnak a szerkezetét is homológiamodellezéssel állítottuk elő. A legjobb 
kölcsönhatási energiát mutató dokkolt fragmensből indítottuk el a PepGrow protokollban 
alkalmazott növesztési lépést és jutottunk el a szomatosztatin molekula külső (prerekvizit) 
kötési módjához (4. ábra).  
 

 
 

4. ábra  A szomatosztatin peptid (zöld) 4-es altípusú receptorához (SSTR4, szürke) történő kötődési 
folyamatának főbb állomásai. A kötődés során a célpont D126 és a ligandum K9 aminosavai közötti 

sóhíd fokozatosan kialakul (az ábrán dSB-vel jelzett távolság lecsökken). 

 
A tetrapeptid komplexből kiindulva ezután MD segítségével feltártuk a belső (ortoszterikus) 
kötési módot is. Ilyen módon, a PepGrow és az MD kombinálásával a szomatosztatin teljes 
kötődési mechanizmusát végig tudtuk kísérni az SSTR4 célpontra. Azon túl, hogy e munkánk 
közölte [D13] az első SSTR4-szomatosztatin szerkezetet, e megközelítésünknek további előnye 
 ̶  a 2.3.1 szakaszban leírtakhoz hasonlóan  ̶  hogy az ortoszterikus kötőhelyen túl feltárja a 
prerekvizit kötőzsebeket is és lehetővé teszi a tervezést e célterületekre is. A kísérletileg 
elérhető szerkezetek, mint például az SSTR2 altípusnál238 csak az ortoszterikus kötési módot 
írják le.  
 
2.3.3. A hidrátszerkezet számítása célpont-ligandum kapcsolatokban [D14-D19] 
A célpont-ligandum kölcsönhatásokat a víz nagymértékben képes befolyásolni, mint közeg és 
mint kölcsönható partner is. E szerepkörök fizikai-kémiai alapjait a felvezető, 2.2 fejezetben 
már érintettem és utaltam rá, hogy a víz viselkedését leíró oldószermodellek a mai napig nagy 
fejlődésen mennek keresztül. Ennek megfelelően a hidrátszerkezet (változásainak) számítása 
a célpont-alapú gyógyszertervezés módszertanának egy lezáratlan  ̶  és ezért izgalmas  ̶ 
fejezetét képezi. Ez részben a hidrátszerkezet kísérleti meghatározásának korlátaiból (2.1 
fejezet), részben a vízmolekula sokarcúságából adódik. A víz egyfajta molekuláris jolly joker-
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ként egyszerre rendelkezik nagyfokú mobilitással és  ̶  ha a körülmények úgy hozzák  ̶ a 
maximálisan kialakítható négy H-kötése segítségével kulcsfontosságú összekapcsoló, hidaló 
szereppel is. A vízmolekulák „társas viselkedésének” topográfikus problematikáját talán 
legjobban B. Halle tartózkodási időre vonatkozó megjegyzése47 mutatja be: „An unusually long 
residence time for a hydration water molecule, therefore, does not indicate particularly strong 
protein–water interactions, but rather a topography that prevents the water molecule from 
exchanging by a cooperative mechanism. The simplest example of such restrictive topography 
is a deep pocket on the protein surface.” A fehérjefelszín lokális topográfiája valóban igen 
fontos tényező a hidrátszerkezet helyi (kinetikus) stabilitásában és így a ligandum kötődésekor 
felmerülő változásaiban is. 
A hidrátszerkezetnek a ligandum kötődésekor felmerülő, a fentiekből következő, aktuális 
kérdéseit a Current Opinion in Structural Biology folyóiratban megjelent [D14] cikkünkben 
részletesen is tárgyaltuk. A ligandum célmolekulához történő kötődésekor az apo célmolekula 
felszínén elhelyezkedő vízmolekulák sorsa alapvetően a maradás (konzervált vizek) vagy a 
távozás lehet aszerint, hogy a ligandum és a célmolekula között hidakat tudnak képezni, vagy 
pedig a ligandum kilöki őket társaik közé az oldat belsejébe. A ligandum tervezése során tehát 
mind az apo célmolekula felszínének, mind a komplex (holo) interfésznek a vízszerkezetére 
szükség van, hogy a ligandum szerkezetét optimalizálni tudjuk a (de)hidratáció szempontjából 
is. Tekintettel a kísérletes szerkezetmeghatározás korlátaira (2.1 fejezet), napjainkra számos 
elméleti módszer áll rendelkezésre a vízszerkezet számításához.  E módszerek durván a 
statikus és a dinamikus kategóriákba sorolhatók, aszerint, hogy alkalmaznak-e MD-t és/vagy 
explicit vízmodellt (2.2 fejezet) a vízszerkezet kiszámításánál. A módszerek egy aktuális 
jegyzékét és összehasonlításukat a [D15] cikkben adtuk közre. 
Munkánk során egy dinamikus módszer kidolgozását határoztuk el. A MobyWat nevű módszer 
és program [D16] első verzióját fehérje célpontok felszíni hidrátszerkezetének számításához 
készítettük el. A módszer explicit vizes MD számításokra épül, amelyeket a Gromacs239 nevű 
open source programmal végeztünk el. Itt említeném, hogy a MobyWat bármely más MD 
programcsomagból származó szerkezeteket fel tud természetesen dolgozni. A Gromacs 
trajektóriákat a hordozható xdr-kompatibilis xtc fájl formátumban is képes olvasni és egy saját 
bináris fájltípust is használ a predikció során kialakított vízhalmazok tárolására és kezelésére. 
Az explicit vízmodelles MD-alapú megközelítés előnye, hogy nem csak a célpont-víz, de a víz-
víz kapcsolatokat is számítjuk és így pontosabb vízpozíciókat használhatunk fel a predikcióban. 
A program többféle klaszterező algoritmust is alkalmaz a prediktált vízpozíciók kinyerésére a 
trajektóriából. Egyrészt a vízmolekulákat azonosítójuk alapján egyedileg végigkövetve, 
másrészt csak az adott térbeli pozíció betöltöttségét követve, vagy e kettő kombinálásával is 
létre tudja hozni az ún. predikciós listát, amely a vízmolekulák oxigén atomjainak koordinátáit 
tartalmazza. A programhoz egy validációs mód is készült, amelynek segítségével a kísérletesen 
kimért szerkezet birtokában automatikusan kiszámítható a sikerességi hányad, amely azt 
mutatja meg, hogy a kísérletileg meghatározott víz oxigén pozíciók hány százalékát sikerült 
adott pontossággal prediktálni. A MobyWattal végzett validációnk azt mutatták, hogy 20 
fehérjemolekula több mint 1500 vízpozíciójának átlagban több mint 80 %-át sikerült pontosan 
kiszámítanunk (5. ábra). Ezen túlmenően megvizsgáltuk adott rendszernél az MD trajektóriák 
különbözőségéből eredő reprodukálhatóságot is és a módszer robosztusnak bizonyult, ha 
eltérő kiindulási sebességeloszlásokat alkalmaztunk.  A módszer a prediktált vízpozíciókat 
mobilitásuk alapján rangsorolja, így az adott vízpozíció kinetikus stabilitásáról is számszerű 
információt ad. Érdekes módon relatíve kevés eljárás van egy teljes fehérjefelszín 
hidrátszerkezetének kiszámítására. Összevetve más módszerekkel [D15] a MobyWat 
teljesítménye a legjobbak között van. Általánosan elmondható egyébként, hogy a legtöbb 
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módszer a konzervált vízpozíciókat számítja a legbiztosabban, ami érthető, hiszen e 
vízmolekulák maradnak a kötőzsebben és képezik majd a hidat a célmolekula és a ligandum 
között a komplex kialakulása után (kevéssé mobilisak, erősen kötődnek, jó topográfiai 
beágyazottsággal rendelkeznek).  
 

 
5. ábra  A MobyWat által prediktált (kék gömbök jelzik az oxigén atomokat) és RKR-rel mért (piros 
gömbök) vízpozíciók egyezése a szarvasmarha hasnyálmirigy tripszin (PDB kód: 1s0q) felszínén. A 

távolságadatok a két szélső, nagyított részleten Å-ben vannak feltüntetve (1 Å = 10-10 m). Az 
egyezések igen jók, többnyire 1 Å alattiak, összességében 84 %-os sikerességi hányadot 

eredményezve ezen a fehérjén.  

 
A célmolekula-ligandum interfészek hidrátszerkezetét a teljes felszíni hidrátszerkezetnél még 
nagyobb, átlagosan 90 % feletti sikerrel számítottuk ki a MobyWat alkalmazásával [D17]. Azt 
tapasztaltuk, hogy az interfész régiók számításában a ligandum jelenléte egyszerre segíti és 
hátráltatja is az explicit vízmodelles MD trajektóriákra épülő stratégiánkat. Segíti annyiban, 
hogy a hidaló vízmolekulák helyzete itt már a ligandum oldaláról is stabilizálódik, tehát a kis 
mobilitásuk alapján könnyű kiválasztani őket a predikciós listára. A hátrány abból fakad, hogy 
ha a „száraz” célpont-ligandum komplexből indítjuk el a szokásos módon az MD felkészítését 
(doboz generálása, vizek elhelyezése a dobozba, azaz szolvatáció), akkor előfordul, hogy az 
interfész régióba a ligandum jelenléte miatt nem helyez el az egyenletes grid alapján szolvatáló 
algoritmus vízmolekulákat és az így keletketkező, ligandum alatti, zárt kavitásokba az oldatból 
(a ligandum jelenléte miatt) sem tudnak később, az MD alatt vizek bediffundálni. E problémát 
észlelve, két lépéses eljárást dolgoztunk ki, amelynek első lépésében a ligandum nélküli 
célmolekula felszínét borítottuk be vizekkel, majd a ligandumot visszahelyezve  egy nagyon 
szűk toleranciával csupán a kovalens távolságban ütköző vizeket távolítottuk el, és ezt a 
„megtömött” interfészt egy második MD lépésben relaxáltuk, majd sor kerül a MobyWat-os 
predikcióra. Ilyen módon kavitások nélküli, teljes mértékben hidratált célpont-ligandum 
interfészeket tudtunk előállítani, a fent említett nagy sikerességi hányaddal (sok rendszernél 
elértük a 100 %-ot is).  A validációt 31 komplex 344 vízmolekuláján végeztük el, jól 
reprodukálható, robosztus eredményeket kaptunk itt is. 
A teljes hidrátszerkezet előállítása lehetőséget adott arra, hogy a hálózatelmélet alapelemeit 
adaptáljuk a hidrátszerkezet kölcsönhatási rendszerére [D17]. Felrajzoltuk a vízhálózatok 
gráfjait, amelyekben definiáltuk a statikus és dinamikus csúcsokat, éleket, valamint 
alhálózatokat. Kimutattuk a kiterjedt statikus alhálózatok szerepét a célpont-ligandum 
komplexek stabilizálásában. E gráfok generálását szintén a MobyWat egyik modulja, a 
NetDraw segítségével végeztük el, amely gyakorlatilag bármekkora komplex esetében elő 
tudja állítani a gráfokat. A hálózati alapú megközelítésünket sikeresen alkalmaztuk a H3.3 és 
H4 hisztonok DAXX fehérjével képzett komplexe vad típusú és a H3.3:G90M mutáns közti 
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stabilitáskülönbség magyarázatára és megmutattuk, hogy a mutáns esetében a korábbi 
statikus alhálózat helyett egy diffúz, dinamikus alhálózat jön létre, amely miatt lecsökken a 
mutáns verzió stabilitása, a kísérleti eredményekkel összhangban. A vízhálózatok ilyen 
teljeskörű, kvantitatív, matematikai pontosságú leírása, amellyel e tanulmányunkban [D17] 
foglalkoztunk, a jövőben lehetőséget nyújt még további hasonló magyarázatokra és 
predikciókra a biomolekuláris komplexek területén. A MobyWat módszerünket a szakmai 
közvélemény is elismerőleg befogadta240–248. 
A MobyWat alapú predikcióknak természetszerűleg fontos eleme a MD számítás, amelynek 
segítségével a klaszterezés alapjául szolgáló trajektóriát előállítjuk. Egy kapcsolódó 
tanulmányban [D18] szisztematikusan megvizsgáltuk a legfontosabb MD paraméterek hatását 
a vízszerkezet predikciójának sikerességére mind a felszíni mind az interfész esetekben, több 
rendszert is bevonva a számításokba. Az RKR adatgyűjtési és a számításnál alkalmazott 
hőmérséklet mellett a nyomás, az erőtér, az explicit vízmodell típusa, a számított sokaság 
megválasztása valamint a nehézvíz alkalmazása is vizsgálat tárgyát képezte. Az eredmények 
azt mutatták, hogy az NVT és NPT sokaságok, valamint a nehézvíz esetében egyformán jól 
teljesített a MobyWat, és a nyomás sem volt a sikerességre nagy befolyással, ha az a standard 
nyomásérték (0.1 MPa) körül volt. Az explicit vízmodellek (2.2.2. fejezet) kapcsán az 
eredmények azt mutatták, hogy a TIP3P és afeletti vízmodellek alkalmazása javasolható. Az az 
AMBER-ről az OPLS erőtérre történő áttérés nem okozott szignifikáns csökkenést a 
sikerességben. A legnagyobb eltéréseket a hőmérséklet változtatása esetén észleltük. Bár 
talán „életszerű” lenne a kísérletileg alkalmazott kriogenikus mérési hőmérsékleteken (2.1. 
fejezet) végezni a számításokat, azonban ez nem vezet célra. Ennek lehetséges okait a 
tanulmányban diszkutáltuk. Azt tapasztaltuk, hogy a hőmérséklet emelésével a sikeresség a 
300 K körüli számítási hőmérsékletnél eléri a maximális értékét, így ennek alkalmazása 
javasolható. 
A gyógyszertervezésben talán legnagyobb kihívást az a szituáció jelenti, amikor a ligandum-
célpont komplexet a vízszerkezettel együtt szeretnénk előállítani. Ez praktikusan a korábbi 
szakaszokban ismertetett dokkoló eljárások alkalmazását igényelné a kísérletileg 
meghatározott vagy számított vízpozíciók figyelembe vételével. Ez egy igazi „tyúk vagy tojás” 
probléma: a ligandum és a vízmolekulák egymás kötődését befolyásolják, így nehéz  ̶  vagy 
inkább lehetetlen  ̶  eldönteni, melyikkel kezdjük a hidratált komplex szerkezetének 
összeállítását. Ha a vizekkel indítunk, akkor mennyit és melyik partnerre helyezzünk el? Ha a 
ligandum dokkolást végezzük előbb a száraz célpontra, akkor mi a garancia arra, hogy a 
vízmolekulák be tudnak diffundálni a ligandum által elzárt kavitásokba a célmolekula felszínén 
(lásd még a fenti [D17] közleménynél leírtakat)? Számos próbálkozás született e kérdések 
megválaszolására, amelyeket a fent már említett munkánkban [D15] külön fejezetben 
tárgyaltunk. Mivel végleges megoldást egyik ismert módszer sem hozott, ezért egy teljesen új 
stratégiát dolgoztunk ki a HydroDock [D19] protokollunkban. A HydroDock a dokkolási és a 
célmolekula (kötőzseb) felszínének vizezési lépéseit egymással párhuzamosan végzi el (6. 
ábra, 1. és 2. lépések), majd az előálló hidratált célpontot és dokkolt ligandum-célpont 
komplexet egyesíti (3. lépés) a ligandummal ütköző vízmolekulák eliminálásával. 
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6. ábra  A HydroDock protokoll 

 
Megjegyzendő, hogy a célpont felszínének hidratálásához a MobyWat-hoz hasonló módszerre 
van szükség, amely nem csupán az interfészre, de a teljes célpont felszínre is képes a 
vízszerkezetet kiszámítani. Ezután következik a hidratált komplex MD alapú számítása (4. 
lépés), majd az átlagos szerkezethez legközelebbi  reprezentáns kiválasztása (5. lépés). A 
protokollt az influenza A vírus M2 transzmembrán ioncsatornáján próbáltuk ki és az 
amantadin sorozatba tartozó csatornablokkoló ligandumok esetében a kísérletileg kimért 
szerkezetekkel jó egyezést kaptunk. E virális ioncsatornán a kationok mellett vízmolekulák is 
közlekednek és utóbbiak az amantadinhoz hasonló kationos fejjel rendelkező ligandumok 
kötésében igen nagy szerepet játszanak. Ezt követően a HydroDock segítségével elvégeztük az 
amantadin kötési módjainak feltárását a SARS-CoV-2 boríték fehérjéje által kialakított 
ioncsatorna transzmembrán doménjére, amely egy bíztató gyógyszercélpont lett249 a COVID-
19 elleni küzdelemben. Ez esetben és az ioncsatorna mentén az amantadin több kötési módját 
is sikerült azonosítanunk és itt is jó egyezést kaptunk a korábbi NMR mérésekben azonosított 
kötődési mintázattal. Tekintettel arra, hogy az ioncsatornáknál és más célpontoknál is nagyon 
gyakran előfordul, hogy a belső felszínükhöz vízmolekulák kapcsolódnak, a HydroDock 
megoldást nyújt ez esetekben a ligandum tervezéshez és az alkalmazott új stratégiája miatt a 
fenti kérdésekre is választ ad.  
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3. Energia 
 
A célpont-ligandum komplexek szerkezetének ismeretében (2. fejezet) és a megfelelő 
paraméterek birtokában elvégezhető a partnerek közötti kölcsönhatás erősségének 
számítása. A ligandum kötődési erősségének méréséről és számításáról több összegző mű is 
megjelent250,251. Természetesen itt sem célom, hogy ezeket kivonatoljam, csupán egy 
áttekintést nyújtok a lehetőségekről  ̶  az elméleti módszerek esetében jórészt fókuszálva az 
általunk leginkább alkalmazott és fejlesztett végpont módszerekre. 
 
3.1. A célpont-ligandum kötődés termodinamikai optimalizálása  
A célpont-ligandum kötéserősség egyensúlyi (2. egyenlet, másodlagos kölcsönhatásokkal 
létrejött, 1:1 sztöchiometriájú komplex képződésére felírva) jellemzésére a termodinamikai 
potenciálfüggvényeknek a reakciót kísérő változásai szolgálnak. A kötődési reakció 
szabadentalpiaváltozása (ΔGb, ahol b a binding rövidítése, a standardizálás jelzésétől az 
egyszerűség kedvéért a továbbiakban eltekintek) a potenciálfüggvény definíciójából adódóan 
a jól ismert kapcsolatban (3. egyenlet) áll annak entalpiaváltozásával (ΔHb) és 
entrópiaváltozásával (ΔSb), ahol T a termodinamikai hőmérséklet. A mérések során sok 
esetben a kötődési reakció egyensúlyi állandója kerül meghatározásra, amelyből a ΔGb értéke 
szintén számolható. 
 
Célpont(H2O)C + Ligandum(H2O)L    Célpont:Ligandum(H2O)C+L-w + w H2O      (2) 
ΔGb = ΔHb  ̶  TΔSb             (3) 
 
Anyagszerkezeti szempontból a ΔHb komponens a kialakuló és megszűnő célpont-ligandum 
kötések, valamint a dehidratáció (w>0) során az említett partnerek és a vízmolekulák 
egymással alkotott kötésrendszerének átalakulását írja le. A ΔSb a reakcióban részt vevő 
molekulák transzlációs, rotációs, stb. szabadsági fokaihoz rendelhető molekuláris 
rendezetlenség változását számszerűsíti. A gyógyszertervezés során mindhárom 
termodinamikai potenciálfüggvény változását érdemes nyomonkövetni, ezek együttesen 
jelentik a ligandum termodinamikai profilját (ujjlenyomatát)252–254. A termodinamkai profil 
iránytűként szolgál a ligandum optimális (át)tervezéséhez.  Érdekes módon a ligandum 
entrópikus optimalizálása, azaz szerkezetének átalakítása abból a célból, hogy a célponthoz 
kötődéskor a maximális ΔSb álljon elő, könnyebbnek tűnik, mint az entalpikus optimalizálás255. 
A nehézségek mellett ugyanakkor érdemes a ΔHb mérésével és számításával külön is 
foglalkozni, mert az entalpikus ligandum-optimalizálással256,257 például a HIV-1 proteáz 
inhibició esetében nem csak erősebben kötődő, de szelektívebb és jobb rezisztencia profillal 
is rendelkező gyógyszerek születtek258,259.  
 
3.1.1. A kötődési mérések és korlátaik 
A célpont-ligandum kötődés előző szakaszban bevezetett termodinamikai paramétereinek 
kísérleti meghatározásához elég széles módszertani paletta áll rendelkezésre. A különböző 
detektálást alkalmazó260,261 kötési esszék262,263 többsége az egyensúlyi állandó és ezáltal a ΔGb 
meghatározására képes. Az oldatokkal dolgozó kötési esszéken túl lehetőség van több fázist is 
bevonni a vizsgálatokba, például a felületi plazmonrezonancia spektroszkópia (SPR)264 eljárás 
képes a sejtmembránt mimikáló rögzített lipid kettősrétegbe vagy proteoliposzómába 
ágyazott fehérje célpontokkal is dolgozni. A ligandumnak az előző szakaszban említett teljes 
termodinamikai profilját (ΔGb, ΔHb és ΔSb) a gyakorlatban az izotermális titrációs kalorimetria 
(ITC)265 szolgáltatja, amelyet a kötődési mérések gold standard-jaként emlegetnek. Az ITC 
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valóban nélkülözhetetlen eszköz lett a vezérvegyületek optimalizálásában266,267. A technika 
érzékenységének a fejlődésével az elmúlt évtizedekben a méréshez szükséges minta 
mennyisége is szignifikánsan lecsökkent, azaz a módszer áteresztőképessége megnőtt. Az 
összes előnye mellett az ITC is korlátokkal küzd a reprodukálhatóság terén268 amely gyakran a 
felhasznált oldatok bemérési koncentrációjának hibájából származik269.  
A kötődési mérések hibái általában nagyon sokrétűek lehetnek270 és sok esetben a célpont 
(fehérje) koncentrációjának meghatározási problémáira vezethetők vissza. A 
fehérjepreparátum sokszor igen szűkösen áll rendelkezésre és/vagy mátrix hatások is 
jelentkezhetnek az egyszerű és gyakran alkalmazott (kalibráció nélküli) spektrofotometriás 
koncentrációmérésekben. A robosztusabb és ezért referenciának tekinthető aminosav-
analízist271,272 még az ITC-s tanulmányoknak is sajnos csak a töredéke alkalmazza a fehérje 
törzsoldat koncentrációjának meghatározására.    
 
3.1.2. A kötődési termodinamika számításának molekulamechanikai eljárásai 
Az MM szintű szerkezeti számítások legfontosabb összetevői az erőtér és a kereső eljárások 
(2.2.1. fejezet), amelyekkel egy vagy több célpont-ligandum komplex szerkezetet 
előállíthatunk. A globális keresések során a valóságos szerkezeti sokaságból reprezentatív 
mintát nyerhetünk az Eteljes függvény (1. egyenlet) minimumainak alapos feltérképezésével, 
míg a lokális keresések esetében rendszerint megelégszünk egy optimalizált szerkezettel. A 
minta terjedelmét tekintve, a kötődési  termodinamikai számítások esetében ezért statisztikus 
és végpont módszerekről beszélhetünk273, aszerint hogy a kötődés során előforduló több 
állapotot vagy csak a végállapotokhoz tartozó szerkezeteket használjuk fel a számításokhoz.  
A statisztikus módszerek251,274 a legtöbb esetben az MD számítások során előállított 
trajektóriákra épülnek275 és a statisztikus termodinamika276 összefüggései segítségével 
teremtenek kapcsolatot a kötődési termodinamikai mennyiségek és a V függvény között. 
Elterjedten alkalmazzák ezek közül a szabadenergia-perturbációs (FEP)277, a termodinamikai 
integrációs (TI)278, lineáris kölcsönhatási energia (LIE)279, az átlagos erő potenciálja 
(PMF)278,280, valamint a nem-egyensúlyi munka (NEW)281 módszereket. Bár a statisztikus 
módszerek a kiterjedt mintázás miatt elméletileg pontosabban írják le a kötődés 
termodinamikáját, a rutinszerű alkalmazásuk még mindig nem triviális282 és korlátokkal küzd 
például a mintázás283,284 és az oldószer kezelése285 során. 
A végpont módszerek a célpont-ligandum komplex (C-L), valamint a különálló célpont (C) és 
ligandum (L) szerkezeteket használják fel a számítás vépontjaként, így gyakran szolgáltatják a 
dokkoló programok pontozó (scoring) ΔGb függvényeit115. A kötődés entalpikus és entrópikus 
részeit (3. egyenlet) rendszerint több tag összegeként írják le, hasonlóan a 4. egyenlethez, 
amelynek különböző változatait összefoglaló művek tárgyalják115,286,287.   
 
ΔGb = Einter(C-L) + ΔEintra(C) + ΔEintra(L) + ΔGszolv – TΔStr-rot – TΔSkonf(C) – TΔSkonf(L) + konst.    (4) 
 
A kifejezés első része a kötődés tisztán entalpikus részét írja le, a C és L molekulák közötti (C-
L komplexen belüli) intermolekuláris-, valamint a partnerek intramolekuláris energiaváltozásai 
felhasználásával. A következő (de)szolvatációs szabadentalpiaváltozás tag értelemszerűen 
entalpikus és entrópikus hozzájárulást is tartalmaz. Végül a transzlációs és rotációs (tr-rot) 
szabadsági fokok valamint a konformációváltozás (konf) befagyásához köthető entrópikus 
tagokat vesszük számba. Rendszerint a különböző végpont módszerek a 4. egyenlet egyes 
tagjait (például a TΔStr-rot tagot) állandónak veszik és ilyenkor ezek a többváltozós lineáris 
regresszió során a konstansba olvadnak össze. Az entalpikus tagokat az Eteljes függvénnyel (1. 
egyenlet) számítják sokszor elhanyagolva a  ΔEintra tagokat és csak az Einter(C-L)-t hagyva meg. 
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A számítások egyszerűsítése végett előfordulnak pusztán ligandum alapú megközelítések is, 
például a TΔSkonf hozzájárulást több ΔGb függvény161,288,289 egyszerűen csak a ligandum 
rotálható kötéseinek számával becsli. Különösen fehérje-fehérje kötődés ΔGb számításánál 
gyakran alkalmazzák290 a szintén MM alapú, molekulafelszín számolást is tartalmazó 
általánosított Born (MM/GBSA) vagy Poisson-Boltzmann (MM/PBSA) végpont módszereket291 
is. Ugyanakkor utóbbi módszerek az implicit vízmodellből (2.2.2. fejezet) fakadóan számos 
korláttal küszködnek292, ami jórészt érvényes az explicit vízmodellt nem alkalmazó egyéb 
végpont módszerekre is. 
 
3.1.3. Kvantummechanikai eljárások 
Az MM megközelítések korlátai elsősorban az erőterek tökéletlenségéből és 
paraméterkészleteik hiányosságaiból fakadnak. A fent ismeretett MD alapú kötési 
termodinamikai számításoknál az erőtereken túl azonban egyéb tényezők, mint például a 
molekuláris mozgások alkalmazott eltérő kényszerfeltételei, a sokaságok eltérő mintázása is 
további reprodukálhatósági korlátokat jelentenek293. A mintázási problémák a végpont 
módszerek esetében értelemszerűen kevésbé jelentkeznek, azonban például az erőtér és a 
vízmodell problematikája ez esetben is fennáll.  
Az erőtér problémára egyik megoldást a kvantummechanikai (QM) módszerek alkalmazása 
jelentheti. Az erőtér parametrizálás problémája a QM esetében nem lép fel294, ugyanakkor a 
számítási idő jelentősen megnő, főleg az ab initio módszerek alkalmazása esetén, amit a 
szemiempírikus eljárások alkalmazásával jelentősen csökkenteni lehet295. A megfelelő 
vízmodell megtalálása a QM alapú számítások  általános problémája és a mai napig kutatás 
tárgyát képezi296. A nyitott kérdések ellenére napjainkra a QM a gyógyszertervezésben igen 
sokrétűen alkalmazásra került294,297. Ezen belül a célpont-ligandum kölcsönhatások QM alapú 
számításának is igen kiterjedt irodalma van298,299. A számítási idő további csökkentésére 
alapvetően két megközelítés bontakozott ki az elmúlt évtizedekben300. A fragmentáláson 
alapuló megközelítéseknél a célpont kötőzsebének fragmenseit (fehérje esetében az 
aminosavakat, kisebb peptid szakaszokat) vágjuk ki és ezt a kivágott kötőzsebet számítjuk 
együtt a ligandummal301,302. A másik megközelítés során a teljes célpontot MM szinten 
kezeljük, de a ligandum, valamint a környező kötőzseb QM szinten kerül számításra. Utóbbi 
QM/MM303–305  módszerek pontosságuk mellett szintén küszködnek korlátokkal306,307.  
 
3.2. Eredmények 
A célpont-ligandum kötés szerkezetének számításánál (2. fejezet) láthattuk, hogy a hidratáció 
szerepe kulcsfontosságú. Ennek megfelelően a tisztán vákuumban történő számítások egyre 
inkább kiszorulnak az irodalomból. Akár MM, akár QM szinten végezzük a kötődési 
termodinamikai paraméterek becslését, az energiaszámítások során alapvetően implicit vagy 
explicit vízmodelleket alkalmazhatunk, illetve ezek hibridjeit. Ennek megfelelően tárgyalom a 
továbbiakban a területen kapott eredményeinket, kezdve az egyszerűbb, implicit 
megközelítéssel. 
 
3.2.1. Energiaszámítások implicit vízmodellel [D20-D23] 
A gyors dokkoló eljárások ΔGb függvényei (3.1.2. fejezet) kettős szerepet látnak el. Egyrészt 
egy adott ligandum kötési módjának globális keresése során célfüggvényként alkalmazva 
elvezetnek az optimális (ideális esetben a valós) kötési módhoz. Másrészt az adott kötőzsebbe 
dokkolt különböző ligandumok rangsorolását is a számított ΔGb értékeik alapján tehetjük meg 
első megközelítésben. Mi az utóbbi szerepben alkalmaztuk az AutoDock 3.0161 program ΔGb 
függvényének egy módosított verzióját egy enzimológiai tanulmányunkban [D20]. A munka 
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kiindulópontja az volt, hogy a kötődési mérések során a sivatagi sáska kimotripszin inhibitor 
(SGCI) és az ízeltlábú tripszinek között öt nagyságrenddel erősebb kötést tapasztaltak, mint az 
SGCI és az emlős tripszinek között. E kiugróan nagy különbség szerkezeti háttere nem volt 
triviális, így kimérésre került az SGCI peptidnek a rák tripszinnel alkotott atomi felbontású 
komplexe. Ezen túl modellezéssel előállítottam a szarvasmarha tripszin-SGCI komplex 
szerkezetét is, ami lehetővé tette, hogy összehasonlítsam az SGCI kölcsönhatási mintázatát a 
két tripszin esetében. Már e munka során felmerült, hogy az AutoDock 3.0 eredetileg kisebb 
ligandumokra kalibrált ΔGb függvénye az SGCI méretű peptidek esetén irreális, pozitív 
értékeket szolgáltat (ennek részleteiről a [D21] tanulmány kapcsán írok bővebben), így e 
munka során az entalpikus Einter(C-L) valamint a deszolvatációs (ΔGszolv, 4. egyenlet) tagok 
összege került alkalmazásra. A ΔGszolv tagot az AutoDock 3.0 egy atomi fragmens térfogatokon 
és térfogati betöltöttségen308 alapuló implicit vízmodell segítségével számítja, emellett a víz 
árnyékoló hatását az elektrosztatikus kölcsönhatásokra az Einter(C-L)-ben egy távolságfüggő 
relatív permittivitás függvénnyel közelíti (2.2.2 fejezet). A számítások eredményeképpen a 
kísérleti eredményekkel összhangban lévő, szignifikánsan erősebb kölcsönhatási energiát 
kaptunk a SGCI rák tripszinnel képzett komplexére, mint a szarvasmarha tripszin esetében. 
Ezen túlmenően, aminosavankénti lebontásban meg tudtuk mutatni, hogy e kölcsönhatási 
energia többlet a rák tripszin esetében egy kiterjedt kötési interfész régiót jelöl ki, amely az 
SGCI szelektivitásának alapját képezi. 
A fentiekben ismertetett enzimológiai tanulmányunk [D20] során, a nagy méretű (35 
aminosav hosszú) SGCI peptid ligandummal szerzett tapasztalatok rámutattak arra, hogy az 
AutoDock 3.0 kis molekulákra kalibrált ΔGb függvénye változtatás nélkül nem alkalmazható a 
nagy méretű ligandumok számítására, így felmerült a ΔGb függvény átalakításának és 
újrakalibrálásának a gondolata a következő [D21] tanulmányunkban. Mivel az entalpikus tagok 
használhatónak bizonyultak, már a kezdeti AutoDock 2.4-es verzió309 óta és a [D20] 
tanulmányunkban is, valamint a probléma elsődlegesen a ligandum méretével tűnt 
kapcsolatosnak, így azokat a tagokat vizsgáltuk meg kritikusan, amelyek kizárólag a ligandum 
alapján kerültek számításra. Két ilyen „gyanús” tag volt szembeötlő az AutoDock 3.0 ΔGb 
függvényében. Az egyik a ligandum belső torziós szabadsági fokai befagyásából számította a 
TΔSkonf(L) (4. egyenlet) értékét, egyszerűen azon torziós szögek számát véve, amelyek mentén 
a ligandum szabadon elforog (Ntor) beszorozva a regressziós koefficienssel. A másik tag a 
ligandumnak a bulk vízmolekulákkal alkotott H-hídjai összes energiáját fejezte ki, a 
ligandumban lévő, H-kötésben részt vehető atomok számát felszorozva konstansokkal. 
Mindkét tag értelemszerűen pozitív értékekkel járult hozzá a teljes ΔGb-hez, ami oda vezetett, 
hogy egy SGCI méretű ligandum esetében a teljes ΔGb-re hibás pozitív értéket számolt a 
program. Megjegyzendő, hogy e tagok más szerzőknek is „szemet szúrtak” szénhidrát 
ligandumok esetén310. Mi egy 50 komplexből álló, számos peptidet tartalmazó szettel végeztük 
el [D21] a ΔGb függvény módosítását, amelyet az eredeti AutoDock 3.0 szetthez képest 
jelentősen nagyobb átlagos ligandum méret jellemzett. A többváltozós lineáris regresszió 
eredményei azt mutatták, hogy a fent említett, két problémás tag elhagyása már önmagában 
javított a megmaradt ΔGb függvény statisztikai paraméterein. A függvényben így csak a 
bimolekulás, entalpikus és deszolvatációs tagok maradtak meg, amelyeket a következő 
lépésben kiegészítettünk ligandum-alapú deszkriptorokkal, és így új, hibrid ΔGb függvényekhez 
jutottunk, igen jó statisztikai paraméterekkel. A munkát keresztvalidációk és a deszkriptorok 
robosztusságának vizsgálata egészítette ki. Ilyen módon nem csak az eredeti ΔGb függvény 
kijavítását értük el, de a nagyobb, pl. peptid ligandum-célmolekula kötéserősség gyors 
számolására is rendelkezésre bocsátottunk egy új, hibrid kalkulátort és jó irodalmi visszhangot 
is kapott311–317. 
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Az AutoDock 3.0 entalpikus tagjaival sikerült jó eredményeket kapnunk a humán α2A-
adrenoceptor agonistái esetében [D22] is. Ebben az esetben csupán kísérletileg 
meghatározott kötési adatok álltak rendelkezésünkre egy viszonylag kis agonista szettre. A 
célfehérje atomi felbontású szerkezetét homológiamodellezéssel kellett előállítani a 
munkához, majd ebbe dokkoltuk az agonista ligandumokat. Mivel ezek az agonisták kis 
molekulák, itt csupán a fent említett belső torziók befagyását leíró entrópikus tagot hagytuk 
el és már így is jó korrelációhoz jutottunk. Bevezettünk egy bináris deszkriptort is a ΔGb 
kifejezésébe, amely egy kulcsfontosságú fragmens jelenlétét írta le a ligandumban. Tekintettel 
arra, hogy ez esetben egy adott célponton dolgoztunk, ennek a deszkriptornak az alkalmazása 
nem pusztán számszerűen tette jobbá a regressziós statisztikát, de lehetőségünk nyílt a 
fragmens jelenlétének értelmezésére a kötési termodinamika szempontjából. A jó korrelációk 
jelezték, hogy a célpont homológia modellje kvantitatív munkára is bevált és a kölcsönható, 
kötőzsebben lévő aminosavakat is jól be tudtuk azonosítani, összevetve más irodalmi 
eredményekkel.    
Szintén kis méretű, aromás ligandumok dokkolására épült az in silico molekuláris 
kölcsönhatási (és affinitási) ujjlenyomatokat bevezető tanulmányunk [D23] is. Ez esetben 44 
ligandum-célmolekula komplexet (39 különböző ligandum és 31 célpont) vettünk alapul és 
első lépésben elvégeztük az AutoDock 3.0 dokkoló eljárás validálását a kísérletileg kimért 
ligandum pozíciókkal történt összevetés segítségével. Mivel az AutoDock  ̶  hasonlóan az egyéb 
gyors dokkoló eljárásokhoz  ̶  az ilyen, gyógyszer méretű ligandumokra került bevezetésre, a 
várakozásnak megfelelően a ligadumok dokkolt kötési módjai jó egyezéseket mutattak a 
kísérletesekkel. Továbbá a dokkolt ligandum ΔGb értékei rendre alacsonyabbak voltak, mint a 
referencia mért ligandum kötési módból számított ΔGb értékek. Ilyen módon a pontozó 
függvény (a számított ΔGb) is relevánsnak mutatkozott, tekintve, hogy mind szerkezetileg, 
mind energiáját tekintve jó kötési módokat eredményezett. Ezt követően a 31 × 39 kereszt-
dokkolást elvégezve minden ligandum és célpont számított ΔGb értéke a rendelkezésünkre állt 
és ebből az adott célfehérje eredeti liganduma ΔGb-jének kivonásával megkaptuk az adott 
célfehérje kötőzsebére adott ligandum esetében vonatkozó ΔGb többletet. Így eljutottunk a 
molekuláris kölcsönhatási ujjlenyomat (MIF) mátrixhoz, amely egy adott ligandum 
szelektivitását (vagy éppen promiszkuitását) írja le és jó alapot nyújt a mellékhatás-
spektrumának előrejelzéséhez. E tanulmányunkat hivatkozta J.M. Thornton és csoportja is318. 
Később a MIF-et kombináltuk319,320 a ligandumok farmakológiai profilját leíró mátrixokkal és 
így praktikus polifarmakológiás tervezési eszközökhöz is jutottunk. 
 
3.2.2. Energiaszámítások explicit és hibrid vízmodellekkel [D24-D27] 
Az előző fejezetben tárgyalt implicit vízmodelles megközelítések a mai napig igen fontos 
szerepet játszanak a gyógyszertervezésben, különösen ha sok ligandumot kell egyszerre 
vizsgálni. Ugyanakkor az explicit vízmolekulák hiányában nyilvánvaló korlátokkal is 
rendelkeznek, például a vízmolekulák irányított H-kötéseiből adódó termodinamikai 
hozzájárulások pontos számítása terén. Az explicit vízmodellel végrehajtott MD számítások 
viszont igen jó mintát szolgáltatnak a részletesebb és pontosabb kötődési termodinamikai 
számításokhoz. Ez esetben akár magának az oldószernek a célpont-ligandum komplex 
kötődéséhez történő hozzájárulása is pontosan számítható. Egy ilyen, dekompozíciós 
megközelítést írtunk le ciklodextrin-gyógyszer komplexeken [D24], amelynek alapját explicit 
vízmodelles, teljes MD mintázáson alapuló PMF (3.1.2. fejezet) számítások adták. A PMF 
profilok lefutásának (szimmetriájának) elemzése lehetővé tette a ciklodextrin esetében 
előforduló alternatív komplexképződési útvonalak nyomonkövetését. A  ΔHb és a ΔSb tagok 
dekompozíciójára is mód nyílt, előbbi esetben külön kovalens és másodlagos, valamint a 
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másodlagos esetben négy féle (ciklodextrin-víz, gyógyszer-víz, cikodextrin-gyógyszer, víz-víz) 
intermolekuláris, entalpikus hozzájárulást különítettünk el. Megállapítottuk, hogy a vizsgált 
komplexképződési folyamatok összességében entalpia-vezéreltek, ezen belül azonban igen 
tanulságos a dekompozíció során kapott egyes entalpiaváltozások szerepe. A fent említett 
négy intermolekuláris tag számértékeiben nagyságrendileg meghaladja a teljes 
komplexképződést leíró ΔGb-t, valamint a négy tag nagyságrendileg összemérhető egymással. 
Így belátható, hogy a vizet tartalmazó három entalpikus tag számítása végeredményben 
kulcsfontosságú a ΔGb számítása szempontjából. A vízhez köthető entrópikus hozzájárulás 
nagyságrendileg összemérhető a ΔGb-vel, így ez is megerősíti az explicit vízmodell 
használatának szükségességét a ΔGb számítások pontossága szempontjából. A fent ismertetett 
eredmények közvetlen alkalmazást nyertek a ciklodextrin-alapú nanoszerkezetek építésének 
szerkezeti és termodinamikai alapjairól szóló [D25] tanulmányunkban. A ciklodextrin dimerek 
alapvető építőkövei molekuláris nyakláncoknak illetve nanocsöveknek. E nanoszerkezetek 
felépülését templátként elősegíthetik a cikodextrinnel komplexet alkotó kisebb ligandumok, 
mint például a fent említett tanulmányban vizsgált gyógyszerek, olyan módon, hogy mindkét 
monomer ciklodextrin egységgel kölcsönhatnak és összekapcsolják azokat dimerré. 
Természetesen felmerül a kérdés, hogy ez a templát funkció milyen mértékű az egyes 
ligandumok esetében és a ciklodextrin monomerek kapcsolódása szerkezetileg hogy valósul 
meg a termodinamikailag legkedvezőbb módon. A felvetett kérdésekre azt a választ kaptuk, 
hogy a daidzein bot alakú molekulái esetében lesz termodinamikailag kedvező a cikodextrinek 
és a templátként alkalmazott molekula kölcsönhatása. Az ilyen templátokkal képzett 
komplexek esetében a cikodextrin molekulák a lehetséges három elrendeződés közül a 
szélesebb peremükkel egymás felé fordulva, fej-fej illeszkedésben alkotják a legstabilabb 
dimereket. A ΔGb-nek az előző [D24] tanulmányhoz hasonló dekompozíciója itt tehát az 
említett nanoszerkezetek további tervezéséhez szolgáltat egy teljes termodinamikai leírást. 
Míg az előző két esetben ismertetett eredményeink MM szintű megközelítést használtak 
viszonylag kisebb ligandumoknál (daidzein) és töltés nélküli célpontnál (ciklodextrin), a 
nagyobb méretű, többszörösen töltött célpont-ligandum komplexek esetében felmerül az 
elektronszerkezeti effektusok számításának szükségessége. Fokozottan érvényes ez, ha a 
környező vízmolekulák is kölcsönhatásba lépnek a töltésekkel, ami nyilván alaphelyzet például 
a peptid ligandumok esetében. Az elektronszerkezeti effektusok pontos leírását leginkább QM 
szinten lehet elvégezni, így mi is megvizsgáltuk a QM-alapú kötési termodinamika kalkulátorok 
kifejlesztésének lehetőségét. A munkához a felvezetésben (3.1.3. fejezet) említett két 
alternatíva közül a fragmentálásos utat (7. ábra) követtük és tanulmányunkban [D26] célul 
tűztük ki a ΔHb számítására szolgáló eljárás kidolgozását a célpont-ligandum komplex 
szerkezetből, mint végpontból kiindulva. (Külön a ΔHb számításának és az entalpikus 
optimalizációnak a fontosságáról a 3.1. fejezet elején írtam.) Ehhez több praktikus és elméleti 
problémát kellett megoldanunk. Szerencsére a „száraz” célpont-ligandum komplexek 
hidratálását nem kellett kidolgoznunk, mert arra ismét alkalmazni tudtuk a MobyWat 
programunkat (2.3.3. fejezet).  

 
7. ábra A célpont (szürke) – ligandum (zöld) komplex hidratálása után a célpont ligandumhoz 

kapcsolódó részeit az interfész vízmolekulákkal (piros-fehér) együtt kivágva a QM számítás céljaira 
előkészített szerkezethez jutunk. 
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Az első praktikus probléma a fragmentálás automatizálása volt. A peptid szakaszok 
célfehérjéből történő kivágása látszólag triviálisan megoldható a rendelkezésre álló modellező 
eszközökkel. A gyakorlati munka azonban azt mutatta, hogy a hidratált komplexből a kötési 
interfész kivágása csak részben és körülményesen volt megvalósítható, nem volt erre a 
feladatra praktikus célszerszám. Ki kellett ezért dolgoznunk a Fragmenter nevű eszközt, amely 
különböző (távolság, fragmens hossz) beállításokkal kivágja a célmolekula ligandumot 
környező peptid fragmenseit (7. ábra), valamint automatikusan blokkolja vagy éppen 
szabadon, ionos formában hagyja a peptid fragmensek láncvégeit. Ezen túlmenően egy 
előzetes energia-ellenőrzést is végez és az extrahált interfész régió szerkezetét és a 
partnereket is külön Mopac input fájlokban, futtatásra kész állapotban adja ki. A legnagyobb 
elméleti kérdés az alkalmazandó vízmodell volt. Bár a célpont-ligandum interfész teljes 
hidrátszerkezete a rendelkezésünkre állt a MobyWat jóvoltából, de kérdés volt, mely explicit 
hidratációs szférák használhatók a ΔHb számításában, valamint hogy az implicit/explicit vagy a 
kettőt kombináló hibrid hidratációs megközelítés vezet-e eredményre. A különböző modellek 
összehasonlításába a kis ligandumos komplexeken túl bevontunk nagy méretű peptid 
ligadumokat tartalmazó rendszereket is, több mint 3000-es relatív molekulatömegig. Végül a 
hibrid vízmodell, egy kiterjedtebb explicit vízszférával igen jó korrelációt eredményezett a 
kísérleti ΔHb értékekkel és csupán egy paraméterrel a mért és a szemiempírikus QM szinten, 
PM7 parametrizálással számított entalpiaváltozásokat össze lehetett skálázni, így egy 
használható, szerkezeti alapú kalkulátorhoz jutottunk. 
Míg a fenti [D26] tanulmányban QM szerkezeti optimalizálást végeztünk, a kiindulási, MM-
optimalizált komplex és a QM-optimalizált, extrahált interfész szerkezetek összehasonlításával 
azt tapasztaltuk, hogy maga a QM szerkezeti optimalizálás ritkán okoz nagy változást a 
szerkezeteinkben. Ebből logikusan következett, hogy az MM-optimalizált szerkezetet 
felhasználva egy QM végpontszámítással (single point, 1SCF) kombinálva kapjuk meg a ΔHb 
számításához szükséges képződéshőket, a QM szerkezeti optimalizációs lépés elhagyásával. 
Az elképzelést a nemrég megjelent [D27] tanulmányunkban teszteltük le egy kiterjesztett 
adathalmazon, egyúttal a ΔGb számítását is célul tűzve ki. Nota bene, a Mopac 1SCF számítások 
alkalmazása szerkezetek energetikai értékelésére másoknál is felmerült295. Mi tehát a 
MobyWat-hidratált, MM-minimalizált célpont-ligandum komplex szerkezetekből (és 
alkotóikból külön is) a Fragmenteres kivágás után a fentiekhez hasonlóan, szemiempírikus 
PM7 szinten 1SCF számítással kaptuk meg a képződéshő értékeket [D27]. Ez esetben is a hibrid 
vízmodell eredményezte a legjobb statisztikát a ΔHb regresszióknál. A számításokat QM 
optimalizációval valamint más parametrizálásokkal is megismételtük és nem kaptunk javulást 
az 1SCF (PM7, hibrid vízmodell) eredményekhez képest, így utóbbi megközelítést használtuk 
fel a ΔGb kalkulátor kidolgozásához is. Ehhez alapul vettük a QM-számított entalpikus tagot, 
valamint egy többváltozós regresszióban kiegészítettük ligandum-alapú deszkriptorokkal. 
Számos deszkriptort végigpróbálva a ligandum nehéz atomjai és összes atomjai számának 
hányadosa bizonyult a legjobbnak. Az így kapott QMH-L kalkulátorral [D27] végül 1 kcal/mol 
(4,184 kJ/mol) átlagos hibával tudtuk a ΔGb-t becsülni. Annak köszönhetően, hogy a QMH-L 
egyenletet úgy építettük meg, hogy az a ΔGb-ben az entalpikus tagot külön tartalmazza és a 
ligandum alapú deszkriptornak sikerült alapos fizikai értelmezést is adnunk. Az így kapott 
kalkulátor gyors számítást tesz lehetővé, mivel a szerkezet előállítása MM szinten történik. 
Emellett az említett deszkriptor várhatóan más pontozó (ΔGb) függvényekben is alkalmazható 
lesz, mivel nem függ a ligandum méretétől és így használatakor a 3.2.1. szakaszban az Ntor 
kapcsán említett problémák értelemszerűen nem jelentkeznek. 
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3.2.3. A kötéserősség méretfüggése és a hatékonysági indexek [D28-D30] 
Több tanulmány kimutatta, hogy a ΔGb függ a ligandum méretétől256,321,322. Ennek oka 
egyaránt lehet az entalpikus és az entrópikus hozzájárulások méretfüggése is, amelynek végső 
tisztázása még várat magára. A jelenség mindenesetre adott és igen logikus koncepcióként 
felmerült, hogy a  ΔGb-t függetlenítsük a ligandum méretétől, egyszerűen elosztva azt a 
ligandum méretével korreláló valamely mennyiséggel, mint például a ligandum nehéz 
atomjainak száma323 (NHA, 5. egyenlet), vagy a relatív molekulatömeg324. 

EINHA =
∆Gb

NHA
              (5) 

Az így kapott mennyiségeket ligandum hatékonysági indexnek325 (efficiency index, EI, 5. 
egyenlet) nevezzük. A nevezőben szereplő, a ligandum méretétől függő mennyiségek 
ugyanakkor elég széleskörűen használatosak farmakokinetikai szűrőként is a 
gyógyszertervezés során. Az ilyen gyors szűrések során általában egy adott határérték alatti 
molekulatömeggel, lipofilicitási értékkel, stb. rendelkező vegyületeket szelektálnak ki a sok 
százezer vegyületet tartalmazó molekulakönyvtárakból, például a Lipinski-féle szabályok326 
alkalmazásával. Bár e szabályokat kiterjedten alkalmazták a tervezésben, egyre több jel utalt 
rá, hogy általános használatuk inkább káros, mint hasznos lehet sok esetben (erről e fejezet 
végén szólok még).  
Az EI-k terén közölt első tanulmányunkban [D28] megvizsgáltuk azok szerkezeti alapú 
számításának lehetőségét és a korábbi [D21] tanulmányunkban alkalmazott 53 rendszer 
mellett még további 20 fehérje-célpont adatot gyűjtöttünk külső validáló szettként. 
Meglepően jó korrelációkat kaptunk a kísérleti és számított EI értékek között. Az EI-k 
kifejezésében (5. egyenlet) a nevezőben szereplő szokásos mennyiségeken túl további 
méretfüggő molekuláris deszkriptorokkal is definiáltunk új EI-ket és megvizsgáltuk a 
használhatóságukat is. Különösen a Wiener-index és az egyes főtengelyekere vett 
tehetetlenségi nyomatékok szorzata esetében kaptunk kiemelekedően jó korrelációkat. 
Értelmezésünk szerint az EI-kben a ligandum méretétől függő mennyiségekkel történő osztás 
összességében a ΔGb entrópikus részét az illesztési konstansba olvassza és a maradék, 
mérettől függetlenített entalpikus részek között a korreláció erősebb lesz. Formálisan 
tekinthetőek az osztáskor alkalmazott méretfüggő deszkriptorok reciprokai illesztési 
súlyoknak is. Alkalmazhatóságukat tekintve az említett két legjobb, új EI esetében a vizsgált 
gyógyszerek és „nem gyógyszerek” csoportjai között jó szelekciót tapasztaltunk, míg pusztán 
a ΔGb esetében a 2 csoport között nem láttunk elkülönülést. Ezen túlmenően a két új EI 
hatékonynak bizonyult egy 1760 molekulát tartalmazó könyvtár szűrésében is a progeszteron 
receptoron, az aktív noretindron referenciavegyületet a felső 0.5 %-ba sorolva (a ΔGb 
önmagában csak a felső 10 %-ba sorolta a noretindront első körben). 
Az előbbiekben tárgyalt [D28] tanulmányunkban az AutoDock 3 és 4 verzióinak a módosított 
ΔGb függvényeit alkalmaztuk a számításokhoz. Felvetődött a kapott eredmények 
általánosíthatóságának a kérdése más, kereskedelemben hozzáférhető, szintén gyakran 
alkalmazott dokkoló eljárások (Gold, Glide) pontozó függvényeire (Goldscore, Chemscore) és 
ezeknek komponenseire is. Emellett még további ligandum deszkriptorokat is vizsgáltunk a 
következő tanulmányunkban [D29] , mint például a szénatomok száma és az oktanol-víz 
megoszlási együttható, amelyek a lipofilicitáson keresztül a (de)szolvatációs hozzájárulásra 
lehetnek jellemzőek. A vizsgált deszkriptorok közül az utóbbi kettő, valamint a Wiener-index 
mutatta itt is a legjobb eredményeket, a korrelációs együttható ez esetekben markánsan 
megnőtt. Tekintettel arra, hogy az említett ligandum-alapú deszkriptorok és a származtatott 
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EI-k számítása is nagyon gyors, így használatuk nem lassítja le a dokkolt ligandum szerkezetek 
rangsorolási folyamatát, ellenben a fenti eredmények alapján hatékonyabbá tehetik azt. 
A ligandumot (méretét, flexibilitását, hidrofobicitását, H-kötési képességét) jellemző 
deszkriptorok és a belőlük származtatott EI-k (5. egyenlet, együttesen property filter-ként 
említve [D30]-ban) alkalmazhatóságát vizsgáltuk meg elemző tanulmányunkban [D30], ahol 
bevezetésre kerültek a szelektivitásukra és érzékenységükre vonatkozó statisztikai 
mérőszámok is.  A tanulmány 1.-4. irodalmi áttekintő fejezeteiben a drug-likeness 
(gyógyszerszerűség, DL) koncepciót jártuk először körbe, megkülönböztetve annak általános 
és specifikus alkalmazásait. Részletesen tárgyaltuk az általános DL korlátait és a betegség, 
gyógyszeradminisztráció és célpont szerinti specifikus DL kategóriákat is. Ezt követően a ΔGb-
nek a ligandum méretétől való  ̶ ̶  fentiekben említett  ̶  függését tárgyaljuk részletesen, majd 
az EI koncepciót. Mindezek az előzmények vezettek el logikailag az 5. fejezethez, ahol a DL 
koncepció előbbiekben tárgyalt korlátainak okán megvizsgáltuk az említett deszkriptorok és 
EI-k alkalmazhatóságát egy olyan statisztikai modellben, ahol a  ΔGb-függést az elemzés során 
„kikapcsoltuk”.  Ehhez olyan gyógyszer és „nem gyógyszer” szetteket állítottunk össze, 
amelyek ΔGb eloszlásukat tekintve megegyeztek. Ezután megvizsgáltuk az egyes deszkriptorok 
és EI-k eloszlásának különbségét is a két szettben és ahol lehetőség volt rá, az 
eloszlásfüggvényeket analitikus formában illesztéssel meghatároztuk. Az eloszlásfüggvények 
ismeretében a szelektivitásra és érzékenységre mérőszámokat vezettünk be. Ezek alapján az 
adott szelektivitáshoz és érzékenységhez általános határértékeket tudtunk megadni az egyes 
deszkriptorokhoz és EI-khez, valamint betegség-specificitásukat szintén kvantitatíven 
jellemeztük. Összességében e vizsgálataink egyértelmű, kvantitatív képet adtak a DL 
koncepció felvezetésben említett korlátairól és alkalmazhatóságáról az egyes deszkriptorok és 
EI-k terén. A bevezetett mérőszámok általánosan alkalmazhatóak a tanulmányban nem 
vizsgált, vagy a jövőben definiálásra kerülő deszkriptorok és EI-k minősítésére és határértékük 
kalibrálásához, ami várhatóan a ligandumok szűrésének pontosságát növelni fogja.  
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4. Kitekintés 
 
A célpont-ligandum kölcsönhatások számítása a racionális, szerkezetalapú gyógyszertervezés 
egyik legfontosabb lépése. A dolgozatban felvonultatott elméleti megközelítések az elmúlt 
évtizedekben igen nagy változásokon mentek át, sok esetben pozitív irányban. A 
számítástechnikai eszköztár mennyiségi és minőségi növekedésével e fejlődés világszerte 
egyre gyorsul. Ennek egyik következménye a korábban igen költségesnek tartott fizikai-kémiai 
alapú eljárások, például a hosszabb MD számítások mennyiségének az örvendetes növekedése 
a gyógyszertervezésben. Másrészt megfigyelhető az informatikai eszköztárat fokozottabban 
kihasználó, kevesebb (esetenként minimális vagy akár zérus) fizikai-kémiai alapot igénylő, gépi 
tanulásos és/vagy a nagy adatmennyiséget feldolgozó ún. ismeretalapú (knowledge-based) 
módszerek virágzása. A két megközelítés egyelőre meglehetősen párhuzamosan fejlődik, az 
igazán hatékony összekapcsolódásuk még várat magára a gyógyszertervezés területén. Nagy 
kérdés, hogy e kapcsolódás a közeljövőben meg tud-e valósulni  ̶  tekintettel a két irányzat 
filozófiájának különbségeire. Már jelenleg is érzékelhető, hogy a fizikai-kémiai alapokat nagy 
mértékben nélkülöző módszerek nehezen tudnak általánosan alkalmazható megoldásokat 
kínálni a molekulaszerkezeti számítások terén.  
Eddigi kutatási projektjeim során én is tapasztaltam, hogy az ismeretalapú módszerek 
használhatósága korlátozott és nagy szakmai tapasztalatot igényel. Ilyen eset volt, amikor a 
citokróm CYP3A4 szerkezetének előállítását és gyors publikálását kérték tőlem olasz 
partnerek, mert az akkor még nem volt kimérve. Én ezt nem tettem meg, mert nem álltak 
rendelkezésre megfelelően (szekvenálisan) homológ templát fehérjék az ismeretalapú327 
építkezéshez. Ráadásul az említett citokróm várhatóan igen nagy kötőzsebbel rendelkezett a 
hem csoport feletti térrészben és a fehérjék belsejében az ilyen kiterjedt üregek jóslása szinte 
lehetetlen vállalkozás volt az akkor rendelkezésre álló homológiamodellezéses eljárásokkal. 
Mivel a CYP3A4 egy igen fontos metabolikus enzim, így mások több homológiamodellt is 
publikáltak. Végül sor került a kísérletes szerkezetmeghatározásra és az addigi tanulmányok 
homológiamodellezett szerkezeteit a valós szerkezet birtokában a kísérletes közlemény 
(negatívan) meghivatkozta328, megjegyezve, hogy a korábban közölt homológiamodelleknek 
ez esetben korlátozott volt a használhatósága. 
A fehérjeszerkezetek predikcióján túl a célpont-ligandum komplex szerkezetek előállítása (a 
számítógépes dokkolás) terén is erősen túlfűtöttnek bizonyulnak az ismeretalapú predikciós 
megközelítésekkel kapcsolatos várakozások. A kezdeti ígéretek után komoly tanulmányok 
jelennek meg a mesterséges intelligencia alapú módszerek korlátairól329, amelyeket részben a 
fizikai-kémiai alapok mellőzése okoz. A dolgozatban tárgyalt (de)hidratációs problémák 
megoldására sem látszik330 áttörést hozó ismeretalapú megközelítés. Ugyanakkor a meglévő, 
fizikai-kémiai alapú módszerek sokszor már most is kellő pontosságot adnak és korlátaik 
ismeretében a jövőbeli fejlődési irányaik jól kivehetőek az erőterek, a kereső módszerek és a 
vízmodellek terén is. A tervezésben az explicit vízmodellekre épülő technikák fejlesztése, 
valamint a QM-re épülő eljárások hatékonyságának és rutin alkalmazhatóságának növelése 
tűnnek a legfontosabb feladatoknak.   
Az értekezés elején már idézett Nobel-díjas R. Henderson és társai véleménycikkének2 
összegző gondolatával zárnám  e rövid kitekintésemet, amely szerint  „... solving the protein-
folding problem means making accurate predictions of structures from amino acid sequences 
starting from first principles based on the underlying physics and chemistry ...”. Ez az 
iránymutatás jól jöhet a gyógyszertervezés említett, nyitott kérdéseinek megoldásában is, 
ahol a célpont-ligandum komplexek és a kapcsolt hidrátszerkezetek számításában a jövőben 
is építeni tudunk majd a fizikai-kémiai alaptörvényekre. 
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Megemlékezés 
 
Ezúton kívánok megemlékezni szegedi tanáraimról, akik a kémia szeretetét megerősítették 
bennem és a matematikai, természetes szerves, komplex- és fizikai kémiai területeken 
inspiráltak. Huhn Péter, Vincze Irén, Burger Kálmán és Nagypál István professzorok előadásaira 
mindig szívesen gondolok vissza. Horváth István és Körtvélyesi Tamás egyetemi docensek 
kiváló témavezetőim voltak  ̶  fájdalmasan korán távoztak. 
 
 
Köszönetnyilvánítás 
 
Munkám során többször támaszkodhattam az MTA, az NKFIH, az ÚNKP és az EU által nyújtott 
anyagi támogatásokra. A szuperszámítógépes háttér folyamatos biztosításáért a Kormányzati 
Informatikai Fejlesztési Ügynökségnek (KIFÜ) tartozom köszönettel. 
 
Penke Botond professzor úr témavezetőként segített elindulnom a kutatói pályán, a peptidek 
iránti fogékonyságomat és a területen átadott alapismereteket is neki köszönhetem, valamint, 
hogy mindvégig ösztönzött elméleti munkám folytatására. 
 
Szegeden kiváló oktatóktól tanulhattam, igazi egyéniségektől, akik nagy tudással 
rendelkeznek. Nehéz lenne őket itt mind felsorolni és nagyon nem szeretnék senkit kihagyni  ̶  
hálával gondolok mindannyiukra. 
 
Az elmúlt két évtizedben számos kutatóhelyen megfordultam, itthon és külföldön. Az egyes 
állomásokon különböző, hasznos impulzusok értek, amelyek többnyire a gyakorlat, az 
alkalmazások oldaláról inspirálták a kutatómunkámat, gyümölcsöző együttműködéseket 
eredményezve. Ezúton szeretnék köszönetet mondani a Szegedi Tudományegyetem Orvosi 
Vegytani Intézete, az Uppsalai Egyetem Biokémiai, majd Sejt- és Molekuláris Biológiai 
Tanszéke, a Tartui Egyetem Kémiai Intézete, az Eötvös Loránd Tudományegyetem Biokémiai 
és Genetikai Tanszékei, a Semmelweis Egyetem Szerves Vegytani Intézete és  ̶  nem utolsó 
sorban  ̶  jelenlegi munkahelyem, a Pécsi Tudományegyetem Általános Orvostudományi Kar 
Farmakológiai és Farmakoterápiai Intézete kedves dolgozóinak. 
 
Szüleimnek hálás vagyok támogató szeretetükért. 
 
  

               hetenyi.csaba_83_23



36 
 

Irodalomjegyzék 
 
(1) Szent-Györgyi Albert: Az élet jellege, 2. kiadás. Magvető Kiadó, Budapest, 1975. 
(2) Moore, P. B.; Hendrickson, W. A.; Henderson, R.; Brunger, A. T. The Protein-Folding Problem: Not yet 

Solved. Science 2022, 375 (6580), 507–507. https://doi.org/10.1126/science.abn9422. 
(3) Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, 

R.; Žídek, A.; Potapenko, A.; Bridgland, A.; Meyer, C.; Kohl, S. A. A.; Ballard, A. J.; Cowie, A.; Romera-
Paredes, B.; Nikolov, S.; Jain, R.; Adler, J.; Back, T.; Petersen, S.; Reiman, D.; Clancy, E.; Zielinski, M.; 
Steinegger, M.; Pacholska, M.; Berghammer, T.; Bodenstein, S.; Silver, D.; Vinyals, O.; Senior, A. W.; 
Kavukcuoglu, K.; Kohli, P.; Hassabis, D. Highly Accurate Protein Structure Prediction with AlphaFold. 
Nature 2021, 596 (7873), 583–589. https://doi.org/10.1038/s41586-021-03819-2. 

(4) Nogales, E. Profile of Joachim Frank, Richard Henderson, and Jacques Dubochet, 2017 Nobel Laureates 
in Chemistry. Proc. Natl. Acad. Sci. 2018, 115 (3), 441–444. https://doi.org/10.1073/pnas.1718898114. 

(5) Frank, J.; Zhu, J.; Penczek, P.; Li, Y.; Srivastava, S.; Verschoor, A.; Radermacher, M.; Grassucci, R.; Lata, R. 
K.; Agrawal, R. K. A Model of Protein Synthesis Based on Cryo-Electron Microscopy of the E. Coli 
Ribosome. Nature 1995, 376 (6539), 441–444. https://doi.org/10.1038/376441a0. 

(6) Henderson, R. The Potential and Limitations of Neutrons, Electrons and X-Rays for Atomic Resolution 
Microscopy of Unstained Biological Molecules. Q. Rev. Biophys. 1995, 28 (2), 171–193. 
https://doi.org/10.1017/S003358350000305X. 

(7) Adrian, M.; Dubochet, J.; Lepault, J.; McDowall, A. W. Cryo-Electron Microscopy of Viruses. Nature 
1984, 308 (5954), 32–36. https://doi.org/10.1038/308032a0. 

(8) Lepault, J.; Booy, F. P.; Dubochet, J. Electron Microscopy of Frozen Biological Suspensions. J. Microsc. 
1983, 129 (1), 89–102. https://doi.org/10.1111/j.1365-2818.1983.tb04163.x. 

(9) Darby, J. F.; Hopkins, A. P.; Shimizu, S.; Roberts, S. M.; Brannigan, J. A.; Turkenburg, J. P.; Thomas, G. H.; 
Hubbard, R. E.; Fischer, M. Water Networks Can Determine the Affinity of Ligand Binding to Proteins. J. 
Am. Chem. Soc. 2019, 141 (40), 15818–15826. https://doi.org/10.1021/jacs.9b06275. 

(10) Pintilie, G.; Zhang, K.; Su, Z.; Li, S.; Schmid, M. F.; Chiu, W. Measurement of Atom Resolvability in Cryo-
EM Maps with Q-Scores. Nat. Methods 2020, 17 (3), 328–334. https://doi.org/10.1038/s41592-020-
0731-1. 

(11) Renaud, J.-P.; Chari, A.; Ciferri, C.; Liu, W.; Rémigy, H.-W.; Stark, H.; Wiesmann, C. Cryo-EM in Drug 
Discovery: Achievements, Limitations and Prospects. Nat. Rev. Drug Discov. 2018, 17 (7), 471–492. 
https://doi.org/10.1038/nrd.2018.77. 

(12) D’Imprima, E.; Kühlbrandt, W. Current Limitations to High-Resolution Structure Determination by 
Single-Particle cryoEM. Q. Rev. Biophys. 2021, 54, e4. https://doi.org/10.1017/S0033583521000020. 

(13) Chari, A.; Stark, H. Prospects and Limitations of High-Resolution Single-Particle Cryo-Electron 
Microscopy. Annu. Rev. Biophys. 2023, 52 (1), 391–411. https://doi.org/10.1146/annurev-biophys-
111622-091300. 

(14) Shi, Y. A Glimpse of Structural Biology through X-Ray Crystallography. Cell 2014, 159 (5), 995–1014. 
https://doi.org/10.1016/j.cell.2014.10.051. 

(15) Brooks-Bartlett, J. C.; Garman, E. F. The Nobel Science: One Hundred Years of Crystallography. 
Interdiscip. Sci. Rev. 2015, 40 (3), 244–264. https://doi.org/10.1179/0308018815Z.000000000116. 

(16) Burley, S. K.; Bhikadiya, C.; Bi, C.; Bittrich, S.; Chao, H.; Chen, L.; Craig, P. A.; Crichlow, G. V.; Dalenberg, 
K.; Duarte, J. M.; Dutta, S.; Fayazi, M.; Feng, Z.; Flatt, J. W.; Ganesan, S.; Ghosh, S.; Goodsell, D. S.; 
Green, R. K.; Guranovic, V.; Henry, J.; Hudson, B. P.; Khokhriakov, I.; Lawson, C. L.; Liang, Y.; Lowe, R.; 
Peisach, E.; Persikova, I.; Piehl, D. W.; Rose, Y.; Sali, A.; Segura, J.; Sekharan, M.; Shao, C.; Vallat, B.; 
Voigt, M.; Webb, B.; Westbrook, J. D.; Whetstone, S.; Young, J. Y.; Zalevsky, A.; Zardecki, C. RCSB Protein 
Data Bank (RCSB.Org): Delivery of Experimentally-Determined PDB Structures alongside One Million 
Computed Structure Models of Proteins from Artificial Intelligence/Machine Learning. Nucleic Acids 
Res. 2023, 51 (D1), D488–D508. https://doi.org/10.1093/nar/gkac1077. 

(17) Wang, H.-W.; Wang, J.-W. How Cryo-Electron Microscopy and X-Ray Crystallography Complement Each 
Other: Cryo-EM and X-Ray Crystallography Complement Each Other. Protein Sci. 2017, 26 (1), 32–39. 
https://doi.org/10.1002/pro.3022. 

(18) Zheng, H.; Handing, K. B.; Zimmerman, M. D.; Shabalin, I. G.; Almo, S. C.; Minor, W. X-Ray 
Crystallography over the Past Decade for Novel Drug Discovery – Where Are We Heading Next? Expert 
Opin. Drug Discov. 2015, 10 (9), 975–989. https://doi.org/10.1517/17460441.2015.1061991. 

(19) Zheng, H.; Hou, J.; Zimmerman, M. D.; Wlodawer, A.; Minor, W. The Future of Crystallography in Drug 
Discovery. Expert Opin. Drug Discov. 2014, 9 (2), 125–137. 
https://doi.org/10.1517/17460441.2014.872623. 

               hetenyi.csaba_83_23



37 
 

(20) Ezkurdia, I.; Juan, D.; Rodriguez, J. M.; Frankish, A.; Diekhans, M.; Harrow, J.; Vazquez, J.; Valencia, A.; 
Tress, M. L. Multiple Evidence Strands Suggest That There May Be as Few as 19 000 Human Protein-
Coding Genes. Hum. Mol. Genet. 2014, 23 (22), 5866–5878. https://doi.org/10.1093/hmg/ddu309. 

(21) Pertea, M.; Salzberg, S. L. Between a Chicken and a Grape: Estimating the Number of Human Genes. 
Genome Biol. 2010, 11 (5), 206. https://doi.org/10.1186/gb-2010-11-5-206. 

(22) Hopkins, A. L.; Groom, C. R. The Druggable Genome. Nat. Rev. Drug Discov. 2002, 1 (9), 727–730. 
https://doi.org/10.1038/nrd892. 

(23) Kermani, A. A. A Guide to Membrane Protein X‐ray Crystallography. FEBS J. 2021, 288 (20), 5788–5804. 
https://doi.org/10.1111/febs.15676. 

(24) Zhao, J.; Lin King, J. V.; Paulsen, C. E.; Cheng, Y.; Julius, D. Irritant-Evoked Activation and Calcium 
Modulation of the TRPA1 Receptor. Nature 2020, 585 (7823), 141–145. 
https://doi.org/10.1038/s41586-020-2480-9. 

(25) Niedzialkowska, E.; Gasiorowska, O.; Handing, K. B.; Majorek, K. A.; Porebski, P. J.; Shabalin, I. G.; 
Zasadzinska, E.; Cymborowski, M.; Minor, W. Protein Purification and Crystallization Artifacts: The Tale 
Usually Not Told: Protein Purification and Crystallization Artifacts. Protein Sci. 2016, 25 (3), 720–733. 
https://doi.org/10.1002/pro.2861. 

(26) Guo, Y. Be Cautious with Crystal Structures of Membrane Proteins or Complexes Prepared in 
Detergents. Crystals 2020, 10 (2), 86. https://doi.org/10.3390/cryst10020086. 

(27) Tsuchiya, Y. Discrimination between Biological Interfaces and Crystal-Packing Contacts. Adv. Appl. 
Bioinforma. Chem. 2008, 99. https://doi.org/10.2147/AABC.S4255. 

(28) Halle, B. Biomolecular Cryocrystallography: Structural Changes during Flash-Cooling. Proc. Natl. Acad. 
Sci. 2004, 101 (14), 4793–4798. https://doi.org/10.1073/pnas.0308315101. 

(29) Hajdu, J.; Neutze, R.; Sjögren, T.; Edman, K.; Szöke, A.; Wilmouth, R. C.; Wilmot, C. M. Analyzing Protein 
Functions in Four Dimensions. Nat. Struct. Biol. 2000, 7 (11). 

(30) Westenhoff, S.; Meszaros, P.; Schmidt, M. Protein Motions Visualized by Femtosecond Time-Resolved 
Crystallography: The Case of Photosensory vs Photosynthetic Proteins. Curr. Opin. Struct. Biol. 2022, 77, 
102481. https://doi.org/10.1016/j.sbi.2022.102481. 

(31) Biedermannová, L.; Schneider, B. Hydration of Proteins and Nucleic Acids: Advances in Experiment and 
Theory. A Review. Biochim. Biophys. Acta BBA - Gen. Subj. 2016, 1860 (9), 1821–1835. 
https://doi.org/10.1016/j.bbagen.2016.05.036. 

(32) Adams, P. D.; Grosse-Kunstleve, R. W.; Hung, L.-W.; Ioerger, T. R.; McCoy, A. J.; Moriarty, N. W.; Read, R. 
J.; Sacchettini, J. C.; Sauter, N. K.; Terwilliger, T. C. PHENIX : Building New Software for Automated 
Crystallographic Structure Determination. Acta Crystallogr. D Biol. Crystallogr. 2002, 58 (11), 1948–
1954. https://doi.org/10.1107/S0907444902016657. 

(33) Emsley, P.; Lohkamp, B.; Scott, W. G.; Cowtan, K. Features and Development of Coot. Acta Crystallogr. D 
Biol. Crystallogr. 2010, 66 (4), 486–501. https://doi.org/10.1107/S0907444910007493. 

(34) Brünger, A. T.; Kuriyan, J.; Karplus, M. Crystallographic R Factor Refinement by Molecular Dynamics. 
Science 1987, 235 (4787), 458–460. https://doi.org/10.1126/science.235.4787.458. 

(35) Brünger, A. T.; Adams, P. D.; Clore, G. M.; DeLano, W. L.; Gros, P.; Grosse-Kunstleve, R. W.; Jiang, J. S.; 
Kuszewski, J.; Nilges, M.; Pannu, N. S.; Read, R. J.; Rice, L. M.; Simonson, T.; Warren, G. L. 
Crystallography & NMR System: A New Software Suite for Macromolecular Structure Determination. 
Acta Crystallogr. D Biol. Crystallogr. 1998, 54 (5), 905–921. 
https://doi.org/10.1107/S0907444998003254. 

(36) DePristo, M. A.; De Bakker, P. I. W.; Blundell, T. L. Heterogeneity and Inaccuracy in Protein Structures 
Solved by X-Ray Crystallography. Structure 2004, 12 (5), 831–838. 
https://doi.org/10.1016/j.str.2004.02.031. 

(37) Blundell, T. L.; Jhoti, H.; Abell, C. High-Throughput Crystallography for Lead Discovery in Drug Design. 
Nat. Rev. Drug Discov. 2002, 1 (1), 45–54. https://doi.org/10.1038/nrd706. 

(38) Blundell, T. L.; Patel, S. High-Throughput X-Ray Crystallography for Drug Discovery. Curr. Opin. 
Pharmacol. 2004, 4 (5), 490–496. https://doi.org/10.1016/j.coph.2004.04.007. 

(39) Müller, I. Guidelines for the Successful Generation of Protein–Ligand Complex Crystals. Acta Crystallogr. 
Sect. Struct. Biol. 2017, 73 (2), 79–92. https://doi.org/10.1107/S2059798316020271. 

(40) Savage, H.; Wlodawer, A. Determination of Water Structure around Biomolecules Using X-Ray and 
Neutron Diffraction Methods. Methods Enzymol. 1986, 127, 162–183. https://doi.org/10.1016/0076-
6879(86)27014-7. 

(41) Carugo, O. Correlation between Occupancy and B Factor of Water Molecules in Protein Crystal 
Structures. Protein Eng. Des. Sel. 1999, 12 (12), 1021–1024. 
https://doi.org/10.1093/protein/12.12.1021. 

               hetenyi.csaba_83_23



38 
 

(42) Finney, J. L.; Eley, D. D.; Richards, R. E.; Franks, F. The Organization and Function of Water in Protein 
Crystals. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1997, 278 (959), 3–32. 
https://doi.org/10.1098/rstb.1977.0029. 

(43) Ladbury, J. E. Just Add Water! The Effect of Water on the Specificity of Protein-Ligand Binding Sites and 
Its Potential Application to Drug Design. Chem. Biol. 1996, 3 (12), 973–980. 
https://doi.org/10.1016/S1074-5521(96)90164-7. 

(44) Afonine, P. V.; Grosse-Kunstleve, R. W.; Adams, P. D. A Robust Bulk-Solvent Correction and Anisotropic 
Scaling Procedure. Acta Crystallogr. D Biol. Crystallogr. 2005, 61 (7), 850–855. 
https://doi.org/10.1107/S0907444905007894. 

(45) Weichenberger, C. X.; Afonine, P. V.; Kantardjieff, K.; Rupp, B. The Solvent Component of 
Macromolecular Crystals. Acta Crystallogr. D Biol. Crystallogr. 2015, 71 (5), 1023–1038. 
https://doi.org/10.1107/S1399004715006045. 

(46) Badger, J. [17] Modeling and Refinement of Water Molecules and Disordered Solvent. In Methods in 
Enzymology; Academic Press, 1997; Vol. 277, pp 344–352. https://doi.org/10.1016/S0076-
6879(97)77019-8. 

(47) Halle, B. Protein Hydration Dynamics in Solution: A Critical Survey. Philos. Trans. R. Soc. Lond. B. Biol. 
Sci. 2004, 359 (1448), 1207–1224. https://doi.org/10.1098/rstb.2004.1499. 

(48) Islam, S. A.; Weaver, D. L. Molecular Interactions in Protein Crystals: Solvent Accessible Surface and 
Stability. Proteins Struct. Funct. Bioinforma. 1990, 8 (1), 1–5. https://doi.org/10.1002/prot.340080103. 

(49) Kossiakoff, A. A.; Sintchak, M. D.; Shpungin, J.; Presta, L. G. Analysis of Solvent Structure in Proteins 
Using Neutron D2O-H2O Solvent Maps: Pattern of Primary and Secondary Hydration of Trypsin. 
Proteins Struct. Funct. Genet. 1992, 12 (3), 223–236. https://doi.org/10.1002/prot.340120303. 

(50) Chatake, T.; Fujiwara, S. A Technique for Determining the Deuterium/Hydrogen Contrast Map in 
Neutron Macromolecular Crystallography. Acta Crystallogr. Sect. Struct. Biol. 2016, 72 (1), 71–82. 
https://doi.org/10.1107/S2059798315021269. 

(51) Levitt, M.; Park, B. H. Water: Now You See It, Now You Don’t. Structure 1993, 1 (4), 223–226. 
https://doi.org/10.1016/0969-2126(93)90011-5. 

(52) Tanaka, I.; Chatake, T.; Fujiwara, S.; Hosoya, T.; Kusaka, K.; Niimura, N.; Yamada, T.; Yano, N. Current 
Status and near Future Plan of Neutron Protein Crystallography at J-PARC. In Methods in Enzymology; 
Elsevier, 2020; Vol. 634, pp 101–123. https://doi.org/10.1016/bs.mie.2020.01.002. 

(53) Kono, F.; Kurihara, K.; Tamada, T. Current Status of Neutron Crystallography in Structural Biology. 
Biophys. Physicobiology 2022, 19 (0), n/a. https://doi.org/10.2142/biophysico.bppb-v19.0009. 

(54) Wüthrich, K. The Way to NMR Structures of Proteins. Nat. Struct. Biol. 2001, 8 (11). 
(55) Wüthrich, K. Brownian Motion, Spin Diffusion and Protein Structure Determination in Solution. J. Magn. 

Reson. 2021, 331, 107031. https://doi.org/10.1016/j.jmr.2021.107031. 
(56) Otting, G. NMR Studies of Water Bound to Biological Molecules. Prog. Nucl. Magn. Reson. Spectrosc. 

1997, 31 (2–3), 259–285. https://doi.org/10.1016/S0079-6565(97)00012-5. 
(57) Armstrong, B. D.; Han, S. Overhauser Dynamic Nuclear Polarization To Study Local Water Dynamics. J. 

Am. Chem. Soc. 2009, 131 (13), 4641–4647. https://doi.org/10.1021/ja809259q. 
(58) Keserű György Miklós, Náray-Szabó Gábor. Molekulamechanika; A kémia újabb eredményei; Akadémiai 

Kiadó, Budapest, 1995. 
(59) Andrew R. Leach. Molecular Modeling, 2nd ed.; Pearson Education Ltd, 2001. 
(60) Poltev, V. Molecular Mechanics: Principles, History, and Current Status. In Handbook of Computational 

Chemistry; Leszczynski, J., Ed.; Springer Netherlands: Dordrecht, 2015; pp 1–48. 
https://doi.org/10.1007/978-94-007-6169-8_9-2. 

(61) Andrews, D. H. The Relation Between the Raman Spectra and the Structure of Organic Molecules. Phys. 
Rev. 1930, 36 (3), 544–554. https://doi.org/10.1103/PhysRev.36.544. 

(62) Allinger, N. L. Calculation of Molecular Structure and Energy by Force-Field Methods. In Advances in 
Physical Organic Chemistry; Gold, V., Bethell, D., Eds.; Academic Press, 1976; Vol. 13, pp 1–82. 
https://doi.org/10.1016/S0065-3160(08)60212-9. 

(63) Engler, E. M.; Andose, J. D.; Schleyer, P. V. R. Critical Evaluation of Molecular Mechanics. J. Am. Chem. 
Soc. 1973, 95 (24), 8005–8025. https://doi.org/10.1021/ja00805a012. 

(64) Hendrickson, J. B. Molecular Geometry. I. Machine Computation of the Common Rings. J. Am. Chem. 
Soc. 1961, 83 (22), 4537–4547. https://doi.org/10.1021/ja01483a011. 

(65) Wiberg, K. B. A Scheme for Strain Energy Minimization. Application to the Cycloalkanes. J. Am. Chem. 
Soc. 1965, 87 (5), 1070–1078. 

               hetenyi.csaba_83_23



39 
 

(66) Allinger, N. L. Molecular Mechanics. In Theoretical and Computational Models for Organic Chemistry; 
Formosinho, S. J., Csizmadia, I. G., Arnaut, L. G., Eds.; Springer Netherlands: Dordrecht, 1991; pp 125–
135. https://doi.org/10.1007/978-94-011-3584-9_8. 

(67) Karplus, M. Development of Multiscale Models for Complex Chemical Systems: From H+H 2 to 
Biomolecules (Nobel Lecture). Angew. Chem. Int. Ed. 2014, 53 (38), 9992–10005. 
https://doi.org/10.1002/anie.201403924. 

(68) Levitt, M. Birth and Future of Multiscale Modeling for Macromolecular Systems (Nobel Lecture). 
Angew. Chem. Int. Ed. 2014, 53 (38), 10006–10018. https://doi.org/10.1002/anie.201403691. 

(69) Warshel, A. Multiscale Modeling of Biological Functions: From Enzymes to Molecular Machines (Nobel 
Lecture). Angew. Chem. Int. Ed. 2014, 53 (38), 10020–10031. https://doi.org/10.1002/anie.201403689. 

(70) Van Der Spoel, D. Systematic Design of Biomolecular Force Fields. Curr. Opin. Struct. Biol. 2021, 67, 18–
24. https://doi.org/10.1016/j.sbi.2020.08.006. 

(71) Xu, P.; Guidez, E. B.; Bertoni, C.; Gordon, M. S. Perspective: Ab Initio Force Field Methods Derived from 
Quantum Mechanics. J. Chem. Phys. 2018, 148 (9), 090901. https://doi.org/10.1063/1.5009551. 

(72) Ponder, J. W.; Case, D. A. Force Fields for Protein Simulations. In Advances in Protein Chemistry; 
Elsevier, 2003; Vol. 66, pp 27–85. https://doi.org/10.1016/S0065-3233(03)66002-X. 

(73) Vanommeslaeghe, K.; Guvench, O.; Jr., D. M. A. Molecular Mechanics. Curr. Pharm. Des. 2014, 20 (20), 
3281–3292. https://doi.org/10.2174/13816128113199990600. 

(74) Kollman, P. A.; Weiner, P. K.; Dearing, A. Studies of Nucleotide Conformations and Interactions. The 
Relative Stabilities of Double-Helical B-DNA Sequence Isomers. Biopolymers 1981, 20 (12), 2583–2621. 
https://doi.org/10.1002/bip.1981.360201208. 

(75) Cornell, W. D.; Cieplak, P.; Bayly, C. I.; Gould, I. R.; Merz, K. M.; Ferguson, D. M.; Spellmeyer, D. C.; Fox, 
T.; Caldwell, J. W.; Kollman, P. A. A Second Generation Force Field for the Simulation of Proteins, 
Nucleic Acids, and Organic Molecules. J. Am. Chem. Soc. 1995, 117 (19), 5179–5197. 
https://doi.org/10.1021/ja00124a002. 

(76) Weiner, P. K.; Kollman, P. A. AMBER: Assisted Model Building with Energy Refinement. A General 
Program for Modeling Molecules and Their Interactions. J. Comput. Chem. 1981, 2 (3), 287–303. 
https://doi.org/10.1002/jcc.540020311. 

(77) Weiner, S. J.; Kollman, P. A.; Case, D. A.; Singh, U. C.; Ghio, C.; Alagona, G.; Profeta, S.; Weiner, P. A New 
Force Field for Molecular Mechanical Simulation of Nucleic Acids and Proteins. J. Am. Chem. Soc. 1984, 
106 (3), 765–784. https://doi.org/10.1021/ja00315a051. 

(78) Weiner, S. J.; Kollman, P. A.; Nguyen, D. T.; Case, D. A. An All Atom Force Field for Simulations of 
Proteins and Nucleic Acids: An All Atom Force Field. J. Comput. Chem. 1986, 7 (2), 230–252. 
https://doi.org/10.1002/jcc.540070216. 

(79) Maier, J. A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K. E.; Simmerling, C. ff14SB: Improving 
the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. J. Chem. Theory Comput. 
2015, 11 (8), 3696–3713. https://doi.org/10.1021/acs.jctc.5b00255. 

(80) Tian, C.; Kasavajhala, K.; Belfon, K. A. A.; Raguette, L.; Huang, H.; Migues, A. N.; Bickel, J.; Wang, Y.; 
Pincay, J.; Wu, Q.; Simmerling, C. ff19SB: Amino-Acid-Specific Protein Backbone Parameters Trained 
against Quantum Mechanics Energy Surfaces in Solution. J. Chem. Theory Comput. 2020, 16 (1), 528–
552. https://doi.org/10.1021/acs.jctc.9b00591. 

(81) Lindorff-Larsen, K.; Piana, S.; Palmo, K.; Maragakis, P.; Klepeis, J. L.; Dror, R. O.; Shaw, D. E. Improved 
Side-Chain Torsion Potentials for the Amber ff99SB Protein Force Field: Improved Protein Side-Chain 
Potentials. Proteins Struct. Funct. Bioinforma. 2010, 78 (8), 1950–1958. 
https://doi.org/10.1002/prot.22711. 

(82) Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A. Development and Testing of a General 
Amber Force Field. J. Comput. Chem. 2004, 25 (9), 1157–1174. https://doi.org/10.1002/jcc.20035. 

(83) Rappe, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard, W. A.; Skiff, W. M. UFF, a Full Periodic Table Force 
Field for Molecular Mechanics and Molecular Dynamics Simulations. J. Am. Chem. Soc. 1992, 114 (25), 
10024–10035. https://doi.org/10.1021/ja00051a040. 

(84) Brooks, B. R.; Bruccoleri, R. E.; Olafson, B. D.; States, D. J.; Swaminathan, S.; Karplus, M. CHARMM: A 
Program for Macromolecular Energy, Minimization, and Dynamics Calculations. J. Comput. Chem. 1983, 
4 (2), 187–217. https://doi.org/10.1002/jcc.540040211. 

(85) Nilsson, L.; Karplus, M. Empirical Energy Functions for Energy Minimization and Dynamics of Nucleic 
Acids. J. Comput. Chem. 1986, 7 (5), 591–616. https://doi.org/10.1002/jcc.540070502. 

(86) Jorgensen, W. L.; Swenson, C. J. Optimized Intermolecular Potential Functions for Amides and Peptides. 
Structure and Properties of Liquid Amides. J. Am. Chem. Soc. 1985, 107 (3), 569–578. 
https://doi.org/10.1021/ja00289a008. 

               hetenyi.csaba_83_23



40 
 

(87) Jorgensen, W. L.; Tirado-Rives, J. The OPLS [Optimized Potentials for Liquid Simulations] Potential 
Functions for Proteins, Energy Minimizations for Crystals of Cyclic Peptides and Crambin. J. Am. Chem. 
Soc. 1988, 110 (6), 1657–1666. https://doi.org/10.1021/ja00214a001. 

(88) Lii, J.-H.; Allinger, N. L. The MM3 Force Field for Amides, Polypeptides and Proteins. J. Comput. Chem. 
1991, 12 (2), 186–199. https://doi.org/10.1002/jcc.540120208. 

(89) Allinger, N. L.; Yuh, Y. H.; Lii, J. H. Molecular Mechanics. The MM3 Force Field for Hydrocarbons. 1. J. 
Am. Chem. Soc. 1989, 111 (23), 8551–8566. https://doi.org/10.1021/ja00205a001. 

(90) Lii, J. H.; Allinger, N. L. Molecular Mechanics. The MM3 Force Field for Hydrocarbons. 2. Vibrational 
Frequencies and Thermodynamics. J. Am. Chem. Soc. 1989, 111 (23), 8566–8575. 
https://doi.org/10.1021/ja00205a002. 

(91) Lii, J. H.; Allinger, N. L. Molecular Mechanics. The MM3 Force Field for Hydrocarbons. 3. The van Der 
Waals’ Potentials and Crystal Data for Aliphatic and Aromatic Hydrocarbons. J. Am. Chem. Soc. 1989, 
111 (23), 8576–8582. https://doi.org/10.1021/ja00205a003. 

(92) Allinger, N. L.; Chen, K.; Lii, J.-H. An Improved Force Field (MM4) for Saturated Hydrocarbons. J. 
Comput. Chem. 1996, 17 (5–6), 642–668. https://doi.org/10.1002/(SICI)1096-
987X(199604)17:5/6<642::AID-JCC6>3.0.CO;2-U. 

(93) Hwang, M. J.; Stockfisch, T. P.; Hagler, A. T. Derivation of Class II Force Fields. 2. Derivation and 
Characterization of a Class II Force Field, CFF93, for the Alkyl Functional Group and Alkane Molecules. J. 
Am. Chem. Soc. 1994, 116 (6), 2515–2525. https://doi.org/10.1021/ja00085a036. 

(94) Maple, J. R.; Hwang, M.-J.; Stockfisch, T. P.; Dinur, U.; Waldman, M.; Ewig, C. S.; Hagler, A. T. Derivation 
of Class II Force Fields. I. Methodology and Quantum Force Field for the Alkyl Functional Group and 
Alkane Molecules. J. Comput. Chem. 1994, 15 (2), 162–182. https://doi.org/10.1002/jcc.540150207. 

(95) Halgren, T. A. Merck Molecular Force Field. I. Basis, Form, Scope, Parameterization, and Performance of 
MMFF94. J. Comput. Chem. 1996, 17 (5–6), 490–519. https://doi.org/10.1002/(SICI)1096-
987X(199604)17:5/6<490::AID-JCC1>3.0.CO;2-P. 

(96) Warshel, A.; Kato, M.; Pisliakov, A. V. Polarizable Force Fields: History, Test Cases, and Prospects. J. 
Chem. Theory Comput. 2007, 3 (6), 2034–2045. https://doi.org/10.1021/ct700127w. 

(97) Halgren, T. A.; Damm, W. Polarizable Force Fields. Curr. Opin. Struct. Biol. 2001, 11 (2), 236–242. 
https://doi.org/10.1016/S0959-440X(00)00196-2. 

(98) Ren, P.; Ponder, J. W. Polarizable Atomic Multipole Water Model for Molecular Mechanics Simulation. J. 
Phys. Chem. B 2003, 107 (24), 5933–5947. https://doi.org/10.1021/jp027815+. 

(99) Shi, Y.; Xia, Z.; Zhang, J.; Best, R.; Wu, C.; Ponder, J. W.; Ren, P. Polarizable Atomic Multipole-Based 
AMOEBA Force Field for Proteins. J. Chem. Theory Comput. 2013, 9 (9), 4046–4063. 
https://doi.org/10.1021/ct4003702. 

(100) Schlick, T. Optimization Methods in Computational Chemistry. In Reviews in Computational Chemistry; 
Lipkowitz, K. B., Boyd, D. B., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007; pp 1–71. 
https://doi.org/10.1002/9780470125809.ch1. 

(101) CAUCHY, A. Methode Generale Pour La Resolution Des Systemes d’equations Simultanees. CR Acad Sci 
Paris 1847, 25, 536–538. 

(102) Lemaréchal, C. Cauchy and the Gradient Method. In Optimization Stories; Grötschel, M., Ed.; EMS Press, 
2012; pp 251–254. https://doi.org/10.4171/dms/6/27. 

(103) Hestenes, M. R.; Stiefel, E. Methods of Conjugate Gradients for Solving Linear Systems. J. Res. Natl. Bur. 
Stand. 1952, 49, 409–435. 

(104) Fletcher, R.; Reeves, C. M. Function Minimization by Conjugate Gradients. Comput. J. 1964, 7 (2), 149–
154. https://doi.org/10.1093/comjnl/7.2.149. 

(105) Polak, E.; Ribiere, G. Note sur la convergence de méthodes de directions conjuguées. Rev. Fr. Inform. 
Rech. Opérationnelle Sér. Rouge 1969, 3 (R1), 35–43. 

(106) Raphson, J. Analysis aequationum universalis seu ad aequationes algebraicas resolvendas methodus 
generalis, & expedita… , Editio secunda.; typis Tho. Braddyll, prostant venales apud Iohannem Taylor ...: 
Londini, 1697. https://doi.org/10.3931/e-rara-13516. 

(107) Liu, D. C.; Nocedal, J. On the Limited Memory BFGS Method for Large Scale Optimization. Math. 
Program. 1989, 45 (1), 503–528. https://doi.org/10.1007/BF01589116. 

(108) Deák István. Véletlenszám generátorok és alkalmazásuk; Az operációkutatás matematikai módszerei; 
Akadémiai Kiadó, 1986; Vol. 3. 

(109) Michael T. Heath. Scientific Computing, 2nd ed.; McGraw-Hill, 2002. 
(110) Holland, J. H. Outline for a Logical Theory of Adaptive Systems. J. ACM 1962, 9 (3), 297–314. 

https://doi.org/10.1145/321127.321128. 

               hetenyi.csaba_83_23



41 
 

(111) Goldberg, D. E.; Holland, J. H. Genetic Algorithms and Machine Learning. Mach. Learn. 1988, 3 (2), 95–
99. https://doi.org/10.1023/A:1022602019183. 

(112) Salmaso, V.; Moro, S. Bridging Molecular Docking to Molecular Dynamics in Exploring Ligand-Protein 
Recognition Process: An Overview. Front. Pharmacol. 2018, 9, 923. 
https://doi.org/10.3389/fphar.2018.00923. 

(113) Kitchen, D. B.; Decornez, H.; Furr, J. R.; Bajorath, J. Docking and Scoring in Virtual Screening for Drug 
Discovery: Methods and Applications. Nat. Rev. Drug Discov. 2004, 3 (11), 935–949. 
https://doi.org/10.1038/nrd1549. 

(114) Pinzi, L.; Rastelli, G. Molecular Docking: Shifting Paradigms in Drug Discovery. Int. J. Mol. Sci. 2019, 20 
(18), 4331. https://doi.org/10.3390/ijms20184331. 

(115) Brooijmans, N.; Kuntz, I. D. Molecular Recognition and Docking Algorithms. Annu. Rev. Biophys. Biomol. 
Struct. 2003, 32 (1), 335–373. https://doi.org/10.1146/annurev.biophys.32.110601.142532. 

(116) Rahman, A. Correlations in the Motion of Atoms in Liquid Argon. Phys. Rev. 1964, 136 (2A), A405–A411. 
https://doi.org/10.1103/PhysRev.136.A405. 

(117) McCammon, J. A.; Gelin, B. R.; Karplus, M. Dynamics of Folded Proteins. Nature 1977, 267 (5612), 585–
590. https://doi.org/10.1038/267585a0. 

(118) Levitt, M. Protein Folding by Restrained Energy Minimization and Molecular Dynamics. J. Mol. Biol. 
1983, 170 (3), 723–764. https://doi.org/10.1016/S0022-2836(83)80129-6. 

(119) Karplus, M.; Kuriyan, J. Molecular Dynamics and Protein Function. Proc. Natl. Acad. Sci. 2005, 102 (19), 
6679–6685. https://doi.org/10.1073/pnas.0408930102. 

(120) De Vivo, M.; Masetti, M.; Bottegoni, G.; Cavalli, A. Role of Molecular Dynamics and Related Methods in 
Drug Discovery. J. Med. Chem. 2016, 59 (9), 4035–4061. 
https://doi.org/10.1021/acs.jmedchem.5b01684. 

(121) Yang, Y. I.; Shao, Q.; Zhang, J.; Yang, L.; Gao, Y. Q. Enhanced Sampling in Molecular Dynamics. J. Chem. 
Phys. 2019, 151 (7), 070902. https://doi.org/10.1063/1.5109531. 

(122) Kirkpatrick, S.; Gelatt, C. D.; Vecchi, M. P. Optimization by Simulated Annealing. Science 1983, 220 
(4598), 671–680. https://doi.org/10.1126/science.220.4598.671. 

(123) Sugita, Y.; Okamoto, Y. Replica-Exchange Molecular Dynamics Method for Protein Folding. Chem. Phys. 
Lett. 1999, 314 (1–2), 141–151. https://doi.org/10.1016/S0009-2614(99)01123-9. 

(124) Monroe, J.; Barry, M.; DeStefano, A.; Aydogan Gokturk, P.; Jiao, S.; Robinson-Brown, D.; Webber, T.; 
Crumlin, E. J.; Han, S.; Shell, M. S. Water Structure and Properties at Hydrophilic and Hydrophobic 
Surfaces. Annu. Rev. Chem. Biomol. Eng. 2020, 11 (1), 523–557. https://doi.org/10.1146/annurev-
chembioeng-120919-114657. 

(125) Hingerty, B. E.; Ritchie, R. H.; Ferrell, T. L.; Turner, J. E. Dielectric Effects in Biopolymers: The Theory of 
Ionic Saturation Revisited. Biopolymers 1985, 24 (3), 427–439. https://doi.org/10.1002/bip.360240302. 

(126) Ramstein, J.; Lavery, R. Energetic Coupling between DNA Bending and Base Pair Opening. Proc. Natl. 
Acad. Sci. 1988, 85 (19), 7231–7235. https://doi.org/10.1073/pnas.85.19.7231. 

(127) Smith, P. E.; Pettitt, B. M. Modeling Solvent in Biomolecular Systems. J. Phys. Chem. 1994, 98 (39), 
9700–9711. https://doi.org/10.1021/j100090a002. 

(128) Mehler, E. L.; Solmajer, T. Electrostatic Effects in Proteins: Comparison of Dielectric and Charge Models. 
Protein Eng. Des. Sel. 1991, 4 (8), 903–910. https://doi.org/10.1093/protein/4.8.903. 

(129) Conway, B. E.; Bockris, J. O.; Ammar, I. A. The Dielectric Constant of the Solution in the Diffuse and 
Helmholtz Double Layers at a Charged Interface in Aqueous Solution. Trans. Faraday Soc. 1951, 47, 756. 
https://doi.org/10.1039/tf9514700756. 

(130) Tucker, S. C.; Truhlar, D. G. Generalized Born Fragment Charge Model for Solvation Effects as a Function 
of Reaction Coordinate. Chem. Phys. Lett. 1989, 157 (1–2), 164–170. https://doi.org/10.1016/0009-
2614(89)87227-6. 

(131) Still, W. C.; Tempczyk, A.; Hawley, R. C.; Hendrickson, T. Semianalytical Treatment of Solvation for 
Molecular Mechanics and Dynamics. J. Am. Chem. Soc. 1990, 112 (16), 6127–6129. 
https://doi.org/10.1021/ja00172a038. 

(132) Qiu, D.; Shenkin, P. S.; Hollinger, F. P.; Still, W. C. The GB/SA Continuum Model for Solvation. A Fast 
Analytical Method for the Calculation of Approximate Born Radii. J. Phys. Chem. A 1997, 101 (16), 3005–
3014. https://doi.org/10.1021/jp961992r. 

(133) Born, M. Volumen Und Hydratationswärme Der Ionen. Z. Für Phys. 1920, 1 (1), 45–48. 
https://doi.org/10.1007/BF01881023. 

(134) Feig, M.; Onufriev, A.; Lee, M. S.; Im, W.; Case, D. A.; Brooks, C. L. Performance Comparison of 
Generalized Born and Poisson Methods in the Calculation of Electrostatic Solvation Energies for Protein 
Structures. J. Comput. Chem. 2004, 25 (2), 265–284. https://doi.org/10.1002/jcc.10378. 

               hetenyi.csaba_83_23



42 
 

(135) Fogolari, F.; Brigo, A.; Molinari, H. The Poisson–Boltzmann Equation for Biomolecular Electrostatics: A 
Tool for Structural Biology. J. Mol. Recognit. 2002, 15 (6), 377–392. https://doi.org/10.1002/jmr.577. 

(136) Lamm, G. The Poisson–Boltzmann Equation. In Reviews in Computational Chemistry; Lipkowitz, K. B., 
Larter, R., Cundari, T. R., Eds.; Wiley, 2003; Vol. 19, pp 147–365. 
https://doi.org/10.1002/0471466638.ch4. 

(137) Roux, B.; Simonson, T. Implicit Solvent Models. Biophys. Chem. 1999, 78 (1), 1–20. 
https://doi.org/10.1016/S0301-4622(98)00226-9. 

(138) Onufriev, A. V.; Izadi, S. Water Models for Biomolecular Simulations. WIREs Comput. Mol. Sci. 2018, 8 
(2), e1347. https://doi.org/10.1002/wcms.1347. 

(139) Levy, Y.; Onuchic, J. N. Water mediation in protein folding and molecular recognition. Annu. Rev. 
Biophys. Biomol. Struct. 2006, 35 (1), 389–415. 
https://doi.org/10.1146/annurev.biophys.35.040405.102134. 

(140) Chandler, D. Interfaces and the Driving Force of Hydrophobic Assembly. Nature 2005, 437 (7059), 640–
647. https://doi.org/10.1038/nature04162. 

(141) Southall, N. T.; Dill, K. A.; Haymet, A. D. J. A View of the Hydrophobic Effect. J. Phys. Chem. B 2002, 106 
(3), 521–533. https://doi.org/10.1021/jp015514e. 

(142) Schmid, R. Recent Advances in the Description of the Structure of Water, the Hydrophobic Effect, and 

the Like-Dissolves-Like Rule. Monatsh. Chemie 2001, 132, 1295–1326. 
https://doi.org/10.1007/s007060170019 

(143) Dill, K. A.; Truskett, T. M.; Vlachy, V.; Hribar-Lee, B. Modeling water, the hydrophobic effect, and ion 
solvation. Annu Rev Biophys Biomol Struct 2005, 34, 173-99. 
https://doi.org/10.1146/annurev.biophys.34.040204.144517. 

(144) Cheng, Y.-K.; Rossky, P. J. Surface Topography Dependence of Biomolecular Hydrophobic Hydration. 
Nature 1998, 392 (6677), 696–699. https://doi.org/10.1038/33653. 

(145) Bernal, J. D.; Fowler, R. H. A Theory of Water and Ionic Solution, with Particular Reference to Hydrogen 
and Hydroxyl Ions. J. Chem. Phys. 1933, 1 (8), 515–548. https://doi.org/10.1063/1.1749327. 

(146) Jorgensen, W. L. Quantum and Statistical Mechanical Studies of Liquids. 10. Transferable Intermolecular 
Potential Functions for Water, Alcohols, and Ethers. Application to Liquid Water. J. Am. Chem. Soc. 
1981, 103 (2), 335–340. https://doi.org/10.1021/ja00392a016. 

(147) Berendsen, H. J. C.; Grigera, J. R.; Straatsma, T. P. The Missing Term in Effective Pair Potentials. J. Phys. 
Chem. 1987, 91 (24), 6269–6271. https://doi.org/10.1021/j100308a038. 

(148) van der Spoel, D.; van Maaren, P. J.; Berendsen, H. J. C. A Systematic Study of Water Models for 
Molecular Simulation: Derivation of Water Models Optimized for Use with a Reaction Field. J. Chem. 
Phys. 1998, 108 (24), 10220–10230. https://doi.org/10.1063/1.476482. 

(149) Kiss, P. T.; Baranyai, A. Sources of the Deficiencies in the Popular SPC/E and TIP3P Models of Water. J. 
Chem. Phys. 2011, 134 (5), 054106. https://doi.org/10.1063/1.3548869. 

(150) Hetényi, C.; Van Der Spoel, D. Efficient Docking of Peptides to Proteins without Prior Knowledge of the 
Binding Site. Protein Sci. 2002, 11 (7), 1729–1737. https://doi.org/10.1110/ps.0202302. 

(151) Campbell, S. J.; Gold, N. D.; Jackson, R. M.; Westhead, D. R. Ligand Binding: Functional Site Location, 
Similarity and Docking. Curr. Opin. Struct. Biol. 2003, 13 (3), 389–395. https://doi.org/10.1016/S0959-
440X(03)00075-7. 

(152) Laurie ATR; Jackson RM. Methods for the Prediction of Protein-Ligand Binding Sites for Structure-Based 
Drug Design and Virtual Ligand Screening. Curr. Protein Pept. Sci. 2006, 7 (5), 395–406. 
https://doi.org/10.2174/138920306778559386. 

(153) Hetényi, C.; Körtvélyesi, T.; Penke, B. Mapping of Possible Binding Sequences of Two Beta-Sheet 
Breaker Peptides on Beta Amyloid Peptide of Alzheimer’s Disease. Bioorg. Med. Chem. 2002, 10 (5), 
1587–1593. https://doi.org/10.1016/S0968-0896(01)00424-2. 

(154) Hetényi, C.; Szabó, Z.; Klement, É.; Datki, Z.; Körtvélyesi, T.; Zarándi, M.; Penke, B. Pentapeptide Amides 
Interfere with the Aggregation of β-Amyloid Peptide of Alzheimer’s Disease. Biochem. Biophys. Res. 
Commun. 2002, 292 (4), 931–936. https://doi.org/10.1006/bbrc.2002.6745. 

(155) Söderhjelm, P.; Tribello, G. A.; Parrinello, M. Locating Binding Poses in Protein-Ligand Systems Using 
Reconnaissance Metadynamics. Proc. Natl. Acad. Sci. 2012, 109 (14), 5170–5175. 
https://doi.org/10.1073/pnas.1201940109. 

(156) Ghersi, D.; Sanchez, R. Improving Accuracy and Efficiency of Blind Protein‐ligand Docking by Focusing on 
Predicted Binding Sites. Proteins Struct. Funct. Bioinforma. 2009, 74 (2), 417–424. 
https://doi.org/10.1002/prot.22154. 

               hetenyi.csaba_83_23



43 
 

(157) Hassan, N. M.; Alhossary, A. A.; Mu, Y.; Kwoh, C.-K. Protein-Ligand Blind Docking Using QuickVina-W 
With Inter-Process Spatio-Temporal Integration. Sci. Rep. 2017, 7 (1), 15451. 
https://doi.org/10.1038/s41598-017-15571-7. 

(158) Jofily, P.; Pascutti, P. G.; Torres, P. H. M. Improving Blind Docking in DOCK6 through an Automated 
Preliminary Fragment Probing Strategy. Molecules 2021, 26 (5), 1224. 
https://doi.org/10.3390/molecules26051224. 

(159) Morris, G. M.; Huey, R.; Olson, A. J. Using AutoDock for Ligand‐Receptor Docking. Curr. Protoc. 
Bioinforma. 2008, 24 (1). https://doi.org/10.1002/0471250953.bi0814s24. 

(160) Scodeller, P.; Asciutto, E. K. Targeting Tumors Using Peptides. Molecules 2020, 25 (4), 808. 
https://doi.org/10.3390/molecules25040808. 

(161) Morris, G. M.; Goodsell, D. S.; Halliday, R. S.; Huey, R.; Hart, W. E.; Belew, R. K.; Olson, A. J. Automated 
Docking Using a Lamarckian Genetic Algorithm and an Empirical Binding Free Energy Function. J. 
Comput. Chem. 1998, 19 (14), 1639–1662. https://doi.org/10.1002/(SICI)1096-
987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B. 

(162) Egyed, A.; Kiss, D. J.; Keserű, G. M. The Impact of the Secondary Binding Pocket on the Pharmacology of 
Class A GPCRs. Front. Pharmacol. 2022, 13, 847788. https://doi.org/10.3389/fphar.2022.847788. 

(163) Morris, G. M.; Huey, R.; Lindstrom, W.; Sanner, M. F.; Belew, R. K.; Goodsell, D. S.; Olson, A. J. 
AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. J. Comput. 
Chem. 2009, 30 (16), 2785–2791. https://doi.org/10.1002/jcc.21256. 

(164) Huey, R.; Morris, G. M.; Olson, A. J.; Goodsell, D. S. A Semiempirical Free Energy Force Field with 
Charge-Based Desolvation. J. Comput. Chem. 2007, 28 (6), 1145–1152. 
https://doi.org/10.1002/jcc.20634. 

(165) Grosdidier, A.; Zoete, V.; Michielin, O. EADock: Docking of Small Molecules into Protein Active Sites with 
a Multiobjective Evolutionary Optimization. Proteins Struct. Funct. Bioinforma. 2007, 67 (4), 1010–1025. 
https://doi.org/10.1002/prot.21367. 

(166) Grosdidier, A.; Zoete, V.; Michielin, O. Blind Docking of 260 Protein–Ligand Complexes with EADock 2.0. 
J. Comput. Chem. 2009, 30 (13), 2021–2030. https://doi.org/10.1002/jcc.21202. 

(167) Hernandez, M.; Ghersi, D.; Sanchez, R. SITEHOUND-Web: A Server for Ligand Binding Site Identification 
in Protein Structures. Nucleic Acids Res. 2009, 37 (Web Server), W413–W416. 
https://doi.org/10.1093/nar/gkp281. 

(168) Laurie, A. T. R.; Jackson, R. M. Q-SiteFinder: An Energy-Based Method for the Prediction of Protein-
Ligand Binding Sites. Bioinformatics 2005, 21 (9), 1908–1916. 
https://doi.org/10.1093/bioinformatics/bti315. 

(169) Jackson, R. M. Q-FIt: A Probabilistic Method for Docking Molecular Fragments by Sampling Low Energy 
Conformational Space. J Comput Aided Mol Des 2002, 16(1), 43-57. 
https://doi.org/10.1023/a:1016307520660 

(170) Jr, G. P. B.; Stouten, P. F. W. Fast Prediction and Visualization of Protein Binding Pockets with PASS. J 
Comput Aided Mol Des 2000, 14(4), 383-401. https://doi.org/10.1023/a:1008124202956 

(171) Hendlich, M.; Rippmann, F.; Barnickel, G. LIGSITE: Automatic and Efficient Detection of Potential Small 
Molecule-Binding Sites in Proteins. J. Mol. Graph. Model. 1997, 15 (6), 359–363. 
https://doi.org/10.1016/S1093-3263(98)00002-3. 

(172) Norman, A. W.; Mizwicki, M. T.; Norman, D. P. G. Steroid-Hormone Rapid Actions, Membrane Receptors 
and a Conformational Ensemble Model. Nat. Rev. Drug Discov. 2004, 3 (1), 27–41. 
https://doi.org/10.1038/nrd1283. 

(173) Van Hoorn, W. P. Identification of a Second Binding Site in the Estrogen Receptor. J. Med. Chem. 2002, 
45 (3), 584–589. https://doi.org/10.1021/jm0109661. 

(174) Mizwicki, M. T.; Keidel, D.; Bula, C. M.; Bishop, J. E.; Zanello, L. P.; Wurtz, J.-M.; Moras, D.; Norman, A. 
W. Identification of an Alternative Ligand-Binding Pocket in the Nuclear Vitamin D Receptor and Its 
Functional Importance in 1α,25(OH) 2 -Vitamin D 3 Signaling. Proc. Natl. Acad. Sci. 2004, 101 (35), 
12876–12881. https://doi.org/10.1073/pnas.0403606101. 

(175) Alonso, H.; Gillies, M. B.; Cummins, P. L.; Bliznyuk, A. A.; Gready, J. E. Multiple Ligand-Binding Modes in 
Bacterial R67 Dihydrofolate Reductase. J. Comput. Aided Mol. Des. 2005, 19 (3), 165–187. 
https://doi.org/10.1007/s10822-005-3693-6. 

(176) Barrera Guisasola, E. E.; Andujar, S. A.; Hubin, E.; Broersen, K.; Kraan, I. M.; Méndez, L.; Delpiccolo, C. 
M. L.; Masman, M. F.; Rodríguez, A. M.; Enriz, R. D. New Mimetic Peptides Inhibitors of Αβ Aggregation. 
Molecular Guidance for Rational Drug Design. Eur. J. Med. Chem. 2015, 95, 136–152. 
https://doi.org/10.1016/j.ejmech.2015.03.042. 

               hetenyi.csaba_83_23



44 
 

(177) Brown, W. M.; Vander Jagt, D. L. Creating Artificial Binding Pocket Boundaries To Improve the Efficiency 
of Flexible Ligand Docking. J. Chem. Inf. Comput. Sci. 2004, 44 (4), 1412–1422. 
https://doi.org/10.1021/ci049853r. 

(178) Bultum, L. E.; Tolossa, G. B.; Kim, G.; Kwon, O.; Lee, D. In Silico Activity and ADMET Profiling of 
Phytochemicals from Ethiopian Indigenous Aloes Using Pharmacophore Models. Sci. Rep. 2022, 12 (1), 
22221. https://doi.org/10.1038/s41598-022-26446-x. 

(179) Campbell, S. J.; Gold, N. D.; Jackson, R. M.; Westhead, D. R. Ligand Binding: Functional Site Location, 
Similarity and Docking. Curr. Opin. Struct. Biol. 2003, 13 (3), 389–395. https://doi.org/10.1016/S0959-
440X(03)00075-7. 

(180) Chee Wezen, X.; Chandran, A.; Eapen, R. S.; Waters, E.; Bricio-Moreno, L.; Tosi, T.; Dolan, S.; Millership, 
C.; Kadioglu, A.; Gründling, A.; Itzhaki, L. S.; Welch, M.; Rahman, T. Structure-Based Discovery of 
Lipoteichoic Acid Synthase Inhibitors. J. Chem. Inf. Model. 2022, 62 (10), 2586–2599. 
https://doi.org/10.1021/acs.jcim.2c00300. 

(181) Collins, T.; Young, G. T.; Millar, N. S. Competitive Binding at a Nicotinic Receptor Transmembrane Site of 
Two Α7-Selective Positive Allosteric Modulators with Differing Effects on Agonist-Evoked 
Desensitization. Neuropharmacology 2011, 61 (8), 1306–1313. 
https://doi.org/10.1016/j.neuropharm.2011.07.035. 

(182) Daryanavard, M.; Jannesari, Z.; Javeri, M.; Abyar, F. A New Mononuclear Zinc(II) Complex: Crystal 
Structure, DNA- and BSA-Binding, and Molecular Modeling; in Vitro Cytotoxicity of the Zn(II) Complex 
and Its Nanocomplex. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2020, 233, 118175. 
https://doi.org/10.1016/j.saa.2020.118175. 

(183) El-Wakil, M. H.; Meheissen, M. A.; Abu-Serie, M. M. Nitrofurazone Repurposing towards Design and 
Synthesis of Novel Apoptotic-Dependent Anticancer and Antimicrobial Agents: Biological Evaluation, 
Kinetic Studies and Molecular Modeling. Bioorganic Chem. 2021, 113, 104971. 
https://doi.org/10.1016/j.bioorg.2021.104971. 

(184) Forrestall, K.; Pringle, E. S.; Sands, D.; Duguay, B. A.; Farewell, B.; Woldemariam, T.; Falzarano, D.; 
Pottie, I.; McCormick, C.; Darvesh, S. A Phenothiazine Urea Derivative Broadly Inhibits Coronavirus 
Replication via Viral Protease Inhibition. Antiviral Res. 2023, 220, 105758. 
https://doi.org/10.1016/j.antiviral.2023.105758. 

(185) Ghersi, D.; Sanchez, R. Improving Accuracy and Efficiency of Blind Protein‐ligand Docking by Focusing on 
Predicted Binding Sites. Proteins Struct. Funct. Bioinforma. 2009, 74 (2), 417–424. 
https://doi.org/10.1002/prot.22154. 

(186) Karami, K.; Jamshidian, N.; Zakariazadeh, M.; Momtazi-Borojeni, A. A.; Abdollahi, E.; Amirghofran, Z.; 
Shahpiri, A.; Nasab, A. K. Experimental and Theoretical Studies of Palladium-Hydrazide Complexes’ 
Interaction with DNA and BSA, in Vitro Cytotoxicity Activity and Plasmid Cleavage Ability. Comput. Biol. 
Chem. 2021, 91, 107435. https://doi.org/10.1016/j.compbiolchem.2021.107435. 

(187) Lighvan, Z. M.; Khonakdar, H. A.; Heydari, A.; Rafiee, M.; Jahromi, M. D.; Derakhshani, A.; Momtazi‐
Borojeni, A. A. Spectral and Molecular Docking Studies of Nucleic Acids/Protein Binding Interactions of a 
Novel Organometallic Palladium (II) Complex Containing Bioactive PTA Ligands: Its Synthesis, Anticancer 
Effects and Encapsulation in Albumin Nanoparticles. Appl. Organomet. Chem. 2020, 34 (10), e5839. 
https://doi.org/10.1002/aoc.5839. 

(188) Lopata; Jójárt; Surányi; Takács; Bezúr; Leveles; Bendes; Viskolcz; Vértessy; Tóth. Beyond Chelation: 
EDTA Tightly Binds Taq DNA Polymerase, MutT and dUTPase and Directly Inhibits dNTPase Activity. 
Biomolecules 2019, 9 (10), 621. https://doi.org/10.3390/biom9100621. 

(189) Meli, M.; Colombo, G. Molecular Simulations of Peptides: A Useful Tool for the Development of New 
Drugs and for the Study of Molecular Recognition. In Peptide Microarrays; Cretich, M., Chiari, M., Eds.; 
Methods in Molecular BiologyTM; Humana Press: Totowa, NJ, 2009; Vol. 570, pp 77–153. 
https://doi.org/10.1007/978-1-60327-394-7_4. 

(190) Melse, O.; Hecht, S.; Antes, I. DYNABIS : A Hierarchical Sampling Algorithm to Identify Flexible Binding 
Sites for Large Ligands and Peptides. Proteins Struct. Funct. Bioinforma. 2022, 90 (1), 18–32. 
https://doi.org/10.1002/prot.26182. 

(191) Morris, G. M.; Huey, R.; Olson, A. J. Using AutoDock for Ligand‐Receptor Docking. Curr. Protoc. 
Bioinforma. 2008, 24 (1). https://doi.org/10.1002/0471250953.bi0814s24. 

(192) Pacholczyk, M.; Kimmel, M. Exploring the Landscape of Protein-Ligand Interaction Energy Using 
Probabilistic Approach. J. Comput. Biol. 2011, 18 (6), 843–850. https://doi.org/10.1089/cmb.2010.0017. 

(193) Pashameah, R. A.; Soltane, R.; Sayed, A. M. A Novel Inhibitor of SARS-CoV Infection: Lactulose 
Octasulfate Interferes with ACE2-Spike Protein Binding. Heliyon 2024, 10 (1), e23222. 
https://doi.org/10.1016/j.heliyon.2023.e23222. 

               hetenyi.csaba_83_23



45 
 

(194) Paskaleva, E. E.; Xue, J.; Lee, D. Y.-W.; Shekhtman, A.; Canki, M. Palmitic Acid Analogs Exhibit 
Nanomolar Binding Affinity for the HIV-1 CD4 Receptor and Nanomolar Inhibition of Gp120-to-CD4 
Fusion. PLoS ONE 2010, 5 (8), e12168. https://doi.org/10.1371/journal.pone.0012168. 

(195) Paul, B. K.; Guchhait, N. Modulation of Prototropic Activity and Rotational Relaxation Dynamics of a 
Cationic Biological Photosensitizer within the Motionally Constrained Bio-Environment of a Protein. J. 
Phys. Chem. B 2011, 115 (34), 10322–10334. https://doi.org/10.1021/jp2015275. 

(196) Paul, B. K.; Ray, D.; Guchhait, N. Spectral Deciphering of the Interaction between an Intramolecular 
Hydrogen Bonded ESIPT Drug, 3,5-Dichlorosalicylic Acid, and a Model Transport Protein. Phys. Chem. 
Chem. Phys. 2012, 14 (25), 8892. https://doi.org/10.1039/c2cp23496c. 

(197) Raza, S.; Abbas, G.; Azam, S. S. Screening Pipeline for Flavivirus Based Inhibitors for Zika Virus NS1. 
IEEE/ACM Trans. Comput. Biol. Bioinform. 2020, 17 (5), 1751–1761. 
https://doi.org/10.1109/TCBB.2019.2911081. 

(198) Rentzsch, R.; Renard, B. Y. Docking Small Peptides Remains a Great Challenge: An Assessment Using 
AutoDock Vina. Brief. Bioinform. 2015, 16 (6), 1045–1056. https://doi.org/10.1093/bib/bbv008. 

(199) Rogaski, B.; Lim, J. B.; Klauda, J. B. Sterol Binding and Membrane Lipid Attachment to the Osh4 Protein 
of Yeast. J. Phys. Chem. B 2010, 114 (42), 13562–13573. https://doi.org/10.1021/jp106890e. 

(200) Santos, L. H. S.; Ferreira, R. S.; Caffarena, E. R. Integrating Molecular Docking and Molecular Dynamics 
Simulations. In Docking Screens for Drug Discovery; De Azevedo, W. F., Ed.; Methods in Molecular 
Biology; Springer New York: New York, NY, 2019; Vol. 2053, pp 13–34. https://doi.org/10.1007/978-1-
4939-9752-7_2. 

(201) Scodeller, P.; Asciutto, E. K. Targeting Tumors Using Peptides. Molecules 2020, 25 (4), 808. 
https://doi.org/10.3390/molecules25040808. 

(202) Segura-Cabrera, A.; Tripathi, R.; Zhang, X.; Gui, L.; Chou, T.-F.; Komurov, K. A Structure- and Chemical 
Genomics-Based Approach for Repositioning of Drugs against VCP/P97 ATPase. Sci. Rep. 2017, 7 (1), 
44912. https://doi.org/10.1038/srep44912. 

(203) Sharafdini, R.; Mosaddeghi, H. Inhibition of Insulin Amyloid Fibrillation by Salvianolic Acids and Calix[ n 
]Arenes: Molecular Docking Insight. J. Comput. Biophys. Chem. 2021, 20 (05), 539–555. 
https://doi.org/10.1142/S2737416521500332. 

(204) Sheik Amamuddy, O.; Veldman, W.; Manyumwa, C.; Khairallah, A.; Agajanian, S.; Oluyemi, O.; 
Verkhivker, G. M.; Tastan Bishop, Ö. Integrated Computational Approaches and Tools for Allosteric Drug 
Discovery. Int. J. Mol. Sci. 2020, 21 (3), 847. https://doi.org/10.3390/ijms21030847. 

(205) Skolnick, J.; Brylinski, M. FINDSITE: A Combined Evolution/Structure-Based Approach to Protein 
Function Prediction. Brief. Bioinform. 2009, 10 (4), 378–391. https://doi.org/10.1093/bib/bbp017. 

(206) Tasso, B.; Canu Boido, C.; Terranova, E.; Gotti, C.; Riganti, L.; Clementi, F.; Artali, R.; Bombieri, G.; 
Meneghetti, F.; Sparatore, F. Synthesis, Binding, and Modeling Studies of New Cytisine Derivatives, as 
Ligands for Neuronal Nicotinic Acetylcholine Receptor Subtypes. J. Med. Chem. 2009, 52 (14), 4345–
4357. https://doi.org/10.1021/jm900225j. 

(207) Ugurlu, S. Y.; McDonald, D.; Lei, H.; Jones, A. M.; Li, S.; Tong, H. Y.; Butler, M. S.; He, S. Cobdock: An 
Accurate and Practical Machine Learning-Based Consensus Blind Docking Method. J. Cheminformatics 
2024, 16 (1), 5. https://doi.org/10.1186/s13321-023-00793-x. 

(208) Xiang, Y.; Zhai, G.; Li, Y.; Wang, M.; Chen, X.; Wang, R.; Xie, H.; Zhang, W.; Ge, G.; Zhang, Q.; Xu, Y.; 
Caflisch, A.; Xu, J.; Chen, H.; Chen, L. Ginkgolic Acids Inhibit SARS-CoV-2 and Its Variants by Blocking the 
Spike Protein/ACE2 Interplay. Int. J. Biol. Macromol. 2023, 226, 780–792. 
https://doi.org/10.1016/j.ijbiomac.2022.12.057. 

(209) Żołek, T.; Dömötör, O.; Rezler, M.; Enyedy, É. A.; Maciejewska, D. Deposition of Pentamidine Analogues 
in the Human Body – Spectroscopic and Computational Approaches. Eur. J. Pharm. Sci. 2021, 161, 
105779. https://doi.org/10.1016/j.ejps.2021.105779. 

(210) Zubrzycki, I. Z.; Borcz, A.; Wiacek, M.; Hagner, W. The Studies on Substrate, Product and Inhibitor 
Binding to a Wild-Type and Neuronopathic Form of Human Acid-β-Glucosidase. J. Mol. Model. 2007, 13 
(11), 1133–1139. https://doi.org/10.1007/s00894-007-0232-5. 

(211) Hocker, H. J.; Rambahal, N.; Gorfe, A. A. LIBSA – A Method for the Determination of Ligand-Binding 
Preference to Allosteric Sites on Receptor Ensembles. J. Chem. Inf. Model. 2014, 54 (2), 530–538. 
https://doi.org/10.1021/ci400474u. 

(212) Whalen, K. L.; Tussey, K. B.; Blanke, S. R.; Spies, M. A. Nature of Allosteric Inhibition in Glutamate 
Racemase: Discovery and Characterization of a Cryptic Inhibitory Pocket Using Atomistic MD 
Simulations and p K a Calculations. J. Phys. Chem. B 2011, 115 (13), 3416–3424. 
https://doi.org/10.1021/jp201037t. 

               hetenyi.csaba_83_23



46 
 

(213) García-Sosa, A. T.; Sild, S.; Maran, U. Design of Multi-Binding-Site Inhibitors, Ligand Efficiency, and 
Consensus Screening of Avian Influenza H5N1 Wild-Type Neuraminidase and of the Oseltamivir-
Resistant H274Y Variant. J. Chem. Inf. Model. 2008, 48 (10), 2074–2080. 
https://doi.org/10.1021/ci800242z. 

(214) Bugatti, A.; Giagulli, C.; Urbinati, C.; Caccuri, F.; Chiodelli, P.; Oreste, P.; Fiorentini, S.; Orro, A.; Milanesi, 
L.; D’Ursi, P.; Caruso, A.; Rusnati, M. Molecular Interaction Studies of HIV-1 Matrix Protein P17 and 
Heparin. J. Biol. Chem. 2013, 288 (2), 1150–1161. https://doi.org/10.1074/jbc.M112.400077. 

(215) Roumenina, L.; Bureeva, S.; Kantardjiev, A.; Karlinsky, D.; Andia-Pravdivy, J. E.; Sim, R.; Kaplun, A.; 
Popov, M.; Kishore, U.; Atanasov, B. Complement C1q-Target Proteins Recognition Is Inhibited by 
Electric Moment Effectors. J. Mol. Recognit. 2007, 20 (5), 405–415. https://doi.org/10.1002/jmr.853. 

(216) Agarwal, T.; Annamalai, N.; Khursheed, A.; Maiti, T. K.; Arsad, H. B.; Siddiqui, M. H. Molecular Docking 
and Dynamic Simulation Evaluation of Rohinitib — Cantharidin Based Novel HSF1 Inhibitors for Cancer 
Therapy. J. Mol. Graph. Model. 2015, 61, 141–149. https://doi.org/10.1016/j.jmgm.2015.07.003. 

(217) Kovács, M.; Tóth, J.; Hetényi, C.; Málnási-Csizmadia, A.; Sellers, J. R. Mechanism of Blebbistatin 
Inhibition of Myosin II. J. Biol. Chem. 2004, 279 (34), 35557–35563. 
https://doi.org/10.1074/jbc.M405319200. 

(218) Aguayo-Ortiz, R.; Dominguez, L. Unveiling the Possible Oryzalin-Binding Site in the α-Tubulin of 
Toxoplasma Gondii. ACS Omega 2022, 7 (22), 18434–18442. 
https://doi.org/10.1021/acsomega.2c00729. 

(219) Aguayo-Ortiz, R.; Guzmán-Ocampo, D. C.; Dominguez, L. Insights into the Binding of Morin to Human 
γD-Crystallin. Biophys. Chem. 2022, 282, 106750. https://doi.org/10.1016/j.bpc.2021.106750. 

(220) Evans, D. J.; Yovanno, R. A.; Rahman, S.; Cao, D. W.; Beckett, M. Q.; Patel, M. H.; Bandak, A. F.; Lau, A. Y. 
Finding Druggable Sites in Proteins Using TACTICS. J. Chem. Inf. Model. 2021, 61 (6), 2897–2910. 
https://doi.org/10.1021/acs.jcim.1c00204. 

(221) Yepes-Molina, L.; Teruel, J. A.; Johanson, U.; Carvajal, M. Brassica Oleracea L. Var. Italica Aquaporin 
Reconstituted Proteoliposomes as Nanosystems for Resveratrol Encapsulation. Int. J. Mol. Sci. 2024, 25 
(4), 1987. https://doi.org/10.3390/ijms25041987. 

(222) Paulsen, C. E.; Armache, J.-P.; Gao, Y.; Cheng, Y.; Julius, D. Structure of the TRPA1 Ion Channel Suggests 
Regulatory Mechanisms. Nature 2015, 520 (7548), 511–517. https://doi.org/10.1038/nature14367. 

(223) Liu, C.; Reese, R.; Vu, S.; Rougé, L.; Shields, S. D.; Kakiuchi-Kiyota, S.; Chen, H.; Johnson, K.; Shi, Y. P.; 
Chernov-Rogan, T.; Greiner, D. M. Z.; Kohli, P. B.; Hackos, D.; Brillantes, B.; Tam, C.; Li, T.; Wang, J.; 
Safina, B.; Magnuson, S.; Volgraf, M.; Payandeh, J.; Zheng, J.; Rohou, A.; Chen, J. A Non-Covalent Ligand 
Reveals Biased Agonism of the TRPA1 Ion Channel. Neuron 2021, 109 (2), 273-284.e4. 
https://doi.org/10.1016/j.neuron.2020.10.014. 

(224) De Logu, F.; Nassini, R.; Materazzi, S.; Carvalho Gonçalves, M.; Nosi, D.; Rossi Degl’Innocenti, D.; 
Marone, I. M.; Ferreira, J.; Li Puma, S.; Benemei, S.; Trevisan, G.; Souza Monteiro De Araújo, D.; 
Patacchini, R.; Bunnett, N. W.; Geppetti, P. Schwann Cell TRPA1 Mediates Neuroinflammation That 
Sustains Macrophage-Dependent Neuropathic Pain in Mice. Nat. Commun. 2017, 8 (1), 1887. 
https://doi.org/10.1038/s41467-017-01739-2. 

(225) Takaya, J.; Mio, K.; Shiraishi, T.; Kurokawa, T.; Otsuka, S.; Mori, Y.; Uesugi, M. A Potent and Site-
Selective Agonist of TRPA1. J. Am. Chem. Soc. 2015, 137 (50), 15859–15864. 
https://doi.org/10.1021/jacs.5b10162. 

(226) Pozsgai, G.; Bátai, I. Z.; Pintér, E. Effects of Sulfide and Polysulfides Transmitted by Direct or Signal 
Transduction‐mediated Activation of TRPA1 Channels. Br. J. Pharmacol. 2019, 176 (4), 628–645. 
https://doi.org/10.1111/bph.14514. 

(227) Latorre, R.; Díaz-Franulic, I. Profile of David Julius and Ardem Patapoutian: 2021 Nobel Laureates in 
Physiology or Medicine. Proc. Natl. Acad. Sci. 2022, 119 (1), e2121015119. 
https://doi.org/10.1073/pnas.2121015119. 

(228) Allingham, J. S.; Smith, R.; Rayment, I. The Structural Basis of Blebbistatin Inhibition and Specificity for 
Myosin II. Nat. Struct. Mol. Biol. 2005, 12 (4), 378–379. https://doi.org/10.1038/nsmb908. 

(229) Ciemny, M.; Kurcinski, M.; Kamel, K.; Kolinski, A.; Alam, N.; Schueler-Furman, O.; Kmiecik, S. Protein–
Peptide Docking: Opportunities and Challenges. Drug Discov. Today 2018, 23 (8), 1530–1537. 
https://doi.org/10.1016/j.drudis.2018.05.006. 

(230) Rentzsch, R.; Renard, B. Y. Docking Small Peptides Remains a Great Challenge: An Assessment Using 
AutoDock Vina. Brief. Bioinform. 2015, 16 (6), 1045–1056. https://doi.org/10.1093/bib/bbv008. 

(231) Castro-Alvarez, A.; Costa, A.; Vilarrasa, J. The Performance of Several Docking Programs at Reproducing 
Protein–Macrolide-Like Crystal Structures. Molecules 2017, 22 (1), 136. 
https://doi.org/10.3390/molecules22010136. 

               hetenyi.csaba_83_23



47 
 

(232) Shvedunova, M.; Akhtar, A. Modulation of Cellular Processes by Histone and Non-Histone Protein 
Acetylation. Nat. Rev. Mol. Cell Biol. 2022, 23 (5), 329–349. https://doi.org/10.1038/s41580-021-00441-
y. 

(233) Strahl, B. D.; Allis, C. D. The Language of Covalent Histone Modifications. Nature 2000, 403 (6765), 41–
45. https://doi.org/10.1038/47412. 

(234) Shakespear, M. R.; Halili, M. A.; Irvine, K. M.; Fairlie, D. P.; Sweet, M. J. Histone Deacetylases as 
Regulators of Inflammation and Immunity. Trends Immunol. 2011, 32 (7), 335–343. 
https://doi.org/10.1016/j.it.2011.04.001. 

(235) Fraga, M. F.; Ballestar, E.; Villar-Garea, A.; Boix-Chornet, M.; Espada, J.; Schotta, G.; Bonaldi, T.; Haydon, 
C.; Ropero, S.; Petrie, K.; Iyer, N. G.; Pérez-Rosado, A.; Calvo, E.; Lopez, J. A.; Cano, A.; Calasanz, M. J.; 
Colomer, D.; Piris, M. Á.; Ahn, N.; Imhof, A.; Caldas, C.; Jenuwein, T.; Esteller, M. Loss of Acetylation at 
Lys16 and Trimethylation at Lys20 of Histone H4 Is a Common Hallmark of Human Cancer. Nat. Genet. 
2005, 37 (4), 391–400. https://doi.org/10.1038/ng1531. 

(236) Peng, Y.; Li, S.; Landsman, D.; Panchenko, A. R. Histone Tails as Signaling Antennas of Chromatin. Curr. 
Opin. Struct. Biol. 2021, 67, 153–160. https://doi.org/10.1016/j.sbi.2020.10.018. 

(237) Chignola, F.; Gaetani, M.; Rebane, A.; Org, T.; Mollica, L.; Zucchelli, C.; Spitaleri, A.; Mannella, V.; 
Peterson, P.; Musco, G. The Solution Structure of the First PHD Finger of Autoimmune Regulator in 
Complex with Non-Modified Histone H3 Tail Reveals the Antagonistic Role of H3R2 Methylation. Nucleic 
Acids Res. 2009, 37 (9), 2951–2961. https://doi.org/10.1093/nar/gkp166. 

(238) Robertson, M. J.; Meyerowitz, J. G.; Panova, O.; Borrelli, K.; Skiniotis, G. Plasticity in Ligand Recognition 
at Somatostatin Receptors. Nat. Struct. Mol. Biol. 2022, 29 (3), 210–217. 
https://doi.org/10.1038/s41594-022-00727-5. 

(239) Hess, B.; Kutzner, C.; Van Der Spoel, D.; Lindahl, E. GROMACS 4: Algorithms for Highly Efficient, Load-
Balanced, and Scalable Molecular Simulation. J. Chem. Theory Comput. 2008, 4 (3), 435–447. 
https://doi.org/10.1021/ct700301q. 

(240) Abdulkareem, S. M.; Housaindokht, M. R.; Bozorgmehr, M. R. The Effect of PC20:0 and Di-C7-PC 
Amphiphilic Surfactants on the Aggregation of Aβ1–40 and Aβ1–42 Using Molecular Dynamics 
Simulation. J. Iran. Chem. Soc. 2023, 20 (6), 1357–1370. https://doi.org/10.1007/s13738-023-02761-6. 

(241) Chen, W.; He, H.; Wang, J.; Wang, J.; Chang, C. A. Uncovering Water Effects in Protein–Ligand 
Recognition: Importance in the Second Hydration Shell and Binding Kinetics. Phys. Chem. Chem. Phys. 
2023, 25 (3), 2098–2109. https://doi.org/10.1039/D2CP04584B. 

(242) Fischer, N. M.; Polêto, M. D.; Steuer, J.; van der Spoel, D. Influence of Na+ and Mg2+ Ions on RNA 
Structures Studied with Molecular Dynamics Simulations. Nucleic Acids Res. 2018, 46 (10), 4872–4882. 
https://doi.org/10.1093/nar/gky221. 

(243) Kunstmann, S.; Engström, O.; Wehle, M.; Widmalm, G.; Santer, M.; Barbirz, S. Increasing the Affinity of 
an O‐Antigen Polysaccharide Binding Site in Shigella Flexneri Bacteriophage Sf6 Tailspike Protein. Chem. 
– Eur. J. 2020, 26 (32), 7263–7273. https://doi.org/10.1002/chem.202000495. 

(244) Kunstmann, S.; Gohlke, U.; Broeker, N. K.; Roske, Y.; Heinemann, U.; Santer, M.; Barbirz, S. Solvent 
Networks Tune Thermodynamics of Oligosaccharide Complex Formation in an Extended Protein Binding 
Site. J. Am. Chem. Soc. 2018, 140 (33), 10447–10455. https://doi.org/10.1021/jacs.8b03719. 

(245) Pradhan, M. R.; Nguyen, M. N.; Kannan, S.; Fox, S. J.; Kwoh, C. K.; Lane, D. P.; Verma, C. S. 
Characterization of Hydration Properties in Structural Ensembles of Biomolecules. J. Chem. Inf. Model. 
2019, 59 (7), 3316–3329. https://doi.org/10.1021/acs.jcim.8b00453. 

(246) Van Der Spoel, D.; Zhang, J.; Zhang, H. Quantitative Predictions from Molecular Simulations Using 
Explicit or Implicit Interactions. WIREs Comput. Mol. Sci. 2022, 12 (1), e1560. 
https://doi.org/10.1002/wcms.1560. 

(247) Yoon, H. R.; Park, G. J.; Balupuri, A.; Kang, N. S. TWN-FS Method: A Novel Fragment Screening Method 
for Drug Discovery. Comput. Struct. Biotechnol. J. 2023, 21, 4683–4696. 
https://doi.org/10.1016/j.csbj.2023.09.037. 

(248) Zhou, Y.; Chen, S.-J. Graph Deep Learning Locates Magnesium Ions in RNA. QRB Discov. 2022, 3, e20. 
https://doi.org/10.1017/qrd.2022.17. 

(249) Mandala, V. S.; McKay, M. J.; Shcherbakov, A. A.; Dregni, A. J.; Kolocouris, A.; Hong, M. Structure and 
Drug Binding of the SARS-CoV-2 Envelope Protein Transmembrane Domain in Lipid Bilayers. Nat. Struct. 
Mol. Biol. 2020, 27 (12), 1202–1208. https://doi.org/10.1038/s41594-020-00536-8. 

(250) Holger Gohlke. Protein-Ligand Interactions; Methods and Principles in Medicinal Chemistry; Wiley, 
2012; Vol. 53. 

(251) Christophe Chipot; Andrew Pohorille. Free Energy Calculations; Springer Series in Chemical Physics; 
Springer, 2007; Vol. 86. 

               hetenyi.csaba_83_23



48 
 

(252) Klebe, G. Applying Thermodynamic Profiling in Lead Finding and Optimization. Nat. Rev. Drug Discov. 
2015, 14 (2), 95–110. https://doi.org/10.1038/nrd4486. 

(253) Geschwindner, S.; Ulander, J.; Johansson, P. Ligand Binding Thermodynamics in Drug Discovery: Still a 
Hot Tip? J. Med. Chem. 2015, 58 (16), 6321–6335. https://doi.org/10.1021/jm501511f. 

(254) Ferenczy, G. G.; Keserű, G. M. Thermodynamics Guided Lead Discovery and Optimization. Drug Discov. 
Today 2010, 15 (21–22), 919–932. https://doi.org/10.1016/j.drudis.2010.08.013. 

(255) Freire, E. Do Enthalpy and Entropy Distinguish First in Class from Best in Class? Drug Discov. Today 
2008, 13 (19–20), 869–874. https://doi.org/10.1016/j.drudis.2008.07.005. 

(256) Ferenczy, G. G.; Keseru, G. M. Enthalpic Efficiency of Ligand Binding. J. Chem. Inf. Model. 2010, 50 (9), 
1536–1541. https://doi.org/10.1021/ci100125a. 

(257) Velazquez-Campoy, A.; Todd, M. J.; Freire, E. HIV-1 Protease Inhibitors: Enthalpic versus Entropic 
Optimization of the Binding Affinity. Biochemistry 2000, 39 (9), 2201–2207. 
https://doi.org/10.1021/bi992399d. 

(258) Muzammil, S.; Armstrong, A. A.; Kang, L. W.; Jakalian, A.; Bonneau, P. R.; Schmelmer, V.; Amzel, L. M.; 
Freire, E. Unique Thermodynamic Response of Tipranavir to Human Immunodeficiency Virus Type 1 
Protease Drug Resistance Mutations. J. Virol. 2007, 81 (10), 5144–5154. 
https://doi.org/10.1128/JVI.02706-06. 

(259) Ohtaka, H.; Freire, E. Adaptive Inhibitors of the HIV-1 Protease. Prog. Biophys. Mol. Biol. 2005, 88 (2), 
193–208. https://doi.org/10.1016/j.pbiomolbio.2004.07.005. 

(260) Zeilinger, M.; Pichler, F.; Nics, L.; Wadsak, W.; Spreitzer, H.; Hacker, M.; Mitterhauser, M. New 
Approaches for the Reliable in Vitro Assessment of Binding Affinity Based on High-Resolution Real-Time 
Data Acquisition of Radioligand-Receptor Binding Kinetics. EJNMMI Res. 2017, 7 (1), 22. 
https://doi.org/10.1186/s13550-016-0249-9. 

(261) Rinken, A.; Lavogina, D.; Kopanchuk, S. Assays with Detection of Fluorescence Anisotropy: Challenges 
and Possibilities for Characterizing Ligand Binding to GPCRs. Trends Pharmacol. Sci. 2018, 39 (2), 187–
199. https://doi.org/10.1016/j.tips.2017.10.004. 

(262) Pollard, T. D. A Guide to Simple and Informative Binding Assays. Mol. Biol. Cell 2010, 21 (23), 4061–
4067. https://doi.org/10.1091/mbc.e10-08-0683. 

(263) Tonge, P. J. Quantifying the Interactions between Biomolecules: Guidelines for Assay Design and Data 
Analysis. ACS Infect. Dis. 2019, 5 (6), 796–808. https://doi.org/10.1021/acsinfecdis.9b00012. 

(264) Cooper, M. A. Optical Biosensors in Drug Discovery. Nat. Rev. Drug Discov. 2002, 1 (7), 515–528. 
https://doi.org/10.1038/nrd838. 

(265) Bastos, M.; Abian, O.; Johnson, C. M.; Ferreira-da-Silva, F.; Vega, S.; Jimenez-Alesanco, A.; Ortega-
Alarcon, D.; Velazquez-Campoy, A. Isothermal Titration Calorimetry. Nat. Rev. Methods Primer 2023, 3 
(1), 17. https://doi.org/10.1038/s43586-023-00199-x. 

(266) Olsson, T. S. G.; Williams, M. A.; Pitt, W. R.; Ladbury, J. E. The Thermodynamics of Protein–Ligand 
Interaction and Solvation: Insights for Ligand Design. J. Mol. Biol. 2008, 384 (4), 1002–1017. 
https://doi.org/10.1016/j.jmb.2008.09.073. 

(267) Ladbury, J. E.; Klebe, G.; Freire, E. Adding Calorimetric Data to Decision Making in Lead Discovery: A Hot 
Tip. Nat. Rev. Drug Discov. 2010, 9 (1), 23–27. https://doi.org/10.1038/nrd3054. 

(268) Baranauskienė, L.; Petrikaitė, V.; Matulienė, J.; Matulis, D. Titration Calorimetry Standards and the 
Precision of Isothermal Titration Calorimetry Data. Int. J. Mol. Sci. 2009, 10 (6), 2752–2762. 
https://doi.org/10.3390/ijms10062752. 

(269) Tellinghuisen, J.; Chodera, J. D. Systematic Errors in Isothermal Titration Calorimetry: Concentrations 
and Baselines. Anal. Biochem. 2011, 414 (2), 297–299. https://doi.org/10.1016/j.ab.2011.03.024. 

(270) Jarmoskaite, I.; AlSadhan, I.; Vaidyanathan, P. P.; Herschlag, D. How to Measure and Evaluate Binding 
Affinities. eLife 2020, 9, e57264. https://doi.org/10.7554/eLife.57264. 

(271) Fountoulakis, M.; Lahm, H.-W. Hydrolysis and Amino Acid Composition Analysis of Proteins. J. 
Chromatogr. A 1998, 826 (2), 109–134. https://doi.org/10.1016/S0021-9673(98)00721-3. 

(272) Reinmuth-Selzle, K.; Tchipilov, T.; Backes, A. T.; Tscheuschner, G.; Tang, K.; Ziegler, K.; Lucas, K.; Pöschl, 
U.; Fröhlich-Nowoisky, J.; Weller, M. G. Determination of the Protein Content of Complex Samples by 
Aromatic Amino Acid Analysis, Liquid Chromatography-UV Absorbance, and Colorimetry. Anal. Bioanal. 
Chem. 2022, 414 (15), 4457–4470. https://doi.org/10.1007/s00216-022-03910-1. 

(273) King, E.; Aitchison, E.; Li, H.; Luo, R. Recent Developments in Free Energy Calculations for Drug 
Discovery. Front. Mol. Biosci. 2021, 8, 712085. https://doi.org/10.3389/fmolb.2021.712085. 

(274) Chipot, C. Frontiers in Free-Energy Calculations of Biological Systems. WIREs Comput. Mol. Sci. 2014, 4 
(1), 71–89. https://doi.org/10.1002/wcms.1157. 

               hetenyi.csaba_83_23



49 
 

(275) Decherchi, S.; Cavalli, A. Thermodynamics and Kinetics of Drug-Target Binding by Molecular Simulation. 
Chem. Rev. 2020, 120 (23), 12788–12833. https://doi.org/10.1021/acs.chemrev.0c00534. 

(276) Donald A. McQuarrie. Statistical Mechanics; University Science Books: California, 2000. 
(277) Zwanzig, R. W. High-Temperature Equation of State by a Perturbation Method. I. Nonpolar Gases. J. 

Chem. Phys. 1954, 22 (8), 1420–1426. https://doi.org/10.1063/1.1740409. 
(278) Kirkwood, J. G. Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 1935, 3 (5), 300–313. 

https://doi.org/10.1063/1.1749657. 
(279) Aqvist, J.; Marelius, J. The Linear Interaction Energy Method for Predicting Ligand Binding Free Energies. 

Comb. Chem. High Throughput Screen. 2001, 4 (8), 613–626. 
https://doi.org/10.2174/1386207013330661. 

(280) Roux, B. The Calculation of the Potential of Mean Force Using Computer Simulations. Comput. Phys. 
Commun. 1995, 91 (1–3), 275–282. https://doi.org/10.1016/0010-4655(95)00053-I. 

(281) Jarzynski, C. Nonequilibrium Equality for Free Energy Differences. Phys. Rev. Lett. 1997, 78 (14), 2690–
2693. https://doi.org/10.1103/PhysRevLett.78.2690. 

(282) Pohorille, A.; Jarzynski, C.; Chipot, C. Good Practices in Free-Energy Calculations. J. Phys. Chem. B 2010, 
114 (32), 10235–10253. https://doi.org/10.1021/jp102971x. 

(283) Procacci, P. Methodological Uncertainties in Drug-Receptor Binding Free Energy Predictions Based on 
Classical Molecular Dynamics. Curr. Opin. Struct. Biol. 2021, 67, 127–134. 
https://doi.org/10.1016/j.sbi.2020.08.001. 

(284) Feng, M.; Heinzelmann, G.; Gilson, M. K. Absolute Binding Free Energy Calculations Improve Enrichment 
of Actives in Virtual Compound Screening. Sci. Rep. 2022, 12 (1), 13640. 
https://doi.org/10.1038/s41598-022-17480-w. 

(285) Wahl, J.; Smieško, M. Assessing the Predictive Power of Relative Binding Free Energy Calculations for 
Test Cases Involving Displacement of Binding Site Water Molecules. J. Chem. Inf. Model. 2019, 59 (2), 
754–765. https://doi.org/10.1021/acs.jcim.8b00826. 

(286) Kim A. Sharp. Statistical Thermodynamics of Binding and Molecular Recognition Models. In Protein-
Ligand Interactions; Methods and Principles in Medicinal Chemistry; Wiley, 2012; Vol. 53, pp 3–22. 

(287) Gohlke, H.; Klebe, G. Approaches to the Description and Prediction of the Binding Affinity of Small-
Molecule Ligands to Macromolecular Receptors. Angew. Chem. Int. Ed. 2002, 41 (15), 2644–2676. 
https://doi.org/10.1002/1521-3773(20020802)41:15<2644::AID-ANIE2644>3.0.CO;2-O. 

(288) Rarey, M.; Kramer, B.; Lengauer, T.; Klebe, G. A Fast Flexible Docking Method Using an Incremental 
Construction Algorithm. J. Mol. Biol. 1996, 261 (3), 470–489. https://doi.org/10.1006/jmbi.1996.0477. 

(289) Bohm, H.-J. The Development of a Simple Empirical Scoring Function to Estimate the Binding Constant 
for a Protein-Ligand Complex of Known Three-Dimensional Structure. J. Comput. Aided Mol. Des. 1994, 
8 (3), 243–256. https://doi.org/10.1007/BF00126743. 

(290) Siebenmorgen, T.; Zacharias, M. Computational Prediction of Protein–Protein Binding Affinities. WIREs 
Comput. Mol. Sci. 2020, 10 (3), e1448. https://doi.org/10.1002/wcms.1448. 

(291) Wang, E.; Sun, H.; Wang, J.; Wang, Z.; Liu, H.; Zhang, J. Z. H.; Hou, T. End-Point Binding Free Energy 
Calculation with MM/PBSA and MM/GBSA: Strategies and Applications in Drug Design. Chem. Rev. 
2019, 119 (16), 9478–9508. https://doi.org/10.1021/acs.chemrev.9b00055. 

(292) Genheden, S.; Ryde, U. The MM/PBSA and MM/GBSA Methods to Estimate Ligand-Binding Affinities. 
Expert Opin. Drug Discov. 2015, 10 (5), 449–461. https://doi.org/10.1517/17460441.2015.1032936. 

(293) Childers, M. C.; Daggett, V. Validating Molecular Dynamics Simulations against Experimental 
Observables in Light of Underlying Conformational Ensembles. J. Phys. Chem. B 2018, 122 (26), 6673–
6689. https://doi.org/10.1021/acs.jpcb.8b02144. 

(294) Par Soderhjelm; Samuel Genheden; Ulf Ryde. Quantum Mechanics in Structure-Based Ligand Design. In 
Protein-ligand interactions; Methods and Principles in Medicinal Chemistry; Wiley, 2012; Vol. 53, pp 
121–143. 

(295) Maia, J. D. C.; Urquiza Carvalho, G. A.; Mangueira, C. P.; Santana, S. R.; Cabral, L. A. F.; Rocha, G. B. GPU 
Linear Algebra Libraries and GPGPU Programming for Accelerating MOPAC Semiempirical Quantum 
Chemistry Calculations. J. Chem. Theory Comput. 2012, 8 (9), 3072–3081. 
https://doi.org/10.1021/ct3004645. 

(296) Liu, J.; Wan, J.; Ren, Y.; Shao, X.; Xu, X.; Rao, L. DOX_BDW: Incorporating Solvation and Desolvation 
Effects of Cavity Water into Nonfitting Protein–Ligand Binding Affinity Prediction. J. Chem. Inf. Model. 
2023, 63 (15), 4850–4863. https://doi.org/10.1021/acs.jcim.3c00776. 

(297) Raha, K.; Peters, M. B.; Wang, B.; Yu, N.; Wollacott, A. M.; Westerhoff, L. M.; Merz, K. M. The Role of 
Quantum Mechanics in Structure-Based Drug Design. Drug Discov. Today 2007, 12 (17–18), 725–731. 
https://doi.org/10.1016/j.drudis.2007.07.006. 

               hetenyi.csaba_83_23



50 
 

(298) Cavalli, A.; Carloni, P.; Recanatini, M. Target-Related Applications of First Principles Quantum Chemical 
Methods in Drug Design. Chem. Rev. 2006, 106 (9), 3497–3519. https://doi.org/10.1021/cr050579p. 

(299) Ryde, U.; Söderhjelm, P. Ligand-Binding Affinity Estimates Supported by Quantum-Mechanical 
Methods. Chem. Rev. 2016, 116 (9), 5520–5566. https://doi.org/10.1021/acs.chemrev.5b00630. 

(300) Hu, L.; Söderhjelm, P.; Ryde, U. On the Convergence of QM/MM Energies. J. Chem. Theory Comput. 
2011, 7 (3), 761–777. https://doi.org/10.1021/ct100530r. 

(301) Siegbahn, P. E. M.; Borowski, T. Modeling Enzymatic Reactions Involving Transition Metals. Acc. Chem. 
Res. 2006, 39 (10), 729–738. https://doi.org/10.1021/ar050123u. 

(302) Himo, F. Quantum Chemical Modeling of Enzyme Active Sites and Reaction Mechanisms. Theor. Chem. 
Acc. 2006, 116 (1–3), 232–240. https://doi.org/10.1007/s00214-005-0012-1. 

(303) Friesner, R. A.; Guallar, V. Ab initio quantum chemical and mixed quantum mechanics/molecular 
mechanics (qm/mm) methods for studying enzymatic catalysis. Annu. Rev. Phys. Chem. 2005, 56 (1), 
389–427. https://doi.org/10.1146/annurev.physchem.55.091602.094410. 

(304) Senn, H. M.; Thiel, W. QM/MM Methods for Biomolecular Systems. Angew. Chem. Int. Ed. 2009, 48 (7), 
1198–1229. https://doi.org/10.1002/anie.200802019. 

(305) Lin, H.; Truhlar, D. G. QM/MM: What Have We Learned, Where Are We, and Where Do We Go from 
Here? Theor. Chem. Acc. 2007, 117 (2), 185. https://doi.org/10.1007/s00214-006-0143-z. 

(306) Söderhjelm, P.; Aquilante, F.; Ryde, U. Calculation of Protein−Ligand Interaction Energies by a 
Fragmentation Approach Combining High-Level Quantum Chemistry with Classical Many-Body Effects. J. 
Phys. Chem. B 2009, 113 (32), 11085–11094. https://doi.org/10.1021/jp810551h. 

(307) Klähn, M.; Braun-Sand, S.; Rosta, E.; Warshel, A. On Possible Pitfalls in Ab Initio QM/MM Minimization 
Approaches For Studies of Enzymatic Reactions. 2006. 

(308) Stouten, P. F. W.; Frömmel, C.; Nakamura, H.; Sander, C. An Effective Solvation Term Based on Atomic 
Occupancies for Use in Protein Simulations. Mol. Simul. 1993, 10 (2–6), 97–120. 
https://doi.org/10.1080/08927029308022161. 

(309) Morris, G. M.; Goodsell, D. S.; Huey, R.; Olson, A. J. Distributed Automated Docking of Flexible Ligands 
to Proteins: Parallel Applications of AutoDock 2.4. J. Comput. Aided Mol. Des. 1996, 10 (4), 293–304. 
https://doi.org/10.1007/BF00124499. 

(310) Laederach, A.; Reilly, P. J. Specific Empirical Free Energy Function for Automated Docking of 
Carbohydrates to Proteins. J. Comput. Chem. 2003, 24 (14), 1748–1757. 
https://doi.org/10.1002/jcc.10288. 

(311) Niño, H.; García-Pintos, I.; Rodríguez-Borges, J. E.; Escobar-Cubiella, M.; García-Mera, X.; Prado-Prado, 
F. Review of Synthesis, Biological Assay and QSAR Studies of  -Secretase Inhibitors. Curr. Comput. Aided 
Drug Des. 2011, 7, 263–275. 

(312) Niño, H.; Rodríguez-Borges, J. E.; García-Mera, X.; Prado-Prado, F. Review of Synthesis, Assay, and 
Prediction of   and  -Secretase Inhibitors. Curr. Top. Med. Chem. 2012, 12, 828–844. 

(313) Prado-Prado, F.; Garcia, I. Review of Theoretical Studies for Prediction of Neurodegenerative Inhibitors. 
Mini-Rev. Med. Chem. 2012, 12 (6), 452–466. https://doi.org/10.2174/138955712800493780. 

(314) Prado-Prado, F.; Escobar-Cubiella, M.; García-Mera, X. Review of Bioinformatics and QSAR Studies of  -
Secretase Inhibitors. Curr. Bioinforma. 2011, 6, 3–15. 

(315) Rajamani, R.; Good, A. C. Ranking Poses in Structure-Based Lead Discovery and Optimization: Current 
Trends in Scoring Function Development. Curr. Opin. Drug Discov. Devel. 2007, 10 (3), 308–315. 

(316) Seifert, M. H. J. Optimizing the Signal-to-Noise Ratio of Scoring Functions for Protein−Ligand Docking. J. 
Chem. Inf. Model. 2008, 48 (3), 602–612. https://doi.org/10.1021/ci700345n. 

(317) Seifert, M. H. J. Targeted Scoring Functions for Virtual Screening. Drug Discov. Today 2009, 14 (11–12), 
562–569. https://doi.org/10.1016/j.drudis.2009.03.013. 

(318) Macchiarulo, A.; Nobeli, I.; Thornton, J. M. Ligand Selectivity and Competition between Enzymes in 
Silico. Nat. Biotechnol. 2004, 22 (8), 1039–1045. https://doi.org/10.1038/nbt999. 

(319) Simon, Z.; Peragovics, A.; Vigh-Smeller, M.; Csukly, G.; Tombor, L.; Yang, Z.; Zahoranszky-Kohalmi, G.; 
Vegner, L.; Jelinek, B.; Hari, P.; Hetenyi, C.; Bitter, I.; Czobor, P.; Malnasi-Csizmadia, A. Drug Effect 
Prediction by Polypharmacology-Based Interaction Profiling. J. Chem. Inf. Model. 2012, 52 (1), 134–145. 
https://doi.org/10.1021/ci2002022. 

(320) Peragovics, A.; Simon, Z.; Brandhuber, I.; Jelinek, B.; Hari, P.; Hetenyi, C.; Czobor, P.; Malnasi-Csizmadia, 
A. Contribution of 2D and 3D Structural Features of Drug Molecules in the Prediction of Drug Profile 
Matching. J. Chem. Inf. Model. 2012, 52 (7), 1733–1744. https://doi.org/10.1021/ci3001056. 

(321) Kuntz, I. D.; Chen, K.; Sharp, K. A.; Kollman, P. A. The Maximal Affinity of Ligands. Proc. Natl. Acad. Sci. 
1999, 96 (18), 9997–10002. https://doi.org/10.1073/pnas.96.18.9997. 

               hetenyi.csaba_83_23



51 
 

(322) Gilson, M. K.; Given, J. A.; Bush, B. L.; McCammon, J. A. The Statistical-Thermodynamic Basis for 
Computation of Binding Affinities: A Critical Review. Biophys. J. 1997, 72 (3), 1047–1069. 
https://doi.org/10.1016/S0006-3495(97)78756-3. 

(323) Hopkins, A. L.; Groom, C. R.; Alex, A. Ligand Efficiency: A Useful Metric for Lead Selection. Drug Discov. 
Today 2004, 9 (10), 430–431. https://doi.org/10.1016/S1359-6446(04)03069-7. 

(324) Abad-Zapatero, C.; Metz, J. Ligand Efficiency Indices as Guideposts for Drug Discovery. Drug Discov. 
Today 2005, 10 (7), 464–469. https://doi.org/10.1016/S1359-6446(05)03386-6. 

(325) Abad-Zapatero, C. Ligand Efficiency Indices for Effective Drug Discovery. Expert Opin. Drug Discov. 2007, 
2 (4), 469–488. https://doi.org/10.1517/17460441.2.4.469. 

(326) Lipinski, C.; Hopkins, A. Navigating Chemical Space for Biology and Medicine. Nature 2004, 432 (7019), 
855–861. https://doi.org/10.1038/nature03193. 

(327) Bajorath, J.; Stenkamp, R.; Aruffo, A. Knowledge‐based Model Building of Proteins: Concepts and 
Examples. Protein Sci. 1993, 2 (11), 1798–1810. https://doi.org/10.1002/pro.5560021103. 

(328) Williams, P. A.; Cosme, J.; Vinković, D. M.; Ward, A.; Angove, H. C.; Day, P. J.; Vonrhein, C.; Tickle, I. J.; 
Jhoti, H. Crystal Structures of Human Cytochrome P450 3A4 Bound to Metyrapone and Progesterone. 
Science 2004, 305 (5684), 683–686. https://doi.org/10.1126/science.1099736. 

(329) Buttenschoen, M.; Morris, G. M.; Deane, C. M. PoseBusters: AI-Based Docking Methods Fail to Generate 
Physically Valid Poses or Generalise to Novel Sequences. Chem. Sci. 2024, 15 (9), 3130–3139. 
https://doi.org/10.1039/D3SC04185A. 

(330) Dahlström, K. M.; Salminen, T. A. Apprehensions and Emerging Solutions in ML-Based Protein Structure 
Prediction. Curr. Opin. Struct. Biol. 2024, 86, 102819. https://doi.org/10.1016/j.sbi.2024.102819. 

 

 

 

 

 

               hetenyi.csaba_83_23



   

MELLÉKLET0       

               hetenyi.csaba_83_23



   

       

               hetenyi.csaba_83_23



   

D10       

               hetenyi.csaba_83_23



   

       

               hetenyi.csaba_83_23



Blind docking of drug-sized compounds to proteins with up to a

thousand residues
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Abstract Blind docking was introduced for the detection of
possible binding sites and modes of peptide ligands by scanning
the entire surface of protein targets. In the present study, the
method is tested on a group of drug-sized compounds and pro-
teins with up to a thousand amino acid residues. Both proteins
from complex structures and ligand-free proteins were used as
targets. Robustness, limitations and future perspectives of the
method are discussed. It is concluded that blind docking can
be used for unbiased mapping of the binding patterns of drug
candidates.
Ó 2006 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

In silico molecular docking is one of the most powerful

techniques of structure-based drug design [1]. Most applica-

tions of docking tools focus on the (supposed) primary bind-

ing region. However, there are cases in which the information

on the binding region is missing. The AutoDock [2]-based

blind docking (BD) approach [3] was introduced previously

to search the entire surface of proteins for binding sites while

simultaneously optimizing the conformations of the peptides.

The results of BD were regarded as ‘‘very encouraging’’ in a

recent review [4]. BD [5–7] and the recommended search

parameters [8–12] have been used for solving various prob-

lems such as design of inhibitors [5], comparison of microtu-

bule-stabilizing agents [7] and exploring substrate binding

modes [8]. Because of the apparent success of the approach

[4–12], we decided to perform further systematic tests on a

set of 43 ligand–protein complexes which was previously used

in a comprehensive study on the selectivity of binding of aro-

matic compounds [13]. In the previous study [13] searching

was restricted to the surrounding of the primary binding site

(for a list of the complexes, refer to Supplementary material,

Table A), here we use BD on the entire protein surfaces. The

set contains drug-sized aromatic ligands with relatively few

free rotations. All of these have some (positive or negative)

biological effects and some (e.g., cancer drugs tamoxifen in

3ert and methotrexate in 4dfr) of them are actual medicines

(see Fig. 1).

2. Methods

In the present study, the original parameters [3] of BD (Supplemen-
tary material, Table C) were used in combination with an evaluation
scheme based on binding free energy (DG) and root mean square devi-
ation (RMSD) calculated between the crystallographic and the
docked ligand conformations (RMSD, Supplementary material,
Scheme A). By definition, the entire protein surfaces were subjected
to the BD search. For every 5th complexes of Table A (starting with
the 1st row) and for the system with the largest protein (1b70) coor-
dinates of the ligand-free proteins were obtained from the protein
databank (PDB). In two cases, where the unbound proteins were
not available (complexes 1a0q and 1gaf) the next systems (1a53 and
1guh, respectively) were involved in the study. The selected ten li-
gand-free proteins (Supplementary material, Table B) were superim-
posed on the corresponding protein–ligand complex structures and
used for BD as described previously.

3. Results and discussion

3.1. Test of BD search on large protein targets

The results of the BD calculations on the 43 proteins (li-

gand-bound conformations, marked with the corresponding

PDB codes, Table A) are summarized in Table 1 (for a de-

tailed list of results, refer to Supplementary material, Table

D). For 34 of 43 systems the BD search identified the crys-

tallographic binding site and mode of ligands as the energy

minimum of the whole BD job, i.e., all 100 docking trials

(runs). In terms of averages and standard deviations (Table

1) the corresponding ranks contain energetically uniform

members, with a significant population in most of the cases.

In six of the remaining nine cases (1dy4, 1e7a, 1eqg, 1ivb,

1ngp, 3pcn) the native ligand position was ranked in the best

2nd–7th ranks and in three cases (1hz4, 1ju4, 1pth) an addi-

tional 1–3 accumulative BD jobs were necessary to locate the

native binding mode (for details of accumulative BD refer to

Supplementary material, Scheme A). In two out of the nine

cases (1dy4, 1ngp) the native binding mode was also placed

in the 2nd rank in the restricted docking study [13] indicating
Abbreviations: BD, blind docking; PDB, protein databank; RMSD,
root mean square deviation
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that the reason of these results is not the insufficient BD

search. The average RMSDmin (RMSD corresponding to

the energy minimum of the rank) of the 43 systems

(1.0 ± 0.7 Å) is similar to the value calculated from the re-

sults of restricted docking [13] for the same set

(1.2 ± 0.7 Å). This comparison shows, that in the case of

drug-sized compounds, both the AutoDock scoring function

and the Lamarckian genetic algorithm with the pseudo-Solis

and Wets local search method can be applied to the large BD

search space, i.e., the whole target surface solely by tuning

the search parameters (Supplementary material, Table C).

In the original BD study [3] the largest protein was 316

AA. In the present study, proteins with up to 1040 residues

were involved in the calculations and 16 of 43 systems have

more than 316 AAs. In seven of these 16 cases, including the

largest protein investigated (Fig. 2) the native binding con-

formation was in the 1st rank, i.e., as the energy minimum

of 100 trials. In the other nine cases the binding mode was

correctly reproduced in terms of RMSD, but placed in higher

ranks due to higher binding energy (for explanation, refer to

Section 3.4).

3.2. Protein flexibility: robustness and limitations

BD to the 10 ligand-free protein structures (marked with U

in Table 1 and Table D) provides additional information on

the sensitivity of BD on protein flexibility. Such information

may be useful for the situations, where only the unbound

protein is available for the calculations, as expected for most

real applications. In eight of the selected 10 cases the ranking

of docked conformations with the best RMSD-s were identi-

cal or lower (better) compared to the results obtained for the

corresponding proteins from complexes (previous section,

Table 1) which demonstrates the robustness of BD. In two

cases (1b70U and 1ivbU) the best-RMSD-solution moved to

higher ranks (rank serial numbers increased with 2 and 1,

respectively). At 1b70U, a turn of 180° (respective to the

1b70 complex) of the amide group of a central glutamine res-

idue spoiled the favorable H-bonding pattern with the ligand

at the binding site (Fig. 2). This resulted in higher DG-s and

higher ranking if compared with 1b70 (Table 1). However,

the corresponding RMSD has not increased dramatically,

due to the remaining (e.g., hydrophobic) interactions at the

site. It should be remarked, that in these systems only mod-

erate changes can be observed between the bound and li-

gand-free protein structures (see Ca-RMSD-s in Table B,

Supplementary material). For these systems with moderate

flexibility in the active site BD proved to be robust, but obvi-

ously BD alone may prove insufficient for systems with a

higher degree of induced fit upon ligand binding. To over-

come this problem, methods which handle structural flexibil-

ity [14] could be used in post-docking mode with the

(prerequisite) binding positions and conformations of ligands

found by BD as input.

3.3. Ligand flexibility

Neither the number of flexible torsions in the ligands (tabu-

lated in Table A, Supplementary material), nor the size of the

ligands affects the accuracy of the results of BD for the inves-

tigated systems (Fig. 1). The computational cost (efficiency) of

the BD runs does depend on ligand flexibility. For systems

with the smallest (1mpj) and largest (4dfr) ligand molecules

BD runs took 5 and 22 min (Opteron 2 GHz), respectively.

3.4. Competition for the binding sites between the ligand and

solvent molecules. Multiple binding sites

It should be remarked, that docking calculations generally

use ‘dry’ protein molecules for the search, i.e., all ions, water

molecules etc., are removed from the coordinate files before

docking. In six out of nine cases where the native binding

mode did not belong to the 1st rank, inspection of the original

PBD files showed, that the low-energy binding sites of the first

ranks found for the ligand during BD are occupied by water

molecules (or other solvent) in the PDB structure. This can

be due to the energetically favorable protein–solvent interac-

tions at those sites, but it is also possible that the crystallo-

graphic complexes do not include all binding sites/modes of

the ligands. In the systems (1ev3, 1mpj, 1qiz, 1tym) where insu-

lin oligomers were used as targets in this study, multiple crys-

tallographic binding sites at the protein interfaces were

reproduced, showing the applicability of BD for multiple bind-

ing site search. Although some methods have been proposed

for the modeling of ligand–solvent competition ‘on-line’, i.e.,

during docking simulations [15], or ‘off-line’ with mixed maps

for the restricted search space [16], there is no trivial solution

for BD yet. However, there is no alternative to using a dry tar-

get if multiple sites are searched for since water molecules cov-

ering the putative sites may hinder entrance of the ligand

molecules.

3.5. Recommendations for BD of drugs

(1) In 3 cases (1hz4, 1ju4, 1pth) additional, accumulative BD

jobs were necessary to find the native ligand conformation. In

these cases the previously found representative ligand confor-

mations (one per rank) were merged with the protein structure

and these molecular complexes were used as docking targets in

the next job. This procedure can be useful in BD calculations

aimed at mapping all possible binding sites and can be auto-

mated by setting a limit criterion in terms of, e.g., binding free

energy (Supplementary material, Scheme A). (2) In general,

0.55 Å grid spacing (Supplementary material, Table B) was

adequate for the BD search of the drug-sized compounds in

the present study to obtain acceptable RMSD-s. However, in

one case (1ju4) a re-docking was performed for the located

binding site with 0.375 Å grid spacing and the fit was refined

from 4.136 to 0.629 Å (Supplementary material, Table D).

Fig. 1. The match of the crystallographic (red) and the minimum
energy blind docked (yellow) conformations of methotrexate, the
largest ligand molecule investigated (system 4dfr). The size of the
ligand molecules did not affect the results of BD in the present
study.
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Such re-dockings are of limited computational cost (10 dock-

ing runs usually suffice) and can be recommended for all BD

studies. (3) In general, post-docking refinement with, e.g., nor-

mal mode methods [14] accounting for protein flexibility at the

docked complexes may be advantageous to increase precision

of ranking.

3.6. Future applications of BD

In combination with experimental techniques such as site-di-

rected mutagenesis, BD can be a useful tool for mapping of

binding modes of drug candidates on protein targets and even

the selection of new protein targets (protein screening [13]) for

existing drugs.

Table 1
Results of the blind docking calculations (abridged)

PDB Job # Rank # DGmin RMSDmin Population DGavg DGsdev

1a0q 1 1 ÿ9.16 2.212 16 ÿ8.96 0.21
1a53 1 1 ÿ10.03 0.646 50 ÿ9.61 0.29
1a53U 1 1 ÿ10.55 1.223 54 ÿ9.91 0.45
1a8u 1 1 ÿ6.48 0.439 100 ÿ6.48 0.00
1alw 1 1 ÿ6.41 2.658a 86 ÿ6.23 0.10
1az8 1 1 ÿ11.99 0.544 83 ÿ11.48 0.23
1az8U 1 1 ÿ11.26 0.987 82 ÿ10.59 0.33
1b70 1 1 ÿ8.72 0.891 42 ÿ8.64 0.05
1b70U 1 3 ÿ7.15 1.023 22 ÿ7.06 0.06
1bzj 1 1 ÿ12.88 0.567 100 ÿ12.80 0.04
1c83 1 1 ÿ11.30 0.541 100 ÿ11.13 0.07
1c84 1 1 ÿ10.45 0.862 93 ÿ10.11 0.24
1c85 1 1 ÿ9.96 0.741 100 ÿ9.86 0.05
1c85U 1 1 ÿ8.95 1.557 70 ÿ8.76 0.20
1ca7 1 1 ÿ7.89 0.854 91 ÿ7.84 0.04
1d1q 1 1 ÿ10.85 0.545 99 ÿ10.75 0.08
1dy4 1 2 ÿ8.79 0.777 13 ÿ8.37 0.36
1e7a 1 2 ÿ6.07 1.023 73 ÿ6.03 0.03
1ecv 1 1 ÿ11.24 0.674 100 ÿ10.85 0.30
1ecvU 1 1 ÿ8.64 1.166 25 ÿ8.07 0.48
1eqg 1 4 ÿ7.64 0.727 56 ÿ7.59 0.02
1ev3 1 1 ÿ4.95 1.075 10 ÿ4.95 0.01
1f5k 1 1 ÿ7.45 0.432 57 ÿ7.45 0.00
1fiw 1 1 ÿ9.00 0.832 100 ÿ8.99 0.01
1gaf 1 1 ÿ10.00 0.409 62 ÿ9.46 0.39
1guh 1 1 ÿ11.50 0.792 17 ÿ10.58 0.66
1guhU 1 1 ÿ11.01 1.180 22 ÿ10.06 0.90
1hd2 1 1 ÿ5.32 0.739 100 ÿ5.31 0.01
1hdu 1 1 ÿ8.60 0.525 68 ÿ8.42 0.15
1hz4 2 3 ÿ5.42 0.490 1 ÿ5.42 ÿ

1ivb 1 3 ÿ6.46 0.200 26 ÿ6.31 0.10
1ivbU 1 4 ÿ5.47 2.717 28 ÿ5.35 0.11
1ju4 3b 1 ÿ5.09 0.629 7 ÿ5.09 0.00
1kel 1 1 ÿ12.25 1.932 55 ÿ11.32 0.65
1mpj 1 1 ÿ3.88 0.465 54 ÿ3.87 0.01
1ngp 1 2 ÿ7.35 0.691 36 ÿ7.23 0.11
1pth 4 8 ÿ3.95 2.450 3 ÿ3.95 0.01
1pthU 3 4 ÿ4.60 2.660 5 ÿ4.59 0.01
1qiz 1 1 ÿ4.63 2.481 25 ÿ4.61 0.01
1rfn 1 1 ÿ8.61 0.573 100 ÿ8.60 0.00
1sri 1 1 ÿ9.06 1.006 47 ÿ8.63 0.27
1tnj 1 1 ÿ7.47 1.964 84 ÿ7.27 0.07
1tym 1 1 ÿ5.89 1.830 71 ÿ5.79 0.06
1tymU 1 1 ÿ5.06 1.919 12 ÿ5.01 0.06
2ay5 1 1 ÿ9.50 2.085 22 ÿ9.18 0.15
3cpa 1 1 ÿ8.74 0.757 44 ÿ8.23 0.22
3ert 1 1 ÿ9.84 1.646 58 ÿ9.38 0.23
3pax 1 1 ÿ6.14 1.208 100 ÿ6.02 0.05
3pcn 1 7 ÿ5.11 2.568 12 ÿ5.00 0.06
3pcnU 1 2 ÿ5.24 2.658 3 ÿ4.94 0.27
43ca 1 1 ÿ5.17 0.419 100 ÿ5.16 0.01
4dfr 1 1 ÿ13.35 1.086 19 ÿ12.54 0.93
4ts1 1 1 ÿ6.94 0.504 76 ÿ6.68 0.13

PDB, protein databank code; U, unbound (ligand-free) protein; Job #, number of the accumulative jobs; Rank #, serial number of the Rank; DGmin,
the minimum of AutoDock free energy of binding (kcal/mol) values of the members of Rank; Population, population of the Rank (the maximum
value is 100 corresponding to a docking job, i.e., 100 docking runs); RMSDmin, root mean square deviation (Å) of the conformation conjugated to
DGmin. Averages (DGavg) and standard deviations (DGsdev) are calculated for the rank.
aThe crystallographic ligand used for comparison has erroneous structure.
bIn case of 1ju4, Job 3 was a re-docking with 0.375 Å grid spacing focused on the previously located (Job 2:Rank 2) binding site.
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Fig. 2. The result of blind docking for phenylalanyl-tRNA synthase
(blue cartoon, 1b70), a protein with more than a thousand amino
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tively (on the left). Due to the large protein surface, numerous putative
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structures. In case of 1b70U the amide group of the key H-bonding
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of the H-bonds (dotted lines) which exist in the complex form (1b70)
and cause a higher DG value when docking to 1b70U. Figures were
prepared using PyMol [17].
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Abstract: Location of functional binding pockets of bioactive ligands on protein molecules is

essential in structural genomics and drug design projects. If the experimental determination of

ligand-protein complex structures is complicated, blind docking (BD) and pocket search (PS)

calculations can help in the prediction of atomic resolution binding mode and the location of the

pocket of a ligand on the entire protein surface. Whereas the number of successful predictions by

these methods is increasing even for the complicated cases of exosites or allosteric binding sites,

their reliability has not been fully established. For a critical assessment of reliability, we use a set

of ligand-protein complexes, which were found to be problematic in previous studies. The

robustness of BD and PS methods is addressed in terms of success of the selection of truly

functional pockets from among the many putative ones identified on the surfaces of ligand-bound

and ligand-free (holo and apo) protein forms. Issues related to BD such as effect of hydration,

existence of multiple pockets, and competition of subsidiary ligands are considered. Practical

cases of PS are discussed, categorized and strategies are recommended for handling the different

situations. PS can be used in conjunction with BD, as we find that a consensus approach

combining the techniques improves predictive power.

Keywords: peptide; binding site; drug; complex; solvent; co-factor; free energy; scoring; equilibrium

Introduction

Location of functional binding pockets on protein

molecules is a cornerstone of structural genomics1–4

and targeted drug design projects. The advancement

of experimental techniques, such as high throughput

crystallography5,6 allows the atomic level determina-

tion of ligand structures bound to their protein pock-

ets at an increasing rate. However, there are still

many cases where the determination of the struc-

ture of the complex of a protein with its known

ligand fails (1) or even the ligand is unknown (2),

and still the knowledge of location of the functional

pocket(s) is necessary.

The blind docking (BD) method has been intro-

duced7,8 as an extension of the use of the very

powerful docking engine AutoDock9,10 for the above-

mentioned case 1 where the chemical identity of the

ligand is known. During BD, the entire surface of

the protein target is scanned for putative binding

pockets of the ligand, and an atomic resolution com-

plex structure is resulted. It was shown7,8 that in

many cases, the primary, functional binding pocket

of the ligand can be selected from among the identi-

fied pockets according to the binding free energy

(DG) values corresponding to the interactions of the

ligand with the different pockets. Notably, DG is

produced on-the-fly by a scoring function during

the docking procedure. Besides the location of the

pocket of primary ligands, numerous studies11–15
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have shown that the BD approach is useful in the

solution of delicate problems such as the detection of

subsidiary binding pockets containing e.g. exosites

or allosteric binding sites.

In case 2, where the ligand is not known, only

the protein sequence and/or structure can be used as

input information. There are various site detection16

and pocket search17 (PS) methods available to ac-

complish this task. In Table I, a short summary is

given on some PS methods used in this study. These

methods are citation-classics (Q-SiteFinder24 and

Pass26), and a novel, promising program Sitehound23

is also included. The PS algorithms use either geo-

metrical or simplified, chemical grid-based search

routines, and represent the putative binding pockets

as a cluster of probe spheres. Since a PS does not

use ligand information, it cannot provide the atomic

resolution ligand-protein complex and the corre-

sponding DG. Instead of DG, PS methods calculate

other type of scores for ranking and selection of the

most probable pockets. Such scores are based on the

depth of the pocket or a sum of interaction energy

values of the clustered probes with the protein.

In BD calculations based on AutoDock, the dock-

ing of the ligand structure can be performed in par-

allel in, for example, 100 trials starting from 100 dif-

ferent random positions around the entire protein

surface and this global search results in 100 puta-

tive binding modes (pockets) and the corresponding

DG values. Thus, preliminary PS is not necessary in

principle, as the numerous global search trials scan

the entire protein surface at atomic resolution. How-

ever, in other docking packages such as EADock20,21

or GOLD, the PS is a necessary prerequisite of BD

as the atomic level docking calculations are focused

only on the pockets previously identified by PS. A

recent study27 also suggests that a preliminary PS

can improve BD by AutoDock, as well.

Despite the above-mentioned increasing knowl-

edge on the application of BD, PS, and their combi-

nations, detection of functional pockets and atomic

level binding modes is still challenging for the fol-

lowing reasons. Generally, BD and PS methods iden-

tify many putative binding modes and pockets

including the real one(s), but the scoring schemes

cannot select the real, functional pockets in all

cases. Ideally, the aim of BD and PS is the location

of the primary pocket. However, in reality, there are

subsidiary ligands (co-factors, solvent additives,

ions, etc.) available for the same protein target. To-

gether with the hydrating water molecules, the pri-

mary and subsidiary ligands compete with each

other for the available pockets and can interfere

with the equilibrium binding process of each other.

Similarly, one ligand can bind to subsidiary, e.g. allo-

steric pockets besides its primary pocket on the

protein.

To address the above problems and formulate

some rules on the applicability of the BD and PS

methodology, a comparative analysis was conducted

using different search engines and scoring schemes

(Table I) as follows.

1. The entire surface of the ligand-bound (holo) and

primary-ligand-free (where available, apo) confor-

mations of protein targets (Table II) were

Table I. Overview of Blind Docking (BD) and Pocket Search (PS) Methods involved in this Study

Name Class Search method Scoring References

AutoDock4 BD without PS Genetic algorithm DG¼EvdWþEH-bondþEelecþDGsolv-TDStors 18,19

EADockSF BD with PS LIGSITE-based PS and a

subsequent local search using

an evolutionary algorithm

DGSF¼Eintra,LþEintra,PþEvdWþEelec 20–22

EADockFF DGFF¼DGSFþDGsolv

SITEHOUNDX PS (chemical) Chemical probes are placed on

evenly spaced grid points, their

IEs are calculated and binding

pockets are defined as clustered

grid points with highest TIE.

IEX¼EvdWþEelec TIEX¼REX,cluster

(X¼C or OP)

23

Q-SiteFinder PS (chemical) IEC¼ EvdWþEH-bondþEelecTIEC¼RIEC 24,25

Pocket-Finder PS (geometrical) Probe spheres are placed on

evenly spaced grid points, and

clustered into putative pockets.

The count of grid points

which are well-buried in

the protein (exceeding

a pre-defined threshold).

25

PASS PS (geometrical) Protein surface is covered with

layers of probe spheres. Pockets

are predicted as active site

points (ASP) having the largest

weight among all probe spheres.

The weight of an ASP is

proportional to the count

of probe spheres in the

vicinity and the extent to

which they are buried.

26

DG: free energy of binding. E: interaction energy between all ligand (L) and protein (P) atoms except cases where ‘‘intra’’

refers to intra-molecular interactions inside L or P. vdW: van der Waals-interactions. H-bond: hydrogen bonding interac-

tions. Elec: electrostatic interactions. DGsolv: change of solvational free energy during ligand binding. T: thermodynamic

temperature. DStors: change of entropy of internal rotations during ligand binding. SF: SimpleFitness scoring. FF: FullFit-

ness scoring. IEX: Interaction Energy of a probe X with the protein target. TIE: Total Interaction Energy for probes in a

cluster. C: probe mimicking a methyl group. OP: probe mimicking a phosphate group.
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Table II. Protein-Ligand Complexes used for Evaluation

Protein

Codeb Name

AA

Countc
Water

Countd
Apo

structuree
RMS

(Å)f
Ligand

Code (j) Nameg
Volume

(Å3) Categorya

PDB codes

1b70 phenylalanyl tRNA

synthetase

1039 134 1pys 0.42 1 phenylalanine 203 BD-passed

1cea recombinant kringle 1

domain of human

plasminogen

79 148 1pkr 0.50 1 aminocaproic acid 181 Drug complex

1dy4 cellobiohydrolase I 434 342 1cel 0.30 1 s-Propranolol 338 BD-failed

2a NAG 435 240

2b NAG 436 240

1e7a human serum

albumin

577 120 1ao6 0.89 1a propofol 4001 255 BD-failed

1b propofol 4002 255

1eqg prostaglandin

h2 synthase-1

550 251 1prh 0.38 1 Ibuprofen 294 BD-failed

2a NAG 661 240

2b NAG 681 240

2c NAG 662 240

2d NAG 671 240

2e NAG 1672 240

3a BOG 802 383

3b BOG 801 383

4 HEME 732

1h61 pentaerythritol

tetranitrate reductase

364 545 1h50 0.21 1 prednisone 427 Drug complex

2 FMN 456

1hvy human thymidylate

synthase

287 596 1hw3 0.77 1 Raltitrexed

(Tomudex)

521 Drug complex

2 UMP (covalently

bound)

293

1hz4 transcription factor

malt domain iii

366 408 1 benzoic acid 147 BD-failed

2 GOL 114

1ivb influenza virus b/lee/40

neuraminidase

390 0 1 4-(acetylamino)-

3-hydroxy-

5-nitrobenzoic acid

245 BD-failed

2 NAG 240

1ju4 cocaine esterase 569 436 3i2j 0.22 1 benzoic acid 147 BD-failed

1lna thermolysin 316 158 1l3f 0.62 1 Val-Lys 322 BD-failed

1m2z human glucocorticoid

receptor ligand-binding

domain

254 205 1 Dexamethasone 459 Drug complex

2a BOG 501 383

2b BOG 778 383

2c BOG 779 383

1ngp n1g9 (igg1-lambda)

fab fragment

431 131 1ngq 0.29 1 2-(4-hydroxy-3-

nitrophenyl)

acetic acid

204 BD-failed

1pth prostaglandin

h2 synthase-1

550 1 1prh 0.36 1 salicylic acid 158 BD-failed

2a NAG 661 240

2b NAG 671 240

2c NAG 672 240

2d NAG 681 240

3 BOG 383

4 HEME 732

3pcn protocatechuate

3,4-dioxygenase

436 1374 2pcd 0.39 1 2-(3,4-dihydroxy-

phenyl)

acetic acid

194 BD-failed

3tpi trypsinogen-bpti complex 287 152 1 Ile-Val 314 BD-passed

a Categories of complexes according to previous investigations. BD-passed/BD-failed: BD of the ligand to the protein was

successful/failed with AutoDock3 in the previous studies7,8. Drug complex: complexes with drug as ligand molecule bound

to protein.
b Protein code used as a reference in this study for both the holo and apo target forms (identical to the PDB ID of the holo

conformation of the protein).
c Number of amino acid residues in the protein target.
d Number of crystallographic water molecules found in the holo PDB file and used for evaluation.
e PDB ID of the primary-ligand-free (apo) conformation of the protein target (not used as a reference code in the text).
f Root Mean Square Deviation between the Ca atoms of the holo and apo conformations of the target protein.
g Abbreviated names of ligand molecules. NAG: N-acetyl-D-glucosamine. BOG: b-octylglucoside. FMN: flavin mononucleo-

tide. GOL: glycerol. UMP: 20-deoxyuridine 50-monophosphate.
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subjected to all BD and PS methods studied, and

the results with the closest hits are summarized

in the Supporting Information. From among the

closest hits, Figures 1 and 2 list the top five rank

numbers where the root mean squared deviation

(RMSD) or the distance measured from the crys-

tallographic ligand is smaller than 5 Å.

2. Only amino acid residues of the proteins were

involved as target structures, that is, waters,

ions, and all ligands were removed from the tar-

get during BD and PS. Importantly, even the

modifications of native amino acids were removed

in all cases to mimic the situation when a protein

is built using only sequence data by means of

structural genomics (homology modeling).

3. The most important part of our test set was com-

posed of 10 protein targets which had been found

problematic in previous studies7,8 using BD driven

Figure 1. Successful predictions using the ligand-bound

conformation of proteins as targets. Rank serial numbers of

the top five Ranks with an RMSD/distance <5Å (compared

with the crystallographic ligand pose) are listed in circles.

Grey-filled boxes mark ligands with Category 1 predictions.

Empty boxes denote Category 2 predictions (see Section

Discussion for categories.) Color bars represent the

precision of the methods in terms of distribution of the

above RMSD/distance for complexes where the closest

solution was found in the top five Ranks. [Color figure can

be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

Figure 2. Successful predictions using the primary-ligand-

free conformation of proteins as targets. Rank serial

numbers of the top five Ranks with an RMSD/distance

<5Å (compared with the crystallographic ligand pose) are

listed in circles. Grey-filled boxes mark ligands with

Category 1 predictions. Empty boxes denote Category

2 predictions (see Section Discussion for categories.) Color

bars represent the precision of the methods in terms of

distribution of the above RMSD/distance for complexes

where the closest solution was found in the top five Ranks.

[Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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by AutoDock3.9 In these cases, BD had not been

able to reproduce the correct crystallographic pose

of the primary ligand (Ligand 1 or L1), and/or the

scoring scheme had not been able to distinguish the

accurately reproduced pose of L1 from the other,

nonrelevant poses. In the latter cases, the correct

pose had been incorrectly sorted into a higher (>1),

energetically less favorable rank and, therefore, the

identification of the appropriate pose as a 1st rank

had failed. In this study, the above problematic com-

plexes were considered as negative test cases and

marked as ‘‘BD-failed’’ in Table II. There were also

other two complexes for which BD had been suc-

cessful (BD-passed) previously, and four proteins

with drug ligands included as untested cases.

4. The methods were tested not only for finding the

17 primary ligand pockets (L1) but also for the

rather difficult detection of 23 pockets of subsidi-

ary ligands (Lj�2), which turned out to be a real

challenge for the methods. Thus, altogether 40

different structural complexes were considered.

In cases where two or more binding pockets were

available for the same ligand in the Protein Data-

bank (PDB) complex, the binding poses in the dif-

ferent pockets were distinguished by small letters

(Table II) after the numeric code of the ligand

and used as separate references in comparisons.

5. Interference of ligands and hydrating water mole-

cules on BD search was also explored to analyze

the results of failed predictions.

The aim of this study is to give an estimate on

the reliability of the methods in the case of problem-

atic complexes. We are particularly interested if the PS

methods of different background can help in the verifi-

cation of binding pockets found by BD. We discuss

whether a consensus (BDþPS) approach may show the

way ahead toward functional protein pockets.

Results

Easy cases with primary ligands

Among the positive (BD-passed) test cases, the 3tpi

protein is relatively small (Table II), its ligand is a

dipeptide and, therefore, the holo protein form of

this complex is an easy job for BD or PS. The RMSD

of Rank 1 (Supporting Information) was an excellent

0.9 Å with AutoDock418,19 and 2.6 Å using EADock.

The PS methods also found the pocket centrums as

Rank 1 (Fig. 1) with good accuracy except Sitehoun-

dOP (Sitehound with phosphate probe), and the best

algorithm in this case was Q-SiteFinder with a 0.8 Å

distance. Notably, SitehoundOP has been recom-

mended23 for phosphate-containing compounds origi-

nally. BD with both AutoDock4 and EADock success-

fully passed the other positive test case of holo form

of 1b70, a very large target and also of two small

drug-binding proteins 1cea and 1m2z. However, PS

methods except SitehoundOP and Q-SiteFinder failed

for 1b70 and Pocket-Finder failed in the case of

1cea. BD and PS were also successful in finding the

L1 pocket on the apo form of 1cea and partly of 1b70

(Fig. 2, notably the PDB ID of the holo form of the

protein is used as a code also for the apo form in

this study). It was somewhat unexpected, that the

two BD methods had only partial success in the

cases of the holo target forms of two additional drug

complexes 1h61-L1 and 1hvy-L1 in both ranking and

precision. The only top 1 BD result was found with

EADock, the 1hvy-L1, but the corresponding preci-

sion was still moderate with a 3.5 Å RMSD. For the

apo forms, the success was also limited. The PS

methods provided good hints for the holo target

forms: SitehoundC, identified the L1 pocket as 1st

rank for target 1h61, as well as SitehoundOP did for

1hvy. The other PS methods (Q-SiteFinder, Pocket-

Finder and Pass) identified the L1 pockets correctly

as a 1st rank at 1hvy and less correctly for 1h61 and

for the apo target forms where the distance between

the pocket center identified by PS and that of the

real pocket was either above 5 Å or it was ranked

too high (>5).

Problematic cases with primary ligands

Figure 1 shows that two BD-failed groups can be

distinguished according to the performance of Auto-

Dock4 on L1 complexes on the holo target form. In

the first group, there are L1-complexes with 1dy4,

1e7a, 1eqg, and 1ngp. In these cases, the present

AutoDock4 ranking of the correct pose improved to

the 1st rank compared with our previous studies7,8

with AutoDock3, where they had not been found in

the best rank. For example, the primary L1a pocket

of propofol on 1e7a had been identified7 as Rank 2,

whereas now it is located in Rank 1 [Fig. 2(a)] with

a nice structural match. AutoDock4 produced a cor-

rect RMSD for all four cases. EADock reproduced

the crystallographic L1 structures at targets 1e7a

and 1ngp (the other two complexes were mis-

ranked). In general, the PS methods were not suc-

cessful in these four cases as they provided only

some isolated good hits for the 1st rank at 1dy4 (Q-

SiteFinder), 1eqg (Pass), and 1ngp (SitehoundOP).

There were also some cases with the correct pose

located in the 2nd and 3rd ranks by Q-SiteFinder

and once by Pocket-Finder. For the apo target forms,

BD generated a top 1 rank only for 1ngp, whereas

for 1eqg and 1dy4 only Rank 4 was produced. The

above-mentioned second group includes six targets

(1hz4, 1ivb, 1ju4, 1lna, 1pth, 3pcn), where Auto-

Dock4 could not improve the ranking/RMSD preci-

sion for L1 on the holo target forms compared with

previous studies7,8 and failed. EADockSF found the

correct pose in only one of six cases (1ivb) as Rank

1. At 1lna, EADockSF found the crystallographic

ligand structure as Rank 2, which is remarkable as
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the Co2þ-ion important in ligand binding was not

used in this study due to our strict criteria of BD

(Introduction). Unexpectedly, the PS methods per-

formed fairly well for two-third (1ivb, 1ju4, 1lna,

3pcn) of this challenging group placing the real

pocket into the first three ranks (Fig. 1). In the case

of the apo target forms, BD failed to predict the

pocket for this group with an exception of 3pcn. The

PS methods provided good hints for the apo forms

too (Fig. 2).

Subsidiary ligands and pockets

In the case of 1e7a, the same primary ligand (L1,

Propofol) binds at two different pockets in the crys-

tallographic structure [Fig. 3(a)]. The second binding

pocket (L1b) of Propofol was identified as a 3rd rank

by AutoDock4, and two PS methods (Q-SiteFinder

and Pass) also placed it in the top three ranks using

the holo target form (Fig. 1). No method found L1b

on the apo protein structure. Besides the primary

ligands, for eight (1dy4, 1eqg, 1h61, 1hvy, 1hz4,

1ivb, 1m2z, 1pth) of the sixteen protein targets of

this study, there are also subsidiary ligands (Lj�2)

some of them having multiple binding pockets. The

subsidiary ligands (Table II) can be divided into two

groups: functional or structural partners (1) and

small molecules or solvent additives (2).

The first group contains strong binders such as

the nucleotides (FMN, UMP) and the HEME. In the

complexes of FMN and UMP (1h61-L2 and 1hvy-L2),

the co-factors are located close to L1 discussed above.

Thus, in both complexes, L1 and L2 interact with

each other and their binding pockets are not sepa-

rated influencing the docking results (see also next

section). In the case of FMN as L2, the BD methods

performed better for the L2 than for the L1 at target

1h61 (only holo protein structures were used as tar-

gets for subsidiary ligands). However, the only ac-

ceptable solution was produced for 1h61-L2 by Auto-

Dock4. SitehoundOP identified the 1st rank for the

phosphate containing L2 (UMP) of 1hvy similar to

its L1 earlier and SitehoundC ranked the L2-s into

worse ranks than the L1-s (Fig. 1). The other PS

methods (Q-SiteFinder, Pocket-Finder and Pass) at

most identified the L2 pockets for both complexes

correctly. HEME is the largest ligand investigated

with a 732 Å3 molecular volume (Table II). It is part

of two target-ligand complexes, the 1eqg-L6 and the

1pth-L7. Although these complexes were not re-pro-

duced perfectly by BD, a 2nd rank at 1.4 Å RMSD

(1eqg) and a 1st rank with a 7 Å RMSD (1pth) were

obtained with AutoDock4. PS methods Sitehound

and Q-SiteFinder worked well in the case of 1eqg

but none of them were really successful for 1pth.

Molecules of the second group are loose binders

(BOG, GOL, NAG), and/or they sit in a shallow sur-

face pocket [Fig. 3(b)] of the protein in question.

Ligands of this group can be found in various

Figure 3. (a) In PDB structure 1e7a two binding pockets of

the primary ligand (L1) propofol had been detected by

crystallography. Whereas the L1a pocket and the binding mode

was identified precisely by BD (shown in inset as green sticks)

as Rank 1 and Q-SiteFinder, the L1b pocket was located by PS

methods and BD found it as Rank 3 (green sticks) with a rather

high deviation from the crystallographic position (sticks colored

by atom type). Other pockets found by BD are also shown as

green surfaces. (b) Sitehound identified the shallow pocket

(protein shown as surface) of NAG in the complex 1eqg-L2d in a

2.9 Å distance from the crystallographic ligand position (balls

and sticks colored by atom type) by placing a few Carbon

probes (beige spheres) into the proposed pocket. The small

number of probes resulted in a low TIE value and a mis-ranking

of this real binding pocket into the 88th of 112 ranks. [Color

figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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complexes (Table II). Neither BD nor PS methods

were successful in correct identification of their

binding poses or pockets. There were few isolated

cases where the methods produced good hints, such

as Pass (1m2z-L2c, 1pth-L3, 1hz4-L2), SitehoundC
(1pth-L3), SitehoundOP, and Q-SiteFinder (1hz4-L2).

The influence of subsidiary ligands

Subsidiary ligands of a target protein are not just

test cases of BD and PS (previous section), but they

also introduce difficulties due to their inherent com-

petition for the pockets in real life (Introduction).

Thus, the scoring function of BD has to be selective

enough for a ligand j (Lj) to distinguish its primary

crystallographic pocket not only from its subsidiary

pockets but also from pockets occupied by other,

competing ligands n (Ln=j) on the same target pro-

tein. To gain information on this kind of selectivity

of BD, it is useful to check whether the crystallo-

graphic binding poses of Lns on the same target

indeed interfere with the (mis)docked Lj poses.

Ideally, if the BD method is precise and selective

enough, then no interference should be measured

between the docked Lj pose in the 1st rank and the

crystallographic poses of other Lns. In other words, Lj

should occupy its crystallographic conformation with

the lowest DG (Rank #1) and bind to crystallographic

pockets of other Lns (or waters, see next section) at

Ranks>1 of higher DG values. Such interferences

were checked at both BD methods and ranks on all

holo target forms, by the measurement of the distan-

ces between the docked Lj and the crystallographic

Ln poses (see Methods for details). The Lj ranks with

significant Ln interferences (<5 Å distance) found are

listed in the Supporting Information.

As it was expected, a comparison with the results

(Fig. 1, Supporting Information) shows no interfer-

ence at Rank 1 in the cases where the BD method

identified the crystallographic pocket of Lj correctly.

Some interferences can still be found for these posi-

tive cases but only at Ranks >1. To illustrate one of

the examples mentioned, Figure 4(a) depicts prosta-

glandin h2 synthase-1 (1eqg) with 10 binding poses of

L1 (Ibuprofen) representing the 10 ranks found by

AutoDock4 (Supporting Information). There is only

one point of interference between the 10 rank-repre-

sentatives of L1 and the other ligands (Ln): L4

(HEME) sits at the same place as Rank 8 of L1 [Fig.

4(a)]. Naturally, as this interference occurs at Rank 8,

it corresponds to a higher DG of L1, and therefore, it

can be concluded that BD could discriminate between

the binding of L1 to its real site and to the HEME-site

by assigning a lower DG for the real one.

Besides analyses of the above-mentioned posi-

tive examples, checking ligand-interferences may

provide even more important information in the neg-

ative cases where the crystallographic pocket of Lj

was not identified correctly as Rank 1. For example,

Figure 4. (a) Prostaglandin H2-synthase-1 (1eqg, cartoon)

and the binding pockets (green surface) of the primary ligand

Ibuprofen corresponding to the 10 ranks found by

AutoDock4. In the inset, the overlap between

crystallographic (sticks colored by atom type) and docked

(sticks in green) Rank 1 conformations of Ibuprofen is

featured. Interference of Rank 8 pocket (pink surface) with

HEME (sticks colored by atom type) did not affect the results

of BD. (b) The binding pockets of BOG (green) identified by

AutoDock4 on the surface of human glucocorticoid receptor

(1m2z, cartoon). In the inset, the overlap between the

crystallographic (sticks colored by atom type) and docked

(sticks in green) Rank 13 conformations of BOG is shown.

Notably, the octyl group of BOG was not assigned in the

crystal structure and the B-factors of the assigned atoms are

relatively high (76-90). Predicted pockets of BOG

corresponding to Ranks 1, 2, 4, and 6 (pink surface) interfere

with the pocket of the primary ligand dexamethasone (sticks

colored by atom type), which is partly responsible for the

mis-ranking of the correct pocket only as Rank 13. [Color

figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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at complexes 1dy4-L2, 1eqg-L3a(n ¼ 4), 1h61-L1,

1m2z-L2c (AutoDock4), and at 1h61-L1,2, 1m2z-L2c,

1pth-L3 (EADock), there are interferences (Support-

ing Information) with Lns at ranks with serial num-

bers equal to/smaller than the best ranks listed in

Figure 1. The 1m2z-L2 complex is such an example

[Fig. 4(b)], where the binding site of BOG was iden-

tified on the surface of human glucocorticoid recep-

tor (1m2z) at the L2c pocket with a reasonably good

fit to the crystallographic conformation at 2.2 Å

RMSD. However, predicted pockets of BOG corre-

sponding to Ranks 1, 2, 4, and 6 overlap with the

pocket of the competing primary ligand dexametha-

sone (L1), and this interference is partly responsible

for the mis-ranking of the correct pocket only as

Rank 13 of 14 (Supporting Information).

Another example is 1h61-L1, where the solution

for prednisone (L1) with the best RMSD (1.0 Å) was

placed to the 3rd rank of the total of 10 ranks found

by AutoDock4 as a consequence of L1 interference

with FMN [L2, Fig. 5(a)] in the cases of Ranks 1 and

2. As the mis-docked L1 poses at Ranks 1 and 2

adopted a lower DG at the L2 binding site (not shown

in the figure), the crystallographic pocket was identi-

fied only as Rank 3 suggesting that BD was not ener-

getically selective enough to favor the real pocket of

L1 over the actual pockets of another ligand (L2).

The influence of hydration

Like the subsidiary ligands discussed above, solvent

molecules can also compete with the binding of a

ligand in question. Due to their different locations

related to the (docked) ligand and the target protein,

there are two types of water molecules distinguished

in the present investigation. As BD is usually per-

formed for ‘‘dry’’ protein target, it is possible that

predicted ligand binding sites in fact are occupied by

solvent molecules. These water molecules sit inside

the pocket and are classified as Type 1 water in this

study (see also Methods). There are also other water

molecules located at the interface between the

(docked) ligand and the protein target, at the bottom

of the pocket (Type 2) not occupying the docked

ligand position. Whereas the Type 1 waters surely

compete with the ligand for the pocket, and in the

real situation hinder its binding, Type 2 water mole-

cules are not obviously expected to block ligand

binding to the actual pocket as they can also assist

Figure 5. (a) Pentaerythritol tetranitrate reductase (1h61,

cartoon) and the binding pockets (green surface) of

subsidiary ligand FMN corresponding to the 10 ranks found

by AutoDock4. In the inset, the overlap between

crystallographic (sticks colored by atom type) and docked

(green sticks) Rank 1 conformations of FMN is featured.

Notably, the primary ligand prednisone (sticks colored by

atom type, in the right corner of inset) is located in an

adjacent pocket very close to FMN resulting in ligand-

interference and mis-ranking during the docking of

prednisone. Blue and red spheres depict the positions of

crystallographic water oxygen atoms inside (Type 1) and

the bottom (Type 2) of the binding pockets, respectively.

The oxygen atom marked with an asterisk represents the

only type 1 water interfering with Rank 1 (see main text for

details). (b) In the case of docking of ValLys to thermolysin

(1lna, cartoon), the binding pocket of the ligand was found

as a 10th rank, whereas, for example, in the 1st rank

identified by docking two crystallographic water molecules

(blue spheres) are sitting in reality. In pockets of Ranks

2. . .9 (green surfaces), there are 18 water molecules (blue

spheres) occupying the binding positions instead of the

ligand. In the inset, the overlap between crystallographic

(sticks colored by atom type) and docked (green sticks)

Rank 10 conformations of ValLys is featured showing a

large deviation in the position of the charged side-chain.

[Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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the ligand-protein interaction via bridging or as

spacers. Water-interferences with the representative

docked ligand structures at all ranks for both BD

methods are tabulated in the Supporting Information.

Similar to the previous section in most of the

positive cases of Figure 1, there are no Type 1 water

molecules interfering with the docked Lj positions at

Rank 1 except three cases (1h61-L2, 1ngp-L1 at

AutoDock4 and 3tpi-L1 at EADock) each of them

with only one water molecule inside the pocket. At

the same time, in Ranks=2, there are several waters

located at the same place as the docked ligand. This

finding shows that the scoring function was able to

distinguish between the real (Rank 1) pocket of an

Lj ligand and the others filled with Type 1 water

molecules assigning higher DG a for the latter pock-

ets. For example, in the case of 1h61-L2 169 Type 1

water molecules can be found (Supporting Informa-

tion) at different Ranks=2 of higher DG values calcu-

lated by AutoDock4 and only one Type 1 water mole-

cule [Fig. 5(a)] is located in the middle of the pocket

corresponding to Rank 1. The excellent 1.5 Å RMSD

between the Rank 1 and the crystallographic L2 con-

formation also shows that interference of only one

Type 1 water molecule may not destroy the correct

ranking of the pocket. In these cases, the absence of

one Type 2 water molecule also did not influence the

correct ranking order during docking (robustness).

Further comparison of the docking results and

the table on water interferences (Supporting Infor-

mation) shows that there are several negative cases,

where a ligand was mis-docked into pockets corre-

sponding to lower ranks filled with Type 1 water, in

reality. Such examples are 1h61-L1, 1hvy-L1,2, 1hz4-

L2, 1ju4-L1, 1lna-L1, 1m2z-2c, 3pcn-L1 (AutoDock4)

and 1h61-L2, 1hvy-L1, 1lna-L1, 3pcn-L1 (EADock).

For example, at 1lna-L1 [Fig. 5(b)] Rank 10 holds the

closest docked ligand with an RMSD of 2.8 Å. Inter-

ferences of the docked L1 poses of all higher Ranks

(1. . .9) with Type 1 waters are shown among the

AutoDock4 results. Remarkably, in Rank 4, there are

four water molecules sitting in the place of L1. In the

case of, for example, 3pcn-L1 (AutoDock4) the lack of

three Type 2 water molecules (Rank 3) also contrib-

ute to the mis-docking of the corresponding pose.

Discussion

The results of this study are categorized according

to the success of BD and PS methods in the follow-

ing sections.

Category 1: at least two different BD or at least

one BD and one PS method provides a

successful, consensus prediction in Rank 1

Figure 1 shows that in 11 of all 40 complexes (9 of

17 L1-complexes) a valid Category 1 prediction could

be produced in case of the holo target forms.

Remarking that our test set contained mainly prob-

lematic complexes, it can be concluded that in the

case of primary ligands, for half of the complexes a

good consensus prediction can be achieved. This ra-

tio is much less (4 of 17) for apo targets (Fig. 2). In

four BD-failed cases (1dy4, 1e7a, 1eqg, 1ngp), the

crystallographic position of L1 was identified cor-

rectly using the holo targets as Rank 1 in this study,

whereas in the earlier papers7,8 using AutoDock3

these complexes were listed in higher ranks. This

improvement may be due to the modified solvation

term19 of the scoring function (Table I) of Auto-

Dock4. However, in case of the apo targets BD was

successful at 1ngp only (Fig. 2).

In general, the ratio of the top five ranks at

<2.5 Å with AutoDock4 dropped to almost the half

at the apo forms (Fig. 2) compared with the holo tar-

gets (Fig. 1). At the same time, the ratio of the top

five ranks with lower precision (2.5. . .5 Å) increased

for the apo targets with AutoDock4 resulting that

>50% of the top five ranks is below a 5 Å precision

limit. The precision of EADock is low for both target

forms. Notably, for subsidiary ligands only one con-

sensus prediction was achieved 1h61-L2 (Fig. 1). The

reason of the low success rate at these ligands can

be attributed to their disturbing interference with

the primary ligand and their higher (less specific)

binding energy.

In practice, consensus pockets of Category 1 are

the most reliable BD predictions as they are sup-

ported by a different BD and/or PS methods.

Category 2: only PS methods provide successful

predictions in Rank 1, and BD methods fail

The precision of PS methods is fairly independent on

the target form. The ratio of the best (<2.5 Å) solu-

tions dropped with about 20% (Fig. 2) at the apo

forms in the case of SitehoundC, but the precision of

the other four PS methods remained practically the

same if compared with the holo forms (Fig. 1). Con-

sidering that PS methods are generally based on a

simplified search and scoring scheme (Table I) it

may be somewhat surprising that they outperform

the atomic-level BD calculations producing Rank 1

hits for an additional 6/40 (holo form) and 5/17 (apo

form) complexes of this category (Figs. 1 and 2).

We have previously demonstrated7,8 that Auto-

Dock reproduces many protein-ligand complexes

faithfully using holo forms of the proteins. Here we

find that, despite the above-mentioned (Section Cat-

egory 1) improvements in the energy function of

AutoDock version 4, some targets remain difficult

especially their apo forms. Since the BD protocol

tries to dock the entire ligand, a somewhat smaller/

closed cavity in an apo structure may preclude inser-

tion of the ligand. In some cases, the decline of rank-

ing precision of BD methods on the apo forms (Fig. 2

vs. Fig. 1) can be attributed to the large change in

overall protein conformation as indicated by the
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RMS Ca distances (1e7a, 1hvy) or by local conforma-

tional change of the binding pocket residues (1cel,

1h61). PS algorithms might still detect the cavity

however.

Similar to the docking methods, the scoring

schemes of the PS methods are also generally cumu-

lative (Table I), that is, the total interaction energy

(TIE) score is the sum of individual interaction

energy values (Sitehound, Q-SiteFinder) of probes or

weighted count of probes (Pocket-Finder, Pass).

Therefore, it can be expected, that large pockets cor-

responding to large ligands (with many interactions)

will be found easily by PS at it was the case for

1eqg-L4, with the largest ligand HEME (732 Å3,

Table I) or the still considerable 1hvy-L1 (raltitrexed,

521 Å3). However, in the other (1pth) complex of

HEME its pocket was not found, and small pockets

of, for example, ligands 3pcn-L1 (194 Å3), 1hz4-L2

(114 Å3), and 1ju4-L1 (147 Å3) were identified cor-

rectly as Rank 1 or 2 showing that pocket size is not

the only factor which contributes to the good per-

formance of PS in this category.

A possible reason of the success of PS methods

may arise from the nature of the grid of the probes

used for the above cumulative scoring. Whereas in

BD only the few atoms of a ligand molecule are used

for calculation of interaction energies, in PS the

count of probes/grid points of the identified pocket

can exceed the number of atoms of the actual ligand

[Fig. 6(a)]. In contrast with the connected atoms in

the molecules, the location of grid points is deter-

mined by their even spacing and all of them are

retained within a cluster without any concern on

their possible connections. Thus, if the clustering

algorithm of a PS works accurately, a functional

pocket with large number of probe interactions/grid

points will be ranked with a large energy difference

[Fig. 6(b)] into the first rank rather than into the

lower ranks by PS. In the case of PS, the TIE scores

the general functionality of the pocket and not only

its suitability/availability for the possible binding

conformations of a ligand as is done by DG in the

case of BD. A recent study suggests28 that these

kinds of robust scores and approaches representing

multiple binding modes at a pocket may reflect the

inherently dynamic nature of ligand binding. In this

sense, the TIE may be considered as a score of

pocket functionality in certain situations [Fig.

6(a,b)], where the small DG differences lead to mis-

ranking of pockets in BD even if its DG scoring is

more sophisticated (multiple atom types, 3D geome-

try, connectivity, etc. considered) than the PS scoring

like TIE, which is generally based on a single grid/

probe type. Notably, this benefit is highly dependent

on the robustness of the clustering scheme (the

selection procedure of relevant probes/grid points for

the proposed pocket) of PS and has mostly geometri-

cal and no physical background. Obviously, the suc-

cess of the PS scoring is not guaranteed. For the

tricky situation of 1e7a-L1 where the same ligand

occupies two different pockets (a and b), two PS

Figure 6. (a) The number of evenly and tightly spaced

probes (beige spheres) representing the pocket according to

SitehoundC is significantly larger than the number of atoms of

the ValLys primary (L1) ligand molecule docked by EADock

(green balls and sticks). Protein thermolysin (1lna) is not shown

and the crystallographic ligand conformation is represented by

balls and sticks colored by atom type. Although the docked

and crystallographic ligand conformations match with each

other, this correct solution was placed to only Rank 3

according to EADockFF scoring. (b) Pairwise differences of the

first three ranks in terms of binding free energy DG values

calculated by EADock scoring schemes and the TIE values

obtained by SitehoundC for the 1lna-L1 complex. According to

summation of interaction energy values corresponding to the

relatively large number of probes shown in part (a) the

differences in TIE values is larger than the differences between

the DG values obtained for the few atoms of the docked

ligand. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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methods (Q-SiteFinder and Pass) with different

background (Table I) provided a good hint (Fig. 1)

for the second pocket L1b [Fig. 3(a)] using the holo

target, and at the same time L1a was not identified

by Pass (only by Q-SiteFinder). On the apo target,

no PS methods ranked pocket L1b in the top five.

This example of complex 1e7a-L1 shows the limita-

tions of PS methods and the necessity of consensus

pocket identification by at least two PS methods for

a reasonable prediction.

In summary, Figures 1 and 2 suggest that inde-

pendent top (1. . .3) rankings of the same pocket by

2-3 PS methods with different scoring and search

schemes serve as an indication of a functional pocket

even if BD fails to identify the pocket in question.

Category 3: all BD and PS methods fail to

identify the pocket in Rank 1

Whereas pockets of the main ligands (L1) were iden-

tified at least by one BD and/or PS method (Fig. 1),

this was not the case for the co-factors and weak

binders, and therefore, most of the Lj�2 ligands fall

into Category 3. A possible reason of the low per-

formance of the BD methods in this category could

be that these ligands are mostly weak binders and,

therefore, the afore-mentioned energy difference

between the Ranks is even smaller than it was in

the cases of Category 2. Furthermore, as these

ligands bind generally small and/or shallow pockets

on the protein surface the above advantage of the

cumulative grid scoring of the PS methods also can-

not prevail due to the small number of selected

(clustered) grid points/probes [Fig. 3(b)], defining the

pocket, if any. Interferences with other ligands and

hydrating water molecules detailed in section

Results provide additional explanation for the fail-

ure of BD. The results on the influence of subsidiary

ligands show that mis-docked Lj�2 ligands may find

the well-defined binding pocket of, for example, the

main ligand L1 [Fig. 4(b)] or of a large ligand. BD

methods similarly failed, in the cases where the

ligand was mis-docked in the pocket of two or more

hydrating water molecules. Both types of interfer-

ences are results of the inadequate scoring function,

which cannot distinguish energetically between the

fine differences occurring at binding to different

pockets. In the particular case of interferences of

hydrating water molecules, the inappropriate solva-

tion term (Table I), whereas for ligand interferences

the whole scoring scheme is responsible for the lack

of energy differences between the Ranks.

Category 4: only BD methods provide

successful predictions in Rank 1 and all PS

methods fail

This is a pseudo-category as the above situation did

not occur in any of the 40 complexes. Once a BD

method produced a successful (Rank 1) prediction,

there was always at least one PS method providing

the same pocket in Rank 1 and in one case in Rank

2 (Figs. 1 and 2). This finding is very important for

the verification of Rank 1 hits in future BD studies

showing that a true Rank 1 prediction by BD should

be accompanied with at least one positive Rank

1. . .3 PS prediction for the same pocket. If it is not

the case then it is suspicious that indeed the pocket

was mis-found by BD and we face a Category

3 situation.

Conclusions

Recommendations

To estimate the reliability of a future search for the

main (lowest energy) functional binding pocket on

the entire protein surface, some rules can be con-

cluded. (1) A Category 1 consensus pocket can be

considered as a reliable prediction in most of the

cases as it is based on positive Rank 1 results

obtained by at least two different methods (sufficient

and satisfactory conditions). (2) It is a suspicious sit-

uation if the pocket found by BD is not verified by

at least one of the PS methods (pseudo-Category 4).

This case may easily be indeed a Category 3, where

the binding pocket is mis-found by inappropriate

modeling or interferences of other binding partners.

(3) If at least 2-3 different PS methods result in the

same pocket which does not match the BD predic-

tion (Category 2), then further investigations are

necessary. For example, a local re-docking may be

necessary including, for example, molecular dynam-

ics calculations with explicit water surrounding to

obtain an improved complex structure. As PS meth-

ods are very fast (some seconds), their above use for

verification of BD results or prediction will not slow

down the work.

Methodological aspects

The main problem with the BD and PS methods is

that they produce a large number (=10) of possible

ranks and corresponding pockets (Supporting Infor-

mation) with very small differences (BD) in their

scores in many cases. In this study, it was investi-

gated whether among the many ranks, the consen-

sus top ranks from BD and PS contain the real,

functional pocket represented in the crystallographic

structure or not. For this, a test set containing many

problematic and/or weakly bound complex structures

was used. It was also shown how other factors such

as the interference of subsidiary ligands and/or a

group of two or more Type 1 hydrating water mole-

cules can negatively influence the BD results. The

comparison of the quality of the methods for a non-

BD (focused docking) problem was not the aim of the

study, as there are numerous thorough analyses

available, for focused (restricted) docking search.

Similar to other studies,7,28 the problem of protein

890 PROTEINSCIENCE.ORG Blind Docking and Pocket Search

               hetenyi.csaba_83_23



flexibility was addressed in this study by the

involvement of apo structures with ligand-free

pocket conformations.

Multiple functionality

Beyond the crystallographic pocket (ideally corre-

sponding to Rank 1, the global energy minimum),

there may be others with equal or even more impor-

tant function (e.g., allosteric binding sites) located in

BD Ranks>1. Moreover, it can happen that the same

ligand has more than one experimentally deter-

mined binding pockets [e.g., propofol on 1e7a, Fig.

3(a)]. The above recommendations were not meant

for these pockets. In the case if the detection of

these pockets is necessary, then (consensus) BD and

PS Ranks>1 should be also considered and the corre-

sponding sites checked by, for example, experiments.

Methods

Preparation of protein and ligand molecules

All protein-ligand complexes including the holo pro-

tein form and primary ligand–free (apo) protein

structures (where available) were obtained from the

PDB. All apo structures were superimposed on the

holo structures and the respective RMSD measured

between the Ca atoms of the holo and the superim-

posed apo protein structures are listed in Table II.

This superimposition step allowed a comparison of

the results on the apo structures with the holo-

bound crystallographic ligand position. A list of the

PDB codes is provided in Table II and used for iden-

tification of the protein in this study. All chains

available in the PDB file were processed except the

following cases where only the first copy of identical

chains was used (chain identifiers listed in brack-

ets): 1cea, 1e7a, 1eqg, 1hvy, 1m2z, 1pth (chain A),

1ngp (chains L and H), 3pcn (chains A and M). All

nonamino acid (AA) residues and ligands were

removed from the target proteins. AA side-chains

containing post-translational modifications and non-

AA (HETATM) groups were changed to contain only

AA parts by deletion of the HETATM parts. That is,

the first residue of 1dy4 was deleted, the Cme43 res-

idue of 1hvy was mutated to Cys, and the Oah530

residue of 1pth was mutated to Ser. The use of only

AA-containing targets allowed the study of real sit-

uations where no information on post-translational

modifications is available. For BD with AutoDock4

and EADock the protein molecules were equipped

with H-atoms using AutoDock Tools.18 The ligand

molecules (Table II) including co-factors and solvent

additives were equipped with H-atoms and energy-

minimized using Mopac 629 with a PM3 Hamiltonian

and eigenvector following routine for energy minimi-

zation (except of HEME for where the crystal struc-

ture was used). In all cases, the force constant mat-

rices were positive definite. For comparison, ligand

volumes (Table II) were calculated by an analytical

algorithm.30

AutoDock 4 calculations

BD jobs including 100 runs each were set up as

described previously.7 Briefly, the target and ligand

molecules were equipped with Gasteiger charges

using AutoDock Tools. Grid maps were calculated at

0.55 Å spacing and covered the entire surface of the

target proteins. Docking runs were started with a

random ligand position and orientation. The

Lamarckian genetic algorithm and the pseudo-Solis

and Wets local search with a maximum number of

20 million energy evaluations, 250 population size,

2 Å translation and 50–50� rotation and quaternion

steps were applied. All sigma bonds of the ligand

except rings and amide bonds were released during

the flexible docking. Protein target was kept rigid,

that is, protein flexibility was not considered during

the calculation.

EADock calculations

The EADock calculations were performed using the

SwissDock server (http://swissdock.vital-it.ch/). The

ligand molecules were converted to Sybyl mol2 for-

mat using UCSF Chimera software as required by

the server. The target molecules were provided as

PDB files. Docking type was set to ‘‘accurate’’ in BD

mode. The DOCK4-type outputs of the server con-

taining 250 docked ligand conformations in each

were used for subsequent ranking evaluations.

Ranking of BD results

A uniform procedure7 was applied to rank the 100

and 250 docked ligand structures of each complex

produced by AutoDock 4 and EADock jobs, respec-

tively. Briefly, in consecutive cycles, the structure of

lowest DG (AutoDock 4) or ‘‘FullFitness’’ (EADock)

was selected and the neighboring docked ligand

structures within 5 Å RMSD were collected in the

rank, then a new rank was opened with the lowest

energy of the remaining docked structures, etc. The

ranking was continued until all 100 (AutoDock 4) or

250 (EADock) docked ligand structures were used

up in a rank. RMSDs from the crystallographic

ligand structures were calculated for the lowest

energy (representative) members of each rank. The

ranks of the lowest RMSD values are listed in the

tables of the Supporting Information. A full list

including all ranks is also provided in the Support-

ing Information. For comparison, the ranking was

performed with the ‘‘SimpleFitness’’ scoring of

EADock, as well.

Pocket search

The heavy atoms of the protein structures were used

as inputs in all cases. The off-line version of Site-

hound was applied. In Sitehound and Q-SiteFinder,
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grid maps are calculated for the probes covering the

entire proteins with 1 and 0.9 Å spacing, respec-

tively. Sitehound was tested with both carbon and

phosphate probes, whereas Q-SiteFinder applies a

methyl probe. In case of Q-SiteFinder and Pocket-

Finder the server produced the top 10 binding sites.

Sitehound and Q-SiteFinder ranks the results

according to the TIE, which is the sum of nonbonded

interaction energy of all probe points with the pro-

tein atoms in the detected binding site. Pocket-

Finder and Pass use probe spheres, measuring how

much the spheres are geometrically buried in pro-

tein pockets and ranks the pockets according to the

number of well-buried probe spheres. For all meth-

ods, the default parameters were used. For the pres-

ent evaluations, distances between the centers of

predicted pockets and the crystallographic ligand

structures were measured for all ranks and methods

and the smallest distances and the corresponding

ranks are listed in the tables of the Supporting In-

formation. In cases of Q-SiteFinder and Pocket-

Finder precision is calculated as the percentage of

the probes of a site that are within 1.6 Å of an atom

of a particular ligand, that is, it is a measurement of

how well the predicted site maps onto the ligand

coordinates (ideally at least 25%).

Water and ligand interferences

The interferences of docked ligands with hydrating

water molecules were investigated as follows. All

hydrating crystallographic water molecules (Table

II) were classified as sitting inside (1), at the bottom

of (2) or outside the pocket corresponding to a BD

rank. For this, the distances between the crystallo-

graphic water oxygen atom and all heavy atoms of

the representative ligand structure of the BD rank

were measured and the shortest distance was

selected. If the shortest distance was smaller than

2.5 Å, that is, the oxygen atom practically over-

lapped the ligand structure then this water molecule

was considered to sit middle-inside the pocket (Type

1). Similarly, the shortest distance of the crystallo-

graphic water oxygen atom was measured to the

protein and if the distance was smaller than 3.5 Å

and the distance from the representative ligand was

larger than/equal to 2.5 Å, then the water molecule

was considered to sit at the bottom of the pocket,

that is, on the protein surface, below the ligand

(Type 2). The thresholds 2.5 and 3.5 Å were selected

as typical covalent and H-bond lengths between

heavy atoms, respectively, with some tolerance. This

selection procedure was repeated for all crystallo-

graphic water molecules and BD ranks at each com-

plex of Table II. The number of water molecules

were counted by rank and summarized by type and

complex (Supporting Information). The usefulness of

the distinction between the two types of in-pocket

water molecules is discussed in the main text. All

coordinates of Type 1 and 2 waters are provided as

Supporting Information. The interferences of docked

ligands (Lj) with other known interfering ligand

molecules (Ln=j) were also studied. For this the dis-

tance between the centrum of the representative Lj

structure of the BD rank and the centrum of a Ln

crystallographic ligand structure was measured. If

the distance was smaller than 5 Å, then the rank

number and distance of interference was tabulated

for both BD methods (Supporting Information).

References

1. van Voorhis WC, Hol WGJ, Myler PJ, Stewart LJ

(2009) The role of medical structural genomics in dis-

covering new drugs for infectious diseases. PLoS Com-

put Biol 5:e1000530.

2. Weigelt J, McBroom-Cerajewski LDB, Matthieu Scha-

pira M, Zhao Y, Arrowmsmith CH (2008) Structural

genomics and drug discovery: all in the family. Curr

Opin Chem Biol 12:32–39.

3. Mirkovic N, Li Z, Parnassa A, Murray D (2007) Strat-

egies for high-throughput comparative modeling: appli-

cations to leverage analysis in structural genomics and

protein family organization. Proteins 66:766–777.

4. Goldsmith-Fischman S, Honig B (2003) Structural

genomics: computational methods for structure analy-

sis. Protein Sci 12:1813–1821.

5. Joachimiak A (2009) High-throughput crystallography

for structural genomics. Curr Opin Struct Biol 19:

573–584.

6. Blundell TL, Jhoti H, Abell C (2002) High-throughput

crystallography for lead discovery in drug design. Nat

Rev Drug Discov 1:45–54.
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Dynamic changes in binding 
interaction networks of sex steroids 

Mónika Bálint Ábrahám  & Csaba Hetényi  

Estrogens are responsible for a wide range of biological actions from the regulation of fertility to cytoprotec-
tion1–3. Gonadal 17β-estradiol (E2) has a remarkable neuroprotective potential4. Besides slow, classical, genomic 
e!ects5,6 (Fig. 1) E2 also exerts rapid, non-classical e!ects on intracellular second messenger molecules7–10, via 
estrogen receptors (ERs, Fig. 1).

Importantly, neuroprotection of E2 is attributed to such rapid actions11–14 and its binding to estrogen recep-
tor alpha (ERα)15. Previously we have shown that a single dose of E2 as well as Activators of Non-Classical 
Estrogen-Like Signaling (ANCELS) such as estren-3α,17β-diol (EN)16 induce ERα-dependent neuroprotec-
tion via intracellular signaling pathways in neurodegenerative animal model17,18. #e protective e!ect was also 
observed a$er traumatic brain injuries4 in rodents. Clinical studies showed that hormone replacement therapy 
with estrogen and progestin1 decreases the incidence of neurodegenerative diseases such as Alzheimer’s disease, 
but it also increases risks of stroke and breast cancer. However, structural dynamics of biding events establishing 
non-classical E2 action on ERs has not been fully elucidated. #e lack of such details of molecular mechanisms of 
neuroprotective actions of estrogens hinders the exploitation of their therapeutic potential.

Estrogen binding to the classical binding site (CBS) of human estrogen receptor alpha (hERα) is well-explained 
by atomic resolution structures of the Protein Databank (PDB)5,19. #e CBS is located between helices H3, H4, 
H6, H8 and H1120 (Supplementary Video S1) of the ligand-binding domain (LBD) of hERα, and it is known to 
mediate the slow, genomic actions of ligands, such as the native agonist E2 and antagonist 4-OH-tamoxifen selec-
tively modulate gene expression21.

Besides slow, genomic actions (Fig. 1 top) ANCELS such as EN22, substance A and substance B23 exhibit weak 
transcriptional activity, selectively activating the non-classical E2 signaling as validated by functional assays22,23. 
Such non-classical actions of E2 on the signaling system have been known for more than forty years24. However, 
the underlying mechanism has not been understood due to the lack of atomic resolution structures of the com-
plexes of e!ector ligands and ERs. An interesting study25 proposed an alternative binding site (ABS) of E2 and 
EN on hERα, further discussed by Norman and co-workers26, conveying the non-classical actions, analogously 
to vitamin D receptor25. #e proposed ABS is located at the C terminus of H1 and N terminus of H3 helices, with 

)

Received: 13 June 2017

Accepted: 17 October 2017

Published: xx xx xxxx

               hetenyi.csaba_83_23



www.nature.com/scientificreports/

2SCIENTIFIC REPORTS  14847 

a conserved R residue (R274 in vitamin D receptor and R394 in hERα) in the site. E2 binding to ABS26 does not 
directly alter gene expression, but rapidly activates the mitogen-activated protein kinase/extracellular-signal reg-
ulated kinase (MAPK/ERK) signaling pathway instead (Fig. 1, top)8,9.

Previous studies25,27 identi%ed R394 and E353 as key E2-binding residues of ABS, located at the proximity 
of 3-hydroxyl group of E2, while the other, 17-hydroxyl group is oriented to R33525. From these results, a con-
formational ensemble model was constructed26 to explain the di!erent behaviour of the nuclear and membrane 
associated forms of hERα. In this model, a “concurrent occupancy” was also proposed, when both ABS and CBS 
sites are simultaneously occupied by two copies of E2. However, the dynamics of simultaneous occupancy has not 
been investigated yet.

Besides ABS and CBS, there is a binding site for different transcriptional co-activator proteins. A con-
served, LXXLL binding motif can be found in the amino acid sequences of these proteins28. Receptors are 
o$en co-crystallized with a peptide fragment of the co-activator (CA) protein containing the above conserved 
sequence bound to the activation function site 2 (AF2 site, Fig. 1 top part)5,29,30. In these structures, CA bridges 
between helices H3 and H1220,31 via hydrogen bonding at residues K362 on the H3 side and E542 on the H12 
side. Furthermore, if E2 binds, and hER is activated (Fig. 1 top), the CA bridge %xes H12 in a position covering 
the E2-bound CBS20,26 and shielding it from the bulk solvent. Y537 plays an important role in the activation, and 
it was demonstrated that it is very prone to mutations (Y537S) which make the receptor resistant to estrogen 
antagonist drugs30. H3 residues E353, H356, M357 and W360 are proposed to form the ABS, and therefore, any 
perturbation of the conformation of H3 at these residues by CA can in&uence the binding of ligands to ABS, as 
well. Despite the importance of the above e!ects of the CA-bridge on E2 binding, the dynamics of the underlying 
mechanism, and the route of structural communication between the proposed ABS25,26 and CA has not been 
elucidated at atomic level.

Although the current cutting edge super-resolution imaging techniques such as single molecule &uores-
cence resonance energy transfer or stimulated emission depletion microscopy are capable to produce sequence 
of images in given time frame they have limited temporal (5 µs) and spatial (1 nm)32,33 resolution. Due to the 

Figure 1. E!ects of sex steroids in the cell (top) and their possible binding scenarios to human estrogen 
receptor alpha experimented in our study (hERα, bottom). Binding site of the co-activator (CA) is marked as 
AF2. Sex steroids can bind to classical (CBS) and alternative binding sites (ABS) as marked on the schematic 
representation of the ligand binding domain of hERα. In the classical pathway, activation of hERα by steroid 
binding to CBS is necessary for subsequent CA binding to AF2. In the non-classical pathway, steroid binding 
to ABS initiates signal transduction via Src, Ras proteins of the mitogen-activated protein kinase (MAPK) 
pathway.
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limitations of current structure determination techniques34,35 investigation of the above questions is fairly chal-
lenging and “new techniques may be required to study the formation of such transient, though potentially biolog-
ically meaningful complexes” of sex steroids with hERα16. At present, molecular dynamics (MD) calculation is the 
only approach available for investigation of such real time binding events in a receptor-ligand system at atomic 
resolution. Consequently, several research groups apply MD calculations and present their results on conforma-
tional changes of various proteins36–38 and binding events of ligands20,39–43 at atomic resolution.

Accordingly, the present study also applies up-to-date, extensive MD calculations to investigate the real time 
changes of interaction networks of hERα and its ligands at atomic level. #e structural dynamics of steroid bind-
ing was investigated at both ABS and CBS, taking into account the role of the CA, as well. For this, blind docking 
of E2 and EN to hERα was performed for an unbiased mapping of available sites. Subsequent MD of the docked 
complexes surrounded by several thousand of explicit water molecules was applied mimicking the natural disso-
ciation route of the sexual steroids from hERα. #e present study also aims at an MD-based elucidation of atomic 
resolution history of structural changes of ER accompanying non-classical steroid actions.

To study the e!ect of CA binding on structural 
dynamics of hERα (Fig. 2a,b and Supplementary Video S1), both the CA bound (CA+) and free (CA−) struc-
tures of the steroid-free LBD were investigated (Fig. 2c) for comparison. #e p160-type CA44,45 with crucial role 
in gene transcription was invloved in the present study. #e C-terminus of the LBD was completed with a region 
called F domain extending the crystallographic structure using a modeling procedure described in Methods. In 
both cases, 1µs-long molecular dynamics (MD) calculations were performed to study the structural evolution of 
the LBD. Evaluations of the resulted trajectories showed (Fig. 2c) high root mean squared &uctuations (RMSF) 
of amino acid heavy atoms over the entire 1-µs domain at loops L1, L2, and in the F domain. Since loops are nat-
urally &exible regions, and the F domain is a disordered region such &uctuations were expected. #e &exibility of 
L1 can be explained mostly by its high exposition to the bulk. #is loop is of high structural importance, as it has 
an indirect contact with the CBS through S329, and is also closely connected to helix H3, which is covering both 
the ABS and CBS (Supplementary Video S1).

Having MD results on both CA+ and CA− LBD structures, the in&uence of CA binding on the LBD was 
structurally analyzed paying special attention to the CA-connected helices H12, H3 and regions around the bind-
ing sites. Both termini of CA are connected to the LBD by salt bridges to E542 of H12, and by an H-bond to K362 
of H3. In addition, CA forms hydrophobic contacts with I358 and M357 of H3 and L539 of H12 (Fig. 3a). #e 
hydrophobic contacts with H3 are of particular interest, as I358 is in the vicinity of M357, which is part of the 
ABS. #erefore, comparison of their movement in CA+/CA− simulations may help to elucidate the mechanism 
of in&uence of CA on the process of ligand binding or dissociation to or from ABS. Accordingly, the movements 
of amino acids H356, M357, and I358 were quanti%ed by calculating the distances between actual and initial 
positions of their side-chains (Fig. 3 bottom parts) along the MD simulations.

In order to maintain the hydrophobic interactions between the hERα, and CA (Fig. 3a top), I358 situated on 
H3 &uctuates between a distance of 2–3 Å measured from its initial position as a reference point (Fig. 3 bottom). 
#e &uctuation (Fig. 3a bottom) is higher in the %rst part (0–400 ns) than in the second part of the simulation 
(400–1000 ns). #e resulted 3 Å shi$ of I358 from its initial position causes the &ipping of M357 into the ABS 
a$er 400 ns to further initiate the shi$ of H356 (Fig. 3a, bottom). In the CA− scenario (Fig. 3b top and bottom), 
it can be observed, that I358 highly &uctuates during the entire simulation. However, the above-mentioned shi$ 
of M357 into the ABS was not observed in the CA− scenario. #us, the presence of CA can be perceived as a 
restricting factor, especially on M357. In contrast to M357, the orientation of H356 was not dependent on the 
presence or absence of CA at the end of the simulations. #is can be explained by the contact between H356 (H3) 
and L327 (L1) through which L327 (L1) transfers its high mobility (Fig. 2c and Supplementary Video S1), to H356 
(H3), then M357(H3). It was also found that in both CA+ and CA− simulations, H356 was oriented inside the 
ABS binding site by the end of 1µs simulation, but this switch occurs faster in the CA+ simulations (400 ns), than 
in CA− simulations (800 ns, Fig. 3 bottom parts) due to the movement of M357.

In the nucleus, sex steroids45 bind to the CBS activating hERα which results in the occupancy of AF2 binding 
site46 by CA (Fig. 1 top part). Such activation does not occur if hERα resides in the membrane and the AF2 site 
is le$ unoccupied. #e membrane bound form of the estrogen receptor is involved47,48 in non-classical e!ects 
such as antiapoptotis16, cytoprotection, and neuroprotection11 Kousteni and colleagues have also reported rapid, 
non-classical e!ect of E216, which require the extra-nuclear localization of the hERalpha, con%rmed by confocal 
laser scanning microscopy studies49. #e above-mentioned antiapoptotis is resulted by targeting50 an ABS outside 
the CBS of hERα. Fluorescence experimental studies51 also indicated the presence of ABS. #us, ABS is linked to 
non-classical e!ects attributed to the membrane-bound form of hERα.

We found that ABS is available for ligand binding if AF2 is not occupied, otherwise it is dynamically blocked 
by both M357 and H356 side-chains. #us, receptor dynamics at these two amino acids is responsible for the 
availability of ABS in membrane surrounding for certain ligands. In agreement with the herein presented results, 
experimental studies showed16 that E2, EN and other sex steroids are capable to produce non-classical e!ects22, 
occupying the ABS27. For this, sex steroids require extranuclear, membrane-bound localization of the estrogen 
receptor22, where the AF2 binding site is not occupied by CA.

Following structural dynamics investigations on the steroid-free recep-
tor, a complete exploration of binding sites of sex steroids was performed on the entire surface of the apo LBD. 
Blind docking52–54 was used for the search as this method does not require previous knowledge of the location of 
the binding sites. A representative structure of LBD was produced by MD simulation with subsequent clustering 
(Methods) and used as a target in the blind docking calculations (Fig. 4). #e target structure was validated by 
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blind docking of E2 (Fig. 4, magenta). #e docking result was compared with the crystallographic ligand con-
formation in the CBS (Supplementary Fig. S1). One-hundred blind docking trials were performed with random 
initial positions of E2 around the target. #e results were evaluated as described in previous works52,53. Brie&y, the 
docked steroid copies were clustered and ranked by energy, resulting in a list of explored binding sites and ligand 

Figure 2. Molecules investigated in the present study. (a) #e three-dimensional structure and the 
corresponding amino acid sequence (b) of ligand binding domain of human estrogen receptor alpha (hERα). 
Important helices H12, H3, loop L1, and β-turn T1 are highlighted in red. (c) Structural &exibility of hERα 
calculated as root mean squared &uctuations of all amino acid residues during the 1µs molecular dynamics 
simulations in co-activator bound (CA+) and unbound (CA−) forms of the steroid-free hERα. (d) Sex steroids 
17β-estradiol, and an activator of non-classical estrogen-like signaling, estren.
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poses with the strongest steroid-site interaction in the %rst rank. Besides E2, blind docking of EN (Fig. 4, teal) was 
also performed on the LBD. From the blind docking calculations 11 ranks were identi%ed for E2 and 6 for EN 
(Fig. 4, Supplementary Table S1).

#e CBS was found in the %rst rank of blind docking by both steroids. Reproduction of the binding mode of 
E2 in the CBS was successful as a root mean squared deviation (RMSD) of 2.1 Å (Supplementary Fig. S1) was 
measured between the heavy atoms of the blind docked and crystallographic (reference) steroid conformations. 
Such a good %t of the docked E2 to the experimental conformation shows that the target LBD structure is valid 
and blind docking predictions provide accurate results at atomic resolution. Analysis of docked molecules in CBS 
revealed that binding modes of E2 and EN are very similar to each-other (Supplementary Fig. S2). Both steroids 
occupy the same orientation with H-bonds formed between 3-hydroxyl of E2 and EN and hERα residues (F404, 
E353, and R394). Topologically, CBS is separated from the bulk by loop L1, ß-turn T1, H3 and H12. At the same 
time, structural di!erences between the steroids in&uence their hydrophobic interactions with the amino acids 
in the surroundings (Supplementary Fig. S2). For example, aromatic ring A of E2 (Fig. 2d) forms a perpendicular 
π-stacking with F404 situated on T1. #e lack of aromatic ring in EN results its increased &exibility and weak 
hydrophobic interactions with F404, if compared to the π-stacking, observed at E2. #is could also be part of the 
reason, why E2 is considered primarily as a CBS-binding ligand26,44 and is selective for the classical pathway16.

#e ABS was found in the second rank during blind docking of both E2 and EN in a region proposed by 
previous studies26,27. ABS is located between H8 and H3 in the vicinity of the CBS (Supplementary Video S1). 
Exposition of ABS towards the bulk is higher than that of CBS as it is covered only by the highly &exible L1 
(Fig. 2a). Similarly to the “ensemble model” of previous studies26,27, the BD calculations showed that R394 and 
E353 separate the two sites (Supplementary Fig. S3). Furthermore, EN is bound to the ABS, with its 3-hydroxyl 
group oriented towards R394, which also agrees with previous studies25,26. Lipophilic residues (P324, L327, M357, 
W360, I386, P406) dominate this site, K449 is the only amino acid with polar side chain. Comparing the bind-
ing modes of the two analyzed steroids (E2 and EN) to the ABS, a head-tail swap can be observed between 
them (Fig. 4, bottom). Accordingly, a hydrogen bond is formed with the backbone amide of L327 with di!erent 
groups of the steroids (17-hydroxyl of E2, and 3-hydroxyl of EN). In addition, 17-hydroxyl of EN forms another 
hydrogen bond with K449. #is bond was not observed in the complex with E2. #e H-bond with the backbone 
amide of L327 is common for the two ligands. As L327 is on loop L1 it is exposed to the bulk, mobile and sus-
ceptible to the thermal motion of the surrounding water molecules (see also Section Interaction networks in the 

Figure 3. Detailed conformational changes at helices H3 and H12 of the human estrogen receptor alpha 
(hERα). 1 µs-long steroid-free molecular dynamics (MD) simulations were performed on co-activator bound 
(CA+, a) and unbound (CA−, b) hERα structures. #e upper part shows conformation of important residues 
before (red) and a$er (grey) the MD simulations. CA is presented with cyan cartoon and sticks. A salt bridge, a 
H-bond (red dotted lines), and hydrophobic interactions (grey dotted lines) can be observed between CA and 
the helices (H12, H3) of hERα. In the bottom part, actual distances of M357, H356 and I358 from their initial 
positions are plotted during the MD simulation. Arrows on the upper parts have the same color codes as line 
charts on the bottom parts of (a and b).
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steroid-bound receptor and results on simulations with di!erent velocity distributions). At the same time, the 
second H-bond speci%c for EN is formed with H8, buried in the pocket, inaccessible from the bulk stabilizing 
the interaction of EN with the LBD at the ABS. Concerning the location of ABS and CBS the results are in good 
agreement with previous studies25–27. A previous comparison of the binding interaction energies of E2 and EN 
produced by manual docking25, showed that binding of EN is stronger to the ABS than that of E2 (Table 1). 
For the CBS, an opposite trend was observed (Table 1). Other docking25,27 studies also con%rmed E2 selectivity 
towards CBS. Experimental binding studies demonstrated22,55 that E2 has a higher a+nity towards ERα than EN. 
In vitro experiments22,55 showed that E2 plays a role in classical e!ects associated with its CBS50,51 binding. At the 
same time, despite the moderate binding a+nity of EN23 in vivo studies22 also con%rmed that it has a selectivity 
towards the non-classical pathway, lacking an e!ect on the reproductive organs which was con%rmed by histolog-
ical analysis of the uterus, and did not stimulate transcription of the C3 gene in the uterus22. In the present study, 
interaction energies were calculated using the docked and energy-minimized ligand structures. #e di!erences 
in the energy values show good agreement with those obtained in previous docking (Table 1) and the a+nity/
selectivity preferences demonstrated by the above-mentioned in vitro and in vivo experimental studies.

Table 1 shows that EN binds 4 kcal/mol stronger to ABS than to CBS. At the same time, the binding of EN to 
ABS is 5 kcal/mol stronger than that of E2. #is is in agreement with the above structural %ndings, and also with 

Figure 4. Results of blind docking calculations of steroids E2 (le$) and EN (right) to hERα. At the top, cluster 
representant steroid conformations (spheres) and the corresponding rank numbers are shown. A small rank 
number corresponds to energetically favorable binding mode of the steroid. #e receptor is shown as grey 
cartoon. At the bottom, a close-up of binding conformation of steroid E2 (magenta) and EN (green sticks) is 
shown in the ABS (Rank 2 in both cases). Neighbouring hERα residues are shown as sticks with grey carbon 
atoms.

Ligand

Present study Mizwicki et al. 2004

ABS CBS ABS CBS

EN −37 −33 −66 −61

E2 −32 −35 −61 −66

Table 1. Interaction energies of sexual steroids with hERα (kcal/mol).
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previous results25, showing that EN has a larger a+nity to ABS than CBS. #ese results suggest di!erent binding 
modes at ABS and CBS which is consistent with the structural observations described above (Fig. 4).

All-in-all, for the top two ranks blind docking gave consensus results identifying the binding sites of both 
steroids as the CBS and the ABS, respectively. Both steroids bind to both sites with signi%cant interaction ener-
gies, with E2 a classical e!ector on CBS, and EN preferring ABS as a non-classical e!ector26. In Rank 3 and 
beyond, steroids found di!erent sites without a consensus result. Notably, binding of E2 to CBS had been precisely 
described5,20 and the position of ABS was proposed in previous studies25,27. However, steroid binding to ABS has 
not been fully characterized. Here, atomic resolution structures of the complexed sites with both investigated 
ligands bound to ABS were provided (Fig. 4), highlighting crucial amino acids, for non-classical activity, and 
the binding di!erence between them. Moreover, binding mode of EN to CBS was also provided (Supplementary 
Fig. S2) and analyzed. Atomic resolution complex structures from the above blind docking calculations were 
piped in the investigations of the next Section dealing with the molecular dynamics of interaction networks of 
steroid binding.

To e!ect the transcriptional activity in the classical, genomic pathway, a “long-
lived”16 steroid-CBS contact is needed in order to produce the speci%c conformational changes of hERα. At 
the same time, steroid ligands form “transient complexes” with the ABS, via a brief association to hERα in the 
non-classical pathway. However, investigation of such rapid e!ects of the non-classical pathway requires new 
approaches and techniques16.

In the present study, we apply molecular dynamics calculations of the steroid-bound hERα surrounded by 
several thousand (explicit) water molecules. To investigate the interaction dynamics, docked steroid-bound 
receptor structures were adopted from Section Binding sites of sexual steroids as starting points. Besides sin-
gly occupied binding sites, additional complex structures were constructed (Methods) with both ABS and CBS 
simultaneously occupied for both EN and E2. All versions were produced both in the presence and absence of CA 
which yielded altogether twelve di!erent complexes for the two sexual steroids (Fig. 1, bottom). For all complex 
structures, %ve parallel 100-ns-long MD calculations were performed to follow their trajectories. #ermal disso-
ciation of the steroid ligands was expected by acquiring kinetic energy from its water and protein surrounding. 
#e calculations were repeated %ve times using di!erent initial velocity distributions resulting in a total of 6 µs 
MD calculation. Applying more than one starting initial velocity distribution for a starting structure is important 
to obtain statistically relevant, unbiased conclusions. In other words, %ve, independent dissociation trials were 
performed resulting in %ve, independent dissociation trajectories of the steroids in all twelve complexes.

From the dissociation trajectories (Fig. 5a, Supplementary Video S2), residence frequency (RF) values were 
calculated to quantify kinetic stability of the complexes in each trial of Fig. 1 (bottom). In drug discovery, assess-
ment of kinetic stability described by the residence of a ligand in the binding site is crucial factor similarly to ther-
modynamic stability56,57. To calculate RF, the movement of the ligand was described by the distance between the 
centre of mass (dCOM) of its actual and starting positions at each time frame during the simulation time resulting 
in a COM-plot. #e RF value of a binding site was directly obtained (Equation 3, Methods) from the COM-plots 
(Fig. 5bc) using a dLIM = 5 Å for dissociation limit.

Results of the merged trajectories of a total of 500 ns simulation time per trial are listed in Tables 2 and 3. 
Per-trial and RMSD-based evaluations are presented in Supplementary Tables S2–S5. In the present study, the 
theoretical upper limit of RF was 10.0 ns−1, which corresponds to the highest kinetic stability. #e mean CBS RF 
values of E2 and EN (last column in Table 2, average of %rst four columns), are 10.0 ns−1 and 9.0 ns−1, respectively. 
Experimental results are in agreement with our calculations (Table 2) a+rming that E2 has a stronger a+nity to 
CBS than EN22,25. Results in Table 1 are also in line with a key review by Norman and co-workers26 presuming that 
steroids such as EN and E2 could have di!erent “fractional occupancies” in the ABS and CBS pockets. Whereas 
both ligands show good binding stability at the CBS, a drop in RF values can be observed at ABS (Table 3) if 
compared with those at CBS (Table 2). In the case of ABS, the mean RF of EN is markedly higher than that of E2.

For structural interpretation of the results in Tables 2 and 3, representative individual trajectories were selected 
with RFs closest to that of the merged trajectory (bold in Supplementary Tables S2–5). As it was described in 
Section Binding sites of sexual steroids, EN has H-bonds with both hydroxyl groups, and is stabilized in the ABS 
at its both ends (Supplementary Video S2 and Fig. 5a). #e two H-bonds are formed at the entrance with L327 of 
loop L1, and K449 of H8 helix, at the bottom of the pocket. Loop L1 is highly exposed to the bulk having a sus-
ceptibility to the thermal motion of the hydrating water molecules and it tends to pull out EN from the binding 
site. At the same time, forming an H-bond with K449, H8 acts as a counter balance and keeps EN in ABS. If the 
H-bond with K449 is broken, EN will be easily pulled out towards the bulk by the loop. A$er the breakage of the 
H-bond between EN and K449, a series of conformational changes are initiated by L327. Firstly, as L327 interacts 
with the side chain of H356 through hydrophobic interactions and H356 starts to move towards the ABS binding 
site, as &uctuation of L1 intensi%es. Secondly, a conformational change is induced on M357 by H356. Here, the 
side chain of M357 &ips into the ABS binding site, similarly to the apo simulations (see Secion 1). As M357 &ips 
inside de binding site, sterically perturbs EN leading to its expulsion from the site. #e above conformational 
changes were not observed in case of E2, and therefore, no role can be attributed to M357 in its dissociation. As 
the H-bond with K449 is missing in case of E2, the above described counter balancing e!ect does not take place. 
Hence, E2 is pulled out more easily than EN from ABS by the thermal motion of the loop.

The above analyses of the simulation trajectories highlighted that the conformational changes of hERα 
(Supplementary Video S2 and S3) have crucial role in the dissociation process of EN. In order to quantify the rela-
tionship between conformational changes of the receptor and dissociation of EN, dCOM was correlated with the 
movement of three residues (L327, H356, and M357) in the dCOM < 5 dLIM interval. Correlation results are shown 
for the CA+/CBS+/ABS+ (Fig. 6) case with representative residue movements. Notably, similar correlations 
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were observed for the CA−/CBS+/ABS+ case (Supplementary Fig. S4), as well. #e obtained correlations show 
that all three proposed residues are important in inducing EN dissociation. Due to their characteristic interaction 
networks there is a considerable di!erence in the dynamics of the three side-chains (Fig. 6). While M357 enters 
the ABS, which results in pushing EN out of its binding pose, L327 exerts a pulling e!ect on EN from the other 
side. H356 continuously &uctuates rotating inside the ABS.

In this Section, dissociation mechanisms of sexual steroids from ABS and CBS were uncovered by extensive 
molecular dynamics calculations. Di!erences in binding a+nities16,25 (Table 1) and kinetic stability (Tables 2 and 
3) of steroid-hERα complexes was correlated with the di!erences in the dynamics of the corresponding interac-
tion networks.

Figure 5. Dissociation of the steroids from the ABS. (a) Snapshots of the 100-ns-long molecular dynamics 
(MD) simulation of EN dissociation from the ABS. #e simulation started from a CA+/CBS+/ABS+ starting 
complex. Disruption of H-bonds with K449, and L327 can be observed at 25 and 30 ns, respectively. Migrations 
of steroids EN (b) and E2 (c) out of ABS are represented as actual distances of their center of mass (dCOM) 
measured from their bound, starting position inside ABS. Evaluations of simulations both with (CA+) and 
without (CA−) the co-activator are shown. In the case of EN (b), an abrupt increase of dCOM can be observed, 
at 30 ns (CA+) and at 70 ns (CA−). #us, the presence of CA promotes the dissociation of EN from ABS. 
Dissociation of E2 shows a di!erent picture (c), as its dCOM increases in a stepwise manner, without fast jumps in 
the starting period of the simulation. #is is due to the lack of strong, directed interactions between E2 and ABS.

CA + −
Mean 
(SD)ABS + − + −

EN 9.3 9.1 10.0 8.4 9.2 (0.7)

E2 10.0 10.0 10.0 10.0 10.0 (0)

Mean (SD) 9.7 (0.5) 9.6 (0.6) 10.0 (0) 9.2 (1.1)

Table 2. Residence frequencies of the steroids in CBS (ns−1).

CA + −
Mean 
(SD)CBS + − + −

EN 2.6 8.0 7.2 6.5 6.1 (2.4)

E2 1.8 2.9 5.1 2.3 3.0 (1.5)

Mean (SD) 2.2 (0.6) 5.5 (3.6) 6.2 (1.5) 4.4 (3.0)

Table 3. Residence frequencies of the steroids in ABS (ns−1).
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#e steroid-free MD simulations uncovered an interference between ABS and AF2. 
It was found that the ABS is available for ligand binding only if AF2 is not occupied by CA (Section Interaction 
networks in the steroid-free receptor). #e results of Table 3 also show that occupancy of ABS is in&uenced by the 
presence of other ligands co-bound to hERα. Binding of CA to site AF2 or an additional steroid molecule to CBS 
has considerable e!ect on steroid binding to ABS (Table 3). In order to investigate the structural background of 
these e!ects, we examine how CA a!ects the binding dynamics of E2 and EN to hERα.

In the CA− scenario, remarkably high stability of E2 and EN binding to ABS was found especially if an 
additional E2 or EN copy was present in the CBS (CBS+, third column in Table 2). #is situation is of particular 
importance as non-classical e!ects happen in the absence of CA (Section Interaction networks in the steroid-free 
receptor). Various experimental studies have suggested that fast, non-classical activity of streoids is exerted by 
their binding to the ABS16,50. It is also known that binding to ABS is not probable in the presence of CA30,46,58. 
Consequently, the presence of CA (CA+) would hinder steroid binding to ABS and facilitate dissociation. Our 
MD approach allowed the investigation of such a non-natural CA+ situation and the analysis of the reasons of 
the hindering e!ect of CA binding to AF2, as well. #is %nding is consistent with the e!ect of CA over the ABS 
binding site (Section Interaction networks in the steroid-free receptor) where the e!ect of CA bridge connecting 
helices H3 and H12 was demonstrated. As both helices are very close to the binding sites, they interfere with the 
CA bridge and ligand binding. CA binds to the LBD via ionic and hydrophobic interactions with H3 at M357 and 
I359, which are part of the ABS. It was also demonstrated (Section Interaction networks in the steroid-free recep-
tor) that M357 tends to occupy ABS in presence of CA. #e same mechanism was observed also in the ABS+ 
simulations, but only in case of EN, which indicates a dependency on the ligand type (see also Section Interaction 
dynamics, Fig. 5). If CA is present, M357 tends to move towards the center of the ABS, and I359 assists this pro-
cess providing a steric restraint and keeping a hydrophobic contact with L693 of CA. On the other hand, if CA is 
missing from the above interaction networks, its in&uence on I359 and M357 is not there. #us, I359 can move 
freely, and therefore, M357 can maintain its orientation towards the bulk, and it does not in&uence the stability of 
EN binding. All-in-all, CA changes the dynamic interaction network of the ABS leading to kinetic stability di!er-
ences presented as RFs in Table 3. Although H356 has no direct contact with CA it also plays an important role in 
the dissociation mechanism as it is in the vicinity of M357, and also occupies the ABS promoting the dissociation 
of EN (Fig. 5a and Supplementary Video S2).

#e above structural e!ects are also re&ected by the velocity of EN during the dissociation process from 
ABS as calculated from the COM-plot (Fig. 5bc). #e overall dissociation velocity of EN increased from 0.11 
to 0.25 Å/ns (Supplementary Tables S6 and S7) in the CA+ case, due to the described destabilizing e!ect of CA 
binding to hERα. #e dissociation process of EN can be divided into an initial (dCOM ≤ dLIM) and a terminal 
(dLIM < dCOM ≤ 10 Å) phase. Velocity of EN in the terminal phase is larger than it was in the initial phase, which 
is speci%c to EN. EN has higher v2 values than E2 suggesting that %nal dissociation of E2 from ABS occurs slower 

Figure 6. Correlation of movements of residues M357, H356, L327 with dissociation of EN. #e movements of 
the residues are expressed as the distances of SD (M357), CE1 (H356) and CG (L327) atoms from their initial 
positions. Dissociation of EN is measured by dCOM, the distance of the center of mass of the ligand, measured 
from its initial position. #e importance of M357, H356, L327 in the dissociation of EN is indicated by the 
above obtained correlations. Correlation plots contain points until dissociation (dCOM < dLIM). #e structural 
representations on the right correspond to dCOM = dLIM. For simplicity, the points represent average distances 
calculated as described in Methods.
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than in case of EN. #e characteristic, abrupt movement of EN in the terminal phase can be explained by the 
sudden of breakage of the second stabilizing H-bond, the one with K449.

#e e!ect of the presence of an additional steroid molecule in the CBS (CBS+) is coupled to that of the 
absence of CA and this CA−/CBS+ case shows the highest stability of the ABS-bound ligands (Table 3). To 
understand the e!ect of occupancy of the CBS simulations on EN were analysed for both CBS+ and CBS− cases 
(Supplementary Table S3, seed 1). #ree structual elements T1, L1 and H3 were of particular interest, in ana-
lyzing the stabilizing e!ect of CBS over the ABS. #ese elements can be considered as parts of “&ickering gate” 
(Fig. 7a and Supplementary Video S3) as proposed by a previous study25. T1 plays the role of the &ickering wing, 
whereas L1 and H3 constitute the stable frame of the gate. Our calculations show that the gate is closed when CBS 
is occupied (Supplementary Video S3, blue), and opened when CBS is unoccupied (Supplementary Video S3, 
red). When EN binds to the CBS it is able to keep the “&ickering gate” in a closed state, as it interacts with T1 
(&ickering wing) via a hydrophobic interaction with F404 (Fig. 7b). #erefore, in the closed state, stabilization 
of T1, by EN in the CBS, will further maintain an H-bond between T1 (N407) and L1 (S329). Stabilized by this 
H-bonding between T1 and L1 (Fig. 7b), L1 becomes less &exible, and its rigidity will further increase RF of EN in 
the ABS (Fig. 7c). #is happens as L1 binds to EN in ABS via L327 (Fig. 7). See also Section Interaction dynamics 
showing that the movement of L327 correlates with ligand dissociation (Fig. 6). We found that the &ickering gate 
adopts an opened state if CBS is not occupied (Fig. 7b). #is is a consequence of the lack of hydrophobic inter-
action between T1 (F404) and the CBS-bound EN. #e H-bonding between L1 (S329) and T1 (N407) becomes 
disrupted, and therefore, &exibility of L1 increases. As discussed above, a &exible L1 promotes dissociation of EN 
from ABS and lowers the corresponding RF (Table 3).

Figure 7. Dynamics of the &ickering gate. (a) #e three-dimensional structure of the &ickering gate is 
composed by T1, L1, and H3 structural elements. Its closed (blue) and opened (red) states show considerable 
di!erences at T1 and L1 conformations. EN is represented with blue (ABS-bound) and red (unbound) sticks. 
(b) #e absence of EN (sticks with green cartoon) from the CBS (grey cloud) results in the breakage of N407 
and S329 in the opened state, releasing L1. (c) Consequently, L1 will not maintain its conformation necessary 
for the interactions with EN, which will readily leave ABS. (b,c) All atom coloring is used for sticks of EN and 
target residues (grey carbon). Red dotted lines highlight H-bonds, and hydrophobic interactions. Interactions 
present in the closed state, and absent in the opened state, are marked with red cross.
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#e above dynamic interaction network, especially between CBS, T1, L1, and ABS describe the working 
mechanism of the “&ickering gate”25. Beside providing a detailed description of the opened and closed state of 
the gate, we were also able to detect two dissociation pathways of EN during exiting ABS. #e %rst dissociation 
pathway towards F404 and P406 of T1 is shown in Supplementary Video S3, and the second pathway towards 
P323 of L1 can be followed in Supplementary Video S2. Both dissociation pathays require the opened state of 
the “&ickering gate”25. In addition to the kinetic stability data of Tables 2 and 3, MD allowed the above in-depth 
analyses of changes of interaction networks at the ABS. #e present approach provides a structural background of 
stability di!erences pointing to key residues of hERα a!ecting non-classical steroid action.

In the present study, elucidation of structural dynamics of non-classical e!ects of sex steroids was presented. Both 
classical and alternative binding modes were exhaustively mapped on the ligand-binding domain of human estro-
gen receptor alpha. Kinetic stability of the steroid –receptor complexes was investigated by molecular dynam-
ics calculations. Real-time investigations of the complete interaction network at atomic resolution pointed to 
key residues of steroid binding mechanism. We showed how steroid binding to the alternative binding site of 
non-classical action is facilitated by the presence of a ligand in the classical binding site and the absence of the 
co-activator peptide. Uncovering such dynamic mechanisms behind steroid action will help the structure-based 
design of new drugs with rapid, non-classical responses.

Methods
Selection of target structure. #ere are 137 hERα LBD entries available in the 

Protein Databank (PDB, Supplementary Table S8) and among them structure 3q95 has the most amino acids 
solved with a good resolution of 2.05 Å. #e 3q95 structure is co-crystallized with the native ligand (estriol) and 
CA. As 3q95 is the most complete structure, it was chosen to represent hERα LBD. #e ligand-free hERα (2b23) 
is also available (Supplementary Table S8) and superimposing 2b23 and 3q95 on their backbone atoms with 
PyMol59 has an excellent overall structural %t quanti%ed by a root mean squared deviation (RMSD) of 0.5 Å. #e 
RMSD was calculated between the two conformations according to Equation (1).

u ru u ru
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where NH is the number of heavy atoms, C1 and C2 are space vectors of the ith heavy atom of conformations 1 
(C1) and 2 (C2), respectively.

Secondary structure prediction was performed on the amino acid sequence of the missing F-domain, the 
sequence was accessed from UniProt with accession ID of P03372, multiple sequence alignment was performed 
with Clustal Omega60. Prediction was performed on the PsiPred server61, with the last two amino acids from 
X-ray structure added, to facilitate the %tting onto the protein a$er MD. Based on this prediction, the tertiary 
structure of the polypeptide chain was modelled with Tinker and equilibrated by a 10-ns-long molecular dynam-
ics simulation. A$er equilibration, further 100 ns, unrestrained MD trajectory was generated for production (see 
next Section for details). A$er clustering, the representative structure of the C-terminal region, was merged with 
both X-ray structures of HERα (3q95 and 2b23) and these extended proteins were used throughout this study.

Both the ligand free and ligand bound PDB entries are appropriate representations of the LBD structure as 
E2 and estriol do not induce signi%cant changes in the protein structure. In Section Interaction networks in 
the steroid-free receptor, the extended 2b23 was used, the holo simulations of Section Interaction networks in 
the steroid-bound receptor were performed with 3q95. #e RMSF plot of 3q95 (1 µ simulation, without ligand, 
Supplementary Fig. S5) shows that overall dynamics of this protein structure is similar to that of 2b23.

Preparation of systems for energy minimization. Structures were solvated with the gmx solvate module of 
GROMACS 5.0.262 in a dodecahedral box with box edges 1 nm from the solute. Missing residues of 2b23 (except 
the C-terminal region) were not modelled. #e box was %lled with explicit TIP3P waters63. Parameters from the 
Amber99SB-ILDN64 force %eld were used. Sodium or chloride counter ions were added to neutralize the system. 
#e N-terminal region of the receptor proteins was capped; the co-activator peptide was modelled with charged 
termini.

Energy minimization. #e optimization of the simulation boxes prior MD and docking calculations were done 
in two steps. #is procedure was applied for all cases. In the %rst step a steepest descent minimization was per-
formed on the solvated box, with convergence threshold set to 103 kJmol−1nm−1. It was followed by a conjugate 
gradient minimization, in this step, the convergence was set to 10 kJmol−1nm−1. Position restraints were applied 
on solute heavy atoms at a force constant of 103 kJmol−1nm−2 in both steps.

Molecular dynamics (MD). A$er minimization, prior to the productive GROMACS MD calculations, a uniform 
equilibration procedure was performed. #e optimized structure was equilibrated under NPT conditions for 
10 ns (with 2 fs time step). #e solvent and the solute was coupled separately to 300 K with the velocity-rescaling 
algorithm65, with time constant of 0.1 ps. Pressure was kept at 1 bar with the Berendsen barostat66 with time 
constant of 0.5 ps, and compressibility of 4.5 × 10–5 bar−1. Long range interactions were cut o! at 1.1 nm. Position 
restraints of 1000 kJmol−1nm−1 were applied on all protein heavy atoms. A$er equilibration, productive NPT 
MD calculations were started using GROMACS, with position restraints removed. Pressure was coupled with 
the Parrinello-Rahman barostat67 with time constant of 0.5 ps, and compressibility of 4.5 × 10−5 bar−1. #e tem-
perature was coupled to 300 K with the velocity-rescaling algorithm65, with time constant of 0.1 ps, with solvent 
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and solute coupled separately. Coordinates were saved at regular time-intervals, at every 10 ps. Simulation on the 
ligand free structures were 1 µs-long, the terminal loop was simulated for 100 ns. Periodic boundary conditions 
were treated a$er the %nish of the calculations.

Evaluation of MD results. A ligand free simulation of 1µs length contains 105 frames. RMSF calculation was 
performed with GROMACS gmx rmsf program. RMSF values of 462–471 and 297–300 residues in Fig. 2c were 
obtained from simulations with 3q95 (Supplementary Fig. S5). Distance calculations from the initial position of 
M357 (SD), H356 (CE1) and L327 (CG) sidechain atoms was followed throughout the 1µs steroid-free simula-
tion. #e distance was calculated using GROMACS rms program, having an alignment of heavy atoms on the 
initial structure, over H3 (341–361) and H12 (539–545) residues. For e+cient presentation in Fig. 3 (bottom part) 
and Supplementary Fig. S6 average distances were plotted for every 200 frames.

Preparation of the target. #e most populous cluster from the 
3q95 simulation a$er 100 ns with the modelled C-terminal was used as the target structure. Clustering was per-
formed with Gromacs program cluster using the gromos method, and a 2 Å cut-o! RMSD was set between clus-
ters. Only polar hydrogens were treated explicitly, non-polar hydrogens were merged. Gasteiger-Marsili charges68 
were added to the protein.

Preparation of the ligand. #e %rst step was a steepest descent optimization, with 104 steps. #e next step was a 
conjugate gradient minimization, with a maximum of 104 steps, the with convergence threshold set to 10−7 kcal-
mol−1Å−1. MMFF94 force %eld69 was used in both steps. #e third and last step was performed on semi-empirical 
quantum mechanical level with MOPAC201270 with PM7 parametrization71. Gradient norm was set to 0.01 kcal-
mol−1Å−1. A$er optimization, force calculations were carried out, ensuring that in all cases, the force constant 
matrices were positive de%nite. #is optimized structure was used in the dockings with Gasteiger-Marsili charges 
added.

Calculation of grid maps. #e grid box around the protein was generated with AutoGrid 4.272. #e box was cen-
tred to cover the whole protein with 200 grid points along all axes, with a spacing of 0.375 Å.

Blind docking. Blind docking calculations52–54 of the two steroids (E2 and EN) were performed. Docking calcu-
lations were performed with AutoDock 4.2.372, Lamarckian genetic algorithm with Solis-Wets local search was 
used in geometrical search. Dockings started with a population size of 250, the number evaluations were 107, 
and the number of generations was set to 107. 100 runs were performed in one docking. For RMSD calculation, 
between the crystallized and the docked estradiol, 1gwr hHERα was used, where estradiol is the co-crystallized 
ligand (Supplementary Fig. S1). #e estradiol structure from 1gwr was taken a$er superimposing the Cα atoms 
of 1gwr on to the Cα atoms of hERα structure used for docking.

Calculation of interaction energy (Einter). Calculation Einter between docked steroids and hERα (Section 
Binding sites of sexual steroids) was performed a$er energy minimization with Gromacs (see previous Section, 
Energy minimization) of the docked complexes. A Lennard-Jones potential (Equation 2) was used with Amber 
parameters73.

∑=





−






E

A

r

B

r (2)
inter

i,j

N N
ij

ij
12

ij

ij
6

T L
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= +R R Rij i j

ε = ε εij i j

where NT: number of target atoms, NL: number of ligand atoms, rij: actual inter-nuclear distance, εij = potential 
well depth at equilibrium between i and j atoms types combined from individual well depths, Rij = inter-nuclear 
distance at equilibrium between i and j atom types combined from individual radii.

Molecular dynamics. #e conditions of MD simula-
tions were the same as described at the steroid-free calculations, except that the present steroid-bound trajectories 
were 100-ns-long each, and 1001 frames were sampled per trajectory. A$er each trajectory the periodic boundary 
e!ects were handled, the system was centred in the box and target molecules in subsequent frames were %t on the 
top of the %rst frame. In order to compare the “Open” and the “Closed” state between each other (Fig. 7a), a$er 
handing the periodic boundary e!ects, the %rst frame of “Open” state was superposed on the “Closed” state by 
their Cα atoms.
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Kinetic stability. Residence frequency (RF, Equation 3) was calculated as a measure of kinetic stability. #e 
movement of the ligand was described by the distance between the centre of mass (dCOM) of its actual and starting 
positions at each time frame during the total simulation time.

=
≤

RF
Count of time frames with d d

Simulation time (ns) (3)
COM LIM

#e value of dissociation limit dLIM was set to 5 Å. #e RF values were calculated for the %ve individual trajec-
tories and also for a merged trajectory of 500 ns including all %ve trajectories. #e theoretical upper limit of RF 
was 10.0 ns−1 (=1001/100 ns) in the present study which corresponds to the highest kinetic stability.

Correlation of movements of M357, H356, L327 residues, with dissociation of EN. #e distance of the side chain 
atoms from the initial positions were calculated using Gromacs rms program, having an alignment of heavy 
atoms, on the initial structure, over H3 (341–361) and H12 (539–545) residues. Using the same technique as 
in the steroid-free evaluations (Methods), for e+cient presentation, average distance values were calculated for 
every 10 frames, resulting in 100 distances for 100 ns of simulation. Correlation of movements of M357, H356, 
L327 residues, with dissociation of EN was followed when dCOM ≤ dLIM. #e dLIM corresponded to 27.2 ns, and cor-
relation points (Fig. 6), were taken from 0 to 28 ns. Average distances of the investigated time interval (0–28 ns) 
resulted in 1.2 Å initial, and 4.9 Å %nal dCOM values, shown as abscissa in Fig. 6. Up until this frame, the ligand 
dissociation could be correlated with all three residues, and this is also the point when EN starts to abruptly disso-
ciate from ABS (Fig. 5). #e structural representations in Fig. 6, were taken from 18 ns. #is was the frame when 
the movement of all three residues was the most representative.

Velocity calculations. In order to characterize the dissociation patterns of both E2 and EN, three types of veloci-
ties were calculated, and presented in Supplementary Table S6–7. #e v1 measures the ligand velocity in the initial 
dissociation phase, until dLIM is reached. #e second type of velocity (v2) takes into account the necessary time 
for the ligand to reach total dissociation a$er reaching the dLIM. #e limit for %nal dissociation was set to 10 Å, 
and the time when this limit is reached, was collected in Supplementary Table S6. #e v2 characterizes the best, 
the di!erences between EN and E2 dissociation mode. In CA− simulations, dLIM was not was not reached for 
E2, and therefore, v2 was not calculated. #e third type of velocity (v3) describes the ligand velocity for the total 
dissociation, from the start of the simulation.

#e datasets generated during and/or analysed during the current study are 
included in this published article (and its Supplementary Information %les) or available from the corresponding 
author on reasonable request.
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Systematic exploration of multiple drug 
binding sites
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Abstract 

Background: Targets with multiple (prerequisite or allosteric) binding sites have an increasing importance in drug 
design. Experimental determination of atomic resolution structures of ligands weakly bound to multiple binding sites 
is often challenging. Blind docking has been widely used for fast mapping of the entire target surface for multiple 
binding sites. Reliability of blind docking is limited by approximations of hydration models, simplified handling of 
molecular flexibility, and imperfect search algorithms.

Results: To overcome such limitations, the present study introduces Wrap ‘n’ Shake (WnS), an atomic resolution 
method that systematically “wraps” the entire target into a monolayer of ligand molecules. Functional binding sites 
are extracted by a rapid molecular dynamics shaker. WnS is tested on biologically important systems such as mitogen-
activated protein, tyrosine-protein kinases, key players of cellular signaling, and farnesyl pyrophosphate synthase, a 
target of antitumor agents.

Keywords: Peptide, Search, Pocket, Pharmacodynamics, Water, Interaction, Structure, Complex, Dissociation, 
Flexibility
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Background
Molecular docking complements experimental structure 
determination and it has become a standard tool of drug 
discovery for the determination of protein–ligand com-
plex structures [1]. !e technique in practice is a com-
promise between computational cost and accuracy. Its 
high speed necessitates the use of severe approximations 
such as (i) restriction of the search space to the surround-
ings of the binding site, (ii) no or inadequate explicit 
hydration of the ligand-target interface, (iii) partial or 
complete neglect of target flexibility [2–5] during ligand 
binding, (iv) and non-deterministic search algorithms [1, 
6] based on random number generation. Approximations 
i–iv seriously limit the applicability of docking methods 
for the following reasons. Restriction of the search to a 
primary binding site requires knowledge of its location 
and also neglects multiple sites such as allosteric ones [7, 
8]. Water molecules often play a role in ligand binding 

[9–11] and ignoring interfacial water positions during 
docking may drive the ligands into pockets which are or 
should be filled with water molecules, resulting in incor-
rectly docked ligand poses [12]. Potential water release is 
also important during ligand binding especially through 
its entropic contributions [13, 14]. Neglecting or limiting 
the flexibility of target molecules is obviously incorrect 
at binding situations with induced fit [15]. Eventuality 
of random number generation in search engines such as 
Monte-Carlo or genetic algorithms [1, 5, 6] is a natural 
barrier of the reproducibility and reliability of the results.

!e blind docking (BD) approach was introduced [16, 
17] to extend the docking search to the entire target sur-
face. In BD, previous knowledge and restriction of the 
search to a primary binding site are not necessary, and 
therefore, it can be used in search of multiple binding 
sites, as well. Indeed, BD has gained popularity [18–20] 
and has been used for finding allosteric [21–23], or mul-
tiple [24–28] binding sites. !us, BD addresses the above 
first challenge and performs a global search instead 
of a focused one at an increased computational cost. 
However, approximations ii–iv cannot be remediated 
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as simply as the first one. Promising approaches using 
explicit water molecules in the binding pocket [10] 
(approximation ii) and treating target flexibility (approxi-
mation iii) have been reported for focused docking [29]. 
However, such approaches have not been implemented in 
conjunction with solving the global search problem of BD 
on the entire target surface. Statistical evaluation of mul-
tiple docking trials has been shown to increase reproduc-
ibility of a BD search [17]; by using multiple randomized 
(approximation iv) initial ligand positions. !us, it has 
become common to perform several docking trials with 
different initial positions in a BD search to ensure that 
the largest possible part of the target surface is scanned. 
However, even such a statistical evaluation cannot guar-
antee systematic and reproducible exploration of the 
entire target surface during BD.

Molecular dynamics (MD) simulations have an 
increasing impact on drug development [30–32]. A 
series of pioneering studies have reported the use of 
MD for tracking the ligand binding process [33–37], at 
atomic resolution. MD calculations also allow the use 
of explicit water molecules and flexible targets over-
coming the above limitations from approximations ii 
and iii [38–40] potentially opening a new avenue for 
improvement of BD. MD simulations typically use ran-
dom starting conformations for the ligands, likewise to 
BD. Generally, long MD calculation times are required 
for successful navigation of the ligand into the bind-
ing site such that the computational time necessary 
for accurate docking of a ligand may be prohibitive in 
practice. Pocket search methods were also developed, 
exploiting the above-mentioned advantages of MD [41]. 
A recent review [30] also concludes that “Improper 
preparation of the initial structure or insufficient equi-
libration of the initial structure(s) can impact the qual-
ity of the MD results”. !e present study is aimed at 
overcoming the above uncertainties of present fast BD 
and molecular dynamics techniques, by combination of 
their advantages into a new strategy. Test applications 
are presented with successful identification of multiple 
binding sites on biologically important systems such as 
MAP and tyrosine-protein kinases, key players of cel-
lular signaling as well as farnesyl pyrophosphate syn-
thase, a target of antitumor agents.

Algorithm
Wrap ‘n’ Shake (WnS) is a new method composed of 
consecutive algorithms, the Wrapper and the Shaker 
(Fig. 1, Additional file 1: Supporting Movie 1) offering a 
systematic search for multiple binding sites and modes. 
WnS works in synergy with popular open source pro-
gram packages AutoDock 4.2.3 [29] and GROMACS 
5.0.2 [42].

Wrapper

Wrapper performs several fast BD cycles by AutoDock 
4.2, and AutoGrid 4.2 [29] and systematically covers the 
entire surface of the target with a monolayer of ligand 
copies (Fig. 1). Each BD cycle is performed as described 
in Additional file  2: Table S1, and results in 100 docked 
ligand copies, which are ordered by their interaction ener-
gies with the target, and structurally clustered. To achieve 
a ligand monolayer, the ligand–ligand interactions are 
minimized through implementation of a weak repulsion 
between the docked ligand copies, and therefore blocking 
the formation of ligand aggregates (Additional file 2: Table 
S2). At the same time, target-ligand interactions are maxi-
mized (Additional file 2: Table S3) to ensure that the larg-
est possible numbers of new ligand copies are placed on 
the surface in an actual BD cycle. !e initial experiments 
(Additional file 2: Table S2) also showed that introduction 
of a weak repulsion is essential to avoid erroneous ligand 
geometries clashing with target atoms. Such unwanted 
clashes (Additional file 2: Table S2) were obtained if inter-
molecular electrostatic  (ECoulomb) and van der Waals  (ELJ, 
Eq. 1) interaction energy terms were simply switched off 
at the ligand atoms. Notably, calculation of total target-
ligand intermolecular interaction energy  (Einter) in Auto-
Dock 4.2 is based on the scaled  ECoulomb and  ELJ terms of 
the Amber96 force field [43], and an estimate for de-sol-
vation free energy changes (ΔGsol, Eq.  1).  ELJ is the sum 
of Lennard-Jones potential energy values (V, Fig. 2) calcu-
lated for all target-ligand atom pairs.

(1)Einter = ECoulomb + ELJ + �Gsol.

Fig. 1 Wrap ‘n’ Shake flowchart featuring the main steps of the 
method. A quick overview is also presented in Additional file 1: Sup-
porting Movie 1
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Finally, instead of the above-mentioned, oversimpli-
fied attempt of switching off all intermolecular terms 
of  Einter we elaborated a new protocol which produced 
the desired ligand monolayer by introduction of an 
excluded atom type (X). In this protocol, all ligand copies 
docked in a cycle and their surrounding target atoms are 
excluded from the next cycle (red in Fig. 2c), and only the 
unbound target surface (grey) is used for a next BD cycle. 
!e neighboring target atoms are selected by an interface 
tolerance of 3.5 Å, the maximal distance between a target 
heavy atom and the closest docked ligand heavy atom. 
!e above exclusion of certain atoms during docking is 
physically achieved by modification of the non-bonding 
terms of  Einter. For this, the new atom type X is assigned 

for excluded atoms (red in Fig. 2c) by a C program Wrp 
developed for this study. Wrp switches off  ECoulomb by set-
ting the partial charge of X to zero and also assigns new 
LJ parameters.

!e new LJ parameters were fine-tuned for atom type 
X in order to produce the necessary weak repulsions 
described above. Briefly, the LJ parameters of X were 
calibrated considering the pairwise LJ potential between 
atom types X and Y  (VXY) at three common atom types 
(Y=O, C and H). A systematic search of both equilib-
rium potential well-depth (εX, Fig. 2a) and inter-nuclear 
distance  (RX) was conducted. Numerous docking runs 
were performed to evaluate the effect of the selected LJ 
parameters. A pre-defined value of r = 2 Å (ca. a covalent 

Fig. 2 Systematic calibration of εX and  RX. a A section of the  VXO(r, εX,  RX) LJ potential function at r = 2 Å. Scenarios Sc1-Sc3 are shown with the 
magnitude of the  RX values corresponding to a short range repulsion of  VXO ≈ 1 kcal/mol (dashed lines) b  VXO LJ potential functions of scenarios 
Sc1-Sc3.  VOO of an oxygen atom pair is also shown for comparison. c An example of excluded atoms X (red, Cycle 1, Rank 2, System 9). Docked 
ligand conformation, is presented with sticks and the binding pocket is shown as surface. d Ligand of System 2 (dark blue sticks) bound to its target 
farnesyl pyrophosphate synthase (grey lines and surface) after Shaker  (MDF step). Explicit water molecules surrounding the ligand within 7 Å are 
shown with sticks and light blue surface
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bond  +  0.5  Å) was used as a minimal distance where 
short-range repulsion should act at a desired maximal 
value not exceeding a  VXY≈1  kcal/mol. !ree scenarios 
(Sc1-Sc3) were evaluated as shown in the r  =  2  Å sec-
tion of  VXO (r, εX,  RX) function (Fig. 2a) calculated for the 
XO atom type pair. Sc2 (green line, Fig. 2a, b) was identi-
fied as an optimal scenario with an εX =  10−4  kcal/mol 
and an  RX of 3.2 Å (approximate distance between heavy 
atoms in an H-bond). In this case, available target surface 
is optimally used without large ligand-free zones in the 
monolayer. A short-range repulsion was achieved (green 
line in Fig.  2b) with a zero value beyond the repulsion 
zone. If  RX was too large (Sc1, red in Fig. 2a, b) then the 
repulsion zone around the docked ligand copies would 
also increase with a  VXO curve shifted to the right if com-
pared to the green curve of Sc2 (Fig. 2b) resulting in large 
ligand-free zones, i.e. a non-optimal arrangement of the 
ligand copies in the monolayer. Importantly, the repul-
sion zone in the optimal  VXO curve of Sc2 starts at lower 
distances (r) than in the  VOO curve.  VOO is shifted to the 
right of the red curve (Sc1), which would result in even 
larger ligand-free regions than Sc1. !us, using only a 
repulsion term of  VOO would have not been adequate for 
exclusions of atoms in wrapping. On the other hand, if 
 RX was too small (Sc3, blue in Fig. 2a, b), then unwanted 
attractive effects such as aggregation between docked 
ligand copies would still happen similar to Trial 1, in 
Additional file  2: Table S2. Accordingly, in Sc3 the cor-
responding blue curve is shifted to the left from the green 
Sc2 curve (Fig. 2b). !e same procedure was repeated for 
atom types Y = C and H and an average  RX value of 3.6 
Å was concluded (Additional file 2: Table S3) and used in 
Wrapper along with the above εX = 10−4 kcal/mol.

!ese calibrated LJ parameters of X allowed elimi-
nation of the above-mentioned unwanted interactions 
between the newly docked ligand copies and the already 
filled binding pockets (Fig. 2c). As the introduced repul-
sive potential acts on a short range, the ligands can still 
dock to other, unbound parts of the target surface. !e 
new atom type and parameters also maximize target-
ligand interactions adding the maximal number of ligand 
copies to the mono-layer during a BD cycle.

Wrapper cycles are terminated by either the drop of 
uncovered surface area of the target below one percent 
of its total (ligand-free, initial) surface area, or positive 
target-ligand interaction energy in every cluster rep-
resentative  (ECW in Fig.  1). As a last step, a trimming 
is performed to remove all ligand copies situated more 
than 3.5 Å from the target. Wrapper results in a target 
wrapped in N ligand copies (target-ligandN complex) pro-
vided as a single Protein Databank (PDB) file. Wrapper 
is implemented in a new open source package WnS as 

shell scripts and a C program Wrp available for download 
together with a User’s Manual at www.wnsdock.xyz.

Shaker

Shaker selects functional binding sites by removing non-
specific, loosely bound ligand copies from the target sur-
face. !e target-ligandN complex is placed in a box filled 
with water and subjected to MD simulations in consecu-
tive cycles. !e cycles are performed until a 75% of the 
ligand copies are eliminated (Exit Criterion of Shaker, 
 ECS Fig.  1). In each Shaker cycle, distance and energy 
metrics are calculated describing target-ligand interac-
tions at each time step (frame) of a trajectory. !e met-
rics include the closest distances between the target and 
the ligand as well as  ELJ, calculated using Amber param-
eters. Based on these metrics, filtering (Additional file 2: 
Table S4) and subsequent removal of the correspond-
ing ligand co-ordinates (Washing, Fig.  1) are applied to 
exclude ligand positions dissociated from their starting 
binding positions. !e filtering involves two distance-
based steps and two final steps based on  ELJ.

Before the first cycle a 5-ns target backbone-restrained 
MD  (MDB) is used to grossly shake off the weakly bound 
ligands. In cases where this initial MD is not enough to 
reach the required  ECS (Additional file  2: Table S1 and 
Additional file  2: Table S7), multiple cycles with 20-ns 
simulated annealing  (MDBSA) simulations are performed, 
using position restraints on the target backbone atoms. 
Depending on the molecular weight (MW, Table  1) of 
the ligands, SA was done, using two temperature proto-
cols, up to 50 °C (MW ≤ 300) or 80 °C (MW ≥ 300). High 
temperature in SA accelerated the dissociation process as 
expected. After  MDBSA cycles, a clustering and ranking 
step is performed, using the last frames of the remain-
ing ligands. A refinement of 20-ns MD with full protein 
flexibility  (MDF) is also performed on every target-ligand 
complex resulted after clustering (Additional file 2: Table 
S7 and Additional file  2: Table S8). !e Shaker proto-
col (Additional file  2: Table S9) was formulated during 
multiple trials (Additional file  2: Tables S5 and S6) and 
results in a final solution structure of a target-ligandn 
complex, where n is the total number of final cluster 
representatives.

Systems and test metrics
A diverse set of ten target-ligand systems were selected 
(Table  1) and prepared (Additional file  2: Table S1) as 
test cases of WnS. Challenging systems with multiple 
(prerequisite or allosteric) binding sites were included 
(Table 1). Our selection contains both small ligands and 
bulky, flexible ones. Apo protein structures were used as 
targets except System 8. In the case of System 5 another 
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protein tyrosine-protein kinase was used as apo structure 
similar to a previous study [33].

!ree standard metrics were used to quantify the 
results of tests. (1) root mean squared deviation (RMSD) 
measures structural precision of WnS results by com-
parison of atomic positions of ligand conformations 
produced by WnS and those of the crystallographic ref-
erence. Prior to calculation of RMSD, a structural align-
ment (Additional file  2: Table S10) was performed on 
the holo and apo target residues surrounding the ligand 
within 5 Å similarly to a previous work [33]. (2) Shaker 
Rate (SR = N/n) is a ratio of counts of the N ligand cop-
ies residing on the target surface (N) after Wrapper and 
the n final cluster representatives (n) produced by Shaker. 
!e larger the SR, the more efficiently Shaker eliminated 
ligand copies from the target surface. (3) Rank serial 
number (#Rank) is calculated using relative ligand-target 
interaction energies corresponding to the docked ligand 
positions. WnS ranks docked ligand copies by their inter-
action energies with the target. !e smaller the #Rank, 
the stronger the target-ligand interaction is at a ligand 
position. !e #Rank of the docked ligand copy of the 
lowest RMSD is listed for all systems in Table  2. In the 
final rank lists, docked ligand copies with small RMSD, 
i.e. close to the crystallographic conformations should be 
preferably placed at the top of the rank lists, with small 
#Rank values.

Results and discussion
Association or dissociation?

Encouraged by results of pioneering MD studies [31, 33, 
34], association of ligand benzamidine to bovine trypsin 
was followed in three MD simulations. Benzamidine is an 
easy case for docking and it has also been used in tests 
of recent approaches [44]. !e present MD simulations 

were 1-µs-long and benzamidine was placed at three dif-
ferent starting positions (Fig.  3, Additional file  2: Table 
S11), at various distances (Fig.  3a) from the crystallo-
graphic binding site.

Analysis of the trajectories shows that the crystal-
lographic binding position was found in two out of the 
three simulations after 81 and 690  ns simulation time 
(drop of red and green lines in Fig.  3b), respectively. In 
the 3rd case with the largest starting distance, 1 µs was 
not enough to dock to the native site by association (blue 
line). !us, the usefulness of association MD runs for 
docking strongly depends on the starting ligand position 
even in the easy case of benzamidine. MD needs a simu-
lation time comparable to the real association time of the 
ligand (Fig.  3b). !is can be considerable, as migration 
of the ligand is hindered by friction in the surrounding 
water. Previous studies [33, 36, 45], have also reported 
simulations of several hundreds of nanoseconds for navi-
gation of the ligand to the desired binding pocket.

All-in-all, the necessary time for successful docking by 
association MD depends on the actual starting position 
of the ligand, the size and shape of the target, ligand etc. 
To overcome such uncertainties on simulation length and 
still use the benefits of MD we elaborated a new strategy, 
the Wrap ‘n’ Shake (WnS, Fig.  1). Instead of simulating 
the association process, WnS is based on the dissocia-
tion of the ligand. Dissociation is fast and reproducible at 
binding sites of low stability.

A systematic approach

Naturally, a dissociation approach requires a set of ligand 
copies bound to the target. Systematic mapping of all 
possible ligand positions (sites) cannot be guaranteed in 
a single BD cycle (Introduction) even if it contains hun-
dreds of fast BD trials [17]. A truly systematic algorithm 

Table 1 Test systems

a PDB ID of the holo X-ray structure
b Molecular weight of the ligand

# PDB  IDa Target Ligand MWb

1 3ptb bovine β-trypsin benzamidine 120

2 3n3 l farnesyl pyrophosphate synthase (6-methoxy-1-benzofuran-3-yl) acetic acid (MS0) 206

3a 3hvc mitogen-activated protein kinase 4-[3-(4-fluorophenyl)-1 h-pyrazol-4-yl]pyridine (GG5) 239

3b 4f9w mitogen-activated protein kinase 4-[3-(4-fluorophenyl)-1 h-pyrazol-4-yl]pyridine (GG5) 239

4 3cpa carboxy-peptidase GY 256

5 1qcf haematopoetic cell kinase (HCK) 1-ter-butyl-3-p-tolyl-1 h-pyrazolo[3,4-d]pyrimidin- 4-ylamine (PP1) 281

6 1h61 pentaerythritol tetranitrate reductase Prednisone® 358

7 2bal mitogen-activated protein kinase [5-amino-1-(4- Fluorophenyl)-1H-Pyrazol-4- yl] [3-(piperidin-4-yloxy) phenyl]methanone 380

8 1hvy thymidylate synthase Ralitrexed® 459

9 3g5d tyrosine-protein kinase Src Dasatinib® 488

10 1be9 PDZ-domain KQTSV 544
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should completely wrap the entire surface of the target 
in a monolayer of copies of the ligand molecule. Our 
initial guess of such a Wrapper algorithm was based on 
a previous finding [17] that the coverage of the target 
can be increased with several, successive fast BD cycles 
where accumulated docked ligand copies from the previ-
ous cycle are considered as part of the target in the next 
cycle. However, additional experiments with such succes-
sive BD cycles showed that previously and newly docked 
ligand copies can easily form multi-layer aggregates with 
each-other instead of the target (Additional file 2: Table 
S2). !e formation of such aggregates hinders wrapping 
of the target surface into the desired monolayer of ligand 
copies.

During the wrapping process, parts of the target surface 
already covered with ligand copies has to be excluded 
from interactions with ligand copies docked in a next BD 
cycle. !is task is not trivial as potential functions of the 
docking force fields normally cannot distinguish between 
target sites unbound and covered with ligands. After 
extensive experimentation including an optimization of 
the force field (“Wrapper” section, Additional file 2: Table 
S3, Appendix 1) we arrived at a new algorithm called 
Wrapper (Figs.  2, 4). Wrapper performs a systematic 

coverage of the target surface in several, consecutive fast 
blind docking cycles (Fig. 4). !e algorithm continuously 
monitors the status of coverage of target surface (Fig. 4a) 
and results in the desired monolayer of N ligand cop-
ies not interacting with each-other. Figure  4b shows an 
example of such a monolayer. Ligands constituting the 
monolayer have physically realistic arrangement (Fig. 4c), 
maximized interactions with the target and no contacts 
with each-other. !us, the target is systematically and 
rapidly wrapped in a monolayer of N (Table 2) ligands.

Having a realistic input geometry, the resulting target-
ligandN complex is transferred to the Shaker including 
MD simulation(s) with explicit water (“Shaker” section), 
filtering, and clustering steps. !ese steps eliminate 
ligands dissociated during MD and result in a strong 
binder at each pocket (Additional file 2: Table S7). Final 
results are shown in Table 2 using test metrics described 
in “Systems and test metrics”. Parameter SR character-
izes efficiency of removal of loose binders. SR values 
of Table  2 indicate that a considerably large part of the 
weak binders were efficiently removed at all test systems 
beyond the default  ECS of 75% (SR = 4). Other important 
metrics are RMSD and #Rank. In most of the systems 
analyzed, ligand conformations with the lowest RMSD 

Table 2 Results for the test systems

a Total count of ligand copies after Wrapper
b Count of ligands surviving the Shaker, after  MDBSA

c Rank serial number of the structure with the best RMSD value, after  MDBSA and after  MDF

d Count of cluster representatives (final solutions) Shaker
e Shaker Rate
f Total computational time required for  MDB,  MDBSA and  MDF, as explained in Additional file 2: Table S12
g For System 1, WnS was performed with different seeds for data reproduction purposes
h Final clustering was done using van der Waals and Coulomb interactions due to interactions of zinc ion with the ligand
i Wrapper process was done, using the LJ interaction as a scoring function, instead of AD4 (Additional file 2: Table S13)
j Final clustering was done with 6 Å distance limit between clusters

# Na CLSb #Rankc nd SRe

MDBSA MDF

1a 68 6 1 1 6 11

1bg 74 5 1 – 4 19

1cg 71 6 1 – 5 14

2 300 18 2 4 13 23

3a 222 46 3 4 21 11

3b 222 46 9 12 21 11

4 h 155 12 1 1 8 19

5 143 25 2 1 12 12

6i 116 26 1 2 12 10

7 123 26 4 4 12 10

8 106 25 1 1 10 11

9j 92 23 2 1 10 9

10 49 11 2 1 4 12
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were placed into the first two ranks (Table 2, Fig. 5, and 
Additional file  2: Table S8). For stable ligand copies, 
good structural matches to the corresponding reference 
conformations (Fig.  5 and Additional file  2: Table S8), 
as well as low #Rank values (Table  2) were found. Fair 
results were obtained for challenging cases too (Systems 
2 and 3). !e somewhat lower rank in these cases may 
be explained by the relatively high B-factor of the ligands 
of these systems (Additional file  2: Table S1) suggest-
ing an increased mobility and a less stable target-ligand 
interaction.

For example, B-factors of measured atomic positions of 
ligand MSo (System 2) vary in a range between 54 and 
95 Å2 (Additional file 2: Table S1). During  MDF simula-
tions we found that the RMSD varied between 2.5 and 
5.1  Å (Additional file  2: Table S8), and a final #Rank of 
4 and an RMSD of 3.1 Å were obtained. Considering the 
above high B-factor values, it is realistic to assume that 
ligand MSo adopts various conformations when bound 
to farnesyl phosphate synthase (System 2) including the 
one close to the assigned position found with an RMSD 
of 2.5  Å. !is conformational variability of the bound 

Fig. 3 Pilot molecular dynamics simulations. Benzamidine ligand (sticks) started the MD simulations from three positions at different distances 
(as indicated in the legend) from the native binding site on the trypsin target (grey cartoon). Arrows in a point from starting (t = 0 ns) to final 
(t = 1000 ns) ligand positions. Only two of the three 1000 ns-long simulations with the closest starting position succeeded in finding the refer-
ence binding pose (*) known from the crystallographic structure (3ptb). b Time-dependence of root mean squared deviation (RMSD) of the ligand 
measured from its reference pose
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MSo is probably due to its carboxylate group with the 
highest B-factor of 95 Å2. !is group is hydrated by bulk 
water molecules, helping the dissociation of MSo from 
the target (Fig.  2d). At the same time, MD simulations 
with explicit water molecules also account for a hydro-
phobic, anchoring interaction between the benzofuran 
part of MSo (no waters present, Fig. 2d) and the target. 
!is example shows the necessity of use of explicit water 
model during the shaking process in order to account for 
all, even antagonistic interactions.

In our pilot study (“Association or dissociation?” sec-
tion) it was demonstrated that MD methods following 
the association pathways often need large amount of 

computational time and/or a fortunate starting confor-
mation in order to find the primary site correctly for Sys-
tem 1. WnS yielded the correct solution for this system 
(Additional file 2: Table S8) in a 5-ns-long  MDB simula-
tion which is at least one order of magnitude shorter than 
the lengthy association times discussed in “Association or 
dissociation?” section. Elimination of ligand excess (dis-
sociation of ligand copies) (Tables S14 and S15) at an SR 
of 11 was facilitated by hydrogen bonding with explicit 
water molecules [46, 47]. !ermal motion of water mol-
ecules also contributed to fast “shake off” of the ligand 
copies especially in the cases of Systems with small 
ligands with the application of the simulated annealing 

Fig. 4 Wrapping tyrosine-protein kinase Src target into a mono-layer of ligand copies (System 5). a Unbound (ligand free) accessible surface 
area (ASA) of the target and the lowest  Einter of the cluster representatives in consecutive wrapping cycles. Target-ligand interaction energy  (Einter) 
increases with increasing number of cycles finding strong binding sites in the first few cycles, before the final, saturation region. ASA finally 
decreases below 1%. Structural images show the wrapping of the target (grey surface) with ligands (red). b The monolayer arrangement of the 
ligands (red sticks) wrapping the entire target surface (grey) after the final cycles. c A close-up of a section of the monolayer showing that the ligand 
copies are evenly arranged without overlap
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protocol  (MDBSA, see an SR of 23 in case of System 2 in 
Table 2).

A case with a small ligand

WnS was tested on tyrosine protein kinase target with a 
pyrazolopyrimidine 1 ligand (PP1, System 5). Regulation 
of kinase activity is important in numerous human dis-
eases [48, 49]. At the same time, this kinase is a challeng-
ing test target for WnS as it has multiple sites including 
an allosteric one identified in previous studies [50, 51]. 
!e native, PP1 site was found (Fig.  5) at an excellent 
RMSD agreement (1.4 Å, Fig. 5) with the crystallographic 
position. Besides obtaining very good RMSD (Fig. 5), the 
#Rank was improved from second to first place (Table 2) 
during the final  MDF simulation (Additional file 2: Table 
S16). Apart from the primary site, our goal was to find 
other, prerequisite binding sites, as well. As described 
in a previous MD study [33], such sites correspond to 
poses on the binding pathway leading to the primary 
site. WnS found both low- and high energy prerequisite 
sites described previously [33] (Fig. 6). Besides structural 
matches, #Rank and the corresponding energy values are 
also comparable to the previous results. Notably, WnS 
can predict multiple binding sites beyond experimentally 
observable ones. !ese binding sites can be considered 

as prerequisite or allosteric binding sites. Previous MD 
results [33, 52] concluded, that finding prerequisite bind-
ing sites is a substantial advantage of the MD simulations.

Cases with large ligands

Tyrosine kinase also binds dasatinib (System 9), a bulky 
ligand, for which an SR of 9 was obtained (Table  2), 
after six simulated annealing cycles (Additional file  2: 
Table S12). !e same four binding pockets were found 
for dasatinib as for the above PP1 (Additional file  2: 
Table S17). After the final  MDF step, local conforma-
tional refinement of dasatinib was observed, improving 
the RMSD from 2.3 to 1.9 Å. Similar to PP1, this could 
be partially explained by the role of the water molecules 
and the enhanced target motion during  MDBSA. WnS was 
further tested on the challenging System 10 with a pen-
tapeptide ligand with twenty-three flexible torsions. !e 
correct binding position of the ligand was obtained after 
the  MDF stage of Shaker with an improvement of RMSD 
from 6.8 to 1.7  Å (Fig.  7, Additional file  3: Supporting 
Movie 2).

A re-ranking (Table 2) from Rank 2 to Rank 1 was also 
observed after  MDF. For comparison, the wrapped tar-
get-ligandN complex of System 10 was subjected directly 
to an  MDF simulation skipping the  MDB and  MDBSA 
steps of Shaker. In this case, an RMSD of 11.3 Å (Line 10b 
in Additional file  2: Table S8) was obtained which was 
worse than the RMSD obtained with the complete Shaker 
protocol (1.7 Å, Fig. 5). !is demonstrates that both  MDB 
and  MDBSA steps of Shaker are necessary to find the cor-
rect position. After Wrapper, the pentapeptide was in a 
closed, cyclic conformation (Fig.  7, Snapshot 1). !is 
unrealistic arrangement was opened up (Snapshots 2 and 

Fig. 5 Structural fits quantified as root mean squared deviation 
(RMSD) with values given in Å. Ligand conformations after Shaker 
(grey) compared to the crystallographic references (red sticks). 
System# is bold

Fig. 6 Haematopoetic cell kinase (HCK, System 5) with ligand copies 
remaining after Shaker. Ligand copies are colored by the calculated 
target-ligand interaction energy E, and the #Rank assigned. The previ-
ously reported pockets 1(ATP), 2(A-loop), 3(PIF site), 4(G-loop) and 
5(MYR) are numbered by their increasing  ELJ
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3) by interacting water molecules. It can be also observed 
that limited protein flexibility during  MDB and  MDBSA 
allowed only moderate reduction of the ligand RMSD 
by improvement of the target-ligand interactions. Most 
of the RMSD and interaction energy improvement was 
achieved after  MDF, and rearrangement of K380 inside 
the pocket was necessary, to improve the conforma-
tion of the simulated ligand (Fig. 7). All-in-all, MD steps 
including target flexibility have a significant influence on 
the results of WnS for large ligands. Introduction of  MDF 
considerably improved structural precision, in the above 
case studies of large ligands (Systems 9 and 10).

Conclusions
In the present study, a systematic strategy, the Wrap ‘n’ 
Shake was introduced for exploration of multiple binding 
sites and modes of drugs on their macromolecular tar-
gets. Wrap ‘n’ Shake systematically wraps the target into a 
monolayer of ligand copies using a modified blind dock-
ing approach and selects stable positions by shaking off 
loose binders. !e method offers a computationally fea-
sible solution for the present problems of the field (Intro-
duction). Wrapper requires only fast blind docking cycles 
with a program package such as AutoDock 4.2.3. !e 
Shaker process is fairly short and can be performed by 
available MD packages. Shaker is further accelerated by 

simulated annealing and uses all benefits of explicit water 
model and target flexibility. Wrap ‘n’ Shake is suitable to 
study interactions of protein targets with even large pep-
tide ligands. We have started the extension of the method 
towards protein ligands using a fragment-based approach 
with post hoc reconstruction of the ligand. In future 
applications, Wrap ‘n’ Shake could be also used for gen-
eral pocket search, besides docking of individual ligands. 
We envision that Wrap ‘n’ Shake can become the tool 
of choice for systematic exploration of multiple binding 
sites and modes of ligands in drug design and structural 
biology.

Additional files

Additional file 1. Supporting Movie 1 featuring the processes of Wrap-
per and Shaker in the case of System 5. The first part presents the results 
of 15 wrapping cycles. The second part contains  MDB and two  MDBSA 
cycles of Shaker. Final cluster representatives are the outputs of WnS. 
Additional refinement steps are shown in Supporting Movie 2 (Additional 
file 3).

Additional file 2. Supporting Tables S1–S17 and Appendix 1–4 with 
detailed methods and results.

Additional file 3. Supporting Movie 2 featuring conformational changes 
of pentapeptide KQTSV, bound to PDZ-domain (System 10) during 65 ns 
simulations performed Shaker. The binding pocket of KQTSV on the PDZ 
domain is presented with grey surface. The simulated and crystallographic 
reference structures of KQTSV are presented as teal and red sticks.

Fig. 7 During Shaker, conformational changes of the pentapeptide KQTSV are observed, while remains bound to its pocket on the PDZ domain 
(System 10). Red sticks represent the native ligand conformation from PDB (1be9). Teal sticks represent ligand conformations at different Shaker 
stages starting with the conformation right after Wrapper (1), and continuing with conformation after  MDBSA (2), and after  MDF (3). The changes of 
target-ligand interaction energy  (ELJ) and the RMSD during the MD stages in the Shaker protocol are plotted below the structural snapshots. See 
also Additional file 3: Supporting Movie 2 for further details of conformational changes
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Chapter 8

Systematic Exploration of Binding Modes of Ligands
on Drug Targets

Csaba Hetényi and Mónika Bálint

Abstract

Exploration of binding sites of ligands (drug candidates) on macromolecular targets is a central question of
molecular design. Although there are experimental and theoretical methods available for the determination
of atomic resolution structure of drug-target complexes, they are often limited to identify only the primary
binding mode (site and conformation). Systematic exploration of multiple (allosteric or prerequisite)
binding modes is a challenge for present methods. The Wrapper module of our new method, Wrap ‘n’
Shake, answers this challenge by a fast, computational blind docking approach. Beyond the primary
(orthosteric) binding mode, Wrapper systematically produces all possible binding modes of a drug scanning
the entire surface of the target. In several fast blind docking cycles, the entire surface of the target molecule
is systematically wrapped in a monolayer of N ligand copies. The resulted target–ligandN complex structure
can be used as it is, or important ligand binding modes can be further distinguished in molecular dynamics
shakers. Wrapper has been tested on important protein targets of drug design projects on cellular signaling
and cancer. Here, we provide a practical description of the application of Wrapper.

Key words Pocket, Peptide, Enzyme, Interaction, Inhibitor, Receptor, Mechanism, Action, Agonist,
Antagonist

1 Introduction

There is a continuous increase in the number of atomic resolution
structures of biomolecules available in public repositories such as
the Protein Databank (PDB [1]). This promising trend is further
facilitated by emerging cutting-edge techniques such as cryo-
electron microscopy [2] allowing determination of structures of
large biological entities such as viruses [3]. Despite the increase in
the number of solved biomolecules, and high-throughput automa-
tion of X-ray crystallography [4], the measurement of structures of
biomolecular targets in complex with their ligands remains a chal-
lenge and requires considerable time and money in many cases.

Molecular docking has been introduced as a computational
counterpart of experimental techniques for the determination of

Zoltán Gáspári (ed.), Structural Bioinformatics: Methods and Protocols, Methods in Molecular Biology, vol. 2112,
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target–ligand complex structures [5]. Thanks to its high speed,
docking has been extensively applied in high-throughput screening
campaigns of drug design projects [6] focusing on a known binding
pocket of the target. Besides focused projects, docking has pro-
duced useful results if the search space was extended to the entire
surface of the target molecule and the corresponding approach was
named as blind docking [7, 8]. Blind docking has been extensively
applied for finding allosteric [9–11] or multiple [12–16] binding
sites. Like all other methods, docking also has numerous limitations
coming from its approximations. First of all, it has been designed
for focused search for drugs, and a systematic coverage of the entire
target surface has not been implemented. Furthermore, starting
ligand positions and steps of the search algorithm are mostly ran-
domized which decreases reproducibility of the results. Modeling
of flexibility (induced fit) and hydration of the target molecule is
also oversimplified in docking programs to ensure fast results
[17, 18]. Application of molecular dynamics simulations [19, 20]
for blind docking is a reasonable approach to overcome the above
hydration and flexibility problems of the fast methods. Nowadays,
it is quite common to use realistic explicit water models with
molecular dynamics, and flexibility can be obviously taken into
account on both target and ligand sides. While these features of
molecular dynamics considerably improve the precision of the cal-
culated complex structure, they still cannot guarantee a systematic
coverage of the entire surface of the target and correct location
of the real binding pocket(s) during a single docking
simulation [21].

To answer all these challenges of the blind docking problem, a
new method Wrap ‘n’ Shake [21] was developed. The Wrapper
module of Wrap ‘n’ Shake systematically finds all possible binding
modes (sites and conformations) of a drug in several fast blind
docking cycles. Wrap ‘n’ Shake has been tested on important pro-
tein targets of drug design projects on cellular signaling and cancer
[21]. In the present paper, a detailed description of the protocol of
the Wrapper module is provided to help future applications.

2 Materials

2.1 Preparation

of Target and Ligand

Molecules

Wrapper requires complete target and ligand molecules for proper
results. Unfortunately, PDB structures of targets often have miss-
ing atoms or residues, which need to be inserted (see Note 1). In
cases of missing terminal amino acids, acetyl and amide (N-methyl)
capping groups need to be added to the N- and C-terminus,
respectively. Such molecular editing and addition of hydrogen
atoms can be performed by freely available modeling software
such as Swiss-PdbViewer [22] or Schrödinger Maestro program
package v. 9.6 [23]. Preparation of target structures is completed by
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energy minimization using free program packages such as GRO-
MACS [24, 25]. For most of the protein targets, a uniform proce-
dure with an AMBER99SB-ILDN force field [26], TIP3P explicit
water model [27], and no restraints on the heavy atoms is appro-
priate. Ligand molecules can be built and edited by the above
Maestro or other software. Protonation of the ligands (where
applicable) is often helped by the pKa plug-in in Marvin Sketch
[28]. Fast energy minimization of the hydrogenated ligand struc-
tures is usually sufficient. In the first stage, molecular mechanics
minimization with Maestro software is performed, using OPLS
force field [29], followed by a quantum chemistry program package
such as MOPAC [30] with a semiempirical parametrization such as
PM6 or above.

2.2 Wrapper The Wrapper module is available as part of a stand-alone, open
source software package Wrap ‘n’ Shake freely downloadable from
the web page of the program [31] along with full documentation.
It is distributed under the terms of GNU General Public License.
At present, Wrap ‘n’ Shake 1.1 contains software for the Wrapper
module. Wrapper contains two bash scripts (pre-wrapper.sh and
wrapper.sh) and a C program (wrp). After downloading the pack-
age (wns.tgz), it can be extracted using the following command:

$ tar -xvf wns.tgz

Pre-wrapper.sh and wrapper.sh can be found in wns/scripts and
are readily usable under the Linux operating system. The source
code of wrp can be compiled and installed into a $HOME/bin
using the following commands:

$ cd wns/wrp/src

$ make

$ make install

The present version of Wrapper requires installation of external
programs AutoGrid 4.2 and AutoDock 4.2 (Release 4.2.3) of the
AutoDock 4.2 [32, 33] package, Python scripts of AutoDockTools
[34], editconf and sasa programs of the GROMACS program
package. All external programs are freely available. Organization
of the components of Wrapper is shown in Fig. 1 and the programs
are described as follows:

1. Script pre_wrapper.sh requires standard PDB files as input and
prepares the files required by wrapper.sh. The necessary inputs
for wrapper.sh are the PDBQT files of the ligand and target
molecules and also grid (GPF) and docking (DPF) parameter
files. The PDBQT file has the similar format to the regular PDB
file, with additional columns containing the partial charges and
the atom type. In wrapper, Gasteiger partial charges and the
atom types of the modified AD4_parameters.dat (see also
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Subheading 3.3) file are used. Notably, the original version of
AD4_parameters.dat can be found in the source code folder of
the AutoDock4.2 package. Both the ligand and target PDBQT
apply united atom representation, which means that only the
polar hydrogens are explicitly kept in the docking input file.
The GPF file is the input of AutoGrid 4.2 and contains the
docking (grid) box parameters. The grid box defines the search
space where the docking calculations are performed. The GPF
file also lists the names of target and ligand files and their atom
types. The DPF file is the input file of AutoDock 4.2 and
contains the parameters of the search algorithm and docking
runs. The DPF also contains the names of map files generated
by AutoGrid 4.2 for each atom type.

2. Wrapper.sh is the director of the Wrapper module. In several
blind docking cycles, it covers the entire surface of the target
with a monolayer of numerous ligand copies. Wrapper.sh works
in symbiosis with program wrp of the present package detailed
in the next point. The blind docking cycles are performed by
external programs of the AutoDock 4.2 package and per-
formed in separate working directories. After each cycle, free
surface area of the target is calculated by external programs of
the GROMACS package. Wrapper.sh reads PDBQT files of the
ligand and target molecules and supplies the results as a single
PDB file. For the ligand, a template file (ligand_templ.pdbqt) is
also required for post-processing the wrapped target and used

Fig. 1 Components of Wrapper and their connection with external shell scripts and programs. The figure was

reproduced from the website of Wrap ‘n’ Shake with permission
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in the trimming mode of Wrapper. During Wrapper, all ligand
copies are renamed as “LIG” by the wrp program, and after
ligand minimization, all atom names are renamed by MOPAC.
Thus, the ligand template file is used for renumbering and
renaming the ligand atoms and residue name after Wrapper.
This ensures an exact match of the ligand atom names and
ligand residue name with the molecular dynamics topology,
which is required if the user merges the target ligand complex
to use in a Shaker step. The atoms of the template file must have
exactly the same order and number of heavy atoms as the input
ligand.pdbqt file. The template file can be prepared by follow-
ing the same input preparatory steps as for the ligand.pdb,
except MOPAC minimization. Note that all hydrogen atoms
must be added (Subheading 2.1) and the MOPAC energy
minimization step is not required. After adding all hydrogen
atoms, the PDB template file can be converted to a PDBQT
file, using the command line of the python script below or the
graphical interface of ADT program:

$pythonsh $PATH_TO/prepare_ligand4.py -l ligand_templ.pdb -o ligand_templ.pdbqt -v

-d $PATH_TO/ligand_dict.py –F

In this way, the same number and order of atoms is
obtained in the template file as in the input PDBQT of the
ligand. Wrapper.sh also produces log files containing reports on
finished cycles with interaction energy and accessible surface
values.

3. Wrp is an open source C program and serves as the background
engine of the Wrapper module. It is called by wrapper.sh and
performs clustering and ranking of the docked ligand confor-
mations and subsequent assignation of excluded atoms. In
wrapping mode, wrp results in a PDBQT file including the
target, and all ligand copies accumulated up to the actual
cycle and also a statistical file with ranking and intermolecular
energy results (Einter), calculated by the AutoDock 4.2 scoring
function [35]. Wrp can also work in trimming mode where
excess ligand copies not interacting with the target are removed
after the final cycle and the results are written into a single PDB
file identical with that one mentioned at wrapper.sh. This step
is also initiated by script wrapper.sh. Repeated use of wrp in
wrapping mode provides the target structure systematically
covered in a monolayer of ligand copies. The work of wrp is
adjusted by distance tolerance values as described in Subhead-
ing 3.4.

4. External python scrips (Table 1) of AutoDock Tools (ADT) are
required by pre-wrapper.sh. The scripts are freely available
[32, 34]. After ADT installation, these scripts can be found in
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a separate directory of the user: $USER_HOME/MGLTools-

1.5.6/MGLToolsPckgs/AutoDockTools/Utilities24

The pythonsh binary is also installed, and insertion of an
alias line in the .bashrc system file is advised, for easy access:
alias pythonsh¼$USER_HOME/MGLTools-1.5.6/bin/

pythonsh

The python scripts generate PDBQT, DPF, and GPF files
required by AutoDock 4.2 using the parameters described in
Table 2. Based on the generated PDBQT files, ADT scripts also
prepare grid and docking parameter files as required by Auto-
Dock 4.2 [32].

We recommend the use of flexible ligand structures with
torsional restriction on the aromatic and amide bonds only.
Accordingly, branching of the torsion tree in the DPF files is
generated with all default torsions of the ligand molecules as
automatically assigned by ADT.

5. Blind docking runs of wrapper cycles are performed by external
program package AutoDock 4.2. including program AutoGrid
4.2 for calculation of grid maps of the target molecule with
pre-calculated energy values and the docking engine AutoDock
4.2 with a Lamarckian genetic algorithm. Docking parameters
were used as described in a previous study [8]. The source code
of the package was modified in order to be able to produce all
the necessary map files in case of multiple target files. Original
source code limits the number grid map generation to 14 atom
types. Therefore, to produce grid map for all atom types, in
autocomm.h file, line number 93 needs to be changed as
follows.

Original source code:

#define MAX_ATOM_TYPES (14 - NUM_NON_VDW_MAPS)

Replaced by:

#define MAX_ATOM_TYPES (34 - NUM_NON_VDW_MAPS)

Table 1

Python scripts of ADT

Python script name Input Output

prepare_ligand4.py PDB PDBQT

ligand_dict.py PDB PDBQT

prepare_receptor4.py PDB PDBQT

prepare_dpf42.py PDBQT DPF

prepare_gpf4.py PDBQT GPF
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6. External GROMACS programs editconf and sasa [25] are
called for calculation of accessible surface area of the target–
ligand complex using a PDB file as input. The editconf com-
mand transforms the input pdb file intro gromacs .gro file, and
the sasa program performs the calculations. GROMACS sasa
calculates the ASA for the entire target–ligand complex, but
wrapper.sh will eliminate the surface calculated for the ligand,
by deleting rows, with residue name “LIG” from the total_a-
tomarea_lig.xvg file obtained from GROMACS. Wrapper.sh
also produces a log file containing the free target surface not
covered by ligand copies.

Table 2

Blind docking parameters

Parameter Value

Grid parameters

Grid spacing 0.375 Å

Number of grid points (x,y,z) 200,200,200

Docking parameters

Search method Lamarckian genetic algorithm

Population size 250

Maximum number of energy evaluations 20 million

Maximum number of generations 2000 million

Number of top individuals to survive to next generation 1

Rate of gene mutation 0.02

Rate of crossover 0.8

Alpha parameter of Cauchy distribution 0.0

Beta parameter of Cauchy distribution 1.0

Number of iterations of Solis and Wets local search 300

Consecutive successes before changing rho 4

Consecutive failures before changing rho 4

Size of local search space to sample 1

Lower bound on rho 0.01

Probability of performing local search on individual 0.06

Number of hybrid GA-LS runs 100
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3 Methods

3.1 Overview Wrapper builds a monolayer of ligand copies covering the entire
target molecule. Wrapper performs a series of automated, fast blind
docking cycles. The algorithm ensures a complete and systematic
coverage of the surface of the target with ligand copies. Wrapper
uses a modified docking force field and clustering allowing maximal
ligand–target and minimal ligand–ligand interactions. The popular
docking program package AutoDock 4.2 is piped into Wrapper and
performs consecutive fast blind docking cycles without the need of
initial ligand positions or any other interventions of the user. The
outcome of Wrapper is a single PDB file including the structure of
the target wrapped in a monolayer of ligand copies, i.e., the struc-
ture of a target–ligandN complex. The application of Wrapper is
described using an example (Fig. 2) of the complex of hematopoie-
tic cell kinase (HCK, target, in green) and 1-ter-butyl-3-p-tolyl-
1H-pyrazolo[3,4-D]pyrimidin-4-ylamine (PP1, ligand, in red). The
complex structure was published under PDB code 1qcf, and this
code will be used in the names of input and output files of the
example also provided for download on the web page of the
program [31].

3.2 Input Files Wrapper requires complete, energy-minimized structures of the
ligand (1qcf_ligand.pdb, red) and target (1qcf_target.pdb, green)
molecules in Protein Databank (∗.pdb) format. Preparation of
target and ligand molecules is described in Subheading 2.

3.3 Pre-wrapper.sh From both target and ligand structures, pre-wrapper.sh produces
PDBQT input files (1qcf_target.pdbqt, 1qcf_ligand.pdbqt) and
parameter files (1qcf_target.gpf, 1qcf_target.dpf) as required by
AutoDock 4.2 called by wrapper.sh. The docking box is set to
cover the entire surface of the target molecule. For this, the center
of the box is set to that of the target molecule (default option), and
grid maps of 200 grid points in all three spatial directions are
generated. Notably, if the size of the target exceeds ca. 450 amino
acids corresponding to the largest proteins of our test set (Fig. 3),
the number of grid points of 200 should be increased in the
following command of the pre-wrapper.sh script calling prepar-
e_gpf4.py in order to cover the whole target in one BD cycle.

$SCRIPTPATH/pythonsh $SCRIPTPATH/prepare_gpf4.py

-l $ligand_name.pdbqt -r $target_name.pdbqt -p spacing=0.375

-p npts=’200,200,200’ -p ligand_types=’A,..,YY,LL’ –v

With this, the numbers of grid points are specified in GPF for
all three directions of space. The user must also consider the shape
of the target and change the box dimensions in one or all directions
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accordingly (see Note 2). An edge of the box can be calculated in
Ångström as the product number of grid points and grid spacing
(a value of 0.375 Å was used; Table 2). Pre-wrapper.sh also adds
new entries of excluded atom types LL and YY (commonly marked
as X in our original publication [21]) to the DPF and GPF files.
This step is performed only once, as the same parameter files can be
used in all wrapping cycles later. This step is necessary for genera-
tion of the map files of the new atom types. Gasteiger partial
charges are added to both the ligand and target. Addition of
hydrogen atoms to the ligand or target is skipped as the minimized
PDB files already have all atoms. The nonpolar hydrogens are

Fig. 2Main stages of Wrapper. The target (hematopoietic cell kinase, green) is wrapped in numerous copies of

the ligand (1-ter-butyl-3-p-tolyl-1H-pyrazolo[3,4-D]pyrimidin-4-ylamine, red) molecule in several blind dock-

ing cycles. The docking box (red lines) covers the entire surface of the target molecule. The figure was

reproduced from the website of Wrap ‘n’ Shake with permission

Fig. 3 Targets (grey) wrapped in a monolayer of ligand (red) copies. AA count of amino acids of the target, MW

molecular weight of the ligand, N number of ligand copies, CC count of cycles. (The figure was reproduced

from the website of Wrap ‘n’ Shake with permission)
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merged (Subheading 2.2). All default active torsions are kept for
the ligand, but the target is treated rigidly, without active torsions.
Parameter files have the settings as described in Subheading 2.2
(Table 2).

Pre-wrapper also performs three important administrative
modifications on text files.

1. The first row of the parameter files (both the DPF and GPF) is
updated to the actual path of the modified AD4_parameters.
dat.

Default:

autodock_parameter_version 4.2

Modified:

parameter_file $USER_DEFINED_PATH/AD4_parameters.dat

2. New lines of atom types LL and YY are inserted after the last
line of standard atom type maps.

map 1qcf_target.YY.map

map 1qcf_target.LL.map

3. Two lines of atom types LL and YY are inserted to the end of
AD4_parameters.dat file (the modified file can be also down-
loaded from our web page [31]).

atom par YY 3.60 1E-04 00.0000 0.00000 0.0 0.0 0 0 0 0

atom par LL 3.60 1E-04 00.0000 0.00000 0.0 0.0 0 0 0 0

The user may decide to prepare the input PDBQT, DPF,
and GPF using the graphical interface of ADT instead of
pre-wrapper.sh. In this case, after generating the DPF and
GPF, the above detailed three changes should be also done
by manual editing of the files. Whereas the use of pre-wrapper.
sh is not mandatory as file preparations can be arranged as
described above; however, the use of pre-wrapper.sh is recom-
mended to avoid human mistakes especially if multiple target
files or a library of ligand structures are handled.

3.4 Wrapper.sh

and wrp

Wrapper.sh performs the coverage of target surface with a mono-
layer of N ligand copies ending up in a target–ligandN complex.
Several fast BD cycles are performed all of them resulting in
100 docked ligand copies. The count of necessary BD cycles
(CC) depends on the size and shape of the target molecule as
indicated in Fig. 3. Ligand copies and interacting target surface
elements are excluded from successive BD cycles via assignation of a
new “excluded” atom type to the atoms involved. In this way,
unbound target sites can be distinguished from those covered
with ligand copies, ligand-ligand interactions are minimized, and
target–ligand interactions are maximized for the largest possible
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coverage of the target surface. Further details on structural and
physical chemistry of the Wrapper algorithm can be found in the
original publication of Wrap ‘n’ Shake [21].

The BD cycles follow a uniform protocol. Grid map files
(1qcf_target_∗.map) of chemical and excluded (YY, LL) atom
types are calculated by Autogrid 4.2 along with a log file. The
corresponding ∗.YY.map and ∗.LL.map files are generated before
the docking runs. One hundred BD runs are performed in each
cycle, and the docked ligand structures are collected in a log file
(1qcf_1.dlg for the first cycle) by AutoDock 4.2. The log file is
evaluated by the wrp program, which first ranks and clusters the
docked ligand conformations.

Docked ligand conformations of the DLG file are clustered and
ranked based on their interaction energy (Einter, the first energy
component of estimated free energy of binding in the DLG file)
values with the target and the closest distance between each heavy
atom of the ligand copies (dmin). In the initial clustering phase,
wrp (wrapper mode) sorts the 100 docked ligand conformations
according to Einter. Ligand conformation of the lowest Einter from
among the 100 docked ligand copies is selected as the representa-
tive of Cluster 1. Ligand conformation of the second lowest Einter is
selected as a representative of a new Cluster 2 if dmin>drnk, where
drnk is a ranking tolerance, a measure of separation of clusters from
each other. If dmin�drnk, then ligand conformation of the second
lowest Einter is placed into Cluster 1. In this way, all 100 ligand
conformations are clustered, and the representatives are evenly
spread over the target surface without clashing each other. In our
protocol, drnk was set to 2 Å, which is approximately a covalent
bond distance (1.5 Å) plus a 0.5 Å added. The results of clustering
are summarized in .sta file type (O_1qcf_1_wrp.sta) after each
wrapper cycle.

Wrp in wrapper mode assigns the new atom type (YY, LL) of
the abovementioned excluded atoms in the target file (YY) and the
docked ligand copies (cluster representatives LL). Excluded atoms
are assigned using a target–ligand interface tolerance and an assig-
nation tolerance. Both of these tolerance values were set to 3.5 Å in
our default settings. Merging of the modified target and ligand
copies results in a target–ligand complex O_1qcf_1_wrp.pdbqt
file. This file is moved from the working directory of the current
cycle into the directory of the next cycle and used as target input
for programs AutoGrid 4.2 and AutoDock 4.2 if none of the exit
criteria described below are achieved. After each cycle, the free
(unliganded) accessible surface area (ASA) is calculated by external
GROMACS program sasa, as described in Subheading 2, Point
6 (Msroll in the 1.0 version). Wrapping ends if ASA � 1% or the
interaction energy Einter value of any cluster representative in the
cycle is �0 kcal/mol. Otherwise, the resulted PDBQT file is for-
warded to the next cycle as described above. ASA and Einter
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evaluations are calculated for each wrapper cycle and stored in two
separate files (O_1qcf_1_surface_percentage.log andO_1qcf_1_lo-
west_energy.log). These files are generated in the working directory
of each cycle and moved to “stats” folder where statistical evalua-
tion of Wrapper takes place.

For our test system 1qcf, wrapping finished in 16 cycles and
1qcf_16_wrp.pdbqt is the result after the last cycle. All files of the
complete Wrapping process of 16 wrapping cycles can be down-
loaded as a single compressed package (O_1qcf_wrp.tgz).

After the last (16th) wrapping cycle, a trimming mode of wrp is
involved to remove ligand copies positioned far from the target
surface. This is necessary, as some ligand copies may dock to distant
regions of the docking box depending on the actual target. The
trimming step also performs formal post-processing of the
1qcf_16_wrp.pdbqt file using a template file (1qcf_ligand_templ.
pdbqt) described in Subheading 2.2. The resulted
O_1qcf_16_wrp_trm.pdb file has all atoms renamed according to
the standards of PDB file format allowing the use of this file of the
molecular dynamics steps of a Shaker process (see Note 4).

3.5 Output,

Benchmark

In our example, the target structure was wrapped in a monolayer of
N ¼ 143 ligand copies in 15 cycles (Fig. 3). The CPU time of a
cycle of 100 docking runs took 11 h for this system on an Intel
Xeon E5520. In general, CPU times of a cycle varied between some
hours and 1–2 days for the test systems listed in Fig. 3 depending
on the size of the target molecule and the size and number of
rotatable torsion of the ligand (see Note 3). The count of cycles
(CC in Fig. 3) necessary for complete wrapping depends both on
the size and geometry of the partners. The largest ligand (system
1be9) fully covered its relatively small target in less than ten cycles.
The largest CC of 32 was found for system 3n3l, where the ligand is
relatively small and the target is large. The special geometry of
ligand benzamidine is probably a reason for the unique wrapping
pattern corresponding to unexpectedly low N and CC values
obtained in the case of system 3ptb.

4 Notes

1. During pre-wrapper.sh, it is useful to check the net charge (sum
of partial charges of all atoms in the PDBQT file) of the target
and ligand molecules. The value of the net charge of a PDBQT
file should be close to an integer. For example, a net charge of
3.5 indicates that the structure of the molecule is erroneous
(missing/extra atoms), or partial charges could not be assigned
correctly by ADT. In this way, checking of net charge helps the
detection of error occurring during the preparation of target or
ligand structures. Special attention must also be given to the
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charge assigned on systems with coordinating ions (e.g., Fe3+,
Ni2+, etc.) as the partial charges assigned for such atoms by
ADT are not always correct [36].

2. The user should check if the grid box covers the whole target;
otherwise, parts of the target surface excluded from the box
will not be analyzed for possible binding sites. The grid box can
be visualized by a python script called gbox.py downloadable
from the website of Wrap ‘n’ Shake [31].

3. We suggest running pre-wrapper.sh on a simple workstation
(personal computer, PC) as it requires only some seconds to
finish. Wrapper.sh can also be run on a simple PC under Linux.
However, as complete wrapping of a target usually takes several
hours or days of CPU time, its frequent application may require
a dedicated PC or a server node.

4. The Shaker protocol of Wrap ‘n’ Shake [21] can be used for
distinction of important binding modes and structural refine-
ments on hydration and induced fit effects in successive molec-
ular dynamics steps. The wrapped target is placed in a
simulation box and hydrated with explicit water molecules.
The hydrated complex is subjected to a series of simulations
and filtering steps between the MD runs, where loosely bound
ligand copies are removed. Refinement of bound ligand struc-
ture can be performed with all target atoms released.
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Abstract: Transient receptor potential ankyrin 1 (TRPA1) is a transmembrane protein channeling the
influx of calcium ions. As a polymodal nocisensor, TRPA1 can be activated by thermal, mechanical
stimuli and a wide range of chemically damaging molecules including small volatile environmental
toxicants and endogenous algogenic lipids. After activation by such compounds, the ion channel
opens up, its central pore widens allowing calcium influx into the cytosol inducing signal transduction
pathways. Afterwards, the calcium influx desensitizes irritant evoked responses and results in an
inactive state of the ion channel. Recent experimental determination of structures of apo and
holo forms of TRPA1 opened the way towards the design of new agonists, which can activate
the ion channel. The present study is aimed at the elucidation of binding dynamics of agonists
using experimental structures of TRPA1-agonist complexes at the atomic level applying molecular
docking and dynamics methods accounting for covalent and non-covalent interactions. Following
a test of docking methods focused on the final, holo structures, prerequisite binding modes were
detected involving the apo forms. It was shown how reversible interactions with prerequisite
binding sites contribute to structural changes of TRPA1 leading to covalent bonding of agonists.
The proposed dynamics of action allowed a mechanism-based forecast of new, druggable binding
sites of potent agonists.

Keywords: TRPA1 receptor; prerequisite binding; covalent binding

1. Introduction

Mammalian neurons of the pain pathway detect potentially dangerous environmental
signals. In the peripheral nervous system, there are specialized nociceptive neurons,
that recognize either noxious chemical signals, thermal or mechanical stimuli. Pathological
processes, such as tissue damage and inflammation elicit the formation and subsequent
release of a wide variety of mediators (arachidonic acid derivatives, free radicals, H2O2,
H2S, etc.). These molecules depolarize the nerve terminals of nociceptors, which transmit
the signals to the central nervous system. The transient receptor potential ankyrin 1
(TRPA1) is a Ca2+-permeable cation channel that was identified as the chemical nocisensor,
expressed by primary afferent nerve fibers [1–9]. Activated TRPA1 promotes pain itching
and induces local neurogenic inflammatory response via the release of neuropeptides,
such as substance P, calcitonin gene-related peptide and neurokinins.

TRPA1 receptor is activated by the binding of electrophile ligands (Figure 1) to its
N-terminus cytoplasmic binding site (Figure 2A), which is characterized by three nucle-
ophilic cysteine residues (C621, C641 and C665) [6,7]. This binding event induces a local
conformational change, that is translated to the whole of the receptor, and a 15◦ rotation of
the transmembrane domain is observed [7], resulting in a pore widening, that facilitates
Ca2+ influx, which first potentiates, then desensitizes agonist-induced responses [7], result-
ing in an inactive state of the TRPA1 ion channel [10]. On the local scale, a cytoplasmic
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A-loop near the transmembrane region of the receptor overlays the binding site cavity [7]
and initially sterically hinders agonist binding. Upon the binding of the electrophile agent,
a flip of the A-loop (residues 666–680, Figure 2B) was observed towards the cell membrane,
leaving more binding space for the agonists. Thus, flipping of A-loop contributes to the
widening of the pore of the ion channel, and the above-mentioned activation process [7] at
the same time, and therefore, it is important in agonist design.

 

Figure 1. The Lewis structures of three TRPA1 agonists, JT010, benzyl-isothiocyanate (BITC) and Figure 1. The Lewis structures of three TRPA1 agonists, JT010, benzyl-isothiocyanate (BITC) and
bodipy-iodoacetamide, and the PDB IDs of their complexes with the TRPA1 receptor. The original
molecular structures were restored prior to the covalent bond formation. A chlorine was added to
JT010, an iodine to bodipy-iodoacetamide and the geometry of the N=C=S bond of BITC was restored.
The atoms that participate in the formation of the covalent bond are marked by black dots.

Known electrophile agonists of the TRPA1 receptor include dimethyl trisulfide (DMTS)
and allyl isothiocyanate (AITC) [4,5,8]. However, given the size of these molecules, they
would not bind selectively to only one cysteine amino acid residue in the body. Thus,
the need for a selective site-specific electrophile agonist (JT010) was first met in 2015 by
Takaya et al. [4], and a potent thiazol derivate agonist (EC50 = 0.65 nM, Figure 1) with a
covalent alkyl-halide warhead was designed. Since then, the binding position of JT010 was
experimentally found by cryo-electron microscopy [7]. Recent structural studies [2,3,6,7]
provided additional details of the agonist binding mechanism and consequential receptor
activation. Besides JT010, the binding of the other two site-specific covalent agonists
BITC [6] and bodipy-iodoacetamide [7] (Figure 1) was investigated, which preferentially
bind to the active site cysteine C621 of the TRPA1 receptor.

Covalently binding agonists are subjects of intense research [11], and they often form
covalent bonds with nucleophilic cysteine residues. As cysteine is abundant in the human
proteome, a careful design has to be performed to achieve binding site specificity [11,12]
to avoid unwanted promiscuity of the agonists via non-selective covalent bonds with
non-targeted cysteines. Thus, a common strategy of covalent agonist design adopts known
agonists having selective non-covalent interactions [11] with the receptor. Both covalent
and non-covalent interactions have been fully described [6,7] at the final, irreversible
binding mode of the agonists in Figure 1. However, the binding routes leading to the
final binding pocket have not been mapped at atomic resolution. The above-mentioned,
agonist-induced structural changes of TRPA1 at the A-loop (Figure 2B) suggest that the
agonist may form dynamic interactions with prerequisite sites on their route to the final,
covalent positions.

The present study is focused on the elucidation of binding dynamics of covalent
agonists using experimental structures of their complexes with TRPA1 (holo form) and
compared to prerequisite interactions with the apo form. Covalent and non-covalent
molecular docking techniques are tested at forecasting prerequisite and final, covalent
binding modes of the agonists. The docked agonist-TRPA1 complexes are subjected to
molecular dynamics calculations to complete the binding mechanism at the atomic level.
We also aim at the mechanism-based forecasting of prerequisite binding sites which can
become druggable targets of agonists in drug design projects.
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Figure 2. (A) The TRPA1 ion channel shown as grey cartoon representation, the agonist binding Figure 2. (A) The TRPA1 ion channel shown as grey cartoon representation, the agonist binding site is
shown by the binding of bodipy-iodoacetamide (PDB: 6v9v) as teal spheres. The A-loop is highlighted
with blue; (B) the movement of the A-loop during ligand binding. The figure was prepared with
the superposition of 6v9w on 6pqo. The blue loop is A-loop in the holo, open form, and the red is
A-loop in the apo, closed form. The rest of the binding site is shown with grey cartoon. bodipy-
iodoacetamide is shown in teal sticks, and C621 in all atom representation grey sticks. (C) The close-up
of the binding of bodipy-iodoacetamide to the agonist binding site of TRPA1, interacting amino acids
are shown as grey thick lines in all atom representation, bodipy-iodoacetamide is shown as teal all
atom representation sticks.
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2. Results and Discussion

2.1. Final Covalent Binding Modes

The atomic resolution structures of three covalent agonists JT010 [4], BITC [6] and
bodipy-iodoacetamide [7] (Figure 1) bound to the TRPA1 ion channel are available in the
Protein Databank (PDB). JT010 and bodipy-iodoacetamide have an alkyl-halide covalent
warhead, the bonds made with chlorine and iodine atoms break up during covalent binding
to C621 (Figure 3). BITC participates in an isothiocyanate bond with C621 (Figure 3),
the N=C double bond diminishes, and the C atom forms a covalent bond with the S atom
of the target C621, and the N atom of BITC gains a H atom. As the nucleophilic C621
binds all three electrophilic agonists covalently [6,7], our docking studies focused on the
surrounding binding pocket.

 

Figure 3. The reaction schemes of JT010, BITC, bodipy-iodoacetamide. Atoms, that participate in Figure 3. The reaction schemes of JT010, BITC, bodipy-iodoacetamide. Atoms, that participate in the
formation of the covalent bond are highlighted by a black dot (•). The distance of these two atoms is
referred to as d.

As a first step of our investigation, the popular program package FITTED [13–15] was
tested using the experimental PDB structures as references for comparison with the docking
results. FITTED was first tested to reproduce the final binding modes of the covalently
bound agonists. A standard evaluation protocol was applied to all covalent docking results.
Firstly, the structural match of the calculated binding mode (bind position, orientation,
and conformation of the ligand) to the crystallographic reference was calculated and the
best match was expressed as a root mean squared deviation (RMSDbest, see Section 4 for
the definition of all metrics used in the Tables) [16]. Secondly, it was tested if the docking
method identified RMSDbest as an energetically favorable binding mode and ranked it at
the top of the list of all binding modes. The second criterion reports on the applicability of
the binding free energy (scoring) function of the docking method.
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The covalent docking of the agonists to the holo form of TRPA1 was structurally
successful as the RMSDbest values were comparable/below 2.5 Å (Table 1), a threshold
accepted in the literature [17–21]. Only bodipy-iodoacetamide showed a slightly elevated
RMSD (Table 1), which is due to the mobility of the -SH group around the Cβ of C621
during docking. The rotation of the S atom around the Cβ of C621 also turns bodipy-
iodoacetamide from its experimental position around its longitudinal axis by ca. 180◦.
The Cβ-S-Cbodipy-iodoacetamide angle is also smaller than that observed in the experimental
structure. The binding modes with RMSDbest were positioned to the first place on the
ranking lists for all three agonists (Table 1). The calculated free energy of binding of JT010 is
the most favorable, closely followed by that of BITC (Table 1), apparently, the alkyl-halide
covalent bond formed by the alkyl-iodine pharmacophore of bodipy-iodoacetamide is
less favorable compared to that formed by the alkyl-chlorine pharmacophore of JT010.
The efficiency index (EINHA) of BITC is the best out of the three reference ligands.

Table 1. Covalent docking calculations performed by FITTED [13–15].

Ligand Name JT010 BITC Bodipy-Iodoacetamide

HOLO target
AAmatch (%) 100% 100% 100%

RMSDbest (Å) 2.28 2.05 3.87
Rankbest 1/3 1/3 1/3

∆GFD (kcal/mol) −84.1 −77.7 −44.3
NHA c 23 10 22

EINHA
d (kcal/mol) 3.66 7.77 2.01

dcovalent (Å) 1.8 (1.8) a 1.8 (1.8) a 1.8 (1.8) a

APO target b

AAmatch (%) 100% 60% 66.6%
RMSDbest (Å) 6.82 4.75 6.55

Rankbest 1/5 1/5 1/5
∆GFD (kcal/mol) −77.4 −73.8 −43.1

NHA c 23 10 22
EINHA

d (kcal/mol) 3.36 7.38 1.96
dcovalent (Å) 1.8 1.8 1.8

a The experimental covalent bond lengths are shown in brackets; b Without A-loop; c Number of heavy atoms;
d Efficiency index.

The large conformational flexibility of target molecules is a challenge for fast docking
programs and can be handled by the involvement of molecular dynamics approaches [22]
which require longer calculation times. Conformational flexibility is important when
induced fit occurs during agonist binding. Here, the A-loop is a flexible element that covers
the binding site (Introduction, Figure 2B) in the apo TRPA1 conformation, and sterically
prevents the agonist from reaching its destination (holo position) at the bottom of the
pocket resulting in unacceptably large RMSD values and positive energies (Tables S1–S3).
Therefore, the A-loop was removed from TRPA1 and covalent docking calculations were
repeated using FITTED. Although the A-loop consists of the amino acids from 660–680,
in the apo docking calculations, only the amino acids 665–677 were removed, as these are
the ones that elicit the greatest movement during apo to holo transition. In the absence
(Tables 1–3) of the A-loop, all covalent bonds were formed with the apo TRPA1 (Table 1),
with RMSD values larger than those observed in the case of the holo TRPA1 (Table 1).
The corresponding ∆Gbest values were lower than those of the apo TRPA1 by 6% on
average. These findings emphasize the role of A-loop-agonist interactions in the final
binding position. However, the removal of the A-loop did not influence the EI and ∆Gbest
order of the ligands.
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Table 2. Non-covalent docking calculations performed by FITTED.

Ligand Name JT010 BITC Bodipy-Iodoacetamide

HOLO target
∆GFD (kcal/mol) −46.1 −32.4 −13.7

Rankbest 10/10 1/10 8/10
AAmatch (%) 100% 100% 100%

dbest (Å) 3.6 4.0 8.7
APO target a

∆GFD (kcal/mol) −33.4 −26.7 0.5
Rankbest 3/5 1/5 4/5

AAmatch (%) 100% 60% 33.3%
dbest (Å) 3.5 3.9 3.3

a Without A-loop.

The formation of the covalent bond between the agonist and TRPA1 (Figure 3) is a
quantum mechanical phenomenon, which is hard to treat adequately by docking programs
based on molecular mechanics scoring functions [23,24]. Despite the above challenges,
the covalent docking methodology of FITTED performed well for the above test cases and
supplied relevant structural and scoring (ranking) results. Encouraged by the above test
results, we expect that FITTED will also help in mapping the prerequisite binding modes
on route to the final binding pocket.

Table 3. Non-covalent docking calculations performed by AutoDock 4.2 [25].

Ligand Name JT010 BITC Bodipy-Iodoacetamide

HOLO target
∆GAD (kcal/mol) −6.8 −3.8 −5.9

Rankbest 1/5 1/1 4/4
AAmatch (%) 100% 80% 66%

dbest (Å) 3.6 6.5 4.0
APO target a

∆GAD (kcal/mol) −5.16 −3.74 −5.26
Rankbest 1/3 1/2 3/5

AAmatch (%) 50% 40% 0%
dbest (Å) 7.5 7.2 7.3

a Without A-loop.

2.2. Prerequisite Binding Modes

As it was discussed in Section 1, the entrance to the binding cavity (outer prerequisite
binding mode) and the formation of the final ligand-target covalent bond (inner prerequisite
binding mode) is hindered by the position of the A-loop (Figure 2B) in the apo form of
the TRPA1 target. During a successful binding process, the ligand initiates the flipping
of the A-loop via intermolecular interactions with the loop. To develop such interactions,
the ligand needs to occupy a prerequisite binding mode outside the final binding pocket.
Two different programs, FITTED and AutoDock 4.2.6 (The Scripps Research Institute,
La Jolla, CA, USA) [25], were involved in the mapping of possible prerequisite binding
modes by non-covalent docking and the results are shown in Tables 2 and 3, respectively.
Both programs are based on physico-chemical principles. FITTED is a genetic algorithm-
based docking method, that includes an ESFF [26] force field-based search engine, called
CDiscoVer [27] to perform conjugate gradient minimizations [13]. AutoDock also uses a
(Lamarckian) genetic algorithm and AMBER-based intermolecular force field terms for
scoring [25].

For prerequisite binding modes RMSD was not calculated, the distance (d) between
TRPA1 C621 S atom and the atom of the agonist that participates in the covalent binding was
used as a measure of ligand position instead. The dbest value indicates the closest distance
between the aforementioned atoms (black dots in Figure 3) achieved by subsequent docking
calculations. The match of the docked binding mode was expressed as the percentage of
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matching amino acids (AAmatch) compared with the experimental binding pocket. Both
programs ranked the binding mode of BITC with the dbest as the top 1st in all prerequisite
docking calculations (Tables 2 and 3). However, BITC is considerably smaller, than JT010
and bodipy-iodoacetamide. The head-to-tail docking orientation of larger agonists, like
JT010 and bodipy-iodoacetamide might cause elevated dbest values.

In all cases and both scorings, the holo prerequisite docking calculations yielded
better AAmatch and ∆GFD and ∆GAD, than the apo prerequisite docking calculations
(Tables 2 and 3). This was expected, as the holo conformation of the binding site is al-
ready prepared to accept the agonists. The FITTED prerequisite holo docking calculations
yielded an AAmatch of 100% in the cases of all three agonists. The dbest values of the
prerequisite docking calculations were under 4.0 Å in all cases, with the only exception of
bodipy-iodoacetamide holo docking (Table 3). In the case of AutoDock, the dbest values
of the holo prerequisite calculations were below 7.0 Å, and slightly above it in the apo
prerequisite docking runs. The dbest ≥ 7.0 Å values are due to head-to-tail binding mode
of the agonists (Tables 2 and 3).

The comparison of the prerequisite binding modes produced by FITTED on both
the holo and apo docking calculations of the three compounds resulted in C621 as the
only common binding site amino acid for all three agonists. All holo prerequisite docking
calculations found C621 with only the exception of bodipy-iodoacetamide prerequisite
holo docking with AutoDock. These findings suggest that different prerequisite binding
modes (Tables S5–S7) might result in good final covalently binding positions (Table 1).
By investigating more agonists with two docking programs, one might expect to discover
common amino acids that indicate a larger prerequisite binding area. If an agonist at least
partially interacts with the prerequisite binding area it has a chance to find its way to the
final binding pocket.

Amino acids C665, P666 and F669 of the A-loop are part of the binding pocket of bodipy-
iodoacetamide, and also of most prerequisite binding modes of bodipy-iodoacetamide and
JT010 (Tables S5–S7) found by both programs. C665 is also highlighted in the literature [7]
as an important amino acid both in agonist binding and receptor activation. The absence
of interaction of BITC with the above-mentioned amino acids might be due to the smaller
size of BITC compared to the other two agonists (Figure 1). These results suggest a
previously unexplored structural role of the amino acids P666 and F669 co-operating with
C665 in agonist binding and consequent flipping of the A-loop, leading to conformational
changes and receptor activation. These findings were also strengthened by virtual mutation
and docking (Figure S1). However, BITC interacts with another part of the A-loop as
prerequisite binding site found by apo docking with AutoDock. This BITC site was also
sufficient to open the binding pocket in molecular dynamics (MD) simulations (Section 2.3).

Although not an accepted medicine, JT010 has a remarkable EC50 of 0.65 nM [4].
Thus, in novel drug design, JT010 can be regarded as a reference point, and therefore,
it was further investigated from the mechanism viewpoint of this Section. During the
transition from a non-covalent, prerequisite binding mode (d = 3.6 Å) to the final, covalent
binding mode of JT010, its interactions with F669 and Y680 diminish (Table S4), and new
interactions with K620, I623 and E625 are formed (cut-off distance of interaction of 3.5 Å for
heavy atom–heavy atom distance). Interactions with the two binding site cysteines, C621
and C665 [7] are observed for both non-covalent and covalent binding modes of JT010. As it
was highlighted in the previous section, F669 is part of the A-loop and has a possible role in
the flipping of the loop during agonist binding to the TRPA1 receptor, based on the example
of JT010. It can be hypothesized, that interaction with F669 is only important in the initial
prerequisite binding of the agonist, later during covalent bond formation this interaction
diminishes, and the agonist penetrates deeper into the binding site, interacting with amino
acid residues that are in close proximity of C621. This observation is strengthened by
MD simulations also (see Section 2.3). The covalent ∆GFD of JT010 almost doubles (and
consequently its EI also), compared to that of the prerequisite binding mode.
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Regardless of their potency, all three agonists can activate the TRPA1 ion channel,
however, to prevent xenobiotic overload of the body it is advisable to administer the lowest
possible dose of a drug, which is only effective if the agent is highly potent. If using
JT010 as a reference for future studies, the following limit values can be concluded for
the selection of potent agonists. A prerequisite EI value of at least 2 kcal/mol, and a
prerequisite dbest ≤ 4.0 Å, and a prerequisite ∆GFD of at least -35 kcal/mol forecast a strong
agonist. Notably, the ∆GFD value of JT010 is approximated by that of BITC, and the EI of
BITC even surpasses that of JT010 (Table 1). bodipy-iodoacetamide somewhat lags behind
JT010 and BITC. These findings are in good agreement with the literature, as the EC50
value of iodoacetamide (without the bodipy label) is 357 µM [28], which is substantially
larger, than that of JT010. The EC50 of allyl-isothiocyanate (a similar compound to BITC) is
37 nM [7], which is also in the nanomolar range, as the EC50 of JT010.

The docking performance of FITTED slightly outperformed AutoDock as seen in
Tables 2 and 3. However, FITTED requires a probe previously placed within the binding
site to select the binding site amino acids, which obviously helps the search. At the same
time, AutoDock did not require such information, and an unrestricted search could be
performed for the prerequisite binding mode within the docking box. Thus, we decided
to use the prerequisite binding mode of BITC found by AutoDock apo calculation with
A-loop (Table S3) for further MD simulations in the next, Section 3.

2.3. Ligand Migration Dynamics Connecting Prerequisite and Final Binding Modes

MD simulations (100 ns, unrestrained, with explicit waters and simulated annealing
protocol as described in Section 4) were performed on both apo and holo forms of TRPA1
(Table 4) to further explore the binding dynamics of the agonist BITC of the best EI value
(Table 1). As the results of the previous Section indicated that the prerequisite binding
modes affect A-loop, we were particularly interested in the structural changes of the
loop, and the communication between the distinct prerequisite and final binding modes.
An MDapo simulation was used as a reference, to observe if there are any changes in the
conformation of the A-loop in the absence of the agonist. Then, two MD simulations
were started from two prerequisite binding modes of BITC on the apo TRPA1 found in
the previous Section, one of them interacting with the loop (MDrank1). Finally, an MD
simulation was started from the experimental binding position of BITC (MDholo), with the
covalent bond cut and the geometry of the N=C=S bonds restored. In the MDholo simulation,
an unbinding-binding event occurred and the A-loop remained stable throughout the
simulation (Figure 4). The interaction with the original five amino acids of the TRPA1
pocket gradually diminished and appeared once again in a very short time interval of the
first 0.7 ns (Figure 4). During the entire MDapo (Table 4) simulation, no significant changes
were observed in the conformation of the A-loop, while, in the case of MDrank1, the loop
moved upward (the red and blue arrows show the movement of A-loop and the teal arrows
the movement of BITC on Figure 5). In the starting position of MDrank1, BITC interacted
with the loop and was positioned beneath it (marked with 0 ns at Figure 5). After a very
short time (0.3 ns) the ligand dissociates from the TRPA1 surface, dragging down the loop
with itself. After 17.6 ns the loop moved upwards, approximating the open position of
the binding site which is present in the holo structure (Figures 2 and 5). Finally, (at 38 ns)
BITC finds its way back into the binding pocket and resides there for 2 ns until dissociation.
At the same time, in the case of MDrank3 (Table 4) in which the docked position of BITC did
not interact with the A-loop, BITC dissociated after 1.6 ns and afterwards, no changes were
observed in the structure of the loop. Thus, the above results showed how the binding
of an agonist to the A-loop induces its motion towards opening the binding pocket and
allowing the entrance of the agonists.
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Table 4. The details of the MD simulations performed to unravel the binding mechanism of BITC.

Simulation Name TRPA1 Ligand Change in A-Loop
Movement of the

Agonist

MDapo Apo protein - No change in A-loop
conformation -

MDholo,PSA Holo protein Experimental No change in A-loop
conformation

Unbinding–
binding

MDrank1 Apo protein Rank 1 docked
ligand binding mode

A-loop flipping to the
active conformation

Dissociation–
association

MDrank3 Apo protein Rank 3 docked
ligand binding mode

No change in A-loop
conformation Dissociation

Figure 4. The MDholo simulation starting from the experimental binding position, with the covalent
bond cut. Interaction energy distribution of the interacting amino acids of the pocket (inner prerequi-
site site) is shown during the MD simulation. The structural figures are snapshots of the binding
position of BITC at the stated time frame of the MD simulation. The protein is shown in grey cartoon
and BITC with teal sticks. The A-loop is marked with blue in the open conformation. C621 amino
acid is also shown as all atom sticks representation. The teal arrows indicate the movement of BITC.
Lennard–Jones interaction energies calculated between BITC and the TRPA1 target amino acids are
shown per residue on the diagram.
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Figure 5. The MD  simulation starting from the top 1st docked prerequisite binding mode of Figure 5. The MDrank1 simulation starting from the top 1st docked prerequisite binding mode of
BITC on the apo TRPA1. Interaction energy distribution of the interacting amino acids of the outer
prerequisite site are shown during the MD simulation. The loop motion is quantified by the distances
between the N atom of N615 of the A-loop and O atom of Q676 of the opposite loop (black dotted
line on the t = 38 ns structural plot, dLOOPS) shown as joint black boxes. The structural figures are
snapshots of the binding position of BITC at the stated time frame of the MD simulation. The protein
is shown in grey cartoon and BITC with teal sticks. The A-loop is marked with blue and red in
open and closed conformations, respectively. C621 amino acid is also shown as all atom sticks
representation. The red and blue arrows show the movement of the A-loop and the teal arrows the
movement of BITC. Lennard–Jones interaction energies calculated between BITC and the TRPA1
target amino acids are shown per residue on the diagram.

The interaction of the prerequisite binding mode with the P669 amino acid side chain
(first mentioned in the previous Section) was observed in the starting frame of MDrank1
and was diminished both upon dissociation and the penetration of BITC towards its final
binding pocket. BITC in the prerequisite binding mode forms mainly polar interactions
with amino acids of the A-loop and the other loop (Figure 5), such as S613, P674, T675 and
Q676. Towards the final binding mode, however, BITC interacts with hydrophobic amino
acids such as V678, I679 and Y680. This latter observation is strengthened by the MDholo
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run (Figure 4), where interactions with I623 and Y662 dominate. The distances between
the N atom of N615 of the A-loop and the O atom of Q676 of the opposite loop (Figure 5)
appear to be good indicators for A-loop opening and closing.

3. Materials and Methods

3.1. Preparation of the Ligand Structures

Ligand conformations were obtained from their respective atomic coordinate struc-
ture files of TRPA1 receptor-ligand complexes. The ligands were modified to regain their
original structure, before the covalent interaction. To JT010 [4] a chlorine was added. In the
case of benzylisothiocyanate (BITC, [6]) the proper bond orders and hybridization states
were restored, as R-N=C=S, the hybridization states of N and S were set to sp2 and that of
C to sp. Finally, in the case of bodipy-iodoacetamide [7] an iodine was added. These modi-
fications were carried out using the builder function of PyMol (Schrödinger, New York, NY,
USA) [29]. All the ligands were energy minimized by a quantum chemistry program pack-
age, MOPAC [30,31] with PM7 parametrization [31]. Hydrogens and Gasteiger–Marsili [32]
partial charges were added by OpenBabel [33]. In the case of FITTED program pack-
age [13–15,34], the built in preparation steps were used with default settings. For BITC the
molecular mechanics force field parameters were obtained from the general AMBER force
field (GAFF) [35]. The ligand was built in Maestro [36], then semi-empirical quantum me-
chanics optimization was performed with MOPAC [30,31] using PM7 parametrization [31],
with the gradient norm set to 0.001. After energy minimization, a further force calculation
step was included, the force constant matrices were positive definite. The RED-vIII.52 [37]
software was used for restrained electrostatic potential (RESP) charge calculations, using
RESP-A1B fitting (compatible with the AMBER99SB-ILDN force field) after ab inito ge-
ometry optimization by GAMESS [38]. Acpype [39] was used to assign atomtypes, bond
and angle parameters for topology of ligand. The missing bond stretching, angle bending
and torsional parameters were calculated by the antechamber [39,40] and parmchk utilities
of AmberTools program package similarly as described in [41]. Torsional parameters for
R-N=C=S moiety were manually added.

3.2. Target Preparation

The atomic coordinate file of the ligand free TRPA1 receptor was obtained from the
Protein Data Bank (PDB, [42]), under the accession code 6V9W [7]. As the four chains of the
target are symmetrical (homotetramer), only one chain was used to reduce computational
costs. The amino acids of a chain do not interfere with the binding of the ligand to
another chain. The missing atoms and residues [43] were rebuilt using SWISS MODEL [44],
and energy minimized with GROMACS [45]. The convergence threshold of the steepest
descent optimization was set to 103 kJ mol−1 nm−1, and that of the conjugate gradient
optimization to 10 kJ mol−1 nm−1. AMBER99SB-ILDN force field [35] was used for the
calculation, and a position restraint at a force constant of 103 kJ mol−1 nm−2 was applied
on heavy atoms. The targets were further optimized by ProCESS tool of FITTED, with the
original settings [13]. In the case of AutoDock (The Scripps Research Institute, La Jolla, CA,
USA), the added H atoms and partial charges were kept from energy minimization.

3.3. Covalent Docking with FITTED

Covalent docking calculations were carried out using FITTED [13–15,34]. The cova-
lent residue (C621) and adjacent basic residue (P622) were adjusted in the graphical user
interface of the program. Root mean squared deviation (RMSD) values were calculated be-
tween the crystallographic and representative ligand conformations, if available. All other
settings were used as the default of the program. In the PREPARE step of the program,
the binding site interacting amino acids were identified by leaving the crystallographic
ligand in the structure, which was then removed after this step. The non-covalent docking
was performed similarly, with the exception, that the covalent mode of the program was
switched off.
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3.4. Prerequisite Docking with AutoDock 4.2

Prerequisite binding calculations were performed by AutoDock [25,46–49]. The num-
ber of grid points was set to 60 × 60 × 60 with a 0.375 Å grid spacing. Lamarckian genetic
algorithm was used, flexibility on all active torsions was allowed on the ligands. Ten dock-
ing runs were performed for all ligands, and the resulting ligand conformations were
ranked based on their calculated free energy of binding values. The binding mode with the
most favorable calculated energy of binding was ranked in the lowest rank.

3.5. Molecular Dynamics Simulations

The apo TRPA1 and dry docked complexes of BITC were subject to a two step energy
minimization, including steepest descent and conjugate gradient algorithms as described
in “Target preparation”. After energy minimization, the apo and dry docked complexes
were subject to 100-ns-long MD simulations. The simulation box was filled up with
explicit TIP3P [50] water molecules, and to neutralize the systems, counter-ions (sodium
or chloride) were added. The maximum step size of the steepest descent algorithm was
0.5 nm, and that of the conjugate gradient algorithm was 0.05 nm. The exit tolerance level of
the steepest descent algorithm was set to and 103 that of the conjugate gradient algorithm
to 10 kJ·mol−1·nm−1. Movement of the solute Cα atoms were restrained at a force constant
of 103 kJmol−1nm−2, except for that of the A-loop. Calculations were performed with
programs of the GROMACS [45] software package, using the AMBER99SB-ILDN [35] force
field. After energy minimization, 100-ns-long NPSA MD simulation was carried out with a
time step of 2 fs. Simulated annealing temperature scheme was applied as described in [22].
Simulated annealing temperature was rescaled and controlled for both solvent and solute.
The temperature was gradually increased up to 323.15 K, then lowered back to 300 K in the
first 20 ns, then the simulation was continued to 100 ns with constant temperature of 300 K.
Pressure was coupled by the Parrinello–Rahman algorithm and a coupling time constant of
0.5 ps, compressibility of 4.5 × 10−5 bar−1 and reference pressure of 1 bar. Particle Mesh-
Ewald summation was used for long range electrostatics. Van der Waals and Coulomb
interactions had a cut-off at 11 Å. Coordinates were saved at regular time-intervals of 1 ps
yielding 1 × 103 frames. Periodic boundary conditions were treated before analysis to
center whole and recovered hydrated solute structures in the box. The original protein
structure served as the basis of Cα fitting.

3.6. Scoring

AutoDock [25] estimates the binding free energy of the ligand (∆GAD) with Equa-
tion (1) as a scoring function.

∆GAD = WvdW∑
ij

(
Aij

r12
ij

−
Bij

r6
ij

) + Whbound∑
ij

E(t)(
Cij

r12
ij

−
Dij

r10
ij

) + Welec∑
ij

qiqj

ε(rij)rij

+ Wsol∑
ij

(SiVj + SjVi)e
(−

r2
ij

2∂2 ) (1)

W terms are weighting constants calibrating to an experimentally determined set of
free energies. Ligand atoms are represented by i, and protein atoms by j. A Lennard–
Jones 12-6 dispersion/repulsion term, a directional 12–10 h-bonding term and a screened
Coulombic electrostatic potential are included. A and B parameters are taken from the
Amber force field. E(t) is a directional weight based on the angle, t, between the probe and
the target atom. C and D parameters are assigned for well-depth calculations. The final
term is a desolvation potential, V is the volume of the atoms surrounding a given atom and
S is a solvation parameter for weighting [51]. δ is a distance weighting factor. The actual
distance between the ith (ligand) and jth (target) atoms is marked with r.

The FITTED [13–15,34] scoring function estimates (∆GFD) with the sum of various
terms including the number of rotatable bonds, van der Waals and electrostatic interactions
and directional H-bonding contributions as described in Equation (2).

∆GFD = ∆G0 + 0.14Nrot + ∑ (scale f actor)
[

(0.26 U
inh−prot
vdW + 0.035 U

inh−prot
elec + 0.80 fhb(∆r, ∆α))

]

(2)
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Nrot is the number of rotatable bonds, Uvdw and Uelec are the van der Waals and
electrostatic interactions based on the AMBER94 force field. The last term is the solvation
contribution to the free energy of binding. Where f hb is the electrical field strength of
hydrogen bonds, r is the length and α is the angle of hydrogen bonds.

Eij =
NI NL

∑
ij

[

Aij

r12
ij

− Bij

r6
ij

]

Aij = εijR
12
ij ; Bij = 2εijR

6
ij; Rij = Ri + Rj; εij =

√
εiε j

(3)

where εi and εj are the potential well depths in the equilibrium distance of atom pairs of
identical types; εij is the potential well depth in equilibrium between the ith (ligand) and
jth (target) atoms; Rij is the internuclear distance at equilibrium between ith (ligand) and
jth (target) atoms; Ri and Rj are half equilibrium distances between ii and jj atom pairs
of identical types, respectively; rij is the actual distance between the ith (ligand) and jth
(target) atoms; NT is the number of target atoms; NL is the number of ligand atoms.

3.7. Ranking

The basis of the structural clustering and ranking of the docked ligand conformations
was their AutoDock 4.2 binding free energy values. In the respective Tables, the serial
number of ranks are represented. To create one rank [41], the ligand structure with the
lowest calculated free energy of binding, and its neighboring docked ligand structures
within 2 Å [52] were selected. Then new ranks were opened for the remaining structures,
and clustering was repeated with the same protocol. The low serial number of a rank
indicates an energetically favorable binding conformation. The actual rank (N) selected
from all the ranks (M) is given in the format N/M.

RMSD. In all cases, the structural match of the docked (D in Equation (4)) binding
mode to the crystallographic reference (C) was expressed as a root mean squared deviation
(RMSD) value according to Equation (1).

RMSD =

√

√

√

√

1
N

N

∑
n=1

|Dn − Cn|2 (4)

In Equation (4), N is the number of ligand heavy atoms, C is the space vector of the
nth heavy atom of the crystallographic reference ligand molecule, D is the space vector of
the nth heavy atom of the calculated ligand conformation. RMSDbest is the RMSD value of
the ligand binding mode with the lowest RMSD.

The distance (d) between the S atom of C621 amino acid and the ligand atom that par-
ticipates in the covalent binding was also measured to check the presence of covalent bond
and to estimate the degree of translation necessary to move the prerequisite binding mode
into the covalent binding mode (Figure 3). The dbest value is the smallest distance observed.

The AAmatch (%) is the rate of identical AAs present in two different binding pockets
interacting with the ligand in a 3.5 Å cut-off distance. It is calculated by the results of
Tables S5–S7.

NHA Number of heavy atoms of the agonist counts all the atoms except for hydrogens.
EINHA Efficiency index, the calculated free energy of binding is divided by the NHA

of the respective agonist. The dimension is kcal/mol.
dcovalent The length of the covalent bond in Å.
Rankbest The scoring function of the program collects the results into ranks based on

their calculated free energy of binding. The lowest rank contains the best energy. The rank
that contains the model with the best RMSD value is the Rankbest.

4. Conclusions

Agonist binding to TRPA1 is a dynamic process involving structural changes of the
target, first at the smaller scale of the A-loop, necessary for binding site activation, then at
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the whole of the target, required for channel activation. The present study identified the
prerequisite binding modes of three agonists and showed how the binding of a ligand
to the prerequisite site can forecast its successful docking to the final binding pocket.
The prerequisite binding sites proved to be milestones on the association/dissociation
pathway of the agonists, important in mechanism-based design. The present study also
showed how the prerequisite binding modes affect the opening of the A-loop region,
a central scene of the agonist binding mechanism. The time step measured in nanoseconds
necessary for binding site activation is currently hidden from experimental methods,
and only the co-operation with in silico approaches can shed light on them. Thus, amino
acids identified along the dynamic binding pathway will serve as new target sites for
the design of reversible binding of future agonists, beyond the well-known target of the
covalent binding pocket of TRPA1.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ph14100988/s1. Figure S1: The close-up of binding of BITC to TRPA1 mutant structure,
Table S1: Covalent docking calculations performed by FITTED on the apo target with Aloop, Table S2:
Non-covalent docking calculations performed by FITTED on the apo target with A-loop, Table S3:
Non-covalent docking calculations performed by AutoDock on the apo target with A-loop, Table S4:
Interacting (≤3.5 Å) amino acid residues of 6PQO with the non-covalent top ranked binding mode of
JT010 (FITTED), Table S5: The interacting amino acids (within 3.5 Å) of the experimental binding
position, the covalently docked and prerequisite binding modes of bodipy-iodoacetamide, Table S6:
The interacting amino acids (within 3.5 Å) of the experimental binding position, the covalently
docked and prerequisite binding modes of BITC, Table S7: The interacting amino acids (within 3.5 Å)
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Abstract: The human genome codes only a few thousand druggable proteins, mainly receptors and
enzymes. While this pool of available drug targets is limited, there is an untapped potential for
discovering new drug-binding mechanisms and modes. For example, enzymes with long binding
cavities offer numerous prerequisite binding sites that may be visited by an inhibitor during migration
from a bulk solution to the destination site. Drug design can use these prerequisite sites as new
structural targets. However, identifying these ephemeral sites is challenging. Here, we introduce
a new method called NetBinder for the systematic identification and classification of prerequisite
binding sites at atomic resolution. NetBinder is based on atomistic simulations of the full inhibitor
binding process and provides a networking framework on which to select the most important
binding modes and uncover the entire binding mechanism, including previously undiscovered
events. NetBinder was validated by a study of the binding mechanism of blebbistatin (a potent
inhibitor) to myosin 2 (a promising target for cancer chemotherapy). Myosin 2 is a good test enzyme
because, like other potential targets, it has a long internal binding cavity that provides blebbistatin
with numerous potential prerequisite binding sites. The mechanism proposed by NetBinder of myosin
2 structural changes during blebbistatin binding shows excellent agreement with experimentally
determined binding sites and structural changes. While NetBinder was tested on myosin 2, it may
easily be adopted to other proteins with long internal cavities, such as G-protein-coupled receptors or
ion channels, the most popular current drug targets. NetBinder provides a new paradigm for drug
design by a network-based elucidation of binding mechanisms at an atomic resolution.

Keywords: ligand; mechanism; pathway; dynamics; channel

1. Introduction

Uncovering the mechanism(s) by which a drug binds to its target is of primary im-
portance in drug design. To date, established experimental methods such as X-ray crystal-
lography [1,2] and cryo-electron microscopy [3–5] have been used to capture the atomic
resolution structure of a drug bound with its target (called the binding mode). However,
these techniques usually do not supply the entire binding mechanism or the intermediate
interactions required (the prerequisite binding modes, or PMs), which are often difficult
to capture experimentally [6]. Detecting intermediates is especially difficult with targets
such as myosin 2 that have long binding cavities. The widely debated ligand recognition,
conformational selection, and induced fit mechanisms for ligand binding [7] suggest that
the identification of PMs is crucial for a comprehensive understanding of the process.

Recently, molecular dynamics (MD) has emerged as a suitable approach for identifying
PMs of specific drugs binding to specific targets [6,8–12]. MD can generate appropriate sam-
ples of target–ligand complex structures, allowing conformational flexibility and explicit
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solvent effects [13,14]. Here, we present an MD-based approach to the study of myosin 2
(a motor protein with a crucial role in eukaryotic motility) and one of its well-known
inhibitors. In myosin 2, an ATP bound to the head or motor region is hydrolyzed, which
causes conformational changes in the neck region, and this movement is then transferred to
actin microfilaments. Myosin 2 is important in muscle contraction, cytokinesis [15,16], the
shape formation of cells [17], force generation in cell dynamism [18,19] mitochondrial fis-
sion [20], neurite retraction, outgrowth [21], and glioma invasion of the brain [22]. Because
of its role in numerous physiological processes, particularly in cellular multiplication and
differentiation, myosin 2 has been targeted in several drug design projects [23–25], includ-
ing investigations of cures for breast cancer [26,27] and pancreatic adenocarcinoma [28].

In the past decades, a non-competitive inhibitor of myosin, S-blebbistatin (BS) [29]
and derivatives thereof [23,30,31] have been used to increase our understanding of the
role myosin plays in fundamental biological processes [22,32,33]. BS was characterized
as a selective [34] inhibitor of non-muscle myosin 2, with its inhibitory effect attributed
to blocking phosphate release in the force-producing step, which consequently stabilizes
the myosin-ADP-Pi intermediate [18,24,29] through Switch 1 and the P-loop [4] (Figure 1).
A hydrophobic pocket of myosin 2 was also discovered [24] that binds BS (here called
“destination”, D in Figure 1). Pocket D is located on the far edge of the long cavity between
the bulk interface of the actin-binding cleft and the nucleotide-binding pocket (pocket N).
This binding cavity offers long binding pathways up to 20 Å for BS that may associate with
several temporary prerequisite binding sites during its migration from BK to pocket D.

 

Figure 1. (A) Myosin 2 is shown in grey cartoon. The destination pocket (Pocket D) and nucleotide-
binding pocket (Pocket N) are highlighted by the experimental binding positions of BS and ADP
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(grey sticks), respectively. The figure was prepared using the holoenzyme structure (PDB code 1yv3).
(B) A close-up of the far edge of the binding tunnel inside myosin 2 including pockets D and N with
key structural elements in different colors. The switches, the P-loop, and the relay helix are important
elements of the enzyme mechanism and also indicate the location of pocket D. The distance of center
of mass (dD, arrow) of a binding mode of BS is measured from the center of pocket D. (C) The Lewis
structures of BS and PBP.

In the present study, we introduce a new strategy, NetBinder, to investigate the
binding mechanism in the BS-myosin 2 system. NetBinder uses network theory to link
the systematically identified PMs and to reconstruct the complete binding mechanism
at an atomic resolution. In this manner, we are able to elucidate the complete inhibitory
mechanism of BS when binding to the myosin 2 system.

2. Results and Discussion
2.1. Systematic Mapping of Binding Modes

Mapping the binding pathways of BS up to pocket D requires systematically identi-
fying all possible PMs on the target (internal) surface. The final binding modes of known
inhibitors were determined by X-ray crystallography [22,24], and the fast computational
docking method (Methods Section) was verified to reproduce these experimental binding
conformations correctly (Figure S1 and Table S1). However, it has been shown that a simple
series of fast docking calculations cannot deliver a fully systematic mapping [14,35] of all
possible binding modes. Therefore, the present NetBinder strategy (Figure 2) applies a
systematic search technique called Wrap ‘n’ Shake [35], and PMs were detected by wrap-
ping the entire inner surface of the binding cavity of apo myosin 2 (Figure 1) in numerous
copies of BS. The wrapping process resulted in a monolayer of 16 docked conformations of
BS covering the entire surface of the binding cavity of myosin 2 (Figure 2, Figure S2). The
16 corresponding complexes formed by the docked BS and myosin 2 molecules were
equipped with structural water molecules [14] and further challenged in the shaking steps
of sixteen 1 µs long MD calculations in simulation boxes filled with explicit water molecules
(Methods, Table S2).

Shaking accelerated the dissociation of weakly bound ligand conformations [35]
by thermal motions of the explicit water bath and target side chains. In the present
study, a ligand copy was considered dissociated if the distance (dD , Figure 1) between
its center of mass and that of the destination BS conformation (in pocket D [24])
became larger than 30 Å. Shaking also allowed an extensive scanning of uncovered
segments of the cavity, producing more than 5000 bound conformations for BS, col-
lected in a pool.

After clustering the pooled contents (Methods Section), 23 PMs were distilled and
ranked according to their interaction energies (Einter) with the myosin 2 target. Because
conformations with low Einter were preferred during clustering (Methods Section), PMs
were evenly distributed along the entire cavity (Figure 3A), covering the full range of dD
between PM1 and PM23. The plots of Einter values of the pooled conformations and PMs
as a function of dD are shown in Figure 3B and Table S3. An energy slope was observed
in the plot, that is, Einter significantly decreased with a decrease in dD. For the PM data
points, a linear correlation was calculated for the energy slopes, resulting in a remarkably
large squared correlation coefficient (r2 of 0.7). This finding is in line with the “energy
funnel” concept presented in numerous studies [36–39], which assumes that a ligand
adopts binding positions with decreasing Einter values when approaching the destination
(pocket D) in the target molecule. The energy slope obtained is a two-dimensional cross-
section of the energy funnel along variable dD, representing the position of BS during the
binding process.
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Figure 2. The NetBinder strategy with BS as Figure 2. The NetBinder strategy with BS as a ligand and myosin 2 as a target.

There is a “parking lot” (PL, Figure 3C) region of the tunnel gathering the majority of
docked conformations centered at a dD of 10 Å (Figure 3B). The PL is practically the next
main binding region after the bulk opening (Bulk in Figure 3A) of the tunnel. The PL was
shown experimentally (22) to bind halogenated molecules such as pentabromopseudilin
(PBP, Figures 1 and 3). The crystallographic binding conformation of PBP overlaps with
PM2 and PM4 in the center of PL (Figure 3C) verifying that the PL is a relevant binding
region of BS. Thus, the PL does not differentiate between such ligand conformations but
rather serves as a large storage depot before their last steps to pocket D. In PM1, BS
has a low Einter of −50.1 kcal/mol at a dD of 7 Å (Figure 3B), close to that of pocket D
(−46.1 kcal/mol, dD = 0 Å per def.), and therefore, it has a good chance to enter pocket
D in one step from PM1 (see Section 3 for further discussion). The above findings can be
of general importance in mechanism-based drug design. While PL serves as a relatively
large storage place, the proximal region at PM1 is a narrower transient place during ligand
navigation. It may be expected that the ligand can enter pocket D from PM1 in a forward
step without returning and using bypasses through other PMs backwards. In the search
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for new druggable sites, the identification of such parking and proximal PMs can be
equally important.

 

Figure 3. (A) The BS PMs (teal spheres) cover the entire binding cavity of myosin 2. The myosin 2 Figure 3. (A) The BS PMs (teal spheres) cover the entire binding cavity of myosin 2. The myosin
2 protein is shown as a grey cartoon. PMs with the smallest (PM1) and largest (PM23) dD values are
labelled. BS in pocket D (from PDB 1yv3) is shown as grey spheres. (B) Interaction energies (Einter)
calculated between the PMs of BS and myosin 2 correlate with dD (energy slope in red dots). A similar
trend can be observed for the raw BS conformations of the pools (grey dots). The PMs are ordered
by the distances of their centers of mass, measured from that of the crystallographic destination (D)
binding mode. (C) The overlapping binding position of PBP (from PDB 2jhr) and PMs 2 and 4 from
the present study. BS bound to pocket D (from PDB 1yv3) is highlighted as grey sticks. PM2, 4, and
PBP are shown as teal and orange sticks, respectively. Surrounding amino acids that participate in
the binding of PBP, according to the 2jhr structure [25],, are shown as grey sticks and are labelled
accordingly. Non-polar (C-connected) H atoms are not shown for the calculated ligand molecules
(PM) in the figures for clarity.

2.2. Binding Pathways from Binding Networks

Beyond the knowledge of the single structural snapshot of pocket D provided by
Ref. [24], the determination of PMs (Section 1) was necessary to draw the possible binding
pathways of BS. The NetBinder strategy approaches the binding process as a networking
problem and produces a representative binding pathway (Figure 4A) based on the corre-
sponding network (Figure 4B). Network science has been successfully applied in structural
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chemistry [40–45], and we evaluated whether a network representation of the binding
events would simplify the elucidation of the binding mechanism of BS. In the NetBinder
network approach, the PMs correspond to nodes and edges, representing segments of
ligand pathways by definition. All nodes were considered in light of two attributes, namely
dD and the number of edges leading from that node. The first two attributes were adopted
from the corresponding PMs of energy slopes (Figure 3B), while the last one was simply
counted after the construction of the graph (Figure 4A, Table S4). Nodes with more than
four edges were considered hubs, and interconnected hubs form the backbone of a net-
work. These hubs represent the busiest PMs in terms of ligand binding and constitute
a binding pathway of a ligand. A graphic representation of the binding network of BS
(Figure 4A) holds all nodes connected by edges and was produced by the conversion of the
three-dimensional positions of the PMs (Figure 4B) into a two-dimensional connectivity list
(Figure 4A, Methods).

 

Figure 4. (A) Binding network of PMs as nodes for BS. Simple nodes are empty circles; hubs are blue 
Figure 4. (A) Binding network of PMs as nodes for BS. Simple nodes are empty circles; hubs are
blue full circle plates. Edges are black lines, and backbone edges are highlighted as blue lines.
(B) A suggested binding pathway of BS, see also Movie S1. The myosin protein is shown as a grey
cartoon. ADP molecule is shown with grey all-atom representation sticks. PMs are shown as blue
spheres, and their movement is highlighted with orange arrows. The experimental binding mode
(D, superimposed from PDB 1yv3) is shown with grey sticks.

BS has a complex binding graph with 23 nodes, 47 edges, and 10 hubs (Figure 4A),
suggesting various pathways for binding. The central hub PM3, has six connections, and
the connectivity of the nodes is especially noticeable around the destination (i.e, at PMs
with low dD values) and is a direct consequence of the presence of proximal PMs with
low Einter values (see also Figure 3B). The network has a massive backbone of ten hubs
connected to each other that might serve as an excellent “binding highway” (Figure 4B),
and it is clearly distinguishable from sub-nets of peripheral nodes, which can be thought of
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as anchoring regions or dead ends of ligand migration. BS enters the tunnel via anchoring
PMs (PM22, PM18, PM15, PM12, and PM10) close to the opening to the bulk, and then it
enters the PL. There is a variety of possible pathways at the stage of PL. However, some of
the PL nodes (PM6, PM4, and PM2) seem essential to arrive at pocket D. Similarly, the next
node, PM3, is a key hub guiding BS “correctly” towards the destination, as PM3 has one
direct connection to D and three connections that are only two steps away from D. Two
of these indirect links go through the PL nodes PM2 and PM6, while the third approaches
D via PM1, which has the lowest Einter of all PMs (see also Figure 3B). The remaining four
hubs (PM5, PM9, PM11, and PM14) probably belong to a separate dissociative dead end
(Figure 4A). The above findings are summarized in a representative binding pathway of BS
(Figure 5, Movie S1) based on a massive network backbone with key proximal hubs PM3
and PM1. This graph-based binding pathway describes the above networking between
individual PMs during the full binding process.

 

Figure 5. (A) In the apo myosin structure (top), L262 blocks the entrance of BS from PMFigure 5. (A) In the apo myosin structure (top), L262 blocks the entrance of BS from PM1

(dD = 6.9 Å) towards the holo conformation bound to pocket D (B). Myosin is shown with grey
cartoon. The important amino acids are highlighted with grey all-atom representation sticks and
are labelled accordingly. BS is shown with teal all-atom representation sticks. Arrows indicate the
movement of L262 and BS.

2.3. Final Test: Docking to the Destination Pocket

In the previous sections, NetBinder determined the most important PMs from among
the large pools of possible binding conformations. Based on these PMs, a networking
approach was used to produce a complete binding mechanism of BS in the myosin 2 tunnel.
The binding graph resulted in a representative binding pathway of BS (Figure 4B), leading
to PM1, which was hypothesized to be a key proximal PM of the lowest Einter (Figure 3B).
A validation of PM1 remains as a final test of NetBinder. For this, it was investigated if the
final crystallographic conformation (D) of BS could be obtained starting from PM1 using
fully flexible MD simulations without any biasing restraints.

It is known [24] that for BS to enter into pocket D requires a conformational change
to myosin 2, as pocket D is closed by the side chain L262 in the apo form used in the
previous sections. During the binding of BS, L262 changes its position (Figure 5), which
opens the entrance to the pocket [24]. Because the binding affinity of BS to myosin 2 is
rather low (IC50, Figure S2) and the above conformational change is also time-consuming, it
was expected that a single MD simulation would not dock BS to the destination site. Thus,
terminal docking from PM1 was attempted in 12 repeated MD simulations with a maximal
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length of 1 µs each. Two of these simulations resulted in exactly the crystallographic
destination position of BS that was determined experimentally [24], with dD values of
0.9 and 1.5 Å, respectively (Table S5). The atomic level fit of the calculated and crystal-
lographic conformations (Figure S3) demonstrates the precision of MD-based docking
and also verified that PM1 is indeed a key proximal PM, directly leading to the final
crystallographic binding mode D of BS.

The fully flexible MD simulations (Methods Section) also allowed the detection
of (real time) changes in myosin 2 conformation following the docking process at the
atomic level. The MD simulation resulting in the best-matching final BS conformation
(dD = 0.9 Å) was selected for a detailed analysis and is featured in Figure 6 and Movie S2.
The corresponding structural changes during BS docking are listed in Table 1, which also
compares the final stage of the simulation with the experimentally determined values.

Figure 6. (A) Final docking (FD) of BS starting from PM1 (t = 0 ns) to the destination pocket,
represented by a continuous decrease in dD during the 1 µs simulation. (B) Main FD events of the
binding process are highlighted (see also Movie S2 for all six final docking steps) as well as the
corresponding snapshots of BS and the surrounding amino acids of myosin 2. First, BS undergoes
flipping, where its phenyl ring (in FD1) turns towards L262 to form a hydrophobic interaction in
position FD5. Then, the inward movement of L262 pulls (red arrow) BS towards the destination
binding mode into FD6, which agrees well with reference D (pink sticks) from PDB 1yv3.
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Table 1. Structural changes during final docking of BS into the destination site.

Structural Change Starting Time (ns) Distance (Å)
0 ns 1000 ns Experimental

Formation of H-bond (G240 . . . BS) 40 8.3 a 3.2 a 2.8 a

Formation of salt bridge (E459 . . . R238) 71 8.3 b 4.0 b 4.2 b

Movement of BS 137 8.0 c 0.9 c 0 c

Formation of H-bond (L262 . . . BS) 137 6.6 d 2.5 d 2.5 d

Flipping of L262 137 3.4 c 1.8 c 0 c

Flipping of Y261 143 1.9 a 1.4 a 0 a

Flipping of S456 447 4.87 a 1.9 a 0 a

a Distance between NH (G240)—OH (BS); b Distance between CZ (R238)—CD (E459); c dD;
d Distance between O

(L262)—OH (BS).

The docking of BS with myosin 2 starts from an open conformation of the cleft between
loops Switch 1 and Switch 2 [46], as represented by the apo structure pre-recovery-stroke
conformation [46] used in this study. As BS moves from the PM1 starting position, the cleft
closes, and a salt bridge forms spontaneously between E459 and R238, which has also been
observed in previous computational studies [47,48]. During this process, Switch 2 is pulled
by BS into position via a hydrogen bond between its hydroxyl group and the side chain of
E459. As BS further proceeds towards the binding site (i.e., as dD decreases), the BS-E459
hydrogen bond disappears and, between 40 and 137 ns, BS flips 90◦ (Figure 6), which is
boosted by an interaction between the carbonyl group of BS and the amide group of Q637,
and the carbonyl and hydroxyl groups of BS interacting with E467. The flipped stage is an
important prerequisite for BS to fit into its destination pocket.

Another important driving factor is the hydrophobic interaction of BS with L262,
which also moves with BS and makes room in the destination site (Figure 6, Movie S2),
which is consistent with its previously reported structural role, and its final position
(dD = 1.8 Å) is consistent with its experimentally determined position D [24] (Table 1). The
positions of both BS and L262 stabilize after 138 ns for the rest of the simulation. Similar
agreements with the experimental position can be observed at residues Y261 and S456
as well. Y261 is involved in a π-stacking between the phenyl group of BS, while S456
is important in myosin 2 isoform selectivity [24]. BS forms hydrogen bonds with G240
and L262, which can also be seen as the MD simulation stabilizes at close to experimental
values (Table 1).

Thus, the above MD docking calculations verified the prediction of NetBinder on
PM1 and showed that it is a prerequisite binding mode towards crystallographic ligand
conformation D.

3. Materials and Methods

Target preparation. Atomic coordinates of the apo myosin 2 target structure were
obtained from the Protein Databank [46] (PDB code 1mmd). Atoms of amino acids miss-
ing in the target structure were inserted with Swiss-PdbViewer [49]. Missing terminal
and non-terminal amino acids and acetyl and amide capping groups were added with
the Schrödinger Maestro program package v. 9.6 [50]. The ADP-Pi-Mg2+ complex was
used because it is the intermediate stage of ATP hydrolysis stabilized after BS binds to
myosin 2 [18,29]. An ADP-beryllium trifluoride-Mg2+ complex was modified to ADP-
Pi-Mg2+ by positioning the phosphate ion in the place of the beryllium trifluoride ion
(see parametrization of non-amino acid ligands below). The constructed target was then
minimized, allowing full flexibility on the heavy atoms (see shaker/energy minimization
below). After the minimization steps, target molecule inputs for docking (pdbqt files)
were prepared with AutoDock Tools. A united atom representation for hydrogen atoms in
non-polar covalent bonds and Gasteiger–Marsili partial charges [51] were applied to the
input files.

               hetenyi.csaba_83_23



Int. J. Mol. Sci. 2022, 23, 7313 10 of 15

Ligand preparation. The atomic coordinates of the BS and PBP ligands were extracted
from PDB structures 1yv3 and 2jhr, respectively. The pKa values of ligand molecules
were calculated using the pKa plug-in in Marvin Sketch, v 6.3.0 [52]. Hydrogen atoms
were added according to the correct protonation state at pH 7. Energy minimization
was performed on hydrogenated structures using the semi-empirical quantum chemistry
program package MOPAC [53]. Geometry optimization with MOPAC was carried out
with a gradient of 0.001 kcalmol−1Å−1, and force calculations were carried out with PM3
parameterization. In all cases, the force constant matrices were definitely positive. The
minimized ligand molecules were prepared for docking to the targets as described above.

Wrapper. For the BS ligand, the wrapper method [35] was applied to the binding
cavity of myosin 2 (instead of the entire surface) by performing 20 consecutive blind
docking cycles, which were enough to increase the target–ligand interaction energy close
to 0 kcal/mol. In each blind docking cycle, AutoGrid 4.2 was used to generate the grid
maps, with boundaries set to cover the whole binding cavity of myosin 2 (for visualization,
see Figure 2) using a box of 130 × 100 × 100 grid points centered on the destination BS
conformation ([24] PDB 1yv3). The docking cycles were carried out with the AutoDock
4.2 [54] package using the Lamarckian genetic algorithm (LGA). One hundred docked
ligand conformations were obtained in each cycle. The docking parameters were used
as described in a previous study [55]. Wrapper ended with a trimming step using a cut-
off (i.e., a maximum distance between the binding cavity amino acids and the docked
conformation) of 3.5 Å. After trimming the BS docking results, only the ligands interacting
with the binding cavity amino acids (Table S6) were retained. These filtering steps reduced
the number docked conformations (from a starting value of 87) to 16 conformations, and
these were investigated further by molecular dynamics simulations after the prediction of
interface water molecules.

Prediction of interface water molecules. Interfacial water molecules play an im-
portant role in the dissociating weak binder conformations and improving target–ligand
complex structures [35]. Appropriate interface water positions were calculated by Moby-
Wat [56] using the M3 protocol as described previously [42] and also described recently
in the HydroDock [14] protocol for docked binding modes. Complexes with the pre-
dicted interface water molecules were re-minimized by a two-step minimization algorithm
described in the energy minimization section.

Parametrization of non-amino acid ligands. The parameterization of non-amino acid
ligands (ADP, Pi, and BS) was necessary because the AMBER99SB-ILDN force field [57]
does not include molecular mechanics parameters for the ligands used in our study. The
charge calculation was performed on the R.E.D. Server [58] for the optimized structure (see
ligand preparation) with RESP-A1 [58] charge fitting compatible with AMBER99SB-ILDN
force fields. The calculations were performed with the Gaussian09 software [59] using the
HF/6-31G* split valence basis set [60].

Energy minimization. Target structures were energy-minimized using a two-step
protocol including a steepest descent and a conjugated gradient step. The calculations were
performed by the GROMACS 5.0.6 [61] software package with the AMBER99SB-ILDN
force field [57] and TIP3P explicit water model [62]. The target structure was placed in
the center of a cubic box with the distance between the box and the solute atoms set to
10 Å. The simulation box was filled with water molecules and counter-ions to neutralize
the total charge of the system. The particle mesh Ewald method was used for long-range
electrostatics. The van der Waals and Coulomb cut-offs were set to 11 Å. The convergence
threshold of the first step (steepest descent) was set to 103 kJ mol−1nm−2. In the second step
(conjugant gradient) of minimization it was set to 10 kJmol−1nm−2. The final structures
obtained from the energy minimization were extracted for further calculation with wrapper
(see wrapper) or subjected to MD simulations (see shaker).

The molecular dynamics (MD) calculations of various lengths detailed in shaker and
final docking were performed with the GROMACS 5.0.6 software package [61] using the
AMBER99SB-ILDN force field [57] and the TIP3P explicit water model [62]. The energy-
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minimized structures were subjected to NPT MD simulations at a temperature of 300 K. For
temperature coupling, the velocity rescale algorithm was adopted. Pressure was coupled to
the Parrinello–Rahman algorithm with a coupling time constant of 0.5 ps, a compressibility
of 4.5 × 10−5 bar−1, and a reference pressure of 1 bar. A particle mesh Ewald summation
was used for long range electrostatics. Van der Waals and Coulomb interactions had a
cut-off of 11 Å.

Shaker. Parallel MD runs of a maximum 1 µs each were performed on the 16 BS
ligand–target complex structures that were obtained from wrapper and energy-minimized
as described above. The MD simulations were performed as described in the molecular
dynamics section with the following specific settings. Position and distance restraints were
applied in the parallel MD runs as detailed below. Position restraints were applied with
a force constant of 103 kJmol−1nm−2 during the whole MD simulation on the backbone
Cα atoms of the protein and the heavy atoms of the co-factor (ADP-Pi-Mg2+) and its
surrounding amino acids (N127, Y135, K185, T186, and N233). Distance restraints were
generated between the atom pairs (Table S7). A simulation was terminated if ligand
dissociation (dD > 30 Å) was observed. The length of the simulations and the dD values
calculated for the last frame of the parallel MD runs are detailed in Table S2. After trimming,
6952 frames were obtained for BS (the “conformation pools”).

Calculation of intermolecular interaction energy (Einter). Einter was calculated be-
tween myosin 2 target and BS ligand molecules using the Lennard-Jones parameters of the
Amber force field [57] in Equation (1).

Einter =
NTNL

∑
i,j

[

Aij

r12
ij
− Bij

r6
ij

]

Aij = εijR12
ij

Bij = 2εijR6
ij

Rij = Ri + Rj
εij =

√
εi εj

(1)

where εij is the potential well depth at equilibrium between the ith (ligand) and jth (target)
atoms, Rij is the inter-nuclear distance at equilibrium between the ith (ligand) and jth
(target) atoms, NT is the number of target atoms, and NL is the number of ligand atoms.

Clustering. The conformation pools were forwarded from the clustering process and
Einter for all frames of the conformation pools (the calculation of intermolecular interaction
energy). The BS conformations were clustered and ranked by their Einter values and by the
closest distance between each heavy atom of the ligand (dmin). The BS conformation with
the lowest Einter value among the cumulated BS copies was selected to represent Cluster 1
(PM1). The BS conformation of the second lowest Einter was considered a new Cluster 2
(PM2) if dmin > drnk, where drnk was a ranking tolerance (a distance cut-off of separation
of clusters (PMs) from each other) set to 1.75 Å. If dmin ≤ drnk for that cluster, then the
ligand conformation of the second lowest Einter was placed in Cluster 1. All subsequent
clusters were evaluated by this method, and the resulting representative conformations
were evenly spread over the myosin 2 cavity without contacting each other. This clustering
technique manifests in the shift in the red dots in Figure 3B towards the best binder cluster
representative as measured by Einter rather than towards the conformation closer to the
destination, pocket D (in other words, the dD of the red dots does not necessarily approach
zero). The 1.75 Å distance cut-off was used so that the cluster representatives would not
overlap in order to systematically and evenly cover the binding cavity. After clustering,
23 conformations were obtained for BS (Figure 3B, Table S3). For reference, dD values
between the PMs and the DC conformations were also calculated.

Calculation of distances between the centers of mass. The distances between the
centers of mass (dD) of two BS conformations (simulated and reference destination) were
calculated for each MD simulation frame and used to eliminate MD frames where a BS
copy was dissociated from the myosin 2 surface (Table S3). The same dD was also used
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for the calculation of Figure 3B and the network evaluations of the conformation pools.
The dPM values were also calculated between the centers of mass of the PMs obtained after
clustering, and these values were used to generate the binding graphs (Table S4).

Binding network. The minimal dPM distance between two PMs was taken from the
distance matrix (previous point) with a cut-off of dD >12 Å set between PMs (the length
of BS is about 12 Å). By this cut-off, BS PM23 had no connections to any neighboring PMs.
Hence, this PM was not included in the graph generation. Second, graphs were generated
with the NetDraw mode of the program MobyWat [42]. This mode of MobyWat was
initially used to generate water–water or water–target interaction networks by calculating
the distance between heavy atoms. In our case, instead of the distance between oxygen
atoms of water molecules, the dD of each PM was calculated to be used as an input.
Additionally, in the B-factor column of our input PDB file, the dD measure between the
PM and the D center of mass was used. NetDraw’s source code was modified to allow
a maximum of ten edges for each node instead of the default maximum of four edges
(a legacy from NetDraw’s original use for water networks). Gephi 0.9.2 [63] and CorelDraw
were used to visualize and re-draw the graphs according to the structural information of
the PM positions and the edges generated by NetDraw.

The final docking of BS was performed by twelve simulated annealing, fully flexible
MD runs of 1 µs each (Table S5) using the same MD parameters as described above, except
that simulation annealing was implemented with the temperature scheme presented in
Table S8. The target was fully flexible in these runs, no position restraints were applied
at all, except that the cofactor and frames were exported every 0.1 ns, resulting in 104

frames after 1 µs of simulation. The dD of BS was calculated for each frame during the 1 µs
(Figure 6). For the dD of the BS conformation in the final frame, see Table S5.

4. Conclusions

Experimental structure determination techniques provide invaluable information of
the atomic resolution binding modes of drugs to their macromolecular targets. While
some techniques for determining binding dynamics have been suggested [64], complete
drug mechanisms cannot be produced routinely, and a systematic method for detecting
prerequisite binding modes (PMs) has been lacking. Based on the static structures from
experiments, theoretical methods have provided the missing binding dynamics, and some
PMs of drugs have been found [6,10,12,35] that should be considered “footsteps” on a
drug’s pathway towards its destination on the target. However, the connections between
these PMs have hitherto not been uncovered. NetBinder solves this problem by creating
networks of PMs and extracting binding pathways. NetBinder, combined with fully flexible
MD simulations for the final docking stages, can supply complete mechanisms for drugs
that target a long tunnel-shaped binding channel, such as that of myosin 2. Similarly
shaped binding channels often occur in transporters [65], important receptors such as
muscarinic [66], enzymes such as cyclooxygenase-1 and -2 [67], and transmembrane viral
ion channels, such as that of the influenza A [68,69] and SARS-CoV-2 viruses [14,70], and
it is our hope that the NetBinder strategy presented here will be adapted to aid in the
investigation of such targets. The present work also offers a starting kit of new tools for
the identification and classification of PMs, binding sites (parking and proximal), and
networking elements (hub and backbone) in mechanism-based drug design.
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Abstract: Development of valid structure–activity relationships (SARs) is a key to the elucidation of
pathomechanisms of epigenetic diseases and the development of efficient, new drugs. The present
review is based on selected methodologies and applications supplying molecular structure, binding
affinity and biological activity data for the development of new SARs. An emphasis is placed on
emerging trends and permanent challenges of new discoveries of SARs in the context of proteins
as epigenetic drug targets. The review gives a brief overview and classification of the molecular
background of epigenetic changes, and surveys both experimental and theoretical approaches in the
field. Besides the results of sophisticated, cutting edge techniques such as cryo-electron microscopy,
protein crystallography, and isothermal titration calorimetry, examples of frequently used assays and
fast screening techniques are also selected. The review features how different experimental methods
and theoretical approaches complement each other and result in valid SARs of the epigenome.

Keywords: histone code; DNA; RNA; post-translational modification; in vitro; in vivo; molecular
modeling; docking; high throughput screening; drug design; molecular dynamics; cancer; peptide

1. Molecular Background of the Epigenome

According to Waddington, epigenetics is “the branch of biology which studies the causal
interactions between genes and their products, which bring the phenotype into being” [1,2]. Riggs
further specified epigenetics as “the study of mitotically and/or meiotically heritable changes in gene
function that cannot be explained by changes in DNA sequence” [3]. Following Waddington’s proposal,
Holliday [4] also refers to a switch mechanism early in development that results in a random, yet
permanent and successively heritable activation of some chromosomes and deactivation of others.
This evolutionary chain of definitions of epigenetics is the hallmark of a rapidly developing and
indispensable approach which “provides hope that we are more than just the sequence of our genes” [5].

Epigenetics explains distinct aspects of ontogenesis in normal physiology as well as
pathophysiological effects of various diseases resulted by our lifestyles and the environment that
might be inheritable [6]. The effect of lifestyle factors such as nightshift working, physical activity,
stressful experiences, polyphenols and phytoestrogens in food, on epigenetic modifications has been
reviewed [7]. Epigenetic regulation is important in learning, memory and neurogenesis, and it plays a
role in related diseases, such as depression and schizophrenia [8]. Epigenetic changes also play a role
in neurological, immunological and viral diseases [9]. Cancer is one of the most frequently studied
diseases in general and in epigenetics, as well. Epigenetic alterations interfere with tumor progenitor
genes, increasing the likelihood of cancer and worsening its prognosis [10–12]. Feinberg’s study [13]
highlights a specific disease, Beckwith-Wiedemann Syndrome, which is caused by epigenetic defects
that are specifically linked to cancer risk in affected patients. This opens up the possibility of accepting
epigenetic alterations as cause, rather than consequence of cancer.
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To capture the epigenetic mechanisms of developmental biology it is necessary to unravel how the
genetic program unfolds or is modified in the case of diseases at the level of nucleosomes. This goal
can be achieved by the development of structure–activity relationships based on intermolecular
interactions of bio-macromolecules directing cell cycle, transcription, translation and cellular signaling
pathways [14–16]. In this sense, precise understanding of epigenetic regulation requires atomic level
determination of interactions in nucleosomes between histone proteins and DNA [17,18], readers, and
writers affecting gene expression in the brain [19]. Figure 1 sketches the afore-mentioned levels of
epigenetic regulation. With this molecular background in mind, epigenetics can be also considered as
“the structural adaptation of chromosomal regions so as to register, signal or perpetuate altered activity
states” [20].

 

Figure 1. Structural background of the epigenome with a schematic illustration of major organizational Figure 1. Structural background of the epigenome with a schematic illustration of major organizational
levels. A neuron was selected to represent the cellular level as “precise epigenetic regulation may be
critical for neuronal homeostasis” [21].

From a structural viewpoint, epigenetic regulatory mechanisms can be classified into the following
categories according to the participant bio-macromolecules [22].

Category 1. Covalent modifications of DNA play a crucial role in processes for transfer of the
genetic code, like in transcription. Such modifications have been linked [23] to specific types of
cancers via enzymes such as methyltransferases, acetyltransferases, and kinases. For example, DNA
methylation is associated with diabetes and cancer [24]. Methylation often occurs on cytosine and
is carried out by DNA methyltransferases (DNMT), DNMT3A, DNMT3B and DNMT1. This results
in gene repression by modifying the recognition sites and histone binding of DNA binding proteins.
The hypermethylation of TRPA1 gene occurs in people with post-herpetic neuralgia and lower back
pain, and is also associated with pain symptoms, burning sensations and a decreased heat pain
threshold [25]. Acetylation of DNA is also important in the pathomechanism of certain types of cancer.
DNA acetylation is controlled by two enzymatic families: (1) the histone lysine acetyltransferases
(KAT) and (2) histone deacetylases (HDACs).

Category 2. Covalent modifications of histones. The core histone proteins H2B, H2A, H3 and H4
are essential constituents of the chromatin. Two copies of each histone are assembled into an octamer
and a DNA super-helix of ca. 146 base pairs are organized around it forming the nucleosome (Figure 1),
the elementary unit of the chromatin [26–29]. Nucleosomes are connected by linker DNA, and histone
H1, which induces a compact structure upon binding [30] to finally yield a high-level structure of
supercoiled helices building up the chromosomes [29]. Histones, except for histone H1, have long
peptide tails passing through the DNA wrap of the nucleosomes (Figures 1 and 2), between the turns
of the coiled DNA. A wide range of structural elements extends from the histone fold domain motifs,
that are structurally conserved regions found near the C-terminus in every core histone, responsible
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for organizing the histones into heterodimers. These structural elements play an important role in
protein–protein interactions in epigenetics [29]. The N-terminal amino acids of histones also play a
significant role in the interference between the DNA superhelix and neighboring compounds [29] and
hold numerous PTMs [31] (Figure 2).

A great array of PTMs of the histones creates the ’histone code’ [27,28], completing the information
of the genetic code [24,27]. The histone tails pass through the DNA supercoil and their PTMs are
accessible for a direct or enzyme-mediated readout [32]. Besides the effector (reader) proteins, there are
also writers, erasers [33,34] and remodelers [21] working in the heart of PTM machinery of the histone
code (Figure 2). While readers recognize the PTMs, writers add, and erasers delete them, respectively.

Abundant PTMs including methylation, acetylation, phosphorylation and ubiquitination mostly
appear on the N-terminal linear tails of the histones. For example, lysine residues can be methylated or
acetylated, and a new study [35] shows, that their lactylation is also possible, directly stimulating gene
transcription from chromatin.

 

Figure 2. The three-dimensional structure of a nucleosome combined with a schematic representation of post-Figure 2. The three-dimensional structure of a nucleosome combined with a schematic representation
of post-translational modifications (PTMs) on the histone tails assembled from recent articles [31,36–46].
The nucleosome structure was rendered in top view by PyMol [47] using PDB structure 1kx5 [48].
Histone proteins are shown in cartoon representation as wrapped by the DNA double helix. The N-
and C-terminal tails of histone proteins pass through the cylinder of the supercoiled DNA and are
available for reader proteins recognizing the PTMs, key components of the histone code system.

Different histone PTMs play various roles in normal physiology and disease pathomechanisms.
PTMs have a wide variety of functions [49], by directly controlling nucleosome stability they inflict
DNA repair and transcription and even influence nucleosome structure. For example, di-methylation
of the 4th lysine of the histone H3 tail (H3K4me2, the location is marked with an asterisk in Figure 2)
results in transcriptional activation of protein WDR5, which plays an essential role in vertebrate
development [50]. (Notably, the above-abridged form of histone PTMs will be used throughout
this manuscript. The abridgment includes the type of histone “H3” in the asterisk-marked example,
the type and serial number of amino acid “K3” holding the PTM, and the type and count of PTM
“me2”). The lack of WDR5 function results in delay of ontogenesis, by four stages of development [51].
At the same time, histone methylation is involved in the development of cancer [24] and Huntington’s
disease [24]. Various enzymes modulate this unique histone code during condensation, such as histone
acetylases (HAT), HDACs, histone methylases, and other histone-modifying enzymes. Similarly to
histone PTMs involved in (patho)physiology, their reader, writer and eraser enzymes also play an
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important role in maintaining physiological functions, and in disease pathomechanisms, creating a
tempting target for drug design [34,52–55]. Histone acetylation plays an important role in regulating
gene activity, through influencing the stability of the chromatin [36] and is also important in diabetes,
asthma, and cancer [24,56]. De-acetylation maintains immuno-physiological pathways of host
defense. Accordingly, HDAC inhibitors increase susceptibility to various pathogens in vivo [53].
Histone methylation and acetylation also partake in gene expression (silencing or promotion) of
cyclin-dependent kinase 5 (Cdk5) gene. The expression of neuronal protein Cdk5 is increased
upon chronic cocaine administration [57] and the Cdk5-zinc finger protein transcription factors
can bi-directionally regulate Cdk5 gene expression with the enrichment of their respective histone
modifications. Histone H3K9/14ac increases cocaine-induced locomotor behavior, while H3K9me2
attenuates it [58].

Category 3. Small non-protein coding RNAs or microRNAs (miRNAs) and long non-coding
RNAs (lncRNAs). The miRNAs are responsible for the direct destruction or translational repression
of their target RNAs, actually being functionally equivalent to small interfering RNAs (siRNAs) [59],
whose function is to promote the degradation of mRNAs or inhibit their translation. Altered miRNA
expression partakes in various cancer pathomechanisms, through silencing of tumor suppressor
genes. A decrease in miRNA precursor family (miR) miR-101 expression leads to increased H3K27
trimethylation, which is a silencing mutation. A decreased miR-29 expression leads to an increase
in the activity of DNMT3A and DNMT3B [24], both mechanisms result in tumor suppressor gene
silencing. These methyltransferases are frequently up-regulated in lung cancer, and associated with
poor prognosis [60]. The lncRNAs are involved in epigenetic regulation by mediating chromatin
modification and DNA methylation. They also play a role in transcriptional regulation through
modifying protein-DNA interactions by binding to transcription factors to facilitate their interaction
with DNA to repress or activate mRNA, and post-transcriptional regulation by mRNA processing,
as well as direct protein interactions to regulate protein (post-)translational modifications [61].

Category 4. Transcription factors are proteins binding DNA and regulating gene expression.
They can form functional communities called transcription factor networks that regulate particular
genes. For example, tripartite motif-containing protein 24 (TRIM24) is node of protein interactions,
a promiscuous protein, with forty-four interacting partners, has a wide variety of functions, including
as a ubiquitinase, a histone reader and a co-regulator of nuclear receptor-regulated transcription [62].
TRIM24 negatively regulates p53, a tumor suppressor, interacts with NRs, and directly associates
with chromatin via its plant homeodomain (PHD)-bromodomain. As TRIM24 is a node of such an
extended network, it has to be regulated precisely in order to avoid severe diseases, its knockout causes
hepatocellular carcinoma, yet its overexpression leads to a poor prognostic breast cancer [62]. Nuclear
receptors (NRs) are also important transcription factors that regulate gene expression upon binding to
the specific ligand [63]. This receptor family includes intracellular steroid hormone receptors, among
others. For example, estrogens are steroid hormones that act on nuclear receptors, namely human
estrogen receptor α and β (hERα,β). These receptors act as ligand-activated transcription factors,
upon estrogen binding, the receptors dimerize and bind to estrogen response elements (EREs), located
at the promoter site of transcriptionally active genes [63–65]. Interestingly, not every gene contains
an ERE sequence that is regulated by ERs, which necessitates distinct modes of endocrine action.
They can modulate the function of other transcription factors, through protein–protein interactions,
as non-genomic actions, moreover orphan nuclear hormone receptor SF-1, can serve as a direct binding
site for hERα, but not hERβ [64].

Category 5. Complexes of chromatin remodeling and co-regulators. Covalent modification of DNA
(Category 1), like methylation is fundamental in dynamic chromatin remodeling mechanisms [66,67].
Histone PTMs (Category 2) regulate transcription via controlling transcription factor (Category 4)
accessibility [68]. The activity of transcription factors can be further modulated by hundreds of
their own PTMs [69]. Histone PTMs can take their effects by influencing the overall structure of the
chromatin via direct regulation of inter-nucleosomal contacts and controlling higher-order chromatin
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folding. They can also recruit specific chromatin modifiers [70,71] or remodeling enzymes that use the
energy derived from ATP hydrolysis [70]. For example, acetylation of histone H2AX, member of the
histone H2A family, is carried out by KAT5 (also known as Tip60) at the position H2AXK5, promoting
H2AXK119 ubiquitination and enhancing chromatin remodeling [72].

Co-regulators are proteins that interact with transcription factors (nuclear receptors), to activate
(co-activators) or repress (co-repressors) gene activity [63]. Co-activators participate in the regulation
of a chromatin remodeling process when the condensed DNA becomes accessible for transcription.
The co-regulators of the reverse process are the co-repressors. Co-regulators adopt various mechanisms
of action. For example, they can play a role in the regulation of nuclear receptors, potentiating the
activity of the receptor by switching between inactive and active states [63]. Leucine-rich motifs are
frequent structural features of co-regulator molecules interacting with the ligand-binding domains
of nuclear receptors. For example, the proline-, glutamic acid-, leucine-rich protein 1 (PELP1) [73]
is a potential oncogene that interacts with ER, modulating its genomic and non-genomic functions,
and its expression is misregulated in breast, endometrium and ovarian cancer progression [73]. Apart
from being a co-activator for ER, PELP1 exerts its function as a co-repressor through association with
HDAC2 and via deacetylation activity, suppresses histone acetylation and masks core histones from
histone acetyltransferase mediated acetylation [74].

Histone readers and writers interact with (altered) histones, as was introduced in Category 2.
For example, the switching defective/sucrose non-fermenting (SWI/SNF) and chromodomain, helicase,
DNA binding (CHD) families partake in chromatin remodeling by interacting with the altered histone
residues [72]. The SWI/SNF proteins have multiple bromodomains, enabling them to recognize and
bind acetylated histone residues [72], and also have ATPase domains, typical of chromatin remodeling
factors. The CHD proteins consist of tandem chromodomain and ATPase domains incorporated in
a protein complex, called nucleosome remodeling deacetylase (NURD), which shows HDAC and
chromatin remodeling properties [72].

Histone writer and eraser proteins can also function as co-regulators [75]. For example, histone
acetyltransferases can weaken the interactions between the positively charged lysine side-chains of
histones and the negatively charged DNA backbone phosphate groups by attaching an acetyl group
and eliminating the positive charge, functioning as a co-activator [70]. The weakened interaction
between the histone core octamer and the DNA backbone leads to destabilization of the local chromatin
structure, which favors transcriptional activation [70]. On the contrary, HDACs, which remove the
acetyl group, leave the lysine side-chain with a positive charge. In this way, they reinforce the local
chromatin architecture, and are predominantly transcriptional co-repressors [70].

Histone writer and eraser proteins are often parts of large multi-protein complexes, and the
composition of the complexes can determine the function of the histone writer or eraser [70].
Repressor element-1 silencing transcriptional factor (REST) has a co-repressor protein CoREST.
If lysine-specific-demethylase 1 (LSD1) is complexed with CoREST, it demethylates H3K4me1/2,
acting as a co-repressor, and if in complex with androgen receptor it demethylates H3K9, acting as
a co-activator [70]. In contrast to histone acetyltransferases, histone demethylases show a greater
substrate specificity, for example LSD1 requires a positively charged N atom, resulting a substrate
specificity to H3K4me1/2 [70], interestingly the demethylation of H3K4me3 requires a jumonji domain,
with a radical attack mechanism [70].

Histone writers can be also subjected to mutations, pathologic elevation or decrease in expression.
Methyltransferase, acetyltransferase and kinase enzymes recruit additional chromatin modifiers and
remodeler enzymes. Mutations of such enzymes frequently occur in diseases. For example, DNMT3A
enzyme is mutated in myeloproliferative diseases and myelodysplasic syndromes [76]. Genes of
KDM5A, and KDM5C code lysine-specific demethylase enzymes. KDM5A is mutated in acute
myeloid leukemia [23] and plays a role in breast cancer formation [77,78]. KDM5C is mutated in
renal carcinoma [23] and plays a role in acute myeloid leukemia [77]. The KAT3A enzyme is mutated
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in acute myeloid leukemia, acute lymphoid leukemia and transitional cell carcinoma of the urinary
bladder, KAT3B is mutated in colorectal, breast and pancreatic carcinomas [23,78].

Category 6. Proteins with multiple functions. Regarding the extensive intertwined nature of
epigenetic regulatory mechanisms, it is fairly common that some regulatory proteins play multiple
roles in the epigenome, discussed in the previous Categories, respectively. An example of TRIM24
was mentioned in Category 4. Another example, the bromodomain PHD finger transcription factor
(BPTF), is a nucleosome-remodeling factor subunit protein, which functions as a transcription factor.
If amplified, it is prognostic for primary breast cancer [79]. At the same time, BPTF PHD finger is
a histone reader sensitive to the state of methylation of the histone tail [80], which underlines that
the activity of transcription factors is modulated by PTMs. Finally, we mention a protein coded
in the alpha thalassemia/mental retardation X-linked (ARTX) gene. The protein has an N-terminal
ATRX-DNMT3-DNMT3L (ADD) domain that binds histone H3 tail, and a C-terminal domain that is
an ATP-dependent chromatin remodeling domain. The ADD domain has a PHD and a GATA zinc
finger, the latter type of domains named after the specific binding of a DNA sequence. Interestingly,
the ADD domain recognizes H3K4me3 with an atypical binding pocket at the interface between
the GATA and PHD fingers [81]. Binding of ADD to histone H3 is facilitated by the recognition of
methylated H3K9me3 (−12.2 kcal/mol), with an almost doubled binding enthalpy if compared to
unmethylated H3K9me0 (−6.1 kcal/mol), indicating that H3K9me3 recognition is an enthalpy driven
process [81] (see also Section 2.2.1). Unusually, the positive charge of the trimethyllysine is not accepted
by an aromatic cage, but rather only one aromatic sidechain during the recognition by ADD [81] (see
also Section 2.1.2). DNMT3L protein recognizes unmethylated histone H3 tail, and induces DNA
methylation by DNMT3A2, establishing methylation patterns for heritable silencing and inactivation
of the X chromosome in females [82].

In the previous paragraphs, the molecular background of epigenetic regulatory mechanisms
was briefly sketched. The discussion was limited to only a segment of the most important molecules
and a few examples. Exploration of the full proteome and interactome of the epigenetic universe
seems a fairly demanding mission. However, various experimental and theoretical approaches have
been adopted to answer this challenge. The next Sections survey recent approaches and selected
contributions to the development of structure–activity relationships (SARs) of the epigenome.

2. Experimental Approaches

Exploration of molecular pathomechanisms of diseases of epigenetic origin and the discovery of
new drugs require the determination of molecular structure, binding, and activity. Such experimental
measurements are primary resources of new data for building SARs, and are also used for validation
of computational approaches [83] of structural biology and drug design (Section 3).

2.1. Molecular Structure

The determination of three-dimensional structures of biomacromolecules of the epigenome
is necessary for the precise description of their interactions and function at the atomic level.
The technical breakthrough and first protein structures solved by X-ray crystallography date back to
the previous century [84,85]. The technique requires expression, purification, and crystallization of
biomacromolecules at a relatively large quantity and works typically on globular structures [86] neatly
packed in the crystal lattice. Nuclear magnetic resonance (NMR) spectroscopy has started to supply
structures for the Protein Databank (PDB, [87]) some decades ago. Beyond a static snapshot, NMR
techniques also provide atomic resolution details on molecular dynamics of various systems including
intrinsically disordered proteins [88,89]. However, the maximal measurable system size in NMR (ca.
35 kDa) is smaller than that in X-ray crystallography. Since the Nobel prize in 2017 [90], cryo-electron
microscopy has been highlighted as an indispensable source of atomic resolution structures of the
largest biological units.
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2.1.1. Trends

To satisfy the above-mentioned need for establishing new SARs, numerous biomolecular structures
of epigenetic importance have recently been deposited in the PDB. A quick search of the PDB results
in more than four thousand entries, and more than half of these entries were deposited in the past
decade. The corresponding statistics are presented in Figure 3 with a general overview of the trends of
experimental structure determination in the epigenome. The statistics are based on the counts of PDB
structures relevant to Categories i–iii in Section 1. In general, X-ray crystallography is the oldest and
most wide-spread technique, and it has a leading role (Figure 3A) in the determination of structures of
the epigenome, as well. If considering the types of biomacromolecules, histone-containing structures
form the most abundant group. The number of such entries shows a dynamic increase (Figure 3B) in
the past ten years. This trend reflects the growing efforts on solving the “histone code” and exploration
of the effects of PTMs (Category ii in Section 1).

Figure 3. Trends of experimental structure determination of representative macromolecules of the Figure 3. Trends of experimental structure determination of representative macromolecules of the
epigenome. (A) The count of structural entries in the Protein Databank (PDB) per year (cumulative
plot). (B) Distribution of entries of 2019 in (A) grouped by the main experimental techniques. The plots
are based on a search in the PDB using key words ‘histone’, ‘modified DNA’ and ‘non-coding RNA’,
which also involves ’siRNA’, ’miRNA’, ‘lncRNA’ were used in PDB. Accession date: 6 April 2020.

The above trends of statistical figures are reflected in the progress of structure determination of
important biological units such as nucleosomes. As it was discussed (Figures 1 and 2), nucleosomes are
the core units of the chromatin, and central scenes of the epigenome. Thus, the determination of their
atomic resolution structure is of utmost importance. The first X-ray crystallographic measurements
of the nucleosome date back to 1984 and confirmed the disk-like shape of the core particle at a 7 Å
resolution [91]. There was constant progress towards the atomic level with a resolution of 2.8 Å in
1997 [29]. In 2002, the crystallographic structure was solved at 1.9 Å [48] with the whole histone H3
protein (PDB code 1kx5, Figure 2).

While the nucleosome was solved by X-ray crystallography, the determination of important
functional assemblies, such as nucleosome-reader complex structures remained extremely challenging,
and necessitated the use of cryo-electron microscopy [92–94] (next paragraph). In solution NMR
studies [80,95], the terminal peptide tails of histones have mostly been captured in their complexes with
reader proteins. Similarly, X-ray crystallographic entries contain only part of the nucleosome-reader
complexes. In many cases, structures of only the reader-bound terminal peptide tails (Figure 2) of
histones have been captured [94,96]. Atomic level assignation of the DNA segments and interacting
histone core sequences is often missing too.

Following the new trends of recent years, nucleosome structures have also been determined by
cryo-electron microscopy [93,94]. Although cryo-electron microscopy is still not as wide-spread as X-ray
crystallography (Figure 3), it helps to overcome size and shape limitations [97,98], and has received a
spotlight in the past decades. In the epigenome, cryo-electron microscopy has a remarkable role in the
determination of multi-molecular units, such as the above-mentioned nucleosome-reader complexes.
Determination of full structure of these complexes is of particular importance for exploration of the
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effect of PTMs on the nucleosome and development of SARs unraveling the histone code. Cryo-electron
microscopy provides pioneering examples for the solution of full nucleosome-reader complexes.

For example, in a recent study of Wagner et al. [94] the whole triad of the DNA–histone–reader
complex was solved using cryo-electron microscopy (Figure 4). The structure contains the
switch/sucrose non fermentable (SWI/SNF) chromatin structure remodeling complex with a subunit
called nuclear protein STH1/NPS1, which is multi-functional as a histone H4 reader, as well.
The interaction of the nucleosome core histone octamer, the DNA double helix wrapped around
it, the protruding histone H4 tail and the reader protein are all visible, providing indispensable details
for the development of SARs. The first electron microscopic map supplied the whole complex at a 15
Å resolution, and further refinements were possible for the nucleosome. Parts of the whole complex
were also rigid body fitted from other PDB structures, which included both X-ray crystallographic and
cryo-EM structures. This study [94] applies complementary experimental and theoretical methods such
as map alignment, rigid body fitting, homology modeling and real space refinement with secondary
structure restraints to solve the complex of more than one thousand kDa molecular weight.

The ternary complex of STH1/NPS1 nuclear protein (blue cartoon), a histone reader, the DNA Figure 4. The ternary complex of STH1/NPS1 nuclear protein (blue cartoon), a histone reader, the DNA
(orange cartoon), wrapped around the nucleosome and histone H4 (red cartoon), that is buried in the
nucleosome. The non-interacting parts are represented in grey cartoon. The figure was rendered by
PyMol [47] using PDB structure 6tda [94].

Beyond the static structures discussed in the previous paragraphs, development of up-to-date
SARs necessitates the exploration of molecular dynamics of biomolecules of the epigenome. Recent
studies [99,100] highlight the necessity of such information even at the level of molecular design.
For probing structural dynamics of the nucleosome there are appropriate experimental methods like
fluorescence resonance energy transfer (FRET) and nuclear magnetic resonance (NMR) spectroscopy [101].
FRET is well suited for the investigation of dramatic conformational and compositional changes.
For example, FRET grants access to the measurement of nucleosome unwrapping equilibrium [101].
The equilibrium occurs between fully wrapped and partially unwrapped states of the nucleosome, with
the binding of site-specific DNA binding proteins, the equilibrium shifts towards the unwrapped state,
explaining the increasing accessibility of the DNA [102].

Apart from dramatic conformational changes, subtler changes of molecular conformations also
occur as a part of nucleosome dynamics. NMR allows the measurement of protein dynamics and
interactions at atomic level, even is disordered regions and transient complexes. NMR experiments
probe how macromolecules shift between conformational sub-states in solution [103,104]. A special
type of NMR, namely methyl-transverse relaxation optimized NMR (methyl-TROSY) is more suitable
for the investigation of subtle dynamic changes, which is more typical for the histone tail-reader protein
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interactome [101]. The NMR linewidths of the base imino protons of DNA provide an informative
insight into base pair opening dynamics [105]. A broader line shows reduced base pair stability
and increased base pair opening rates, for example, oxidation of guanine led to line broadening of
guanine base imino protons, and methylation of cytosine resulted in imino proton line narrowing [105],
indicating that cytosine methylation stabilizes the DNA duplex. Solid state NMR can determine the
binding sites on the nucleosome surface, and demonstrate the dynamic nature of the N and C terminal
tails of histones within the core octamer [106]. These terminal ends are DNA bound and rich in PTMs,
their structural dynamics is exploitable by histone reader, writer and eraser proteins [106]. Solid-state
NMR does not have an intrinsic size limit, larger chromatin substrates can also be accessed, and is a
complementing method to cryo-EM and X-ray crystallographic settings, when the plasticity of histones
is thought to play a role or smaller proteins are observed [106].

Approaches combining different techniques such as small angle X-ray scattering, solution NMR
spectroscopy and molecular dynamics were successfully applied to study the ubiquitin-like, containing
PHD and RING finger domains, 1 (UHRF1) protein and its tandem Tudor domain–plant homeodomain
(TTD-PHD) histone reader module [107]. UHRF1 is expressed in various cancers, being a promising
target in antitumor therapy, a known small molecule acts by binding to its TTD. The study identified a
novel antagonistic approach to UHRF1 function, through the allosteric disruption of the co-operative
binding mode of its TTD-PHD module [107].

2.1.2. Challenges

In addition to the large size of nucleosomal assemblies discussed in the previous Sections, structure
determination faces other challenges due to complexity of the histone code system, conformational
and functional diversity of the epigenome. Both experimental and theoretical (Section 3) approaches
face the challenges described in detail in the forthcoming Sections.

The Size and Complexity of the Histone Code System

The histone code originates from PTMs on amino acids of histone proteins (Category ii, Section 1).
It is even possible, that every single amino acid of a histone tail has a specific meaning and place in
a peculiar vocabulary [36]. The code system has astronomical proportions if considering the large
number amino acids and types of modifying groups involved (Figure 2). The number of possible codes
can be illustrated using a specific case of methylation of H3 lysine residues. Histone H3 is known to
be methylated at nine lysines, K4 [31,36–40], K9 [31,37–40], K14 [31,38], K18 [38,46], K23 [31,38,40],
K27 [31,36–40], K36 [31,37–40], K56 [38,45] and K79 [31,37–40,46] (Figure 2). A single lysine side-chain
can accept a maximum of three methyl groups, and there is the non-methylated, native amino acid
resulting in four possible marks per residue. This means 49 (262,144) possible variations, only for lysine
methylation of histone H3 not including, e.g., lysine ubiquitination, acetylation, arginine methylation,
PTMs on serine, tyrosine, and other histones. Thus, the amount of PTMs of the histone code is almost
uncountable, involved in many, if not all, DNA-templated processes [36,108]. Recent studies usually
accumulate more variations than older works, highlighting that exploration of new PTMs is still an
evolving field of epigenetics.

Besides its enormous size, the code system is further complicated by the yet unpredictable
distribution of the different PTM types. Some amino acids like K4 even tend to accept multiple
modification marks, resulting in different binding schemes. There are PTMs, missing from some
histone types. Moreover, there are different histone reader, writer and eraser proteins, that can
assess these altered amino acids in a wide variety of conformational possibilities. Lysine methylation,
acetylation and ubiquitination appear from the 4th position up to the 123rd position on the histone
chain, arginine methylation mostly occurs on the lower positions of the tail, while serine and tyrosine
phosphorylation is typically closer to the N-terminal end in histone H3 and further in H2AX [40].

The complexity of the histone code is further increased by networking and cross-talk of the
codes [109]. Some networking modifications enhance, while others inhibit the functions of others [40,110].
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One study [70] proposes five mechanisms of PTM cross-talk, to which an extra level of complexity is
ascribed over the histone code, for fine tuning of the overall control of the chromatin structure. Lysine
residues might be target of various modifications, such as acetylation, methylation or ubiquitination
and these agents might compete with each other. In Saccharomyces cerevisiae, methylation of
H3K4 is dependent on the ubiquitination of H2BK123. The phosphorylation of H3S10 disrupts the
binding of heterochromatin protein 1 (HP1) to H3K9me2/3, which would occur in the absence of
the phosphorylation. In yeast, the FK506-binding protein 4 (scFpr4) proline isomerase catalyzes
the interconversion of the peptide bond of H3P38, which interferes with the methylating ability of
histone-lysine N-methyltransferase, H3 lysine-36 specific (scSet2) on H3K36. Finally, PHD finger protein
8 (PHF8) binds to H3K4me3 with its PHD finger, and this interaction is stronger when H3K9ac and
H3K14ac occur at the same time [70]. Apart from these subtle mechanisms, PTMs also play a role
in chromatin remodeling by altering the physico-chemical properties of the nucleosome. As it was
discussed in Section 1, acetylation marks on histones H3 and H4 weaken DNA-histone interactions,
enhances formation of accessible DNA, and transcriptional activation [41,70,111]. This phenomenon
is mostly additive, with the more acetyl marks on the histone, the DNA becomes more accessible.
Simultaneous acetylation of H4K79 and H3K122 has an amplified destabilizing effect on the nucleosome
when compared to a single acetylation mark [41]. This means that additional PTMs, acting as a network,
help each other to pose regulatory effects on the nucleosome.

The above-discussed extremely large size and high complexity of the histone code system is based
on numerous corresponding complexes of the participant macromolecules (DNA, histones, effectors,
etc.) at the atomic level. Experimental structure determination of such an infinite number of complexes
would be an impossible undertaking, even with high throughput methods [112]. As experimental
structure determination methods can clear up only tiny pathways in this jungle of the epigenome,
involvement of fast, complementary theoretical approaches is necessary to speed up the exploration of
new structures (Section 3).

Conformational Diversity and Water-Mediated Weak Interactions

Macromolecules of the epigenome, especially linear peptide tails of histones and RNAs [113]
often adopt various binding conformations imposing further challenges on structure determination
methods. Histone tails are linear structures, which are seldom compatible with X-ray crystallographic
approaches [114] since these experimental methods are better at handling globular structures that
can be crystallized [114,115]. Such linear peptides are better accessed by X-ray crystallography, when
they are a part of a globular structure, like a nucleosome. In this case, the structure of the whole
histone tail can be assigned [48]. Similar to histone tails, RNAs of the epigenome also pose a challenge
for both X-ray crystallographic and solution NMR methods, due to their great flexibility. Size is
also a limiting factor in their case [116,117]. The highly complex interactome (see previous Section)
around the chromatin involves dynamic and flexible parts, exacerbating the difficulty of unraveling
the machinery [112,118]. These difficulties often lead to experimental structures of complexes with
N-terminal histone peptides of only 10–15 amino acids [81,95]. If the length of a histone tail exceeds 30
amino acids, and peptides of this length tend to loosely stick to the surface and give response signals
that are non-specific for the original peptide [119]. In these cases, the N-terminal end of the peptides
usually hang out to the bulk, and do not have any (specific) interactions with the partner protein
(reader, Figure 5). This situation is experimentally challenging, as the peptide tails have dynamically
changing positions, great flexibility, and conformational uncertainty as a result of their interactions
with bulk water molecules in continuous thermal motion.
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The structure (A) of the UHRF protein PHD finger (grey surface) in complex with histone H3 Figure 5. The structure (A) of the UHRF protein PHD finger (grey surface) in complex with histone
H3 peptide tail (sticks, PDB ID 3sou). The figure was rendered by PyMol [47]. (B) Per residue
peptide–protein interaction energies (Einter, bottom) were calculated after energy-minimization of
the crystallographic complex. Einter values were calculated as a sum of Lennard-Jones and Coulomb
interaction energies as described previously [99]. After the first 5 amino acid residues of the histone
peptide, Einter diminishes as the last three residues interact with the bulk.

The histone H3–autoimmune regulator protein (AIRE) complex is a representative example of the
above-mentioned situation. Most of the interactions take place between the first five amino acids of
the N-terminal tail of the histone hampering the determination of the rest of the histone tail either
experimentally or theoretically [99]. Histone recognition by a bromo-, homeo-, chromodomains or
transcription factors involves only a shallow depression of the protein surface [91,96–98]. These flat
binding surfaces often result in low interaction energies at most of the binding residues. As another
example, the complex of the UHRF (see also Section 2.1.1) protein PHD finger and histone H3
N-terminal peptide tail is featured in Figure 5. The atomic resolution structure ([120], Figure 5A)
and the corresponding [99] distribution of per-residue interaction energy values (Einter, Figure 5B)
show that starting from the sixth amino acid, physical interactions tend to cease. This is a challenging
situation in the investigation of histone tail binding to reader proteins both experimentally and
theoretically. From an experimental perspective, the non-interacting part of the histone peptide tail
moves dynamically in the bulk solvent, and it is hard to capture. On the other hand, fast computational
docking approaches try to find the bound peptide position with the best possible interaction energy,
creating non-existent interactions (mis-docked conformations, see also Section 3).

As a consequence of the shallow binding surfaces and few contact histone residues, the total
binding affinities of (modified) histone tails are often limited to a micromolar range [121–125], indicating
relatively weak complexes.

Histone–partner interactions are also affected by structural water molecules located in the binding
interface. However, the determination of hydration structure is challenging in many cases [126,127].
There is often a water network formed in the interface increasing the complexity and stability of
the interactions. Disruption of the hydration network can lead to complex instability. For example,
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the interaction of the histone reader death-associated protein 6 (DAXX) to histone H3.3 N-terminal
peptide tail was investigated with a special highlight on interacting water molecules [128] and their
networking [127]. It was found experimentally that if one water molecule was displaced from the
interfacial hydration network by introducing an active site mutation, the binding affinity was reduced
by 50%. A computational investigation [127] further analyzed the networking of interfacial water
molecules. The complete interfacial hydration networks were produced, using a molecular dynamics
(MD)-based determination of the complete hydration structure by MobyWat [126]. In the mutant
structures, important water nodes changed their positions or disappeared from the static core of the
hydration network of the wild type. In agreement with the experimental results [128], the networking
study [127] found that in the mutant system, the static core of the interfacial hydration network has
disintegrated into a dynamic hydration network, explaining the reduced binding affinity.

Functional Diversity of the Histone Code

Histone reader, writer and eraser proteins are often promiscuous [62,70], their substrate specificity
may depend on the complex they participate in [70]. Histone reader proteins are structurally diverse
including plant homeo-, chromo-, bromodomains, Tudor, ADD, WD40 and PWWP modules [40].
On the other hand, a histone holding a PTM variation (a code) can also interact with multiple readers.
The PTMs of the H3K4 residue is recognized by fourteen different reader proteins [40], including PHD
finger containing proteins, recombination activating gene protein 2 (RAG2), inhibitor of growth protein
2 (ING2), BPTF (see in Category 6 of Section 1), AIRE, Tudor domain containing protein, SAGA complex
associated factor 29 (Sgf29) and chromo domain containing proteins Jumonji domain containing 2A
(JMJD2A) and chromodomain helicase DNA-binding (CHD) [129,130]. Another example is H3K9me3,
which is regarded as a general transcriptional repressive mark [40], influencing a wide variety of
cellular functions. Therefore, associating a distinct function with a PTM is challenging.

The functional diversity of the histone code is further increased by chromatin-associated protein
complexes often containing multiple domains with different functions, as the same protein complex can
include both a reader and a writer domain. For example, nucleosome acetyltransferase for H4 (NuA4)
and Saccharomyces cerevisiae reduced potassium dependency 3 small (Rpd3S) protein, a HDAC share
the same chromodomain containing subunit Esa1p-Associated Factor (Eaf3). Whereas Eaf3 is a histone
reader domain [40] identically present in both NuA4 and Rpd3S complexes, NuA4 also has a histone
writer domain, and Rpd3S contains a histone eraser domain, as well.

Investigations of the effects of histone PTMs are complicated by their different accessibility [40]
as a free peptide or under physiological conditions, embedded in the nucleosome. For example,
in the H3K79me-reader interaction, flanking residues of H3K79 take different positions in their
nucleosome-bound and free states. When wrapped in the nucleosome, there are structural constraints
of the flanking residues, hindering the recognition of histone peptides by reader proteins [40].

Lysine acetylation PTMs are recognized by bromodomains with wide pockets, and by tandem
PHD fingers with shallow binding pocket. Other residues surrounding these PTMs tend to form less
characteristic contacts with the surface, resulting in a decreased substrate specificity [40]. On the
other hand, recognition of lysine methylation by histone (de)methylases require higher substrate
specificity [40]. Addition of a methyl mark to the lysine residue results in a positive charge, and
increases hydrophobicity at the same time, which can be recognized by an aromatic cage (Figure 6C).
Thus, binding surfaces of lysine methylation marks are similar to each-other [40]. At the same time,
the non-methylated state of a lysine residues also acts as a coding variant as methylated lysine residues
are not recognized by readers specific for non-methylated lysines, and vice versa [40].
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Binding of non-methylated (A) and tri-methylated (B,C) histone peptide tails (cartoon coils) to PHD Figure 6. Binding of non-methylated (A) and tri-methylated (B,C) histone peptide tails (cartoon coils)
to PHD fingers (grey surface). (A) The non-modified histone peptide tail with the H3K4me0 residue
(spheres) binds the shallow surface of AIRE PHD finger (PDB ID 2ke1). (B) The histone peptide tail
tri-methylated at H3K4me3 (spheres) binds to the aromatic cage of BPTF PHD finger (PDB ID 2fuu).
(C) Close-up of the aromatic cage (BPTF PHD finger residues are in grey sticks) in complex with the
tri-methylated lysine residue (H3K4me3, spheres). The figure was rendered by PyMol [47].

For example, the PHD finger of AIRE protein binds a non-methylated lysine residue at position
H3K4me0 [130] (Figure 6A). With three methyl groups attached to the K4 side-chain (H3K4me3),
the binding completely diminishes according to ITC measurements [130]. In the case of AIRE PHD
finger the recognition occurs on a flat binding surface of the protein, and this PHD finger does not
have an aromatic cage. On the contrary, the PHD finger of the BPTF protein has an aromatic cage
(Figure 6B,C), which can recognize the positively charged, trimethylated lysine residue of H3K4me3
PTM [80] (see another example in Category 6 of Section 1). This example nicely illustrates the
binding diversity of histones, as the same PTM (H3K4me3) has radically different binding affinity to
different readers.
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2.2. Binding Affinity and Biological Activity

Epigenetic events manifest themselves as (patho)physiological activities at a systemic level.
Structural results reviewed in the previous Sections demonstrated that formation of complexes of
two or more molecules provides the background of such activities at an atomic level. Complex
formation assumes that the partners have several intermolecular interactions (Figure 5) and high
binding affinity to each other. Whereas structural description of intermolecular interactions is rather
challenging and costly (Section 2.1.2) at an atomic level, measurement of binding affinity or in vitro
activity is often less demanding, especially in the cases of routine assays and kits briefly mentioned in
the next Sections. However, the large size of the epigenetic interactome, especially of histone PTMs
(Section 2.1.2) indicates that there are hardly enough resources to measure all corresponding in vitro
affinities. The highest level, in vivo activity measurements are again rather expensive, require special
conditions of animal keeping and often limited by ethical concerns, as well.

2.2.1. Binding Affinity

Isothermal titration calorimetry (ITC) measurements are often performed [131–134] to gain an
insight into the effect of histone PTMs and different states of methylation or acetylation on the side of
the ligand. Besides investigation of PTMs, ITC can supply binding thermodynamics parameters for
any binary system [98] via the measurement of the generated or absorbed heat during the titration
of the solution of one partner with the other. ITC is a gold standard for determination of the full
thermodynamics profile of complex formation including binding free energy (∆G), enthalpy (∆H),
entropy (∆S), and the stoichiometry (n) of the complex. Equilibrium dissociation constant (Kd) can be
obviously calculated from ∆G and temperature data, as well.

ITC is a primary tool for finding new ligands and optimization of lead compounds in drug
design. Appropriate (large negative) ∆G of ligand to a target molecule is a necessary, yet not sufficient
requirement for pharmacological efficacy. Different targets might require distinct thermodynamic
binding profiles to show biological effect upon interaction with their ligands [135]. During ligand
optimization enthalpy and entropy-based approaches are applied [136–139] during the early stage of the
optimization. An enthalpy excess can be introduced by additional hydrogen bonds to the interaction,
while entropic optimization typically occurs during the later stages by for instance rigidifying the
ligand in a bound conformation [135]. HIV reverse transcriptase inhibitors (e.g., etravirine) were
subjected to entropic optimization, to avoid viral resistance upon mutational changes, by allowing
a high residual mobility to be able to acquire multiple binding modes [135,137,138]. The design
of high-affinity adaptive inhibitors can be achieved through engineering their vital interactions for
affinity and specificity with conserved regions of the target. In addition, at moieties of the ligand
that will most likely face rapidly mutating sites of the virus, flexible asymmetric mutations are
introduced [138]. In these cutting-edge strategies, ITC is an indispensable technique, providing both
∆H and ∆S components of the overall binding affinity (∆G).

In the context of epigenetics, ITC is an excellent tool to study the interactions of wild type (see also
in Category 6 of Section 1) and mutated readers such as the PHD finger of AIRE and different PTM states
of the N-terminal histone tail [95,130,140]. ITC investigations of such studies provide the full binding
thermodynamics profile (∆G, ∆H, ∆S, n), and allow measurement of effects of PTMs. For example, AIRE
does not have an aromatic cage to accept H3K4 methylated lysine binding (Figure 6A); in agreement
with this, H3K4me0 bound with the greatest affinity, and trimethylation of H3K4me3 caused a lack of
binding to the AIRE reader protein [130]. A common way to perform a mutagenesis assay is to change
the residues of interest to inert alanine residues (alanine scan), either on the side of the ligand or the
target. For example, if the binding affinity of H3K4me0 to AIRE-PHD1 is compared to the binding
affinity after the mutation of an aspartic acid residue to an alanine at the binding site of the target,
the measured ∆Ho of binding of the same H3K4me0 is halved [130]. Beyond local changes on ligand
binding, mutations of amino acids may alter function of the target protein by changing its overall
integrity and global folding, as well.
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In another study, [55], the binding of H3K4me3 was also investigated by ITC analysis. Binding of
H3K4me3 and H3c4me3 (where c refers to the neutral carba analog) to five specific H3K4me3 readers,
the PHD domains of JARID1A, BPTF, TAF3, the Tudor domains of the Royal Family of SGF29 and
JMJD2A was studied. All the readers have aromatic cages for specific trimethylated lysine binding, but
all have a different architecture of the typical motif. It was shown, that H3K4me3, which is positively
charged binds 2-33-fold stronger, than the neutral H3c4me3 to readers that contain a Trp residue in
their aromatic cage [55]. Interestingly, the association of H3K4me3 is more favorable enthalpically, but
less favorable entropically, compared to the association of H3c4me3, in the same aromatic cages [55].
The two histone peptides bind with indistinguishable thermodynamics of associations to half-aromatic
cages, indicating little to no contribution from cation-π interactions to the binding [55]. Aromatic cages
containing tryptophan residues show stronger cation-π interactions binding to quaternary ammonium
ions, if compared with aromatic cages containing phenylalanine and tyrosine residues [55].

ITC is also applicable for the thermodynamic analysis of large complexes of the epigenome.
For example, binding of aprataxin and polynucleotide kinase like factor (APLF) to histone dimers
and tetramers H2A-H2B and (H3-H4)2 was investigated in a study [141]. It was found that both
histone systems bind the APLF reader protein with micromolar affinity, both are enthalpically favorable
interactions, yet the binding of (H3-H4)2 is entropically unfavorable, which might explain the
difference in their Kd values. ITC did not detect additional lower affinity binding modes, resulting in a
stoichiometry of n = 1 in both cases [141].

Surface plasmon resonance (SPR) techniques are essential for high-throughput probing of
biomacromolecular interactions. Kd is the main outcome of SPR which generally correlates well with
the Kd from ITC measurements [119]. In contrast with ITC, the SPR measurements also provide
reaction kinetic information of association and dissociation rates which can be useful in estimation of
the kinetic stability of a drug-target complex [142]. Application of SPR yielded excellent comprehensive
studies. For example, 125 types of modified histone (H1-H4) peptides with different PTMs were
investigated [119] in combination with 8 histone reader proteins, resulting in one thousand pairs of
interactions. It was discovered that KDM5A (also known as JARID1A, see in Category 5 of Section 1)
interacts with H3K4me3 specifically [119]. KDM5A also interacts with human estrogen receptor and
plays a role in osteogenesis. The study also showed that heterochromatin protein 1, important in the
DNA repair after UV-induced damage, interacts with H3K9me3 [119]. Another study [143] used 204
proteins from either the Royal Family, PHD, bromodomains or CW domains and subjected them to SPR
investigations with three specific histone modifications (H3K4me3, H4K5acK8ac, H3S10ph). The results
were confirmed by ITC. It was found that the Tudor domain of echinoderm microtubule-associated
protein-like 1 (EML1) binds to H3K3me3 with a greater affinity than to H3K36me3 [143]. EML1 is
associated with Usher syndromes, which is a disease that eventually progresses in the whole brain. SPR
was also used [50] to investigate the dependence of histone H3 binding to WDR5 on the methylation
state of H3K4. The peptides were immobilized in the analyses, wild-type and mutant proteins were
also assessed. H3K4me2 shows the strongest binding to WDR5, mono- and tri-methylated peptides
bind seven and eight-fold weaker. Interestingly, H3K4me2 has both the smallest association and
dissociation rate, if compared with the otherwise methylated H3K4 peptides. The small kon rate
indicates a slower approach to equilibrium and koff corresponds to a sluggish decay of bound peptide
signal when dissociating. This might be explained by an extended intracomplex interaction formed by
H3K4me2 if compared with other modified H3K4 peptides, involving a hydrogen-bonding network
between the ligand, water molecules and a backbone amino acid residue of the target [50]. For all
histones, a micromolar Kd was measured, indicating a relatively weak binding affinity, compared to
for example, strong, small molecule inhibitors [50].

Fluorescence spectroscopy is a versatile and sensitive method, used for investigations of a wide
range of interactions including histone binding [95,130] and nucleic acid modifying enzymes [144].
Fluorescence spectroscopic determination of Kd of histone–reader complexes often completes PTM
studies to affirm the findings of ITC measurements [95,130].
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The methyl-CpG-binding domain protein 3 (MBD3), a DNA methylation reader was investigated
in living cells, under hypoxia and decitabine treatment [145] by fluorescence correlation spectroscopy.
The changes in the environment alter the fluorescence of the reporter (green fluorescent protein), which
is suitable for detecting conformational changes at the timescale of milliseconds [144]. By monitoring
the dynamics of the MBD3 protein, a fast diffusion in the nucleosome was observed, showing a form of
demethylation that is independent of DNA replication [145]. Fluorescence correlation spectroscopy
also contributed to identifying hypoxia sensitive cells and the real time follow-up of demethylation,
which occurs in context with the hypoxia [145].

Fluorescence resonance energy transfer (FRET) assays are also popular tools to study, e.g., estrogen
receptors and their coactivators [146], DNA bending by charge variant bZIP proteins [147], and
transcription factor binding kinetics to nucleosomes and DNA [148].

Besides determination of atomic resolution structures (Section 2) NMR techniques are important
in ligand-based binding assays and hit generation [149]. Such measurements are based on the spectral
differences of hits and non-binding ligands. Target immobilized NMR screening can use the same
target sample for a considerable number of ligands [149]. A study [141] of APLF nicely shows how
NMR can supply both binding and structural information in the same experiment. APLF is a DNA
repair factor with histone chaperone activity of its acidic domain, which uses two aromatic side chain
anchors towards histones H2A and H2B. NMR titration experiments with stoichiometric addition of
reagent solution (APLF acidic domain) to H2A and H2B were performed and peak intensity ratios
and residue-specific chemical shift perturbations were collected from N-TROSY spectra. 2D NMR line
shape analyses of the data resulted in Kd and also kinetic (koff) values, and a distinction was possible
after fixing the initial values, to investigate the formation of a secondary complex, a secondary binding
event with lower affinity [141]. With the calculated chemical shift perturbations, key residues of the
complexes were also identified, allowing assignation of the structural origin of the binding affinities.

Inhibition assays are common, fast methods for estimation of binding affinities of inhibitors to
enzymes. Such assays often produce the half maximal inhibitory concentration (IC50) values which
can be related to the thermodynamic inhibition constant (Ki) [150]. Thus, IC50 is system-dependent,
and not directly applicable instead of Ki (Kd). It can be applied for fast comparison or screening
of a series of ligands according to their inhibitory effect on the same target enzyme. However, this
level of information is often sufficient for further investigations or drawing conclusions. For example,
a small molecule inhibitor was tested in vitro in mantle cell lymphoma models [151]. Protein arginine
methyltransferase 5 (PRMT5) is overexpressed in patient samples with mantle cell lymphoma. Small
nuclear ribonucleoprotein Sm D3 (SmD3), is a protein involved in RNA splicing, and is methylated
by PRMT5. Observing the methylation of SmD3 with biochemical assays, PRMT5 enzyme activity
was measured. The study [151] suggests that observed antiproliferative effects were a direct result of
PRMT5 inhibition by the small molecular inhibitor that showed an IC50 value of 22 nM. In general,
lysine methylation is a better studied area in cancer pathogenesis than arginine methylation; however,
this study [151] offers an insight into arginine methylation in cancer, and represents a validated
chemical probe for further studying.

In many epigenetic studies, a combination of various experimental methods is applied resulting
in a more complete and reliable picture of the interactome. For example, a study combined FRET and
ITC to measure selective inhibition of HDAC isoforms [152]. Results of a set of experimental methods
(in vitro binding assays, NMR binding, fluorescence titration assays, ITC, expression analysis and
chromatin immunoprecipitation) provides a solid basis for further, structural investigations of, e.g.,
the effects of histone methylations [55,130] with theoretical approaches (Section 3).

2.2.2. Biological Activity

There is a wide range of methodologies for measuring the activities of biomacromolecules and
their ligand partners. Whereas binding affinity information (Section 2.2.1) is very important for
molecular engineering, activity measurements provide high level tests of the new molecule. Thus,
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affinity and activity data complement each other, and in many studies, both types of measurements
are present for the same system. In general, in vitro tests precede in vivo investigations, as the latter
ones are rather costly, and therefore, they are applied mostly on a thoroughly screened, narrow set
of compounds.

In Vitro Activity

In a recent review [153], various in vitro methodologies including fluorescent, electrochemical,
and surface-enhanced Raman spectroscopy-based assays were featured for investigations of histone
PTMs and histone modifying enzymes. Fluorescent assay can measure e.g., the de-acetylation of
peptides by HDAC enzyme [154]. The activity of HAT, adenovirus E1A-associated protein (p300) can
be detected by monitoring coenzyme A formation in an electrochemical assay [155]. The activity of
histone demethylase 1 enzyme can be also measured by detection of product concentrations in surface
enhanced Raman spectroscopy-based assays [156]. In the next paragraphs, selected assays with some
recent applications are also reviewed.

In vitro DNA methylation assay measures the enzymatic activity of DNMT3A protein (see
Categories 3, 5 and 6 of Section 1). After methylation of DNA by DNMT3A, the isotopically labeled
methyl groups can be detected. The assay was applied for the investigation of the effects of histone
lysine residue methylation on DNMT3A enzyme autoactivation in an interesting study [157]. Relative
enzyme activities were measured, in the presence and absence of histone peptides H3K4me0, H3K4me3,
and the catalytic domain (CD) of the DNMT3A enzyme. In the presence of histone H3K4me3 the
DNMT3A protein preferred an autoinhibitory conformation, in which its ADD (Section 1) does not
bind to the histone tail. The binding of histone H3K4me0 to the ADD domain of DNMT3A induced a
conformational switch favoring the active form of the enzyme [157], allowing the formation of the
DNA-CD interaction (Figure 7).

 

Figure 7. A schematic representation of the effect of H3K4me3 trimethylation on DNMT3A enzyme activity. Figure 7. A schematic representation of the effect of H3K4me3 trimethylation on DNMT3A enzyme
activity. In the presence of H3K4me3 PTM, the DNMT3A enzyme is in an autoinhibitory form. In the
case of the non-methylated H3K4me0, the enzyme interacts with the DNA in an active form where the
arrangements of its ADD and CD domains is different from that in the autoinhibitory form.

An activity assay can also be applied to uncover the mechanism of the enzyme involved.
The histone-lysine N-methyltransferase SUV39H1, uses H3K9me1 as a substrate to create
H3K9me3 [158]. This methylation leads to a condensed state of the chromatin (see Category 5
of Section 1), and the exact mechanism that lies beneath this phenomenon was investigated in the
study [158]. The enzyme has a CD and an N-terminal end, which are also important for its function.
First, in its free form the enzyme samples chromatin through its CD. Then recognition of H3K9me3
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allosterically activates a chromatin binding motif to anchor the enzyme with the likely involvement
of its N-terminal segment, promoting H3K9 methylation. An active site mutation resulted in the
inactivity of SUV39H1. Disabling the active site of the CD of the enzyme led to a disruption of
promotion of H3K9 methylation through the N-terminal segment. Accordingly, the enzyme mutant
lacking the N-terminal end showed lower activity [158]. The addition of H3K9me3 peptide strongly
enhanced enzyme activity, by a tenfold increase in maximum velocity, and a fourfold reduction of
the substrate concentration required to reach half-maximal rate [158]. This finding underlined the
allosteric activation by H3K9me3. The promotion of H3K9me3 was called spreading in the study [158],
and it resulted in a spatial closure of the nucleosomes. In this study [158], causal relationship was
established with respect to how a PTM is transferred as a function.

Colorimetric assays, sulforhodamine B (SRB), mitochondrial metabolic activity (MTT) and crystal
violet (CV) are used to determine cell viability [159]. The SRB, MTT, CV and LDH assays were applied
to measure the cytotoxicity of apicidin on human pancreatic cancer cell lines, Capan-1 and Panc-1 [159].
Apicidin is a HDAC inhibitor. HDACs catalyze the deacetylation of primarily lysine residues at the
N-terminal tails of histones [159]. The HDAC enzyme family takes part in chromatin remodeling
and modification of gene expression (see in Categories 1, 2 and 5 of Section 1), and in the consequent
pathogenesis of various malignant diseases. Pancreatic cancer cell lines were cultured, grown and
plated before the experiments. Apicidin, a HDAC inhibitor was used at different concentrations for
incubation with cell lines. The effects of short duration and longer exposure were investigated, and
non-treated cells were used as control. EC50 values of apicidin were measured by these assays, and a
dose dependent cytotoxicity was detected after 24 h treatment. An increase in cytotoxicity and decrease
in cell viability was observed after treatment with 100 nM or higher doses of apicidin [159]. Moreover,
in pancreatic cancer cell lines, apicidin showed an initial antiproliferative effect before the onset of
cytotoxicity [159].

MTT cell viability assay was used to measure the effectiveness of tamoxifen and anacardic acid
on MCF-7 and T47D breast cancer cell lines [160]. In an effort to unravel disease pathomechanism,
and find possible therapeutic targets, epigenetic-related markers were screened, including oxidative
forms of DNA-methylation, histone modification and methyl-binding domains to identify H4K12ac
and H3K27ac as potential epigenetic therapeutic targets [160]. Anacardic acid, a HAT (see Section 1)
inhibitor reduces the levels of acetylated H4K12ac and H3K27ac [160]. Then, it was combined with
tamoxifen, a widely used agent in the treatment of breast cancer. The cell lines were cultured and
incubated, as a pre-treatment for MTT cell viability assays [160]. The assays were then performed
by addition of anacardic acid and tamoxifen, and a second incubation time was introduced before
analysis. A solvent, not containing any cells were used as background [160]. The combination of
tamoxifen and anacardic acid resulted in a marked inhibition in cancer cell viability with an additional
loss of FRET efficiency between ERα and histone acetylation marks. Such combined epigenetic
and hormone receptor mediated pathomechanism of breast cancer results raises the possibility of a
combined treatment targeting multiple pathways of the disease [160].

Similarly, cell viability was measured by MTT assay, after treatment with a HDAC inhibitor,
on pediatric embryonal cell lines [161]. HDACs are often used to treat various malignant diseases
(see in Categories 1, 2 and 5 of Section 1), screening of compound libraries for HDAC activity is an
emerging area of drug development [161]. A potent novel agent, HKI46F08 was tested on pediatric
neuroblastoma and medulloblastoma cancer cell lines [161]. Its EC50 value was in the range of
0.1–4 µmol/L. Furthermore, HKI46F08 induced cell differentiation and apoptosis, overall being a
promising agent in pediatric malignant diseases [161].

A cell proliferation assay, based on the measurement of optical density was used to study the effects
of a small molecule inhibitor on gastric cancer [162] and gastrointestinal stromal tumor cell lines [163].
C646, a HAT inhibitor (see Section 1), inhibits the enzymatic activities of p300 and CREB binding
protein (CBP). These HATs control the acetylation of histone H3, their inhibition exerts antineoplastic
effects on various cancer cell lines [162,163]. In two studies [162,163], it was tested whether their
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inhibition provides beneficial effects against two types of malignant diseases of the gastrointestinal
tract. In the first study [162], CBP and p300 enzymes were overexpressed in five gastric cancer cell
lines. The control was a normal gastric cell line. C646 was also added to all of the cell lines. Optical
densities were measured after incubation, and cell proliferation was calculated by dividing the optical
density of the active set with the optical density of the control set. Higher doses (> 10 µmol/L) of C646
resulted in a stronger inhibition of cell proliferation on gastric cancer cell lines, than on normal gastric
epithelial cells. In addition, it increased the number of apoptotic cells in gastric cancer cell lines and
reduced migration and invasion potential [162]. C646 treatment reduced the acetylation of histone H3
in both gastric carcinoma cells and normal gastric epithelial cells. In the second study [163], the same
protocol was repeated for gastrointestinal stromal tumor cell lines, with the introduction of an add-on
treatment with imatinib. It was found, that alone 15 µmol/L C646 caused a marked decrease in cell
proliferation of gastrointestinal stromal tumor cell lines, which result was further improved when
combined with 500 nmol/L imatinib [163].

In Vivo Activity

In vivo activity tests cover investigations on living animals with various approaches. For example,
in vivo enzyme activity tests can be performed by magnetic resonance (MRI)-based methods,
microdialysis and fluorescence imaging [164] among others. In vivo MRI-based methods can apply
microinjection of contrast agents cleaved by a specific enzyme to map the gene expression of transgenic
animals, and improve our knowledge of mRNA expression, inheritance patterns and plasmid
gene expression [165]. A selection of further in vivo studies on the epigenome is detailed in the
forthcoming paragraphs.

In vivo chromatin immunoprecipitation (ChiP) assays are frequently used in recent works. ChiP is
performed by cross-linking DNA and associated proteins, then fragmented DNA segments associated
with proteins are extracted from the debris by protein-specific antibodies. The DNA segments are
then purified, and their sequences are determined. With this approach, locations in the genome
associated with specific histone PTMs can be screened. For example, ChiP assays identified that
AIRE forms complexes with small fractions of H3K4me0, but not with H3K4me3. Furthermore,
the specific promoter regions of DNA interacting with AIRE were found [130]. Promoter regions,
where mostly H3K4me0 is expressed, like the insulin promoter region interact with AIRE. At the
same time, regions that lack H3K4me0 but rich in H3K4me3, like the glyceraldehyde-3-phosphate
dehydrogenase promoter region does not interact with AIRE [130].

ChiP-sequencing (ChiP-seq) combines ChiP assays with parallel DNA sequencing, similarly,
to map DNA binding sites of proteins. After the ChiP assay, all DNA fragment sequences are
determined in parallel, for a genome-wide analysis. In a ChiP-sequencing study [166], nuclei were
extracted from midbrain dopamine producing neurons (mDA) of adult mice to create ChiP-seq libraries.
The presence of repressive and permissive histone PTMs, H3K27me3, H3K9me3 and H3K4me3
around transcription start sites were screened to gain a picture on how the equilibrium state of the
chromatin correlates with gene expression rates [166]. Occurrence of H3K4me3 was associated with
high expression if compared with the total average gene expression level even when co-occurring
with repressive modifications. The distribution of other histone modifications also correlated with
gene expression as chromatin regions rich in H3K27me3 and H3K9me3 corresponded to lower than
average gene expression. The simultaneous presence of H3K27me3 and H3K9me3 were associated
with terminal repression of the gene expression. This chromatin equilibria regulation is maintained
during transition from neuronal progenitor cells (NPCs) to mDA. The already H3K27me3 enriched
genes not only maintain their repressed states in equilibrium, but even gain additional H3K9me3
marks upon transition from NPCs to mDA [166].

The xenograft tests are applied in tumor growth studies in vivo, where cancer cell lines are
transferred into animals, then control and treated groups are formed to study the effect of a drug on
tumor size. For example, a drug named corin was tested in a melanoma xenograft mice model [54]
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for tumor growth modifying effects [54] through targeting epigenetic pathways. A therapeutic target
of special interest, that contains a HDAC enzyme (see in Categories 1, 2 and 5 of Section 1), namely
CoREST complex (see in Category 5 of Section 1), consisting of REST co-repressor 1 protein (CoREST),
HDAC1 or HDAC2 and LSD 1 enzymes. Corin was tested as a dual action LSD1 (see in Category
5 of Section 1)/HDAC inhibitor targeting the CoREST complex. Corin showed metabolic stability
and proved to be well-tolerable in mice. Mice were divided into vehicle and corin treated groups.
Following euthanasia of the animals, tumors were collected and measured. Corin showed a marked
reducing effect on tumor growth compared to vehicle. Tumor cells extracted from these mice showed
an elevated H3K9ac acetylation and H3K4me2 dimethylation in corin-treated mice, compared to
vehicle-administered mice [54]. This observation correlates well with the HDAC and demethylase
inhibitor functions of the drug, corin.

In another xenograft study [160], sixty-day releasing 17ß-estradiol pellets were subcutaneously
inserted into the shoulders of eleven to fifteen weeks-old female mice [160]. MCF7 cells (See Section 2.2.2)
were also subcutaneously inoculated into the animals. After the tumor reached a certain size, the mice
were divided into groups, and the treatment was initiated. The control group was injected with solvent,
treatment groups were injected with tamoxifen and anacardic acid. Tumor xenograft volumes were
then measured. The tumor growth was reduced compared to control groups [160], this is in good
agreement with the in vitro results of the same study [160], detailed in Section 2.2.2. The combined
treatment with tamoxifen and anacardic acid inhibited ER-regulated gene transcription. Anacardic
acid alone showed a reduction in H4K12ac occupancy near growth regulation by estrogen in breast
cancer 1 (GREB1) transcription starting site, tamoxifen alone did not exhibit this effect [160].

In tumorigenesis studies, the growth of a tumor is also induced in animals, like in xenograft studies,
but with the intention to study the pathomechanism of a certain type of tumor, or the pathologic
pathway induced by an agent. The contribution of epigenetic changes to the carcinogenicity of
potassium dichromate (further referred to as CrVI) was investigated in a study [167]. CrVI is a known
genotoxic carcinogen. CrVI-transformed cells from human lung cancer tissues and CrVI-exposed
human bronchial epithelial cell lines were injected into female nude mice [167]. Chronic CrVI exposure
increased histone-lysine methyltransferase expression, and consequently repressive H3 methylation
marks, playing a causal role in the carcinogenicity of CrVI. Gene knockdown or pharmacological
inhibition of the histone-lysine methyltransferase diminished this effect [167].

Among invasive sampling methods microdialysis is often used for continuous measurements
of unbound analyte concentrations of the extracellular fluid. For example, dopamine levels were
measured in mice brain after alcohol administration, to investigate the effect of alcohol on histone
acetylation patterns [168]. Microdialysis was performed by inserting a dialysis probe into the brain
tissue of mice above the nucleus accumbens. The probe was perfused with artificial cerebrospinal
fluid at a constant rate. Baseline samples were taken to measure the baseline neurotransmitter levels.
Animals were injected either with ethanol or saline and samples were collected every 20 min through
the microdialysis probe [168]. It was found [168], that ethanol administration provokes similar
prolonged dopamine response in both adolescent and adult rats, but basal dopamine levels were
higher in ethanol-treated adolescent rats, than in similarly treated adult rats [168]. Finally, ethanol
administration changed the histone H3 and H4 acetylation of adolescent rats in the nucleus accumbens,
striatum and frontal cortex. The study [168] concluded that epigenetic changes might contribute to the
increased vulnerability of adolescent rats to alcohol addiction.

3. Theoretical Calculations of Molecular Structure and Binding Affinity

The previous paragraphs of Section 2.1.2 on experimental methods highlighted the most important
challenges of determination of molecular structures in the epigenome. It was explained how the high
number of variations meet large biomolecular system sizes, resulting in an extraordinary problem to
be tackled. Such complexity of the epigenetic interactome clearly shows the limits of experimental
approaches. In this situation, the use of theoretical approaches is inevitable to enhance the production
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of new structural information and also to predict the strength of corresponding molecular interactions.
Although some of the theoretical methods require an advanced computational infrastructure, the cost
of such facilities is still moderate if compared with that of experimental studies. Moreover, due to
the general need and spread of information technologies in all fields of society, their development
obviously shows an increasing trend. This has a positive feedback effect on the scientific applications
often resulting in higher benefit-cost ratios in both the software and the hardware components of these
technologies. Beyond a complementary use of theoretical approaches, the forthcoming paragraphs
also highlight their advances over physical experiments in problematic cases where measurements
are not available or reached their natural limits. The survey of the forthcoming paragraphs includes
examples at various levels of theory.

Knowledge-based approaches are trained on sets of experimental molecular structures and
their physico-chemical background is restricted to basic principles only. They often depend on
comprehensive databases and internet services such as the Protein Databank [87], the Basic Local
Alignment Search Tool (BLAST, [169]) or FASTA [170]. Knowledge-based methods provide fast results,
often implemented in on-line servers, and do not require extensive computational infrastructure.
However, the reliability of their results is limited by the training data set and the state-of-art of the
databases and servers working in the background. Molecular mechanics (MM) methods are generally
published as standalone tools based on more sophisticated physical chemistry, but still working by the
laws of classical physics [171]. MM methods allow not only local search and fast optimization of the
structures, but also extensive conformational sampling and global search in molecular dynamics (MD),
Monte-Carlo or genetic algorithms. Such features are of particular importance during investigations of
structural (Section 3.1) and energetical (Section 3.2) properties of molecular interactions, also accounting
for interface flexibility, or predicting protein side chain conformations, and so forth [172–174].

3.1. Molecular Structure

There are two main goals of theoretical methods on structural calculations. They produce either
an atomic-resolution structure of a single macromolecule, such as a protein target for drug design, or a
complex structure of two or more partners involved in protein–ligand, protein–protein, protein–DNA
or other interactions. Beyond production of such static structures (snapshots), recent molecular
dynamics investigations often produce a series of molecular geometries presenting the evolution of the
systems. This feature is of particular importance for the exploration of induced effects and drug binding
mechanism. Accordingly, the next paragraphs will feature selected results of static (Section 3.1.1) and
dynamic (Section 3.1.2) methods, as well.

3.1.1. Static Methods

Among knowledge-based approaches, homology modeling is a primary structure prediction
method of proteins and their complexes. It is a quick technique based on the assumption that similar
sequences fold into similar structures. The technique requires access to on-line databases holding protein
sequences [175], the above-mentioned sequence comparison algorithms (BLAST, FASTA) for selection
of a template protein available in the Protein Databank. An acceptable homology model requires
a large sequence identity between the modeled (target) and template structures [176]. The number
of known protein sequences is higher than that of determined protein structures [177]. As protein
structure is primary information for target-based drug design, homology modeling is often involved in
such projects with epigenetic targets [52,178–192]. The homology-modeled protein targets can be used
in virtual screening of chemical libraries to find lead molecules. For example, in a study [188], a 3D
structure of KDM5A (see in Category 5 of Introduction and Section 2.2.1) jumonji domain was built by
homology modeling. For building KDM5A jumonji domain the program MODELLER [193] was used,
with four templates, which either contain a jumonji domain or a similar structure. Template proteins
lysine specific demethylase 4C jumonji domain [194] and 2-oxoglutarate oxygenase [194] both had a ca.
40% amino acid sequence identity to the jumonji domain of KDM5A. Five models were generated from
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each template, and then the models were subjected to different MM minimization steps, to select the
most appropriate model for the screening process. Then molecular docking-based virtual screening
was performed on compound libraries, and structure activity relationship analysis was carried out,
to identify novel potent inhibitors of the enzyme. KDM5A functions as a transcriptional repressor
(see in Category 5 of Introduction), through the demethylation of H3K4me3 [188]. Dysregulation of
KDM5A is involved in the pathomechanism of various human malignant diseases, such as breast
cancer and acute myeloid leukemia [77,78,188]. In addition, it was shown, that KDM5A is involved
in the drug resistance of anti-cancer drugs [188]. The hit compound identified in this study [188]
showed an in vitro IC50 value of 0.22 µM on the KDM5A enzyme, a promising starting point for
further investigations.

Besides homology modeling of single targets, combination of existing structures can also lead
to the solution of target–ligand complexes. For example, the complex of AIRE PHD finger and
histone peptide H3K4me0 was modeled [130] by superimposing the histone complex of NURF BPTF
PHD finger (see in Section 1, [80]) and the apo structure of AIRE PHD finger [195] by the program
Lsqman [196]. Linear disordered C and N terminal parts of AIRE PHD finger and the NURF BPTF
PHD finger were then removed, and the remaining AIRE PHD finger was blocked by acetyl and
amide groups. The system was refined by MM energy minimizations with GROMACS [197]. One
year later, the solution NMR structure of the complex was also captured [95]. Comparison of the
modeled and experimental structures (Figure 8) show that the binding mode of the H3 peptide ligand
perfectly matches in the two structures including the three β-strands in antiparallel organization
and important side-chain interactions between the histone peptide residues H3R2, H3K4, H3T6 and
backbone residues of the AIRE PHD finger C310, L308 and G306, respectively. Furthermore, backbone
carbonyl oxygen atoms of residues P331-G333 anchored the N-terminal end of the histone peptide
tail through intermolecular hydrogen bonds. Hydrophobic interactions occurred between the methyl
group of H3A1 and the pyrrolidine ring of P331, and the methylene groups of H3K4 and L308. Finally,
two salt bridges were formed between the side chains of H3R2 and D312 and H3K4 and D297 [130].

 

Figure 8. Comparison of modeled [130] and experimental [95] structures of histone H3K4me0 (orange Figure 8. Comparison of modeled [130] and experimental [95] structures of histone H3K4me0 (orange
cartoon) in complex with AIRE PHD finger (navy blue cartoon). Zinc ions and key residues are shown
as navy blue spheres and labelled sticks, respectively. There is a good agreement between the modeled
and the experimental structures both capturing the antiparallel ß-strand as binding conformation of
histone H3K4me0.

Calculation of structures of target–ligand complexes is an important goal of MM- or
knowledge-based computational docking approaches, as well. Initially, fast docking programs
were introduced to select small-molecule drug candidates during rapid screening of ligand libraries
(see previous paragraph on KDMA5 target for an example). The technique is also useful for predictions
on the target side during investigation of the effects of amino acid mutations involved in ligand
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binding [198–200]. Beyond small molecule drug candidates, there is a rising interest in peptides as
ligands. However, flexibility of both the target and the peptide ligand [201–204] is challenging for fast
docking methods [205] which often neglect conformation flexibility to reduce computational cost [100].

Numerous servers have become available based on fast docking approaches [202,204–214]. Some of
these are designated for peptide ligands [207,209,210,212,214,215]. For example, the FlexPepDock [207]
server was used to dock H3K4me3 peptide on transcription factor 19 (TCF19) PHD [216]. The homology
model of TCF19 PHD was created on the basis of the PHD finger of the Jumonji/ARID domain containing
protein 1A, this template has a 50% amino acid sequence identity with the TCF19 PHD. The molecular
mechanism behind the function of TCF19 was explored, and it was found, that TCF19 PHD selectively
interacts with histone H3K4me3 mark, and recruits the co-repressor complex NuRD (Section 1),
to regulate gluconeogenic gene expression in HepG2 cells [216].

While the field of fast docking methods is rapidly developing, the above problems of peptide
ligands have not been solved yet. In particular, the docking of histone peptides to their targets (readers)
is still problematic and rarely addressed. To address this problem, a fragment blind docking [99]
strategy was introduced and tested for docking of 7–13 amino acid long histone N-terminal tail
peptides. Selected epigenetic proteins were targeted (references to the Sections indicate the places of
further explanations on each protein) including AIRE (Section 2.1.2), ATRX-ADD (Section 1), DNMT3L
(Section 1), KAT (Section 1) and Set domain containing protein (Section 2.1.2). The strategy applied
Wrap’n’Shake [100], a blind docking method wrapping the target surfaces with a monolayer of copies of
dipeptide ligand fragments. Then the full peptide ligands were reconstructed by linking the fragments.
With this strategy, good agreements were achieved with experimental structures for the N-terminal
part of histone peptides. For example, the N-terminal ARTK peptide of H3 showed a low root mean
squared deviation (RMSD of 1.3 Å) from the experimental conformation [99]. Notably, the N-terminal
segment has primary role in histone interactions and structure determination of H3 complexes is often
restricted to this region (see also Section 2.1.2).

The results of virtual docking screens are often piped into in vitro assays for final selection of
the top candidates. For example, the discovery of novel DNMT3A (Section 1) inhibitors was aided
by structure-based virtual screening and in vitro DNMT3A inhibition assays [217]. DNMT3A is
responsible for the methylation of cytosine at C5 position [217]. DNA hypermerthylation of specific
genes contributes to cancer initiation and progression [217]. Specifically, DNMT3A mutations are
associated with haematological malignancies [217]. In a study, over 77,000 commercially available
molecules were subjected to virtual screening via molecular docking for an X-ray crystallographic
DNMT3A structure [217]. The molecules were docked onto the S-adenosyl-l-homocysteine site of the
enzyme, with Glide [218] DOCK [219] docking programs. The top ranked molecules were evaluated
by AMBER [220] scoring, and the remaining 1000 molecules were merged into one file for cluster
analysis [217]. 107 molecules were then evaluated by in vitro DNMT3A inhibition assays, and two
compounds displayed significant in vitro inhibitory activity with IC50 values of ca. 40 µM [217].

Similarly, docking-based virtual screening was performed on SPECS database, to identify novel
non-nucleoside DNMT1 inhibitor compounds [221]. DNMT1 is the most abundant among DNMTs,
yet non-nucleoside inhibitors are lacking against DNMT1 [221]. Non-nucleoside inhibitors do not
show as many side effects, as nucleoside analogs, unfortunately they also show lower potencies
than nucleoside analogs [221]. An X-ray crystallographic structure was used, and similarly, its
S-adenosyl-l-homocysteine binding site was searched, and after discarding ligands with unfavorable
physicochemical properties, over 110,000 compounds were screened against DNMT1 [221]. After
scoring by Glide [218], 51 compounds remained for further evaluation in biochemical assays.
A compound, DC_05 showed remarkable selectivity for DNMT1 isoform, with an IC50 value of
10.3 µM [221]. Afterwards, similarity-based analog searching was performed, with DC_05 as a lead
compound, and two even more potent agents were found, DC_501 and DC_517 with IC50 values of 2.5
and 1.7 µM, respectively [221].
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3.1.2. Dynamic Methods

Besides production of a static snapshot of a single conformation (Section 3.1.1), uncovering
interaction dynamics is another key to epigenetic regulation. MD can produce a time series of
conformations of proteins or any molecular assemblies. It can be used to check the long-term stability
of folding and complexes of large molecules even on a ms scale. Explicit solvent MD simulations allow
very precise calculations accurately modeling real solutions.

MD simulations can be used to study the effect of PTMs on the stability of histone-reader
complexes. For example, the effect of methylation of H3K4 on its binding strength to AIRE PHD finger
was investigated using GROMACS [222] software package with GROMOS96 [223] force field [130].
Instead of the H3K4me0 peptide (Figure 8) H3K4me3 with trimethylated lysine side chains was applied
and neutralizing counter ions and 7800 explicit single point charge waters were used in rectangular
simulation boxes [130]. Short MD simulations were performed on four different complexes including
AIRE PHD finger in complex with four possible PTM variants of the K4 amino acid, respectively. It
was found that the H3K4me0 variant had stable complex with the first β-strand of AIRE PHD finger,
creating an antiparallel β-sheet, stabilized by the interactions listed in Figure 8 of Section 3.1.1 [130].
Two salt bridges were formed between histone H3R2 and D312 and H3K4 and D297 residues [130],
which is crucial for complex stability. Increasing the number of methyl groups (H3K4me, H3K4me2)
destabilized the complex. In the case of H3K4me3, the complex could not be stabilized, and the two
partners quickly dissociated in the MD runs. The bulky trimethylamino group of H3K4me3 could not
participate in the above salt bridge hindered by several possible clashes with the target surface [130].

The effects of interaction networks of water molecules on complex stability can be also investigated
by MD. An example of the ternary complex of DAXX protein and histones H3.3 and H4 was described
(Section 2.1.2) in detail previously. In another example, MD simulations with GROMACS and
MobyWat [127] were applied for the calculation of interfacial hydration network of ATRX-ADD
protein in complex with histone H3 tail, trimethylated at H3K9me3. The binding of ATRX-ADD
(Section 1) to histone H3 tail is promoted by H3K9me3 PTM mark and inhibited by H3K4me3. After
mutation of the trimethyllysine binding pocket of ATRX-ADD it cannot bind to histone H3K9me3, and
pericentromeric heterochromatin, leading to apoptosis in neuroprogenitor cells and mental retardation
syndrome [81]. The relatively large histone H3 tail interacts via a shallow binding interface, where
its arginine and lysine side chains are open to interact with water molecules from the bulk solvent.
MobyWat showed that 12.5% of the water molecules of the system has low mobility, and is involved in
a static sub-network [127]. The formation of such static networks are essential for complex stability
anchoring the N-terminal tail of the histone to the target molecule, and can also shield the target-ligand
H-bonds from solute attacks [127].

Two bromodomains, CBP (Section 2.2.2) and bromodomain adjacent to zinc finger binding domain
2B (BAZ2B) [224] were also analyzed in MD simulations, and conserved water molecules were studied
at the bottom of the acetyl-lysing binding site of the bromodomains. The movement of the ZA loop of
the binding site of the bromodomains has an influence on the presence of conserved water molecules in
the binding site. These water molecules are connected by hydrogen bonds and were all either present
or absent along the simulation [224]. Co-solvents, DMSO and (m)ethanol were added to the system,
and similar results were achieved, with available crystallographic conserved bromodomains with the
same co-solvents [224]. In their most populated binding modes, the co-solvents accepted a hydrogen
bond from the same asparagine residue that is involved in the binding of acetyl-lysine [224]. Upon
reaching more buried binding modes, the co-solvents displaced the same structured water molecules
during the MD simulations. It was concluded in the study [224], that during ligand design, only the
structured water molecules, that do not exchange with bulk solvent should be kept in crystal structures,
during docking runs [224], and the identified water molecules, displaced by (m)ethanol co-solvents,
might be targeted by hydrophilic moieties of the ligand [224].

MD simulations also uncovered the structural background of substrate selectivity of lysine specific
demethylase 4A (KDM4A or JMJD2A) [225]. JMJD2A is a histone demethylase, specific for di- and
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trimethylated H3K9 and H3K36. The expression of JMJD2A is increased in prostate cancer [78].
MD simulations with mono-, di-, and trimethylated H3K9 peptides and JMJD2A were performed.
The JMJD2A enzyme has a Fe2+ ion in its active site, to which a water molecule is coordinated, which
does not form any hydrogen bonds with its surrounding atoms [225]. This water molecule stayed
coordinated to Fe2+ throughout the whole simulation (20 ns). In all three cases of the PTMs, the water
molecule was located always between the Fe(II) and the methylammonium moiety [225]. In the case
of the mono- and dimethylated peptides, water molecules occupied the place of the missing methyl
groups. These water molecules play an important role in ligand orientation within the binding pocket of
JMJD2A, for example a water molecule, that stayed close to the methylammonium heads of the ligands
through the simulation, formed hydrogen bonds with serine and glycine residues of the protein [225].
Apart from water molecules, from a structural point of view, the binding of H3K9me3 was found to be
favorable, because of the symmetry of the ligand, which leads to an adequate orientation of the methyl
groups. The preferable orientation of the methyllysine head in the case of H3K9me2 results from the
restriction of angular motion by surrounding asparagine and glycine residues. If the dimethyllysine
was rotated one of the methyl groups would overlap with the atoms of the surrounding asparagine
and glycine residues of JMJD2A. The energy barrier observed between the three minima of the torsion
states of H3K9me2 methyllysine head prevented the head from a circular motion [225]. Furthermore,
the H3R8 formed intramolecular hydrogen bonds with H3K9me2 and H3K9me3, this interaction has a
favorable energy contribution to the ∆G of the ligand [225].

3.2. Binding Affinity

The relevance and experimental methods of the measurement of binding affinity were introduced
in Section 2.2.1. The large number of molecular interactions in the epigenome (Section 2.1.2) necessitated
the development of theoretical approaches for fast generation of binding affinity data. There are
statistical and end-point methods [226] available for calculation of binding thermodynamics, mostly
∆G. The development of such structure-based approaches is a hot field of research due to their central
importance in rational drug design.

3.2.1. Statistical Methods

The first group of methods uses sampling of a statistical ensemble of conformations of interacting
molecules. MD (Section 3.1.2) is often used for production of such samples of billions of states of
macromolecular systems also providing information for calculation of ∆S, as well [227]. Among the
statistical methods, alchemical energy calculation methods involve the transformation of one ligand
into another, or a non-interacting particle [226]. Pathway methods are somewhat computationally
expensive and follow the whole path of the binding process a useful option in drug design [226].

Using alchemical atom-type mutations, thermodynamic integration technique was applied to
calculate the ∆G of CpG DNA site with methyl-CpG binding domain protein 1 (MBD1), which binds
to methylated sequences in DNA [228]. Via this binding event, MBD1 can influence transcription
activity [228]. MD simulations uncovered the binding mechanism of MBD1 to a hemi-methylated
DNA, where cytosine is only methylated on one DNA strand [228]. It was found that a hydrophobic
path of MBD1 protein moves away from the demethylated cytosine, and this conformational change
weakens the DNA-protein interaction [228]. During the binding process, bulk water enters the binding
site at the interface, inducing the rearrangement of the hydrogen bond network and the loss of a crucial
hydrogen bond, that would occur between methyl cytosine and a tyrosine residue of MBD1 [228].
On the other strand, due to these conformational changes, the hydrogens of the methyl group of the
cytosine form hydrogen bonds with an arginine residue of MBD1 protein. In this way MD simulations
contribute greatly to our knowledge on how methyl marks of the DNA is recognized in the epigenetic
machinery [228]. The proposed mechanism was validated by experiments. The binding of MBD1
protein to fully methylated CpG DNA site is more favorable if compared with the unmethylated CpG
DNA site [228].
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In another alchemical paper, free energy perturbation was used [229] to quantify the interaction of
methyl-lysine histone and its reader protein, lethal 3 malignant brain tumor like protein 1 (L3MBTL1).
The calculated ∆G was validated by ITC measurements. It was found that an asparagine residue of
L3MBTL1 protein acts as an anchor, and its mutation disables any measurable binding of histones [229].
Instead of histone peptides, probes were used in the calculations and experimental measurements,
which were assumed to act similarly to histones. Interestingly, it was found that the addition of
a methyl group to Nme0 (non-methylated amino moiety), or the removal of a methyl group from
Nme3 results in an affinity gain (−4.73 kcal/mol and −2.11 kcal/mol, respectively) to the reader protein,
while the addition of a methyl group to Nme1 (−0.3 kcal/mol) does not affect ∆G [229]. The atomic
level background of this unusual phenomenon was investigated by MD simulations. It was found
that Nme0 lacks all favorable van der Waals contributions; furthermore, its positive charge is shared
between three hydrogen atoms, resulting in a considerable loss of electrostatic contribution to ∆G.
Nme3 binding is penalized by steric repulsions, and positive energy contribution of non-polar terms,
as well. Overall, Nme1 or 2 was concluded as a preferred PTM state of histone for binding to the
L3MBTL1 protein [229].

Adaptive lambda square dynamics was applied [230], to calculate the impact of K14 acetylation
on histone H3 conformation. It was found that H3K14ac results in a weaker interaction between
the DNA and the histone H3 tail, and the acetyl mark enhances α-helix formation of the histone H3
tail. The favorable electrostatic interaction between H3K14ac and H3K18 leads to increased α-helix
formation [230]. This results in a more compact tail conformation [230]. This compaction results in the
unwrapping of the linker DNA from the nucleosome, and the exposure of the linker DNA [230], which
enables DNA binding proteins (e.g., transcription factors, see Category 4 of Section 1), to bind to their
target sequences [230].

The attach-pull-release method was used to calculate the binding free energy of seven small ligands
to a bromodomain [231] (see also Section 3.1.2 on epigenetics relevance). During these investigations,
the ligands were pulled off the bromodomain binding site, allowing its conformational relaxation.
In this study [231], a conformational change in the bromodomain is revealed by MD simulations.
In experimental apo crystal structures the bromodomain is in a closed state, which opens up in MD
simulations after 20–60 ns run time [231]. In a loop, the two main chain asparagine residues undergo a
transition of torsion angles, and other residues change only minimally. If a restraint on the torsion
angle of one of the asparagine residues is applied, the conformational change does not occur [231].
The calculated ∆Gs of the seven ligands were compared to experimental data from the literature.
Additionally, various water models and ligand parameter set combinations were compared, both using
the open and the closed states as the final apo state of the protein. Using the open state as the final apo
state of the protein SPC/E [232] water model with GAFF force field [220,233] provided the best results
compared to experimental data from the literature (RMSE 1.42 kcal/mol) [231]. The open conformation
of the enzyme was found to be more favorable energetically [231]. As the transition of the apo protein
to open state is thermodynamically favorable and promotes dissociation, keeping the protein in a
closed state improves ∆Gs [231]. This improvement in calculated binding free energies reduced the
bias of computational results and led to a better agreement with experimental values. Interestingly,
when the closed state of the protein was used as the final apo state the previously weakly performing
TIP3P [234] and TIP4Pew [235] water models showed the best results (RMSE ranging from 1.14 to
1.61 kcal/mol).

3.2.2. End-Point Methods

End-point energy calculations are based on the initial free ligand and target, and the final complex
structures [226]. Due to the small number of conformations end-point methods are computationally
efficient and fast [226]. Molecular Mechanics Generalized Born Surface Area (MM GBSA) [236–245] and
Molecular Mechanics Poisson Boltzmann Surface Area (MM PBSA) [239,241,242,246–250] methods are
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commonly applied, single-trajectory approaches. The conformations of the interacting partners in their
complex are assumed to represent the unbound partners [226] leading to several approximations [140,251].

The performances of MM PBSA and absolute alchemical binding free energy calculation methods
were compared [252] using 22 different targets of epigenetic importance. Most of the calculations
were performed on the members of the bromodomain and extraterminal (BET) family, including
BRD2, 3, 4 and BRDT proteins. [253,254]. BET proteins regulate the expression of key oncogenes and
anti-apoptotic proteins, making them a promising target in epigenetic drug design against malignant
diseases, inflammation and viral infections [252–254]. Acetylation of lysine residues on the N-terminal
tail of histone is associated with an open chromatin conformation and therefore transcriptional
activation [254] (see also Category 5 in Section 1). Bromodomains are the readers of the acetylated
lysine residues, the therapeutic approaches, and their small molecule inhibitors are reviewed in the
literature [254]. In the study [252], abundant small molecular inhibitors of bromodomains were used
in ∆G calculations. The calculated energies were compared to experimental ∆Gs, and a thorough
statistical analysis was performed. Absolute binding free energy calculations outperformed the MM
PBSA approach for the investigated bromodomain complexes [252].

Scoring function of docking programs are often based on end-point ∆G calculations and applied in
epigenetic drug design [218,255,256]. Scoring values usually show low correlation with experimental
∆Gs [255], and therefore, they are mostly applied for distinction between ligand candidates, relative
comparison of the members of a docked ligand library. This problem can be also addressed by
consensus scoring [255]. In this case, if a hit is identified, the majority of scoring function methods
have to rank it as the top ranks to get accepted. As scoring functions show inconsistent performance
on different receptors, the careful selection of a scoring function is important for virtual screening [255].
Scoring functions GoldScore, ChemPLP, ASP and CDOCKER_ENERGY were applied [255] to support
the hit discovery of sirtuin 2 (SIRT2) inhibitor. SIRT2 is a nicotinamide adenine dinucleotide-dependent
deacetylase, that plays a role in the pathomechanism of various diseases, including cancer and
neurodegenerative diseases [255]. It has a wide variety of substrates, including histone H3K18ac and
H3K56ac, and H4K16ac [257]. Interestingly, within its display of substrates, there is a histone writer,
histone methyltransferase PR-Set7 [257]. PR-Se7 specifically mono-methylates H4K20me0, but if the
enzyme is deacetylated by SIRT2, its localization on the chromatin is altered, decreasing its ability to
methylate H4K20me [257]. In the study [255], a SIRT2 inhibitor with a new scaffold was identified, and
subjected to structure activity relationship analysis, and finally four compounds were developed with
IC50 values less than 10µM against SIRT2.

Determination of components of ∆G is important in thermodynamic optimization of drug
candidates (Section 2.2.1). In particular, the optimization of ∆H can increase drug efficiency [137,138].
To help this trend of drug design, end-point quantum mechanical (QM) approaches have been developed
for structure-based calculation of ∆H [258,259]. While QM calculations offer the highest possible
theoretical accuracy, they are expensive and demanding in computational time. Thus, the program
Fragmenter was developed for the reduction of system size by extraction of hydrated interfaces from
target-ligand complexes [136]. The complexes were subjected to semi-empirical QM calculations
with PM7 parameterization, and the calculated ∆Hs were correlated with available experimental
values. Interestingly, the study [136] found a simple scaling factor for conversion between calculated
to experimental binding enthalpies. Among other protein-peptide systems, the method was used to
calculate the ∆H of the AIRE PHD finger–histone H3 peptide system featured in Figure 8 [136].

4. Conclusions

The present review featured current trends and selected methodologies of exploration of molecular
structure, binding affinity and pharmacological activity in the epigenome. The design of efficient
epigenetic drugs requires valid SARs and simultaneous development of all three fields. In recent
decades, cryo-electron microscopy has opened a new avenue in the determination of molecular
structure of nucleosome-sized assemblies. At the same time, high-throughput determination of atomic
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resolution structure of large biomolecules has not been implemented routinely. Thus, the application of
alternative crystallographic, and theoretical approaches remains inevitable. Measurement of binding
affinity is an important intermediate step during optimization of pharmacological activity. There is
a wide range of techniques available at different levels of sophistication. Depending on the project,
assays can be applied for fast screening of drug candidates or assessment of the effects of epigenetic
modifications. On the other hand, sophisticated techniques like isothermal titration calorimetry help
the optimization of the lead compounds providing detailed information on binding thermodynamics.
Similarly, available theoretical binding affinity calculators provide fast and/or precise solutions using
molecular structures as starting points. Molecular dynamics also helps to uncover binding mechanisms
and supplies statistical amount of molecular conformations for energy calculations. In vivo activity
experiments are essential for the final decision on further development of drug candidates and also
provide a feedback for re-investigation of the epigenetic background of a disease.

The reviewed methods have proved indispensable during the discovery of epigenetic drugs
accepted for clinical use. Such U.S. Food and Drug Administration (FDA)-approved epigenetic
modulating drugs include vorinostat, romidepsin, panobinostat, belinostat (HDAC inhibitors),
azacitidine, decitabine (DNMT inhibitors), enasidenib and ivosidenibe (isocitrate dehidrogenase
inhibitors) [260] and tazemetostat, a histone methyltransferase inhibitor [261,262]. Tazemetostat is a
selective inhibitor of enhancer of zeste homolog 2 (EZH2), a histone methyltransferase, that trimethylates
H3K27me3 [260–264]. Given that EZH2 is a transcriptional suppressor, histone methyltransferase, and
transcriptional co-activator, it is involved in a wide variety of cellular processes, some of which are
directly linked to cancer pathomechanisms [264], EZH2 is in the highlight of biotechnological and
pharmaceutical companies. Tazemetostat is approved by FDA for the treatment of epithelioid sarcoma,
malignant rhabdoid tumors, and integrase interactor 1 (INI1) negative tumors. Vorinostat [265–269],
a HDAC inhibitor is used for the prevention of acute graft-versus-host disease, and the treatment of
cutaneous T-cell lymphoma. The above-mentioned nine agents were approved between 2004 and
2018, highlighting the emerging role of epigenetics in current drug discovery and design. Further
developments and spread of the above surveyed methods are essential but probably not sufficient
criteria of future acceleration of the development of valid SARs and drug discovery in the epigenome.
The invention of new computational technologies is necessary to handle the epigenetic SAR data
universe and the improvement of their complementary applications with strong links to experiments
is also inevitable.
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Mutations in the gene autoimmune regulator (AIRE) cause
autoimmune polyendocrinopathy candidiasis ectodermal dystrophy.
AIRE is expressed in thymic medullary epithelial cells, where it
promotes the expression of tissue-restricted antigens. By the
combined use of biochemical and biophysical methods, we show
that AIRE selectively interacts with histone H3 through its first plant
homeodomain (PHD) finger (AIRE–PHD1) and preferentially binds
to non-methylated H3K4 (H3K4me0). Accordingly, in vivo AIRE
binds to and activates promoters containing low levels of H3K4me3
in human embryonic kidney 293 cells. We conclude that AIRE–
PHD1 is an important member of a newly identified class of PHD
fingers that specifically recognize H3K4me0, thus providing a new
link between the status of histone modifications and the regulation
of tissue-restricted antigen expression in thymus.
Keywords: AIRE; negative selection; NMR; protein structure
EMBO reports (2008) 9, 370–376. doi:10.1038/embor.2008.11

INTRODUCTION
Autoimmune polyendocrinopathy candidiasis ectodermal dystro-
phy (APECED) is a monogenic autosomal recessive syndrome

characterized by a breakdown of self-tolerance, leading to
autoimmune reactions in several organs and providing a useful
model for molecular studies of autoimmunity (Mathis & Benoist,
2007). The disease is caused by mutations in autoimmune
regulator (AIRE; Fig 1A), a transcriptional activator (Nagamine
et al, 1997). AIRE promotes the thymic expression of many tissue-
restricted antigens, enabling the negative selection of developing
T cells and thus precluding self-reactivity (Anderson et al, 2002;
Liston et al, 2003); however, the mechanisms are so far unknown.
AIRE controls genes in genomic clusters, indicating a role in
epigenetic regulation (Derbinski et al, 2005). Indeed, AIRE
contains two plant homeodomain (PHD) fingers—small zinc-
binding domains often found in chromatin-associated proteins
(Aasland et al, 1995; Bienz, 2006). The PHD finger has emerged
as a module that transduces histone-lysine methylation events. In
particular, BPTF, ING2 and RAG2 PHD fingers recognize histone
H3 trimethylated at lysine (K) 4 (H3K4me3; Li et al, 2006;
Pena et al, 2006; Shi et al, 2006; Wysocka et al, 2006; Matthews
et al, 2007), whereas the SMCX PHD finger binds to H3K9me3
(Iwase et al, 2007).

Here, we show that AIRE binds to histone H3 through its first
PHD finger (AIRE–PHD1). In contrast with BPTF, ING2 and RAG2,
AIRE–PHD1 preferentially binds to histone H3 non-methylated at
lysine 4 (H3K4me0). Our results, in agreement with recent studies of
the DNMT3L and BHC80 PHD fingers (Lan et al, 2007; Ooi et al,
2007), show a new role for the PHD finger as an H3K4me0 reader.

RESULTS AND DISCUSSION
AIRE–PHD1 binds to histone H3
To investigate the role of AIRE in chromatin-regulating complexes,
we examined whether AIRE interacts with histones. Indeed, when
incubated with whole histones, glutathione-S-transferase (GST)-
AIRE (full-length) interacted with a histone that was identified as
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H3 by western blotting (Fig 1B). By using various GST fusions, we
found that AIRE–PHD1 is necessary and sufficient to interact with
histone H3 (Fig 1C; supplementary Fig S1A,B online). Further-
more, the interaction is direct, as both full-length AIRE and
AIRE–PHD1 bound to recombinant purified H3 (Fig 1D) but not to
H2B (supplementary Fig S1C online). AIRE–PHD1 has a zinc-
dependent fold and, accordingly, H3 binding is greatly reduced
by EDTA or mutation of zinc-chelating cysteines, including the
pathological mutation C311Y (Bjorses et al, 2000; supplementary
Fig S1D–F online). AIRE–PHD1 also interacted with a small
fraction of native mononucleosomes, as assessed by western blot
against H3 and H2B (Fig 1E), and by analysing bound DNA
(supplementary Fig S1G online). Thus, AIRE interacts, by means of
its first PHD finger, specifically with histone H3 in both isolated
and nucleosomal contexts.

AIRE–PHD1 preferentially binds to H3K4me0
Western blot analysis of H3/AIRE–PHD1 complex formation
by using antibodies for H3K4me1, H3K4me3 and H3K9me3

indicated that H3K4 trimethylation hinders interaction (Fig 1F),
whereas H3K9 trimethylation does not. Binding experiments with
amino-terminal histone H3 unmodified (H3K4me0) or modified
(H3K4me1, H3K4me3 and H3K9me3) 20-mer peptides showed
that these N-terminal residues of histone H3 are sufficient for
binding to AIRE–PHD1 (Fig 1G). Although both H3K4me0 and
H3K9me3 peptides bound to AIRE–PHD1 with similar affinities,
binding decreased with increasing H3K4 methylation (Fig 1G),
indicating that AIRE–PHD1 preferentially binds to H3K4me0.

To confirm the specificity of AIRE–PHD1 for H3K4me0, we
compared the binding of histone H3 N-terminal peptides—
H3K4me0, H3K4me1, H3K4me2 and H3K4me3—to AIRE–
PHD1 by using two dimensional 1H-15N nuclear magnetic
resonance (NMR). A discrete set of chemical shift changes was
observed on addition of all four histone H3 peptides to AIRE–
PHD1 (supplementary Fig S2A,B online). However, the intensity
of the changes was inversely related to the methylation level of the
H3 peptide: the H3K4me0 peptide induced the largest changes
(maximum average chemical shift change Ddavmax¼ 0:9 p:p:m:; Fig 2).
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The addition of H3K4me0 and H3K4me1 peptides resulted
in chemical shift changes in the slow- to intermediate-exchange
regime (supplementary Fig S2A online), indicating low micro-
molar binding affinities. By contrast, the NMR data on addition of
H3K4me2 and H3K4me3 peptides were in the fast-exchange
regime, indicating millimolar binding affinities (supplementary
Fig S2B online).

The greater binding affinity of AIRE–PHD1 for H3K4me0
peptides was confirmed by both tryptophan fluorescence spectro-
scopy and isothermal titration calorimetry (ITC), yielding dissocia-
tion constants of B4 mM, B20mM and 40.5mM for H3K4me0,
H3K4me1 and H3K4me2, respectively (supplementary Fig S2C
online; Table 1). Notably, H3K4me3 did not show any significant
interaction with AIRE–PHD1 in either binding assay.

In agreement with the GST fusion pull-down experiments,
fluorescence spectroscopy showed no binding of H3K4me0 to
AIRE–PHD1 containing the APECED-causing C311Y mutation
(Bjorses et al, 2000). Nevertheless, a second pathological mutant,
V301M (Soderbergh et al, 2000), was still able to bind to
H3K4me0, indicating that this mutation is not located in the H3
interaction site (Table 1).

The mapping of the H3/AIRE interaction site uniquely to AIRE–
PHD1 was further confirmed by NMR titrations of histone H3
peptides into AIRE–PHD2, which bound neither methylated nor
H3K4me0 peptides (data not shown).

Model of AIRE–PHD1 and histone H3 interactions
We generated a model of AIRE–PHD1 complexed with the
H3K4me0 peptide on the basis of the crystal structure of the BPTF–
PHD finger bound to H3K4me3 and performed molecular
dynamics calculations for 10 ns. During the simulations, the
peptide interacted stably with the first b-strand of AIRE–PHD1,
creating a third antiparallel b-strand (Fig 3). The additional
b-strand allowed the formation of four hydrogen (H) bonds from
the backbone of H3 residues R2, K4 and T6 to the AIRE–PHD1
residues C310, L308 and G306, respectively (Fig 3B). Accord-
ingly, the amides of C310, L308 and G306 showed high
protection factors in NMR deuterium exchange experiments,
confirming their involvement in H-bonds (Fig 3B). The N terminus
of the peptide was anchored through intermolecular H-bonds with
the backbone carbonyl oxygen atoms of residues P331–G333
(Fig 3B). Furthermore, hydrophobic interactions between the
methyl group of A1 and the pyrrolidine ring of P331, and between
the methylene groups of K4 and L308 further contributed to the
stabilization of the complex. The formation of salt bridges
between the side chains of R2 and D312, and between K4 and
D297 seemed to be crucial for binding specificity, as indicated
experimentally by the large NMR chemical shift changes for G313
(near to D312) and D297 (Fig 2). Indeed, fluorescence spectro-
scopy and ITC assays showed that the alanine mutations R2A in
the H3 peptide and D312A in AIRE–PHD1 markedly reduced the
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binding affinity (Table 1; Fig 4C) without affecting the protein fold
(supplementary Fig S3 online). Similarly, pull-down experiments
with whole histones and the H3K4me0 peptide, together with
fluorescence spectroscopy and ITC measurements performed on
AIRE–PHD1-D297A showed reduced binding (Table 1; Fig 4).
Furthermore, no binding was observed in fluorescence spectro-
scopy and ITC experiments when H3K4me3 was titrated into
AIRE–PHD1-D297A (Table 1). Importantly, simulations of AIRE–
PHD1 with H3K4me1 or H3K4me3 were not compatible with
complex formation, showing displacement of K4 owing to steric
clashes with D297, with the consequent breakage of the
additional b-strand (supplementary Fig S4 online).

Nature of the binding interface
The model of AIRE–PHD1 complexed with H3K4me0 was in
perfect agreement with the experimental chemical shift perturba-
tion data, as the peptide-binding region coincided with the
binding surface identified by NMR spectroscopy (Fig 3A). In fact, the

H3K4me0 peptide induced chemical shift changes in AIRE–PHD1
residues that map only on one side of the protein surface,
involving residues in the N terminus of the PHD finger, the first
b-strand, and the loop connecting the first and the second
b-strands (D297, G305, G306, L308, C310, D312 and G313;
Fig 2; supplementary Fig S5 online). A similar pattern of chemical
shift changes indicated the same binding site for H3K4me1.
However, H3K4me1 induced smaller changes for residues E296–
A300, indicating that binding to this region is reduced by K4
methylation (Fig 2B).

H3K4me2 and H3K4me3 also induced similar patterns of
chemical shift changes, indicating a similar interaction site with
AIRE–PHD1. However, the changes were markedly reduced in
size, in keeping with a weak interaction (Fig 2C,D). Remarkably,
residues G305, G306 and G313 showed strong shifts when bound
to H3K4me2 and disappeared completely from the NMR spectrum
owing to line-shape broadening on binding to H3K4me3,
indicating an involvement of this region in peptide binding.

Table 1 |Values of the dissociation constants between H3 peptides and AIRE–PHD1 wild type (WT) and mutants measured by
fluorescence spectroscopy and isothermal titration calorimetry

AIRE–PHD1 Peptide KD (lM), fluorescence spectroscopy KD (lM), isothermal titration calorimetry

WT H3K4me0 4.7±0.8 6.5±0.2

WT H3K4me1 21.4±5.9 55.6±1.2

WT H3K4me2 4500 714±90

WT H3K4me3 ND NM

V301M H3K4me0 6.8±0.4 NM

C311Y H3K4me0 ND NM

D297A H3K4me0 173.0±18.6 146.8±6.1

D312A H3K4me0 ND ND

WT H3K4me0-R2A ND NM

D297A H3K4me3 ND NM

ND, not detectable, denotes binding too weak to be reliably quantified; NM, not measured.
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D312
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D297

A1

K4

K9
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R2

N

Fig 3 |Model of AIRE–PHD1 in complex with H3K4me0. (A) Surface representation of AIRE–PHD1 in complex with H3K4me0. Residues with the

highest chemical shifts are shown in magenta (Dd40.4 p.p.m.) and pink (0.2oDdo0.4 p.p.m.). (B) Ribbon representation of a representative structure

of the complex of AIRE1–PHD1 (blue) with H3K4me0 (orange). Inter-backbone hydrogen bonds and Zn2þ ions are represented by dotted lines and

spheres, respectively. AIRE, autoimmune regulator; H3K4me0, histone H3 non-methylated at lysine 4; PHD, plant homeodomain.
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Structural comparison with other PHD fingers
Our data suggest a regulatory mechanism mediated by AIRE–
PHD1 that differs from that of ING2 and BTPF, the PHD fingers of
which bind to H3K4me3 and discriminate against H3K4me0.

A structural based sequence alignment (supplementary Fig S6
online) suggests that AIRE–PHD1 is representative of a newly
identified subclass of PHD fingers (Lan et al, 2007). AIRE–PHD1
differs structurally from the ING2 and BPTF PHD fingers owing to
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the lack of conserved aromatic residues used to coordinate the
trimethyl ammonium ion of H3K4me3 by p-cation interactions.
Instead, the crucial elements of the methylated lysine-binding
aromatic cage seen in ING2 and BPTF (supplementary Fig S6
online) are substituted by negatively charged (D297) and small
hydrophobic (A317) residues in AIRE–PHD1. Our data show that
D297 is involved in the interaction of AIRE with H3K4me0,
providing an alternative to the recognition of histone H3 by
aromatic caging. Notably, D297 is conserved in other PHD finger
proteins, for example, Sp110 and Sp140, which might constitute
a subset of H3K4me0 readers (supplementary Fig S6 online).
Recently, the PHD finger of BHC80 and the cysteine-rich domain
of DNMT3L were shown to recognize H3K4me0 by an analogous
mechanism, in which the H3 peptide binds to the surface of the
domain, forming an additional b-strand that is anchored by the
side chain and N-amine group of H3A1. Importantly, these
proteins also have an acidic residue comparable to D297, which
forms a salt bridge with K4. Although there are many similarities
between these two structures and the AIRE–PHD1/H3K4me0
complex presented here, the AIRE–PHD1 finger differs in the
additional recognition of the H3R2 side chain, which makes an
important contribution to the high affinity of this interaction, as
shown by our peptide mutagenesis experiments.

AIRE interacts with chromatin
We have shown previously that transiently transfected AIRE
enhances target gene expression in human embryonic kidney
(HEK)293 cells (Pitkanen et al, 2005). So far, no cell line has been
described with endogenous AIRE expression; therefore, we
transfected HEK293 cells with an AIRE-encoding or control
plasmid and generated stable cell lines called HEK-AIRE and
HEK-control. We first tested HEK-AIRE compared with HEK-
control cell lines for expression levels of tissue-restricted antigens
that are downregulated in AIRE-deficient mouse thymic medullary
epithelial cells (Derbinski et al, 2005). Indeed, the HEK-AIRE cell
line showed enhanced expression of such antigens, including
insulin, the principal autoantigen in type I diabetes (Babaya et al,
2005), involucrin and S100A8 (Fig 5A). The last two genes are
AIRE target genes clustered on human chromosome 1q21
(Marenholz et al, 2001). Conversely, the expression levels of
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and that of
another S100 family protein, S100A10, were unaffected by AIRE
(Fig 5A). Next, we studied in vivo histone binding by protein
chromatin immunoprecipitation (ChIP) assays and observed that
AIRE is found in complexes with a small fraction of histone H3 but
not with H3K4me3. By contrast, binding of ING2, used as a
positive control, was detected for both H3 and H3K4me3
(supplementary Fig S7 online). By using DNA ChIP analysis, we
found that AIRE interacts with the insulin, involucrin and S100A8
promoter regions, but much less with the S100A10 and GAPDH
promoters (Fig 5B). In agreement with the low expression levels
observed, the insulin, involucrin and S100A8 promoters almost
completely lacked H3K4me3, whereas the highly expressed
S100A10 and GAPDH promoters were enriched with H3K4me3
(Fig 5C). The overall levels of histone H3 were comparable on all
promoters studied (Fig 5D). To analyse the influence of AIRE–
PHD1 mutations that impaired the interaction with H3 in vitro, we
generated stable cell lines expressing AIRE with PHD1 mutations
D297A and D312A. Importantly, the activation of the AIRE target

genes (Fig 6A), as well as binding to their promoters (Fig 6B), was
clearly reduced by both mutations. Although AIRE specificity
towards chromatin might be influenced by other protein and DNA
interactions (Ruan et al, 2007), the data presented here indicate
that AIRE preferentially binds to and activates the promoters
containing low levels of H3K4me3. On the basis of these results,
we propose a speculative model for the regulation of tissue-
restricted antigen expression in thymic epithelial cells (supple-
mentary Fig S8 online). Normally, tissue-restricted antigens are
silenced in immature thymic epithelial cells as they lack the active
chromatin mark H3K4me3 on their promoters. During differentia-
tion into mature thymic medullary epithelial cells, activation of
AIRE expression (Kyewski & Klein, 2006) enables the read-out of
non-methylated H3K4 as a signal to activate tissue-restricted
antigen genes. AIRE binding to the non-methylated H3K4 on
tissue-restricted antigen promoters results in recruitment of other
transcriptional regulators, for example, CBP (Pitkanen et al, 2005)
and activation of transcription.

Our results provide new information on the role of AIRE in
sensing epigenetic chromatin modifications through direct binding
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analysis with anti-AIRE and IgG was performed from the stably

transfected cells, as indicated. The fold differences are normalized to

input fractions and shown in comparison with the background level

(¼ 1) with each primer set in each condition. The data are the averages

of two independent experiments. AIRE, autoimmune regulator; ChIP,

chromatin immunoprecipitation; HEK, human embryonic kidney; PHD,

plant homeodomain.
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of AIRE–PHD1 to histone H3 N-terminal residues. Collectively,
our data show that AIRE belongs to a new subset of PHD finger-
containing proteins that preferentially recognize H3K4me0. Future
studies should therefore explore the epigenetic role of AIRE in
thymic expression of tissue-restricted antigens to advance further
our understanding of this important regulator of autoimmunity.

METHODS
Plasmid construction and in vitro binding assays. The construc-
tion of plasmids, information on antibodies and peptides used, as
well as protein expression and binding assays are described in the
supplementary information online.
NMR binding, fluorescence titration assays and isothermal
titration calorimetry thermodynamic analysis. Details on NMR
titrations, fluorescence spectroscopy and thermodynamic mea-
surements are described in the supplementary information online.
Assembly of the complex structures and molecular dynamics
calculations. The PHD finger structures from the human NURF
BPTF PHD finger-H3K4me3 complex (2fuu) and AIRE1–PHD1
(1xwh) were superimposed by using the Lsqman program
(Ca atom RMSD: 2.1 Å). Molecular dynamics simulations and
analysis were performed using the GROMACS 3.1.3 package with
GROMOS force field. The details of the protocol are available
in the supplementary information online.
Cell lines, expression analysis and chromatin immunoprecipitation.
The establishment of HEK-AIRE and HEK-control cell lines is
described in the supplementary information online. DNA ChIP was
performed essentially according to Upstate Chromatin Immuno-
precipitation Assay protocol. Quantitative PCR analysis and primer
sequences are provided in the supplementary information online.
Supplementary information is available at EMBO reports online
(http://www.emboreports.org).
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Abstract: The protein arginine methyltransferase 5 (PRMT5) enzyme is responsible for arginine
methylation on various proteins, including histone H4. PRMT5 is a promising drug target, playing
a role in the pathomechanism of several diseases, especially in the progression of certain types of
cancer. It was recently proved that the phosphorylation of PRMT5 on T80 residue increases its
methyltransferase activity; furthermore, elevated levels of the enzyme were measured in the case
of human hepatocellular carcinoma and other types of tumours. In this study, we constructed the
complexes of the unmodified human PRMT5-methylosome protein 50 (MEP50) structure and its
T80-phosphorylated variant in complex with the full-length histone H4 peptide. The full-length
histone H4 was built in situ into the human PRMT5-MEP50 enzyme using experimental H4 fragments.
Extensive molecular dynamic simulations and structure and energy analyses were performed for the
complexed and apo protein partners, as well. Our results provided an atomic level explanation for two
important experimental findings: (1) the increased methyltransferase activity of the phosphorylated
PRMT5 when compared to the unmodified type; (2) the PRMT5 methylates only the free form of
histone H4 not bound in the nucleosome. The atomic level complex structure H4-PRMT5-MEP50
will help the design of new inhibitors and in uncovering further structure–function relationships of
PRMT enzymes.

Keywords: ligand; epigenetics; post-translational modification; signal transduction

1. Introduction

Post-translational modification (PTM) is a fundamental mechanism occurring on
proteins of different roles in epigenetic regulation [1–4]. Histone H4 is a building block
of the nucleosome, the smallest unit of the chromosome [5]. It also contributes to the
epigenetic “histone code” system [6], a combination of PTMs mostly on the N-terminal tail
of H4 and other histones. PTMs often involve the covalent attachment of atomic groups to
proteins catalysed by different enzymes, also called writers [7].

Protein arginine methyltransferases (PRMT) are writers that add methyl groups to
the N-terminal arginine residues of H4 (or other substrates) [8]. It was recently recognised
that arginine methylation via PRMTs is associated with several diseases, especially cancer
progression [8,9]. Consequently, PRMTs are promising novel drug targets in tumour
therapy, as is indicated by the numerous PRMT inhibitors that appeared in preclinical and
clinical development [8].

PRMT5 is a member of the PRMT family, catalysing the arginine monomethylation
and monomethylation of several non-histone and histone proteins, including histone
H2A [10–12], H3 [13,14], and H4 [8,11,15,16]. Its activity is linked to mRNA splicing,
DNA repair mechanisms, drug resistance, and the regulation of immune cell function [8].
An increased activity and overexpression of PRMT5 was identified in several cancers,
making it a promising drug target [8]. PRMT5 is localised in both the cytoplasm and
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nucleus, in complex with methylosome protein 50 (MEP50), creating an association with
numerous partner proteins and several histone and non-histone ligands [15]. However,
it was experimentally proved that, likewise to other PRMTs, PRMT5 cannot catalyse the
arginine methylation of histones if bound in the nucleosome [11,16].

The phosphorylation and dephosphorylation of tyrosine [17,18] and threonine [19]
residues of PRMT5 have an effect on its enzyme activity, and therefore, on the pathome-
chanism of tumour formation. For example, in the case of hepatocellular carcinoma, the
phosphorylation/dephosphorylation of PRMT5 on T80 modulates its methyltransferase
activity, and the dephosphorylating myosine phosphatase has a tumour suppressor role [9].
Due to the role of PRMT5 in tumourigenesis, the regulation of its enzymatic activity is
the major point of interest. It can be regulated at the molecular level, primarily by the
formation of the methylosome complex, containing PRMT5 and its various partners, such
as MEP50 [17]. However, the major regulatory action on PRMT5 was described by Rho
A activating kinase (ROK) and myosin phosphatase (MP), which also counteract on the
T80 phosphorylation site of PRMT5, regulating its methyltransferase activity, both in vitro
and in vivo. MP modulates the symmetrical dimethylation of histone core proteins in the
cell nucleus via the dephosphorylation of PRMT5 at its activating phosphorylation site,
causing changes in gene expression. In tumour cells, the inhibitory phosphorylation of MP
is increased, leading to higher phosphorylation levels of PRMT5 at T80 by ROK [9].

The experimental atomic resolution structure of human PRMT5 in complex with
MEP50, a methyl-donor ligand and an eight-amino-acid-long histone H4 fragment, was
revealed 10 years ago [17]. Some years earlier, structures of non-human PRMT5 were
published, as well [20,21]. However, complex structures with the full-length histone H4
have not been published yet.

The aim of this study was to construct the human PRMT5-MEP50 structure in complex
with the full-length histone H4 peptide in order to provide a structural explanation for the
increased methyltransferase activity of the T80-phosphorylated enzyme (PRMT5P), as well
as for the inactivity of PRMT5 on nucleosome-bound histone H4.

2. Results and Discussion

2.1. Unmodified PRMT5 in Complex with the Full-Length H4 Protein

The explanation of the difference in enzymatic activity (activation energy) of the two
PRMT5 variants necessitates the atomic resolution structures of the H4-PRMT5 complexes.
However, PRMT5(-MEP50) in complex with the full-length histone H4 has not been mea-
sured yet (see Table S1 for available PRMT5 structures [17,20–34]). Although the number of
experimental human PRMT5 complexes increased recently due to its importance in can-
cer therapy, only one structure (PDB code: 4gqb, [17]) contains an eight-amino-acid-long
N-terminal peptide fragment of histone H4 bound to the catalytic domain of PRMT5. The
experimental determination of a full-length histone structure may be challenging, partly
due to the high flexibility of the N-terminal tail [4]. However, the catalytic domain is
positioned far from T80 in space, and therefore, the PRMT5-bound structure of N-terminal
tail of histone H4 alone did not provide a sufficient basis for an explanation of the effects of
T80 phosphorylation. Thus, the building of the full-length H4 in complex with PRMT5 was
necessary to provide an explanation of the effects of T80 phosphorylation. Building the
unmodified complex H4-PRMT5(-MEP50) was challenging, as there is no information in
the literature about how the full-length H4 fits to PRMT5. The structure of the full-length
histone H4 (Figure 1A) is available, e.g., in a nucleosome-bound form (PDB code: 1kx5, [35]).
However, the simple superimposition of this full-length nucleosomal H4 to the N-terminal
H4 fragment (4gqb) did not result in a collision-free H4-PRMT5 complex. Thus, an in
situ, fragment-based construction of the full-length histone H4 structure was performed,
using available histone H4 fragment structures, starting from the 8th amino acid of H4 in
4gqb (Methods, Figure 1B). The superimposed H4 fragments were covalently attached, and
the H4-PRMT5(-MEP50) complex was energy-minimized and submitted to a 720 ns-long
molecular dynamic (MD) simulation.
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Figure 1. (A) Sequence and secondary structure of histone H4 (Uniprot code: P62805). DNA binding
regions are highlighted with orange; (B) the process of in situ, fragment-based construction of the
full-length histone H4 (down, cartoon, teal) by the usage of peptide fragments of different lengths
obtained from experimental structures (PDB codes: 4gqb, 2kwo, and 3x1v). Residues (sticks, teal)
and backbone atoms (N, Cα, C, O, and spheres) used for alignment are highlighted with red, while
the overlapped regions (grey) were cut.

The schematic energy profile of the human PRMT5-catalysed methylation of H4 is
shown in Figure 2A. In the case of the T80 phosphorylation of the enzyme (PRMT5P), it
can be expected (Introduction) that the activation energy barrier will decrease (Figure 2A)
when compared to the unmodified enzyme (PRMT5).
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Figure 2. (A) Schematic free energy (G) vs. reaction coordinate ( ) profile of human PRMT5-cata-Figure 2. (A) Schematic free energy (G) vs. reaction coordinate (ξ) profile of human PRMT5-catalysed
methylation of histone H4. Substrate histone H4 peptide and the methyl donor S-adenosyl-L-
methionine (AdoMet) are marked. The free energy of the activated enzyme complexes is relatively
high. However, the phosphorylated enzyme complex (H4-PRMT5P, orange) has to cross a lower
energy barrier than the unmodified complex (H4-PRMT5, blue). Products R3-methylated histone H4
(H4R3me) and S-adenosyl-L-homocysteine (AdoHcy) are also shown; (B) intermolecular interaction
energy (Einter) changed during the 720 ns-long MD simulation for the unmodified (H4-PRMT5,
blue) and the T80-phosphorylated (H4-PRMT5P, orange) enzyme complexes. The plot includes
two transient (T1, T2) and two plateau (P1, P2) regions. T1 is an equilibration section for the
conformational optimalization, while T2 refers to the energy drop between the activated (P1) and the
pre-product (P2) states of the enzyme–substrate complexes.

The interaction energy (Einter, Methods) between H4 and PRMT5(-MEP50) was cal-
culated for all snapshots of the MD simulation (Figure 2B). Two transient (T1, T2) and
two horizontal (plateau) (P1, P2) regions can be distinguished (Figure 2B). Einter showed a
relatively quick change up to 120 kcal/mol in the transient regions T1 and T2, and it fluctu-
ated with a maximal amplitude of 50 kcal/mol in the P1 and P2 regions for a longer time
period of at least 250 ns (Table S2). T1 can be assigned as a technical equilibrating region of
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conformational optimization of the complex, and therefore, it was omitted from the evalua-
tions. At the same time, T2 may correspond to the energy drop connecting the activated
and the pre-product states of the enzyme–substrate complex (H4-PRMT5, Figure 2A). The
term “pre-product state” is used for a bound H4 conformation appropriately prepared for
subsequent methylation, but not yet methylated.

Representative structures of H4-PRMT5 were selected (Method) from both P1 and
P2 plateaus and analysed. The interactions between the catalytic domain of PRMT5 and
histone H4 N-terminal residues remained stable throughout the MD simulation. At the
same time, a considerable change of the H4 structure was observed between the activated
(P1) and pre-product (P2) states, also reflected by the aforementioned drop in the total Einter
(Figure 2B). In the pre-product structure of H4-PRMT5 (plateau P2), histone H4 interacted
with six major regions of PRMT5, including the catalytic sites (e.g., residues E435 and
E444), H146, R201, Y304-Q309, D317-Q322, and E483-D491, reflected by the favourable
(large negative) Einter contributions of the above regions, listed as bar charts calculated
for a representative structure of the P2 complex, and marked with coloured spheres in
Figure 3 (Methods). Although Helix 3 of H4 spans over PRMT5:T80, significant interaction
could not be measured at T80 (Figure 3). Instead, the C-terminal part of Helix 3 (R67 and
D68) showed a remarkable interaction (Figure 3) with the neighbouring PRMT5 residues
(marked with blue and magenta in Figure 3). In contrast with the hypothesis of a previous
study [16], MEP50 does not play a direct role in histone binding (S4).

2.2. The H4-PRMT5-MEP Complex vs. Apo Protein Structures

To examine the conformational changes of histone H4 and PRMT5-MEP50 during
complex formation (Section 1), their structures were extracted from the complex and
submitted to MD simulations of 1000 and 580 ns, respectively. The root mean square
fluctuation (RMSF) of each residue was calculated, and regions with an RMSF higher
than 3 Å were collected (Figure 4). Interestingly, two of the four PRMT5 regions (residues
145–148 and 490–491) with an RMSF higher than 3 Å took place in histone H4 binding
(Figure 4A). At the same time, residues in these regions had the highest Einter in the
pre-product H4-PRMT5 complex structure (Figure 3). Unlike PRMT5, MEP50 showed
conformational rigidity (RMSF < 3 Å, Figure 4B), indicating the lack of flexible regions
necessary for H4 binding.

In the case of histone H4, the highest RMSF occurred at the linear N-terminal tail
(residues 1–33, Figure 4C), including residue R3, methylated by PRMT5. While this region
is obviously highly flexible, it is crucial in PRMT5 binding, also indicated by the per-residue
Einter contribution (Figure 3). Similarly, the region of residues 39–53 also showed high
fluctuation and were involved in the binding of PRMT5 phosphorylated on T80 (PRMT5P,
see Section 3 for details), but did not show significant interaction with PRMT5 (Figure 3)
The third, small region with RMSF > 3 Å was focused on K59, important (Figure 3) in
stabilizing the PRMT5 complex structure (Figure 4C).

The calculation of the root mean squared deviation (RMSD) was also performed to
estimate the time scale of conformational changes of H4 binding to PRMT5. Considerable
changes of the bound structures were measured in terms of Cα RMSD values (Figure S1) of
7.7 (P1) and 9.1 (P2) Å when compared to the representative apo form (last frame). This
considerable change in the H4 structure can be attributed to Helix 3, which had a linear
conformation in the nucleosome (Figure 5) that is very similar to the representative apo con-
formation (Figure 5). At the same time, in the pre-product state of the H4-PRMT5 complex
(P2), Helix 3 broke in the middle and adopted a V-shaped conformation (Figure 5). This con-
formational change was further analysed, and the Cα RMSD of Helix H3 was calculated for
the unbound H4 MD trajectory, using the pre-product H4 V-shaped conformation (P2) as a
reference structure (Figure S2). Helix 3 of unbound H4 showed flexibility centred at H4:G56,
resulting in V-shaped conformations (Figure S2) similar to the complexed H4 (Figure 5).
The unbound H4 MD simulation showed that a ca. 400 of 1000 ns (Figures S1 and S2) time
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frame is necessary for the conformational change of Helix 3 from the V-shaped to the linear
form of the representative apo H4 structure (Figure 5).

 

Figure 3. (A) The representative structure of the unmodified H4-PRMT5 complex in the pre-product Figure 3. (A) The representative structure of the unmodified H4-PRMT5 complex in the pre-product
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state (P2 in Figure 1B). Note that MEP50 is not shown in this figure due to space restrictions. For the
structure of the full H4-PRMT5-MEP50 complex, please refer to Figure S4. Enzyme residues with
the lowest Einter are highlighted with colours and spheres, represented in both the structure and the
energy bar chart; (B) Einter values are calculated for the enzyme and the histone H4 residues in the
unmodified PRMT5 and the phosphorylated (PRMT5P) complexes in the pre-product (P2) state.

Figure 4. Root mean square fluctuation (RMSF) of each residue in the apo enzyme PRMT5 (A),
MEP50 (B), and the unbound H4 (C) during 580, 580, and 1000 ns-long MD simulations, respectively.
Regions with higher than 3 Å fluctuation are also marked at the top of the corresponding peaks.
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Figure 5. Histone H4 conformations (cartoon, grey) inFigure 5. Histone H4 conformations (cartoon, grey) in the nucleosomal, unbound (apo) and PRMT5-
complexed forms. Helix 3 (highlighted in teal) adopts a V-shaped conformation in the PRMT5-
complexed structure, while it is mostly linear in the nucleosomal and apo forms.
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2.3. Structural Effects of Phosphorylation on T80

The structural explanation of the increased methyltransferase activity of PRMT5P
necessitates the building of the atomic resolution structure of the H4-PRMT5P-MEP50
complex for a comparison with the unmodified PRMT5 version that is described in Section 1.
The H4-PRMT5P-MEP50 complex was constructed by adding a phosphate group to residue
T80 of the energy-minimized H4-PRMT5 complex structure (Methods). The complex was
energy-minimized and subjected to a 720 ns-long MD simulation, and Einter was calculated
between H4 and PRMT5P-MEP50 along the whole trajectory (Figure 2B).

On average, H4-PRMT5P showed a lower Einter when compared to the unmodified
H4-PRMT5, regardless of the method used to select the representative P2 structure (Table S2).
In region P2, the Einter values of both complexes were comparably low (Figure 2B, Table S2),
indicating that both systems reached an energetically favorable (pre-product) state (Figure 2A).
The overall lower Einter of H4-PRMT5P for the full trajectory is due to the lack of plateau
P1 of a relatively high Einter at H4-PRMT5 (Figure 2B, Table S2). Thus, in H4-PRMT5P, the
phosphorylation of T80 resulted in a favourable Einter, lowering the activation energy barrier.
The lower activation energy also means an increased methyltransferase activity of PRMT5P,
which was verified experimentally [9].

The abovementioned lowering of Einter comes from the change of interaction network
between the phosphorylated T80 (pT80) residue of PRMT5 and histone H4, as reflected by
the per-residue Einter analysis (Figure 3). The highest change of Einter occurred on pT80,
E320, and K302 of PRMT5P (Figure 3). Residue pT80 formed stable H-bridge interactions
with R40 and R45 of histone H4 (Figures 6A and S3). The stabilization of these interactions
for several hundreds of nanoseconds is reflected by the corresponding distance plots
prepared for the full MD simulation (Figure S4). In the case of unmodified H4-PRMT5, the
complex was formed by the C-terminal (R67 and D68) residues of Helix 3 of H4 interacting
with a PRMT5 region different from T80 (blue and magenta in Figure 3). These interactions
resulted in a V-shaped conformation (Figure 5) of Helix 3 in the H4-PRMT5 complex,
while a linear Helix 3 was observed in H4-PRMT5P (Figure S5), similar to the apo form
of H4 (Figure 5). This distortion of Helix 3 is an important factor of its unfavourable
average Einter (Figure 3, Table S2) in the case of the unmodified H4-PRMT5 complex. At the
same time, binding of Helix 3 in an unchanged, linear form, that is, a “binding competent
conformation” [36] contributed to the stronger interaction in H4-PRMT5P.

Likewise, to the H4-PRMT5P complex, histone H4 residue R45 is also involved in
the interaction of the phosphate groups of nucleosomal DNA. The H4-DNA interactions
were listed using an experimental nucleosome structure (PDB code: 1kx5, [35], Methods,
Table S3) and are shown in Figure 6b, with a close-up on the interacting residues marked
as sticks. Among the interacting H4 residues (Figure 1A), R45 is one of the most important
binding partners of the DNA phosphate groups (the phosphate groups at dT+7 and dG+8
are involved in the interactions with R45, Table S3, Figure 6b). Such electrostatic interactions
are of primary importance in the stabilization of the nucleosome [37]. The abovementioned
arginine–phosphate interactions are well-documented for nucleic acid partners [38], due to
the ideal geometry, charge distribution, and flexibility of the arginine side-chain [39].

As our model shows that the phosphate group of pT80 residue of PRMT5P interacts
with histone H4 residue R45 (Figure 6A), the above interactions (Figure 6B) of R45 with
nucleosomal DNA cannot be formed in the presence of PRMT5P. This structural conclusion
of the present study is in line with the experimental fact that the nucleosome-bound histone
H4 is not a substrate of PRMT5-MEP50 [11,16].
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Figure 6. (A) Histone H4 (teal, cartoon) bound to PRMT5 (cartoon, grey) phosphorylated on T80 Figure 6. (A) Histone H4 (teal, cartoon) bound to PRMT5 (cartoon, grey) phosphorylated on T80
(pT80). Main anchoring residues, R40, R45, and pT80 are represented with sticks. MEP50 and
certain parts of PRMT5 and H4 are not shown; (B) histone H4 (teal, cartoon) bound to DNA (grey,
cartoon) in the experimental nucleosome structure (PDB code: 1kx5). An abridged structure of H4
is shown. Anchoring points are highlighted with sticks. Phosphates (orange) are represented with
spheres in (A,B). In the 1kx5 structure, histone H4 and DNA are depicted as chain ID(s) F and I, and
J, respectively. Note that histone H4 is embedded into the nucleosome, except for its N-terminal
tail hanging out. The DNA binding domain of H4 is composed by K16-K20, based on the UniProt
database (numbering according to PDB), which was identified in the nucleosome complex (1kx5), as
well. However, residues before this region (Table S3) can also create interactions with DNA, due to
the flexibility of the N-terminal tail. Furthermore, other H4 regions, such as R36-G48 and K79-T80,
were also found to interact with DNA (Figure 1A, Table S3).

3. Materials and Methods

3.1. In Situ Fragment-Based Construction of H4 in Complex with PRMT5

For building the human H4-PRMT5 complex, the crystal structure of the human
PRMT5-MEP50 complex, bound to a histone H4 fragment (1–8 residues), was used as
the starting structure (4gqb). The missing amino acids of PRMT5-MEP50 were built by
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SWISSMODEL online server [40], and terminals were capped. To build the full-length
histone H4, peptide fragments from at least the 8th residue were needed. Therefore, all H4
structures linked in the UniProt database [41] under the human H4 UniProt entry (P62805)
were checked in the PDB databank [42] and filtered based on the first resolved H4 residue
and the length of the experimentally revealed H4 fragment. Structures of the human
transcriptional protein (2kwo, [43]) and the nucleosome core particle (3x1v, [44]) bound to
histone H4 were chosen, containing H4 residues 2–20 and 16–102, respectively (Figure 2B).
After several attempts of superimposing of the abovementioned fragments to the resolved
H4-PRMT5 complex, only the backbone alignment (with C, N, O, and Cα atoms) of histone
H4 residues, such as K8 and K20, resulted a complex without collision (Figure 2B). The
overlapping residues were cut (H4 residues 2–8 and 16–20 from the structures of 2kwo
and 3x1v, respectively), and the superimposed H4 fragments were covalently attached in
Maestro [45]; the H4-PRMT5(-MEP50) complex was equilibrated by the two-step energy
minimization procedure (detailed later).

The root mean square deviation (RMSD) for Cα atoms was calculated during the MD
simulation to check the equilibration of the structures. The RMSD of MEP50 fluctuated
between 1.5 and 2.0 A (Figure S1), showing a low conformational flexibility; therefore, this
structure was used as reference structure in all superposition. The Cα RMSD of PRMT5
and MEP50 was separately calculated after the least square fitting of snapshots to the first
MEP50 structure. The RMSD of the unbound H4 structure was also calculated after the
least square fitting of snapshots to the assembled H4 structure obtained from the energy-
minimized H4-PRMT5 complex during the MD simulation. RMSD was calculated by
Equation (1):

RMSD(t1, t2) =

[

1
M ∑

N
i=1 mi‖ri(t1)− ri(t2)‖

2
]

1
2

; M = ∑
N
i=1 mi (1)

where mi is the atomic mass, and ri(t) is the position of atom i at time t.
The root mean square fluctuation (RMSF) was also calculated for each residue in the

case of the apo PRMT5-MEP50 and unbound H4 structures, after the snapshots were fitted
to the same structures like in the RMSD calculation. GROMACS [46] was used for all
RMSD (command: gmx rms) and RMSF (command: gmx rmsf ) calculations. The RMSF was
calculated by Equation (2):

RMSFi =





1
T

T

∑
tj=1

‖ri
(

tj
)

− rref
i ‖2





1
2

(2)

where ri is the position of the particle i, T is the time of the MD simulation, and ref denotes
the reference position of the particle i.

To build the phosphorylated H4-PRMT5P complex, the phosphate group was co-
valently attached to T80:PRMT5 by PyMol [47]. The parameters of the phosphorylated
threonine were obtained from a previous study [48].

3.2. Energy Minimization

Complexes and peptides were submitted to a two-step (steepest descent and conjugate
gradient) energy minimization procedure before the MD simulation by GROMACS [46].
Molecules were placed in the centre of a cubic box, with a distance of 10 Å between the
box and the solute atoms. The simulation box was filled with TIP3P [49] explicit water
molecules and counter ions to neutralize the total charge of the system. The convergence
threshold of steepest descent and conjugant gradient step of minimization was set to
100 and 10 kJ mol−1 nm−2, respectively.
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3.3. Molecular Dynamic Simulation

The complex, the unbound histone H4, and the apo PRMT5-MEP50 were submitted
separately to a 720 ns-, a 1000 ns-, and a 580 ns-long MD simulation, respectively. In
all cases, a TIP3P [49] explicit water model with an AMBER99SB-ILDN force field [50]
was applied using the GROMACS program package [46], following the two-step energy
minimization procedure (described above). Histone H4 and the enzymes could move freely;
position restraints were not applied. For temperature-coupling, the velocity rescale and the
Parrinello–Rahman algorithm were used. The solute and solvent were coupled separately,
with a reference temperature of 310.15 K and a coupling time constant of 0.1 ps. The
pressure was coupled by the Parrinello–Rahman algorithm and a coupling time constant of
0.5 ps, compressibility of 4.5 × 10−5 bar−1, and reference pressure of 1 bar. Particle mesh
Ewald summation was used for long-range electrostatics. Van der Waals and Coulomb
interactions had a cut-off at 11 Å. Periodic boundary conditions were treated after the finish
of the calculations. After each trajectory, the periodic boundary effects were handled, the
system was centred in the box, and the target molecules in subsequent frames were fit on
the top of the first frame. The final trajectory, including all atomic coordinates of all frames,
were converted to portable xdr-based xtc binary files.

3.4. Interaction Energy Calculations

The sum of Lennard-Jones (LJ) and Coulomb (Cb) intermolecular interaction energies
were calculated [51] (3). The Coulomb term was globally calculated with a distance-
dependent dielectric function [52] (4) and Amber partial charges [50,53], with per-residues
during the simulations, and was represented as intermolecular interaction energy (Einter).

Einter = ELJ + ECoulomb =
NE NS

∑
i,j

(

Aij

r12
ij

−
Bij

r6
ij

+
qiqj

4πε0εrrij

)

(3)

Aij = εijR
12
ij

Bij = 2εijR
6
ij

Rij = Ri + Rj

εij =
√

εiεj

where εij is the potential well depth at equilibrium between the ith (substrate) and jth
(enzyme) atoms; ε0 is the permittivity of vacuum; εr = 1, relative permittivity; Rij is the
inter-nuclear distance at equilibrium between ith (substrate) and jth (enzyme) atoms; q is
the partial charge of an atom; rij is the actual distance between the ith (substrate) and jth
(enzyme) atoms; NE is the number of enzyme atoms; NS is the number of substrate atoms.

εr = A +
B

1 + ke−λBr
(4)

where B = ε0 − A, ε0 is the dielectric constant of water at 25 ◦C, and A, λ, and k are
constants.

The top ten residues with the lowest Einter values at both the enzyme and the substrate
sites for the unmodified and phosphorylated H4-PRMT5 complexes were chosen and
merged to prepare the Einter bar chart (Figure 3).

3.5. Selection of Representative Structures by Structural Clustering and Interaction
Energy Differences

Representative structures were selected using a structure-based clustering from the
following four sets of structures: (i) unmodified H4-PRMT5 complex structures from the P1
and (ii) P2 plateaus; (iii) phosphorylated H4-PRMT5 complex structures from the P1 and
(iv) P2 plateaus. The clustering procedure contained the following steps: The average
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atomic coordinates were calculated for all four set of structures using a bash script, which
prints the x, y, and z atomic coordinates of all structures in the set into separate text files. The
atomic coordinates were structured into a pdb file format and used as average structures.
Finally, the RMSD values between the average structure and each complex were calculated
by an in-house program, rmsd, and the structure with the lowest RMSD value was selected
as the representative structure.

An Einter-based selection of representative structures was also performed in the pre-
product state (P2), as Einter should have a similar value in the unmodified and phospho-
rylated structures. Accordingly, representatives for the P2 section were determined by
calculating the Einter-differences of the unmodified H4-PRMT5 and H4-PRMT5P complexes
of the last twenty-five frames. Structures with the lowest Einter-difference were chosen as
unmodified and phosphorylated H4-PRMT5 representatives for the P2 section (Figure 2B).

3.6. Determination of DNA Binding Domain of H4 in Nucleosome

The structure of the nucleosome core particle (1kx5, [35]) contained two full-length
histone H4s (chain ID: B and F). Histone H4 residues within 3.5 Å distance from the DNA
chains were collected for both of the H4 peptides, using an in-house program. Amino acids
taking place in DNA binding in the case of both peptides were determined as DNA binding
domains of H4 in the nucleosome (Table S3).

4. Conclusions

A three-dimensional structure of the unmodified and phosphorylated human PRMT5-
MEP50, in complex with the full-length histone H4 protein, was modeled. Molecular
dynamic simulations and subsequent analyses provided an atomic level explanation for
two important experimental findings: (1) the increased methyltransferase activity of the
phosphorylated PRMT5 when compared to the unmodified type [9]; (2) the PRMT5 methy-
lates only the free form of histone H4 not bound to the nucleosome [11,16,20]. We expect
that our findings will foster the design of new inhibitors and help in uncovering further
structure–function relationships of PRMT enzymes.
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PTM Post-translational modification
PRMT Protein arginine methyltransferase
PRMT5 Protein arginine methyltransferase 5
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MEP50 Methylosome protein 50
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Einter The sum of Coulomb and Lennard-Jones intermolecular interaction energy
MD Molecular dynamics
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Abstract: Histones serve as protein spools for winding the DNA in the nucleosome. High variability
of their post-translational modifications result in a unique code system often responsible for the
pathomechanisms of epigenetics-based diseases. Decoding is performed by reader proteins via
complex formation with the N-terminal peptide tails of histones. Determination of structures of
histone-reader complexes would be a key to unravel the histone code and the design of new drugs.
However, the large number of possible histone complex variations imposes a true challenge for
experimental structure determination techniques. Calculation of such complexes is difficult due to
considerable size and flexibility of peptides and the shallow binding surfaces of the readers. Moreover,
location of the binding sites is often unknown, which requires a blind docking search over the entire
surface of the target protein. To accelerate the work in this field, a new approach is presented for
prediction of the structure of histone H3 peptide tails docked to their targets. Using a fragmenting
protocol and a systematic blind docking method, a collection of well-positioned fragments of the
H3 peptide is produced. After linking the fragments, reconstitution of anchoring regions of the
target-bound H3 peptide conformations was possible. As a first attempt of combination of blind and
fragment docking approaches, our new method is named fragment blind docking (FBD).

Keywords: peptide; interaction; translation; methylation; target; ligand

1. Introduction

In the past decades, epigenetics has opened up new pathways of drug discovery [1]. Among
epigenetic events, post-translational modifications (PTM) of histone proteins are of particular
interest [2–4]. The epigenetic role of these PTMs can be explained by their altering effect on
the chromatin structure influencing histone–DNA and histone–histone contacts in nucleosomes of
chromatin fibers. Histones are small, conserved eukaryotic proteins, with a very flexible N-terminal
tail (Figure 1A) composed of ca. thirty-six amino acids [5] at histone H3. The tail can be covalently
modified at side-chains of amino acids K, R, T, and S. The resulted PTMs may have diverse chemical
composition such as methylation, acetylation, phosphorylation, etc. If considering methylation as an
example, three (mono-, di-, and tri-methylated) PTMs can be derived by replacing hydrogen atoms of
the charged amino group of the side-chain of K. The N-terminal histone H3 peptide has seven locations
of K (Figure 1A) and methylation can result in 47 PTM variations (four comes from the three PTMs
plus the non-modified K). In this way, an enormous number of PTM variations can be derived if all
above-mentioned amino acids and modifying groups are considered.

Int. J. Mol. Sci. 2019, 20, 422; doi:10.3390/ijms20020422 www.mdpi.com/journal/ijms
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) The sequence of H3 with the 36-amino-acid long N-terminal peptide marked in grey. (Figure 1. (A) The sequence of H3 with the 36-amino-acid long N-terminal peptide marked in grey.
(B) The complex of the H3 decapeptide tail (green) bound to AIRE-PHD (System 2ke1) test case.

Beyond the genetic code, a “histone code” was proposed [6] based on this large number of PTM
variations. The histone code is fundamental in the epigenetics of chromatin-related pathomechanisms
of various diseases [2,3] and can be “decoded and translated” by chromatin-associated reader
proteins [5–7]. Atomic resolution structures of histone-reader (writer) complexes are keys of unraveling
the histone code and drug design. The large number of PTM variations of histones yields a similarly
large number of possible complexes. Large scale structure determination of such complexes is
challenging even for high throughput crystallographic [8,9] techniques.

To answer the challenge, the use of theoretical approaches would be an alternative to experimental
techniques. Computational docking [10–12] of the histone peptide to the reader (writer) target would
be an obvious theoretical approach in this case. However, there are practical problems with the use of
this approach. First of all, the whole N-terminal peptide tail is too large for fast docking approaches [13]
due to its large torsional flexibility resulting in a complicated search problem [14]. Secondly, even the
approximate location of binding sites of the histone peptide on the target surface is unknown in many
cases. Approximate, pre-docking location of the binding sites is further encumbered by the shallow
binding surfaces of reader proteins without deep pockets.

Docking of fragments instead of the whole histone peptide would tackle the first problem.
Fragment-based approaches [15] have been used in past studies with success. In the case of peptide
docking, fragmenting will result in a reduced degree of torsional freedom, and a relieved search. The
second problem can be answered by the blind docking approach [16–18] which scans the entire surface
of the target molecule without prior knowledge of the binding site. In a recent paper, a systematic
blind docking method was released [19] for finding all possible binding modes of a ligand on a target.

In the present study, a combination of the fragment and systematic blind docking approaches is
introduced and tested for complexes of histone peptides with their targets. The resulted methodology
is named after the parent techniques as fragment blind docking (FBD).

2. Results and Discussion

A set of five histone H3 peptide–target complexes (Table 1) was used for elaboration and test
of FBD. The complexes contain both methylated (3qla, 5tdw) and non-methylated (2ke1, 2pvc, 4lk9)
histone H3 tails. Experimental complex structures deposited in the Protein Databank (PDB, [20])
mostly include deca-peptide-sized sections of the tail [21]. Seemingly, it is challenging to capture
all 36 amino acids of the tail for current structure determination techniques such as X-ray or NMR.
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This can be explained by the mobility, and by the lack of or weak interactions of the C-terminal end
of the tail with the target protein which will be further analysed in the next paragraphs. The above
experimental difficulties and need for of determination of the histone-target complexes motivated
the elaboration of FBD. In the forthcoming Sections, the main steps (Figure 1) of FBD are introduced
using the structure of H3 peptide in complex with autoimmune regulator protein plant homeodomain
(System 2ke1) as an example (Figure 1B).

Table 1. Test systems.

PDB ID Target Ligand (Histone H3 Peptide) *

2ke1 autoimmune regulator protein plant homeodomain (AIRE-PHD) ARTKQTARKS
2pvc DNA (cytosine-5)-methyltransferase 3-like (DNMT3L) ARTKQTA
3qla transcriptional regulator ATRX-ADD domain (ATRX-DNMT3-DNMT3L) ARTKQTARK(Me3)S
4lk9 histone acetyltransferase KAT6A ARTKQTARKSTGG
5tdw Set domain containing protein 3 ARTK(Me3)QTARKST

* One letter amino acid codes are used with PTMs marked in brackets after the modified amino acids.

2.1. Fragmenting

As the name of FBD indicates, the protocol (Figure 2) is based on the splitting of the original
histone H3 peptide ligand (H3) into fragments. The fragments have smaller size, and fewer active
torsions than the original peptide. Due to the decrease of their overall freedom, they are expected to
impose less challenge on the docking search algorithm which is the rationale behind the fragmenting
approaches. However, as fragment docking has been used in focused mode (see the Introduction for
references), it is not clear how small fragments give the best possible results in a blind search over
the entire surface of the target. To answer this question, fragments of H3 were designed according
to a systematic scheme (Figure 3). The size of fragments ranged between di- and tetra-peptides.
Notably, we did not use fragments larger than tetra-peptides as the above benefits of fragmenting
would diminish beyond this size [12]. According to the starting position of fragmenting, two series of
fragments were produced and named as N- and C-terminal fragments. To avoid single amino acid
fragments, dipeptide fragmentation was carried out for the cases of tri- or tetrapeptide fragmenting,
if the remaining C- or N terminal sequence were either a tetra- or pentapetides, respectively.

This fragmenting scheme is systematic and at the same time diversifies the sets of fragments used
for docking. The original H3 peptide was cut at the amide bond between the carbon and the nitrogen
atoms. In general, acetyl (Ac-) and imino-methyl (-NHMe) groups are used to cap/block the free N-
and C-terminal cut ends of the peptides to mimic the backbone. In the case of the example system
2ke1, fragmenting resulted in thirteen different peptides (Figure 3). The structures of all fragments
were prepared (Methods) and collected in a library for the blind docking cycles of the Wrapping step.

 

Figure 2. Fragment blind docking (FBD). Figure 2. Fragment blind docking (FBD).
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Figure 3. The fragmenting scheme. Figure 3. The fragmenting scheme.

2.2. Wrapping

The next step of FBD involves the Wrapper module of a new method [19] which covers the
entire surface of the target molecule by a mono-layer of the copies of a peptide ligand using a series
of blind docking cycles. Wrapping the target into ligand copies allows systematic mapping of all
possible binding modes of a ligand [19]. In the present study, wrapping of target proteins of all test
systems were performed by all fragments. In the case of 2ke1, blind docking of 13 unique fragments
yielded more than nine thousand docked ligand conformations (see Methods) which was distilled
into 529 binding modes (binding sites and conformations) used in the next, linking step. All binding
modes were compared to the corresponding experimental conformation of the full H3 peptide using
a standard procedure as implemented in the Wrapper module [19]. Briefly, a root mean squared
deviation (RMSD, Equation 1) value was calculated for the binding modes obtained in a wrapping
cycle, and the best RMSD values were collected for each peptide fragment (Supplementary Table S1).
An abridged version of the results is shown in Table 2 with binding modes of an RMSD ≤ 4 Å. This
agreement with the experimental conformation was found appropriate for the linking step (Figure 2)
described in the next Section. Serial number of the wrapping cycle, and the energy rank (see Methods
for ranking details) holding the binding mode are also indicated in Table 2 and Supplementary Table S1.
The results of the fragmenting-wrapping tests of our systems (Table 1) allowed investigation of various
factors influencing FBD, such as fragment size, chemistry of binding, secondary structure of the ligand
and fragment ends as described in the following paragraphs.

Table 2. Docking results *.

System Fragment Type Fragment Sequence #Cycle #Rank RMSD (Å)

2ke1
N2 = C2 AR-NHMe 1 4 1.9
N2 = C2 Ac-TK-NHMe 1 1 2.8

N3 Ac-KQT-NHMe 1 1 2.4

2pvc

N2 AR-NHMe 2 5 3.2
N2 Ac-TK-NHMe 1 3 2.8
N3 Ac-KQTA 1 1 3.0
C2 Ac-KQ-NHMe 1 2 1.7

3qla
N2 = C2 Ac-QT-NHMe 1 12 2.0
N2 = C2 Ac-K(Me3)S 1 2 3.7

N4 ARTK-NHMe 1 1 3.3

4lk9
N2 AR-NHMe 1 1 2.9
N2 Ac-TK-NHMe 1 4 4.0

5tdw N2 AR-NHMe 1 1 1.7

* Structures are shown in Supplementary Figures S1–S5. # Serial number.
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2.3. Fragment Size

It can be observed that in most of the cases, dipeptide fragments were selected for Table 2. Among
the dipeptide fragments, docking of the AR-NHMe fragment was the most successful at Systems
2ke1, 4lk9, and 5tdw. Excellent RMSD values were obtained ranging from 1.7 to 2.0 Å. In these three
cases the structure with the best RMSD was found in the first wrapping cycle, ranking in the top
five cluster representative. The R2 residue of this dipeptide seems to be an important anchoring
residue of the H3 histone tail. For an in-depth analysis of target–ligand interactions, the number of
intermolecular contacts (Ninter) and per-residue intermolecular interaction energy values (Einter) were
calculated for the energy-minimized complex structures of Table 1 as described in Methods. The results
of the analysis (Figure 4, Supplementary Tables S2 and S3) underline that R2 is indeed an important
anchoring residue having the largest Ninter and best Einter values. For system 3qla, a mis-docked
AR-NHMe (Supplementary Table S1) was produced due to the lack of negatively charged residues
and the targeted ATRX-DNMT3-DNMT3L (ATRX-ADD) domain side resulting in a single contact at
R2 (Figure 4, Supplementary Table S2). In case of 2pvc, the AR-NHMe fragment found the binding
conformation at an RMSD of 3.2 Å in the second cycle of wrapping. This is due to the relatively small
Einter of R2, if compared to that of K4 which is the main anchoring residue (Figure 4). The importance
of K4 is also reflected by its successful docking when K4 was part of the fragmented sequence (N2, N3
and C2 in Table 2).

 

Figure 4. Cont.
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Per-residue values of target–ligand intermolecular interaction energy (EFigure 4. Per-residue values of target–ligand intermolecular interaction energy (Einter) and number of
intermolecular interactions (Ninter) calculated for the first 13 amino acids of the histone H3 ligand. The
dotted line represents an approximate border of the N-terminal anchoring region where most of the
target–ligand interactions act.

Previous docking studies claimed [12] that appropriately docked conformations can be obtained
for small peptides with low number of active torsions whereas large peptides are true challenges
for most of the docking procedures [12,22,23]. In agreement with these previous reports, low RMSD
values were obtained mostly for dipeptide fragments of the N2 or C2 series (Table 2). Depending
on the starting point of fragmenting (C- or N-terminus) different sets of peptides could be obtained.
Plausibly, identical fragment sets can be obtained if, e.g., dipeptide fragments are produced from a H3
peptide of even number of residues (Figure 3). However, the N-terminal fragmenting was successful
for any fragment lengths as the anchoring residues are close to the N-terminus of H3. In the case
of C-terminal fragmenting, the first few fragments often bind weakly (Figure 4, System 4lk9) to the
target protein, or in some cases they are completely immersed in the bulk solvent (Figure 4, System
5tdw). At the same time, the last fragments are usually larger peptides (tri- or tetra-peptides) which
makes it more difficult to find the binding conformations known from the reference structure, as also
explained above.

In some cases, tripeptide (2ke1), and tetra-peptide (2pvc) fragments were also docked at good
RMSD values of 2–3 in the first ranks (Table 2). Therefore, tri- and tetra-peptides can also be useful in
FBD for other systems. However, dipeptides performed overall better than larger ones for (partial)
reconstruction of the original H3 ligand.

2.4. Chemistry of Binding

The investigated H3 peptide sequences are identical in all five Systems (with variable lengths)
and unmodified in three Systems (Table 1). In the cases of 3qla and 5tdw, tri-methylation occurs at
K4 and K9, respectively. Such PTMs are key elements of the histone code as it was discussed in the
Introduction. The investigated target proteins were different in the five Systems. Identity of the H3
ligand sequences offers the possibility of observation and analysis of differences on the interacting
target side. The K4 binding site is negatively charged due to the presence of E (2ke1, 4lk9) and/or D
(2ke1, 2pvc, 3qla) residues. K4 found its position correctly, except for 5tdw, where the binding site is
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composed of T and F accommodating the tri-methylated K4 side-chain in the reference crystallographic
structure. At the same time, H3 fragment with the same PTM at K9 docked correctly (Table 2) to its
negatively charged pocket with E, Q and also hydrophobic (Y) residues.

In three (2ke1, 2pvc, and 4lk9) cases, the first two dipeptide fragments are the best docked, which
is somewhat expected due to the anchoring role of both R2 and K4 residues. In Figure 4, it can be
observed that anchoring (see dotted line in Figure 4) of the peptide sequence is achieved by mainly
two residues, R2 and K4, which can explain the positive docking results obtained especially for the
fragments containing these residues (Table 2). More than that, the interaction energies calculated for
these residues are also the strongest in the H3 histone tail (see dotted line in Figure 4). In case of 3qla
the anchoring was also achieved by the tri-methylated K9 (Figure 4).

In cases of 2ke1, 2pvc, and 4lk9, consecutive fragments (AR-NHMe, Ac-TK-NHMe) have excellent
RMSD ≤ 4 Å. Beside the good match with the reference structure, the distance between CT and NT

atoms (Figure 5), in these consecutive segments fall below 0.75 Å, set as a criterion for selection of
linkable ligand binding modes (see Section Linking). Hence, these ligand-binding modes are suitable
for covalent re-linking.

 

 Chemical formula of the N-terminus (ARTK) of histone H3 with a detailed Lewis structure Figure 5. Chemical formula of the N-terminus (ARTK) of histone H3 with a detailed Lewis structure
of R2 and T3. The peptide was cut into di-peptide fragments between the CT and NT atoms of the
amide bond.

Notably, the binding modes with the above-mentioned excellent RMSD values (Systems 2ke1,
4lk9, and 5tdw) were produced in the first wrapping cycle, i.e., one hundred blind docking runs
(see Methods) were enough to identify them. In the case of System 2pvc, the best binding mode of
an RMSD of 3.2 Å was found in the second cycle of wrapping, requiring an additional cycle of one
hundred runs. This exemplifies the systematic approach of Wrapper which surely finds a binding
mode in higher cycles even if it was not identified in the first one.

2.5. Secondary Structure of the Ligand.

Target-bound H3 histone peptides of the tests systems adopted a variety of secondary structures,
such as coil (2pvc, 5tdw), β-sheet (2ke1, 3qla) and α-helix (4lk9). In the case of 4lk9, due to the α-helical
secondary structure only the first two dipeptide sequences were found successfully with 2.9 and
4.0 Å RMSD, respectively (N2 series, Table 2). In the second fragment, the Ac-TK-NHMe peptide,
is part of the α-helix in the original 4lk9 structure, resulting in the increase of RMSD if compared
with that of the first fragment. Similarly, further fragments from the α-helical region could not find
the reference conformation below 4 Å RMSD. Fast docking approaches such as AutoDock 4.2 often
have difficulties in reproducing helical secondary structures of peptides. This is probably due to
missing explicit solvent model and inadequate consideration of intra-backbone H-bridges. Notably, the
scoring function of fast docking methods are trained primarily [24] for optimization of intermolecular
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(target–ligand) interactions and not intramolecular ones. For this reason, in AutoDock 4.2 there is an
option for restraining backbone torsions of the ligand [25]. However, as a real test, we aimed at fully
flexible blind docking of fragments without using any prior knowledge of their bound conformation.
Finding the C-terminal region of the H3 peptide tail was difficult in all of the test cases indifferent of
the secondary structure, due to the shallow binding site and weak interaction with the target protein,
as reflected by the calculated Einter and Ninter values (Figure 4), as well. However, in the case of our
4lk9 test system, where the H3 peptide tail has an α-helix secondary structure when bound to the target
protein, the intramolecular hydrogen bonds in the helix made the docking even more challenging than
in other test cases.

2.6. Fragment Ends

The fragmenting method of FBD allowed to check the role of terminal end groups (Figure 3) of
peptide ligands. The AR sequence appears at two different positions of the H3 peptide (Table 1). Thus,
two dipeptide fragments were formed, one with a free, positively charged and another one with a
capped N-terminal. Docking results showed that the positive charge is essential to find the reference
binding position at an RMSD of 1.9 Å RMSD (due to a hydrogen bond with P331 (Supplementary
Table S2) carbonyl oxygen of the autoimmune regulator (AIRE) protein. In the case of the capped
(Ac-AR-NHMe) version, this interaction could not occur due to lack of the positive charge. This
example hints that for appropriate modelling of terminal fragments, the original (charged) end
should be retained. Capping should be used only at the cleaved amide bonds as it was indicated in
Section Fragmenting.

2.7. Linking

Having all binding modes of all fragments produced in the previous steps, pairwise linking of
fragments of the same length is performed automatically by an algorithm elaborated for FBD and
described in the following paragraphs. The algorithm probes all possible pairwise combinations and
produces the longest possible peptide from the connected amino acid pairs. The work flow of the
algorithm (Figure 6) is described for the example of the N-terminal hexa-peptide ARTKQT of histone
H3. Let us suppose that this hexa-peptide was cleaved into three dipeptide fragments AR, TK, and QT,
as it was described in Section Fragmenting. For FBD, the dipeptides were blocked with Ac- and/or
-NHMe groups at the cleavage sites. The linker algorithm takes the first dipeptide pair of AR-NHMe of
n1 binding modes and Ac-TK-NHMe of n2 binding modes, and removes the blocking groups. In this
way, two series of free radicals are obtained with terminal carbon (CT) and nitrogen (NT, Figure 5)
atoms available for re-forming the amide bonds. However, not all fragment binding modes are in a
correct position to allow the formation of the amide bond. In some cases, the distance between CT and
NT (dCN) is too large to allow re-formation of a covalent bond. To select the copies with appropriate
distances, all (n1 × n2) dCN values are calculated and saved in a matrix (Table 3). The dCN values are
generated for all dipeptide fragment pairs, and therefore, two dCN matrices are produced in the case
of our hexa-peptide example. There is a user-defined minimal distance tolerance dCN,min = 0.75 Å
comparable to the half-length of a CT–NT bond in an amide group. A collision is identified between
CT and NT if the actual dCN ≤ dCN,min and the corresponding element of the collision matrix (cCN) is
set to zero (otherwise one). A maximal distance tolerance (dCN,max) of 6 Å is also defined to exclude
fragment pairs too far from each-other, and a trimming matrix tCN is generated based on this value.
Notably, dCN,max should not be too large, it must have an meaningful physical value.
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The linking algorithm (grey boxes refer to repeated tasks for all fragments). Figure 6. The linking algorithm (grey boxes refer to repeated tasks for all fragments).

Table 3. Matrices used during the linking process.

Symbol Description

dall Smallest distance calculated between all heavy atoms
call Collision matrix between any heavy atoms

dCN Distance calculated between CT and NT atoms
cCN Collision matrix from dCN, cCN = 1 if there is no collision, otherwise 0
tCN Trimming matrix from dCN, tCN = 0 if trimmed, otherwise 1
fCN Filtering matrix from the collision and trimming matrices, fCN = 1 if cCN = tCN = 1, otherwise 0

To avoid overall collisions between any atoms of the fragment pairs, a distance matrix dall with
pair-wise distances (Table 3) between all heavy atoms is also generated. A collision matrix call is also
calculated from dall to identify the steric collisions between heavy atoms of the fragments. A collision
is identified if the actual dall ≤ dall,min, where dall,min is a user-defined minimal distance tolerance, and
a dall,min = 0.75 Å, the same value as the above dCN,min works well for peptide ligands. The elements of
call are set to zero by default, and one if there is no collision between a pair of atoms. Finally, a filtering
matrix fCN is produced which tells if a fragment pair can be considered for welding and refinement
(see next Section). Values of fCN is set to one if tCN and cCN are equal to one otherwise zero.

After sorting the elements of the distance matrix in an increasing order of dCN the main loop
selects the first (next), unchecked fragment pair with the actual smallest dCN from the list and checks
the corresponding element of the filtering matrix. If the fCN = 0 then the next fragment pair will be
checked, otherwise the structure of the actual fragment pair is saved to the candidate pool containing
structures of possible fragment pairs in separate directories.

After producing a pool of candidate structures of the first fragment pair of AR and TK in our
example, the same procedure is repeated for the next fragment pair of TK and QT if considering our
example hexa-peptide ARTKQT. Having all fragment pairs (two pairs in our example) finished, the
candidate pools are further processed to link the fragment pairs into triads. Accordingly, the first
fragment pair AR-TK with the smallest dCN is selected. If the same TK fragment copy occurs in one of
the TK-QT pairs, the structure of the hexa-peptide ARTKQT is produced (Figure 3, AR2-TK3-QT1 or
AR2-TK3-QT4, etc.). If not, then the next AR-TK pair will be checked for a common TK with the TK-QT
pairs and the algorithm proceeds until all AR-TK pairs are checked. The linker produces structure
pools at all levels of the above pairing process. The process works on arbitrary long peptide chains.
That is, pools of fragment pairs, triads, and tetrads are produced depending on the length of the actual
peptide. A statistics of the pools is written into a report file (Supplementary Table S5).
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2.8. Welding and Refinement.

The pools of linked candidate structures are further processed to re-form (weld) the covalent bonds
between atoms CT and NT between fragments AR and TK in our example (Figure 5). During welding,
AR and TK are rotated along the Cα–CT (angle Ψ) and NT–Cα (angle Φ) bonds, respectively. Rotations
are performed systematically with a step size of 1 degree. One rotation step at angle Ψ is followed
by a series of steps of a complete turn-around Φ, up to 360 degrees. After each rotation step, dCN is
calculated and stored with the corresponding angles. From among the stored dCN values, the smallest
one is selected and the corresponding structure is resulted by welding. The same welding procedure is
followed for the remaining fragments of ARTKQTARKS presented in the linked candidate pool.

Following the linking and welding processes, structural refinement of the paired fragments is
also recommended using a common molecular mechanics energy-minimization, preferable in explicit
water model (Methods). In case of System 2ke1, docking found the first two di-peptide fragments
at RMSD values of 1.9 (AR-NHMe) and 2.8 (Ac-TK-NHMe) Å, respectively (Table 2). These two
fragments can also be identified as AR04 and TK01 in Supplementary Table S5. These fragments
obtained from docking were linked and welded as it was described above and also shown in Figure 7.
After refinement of the welded fragment pairs (Figure 7), the dCN of the amide bond changed from
1.5 to 1.3 Å. The optimized structure of ARTK, matches the X-ray structure at a 1.3 Å RMSD. This is a
remarkable improvement, considering the above-mentioned RMSD of the di-peptide fragments alone.

 

Figure 7. The process of linking, welding and refinement represented on the example of a fragment
pair AR-NHMe and Ac-TK-NHMe derived from the histone H3 peptide ligand of System 2ke1.
For comparison, the crystallographic ligand conformation is represented in teal cartoon on the first tree
images, and with teal sticks on the last two images. The AIRE PHD target is in grey cartoon. Calculated
binding modes of AR-NHMe and Ac-TK-NHMe after wrapping of the target are represented with
purple and blue sticks, respectively. After linking, binding modes matching with the crystallographic
H3 conformation are shown. During welding, the capping groups are removed and the distance
between the terminal (CT and NT) atoms is minimized via intra-molecular rotation (arrow). Refinement
with molecular mechanics minimization helps formation of the proper bound structure of the ARTK
fragment (grey sticks).

3. Methods

3.1. Wrapping

3.1.1. Preparation of Targets

Target structures were obtained from the Protein Databank (PDB) entries of the complexes as
listed in Table 1. In case of missing atoms of the amino acids, Swiss-PdbViewer was used to complete
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the structure [26]. Water and ion molecules were removed from the target structure. Prior to docking,
energy minimization was carried out on 2pvc, 3qla, 4lk9, 5tdw. A two-step energy minimization
was done using Gromacs 5.0.6 [27]. In the first step, a steepest descent was performed, followed
by conjugated gradient. The structure optimization was done in AMBER99SB-ILDN force field [28]
with TIP3P explicit water model [29]. The target structure was placed in the centre of a cubic box.
Distance between the box and the solute atoms was set to 10 Å. The simulation box was filled with
water molecules and counter-ions in order to neutralize the total charge of the system. The Particle
Mesh Ewald method was used for long-range electrostatics. The van der Waals and Coulomb cut-offs
were set to 11 Å. Convergence threshold of the first step (steepest descent) was set to 103 kJ mol−1

nm−2, in the second step (conjugant gradient) minimization it was set to 10 kJ mol−1 nm−2. Position
restraints were applied on the heavy atoms with a force constant of 103 kJ mol−1 nm−2 during the
energy minimizations.

3.1.2. Preparation of Ligands

The non-modified peptide sequences were built using Tinker program package [30], with the
protein, newton and xyzpdb commands. The optimization of the constructed ligand structures was
performed using the Amber99 force field [31]. A 10−4 kcal/mol gradient was set to the newton
program for minimization. Methylated peptide sequences were prepared with Schrödinger Maestro
program package [32] by capping of the N- and C-terminal of the fragmented regions, and by adding
the hydrogens. The obtained ligand structures, were optimized by Open Babel [33] using a steepest
descent optimization, with 104 steps. The next step was a conjugate gradient minimization, with a
maximum of 104 steps, and the convergence threshold was set to 10−7 kcal mol−1 Å−1. MMFF94 force
field [34] was used in both steps. The minimized target and ligand structures were used as inputs for
docking, after preparation with AutoDock Tools 1.5.7 [35]. Gasteiger–Marsili [36] partial charges were
added for both, the minimized ligand and target atoms as well. All default active torsions are kept for
the ligand, but the target is treated rigidly, without active torsions.

3.1.3. Grid maps and Blind Docking Parameters

The grid boxes were generated around the entire protein target with AutoGrid 4.2 [25]. Grid boxes
were automatically centred on the target, and grid maps of 200 grid points along all axes, with 0.375 Å
spacing were generated. The AutoDock 4.2. [25] program package was used with Lamarckian Genetic
Algorithm (LGA), AutoGrid 4.2 was used for calculation of grid maps of the target molecule with
pre-calculated energy values. One hundred BD runs were performed, in each cycle, with 20 million
maximum number of energy evaluations and the docked ligand structures are collected in a log file.
Docking parameters were used as described in the previous study [18].

3.1.4. Wrapping Cycles

For each BD cycle, 100 docked ligand copies were generated [17]. Docked ligand conformations
were clustered and ranked based on their intermolecular energy (EAD4), calculated by the AutoDock
4.2 scoring function (1st energy component of estimated free energy of binding in the log file), and
closest distance between each heavy atom of the ligand copies (dmin). In the initial clustering phase,
the 100 docked ligand conformations were sorted according to the EAD4. Ligand conformation of
the lowest EAD4 from among the 100 docked ligand copies were selected as the representative of
Cluster 1. Ligand conformation of the 2nd lowest EAD4 was selected as a representative of a new
Cluster 2 if dmin>drnk, where drnk is a ranking tolerance, a measure of separation of clusters from
each other. This wrapping method achieves the coverage of target surface with a monolayer of N
ligand copies ending up in a target–ligandN complex. Ligand copies and interacting target surface
elements are excluded from successive BD cycles via assignation of “excluded” atom type as detailed
in our previous publication [19]. Further details on structural and physical chemistry of the Wrapper
algorithm can also be found in the original publication of Wrap ‘n’ Shake [19].
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After the complete coverage of the target surface, a trimming was performed, where excess ligand
copies not interacting with the target were removed after the final cycle and the results were written
into a single PDB file. This trimmed PDB file was further used to link the obtained ligand copies of the
fragmented segments.

Root mean squared deviation (RMSD) between the calculated (C) and the experimental reference
(R) ligand conformations was calculated according to Equation (1).

RMSD =

√

√

√

√

1
NHL

NHL

∑
i=1

|Ci − Ri|2 (1)

where, NHL is the number of ligand heavy atoms, R is the space vector of the ith heavy atom of the
experimental reference ligand molecule, C is the space vector of the ith heavy atom of the calculated
ligand conformation as resulted from docking.

3.2. Analysis of Target–Ligand Interactions

3.2.1. Preparation of the Target–Ligand Complexes

The X-ray structure of the target–ligand complexes were subjected to structure optimization,
using the same GROMACS and force field parameters as detailed in Section Wrapping (Preparation of
targets). The only exception from the above-mentioned protocol, was the use of position restraints on
the heavy atoms with a force constant of 104 kJmol−1 nm−2 during the energy minimizations.

3.2.2. Number of Intermolecular Interactions (Ninter)

Target residues with a closest atomic distance below 3.5 Å measured from the H3 peptide ligand
were collected and counted. Only heavy atoms were considered during the distance calculations.
The list of interacting target residues can be found in Supplementary Table S2, and Ninter values are
presented in Figure 5.

3.2.3. Target–Ligand Intermolecular Interaction Energy (Einter)

The energy-minimized target–ligand complexes were also subjected to calculation of
intermolecular interaction energies expressed as the sum of Lennard–Jones (LJ) and screened Coulomb
potentials [37] (Equation (2)). For both the LJ and Coulomb potentials, Amber99sb-ildn force field
parameters were used [28].

Einter =
NTNL

∑
i,j

[

Aij

r12
ij
− Bij

r6
ij
+

qiqj
4πε0 εrrij

]

Aij = εijR12
ij

Bij = 2εijR6
ij

Rij = Ri + Rj

εij =
√
εi εj

εr = C +
D

1+ke−λBrij

C = ε0 – D; ε0 = 78.4; D = −8.5525; k = 7.7839; λ = 0.003627

(2)

where, εij is the potential well depth at equilibrium between the ith (ligand) and jth (target) atoms;
ε0 is the dielectric constant of bulk water at 25 ◦C; Rij is the inter-nuclear distance at equilibrium

between ith (ligand) and jth (target) atoms; q is the partial charge of an atom, used in AMBER99SB-ILDN
force field; rij is the actual distance between the ith (ligand) and jth (target) atoms; NT is the number of
target atoms; NL is the number of ligand atoms.
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3.3. Linking and Welding

Algorithms of linking and welding were scripted in java using JDK version 1.8. into a single
code FragmentMerge. The script can be run as described in Supplementary Table S4 and uses a set of
PDB files as resulted by Wrapping. There is also an input text file containing the name of the system
(for report purposes) and the fragments line by line (Supplementary Table S4). The algorithm uses
a class hierarchy. The fragments, the atoms and the bonds in the fragments, the PDB files have own
class to represent them. For the rotations of welding, the atoms are stored in a molecule graph in the
memory, it helps to calculate the new coordinates during the rotation process. The outputs are saved
in a separate directory for pairs, triads, tetrads, pentads, etc. They are PDB files including the linked
fragments. A report file after the linking and welding process contains all information about inputs,
outputs, parameters and access paths.

The number of the fragment and the name of the input files are listed in REMARK lines and
the name of the files refers to the content. The welding algorithm also needs connection information
between the atoms. For this, coordinate files are converted by Open Babel [33] into PDB with
connectivity lists.

4. Conclusions

In the present study, a new method, FBD, was introduced and tested on the examples of complexes
of reader and writer proteins with histone H3 peptide fragments. Heuristic search engines of present
fast docking methods cannot handle peptide ligands with numerous internal rotations [12,19]. The large
size and flexibility of peptide ligands together with the shallow binding surface of the targeted
proteins impose a big challenge on experimental structure determination methods, as well. Moreover,
interaction of the C-terminal section of the histone peptides with their targets is often weak and even
not visible in the experimentally determined structures. We showed that fragmenting the ligands
into small peptides provide reasonable solutions even if the entire protein surface was targeted in
blind docking runs. Notably, fragmenting has been used in previous fast docking studies focusing
on a known binding pocket. The present study provided the first application of fragmenting in a
blind docking context with no restriction of the search space. Thus, even the approximate knowledge
of location of binding pocket was not necessary in our successful examples. Despite the above
challenges, N-terminal anchoring fragments were correctly positioned and linked using the results of
our systematic blind docking search (Wrapper). All-in-all, FBD benefited from the philosophy of its
parent methods, fragment and blind docking. Present limitations and mis-docked examples of FBD
come from the simplified docking force field and the lack of an explicit water model. However, these
limitations can be improved by molecular dynamics simulations in many cases as it was described
previously [19]. The systematic approach of FBD will improve the efficiency of structure determination
of problematic complexes with large ligands such as histone peptides.

Supplementary Materials: The following supplementary materials are available online at http://www.mdpi.
com/1422-0067/20/2/422/s1.
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Abstract: The structures of histone complexes are master keys to epigenetics. Linear histone peptide
tails often bind to shallow pockets of reader proteins via weak interactions, rendering their structure
determination challenging. In the present study, a new protocol, PepGrow, is introduced. PepGrow
uses docked histone fragments as seeds and grows the full peptide tails in the reader-binding pocket,
producing atomic-resolution structures of histone–reader complexes. PepGrow is able to handle the
flexibility of histone peptides, and it is demonstrated to be more efficient than linking pre-docked
peptide fragments. The new protocol combines the advantages of popular program packages and
allows fast generation of solution structures. AutoDock, a force-field-based program, is used to supply
the docked peptide fragments used as structural seeds, and the building algorithm of Modeller is
adopted and tested as a peptide growing engine. The performance of PepGrow is compared to ten
other docking methods, and it is concluded that in situ growing of a ligand from a seed is a viable
strategy for the production of complex structures of histone peptides at atomic resolution.

Keywords: docking; histone; peptide; ligand; fragment; growing

1. Introduction

Histones have a diverse interaction profile [1] and play a key role in epigenetic reg-
ulation via interactions with the DNA in the chromatin [2,3], as well as various protein
partners [4,5]. Readers are important proteins that distinguish between the combina-
torial numbers of post-translationally modified histone molecules commonly called as
the “histone code” [6]. The atomic-resolution structures of histone–reader complexes
are key to understanding the “histone code” and designing new drugs that affect epige-
netic regulation [6–8]. The present study is focused on consisting of histone H3 peptides
and their reader proteins, which play an important role in the pathophysiology of var-
ious autoimmune diseases, intellectual disabilities, cancer development, such as breast
cancer, colorectal carcinoma and hematopoietic cancers, autoimmune polyendocrinopathy–
candidiasis–ectodermal dystrophy, meiotic defects in spermatocytes, breast, prostate and
colorectal cancers, and leukemia (Table S1 [9–18]). These pathophysiological involve-
ments render histone reader proteins such as bromodomains [19] and the eleven–nineteen
leukemia protein (ENL [20]) attractive targets for drug design purposes.

While knowledge of the structures of histone H3–reader complexes is necessary for
understanding the pathomechanism of epigenetic diseases and designing new drugs to
act against them, the determination of their atomic-resolution structures can be rather
challenging [21]. Experimental difficulties are presented by the creation of well-diffracting
and stable crystals in X-ray crystallography [22], the computational processing of noisy
images in cryo-electron microscopy [23], and the isotopic labeling of proteins in NMR [24].
Histones are particularly problematic ligands for structural determination, as they have a
linear N-terminal tail with a high degree of conformational flexibility [25–27] that sticks
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out of the nucleosome structure (Figure 1). The protruding N-terminal tails of histones
may interact with histone readers (like the proteins in Table S1) or with DNA [28]. Thus,
the binding of the N-terminal tail of histone H3 with DNA may compete with the binding
of histone N-terminal tails to histone reader proteins [29], which is further supported
by the increased accessibility of histone H3 during nucleosome disassembly during tran-
scription [30]. Like all peptides, histones are also extensively hydrated, which further
complicates the determination of their interactions [5,31]. Moreover, there are shallow
binding pockets on the reader side that result in the histone–reader complexes possessing
moderate stability [32,33], with micromolar binding constants (see Kd values in Table S1 for
examples). Long peptides such as histone tails are well-known problematic cases for fast
computational docking [31,34], due to the inappropriateness of the scoring schemes [35–37]
of their binding modes (position, orientation, and conformation) and the lack of explicit
water models [38]. The complexes presented in Table S1 are good representatives for
investigations of the above structural challenges.

Figure 1. ( )
Figure 1. The terminal tails of histone proteins (teal and grey) stick out of the nucleosome core unit
and have a flexible structure. The DNA backbone is colored in orange, base pairs are shown as dark
blue sticks. A histone H3 protein is highlighted in teal. Every 10th amino acid of the histone H3 (teal)
is marked. The figure was prepared from the PDB structure [39] 1kx5 using PyMol v2.0 [40].

The recognition of the above structural and methodological challenges accelerated
the development of numerous fast docking methods for peptide ligands. At least three
branches can be distinguished among the different methods: physico-chemical
approaches, knowledge-based approaches, and their hybrid [41]. Physico-chemical
approaches [42–44] calculate energy (scoring) values directly from the atomic positions
of the molecules, without conducting further training or experiments. Knowledge-based
methods [34,41] are relatively fast and are often restricted by their training set of known
structures. Their scores are often based on similarities to the training set [45] and lack
physical meaning, which hampers the interpretation of the results (validity problems).

               hetenyi.csaba_83_23



Int. J. Mol. Sci. 2023, 24, 13831 3 of 17

Comprehensive reviews [31,34] and tests [46,47] have shown that the available approaches
still have serious limitations with respect to the docking of peptide ligands.

Fragment-based docking is a popular and widely used approach in drug
design [48–52], and is based on the linking of docked fragments into the whole bound
ligand structure. The number of fragment-based docking methods applied for peptide
ligands is still limited. The covalent linking of fragments [48,53] is a critical step in fragment
docking, and its success largely depends on the actual steric situation, including the shape-
wise matching and the gap between the two docked fragments. Thus, the available methods
have multiple limitations, including the lack of full automation, and their dependency
on the diversity and selection of linkers and anchoring fragments [54–61]. Inappropriate
steric situations of the fragments often necessitate time-consuming follow-up efforts [62] to
achieve a new and appropriate covalent bond between two fragments. Further details of
the limitations of covalent linking approaches are summarized in Table S2.

In the present study, a new protocol, PepGrow, is introduced and tested for the docking
of histone H3 peptide tails to their target reader proteins. PepGrow aims to overcome
the limitations of fragment-based docking techniques described above by replacing the
fragment linking steps with a growing procedure. Thus, the new protocol is based on
the in situ growing of a fragment seed of the peptide ligand in the binding pocket of the
reader protein. In drug design, growing steps have been applied for the attachment of
small functional groups to ligands [63,64], so as to increase the strength of target–ligand
interactions [52]. On the other hand, the growing of a full peptide ligand structure from
a small fragment seed is a more difficult task than that handled in the present study. We
report the answers to the above challenges, and present a description and validation of
PepGrow, comparing its performing with that of of ten other docking methods.

2. Results and Discussion

2.1. Histone Systems and Benchmark Methods

Ten complexes of histone H3 peptides and reader proteins (Table S1) of physiological
importance, a complete N-terminal end, and available apo forms of the reader proteins
were collected from the Protein Data Bank (PDB [65]) as test systems for the development
and evaluation of PepGrow. Due to problems regarding their structural determination
(see Section 1), there are relatively few complexes in the PDB with histone ligands of
a complete N-terminal end, that is, starting with the first amino acid. Notably, the use
of apo target structures allowed a truly unbiased test, excluding any help of the ligand-
bound conformation of the pre-formed target-binding sites that may be present in the
holo structures.

Histone H3 peptides contain up to ca. 50 rotatable bonds (Table S1), that is a challenge
of computational docking.. The challenges are further increased by the unique binding
pattern of histones. Reader proteins often have a shallow binding surface, as in the case
of the UHRF1 PHD finger (System 3sou, Figure 2A) [66–68]. A considerable part of the
linear [69,70] N-terminal region of histone H3 is not able to find anchor points on this
shallow target, tending rather to remain unbound in the bulk (Figure 2A). Quantitative
analyses of the per-residue interaction energy (Einter; see Section 3) distribution of the
experimental holo structures in Table S1 show (Figure 2B) that mostly the first five amino
acids of the N-terminal of histone H3 are involved in the interaction with the target, while
the C-terminal end is exposed to the bulk, and often has a high degree of conformational
freedom, which is also reflected by the large atomic B-factors (red in Figure 2A). This finding
also emphasizes that only complexes with a full histone tail (i.e., a complete N-terminal
end) are useful as test systems.
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Figure 2. -Figure 2. Per-residue energetic and structural analysis of histone H3 peptide ligands bound to their
reader proteins. (A) The experimental structure of reader UHRF1 PHD finger (grey surface, PDB ID
3sou) in complex with a histone H3 peptide (sticks, colored by Cα B-factors). (B) The mean (columns)
and standard deviations (error bars) of Einter values for the respective residues calculated for the
energy-minimized experimental histone complexes presented in Table S1. The numbers on top of
the error bars show the number of systems used for calculation of the averages. The numbers are
smaller than the maximum of 10 if histone peptides shorter than 15 amino acids in length were
measured experimentally.

Besides the PepGrow protocol, a benchmark set of ten available docking methods
(Table S3 [41–45,71–77]) was assembled for the present study. Physico-chemical and hybrid
(i.e., incorporating knowledge-based elements into their algorithms; see Section 1) methods
were included in the benchmark. The same target and ligand structures were used as inputs
for the PepGrow and the benchmark methods.

2.2. The PepGrow Protocol

The PepGrow protocol builds the structures of target–peptide complexes at atomic
resolutions (Figure 3) without prior knowledge of the binding site residues of the target.
PepGrow starts with the selection of a seed molecule that is a fragment of the ligand
peptide. As the ligand used in our cases is the same histone H3 tail (Table S1), the selection
of an appropriate seed needs to be carried out only once. For the seed selection procedure,
the use of only one holo complex structure (2ke1) proved to be sufficient to pick the best
dipeptide fragment from among all of the possible dipeptides (Figure 4A) derived from
the H3 peptide (Table S4). In the case of histone H3, Fragment 1 (AR) produced the best
results (Figure 4B), and therefore, it was selected as the seed for H3 peptide docking for
all complexes except for System 2fuu, for which Fragment 4 (KQ) was used. The selection
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of Fragments 1 (AR) and 4 (KQ) as seeds is also reflected by the per-residue Einter plot
(Figure 2B), where R2 and K4 have the largest Einter contribution among the residues of
histone H3. (Thus, the fast, per-residue Einter scoring (Figure 2B) plot of a single strong
complex is also applicable for seed selection in PepGrow).

In the next step, the seed was docked on the target protein using a fast method
utilizing AutoDock 4.2.6, focusing on the peptide binding area [78], which resulted in
several binding modes (where the binding mode refers to the position, orientation, and
conformation of a ligand). The binding modes were ranked according to the calculated free
energy of their binding and their structural similarity. The representative binding modes
were produced for all ranks (see Tables S5 and S6 for a list of the rank counts of all systems).
All representative binding modes then proceeded to the fragment growing step, which was
accomplished using the builder routine of the homology modeling program Modeller [79].
The experimental target structure with the docked peptide fragment (seed) served as a
starting template for growing fragments in the binding pocket. In this way, all docking
ranks were used to generate thousands of target–peptide complex models in a matter of
minutes, resulting in a large enough pool of peptide binding modes (see Tables S5 and S6
for a list of the binding mode counts of all systems). The complex models of the pool were
scored and ranked based on the target–ligand intermolecular interaction energy (Einter,
Section 3) values calculated for the full peptide and for the five N-terminal amino acid
residues, respectively. The representative peptide structure with coordinates closest to the
average coordinates calculated for the peptide structures ranked in the top 1% (Rank 1)
according to Einter was selected as the solution. It was observed that in many cases, the top
1% of solution structures contained the best one, but not necessarily the best Einter of all of
the structures. Thus, it was reasonable to consider a structure that was representative of
the top 1%, rather than a single top structure. Technical details of the PepGrow protocol are
provided in the Section 3. Example in- and output files and computational details of the
PepGrow protocol are available in the Public Repository files Protocol.pdf and Protocol.tgz
(see Data Availability Statement).

2.3. Performance

The structural accuracies of PepGrow and 10 other docking methods are expressed
as the root mean square deviation (RMSD; see Section 3) measured between the docked
and the experimental (reference) ligand-binding modes. As the experimental complexes
mostly show stable (reference) conformations at the first five amino acids of histone H3
(Figure 2), RMSD values were calculated for the full ligand and for the first five amino acids
of the N-terminal, respectively. The lowest RMSD of all docked binding modes is referred
to as RMSDbest. The statistics (mean and standard deviation) for the RMSDbest values of
docking results to the apo targets for all systems in Table S1 are presented in Figure 5. Due
to the high mobility (and structural uncertainty) of peptide ligands outside the binding
interface, it is common to use only the interfacial (strongly bound core) amino acids [75]
for RMSD calculation. In the case of the histone H3 ligand, this core region corresponds to
(see Section 2.1) the first five amino acids (full bars in Figure 5). For comparison, the RMSD
values measured for all amino acids (empty bars in Figure 5) of the docked histone H3
ligands are also shown. In general, the RMSDbest values calculated for the first five amino
acids of H3 reflect a much better performance for all methods than the RMSDbest values
calculated for the full ligand (Figure 5A), due to the natural flexibility of the extended
C-terminal region described above (Figure 2).
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Figure 3. The ßow chart of the PepGrow protocol. The di
Figure 3. The flow chart of the PepGrow protocol. The different fragment colors correspond to
different fragment seed ranks acquired during the fast-docking and seed ranking steps. A close-up of
the growth of Rank 1 fragments (purple) only during the growth step is shown for clarity.
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Figure 4. AFigure 4. Seed selection. (A) All possible (nine) dipeptide fragments were produced from the histone
H3 peptide N terminal sequence. Note that Fragment 1 (AR) was capped with an N-methyl group
(-NHMe) at the R residue, and Fragment 7 (AR) was capped with an additional acetyl group at the A
residue. The capping of the other fragments (2–9) was performed on both ends. (B) The PepGrow
results for each fragment for System 2ke1. The fragment with the lowest RMSDtop is marked with a
green frame. See Table S4 for details.

The statistics regarding the apo targets show that PepGrow outperformed all of the
other fast docking approaches (Figure 5A), with an RMSDbest of 5.36 (±1.47) Å being calcu-
lated for all of the amino acids of the docked histone H3 peptide fragments. Furthermore,
PepGrow achieved an excellent RMSDbest of 4.09 (±1.18) Å, when calculated for the first
five amino acids, as well. The per-system analysis of the PepGrow results (Figure 5B)
indicates that the best performance was obtained in the case of the target human BAZ2A
PHD zinc finger (System 4qf2). Here, the AR-NHMe dipeptide seed was accurately docked
(Figure 6), providing a good starting point for ligand growing. The docking of such dipep-
tides can be accomplished precisely [80] using fast docking techniques. Thus, they provide
a good starting point for growing peptide ligands, which is a better alternative than the
problematic linking of several, often inadequately docked large-peptide fragments. The
accurately docked dipeptide seeds also have the best Einter values (Figure 2), determining
the success of PepGrow.

Target flexibility poses a great challenge for docking methods [81]. To check the
sensitivity of the investigated docking methods to target conformation, all docking calcula-
tions were repeated for the holo structures of the target molecules. As the holo structures
have a pre-formed conformation that is ideal for binding to a certain ligand, large differ-
ences between the results when docking to the apo and when docking to the holo forms
may indicate a high (unwanted) sensitivity to target conformation and moderate robust-
ness of the method. In the case of PepGrow, no significant differences could be detected
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(Figure 5 vs. Figure S1) between the results on the apo and holo targets, indicating the
robustness of the method.

 

Figure 5. 
Figure 5. The statistics of docking results obtained for all test systems of Table S1 using all apo target
structures. (A) Columns represent the mean RMSDbest values (of all test systems) calculated for
ligand-binding modes supplied by PepGrow and the 10 benchmark methods. Error bars represent
standard deviations (see also Table S7a). (B) Structural performance of PepGrow on the individual
test systems (see also Table S5). (C) Columns represent the mean RMSDtop values (of all test systems)
calculated for ligand-binding modes supplied by PepGrow and the 10 benchmark methods. Error
bars represent standard deviations (Table S7a).
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Figure 6. Fragment growing of the fast-docked seed for the complex of the human BAZ2A PHD zinc Figure 6. Fragment growing of the fast-docked seed for the complex of the human BAZ2A PHD
zinc finger reader (grey surface)–histone H3 peptide (sticks, System 4qf2). The fast-docked seed
AR-NHMe of an RMSD of 3.79 Å is shown as red sticks (left), representing a good basis of peptide
growing. The ligand structure corresponding to an RMSDbest of 2.67 Å is shown as red sticks (right),
representing the results of the growing. The crystallographic ligand-binding mode is shown as teal
sticks for comparison.

The acceptable level of RMSDbest was concluded to be 4.0 ± 3.0 Å on the basis of
data (Table S8) collected from publications related to the benchmark methods (Table S3), in
which RMSD was calculated only for the peptide backbone. Notably, side-chain atoms were
also included in the RMSD calculations in the present study. Thus, the above performance
of PepGrow can be considered to be as good as or above average when compared to the
RMSD values produced by the benchmark methods (Figure 5).

Besides the structural accuracy of the methods, their ranking performance was also
measured on the basis of their respective RMSD values. The docked-ligand-binding
modes were ranked by the default scoring functions of the respective methods (Table S3,
Supplementary Materials). The RMSD value of the ligand with the best score (representative
of the first rank) is referred to as RMSDtop. In the case of a method with perfect scoring
and ranking, RMSDtop is equal to RMSDbest per definitionem. Unfortunately, such an
ideal situation was not observed with the methods investigated, as RMSDtop considerably
exceeded RMSDbest in all dockings to the apo targets (Figure 5C), and the same trend was
observed in the cases of holo forms (Figure S1). A comparison of the ranking performance
of all of the methods (Figure 5C) shows that PepGrow achieved the best results when
compared to the benchmark methods. Thus, the Einter-based representative selection
method of PepGrow is a viable ranking alternative. Notably, the separate components of
Einter (Lennard-Jones and Coulomb terms, respectively) showed a drop in performance
(Table S9), and therefore, Einter including both terms (see Section 3) was used in the ranking
throughout the present study.

The above results indicate that the structural (Figure 5A) and ranking (Figure 5C)
performances of PepGrow are better than/comparable to those of the 10 benchmark meth-
ods presented in Table S3. PepGrow can also be considered a physico-chemical method,
with energy-based scoring and ranking of the ligand-binding mode (Section 2). In theory,
physico-chemical methods are generally applicable for any ligand type with appropriate
molecular mechanics parametrization. The efficient sampling of the conformational space
of flexible peptide ligands [82] like histone H3 tails is a common problem for all fast docking
methods. Knowledge-based and hybrid methods (Table S3) attempt to solve this problem
using a training set of experimentally determined structures as templates for achieving
the correct bound ligand conformation. However, their performance is limited by the
availability and reliability of templates for use in training.
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In addition to the above sampling problem, the scoring functions of fast docking
methods (Table S3) tend to maximize the interactions of the entire ligand with the target,
and therefore cannot handle non-interacting parts (see Section 1). Fragment docking
methods may provide a solution for this scoring problem by docking only short fragments
instead of the entire ligand. This may be a divide-and-conquer strategy for addressing
the limitation of linking fragments (see Section 1). For example, PIPER-FlexPepDock is
a fragment-based, hybrid approach in which an ensemble of short peptide fragments is
collected from experimentally determined structures with a high degree of sequence and
(predicted) secondary structure similarity to the actual ligand. However, such methods are
also limited by the lack of structures of peptide fragments of large size and/or unusual
conformations. Similar to PIPER-FlexPepDock, PepGrow utilizes the potential of physico-
chemical methods to accurately dock small peptide fragments, but instead of all possible
fragments in the peptide, it focuses on the anchoring fragment of a good Einter (see Section 2,
Figure 2) and grows the remaining part of the peptide in situ in the binding pocket. Thus,
PepGrow addresses both the sampling and scoring (ranking) problems via its fragment
docking strategy and the focused growing of a ligand from the docked seed the strongest
interaction with the target.

Data files of the performance tests of PepGrow and the benchmark methods are avail-
able in the Public Repository files PepGrow.tgz and Benchmark.tgz (see Data
Availability Statement).

3. Materials and Methods

3.1. Selection of Test Systems and Benchmark Methods

All atomic coordinates of the targets were acquired from the PDB. Apart from their
physiological relevance, histone-target systems were preferentially selected that exhibited
high resolution (<4 Å) and the availability of a non-covalently bound histone H3 N-terminal
peptide tail, starting from the first amino acid (A). The availability of both complexed
(holo) and apo forms was a selection criterion, as well. For the benchmark methods, fast
docking engines were selected that were designed to model interactions in protein–peptide
or macromolecular complexes (except AutoDock) and had previously been evaluated
on protein–peptide complexes. A further selection criterion was their free availability
for academic purposes via web servers or as standalone programs. The investigated
docking engines can be roughly sorted into knowledge-based, physico-chemical, and
hybrid categories (Table S3).

3.2. Performance Metrics

Both structural and ranking performance are expressed in terms of root mean square
deviation (RMSD), a commonly used measure for the comparison of the conformational
match of two molecules. In the present study, the bound conformation of a peptide ligand
produced by PepGrow (P) was compared to the bound conformation of the same ligand in
the experimental complex (E) structure used as a reference (Equation (1)).

RMSD =

√

1
N ∑

N

n=1|Pn − En|2 (1)

N is the number of ligand heavy atoms, E is the space vector of the nth heavy atom of
the experimental reference ligand molecule, and P is the space vector of the nth heavy atom
of the PepGrow-calculated ligand conformation. Crystallographic structures were mostly
used as references (Table S1). In 3 cases, NMR structures were also employed, where the
first model was selected as a reference. RMSD values were calculated after superimposition
of the target parts (Table S10).

3.3. Application of Benchmark Methods

The general and specific settings, and the preparation of targets and ligands are
detailed for all benchmark methods in the Supplementary Materials Methods [83–89].
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3.4. PepGrow

Target preparation. The atomic coordinate structure files for the selected target protein
(Table S1) were downloaded from the PDB. All non-protein parts (ligands, waters, etc.)
were removed from all selected target structures prior to docking. If the structure was
a homo-oligomer, then only one selected chain was used (the first protein chain in the
PDB file). The rest of the target molecule was equipped with polar hydrogen atoms and
Gasteiger–Marsilli [90] partial charges in AutoDock Tools [44].

Ligand preparation. An initial fragmenting step was used to create dipeptide-sized
fragments of the original histone H3 peptide. The fragments were built using the Tinker
program package [91] with the protein, newton and xyzpdb commands. The cut was made
between the carbon and nitrogen atoms of the amide bond, acetyl (Ac-) and N-methyl
(-NHMe) groups were used to block the N- and C-terminal cut ends (the 1:AR fragment
was not capped at the N-terminal end, but the 7:AR fragment was capped at both ends).
These blocking groups were added in Tinker [91]. The acquired ligand structures were
then energy minimized using Open Babel [92] with the Amber99 force field [93] using
the steepest descent optimization with 104 steps; the convergence threshold was set to
103 kJ mol−1 nm−1. The next step was conjugate gradient minimization; a maximum of
104 steps was used, and the convergence threshold was set to 10 kJ mol−1 nm−1. Gasteiger–
Marsili charges [90] were added to the fragments with AutoDock Tools [44]

Fragment docking. The fragment docking was performed using AutoDock 4.2.6 [44].
The previously prepared target was handled as a rigid body. All active torsions were
allowed on the prepared ligand fragments. All ligand structures were docked to the
interacting site defined by the experimental structure, where the docking box was set
to a size that would fit the whole peptide inside. The number of grid points was set to
60 × 60 × 60, with a grid spacing of 0.375 Å; the middle of the box was set to the center of
the respective experimental full ligand conformation in a manner similar to the procedure
used for the benchmark methods. The Lamarckian genetic algorithm was used to perform a
global search. Ten docking runs were performed, and the resulting fragment conformations
were ranked [94], and representatives of each rank were used in Step 4.

Fragment growing with a homology modelling tool. All docked fragment copies
were processed using Modeller 9.22 [79], a homology modeling program. The template
structure was the experimental structure of the target protein with the docked (previous
step) fragment seed of the ligand peptide. The query sequence was the respective sequence
of each system and the histone H3 peptide tail matching the sequence length seen in
the corresponding experimental structures (Table S1). The target and ligand sequences
were taken from the UniProt database. The alignment between the template structure and
the query sequence was manually optimized if necessary to obtain identical regions that
correctly matched each other. This was necessary when fitting the sequence of the docked
dipeptide seed to the sequence of the whole ligand. The Modeller 9.22 software package
was applied to generate 100 models per step, following the final PepGrow protocol. Explicit
manual restraints were not added to access additional energy calculation features. During
the method development phase of the present work, restraints, energy calculating features,
and seed number variation steps were evaluated thoroughly (Table S11). When the rapid
generation of 100 models with default building settings was compared with the generation
of fewer models (20) with slower refinement, the results were similar, so the faster method
(with 100 models) was selected as the main PepGrow protocol step. The robustness of the
building procedure was further challenged by changing the random seed number, which
did not affect the results (Table S11). For System 2fuu, fragment 4:KQ was selected, due
to the special interaction of the trimethylated K4 with the target. In addition, fragment
4:KQ had the second-best performance (after 1:AR) when compared with the other seeds
(Figure 4).

Scoring. To extend the use of the method to apo structures with previously unknown N-
terminal histone tail ligand positions, it is important to apply a scoring function that is able
to select the bound ligand conformation closest to the real structure. The discrete optimized
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protein energy (DOPE [79,95]), the Modeller probability density function (molpdf [79,95]),
and the Lennard-Jones, Coulomb and Einter interaction energy scores (Equation (2)) of
each model were calculated. The Einter interaction energy score calculated for the first
five amino acids was the basis of the representative model selection (Tables S7a,b and
S12). Table S13 details the scoring functions of the benchmark methods; the differences
between the physico-chemical, knowledge-based and hybrid methods were determined
based on these scoring functions. Notably, the DOPE and molpdf scores were developed on
a benchmark set containing only single-chain proteins, according to the User’s Manual of
Modeller 9.22 [79]; there is no guarantee of their applicability to multi-chain structures. The
calculated DOPE and molpdf scores were therefore only used to test the effect of changing
the random seed number for model generation during the initial steps of testing Modeller,
as these two scores are the default scoring functions of the software (Table S11).

3.5. Calculation of Einter and Energy Analyses

Experimental, Modeller-built, and energy-minimized experimental structures were
subjected to per-residue interaction energy scoring. The missing atoms of all crystallo-
graphic targets were modeled using SWISS-Model [96]; for a detailed list of the missing
atoms and residues, please see the respective pdb structure files. However, these missing
atoms did not affect the binding site. The experimental structures were equipped with polar
hydrogen atoms and Gasteiger–Marsilli partial charges [90] using Open Babel 2.4.0 [92],
and were converted from pdb files to mol2 files. The mol2 files were then subjected to
per-residue interaction energy calculation using Equation (2), implemented in an energy
calculator program, which is available as a binary version, downloadable as PepGrow.tgz
(see Data Availability Statement). Lennard-Jones and Coulomb energies were calculated
and summarized to obtain the total Einter for each residue, and the whole ligand according
to Equation (2). The Coulomb term was calculated with a distance-dependent dielec-
tric function of Mehler and Solmajer [97] (Equation (3)), and Amber 2012 van der Waals
parameters and atom types were used [98].

Einter = ELJ + ECoulomb = ∑
NT NL
i,j

(

Aij

r12
ij

− Bij

r6
ij

+
qiqj

4πε0εrrij

)

Aij = εijR
12
ij

Bij = 2εijR
6
ij

Rij = Ri + Rj

εij =
√

εiε j

(2)

where εij is the potential well depth at equilibrium between the ith (ligand) and jth (target)
atoms; ε0 is the permittivity of vacuum; εr is the distance-dependent relative permittivity
(Equation (3)); Rij is the inter-nuclear distance at equilibrium between the ith (ligand) and
jth (target) atoms; q is the partial charge of an atom; rij is the actual distance between the
ith (ligand) and jth (target) atoms; NT is the number of target atoms; NL is the number of
ligand atoms.

εr = A +
B

1 + ke−λBr
(3)

where B = ε0 − A, ε0 is the dielectric constant of water at 25 ◦C, and A, λ and k are
constants [97].

4. Conclusions

Although fast docking methods have proven successful in the design of small-molecule
ligands [99,100], they face persistent challenges [99–102]. While long peptides are often used
as templates for the development of new drugs [103–105], they are especially challenging
ligands due to their high degree of flexibility and hydration, which cannot properly be
handled by fast docking methods. In the present study, a popular fast docking method,
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AutoDock 4.2.6, and the fast model building function of the widely used program Modeller
were combined into a new protocol PepGrow.

A comparison of the results with those obtained using ten other benchmark methods
showed that PepGrow offers a real alternative for the construction of histone complexes.
The relatively good performance of PepGrow is based on at least two key components
of the algorithm. Firstly, the docking of very short and strongly interacting (di)peptide
seeds can be reliably achieved [80] using currently available fast docking methods like
AutoDock 4.2.6 (unlike large peptide ligands, where fast docking presents problems [31]).
Secondly, instead of the problematic linking step of all fragments of the ligand, a robust
ligand growing step is implemented.

PepGrow constructs the complex structures of histone H3 peptides of various lengths
with various targets. While the number of such complexes is expected to be very high
(histone code), only a small number of structures have been determined. Thus, PepGrow
can help to accelerate the structural exploration of the histone code, as well as the prediction
of the outcome of the reader–DNA binding competition mentioned in the Introduction.
The disordered nature of histone peptides presented a real challenge for all eleven methods
compared. The structural performance of PepGrow was better than that of the other
methods, the ranking of such large ligands still remains [34,37] a challenging task for all
methods. Our results also indicate that physico-chemical scores like Einter are a necessary
component of the ranking and selection of representative structures. The histone complexes
selected for the present work can be recommended as a particularly challenging test set for
future method development studies.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms241813831/s1.
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Abstract: Somatostatin (also named as growth hormone-inhibiting hormone or somatotropin release-
inhibiting factor) is a regulatory peptide important for the proper functioning of the endocrine
system, local inflammatory reactions, mood and motor coordination, and behavioral responses to
stress. Somatostatin exerts its effects via binding to G-protein-coupled somatostatin receptors of
which the fourth subtype (SSTR4) is a particularly important receptor mediating analgesic, anti-
inflammatory, and anti-depressant effects without endocrine actions. Thus, SSTR4 agonists are
promising drug candidates. Although the knowledge of the atomic resolution-binding modes of SST
would be essential for drug development, experimental elucidation of the structures of SSTR4 and
its complexes is still awaiting. In the present study, structures of the somatostatin–SSTR4 complex
were produced using an unbiased, blind docking approach. Beyond the static structures, the binding
mechanism of SST was also elucidated in the explicit water molecular dynamics (MD) calculations,
and key binding modes (external, intermediate, and internal) were distinguished. The most important
residues on both receptor and SST sides were identified. An energetic comparison of SST binding
to SSTR4 and 2 offered a residue-level explanation of receptor subtype selectivity. The calculated
structures show good agreement with available experimental results and indicate that somatostatin
binding is realized via prerequisite binding modes and an induced fit mechanism. The identified
binding modes and the corresponding key residues provide useful information for future drug design
targeting SSTR4.

Keywords: pocket; site; peptide; interaction; selectivity; dynamics

1. Introduction

Somatostatin is a cyclic neuropeptide, widely expressed in both peripheral and central
tissues. SST has two active forms, the 14 amino acid-long (referred to as SST throughout
this study), and an N-terminally extended isoform of 28 amino acids [1–4]. Both forms
are expressed in the same tissue areas, but it is not clear whether the same cells can
produce them. SST is internally stabilized by a disulfide bridge between cysteine residues
in positions 3 and 14 (Figure 1A).

SST inhibits the release of several endocrine hormones such as growth hormone,
prolactin, thyrotropin, gastrin, insulin, secretin, and glucagon [3,5–7], and the local in-
flammatory reaction at the periphery [8,9]. As a neurotransmitter, SST plays role in many
mechanisms centrally, such as pain transmission, mood coordination, and learning and
behavioral responses to stress [3,10–13]. It has emerging therapeutic relevance for the diag-
nosis and/or the treatment of numerous diseases, such as type 2 diabetes mellitus, Cushing
disease, Alzheimer’s disease, acromegaly, several neuroendocrine tumors, pain-associated
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conditions (inflammation, neuropathy, rheumatoid arthritis), and depression [6,14–17]. The
native form of SST does not have clinical importance because of its short plasma half-life of
3 min [3] and various actions.

 

Figure 1. (A) Lewis structure of SST highlighting the apical FWKT region with red. (B) Homology Figure 1. (A) Lewis structure of SST highlighting the apical FWKT region with red. (B) Homology
model of SSTR4 in cartoon representation. D126 (spheres) on TM3 (teal), ECL2 (salmon), and ECL3
(green) are proved to be important in ligand binding and receptor activation. (C) SSTR4 (grey, surface)
covered with monolayer of tetrapeptide fragment (Ace–FWKT–NHMe) copies (green, all atom, sticks)
at the end of the 7th docking cycle. The best energy fragment is highlighted with spheres (green,
all atom).
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SST exerts its diverse biological effects via modulating somatostatin receptors (SSTRs).
The therapeutic potential of SST–SSTR interactions is not fully utilized, and there is current
pursuit for receptor-selective, orally-administrable drug candidates in several research
groups and pharmaceutical companies [18–25]. SSTRs belong to the rhodopsin-like G-
protein coupled receptor (GPCR) superfamily and contain seven transmembrane (TM)
helices (Figure 1B) and extracellular (ECL) and intracellular (ICL) loops. ECL2 was sug-
gested to play a major role in ligand binding and receptor activation. It was supported by
mutational analysis and receptor chimera examinations, with the result that the ligand-
binding pocket involves residues of TMs 3–7 and ECL2 that are responsible for high affinity
ligand binding in all SSTR subtypes [26–28]. There are five SSTR subtypes named as SSTR1–
SSTR5 with more than 50% sequence identity. The binding of SST is not SSTR subtype
selective according to competitive radio-ligand measurements [29–33].

In this study, we focus on SSTR4 that proved to be a promising target in the treatment of
inflammation and pain-associated conditions (neuropathic pain, neurogenic inflammation,
bronchial asthma, rheumatoid arthritis), Alzheimer’s disease [34,35], and depression [36,37].
SST elicits anti-inflammatory and anti-nociceptive actions and can be released from the
capsaicin-sensitive sensory nerve endings. This is mediated through the activation of
SSTR4 [38]. Centrally, SSTR4 is involved in learning and memory processes [10] and
anxiety and depression-like behavior [37]. Thus, SSTR4 agonists would be promising drug
candidates with analgesic, anti-inflammatory, and anti-depressant actions. However, there
is no potent SSTR4 selective, orally administrable drug on the market [39–42]. Several
SST analogs are under development [43], and many of them are used in therapy, such
as pasireotide, octreotide, dopastatin, lanreotide, or in diagnostics [44–46]. Most of the
studies [31,47–55] investigated either the binding mode of several exogenous peptidergic
SST analogs as drug candidates or the residues of SST taking part in ligand binding. There
are only a few studies [26,56,57] that examined the binding properties of endogenous
ligands to SSTRs, which might be explained with the lack of atomic resolution experimental
structures of SSTRs.

The target-based rational design of new agonists necessitates the atomic resolution
structure of SSTR4 and its complex with the native (endogenous) ligand SST. Indirect
experimental [26,31,57,58] and theoretical [48,50–53,59] information has been accumulated
on the approximate binding sites of SST on SSTR4. While the atomic resolution structures of
subtype SSTR2 and its complexes were measured recently [60], experimental determination
of the atomic resolution structure of SSTR4 has not been published.

In the present study, we investigate the binding mechanism of SST to SSTR4. Atomic
resolution structures of the SST–SSTR4 complex are produced using an unbiased, blind
docking approach, and the binding mechanism is explored using molecular dynamics
simulations in an explicit water model. We investigate if SST follows a “lock and key”
or rather an induced fit mechanism and if it adopts prerequisite binding modes while
approaching the final binding pocket on SSTR4.

2. Results and Discussion

2.1. The Structure of SSTR4

The experimental determination of the atomic resolution structure of SSTR4 has not
been accomplished yet (Introduction). Homology modelling is an alternative method of
choice [40,41,48,51–53,61,62] for producing SSTR structures. Building a good SSTR model
necessitates the selection of a template protein of good sequential agreement with the
receptor. The first homology modeling study of SSTR4 [51] used the active form of the
β2 adrenergic receptor (PDB code: 3p0g) as a structural template. In recent years, new
template structures have emerged, and our BLAST [63] (Methods) search resulted in a list
of new template proteins (Table S1) in the Protein Databank (PDB, [64]). A comparison of
the homology models built from the templates led to the selection of the active form of the
µ-opioid receptor (PDB code 5c1m) as a new template of SSTR4, also used in a previous
study as a template of receptor subtypes SSTR2 [48]. The homology models generated from
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the old (3p0g) and new (5c1m, Figure 1B) templates showed overall similarity (Table S2) in
the position of TM helices and differences in ECL2 possibly involved in ligand binding.

2.2. The External Binding Mode

Following generation of the homology model of SSTR4, a modified fragment blind
docking (FBD) approach [65,66] was applied to locate the binding pocket of SST target-
ing the entire surface of receptor. The approach allows an unbiased (blind) detection of
anchoring points of SST without prior information on the location of the binding pocket.
Structure–activity relationship studies have shown [31,33,55,67] that central amino acids
F7W8K9T10 (Figure 1A) play a pivotal role in SST binding activation of the SSTRs. The
disulfide bond between C3 and C14 (Figure 1A) largely determines the positioning of
FWKT in the apical β-turn region of the SST structure [31,68–70]. Accordingly, this FWKT
fragment was used as a seed during FBD to locate the binding mode of the central region
of SST on SSTR4. The entire surface of the (3p0g-based) homology model of SSTR4 was
covered by a mono-layer of the copies of the blocked tetrapeptide fragment (Ace–FWKT–
NHMe) using several wrapping cycles ([65] Section 3). After seven cycles, 74 copies covered
the entire surface of the SSTR4 target (Figure 1C). The docked binding mode of the best
interaction energy (Einter, Table S3) found an extracellular binding cleft formed by the
ECL1–3 (Figure 1C) regions of SSTR4.

The tetrapeptide–SSTR4 complex structure was used to construct the full length SST
molecule in the binding cleft. This was achieved by a somewhat unusual application of
the popular homology modelling program Modeller [71]. The program was instructed to
grow the remaining ten amino acids of SST (Methods) in the binding cleft of the SSTR4
target structure (Methods), extending the tetrapeptide seed (Figure 2A). The resulting SST
(full length)–SSTR4 complexes were energy-minimized, and the corresponding interaction
energies were calculated (Methods). The SST structure in the raw complex with the best
Einter after the growing step (Figure 2B) did not adopt the above-mentioned β-turn structure
at the FWKT region and resided at the extracellular surface of SSTR4 (see Section 3 for
identifying criteria of a β-turn structure). SST also did not form a salt bridge with D126, a
key residue involved in SSTR4 activation [26,28,56–58,70,72]. D126 is located deeper in the
transmembrane region of TM3 (Figure 1B) and expectedly formed a salt bridge with the
apical K9 in the final binding mode of SST.

Due to the apparent disagreement of the raw SST–SSTR4 complex with the above-
mentioned literature data, it was subjected to further refinement in a 350 ns-long MD
simulation (Section 3). The expected [31,33,55,67] β-turn structure of SST appeared for
longer periods during the MD simulation. Migration of SST was also observed towards the
transmembrane region, as indicated by the slight decrease of the distance of the expected
SST:K9-SSTR4:D126 salt bridge (dSB) from 21 (Figure 2B) to 18.5 Å (Figure 2C). In the
MD-refined structure, the interaction of SST:K9 with ECL3 was broken down, while the
connection of the tail regions of SST with ECL2 and ECL3 remained (Figure 2C,D).

During the MD refinement, movement H-bonds of SST:K9 with the target residues
on ECL3 were broken down, and instead of the apical K9, backbone oxo groups of SST
formed anchoring salt bridges with positively charged amino acids (R188, R191) of ECL2
(Figure 2D, Table S4). Interactions between SST and ECL2 were reasonable, as ECL2 is
known [27] to have a lid function in SST association. Thus, the external binding mode
identified at the ECL2 lid (Figure 2C,D) is certainly a prerequisite state en route to the
internal binding mode.

2.3. The Internal Binding Mode

To construct the final, internal binding mode, the SSTR4–tetrapeptide complex (Figure 2A)
was subjected next to a 100 ns-long MD simulation, where the tetrapeptide and the ECLs
moved freely, but position restraints were applied on the TMs (Methods). It was expected
that the tetrapeptide would find the internal binding mode faster than the full length SST
due to its higher translational and conformational mobility. As can be seen in Figure 3A,
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dSB decreased from the initial 18.5 Å to about 10 Å (red squares in Figure 3A) several times,
which may indicate the presence of a stable intermediate conformation of SST between its
external and internal binding modes. From the 83rd ns, the fluctuation of dSB decreased,
reaching the lowest distance (5.2 Å) by 98.2 ns.

 

Figure 2. (A) SSTR4 with the best energy tetrapeptide fragment at the end of WNS. (B) The energy-Figure 2. (A) SSTR4 with the best energy tetrapeptide fragment at the end of WNS. (B) The energy-
minimized SSTR4–SST complex built from the “seed” of the fragment by homology modelling.
(C) The SSTR4–SST complex in the prerequisite external binding mode after MD refinement. In (a, b,
and c) ECL2 (salmon), ECL3 (teal), and D126 (spheres) are highlighted on SSTR4 (grey, cartoon) K9
of SST, and its fragment (green, cartoon) is in spheres representation. (D) The close-up view of the
external binding mode of SST (green, sticks, all atom) with the target residues (grey, sticks, all atom)
being within 3.5 Å distance of the ligand.
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Figure 3. (A) D  plot of SSTR4–tetrapeptide fragment complex MD simulation for exploring the Figure 3. (A) DSB plot of SSTR4–tetrapeptide fragment complex MD simulation for exploring
the internal binding cleft of SST; (B–D) DSB plots of the MD refinement of the three SSTR4–SST
models containing the ligand in the internal binding cleft. In two of these simulations (B,C), SST
was able to create a salt bride with D126 (dSB = 3.1 Å and 3.0 Å), but in the third one (D), the
dissociation of SST could be observed. Intermediate states are colored with red (dSB = ~10 Å) and
blue (dSB = ~5 Å) points.

Similarly to the previous section, the full length SST molecule was grown from amino
acid K9 (of aFWK9Tm) as a seed, with the lowest dSB of 5.2 Å observed during MD
(Figure 4A). The growing process (described in detail in Methods) resulted in three full
length SST–SSTR4 complex structures subjected to three, respective, 350 ns-long MD simula-
tions. In two of the MD simulations, SST:K9 reached a dSB of 3.1 Å (Figures 3B and 4B) and
3.0 Å (Figures 3B and 4B), respectively. The third MD resulted in a backward movement
of SST towards the external binding mode (increasing dSB in Figure 3D). The interaction
patterns (Table S5) of the internal binding modes described in Figure 4B,C were similar, and
the one with a dSB of 3.0 Å was selected as an internal binding mode for further descrip-
tion. In the internal binding mode, the position of SST was stabilized by salt bridges, and
H-bonds formed with SSTR4 residues, including D126, N199, D289, and Y301 (Figure 4D).

2.4. The Binding Mechanism

The MD simulations of the previous section shed light on the association of SST
with SSTR4 and its movement back to the external binding mode. Both associative MDs
indicated that there were two highly occupied intermediate binding modes at a dSB of
5–6 Å and 10 Å (Figure 3B,C), respectively. Notably, the intermediate at 10 Å was also
identified in the simulation of the tetrapeptide–SSTR4 complex (Figure 3A). The steps of
the associative movements were visualized (Figure 5, Video S1) and showed a considerable
conformational change of SST during the binding process. The conformational flexibility of
SST was the most pronounced at its apical region, which showed a large flip between the
internal and external binding modes (Figure 6A).
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Figure 4. (A) Complex of SSTR4 (grey, cartoon, D126 highlighted by spheres) and the tetrapeptide Figure 4. (A) Complex of SSTR4 (grey, cartoon, D126 highlighted by spheres) and the tetrapeptide
fragment (green, K9 highlighted by sticks) with the smallest dSB in the 100 ns-long MD simulation.
(B,C) Internal binding mode of SST with 3.1 Å (B) and 3.0 Å dSB determined in separate 350 ns-
long MD simulations. (D) The close-up view of SST (green, sticks) in the internal binding mode
surrounded with target residues (grey, sticks) within a 3.5 Å distance from the ligand.

               hetenyi.csaba_83_23



Int. J. Mol. Sci. 2022, 23, 6878 8 of 17

 

Figure 5. Main steps of the binding mechanism of SST (green, cartoon, K9 highlighted with sticks, 
Figure 5. Main steps of the binding mechanism of SST (green, cartoon, K9 highlighted with sticks,
all atoms) including external, intermediate (~10 Å and ~5 Å), and internal binding modes on SSTR4
(grey, cartoon). D126 is highlighted with spheres. This binding mechanism is illustrated in Video S1.

 

Figure 6. (A) The conformational change of SST during binding to SSTR4: internal (marine) and 
Figure 6. (A) The conformational change of SST during binding to SSTR4: internal (marine) and
external (magenta) binding conformation of SST (cartoon) aligned by their tail regions. (B) Opening
(magenta) and closing (marine) movements of the lid including ECL2 and ECL3 during the binding
and dissociation of SST (green, cartoon, K9 highlighted with sticks, all atom). (C) The close-up
view of the intermediate state (~5 Å) (Figure 5). The three water (grey, sticks, all atom) molecules
help the connection of SST and SSTR4. (D) The close-up view of the final internal binding mode of
SST (Figure 5) on SSTR4 after dehydration and movement (arrow) of SST:K9. In (C,D) K9:SST and
SSTR4 are in green, sticks, all atom and grey, cartoon, D126, Y301 highlighted with sticks, all atom
representation, respectively.
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Similarly, SSTR4 also underwent a conformational change when SST moved from
the intermediate state (dSB = 10 Å) to the external binding position. The gap formed
by ECL2 and ECL3 of SSTR4 increased to let the ligand dissociate from the receptor
(Figures 3D and 6B). In agreement with our findings, oligopeptides such as SST are known
to activate their receptor via an induced fit mechanism very common in similar receptor acti-
vation processes involving considerable conformational changes on both the target [73–75]
and the ligand [74,76,77] sides.

Furthermore, the intermediate state at dSB = 5–6 Å (Figure 5) was stabilized by a
network of water molecules in the interface and linked the apical region of SST to SSTR4,
as shown in a close-up (Figure 6C). There were three water molecules connecting D126,
Y301, and SST:K9 via a H-bonding network (Figure 6C). The role of such networks has been
described by recent studies [78]. However, the internal binding mode was finally stabilized
only by the SST:K9-SSTR4:D126 salt bridge (dSB = 3.0 Å) without the above interfacial water
molecules (Figure 6D), indicating that a de-hydration process took place in the final binding
step. Several target amino acids (A197, C198, N199, and D289) were involved in both the
external and internal binding modes. These residues assist the transition movement of SST
from the external towards the internal binding mode (see also Table S5).

All-in-all, the binding mechanism of SST to SSTR4 involves a migration between
external and internal binding modes via intermediate states stabilized by water networks.
The binding involves a conformational flip in the apical β-turn region of SST.

2.5. Comparison of SST Subtype Binding

Recent determination of the atomic resolution structure of the SSTR2–SST complex [60]
allowed for comparison of the binding modes of SST on SSTR2 and SSTR4. The internal
binding mode of SST on SSTR4 (Section 4) was used for this comparison. A per-residue en-
ergy analysis of the SSTR-SST interaction energy (Einter) showed that residues D122(D126),
S279(S287), Y302(Y301) are important for binding of SST to both SSTR2(SSTR4) receptor
subtypes (Figure 7). D122 proved to be essential in receptor activation [56,57,72]. The Einter
pattern on the SST side (Figure 6B) showed that residues A1, G2, K4, K9, and C14 are
important in the interaction with both receptor subtypes. A difference could be observed
at N5 and F6 (I284, V280, Y205, E200, R184) positions, preferring SSTR2, while F7 and F11
(D289, T286, L200, N199) are involved in the SSTR4 complex. The role of Fs and K4 was
also suggested by previous alanine scanning studies [29].

An overall ca. 180◦ flip of the binding conformation of SST (Figure S1) could be
observed between the internal binding mode on SSTR4 if compared with that of SSTR2 [60].
An Einter analysis was also performed for the alternative binding mode of SST (observed
in [60]) on SSTR4 (see Methods for details of construction of the complex). The Einter plots
(Figure S2) showed that K4, K9, and C14 (SST) and D126, S287, and Y301 (SSTR4) are
important in all binding modes. F6 has importance only in case of SSTR2. W8 and N5 (on
the SST side) and L283 and Q201 (on the receptor side) were identified as important residues
only in the alternative binding mode. The above differences in SST binding to SSTR2 and
4 may serve as a good starting point in the design of subtype-selective SST analogues.
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Figure 7. Per-residue E  contributions of SSTR2–SST (orange) and SSTR4–SST (blue) complexes 
Figure 7. Per-residue Einter contributions of SSTR2–SST (orange) and SSTR4–SST (blue) complexes
shown for both the receptor (SSTR) and the somatostatin (SST) sides. Note that different amino acids
may appear at identical positions in the sequences of SSTR2 and 4 after sequence alignment, as listed
in the SSTR-based analysis (top). Source of Ki values is [32].

3. Methods

3.1. The Structure of SSTR4

A BLAST (Basic Local Alignment Search Tool) [63] search with Blosum 62 substitution
matrix using a conditional compositional score matrix adjustment at NBCI [79] against the
PDB Database [64] was applied to identify the template candidates for model building.
The BLAST search resulted in 100 PDB codes. They were ranked according to their total
scores. The best ranked template candidates were 4n6h, 4rwa, 6dde, and 5c1m (Table S1).
The structure of the δ-opioid receptor bound to a bifunctional peptide (PDB code: 4rwa)
was excluded. Structures 5c1m and 6dde represent the crystal structures of agonist binding
µ-opioid receptors, and 5c1m had a better resolution (2.1 Å compared to 3.5 Å for 6dde).
The A chain of both the human δ-opioid receptor (4n6h) and the active form of the µ-opioid
receptor (5c1m), and, furthermore, the active form of the β2-adrenergic receptor (3p0g)
used in a previous study were employed for model building described in the paper of
Liu et al. [51]. SSR4 sequence was taken from the UniProt database (P31391 (37-330)) the
not-aligned N and C terminals were cut). After the sequence alignment using the Modeller
program package [71], ten models were generated from each template, and models with
the lowest Discrete Optimized Protein Energy (DOPE) score were further investigated
(Table S6). The RSMD value of CA atoms for the best models was calculated (Table S2). The
models were superimposed, and their structures were compared. Due to the high similarity
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of the opioid receptor-derived models, only the µ-opioid receptor (5c1m)- and β-adrenergic
receptor (3p0g)-based homology models were used for further investigations.

3.2. The External Binding Mode

3.2.1. Fragment of SST

The NMR structure of SST dissolved in 5% D-mannitol is known (PDB code: 2mi1).
The apical region of SST, F7-W8-K9-T10, was extracted, and its N and C terminals were
capped with acetyl and N-methyl groups (Ace–FWKT–NHMe) to neutralize the terminal
charges. This Ace–FWKT–NHMe was used for docking calculations.

3.2.2. Energy Minimization

A uniform two-step energy minimization process in AMBER99SB-ILDN force field
by GROMACS [80] was used prior to MD simulations. Molecules were placed in the
center of a cubic box with the distance of 10 Å between the box and the solute atoms. The
simulation box was filled with TIP3P explicit [81] water molecules and counter ions to
neutralize the total charge of the system. The convergence thresholds of the first (steep-
est descent) and second (conjugant gradient) steps of minimization were set to 100 and
10 kJ mol−1 nm−2, respectively.

3.2.3. Docking Calculations

The energy-minimized target structures were used in docking calculations. The
Wrapper module of the WnS method [65] was applied for Fragment Blind Docking (FBD)
during which the entire surface of the target (3p0g) was covered by a mono-layer of the
Ace–FWKT–NHMe copies by a series of blind docking cycles performed by AutoDock
and AutoGrid [82]. Docking parameters were used for FBD, as described in our previous
studies [65,83]. Wrapping the target into ligand copies allows systematic mapping of
all possible binding modes of a ligand. At the end of wrapping, the fragment bound
with the lowest Einter was chosen as the best ligand position (Table S3). The resulting
docked complex was superimposed on the receptor structure of 5c1m and used in the next
growing step. The distance between the amino N atom of K9:SST and the carboxylate C
atom of D126:SSTR4 (dSB) was determined. The docking calculations were not focused
on a selected region of the protein, and the ligand could navigate without positional or
torsional constraints during docking. Thus, the blind docking calculations were unbiased
without the use of previous knowledge of the binding site. The binding modes of the ligand
covered the entire surface of the protein after blind docking with Wrapper (Figure 1C). The
binding mode with the most favorable calculated Einter was selected for further homology
modelling steps.

3.2.4. Growing of SST into the Binding cleft

The full-length ligand was built into the receptor using the fragment as a seed by the
homology modelling approach. SSTR4-FWKT (Ace–FWKT–NHMe without the capping
groups) structures were used as templates, and the query sequence was the sequence
of the receptor and the full length ligand together taken from UniProt database (SSTR4:
P31391 (37–330), like the homology models, SST: P61278 (103–116)). Structure alignment
was manually optimized to obtain the identical regions correctly under each other. The
Modeller [71] program package was applied to build ten models for each template. Explicit
manual restraint was added to generate the disulfide bond in SST. As the DOPE score
was very similar for all generated models, the Einter (Table S6) values were calculated [84]
(Lennard–Jones energy, Amber parameters [85,86]) and applied for model selection.

3.2.5. Molecular Dynamics Simulation

For identifying the internal binding mode of SST and investigating its binding mecha-
nism on SSTR4, a series of MD simulations was applied in the TIP3P explicit water model
with the AMBER99SB-ILDN force field using the GROMACS program package following
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two step energy-minimization (described in Section 3.2.2). In all cases, the target was
treated as a rigid body, except the ECL regions (37–42; 109–225; 184–208; 284–294), to allow
the entrance of the ligand into the receptor. Position restraints were applied on the heavy
atoms of TMs with a force constant of 100 kJ/mol−1 nm−2. For temperature coupling, the
velocity rescale and the Parrinello–Rahman algorithm were used. Solute and solvent were
coupled separately with a reference temperature of 310.15 K and a coupling time constant
of 0.1 ps. The protonation states of amino acids were set according to pH 7.4. Pressure
was coupled by the Parrinello–Rahman algorithm and a coupling time constant of 0.5 ps,
compressibility of 4.5 × 10−5 bar−1, and reference pressure of 1 bar. Particle Mesh–Ewald
summation was used for long range electrostatics. Van der Waals and Coulomb interactions
had a cut-off at 11 Å. Periodic boundary conditions were treated after the finish of the
calculations. After each trajectory, the periodic boundary effects were handled, the system
was centered in the box, and target molecules in subsequent frames were fit on the top
of the first frame. The final trajectory including all atomic coordinates of all frames were
converted to portable xdr-based xtc binary files.

3.2.6. MD Refinement in the External Binding Cleft

The SSTR4–SST complex was submitted to a 350 ns-long MD simulation described
above, and dSB was calculated throughout the MD simulation using the gmx distance
modul of GROMACS. The structure with the smallest dSB was determined as the external
binding mode of SST on SSTR4. Interacting target residues within a 3.5 Å distance of SST
were determined and listed (Table S4).

3.3. The Internal Binding Mode

3.3.1. Molecular Simulation for Exploring the Internal Binding Cleft

The exploration of the internal binding mode of SST was performed similarly to
the external one; however, the location/position of the SST tetrapeptide seed was deter-
mined by a 100 ns-long MD simulation instead of docking. After the two-step energy
minimization process, the SSTR4–Ace–FWKT–NHMe complex (5c1m-based model with
the superimposed aFWKTm) was submitted to a 100 ns-long MD simulation.

3.3.2. Growing the Full Length SST into the Receptor

After the 100 ns-long MD, the structure with the smallest dSB was used to build the full
length SST into the receptor similarly to the external binding mode. After generating the
homologies (similar to the method of external binding cleft), many close contacts occurred
in the structures that remained also after the two step energy minimization procedure.
Thus, in this case, instead of the whole apical FWKT region, only the K9:SST was used as
a “seed” for building the ligand. Models (3 × 10) were generated using no, 5 Å, and 6 Å
distance restraints on dSB, respectively, and in all homologies, dSB was determined again
(Table S8). Models with the smallest dSB from each group were further investigated using
MD simulation.

3.3.3. MD Refinement in the Internal Binding Cleft

The energy-minimized models with the smallest dSB distance from each group (Table S8)
were submitted to a separate 350 ns-long MD simulation to investigate the associative and
dissociative movements of the ligand. Calculation of dSB was performed throughout each
MD simulation, and structures having the smallest one were determined as the internal
binding position of SST, and the interacting target residues within 3.5 Å distance from the
ligand were determined (Table S5).

3.4. Comparison of SST Subtype Binding

3.4.1. Determination of Interacting Energy per Residues in SSTR4/SSTR2–SST Complexes

Following the two step energy minimization procedure, Coulomb intermolecular
interaction energies were calculated [84] with a distance-dependent dielectric function [87]
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and Amber partial charges [85,86] globally and per residues for both SSTR2–SST and
internal SSTR4–SST complexes. Comparison of the per residue interacting energies was
based on the sequence alignment of the targets created by EMBOSS Needle [88].

3.4.2. Energy Analysis of Alternative Binding Mode

There was a ca. 180◦ flip of the binding conformation of SST (Figure S1) in the internal
binding mode on SSTR4 compared with that of SSTR2. Thus, the SSTR4–SST complex with
this alternative binding mode was constructed by superimposing the targets. Following a
two-step energy-minimization, a global and per residue Einter analysis was also performed
for this structure.

4. Conclusions

The present study investigated the binding mechanism of SST to SSTR4. While the SST–
SSTR2 structure was recently published, the atomic level complex of SST and SSTR4 has not
been determined yet. As SSTR4 also plays an important role in the pathobiochemistry of
various diseases (Introduction), we thus focused on the calculation of SST–SSTR4 complex
structures. Beyond the complex structures, the dynamics of the binding mechanism of
SST was also elucidated, and key binding modes (external, intermediate, and internal)
were distinguished. The role of induced fit and hydration was discussed. The most
important residues on both receptor and SST sides were identified. Finally, an energetic
comparison of SST binding to SSTR2 and 4 offered a residue-level explanation of receptor
subtype selectivity. In good agreement with experimental results, we found that the
extracellular regions of helices and loops play an important role in SST binding, and
structural differences in these regions are important in receptor subtype selectivity. The
detailed structural comparison of SST binding to SSTR2 and 4 helps in the development of
new, subtype, and disease-selective SST analogues.
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Abbreviation

SST somatostatin
TM transmembrane
ECL extracellular loop
ICL intracellular loop
SSTR1–5 somatostatin receptor subtype 1–5
GPCR G-protein coupled receptor
WNS Wrap ‘n‘ Shake
MD molecular dynamics
PDB Protein Data Bank

dSB
Distance between the amino N atom of SST:K9
and the carboxylate C atom of SSTR4:D126

BLAST Basic Local Alignment Search Tool
FBD Fragment blind docking
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44. Orlewska, E.; Stępień, R.; Orlewska, K. Cost-Effectiveness of Somatostatin Analogues in the Treatment of Acromegaly. Expert Rev.

Pharm. Outcomes Res. 2019, 19, 15–25. [CrossRef]
45. Reynaert, H.; Colle, I. Treatment of Advanced Hepatocellular Carcinoma with Somatostatin Analogues: A Review of the Literature.

Int. J. Mol. Sci. 2019, 20, 4811. [CrossRef] [PubMed]
46. Stueven, A.K.; Kayser, A.; Wetz, C.; Amthauer, H.; Wree, A.; Tacke, F.; Wiedenmann, B.; Roderburg, C.; Jann, H. Somatostatin

Analogues in the Treatment of Neuroendocrine Tumors: Past, Present and Future. Int. J. Mol. Sci. 2019, 20, 3049. [CrossRef]
[PubMed]

47. Crider, A.M.; Witt, K.A. Somatostatin Sst4 Ligands: Chemistry and Pharmacology. Mini. Rev. Med. Chem. 2007, 7, 213–220.
[CrossRef] [PubMed]

48. Kumar Nagarajan, S.; Babu, S.; Sohn, H.; Devaraju, P.; Madhavan, T. Toward a Better Understanding of the Interaction between
Somatostatin Receptor 2 and Its Ligands: A Structural Characterization Study Using Molecular Dynamics and Conceptual
Density Functional Theory. J. Biomol. Struct. Dyn. 2019, 37, 3081–3102. [CrossRef]

49. Lamberts, S.W.; van der Lely, A.J.; de Herder, W.W.; Hofland, L.J. Octreotide. N. Engl. J. Med. 1996, 334, 246–254. [CrossRef]
50. Liu, S.; Tang, C.; Ho, B.; Ankersen, M.; Stidsen, C.E.; Crider, A.M. Nonpeptide Somatostatin Agonists with Sst4 Selectivity:

Synthesis and Structure-Activity Relationships of Thioureas. J. Med. Chem. 1998, 41, 4693–4705. [CrossRef]
51. Liu, Z.; Crider, A.M.; Ansbro, D.; Hayes, C.; Kontoyianni, M. A Structure-Based Approach to Understanding Somatostatin

Receptor-4 Agonism (Sst4). J. Chem. Inf. Model. 2012, 52, 171–186. [CrossRef]
52. Nagarajan, S.K.; Babu, S.; Madhavan, T. Theoretical Analysis of Somatostatin Receptor 5 with Antagonists and Agonists for the

Treatment of Neuroendocrine Tumors. Mol. Divers. 2017, 21, 367–384. [CrossRef]
53. Negi, A.; Zhou, J.; Sweeney, S.; Murphy, P.V. Ligand Design for Somatostatin Receptor Isoforms 4 and 5. Eur. J. Med. Chem. 2019,

163, 148–159. [CrossRef]
54. Veber, D.F.; Freidlinger, R.M.; Perlow, D.S.; Paleveda, W.J.; Holly, F.W.; Strachan, R.G.; Nutt, R.F.; Arison, B.H.; Homnick, C.;

Randall, W.C.; et al. A Potent Cyclic Hexapeptide Analogue of Somatostatin. Nature 1981, 292, 55–58. [CrossRef]
55. Veber, D.F.; Saperstein, R.; Nutt, R.F.; Freidinger, R.M.; Brady, S.F.; Curley, P.; Perlow, D.S.; Paleveda, W.J.; Colton, C.D.;

Zacchei, A.G.; et al. A Super Active Cyclic Hexapeptide Analog of Somatostatin. Life Sci. 1984, 34, 1371–1378. [CrossRef]
56. Chen, L.; Hoeger, C.; Rivier, J.; Fitzpatrick, V.D.; Vandlen, R.L.; Tashjian, A.H. Structural Basis for the Binding Specificity of a

SSTR1-Selective Analog of Somatostatin. Biochem. Biophys. Res. Commun. 1999, 258, 689–694. [CrossRef] [PubMed]
57. Nehring, R.B.; Meyerhof, W.; Richter, D. Aspartic Acid Residue 124 in the Third Transmembrane Domain of the Somatostatin

Receptor Subtype 3 Is Essential for Somatostatin-14 Binding. DNA Cell. Biol. 1995, 14, 939–944. [CrossRef] [PubMed]
58. Greenwood, M.T.; Hukovic, N.; Kumar, U.; Panetta, R.; Hjorth, S.A.; Srikant, C.B.; Patel, Y.C. Ligand Binding Pocket of the Human

Somatostatin Receptor 5: Mutational Analysis of the Extracellular Domains. Mol. Pharm. 1997, 52, 807–814. [CrossRef]
59. Daryaei, I.; Sandoval, K.; Witt, K.; Kontoyianni, M.; Michael Crider, A. Discovery of a 3,4,5-Trisubstituted-1,2,4-Triazole Agonist

with High Affinity and Selectivity at the Somatostatin Subtype-4 (Sst4) Receptor. Medchemcomm 2018, 9, 2083–2090. [CrossRef]
[PubMed]

60. Robertson, M.J.; Meyerowitz, J.G.; Panova, O.; Borrelli, K.; Skiniotis, G. Plasticity in Ligand Recognition at Somatostatin Receptors.
Nat. Struct. Mol. Biol. 2022, 29, 210–217. [CrossRef] [PubMed]
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The role of water in ligand binding
Balázs Zoltán Zsidó and Csaba Hetényi

Exploration of the complex modulatory role of water in ligand–

target binding is a current challenge of drug design. This review

reports on recent advances of prediction of water structure and

function in the context of ligand engineering. The surveyed

theoretical approaches showed remarkable progress in the

past years. Beyond complementing experiments, they also

supplied unmeasurable data. For example, thermodynamic

calculations improved ligand binding by the selection of certain

water molecules for structural replacement. Molecular

dynamics and explicit solvent models remained indispensable

to achieve precise results. Topographical analyses of hydration

networks proved useful for the prediction of the stabilizing role

of interconnected water clusters mediating target–ligand

interactions.
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Introduction
Water plays various roles on both macroscopic [1] and

microscopic [2–4] stages of life. The present review

focuses on the microscopic roles of water during the

binding of a ligand to a target molecule. The precise

understanding and prediction of ligand binding are

essential in drug design projects. Ligands possess vari-

ous sizes ranging between small organic compounds

[5,6], and large proteins [7,8]. Water molecules mediate

the binding of ligands of any sizes, and can be sorted

roughly into four functional categories [2,4,9,10]

(Figure 1).

Experimental determination of water positions requires

atomic resolution techniques. A number of permanent

limitations of experimental structure determination [11]

impose a challenge on the elucidation of water function

in biological complexes. Drug designers answer this

‘hydration challenge’ with the help of computational

approaches surveyed in our present review. We focus

mainly on the results of the past two years concerning

structure, binding affinity, and networking roles of water

in ligand binding.

Water structure
Biomolecular crystallography is the primary experimental

source [12,13] of atomic resolution structures of target–

ligand complexes. There is a continuous development of

X-ray [14] and joint neutron [15] crystallographic meth-

ods. Promising combined methods were also introduced

[16] with quantum chemical refinements of experimental

structures. However, the determination of water positions

remains an Achilles’ heel [11,17] of crystallography. It is

also difficult to assess the quality of assigned water

positions. An analysis [18] of 2.3 million experimental

water positions concluded that high resolution of a system

does not guarantee proper assignation of the hydration

structure.

The experimental limitations have motivated the devel-

opment and application of dynamic and static computa-

tional methods for the prediction of water molecules

affecting (Figure 1) ligand binding. Dynamic methods

supply water positions by clustering snapshots of short

molecular dynamics (MD) simulations of explicit water

molecules hydrating the solute (target, ligand, or their

complex). Static methods use knowledge-based grid

maps or geometric rules to build up the hydration struc-

ture around a given solute.

Interfacial water molecules can be captured at high

precision as they are strongly bound in a relatively tight

and buried crevice between the target and the ligand

(Figure 1). In a recent report [19], a commercial, dynamic

method WaterMap [20] found 90 % of the 41 crystallo-

graphic water positions in the interfaces of bromodomain

targets and aromatic ligands at a 1.5 Å match level. An

open-source software MobyWat [17] showed the same

performance on 344 interfacial water molecules in various

complexes of peptide and protein ligands [11]. A geome-

try-based method WarPP [21!!] applies an iterative shift-

ing-clustering algorithm. WarPP was validated on almost

20 000 experimental water positions of protein–ligand

interfaces of 1500 complexes, and showed a success rate

of the above dynamic methods. Other research groups

also developed new static approaches, like HydraMap

[22] and Splash’Em [23].

The determination of surface waters (Figure 1) is slightly

more demanding. An analysis using the EDIA (Electron
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Density for Individual Atoms) index showed [18] that

90% of insufficiently resolved crystallographic water

molecules are positioned on the surface. However, there

are conserved surface water molecules of low B-factors

which can be captured relatively easily. They remain

bound to the target surface during ligand binding

[17,24], and make up 77% of bridging waters between

the target and the ligand according to an MD study [25].

Other, mobile surface waters of uncertain positions

(higher B-factors) cause a plausible drop in overall success

rates of prediction methods from 90% (see the previous

paragraph) to ca. 80% [17] calculated for all surface waters.

Buried water molecules (Figure 1) occupy hidden binding

pockets with a challenging geometry to predict. A com-

bination of the static 3D-RISM [26] and dynamic WAT-

site [27] methods produced [28!] successful predictions.

JAL, an explicit solvent MD-based method also managed

to compute buried water positions in tumour suppressor

protein p53 and a translation initiation factor [29]. The

application of MD can be recommended for the difficult

cases of buried waters. Dynamic methods have general

applicability in all three categories (interface, surface, and

buried) discussed above as they take care of both solute–

water and water–water interactions and allow cooperative

water exchange [10] with the bulk (Figure 1) [11,29], as

well. They provide accurate [30!] and reproducible [31]

results, and the necessary MD snapshots can be produced

in short simulations by high performance, parallelized

open-source software [32].

The generation of water structure during the computa-

tional docking of a ligand to a target would be an attractive

technique for virtual (high throughput) screening [33,34]

projects. While there are several promising advances

[35,36] of this direct methodology, its full automation

remains a challenge. Another (indirect) approach, the

comparison of end-points of ligand binding seems fairly

manageable by available tools. The above-mentioned

methods supply surface and interfacial water positions

for the hydration structures of the initial (apo, ligand-free)

and the final (holo, ligand-bound) stages, respectively.

Pairwise comparisons of holo and apo structures or holo

structures with similar ligands [37!!] (Figure 2) help the

identification of conserved and displaced waters, and

optimization of ligand–target interactions (see also next

Section).

Contribution of water molecules to binding
affinity
The ligand–target binding affinity is expressed as the free

energy change of the binding reaction (DGb). The DGb can

2 Theory and simulation/computational methods

Figure 1

BULK

BURIED

INTERFACIAL

SURFACE

residence time on solute: 1-2 ps
cooperative exchange with bound waters;
external complex (de)stabilization
85% of water content of a cell

residence time: 1-2 ms

residence time: from 100 ps to 1-2 ms

residence time: 1-100 ps

filling hidden cavities; often intact during
ligand binding; internal complex stabilization
10 % of ‘dry mass’ of a protein

bridging between target and ligand; filling
void volumes of the interface
forming clusters and static networks

the first hydration shell; conserved or
displaced during ligand binding
mobility depends on surface topography
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Functional categories of water in ligand binding.
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be engineered via ligand modifications affecting the hydra-

tionstructure [17,24,30!,34,37!!,38–42,43!,44!,45,46,47!,48].

For example, the target–ligand complex can be stabilized by

inserting H-bonding functional groups that interact with or

replace (Figure 3a) interfacial water molecules resulting in a

favourable contribution to binding enthalpy (DHb) [43!].

New functional groups may increase the ligand’s ability to

expel surface waters into the bulk (Figure 3b) increasing

binding entropy (DSb) [46] and affinity.

The determination of thermodynamic stability and the

prediction of the contributions of individual water

positions to binding affinity (Figure 3) is a key to ligand

design. However, experimental methods like isother-

mal titration calorimetry (ITC) cannot partition DGb

values into individual contributions per water molecule

[18,39,49]. Theoretical methods with explicit solvent

models help to overcome this limitation. For example,

the inhomogeneous fluid solvation theory (IFST) [50]

has gained application for thermodynamic characteri-

zation of individual hydration sites. IFST with explicit

solvent MD calculations was used [47!] to investigate

various modifications of ligand structures that led to the

displacement (see e.g. Figure 2) of binding site water

molecules. The IFST calculations were useful [47!] in

guiding water replacements in lead optimization but

did not improve the prediction of the corresponding

differences in DGb. Such differences of DGb were

successfully correlated with solvent displacement on

sets of similar ligands in another study [51] presenting

new functionals for grid inhomogeneous solvation the-

ory (GIST) [52].

Nevertheless, there is some controversy in the literature

on the usefulness of the above solvation theories for the

prediction of DGb. Initial evaluations of IFST (in Water-

Map [20]), and GIST [51] performed better for prediction

of DGb than other calculators based on implicit solvent

models [53]. Indeed, GBSA (PBSA) methods or their

combination with explicit water molecules showed lim-

ited [30!] or occasional [35] success for DGb calculations,

due to their theoretical limitations [54,55]. However,

Water and ligand binding Zsidó and Hetényi 3

Figure 2

(a) (b) (c)

amantadine

viral interior spiro-adamantyl amine
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Conserved and displaced water molecules during binding of spiro-adamantyl amine in the influenza M2 transmembrane (TM) proton channel.

The structure of the proton channel (a) was constructed as a homotetramer of the TM helices (grey cartoon, only a dimer is shown for clarity, PDB

code 3lbw) containing residues 22–46. Water molecules and side-chains inside the channel are shown as red spheres, and sticks, respectively.

The black asterisk marks the center of the binding pocket of amantadine, a drug in clinical use. Spiro-adamantyl amine preserved (b) the main

pharmacophores including the amine group and the bulky hydrophobic ring system. Having a larger size than amantadine (b), it displaces some of

the water molecules (light red in (c)) observed in the amantadine-bound pocket (PDB code 3lbw; at the top in (c)) [37!!]. Other water molecules

above the H37 side-chains remain conserved in the spiro-adamantyl amine-bound pocket (PDB code 6bmz; at the bottom in (c)) and involved in

H-bonding interaction (yellow dashes in (c)) with the amine group of the inhibitor pointing toward the viral interior. To feature the steric conflict with

the positions of displaced water molecules, the structure of spiro-adamantyl amine was created in the amantadine-bound pocket (at the top in (c))

by superimposition of PDB structure 6bmz on 3lbw. Programs PyMol [71] and Marvin Sketch [72] were used for drawing of spatial and Lewis

structures, respectively.
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other reports [19,30!] comparing grid-based SZMAP [56],

WaterFLAP [57], 3D-RISM [26], and WaterMap did not

show significant improvement of DGb calculations with

IFST. Assessment of the general applicability of solvation

theories in DGb calculations will require additional vali-

dations on large and diverse test sets. At present, the

above methods seem more useful [30!] for selecting key

waters for planned ligand modifications (Figure 3).

An increasing number of studies suggest that the use of

appropriately positioned explicit water molecules is

required in binding thermodynamics calculations. For

example, relative DGb calculations on small organic

ligands showed that the free energy perturbation method

[48] is very sensitive to the choice of initial hydration

structure possibly due to water molecules trapped in and/

or insufficiently filling buried cavities. Another study [58]

4 Theory and simulation/computational methods

Figure 3

(a)

(b)

Current Opinion in Structural Biology

Water structure helps enthalpic and entropic optimization of ligands.

The binding free energy (DGb) of ligand molecules can be optimized by modification of the enthalpic (DHb) or entropic (DSb) contributions

according to DGb = DHb-TDSb (where T is the thermodynamic temperature). Targets and ligands are shown in surface and stick representations,

respectively. (a) Ligand (6,7-difluoro-quinazolin-4-yl)-(1-methyl-2,2-diphenyl-ethyl)-amine shows a good, subnanomolar binding to scytalone-

dehydratase stabilized by a bridging water molecule. The isosteric displacement of the bridging water molecule with a nitrile group (red in the

Lewis structure) further lowered the Ki and contributed to the enthalpic optimization of ligand binding. The direct hydrogen bonding between the

nitrile group of the ligand and the tyrosine residues of the target provides a stronger target–ligand contact (more negative DHb) than the indirect

hydrogen bond system with bridging water molecule [43!]. (b) The growing of ligand UBTLN46 by addition of a larger phenyl group (red in the

Lewis structure), resulted in the displacement of water molecules from the binding pocket of thermolysin. The leaving water molecules increased

DSb [46] which resulted in a more favourable negative contribution to DGb.
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also involved large peptide ligands and applied a combi-

nation of predicted, explicit interfacial water molecules

with the COnductor-like Screening MOdel (COSMO)

[59] in end-point calculations. The combined water

model resulted in good correlations with experimental

DHb values at a PM7 semi-empirical quantum mechanics

level.

The mobility of water networks
In addition to their individual contributions (see previous

Sections), water molecules often participate in molecular

networks at various locations (Figure 1). Exploration of

networking of waters may open a new pathway of ligand

design likewise to discoveries in other complex (data)

systems [60]. In the cases of small ligands [61!], network

changes may be discovered by manual comparisons of the

end-points (Figure 2). In the case of large water networks

of for example, protein–protein or protein–DNA [62]

(Figure 4) complexes, the comparisons should be autom-

atized using graph representations [11,63!].

However, there are relatively few methods offering graph

theoretical approaches of hydration networks. Brysbaert

et al. analyzed [63!] the changes of residue interaction

networks (RIN) of interfaces of protein complexes using

RINspector [64]). Adding water molecules to the RIN

graphs helped the identification of interface residues

involved in the water-mediated binding of the protein

partners. The mobility of water nodes was used to distin-

guish between static and dynamic hydration networks in

another graph-based study [11]. Static networks of low

mobility contain numerous solute–water and water–water

H-bonds stabilizing the target–ligand complex [41,65,66].

Dynamic networks contribute to complex destabilization

[11,61!] and binding diverse ligands [67] via cooperative

water exchange mechanisms [10] with the bulk.

Ligand binding can be fine-tuned by surrounding water

networks. The stabilizing role of static networks was

demonstrated by the analysis of the changes in hydration

graphs [11] of a histone-chaperone complex [68] following

amino acid mutations in the interface region. A similar

networking situation was explored [44!] in the case of

mutated protein–glycan complexes. The study showed

the dominating contribution of a static hydration network

of a few, core water molecules to binding thermodynamic

signatures. Similarly, only a few stable water positions

were identified in ligand binding pockets of G-protein

coupled receptors (GPCRs) [67]. Although the conserved

GPCR binding pockets are filled mostly by mobile

Water and ligand binding Zsidó and Hetényi 5

Figure 4

(a) (b)

DNA

DNA polymerase 
interfacial water
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(a) (b)

DNA

DNA polymerase 
interfacial water

Current Opinion in Structural Biology

The complexity of the interfacial hydration network of the DNA polymerase b (cyan) in complex with DNA (light blue cartoon).

A small molecule inhibitor dCMPP(CH2)P and crystallographic (PDB code 6w2m) water positions are shown (a) as sticks red spheres, respectively.

The large polymerase-DNA interface holds numerous water molecules mediating between the binding partners. The two-dimensional graph of the

interfacial hydration network (b) shows a high complexity due to several water-solute and water–water connections. The graph representation

allows quick visualization, automated analysis and comparisons of complex hydration networks between large macromolecules. The graph in

panel (b) was generated from the PDB structure using the NetDraw function of program MobyWat [11] with a 3 Å distance cut-off, and visualized

by Gephi [73].
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waters, the stable waters and conserved water-networks

are involved in the binding of structurally diverse ligands.

Reorganization or replacement of water networks can be

often observed during ligand binding. Water networks of

the binding pocket of human carbonic anhydrase II show

fast ms-time-scale dynamics according to NMR measure-

ments combined with MD simulations [69]. The effect of

an inhibitor ligand on the disruption of such intra-pocket

water–water networking and enzymatic activity was ana-

lyzed [69]. Another study combining crystallography and

MD [37!!] showed how amantadyl-amine ligands disrupt

key segments of water networks in the influenza A virus

matrix 2 proton channel. An earlier MD study [70] of the

same system also suggested the replacement of water

clusters for the design of new ligands (see also Figure 2)

with an ammonium group mimicking the effect of oxo-

nium ions in proton transport. The effect of the dynamic

reorganization of water networks on ligand binding affin-

ity was quantified [61!] involving a crystallographic struc-

ture set of Haemophilus influenzae virulence protein SiaP

mutants in complex with sialic acid ligands. Relative DGb

values were calculated [61!] using B-factors of water

molecules involved in the interaction network around

the ligand. Although the approach is probably applicable

only for similar complexes, further tests with experimen-

tal data or extension using calculated B-factors might be

interesting.

Some of the above studies [44!,68] report on mutations of

target amino acids not directly interacting with the ligand.

In these examples, mutations affect ligand binding indi-

rectly, via concerted changes in the interfacial water

network. Exploration of such ‘hidden’ features of a com-

plex (Figure 4b) hydration network is a key to the

prediction of binding affinity of large ligands.

Conclusions
Drug designers often complain of incomplete experimen-

tal hydration structures. They could make good use of

quantifying thermodynamic contributions of individual

water molecules to the overall binding process which

cannot be supplied by experiments. Computational tech-

niques have supplied solutions to these requests and

performed well in the calculation of the water structure

of biomolecules participating in target–ligand binding.

Ligand design has benefited from structure-based ther-

modynamic calculations comparing hydration structures

of the apo and holo stages. Molecular dynamics and

explicit solvent models have become the gold standard

of simulations accounting for water–water interactions

often observed in extended hydration networks of for

example, protein ligands. Like any other approach, the

surveyed theoretical methods and applications have their

technical limitations which can be overcome in the not-

too-distant future. Potential improvements of polarizable

water models (force fields), new quantum mechanical

applications, and topographical analyses of water net-

works will further increase the efficiency of prediction

of the role of water in ligand binding.
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17. JeszenÅi N, Horváth I, Bálint M, Van Der Spoel D, Hetényi C:
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58. Horváth I, JeszenÅi N, Bálint M, Paragi G, Hetényi C: A
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Abstract: Water is a key actor of various processes of nature and, therefore, molecular engineering
has to take the structural and energetic consequences of hydration into account. While the present
review focuses on the target–ligand interactions in drug design, with a focus on biomolecules, these
methods and applications can be easily adapted to other fields of the molecular engineering of
molecular complexes, including solid hydrates. The review starts with the problems and solutions of
the determination of water structures. The experimental approaches and theoretical calculations are
summarized, including conceptual classifications. The implementations and applications of water
models are featured for the calculation of the binding thermodynamics and computational ligand
docking. It is concluded that theoretical approaches not only reproduce or complete experimental
water structures, but also provide key information on the contribution of individual water molecules
and are indispensable tools in molecular engineering.

Keywords: drug design; docking; crystallography; electron microscopy; solvation; free energy

1. Introduction

Water is a molecular jolly joker of a living nature. It is a main solvent in bulk solution
and cellular interfaces and fills the void spaces in tissues (the mass of the human body
is made up of ca. 60% water [1]). Water also acts as an active matrix component and is
involved in the stabilization of the biomacromolecules mediating macromolecular interac-
tions, e.g., in signaling pathways [2–5], and in the binding of small molecules to their target
structures [6–12]. From a structural point of view, the role of water can be further classified.
There are water molecules that form the bulk solvent accounting for 85% of the water
content of a cell [13,14], and they might either be exchanged with bound waters or partici-
pate in the (de)stabilization of solute complexes. Buried water molecules stabilize solutes
internally, giving 10% of the ‘dry mass’ of proteins. Water molecules also bridge between
solute (macro)molecules and fill the void volumes of interaction interfaces [9,13,15]. They
can form a hydration shell [16] that is either conserved or displaced upon ligand binding. If
hydration shell water molecules are conserved upon ligand binding, they turn into bridges
forming a static network of solute–water and water–water hydrogen bonds [13,15,17–24].
Such a static network is characterized by a low mobility and acts by stabilizing complexes.
On the other hand, dynamic networks characterized by loosely bound water molecules
with a high mobility participate in the complex destabilization or non-selective binding of
various ligands.

In molecular engineering, the above structural roles of water can be translated into
energetic contributions. For example, in a target–ligand interface (the main stage of drug
design), conserved and leaving water molecules can be distinguished upon ligand bind-
ing [16,19,25–29]. Conserved waters tend to stay and form bridges in the target–ligand
interface and are often referred to as ‘happy’ waters (Figure 1).
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Figure 1. The hydration shells and the possible roles of interface water molecules during ligand Figure 1. The hydration shells and the possible roles of interface water molecules during ligand
binding. The target molecule (grey cloud, in the middle) is covered by hydration shells of surface
water molecules (blue sticks), where the fading color of the shells represent the diminishing strength
of interaction between the shell (also labelled by a serial number) and the target. Happy interface
water molecules (red sticks, on the right) tend to stay, while unhappy water molecules (on the left)
are displaced by the ligand (beige cloud) and leave (red arrow) to the bulk solution during the
binding process.

There are also ‘unhappy’ water molecules displaced by the drug molecule during its
binding to the target. An unhappy water molecule might offer a possibility for the en-
thalpic optimization of ligand binding. An indirect, ‘unhappy’, water-mediated interaction
between a ligand and a target might be enthalpically less favorable compared to the direct
binding of a ligand to a target amino acid residue after the displacement of an ‘unhappy’
water molecule [30]. During the displacement of an ‘unhappy’ water molecule, it moves to
the bulk, and this process has a favorable entropic contribution to the free energy change of
the binding reaction (∆Gb) [28]. On the other hand, targeting ‘happy’ water molecules can
be useful, as they often bridge between the target and ligand. A ligand can be optimized
to participate in this bridging interaction by adding functional groups with a hydrogen
bonding capacity to the drug molecule, providing a favorable enthalpic contribution to
the ligand binding, because the additional hydrogen bonding capacity can form hydrogen
bonds with ‘happy’ water molecules, as well as with hydrophilic target amino acids. In
drug design, increasing the ligand interactions with happy water molecules and pushing
unhappy water molecules away into the bulk (Figure 1) can therefore increase the ligand
binding specificity [31–33] and affinity [33–35] to the target. Therefore, the importance of
considering water molecules in the drug design process has been long recognized [10,36].
Besides ligand optimization, water molecules have been also utilized to improve docking
results (See Section 5 for details [35,37,38]).

Despite the above importance of water in drug design, the determination of the
structure and energy contribution of the water networks in intra- and intermolecular
interactions is challenging for both experimental and theoretical approaches [13,39,40].
Water molecules are often too mobile, as they can change their positions in the meantime of
picoseconds [6] and get lost in the large electron density maps of proteins [39]. On the other
hand, theoretical approaches often have a considerable computational cost, calculating all
the possible interactions with water molecules in a large simulation box. The present review
gives a brief account on the above limitations and advances of the recent experimental
and theoretical methodologies for water structure and their applications in the context of
molecular engineering focused on biomolecules and drug design.

2. Experimental Determination of Water Structure

The experimental methods of X-ray/neutron crystallography [41], cryo-electron mi-
croscopy (Cryo-EM) [42–44], and Nuclear Magnetic Resonance (NMR) spectroscopy [45,46]
can be considered as the primary techniques for the determination of molecular structures
at the atomic level. While these methods provide a solid background for establishing the
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structure–activity relationships [47] of biomolecules and their complexes, they face several
challenges in the determination of hydration structures. Most of these difficulties come
from the complexity (hydration layers interconnected with hydrogen-bonding networks)
and high mobility (dynamic exchange of water molecules between the layers) of hydration
structures. Plausibly, water molecules and other non-amino acid moieties, such as ligands,
ions, or metals, are not included in the amino acid sequence that is otherwise key informa-
tion for protein structure determination, indicating the order and covalent links between
amino acids.

More than half of the experimental structures published in the Protein Data Bank
(PDB, [48,49]) contain at least one water molecule (Figure 2a). Crystallography is the
most powerful technique for the exploration of the networks of several water molecules.
Cryo-EM, NMR, and other methods can assign far fewer (often individual) water positions
(Figure 2a).

Figure 2. (a) Counts of structures containing water molecules resolved by different methods and
deposited in the Protein Data Bank. Data were collected by the advanced search module of the
PDB database: Entry features > Number of water molecules per deposited model. The number of
structures was automatically separated by methods used for resolving. (b) The number of water-
containing cryo-EM structures resolved in 5-year-long periods of time. The number on the x axis
indicates the last year of the period.

However, crystallography provides only a static picture of the structure of solute
molecules and their first surrounding water shell [50]. Moreover, the assignation of water
positions in electron density maps gained via Fourier Transform from the crystal diffraction
pattern is often complicated, even in the first shell. One of the methods is based on the
low B factors, by which the waters bound to the protein surface or another water molecule
located in the first hydration shell can be confidently identified [51]. In buried regions, such
as binding pockets or active sites, even the third hydration layer can be resolved [50,52].
Problematic, partially ordered waters located mainly in the second hydration shell [53]
can be assigned using D2O-H2O “neutron difference maps” [54]. This method uses the
large difference in neutron scattering by deuterated and light waters, resulting in peaks of
only water locations, while the scattering of the solute remains the same [51,53,54]. While
neutron diffraction is capable of detecting not only oxygen but also hydrogen/deuterium
atoms, and has been continuously developed [55], it is still less widespread due to the
technical complexity of the method [56] and the limited accessibility of the neutron sources
based on only four nuclear reactors worldwide [57], also reflected by the small number of
structures [49] resolved by this method (Figure 2a).

There are various computational methods that help with the assignation of water
positions in electron density maps, sometimes equipped with quantum- and/or molecular
mechanics refinements [58]. For example, PHENIX [59–61] is a frequently used system for
macromolecular crystallographic structure solutions, in which a bulk-solvent determination
protocol is based on both maximum-likelihood and least-squares target functions [62]. Coot
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performs a cluster analysis on a residual map to find water places [63]. The assigned waters
are then checked based on their distance from the hydrogen-bond donors and acceptors,
temperature factor, or electron-density level [63]. ARP/wARP [64] includes a fully auto-
mated placement for finding ordered water molecules using least-square refinement, in
combination with the Fo–Fc difference of the electron density maps [65] (where Fo and
FC are the observed and calculated structure factor amplitudes), and geometric assump-
tions such as interatomic distances, angles, and van der Waals radii, etc. [66]. Despite
the development of new assignation tools, the determination of correct water positions
remains problematic, especially if the water structure is disordered surrounding non-polar
atoms [67] or has fewer tetrahedral hydrogen bonds [68] at partially occupied solvent sites
of low density.

The number of water molecules determined by crystallography mainly depends on
the size and form of the system [52], as well as its resolution. By increasing the size of
the system, the number of water molecules [41] also increases and the solvent becomes
considerably disordered. At the size of the proteins (MW > 30.000), the resolution is usually
between 1.5 and 2.5 Å, having a high background noise level in Fourier maps due to the
high incoherent scattering cross-section of the numerous hydrogen atoms [41], which makes
the solute assignation more difficult [41,69]. Furthermore, in the case of large biomolecules,
the number of hydration layers increases, resulting in a weaker and more diffuse solvent
density [41]. The other problem is that the electron density of water molecules is similar
to that of small iso-electronic ions (e.g., sodium and ammonium), leading to inaccurate
assignation. Moreover, the experimental conditions also affect the successful, accurate, and
valid water assignation. The limitations of crystallography include the difficulty of the
crystallization of biomolecules, especially in the case of large, non-globular, or disordered
systems [50]. Furthermore, it is also questionable how the crystallization procedure, such
as packing and cryogenic temperature, modifies the native structure of the biomolecule [50]
and its hydration shells. It has been proven that the hydration structure of a biomolecule
highly depends on temperature [70].

In the case of cryo-EM, high-resolution structural information is gained from thou-
sands of images produced by transmitting an electron beam through the protein sample
embedded into a special vitreous environment instead of crystals. Thus, the biomolecules
can be studied in a more “native” environment, with different conformational and/or func-
tional states, and this allows for the resolution of structures in a higher molecular weight
range than that of X-ray crystallography [71]. Due to the progressive improvement in
technological and refining processes, the resolution of cryo-EM maps has been entered into
the atomic dimension, where the resolvability of individual atoms, including solvent water
atoms, is accessible [72]. The first cryo-EM structure with water molecules was published
in 2003 (PDB code: 1uon) [73] at a resolution of 7.6 Å, which is too low for the identification
of individual atoms. Due to the ‘Resolution Revolution’ [74,75], which started in 2013,
less than a decade ago, when the first near-atomic resolution cryo-EM structures were
published [76–78], the number of water-containing cryo-EM structures has exponentially
increased (Figure 2b). This tendency might forecast that cryo-EM structures will catch up
to the number of X-ray structures in the next decades, especially in the case of large protein
complexes, cellular machines, and viruses [79]. The above computational methods used for
the assignation of waters in X-ray crystallography could also be applied to cryo-EM maps.
The development of new assignation tools has emerged in this field as well. The assignation
of individual atomic positions in cryo-EM can be performed using methods such as SWIM
(segmentation-guided water and ion modelling) [80] and UnDowser in MolProbity [81,82].

Unlike crystallography and cryo-EM, NMR spectroscopy is suitable for examining
small proteins or oligopeptides in solutions adopting various conformations [50]. Water–
protein interactions can be identified by using the nuclear Overhauser effect and/or rotating-
frame Overhauser effect between the water protons and protein atom nuclei [83]. Here,
individual water molecules can be determined that are located in the first hydration shell
and bound to the protein instead of a complex 3D hydration structure [84]. It is notable that
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this method is limited by the short-term period of protein–water interactions, the hydrogen
exchange with unstable protein moieties, and long-range dipole coupling, and identifies
only 1–100 water molecules at best (Figure 2a). Additionally, while crystallography and
cryo-EM provide direct information on the positions of water oxygen atoms, solution NMR
is based on different principles.

3. Calculation of Water Structure

While there is an impressive, continuous development of experimental structure deter-
mination methods, the previous Section also highlighted the limitations of their assignment
of the positions of water molecules [9,13,40]. To fill the gap of missing experimental hydra-
tion structures, extensive theoretical research has been conducted and resulted in various
methods for the calculation of water positions (Table 1).

Table 1. The categorization and performance of theoretical methods of prediction of hydration structure.

Method Concept Type a #System/#Water b Match Tolerance (Å) SR (%)

3D-RISM c [85–87] Knowledge IF 18/113 d 2.5 91
IF 13/113 e 1.5 65
SF 8/101 e 1.5 60

AcquaAlta c [88] Geometry IF 20/77 1.4 76

Auto-SOL c [89] Geometry SF 5/1337 1.5 64

AQUARIUS f [90] Knowledge SF 7/1376 1.4 59

Fold-X c [91] Energy SF 74/2687 1.0 76

Forli et al., 2012 c [92] Geometry g IF 27/51 2.0 96

HADDOCK c [93] Geometry g IF 27/50 2.0 90

Huggins and Tidor, 2011 [94] Geometry IF 5/19 2.0 68

HydraMap c [95] Dynamic IF 13/113 e 1.5 72
SF 8/101 e 1.5 69

HyPred f [96] Dynamic SF 3/233 1.0 12

MobyWat c [13,40] Dynamic SF 20/1500 1.5 80
IF 31/344 1.5 90

Particle concept h [97] Geometry IF 200/232 1.5 35

Splash’Em c [98] Knowledge IF 91/230 1.0 62

SZMAP h [99] Knowledge IF 18/113 d 2.5 96

WaterDock c [100] Energy SF 7/92 2.0 88

WaterFLAP h [87,101,102] Knowledge IF 18/113 d 2.5 98

WaterMap h [37,87] Dynamic SF 1/11 1.5 82
IF 18/113 d 2.5 96

WarPP c [103] Geometry IF 1500/20,000 1.0 80

WATGEN f [104] Geometry IF 126/1264 2.0 88

WATsite c [95,105] Dynamic IF 13/113 e 1.5 75
SF 8/101 e 1.5 77

a Water molecules in the target–ligand interface (IF), and on unbound target surface (SF) are considered, re-
spectively. b The count of systems/the count of experimental water oxygen positions used in the cited study
for method validation. c Freeware or free trial for academic use. d These data are taken from the comparative
paper [87]. e These data are taken from the paper [95]. f Website no longer available. g With docking search.
h Commercially available.
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Despite the flaws of these experimental methods, the validation of theoretical methods
still relies on the experimental water oxygen positions. The positions of the predicted
water oxygen and experimental water oxygen are compared, and if the distance is within a
tolerance threshold, then it is accepted as a successfully predicted water oxygen position.
The ratio of the count of the successfully predicted water oxygen positions and all the
available experimental water oxygen positions can be considered as a success rate (SR, this
number is expressed in percentage after multiplication with 100 in Table 1). The validation
and comparison of different theoretical methods can be easily performed based on SR
values (Table 1).

Out of the four types (bulk, buried, interface, and surface) of water molecules men-
tioned in the Introduction (Figure 1), mostly surface and interface water molecules are in-
vestigated by theoretical methods (Table 1). Hydrated targets have surface water molecules
in their first hydration shell [40] that have a stabilizing function on the macromolecular
structure. Target–ligand complexes also have interface water molecules bridging between
the target and ligand [13,15,19,25,106]. The prediction of interface water molecules can be
accomplished very precisely with SR values even above 90% (Table 1) [9], as these molecules
are captured between the target and the ligand, and there is enough space to fit only the
water molecules participating in the interaction. Surface water molecules tend to have a
higher mobility (B-factors) and can be predicted with SRs of ca. 80% (Table 1) [24,29,40].
That is, the natural uncertainty of surface water positions tends to result in a lower success
of their prediction [39,40].

Either static or dynamic methods are used for the prediction of interface or surface
water molecules. Static methods assume a static hydration shell and predict the binding
sites of the water molecules on the surface of a dry experimental solute structure [40].
Finding a binding site can rely on energy calculations, scoring, prior knowledge, and
information on H-bonds, and neural networks have also been applied [107]. Knowledge-
based methods rely on the information found mainly in X-ray crystallographic structures
(see previous Section). The main limitation of knowledge-based approaches is the assembly
of an appropriate test set. The quality of X-ray crystallographic water oxygen positions
varies greatly (see previous Section) and the methods perform better on similar structures
that are involved in their test sets. Some methods assign a score to the experimental water
molecules. Energy calculations may also apply popular docking tools to predict water
molecule positions. Energy- or grid-based methods try to locate the energetically favorable
positions of water molecules using probes that mimic them. Static methods can accurately
identify the water molecules at the interfaces of the proteins and ligands, as these waters
are usually static; however, a dynamic exchange of water molecules between the bulk
solvent and the protein surface is disregarded by these methods. Generally, static methods
do not consider an explicit water model and provide fast results. However, the quickness
of these methods often involves a compromise in their precision.

Dynamic methods rely on extensive molecular dynamics (MD) simulations or other
global search techniques using an explicit water model and allowing for the mobility of
individual water molecules. All atomic movements are recorded into trajectories and the
protein–water, ligand–water, and water–water interactions can be followed. This includes a
dynamic exchange of water molecules with the bulk solvent and the displacement of water
molecules from the binding site by ligands. However, the analysis of each trajectory in
a large-scale study using various systems would be time-consuming. To tackle this, the
distribution density averages of the water molecules or their occupancy at binding sites
might be investigated. Dynamic approaches offer information not only on the location of
water molecules, but the displacement of water molecules can be also studied. MD-based
thermodynamic analyses or a comparison of the hydration structures of the apo and holo
targets can follow the application of these dynamic approaches.

The counts of the systems and water molecules involved in the validation differ
in different methods (Table 1). In future studies, the involvement of at least 1000 and
100 experimental (reference) water positions can be recommended for surface and interface
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predictions, respectively. Preferably, at least 10 different (protein or complex) systems
should be used to have a diverse set of water positions. Notably, the SR depends on the
choice of match tolerance, where the highest value is 2.5 Å, but more commonly 1.4–2.0 Å is
used, which seems to be the consensus for method validation (Table 1). Naturally, when the
match tolerance is set to a higher value (2.0–2.5 Å), the methods achieve better SRs. Notably,
the calculated water positions and SR values correspond to a certain biomacromolecular
structure (or PDB ID), and the use of high-resolution structures can be recommended for
the calculation of the SR. While SRs provide a fair comparison of methods, the number of
experimental water oxygen positions used for the method validation and testing is similarly
important. Notably, MobyWat, WATGEN, and WarPP use more than 300 experimental
water positions for the validation of interface hydration. Auto-SOL, AQUARIUS, Fold-X,
and MobyWat use more than 1300 waters to test their surface predictions.

The theoretical approaches of the above sections complement well the experimental
methods for the atomic-level determination of water structures. In some cases, these
methods also offer a complete hydration structure [13,40] of the protein surfaces and
interfaces, which is often not achieved using experimental methods due to assignation
problems (Section 2). Knowledge of the complete water structure is especially important
for the calculation of (single molecular) the energy contribution of the (de)solvation process
of drug–target binding (next Sections).

4. Water in the Structure-Based Calculation of Binding Thermodynamics

Water influences the thermodynamics of various biochemical interactions [108,109]
important in molecular engineering. For example, ligand binding is described by binding
free energy (∆Gb), a net measure of the strength of target–ligand interactions. During
the formation of target–ligand complexes, hydration shells undergo considerable changes
(Figure 1) and, therefore, the mediation of the interactions between the drug and target
partners is fairly dependent on the water molecules. There are implicit and explicit water
models for the calculation of the energetics of the (de)solvation during ligand binding.
Implicit solvation models consider the solvent as a continuous medium around solutes
and manifest in the formulae, e.g., in electrostatic terms [110]. Explicit water models place
numerous water molecules in the simulation box and set various molecular properties for
the water prototype used in copies [111,112]. Both types of models have been implemented
at the molecular mechanics (MM) and quantum mechanics (QM) levels of calculations.

At the molecular mechanics level, implicit water models such as MM-PB(GB)/SA [113]
are widely used and based on the solution of the theoretically accurate, but computationally
expensive Poisson–Boltzmann (PB) equation, or a simplified but scalable Generalized Born
(GB) equation, to obtain the polar contribution of the solvation free energy change on an
ensemble of MD snapshots. The solute cavity formation within the solvent and the van
der Waals interactions between the solute and the solvent are represented by a nonpolar
term often based on solvent-accessible surface areas (SA) [114]. Docking programs have
also implemented implicit water models in their scoring functions due to their simple
formulation and low computational costs. Notably, the scoring functions of docking
methods require the fastest possible approaches to maintain their high-throughput nature.
For example, the popular docking program AutoDock [115] applies the method of Stouten
et al. [116], which calculates the solvation free energy as a sum of the atomic contributions
with a linear relationship between the percentage of free volume around the atom and
its contribution. At the same time, a PB-based distance-dependent dielectric function
was also implemented in the Coulomb potential of AutoDock, which dampens the water
permittivity value and corrects the screening effects near the solute surfaces [117]. In this
way, a continuous transition of the relative permittivity of the medium is considered as we
go from the bulk water to the protein surface. Similar implicit solvation terms have also
been implemented in other popular docking software such as DOCK [118], MOE [119], and
FITTED [120].
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While implicit water models are useful for the approximation of long-range electro-
static forces considering the above-mentioned screening effect of solvent dielectric [110],
they cannot handle hydration shells (Figure 1) and specific water-mediated linkages. How-
ever, the absence or presence of a certain water molecule at the binding site can drastically
modify the overall affinity of ligands [121,122]. Thus, an accurate calculation of the bind-
ing thermodynamics is a rather impossible undertaking without the representation of
individual water molecules.

Explicit water models have been introduced to overcome the above-mentioned limita-
tions of implicit approaches. At the MM level, there are various explicit models, such as
SPC [123], TIP3P [124], and TIP4P [124], where the abbreviated names refer to the charge
systems and sites (parameters) of the water molecule prototype. Explicit approaches allow
for the calculation of the energy contributions of individual waters, e.g., using the statistical
mechanical inhomogeneous fluid solvation (IFST, [125]) or grid inhomogeneous solvation
(GIST, [126]) theory. In this way, the enthalpic and entropic terms of bound waters can
be also considered, like in Wscore [127], DOCK-GIST [35], and AutoDock-GIST [38]. In
some cases, the incorporation of explicit waters with the above methods has improved
the correlation between the experimentally determined binding affinity and the docking
score [38,127], while other works have not observed such improvements [87,128].

In the realm of quantum mechanics, theory permits a more accurate calculation of
the charge distribution of molecules compared to MM. The assessment of the electrostatic
interaction between the solute and water, in theory, can be included in the self-consistent
field (SCF) calculation using dielectric continuum models [110]. However, for realistic solute
cavities, it requires a numerical iterative process for every SCF cycle, which is extremely
computationally demanding [129]. The Conductor-like Screening Model (COSMO) [130]
solves this problem using a Green function description with analytical gradients, making
the method practically applicable. COSMO can be considered as an advanced version of the
polarizable continuum model (PCM, [131,132]), and is the most accurate implicit solvation
model for semi-empirical QM. There is also a universal solvation model based on solute
electron density (SMD, [133]), which is usually implemented for more computationally
demanding levels of QM. At the semi-empirical level, the combination of PM6s [134–137]
and PM7 [137–139] parametrizations, combined with the implicit model of COSMO, is a
popular choice for estimating the binding affinities of ligands to targets.

Advances in computational speed and linear scaling methods [140] have allowed for
the combination of implicit (COSMO) and explicit models handling long-range electro-
statics and individual water contributions, respectively. Such hybrid approaches present
a fast QM alternative of MM scoring functions for drug design. For example, Nikitina
et al. inserted possible interface waters into hydrogen bond donor–acceptor sites and used
the PM3 method [141,142]. Horváth et al. predicted interface waters using a molecular-
dynamics-based method, MobyWat [40], and utilized the hybrid water model with PM7
parametrization for the estimation of the binding enthalpies (∆Hb) of ligands [143]. Here,
the inclusion of explicit waters in the hybrid model yielded, e.g., a 3-fold smaller rela-
tive error when compared with vacuum calculations (Figure 3). Cavasotto et al. used
a single-point PM7 calculation, keeping crystallographic waters in the binding interface
in their QM docking scoring methodology to show encouraging enrichment factors on
10 protein targets [144]. The latter studies also extract the binding site environment from
the target (similarly to Figure 3) to further reduce the computational time. The ∆Gb was
also calculated by Hyslova et al., using a DFT-D3 and PM6-D3X4 combined method with
crystallographic waters in the binding pocket, achieving a better fit with the combined
implicit/explicit procedure (R2 = 0.68) compared to the implicit alone (R2 = 0.49) [145].

               hetenyi.csaba_83_23



Int. J. Mol. Sci. 2023, 24, 11784 9 of 19

 

Figure 3. The complex structure of beta-trypsin (on the left, target in cartoon representation) and p-Figure 3. The complex structure of beta-trypsin (on the left, target in cartoon representation) and
p-amidinobenzamidine (ligand marked with spheres). The target–ligand interface extracted for ∆Hb

calculations is marked with a box. The close-up of the dry (middle) and explicitly hydrated (right,
used for hybrid calculations) interface with a ligand in sticks representation. Relative errors (RE)
of the calculated binding enthalpy (∆Hb) values of the dry and hybrid models are indicated below
the corresponding interface structure. The RE values were calculated as RE(%) = 100 (∆Hb,calculated

− ∆Hb,experimental)/∆Hb,experimental. The coordinates and ∆Hb values were re-used from a previous
study [143] (Table 1 and Supporting Supplementary Table S5, β = 0). The incorporation of explicit
water molecules in the ∆Hb calculation considerably reduced the RE in this case.

5. Water in Target-Ligand Docking

Target–ligand complex structures (Figure 1) are key to the engineering of new drugs.
Computational docking can supply such atomic-resolution complex structures rapidly and,
therefore, it is a widely used [146–148] alternative of experimental structure determination
techniques (Section 2) in ligand screening projects [149–151]. Water molecules are active
participants in real docking situations, as described in the Introduction (Figure 1). However,
the proper use of these water molecules during computational docking is not trivial [36].
The inclusion of happy waters (Figure 1) bridging in the target–ligand interface may help
to increase the precision of the docking calculation. On the other hand, if unhappy waters
(Figure 1) are included in the interface, they would erroneously block the docking to the
target sites used by the ligand in reality. Thus, the misuse of unhappy waters in an interface
obviously leads to the mis-docking of the ligand. However, without knowledge of the
true hydrated complex structure, it is rather difficult to distinguish between happy and
unhappy water molecules in advance. Docking with waters is therefore a true “chicken
and egg situation”, where let us say water is the chicken and the docked ligand is the egg.
Docking is expected to produce a proper target–ligand complex for the decision on the
inclusion of happy water molecules in (or the exclusion of unhappy ones from) the docking
itself. This awkward situation is reflected in the corresponding literature. Several studies
have reported that the incorporation of specific water molecules in the docking process
significantly improved the docking performance [127,152–154], while others have found
that including water molecules had little effect on this performance [155,156]. Several fast
docking tools and strategies [38,92,97,127,157–166] have been developed to incorporate
waters in the binding site during docking simulations. Many of these tools work with
experimentally determined (known) water positions [160,163–165].

A simple way of incorporating water molecules into docking simulations is to include
them as a static part of the target [167], where the positions and orientations of these water
molecules are kept restrained during the simulation [162,167]. This strategy is used most in
molecular docking studies and has been shown to be effective [168–170]. An improvement
to the restrained water model is the displaceable water model, where the included water
molecules can be switched on/off automatically during the simulation so that a ligand
can keep the favorable water molecules and displace the non-favorable water molecules
(GOLD, FlexX, FITTED, and DOCK). These included waters have mostly fixed positions or
a limited mobility during the docking process, while some methods allow for the waters to
change their positions and orientations through the search algorithm (in FITTED).

Other methods solvate the ligand and then dock the solvated ligand with full flexibility,
as the waters are kept or displaced depending on the entropy and/or energy contributions
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during the simulation (AutoDock4, MVD, and Glide). Such ligand-centric methods treat
water molecules as a flexible part of the ligand, so they present the same flexibility as the
ligand itself. RosettaLigand includes water movement both independently and dependently
from the ligand during the initial stage, while considering the full flexibility of the target
and the ligand through MC search. However, when the method was evaluated on a dataset
of 341 diverse protein/ligand complexes from CSAR, no significant improvement was
observed in the docking success rate [165]. This could be caused by there being no solvent-
specific scoring adjustments in RosettaLigand other than the desolvation energy calculated
using an implicit solvent model. Such a desolvation term in a force-field-based scoring
function is often calibrated for protein–ligand complexes with no explicit solvent [165].

In many cases, the experimental water positions are not available or the hydration
structure is not complete. In such situations, theoretical methods (Section 3) can supply the
water positions for the docking calculations. Solvation before docking and a short molecular
dynamics (MD) simulation were performed to improve these water positions, and after
the encounter of the interacting partners, the water was removed based on a Monte-
Carlo approach in HADDOCK [93,171] and a semi-explicit water model implemented in
Rosetta [172]. This method improved the docking results for HADDOCK when compared
to docking without explicit water molecules. FITTED [120] treats water molecules as a part
of the target, and conserved water molecules are considered by an entropic penalty in the
final score. This improves the docking accuracy for HIV-1 inhibitors. GOLD relies on two
programs, FlexX [97,173] to pre-calculate the energetically favorable water sites and insert
spherical water molecules (particles), and Consolv [174] to predict the water molecules that
are likely to be displaced [166]. There is an upper limit of water molecules that is handled
by this approach, so as not to increase the complexity and therefore the computational costs
above a rational limit [36]. Although GOLD predicted the conservation or displacement of
water molecules with a high efficiency, the effect on the ligand binding pose prediction was
moderate [166]. Slide [160] enables the virtual screening of a relatively large set of ligands
using Consolv [174] for the water prediction.

HydroDock [175], a new approach, separates the chicken and egg situation and solves
the hydrated docking using a parallel approach. The ligand is docked into the target
without waters (dry docking). Simultaneously, the whole target is filled up with the
explicit water molecules predicted by MobyWat [13,40]. Then, the dry docked complex and
the hydrated target are merged and the water molecules that clash with the dry docked
ligand are removed. The resultant complex is then energy minimized to set the proper
orientation of the hydrogen bonds, and a short MD simulation is performed to yield the
representative binding mode. HydroDock achieved a high accuracy in the case of ion-
channel-bound ligand docking (Figure 4), one of the hardest cases of including water
molecules in molecular docking [9,175]. As a specific example, the HydroDock method
was validated on the ion channels of the influenza A and SARS-CoV-2 viruses.

 

Figure 4. The role of water in ligand binding and the incorporation of explicit water molecules into Figure 4. The role of water in ligand binding and the incorporation of explicit water molecules into
docking using HydroDock. The influenza virus A ion channel is shown as grey cartoon, target amino
acids are shown as spheres and labelled according to the 6bkk [176] PDB structure. Experimental water
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oxygen positions are shown as red spheres, and water molecules after HydroDock are shown as
red and white sticks [175]. The experimental amantadine structure is shown as grey sticks, and the
calculated structures as teal sticks. Dry docking (in the middle) fails to reproduce the experimental
ligand binding mode, however, docking with water molecules (on the right) improved similarity with
experimental results greatly. Root mean squared deviation (RMSD) is calculated after superimposition
of the calculated to the experimental structure, between ligand heavy atoms.

As the inclusion of explicit water molecules increases computational costs [177], the
scoring functions of many fast docking methods do not treat explicit water molecules with
the proper partial charges and terms for their enthalpic or entropic contributions [177,178].
However, the way that water molecules are treated in the binding site and how their
energetic contributions are evaluated is considered to be a key factor greatly affecting the
docking performance [127]. To improve this docking performance, the contribution of
water-mediated interactions and entropic effects may be considered for individual water
molecules. A common modification to scoring functions is to add an entropy penalty, using
a positive constant for each included water molecule to model the loss of rigid-body entropy
favoring the displacement of the water molecules. However, in the case of large ligands,
this approach leads to extremely positive energy contributions, necessitating a modification
of the scoring function of AutoDock [179]. Moreover, Friesner and co-workers showed that
the contributions of some water molecules to the free energy of binding can be much larger
than others [180]. Some attempts have been made to calculate the target surface water sites
and thermodynamics prior to the docking process, using third-party tools such as GIST and
WaterMap, and to incorporate the solvation information in the scoring function (WScore,
AutoDock-GIST, and DOCK-GIST). Although evaluation studies have reported only minor
improvements in the success rate of docking for WScore and AutoDock-GIST, such an incor-
poration of explicit waters into the energy calculation definitely improved the correlation
between the experimentally determined binding affinity and the docking score [38,127].
On the other hand, knowledge-based methods such as Consolv [174] (a k-nearest-neighbor-
based classifier trained on 5542 molecules taken from 30 independently solved protein
structures) can be used to determine the probability of the water molecules in the binding
site to be conserved or displaced, as well as their corresponding desolvation penalty values
(implemented in Slide) [160]. Instead of on-the-fly energy evaluations, scoring functions
with more accurate desolvation functions can be implemented as re-scoring tools after
the docking. For example, Wang et al. used molecular-mechanics–Poisson–Boltzmann-
surface-area (MM–PBSA) re-scoring to find HIV-1 reverse transcriptase inhibitors [181],
and several studies have reported that rescoring using a molecular-mechanics–generalized-
Born-surface-area (MM–GBSA) method improved the enrichment of the known ligands for
several enzymes and even the identification of substrates [182–184].

In the last decade, targeting protein–protein/DNA/RNA interactions has been con-
sidered to be a promising strategy for drug discovery [185–188], and a growing number
of docking methods have been specifically developed for this [189]. Their shallow and
relatively large interface (more than 1500 Å2 compared to the 300−1000 Å2 range for
binding sites) [190] makes it readily accessible to the solvent or water-permeable in the
case of nucleic acids. For nucleic acids, unlike proteins, their phosphate groups and corre-
sponding counter ions (such as Mg2+ or K+) cause polarization upon the water molecules
and functional groups of drugs. Thus, water molecules often play an important role in
the ligand recognition and complex stabilization for nucleic acids, as well as proteins.
There are several publications that have reported improvement in the success rate of the
docking results when water molecules were included for RNA [191], DNA, and protein–
protein complexes [192,193]. However, due to their large, solvent-accessible interface,
it is extremely challenging to incorporate water molecules into the process of docking
macromolecules within a reasonable computation time. Thus, the effect of these water
molecules is often ignored in protein–protein/DNA/RNA docking, in which the desol-
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vation penalty is estimated as proportional to the solvent-accessible surface area. There
have been attempts to incorporate solvation effects in macromolecule docking. For ex-
ample, HADDOCK explicitly treats water molecules by performing rigid-body docking
on solvated macromolecules, followed by a Monte-Carlo (MC) simulation that displaces
the waters based on their probabilities to form water-mediated contact, predicted using
the Kyte-Doolittle scale [194]. Pavlovicz et al. developed a semi-explicit water model
(implemented in Rosetta), in which a modified MC simulation displaces or adds explicit
solvent molecules from bulk, followed by an energy evaluation with an implicit solvation
energy term. Both attempts have improved the docking and ranking results [171,172].

6. Conclusions

Molecular engineering and drug design have been continuously fueled by the devel-
opment of experimental structure determination techniques. However, the determination
of the position of individual water molecules is often limited by the low resolution of their
measurements. Theoretical calculations can supply the atomic-resolution hydration struc-
ture of target–ligand interfaces with a high precision, and often complement experimental
techniques. The energetic contribution of individual water molecules to the full thermody-
namics of target–ligand binding can be also calculated. There has been an improvement in
the application of water structures in computational docking, a technique often used in the
high throughput virtual screening of ligands in the drug industry. While “docking with
waters” is still a problematic “chicken and egg situation”, a number of methods have been
featured that answer this challenge as well.
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Abstract

Motivation: Hydration largely determines solubility, aggregation of proteins and influences

interactions between proteins and drug molecules. Despite the importance of hydration, structural

determination of hydration structure of protein surfaces is still challenging from both experimental

and theoretical viewpoints. The precision of experimental measurements is often affected by fluctu-

ations and mobility of water molecules resulting in uncertain assignment of water positions.

Results: Our method can utilize mobility as an information source for the prediction of hydration

structure. The necessary information can be produced by molecular dynamics simulations

accounting for all atomic interactions including water–water contacts. The predictions were vali-

dated and tested by comparison to more than 1500 crystallographic water positions in 20 hydrated

protein molecules including enzymes of biomedical importance such as cyclin-dependent kinase 2.

The agreement with experimental water positions was larger than 80% on average. The predictions

can be particularly useful in situations where no or limited experimental knowledge is available on

hydration structures of molecular surfaces.

Availability and implementation: The method is implemented in a standalone C program

MobyWat released under the GNU General Public License, freely accessible with full documenta-

tion at http://www.mobywat.com.

Contact: csabahete@yahoo.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Water molecules located on protein surfaces play fundamental struc-

tural and functional roles in biology. For example, hydrogen bonds

formed by waters stabilize protein structure (Nisius and Grzesiek,

2012) and affect folding (Cheung et al., 2002; Levy and Onuchic,

2006). Surface water molecules are mediators of the assembly of b-

amyloid protofilaments of Alzheimer’s disease (Thirumalai et al.,

2011) and there is evidence that structurally conserved waters are

parts of electron transfer networks (Antonyuk et al., 2013) such as

respiratory chain (de la Lande et al., 2010). Structures of many G-

protein-coupled receptors are also stabilized by hydration (Angel

et al., 2009). A recent study (Xu and Leitner, 2014) suggests

that structural water molecules are also involved in thermal

VC The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 1959
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conductance of proteins, in photochemistry, as well as playing a fun-

damental role in charge transfer, allostery and energy flow (Fang

et al., 2009).

Water molecules are often considered essential parts of the pro-

tein structure (Petsko and Ringe, 2009) and the first hydration shell

is a key determinant of the solubility and aggregation of solute mol-

ecules (Israelachvili and Wennerström, 1996). Protein–protein and

protein–ligand interactions are influenced by surface-bound water

molecules, and therefore, knowledge of their location is of great im-

portance during structure-based drug design (Baron et al., 2012;

Garcı́a-Sosa, 2013). Tightly bound water molecules can affect the

chemical diversity of designed ligands (Garcı́a-Sosa and Mancera,

2006) leading to simple rules for the use of water molecules in drug

design (Garcı́a-Sosa et al., 2005) and also in interpretation of lig-

and-based pharmacophore models (Lloyd et al., 2004). Inclusion of

explicit water molecules in drug design (Mancera, 2007) have been

thoroughly studied and was found to be of central importance in lig-

and–protein docking (Roberts and Mancera, 2008; Thilagavathi

and Mancera, 2010).

Although hydration structure is important, it has hitherto proven

to be very difficult to determine at the atomic level by experimental

means largely due to mobility and complexity of interactions of

water molecules located on a protein surface. The residence of a

water molecule on the surface and its exchange with bulk are af-

fected not primarily by the strength of protein–water interactions,

but it is ‘rather a topography that prevents the water molecule from

exchanging by a cooperative mechanism’ (Halle, 2004 a).

Importantly, such a cooperative mechanism of exchange also gov-

erns several water–water interactions that can often be detected be-

tween surface water molecules (Finney, 1977). It is problematic to

handle (and to predict) the residence of water molecules in the hy-

dration layer of a protein using merely thermodynamic or kinetic

approaches (Halle, 2004a).

Crystallography is the prime experimental method for detection

of water positions, via electron density maps and used as the de

facto standard (Savage and Wlodawer, 1986). However, there are

still numerous limitations of this method coming from low reso-

lution of large structural assemblies (Finney, 1977), assignment

problems (Afonine et al., 2013; Badger et al., 1997), and artifacts

due to cryogenic temperatures used (Halle, 2004b).

A number of computational methods have been proposed for

prediction of hydration structure on protein surfaces. Such methods

generally require the ‘dry’ protein structure as an input and provide

predictions for hydration structure using a variety of algorithms. A

large group of the methods uses fast and simplified approaches dis-

regarding exchange (mobility) between surface and bulk water mol-

ecules and dynamics of the hydration structure. They assume a static

picture of hydration shells and focus on finding appropriate binding

sites of water molecules on the protein surface using scoring

schemes, energy calculations (Schymkowitz et al., 2005), prior

knowledge (Pitt and Goodfellow, 1993), H-bonding information

(Vedani and Huhta, 1991) or artificial neural networks (Ehrlich

et al., 1998). Several studies (Makarov et al., 1998; Truchon et al.,

2014; Virtanen et al., 2010) have dealt with construction and use of

density distribution functions of hydration shells for different atom

types occurring in proteins. Limitations of generalized, density-

based approaches were discussed in detail (Henchman and

McCammon, 2002). These methods ignore dynamics and coopera-

tivity governing hydration.

With advancement of computational infrastructure and force

fields, the efficiency and chemical accuracy of atomic level Monte-

Carlo and molecular dynamics (MD) simulations has increased

enormously in the past decades (Michel et al., 2009; Pettitt and

Karplus, 1987) enabling their applications in cutting edge drug de-

sign projects (Dror et al., 2012). It has become a routine task to gen-

erate MD trajectories with explicit water molecules for virtually any

protein of interest. Atomistic simulations of MD hold a conceptual

advantage over the static or density-based (trained) methods as the

mobility, a key determinant of hydration structure is described dir-

ectly at atomic level. Whereas such benefits of atomic MD calcula-

tions have been extensively used in analyses (Schoenborn et al.,

1995), there are not many MD-based methods for prediction of the

hydration structure (Abel et al., 2008; Cui et al., 2013; Henchman

and McCammon, 2002). These approaches focus on all individual

positions of hydrating water molecules and apply various evaluation

schemes such as the definition of time averaged positions

(Henchman and McCammon, 2002) for calculation of the hydration

structure. In this study, we introduce a mobility-based atomic-level

method for prediction of hydration structure of molecular surfaces

using only ‘dry’ protein structures as input. Our method was tested

on 20 proteins, and the corresponding computational procedures

are provided in a programMobyWat, which can be used in conjunc-

tion with any MD software that can produce all-atom MD

trajectories.

2 Algorithm

2.1 Prediction

Logging molecular movements of all water molecules during a time

period provides mobility information required by the prediction pro-

cess used here. Such a log-book (a trajectory) is preferably generated

by MD calculations with an explicit water model. Generation of

molecular trajectories was performed by the GROMACS (Hess

et al., 2008; Pronk et al., 2013) MD package in this study. During

additional post-MD and preparatory steps a standard protocol was

followed (Supplementary Methods S1.2).

Mobility information of the trajectory is transformed into the

hydration structure of the protein surface during the prediction pro-

cess outlined in Figure 1. All predictions can be performed with the

programMobyWat designed and written in C implementing the pre-

diction protocols of this study. Detailed descriptions of the algo-

rithms can be found in Supplementary Algorithm S2.1 and also in

the User’s Manual of the program.

Briefly, during the prediction procedure, MobyWat performs

clustering of water molecules in candidate pools filtered from the

corresponding MD frames. Besides the usual spatial position-based

(POS) clustering, an identity (ID)-based algorithm was also intro-

duced with ranking variants named all-inclusive (IDa) and elitist

(IDe, Supplementary Algorithm S2.1.5). The procedure ends up in

prediction lists including the coordinates and mobility values of

water molecules in Protein Databank (PDB) format. A merged

(MER) prediction list can be also produced combining the results of

the above IDa, IDe and POS predictions.

2.2 Validation

The identification of matches between experimental and pre-

dicted water positions is used for validating algorithms of

MobyWat. From the matches, a success rate (SRX) value is calcu-

lated for a prediction list (X¼ IDa, IDe, POS or MER, Eq. 1).

The higher the SRX value, the more successful a prediction is in com-

parison with crystallographic water positions. For comparison

and estimation of the effect of clustering, per frame SRn values

1960 N.Jeszeno†i et al.
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are also calculated for each candidate pool using the analysis mode

of MobyWat (X¼n, Eq. 1).

SRX ¼ 100
Number of matches inX

Number of watermolecules in the reference pool
%;

whereX ¼

(

IDa=IDe=POS=MER ðprediction list in validationÞ;

n ðdenotes the nth candidate pool in analysisÞ:

(1)

Further details on validation including selection and calibration of

tolerance values are described in Supplementary Algorithm S2.2,

and Figure S1. Twenty reference protein systems used for validation

and external tests are listed in Tables S1 and S8.

3 Results and Discussion

3.1 Sampling versus predictions

MobyWat predictions are based on atomic mobility data of all water

molecules obtained from MD simulations. In this study, mobility of

a predicted water molecule is defined by its occupancy value

(Supplementary Eq. S2). Occupancy can be counted using a collec-

tion (sample) of hydrated protein structures. Such a sample can be

collected as a series of hydrated experimental structures of the same

protein (Carugo, 1999; Patel et al., 2014), or generated by computa-

tional methods. Sample collection from experimental structures is

not an option for this purpose as the number of hydrated structures

is limited to available entries available in the PDB. In addition, if

there are hydrated PDB structures available, then comparative ana-

lysis can be performed by other tools (Garcı́a-Sosa et al., 2003; Patel

et al., 2014) which proved to be useful for selection of consensus or

conserved water molecules.

However, in most of the cases, only a single structure of the

same protein is available. Thus, computational generation of hydra-

tion states of a protein is presently the only tractable approach to

produce an appropriate sample even if only a ‘dry’ protein surface is

available lacking experimentally determined positions of water mol-

ecules. Among computational techniques atomic level MD simula-

tion with an explicit water model is the obvious choice of sampling

method. The user needs to supply only a ‘dry’ protein structure and

a series of hydrated protein structures are resulted as an MD trajec-

tory. MD-generated, raw hydration structures are sometimes used

even as references in comparison with other methods (Ross et al.,

2012). However, important parameters such as the minimal length

of an MD simulation necessary for a predictive sampling have not

been determined. To address this question, 1-ms-long MD simula-

tions were performed for the protein systems of the validation set

producing a sample of 1000 frames spaced at 1 ns. SRn values were

calculated for each pool according to Eq. 1 and plotted in Figure 2A

for Alzheimer’s amyloid precursor protein (system 2FMA).

Descriptive statistics of SRn values are provided for all validation

systems in Supplementary Table S4. The descriptive statistics show a

good performance of raw MD sampling with mean SRn values rang-

ing between 44.6 and 72.7. The SRn values fluctuate randomly dur-

ing the 1ms time-scale of the trajectory (Fig. 2A). This finding can be

explained by the short residence time of water molecules in the hy-

dration shell of protein surface (Halle, 2004a). During 1ms water

molecules can change their positions many times, and occurrence of

frames with large SRn values (with a lot of matching water pos-

itions) is unpredictable and non-deterministic.

In summary, MD provides an appropriate sampling with good

SRn values. However, the performance of a ‘prediction’ based on a

single frame (randomly) picked from a trajectory is non-determinis-

tic. Thus, a valid prediction cannot be guaranteed if using only one

frame. Processing several frames of a trajectory may be a better way

to maximize SR and arrive at valid predictions. Accordingly, valid-

ation, calibration and measurement of the performance of predic-

tion algorithms are described in the forthcoming sections.

3.2 Validation, performance and robustness

The prediction parameters dmax, ctol and ptol (Supplementary

Table S3) were calibrated for all four types of prediction algorithms

implemented in MobyWat. The calibration process is documented

in Supplementary Results S3.2. Optimal sampling conditions were

also determined, as the final step of the validation process. Using

calibrated values of parameters, MobyWat predictions were per-

formed for all proteins by processing 1000 coordinate frames from

1-ms-long trajectories. The results are shown for system 2FMA

(Fig. 2A), and for all systems of the Validation set (Supplementary

Table S4). The SR values yielded by the predictions were signifi-

cantly higher than the mean SRn from raw MD, and in many cases

they were close to the maximal SRn values. Thus, all four algorithms

Fig. 1. The prediction process

Prediction of hydration structures of protein surfaces 1961
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resulted in valid predictions. Whereas sampling of 1-ms-long trajec-

tories provided good predictions, such simulations with explicit

waters can be computationally demanding. Figure 2A shows that

SRIDa values exceeded the SRn curve and reached a plateau relatively

early, after 100–200 ns sampling time. This finding suggested that

shortening the sampling time should be possible without a large

drop in SR of the prediction. Increasing the sampling frequency

(frame count) is also a logical step to achieve reliable predictions

with shortened sampling time. Indeed, results in Table 1 reveal that

10-ns-long trajectories with increased frame count yielded mean SR

values of >80% for the Validation set, similarly to the 1-ms-long

runs (Supplementary Table S4).

Figure 2B shows that the good performance of ID-based predic-

tion algorithms was preserved at 1, 5 and 10ns sampling times aver-

aged for all systems used in Validation set. In the cases of MER and

POS, there is a 5% increase in average SR values if comparing trajec-

tories of 1 and 10ns length. In summary, the ID-based algorithms

outperformed POS and MER predictions, and they provide good

predictions even at 1 ns sampling time (Table 1, Fig. 2B).

To evaluate system-independence of our method, a test of the

predictions was performed. Systems of Test set 1 (1UBQ, 1WLA

and 6LYZ) have relatively moderate resolution and a low number of

assigned water positions per protein surface area (Supplementary

Table S1). The same set had been used earlier in a study (Virtanen

et al., 2010) applying a solvent density-based approach. Detailed

comparison of our results using the standards of the earlier study

(Supplementary Results S3.3) indicates that overall performance of

MobyWat is good if compared with solvent density-based results.

For comparability with the above validation results performance of

MobyWat on Test set 1 was also evaluated using the standards of

this study and the results are listed separately in Table 1. All four al-

gorithms provide valid predictions with SR significantly higher than

average values of SRn. Moreover, the mean SR values of Test set 1

are comparable to or slightly higher than mean SR values obtained

for Validation set (Table 1) indicating system-independence of the

method.

Fig. 2. (A) Success rates of Alzheimer’s amyloid precursor protein

(system 2FMA) calculated for the pools of the raw MD trajectory frames (SRn)

and resulting from IDa prediction of MobyWat (SRIDa). MD trajectory of 1 ms

with 1000 frames was used as a sample. (B) Effect of sampling time on the

performance of prediction algorithms. Ten thousand frames were used for

prediction with sampling times 1, 5 and 10ns. Mean values are calculated

from SRs obtained for the Validation set. Standard deviations are shown

as error bars. (C) Reproducibility of MD sampling in terms of mean SR

values calculated from three independent MD runs for each protein system.

(D) Mean distances in matched pairs of predicted and reference water oxygen

atoms plotted for all systems. Error bars denote standard deviations

Table 1. Success rates (%): statistics calculated for raw MD sam-

pling and prediction results achieved by MobyWat

PDB IDa Raw MDb (SRn in Eq. 1) MobyWatb,c

Min. Mean Max. SRIDa SRIDe SRPOS SRMER

Validation set

1R6J 41.4 52.4 64.1 71.8 76.2 64.6 65.8

2FMA 39.4 61.5 80.3 80.3 83.6 77.1 77.1

2O9S 46.2 62.2 77.9 87.5 85.6 78.9 78.9

2VB1 44.9 59.9 71.7 82.6 84.1 79.7 80.4

3NIR 33.9 59.0 80.4 80.4 83.9 71.4 71.4

Mean 41.2 59.0 74.9 80.5 82.7 74.3 74.7

SDV 4.9 3.9 7.0 5.7 3.7 6.3 6.1

Test set 1

1UBQ 28.6 53.9 82.4 85.7 80.0 68.6 74.3

1WLA 31.4 68.5 94.3 94.3 88.6 82.9 82.9

6LYZ 32.2 54.2 72.9 78.0 81.5 71.2 71.2

Mean 30.7 58.8 83.2 86.0 83.4 74.2 76.1

SDE 1.9 8.3 10.7 8.2 4.6 7.6 6.0

aMean and standard deviation (SD) values of success rates were calculated

for systems of external test and validation separately. bSampling conditions:

10 ns MD run time, 1.0001� 104 frames. cSuccess rates of MobyWat predic-

tions were calculated with default mtol¼ 1.5 Å, bmax¼ 30.0 Å2, dmax¼ 3.5 Å,

ptol¼ 2.5 Å and ctol according to Supplementary Table S5.

1962 N.Jeszeno†i et al.
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Reproducibility is also a key issue of robustness. As MobyWat

operations are reproducible by their algorithmic definition, reprodu-

cibility tests can be performed for the MD sampling process. MD

trajectories are inherently chaotic in practical applications due to

hardware-dependent rounding of floating point calculations, the use

of dynamic load balancing in parallel execution and so on.

Therefore, it is common to repeat MD calculations with different

starting atomic velocity values to test the convergence of trajecto-

ries. Practically, this can be done by selecting different seed numbers

of the velocity generator routine. During the tests, three MD trajec-

tories of all systems were produced using three different sets of ini-

tial velocities. For these trajectories, predictions were made using

the top performer algorithms of Table 1.

The corresponding three SR values were averaged for all systems

and plotted in Figure 2C. Their standard deviations are found to be

small compared with mean values for all systems, and MD sampling

is therefore shown to be reproducible in terms of SR. Improvements

in the quality of force fields, in particular the introduction of polar-

ization, may improve the reproducibility of water prediction further

(Lopes et al., 2013).

During validations and tests, MobyWat automatically calculated

SR values using a match tolerance of 1.5 Å which is the upper limit

for the detection of matches between predicted and reference water

molecule pairs (Section 2.2). To further quantify the precision of

matches, statistics of distances of all matched pairs of the top per-

former algorithms were calculated (Fig. 2D). It can be seen that

mean match distances are below 1 Å for all systems. Matching water

positions of one of the systems is shown in Figure 3A, and three

other systems are depicted in Supplementary Figure S4.

3.3 Featured test examples

Test set 2 containing 12 proteins was assembled to further check the

performance of MobyWat predictions. Using prediction algorithm

IDa, a mean SR of 87% was achieved for this set. The members of

Test set 2 and the resulted SR values are listed in Supplementary

Table S8. Below the prediction results obtained for three enzymatic

systems of Test set 2 are discussed focusing on their active sites.

Cyclin-dependent kinase 2 (Cdk2) is a key enzyme in cell cycle

control and a promising drug target in oncology (Akli et al., 2011)

that also affects senescence (Chenette, 2010). A change of the hydra-

tion structure of the active site of Cdk2 due to ligand binding has

been reported with obvious implications for drug design (Schulze-

Gahmen et al., 1996). A good agreement was obtained between pre-

dicted (blue spheres, Fig. 3B) and experimental reference (red

spheres) water positions verifying that MobyWat accurately pre-

dicted the hydration structure of the active site of apo Cdk2

(Fig. 3B). Notably, experimental water positions were used in com-

parisons of Figures. 3B–D without any restrictions on their B-fac-

tors. Insertion of the ligand (ATP, thin lines in Fig. 3B) from the

superimposed ATP-bound Cdk2 structure reveals that six waters

(marked with asterisks in Fig. 3) are displaced by the ligand during

binding. Release of such water molecules has a favorable contribu-

tion to binding entropy of the ligand, and therefore, their identifica-

tion is important for thermodynamics-driven engineering of new

ligands. The results were not affected by the chemical nature of lig-

and binding as waters replaced by both the charged phosphate moi-

eties and the non-charged adenine ring were found correctly. This

finding is in agreement with our general results showing that predic-

tion quality is independent on the type of interacting amino acids

Fig. 3. (A) Prediction results for system 1R6J. (B–D) Featured binding sites of apo enzymes cyclin-dependent kinase 2 (system 1HCL, B), thymidine kinase (system

1E2H, C) and glutathione S-transferase (system 16GS, D). Ligands were inserted from superimposed ligand-bound enzyme structures (PDB codes 1HCK, 1E2I and

5GSS) for comparison with water positions. Match distances between crystallographic (red spheres) and predicted (blue spheres) water oxygen atoms are given

in Å. Conserved and replaceable water molecules are marked with C and asterisk at the distance values, respectively

Prediction of hydration structures of protein surfaces 1963
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(Supplementary Results S3.7). The second example (Fig. 3C) fea-

tures the nucleoside binding pocket of thymidine kinase from

Herpes simplex type 1. This enzyme has been involved in enzyme-

prodrug gene therapy of cancer (Vogt et al. 2000). Besides two re-

placeable water molecules, MobyWat precisely predicted several

conserved water positions (marked with C in Fig. 3) existing in both

the apo and the ligand-bound enzyme structures. Similar to the cases

of replaceable water molecules, locating conserved water sites pre-

cisely is also important during the design of new ligands. A complete

chain of waters leading to the active site was also predicted correctly

(top-right corner of Fig. 3C). The third binding pocket in Figure 3D

belongs to glutathione S-transferase, an important detoxifying en-

zyme (Wu and Dong, 2012). Binding chemistry of glutathione, the

peptidic ligand of this enzyme is remarkably different from the pre-

vious two ligands with heteroaromatic cores (Fig. 3B and C).

However, the quality of MobyWat prediction of the surrounding

water positions is similarly good as it was in the other two

examples.

MobyWat produces a prediction list including water positions in

increasing order of mobility scores (Supplementary Algorithm S2.1.

5) where experimentally verified (positive) predictions are mostly

located at the top of the prediction list. It was found (Supplementary

Results S3.4) that 88% of positive predictions for whole protein sur-

faces are located in the top 50% of the prediction list. As active sites

are the most important spots on enzymes, it was also checked how

mobility scores work for these specific segments of the surface. 20 of

24 (85%) of the correctly predicted water positions shown in

Figures. 3B–D are located in the top 15% of the prediction lists.

Thus, in the cases of active sites investigated, the mobility scores

short-list the positive candidates very efficiently at the top of the pre-

diction list. This indicates that water molecules in the active sites of

enzymes are predicted with higher fidelity than other water mol-

ecules residing on the surface. This result can in part be explained by

the presence of conserved water molecules surrounding the ligands,

most of which are located at the top 5% of prediction lists. Notably,

half of replaceable water molecules occupying active sub-sites in the

apo structures were also ranked at top 10%.

4 Conclusions

MD has become an indispensable tool of prediction of structure of

proteins and protein–ligand complexes (Shan et al., 2011;

Söderhjelm et al., 2012). However, there are only a few MD-based

methods for the prediction of hydration structure using explicit

simulation of water contacts. Here, we presented MobyWat, a freely

available program validated and tested on more than 1500 experi-

mental water positions in 20 different protein surfaces. The predic-

tion process of MobyWat aims at finding the least mobile (most

occupied) points of the hydration structure. It was shown that MD

simulation is an appropriate sampling technique for such predic-

tions. MobyWat performs predictions using mobility information

cumulated in MD trajectories. Two predictive approaches were im-

plemented and tested. The first approach uses only spatial informa-

tion (coordinates) for a candidate water position. This can be done

for example by averaging trajectory frames and producing solvent

densities (Virtanen et al., 2010) or by clustering water molecules

along the trajectory and counting frequencies of their occurrence in

candidate positions. In this study, a second approach was introduced

based on identification records of water molecules rather than spa-

tial positions. On average, the identity-based predictions provided

higher success rate values than positional and merged algorithms.

This is probably a consequence of the position-independent philoso-

phy of the identity-based algorithms.

Valid predictions do not require trajectories from long MD runs.

The typical lifetime of a hydrogen bond is a few pico seconds only,

virtually independent of the environment (van der Spoel et al.,

2006). Consequently, due to rapid exchange and equilibration of

water positions relatively short simulations (e.g. 1–10 ns) with regu-

lar saving of coordinates suffice. Thus, with a moderate computa-

tional effort valid predictions can be achieved.

Limitations of mobility-based predictions were also investigated

via an analysis of non-matched water positions of eight systems

(Supplementary Results S3.7 and Appendix 2). The analysis identi-

fied location of waters above shallow protein sites and/or far from

the surface to be a limiting factor in a few cases. Further work is on

the way to overcome such limitations using a relative coordinate

definition and testing combined MD sampling schemes.

MobyWat algorithms were coded in the portable C language. As

the program has to perform calculations on numerous atoms in nu-

merous frames (e.g. 104�104) special attention was paid to the effi-

cient use of memory. MobyWat can be used in conjunction with any

MD program as it reads frames from PDB files. However, for effi-

cient use of memory and disk space MobyWat also reads and writes

xdr-type portable binary trajectory files called xtc in GROMACS.

Mobility is often considered as a disturbing property hampering

experimental determination of positions of water molecules on pro-

tein surfaces. In this study, it was shown that mobility can be uti-

lized as an information source for prediction of hydration structure.

If experimental determination of water structure is not available or

incomplete, MobyWat can offer an alternative solution.
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ABSTRACT: Interfacial hydration strongly influences interac-
tions between biomolecules. For example, drug−target com-
plexes are often stabilized by hydration networks formed
between hydrophilic residues and water molecules at the
interface. Exhaustive exploration of hydration networks is
challenging for experimental as well as theoretical methods due
to high mobility of participating water molecules. In the present
study, we introduced a tool for determination of the complete,
void-free hydration structures of molecular interfaces. The tool was applied to 31 complexes including histone proteins, a HIV-1
protease, a G-protein-signaling modulator, and peptide ligands of various lengths. The complexes contained 344 experimentally
determined water positions used for validation, and excellent agreement with these was obtained. High-level cooperation
between interfacial water molecules was detected by a new approach based on the decomposition of hydration networks into
static and dynamic network regions (subnets). Besides providing hydration structures at the atomic level, our results uncovered
hitherto hidden networking fundaments of integrity and stability of complex biomolecular interfaces filling an important gap in
the toolkit of drug design and structural biochemistry. The presence of continuous, static regions of the interfacial hydration
network was found necessary also for stable complexes of histone proteins participating in chromatin assembly and epigenetic
regulation.

■ INTRODUCTION

Complex systems of nature may often be described as networks
of interdependent nodes.1−3 Mapping and description of
complex, dynamic networks is challenging.4−6 Hydration
networks of water molecules of complex interfaces play a
central role in establishing and mediation of molecular
interactions, and their exploration is of general importance in
materials sciences and biomedicine.7−11 Interfacial hydration
networks have to be considered in drug development12−19

when studying amyloidogenesis in Alzheimer’s disease,20

targeting protein−protein interactions,21,22 etc.
Exploration of hydration networking would require precise

knowledge of the complete hydration structure of the interface.
However, experimental assignment of all water positions is
problematic23−26 due to well-documented limitations of X-ray
crystallography27 often caused by the inherent mobility of
water. Similarly, many of the available theoretical methods also
suffer from improper or lacking modeling of water−water
contacts and mobility. It was shown that molecular dynamics
(MD) is able to calculate the latter factors accurately,

suggesting a solution for the hydration problem.28−30 The
number of MD-based approaches of mapping hydration is still
moderate, and the experimental validation using reference
water positions is very limited (Table S1).
Functional characterization of hydration networks may

include either thermodynamic analyses or descriptions of the
topography of intermolecular interactions.31 Hydration ther-
modynamics has been thoroughly studied.32−35 Graph top-
ology-based methods have been developed36,37 for structure−
activity relationships of small molecules and H-bonding
patterns in proteins.38 Here, we provide an approach for the
topological description of co-operation of water molecules
validated by characterization of hydration networks of 31 large
biomolecular complexes (Table 1) of protein targets and
peptide/protein ligands. The complexes have hydrophilic
backbone amide groups and/or side-chains at the interfaces.
The X-ray crystallographic structures of these complexes
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contain 344 interfacial water positions, forming the exper-
imental references for this work. The size of the ligands varies
from tripeptides up to proteins. Among the targets there are
proteins with buried binding pockets, such as HIV-1 protease
(PDB code 2O4K) and also other systems with shallow,
extended binding interfaces.
The latter group includes complexes of histone proteins

(2H2G, 2H2H, 3QL9, 4H9N, 4H9O, 4H9Q) that are
important constituents of the nucleosome and key molecules
involved in epigenetic regulation.40−42

This paper has a two-fold aim: (i) elaboration and validation
of a tool for calculation of complete interfacial hydration
structures of the above complexes by extending MobyWat28 a
recent MD-approach for the study of biomolecular hydration to
interfaces and (ii) exploration of the hydration networks for
characterization of high-level cooperation between interfacial
water molecules at target−ligand interfaces. Thus, after
determining hydration structures at the atomic level, we aim
at uncovering static and dynamic hydration networks and their
role in stabilizing even large biomolecular interfaces.

■ RESULTS AND DISCUSSION

Complete Hydration of Complex Interfaces. In order to
explore the complete hydration networks, our approach
provides void-free hydration of the complex interfaces via

generation of MD trajectories and their processing with
MobyWat, a tool for prediction of hydration structures. In
the present study, three methods of increasing complexity
(Figure 1) were investigated and validated on the systems of
Table 1.
Matches between experimental and calculated water

positions were quantified as success rates (SR, eq 1) for all
systems and are summarized in Table 2. As there may be
various distance criteria to define matches with experimental
positions (Table S1), the SR evaluations were performed at two
different match tolerances. The SR was determined for the 31
individual systems as well as for all 344 reference water
positions (Table 2).

Performance. The simplest Method 1 (M1, Figure 1,
Figure S7) works on the free surface of the target without using
the structure of the ligand, similarly to other methods (Table
S1) and our previous results (Table S2). The ligand is involved
in M1 to exclude conflicting water molecules but not for the
predictive calculations of the method. Although M1 produced a
complete match (SR = 100%) for four systems, there were also
12 systems where SR ≤ 50%. M1 assumes that the target
surface is the main determinant of interfacial hydration
structure. However, the results are highly system-dependent
(Table 2), and therefore, M1 works well for systems with

Table 1. Target−Ligand Complexes Investigated

PDB ID res. (Å) target ligand buriedness (%)a watersb

1B32 1.75 oligopeptide bindig protein A KMK 70 8

1B3F 1.80 oligopeptide bindig protein A KHK 70 7

1B46 1.80 oligopeptide bindig protein A KPK 69 8

1B4Z 1.75 oligopeptide bindig protein A KDK 69 10

1B51 1.80 oligopeptide bindig protein A KSK 70 9

1B58 1.80 oligopeptide bindig protein A KYK 71 7

1B5I 1.90 oligopeptide bindig protein A KNK 70 8

1B5J 1.80 oligopeptide bindig protein A KQK 70 10

1B9J 1.80 oligopeptide bindig protein A KLK 71 8

1BBZ 1.65 abl tyrosine kinase SH3 domain APSPYPPPP 57 6

1JET 1.20 oligopeptide bindig protein A KAK 68 8

1JEU 1.25 oligopeptide bindig protein A KEK 71 9

1JEV 1.30 oligopeptide bindig protein A KWK 69 6

1JYR 1.55 growth factor receptor-bound protein 2 Ace-S-Ptrc-VNVQ-NH2 34 3

1QKA 1.80 oligopeptide bindig protein A KRK 68 7

1QKB 1.80 oligopeptide bindig protein A KVK 70 8

1TP5 1.54 presynaptic density protein 95 KKETWV 42 4

2BBA 1.65 ephrin type-B receptor 4 NYLFSPDGPIARAW 49 10

2H2D 1.70 sirtuin KKGQSTSRHK-Alyc-LMFKTEG 32 5

2H2G 1.63 sirtuin histone H3 tail HA-Alyc-RVTIQKKD 47 7

2H2H 2.20 sirtuin histone H4 tail HA-Alyc-TVTSLD 45 2

2O4K 1.60 HIV-1 protease atazanavirc 71 6

2OLB 1.40 oligopeptide bindig protein A KKK 68 8

2X6M 1.62 camelid antibody fragment GYQDYEPEA 33 5

3QGJ 1.30 alpha-lytic protease Ace-AAP-2a1c 63 3

3QL9 0.93 transcriptional regulator ATRX histone H3 tail ARTKQTAR-M3lc-STGGKA 43 16

3RO3 1.10 G-protein-signaling modulator 2 QVDSVQRWMEDLKLMTE 45 12

3U43d 1.72 colicin-E2 immunity protein colicin-E2 12 22

4H9Nd 1.95 death domain-associated protein 6 histone H3.3 wild type/H4 38 49

4H9Od 2.05 death domain-associated protein 6 histone H3.3 G90 M mutant/H4 39 35

4H9Qd 1.95 death domain-associated protein 6 mutant histone H3.3/H4 38 38
aBuriedness was calculated as 50(SATarget + SALigand − SAComplex)/SALigand using surface areas (SA) from PyMol.39 bCounts of crystallographic water
positions located in the interface defined by a dmax = 3.5 Å (Methods). cNonamino-acid residues are defined in Table S8. dComplexes with protein
ligands of more than 100 residues.
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relatively small ligands, where the pocket is deep and the ligand
is well buried (Table 1).
As the success of target-based M1 depends on the actual

topography of the system, two additional strategies were
investigated involving the ligand structure in the prediction.
Method 2 (M2, Figure 1, Figure S8) works with the entire
target−ligand complex, i.e., water molecules can interact with
both faces during MD and MobyWat steps. Similar to M1, a
crude hydration procedure is performed at first, where the
entire complex is hydrated using pre-equilibrated water
positions as provided by the default hydration algorithm of
the MD software package (Figure S1). Intermolecular
interactions are optimized by a single MD simulation.
Thus, in M2, water−ligand interactions are calculated, as

well. In most of the cases, SR values improved considerably
compared to M1 (Table 2). However, despite the involvement
of the ligand structure and the optimization of interactions, the
first crude hydration step of M2 can easily result in void spaces
and non-optimal arrangement of the water molecules at the
interface due to the restricted access of hidden interface regions

to bulk water and their limited translational and rotational
freedom (Figure S1).
To overcome such limitations of M2, an additional hydration

step was introduced in Method 3 (M3; Figure 1, Figure S9). In
this step, the surface of the free target molecule is hydrated
without the ligand using short MD and a MobyWat steps as in
M1. Thus, an optimal hydration of the cavities can be achieved,
as the migration of water molecules is not limited to/from the
bulk (Figure S1). Having an optimally loaded target surface, the
ligand is positioned back so as to form the interface with the
target. This interface can be considered soaked, leaving as many
water molecules as possible for the next MD step (Figure 1) to
reduce the volume of unwanted void spaces. Finally, additional
MD and MobyWat steps are performed to re-equilibrate all
interactions of water molecules in the presence of the ligand
(Figure 1). The effect of clustering tolerance of the MobyWat
step was also investigated (Table S3), and 1.0 Å was found to
be the optimal value similarly to the prediction of surface
hydration.28 In terms of SR (Table 2), the overall efficiency of
M3 was the best among the three strategies investigated.
Although M3 involves additional steps, they are not very

Figure 1. Calculation of interfacial hydration structure and graph.
Method 1 (M1) uses only the target structure in molecular dynamics
(MD) and MobyWat steps. Methods 2 and 3 (M2 and M3) involve
both target and ligand structures in the predictive calculations. In
Method 3, additional MD and MobyWat steps were introduced for
complete filling up of void volumes of the interface. In the editing step,
a minimal ligand−water distance threshold was used to standardize the
removal of water molecules conflicting with the ligand (marked with
red).

Table 2. Efficiency of Hydration Methods Expressed as
Success Rates (SR)

methoda/match tolerance (Å)

M1 M2 M3

PDB ID /1.50 /1.75 /1.50 /1.75 /1.50 /1.75

1B32 50 75 100 100 100 100

1B3F 71 71 71 71 71 71

1B46 38 38 88 88 100 100

1B4Z 60 60 90 90 80 90

1B51 56 67 89 89 89 89

1B58 71 71 100 100 71 100

1B5I 38 50 88 88 88 100

1B5J 60 60 80 80 80 90

1B9J 38 63 75 75 75 88

1BBZ 50 50 83 100 100 100

1JET 50 50 75 75 63 75

1JEU 67 67 78 78 89 100

1JEV 100 100 100 100 100 100

1JYR 50 50 100 100 100 100

1QKA 57 57 86 100 100 100

1QKB 100 100 63 75 75 88

1TP5 50 75 75 100 100 100

2BBA 50 50 80 80 90 90

2H2D 80 80 60 80 100 100

2H2G 71 71 86 100 86 100

2H2H 100 100 100 100 100 100

2O4K 100 100 83 83 100 100

2OLB 50 50 100 100 88 88

2X6M 60 60 100 100 100 100

3QGJ 33 67 100 100 100 100

3QL9 69 69 81 88 94 100

3RO3 50 50 92 100 100 100

3U43 73 82 82 89 95 100

4H9N 57 59 94 96 88 94

4H9O 60 60 94 94 94 100

4H9Q 66 66 79 79 89 92

overallb 62 65 86 90 90 95
aA value of 100 refers to full match with experimental positions of
water oxygen atoms. bOverall SR is calculated from total counts of
calculated and reference water positions of all systems (eq 1).
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demanding computationally. M3 is therefore recommended if
complete (void-free, Figure S1) exploration of the hydration
structure of the complex interfaces is needed.
Although current explicit water models cannot reproduce all

properties of water,43 they have great advantages in simulation
of protein−water and water−water interactions, peptide and
protein folding,44−48 calculation of hydration,49 and binding50

thermodynamics. Selection and appropriate combination of a
water model and a protein force field is not trivial for any tasks.
For example, advanced four-site models such as TIP4P/2005
have certain advantages48 in simulating temperature-dependent
protein folding with the Amber 03 force field, and the SPC/E
three-site model had good performance for calculation of
hydration thermodynamics with three different force fields.49 In
the present study, we use the popular43 TIP3P water model51

combined with the Amber99SB-ILDN protein force field.52

This combination performed well in previous studies.28,52 We
also tested the TIP4P-OPLS/AA combination (Supporting
Table S7 in ref 28) for prediction of hydration structure and
found no significant increase in SR values over the TIP3P
model. Furthermore, simulations on hydration structure can
benefit from the high mobility of TIP3P allowing increased
sampling,46 which is important for accessing buried interfacial
regions. With advances in the precision of biomolecular force
fields and water models, we expect that the performance of the
methods of Figure 1 will further increase.
Reproducibility and External Comparisons. All three

methods of the present study are based on the generation of
MD trajectories of water molecules residing in the simulation
box. However, MD trajectories produced for the same system
may differ substantially from each other.28 For some reason,
this issue is often not considered in MD-based studies on
prediction of hydration structure, and tests of reproducibility by
evaluation of multiple MD trajectories are often missing. To
test the reproducibility of the methods, the predictions were
repeated three times for 12 systems (Figure 2) using three
different initial velocity distributions.
Six of the 12 systems were picked randomly (empty columns

in Figure 2), whereas the other six systems contain the largest
number of reference interface water molecules (gray columns in
Figure 2). Similar to the results of Table 2, the average SRs of
the repeated predictions show that M1 had the lowest overall
prediction efficiency (lowest columns in Figure 2) and M2 had
problems with reproducibility for certain systems probably due
to nonoptimal arrangements as described above (large error
bars in Figure 2). M3 proved to be the best method in the
reproducibility tests in terms of overall mean and standard
deviation of SRs (92 ± 5%).

The performance of M3 (expressed as SR) was compared to
the results of two independent, external studies using the same
complex interfaces. There are 14 complexes in Table 1 with
oligopeptide binding proteins which were used as test cases for
a geometrical method AcquaAlta.53 Details of our results
obtained with M3 and AcquaAlta are summarized in Table S4.
We found that M3 yielded an overall 10% increase in SR, and
for certain systems (1B32, 1QKB), the increase was more than
40%. The improved performance of our M3 method can be
attributed to the use of molecular dynamics simulations and the
calculation of water networks which is not done in AcquaAlta.53

In another recent Critical Assessment of Predicted Interactions
(CAPRI) project,29 predictions were performed for the
hydration structure of a protein−protein interface (3U43 in
Table 1) using various methods. In terms of SR, CAPRI
predictions ranged between 52% and 91% (Table S5) using a
relatively high match tolerance of 2.0 Å. The best performing
method with an SR of 91% was based on MD simulations,
whereas others were driven by previous knowledge on water
positions or homologies. For the same interface, M3 found all
crystallographic reference water positions (SR = 100%, Table
S5).
The SR values summarized in Table 2 and the above

comparisons with other studies show that the use of faces of
both partners of a complex structure is necessary for exhaustive
hydration of an interface. Neglecting the ligand structure may
result in loss of important ligand−water contacts and
incomplete determination of the interfacial hydration structure.
The use of an MD-based approach and filling steps of M3 are
crucial to eliminate cavities while accounting for water−water
interactions and allowing water mobility is essential for
complete exploration of the hydration structure.

Characterization of Hydration Networks. Along with
the full hydration structure (Table 2, Figure S2, Table S6), M3
also supplies the mobility of each interfacial water molecule
using a simple formula (eq 2). The M3-calculated water
positions are listed and numbered in an increasing order of
mobility scaled uniformly between 0 and 100. This M3 list of
interfacial water molecules and their mobility values form the
foundation of our new approach for the characterization of
hydration networks. The characterization protocol was
implemented as the NetDraw mode of program MobyWat
(see Methods and Figure S10). NetDraw determines the
interactions of interfacial water molecules with each other, and
the bulk water and solute (ligand + target) molecules result in
network graphs with mobility assigned to all water nodes.
The interfacial hydration networks of two systems, the

oligopeptide binding protein A (1QKA), and the transcriptional

Figure 2. Reproducibility and efficiency of hydration methods. Interface hydration was performed in triplicate for six randomly selected (empty
columns) and the six largest (gray columns) systems by all three methods. Efficiencies are plotted as mean success rate (SR) values. Reproducibility
is shown as the corresponding standard deviations (error bars). Method 3 (M3) has the best overall efficiency and good reproducibility.
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regulator ATRX (3QL9) with radically different topographies
and ligands are shown in Figure 3C and D. System 1QKA has a
tripeptide ligand deeply buried (Figure 3A, Table 1) in the
target protein, with a compact interface involving a small
number of waters and limited communication with the bulk.
The relatively large ligand of system 3QL9 is an N-terminal
peptide tail of a histone H3 protein trimethylated on Lys9.
Coding of epigenetic regulation is attributed40,42 to such
methylation and other post-translational modifications of Lys
and Arg side-chains in H3. The histone peptide tail in 3QL9
binds at a shallow surface of the target transcriptional regulator
protein (Figure 3B) leaving the Arg and Lys side-chains open
to interactions with water molecules of the bulk.
Static Subnets. In the hydration networks of both systems,

subnets of low (≤50) mobility water nodes can be observed,
where 50 is the approximate inflection point of the mobility
curve of 3QL9 (Figure 3F). The M3-listed top 7 of 14 (50%)
and 6 of 48 (12.5%) water positions belong to this category for
systems 1QKA and 3QL9, respectively. Such low mobility
water molecules usually have more than two different contacts
with the solute (red edges in Figure 3 C, D), and they are
essential parts of its structure.54 In extreme cases of water #1 in
1QKA (Figure 3C) and water #4 in 3QL9 (Figure 3D), all four
possible hydrogen bonds are formed mostly with solute
partners. The network graph (Figure 3D) is very densely

connected around the low mobility nodes compared to other
regions of the network. At the corresponding low mobility
domains (gray background in Figures 3 E, F) of accumulative
curves of interaction counts, the dominancy of interactions with
solute faces can be observed. Here, the curves representing
interactions of interface water molecules with the solute run
above the other curves accounting for interactions with water.
The above findings suggested the introduction of an upper

mobility limit of 50 as an identification criterion of static nodes
in the characterization protocol. On the basis of such simple
criteria (Methods), the small interfacial hydration network of
system 1QKA was characterized as almost completely static
(Figure 3C), whereas in 3QL9, the static edges were gathered
in a well-defined core (Figure 3D). In both cases, static subnets
are centered at charged ligand side-chains of the coding Arg and
Lys residues (waters #1−4, Figure 3 A, B) or strong H-bonding
backbone amide group (water #5, Figure 3B). Thus, the
number of contacts with bulk waters is marginal in static
subnets (bulk curve in the gray region of Figure 3 E, F). Such
H-bonding networks of buried regions isolated from bulk water
are of central importance of kinetic stability of complexes due
to shielding of target-ligand H-bonds by the solute.30 Besides
target−ligand H-bonds, the above static water−water subnets
are also often shielded from the bulk, and therefore, their
presence and detection may be important for ligand design. In

Figure 3. Characterization of hydration networks of protein−peptide complex interfaces of systems 1QKA (A, C, E) and 3QL9 (B, D, F). Positions
of water molecules (A, B) were calculated by M3 and used for generation of hydration network graphs (C, D) of the interfaces. Static subnets of red
edges are represented in both systems (C, D). Accumulated count of interactions of interface water molecules (E, F) with solute (protein + peptide)
molecules, each other, bulk waters, and all waters (interface + bulk) are shown as functions of serial numbers of interface water molecules as listed by
M3. The corresponding mobility values are also plotted as a separate curve. In the low (≤50) mobility region, the curves have gray background.
Numbering of water positions (nodes) follows the numbering of M3 lists throughout the figure. For clarity, labels were attached only to water
molecules and residues discussed in the text. See Figure S2 and Table S6 for distances of M3 water positions (A, B) to matching references.
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the case of system 3QL9, the static hydration subnet (Figure
3D) anchors the N-terminal part of the histone peptide tail to
the protein target (Figure 3B). The rest of the 3QL9 hydration
network contains water molecules of increased mobility and is
discussed in the next section.
Dynamic Subnets. Whereas static subnets bridge between

the solute faces, the role of dynamic segments of the interfacial
hydration structure is fairly complex. The accumulated
interaction plot of system 3QL9 (Figure 3F) shows that the
static region of low mobility waters (gray background) is
followed by a steep ascend for interactions with (all) water
molecules and a saturation phase for the count of solute
contacts. Indeed, the corresponding hydration subnets (black
edges in Figure 3D) of the 3QL9 interface contain water
molecules of high mobility (>50) hydrogen-bonding to each
other and an increased count of contacts to the bulk. The high
rate of exchange with each other and the bulk is an important
feature of the water molecules of these subnets, and therefore,
they can be considered as “dynamic”. Such dynamic networks
with changeable nodes and edges often occur in real life
problems, whereas traditional network analyses work on static
networks.55 Thus, a distinction between dynamic and static

networks is common55,56 in network science, and this
classification was adopted for the hydration subnets in the
present study. Due to a small number of contacts to solute
partners and increased topological distances, it is shown (Figure
3D) that the density of edges in dynamic subnets is small
compared to the static ones. Whereas the static hydration
subnet anchors the histone peptide at its N-terminus to the
target, dynamic water nodes #8 and #9 stabilize the binding of
the mobile C-terminus (Figure 3B, D). Sometimes dynamic
nodes form separate graphs (waters #15, #23, and #42, Figure
3D). Water molecules of the highest mobility values can be
considered as “bulk-like” nodes starting from about #30, where
the curve of interaction counts with “all waters” exceeds that
with solutes (Figure 3F) due to a sharp increase in bulk
contacts. The network graph of 3QL9 (Figure 3D) also shows
that subnets of dynamic (bulk-like) water molecules can affect
topologically distant static ones. For example, waters #21 and
#36 affect #3 via #37, waters #20 and #43 affect #6 via #17, and
so on. Such high-level connections of the dynamic hydration
subnet can provide an “access channel” from the static regions
toward the bulk, which is an important factor of (de)stabilizing
of the complexes30,57 via, e.g., destroying the above-mentioned

Figure 4. Stability of a histone−chaperon complex requires the presence of a continuous, static hydration subnet in the interface. (A) Ternary
complex of DAXX-H3.3-H4 proteins is stabilized by hydration network connecting key residues41 of the interface region (box) at the mutated G90
residue of the three proteins. Positions of interfacial water molecules were calculated by M3 and used for generation of the complete hydration
network of the wild type complex 4H9N (B) and the G90 M mutant 4H9O (Figure S6). Interfacial hydration graphs at G90 were separated and
further characterized, and a continuous static subnet (marked with gray background in B, D) could be identified in 4H9N (C,D). It was demolished
in 4H9O (E, F).
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protecting shields30 above the H-bonds of the buried, static
regions.
Beyond the Hydration Structure. Static and moderately

dynamic interface water positions were found by the M3
method and X-ray crystallography (Figure S2) equally well. M3
detects most of these positions with low mobility as top
candidates (see Figure S3 for a performance analysis and
validation details). Dynamic positions with high mobility (bulk-
like behavior) were identified only by M3, and those are
missing from the crystallographic interface structure. However,
the existence of the corresponding continuous void spaces in
the interface volume is improbable (Figure S4). Therefore, the
void-free hydration of the interface is an important feature of
M3. Determination of the full hydration structures with all
atoms and contacts led to exploration of the complete
interfacial hydration networks including the dynamic regions.
Using the network graphs equipped with mobility values
(Figure 3 C, D) of water nodes allowed the above
characterization of hydration networks by their decomposition
into static and dynamic subnets. A further example on the use
of subnet characterization for system 3U43 is shown in Figure
S13.
Case Study of a Histone−Chaperone Interface. Like

the histone H3 involved in system 3QL9 (Figure 3), H4 is an
important constituent of the nucleosome. The hydration
network of a DAXX-H3.3-H4 ternary complex (4H9N, Figure
4A) was investigated here. DAXX (also known as death-
associated protein 6) is a chaperone protein, involved in the
pathophysiology of several tumorous diseases.58−60 It was
shown41 that the integrity of the interfacial hydration structure
(Figure 4C) between reference residues Y222, E225, and K229
of DAXX and G90 and K64 of H3.3 is crucial for the stability of
the wild type ternary complex 4H9N. A single mutant G90 M
of H3.3 (4H9O) resulted in an approximate 50% reduction in
its binding to DAXX.41 It was suggested that the replacement of
water molecules by the Met side-chain alone does not explain
reduced binding, and it is rather a deintegration of the entire
interfacial hydrogen bond network, which is responsible for the
effect.41

For investigation of the deintegration of the interfacial
hydration network, void-free hydration structures of the wild
type (4H9N) and mutant (4H9O) ternary complexes were
determined by M3. This was particularly challenging, as the
protein partners are enveloped into each other, and large,
nonburied (Table 1) interfaces are formed between their
interacting chains (Figure 4A). The M3-calculated hydration
structures of both 4H9N and 4H9O were validated using the
available crystallographic water positions, and SRs of about 90%
were achieved (Table 2, Figure S2). Similar to the systems of
Figure 3, the complete interfacial hydration networks were
produced from the hydration structures (Figure 4B, Figures S5
and S6).
The above-mentioned key protein residues41 were used as

references for separation of graphs (Figure 4D, F) relevant for
network analysis of the interface region at the mutated G90
residue (Figure 4A, C, E, Figures S5 and S6, Methods, Figure
S12). In the separate graph of 4H9N (Figure 4D), central water
node #75 can be observed connecting three branches. The
branch containing seven reference nodes on the left side of
Figure 4D is a continuous static subnet marked with gray
background and red lines. This static subnet is a compact core
within the entire network (Figure 4B) and has high density of
connections (red edges) similar to the static subnet of system

3QL9 described in Figure 3D. Indeed, the vast majority of the
edges (81%) in this branch link to protein nodes, whereas this
ratio is less than a half (40%) in the entire graph (Table S7). A
total of 48% of the protein nodes of the entire graph are linked
in the static branch. In the case of 4H9O, this value is decreased
to 26% (Table S7) reflecting a remarkable reduction of the
static subnet. The differences between 4H9N and 4H9O are
also striking if comparing the morphology of the corresponding
hydration graphs. In the graph of 4H9O (Figure 4F), the
continuous static branch was demolished, and the distribution
of the reference protein nodes and static edges became diffuse if
compared to 4H9N (Figure 4D). This difference is also shown
between Figure 4C and E, which show the spatial plot of the
static subnet and the surrounding protein parts in the cases of
4H9N and 4H9O, respectively. In addition, certain protein
nodes (K229, S57) have changed their positions in the 4H9O
graph (Figure 4F) or disappeared like Q93.
The above exploratory work revealed the presence of a

continuous static core in the interfacial hydration network of
the stable, wild type ternary protein complex (4H9N). The
diffusion of the static core and rearrangement of its links
resulted in a dynamic, deintegrated hydration network leading
to the reduced binding41 of the protein partners in the mutant
system 4H9O.

■ CONCLUSIONS

Hydration structures of complex interfaces were explored using
a new tool M3 based on all-atom MD calculations and
accounting for explicit water−water contacts and mobility. M3
provided hydration structures of interfaces between proteins
and peptides with high accuracy and reproducibility allowing
construction of their complete network graphs.
On the basis of the graphs and node mobility values from

M3, an approach was introduced for characterization of
interfacial hydration networks via their decomposition into
static and dynamic subnets. It was found that static subnets
consisting of nodes of low (≤50) mobility appear at buried sites
and around highly charged ligand moieties. Static subnets
usually have a high density of edges, and they can dominate
small hydration networks. They can also form the cores of
interfacial hydration networks of large protein−protein
complexes and are often essential for strongly linking of the
partners. For extended interfaces with several interacting water
molecules, the presence of dynamic subnets becomes
considerable. Dynamic subnets connect water and solute
nodes at even large topological distances and provide access
channels between the static and bulk regions.
Our results on exploration and characterization of interfacial

hydration networks are implemented in a standalone, open
source software tool, which can be used for prediction of
structure and stability of biomolecular complexes and engineer-
ing of new ligands (Figure S15).

■ METHODS

Preparation of systems. The protein databank (PDB)
structure of the target (M1 and M3) or the target−ligand
complex (M2) was used as primary input of the calculations. All
crystallographic waters (M1, M2, and M3) and the ligand
molecule (M1 and M3) were removed. Missing atoms of solute
side-chains (both protein and ligand) were reconstructed with
Swiss PDB Viewer.61 Solute amino acids absent in the
crystallographic structure were not remodeled. The structure

Journal of Chemical Information and Modeling Article

DOI: 10.1021/acs.jcim.5b00638
J. Chem. Inf. Model. 2016, 56, 148−158

154

               hetenyi.csaba_83_23



was placed in a dodecahedral box using a distance criterion of 1
nm between the solute and the box. Void spaces of the box
were filled by explicit TIP3P water molecules51 with the
standard gmx solvate routine (Figure S1) of GROMACS.62,63

In the case of the M3 complex, input geometry of water
molecules of the interface region were obtained as described in
Figure 1 and in the Calculation of Interfacial Hydration
Structure section. Counterions (sodium or chloride) were
added to neutralize the system.
Energy Minimization. A uniform procedure was applied

for molecular mechanics energy minimization in all cases prior
to the MD steps. In the first step, a steepest descent (sd)
optimization was carried out, with convergence threshold set to
103 kJ mol−1 nm−1. This was followed by a conjugate gradient
(cg) calculation, where the convergence threshold was set 10 kJ
mol−1 nm−1. Position restraints were applied on solute heavy
atoms at a force constant of 103 kJ mol−1 nm−2 in both steps.
Distance restraints were applied between structural ions and
coordinating amino acid residues at a force constant of 103 kJ
mol−1 nm−2 in the cases of systems 2H2D, 2H2H, 2H2G,
3QL9, and 3U43. All calculations were performed with
programs of the GROMACS software package,63 using the
AMBER99SB-ILDN force field.52 During the M3 protocol, the
above energy-minimization was performed twice (Figure 1),
that is, once for the target and once for the reassembled target−
ligand complex. Before network analyses, a four-step protocol
was applied for energy minimization of predicted water
positions following an sd-cg-sd-cg pattern with parameters of
sd and cg methods described above. During the first two steps,
all solute heavy atoms and the oxygen of the predicted
interfacial water molecules were position restrained, and bulk
waters and ions were released. In the last two steps, position
restraints were not applied on predicted waters, and only solute
heavy atoms were position restrained.
Parameters of Nonstandard Residues. For nonstandard

(nonamino-acid) residues of atazanavir (2O4K), phosphotyr-
osine (1JYR), acetyl-lysine (2H2D, 2H2G, 2H2H), 2S-2-
aminopropan-1-ol (3QGJ), and trimethylated lysine (3QL9),
molecular mechanics force field parameters were obtained from
the GAFF force field.64 The Lewis structure of these residues
can be found in Table S8. The nonstandard residues (except
atazanavir) were first capped on both terminals, with acetyl and
N-methyl groups and preminimized with PC Model 965 using
MMFF94 force field.66 Subsequently, semi-empirical quantum
mechanics optimization was performed with MOPAC-200967

using the PM6 parametrization.68 Then, the completely
minimized molecule was uploaded to RED server69 to perform
ab initio geometry optimization to obtain partial charges by
RESP-A1B charge fitting (compatible with the AMBER99SB-
ILDN force field). The calculations were performed with the
Gaussian09 software,70 using the HF/6-31G* split valence basis
set.71 The caps on the termini were excluded from charge
derivation, and charge restraints were applied on these atoms.
Normal mode analysis was performed using GAMESS72 to
ensure that the final geometry is in energy minimum. Bond
stretching, angle bending, and torsional parameters were
assigned with the parmchk utility of AmberTools 1.5 program
package73 and used together with the partial charges to build
GROMACS residue topology entries for the nonstandard
residues.
Molecular Dynamics. After energy minimization, 1 ns-long

NPT MD simulations were carried out with a time step of 2 fs.
For temperature-coupling, the velocity rescale algorithm74 was

used. Solute and solvent were coupled separately with a
reference temperature of 300 K and a coupling time constant of
0.1 ps. Pressure was coupled the Parrinello−Rahman
algorithm75−77 with a coupling time constant of 0.5 ps,
compressibility of 4.5 × 10−5 bar−1, and reference pressure of
1 bar. Particle Mesh−Ewald summation was used for long-
range electrostatics. van der Waals and Coulomb interactions
had a cutoff at 11 Å. Coordinates were saved at regular time
intervals of 1 ps yielding 1.001 × 103 frames. Position and
distance restraints were applied as described in the Energy-
Minimization section. After MD, all frames were extracted from
the trajectory. Periodic boundary conditions were treated
before analysis to make the solute whole and recover hydrated
solute structures centered in the box. Each frame was fit to the
original protein crystal structure using C

α
atoms. A detailed

description of this procedure can be found in the Supporting
Information. The final trajectory including all atomic
coordinates of all frames was saved as portable binary files
and was used for subsequent calculation of hydration structures.
During the M3 protocol, the above MD simulation was
performed twice (Figure 1), that is, once for the target and
once for the reassembled target−ligand complex. During
reproducibility tests (Figure 2), MD simulations were
performed in triplicate using three different sets of initial
velocities. In the case of M3, triplicate MD simulations were
also performed both for the target and for the reassembled
target−ligand complex.

Calculation of Interfacial Hydration Structure. To
select water molecules residing in the target−ligand interface,
distances between its oxygen atom and the closest heavy atom
of the solute molecules were measured. A water molecule was
considered interfacial if such a distance was smaller than or
equal to a predefined maximal distance limit (dmax) for both
the ligand and target partners. The program MobyWat28 was
updated for the present study to handle interfaces and do
editing at the soaking step. The new version 1.1 of MobyWat
was used for prediction of position of water molecules from
MD trajectories. The source code, executable binary, and user’s
manual of MobyWat 1.1 will be made freely available at the
program’s Web site www.mobywat.com at the time of
publication. In the case of predictions of positions of interface
water molecules (M2 and M3), a dmax of 3.5 Å an identity-
based (IDa) clustering were applied with clustering and
prediction tolerances of 1.0 and 2.5 Å, respectively. In the
cases of M1 and M3, predictions were also performed for the
entire surface of the target with dmax, clustering, and prediction
tolerances of 5.0, 1.5, and 2.5 Å, respectively, where dmax refers
to the distance from the target only. During M3, the ligand−
target complex was reassembled after hydration of the target
surface (Figure 1). For this, the target part of the holo and the
hydrated apo systems were fitted on the top of each other, and
the ligand was used together with the hydrated target (soaking).
Water molecules conflicting with the ligand structure were
excluded using the editing mode of MobyWat at a minimum
distance limit (dmin) of 1.75 Å prior to the second MD
simulation. The quality of predictions was checked using the
validation submode of MobyWat and expressed as success rates
according to eq 1.

=SR 100
Count of matches

Count of reference water positions
%

(1)

Crystallographic positions of water molecules within a dmax
of 3.5 Å measured from both target and ligand were used as
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references irrespective of their B-factors. Matches were
identified if the distance between predicted and reference
water oxygen atoms was below a predefined tolerance of 1.5 Å
(match tolerance). For further information on the algorithms of
MobyWat and a collection of the result files of the present
study, please, refer to the user’s manual, Figures S7−S9, and
results files in the Supporting Information. Descriptions of
success and failure cases are provided in Figure S14.
Network Analyses. The NetDraw mode (Figure S10) of

MobyWat ver. 1.1. was written for the present study and was
used for analysis and characterization of the hydration network
of a target−ligand interfaces. Using Protein Databank (PDB)
files including energy-minimized structures including solute,
predicted interface molecules, and bulk water molecules as an
input, NetDraw produces a two-dimensional interaction
network graph of the interface as lists of edges and nodes.
Here, a water molecule or a residue of the solute was
considered as a node. NetDraw detected and listed atomic pairs
of the partner groups (ligand, target, interfacial water, bulk
water) with heavy atom distances up to maximal distance limit
of 3.0 Å. The lists are stored in distance files. The list of edges
of the graph is distilled from the distance files by eliminating
redundancies and distances (edges) to carbon atoms (C-
filtering). The number of edges per node is limited to four,
using the top four shortest edges only (four-filtering). The list
of nodes was produced by simple book-keeping from the list of
edges. All lists are produced with and without considering bulk
water nodes. Finally, NetDraw produces a classification of the
nodes and edges. A node is classified static if it is a solute
(ligand/target) node or connected to four nodes of any type or
is connected to at least three solute nodes or has a mobility
value smaller than or equal to 50. Otherwise, the node is
classified as dynamic. An edge is defined static if it connects two
static nodes; otherwise, it is dynamic. The mobility values were
produced by MobyWat for every (ith) predicted water position
during the prediction steps and can be transferred to the
network analysis steps as B-factors in the PDB files. Mobility
values were calculated from the corresponding occupancy (Oi)
values by eq 2, where Oi is the occurrence of a water molecule
with the same ID in the frames of a trajectory divided by the
number of frames (1.001 × 103) in our case. Mobility scales
between 0 and 100 where zero corresponds to the least mobile
predicted interface water position. The predicted positions are
listed in an increasing order of mobility.

=

−

−

=

O O

O O
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i

i

i

i

max

max min
max/min

(2)

With the above classification, NetDraw helps distinguish
between static and dynamic subnetworks of the entire
interfacial network graph, which can be used for character-
ization of integrity of the interface and prediction of complex
stability as described in Results and Discussion (Figure S12).
MobyWat provides a hydration network graph with node
mobility and dynamicity information for the nodes and edges in
file formats commonly used by network visualization and
analysis programs. In the present study, Gephi,78 a graph
analyzing tool, was used for visualization of the graphs
produced by NetDraw. Layout was created with the ForceAtlas
layout option, with “Attraction distribution”. Node sizes were
scaled by size with mobility information. In the case of systems
4H9N and 4H9O, a core graph of the interfacial hydration
network surrounding residue G9041 was separated for further

analyses (Figure 4). The separation of the graph was uniformly
done for the two systems by cutting edges beyond the
topological distance of the three edges measured from the
reference nodes, key residues of the interface (Table S7).41 In
the case of Figure 3, interactions (edges) between interface
water and other nodes were accumulated pair-wisely for all
types of nodes and plotted as a function of increasing list serial
number (increasing mobility) of the predicted interface waters.
Original files of network analyses are provided as a results file in
the Supporting Information.
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a b s t r a c t

Advancement of computational molecular dynamics allows rapid calculation of large biomolecular
systems in their water surroundings. New approaches of prediction of hydration networks of biomole-
cular surfaces and complex interfaces are also based on molecular dynamics (MD). Calculations with
explicit solvent models can trace thousands of water molecules individually on a real time scale, yielding
information on their mobility, and predicting their networking with biomolecular solutes and other
water partners. Here, we investigate the effect of key parameters of molecular dynamics simulations on
the quality of such predictions. Accordingly, systematic scans on temperature, pressure, force field,
explicit water model and thermodynamic ensemble are performed. Explanations of optimal parameter
values are provided using structural examples and analyses of the corresponding hydration networks.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Structure and function of water is a central question of science
and technology. Water is important as bulk solvent, reaction/
interaction partner, and building block. There are specific examples
where networks of hydrogen bonds formed between water and
protein molecules stabilize active protein conformations [1,2], and
promote the folding process [3e5]. Water molecules mediate the
assembly of b-amyloid protofilaments of Alzheimer's disease
[6e10], participate in the binding process of protein-RNA associa-
tion [11] and playing a fundamental role in proton transfer re-
actions [12e20]. Entrapped in the protein interior, they have a
special stabilizing effect [21,22]. Precise structure-based drug
design requires the inclusion of water molecules influencing ligand
binding [23e35].

There are static and dynamic computational methods of pre-
diction of the above hydration networks of protein surfaces and
interfaces. Among static methods there are knowledge-based

[36,37], structural [38,39], and docking-based [40] approaches.
Molecular dynamics (MD) combined with explicit water models
can handle all interactions of water molecules including not only
solute-water, but also water-water contacts. They also account for
the exchange between the bulk and bound waters. MD has become
a powerful engine of various methods of prediction of hydration
structure of proteins targets and their complexes with ligands
[41e45]. It is widely applied in drug discovery [46e49], and the
analysis of protein-protein interactions [50]. With the continuous
development in hardware and software technology modelling of
structural changes occurring at computationally demanding time
scales and large molecular systems has become feasible. GPU cal-
culations of non-bonded interactions [51e53], and the appearance
of dedicated hardware [54,55] have also expanded the frontiers of
MD calculations.

Present MD-based predictors of hydration structure can be
further categorized. There are approaches for calculation of average
solvent densities and proximal radial distribution functions around
different atom types derived from MD simulations to predict hy-
dration shells around proteins [42,56e61], or to analyse hydration
structure around macromolecules [59,61]. Other, occupancy-based* Corresponding author.
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algorithms utilize all-atom MD with explicit solvent for analysis
[62] and prediction of hydration sites [41,63e69]. The latter MD
algorithms work with individual positions of hydrating water
molecules instead of average densities and apply various
occupancy-based evaluation schemes to obtain hydration sites, like
time averaged positions [68] and/or identity-based clustering with
mobility scores [70]. The latter approach was found useful for
prediction of complete hydration structure of protein surfaces [70]
and interfacial hydration networks of target-ligand complex in-
terfaces [71] and it was implemented in a standalone program
MobyWat. Hydration structures predicted by the program showed
on average 81% and 90% agreements with crystallographic water
positions, in the cases of protein surfaces and interfaces,
respectively.

Accuracy of predicted hydration structures produced by both
approaches may be largely influenced by the various properties of
MD simulations. Intensive parameters such as temperature and
pressure, the choice of the right force-field, type of ensemble and
explicit water model are all determinants of prediction efficiency.
For example, explicit water models are widely applied in biomol-
ecular simulations and several solventmodels were developed [72].
However, it is often not trivial, which water model is the most
suitable for certain simulations and the calculations of water-
protein and water-water energetics. It was demonstrated, that the
water model can significantly affect the results of the simulations of
A-RNA duplexes [73e77], peptide and protein folding [73e77], the
calculation of hydration thermodynamics [78,79] and the binding
free energy of ligands to proteins [78]. The present study in-
vestigates the effect of the above key parameters of MD on pre-
diction quality and provides explanations on the resulted optimal
conditions via analyses of corresponding examples on hydration
networking.

2. Results and discussion

Standardizedmethods [70,71] were applied for the prediction of
hydration structures. Consecutive MD and a MobyWat steps were
used (Methods, Fig. 1) for predictions on protein surfaces (once)
and in interfaces (twice). The present study is based on the results
of extensive, repeated MD simulations (Methods). A standard
validation protocol (Methods) [70,71] was applied for an automated
and unbiased qualification of predictions by comparison of pre-
dicted and experimental (reference) hydration structures.
Formerly, the validation protocol had been applied for calibration of
tolerance values and selection of the best clustering scheme for the
program MobyWat [70]. Briefly, the validation protocol is based on
the identification of matches between experimental and predicted
water positions. A match is identified if the distance between
predicted and reference water oxygen atoms is below a pre-defined
value of match tolerance (mtol, Methods). From the matches, a
success rate (SR) value is calculated (Eq. (1), Methods), where the
denominator contains the count of reference water positions in the
crystal structure which are within the maximal distance limit
(dmax) as defined in Methods. An SR value of 100% indicates a
complete match, and optimal MD conditions. Besides MobyWat
predictions, SR values were also calculated for individual MD
frames, as well. In these cases, symbol SRn is used throughout in
this text, where n denotes the serial number of an MD frame. Thus,
SRn values are based on raw data referring to the MD frames and
used for comparison only.

SR ¼ 100
Count of matches

Count of reference water positions
% (1)

2.1. Simulation temperature

Beyond algorithmic tolerances and schemes [70,71], the
outcome of predictions is also influenced by various parameters of

Fig. 1. Prediction of hydration structures of proteins and protein-ligand interfaces
using standardized methods with MD simulation and MobyWat steps. In the case of an
interface, MD and MobyWat steps were repeated in the presence of the ligand
molecule.
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the MD simulations (Introduction). Simulation temperature (T) is a
key intensive parameter of MD calculations. It determines the
starting velocity distribution of the system, and is inversely pro-
portional to the self-diffusion coefficient of water as proposed by
the Stokes-Einstein equation and revisited by recentmeasurements
[80,81].

A branch of MD-based prediction methods such as MobyWat
uses occupancy/mobility information (Introduction), and therefore,
their prediction quality may largely depend on T. Moreover it was
found that the fraction of high mobility water molecules is directly
correlating with simulation temperature [71] (Supplementary
Fig. S11 of Ref 71). However, previous studies were restricted to a
single value (T¼ 298 [67], [82] or 300 [70,71] K) and the effect of T
on SR has not been investigated. In the present study, a systematic
scan was performed on a wide range between 75 K and 368 K
including twenty-five individual simulation temperatures and the
corresponding change in prediction quality. The Amber99SB-ILDN
[83] force field combined with TIP3P water model [84] was
applied at all temperatures.

2.1.1. Surface hydration

In the first part of the investigations, systems 2O9S, 2VB1, 3NIR
were involved (Table 1). Predictions of water positions were per-
formed on the entire protein surfaces. All predictions were

reproduced five times with different initial velocity distributions
(Methods), and the corresponding average and standard deviation
of SR values were calculated and shown in Table S1. A gradual in-
crease in SR was observed between 75 K and 200 K (Fig. 2, S1-S2).
The average SR of predictions increased by 20, 25, and 20%, for the
above three systems, respectively (Tables S1eS3). On higher tem-
peratures SR fluctuates around 80% with the highest mean SRs of
82, 89 and 84%. These findings can be readily explained by simple
considerations using Eq. (2). At low temperature (75 K) diffusivity
of water molecules is low (Eq. (2)), their movement is restricted
(frozen) and they mostly vibrate around their initial positions.
Thus, less raw water positions are piped into the clustering algo-
rithm of MobyWat from the trajectories.

Consequently, at a high temperature (368 K) more water posi-
tions can be predicted than at a low temperature (75 K) for the
same protein (Fig. 2) which is one reason of the increase in SR. For
additional explanations, network graphs of the predicted hydration
structures were produced by the NetDraw mode of MobyWat
(Methods). Based on graph information nodes and edges were
classified (Methods) into static and dynamic categories. The ratio of
dynamic nodes among all nodes was foundmore than 15% higher at
368 K than at 75 K (Table S4). This resulted in extensive dynamic
subnet regions at 368 K (red edges in Fig. 3) interconnecting and
stabilizing water positions in the static subnets [71], and an

Table 1

Systems investigated in the present study.

PDB
code

System (ligand) Resolution
(Å)

Crystallization T
(K)

Data collection T
(K)

Data collection p
(Mpa)a

No. of watersa
b

Surface hydration
2O9S SH3 domain from ponsin 0.83 nag 100 na 108
2VB1c Hen egg white lysozyme 0.65 292 100 na 144
3NIR Crambin 0.48 na 100 na 65
Case study
4WLDd Hen egg white lysozyme 1.54 293 298 0.1 93
4WLTd Hen egg white lysozyme 1.60 293 298 190 109
4WLXd Hen egg white lysozyme 1.60 293 298 280 117
4WLYd Hen egg white lysozyme 1.62 293 298 380 127
4WM1d Hen egg white lysozyme 1.60 293 298 500 129
4WM2d Hen egg white lysozyme 1.60 293 298 600 135
4WM3d Hen egg white lysozyme 1.55 293 298 710 137
4WM4d Hen egg white lysozyme 1.60 293 298 800 144
4WM5d Hen egg white lysozyme 1.60 293 298 890 151
1BGIc Hen egg white lysozyme 1.70 310 283 na 96
1IEEc Hen egg white lysozyme 0.94 293 110 na 151
1LPIc Hen egg white lysozyme 2.00 na 278 na 64
1V7Sc Hen egg white lysozyme 1.14 313 290 na 138
2F2Nc Hen egg white lysozyme 1.60 300 277 na 133
2Z18c Hen egg white lysozyme 1.15 Na 90 na 143
3LZTc Hen egg white lysozyme 0.93 296 120 na 182
3WPJc Hen egg white lysozyme 2.00 293 300 na 61
3 ZEKc Hen egg white lysozyme 1.43 na 298 na 77
4AGAc Hen egg white lysozyme 1.50 na 63 na 136
4LYOc Hen egg white lysozyme 2.05 >297f 285 na 47
4LZTc Hen egg white lysozyme 0.95 296 295 na 124
4NGIc Hen egg white lysozyme 1.70 288 125 na 113
4ZIXc Hen egg white lysozyme 1.89 nae 273 na 82
Interface hydration
3RO3 G-protein-signaling modulator 2 (QVDSVQRWMEDLKLMTE) 1.10 288 100 na 12
3U43 colicin-E2 immunity protein (colicin-E2) 1.72 na 100 na 22
4H9O death domain-associated protein 6 (histone H3.3 G90M mutant/

H4)
2.05 277 na na 35

Notes to Table 1.
a Atmospheric pressure was assumed, where no pressure data was provided.
b Number of crystallographic water molecules under bmax¼ 100Å

2 and dmax¼ 3.5Å.
c HEWLs used in the simulations investigating the efficacy of simulating on data collecting temperature.
d HEWLs used in the simulations investigating the effect of simulation pressure.
e Room temperature was specified.
f According to Wang et al.
g Non-available.
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increase of SR. Such a stabilization effect of dynamic networking
cannot work at 75 K, where rarely interconnected static (blue)

regions dominate in a relatively small graph. A close-up of a
representative situation is shown in Fig. 4, where static water po-
sitions, 3611, 3666 and 3674 connected to D835 and E839 and
positioned in deep pockets were reproduced at both temperatures,
and the dynamic ones were found only at 368 K (Fig. 4). In the
hydration graph produced at 75 K small separated sub-graphs can
be observed. On 368 K the number of sub-graphs was increased,
densely interconnected by dynamic water nodes (3663 and 3729)
located on flat surfaces.

Whereas efficient exploration of available binding sites requires
the increase of temperature, very high temperature may also have
an antagonistic effect on SR resulting in high mobility, low clus-
tering occupancy, and finally, the saturation of SR curves (Fig. 2, S1-
S2) beyond 200 K. Besides per-trajectory SR values of predictions,
such differences between temperatures can be illustrated by per-
frame SRn values calculated by the Analysis mode of MobyWat
(Methods) and the corresponding statistics is provided in Tables S5
and S6. For each system and starting velocity distribution combi-
nation (MD trajectory) there is a single SR value and 1001 SRns.
Thus, SRn reflects fluctuation (evolution) of hydration layer during
an MD simulation. Statistics of SRn shows that its fluctuation is
temperature-dependent (Tables S5 and S6). An example of protein

Fig. 2. The effect of simulation temperature on success rates of prediction of hydration
structure of protein surface (system 2VB1). Each data point represents an average
succes rate value calculated from five simulations with different starting velocity
distributions. Error bars denote standard deviations.

Fig. 3. Top: matches of predicted and experimental water positions on the surface of SH3 domain from ponsin (2O9S) at 75 and 368 K, respectively. Match distances are shown in Å
for some of the matches for comparability. Bottom: the corresponding hydration network graphs produced from predicted water positions. The arrow points to a region around
negatively charged amino acids D835 and E839 further discussed in Fig. 4. Further details of the analysis of temperature dependency of the hydration network are provided in
Supporting Table S14 and Fig. S12.
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HEWL (system 2VB1) in Fig. 5 shows that the fluctuation of per-
frame SRn values is significantly higher at 368 K than at 75 K, due
to the above-mentioned differences in water mobility. The average
SRn values are also higher on 368 K than on 75 K (Tables S5 and S6)
remain below the average SR (84%) achieved with IDa clustering.

2.1.2. Interface hydration

In the cases of complex (protein-protein and protein-peptide)
interfaces of systems 3RO3, 3U43, 4H9O (Table 1) a similar trend
can be observed (Fig. 6, S3-S4) as in the previous three cases of
hydration of protein surfaces. On the same interval (T¼ 75e368 K)
the increment of average prediction SRs is significant. Analysis runs
were performed on trajectories of interface calculations too. Fluc-
tuations in SRn followed similar patterns to analysis of protein
surface simulations (Tables S10 and S11).

However, the standard deviation of SRs of the five simulations of
interface predictions is generally larger than that of surface pre-
dictions (Tables 1e3 and S7-9). This can be explained by the small
count of reference water positions in the interfaces, where mis-
prediction of 1e2 positions can cause large drop in the SR value
(Eq. (1)). Even the largest complex interface (4H9O) has ca. half of
the reference positions of the smallest surface system (3NIR,
Table 1). Interestingly, the standard deviation of SR values of 3U43
predictions decreases with increasing temperature (Fig. 7), simi-
larly to other interface systems (Figs. S5 and S6). This trend means
that high temperature is beneficial for reproducibility and robust-
ness in the cases of interface predictions. This trend was not
observed for surface predictions (Figs. S7eS9). The differences in

the above trends of surface and interface predictions can be
explained by several factors. First of all, the faces of target and
ligand solutes restrict water molecules in the narrow volume of the
interface, and therefore, their translational and rotational freedoms
are limited if compared to those of surface water molecules. There
is also a moderate exchange between interface and bulk regions

Fig. 4. A close-up of predicted water positions at 75 and 368 K matching with the crystallographic reference positions of system 2O9S. The figure corresponds to a negatively
charged region of the protein as indicated by an arrow in Fig. 3. The numbers correspond to residue numbers of waters in 2O9S. The subgraphs contain the first connection sphere of
predicted water molecules. Positions found at both temperatures are marked with asterisk on the 75 K subgraph.

Fig. 5. Per-frame SRn values of system 2VB1 (initial velocity distribution 1), at 75 and
368 K.

Fig. 6. The effect of simulation temperature on success rates of prediction of hydration
structure of complex interface (system 4H9O). Each data point represents an average
success rate value calculated from five simulations with different starting velocity
distributions. Error bars denote standard deviations.

Fig. 7. The effect of simulation temperature on the standard deviation of success rates
of prediction of hydration structure of a complex interface (system 3U43). Each data
point represents a standard deviation calculated from five simulations with different
starting velocity distributions.
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due to the close topography of the target-ligand interface. Thus, the
overall mobility of interface water molecules is topologically
restricted. At high temperatures, high water mobility (Eq. (2))
overrides these restrictions, the interface will become accessible
and a good ensemble of water positions are provided in each of the
five trajectories piped into MobyWat clustering. In other words, the
use of high temperature results in an increased mobility of water
molecules which improves the efficiency of the occupancy-based
algorithm of MobyWat. Thus, the difference between the resulted
SR values and its standard deviation will decrease. In the cases of
surface hydrationwhere such topological restrictions did not apply,
water molecules can freely occupy hydration sites in all five tra-
jectories and the increase of T will not correlate with standard
deviation of SR.

At 75 K higher SRs could be observed for interfaces than for
surfaces (Figs. 2 and 6), and the highest average SR for surfaces is
60% (3NIR) 15% lower than the same value for interfaces (75%,
4H9O). Even full match with references was achieved (3RO3,
T¼ 100 K, seed 5, Table S7). Finding all interfacial waters was not
uncommon, while the best SR of surface predictions was 91%
(system 2VB1, T¼ 318 K, seed3, Table S1). With high SRs found at
both low and high temperatures (system 3RO3, 92% on 75 K and
100% on 368 K, Table S7), differences can be observed in the cor-
responding hydration graphs of a representative region at residue
E82 (Fig. 8). Extensive static subnets are formed at 75 K with five
static of six total edges starting from central E82. The network is
scattered to several subnets, and dynamic waters linking static
regions to each other are missing. At 368 K, the situation changes,
mostly dynamic links are formed around ligand residue E82,
instead of the static one and the majority of the hydration network
became dynamic. The high SRs of interface predictions and their
relative immunity to temperature changes is a consequence of the
use of the ligand molecule and duplicate steps (Fig. 1, Methods) in
the prediction scheme.

2.1.3. A systematic case study

The structure of Hen egg-white lysozyme (HEWL) had been
resolved at fifteen different data collecting temperatures (Table 1)
ranging from 63 K to 300 K. Hydration structures of all fifteen
HEWL structures were calculated for each data collecting temper-
ature using mobility data of altogether 225 MD simulations (¼15
protein structure" 15 temperatures), using Amber99SB-ILDN [83]
force field in combination with TIP3P water model [84]. The results
in Fig. 9 show that larger match can be obtained with reference
water positions using simulation temperatures over 273 K than at
cryogenic conditions (<125 K). SRs above 80% can be found mostly
in the range of 273e300 K. The maximal SR obtained between 63
and 125 K was only 77%, while the overall maximum SR (97%) was
achieved at 283 K (Table S13).

Apparently, simulating at cryogenic conditions, is not the best
condition for prediction of hydration structure. There are at least
two reasons for this. (i) In cryo-crystallography a flash-cooling
concept is applied including fast freezing of a molecular structure
equilibrated at the crystallization (usually room) temperature
[85e88] to a cryoscopic temperature. Thus, the structure is repre-
sentative for a crystallization- and not cryoscopic temperature.
Accordingly, hydration structures of lysozyme were better calcu-
lated from simulations at crystallization temperatures than those at
cryogenic temperatures, in terms of SR. (ii) The reduced mobility of
water molecules at low temperatures can also result in low SRs as it
was described in the previous Sections. Thus, this systematic case
study also showed that good predictions can be achieved with
simulations close to crystallization (room) temperature instead of
cryogenic data collecting temperatures.

Fig. 8. Predicted water positions at 75 and 368 K matching to the crystallographic
reference positions of system 3RO3. The numbers correspond to residue numbers of
waters in 3RO3. Static subnet around ligand residue E82 can be observed at 75 K (grey
area). This core region turns into dynamic at 368 K, where dynamic waters surround
fragmented static subnet.
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2.2. Force field and water model

The selection of force field/water model combination may also
affect prediction quality. Besides Amber99SB-ILDN/TIP3P force
field-water model combination used in previous MobyWat [70,71]
predictions, three other water models TIP4P, TIP4P-Ew, and TIP5P
were also investigated in the present study. In the four-point TIP4P
[84] and TIP4P-Ew [89] models, a virtual site with negative charge
was added along the bisector of the H-O-H angle to improve the
electrostatic distribution around the molecule. The five site model,
TIP5P [90] has also two dummy atoms representing the lone pairs
of the oxygen. In a previous study [70], an OPLS-AA/TIP4P combi-
nation was investigated for prediction of surface hydration. Here,
results on interface hydration are provided. System 4H9O, with
extensive interface network was calculated with the aforemen-
tioned five force field/water model combinations at a constant
300 K. The five-point TIP5P model gave the best success rate
(Table 2), nevertheless the differences with others are marginal.
The reproduction of the experimental hydration layer with
different initial velocities was successful regardless the combina-
tion as demonstrated by low errors in Table 2. The OPLS-AA/TIP4P
combination also performed well, reinforcing our previous results
[70]. Mobility-based prediction shows little dependence from force
field/water model combination at room temperature.

Comparison of TIP3P and TIP5P water models was also per-
formed on an extended temperature scale of 75e368 K in

combination with the Amber99SB-ILDN force field in both cases. In
the interval of 75 and 268 K SRs calculated with TIP5P are lower
than SRs with TIP3P (Fig. 10.). While increments in SR are observ-
able in both cases, SR of TIP5P calculations continues growing after
200 K, where growth in TIP3P stops until 268 K. SRs by the two
models become indistinguishable after 268 K. The observed dif-
ference at low temperature regions is understandable considering
that the mobility of TIP3P [75] water is higher than that of TIP5P
[91] also reflected by the relatively low melting temperature of
water in TIP3P model.

2.3. Simulations with heavy water

As various experimental techniques apply heavy water (D2O) as
a solvent, it may be interesting to check the outcomes of MobyWat
predictions on systems measured with hydrating heavy water
molecules. The experimental structure of a system of the above
case study 1V7S (Hen egg-white lysozyme) had been determined

Fig. 9. Success rate matrix from predictions of lysozyme structures solved at different data collecting temperatures.

Table 2

Effect of different force field/water model combinations on interface prediction.

Force field Water model Mean SR (%)a

Amber99SB-ILDN SPC/HWb,c 82.6
Amber99SB-ILDN TIP3Pc 87.0
Amber99SB-ILDN TIP3Pd 92.6± 5.6
Amber99SB-ILDN TIP4Pd 93.7± 4.7
Amber99SB-ILDN TIP4P-Ewd 92.6± 3.3
Amber99SB-ILDN TIP5Pd 96.5± 4.7
OPLS TIP4Pd 93.7± 3.1

Notes to Table 2 aPrediction parameters were: ctol¼ 1.0Å, ptol¼ 2.5Å,
bmax¼ 100Å

2 and dmax¼ 3.5Å, IDa clustering. bModified SPC/E water model. cThe
examined structure (pdb ID: 1V7S) contain D2O.

d cThe examined structure (pdb ID:
4H9O) contain H2O.

Fig. 10. Success rates of prediction of hydration structure of a protein surface (system
2O9S) using two different explicit water models. Each data point represents an average
success rate value calculated from five simulations with different initial velocity dis-
tributions. Error bars denote standard deviations.
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with heavy waters [92]. The reproduction of the experimental
reference positions was successful with H2O. In a next step, the
hydration structure was re-calculated with D2O, as well. Notably,
the use of D2O instead of H2O should have no effect on the observed
configurations as sampling time is sufficient in this case. However,
the use of D2O provided a good example for involvement of a
modified SPC/E water model SPC/HW [93] in the study, applied
with Amber99SB-ILDN force field [83] (Table 2). As the 1V7S system
was investigated on total of fifteen different simulation tempera-
tures in the above case study, fifteen runs with D2O were also done
in this temperature range. Other MD and prediction parameters
were not altered. It was found that the reproduction of experi-
mental hydration structure was successful with the heavy water
simulations too. Average of differences of SRs calculated on fifteen
different temperatures between predictions with H2O and is 5.5%
(Table S13) showing marginal differences in reproduction of
referencewater positions. At 290 K, the data collecting temperature
of 1V7S the difference between light and heavy water-based pre-
dictions of surface hydration was also marginal (4%, Table S13).

2.4. Ensemble type

Similar to assessment of different temperature, pressure and
force field/water model combinations calculations of an MD
ensemble other than the NPT could be also informative. In the NPT
ensemble, the temperature is coupled to an external heat bath and
pressure is kept constant. Simulations can also produce an NVT (or
canonical) ensemble, where the volume is kept constant instead of
pressure. The hydration structures of two surface (2O9S, 3NIR) and
one interface examples (4H9O) were calculated under NVT condi-
tions with Amber99SB-ILDN [83] force field in combination with
TIP3P water model [84]. The results are presented on Table S14,
showing that surface predictions are not influenced by the type of
the ensemble, as the differences in SR are marginal. For interface
predictions NVT showed somewhat better performance (average
SR) and reproducibility (smaller standard deviations) than NPT.

2.5. Pressure

As data collection temperature, pressure can also vary in crys-
tallographic measurements. For example, the structure of lysozyme
was solved at several pressures with high pressure protein crys-
tallography (HPPX) [94]. At high pressures, the internal cavity
volumes are compressed, implicating changes in the hydration
network on the surfaces [94]. The number of (reference) water
positions determined in crystal structures is increasing with pres-
sure. As described in the original publications of the lysozyme
structures, at high pressures, waters can appear on hydrophobic
surfaces, and intrude into previously unfilled cavities [94]. The
present predictions were done with Amber99SB-ILDN [83] com-
bined with TIP3P water model [84]. It was found that SR is still
decent on the highest pressure, 890MPa (82%), but finding waters
deep in the protein structure is harder than those situated on the
surface. SR shows a surprisingly strong anti-correlation with
simulation pressure (Fig. 11, r2¼ 0.93). As pressure also influences
the self-diffusion of water [95,96], the decrease of mobility of water
with increasing pressuremay explain the decrease of SR similarly to
the considerations detailed previously in the Section about the
effect of temperature.

3. Conclusions

Among the investigated parameters of MD simulations, tem-
perature has the largest influence on the efficiency and reproduc-
ibility of prediction of hydration structure. The MD-based

prediction algorithm of MobyWat is not very sensitive to pressure
and ensemble type. Various combinations of force fields and
explicit water models can provide adequate trajectories for the
predictions. By default, an NPT simulation at crystallization condi-
tions of 300 K and 0.1MPa combined with a TIP3P water model and
a decent force field is sufficient for good predictions. The repro-
ducibility of the results at various conditions demonstrated the
robustness of the occupancy-based approach and the identity-
clustering scheme of MobyWat. Five different combination of
force field-water model systems were investigated and the results
suggest that the approach is fairly independent on these combi-
nations, and probably other known force fields and water models
could be also used in future predictions with similar success.
Furthermore, the validation protocol of the present study can be
recommended as a standard tool of testing new force fields and
explicit water models for their efficiency in calculation of hydration
structure. Based on our results, the Mobywat is powerful in pre-
dicting hydration structure from MD trajectories, and constructing
networks of water molecules.

4. Methods

4.1. Systems

Three protein systems (2O9S, 2VB1, 3NIR) were selected
randomly from previous study [70] for surface predictions, and
another three protein-ligand complexes (3RO3, 3U43, 4H9O) for
interface predictions [71]. For a case study and investigations of
pressure-dependence of prediction quality, a series of lysozyme
structures were used as references (Table 1).

4.2. Preparation of an MD run

A two-step energy minimization protocol prior to molecular
dynamics simulations was applied for all systems of Table 1. The
following standard protocol was applied for all proteins throughout
this study. All calculations were performed with programs of the
GROMACS software package, using the AMBER99SB-ILDN force
field [83] and OPLS force fields. Water molecules were explicitly
calculated using TIP3P [84], TIP4P, TIP4P-EW, SPC/E, SPC/HW and
TIP5P water models. In the first step, crystallographic water mol-
ecules were removed and the dehydrated (dry) protein was placed
in a simulation box. The distance between the solute and the box
was set to 10Å. The box was filled with water molecules and
counter-ions were added to neutralize the system.

Fig. 11. The effect of simulation pressure on success rates of prediction of hydration
structure of surfaces of lysozyme (Table 1). Each data point represents an average
success rate value calculated from five simulations with different seeds. Error bars
denote standard deviations.
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4.3. Energy minimization

A two-step energy minimization protocol prior to molecular
dynamics simulations was applied for all systems of Table 1. In the
first step a steepest descent (sd) optimization was done, with the
convergence threshold set to 103 kJmol#1nm#1. Conjugate gradient
(cg) calculation was done in the second step, the convergence
threshold was changed to 10 kJmol#1nm#1.

Position restraints were applied on solute heavy atoms at a force
constant of 103 kJmol#1nm#2 in both steps. Distance restraints (in
case of system 3U43) were applied between structural ions and
coordinating amino acid residues with force constant of 103

kJmol#1nm#2. The optimization protocol was performed twice for
interface predictions, once for the pure target and once for the re-
assembled target-ligand complex.

Before network analyses, a 4-step protocol was applied for en-
ergy minimization of predicted water positions following an sd-cg-
sd-cg pattern with parameters of sd and cg methods described
above. During the first two steps, all solute heavy atoms and the
oxygen of the predicted interfacial water molecules were position
restrained and bulk waters and ions were released. In the last two
steps, position restraints were not applied on predicted waters,
only solute heavy atoms were position restrained.

4.4. Molecular dynamics simulations

After energy-minimization and setting up velocity distribution,
1-ns-long MD simulations were carried out with a time step of 2 fs.
Simulations of 2VB1 and 2O9S at 75 K were also extended to 10 ns.
The velocity rescale algorithm [97] was applied for temperature
coupling, solute and solvent were coupled separately with a
coupling time constant of 0.1 ps. Fifteen lysozyme structures
(marked with c in Table 1) were simulated at their data collecting
temperatures (Table 1). The three complex systems, proteins 2O9S,
2VB1 and 3NIR were simulated on twenty-five different tempera-
tures (75, 100, 150, 200, 228, 238, 248, 258, 268, 273, 278, 283, 288,
293, 298, 303, 308, 313, 318, 328, 338, 348, 358 and 368 K). In-
vestigations on the influence of simulation temperature, pressure
and ensemble type were performed using Amber99SB-ILDN [83]
force field in combination with TIP3P water model [84].

Lysozyme structures resolved different pressures were simu-
lated on 300 K (marked with c in Table 1). In NPT simulations,
pressure was coupled the Parrinello-Rahman algorithm [98e100]
with a coupling time constant of 0.5 ps, compressibility of
4.5" 10#5 bar#1 and reference pressure of 1 bar. Particle Mesh-
Ewald summation was used for long range electrostatics. Van der
Waals and Coulomb interactions had a cut-off at 11Å. Coordinates
were saved at regular time-intervals of 1 ps yielding 1.001" 103

frames. Position restraints were applied on solute heavy atoms at a
force constant of 103 kJmol#1nm#2. MD calculations were per-
formed twice for interface predictions, once for the pure target and
once for the re-assembled target-ligand complex. Periodic bound-
ary conditions were treated before predictions, to centre the solute
in the box and make molecules whole. The calculations were done
with the Gromacs 5 package [101].

4.5. Initial velocity distribution setup

MD trajectories produced for the same system may differ sub-
stantially from each other [70] because of the applications due to
hardware-dependent rounding of floating point calculations, the
use of dynamic load balancing in parallel execution and so on. To
test the reproducibility of the methods, all MD calculations were
reproduced with five different initial velocity distributions. Practi-
cally, this can be done by selecting different seed numbers of the

velocity generator routine The distribution of initial velocities of
particles are generated from the Maxwell-Boltzmann distribution.
In the five runs, the random number generator was seeded with
five different seed numbers, and velocity generation temperature
was set to simulation temperature. In the case of interface pre-
dictions, the five different seed numbers were set for the interface
and surface MD run pairs.

4.6. Mobility-based prediction of hydration structures

Throughout the present study, an open source program Moby-
Wat [70,71] was used for prediction of water positions. MobyWat is
accessible at www.mobywat.com, and derivesmobility information
of movements of solvent molecules from MD calculations. The
mobility information obtained from the trajectory is transformed
into the hydration structure during the prediction process. For
MobyWat evaluations reference and candidate pools of water
molecules were separated with possible structural role to distin-
guish them from bulk waters of no use. A maximal distance limit
(dmax) was used for the distinction. In the case of surface hydration,
awatermolecule is selected for the reference or candidate pools if a
distance measured between its oxygen atom and the closest heavy
atom of the target is less than or equal to dmax. In case of interface
hydration, the same distance criterion was checked for the target
and ligand molecules at the same time. Occurrence of a molecule in
the pools with the same ID (the atom and the residue serial
numbers of the water oxygen atoms) is counted during the whole
trajectory and the count is registered in the list as an occupancy
number corresponding to the ID. That is, the value of an occupancy
number in the list is increased if a pool includes the water with the
ID in question. After evaluating all candidate pools, occupancy lists
are sorted by decreasing occupancies. Spatial clustering step was
introduced Water molecules of different pools with the same ID
(belonging to the same row of the occupancy list) are collected into
a cluster using a pre-defined clustering tolerance (ctol) value. In the
final step, MobyWat creates prediction lists from the cluster lists.
Prediction lists contain the Cartesian atomic coordinates of water
positions and the corresponding mobility (Mi) values as final out-
comes of the prediction process. Mobility (Mi) value is calculated
for each row of the prediction lists from normalized occupancy (Oi)
values (Eq. (2)).

Mi ¼ 100
Omax # Oi

Omax # Omin
; Omax=min ¼

max=minOi
i

(2)

Mi values scale between 0 and 100. Zero corresponds to the least
mobile predicted water position, one hundred corresponds to the
most mobile one. Detailed description of the prediction algorithm
can be found in Section S2.1.5 of Ref. [70] and in the User's Manual
of MobyWat.

4.6.1. Surface predictions

Hydration structures of protein surfaces were deducted from a
single MD simulation with 1001 coordinate snapshots. After
treating periodic boundary conditions, the trajectory was processed
with MobyWat. The prediction tolerances (ptol) were set accord-
ingly to previous study [70], run parameters (dmax, clustering and
prediction tolerances) were set to 3.5, 1.0 and 2.5Å, respectively,
where dmax refers to the maximum distance of a predicted water
oxygen from closest target heavy atoms. The IDa (all-inclusive)
clustering algorithm was applied in prediction process. IDa clus-
tering identifies a candidate water molecule by its atom or residue
serial numbers and uses the history of residence of each molecule
on target surface for mobility calculations. Detailed description of
the clustering algorithm can be found in Section S2.1.5 of Ref. [70]
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and in the User's Manual of MobyWat. All 1001 coordinate snap-
shots from MD trajectories were used.

4.6.2. Interface predictions

Hydration structures of complex interfaces were calculatedwith
the M3 protocol of MobyWat [71]. M3 is an advanced protocol for
prediction of void-free hydration structure of the target surface
which reduces the amount of cavities and to produces a complete
hydration structure of the interface [71]. Briefly, in M3, the surface
of the free target molecule is hydrated without the ligand using
short MD and a MobyWat steps. Having an (over)loaded target
surface, the ligand is positioned back so as to form the interface
with the target. This interface can be considered soaked, having as
many water molecules as physically possible to reduce the volume
of unwanted void spaces. Finally, additional MD and MobyWat
steps are performed to re-equilibrate all interactions of water
molecules in the presence of the ligand.

Thus, in the beginning of M3, the target structurewithout ligand
and crystallographic waters were simulated and surface prediction
was performed for the entire surface of the target with dmax,
clustering and prediction tolerances of 5.0, 1.5 and 2.5Å, respec-
tively, where dmax refers to the maximum distance from closest
target heavy atoms. The IDa-clustering algorithm was applied. The
ligand-target complex was re-assembled after hydration of the
target surface. For this, the target part of the holo and the hydrated
apo systemswere fitted on the top of each-other and the ligandwas
used together with the hydrated target (soaking). To select water
molecules residing in the target-ligand interface distances between
its oxygen atom and the closest heavy atom of target and ligand
molecules were measured. A water molecule was considered
interfacial if such a distance was smaller than/equal to a pre-
defined maximal distance limit (dmax) for both the ligand and
target partners. Water molecules conflicting with the ligand
structure were excluded using the Editing mode of MobyWat at a
minimum distance limit (dmin) of 1.75Å prior the second MD
simulation. After the second MD, the second and final prediction
was performed to get the final prediction list. A dmax of 3.5Å, IDa
clustering was applied with clustering and prediction tolerances of
1.0 and 2.5Å, respectively. In both steps all frames, altogether 1001
snapshots from MD trajectories were used. Additional details can
be found in the Results and discussion and Fig. S1 of Ref. [71] and in
the User's Manual of MobyWat.

4.6.3. Validation protocol

Validation sub-mode of MobyWat was used for an unbiased,
automated comparison of the MobyWat-predicted (Section 4.6.2)
and reference (experimental, crystallographic) positions of water
molecules. After MD, all frames were extracted from the trajectory.
Each frame was fit to the original protein crystal structure, using Ca
atoms. In validation sub-mode, predicted waters are compared to
reference, experimental waters (reference pool), their proportion
gives the Success Rate (Eq. (1)). The reference water molecules are
crystallographic positions of water molecules within a dmax of
3.5Å measured from target (surface predictions), or from both
target and ligand (interface predictions) irrespective of their B-
factors. The quality of predictions was checked using the Validation
sub-mode of MobyWat and expressed as success rates. Matches
were identified if the distance between predicted and reference
water oxygen atoms was below a pre-defined tolerance of 1.5Å

(match tolerance, mtol). The higher the SR value, the more suc-
cessful a prediction is in comparison with crystallographic water
positions.

4.6.4. Analysis mode

In analysis mode, MobyWat compares the positions of water

molecules of a reference structure with positions of water mole-
cules in each (nth) frame of a molecular dynamics calculation. Per
frame success rates (SRn) are calculated according to Eq. (1), with
“Count of matches in the nth frame” used in the numerator. That is,
the calculation is performed for each (nth) frame of the trajectory
without clustering of the frames.

4.6.5. Classification of hydration networks

The NetDraw mode of MobyWat was used for analysis and
characterization of the hydration network of protein surface or
target-ligand interface. The characterization protocol of hydration
network was implemented as the NetDraw mode of program
MobyWat (see Methods and Fig. S10). NetDraw determines the
interactions of interfacial water molecules with each other, and the
bulk water and solute (ligandþ target) molecules result in network
graphs with mobility assigned to all water nodes. Thus, a water
molecule or a residue of the solute was considered as a node. Using
PDB files of energy-minimized structures including solute, pre-
dicted surface or interface-, and bulk water molecules as an input,
NetDraw produces the two-dimensional interaction network graph
of the interface as lists of edges and nodes. List of edges of the graph
is distilled from the distance files by eliminating redundancies and
distances (edges) to carbon atoms (C-filtering). Number of edges
per node is limited to four, using the top four shortest edges only
(4-filtering).

The list of nodes was produced from the list of edges. All lists are
produced with and without considering bulk water nodes. Finally,
NetDraw produces a classification of the nodes and edges. A node is
classified static if it is a solute (ligand/target) node or connected to
four nodes of any type or connected to at least three solute nodes or
has a mobility value smaller than or equal to 50. Otherwise the
node is classified dynamic. An edge is defined static if it connects
two static nodes, otherwise it is dynamic. The mobility values were
produced by MobyWat for every (ith) predicted water position
during the prediction steps and can be transferred to the network
analysis steps as B-factors in the PDB files. Subnetworks are built
from edges. Connected static/dynamics edges yield static/dynamic
subnetworks. With the above classification NetDraw helps dis-
tinguishing between static and dynamic sub-networks of the entire
surface or interfacial network. MobyWat provides the hydration
network graph with mobility information for the nodes and edges
in file formats commonly used by network visualization and anal-
ysis programs. Gephi [102] was used for visualization of the graphs
produced by NetDraw. Layout was created with the ForceAtlas
layout option, with “Attraction distribution”. For Systems 2O9S and
3RO3, NetDraw output files are provided as Supporting Files.

Acknowledgements

We acknowledge a grant of computer time from CSCS Swiss
National Supercomputing Centre, and NIIF Hungarian National In-
formation Infrastructure Development Institute. We acknowledge
that the results of this research have been achieved using the DECI
resource Archer based in the UK at the National Supercomputing
Service with support from the PRACE aisbl. The work was sup-
ported by the K123836, K112807, K120391grants from the National
Research, Development, and Innovation Office. The University of
P"ecs is acknowledged for a grant PTE "AOK_KA/2017 and also sup-
port in the frame of "Viral Pathogenesis" Talent Centre program.We
are thankful to the Gedeon Richter Pharmaceutical Plc. for a pre-
doctoral scholarship to N.J.

Appendix A. Supplementary data

Supplementary data related to this article can be found at

N. Jeszen}oi et al. / Journal of Molecular Graphics and Modelling 82 (2018) 117e128126

               hetenyi.csaba_83_23



https://doi.org/10.1016/j.jmgm.2018.04.011.

References

[1] L. Nisius, S. Grzesiek, Key stabilizing elements of protein structure identified
through pressure and temperature perturbation of its hydrogen bond
network, Nat. Chem. 4 (2012) 711e717.

[2] L. Zhao, W. Li, P. Tian, Reconciling mediating and slaving roles of water in
protein conformational dynamics, PLoS One 8 (2013), e60553.

[3] M.S. Cheung, A.E. Garcia, J.N. Onuchic, Protein folding mediated by solvation:
water expulsion and formation of the hydrophobic core occur after the
structural collapse, P Natl Acad Sci USA 99 (2002) 685e690.

[4] Y. Levy, J.N. Onuchic, Water mediation in protein folding and molecular
recognition, Annu. Rev. Biophys. Biomol. Struct. 35 (2006) 389e415.

[5] H. Frauenfelder, P.W. Fenimore, G. Chen, B.H. McMahon, Protein folding is
slaved to solvent motions, Proc. Natl. Acad. Sci. U. S. A. 42 (2006)
15469e15472.

[6] D. Thirumalai, G. Reddy, J.E. Straub, Role of water in protein aggregation and
amyloid polymorphism, Accounts Chem. Res. 45 (2012) 83e92.

[7] S.H. Chong, S. Ham, Distinct role of hydration water in protein misfolding
and aggregation revealed by fluctuating thermodynamics analysis, Acc.
Chem. Res. 48 (2015) 956e965.

[8] L. Grisanti, D. Pinotsi, R. Gebauer, G.S. Kaminski Schierle, A.A. Hassanali,
A computational study on how structure influences the optical properties in
model crystal structures of amyloid fibrils, Phys. Chem. Chem. Phys. 19
(2017) 4030e4040.

[9] K. Jong, L. Grisanti, A. Hassanali, Hydrogen bond networks and hydrophobic
effects in the amyloid b30-35 chain in water: a molecular dynamics study,
J. Chem. Inf. Model. 57 (2017) 1548e1562.

[10] D. Thirumalai, G. Reddy, J.E. Straub, Role of water in protein aggregation and
amyloid polymorphism, Acc. Chem. Res. 1 (2012) 83e92.

[11] Y.Y. Li, B.T. Sutch, H.H. Bui, T.K. Gallaher, I.S. Haworth, Modeling of the water
network at protein-RNA interfaces, J. Chem. Inf. Model. 51 (2011)
1347e1352.

[12] Y.-T. Kao, X. Guo, Y. Yang, Ultrafast dynamics of Nonequilibrium electron
transfer in photoinduced redox cycle: solvent mediation and conformation
flexibility, J. Phys. Chem. B 30 (2012) 9130e9140.

[13] S. Sappati, A. Hassanali, R. Gebauer, P. Ghosh, Nuclear quantum effects in a
HIV/cancer inhibitor: the case of ellipticine, J. Chem. Phys. 20 (2016) 205102.

[14] Y.K. Law, A.A. Hassanali, Role of quantum vibrations on the structural,
electronic, and optical properties of 9-methylguanine, J. Phys. Chem. 44
(2015) 10816e10827.

[15] F. Giberti, A.A. Hassanali, The excess proton at the air-water interface: the
role of instantaneous liquid interfaces, J. Chem. Phys. 24 (2017) 244703.

[16] C.A. Daly, L.M. Streacker, Y. Sun, S.R. Pattenaude, A.A. Hassanali, P.B. Petersen,
S.A. Corcelli, D. Ben-Amotz, Decomposition of the experimental Raman and
infrared spectra of acidic water into proton, special pair, and counterion
contributions, J. Phys. Chem. Lett. 21 (2017) 5246e5252.

[17] M. Chen, L. Zheng, B. Santra, H.Y. Ko, R.A. DiStasio, M.L. Klein, R. Car, X. Wu,
Hydroxide diffuses slower than hydronium in water because its solvated
structure inhibits correlated proton transfer, Nat. Chem. 4 (2018) 413e419.

[18] J. Cuny, A.A. Hassanali, Ab initio molecular dynamics study of the mechanism
of proton recombination with a weak base, J. Phys. Chem. B 48 (2014)
13903e13912.

[19] G. Zundel, Hydrogen bonds with large proton polarizability and proton
transfer processes in electrochemistry and biology, Adv. Chem. Phys. 111
(2000) 1e217.

[20] H. Ishikita, K. Saito, Proton transfer reactions and hydrogen-bond networks
in protein environments, J. R. Soc. Interface 11 (2013) 20130518.

[21] M.A. Williams, J.M. Goodfellow, J.M. Thornton, Buried waters and internal
cavities in monomeric proteins, Protein Sci. 3 (1994) 1224e1235.

[22] O. Carugo, Structure and function of water molecules buried in the protein
core, Curr. Protein Pept. Sci. 16 (2015) 259e265.

[23] A.T. Garcia-Sosa, S. Firth-Clark, R.L. Mancera, Including tightly-bound water
molecules in de novo drug design. Exemplification through the in silico
generation of poly (ADP-ribose)polymerase ligands, J. Chem. Inf. Model. 45
(2005) 624e633.

[24] A.T. Garcia-Sosa, R.L. Mancera, The effect of a tightly bound water molecule
on scaffold diversity in the computer-aided de novo ligand design of CDK2
inhibitors, J. Mol. Model. 12 (2006) 422e431.

[25] A.T. Garcia-Sosa, R.L. Mancera, Free energy calculations of mutations
involving a tightly bound water molecule and ligand substitutions in a
ligand-protein complex, Mol Inform 29 (2010) 589e600.

[26] A.T. Garcia-Sosa, R.L. Mancera, P.M. Dean, WaterScore: a novel method for
distinguishing between bound and displaceable water molecules in the
crystal structure of the binding site of protein-ligand complexes, J. Mol.
Model. 9 (2003) 172e182.

[27] D.G. Lloyd, A.T. Garcia-Sosa, I.L. Alberts, N.P. Todorov, R.L. Mancera, The effect
of tightly bound water molecules on the structural interpretation of ligand-
derived pharmacophore models, J. Comput. Aided Mol. Des. 18 (2004)
89e100.

[28] R.L. Mancera, Molecular modeling of hydration in drug design, Curr. Opin.
Drug Discov. Dev 10 (2007) 275e280.

[29] B.C. Roberts, R.L. Mancera, Ligand-protein docking with water molecules,

J. Chem. Inf. Model. 48 (2008) 397e408.
[30] S.E. Wong, F.C. Lightstone, Accounting for water molecules in drug design,

Expet Opin. Drug Discov. 6 (2011) 65e74.
[31] R. Abel, T. Young, R. Farid, B.J. Berne, R.A. Friesner, Role of the active-site

solvent in the thermodynamics of factor Xa ligand binding, J. Am. Chem.
Soc. 130 (2008) 2817e2831.

[32] G.V. DeLucca, S. EricksonViitanen, P.Y.S. Lam, Cyclic HIV protease inhibitors
capable of displacing the active site structural water molecule, Drug Discov.
Today 2 (1997) 6e18.

[33] S.B.A. de Beer, N.P.E. Vermeulen, C. Oostenbrink, The role of water molecules
in computational drug design, Curr. Top. Med. Chem. 10 (2010) 55e66.

[34] A.T. Garcia-Sosa, Hydration properties of ligands and drugs in protein
binding sites: tightly-bound, bridging water molecules and their effects and
consequences on molecular design strategies, J. Chem. Inf. Model. 53 (2013)
1388e1405.

[35] C.N. Cavasotto, A.T. García-Sosa, Role of Water Molecules and Hydration
proPerties in Modeling LigandeProtein Interaction and Drug Design, in Silico
Drug Discovery and Design: Theory, Methods, Challenges, and Applications,
CRC Press, 2015, pp. 393e410.

[36] W.R. Pitt, J. Murrayrust, J.M. Goodfellow, Aquarius2-Knowledge-Based
modeling of solvent sites around proteins, J. Comput. Chem. 14 (1993)
1007e1018.

[37] W.R. Pitt, J.M. Goodfellow, Modeling of solvent positions around polar
groups in proteins, Protein Eng. 4 (1991) 531e537.

[38] A. Vedani, D.W. Huhta, An algorithm for the systematic solvation of proteins
based on the directionality of hydrogen-bonds, J. Am. Chem. Soc. 113 (1991)
5860e5862.

[39] G. Rossato, B. Ernst, A. Vedani, M. Smiesko, AcquaAlta: a directional approach
to the solvation of ligand-protein complexes, J. Chem. Inf. Model. 51 (2011)
1867e1881.

[40] G.A. Ross, G.M. Morris, P.C. Biggin, Rapid and accurate prediction and scoring
of water molecules in protein binding sites, PLoS One 7 (2012).

[41] J.S. Mason, A. Bortolato, D.R. Weiss, F. Deflorian, B. Tehan, F.H. Marshall, High
end GPCR design: crafted ligand design and druggability analysis using
protein structure, lipophilic hotspots and explicit water networks, Silico
Pharmacol 1 (2013) 23.

[42] B.M. Pettitt, M. Karplus, The structure of water surrounding a peptide - a
theoretical approach, Chem. Phys. Lett. 136 (1987) 383e386.

[43] P.J. Rossky, M. Karplus, Solvation - molecular-dynamics study of a dipeptide
in water, J. Am. Chem. Soc. 101 (1979) 1913e1937.

[44] W.F. Vangunsteren, H.J.C. Berendsen, J. Hermans, W.G.J. Hol, J.P.M. Postma,
Computer-simulation of the dynamics of hydrated protein crystals and its
comparison with x-ray data, P Natl Acad Sci-Biol 80 (1983) 4315e4319.

[45] G. Copie, F. Cleri, R. Blossey, M.F. Lensink, On the ability of molecular dy-
namics simulation and continuum electrostatics to treat interfacial water
molecules in protein-protein complexes, Sci. Rep. 6 (2016) 38259.

[46] D.W. Borhani, D.E. Shaw, The future of molecular dynamics simulations in
drug discovery, J. Comput. Aided Mol. Des. 26 (2012) 15e26.

[47] Y.B. Shan, E.T. Kim, M.P. Eastwood, R.O. Dror, M.A. Seeliger, D.E. Shaw, How
does a drug molecule find its target binding site? J. Am. Chem. Soc. 133
(2011) 9181e9183.

[48] R.O. Dror, A.C. Pan, D.H. Arlow, D.W. Borhani, P. Maragakis, Y.B. Shan, H.F. Xu,
D.E. Shaw, Pathway and mechanism of drug binding to G-protein-coupled
receptors, P Natl Acad Sci USA 108 (2011) 13118e13123.

[49] R.O. Dror, H.F. Green, C. Valant, D.W. Borhani, J.R. Valcourt, A.C. Pan,
D.H. Arlow, M. Canals, J.R. Lane, R. Rahmani, J.B. Baell, P.M. Sexton,
A. Christopoulos, D.E. Shaw, Structural basis for modulation of a G-protein-
coupled receptor by allosteric drugs, Nature 503 (2013) 295.

[50] Y.B. Shan, K. Gnanasambandan, D. Ungureanu, E.T. Kim, H. Hammaren,
K. Yamashita, O. Silvennoinen, D.E. Shaw, S.R. Hubbard, Molecular basis for
pseudokinase-dependent autoinhibition of JAK2 tyrosine kinase, Nat. Struct.
Mol. Biol. 21 (2014) 579e584.

[51] M.J. Abraham, T. Murtola, R. Schulz, S. P"all, J.C. Smith, B. Hess, E. Lindahl,
GROMACS: high performance molecular simulations through multi-level
parallelism from laptops to supercomputers, Software 1 (2015) 19e25.

[52] R. Salomon-Ferrer, A.W. Gotz, D. Poole, S. Le Grand, R.C. Walker, Routine
microsecond molecular dynamics simulations with AMBER on GPUs. 2.
Explicit solvent particle mesh ewald, J. Chem. Theor. Comput. 9 (2013)
3878e3888.

[53] A.W. Gotz, M.J. Williamson, D. Xu, D. Poole, S. Le Grand, R.C. Walker, Routine
microsecond molecular dynamics simulations with AMBER on GPUs. 1.
Generalized born, J. Chem. Theor. Comput. 8 (2012) 1542e1555.

[54] A.C. Pan, T.M. Weinreich, S. Piana, D.E. Shaw, Demonstrating an order-of-
magnitude sampling enhancement in molecular dynamics simulations of
complex protein systems, J. Chem. Theor. Comput. 12 (2016) 1360e1367.

[55] D.E. Shaw, M.M. Deneroff, R.O. Dror, J.S. Kuskin, R.H. Larson, J.K. Salmon,
C. Young, B. Batson, K.J. Bowers, J.C. Chao, M.P. Eastwood, J. Gagliardo,
J.P. Grossman, C.R. Ho, D.J. Ierardi, I. Kolossvary, J.L. Klepeis, T. Layman,
C. Mcleavey, M.A. Moraes, R. Mueller, E.C. Priest, Y.B. Shan, J. Spengler,
M. Theobald, B. Towles, S.C. Wang, Anton, a special-purpose machine for
molecular dynamics simulation, Commun. ACM 51 (2008) 91e97.

[56] J.J. Virtanen, L. Makowski, T.R. Sosnick, K.F. Freed, Modeling the hydration
layer around proteins: HyPred, Biophys. J. 99 (2010) 1611e1619.

[57] V. Lounnas, B.M. Pettitt, G.N. Phillips, A global-model of the protein-solvent
interface, Biophys. J. 66 (1994) 601e614.

N. Jeszen}oi et al. / Journal of Molecular Graphics and Modelling 82 (2018) 117e128 127

               hetenyi.csaba_83_23



[58] V. Makarov, B.M. Pettitt, M. Feig, Solvation and hydration of proteins and
mucleic acids: a theoretical view of simulation and experiment, Accounts
Chem. Res. 35 (2002) 376e384.

[59] V.A. Makarov, B.K. Andrews, B.M. Pettitt, Reconstructing the protein-water
interface, Biopolymers 45 (1998) 469e478.

[60] V.A. Makarov, B.K. Andrews, P.E. Smith, B.M. Pettitt, Residence times of water
molecules in the hydration sites of myoglobin, Biophys. J. 79 (2000)
2966e2974.

[61] B.M. Pettitt, V.A. Makarov, B.K. Andrews, Protein hydration density: theory,
simulations and crystallography, Curr. Opin. Struct. Biol. 8 (1998) 218e221.

[62] B.P. Schoenborn, A. Garcia, R. Knott, Hydration in protein crystallography,
Prog. Biophys. Mol. Biol. 64 (1995) 105e119.

[63] M.F. Lensink, I.H. Moal, P.A. Bates, P.L. Kastritis, A.S.J. Melquiond, E. Karaca,
C. Schmitz, M. van Dijk, A.M.J.J. Bonvin, M. Eisenstein, B. Jimenez-Garcia,
S. Grosdidier, A. Solernou, L. Perez-Cano, C. Pallara, J. Fernandez-Recio,
J.Q. Xu, P. Muthu, K.P. Kilambi, J.J. Gray, S. Grudinin, G. Derevyanko,
J.C. Mitchell, J. Wieting, E. Kanamori, Y. Tsuchiya, Y. Murakami, J. Sarmiento,
D.M. Standley, M. Shirota, K. Kinoshita, H. Nakamura, M. Chavent,
D.W. Ritchie, H. Park, J. Ko, H. Lee, C. Seok, Y. Shen, D. Kozakov, S. Vajda,
P.J. Kundrotas, I.A. Vakser, B.G. Pierce, H. Hwang, T. Vreven, Z.P. Weng,
I. Buch, E. Farkash, H.J. Wolfson, M. Zacharias, S.B. Qin, H.X. Zhou, S.Y. Huang,
X.Q. Zou, J.A. Wojdyla, C. Kleanthous, S.J. Wodak, Blind prediction of inter-
facial water positions in CAPRI, Proteins 82 (2014) 620e632.

[64] R.H. Henchman, J.A. McCammon, Structural and dynamic properties of water
around acetylcholinesterase, Protein Sci. 11 (2002) 2080e2090.

[65] H.C. Huang, D. Jupiter, M. Qiu, J.M. Briggs, V. VanBuren, Cluster analysis of
hydration waters around the active sites of bacterial alanine racemase using
a 2-ns MD simulation, Biopolymers 89 (2008) 210e219.

[66] M.S. Madhusudhan, S. Vishveshwara, Deducing hydration sites of a protein
from molecular dynamics simulations, J. Biomol. Struct. Dyn. 19 (2001)
105e114.

[67] R. Abel, T. Young, R. Farid, B.J. Berne, R.A. Friesner, Role of the active-site
solvent in the thermodynamics of factor Xa ligand binding, J. Am. Chem.
Soc. 130 (2008) 2817e2831.

[68] T. Lazaridis, Inhomogeneous fluid approach to solvation thermodynamics. 1.
Theory, J. Phys. Chem. B 102 (1998) 3531e3541.

[69] T. Lazaridis, Inhomogeneous fluid approach to solvation thermodynamics. 2.
Applications to simple fluids, J. Phys. Chem. B 102 (1998) 3542e3550.

[70] N. Jeszenoi, I. Horvath, M. Balint, D. van der Spoel, C. Hetenyi, Mobility-based
prediction of hydration structures of protein surfaces, Bioinformatics 31
(2015) 1959e1965.

[71] N. Jeszenoi, M. Balint, I. Horvath, D. van der Spoel, C. Hetenyi, Exploration of
interfacial hydration networks of target ligand complexes, J. Chem. Inf.
Model. 56 (2016) 148e158.

[72] C. Vega, J.L.F. Abascal, M.M. Conde, J.L. Aragones, What ice can teach us about
water interactions: a critical comparison of the performance of different
water models, Faraday Discuss 141 (2009) 251e276.

[73] D. Nayar, C. Chakravarty, Sensitivity of local hydration behaviour and
conformational preferences of peptides to choice of water model, Phys.
Chem. Chem. Phys. 16 (2014) 10199e10213.

[74] P.S. Nerenberg, T. Head-Gordon, Optimizing protein-solvent force fields to
reproduce intrinsic conformational preferences of model peptides, J. Chem.
Theor. Comput. 7 (2011) 1220e1230.

[75] P. Florova, P. Sklenovsky, P. Banas, M. Otyepka, Explicit water models affect
the specific solvation and dynamics of unfolded peptides while the confor-
mational behavior and flexibility of folded peptides remain intact, J. Chem.
Theor. Comput. 6 (2010) 3569e3579.

[76] D. Matthes, B.L. de Groot, Secondary structure propensities in peptide folding
simulations: a systematic comparison of molecular mechanics interaction
schemes, Biophys. J. 97 (2009) 599e608.

[77] R.B. Best, J. Mittal, Protein simulations with an optimized water model:
cooperative helix formation and temperature-induced unfolded state
collapse, J. Phys. Chem. B 114 (2010) 14916e14923.

[78] E. Fadda, R.J. Woods, On the role of water models in quantifying the binding

free energy of highly conserved water molecules in proteins: the case of
Concanavalin A, J. Chem. Theor. Comput. 7 (2011) 3391e3398.

[79] O. Rahaman, M. Kalimeri, M. Katava, A. Paciaroni, F. Sterpone, Configura-
tional Disorder of Water Hydrogen-bond Network at the Protein Dynamical
Transition, vol. 121, 2017, pp. 6792e6798.

[80] A. Einstein, Über die von der molekularkinetischen Theorie der W€arme
geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen,
Ann. Phys. 322 (1905) 549e560.

[81] C.C. Miller, The Stokes-Einstein law for diffusion in solution, proceedings of
the royal society of london. Series a, Containing Papers of a Mathematical
and Physical Character 106 (1924) 724e749.

[82] R.H. Henchman, J.A. McCammon, Extracting hydration sites around proteins
from explicit water simulations, J. Comput. Chem. 23 (2002) 861e869.

[83] K. Lindorff-Larsen, S. Piana, K. Palmo, P. Maragakis, J.L. Klepeis, R.O. Dror,
D.E. Shaw, Improved side-chain torsion potentials for the Amber ff99SB
protein force field, Proteins 78 (2010) 1950e1958.

[84] W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, R.W. Impey, M.L. Klein,
Comparison of simple potential functions for simulating liquid water,
J. Chem. Phys. 79 (1983) 926e935.

[85] B. Halle, Biomolecular cryocrystallography: structural changes during flash-
cooling, P Natl Acad Sci USA 101 (2004) 4793e4798.

[86] H. Hope, Cryocrystallography of biological macromolecules - a generally
applicable method, Acta Crystallogr. B 44 (1988) 22e26.

[87] J.W. Pflugrath, Practical macromolecular cryocrystallography, Acta Crys-
tallographica Section F-Structural Biology Communications 71 (2015)
622e642.

[88] E.F. Garman, T.R. Schneider, Macromolecular cryocrystallography, J. Appl.
Crystallogr. 30 (1997) 211e237.

[89] H.W. Horn, W.C. Swope, J.W. Pitera, J.D. Madura, T.J. Dick, G.L. Hura, T. Head-
Gordon, Development of an improved four-site water model for biomole-
cular simulations: TIP4P-Ew, J. Chem. Phys. 120 (2004) 9665e9678.

[90] M.W. Mahoney, W.L. Jorgensen, A five-site model for liquid water and the
reproduction of the density anomaly by rigid, nonpolarizable potential
functions, J. Chem. Phys. 112 (2000) 8910e8922.

[91] C. Vega, E. Sanz, J.L.F. Abascal, The melting temperature of the most common
models of water, J. Chem. Phys. 122 (2005).

[92] K. Harata, T. Akiba, Phase transition of triclinic hen egg-white lysozyme
crystal associated with sodium binding, Acta Crystallogr. D 60 (2004)
630e637.

[93] J.R. Grigera, An effective pair potential for heavy water, J. Chem. Phys. 114
(2001) 8064e8067.

[94] H. Yamada, T. Nagae, N. Watanabe, High-pressure protein crystallography of
hen egg-white lysozyme, Acta Crystallogr. D 71 (2015) 742e753.

[95] F.X. Prielmeier, E.W. Lang, R.J. Speedy, H.D. Ludemann, The pressure-
dependence of self-diffusion in supercooled light and heavy-water, Ber
Bunsen Phys Chem 92 (1988) 1111e1117.

[96] K.R. Harris, L.A. Woolf, Pressure and temperature-dependence of the self-
diffusion coefficient of water and O-18 water, J. Chem. Soc. Faraday. Trans.
1 (76) (1980) 377e385.

[97] G. Bussi, D. Donadio, M. Parrinello, Canonical sampling through velocity
rescaling, J. Chem. Phys. 126 (2007).

[98] T. Darden, D. York, L. Pedersen, Particle Mesh Ewald - an N.log(N) method for
Ewald sums in large systems, J. Chem. Phys. 98 (1993) 10089e10092.

[99] S. Nose, M.L. Klein, Constant pressure molecular-dynamics for molecular
systems, Mol. Phys. 50 (1983) 1055e1076.

[100] M. Parrinello, A. Rahman, Polymorphic transitions in single-crystals - a new
molecular-dynamics method, J. Appl. Phys. 52 (1981) 7182e7190.

[101] S. Pronk, S. Pall, R. Schulz, P. Larsson, P. Bjelkmar, R. Apostolov, M.R. Shirts,
J.C. Smith, P.M. Kasson, D. van der Spoel, B. Hess, E. Lindahl, GROMACS 4.5: a
high-throughput and highly parallel open source molecular simulation
toolkit, Bioinformatics 29 (2013) 845e854.

[102] M. Bastian, S. Heymann, M. Jacomy, Gephi: an Open Source Software for
Exploring and Manipulating Networks, 2009. San Jose, CA, USA.

N. Jeszen}oi et al. / Journal of Molecular Graphics and Modelling 82 (2018) 117e128128

               hetenyi.csaba_83_23



   

D190       

               hetenyi.csaba_83_23



   

       

               hetenyi.csaba_83_23



Determination of Ligand Binding Modes in Hydrated Viral Ion
Channels to Foster Drug Design and Repositioning

Balázs Zoltán Zsidó, Rita Börzsei, Viktor Szél, and Csaba Hetényi*

Cite This: J. Chem. Inf. Model. 2021, 61, 4011−4022 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Target-based design and repositioning are main-
stream strategies of drug discovery. Numerous drug design and
repositioning projects have been launched to fight the ongoing
COVID-19 pandemic. The resulting drug candidates have often
failed due to the misprediction of their target-bound structures.
The determination of water positions of such structures is
particularly challenging due to the large number of possible
drugs and the diversity of their hydration patterns. To answer this challenge and help correct predictions, we introduce a new
protocol HydroDock, which can build hydrated drug−target complexes from scratch. HydroDock requires only the dry target and
drug structures and produces their complexes with appropriately positioned water molecules. As a test application of the protocol, we
built the structures of amantadine derivatives in complex with the influenza M2 transmembrane ion channel. The repositioning of
amantadine derivatives from this influenza target to the SARS-CoV-2 envelope protein was also investigated. Excellent agreement
was observed between experiments and the structures determined by HydroDock. The atomic resolution complex structures showed
that water plays a similar role in the binding of amphipathic amantadine derivatives to transmembrane ion channels of both influenza
A and SARS-CoV-2. While the hydrophobic regions of the channels capture the bulky hydrocarbon group of the ligand, the
surrounding waters direct its orientation parallel with the axes of the channels via bridging interactions with the ionic ligand head. As
HydroDock supplied otherwise undetermined structural details, it can be recommended to improve the reliability of future design
and repositioning of antiviral drug candidates and many other ligands with an influence of water structure on their mechanism of
action.

■ INTRODUCTION

The COVID-19 pandemic has generated a tsunami in target-
based drug design1 and repositioning.2 Target-based design is a
widely used approach3−7 where the target structure serves as a
reference point for fitting and selection of drug candidates.
Repositioning is a cheap and fast strategy of drug discovery, as
the pharmacological profile of known drugs is readily available
with detailed information on their pharmacodynamics,
pharmacokinetics, toxicity, interactions, and side effects. The
clinical repositioning trials of a number of known drugs were
launched in the past year8−11 to test their applicability against
the severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2). Although a few drugs were approved for clinical use, the
repositioning trials have not led to real breakthroughs against
SARS-CoV-2.
The failure of repositioning trials can be largely attributed to

the structural differences between the old and new targets. For
example, the structural dissimilarities between the active sites of
proteases of HIV-1 and SARS-CoV-2 forecasted12,13 the failure
of recent repositioning trials8,14 of HIV-1 protease inhibitors
lopinavir and ritonavir to SARS-CoV-2. Such painful lessons
highlight the necessity of a careful structure-based design and
repositioning to reduce the number of failed clinical trials.
In the present study, we investigate the structural basis of

repositioning of FDA-approved drugs amantadine (AA,

Gocovri, Symmetrel) and its derivatives, rimantadine (RA,
Flumadine) and spiroadamantyl amine (SA),15−20 (Figure 1b)
to the ion channel formed by the transmembrane domain of the
SARS-CoV-2 envelope protein (EC2, Figure 1a) as a possible
“new” target. These AA derivatives were shown to inhibit the
cation conductance of the M2 transmembrane ion channel of
influenza A virus (M2A, Figure 1a),21 and the “old” target was
also used as a reference in this study. AA was originally
suggested16 against SARS-CoV and showed various beneficial
effects in patients infected by the SARS-CoV-218−20 as well. EC2
is homologous to the envelope protein of SARS-CoV16 and also
functions as a cation-selective ion channel like M2A, playing a
role in virus budding, release, and host inflammation response.15

The blocking of EC2 by AA derivatives or similar amphipathic
molecules is a promising drug design strategy22,23 even on a
longer term due to the low mutagenicity of EC2 found in
mutated SARS-CoV-2 lineages collected from patients in
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India.24 Recently, the atomic resolution structure of EC2
(Figure 1a) was determined15 using solid-state NMR, providing
a starting point for target-based design. The same study
demonstrated the binding of fluorinated AA to EC2 as well.

The large pore15 of EC2 is formed in a pentameric helical bundle
stabilized by interhelical aromatic stacking interactions.
The pore size of EC2 is comparable to that formed by the

tetrameric bundle in M2A21 (Figure 1a), which captures the AA
derivatives. The similar pore geometry of M2A and EC2 is just
one structural factor if considering the repositioning of ligands
between the two ion channels.
Their amino acid composition and water structure25 are also

key factors of ligand binding. The mediating role of water
molecules was highlighted in the binding mechanism of AA
derivatives to M2A.21,25 Considering the above similarity
between M2A and EC2, one may expect that understanding
the role of water molecules will be important in the case of EC2
as well. The available EC2 structure15 is an apo form without
water and ligand molecules (Figure 1a), and therefore, it cannot
supply any information on the possible mediating role of water
molecules in ligand binding to EC2. Thus, an atomic resolution
structure of the full complex with a bound ligand and water
molecules (a hydrated holo structure) is necessary to foster
correct repositioning and design to EC2.
As the full complex has not been solved at atomic resolution,

we have to calculate the binding of the AA derivatives and the
water structure from scratch, which is a challenging task for
current methods.25 To answer this challenge, we introduce a
new protocol that will supply the water structure of the EC2
channel and also adopt docking andmolecular dynamics steps to
produce the representative binding modes of AA derivatives.
The protocol will be tested on the old M2A target with available
experimental complex structures as references and will be
transferred to the new EC2 target. In this way, we will explore
the role of water in binding of the AA derivatives and produce
their key binding modes on the new EC2 target, supplying the
necessary atomic resolution structures for repositioning and
design.

■ METHODS

Input Structures. The atomic coordinates of M2A
complexed with AA (6BKK), RA (6BKL), and SA (6BMZ)21

and the ligand-free structure of M2A (3LBW)26 were acquired
from the Protein Databank (PDB). A, B, C, and D chains and
their corresponding ligand (except for the apo structure) and
water molecules were used for protocol development and
validation purposes (Sections “The Effect of Interfacial Water
Molecules on Ligand Docking to the Influenza AM2AChannel”
and “Construction of the Ligand-Bound, Hydrated Influenza A
M2A Channel Structures from Scratch”). The EC2 NMR
structure (first model of the 20) from ref 15 (7K3G) was used in
Section “Ligand Binding Modes and the Water Structure in the
EC2 Channel of SARS-CoV-2” to create the hydration structure
and ligand binding modes from scratch.

Ligand Preparation. Ligands were built in Maestro.27 The
raw structures were energy-minimized using a semiempirical
quantum chemistry program package, MOPAC28 with PM7
parametrization.29 The gradient norm was set to 0.001. The
energy-minimized structures were submitted to force calcu-
lations; the force constant matrices were positive definite.
Restrained electrostatic potential (RESP) charges were
calculated with RED-vIII.5230 after geometry optimization by
GAMESS.31 Acpype32 and antechamber32,33were used to assign
bound parameters and atom types for topology of ligands.

Target Preparation.TheN-terminal ends of the ion channels
were capped with acetyl groups and the C-terminal ends with
imino-methyl groups using Maestro27 and were subjected to

Figure 1. (A) M2A (left) and EC2 (right) ion channels shown as
cartoon. The red cone represents the diameter of the ion channels.
Interacting amino acids are labeled and shown as spheres in the side
views at the top (a helix was deleted to show the interior of the
channels). Top views from the extraviral space and lists of dimensions
of the channels are shown at the bottom. (B) Lewis structures of the
three AA derivatives investigated in the present study. Under
physiological conditions, the amino group is protonated, resulting in
a net charge of +1. R-rimantadine was used in the study, referred to as
RA.
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energy minimization in the merging step (Step 3). Hydrogen
atoms andGasteiger−Marsili partial charges34were added to the
targets with AutoDock Tools.35 After ligand and target
preparation, the dry target and respective ligands were used as
starting points of HydroDock (next section).
HydroDock. HydroDock is a new protocol shortly featured

in Section 2 of Results and Discussion. The steps of HydroDock
are numbered in Figure 2 and referred to in the following
detailed descriptions using the same numbering as in Results
and Discussion.
Step 1. Dry Docking. Blind docking was performed as

described before36 for both targets M2A and EC2 (Box B, Table
S5). During blind docking, the docking box covered the whole
surface of the target. Focused docking was also used for EC2
when the box only covered the upper half of the protein (Box A,
Table S5). The unliganded M2A and EC2 structures were used
as targets of the blind and focused docking runs. No explicit
water molecules were adopted from the PDB structures. The
target was treated as a rigid body except that the flexibility of the
N15 amino acid side chains was allowed on all helices of EC2 to
allow the entrance of the ligand toward the intraviral regions
(Table S5). AutoGrid 4.235 was used for grid map calculations.
Grid boxes were generated around the entire M2A target. The
grid boxes were centered on the target, and 70 (M2A) and 90
(EC2) grid points along all axes were set with 0.503 Å grid
spacing (0.375 Å in Box A). The resulting docking box covered
the entire M2A and EC2 in the case of blind docking and
allowed the entrance of the ligands from both extra- and
intraviral regions. To avoid artefacts and allow ligand entrance
only from the extraviral space (Figure 1a), the docking box was
reduced to only cover the upper half of EC2 (Box A, Table S5).
Molecular docking calculations were performed by AutoDock

4.2.35 Hydrogen atoms and Gasteiger−Marsili34 partial charges
were added to the ligands with an OpenBabel37 program
package. All chemically relevant torsions of the ligands were
enabled. One hundred blind docking runs were performed. The
Lamarckian genetic algorithm and the pseudo-Solis and Wets
local search with a maximum number of 300 iterations and 25
million energy evaluations and 150 population size were applied
as in refs 38 and 39. The generated 100 ligand binding modes
were clustered and ranked (see Section “Evaluation Criteria” for
details) based on their calculated free energy of binding values
and structural similarity. Representative ligand structures of each

rank in complex with their dry target structures were used as dry
complexes. Due to the symmetry of both M2A and EC2, from
among identical, symmetry-related rank representatives, the one
with the lowest calculated binding free energy was selected and
forwarded to the next steps of HydroDock.
In the case of M2A, a total of six representatives were found,

one−one for all three AA derivatives on both holo and apo target
forms (Table 1). In the case of EC2, five (AA1, ..., AA5, Table
S5), two, and one representatives of AA, RA, and SA were found
(eight in total) and forwarded to Step 3.

Step 2. Building theWater Structure of the Inner Surface of
the Target Channels.The water structure of the inner surface of
the target channels was built using MobyWat,40,41 which
requires an MD trajectory of a target in explicit water as an
input. The MD-based evaluation of MobyWat allows consid-
eration of all solute−water and water−water interactions and
results in high success rates if compared with experimental
structures.40,41

Generation of MD Trajectories. The dry M2A (6BKK) and
EC2 (7K3G) targets were energy-minimized by steepest descent
and conjugate gradient algorithms as in Step 3 of HydroDock to
prepare them for the 1 ns-long MD simulations. The simulation
box was filled with explicit TIP3P42 water molecules, and
counterions (sodium or chloride) were added to neutralize the
system. Exit tolerance levels were set to 103 and 10 kJ·mol−1·
nm−1, while maximum step sizes were set to 0.5 and 0.05 nm for
the steepest descent and conjugate gradient steps, respectively.

Figure 2. Assembly of the hydrated complex of the M2A channel (target, surface) and SA (ligand, sticks) from scratch using the HydroDock protocol.
The numbering of steps of HydroDock follows the explanation in the main text. After the first step, nonminimized water positions fromMobyWat40,41

are shown as red spheres; otherwise, sticks representation is used for hydrogenated and minimized waters. During the third step, some of the water
positions are replaced by the ligand. For clarity, only a fewMD snapshots of ligand bindingmodes are shown after the fourth step. Coordinate files of all
snapshots are accessible in the Supporting Information.

Table 1. Comparison of Computationally Docked and
Experimental Binding Positions of Ligands AA, RA, and SA to
a Dry M2A Target

ligand M2A conformation RMSD (Å) ranka

AA holo 3.3 1/1

AA apo 3.7 1/1

RA holo 3.8 1/2

RA apo 3.6 1/1

SA holo 4.8 1/3

SA apo 2.9 1/1

mean 3.7

SD 0.7
aSerial number of rank/count of all ranks.
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Position restraints were applied on solute heavy atoms at a force
constant of 103 kJ·mol−1·nm−2. Calculations were performed
with programs of the GROMACS43 software package using the
AMBER99SB-ILDN44 force field. After energy minimization, 1
ns-long NPTMD simulation was carried out with a time step of
2 fs. For temperature coupling, the velocity rescale45 algorithm
was used. The solute and solvent were coupled separately with a
reference temperature of 300 K and a coupling time constant of
0.1 ps. Pressure was coupled by the Parrinello−Rahman
algorithm46,47 and a coupling time constant of 0.5 ps,
compressibility of 4.5 × 10−5 bar−1, and reference pressure of
1 bar. Particle mesh-Ewald summation48was used for long-range
electrostatics. Van der Waals and Coulomb interactions had a
cutoff at 11 Å. Coordinates were saved at regular time intervals
of 1 ps, yielding 1 × 103 frames. Position restraints were applied
on solute heavy atoms at a force constant of 103 kJ·mol−1·nm−2.
Periodic boundary conditions were treated before analysis to
make the solute whole and recover hydrated solute structures
centered in the box. Each frame was fit to the original protein
crystal structure using Cα atoms. The final trajectory including
all atomic coordinates of all frames was converted to portable
XDR binary files equipped with name extension xtc.
MobyWat Calculations. From the MD trajectory, surface

water positions were calculated with Mobywat’s40 all-inclusive
identity-based (IDa) prediction algorithm. The maximum
distance from the target (dmax), prediction, and clustering
tolerances were set to 5, 2.5, and 1 Å, respectively. The
MobyWat algorithm was described earlier.40,41 Briefly, candi-
date water molecules for all frames are selected based on a
desired distance limit (dmax) from the target, and then an
occupancy list is constructed containing every different water
IDs on every line and the respective number of occurrences as
candidates among all frames. Clustering is applied to all rows (all
different water IDs) of the occupancy list using the ctol
parameter to define the distance between elements of the same
cluster. The largest cluster is selected from all to give the first
predicted water molecule by averaging the spatial coordinates of
included molecules. In the further steps, clusters are selected in a
descending order size-wise and checked if their distance is larger
than the prediction tolerance from previously predicted water
positions. After the above clustering, a list of water positions
(prediction list) was produced as the O atom coordinates
covering the surface of the EC2 (7K3G) and M2A (6BKK)
channels. The hydrogens were added to the predicted water O
atoms in a later step (Step 3 of HydroDock).
In the case of M2A, the predicted water oxygen positions were

compared to the reference water molecules in the PDB structure
6BKK using the validation mode of MobyWat. The above
settings were used with a match tolerance of 1.5 Å.
Step 3. Merging and Refinement. Merging. The outcomes

of Steps 1 and 2 were combined to build the raw complex
structures, that is, the hydrated, ligand-bound targets. For this,
the complexes were placed in a common coordinate system by
alignment of the target structure of the dry complex from Step 1
and the hydrated target structure from Step 2 using PyMol.49

After alignment, a raw complex still contains all surface water
molecules predicted byMobyWat. However, after the placement
of the dry docked ligand structure into the fully hydrated target,
some water molecules overlap with the ligand. The overlapping
water molecules were removed by the editing mode of
MobyWat,40 and only interfacial water molecules were retained.
The merged structures (see Step 1. Dry Docking) of the eight

EC2 complexes (Table S5) and six M2A complexes (Table 1)
were then subjected to robust refinement.

Soft Refinement (Not Part of HydroDock and Used during
Protocol Development) (Figure S1). The interfacial crystallo-
graphic water oxygen atoms within a dmax of 5.0 Å distance limit
from both the ligand and the target were kept, as they bridge
between the ligand and the amino acid residues of the protein;
other waters were removed. The structure of the M2A channel
with the water O atoms was placed in a dodecahedral box using a
distance criterion of 1 nm between the solute and the box. Void
spaces of the box were filled by explicit TIP3P water molecules
by GROMACS.43 Hydrogen atoms were added to water oxygen
and solute atoms by the GROMACS program pdb2gmx. The
system was neutralized by counterions. A steepest descent
(steepest descent1) optimization was carried out,40 with
convergence threshold set to 103 kJ·mol−1·nm−1 followed by a
conjugate gradient (conjugate gradient1) calculation, where the
convergence threshold was set 10 kJ·mol−1·nm−1. Position
restraints at a force constant of 103 kJ·mol−1·nm−2 were applied
on all heavy atoms in both steps. An AMBER99SB-ILDN44 force
field was used for the calculations. The steepest descent and
conjugate gradient minimization steps were carried out once
again (steepest descent2, conjugate gradient2), with the same
settings40 as in steepest descent1 and conjugate gradient1, with
the exception that only backbone Cα atoms were position
restrained.

Robust Refinement Was Adopted as an Appropriate
Protocol of HydroDock Based on the Good Docking Results
(Table 3). Robust refinement has only one difference when
compared to soft refinement; the steepest descent1+conjugate
gradient1 step is not immediately followed by the steepest
descent2+conjugate gradient2 steps, but first, a 100 ps-long MD
simulation (md) is carried out (steepest descent1+conjugate
gradient1+md+steepest descent2+conjugate gradient2). In the
MD simulation, only backbone Cα atoms were position-
restrained. Notably, in a general application of HydroDock for
systems with large flexibility on the target backbones, the use of a
membrane model would be advisable instead of position
restraining of the backbone. For temperature coupling, the
velocity rescale algorithm was used. The solute and solvent were
coupled separately with a reference temperature of 300 K and a
coupling time constant of 0.1 ps. Pressure was coupled with the
Parrinello−Rahman algorithm with a coupling time constant of
0.5 ps, compressibility of 4.5 × 10−5 bar−1, and reference
pressure of 1 bar. Particle mesh-Ewald summation was used for
long-range electrostatics. Van der Waals and Coulomb
interactions had a cutoff at 11 Å. Robust refinement resulted
in the correct position of the experimental water molecules of
M2A, with the right orientation of H atoms that led to the
formulation of two water networks. Based on the success, robust
refinement was adopted in Step 3 of HydroDock after merging.

Wet Docking (Not Part of HydroDock and Used during
Protocol Development) to Choose the Sufficient Refinement
Protocol and Validate It. In wet docking, every detail was set as
in dry docking (Step 1 of HydroDock) except that refined water
molecules were included. When compared to the experimental
ligand positions, the Gasteiger−Marsili partial charges on the
atoms of the water molecules yielded incorrect results (Figure
S2). Thus, partial charges of the TIP3P explicit water model
were used on all water molecules instead.

Step 4. Generating MD Snapshots of the Target−Ligand
Complex. The MD simulations of the merged and refined
complexes were carried out with the same settings described in
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the minimization procedure (robust refinement). The simu-
lations were performed as listed in Table S4 and for 100 ns in the
cases of M2A and EC2, respectively. Only the Cα atoms of the
proteins were restrained. The movements of the amino acid side
chains, the ligand, and the solvent were allowed. The refined
hydration structure was kept in the MD simulations; the rest of
the simulation box was filled with water molecules by
GROMACS. Complex snapshots were aligned by a GROMACS
tool trjconv using their target Cα atoms, and the bound ligand
snapshots were separately generated as individual files from the
MD trajectory file by 0.1 ns steps (conformation pool).
Step 5. The Selection of the Representative Ligand Binding

Modes from the MD Trajectory File. An average ligand
conformation was calculated from the conformation pool
using a shell script provided in the Supporting Information
file. RMSD values between the individual ligand pool structures
and the average ligand pool structure were calculated according
to eq 1, where the average pool conformation was used instead as
a reference C in this case. A pool structure with the lowest
RMSD value was selected as the representative ligand binding
mode from theMD trajectory. A representative binding mode of
the ligand is the suggested final binding mode to the target
(M2A, EC2). Distinct binding modes produced by dry docking
(Step 1) usually result in more than one representative structure
after HydroDock.
Evaluation Criteria. Standard criteria50−54 were applied to

evaluate the results of dry and wet docking and HydroDock. In
all cases, the structural match of the calculated (docked or
HydroDock representative, D in eq 1) binding mode to the
crystallographic reference (C) was expressed as a root-mean-
square deviation (RMSD) value according to eq 151

N
D CRMSD

1

n

N

n n

1

2∑= | − |
= (1)

In eq 1, N is the number of ligand heavy atoms, C is the space
vector of the nth heavy atom of the crystallographic reference
ligand molecule, andD is the space vector of the nth heavy atom
of the calculated ligand conformation. Overlapping ligand
conformations resulted by 120° turns around the trigonal

vertical axis were considered identical during RMSD calcu-
lations.
The ranking order was also shown in the cases of dry and wet

docking trials. The docked ligand conformations were
structurally clustered and ranked according to their AutoDock
4.2 binding free energy values, and the serial numbers of ranks
are listed in Results and Discussion. During this procedure, the
ligand structure with the lowest calculated free energy of binding
was selected, and the neighboring docked ligand structures
within 2 Å38 were collected in the rank; then, a new rank is
opened starting with an unused structure of the lowest
calculated free energy of binding from the remaining structures,
etc. until all 100 ligand structures were collected into ranks.40

Ranks with a low serial number indicate an energetically
favorable binding conformation. Note that in the case of
HydroDock, representative binding modes were selected (Step
5) without the need of further ranking.

Calculation of Interaction Energy Values of SA-EC2
Complexes. The Lennard-Jones interaction energy (ELJ) was
calculated between the target and ligand molecules according to
eq 2
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In eq 2, εi and εj are the potential well depths in the equilibrium
distance of atom pairs of identical types; εij is the potential well
depth in equilibrium between the ith (ligand) and jth (target)
atoms; Rij is the internuclear distance at equilibrium between ith
(ligand) and jth (target) atoms; Ri and Rj are half equilibrium
distances between ii and jj atom pairs of identical types,
respectively; rij is the actual distance between the ith (ligand)
and jth (target) atoms;NT is the number of target atoms; andNL

is the number of ligand atoms. The Amber 2012 force field
parameters were used.56 The calculations were performed for
dry and hydrated targets as well. In the case of the hydrated
target, explicit water molecules were considered as part of the
target.

Figure 3. Complex of AA (sticks with teal carbon) bound to the M2A channel (cartoon and sticks with gray carbon, a frontal helix turned off for
clarity). (A) Experimental binding mode in the PDB structure 6bkk with three H-bonds formed between the ligand protonated amino N and water O
atoms.Water molecules are represented as red spheres and labeled by their chain IDs and/or residue numbers. (B) Result of “dry” docking of AA shows
a shift of the positive protonated amino group of AA. Instead of the missing water molecules, interactions with the partially negative backbone carbonyl
groups of V27 and A30 were formed. (C) Result of “wet” docking of AA is in a good agreement with the experimental binding mode of AA shown in
panel A. The minimized water molecules are shown as thick lines and labeled according to the residue numbering in the PDB structure 6bkk. The
crystallographic ligand binding position in (A) is also shown in (B) and (C) with transparent orange sticks for comparability.
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■ RESULTS AND DISCUSSION

(1) The Effect of Interfacial WaterMolecules on Ligand
Docking to the Influenza AM2A Channel.Water molecules
play a key role21 in binding AA and its derivatives to the
influenza A M2A channel. For example, water (w) molecules
A:w103, B:w204 (at A30) and B:w201, and C:w205 (at G34)
form bridges between the positive protonated amino group of
AA and the carbonyl oxygens of the amino acids (Figure 3a, the
numbering of the PDB structure 6bkk is used). Together with
other water molecules at H37, a static H-bonding network of 10
water molecules is formed, filling the channel cavity below AA
(Figure 3a). Incorporation of such water molecules in docking
calculations can be essential57−60 to obtain precise results.
To check this assumption, a systematic investigation of

computational docking of all three ligands (AA, RA, and SA) was
performed to the M2A channel using different approaches of
handling interfacial water molecules. Targeting the dry M2A
channel without any surface water molecules (Table 1) is the
simplest approach and provides a basis for comparisons
throughout this study. An average of 3.7 ± 0.7 Å root-mean-
square deviation (RMSD) was calculated between the docked
and crystallographic ligand conformations with the latter ones
used as references. This value is above the RMSD of 1.5−2.0 Å
considered acceptable in the literature50−54 and indicates that
the dry M2A channel may not be an appropriate target for
docking. The dry M2A channels in holo (ligand-bound)
conformations did not yield significantly better results than
the apo ones as docking targets. This follows from the high
identity between the holo and apo target structures with an
average superposition RMSD of 0.3 Å ± 0.1 (Table S2). Thus,
there is no considerable induced fit during ligand binding to the
M2A channel, and the rigidity (Methods) of the target structure
did not affect the result in these cases. In the docked structure
(AA-Holo in Table 1), the adamantyl group of AA was close to
the crystallographic position (Figure 3b). However, the lack of
the abovementioned (Figure 3a)21 bridging water molecules
resulted in a miscoordination of the protonated amino group to
the carbonyl oxygen of V27 and the hydroxyl group of S31
(Figure 3b) and the large RMSD values of Table 1.
In the wet docking calculations, a set of functional water

positions (Table 2 and Figure 3c) of the crystal structures was
used together with the M2A channel as a target. As the
coordinates of water hydrogen atoms were not available, a
theoretical refinement was necessary to add and optimize their
positions. During the refinements, the ligand was kept in the
holo structure to help in the correct arrangements of water
hydrogen atoms in contact with the protonated amino group.
Two refinement protocols (a soft and a robust one) were

investigated. During the soft protocol (soft refinement), simple
energyminimization steps were applied (Methods) for the water
hydrogen atoms while the positions of all heavy atoms
(including water oxygen) were restrained in their crystallo-
graphic positions. The docking of AA to the ligand-free, S-
refined target still did not result in an acceptable RMSD (2.7 Å),
which can be attributed to the incorrectly positioned water
hydrogen atoms (Figure S1). A closer inspection of the S-refined
target structure showed that the incorrect positioning of water
hydrogen atoms was a consequence of several close contacts
(Table 2) in the original crystallographic water structure.21 The
close contacts were maintained by the position restraints during
soft refinement, resulting in relatively small shifts from their
crystallographic positions (Table 2), hindered reconstruction of

the interfacial H-bonding network, and atomic positions
preformed to interact with AA (Figure S1). As docking of AA
to the wet M2A target with soft refinement did not improve the
dry results (Table 1), a robust protocol was also tested (robust
refinement) including a molecular dynamics step with no
restraints on the atoms. Robust refinement appropriately shifted
half of the water molecules of Table 2 (A:w103, D:w105,
D:w109, B:w201, and B:w204) to 1 Å or a larger distance (Table
S3) from their crystallographic positions. In this way, their
erroneous close contacts were eliminated, and their hydrogen
atoms were arranged into correct orientations, resulting in a
perfect H-bonding network. Some experimenting with the
partial charge system on water molecules showed that TIP3P42

outperformed Gasteiger−Marsilli34 partial charges (Figure S2).
Robust refinement and TIP3P charges on water molecules
yielded excellent docking results with an average RMSD of 1.2±
0.3 Å (Table 3) for all ligands. The low serial numbers/counts of
the corresponding ranks indicate that the structural precision
reflected by the low RMSD values was accompanied by the best

Table 2. Deviations of Refined Crystallographic and
MobyWat-Predicted Water Positions Used in Wet Docking
Calculations Measured from the Original Crystallographic
Positions (PDB ID 6bkk) with Their Close Contacts Also
Listed

water #a close contactb
soft refinement

(Å)
robust

refinement (Å)
predicted
(Å)c

A:w102 0.3 0.2 0.2

A:w103 0.6 1.6 0.9

D:w103 0.5 0.5 0.9

D:w105 D:w109 0.7 2.1 0.6

D:w109 C:w208,
D:w105

0.9 1.0 2.1

B:w201 B:G34 1.0 1.0 0.6

B:w204 0.8 1.6 0.7

C:w205 0.4 0.9 0.5

B:w208 0.8 0.8 1.0

C:w208 D:w109 0.9 0.2 0.3
aThe numbering of PDB structure 6bkk is used (see Table S1 for
details of selection of reference structures). bClose contacts of the
crystallographic structure were listed if the distance between the
oxygen atom of the actual water molecule and a heavy atom of a
neighboring residue or the oxygen of the neighboring water molecule
was below 2.75 Å. cCrystallographic water positions of PDB structure
6bkk were used as reference; see also Table S1 for details on selection
of reference crystallographic structures.

Table 3. Comparison of Computationally Docked and
Experimental Binding Positions of Ligands AA, RA, and SA to
the M2A Target Covered by Crystallographic Water
Positions Subjected to a Robust Refinement Protocol and
Equipped with Partial Charges of the TIP3P Explicit Water
Model

ligand M2A conformation RMSD (Å) ranka

AA holo 1.2 1/1

AA apo 1.0 1/1

RA holo 1.0 1/2

SA holo 1.7 1/1

mean (holo) 1.2

SD (holo) 0.3

aSerial number of the rank/count of all ranks.
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calculated binding free energies (or a single, homogeneous rank
was produced). In the case of AA, docking to the wet, apo M2A
channel structure was also performed after robust refinement.
Similar to the holo results, an excellent RMSD of 1.0 Å was
obtained (Figure 3c).
The results of Table 3 showed that appropriately placed and

oriented water molecules are keys to precise docking results if
compared with the insufficient outcomes of dry docking (Table
1). It was also found (Table 2) that the availability of
crystallographic water positions alone cannot guarantee the
success for two reasons. (1) Often, only oxygen positions are
supplied, and water orientations are obviously not assigned due
to the lack of hydrogen atoms. (2) There are also other
limitations41,61−69 of assignation of the crystallographic density
map, resulting in missing or too many water molecules
(overfitting). Such problems often result in crystallization
artefacts67 and close contacts similar to those listed in Table 2.
Thus, a robust theoretical refinement of experimental water
structure is necessary in general and for correct calculation of
complexes of all three ligands with the M2A channel in the
present case.
(2) Construction of the Ligand-Bound, Hydrated

Influenza A M2A Channel Structures from Scratch. In
agreement with other studies,25 the results of the previous
section showed that docking calculations are very sensitive to
even small errors in the water structure. In the previous examples
(Table 2), a robust refinement of the measured water positions
was necessary to achieve good docking results. In a real drug
screening project,36,55 experiments cannot supply interfacial
water positions and holo structures for all possible ligand
molecules designed for the target binding pocket, and only an
apo target structure is available for the docking calculations.
Thus, only atomic coordinates of the individual components
(ligand, target, and water) can be used for the construction work.
It is a real challenge to bring all these partners together into a
hydrated complex structure due to the difficulties of correct
positioning of interfacial water molecules.25

To address this challenge, we introduce HydroDock, a hybrid
protocol that supplies the hydrated complex structure from
scratch. HydroDock is composed of five steps (Figure 2 and
Methods) and was tested on the M2A target and its ligands
(Figure 1). Step 1 involved a fast docking calculation with results
described in Table 1. In Step 2, the water structure of the surface
of the target was built by MobyWat40,41 with high precision.
MobyWat is a molecular dynamics (MD)-based method that
can predict solute−water and water−water interactions as well.
In the present case, the inner surface of the M2A target was
completely hydrated and the calculated water positions were
compared to the crystallographic reference ones as listed in
Table 2. Nine out of ten water molecules were successfully
predicted at a match threshold of 1.0 Å (see also Figure S3). The
predicted hydration structure was a priori close contact-free and
equipped with hydrogen atoms, which is necessary for correct
docking calculations (Section “The Effect of Interfacial Water
Molecules on LigandDocking to the Influenza AM2AChannel”
and Table 3). In Step 3, the results of the first two steps were
merged into one structure and surface water molecules
overlapping with the docked ligand were eliminated using the
Editing mode40 of MobyWat. In Step 4, the hydrated M2A−
ligand complexes were subjected to molecular dynamics (MD)
in a simulation box filled with explicit water molecules to
generate a pool of several hundreds (Npool in Table S4) of
member conformations. Step 5 of HydroDock produces a

representative complex conformation statistically selected from
the pool (see Methods for the details of all steps).
Thematches of the representative ligand conformations to the

crystallographic ones are listed in Table 4 and shown in Figure 4.

For these small ligands (Figure 1b), the conformation pools
were generated in relatively short MD simulations of 40−100 ns
(Methods and Table S4) appropriate for the selection of the
representatives. The search space was also restricted by the
helical boundaries of the narrow M2A channel (Figure 1a), and
therefore, the selection of representatives was not particularly
challenging from the ligand conformation pools containing fairly
uniform binding modes (Table 4 and Table S4). Notably, in our
previous study,55 we found that the generation of conformation
pools in the cases of large, flexible ligands may require longer
MD simulation times, especially if they bind to the target surface.
The final results (Table 4 and Figure 4) show excellent

agreement with the experimental ligand conformations21 in all
three cases. A closer inspection of the changes during the MD
simulations (Step 4 of HydroDock) shows that ligand binding
modes underwent considerable rearrangements due to their
interactions with water molecules generated in Step 2. Due to
the lack of the anchoring water molecules, dry docking (Step 1 of
Hydrodock) produced misdocked binding modes exemplified
by Figure 3a. During Step 4, all three ligands entered hydration
networks of surrounding water molecules via their protonated
amino groups that formed hydrogen bonds with water oxygen
atoms (Figure 4). They also adopted their appropriate binding
positions (Figure S4) with a rapid rotation and a slight
downward movement toward the middle of the channel.
Interestingly, besides the crystallographic binding mode, RA
also adopted an alternative, parallel orientation corresponding to
the higher RMSD of RA, holo in Table 4.

(3) Ligand Binding Modes and the Water Structure in
the EC2 Channel of SARS-CoV-2. A recent study15 explored
the interactions of fluoro-AA with EC2 on the basis of chemical
shift perturbations from nuclear magnetic resonance (NMR)
spectroscopic measurements.
They also used docking calculations to map the anchoring

residues during ligand entry from the extraviral space down to
N15 of EC2 (Figure 1a).
The study identified a group of apolar entry residues T11...I13

by NMR (asterisks in Figure 5a) and others like N15 by docking
calculations (empty circles), respectively. The fluoro-AA in ref
15 is only a slight modification of AA, both having a largely
hydrophobic head group and a positively charged tail moiety
(Figure 1b), and therefore, similar binding modes can be
expected for both ligands on EC2.

Table 4. Comparison of Computational and Experimental
Binding Modes of Ligands AA, RA, and SA to the M2A
Targeta

ligand
M2A

conformation
RMSD of

representative (Å)
mean RMSD

(Å)
SD RMSD

(Å)

AA holo 0.7 1.8 0.7

AA apo 1.1 1.9 0.5

RA holo 4.0 2.0 0.7

RA apo 1.5 1.8 0.6

SA holo 2.6 1.7 0.9

SA apo 0.3 1.1 0.7
aThe computational binding modes were produced by the Hydro-
Dock protocol introduced in the present study.
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Inspired by the above NMR-based study15 on EC2 and the
good performance of HydroDock on the M2A channel
(previous section), our protocol was applied to map the binding
modes of the AA derivatives on the EC2 channel of SARS-CoV-
2 (Figure 1). The binding modes of all three ligands (AA, RA,
and SA) weremapped byHydroDock using the apo form EC2 as
a target from ref 15. The interacting residues of EC2 were
collected after dry docking (Figure 5a,b and Table S5) and for
the final five representative binding modes produced by
HydroDock (Figure 5a,b and Table S6) as well.
A good match was observed (Figure 5a) between the

occurrence of EC2 residues involved in the binding modes of
fluoro-AA identified in the NMR-based study15 and AA found
by HydroDock in the present study. The results show two main
binding regions (Figure 5a,b) of EC2, that is, an entrance region
(ER) toward the extraviral space and an intrachannel region
(IR) roughly divided by the gating residue N15. Our dry

docking calculations showed that the IR region was accessible
only in the case if the side chain of the gating N15 was free to
move during the docking (Table S5 and Methods), indicating
that N15 has a key role in ligand binding mechanisms. The
NMR-based study15 also emphasized the role of this gating
residue and concluded that small molecular drug candidates
should show high binding affinity to N15 during their entry into
EC2.
Water molecules significantly influence the binding modes of

ligands to their targets25 (see also previous sections). As in the
above M2A examples, HydroDock refinement of EC2 systems
also involved structural hydration, energy minimization, and
subsequent 100 ns-long MD simulations for all binding modes
found in dry docking (Step 1 in Figure 2). The comparison of
the binding pattern after dry docking (blue bars in Figure 5a)
with that after HydroDock refinements (orange bars in Figure
5a) may shed light on the influence of water structure on ligand

Figure 4. Representative binding modes of ligands (teal sticks for carbon atoms) (A) AA, (B) RA, and (C) SA in the complex with M2A (cartoon)
produced by the HydroDock protocol. For comparison, crystallographic ligand binding modes (orange sticks for carbon atoms) are shown as
references. Interacting M2A amino acids and water molecules are shown as sticks and labeled accordingly to the residue numbering of 6bkk.

Figure 5. (A) Occurrence of EC2 amino acids interacting with AA in the five binding modes (bars) produced by dry docking (blue bars) and after
refinement by HydroDock (orange bars) in the present study. Asterisks and circles indicate interacting amino acids identified by experiments and
docking calculations, respectively, in a previous15 paper. Entrance and intrachannel binding regions are marked as ER and IR, respectively, at the top of
the diagrams. (B) Five representative structures of binding modes AA1, ..., AA5 (teal sticks, Table S6) on EC2 (cartoon, truncated at the bottom). The
interacting EC2 amino acids are shown as balls and sticks and labeled by their identifiers according to PDB structure 7k3g. ER and IR binding regions
are also shown on the right side of the figure. Raw data are provided in Tables S5 and S6 in the Supporting Information.
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binding to EC2. The hydrophobic belts of binding modes AA1,
AA2, and AA4 (ER) and AA3 and AA5 (IR) maintained after
HydroDock refinements (Figure 5a). The ER and IR binding
regions consist of hydrophobic cores centered on residues L12
(ER) and L19 and L21 (IR), respectively. While the hydro-
phobic interactions appear in both dry docking and HydroDock
results (Figure 5a), there are certain amino acids like L19 found
by only one of the methods. In these cases, a rearrangement of
the H-bonding system around the protonated amino group of
AA was observed further as discussed in the next section and in
Figure S5 in details.
The abovementioned hydrophobic belts of EC2 are necessary

to accommodate the hydrocarbon heads of the amphipathic AA
derivatives; interfacial water molecules help in the orientation of
the ligands in the EC2 channel similar to their binding modes in
M2A as discussed in the previous section. For example, in the
first binding mode of SA (Figure 6 and Tables S5 and S6), its

spiroadamantyl group is captured in a sandwich of hydrophobic
side chains arranged in several belts in the EC2 channel (Figure
6). However, the hydrophobic interactions alone are not enough
to obtain the final orientation of the ligand. Dry docking
positioned SA perpendicular to the helical axes of the EC2
channel, and the only H-bonding interaction was formed with a
backbone amide group of V24. HydroDock refinements that
introduced explicit water molecules yielded a parallel
orientation, and the protonated amino group formed three H-
bonds with water molecules W1, ..., W3 bridging SA with the
inner wall of EC2. This bridging system of waters found by
HydroDock resulted in an almost doubled SA-EC2 interaction
energy if compared with dry docking (Figure 6). Similar
observations can be made for the role of water molecules in the
binding of ligands AA (Figure S5) and RA as well.

■ CONCLUSIONS

Determination of water molecules mediating drug−target
interactions is often missing or they are erroneously positioned
due to inherent limitations of structure determination
methods.25 However, the COVID-19 pandemic showed that
drug repositioning or design projects often fail due to such

structural errors, resulting in misprediction of drug−target
interactions. The present study showed that precise positioning
of interfacial water molecules is essential for correct calculation
of interaction of viral channels with amphipathic ligands of the
AA type. A new protocol, HydroDock, was introduced to build
the hydrated target−ligand complex structures and help in the
repositioning of the ligands between viral channels. In our
examples, HydroDock built the hydrated complex structures
from scratch and required only the apo target and ligand
structures as inputs. The structures showed excellent agree-
ments with experimental results. The atomic resolution complex
structures showed that water plays a similar role in the binding of
amphipathic AA derivatives to transmembrane ion channels of
both influenza A (M2A) and SARS-CoV-2 (EC2). While the
hydrophobic regions of the channels capture the bulky
hydrocarbon group of the ligand, the surrounding waters direct
its orientation parallel with the axes of the channels via bridging
interactions with the ionic ligand head. Such elucidation of the
role of waters is often requested,21,25,70 and therefore, future
applications of HydroDock can be expected in the design and
repositioning of drug candidates.
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We have previously shown that a trypsin inhibitor from desert locust
Schistocerca gregaria (SGTI) is a taxon-specific inhibitor that inhibits
arthropod trypsins, such as crayfish trypsin, five orders of magnitude
more effectively than mammalian trypsins. Thermal denaturation experi-
ments, presented here, confirm the inhibition kinetics studies; upon
addition of SGTI the melting temperatures of crayfish and bovine trypsins
increased 27 8C and 4.5 8C, respectively. To explore the structural features
responsible for this taxon specificity we crystallized natural crayfish
trypsin in complex with chemically synthesized SGTI. This is the first X-ray
structure of an arthropod trypsin and also the highest resolution (1.2 Å)
structure of a trypsin–protein inhibitor complex reported so far. Structural
data show that in addition to the primary binding loop, residues P3–P3

0 of
SGTI, the interactions between SGTI and the crayfish enzyme are also
extended over the P12–P4 and P4

0–P5
0 regions. This is partly due to a

structural change of region P10–P4 in the SGTI structure induced by binding
of the inhibitor to crayfish trypsin. The comparison of SGTI–crayfish
trypsin and SGTI–bovine trypsin complexes by structure-based calcu-
lations revealed a significant interaction energy surplus for the SGTI–
crayfish trypsin complex distributed over the entire binding region. The
new regions that account for stronger and more specific binding of SGTI to
crayfish than to bovine trypsin offer new inhibitor sites to engineer in order
to develop efficient and specific protease inhibitors for practical use.

q 2005 Elsevier Ltd. All rights reserved.

Keywords: serine protease; canonical inhibitor; X-ray crystallography; NMR;
specificity*Corresponding author

Introduction

Besides their involvement in extra- and intra-
cellular breakdown of proteins to amino acids,
serine proteases catalyze highly specific cleavages
in a number of biological processes from blood
clotting to the complement cascade of the immune
system. They regulate the level of particular
proteins in the organism or convert their inactive
forms to active ones. While serine proteases

perform a wide range of functions essential to life,
they can also be harmful. This may be the reason
why their activity is not only controlled by the
proteolytic activation of their inactive forms, by
their auto-inactivation (autolysis), and their trans-
port, but also by their inhibition with specific
protease inhibitors.

The control of trypsin activity in pancreas and
intestine provides a good example of these
mechanisms. As discovered more than 130 years
ago1 trypsin is produced by the pancreas in its
inactive form. It was shown a few decades later that
in addition to trypsinogen and other protease
zymogens, pancreas also contains a protein
inhibitor of pancreatic trypsin2 that was shown to
function as a protector of premature trypsinogen

0022-2836/$ - see front matter q 2005 Elsevier Ltd. All rights reserved.

Abbreviations used: DSC, differential scanning
calorimetry; NOE, nuclear Overhauser enhancement;
MD, molecular dynamics.
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auto-activation. Since then several pairs of serine
proteases and inhibitors have been discovered and
become not only targets of physiological studies but
also favorite structural models for protein–protein
interactions. A further aspect that makes investi-
gation of serine protease inhibitors extremely impor-
tant is their potential use in therapy. Thrombin
inhibitors in use (anticoagulants) are classic examples
of the practical realization of this kind of research.3–5

Until recently, trypsin complexed with substrate-
like canonical serine protease inhibitors provided
the only models for protease–protease inhibitor
interactions.6,7 With the development of bio-
technology and bioinformatics there is an
increasing demand for higher resolution X-ray
structures of serine protease–inhibitor complexes,
which reveal the specific interactions responsible
for the strong and selective inhibitory effect and
provide scaffolds and reliable data sets for in silico
and in vitro inhibitor design. Though there are at
least 18 protein families in this class of inhibitors
with different overall folds, all appear to share a
distinct and similar conformation of the primary
binding loop.7,8 This loop has long been thought
to exhibit the same main-chain conformation in
both free form and in complex with the protease
and to be the major determinant of inhibition.6,7

Our recent NMR studies on the backbone dynamics
of small inhibitors of the newly discovered
pacifastin family,9–12 however, have shown that
the binding loops in these inhibitors are less
defined and more flexible than all the remaining
part of the molecule.13,14 Another intriguing con-
clusion of these studies was that SGTI (trypsin
inhibitor from Schistocerca gregaria) is taxon-specific,
inhibiting arthropod trypsins, such as the crayfish
one, orders of magnitudes more effectively than the
mammalian ones.15 Our interest in the structural
basis of this strong interaction between SGTI and
crayfish trypsin initiated the present study.

Here we report the results of an experimental
approach (differential scanning calorimetry) to
demonstrate the strength of interaction between
SGTI and crayfish trypsin and the crystal structure
of their complex. The three-dimensional structure
reported here presents the first arthropod trypsin
structure and one of the highest atomic resolution of
a serine-protease–protein inhibitor complex deter-
mined so far. Results from our structure-based
molecular dynamics calculations are in agreement
with the experimental data showing that the
intermolecular interactions in the crayfish trypsin–
SGTI complex are much stronger than those in
the bovine trypsin–SGTI one. Our data provide
experimental support to the hypothesis16,17 that
taxon specificity of inhibitors of the pacifastin
family like SGTI is at least partly due to their
interaction with the protease outside the commonly
used interaction site of a canonical protease
inhibitor, the binding loop. Engineering these
newly explored sites may allow the production of
highly specific inhibitors of therapeutically relevant
proteases.

Results

Thermal stability of crayfish trypsin–SGTI and
bovine trypsin–SGTI complexes

Bovine and crayfish trypsins without SGTI
exhibited melting profiles with melting tempera-
tures (Tm) around 67 8C and 64 8C, respectively,
indicating somewhat lower structural stabilities of
the crayfish enzyme (Figure 1). Addition of SGTI to
bovine trypsin increased the Tm value to 71.5 8C,
suggesting that stability of bovine trypsin is
increased through interactions with SGTI. In the
presence of SGTI, crayfish trypsin showed dramati-
cally increased stability against thermal denatura-
tion with a Tm value of 91 8C, indicating stronger
enzyme–inhibitor interactions compared to the
bovine trypsin–SGTI complex (Figure 1). Although
the unfolding transitions were not reversible,
differences in Tm values were independent of
heating rate, suggesting that they reflect a real
thermodynamic difference in stability.

Comparison of the amino acid sequence of
crayfish and other trypsins

The nucleotide sequence was determined by
DNA sequencing of recombinant crayfish trypsin.
The amino acid sequences derived from this DNA
sequence and from the X-ray structure of crayfish
trypsin–SGTI complex using trypsin purified from
Astacus leptodactylus were only different at a single
position; in the X-ray structure a Val appears to
replace an Ala residue at position 59 (Figure 2(a)).
Comparing the amino acid sequences of crayfish
trypsin to vertebrate trypsins, there is 41%–46%

Figure 1. Thermal unfolding profiles of trypsins and
their complexes with SGTI. Excess transition heat
capacity of crayfish trypsin (–), bovine trypsin ($ $ $ $),
bovine trypsin–SGTI complex (- - - -), and crayfish
trypsin–SGTI complex (– – –) in 20 mM sodium phos-
phate, 100 mM NaCl (pH 7.0), using a heating rate of
1 deg.C/minute. The corresponding melting tempera-
tures are indicated.
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sequence homology between them (e.g. 41% for
bovine anionic trypsin). In case of non-crustacean
arthropod trypsins, amino acid sequence homology
searches resulted in a 40%–53% homology while
crustacean trypsins show a homology as high as
80%–98% with trypsin from A. leptodactylus.

General structural features of crayfish trypsin–
SGTI complex

Crystals of natural crayfish trypsin in complex
with SGTI synthesized by solid phase chemical

synthesis were grown (see Materials and Methods)
and diffracted to 1.2 Å resolution (PDB accession
no. 1YR4). With the exception of the N and C
termini of SGTI, the model is well defined in
electron density (Figure 3(a)). Residues Ser79,
Ser104 and Lys239 of crayfish trypsin as well as
Cys27 of SGTI possess dual conformations. Crayfish
trypsin exhibits the conserved core structure of
the chymotrypsin fold consisting of two six-
stranded b-barrel domains packed against each
other, with the catalytic residues located at the
junction of the two barrels (Figure 3(b) and (c)). The

Figure 2. Amino acid sequences of crayfish trypsin and SGTI. (a) The sequence of crayfish trypsin (upper line) was
aligned with the sequence of bovine trypsin (lower line, PDB id 3PTB) based on superposition of their 3D structures.
Conserved residues are shown in green boxes. Secondary structure elements of crayfish trypsin are shown (a-helices as
boxes, b-sheets as arrows) with their starting and end points marked (chymotrypsin numbering). Some regions showing
structural differences between the crayfish and bovine enzymes are labeled in frames. (b) The sequence of SGTI with
secondary structure elements shown (b-strands as arrows with labels). The two loops at the two ends of b-strand 2 are
labeled. Residues forming contacts with crayfish trypsin are labeled as P12–P5

0.
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catalytic residues of trypsin are present in their
active conformation. The overall structures of
crayfish trypsin and bovine trypsin are similar.
The Ca2C binding loop characteristic to trypsin
binds Cd2C in the crystal structure as the crystal-
lization medium contained Cd2C in high concen-
tration. (The ion in the binding loop had
significantly stronger electron density than a
Ca2C, which was revealed by a positive FoKFc
difference Fourier peak. The nature of the bound ion
was further evaluated by an anomalous difference
Fourier map and B-factor analyses.) The confor-
mation of SGTI is comparable to that determined by
NMR spectroscopy (PDB accession no. 1KJ0).13

It is important to note that the major features of
binding of crayfish trypsin to SGTI appear to be
identical to the binding of bovine trypsin to bovine
pancreatic trypsin inhibitor (BPTI) (PDB accession
no. 3BTK),18 despite the completely different fold of
the inhibitors (Figure 3(c)); the antiparallel b-sheets
formed between the proteases and the correspond-
ing inhibitors are superimposable at sites S3–S2

0 (in
the protease) and P3–P2

0 (in the inhibitor). A novel
feature of protease–protease inhibitor interactions is
that the interface region in the crayfish trypsin–
SGTI complex is muchmore extended than in serine
protease–inhibitor complexes of other inhibitor
families (see Discussion).

Figure 3. Crystal structure of the crayfish trypsin–SGTI complex. (a) Stereo view of the P3–P3
0 (carbon atoms in light

blue), S3–S3
0 (carbon atoms inmagenta) region with the 2FoKFc electron density map contoured at 1s (blue) and 3s (red).

Protein–protein hydrogen bonds are shown as green shaded lines. (b) Overall conformation of the crayfish trypsin–SGTI
complex compared with bovine trypsin–BPTI complex (PDB id 3BTK). Color codes are as described in (c).
(c) Conformations of the P2–P2

0 regions of the inhibitors in the complexes, with the catalytic triad (carbon atoms in
grey). In (b) and (c) the loop regions different for the two enzymes are colored magenta and red for the crayfish and
bovine enzymes, respectively. Conserved structural elements are shown in grey. Carbon atoms of SGTI and BPTI are
shown in light blue and dark blue, respectively. N, O and S atoms are shown in atomic colors. Black and red labels are
used for the enzymes and inhibitors, respectively. For labeling of loop regions see Figure 2 and the text. Figures 3, 5(b)
and 6(a) were generated by PyMOL.51
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Geometry of the scissile peptide bond in the inhibitor

The scissile peptide bond between Arg29 and
Lys30 is present at full occupancy in the inhibitor
complex. It is planar within the calculated coordi-
nate error with the carbonyl carbon atom raising
only 0.01 Å above the plane defined by the carbonyl
oxygen and carbon alpha atom of Arg29 and the
amid nitrogen of Lys30. The distance between
the carbonyl carbon and the hydroxyl group of the
catalytic serine is 2.69 Å, which is 0.09 Å shorter
than the corresponding distance between the
attacking water molecule and the carbonyl carbon
of the ester bond in an atomic resolution elastase
acyl-enzyme.19 The shorter than van der Waals
distance indicates significant orbital overlap
between the two atoms although it is still too long
for a true covalent bond. The active site is
completely shielded from the solvent in the crayfish
trypin–SGTI complex; the closest water molecule is
6.63 Å from the carbonyl carbon of the scissile
peptide bond.

Loops of the enzyme

There are four loops of crayfish trypsin that are
remarkably different in comparison with those of
vertebrate trypsins (marked in Figures 2(a) and 3(b)
as Loop37, Loop60, Loop145 and Loop202) from
which two loops are important regarding inhibitor
binding. (1) In contrast to bovine trypsin a more
extended hydrophobic region is present in crayfish
trypsin with a five residue insertion at position 37.
The corresponding loop is referred to as Loop37.
The insertion is manifested by an extension of two
b-strands connected with a turn containing three
phenylalanine residues and an isoleucine, which
are oriented towards the inhibitor and interact with
the C-terminal segment of SGTI. (2) Another
insertion of seven residues occurs at position 60
(Loop60). Similar insertions could be found in some
highly specified enzymes like those involved in the
complement or blood clotting system (thrombin,
mannose binding lectin associated serine protease,
etc.).20 However, while the so-called Loop60 of
thrombin has direct influence on the S2–P2 inter-
actions, this loop region of the crayfish enzyme
turns away from the bound ligand and broadens the
substrate binding groove, and thus plays a role in
the formation of the S1

0–P1
0 interaction.

Disulfide bridges of crayfish trypsin

Crayfish trypsin differs from vertebrate trypsins
in its disulfide bond pattern. While bovine trypsin
has six disulfide bonds, crayfish trypsin has only
three. The conserved disulfide bridges are at
positions 42–58, 168–182 and 191–220, respectively.
All evolutionary conserved disulfide bonds are
close to the active site of the enzyme, which was
revealed by sequence comparison studies.21 The
22–157 inter-domain disulfide bridge, which con-
nects sequentially distant parts of the molecule and

is suggested to be important in the structural
stability of trypsins22 is absent from crayfish
trypsin. The two segments which are connected
via this disulfide bond in bovine trypsin, are
stabilized by a salt bridge between Lys157 and
Glu26 in addition to main-chain hydrogen bonds in
the crayfish enzyme. Absence of this disulfide bond
may facilitate the relative motions of the two
b-barrel domains. Another disulfide bridge is
missing at positions 128–232. Ser232 connects via a
hydrogen bond to the carbonyl oxygen of His128
while its carbonyl oxygen accepts another hydrogen
bond from the Gly127 amide group. Consequently,
the main-chain conformation of this part of the
molecule is more similar to that of chymotrypsins
that also lack this disulfide bridge. The disulfide
bond at position 136–201 of bovine trypsin is also
absent from crayfish trypsin. However, the main-
chain conformation of this region is identical to that
of the bovine enzyme. Despite the compensatory
stabilizing interactions, the lack of the disulfide
bridges, especially the one that connects the two
domains, may cause the observed 3 8C drop in
melting temperature of the crayfish trypsin com-
pared to the bovine enzyme in the differential
scanning calorimetry (DSC) study (see Figure 1).

Comparison of the interaction sites in crayfish
trypsin–SGTI and bovine trypsin–SGTI
complexes

The actual X-ray structure of the crayfish trypsin–
SGTI complex was compared with the modeled
bovine trypsin–SGTI complex, as well as with
representative structures from the molecular
dynamics run.

There is an important difference in the interaction
pattern at the P1

0 site. As seen in Figure 4(a) the P1
0

lysine residue (light blue) of SGTI in the crayfish
trypsin–SGTI complex is stabilized by a hydrogen
bond with the Cys14 carbonyl oxygen atom of SGTI.
Though its distance from Asp60b (located in
Loop60) and Glu35 of crayfish trypsin (magenta)
is about 8 Å in the crystal structure, the molecular
dynamics simulations reveal that its position is
stabilized closer to these negatively charged
residues in solution establishing a weak electro-
static interaction (typical distance of charged
groups of the P1

0 lysine and Glu35 of crayfish
trypsin is 5 Å; see Discussion). Our model of bovine
trypsin–SGTI complex shows the P1

0 lysine residue
(green) located at a position similar to that in the
crayfish trypsin–SGTI complex but the S1

0 groove
does not contain charged side-chains except for
Lys60 (dark blue). The positively charged 3-amino
group of this Lys60 forms a hydrogen bond to the
Tyr39 side-chain that stabilizes its position at a
distance of 6 Å from the P1

0 Lys residue of SGTI.
Outside the primary binding region in both

complexes there are further interactions. In crayfish
trypsin–SGTI complex (Figure 4(b)) three phenyl-
alanine residues of loop37 (magenta) bind Pro33
(P4

0) of SGTI while Pro34 (P5
0) turns outside. Phe39
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of this cluster is in a key position, because it forms a
stacking interaction with the Pro33 residue (P4

0)
(light blue). The shorter Loop37 (dark blue) of
bovine trypsin is more rigid and contains only one
aromatic residue, Tyr39, which forms a stacking
interaction with the P4

0 proline (light blue). Glu35 of
crayfish trypsin, which was mentioned above as
one of the electrostatic partners of the P1

0 Lys
residue of SGTI has another important role that it
stabilizes Loop37.

Figure 4(c) illustrates the interaction between the
P12–P6 region (light blue) of the inhibitor with
crayfish trypsin (magenta). Val24 (P6) forms a van
der Waals interaction with Tyr217. Thr22 (P8) forms
hydrogen bonds with the 164–173 helix of crayfish
trypsin. Thr22, important for the recognition of the
enzyme, is stabilized by Thr20 (P10) via a hydrogen
bond. The hydroxyl group of Thr20 also stabilizes
the backbone conformation of the P12–P6 loop.
In the bovine trypsin–SGTI complex the

Figure 4. Extended binding region determining taxon specificity of SGTI. The crystal structure of the crayfish trypsin
(magenta)–SGTI (light blue) complex superimposed over the representative model (MD, 180 ps step) of bovine trypsin
(dark blue)–SGTI (green) complex. Conserved structural motives of trypsin are shown in grey. N, O and S atoms are
shown in atomic colors. Hydrogen bonds are shown as green shaded lines. Black and red labels are used for the enzymes
and inhibitors, respectively. (a) Stereo view of the P1 0 residue accommodated in the S1 0 site. Distances between the
charged groups of the enzymes and the P1 0 lysine amino group are 7.67 Å, 8.22 Å and 6.19 Å for E35 and D60b of crayfish
trypsin and K60 of bovine trypsin, respectively. The conformation of the side-chain of the P1 0 lysine is stabilized by an
intramolecular hydrogen bond. (b) Binding of the P4

0–P5
0 region (stereo view) is dominated by hydrophobic contacts.

(c) Binding of the P12–P6 region by the crayfish enzyme is realized by several hydrogen bonds. (d) Binding of the P12–P6

region by the bovine enzyme. The hydrogen bonds of the P8 threonine are lost, while stacking interaction is established
between the P9 proline and Pro173. The Figure was generated by MOLSCRIPT.52
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interaction pattern is different (Figure 4(d)). At
position 217 there is a serine residue instead of
tyrosine that forms only a very weak hydrophobic
interaction with Val24 of SGTI. In vertebrate
trypsins, residue 173 is proline, which makes the
164–173 helix one residue shorter (dark blue).
Differences in the backbone conformation of the
172–173 region cause loss of hydrogen bond
interactions in the bovine trypsin–SGTI complex;
the Thr22–enzyme hydrogen bond is missing, as
well as the Thr20–Thr22 intra-molecular hydrogen
bond.

Calculation of interaction energies of the
proteins in the SGTI–crayfish trypsin and SGTI–
bovine trypsin complexes

In order to find the structural basis of different
inhibitory efficiencies of SGTI on different trypsins,
structure-based calculations on the SGTI–trypsin
complexes were performed.

Free energy of binding was calculated with the
scoring function of AutoDock 3.0 (Materials and
Methods). Scoring of the crystallographic and
energy-minimized complexes of SGTI–crayfish
trypsin and SGTI–bovine trypsin, respectively,
resulted in a DDGbZK6.94 kcal/mol lower binding
free energy for the SGTI–crayfish trypsin complex.
The difference between the complexes remained
significant for conformations of the molecular
dynamics trajectory (Supplementary Data; Figure
1). Contribution of each amino acid residue of SGTI
to the interaction energy differences (free energy of
binding) is depicted in Figure 5.

Extensive interactions facilitate conformational
changes in the structure of SGTI

To search for any possible conformational
changes in the inhibitor upon its binding to the
enzyme we compared the X-ray structure of
complexed SGTI with that of the solution structure
of the free inhibitor.13 Superpositions of atoms of
SGTI in the complex and the average structure of
the free forms yielded a backbone root-mean-square
deviation of 1.80 Å in region 4–32 (Figure 6(a)).

Alignment of the NMR structure ensemble with
the X-ray structure of complexed SGTI and a careful
comparison of the backbone 4, j angles were
carried out (Supplementary Data; Table 1).
Additionally, NOE-derived restraints and corre-
sponding distances in the complex are also
compared (Table 2). The first (residues 8–12; see
Figure 2(b) for secondary structure) and the second
(residues 15–20) b-strands as well as the second
loop (labeled as 13/15 in Figure 2(b)) interconnect-
ing strands 1 and 2 have rather similar confor-
mational properties both in the free and the
complexed forms of the inhibitor.

The TPT turn (residues 20–22, P10–P8) shows
conformational features resembling a somewhat
distorted b-turn (a type II in solution and a type I in
the complex) clearly stabilized both in solution and
in the complex by the i-(iC2) backbone hydrogen
bond surrounding proline and by the Thr–Thr side-
chain interactions. Nevertheless, an important
structural change occurs in this part of the inhibitor.
Both the above-mentioned 20–22 TPT segment with
Gly23 and the Cys4–Thr5 region appear to be
relatively stable in solution (with S2 values among

Figure 5. Energetic analysis of binding SGTI by crayfish and bovine trypsin. (a) Intermolecular interaction energy
values corresponding to each residue of SGTI in the crystallographic structure of the SGTI–crayfish trypsin complex and
energy-minimized structure (tZ0 ps) of the SGTI–bovine trypsin complex. The energy bars for the SGTI–bovine trypsin
complex are colored green, while those of the SGTI–crayfish trypsin complex are colored magenta for P4

0–P5
0, yellow for

P5–P3
0, orange for P12–P6 and grey outside these regions. All the three binding regions contribute significantly to the

taxon specificity of SGTI featured by the energy difference in interaction energy values shown for these regions. (b) The
molecular surface of crayfish trypsin with the binding regions for P4

0–P5
0, P5–P3

0 and P12–P6 of SGTI colored magenta,
yellow and orange, respectively. The P12–P5

0 segment of SGTI is shown in atomic colors (C atoms in light blue).
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the largest ones). However, considering the NOE-
derived restraints between these two segments, a
number of these are significantly (O0.5 Å) violated
in the complex (Table 2). This indicates that these
parts exhibit noticeable displacement with respect
to each other upon protease binding.
Another important structural difference between

the complexed and the free forms of SGTI is found
in the 24–27 (P6–P4) region. This significant folding
alteration is revealed by the values of 4, j angles of
the complex structure. These angles are outside the
entire folding range determined by the NMR
ensemble.
Regarding the P2–P5

0 region, the folding simi-
larity of Thr28–Arg29 dipeptide (P2–P1), especially
the j angle of Thr28 and 4 angle of Arg29 is very
high. Nevertheless, Arg29 (P1) is positioned farther
from loop 13–15 in the complex than it is in the free
form (Table 2). The C-terminal region (31Ca–34Ca)
shows similar local conformations in the free and
the bound form as well; however, the orientation of
this unit is changed significantly upon complexa-
tion as it rotates around Gly31 (P2

0). Investigating
the hydrogen bond system of the inhibitor we may
conclude that H-bonds between strands 2 and 3 are
well formed and shorter, therefore more stable in
the complex than they are in the free form.

Discussion

The strength of interaction between crayfish
trypsin and SGTI

SGTI, a protease inhibitor isolated from the
haemolymph of desert locust, S. gregaria, is
structurally homologous to the potent chymo-
trypsin inhibitor, SGCI, isolated from the same
source. SGTI, however, contains an arginine residue
instead of leucine at its P1 site.12 Despite this
structural feature, which is favorable for trypsin
inhibition, SGTI inhibits bovine trypsin
relatively weakly, with an inhibitory constant (Ki)
of 2.2!10K7 M. This value is five orders of
magnitude larger than the equilibrium inhibitory
constant of 6.2!10K12 M of SGCI determined on
bovine chymotrypsin.12,15 Unexpectedly, SGTI was
found to be a potent inhibitor of crayfish trypsin
with an eqilibrium Ki value of 0.7!10K12 M.15

Thermal denaturation experiments with crayfish
trypsin–SGTI and bovine trypsin–SGTI complexes
presented here have confirmed the results of the
inhibition kinetics studies. As seen in Figure 1, the
thermal stability of crayfish trypsin is increased
dramatically upon binding of SGTI, resulting in a
27 8C higher melting temperature while the
addition of SGTI to bovine trypsin led to only a
4.5 8C increase of Tm (Figure 1). The results are in
line with the phylum specificity of SGTI and
suggest that the observed difference in the Ki values
may be realized in a thermodynamic stability
difference in the enzyme–inhibitor interactions.
We observed an increase in the peak areas, i.e. an

Figure 6. Shape adaptation upon binding of arthropod
trypsin inhibitor SGTI to the surface of crayfish trypsin.
(a) The structural alignment of the free (rose) and bound
(light blue) forms of SGTI reveals three regions of major
backbone conformation difference: the N-terminal seg-
ment (not shown), residues 20–26 (P10–P4) and residue 31
(P2

0). The latter two are parts of the binding region (O and
N atoms shown in atomic colors). Carbon atoms of
residues in the P7–P4 and P2

0 regions are colored orange
and dark blue for the free and bound form of SGTI,
respectively. (b) Cartoon of SGTI binding to the enzyme.
SGTI is shown in light blue (segments of the binding
region with different backbone conformations in the free
and bound form) and black (remaining parts). Cysteine
and P1 arginine side-chains of SGTI are shown, while
some of its sub-sites are labeled in red. The enzyme
surface is shown in magenta with black labels for the
substrate binding sub-sites. Upper panel: conformation of
the free form is preformed to recognize the S12–S8 and S4

0–
S5

0 sub-sites of the enzyme (shown as broken green
arrows). In regions P10–P4 and P2

0 conformation changes
should occur, causing the rotation of the P3–P1

0 and P4
0–

P5
0 as well (light blue arrows). Lower panel: these

conformational changes facilitate the build-up of an
extended interaction network between SGTI and the
enzyme (green arrows) in the complex.
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increased calorimetric enthalpy change of unfold-
ing of the complexes compared to that of the single
enzymes. This may be an outcome of inter-
molecular (enzyme–inhibitor) interactions rather
than the simultaneous unfolding of SGTI, since
the inhibitor alone shows no unfolding transitions
up to 120 8C (not shown in Figure 1). In a previous
study we pointed out the importance of the inter-
domain interactions in the function and structural
stability of pancreatic serine proteases.22 The X-ray
structure of the complex revealed extensive inter-
actions of SGTI with both b-barrel domains of
crayfish trypsin, which may analogously explain
the observed dramatic increase of thermal stability.

Based on the 3D structures of the crayfish
trypsin–SGTI and the superimposed, energy
minimized bovine trypsin–SGTI complexes, inter-
molecular interaction energies between the
enzymes and SGTI were calculated (Figure 5(a)).
Affinity of bovine trypsin to SGTI was found to be
DDGbZK6.94 kcal/mol smaller than affinity of
crayfish trypsin. This structure-based free energy

calculation is consistent with experimental stability
difference between the investigated SGTI–trypsin
complexes (6.6 kcal/mol) as converted from the
inhibition constants.12

SGTI–crayfish trypsin interactions are extended
over region P12–P5

0

The crayfish trypsin–SGTI structure shows that
the binding interface extends well beyond the
primary binding region on both sides. Moreover,
our energetic calculations reveal that all of these
three regions are involved in stronger binding of
SGTI to crayfish than to bovine trypsin (Figure 5(a)
and (b)).

P3–P3
0: more favorable binding by the crayfish

enzyme

Molecular dynamics (MD) simulation showed
that the P1–S1 interaction is weaker in the bovine
trypsin–SGTI complex than it is in the crayfish

Table 2. Some NMR restraints of SGTI and their violations in the SGTI–crayfish trypsin complex

Residue 1 Atom name Residue 2 Atom name NOE restraint (Å) Violation (Å)

Cys4 Ha Gly23 Ha1 5 1.2
Cys4 Ha Gly23 HN 5 2.6
Thr5 Hb Thr22 HN 5 5.6
Thr5 Hg2# Thr22 Ha 5 5.5
Thr5 Hg2# Thr22 HN 5 5.3
Thr5 Hb Gly23 HN 5 3.6
Thr5 HN Gly23 Ha2 5 0.5
Asn15 Hb1 Arg29 Ha 5 0.5

Hg2# is the pseudo-atom used for the g-methyl group of Thr5.

Table 1. Crystallographic data and refinement statistics

Resolution (Å)a 32.1–1.20 (1.26–1.20)
Space group P212121
Cell parameters (Å) aZbZgZ908 aZ41.28 bZ59.67 cZ97.30
Number of observed reflections 878,624
Number of unique reflections 93,027
Completeness (%)a 91.2 (59.0)
Mosaicity (8) 0.6
!I/sOa 13.1 (2.6)
Rmerge (%)a,b 5.9 (20.2)
Rwork (%)c 13.9
Rfree (%)c 18.2
r.m.s. bond length (Å) 0.013
r.m.s. bond angles (8) 2.242

No. of non-hydrogen atoms
Protein 1983
Solvent 379

Average B-factors (Å2) Protein Water molecules Overall
Main-chain 12.8G5.6
Side-chain 15.7G7.7
All 14.2G6.9 27.8G10.9 16.1G8.9
Anisotropy 0.43G0.14 0.54G0.17 0.44G0.15
Average estimated coordinate
errors (esds) (pm)

5.3G3.9 9.7G6.1 5.9G4.6

a Values in parentheses indicate statistics for the highest resolution shell.
b RmergeZSjIoKhIij/SIo!100%, where Io is the observed intensity of a reflection and hIi is the average intensity obtained from

multiple observations of symmetry related reflections.
c R factorZSkFobsjKjFcalck/SjFobsj!100%.
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trypsin–SGTI complex. In the former one, the
distance between carboxylate 189 and the P1

guanidino group is significantly longer during
MD trajectory (Supplementary Data; Figure 2).
A possible reason for the different behavior of the
arginine side-chain is the looser fit of some
neighboring sub-sites in bovine trypsin.

It was proposed in a previous study of ours that
crayfish trypsin prefers positively charged residues
at the P1

0 position while bovine trypsin requires a
neutral side-chain at the corresponding site.13

Changing the P1
0 residue lysine to methionine

caused a one order of magnitude decrease in the
inhibitory constant of SGTI on bovine trypsin. This
result alludes to the importance of the P1

0–S1
0

interaction for the determination of phylum
specificity of SGTI (Figure 4(a)). Our MD study on
the bovine trypsin–SGTI complex confirms this
previous hypothesis regarding the conformation
of Lys60 that was stabilized at the bottom of the S1

0

cavity during the simulation. This residue is
surrounded by hydrophobic residues and a posi-
tively charged one in the S1

0 pocket in bovine
trypsin, which is not favorable for adequate binding
of SGTI. In contrast, the crayfish trypsin–SGTI
structure shows that the broad S1

0 cavity is more
suitable for the positively charged P1

0 lysine
because it interacts with two negatively charged
residues, Asp60b and Glu35 of the crayfish enzyme.
MD shows high flexibility of Asp60b while Glu35 is
stabilized at about 5 Å distance from the Lys30 Nz

atom of SGTI. In the crayfish enzyme Glu35 seems
to be especially important in respect of inhibitor
binding, and it also stabilizes the Loop37 region that
extends the primary binding region. The dual role
of this residue ensures shaping of the binding
surface in the primary binding region.

Hydrophobic binding patch at the S4 0–S5 0 region

A cluster of aromatic residues became inserted in
Loop37 of arthropod trypsins. This cluster forms
the binding surface for the Pro33–Pro34 (P4

0–P5
0)

region of SGTI (Figure 4(b)). MD shows that the
main-chain conformation of this extended Loop37
and the three C-terminal residues of SGTI undergo
only minor changes, and the movement of these
two surface regions defined by Loop37 and the
C-terminal residues of SGTI is restricted. The
phenylalanine cluster interacts with the proline
residues of SGTI; an alternative stacking interaction
can be established by Phe37 and Pro34 (P5

0) or
Phe39 and Pro33 (P4

0). In the bovine trypsin–SGTI
complex the weak interaction between Pro33 and
Tyr39 is well maintained during simulation. This
P4

0–P5
0 region has the same conformation in all

known complex structures of SGTI related
peptides10 while the mobility of these motifs in
solution is relatively high. The phenylalanine
cluster of crayfish trypsin might play a role in pre-
orienting the inhibitor for the recognition of its
C-terminal hydrophobic segment.

P12–P6 region stabilized by a network of hydrogen
bonds

Both the interaction energy calculations and
visual analysis of the contact interactions in
trypsin–SGTI complexes have shown that the
P12–P6 region forms significantly more favorable
interactions with the crayfish enzyme (Figure 5(a)
and (b)). The interactions in the crystal structure
between P12–P6 and the 171–175 region of crayfish
trypsin (Figure 4(c)) are practically unchanged in
the MD trajectory, suggesting that these interactions
may also be stable in solution.
Kellenberger and co-workers16 proposed a

hypothesis that the P10–P6 region of pacifastin-
type trypsin inhibitors has an important role in its
phylum selectivity. They suggested that the binding
of P10–P6 to vertebrate trypsins is unfavorable
because of the steric clash with Pro173 of these
enzymes. Our present study confirms that Pro173 is
indeed a key determinant for the binding difference,
but rather than introducing an unfavorable steric
effect it is disrupting the helical conformation at the
172–173 region of the enzyme. The key factor that
determines the selective binding to trypsins of
inferior or superior species is the molecular
recognition of the C-terminal end of the 164–173
helix backbone. Trypsins with one residue insertion
in the 164–175 region and glycine in position 173
(Figure 2), such as crayfish or Fusarium oxysporum
trypsins, are likely to form a helix with a backbone
conformation suitable for SGTI binding via a
hydrogen bond network. Vertebrate trypsins have
shorter loops in this region and Pro173 also breaks
the helix. Our present molecular dynamics study
also supports that Pro173 forms a stacking inter-
action with the Pro21 (P9) residue of SGTI. These
observations, when taken together, provide a
circumstantial explanation of why vertebrate
enzymes can form only less favorable interactions
with SGTI.

SGTI binding to trypsin; anchor points and
conformational adaptation

A comparison of the free and bound forms of
SGTI reveals a conformational change upon bind-
ing to the enzyme (Figure 6(a)) that facilitates the
emergence of an extended and strong interaction
network. Local conformation of both P12–P4 and
P4

0–P5
0 regions of the inhibitor shows significant

changes upon binding, suggesting that either or
both of these regions may act as additional
molecular recognition sites. The number of NMR
distance (NOE) restraints (322 in total, w10/
residue; 123 long-range) provides adequate infor-
mation to establish the overall conformation of the
inhibitor in solution. In loop regions, however,
short-range NOEs dominate and determine the
local structure (e.g. 20–22 TPT). This is in agreement
with the generalized order parameters (S2), where
those of T20 and T22 are somewhat higher than
those belonging to their close vicinity, indicating
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that the b-turn is likely to be involved in flip-flop
type motions although not directly detected on the
ms–ms time scale. This is consistent with the scarcity
of long-range NOEs in this region despite of the
short inter-atom distances in the solution structure.
The suggested movement is strongly supported by
the increased distance of the T20–G23 part and the
N terminus clearly detectable as NOE restraint
violations (Table 2). The P6–P4 region moves
towards b-strand 2 of the inhibitor (the atom–
atom distances become shorter and are consistent
with the NOE experimental data; thus, this type of
motion cannot be detected as restraint violation),
influencing also local conformational preference,
now forming a strong inter-strand H-bond network
and adopting a conformation assuring a perfect
match with the enzyme surface. As a consequence,
the P1 arginine residue is forced into the S1 pocket of
the enzyme and the P1

0 lysine residue rotates into its
binding groove. The C-terminal region preserves its
conformation while it rotates around Gly31 (P1

0)
making a close fit with the enzyme surface
(Figure 6(b)).

The extension and plasticity of crayfish trypsin–
SGTI interaction offers new avenues for inhibitor
specificity engineering

A great wealth of knowledge has been collected
on the highly specific functions of serine proteases
in the living organism. Development of computer-
aided protein engineering opens a new inter-
disciplinary route for the design of specific
inhibitors for therapeutic use. Although there are
a large number of efficient small molecule serine
protease inhibitors, they are not sufficiently specific
and often too toxic for medical use. The most
selective and potent inhibitors provided by nature
are either oligopeptides or proteins. Canonical or
standard mechanism inhibitors represent an
important subset of these protein protease
inhibitors.6,7 A common structural feature of this
class of inhibitors is that they have a reactive
peptide bond in a loop that binds to the protease in
a standard manner, and that this loop of six to nine
residue long (also called primary binding region)
has a more or less similar conformation in inhibitors
and also in the enzyme–inhibitor complexes.7 The
uniform structure and homologous binding mode
of these loops, however, may not provide these
inhibitors with an extreme selectivity of their action.
The ovomucoid third domain is a good example of a
typical serine protease inhibitor with a relatively
broad specificity.23 In the complex of human
leucocyte elastase with ovomucoid third domain
the interaction is extended to the P5–P3

0region of the
inhibitor. Regading molecular movements upon
binding, only the N-terminal region shows minor
movements, the binding loop preserves its confor-
mation.24 However, some protease inhibitors, in
addition to their typical primary binding loops,
possess secondary binding sites as well. Hirudin,
the most active and specific natural thrombin

inhibitor uses an even more sophisticated mode of
binding; out of its 65 residues 27 directly interact
with thrombin.25 The examples of hirudin and some
recently developed two-binding site protease
inhibitors of Factor VII show that new binding
sites of an inhibitor tremendously increase its
specificity and strength of interaction with the
target protease.26,27 As our present study shows,
SGTI uses an inhibition strategy somewhat different
from the inhibitors described above. In complex
with crayfish trypsin, SGTI exhibits, instead of more
than one distinct binding site, more or less
continuous contacts in an extended region (through
sites P12–P5

0) of the molecule (Figure 5). Some of
these contacts result from a conformational change
of SGTI that was induced by its binding to the
enzyme (Figure 6). This is strongly supported by the
precise comparison of the atomic resolution crystal
structure of the crayfish trypsin–SGTI complex with
that of uncomplexed SGTI. In contrast to other
serine protease–protein inhibitor complexes where
secondary interactions are mostly van der Waals
contacts and do not affect specificity,28 our present
study shows that the extension of the binding
surface leads to an increased specificity and
stabilization of the complex. The comparison of
the complexes of bovine and crayfish trypsin with
SGTI shows that more than half of the interaction
energy difference originates from the differential
binding of the extended regions in the two
complexes (Figure 5). The high resolution structure
presented here provides a good basis for further
study of the structural aspects of protease inhibitor
specificity and to introduce new interaction sites
into the inhibitor to increase its specificity towards
proteases of interest.

Materials and Methods

DNA preparation, amplification and sequencing

Crayfish trypsin mRNA was obtained from
A. leptodactylus hepatopancreas. Tissue (100 mg) was
homogenized in 1 ml TRI-REAGENT (Sigma Chemical
Co., Hungary) and RNA isolated according to the
protocol of the manufacturer. Due to the known complete
sequences of species A. fluviatilis and Pacifastacus
leniusculus that are relatives of A. leptodactylus we could
design oligonucleotide primers for amplifying the coding
region of crayfish trypsin. RT-PCR was performed using
the following primers: CFT3 0: 50-GGAGCTCAGACTGC
ATTTGCTTTGAT-3 0, CFT5 0: CCGAAGCTTTTCCCGTG
GATGATGATGACAAGATCGTTGGTG. These primers
include a HindIII site at the 5 0 end and a SacI site at the
3 0 end. Additionally, since the propeptide sequence of
crayfish trypsin is unknown we attached a rat trypsin
propeptide sequence at the 5 0 region. The amplified DNA
was cloned into a pET17b vector. The sequence of the
chimeric trypsin was determined by automated dideoxy
sequencing (ABI Prism) using the Big Dye Terminator Kit
(GenBank accession no. AY906961). Since our experi-
ments that were aimed at producing recombinant crayfish
trypsin yielded only a low amount of enzyme, for the

166 Extended Interactions for High Specificity

               hetenyi.csaba_83_23



crystallization procedure natural crayfish trypsin was
used.

Isolation and characterization of crayfish trypsin

Narrow-clawed crayfish (A. leptodactylus) trypsin was
purified by the procedure as described by Zwilling et al.,29

with some modifications. A stock of about 500 crayfish
cardia fluid was collected by introducing a teflon
capillary tube attached to a syringe into the cardia of
the animal. The collected cardia fluid was ultrafiltrated on
AMICON (AMICON Corp., Beverly, MA, USA) mem-
branes with 50 kDa and 10 kDa cut-off. The fraction
between 10 kDa and 50 kDa was loaded onto a CNBr-
Sepharose-4B soybean-trypsin inhibitor column. The
column was washed with three volumes of distilled
water and then eluted with dilute NH3 solution (pH 11.0).
Fractions containing crayfish trypsin were pooled and
loaded on a MONO Q (Pharmacia, Sweden) ion exchange
column equilibrated with 10 mMMes (pH 6.0) and eluted
with a linear gradient of 0 M to 1 M NaCl. Fractions
containing different forms of crayfish trypsin were
collected, and checked by SDS-PAGE, 2D-SDS-gel electro-
phoresis and activity measurements. All izoenzymes of
crayfish trypsin were found to be identical regarding their
enzymatic activities and sensitivities to inhibition. For
further study the most abundant form was chosen, and
concentrated by ultrafiltration using Centricon-10 con-
centrators (AMICON Corp., Beverly, MA, USA).

Differential scanning calorimetry (DSC)

Calorimetric measurements were performed on a
VP-DSC (MicroCal) differential scanning calorimeter.
Equimolar mixtures of trypsin and SGTI were used for
studying the effect of the inhibitor on bovine and crayfish
trypsins. The protein concentration was set to 0.1 mg/ml.
Samples were dialyzed against 20 mM sodium phosphate
(pH 7.0), 100 mM NaCl, and the dialysis buffer was used
as a reference. Denaturation curves were recorded
between 10 8C and 120 8C at a pressure of 2.5 atm, using
a scanning rate of 1 deg.C/minute. The thermal unfold-
ing curves were analyzed using MicroCal Origin 7.0
software. We note that bovine trypsin and its complex
exhibited additional minor components at lower tem-
peratures, which is a consequence of heterogeinity,
probably due to an autolysis product of the commercial
enzyme sample.

Chemical synthesis of SGTI

The inhibitor was synthesized, oxidized and purified as
described.12

Preparation of the crayfish trypsin–SGTI complex and
its crystallization

A fourfold molar excess of SGTI was added to crayfish
trypsin and incubated for 15 minutes at room tempera-
ture. The complex was loaded to a HiPrep S-100 gel
filtration column (Amersham Biosciences, UK), and
eluted with 10 mM Mes (pH 6.0). The pure crayfish
trypsin–SGTI complex was collected and concentrated
to 11 mg/ml. Crystals of the crayfish trypsin–SGTI
complex were grown by the hanging drop method at
20 8C. Equal amount of protein solution (11 mg/ml
protein in 10 mM Mes (pH 6.0)) and precipitant
solution (30% (w/v) polyethylene glycol (PEG) 400,

0.1 M cadmium chloride, 0.1 M sodium acetate
(pH 4.6)) were mixed and equilibrated against 0.5 ml
of precipitant solution. Crystals were grown in two
days.

X-ray diffraction studies

Two datasets were collected from a single crystal at
ESRF on beamline ID 14 EH2 at cryogenic temperature
(100 K). Crystallograpic intensities were integrated and
scaled to a resolution of 1.2 Å using Mosflm30 and Scala31

of the CCP4 package V5.0.32 Completeness of the data
was 91.2% at 1.2 Å resolution. The structure was solved
by molecular replacement using the program Molrep33

from the CCP4 package. A polyalanine search model was
used which was derived from the X-ray structure of
human trypsin IV (PDB entry 1H4W).34 The asymmetric
unit contains one trypsin–inhibitor 1:1 complex. Auto-
mated model building was carried out with Arp/wArp.35

The model was systematically improved using iterative
cycles of manual rebuilding with the program O36 and
restrained least-squares refinement with SHELX.37

Atomic B-factors were refined anisotropically and this
step reduced the R-factor and Rfree

38 values by 4.3% and
3.3%, respectively. Finally, all except for hydroxyl and His
N32 and Nd1 riding hydrogen atoms were added to the
structure. The geometry of the P2–P2

0 residues of
the inhibitor were not restrained in the final rounds
of the refinement. The final model contains residues
16–244 (chymotrypsin numbering system39) of crayfish
trypsin, and residues 2–34 of SGTI. The stereochemistry
of the structure was assessed with Whatcheck40 and
PROCHECK.41 The distribution of anisotropic B-factors
was monitored with the program Parvati.42

Data collection and refinement statistics are shown in
Table 1.

Calculations

SGTI–bovine trypsin complex was derived from super-
position of the structure of bovine trypsin (PDB entry
3PTB)43 on the crayfish trypsin complex of the present
study using the LSQMAN program44 from Uppsala
Software Factory (USF). The GROMACS45 program
package was applied for generation of a simulation box,
addition of explicit water molecules and counter ions.
Both complexes (SGTI–crayfish trypsin and SGTI–bovine
trypsin) and SGTI alone were energyminimized using the
GROMOS46 force field implemented in the program
package. The 100 ps long position restrained and 500 ps
long unrestrained molecular dynamics simulations (MD)
were performed to equilibrate the surrounding molecules
and to generate conformations for calculations of inter-
molecular interaction energy (Ei).
Intermolecular energy terms of scoring function of

AutoDock 3.0 program47 were applied to 50 confor-
mations of the complexes (sampled at every 10 ps of the
500 ps trajectories). Extra penalty constants of H-bonds
were not used. Thus, scaled Coulombic, Lennard-Jones
terms and the desolvation free energy term48 were
involved in calculation of Ei. Difference of the Ei-s is
considered as DDGb (difference in free energy of binding)
of the interactions of SGTI with the two trypsins.
Preparation of trypsin and SGTI molecules and grid
calculations were done as described in our previous
studies49,50 for each conformation using shell scripts.
AMBER charges were applied for all molecules.
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Abstract: Bulky, flexible molecules such as peptides and peptidomimetics are often used as lead compounds

during the drug discovery process. Pathophysiological events, e.g., the formation of amyloid fibrils in

Alzheimer’s disease, the conformational changes of prion proteins, or â-secretase activity, may be

successfully hindered by the use of rationally designed peptide sequences. A key step in the molecular

engineering of such potent lead compounds is the prediction of the energetics of their binding to the

macromolecular targets. Although sophisticated experimental and in silico methods are available to help

this issue, the structure-based calculation of the binding free energies of large, flexible ligands to proteins

is problematic. In this study, a fast and accurate calculation strategy is presented, following modification of

the scoring function of the popular docking program package AutoDock and the involvement of ligand-

based two-dimensional descriptors. Quantitative structure-activity relationships with good predictive power

were developed. Thorough cross-validation tests and verifications were performed on the basis of

experimental binding data of biologically important systems. The capabilities and limitations of the ligand-

based descriptors were analyzed. Application of these results in the early phase of lead design will contribute

to precise predictions, correct selections, and consequently a higher success rate of rational drug discovery.

Introduction

Flexible, peptidic molecules are often involved in rational
drug design. These compounds find various applications for
important biochemical problems such as the inhibition of
â-secretase,1 a key enzyme in the pathomechanism of Alzheim-
er’s disease,1 or the blocking of various types of trypsins.2

Similarly, the beta sheet breaker peptides have proved useful
in hindering self-aggregation of the â-amyloid peptide of
Alzheimer’s disease and conformational changes in prion
proteins of transmissible spongiform encephalophaties.3 The
number of such relevant applications of peptides as potent
bioactive partners or lead compounds is still increasing. In
rational drug discovery, estimation of the free energies of
binding (∆Gb) of bioactive ligands to their macromolecular
targets is an essential step in the molecular engineering process.

Although sophisticated methods do exist for the experimental
measurement of binding thermodynamics (e.g., isothermal
titration calorimetry4), they are usually time-consuming and/or
require special conditioning for problematic cases such as
amyloid aggregation.5

Different in silico strategies for the structure-based calcula-
tion6 of ∆Gb have become an alternative to the instrumental
techniques. One branch of these computational methods works
on a statistical ensemble of structures produced by a molecular
dynamics (MD) simulation. The MD-based techniques, e.g., the
linear interaction energy method7 supported by perturbation
theory,8 have been successfully applied to modified peptides,9

† Eötvös Loránd University.
‡ Hungarian Academy of Sciences.
§ Tartu University.
| University of Szeged.
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as well. Another strategy for the calculation of ∆Gb is the use
of a single protein-ligand complex structure (preferably the
crystallographic structure or an energy minimum). This approach
requires a scoring function (SF), along with a parameter set
appropriate for the type of ligand molecules investigated. The
SFs developed for rapid calculation of ∆Gb are primarily
implemented to drive the docking simulations.10 In most of the
cases they are parametrized for different types of small, druglike
compounds to fit the requirements of the virtual high-throughput
screening of compound libraries. It has been demonstrated in a
number of studies that the crystallographic ligand positions in
the protein-ligand complexes can be calculated precisely by
using the appropriate SFs.11 As SFs have been successfully used
in calculations on various small compounds, it is a rational (but
not trivial) wish to extend their applicability to larger, flexible
ligands.

In the present study, the SF of the popular docking program
package AutoDock 3.012 is tested and modified by using a set
of flexible, peptidic ligands of biologically important complex
systems. Predictive quantitative structure-activity relationships
(QSARs) are developed for experimental ∆Gb values, using the
modified SF of AutoDock and two-dimensional (2D) molecular
descriptors of the ligand molecules. Our aim is to extend the
capabilities of the SFs by means of easy-to-calculate ligand-
based descriptors so as to develop a new, hybrid calculation
strategy that combines advantages of the intermolecular terms
of the SF and the ligand-based 2D descriptors for the rapid and
accurate calculation of ∆Gb data for the problematic, bulky
ligand molecules.

Methods

Protein-Ligand Systems. In the present study, 53 different
protein-ligand complexes with known experimental values of ∆Gb

(∆Gb(exp)) were involved. Complexes having large, peptidic ligands (MW
> 350, Figure 1) and physiological importance (e.g., the “om”-series

of â-secretase inhibitors; see Introduction for references on patho-
physiological role of â-secretase) were prioritized for this study.
Systems with di/tripeptide ligands were also selected to balance the
structural data set. The atomic coordinates of 41 of the complexes,
1a30, 1abo, 1b05, 1b32, 1b3f, 1b3g,1b3l, 1b46, 1b51, 1b52, 1b58, 1b5i,
1b5j, 1b9j, 1bai, 1cka, 1fkn (om99-2), 1hhi, 1hhh, 1hhj, 1hhk, 1jet,
1jeu, 1jev, 1joj, 1k9r, 1m4h (om00-3), 1mcb, 1mcj, 1ody, 1qkb, 1str,
1vac, 1vwf, 2er9, 2rkm, 2vaa, 2vab, 4sga, 5sga, and 5er1 were obtained
from the Protein Databank13 (PDB). 12 â-secretase-inhibitor systems
(om12, om13, om14, om15, om16, om17, om18, om19, om22, om23,
om24, and om99-1)14b with no PDB structures available were modeled
by modification of the 1fkn structure. ∆Gb(exp)’s were compiled from
previous studies.14 Detailed data on the protein-ligand complexes and
the corresponding codes are listed in the Supporting Information, Table
A.

Molecular Modeling. The Babel,15 Vega,16 VMD,17 and PyMol18

packages were applied for file conversion, visualization, and modeling.
Some of the GROMACS19,20 topology files were generated with the
program ProDrg.21

Molecular Mechanics Minimization. A standard routine was
applied for all complexes to create a uniform set of coordinate files.
The GROMACS program package and the force field19,20 and explicit
SPC22 water model were involved in the calculations. The protein-
ligand complexes and surrounding water molecules were placed in a
cubic box together with the appropriate amount of neutralizing
counterions. Dissociable protons were added by a built-in GROMACS
algorithm, except for the â-secretase complexes, where the active site

(8) Zwanzig, R. W. J. Chem. Phys. 1954, 22, 1420-1426.
(9) Hansson, T.; A° qvist, J. Protein Eng. 1995, 8, 1137-1144.
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409-443. (b) Brooijmans, N.; Kuntz, I. D. Annu. ReV. Biophys. Biomol.
Struct. 2003, 32, 335-373. (c) Ferrara, P.; Gohlke, H.; Price, D. J.; Klebe,
G.; Brooks, C. L., III. J. Med. Chem. 2004, 47, 3032-3047.

(11) (a) Hetényi, C.; van der Spoel, D. Protein Sci. 2002, 11, 1729-1737. (b)
Hetényi, C.; Maran, U.; Karelson, M. J. Chem. Inf. Comput. Sci. 2003, 43,
1576-1583.
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242.
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Ghosh, A. K.; Bilcer, G.; Harwood, C.; Kawahama, R.; Shin, D.; Hussain,
K. A.; Hong, L.; Loy, J. A.; Nguyen, C.; Koelsch, G.; Ermolieff, J.; Tang,
J. J. Med. Chem. 2001, 44, 2865-2868. (c) Wang, R.; Fang, X.; Lu, Y.;
Wang, S. J. Med. Chem. 2004, 47, 2977-2980. (d) Turner, R. T.; Koelsch,
G.; Hong, L.; Castenheira, P.; Ghosh, A.; Tang, J. Biochemistry 2001, 40,
10001-10006.
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Figure 1. Distribution of molecular weights of the 30 ligands of the AutoDock calibration set12 and the 50 compounds investigated in the present study. In
the case of the present study, the number of compounds with higher molecular weights is significantly larger.
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was protonated according to the results of a recent study.23 The systems
were optimized with steepest descent and conjugate gradient methods
at tolerance levels of 1000 and 600 kJ mol-1 nm-1 and maximum step
sizes of 0.05 and 0.001 nm, respectively. The optimum coordinates of
the protein and ligand molecules were extracted for the subsequent
calculations. Whenever necessary (e.g., 1ody) the crystallographic water
molecule was also extracted as an essential part of the active site of
the protein.
Scoring. Grid maps of 120 × 120 × 120 grid points at a spacing of

0.375 Å were generated around the center of the ligand binding site
by the utility Autogrid of the program package AutoDock 3.0.12 Heavy
atoms and polar H atoms of the protein molecules were supplied with
Kollman’s partial charges. Atomic solvation parameters and fragmental
volumes were inserted via the utility Addsol.12 Gasteiger charges24 were
assigned to the ligand molecules. Charges of apolar H atoms were
merged with charges of the connecting C atoms and aromatic atoms
were selected by the utility Autotors.12 The free energies of binding of
the ligands to the proteins were calculated by using the SF implemented
in the program package AutoDock12 (eq 1):

where

∆GAD (the calculated AutoDock binding free energy) is the sum of
three intermolecular interaction energy terms, one desolvational free
energy term (these four terms are referred to as “bimolecular” in the
next sections) and two “monomolecular” terms describing hydrogen-
bonding (THBD) and torsional penalties (TTOR) of the ligand molecule.
It should be noted that the original formula of the AutoDock SF12 is
reorganized in eq 1 to make a distinction between the bimolecular and
the ligand-based (monomolecular) terms.

The f coefficients were determined empirically from a multilinear
regression (MLR) to a set of 30 protein-ligand complexes (AutoDock
calibration set) with known binding constants.12 The indices i and j
correspond to ligand and protein atoms, respectively. The Coulombic
term includes the partial charges (q) and a distance-dependent dielectric
permittivity value (ǫ).25 A, B, C, and D are the Lennard-Jones
parameters in the dispersion/repulsion (12-6) and H-bonding (12-
10) formulas, and r denotes the distance between the atomic pairs. ê(t)
is a directional weight depending on angle t at the H-bonds.12 THBD

accounts for the broken H-bonds between the ligand and solvent
molecules, and it is calculated by summation of the PHBD penalty
constants for the polar H or O atoms in the ligand molecule. In practice,
these constants are added to the appropriate atomic affinity grid maps
during calculation. The value of PHBD for polar H atoms was derived12

as PHBD ) 0.0656 × 0.36 × 5 kcal/mol, where 0.0656 is fhbond, the
MLR coefficient, 0.36 is the proportion of H-bonding sites utilized on
average, and 5 kcal/mol is the maximal well depth of the H-bonding
interaction.12 The constant PHBD (for O atoms) is equal to 2 × PHBD

(for polar H’s) counting for two possible H-bonds at O atoms. PTOR

has a constant (0.3113 kcal/mol) value per torsion. NTOR is the number
of free torsions in the ligand. The product (TTOR) of PTOR and NTOR

gives an estimate of the unfavorable torsional entropy loss upon ligand
binding. S and V denote the solvation parameter and fragmental volume,
respectively, in the solvation function of Stouten et al.26 In the SF of
AutoDock 3.0, only the C atoms of the ligand molecules are involved
in the solvation model. The exponential term is an envelope function
with a constant value26 of σ ) 3.5 Å. By elimination of THBD, TTOR, or
both terms, new, modified SFs (∆GH, ∆GT, or ∆GTH) are defined and
applied in the present study.
Quantum Mechanics (QM) Calculations. At the ab initio level,

the density functional method was used for calculation of the partial
charges on the atoms of the ligand molecules.27 The B3LYP functional
and 6-311 basis set augmented with polarization functions were
employed in the Gaussian9828 calculations.
Development of Quantitative Structure-Activity Relationships

(QSARs). The development and statistical analysis of the MLRs and
the selection of 2D descriptors were achieved with the program package
CODESSA (ver. 2.0).29 The MLRs have the following general formula
(eq 2):

where i and j are the serial numbers of the descriptors and ligands,
respectively, N is the total number of ligands (complex systems), n is
the total number of descriptors involved in the model, Dji denote the
descriptors, and Ri’s are the regression coefficients. The mean square
errors and t-values of the regression coefficients, the F-values, the
standard deviations (s2), and the squares of the correlation coefficients
(R2) of the regressions were also calculated. The descriptor pool created
with CODESSA formed the basis for the selection of ligand-based 2D
descriptors (Supporting Information, Table B). The “best multilinear
regression (BMLR)” procedure was applied for the development of
QSAR models A and B (see Results and Discussion for the naming of
QSARs). During the BMLR procedure the pool of descriptors is cleaned
from insignificant descriptors (R2 < 0.1) and the descriptors with
missing values. In the following steps of BMLR, construction of the
best two-parameter regression, the best three-parameter regression, etc.
are done based on the statistical significance and noncollinearity criteria
(R2 < 0.6) of the descriptors. In BMLR, the descriptor scales are
normalized, centered automatically, and the final result is given in
natural scales. The final model has the best representation of the
property in the given descriptor pool with the given number of
parameters. Numerical values of the selected descriptors are tabulated
in the Supporting Information, Table C. Having residuals g 2.00 kcal/
mol (QSAR B), three (codes 1hhj, om22, and om24) of the 53 systems
were outliers and excluded from the final models. Two of them (om24
and 1hhj) were found to be outliers from models in other studies,30,31

as well. Thus, QSARs with N ) 50 systems and up to 3 descriptors
were developed.

Results and Discussion

Test and Modification of the Scoring Function. For the
50 complexes of the present study the ∆Gb(exp)’s had poor

(23) Park, H.; Lee, S. J. Am. Chem. Soc. 2003, 125, 16416-16422.
(24) Gasteiger, J.; Marsili, M. Tetrahedron 1980, 36, 3219-3228.
(25) Morris, G. M.; Goodsell, D. S.; Huey, R.; Olson, A. J. J. Comput.-Aided.

Mol. Des. 1996, 10, 293-304.

(26) Stouten, P. F. W.; Frömmel, C.; Nakamura, H.; Sander, C. Mol. Simul.
1993, 10, 97-120.

(27) Hohenberg, P.; Kohn, W. Phys. ReV. B 1964, 136, 864-871.
(28) Frisch, M. J. et al. GAUSSIAN.98, revision A.7; Gaussian,Inc.: Pittsburgh,

PA, 1998.
(29) (a) Katritzky, A. R.; Lobanov, V. S.; Karelson, M. Chem. Soc. ReV. 1995,

24, 279-287. (b) Katritzky, A. R.; Lobanov, V. S.; Karelson, M.
CODESSA: Reference Manual (Ver. 2); Gainesville, Florida, 1994. (c)
Karelson, M.; Lobanov, V. S.; Katritzky, A. R. Chem. ReV. 1996, 96, 1027-
1043.

(30) Tounge, B. A.; Reynolds, C. H. J. Med. Chem. 2003, 46, 2074-2082.
(31) Liu, Z.; Dominy, B. N.; Shakhnovich, E. I. J. Am. Chem. Soc. 2004, 126,

8515-8528.
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correlation with the ∆GAD values calculated with the original
SF of eq 1 (squared correlation coefficient, R2 ) 0.364; Table
1). However, good correlation (R2 ) 0.956) was obtained12 for
the original calibration set of AutoDock 3.0. This apparent
contradiction can readily be explained: ∆GAD was originally
calibrated on the basis of a diverse set of 30 druglike
compounds, and the molecular weight distribution of the 30
ligands of the AutoDock calibration set12 and that of the 50
ligands in the present study (Figure 1) are significantly different
and shifted to larger molecular weights in the latter case. A
plausible reason for the low R2 value for the set of 50 ligands
in the present study is the different compound composition from
that for the calibration set. Thus, it is reasonable to re-examine
the components of the original AutoDock SF using a set of bulky
and flexible peptides in order to yield a better fit to the
experimental binding free energies for ligands of this problem-
atic type.

In accordance with this finding, eq 1 was inspected to select
out terms that depend on the ligand and influence the efficiency
of the scoring. One of the two ligand-based terms is THBD, which
represents a penalty, i.e., the loss of free energy due to broken
H-bonds between the ligand and water molecules during
complex formation with the protein. The exclusion of THBD alone
increases R2 to 0.494 (∆GH). The other simple, ligand-based
term in eq 1 is TTOR, which accounts for the change in free
energy upon freezing of the torsional degrees of freedom of
the ligand. Elimination of this term results in a much better
correlation (∆GT in Table 1; R2 ) 0.628) between the
experimental and calculated ∆Gb’s in comparison with ∆GAD.
Elimination of both terms yields R2 ) 0.706 (∆GTH in Table 1;
Figure 2) and an s2 of 1.51. This model is fairly promising in
comparison with other ∆Gb calculators,32 and therefore, ∆GTH

forms a good basis for further, predictive QSARs.
Similarly to the present results, the terms THBD and TTOR were

modified by other authors33 in order to obtain a good binding
free energy model for carbohydrate ligands. In a recent work,2

the difference between the binding affinities of SGTI (Schis-
tocerca gregaria trypsin inhibitor, a 35-amino-acid-long peptide)
to two different trypsins was estimated correctly by elimination
of these two ligand-based terms. It should be noted that the

accumulation of constant penalties from THBD results in an
erroneous positive sum of the free energy of binding for
unusually large ligands such as SGTI.

Development of QSARs Using ∆GTH and Ligand-Based

2D Descriptors. The final correlation (R2 ) 0.706) obtained in
the previous section is remarkably good showing the usefulness
and good predictive power of the remaining bimolecular terms
(∆GTH) having the original AutoDock parameters. Thus, instead
of reparametrization of the whole SF, another strategy was
followed in the present study. Keeping ∆GTH as a descriptor,
which can be reproducibly calculated for any protein-ligand
complex structures, new, simple ligand-based descriptors were
searched for in order to improve the correlation. Since both THBD

and TTOR can be derived from the 2D molecular graph without
inclusion of any 3D information (eq 1),12,33 the present search
for ligand-based descriptors was restricted to 2D ones. A
noteworthy advantage of 2D descriptors is that they are easy to
calculate and require negligible computational time. Use of the
CODESSA descriptor pool complemented with ∆GTH furnishes
the QSAR models in Table 2.

The best three-descriptor model (B) in Table 2 includes the
bimolecular ∆GTH as a major descriptor and two monomolecu-
lar, 2D descriptors, the RPCGEN (relative positive charge based
on electronegativity), and the Balaban index (J) (Figure 3).

(32) (a) Böhm, H.-J. J. Comput.-Aided. Mol. Des. 1998, 12, 309-323. (b)
Venkatarangan, P.; Hopfinger, A. J. J. Med. Chem. 1999, 42, 2169-2179.
(c) Marder, M.; Estiú, G.; Blanch, L. B.; Viola, H.; Wasowski, C.; Medina,
J. H.; Paladini, A. C. Bioorg. Med. Chem. 2001, 9, 323-335. (d) Wang,
R.; Lai, L.; Wang, S. J. Comput.-Aided. Mol. Des. 2002, 16, 11-26. (e)
Cozzini, P.; Fornabaio, M.; Marabotti, A.; Abraham, D. J.; Kellogg, G. E.;
Mozzarelli, A. J. Med. Chem. 2002, 45, 2469-2483.

(33) Laederach, A.; Reilly, P. J. J. Comput. Chem. 2003, 24, 1748-1757.

Table 1. Correlation of Experimental and Calculated Binding Free Energy Values of the 50 Complexesa,b

scoring function (D1)terms

excluded code coefficient (R1) error of coeff. t-value R2 R2cv s2 F-value

- - - ∆GAD 2.5622 × 10-1 4.8939 × 10-2 5.2355 0.364 0.323 3.27 27.41
constant -5.8868 6.2266 × 10-1 -9.4542

THBD ∆GH 2.9877 × 10-1 4.3668 × 10-2 6.8419 0.494 0.458 2.60 46.81
constant -4.5114 6.7514 × 10-1 -6.6821

TTOR ∆GT 3.1491 × 10-1 3.4981 × 10-2 9.0021 0.628 0.601 1.91 81.04
constant -3.1140 6.6747 × 10-1 -4.6653

THBD and
TTOR

∆GTH 3.1686 × 10-1 2.9505 × 10-2 10.7392 0.706 0.684 1.51 115.33

constant -2.1434 6.4904 × 10-1 -3.3023

a Linear regressions (eq 2, n ) 1) were performed using free energies calculated with the (modified) AutoDock SFs as descriptors (D1) b ∆GAD denotes
the default AutoDock SF. ∆GH, ∆GT, and ∆GTH denote the modified SFs with THBD, TTOR, and both terms eliminated, respectively. Standard deviations (s2),
squares of the correlation coefficients (R2), and leave-one-out cross-validated correlation coefficients (R2

cv) of the regressions are tabulated.

Figure 2. Correlation plot of experimental14 and calculated binding free
energy values (-kcal/mol) of the 50 complexes in the present study. Linear
regression (eq 2, n ) 1) was performed using free energies calculated with
the modified SF ∆GTH as a descriptor (D1).
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The RPCGEN values describe the distribution of positive
partial charges in a molecule (eq 3):

where δmax is the maximum value of the positive partial charges
(charge excesses, δa) on the atoms (a) of the ligand molecule.
In the CODESSA program, the δ values are assigned by a
simple method,34 which uses Sanderson’s electronegativities of
the atoms. Inspection of the δa values in our ligands reveals
that most of them are located on H atoms connected to N or O
atoms and on the C atoms of the amide bonds.

These H atoms with δ > 0 are the possible H-bonding donor
sites on the ligand molecules. Importantly, the regression
coefficient of this descriptor is positive (Table 2), which means
that it decreases the absolute value of the calculated binding
free energy (the RPCGEN values are always positive, eq 3).
Similarly, the eliminated THBD term contributed to ∆Gb with
positive penalties, due to vanishing interactions between the
ligand and water molecules. The RPCG descriptor was devel-
oped and used to account for the effects of polar intermolecular
interactions.35 These results let us conclude that RPCGEN

describes (part of) the energy changes due to the altered

H-binding system of the ligand during the attachment to a
protein. To illustrate the molecular background of the RPCGEN

descriptor, the systems 2rkm and 1vwf with ligands having
maximum and minimum RPCGEN values (Supporting Informa-
tion, Table C), respectively, are represented in Figure 4.

It can be seen that the dipeptide ligand (KK) in 2rkm is
completely buried inside the protein, while in 1vwf a consider-
able interaction interface remains between the octapeptide ligand
and the surrounding solvent. In 2rkm, the energy contribution
of the RPCGEN term to ∆Gb in QSAR B is 6.24, whereas in
1vwf it is only 1.41 kcal/mol. Although the complete burial of
a ligand can be considered as an extreme case, the probability
of the use of a higher percentage of available H-bonding atoms
in the new interactions with the protein is higher for smaller
(dipeptide) rather than for larger (octapeptide) ligands. Conse-
quently, the energy penalty corresponding to the loss of ligand-
surrounding water interactions should be higher for 2rkm than
for 1vwf. The RPCGEN descriptor correctly reflects this
observation, as the fewer positively charged H atoms the
molecule has, the smaller the denominator and the larger the
RPCGEN value, i.e., the penalty (eq 3). If a ligand contains an
atom with high δmax (possibly buried into protein), this further
increases the penalty. The similar argumentation is also valid
for the vanished dipole-dipole interactions between the ligand
and the surrounding water, pointing to the generality of RPCGEN

descriptor. Besides, RPCGEN contains also indirect information
on the size of the molecule via the sum of the partial positive
charges (eq 3).

The size of the molecule is directly described by the Balaban
index36 (eq 4) that occurs as the third descriptor in QSAR B:

where q is the number of edges in the molecular graph, n is the
number of vertexes in the graph, µ is the cyclometric number,
and si and sj are the distance sums obtained by summation of
row i and column i or row j and column j, respectively, of the
distance matrix between the atoms in the molecule. In J, only
the heavy atoms are considered in the molecular graph.

Thus, the J describes not only the size of the molecule but
also its internal branching and distances. Interestingly, the
number of free torsions (Ntor) is a part of the excluded term
TTOR, whereas the torsional tree of a ligand is also a type of
branching. Considering this and the fact that the change in
rotational entropy depends on the moments of inertia, i.e., the

(34) Zefirov, N. S.; Kirpichenok, M. A.; Ismailov, F. F.; Trofimov, M. I. Dokl.
Akad. Nauk. 1987, 296, 883-887.

(35) Stanton, D. T.; Jurs, P. C. Anal. Chem. 1990, 62, 2323-2329. (36) Balaban, A. T. Chem. Phys. Lett. 1982, 89, 399-404.

Table 2. Correlation of Experimental and Calculated Binding Free Energy Values of the 50 Complexesa,b

descriptor (Di)

QSAR i abbreviation coefficient (Ri) error of coeff. t-value R2 R2cv s2 F-value

A 1 ∆GTH 3.1216 × 10-1 2.4686 × 10-2 12.6456 0.799 0.774 1.05 93.36
2 RPCGEN 3.2582 × 101 6.9963 4.6571

constant -4.1980 6.9930 × 10-1 -6.0031
B 1 ∆GTH 2.7077 × 10-1 2.2926 × 10-2 11.8105 0.859 0.838 0.76 93.17

2 RPCGEN 5.7129 × 101 8.1307 7.0263
3 J -6.2410 × 10-1 1.4148 × 10-1 -4.4113

constant -4.6864 6.0281 × 10-1 -7.7743

a Multilinear regressions (eq 2, n ) 2 or 3) were performed with ∆GTH and ligand-based 2D descriptors. b RPCGEN: electronegativity-based relative
positive charge (Sanderson’s electronegativity scheme). J: Balaban index. For other notes, refer to Table 1.

Figure 3. Correlation plot of experimental and calculated binding free
energy values (-kcal/mol) of the 50 complexes in the present study in the
case of QSAR B. The involvement of RPCGEN and J descriptors
significantly improved the correlation as compared with Figure 2.
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internal distances of the molecule, J may be descriptive of the
change in free energy of binding upon the decrease of rotational
and torsional degrees of freedom. In general, the J is based on
the molecular structure according to graph theory and the
distance matrix and reflects the relative connectivity and
effective size of the flexible peptidic molecules. The magnitude
of this descriptor increases with (i) an increase in branching
and (ii) an increase in the number of atoms in the molecule.
However, it would be a much more difficult task to give an
analytical explanation for the role of the complex J descriptor
than it was for RPCGEN. QSAR B (Table 2) is comparable with
other published ∆Gb calculators,31-33,37 and as it concerns s2, it
is one of the best available calculators for the ∆Gb of large,
flexible peptides.
Cross-Validation of the QSARs. The squared correlation

coefficients of the leave-one-out cross correlation test (jackknife
method) of QSARs are given in Table 2. These coefficients are
fairly close to the original R2’s, emphasizing the statistical
reliability of the models. The leave-20%-out test provides
similarly good R2 values: 0.780 and 0.848 for QSAR A and B,
respectively. As a further test, it can be informative to separate
a homogeneous subset of the 50 complexes and use the
remaining systems as a training set to check the dependency of
the results on this homogeneous part of the data. In our case,
there is such a subset of 12 complexes (24%) among the 50,
i.e., 12 of the 50 ligands investigated in this study have the
same target protein (â-secretase) and are analogous in their
structure, and the corresponding experimental inhibition con-
stants used for calculation of the ∆Gb(exp)’s were measured in
the same laboratory.14b,d The results of this test for QSARs A
and B are summarized in Table 3. It can be seen that, on the
basis of the training set, good correlations are developed for
the whole set of 50 points, and therefore, selection of the
descriptors for the predictive QSARs is independent of the
inclusion of the complexes of the homogeneous subset. Similar
R2 values (0.803 and 0.841 for QSAR-s A and B, respectively)
can be calculated if correlating the predicted ∆Gb’s of the subset
of 12 systems (validation set) with the corresponding ∆Gb(exp)’s,
using the 38 systems as a training set.

Robustness of the Second and Third Descriptors of the

Models Obtained. The descriptor J is calculated directly from
the molecular graph and is therefore robust, i.e., unambiguously
defined by a single chemical formula. The RPCG values are
calculated in two steps, as they are derived from the precalcu-
lated partial charges (charge excesses, δ, in eq 3) of the atoms
of the molecules. It is known that there are several approaches
for the assignment of partial charges to the atoms in a molecule.
In the case of QSARs A and B, the RPCGs were calculated by
using the electronegativity-based charge distribution of the
molecules (RPCGEN). However, it may be worthwhile to check
whether RPCG remains descriptive on the basis of a different
partial charge system. For this reason, QM-based RPCG values
(RPCGQM) were calculated and put in the QSARs instead of
RPCGEN’s as second descriptors. From among the numerous
ways to calculate QM-based partial charges according to
different principles (e.g., Mulliken,38 Hirshfeld39 charges, etc.),
the Breneman and Wiberg approach40 was selected for the
present calculations. This approach reconstitutes the electrostatic
potential of a molecule by atomic charges, which is appropriate
for this study. It was found that the statistical parameters of the
new correlation AQM (R2 ) 0.770; R2

cv ) 0.739; s2 ) 1.21;
details of the model are listed in the Supporting Information,
Table D) are similar to those of A, with a slight decrease in the
R2 values and that J does not improve the model so effectively
in this case (BQM). However, the application of a completely
different QM-based partial charge system on the ligand mol-
ecules, i.e., a 3D descriptor (RPCGQM) instead of the 2D
RPCGEN, does not spoil the descriptive power of RPCG, which(37) (a) Takamatsu, Y.; Itai, A. Proteins 1998, 33, 62-73. (b) Huo, S.; Wang,

J.; Cieplak, P.; Kollman, P. A.; Kuntz, I. D. J. Med. Chem. 2002, 45, 1412-
1419. (c) Vedani, A.; Dobler, M. J. Med. Chem. 2002, 45, 2139-2149.
(d) Ma, X. H.; Wang, C. X.; Li, C. H.; Chen, W. Z. Protein Eng. 2002,
15, 677-681. (e) Hong, X.; Hopfinger, A. J. J. Chem. Inf. Comput. Sci.
2003, 43, 324-336.

(38) Mulliken, R. S. J. Chem. Phys. 1955, 23, 1833-1840, 1841-1846.
(39) Hirshfeld, F. L. Theor. Chim. Acta 1977, 44, 129-138.
(40) Breneman, C. M.; Wiberg, K. B. J. Comput. Chem. 1990, 11, 361-373.

Figure 4. Small dipeptide ligand of the system 2rkm is buried deeply inside the protein, while the octapeptide ligand of 1vwf is sitting on the surface of
the protein and its relatively large part can be involved in the ligand-solvent interaction; i.e., a small energy penalty occurs due to deceased H-bonds with
the bulk solvent in the case of 1vwf. (Protein molecules and ligands are represented with cartoon and van der Waals surfaces, respectively.)

Table 3. Cross-Validation Tests of Descriptor Sets of QSARs A
and B Excluding a Homogeneous Subset of 24% of the Data
Pointsa,b

N)
38 (training set)

N) 50 (training set +
24% left out)

QSAR R2 R2cv s2 F-value R2 s2

A 0.841 0.813 0.85 92.36 0.797 1.10
B 0.893 0.868 0.59 94.26 0.857 0.79

a Multilinear regressions were trained for 38 of the 50 systems and tested
on all 50 systems. b N corresponds to the number of systems (data points)
used for the correlation. For other notes, refer to Table 1.

A R T I C L E S Hetényi et al.
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can therefore be regarded as a robust quantity for the second
descriptor in the present QSARs.

Conclusions

The results of the present study indicate that the use of
different ∆Gb calculators for ligands of radically different sizes
may be considered in future applications and development of
docking/scoring methods. A semiempirical SF of a widely used
docking method was modified and extended to achieve a precise
fit of the structure-based, calculated binding free energy values
to the experimental ∆Gb’s for bulky, flexible peptidic ligands.
The combination of the bimolecular descriptor ∆GTH with
additional ligand-based 2D descriptors yielded new, hybrid ∆Gb

calculators with good predictive power. The results highlight
the possibility of development of such hybrid calculators
involving other SF-s in the future. Thorough tests and cross-
validations of the QSARs were performed to verify the statistical
relevance of the calculators and the descriptors. It was found,
that the inclusion of bimolecular terms of the SF is obligatory
for a diverse set of protein-ligand systems (∆GTH is the major
descriptor in the QSARs). Both the scoring and the calculation
of ligand-based 2D descriptors are rapid processes, even for
the large ligands in this study. The precision of their present
combination is at least comparable with that of other available
calculators of binding thermodynamics. Thus, the proposed
strategy is a real alternative for calculation of the binding

affinities in the problematic cases of bulky, flexible lead
compounds in the early phases of rational drug design. In
practice, the docked lead compound-protein complexes can be
supplied by AutoDock or other, appropriate automated docking
methods and used with the hybrid calculators of the present
study to obtain ∆Gb values.
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Adrenergic receptors of the a2 type (a2-adrenoceptors) belong

to the family of seven transmembrane-spanning G-protein-

linked receptors.[1–9] a2-Adrenoceptors can be grouped into

three highly homologous subtypes (a2A, a2B, and a2C) and, be-

cause of the difference in pharmacology,[10] a fourth subtype

(a2D) can be formally distinguished, though this is rather a spe-

cies orthologue.

In general, the a2-adrenoceptors are responsible for the pre-

synaptic feedback of the release of adrenaline and noradrena-

line, their physiological agonists. Although numerous findings

are available on the receptor subtypes from experiments with

knockout mice[11] and these results are of some relevance for

human pharmacology, the similar patterns of expression of

adrenergic receptors in human and mouse tissues do not guar-

antee similar functions. Thus, the individual roles of the three

a2-adrenoceptor subtypes in humans have not been complete-

ly elucidated. However, the results of the reported studies do

indicate (see Supporting Information) that the a2-adrenoceptor

subtypes are involved in various important physiological pro-

cesses, and further investigations of the differences in their

molecular pharmacology are therefore essential.

The identification of subtype-specific functions from phar-

macological experiments is currently not possible because of

the lack of subtype-specific ligands[3, 6–8] and the cross-reactivity

with imidazoline receptors.[7] The development of subtype-se-

lective agonists would be useful as it would facilitate further

examinations of the molecular pharmacology of the a2-adreno-

ceptors. The rational, structure-based design of such agonists

requires a precise knowledge of the molecular structure of the

binding site. Unfortunately, because of the difficulties inherent

in crystallization, atomic-resolution structures of the a2-adreno-

ceptors are not available in the Protein Databank.

In the present study, an atomic-resolution model of the a2A-

adrenoceptor was constructed through use of its amino acid

sequence and the crystallographic bovine rhodopsin structure

as a template. Similar homology models were earlier construct-

ed by other researchers[12] and successfully used to provide

qualitative explanations. The a2A-adrenoceptor model in the

present study is based on a crystallographic template structure

with a resolution of 2.2 �[13] appropriate for quantitative inves-

tigations (for details, refer to the Computational Methods

below).

In possession of the atomic resolution target structure (a2A-

adrenoceptor), 15 known agonist ligands were automatically

docked to the presumed binding region of the receptor (Fig-

ure 1a). Inspection of the results revealed that the docked

ligand conformations are in physical contact with the key resi-

dues D3.32 ACHTUNGTRENNUNG(113), S5.42 ACHTUNGTRENNUNG(200), and S5.46 ACHTUNGTRENNUNG(204), previously identi-

fied by site-directed mutagenesis studies.[14–16] As an example,

the positively charged amino group of noradrenaline (Fig-

ure 1b) or of methylnoradrenaline forms a salt bridge with the

negative side-chain carboxylate of D3.32 ACHTUNGTRENNUNG(113). Similar results in-

volving an interaction between the ionic groups were earlier

obtained for noradrenaline.[13] For some other ligands (for ex-

ample, clonidine, Figure 1c), interactions can be observed with

E4.39 ACHTUNGTRENNUNG(189) instead of D3.32 ACHTUNGTRENNUNG(113) . Additionally, the binding

pocket is formed by hydrophobic amino acids such as V5.39-

ACHTUNGTRENNUNG(197), F5.47 ACHTUNGTRENNUNG(205), W6.48 ACHTUNGTRENNUNG(258), F6.49 ACHTUNGTRENNUNG(259), F6.52 ACHTUNGTRENNUNG(262), and the

key serine residues.

The qualitative agreement with the site-directed mutagene-

sis data indicates the usefulness of the homology model and

the docking procedure applied. However, a correct (quantita-

tive) estimation of the binding free energy (DGb) is the real

challenge in molecular design. Once a DGb calculator has been

developed, the screening-out of potent (tight binding) ago-

nists from the candidate compounds becomes possible. To

meet this expectation, quantitative structure–activity relation-

ships (QSARs) were developed by using the docked structures

and experimental DGb values of the agonists.

As a first attempt, simple linear regression (LR) was per-

formed, involving the modified scoring function values (DGT)

of AutoDock 3.0 program package, which includes the inter-

molecular (enthalpic) terms and a solvation penalty. These

values were calculated for the docked agonist–protein com-

plex structures. A detailed discussion on the calculation of DGT

is to be found in Ref. [17]. An excellent correlation was ob-

tained for nine ligands not containing chlorine atoms [Eq. (1),

Figure 2].

DGb ¼ 1:6037
t¼12:3237

�0:1301
DGT þ 4:3201

t¼3:9601

�1:0909

r2 ¼ 0:96; r2cv ¼ 0:93; F ¼ 151:87; s2 ¼ 0:09;N ¼ 9
ÿ �

ð1Þ

An inspection of the t-values indicates that both DGT and

the intercept are necessary parameters of the regression equa-

tion. The mean square errors of the regression coefficients, the

F value, the standard deviation (s2), the square of the correla-

tion coefficient (r2), and the leave-one-out cross-validated r2

(r2cv) of the regressions reflect the statistical significance of the

LR.

[a] B. Balogh, Dr. C. HetØnyi, Prof. P. Mµtyus

Department of Organic Chemistry, Semmelweis University, Hőgyes E. u. 7.
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Richter Gedeon Nyrt. Gyçmrői fflt 19-21. 1103 Budapest (Hungary)

Supporting information for this article is available on the WWW under
http://www.chemmedchem.org or from the author.

ChemMedChem 2007, 2, 801 – 805 � 2007 Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim 801

               hetenyi.csaba_83_23



Five chlorinated agonists do not satisfy Equation (1). The

common feature of these five molecules is that all of them

have a 2,6-dichloro substituted phenyl (2,6-DCP) ring. Thus, it

is plausible to involve a binary descriptor of existence (E) of

the 2,6-DCP ring in the regression, which accounts for the

presence or absence of this moiety, that is, E=1 (or 0) if there

is (or is not) a 2,6-DCP ring in the ligand. Inclusion of this de-

scriptor yields a three-parameter LR [Eq. (2), Figure 3]:

DGb ¼ 1:5543
t¼8:2915

�0:1875
DGT ÿ1:8434

t¼ÿ7:3038

�0:2524
E þ 3:9075

t¼2:4860

�1:5718

r2 ¼ 0:90; r2cv ¼ 0:84; F ¼ 48:62; s2 ¼ 0:19;N ¼ 14
ÿ �

ð2Þ

Similarly as for Equation (1), this multiple LR is statistically

relevant and only one (dexmedetomidine) of the 15 agonists

was an outlier with a residual >1.5 kcalmolÿ1, and had to be

omitted from the final LR. DGT includes mostly intermolecular

(enthalpic) contributions to DGb
[17] and the constants 4.3201

and 3.9075 kcalmolÿ1 in Equations (1) and (2), respectively, suf-

ficiently represent the entropic loss due to freezing of transla-

tional, rotational, and torsional degrees of freedom in the nine

ligands. However, descriptor E in Equation (2) requires further

discussion. Notably, the sign of the coefficient of E is negative.

This means that the presence of a 2,6-DCP ring is favorable for

binding, indicating two possibilities. 1) The substituent chlorine

Figure 1. a) Structure of the homology modeled and energy minimized a2A-adrenoceptor. Docked conformations of all 15 ligands are located in the same cen-
tral binding cavity. b) Noradrenaline binding to the active site of the a2A-adrenoceptor. Key residues of the site are denoted by sticks. A salt bridge is formed
between the oppositely charged side-chain of D113 and the amino group of noradrenaline. c) Clonidine binding to the active site of the a2A-adrenoceptor. Ex-
perimentally detected key residues of the site are denoted by sticks. A hydrophobic binding pocket is formed by W and F residues.

Figure 2. Correlation between the experimental and calculated binding free
energies of nine agonists. Small residuals were obtained for nonchlorinated
compounds with the use of only one descriptor: the modified AutoDock
free energy function, DGT [Eq. (1)] .

Figure 3. Correlation between the experimental and calculated binding free
energies of all 14 agonists. Besides DGT, involvement of a second descriptor
resulted in a fair correlation for the chlorinated compounds too [Eq. (2)] .
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atoms are involved in interactions with the protein which are

not correctly represented by DGT. Comparison of the atomic

contributions of the chlorine to the electrostatic and van der

Waals terms of DGT with those of other ligand atoms with a

similar character (for example, oxygen) allows the conclusion

that the enthalpic contributions are not underrepresented for

the chlorine atoms. 2) The presence of the 2,6-DCP ring alters

the entropy of binding. Conformational energy diagrams for

the phenyl rotation (Supporting Information) show that the

energy gap between the stable and the high energy conforma-

tion is twice as high for the 2,6-DCP ring as it is for the simple

phenyl ring. Besides this intramolecular interaction effect, the

heavy chlorine atom may alter the corresponding rotational

frequency too. Certainly, movements of the phenyl rotor are

restricted following chlorine substitution, and the entropic loss

of this freezing rotor is therefore smaller. This decrease in the

entropic loss may be a realistic explanation of the negative

sign of E in Equation (2). Involvement of other 2,6-DCP ring-

containing (at any event not a para-chlorophenyl-containing)

ligand–protein complexes and quantum chemical calculations

would be necessary for a detailed elucidation, but that is

beyond the scope of the present study. The structures and

conformational degrees of freedom of the ligand molecules

within the two, that is, chlorinated and nonchlorinated subsets

are similar. Thus, our results agree with the rational assumption

that the binding entropy is approximately the same for the li-

gands within the two subsets.

The experimental DGb values of these 15 agonists were con-

verted from the pKi (logarithm of inhibition constant) values

obtained from radioligand assays. For nine of the 15 com-

pounds, the pKi values were determined with two different ra-

dioligands [3H] MK-912 and [3H] RX821002. A LR using the cor-

responding two vectors of the experimental DGb data yields

valuable information on the interchangeability and reproduci-

bility of the available experimental data. Although the two vec-

tors are correlated (r2=0.76) with each other, the statistical pa-

rameters (see the Supporting Information for details) of this

correlation are not as fascinating as might be hoped. Thus, in

the present study, it was a good choice to use experimental

data obtained with only one radioligand ([3H] MK-912) for

QSAR building.

In conclusion, 15 agonists with various structures were

docked to an atomic resolution homology model of the

human a2A-adrenoceptor. The docked conformations of the

compounds are in contact with previously reported key bind-

ing site residues emphasizing the good quality of the homolo-

gy model. QSARs of binding affinity were developed involving

structure-based bimolecular terms of the AutoDock scoring

function, a simple, ligand-based binary descriptor, and a set of

the corresponding experimental DGb values. A good correla-

tion was achieved between the experimental and calculated

DGb values. The statistical parameters of the LRs are somewhat

better than those of the reproducibility of the experimental

data. To the best of our knowledge, this study represents the

first verified calculations of binding affinities of agonists to the

a2A-adrenoceptor. Thus, our results indicate the direction of

precise engineering of agonists, either for the elucidation of

open questions of subtype selectivity (see introductory sec-

tions) or for the design of drug candidates in a2A-adrenocep-

tor-related diseases and therapeutic issues such as hyperten-

sion,[18–19] glaucoma,[20] acute migraine,[21] analgesia, anesthesia,

sedation,[22–24] drug and alcohol withdrawal,[25–27] gastroprotec-

tive effects,[28–30] and Parkinson’s disease.[31–32]

Computational Methods

Homology modeling and refinement. The amino acid sequen-

ces of both bovine rhodopsin (template protein) and the

human a2A-adrenoceptor were obtained from the online pro-

tein database.[33] Both sequences were loaded in Bioedit

7.0.5.2[34] and were aligned (Figure 4) with ClustalW 1.4. Manual

correction of the alignment was performed if needed (see Sup-

porting Information). A bovine rhodopsin coordinate file (Pro-

tein Databank code: 1U19) of 2.20 �[13] was selected as the

structural template. Modeller 8v1[35–37] was used for model

building. Inputs of Modeller were the protein coordinates of

1U19, the amino acid sequences, and a file containing the op-

tions of the calculations. One hundred a2A-adrenoceptor ho-

mology models were created and the model with the lowest

modeller objective function value was selected. The quality of

the model was checked with the web version of the program

ProCheck1.5[38–39] (see Supporting Information). The a2A-adreno-

ceptor homology model with a blind docked[40] noradrenaline

ligand conformation sitting at the binding region was refined

by GROMACS[41] molecular mechanics minimization, as de-

scribed previously.[17]

Docking and scoring. The structures of the 15 agonist mole-

cules (noradrenaline, a-methyl-noradrenaline, B-HT 920, brimo-

nidine, clonidine, dexmedetomidine, guanabenzamidine, guan-

facine, levlofexidine, oxymetazoline, p-aminoclonidine, rilmeni-

dine, st91, xylometazoline, and a54741) were built, optimized,

and supplied with Gasteiger charges by using the SYBYL pro-

gram package and force field.[42–44] The docking box with

22.5�22.5�22.5 �3 volume was centered at the binding region

known from site-directed mutagenesis studies.[6] All docking

calculations were performed as in Ref. [45], using the Auto-

Dock 3.0 program package.[46] Ligand molecules with different

proton locations were investigated in cases where protonation

was not trivial. Protonated forms (and the corresponding DGT)

resulting in the smallest residuals were selected for QSAR. De-

tailed results of docking are tabulated in the Supporting Infor-

mation. Molecular graphics was prepared with PyMol.[47]

Linear regressions. QSARs were developed with the CODES-

SA program package[48–50] and its two-dimensional descriptor

pool. The binary descriptor E was constructed manually, and

included in the pool and selected automatically by the im-

prove correlation module of CODESSA. Experimental DGb

values used in the LRs (Supporting Information) were convert-

ed from pKi values (T=298 K) of previous studies of radioli-

gand assays.[51–53] Only pKi values obtained with radioligand

[3H] MK-912 were used to construct Equations (1) and (2).

When more than one experimental pKi value was available, the

larger one was selected for correlation.
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A Comprehensive Docking Study on the Selectivity of Binding of Aromatic Compounds

to Proteins

Csaba Hetényi,*,†,‡ Uko Maran,† and Mati Karelson†
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Generally, computer-aided drug design is focused on screening of ligand molecules for a single protein
target. The screening of several proteins for a ligand is a relatively new application of molecular docking.
In the present study, complexes from the Brookhaven Protein Databank were used to investigate a docking
approach of protein screening. Automated molecular docking calculations were applied to reproduce 44
protein-aromatic ligand complexes (31 different proteins and 39 different ligand molecules) of the databank.
All ligands were docked to all different protein targets in altogether 12 090 docking runs. Based on the
results of the extensive docking simulations, two relative measures, the molecular interaction fingerprint
(MIF) and the molecular affinity fingerprint (MAF), were introduced to describe the selectivity of aromatic
ligands to different proteins. MIF and MAF patterns are in agreement with fragment and similarity
considerations. Limitations and future extension of our approach are discussed.

INTRODUCTION

X-ray crystallography and nuclear magnetic resonance
spectroscopy (NMR) measurements are undoubtedly the most
reliable sources of high-resolution structures of protein-
ligand complexes. Despite the increase of companies and
research laboratories that carry out experimental elucidation
of structures of macromolecular complexes of biological
interest (the number of determined protein molecules is
rapidly increasing1), in silico drug screening and design
techniques remain indispensable tools of in vitro or in vivo
high throughput screening (HTS) and design methods. Using
experimentally determined ligand-protein complexes as
references, computational docking is one of the most
important in silico HTS methods2 and can easily be combined
with combinatorial chemistry.3 Moreover, even if knowledge
of the binding site of the ligand molecule is missing, recently
introduced computational approaches can be applied for
scanning entire macromolecular targets with small4 or larger,
flexible ligands5-7 (blind docking). Further information on
molecular docking and its applications can be found in refs
8-10.

The most important components of each docking algorithm
are the search method and the scoring function. Scoring
functions provide fast binding energy calculation during the
minimum search of docking simulations. Scoring formulas
can be applied independently to estimate binding free
energies, if there is not appropriate computational capacity
for free energy calculation from e.g. MD trajectories11 or
there are too many systems to be calculated. In the present
study, the scoring of AutoDock 3.012 was applied. This
scoring function is based on the Lennard-Jones and screened

Coulombic terms of the 2.4 version. The original terms were
scaled, and additional solvation and torsional considerations
were introduced to obtain a better fit to binding free energy
values. However, it should be remarked, that the absolute
values of the estimated free energies are obviously not error-
free, e.g. because the experimental binding constants involve
some uncertainty and the approximations of solvation effects,
etc. has limited power, as well. Thus, in the present study,
the use of relative (subtracted) binding free energy values
was preferred.

Rapid calculation of correct binding geometries and
estimation of the conjugated binding free energies are
essential not only solely in “traditional” HTS applications,
i.e., if thousands of drug candidates are scanned for the same
protein target, but also when several proteins or (more
correctly) the different binding pockets are screened for the
same ligand molecule.

The latter application of docking was used for prediction
of drug side effect and toxicity by Chen et al.13 In their study,
docking simulations of drug molecules were used to select
the proteins, which might play important role in the
biochemical pathways of side effects. A large set of protein
binding pockets was used as a basis of the selection. A
successful application of AutoDock was reported14 for virtual
protein screening and drug side effect prediction, as well.
However, screening of several proteins (instead of ligands)
is a relatively new direction in docking studies. Further
applications are required to test the approach and find the
solution for the problems outlined in the aforementioned
papers.

In the present work, a series of protein-aromatic ligand
complexes was selected to investigate the efficiency of
docking and scoring for selection of appropriate protein(s)
for aromatic ligands. The reliability of the scoring (free
energy) function and search method of AutoDock 3.0 was
verified by structural match of the lowest energy conformers

* Corresponding author phone: +372-7-375254; fax: +372-7-375264;
e-mail: csabahete@yahoo.com. Corresponding author address: Department
of Chemistry, Tartu University, 2 Jakobi Street, 51014 Tartu, Estonia.
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of the docking experiments (jobs) to native crystallographic
structures of ligand molecules of all complexes.

Most of the ligand molecules are structurally similar
benzene derivatives (some naphthalene and indole com-
pounds were also involved in the study) and, therefore,
fragment considerations and structural similarities allow
qualitative verification of the results. Molecular interaction
and molecular affinity fingerprints (MIF and MAF, respec-
tively) were introduced to get a comprehensive picture on
the selectivity of binding of the aromatic molecules on
proteins.

METHODS

Docking. Forty-four complexes of 39 different, small, and
middle-size aromatic ligand molecules and 31 different
protein molecules (Table 1) were selected from the
Brookhaven Protein Databank15 (PDB), partially with the aid
of PDBsum16 server. All selected complexes are free of close
contacts, and the ligand is not buried inside the protein by
the side-chains, i.e., only systems with no or moderate
induced fits were considered. The latter criterion is important,
as the applied docking method handles only rigid target
protein molecules and therefore no induced effects can be
modeled. Moreover, systems with binding sites containing
several water molecules around the ligand were omitted, as
those molecules can be involved in specific binding of some
ligands.5,17,18 Thus, if crystallographic water molecules were
constrained at the site and involved in docking calculations,
the binding site of a certain protein would be appropriate
only for docking of its original ligand molecule or very
similar molecules.

Ligand and water molecules and all ions were removed
from the original PDB file. If the PDB file contained several
identical chains, the one bound to the ligand molecule of
the lowest B-factors was selected. Essential hydrogen atoms,
charges of the Kollman united atom type, and solvation
parameters were added to the residues of the protein chain.
Generally, the native ligand molecules were used, as their
bond lengths and angles were found adequate for this
purpose. In the case of systems 4d, 7a, 15, and 32, the ligand
molecules were model-built in MOLDEN19 and optimized
with the aid of TINKER20 using a modified MM3 force field.
Babel21 and VEGA22 programs were used for file manipula-
tions. Ligand molecules were equipped with all hydrogen
atoms and Gasteiger-Marsili charges.23 Autotors (an Au-
toDock12 tool) was applied for creation of united atom
representation and definition of the torsions of the ligands.
A uniform procedure was applied for all the (31 × 39 ))
1209 docking jobs. Affinity (grid) maps of 60 grid points in
each Cartesian directions and 0.375 Å spacing were generated
with the aid of Autogrid.12 Maps were centered on the
original ligand molecules. AutoDock parameter set and
distance dependent dielectric function were used in the
calculation of the van der Waals and the electrostatic terms,
respectively. Docking simulations were performed using the
Lamarckian genetic algorithm and the Solis & Wets local
search method of Autodock. All torsion angles of the ligand
molecules (except of amide bonds and some conjugated or
rigid bonds) were released during docking. The numbers of
released torsions (RT) of the ligands are listed in Table 1.
Initial position, orientation, and torsions of the ligands were

set randomly. During the search, translational step of 0.2 Å,
quaternion, and torsion steps of 5° were applied. A population
of 50 members and a maximum number of 2.5 million energy
evaluations were used. Ten docking runs were performed
for each job.

Evaluation of the Results. A C program was used for
the evaluation and RMSD (Root Mean Square Deviation)
calculation of all data. Binding free energies of each job were
collected and the minima were selected. RMSD was calcu-
lated for the resulted 10 structures using ligand structures
of minimum energies (in Table 2: crystallographic structures)
at each job as references. A 2.5 Å tolerance was used to
form clusters of the closest structures. The atoms of groups
of C2V and C3V symmetries were considered identical during
RMSD calculations. Average energies of the clusters of each
job were calculated and collected in the E1 (39 × 31) data
matrix. Standard deviations and number of cluster members
were calculated and collected too. An additional E2 matrix
was produced using a distance criterion, as follows. The
distances between the centers of all resulting structures and
that of the crystallographic (reference) ligand were calculated
for each run. If the distance between the center of the
structure of minimum energy of a job and that of the
reference was smaller than the length of the native ligand
(limit) of the protein, then the current member of the matrix
{e2} was set equal to {e1}. Otherwise, the structure with the
smallest distance was selected as a reference and a new {e2}

was calculated. If all distances of the 10 structures were
beyond the aforementioned limit, then the energy value was
declared undefined for the actual {e2}. (All matrices of this
study are available upon request.)

VMD24 and Raster-3D25 programs were used for visualiza-
tion and presentation of the results.

RESULTS AND DISCUSSION

Docking. The results of docking calculations of 44
protein-aromatic ligand complexes (Table 1) is presented
in Table 2. Matches of some docked ligands to the crystal-
lographic structure with various RMSD values are depicted
on Figure 1. For 40 systems, the energy minimum structure
obtained as a result of 10 runs (one docking job) was the
closest to the crystallographic position of the ligand. In four
cases, the second best ranked structure was the closest to
the crystallographic structure. These molecules are marked
with letter b in the RMSD(m) column. The RMSD of the
energy minimum conformations from the original crystal
position was less than 1 Å in 55%, less than 2 Å in 82%,
and less than 3 Å in 100% of cases. Summarily, in 82% of
the cases good fit was obtained, in the remaining cases the
result was acceptable. The distribution of the results is similar
(67%; 91%; and 100%) considering the average RMSD
values calculated for the groups of structures having RMSD
less than 2.5 Å (RMSD2.5 rank). The fraction of dockings of
good match increased to 91% after ranking. In 86% of all
systems, the number of docked ligand conformations in the
RMSD2.5 rank was between 5 and 10, i.e., more than 50%
of the runs of a job matched the crystal structure (including
the minima of all but four jobs). This result indicates that
jobs of 10 runs are adequate to get correct docking results
for the systems studied by using the procedure described in
the Methods section. The calculated AutoDock minimum
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docking energy and the free energy of binding was always
lower than the energies corresponding to the original crystal
structures. The decrease (or similarity) of the latter energy
values indicates that the docked conformation is in an energy

minimum, likewise to the crystal conformation. The free
energies of binding of the minimum structures and the
average free energy of binding of the members of the
RMSD2.5 rank were very close to each other, in some cases

Table 1. Investigated Protein-Ligand Systems Ordered and Numbered According to the Increasing Molecular Weight (MW) of the Ligandsa

protein ligand

ID name
PDB
code

binding site
residues

res.
(Å) -R groups RT MW

1 insulin 1mpj ACHIL 2.30 R1: -OH 1 94.1
2 insulin 1ev3 ACHIL 1.78 R1: -OH R3: -CH3 1 108.1
3 insulin 1qiz ACHIL 2.00 R1, R3: -OH 2 110.1
4a transcription factor malt domain III 1hz4 HML 1.45 R1: -COO(-) 0 121.1
4b chloroperoxidase T 1a8u FHLMSW 1.60 R1: -COO(-) 0 121.1
4c human peroxiredoxin 1hd2 CFILPRT 1.50 R1: -COO(-) 0 121.1
4d bacterial cocaine esterase 1ju4 FWY 1.63 R1: -COO(-) 0 121.1
5a â-trypsin 3ptb C*DQSVY 1.70 R1: -C(NH2)2

(+) 0 121.2
5b urokinase-type plasminogen activator 1f5k C*DSV 1.80 R1: -C(NH2)2

(+) 0 121.2
6 bovine trypsin 1tnj C*DV 1.80 R1: -(CH2)2-NH3

(+) 3 122.2
7a beta-acrosin from RAM spermioza 1fiw C*DQST 2.10 R1: -C(NH2)2

(+) R4: -NH2 0 136.2
7b human coagulation factor IXA 1rfn C*DS 2.80 R1: -C(NH2)2

(+) R4: -NH2 0 136.2
8 prostaglandin H2 synthase-1 1pth AILRVY 3.40 R1: -COO(-) R2: -OH 1 137.1
9 esterolytic and amidolytic 43C9 antibody

(immunoglobulin)
43ca FHQY 2.30 R1: -OH R4: -NO2 1 139.1

10 insulin 1tym AC*IL 1.90 R1: -OH R4: -NH-CO-CH3 3 151.2
11 poly (ADP-ribose) polymerase 3pax HSY 2.40 R1: -CO-NH2 R3: -O-CH3 3 151.2
12 phenylalanyl-tRNA synthetase 1b70 AEFHQRSVW 2.70 R1: -CH2-CH[COO(-)]-NH3

(+) 4 165.2
13 protocatechuate 3,4-dioxygenase 3pcn HIPRTWY 2.40 R1: -OH R3: -CH2-COO(-) R5: -OH 4 167.1
14 human serum albumin 1e7a C*FILNV 2.20 R1: -OH R2, R5: -C3H7 3 178.3
15 macrophage migration inhibitory factor

(MIF)
1ca7 FIKMNPSVWY 2.50 R1: -OH R4: -CH2-CO-COO(-) 3 179.1

16 des-(Ile318-Arg417)-tyrosyl-tRNA
synthetase

4ts1 DLQTY 2.50 R1: -OH R4: -CH2-CH[COO(-)]-NH3
(+) 5 181.2

17 aromatic amino acid transferase 2ay5 DFILNRSTWY 2.40 R12: -(CH2)2-COO(-) 3 188.2
18 N1G9 FAB fragment 1ngp HKRSWY 2.40 R1: -NO2 R3: -CH2-COO(-) R5: -OH 4 196.1
19 prostaglandin H2 synthase-1 1eqg AILRVYW 2.61 R1: -CH(CH3)COO(-) R4: -C(CH3)3 3 205.3
20 protein tyrosine phosphatase 1B 1c85 CDFIKQSVY 2.72 R1: -COO(-) R2: -NH-CO-COO(-) 2 207.1
21 carboxypeptidase A 1hdu AEHIR 1.75 R1: -CH2-CH[COO(-)]-NH-CO-NH2 5 207.2
22 tyrosine phosphatase 1d1q CDFHLRW 1.70 R1: -NO2 R4: -OPOO2

(2-) 2 217.1
23 carboxypeptidase A 3cpa ADEINRTY 2.00 R1: -CH2-CH[COO(-)]-NH-CO-CH2-NH3

(+)

R4: -OH
7 238.2

24 influenza virus B/LEE/40 neuraminidase
(sialidase)

1ivb DERY 2.40 R2: -OH R3: -NH-CO-CH3 R4: -NO2

R5: -COO(-)
4 239.2

25 protein tyrosine phosphatase 1B 1c83 ACDFIKQVY 1.80 R10: -NH-CO-COO(-) R11: -COO(-) 3 246.2
26 protein tyrosine phosphatase 1B 1c84 ACDFIKQVY 2.35 R7: -NH-CO-COO(-) R8: -COO(-) 3 257.2
27 cellobiohydrolase I 1dy4 DEHQRSTWY 1.90 R6: -O-CH2-(S)CH(OH)-CH2-NH-CH(CH3)-CH3 7 259.3
28 streptavidin 1sri ALSVWY 1.65 R1: -COO(-) R2: -NdN-Ph(4-OH; 3,5-diMe) 4 271.3
29 indole-3-glycerolphosphate synthase 1a53 EFKLNRSW 2.00 R12: -CH(OH)-CH(OH)-CH2-O-POO2

(2-) 7 285.2
30 protein-tyrosine phosphatase 1B 1bzj ACFIRVY 2.25 R8: -COO(-) R9: -CF2-POO2

(2-) 2 299.1
31 48G7 hybridoma line FAB 1gaf HLRWY 1.95 R1: -NO2 R4: -OPOO(-)-(CH2)4-COO(-) 7 301.2
32 calcium binding domain VI of porcine

calpain
1alw FHIKLQRW 2.03 R1: -I R4: -CHdC(SH)(Z)-COO(-) 4 305.1

33 protein tyrosine phosphatase 1B 1ecv DFIKQRVY 1.95 R1: -NH-CO-COO(-) R2: -COO(-) R4: -I 3 333.0
34 29G11 FAB 1a0q FHKLRWY 2.30 R1: -OPOO(-)-CH(C4H9)-NH-CO-(CH2)2-COO(-) 10 341.3
35 catalytic antibody 28B4 fragment 1kel FKNRWY 1.90 R1: -NO2 R4: -CH2-N[CH2-POO2

(2-)]-
(CH2)4-COO(-)

10 343.2

36 bovine trypsin 1az8 C*DQTV 1.80 R1: -C(NH2)2
(+) R3: -CH(CH2-COOCH3)-

(CH2)2-Ph[4-C(NH2)2
(+)]

7 354.5

37 human estrogen receptor (R) 3ert ADEILMTW 1.90 R1: -C(C2H5)dCPh(4-OH)-Ph[4-O-(CH2)2-
N(CH3)2]

9 387.5

38 glutathione S-transferase 1guh DFLQRTVY 2.60 R1: -CH2-S-CH2-CH[CO-NH-CH2-COO(-)]-
NH-CO-(CH2)2-CH[COO(-)]-NH3

(+)
13 396.4

39 dihydrofolate reductase 4dfr DFILKRT 1.70 R1: -CO-NH-CH[COO(-)]-(CH2)2-COO(-)

R4: -N(CH3)-CH2-(4-aminopteridin-6-yl)
7 457.5

a The default -R groups are hydrogen atoms. Res: resolution of the protein structure. RT: the number of released torsions. C*: Cys in disulfide
bridge.
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they were equal. This similarity between the minimum and
average energies corresponds to the structural similarity of
the members of RMSD2.5 rank.

In summary, the docking results of this section provide
verification for the further investigations on the 44 systems
using our standard docking protocol. It should be noted, that
at systems 8 and 19, an octylglucoside molecule covers the
binding site. The proteins of these systems were not involved
in further studies of the 31 different proteins, as the site seems
to be specifically arranged for the original ligands. See also
Methods for details on selection of the systems for the study.

As a further test of reproducibility of the docking results
on the investigated systems, 31 jobs of different complexes
were repeated using new seed parameters for the random
number generator at each job. Despite the total randomization

of starting positions of the ligand, excellent reproducibility
was obtained (Supporting Information, Figure A). This
finding strengthens reliability of data in the E matrices.
Molecular Interaction Fingerprints (MIFs). The fol-

lowing subtraction was applied to the rows of the E matrices
defined in the Methods section, to obtain theMIFY matrices

where Y ) 1 or 2, denoting the two kinds of methods of
evaluation, and REFMIF is the vector of reference energies
of each ligand. The reference energies correspond to the
binding of the 39 different ligand molecules in complex with
their original proteins. Thus, MIFY matrices contain rows,
i.e., the molecular interaction fingerprints with values of

Table 2. Verification of the Docking Method for the Investigated Protein-Ligand Complexes of the Present Studya

ID Ed(c) Ed(m) ∆G(c) ∆G(m) RMSD(m) N ∆G(a) SD RMSD(a) SD

1 -2.48 -3.61 -2.17 -3.29 0.64 10 -3.29 0.00 0.65 0.01
2 -3.91 -4.39 -3.60 -4.08 2.44 10 -4.08 0.00 2.44 0.00
3 -4.58 -5.31 -3.97 -4.67 2.53 0c

4a -3.68 -4.31 -3.68 -4.31 0.87 10 -4.31 0.00 0.87 0.00
4b -5.80 -6.58 -5.80 -6.58 0.31 8 -6.58 0.01 0.29 0.01
4c -4.66 -5.36 -4.66 -5.36 0.64 10 -5.36 0.00 0.64 0.00
4d -4.82 -5.13 -4.78 -5.13 0.63 4 -5.12 0.01 0.64 0.01
5a -7.89 -8.18 -7.89 -8.18 0.32 10 -8.18 0.00 0.32 0.00
5b -7.28 -7.93 -7.28 -7.93 1.99b 9 -7.63 0.01 1.00 0.75
6 -7.15 -8.63 -6.35 -7.72 2.13 10 -7.70 0.01 2.13 0.01
7a -9.29 -9.29 0.83 8 -9.29 0.00 0.83 0.00
7b -8.33 -8.79 -8.33 -8.79 0.61 9 -8.79 0.00 0.61 0.00
8 -3.82 -5.61 -3.50 -4.98 2.70b 4 -4.46 0.00 2.36 0.01
9 -5.33 -5.64 -5.01 -5.31 0.66 10 -5.31 0.01 0.67 0.00
10 -1.83 -4.91 -1.39 -3.90 1.74 10 -3.88 0.01 1.72 0.02
11 -5.39 -7.20 -5.73 -6.20 1.30 9 -6.09 0.17 1.57 0.50
12 -7.93 -10.36 -6.83 -8.89 0.84 10 -8.88 0.01 0.91 0.05
13 -4.73 -6.81 -3.48 -5.42 2.64 2 -5.23 0.01 1.07 0.02
14 -5.04 -6.59 -5.28 -6.20 1.05 10 -6.20 0.00 1.05 0.01
15 -8.93 -8.08 0.96 10 -8.01 0.05 0.90 0.07
16 -6.78 -8.72 -5.35 -7.14 0.41 7 -7.05 0.09 0.75 0.77
17 -9.36 -10.77 -8.97 -9.92 2.10 9 -9.51 0.22 1.07 0.58
18 -7.22 -9.32 -6.51 -8.17 0.77b 6 -7.68 0.11 0.74 0.03
19 -8.35 -8.81 -7.39 -7.73 0.81 9 -7.72 0.00 0.79 0.02
20 -9.15 -11.31 -8.99 -10.31 1.03 9 -10.30 0.02 0.98 0.06
21 -9.27 -10.49 -8.06 -8.84 0.59 10 -8.80 0.03 0.58 0.02
22 -11.15 -11.79 -10.54 -11.18 0.80 10 -11.17 0.01 0.97 0.39
23 -4.65 -8.45 -6.77 -8.91 1.08 10 -8.70 0.21 1.12 0.15
24 -6.50 -7.60 -6.38 -6.67 0.34 8 -6.65 0.02 0.37 0.06
25 -10.85 -13.09 -10.78 -11.87 0.65 9 -11.81 0.05 0.70 0.04
26 -10.32 -11.92 -10.21 -10.85 1.70 9 -10.79 0.06 0.89 0.33
27 -10.61 -11.26 -8.68 -9.12 0.41b 6 -8.70 0.17 0.87 0.49
28 -0.14 -8.17 -2.10 -9.47 1.05 7 -9.33 0.06 0.99 0.05
29 -10.56 -11.77 -9.79 -10.50 1.31 4 -10.21 0.42 1.19 0.23
30 -13.78 -14.25 -12.60 -13.07 0.38 10 -13.06 0.01 0.33 0.03
31 -10.98 -12.80 -8.57 -10.37 0.58d 8 -10.10 0.44 0.72 0.32
32 -6.94 -5.66 1.51e 9 -5.62 0.03 1.83 0.31
33 -10.72 -12.85 -10.56 -11.59 0.76 8 -11.57 0.02 0.76 0.01
34 -10.72 -13.36 -7.47 -9.64 2.61 3 -9.25 0.25 2.15 0.29
35 -12.73 -15.85 -10.71 -12.59 2.01 5 -12.47 0.15 1.57 0.35
36 -12.75 -14.06 -11.87 -12.30 0.51 10 -12.22 0.06 0.59 0.27
37 -1.43 -7.23 -8.30 -10.21 1.81 7 -9.66 0.36 1.42 0.18
38 -14.88 -16.38 -10.82 -12.14 0.77 5 -11.94 0.18 0.86 0.14
39 -11.71 -14.47 -11.17 -13.77 1.22 5 -13.70 0.13 1.23 0.03

a Ed(c): docked energy of the crystallographic ligand (kcal/mol); Ed(m): docked energy of the docked conformation of the lowest free energy
of binding of the ligand; ∆G(c): calculated free energy of binding of the crystallographic ligand (kcal/mol); ∆G(m): free energy of binding of the
lowest free energy of the ligand; RMSD(m): root-mean-square deviation of the docked conformation of the lowest free energy of binding of the
ligand (Å); N: number of conformations in the RMSD2.5 rank (the crystallographic structure was used for reference, see text); ∆G(a): average free
energy of binding of the RMSD2.5 rank; RMSD(a): average RMSD of the RMSD2.5 rank; SD: standard deviation. b The RMSD value corresponds
to the minima of the second best group of docked ligands. c The RMSD of docked conformations were only slightly above 2.5 Å (acceptable fit)
but RMSD2.5 rank was not defined in this case. d Parts of the ligand of high B-factors were omitted during RMSD calculation. e The crystallographic
ligand had erroneous structure. RMSD was calculated omitting the erroneous part.

MIFY ) EY - (REFMIF)
T (1)
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relative binding free energy of each aromatic compound and
the 31 different proteins. The familiar term “fingerprint” was
used here to indicate that the interaction profile of each row
is specific to only one compound.

A central problem of screening of proteins is the choice
of binding energy threshold for selection of the appropriate
targets. For this purpose, Chen et al.13 used an energy value
calculated from the correlation with the number of atoms of
the ligand as a threshold. However, only an R2

≈ 0.5 can be
obtained when correlating binding free energies with the
number of heavy atoms of ligand molecules (Supporting
Information, Figure B). While the correlation with the
number of atoms alone seems to be insufficient for estimation
of binding free energies even for a group of similar
compounds, the use of a threshold was avoided in our study.

Using the MIF approach, experimental data (binding free
energies calculated with the reference structures) form a basis
of the relative comparison of the binding affinities of the 31
proteins. For ligands having several crystal complexes, the
minima of the individual binding energies could be used as
a more precise reference.

The resulting MIF1 matrix is presented in Figure 2a.
According to eq 1, negative or zero values indicate the
possibility of interaction between the ligand and the proteins.

In protein screening studies, a further critical point is the
verification of the results. It may be rather difficult, consider-
ing the expenditure required for determination of the X-ray
structures of all possible (in this study: 1209) combinations
of ligands and proteins or measurement of experimental
binding free energies (or inhibition constants). In some cases,
indirect biochemical data are available that relate the activity
of selected proteins to drug side effects or toxicities of the

compounds.13,14 However, validation of only the positive
results is possible, i.e., when drugs are involved in consider-
able interaction with the proteins.14 For biologically inactive
compounds (negative result) no or very few data are
available.

In the present study, structural considerations were used
to perform a check on the aforementioned positive selection.
The principle of fragment docking26-29 and fragment-based
drug design30 asserts that fragments of certain molecules bind
to the same sites as the whole molecules. Here, this simple
principle was applied to select out the proteins, which are a
priori targets of a given compound, having the same (boxes
of solid outline on Figure 2a) or similar (boxes of dashed
outline) fragments as the native ligand. A definition by Wang
et al.27 was used to classify the “same” fragments of the
investigated ligands. For example, salicylic acid (8) and
2-(oxalylamino)benzoic acid (20) have the same fragment
(benzoic acid), the 4-(acetylamino)-3-hydroxy-5-nitrobenzoic
acid (24) was considered only “similar” to salicylic acid in
this study, having more than one group linked to the benzene
ring.

Comparison of the location of boxes of Figure 2a, and
the corresponding energy values showed good agreement:
the proteins (sites) selected by fragment considerations
(boxes) have, with few exceptions, zero or negative energy
value (Figure 2a). The fragment-based comparison was made
for ligands 1-14. As larger compounds have site-specific
or bulky groups attached to the aromatic rings, the simple
fragment considerations are not as straightforward as they
were at the small molecules. For example, ligand 28 and
protein sites 4a-b hardly match even if benzoic acid is a
common “fragment” of ligands 28 and 4, because the
attached group makes molecule 28 considerably larger than
benzoic acid. However, in some cases striking agreement
with the rational fragment or similarity considerations can
still be found, for larger compounds, as well. One example
is the match of tyrosine (16) to the site of native ligand
phenylalanine (12; Figure 2a, box with red outline): the two
compounds differ only by a hydroxyl group. A further nice
match is that of ibuprofen (19) and the site of ligand 17.
Both ligands have carboxyl groups and large hydrophobic
parts (isobutylphenyl and indole groups, respectively) ar-
ranged at similar distance. There are some other systems,
which have negative value in MIF1 and high degree of
similarity between the ligands. One example is ligand 13,
which fits to the binding site of 17: both ligands have
carboxyl groups linked to the benzene ring (the linker differs
only in one -CH2- unit), which play a pivotal role in
forming the complexes. Furthermore, the existence of identi-
cal binding site residues I, R, T, W and Y (Table 1) at both
proteins indicate the similarity of binding pockets (like at
the other pairs of systems discussed above). In conclusion,
the rows of MIF1 matrix contain reasonable “interaction
fingerprints” of the ligand molecules, which are in good
agreement with fragment and similarity considerations.

Interestingly, there is a clear trend in MIF1 toward the
higher selectivity for larger ligands. The only exception is
ligand 32, iodobenzene. This trend seems reasonable as
ligands of smaller molecular weight are fragments of the
larger molecules in many cases and therefore can fit to the
sites of the proteins corresponding to larger ligands. At the
same time, larger molecules have more specific groups to

Figure 1. Comparison of docked (energy minimum; blue), and
the crystallographic conformations (red) of different RMSD values.
A: ligand 1; B: ligand 2; C: ligand 29; D: ligand 37; E: ligand
38. Note that in case of small ligands, like 2, the alteration of positon
of only one methyl group causes significantly larger RMSD, due
to the small number of atoms, even if the positions of other atoms
match with those of the reference ligand.
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interact with their specific target and/or there is no space to
fit them in the sites of smaller ligands. (In case of system
32, the heavy iodine atom does not contribute to the
specificity relatively as much as it increases the molecular
weight. Hence, this compound is an exception to the trend.)

In matrix MIF2, a similar trend can be observed (Figure
2b). In this case, the docked structures situated far from the
center of the subsite of the original crystallographic ligand
were filtered out (see Methods for details). In 131 of 1209
cases (11%) the values of E1 were changed during the
generation of E2, due to the large distance from the reference
subsite. In nine cases white boxes depict in the figure, that
in all cases the resulting structures were far from the original
subsite. In some simple cases a rational explanation can be
given for the appearance of such deviations. For example,
in case of the benzamidine derivatives and 2-phenylethy-
lamine (5, 6, and 7), no match was found with the subsite
of 4a, a benzoic acid target (Figure 2b). This subsite,
attracting benzoic acid, is repulsive for the positively charged
compounds. This repulsion causes a shift of e.g. ligand 5
far away from the original 4a site (Figure 3) and the
appearance of the white box in the MIF2 matrix. In cases
when only the subsite of a protein pocket is of interest, the
filtering used to obtainMIF2 could be essential. For instance,
this situation occurs e.g. when the other parts of the pocket
are not involved in the key interactions or interact with water
molecules. Hence, this filtering helps to avoid overestimating

to actual role of the positive interactions with the inactive
part of the pocket and thus of small importance. The rows
(MIFs) of the MIF2 matrix reflect relative structural and
energy information at the same time and contain therefore
more information than MIF1 (or methods used in refs 13
and 14), which have not applied e.g. a distance criterion to
filter ligands bound to nonactive subsites.
Molecular Affinity Fingerprints (MAFs).While the rows

of the EY matrices form the basis of the calculation of MIFs,
the columns can be considered as “slices” of conventional
in silico HTS, which is performed routinely in drug design
for a protein site. A subtraction, similar to (1)

was performed for the columns to obtain matrices of
molecular affinity fingerprints (MAFY). (REFMAF is not
completely identical with REFMIF, as the former one has 39
elements instead of the 31.) In this case, the columns of
MAFY contain relative energies of ligands for each protein
site. However, also the rows of the matrix have valuable
meaning, describing the competitive affinity of a compound
for the different protein sites relative to the original crystal-
lographic ligand of the site. Therefore, the rows of MAFY
were called the molecular affinity fingerprints (MAFs) of
the compounds. The diagonal of MAF1 (Figure 2c) divides
the MAF values roughly into two groups: the negative values

Figure 2. MIF1 (A), MIF2 (B), MAF1 (C), and MAF2 (D) matrices. The rows are ordered according to the serial number (molecular
weight) of the ligand molecules. See text for meaning of other notations. White boxes mean undefined values. Solid (and dashed) outlines
mark boxes with same (or similar) fragments of the ligand of the actual protein and the ligand of the actual row. Red outlines correspond
to similarities, as well. (See text for details on the latter ones.) The reference crystal structures correspond to boxes of zero energy values
and positioned roughly on the diagonal of the matrix. The rows of each matrix are named “fingerprints”, including specific data for the
ligands.

MAFY ) EY - REFMAF (2)
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are gathered at the left bottom corner and the positive values
are at the right top corner of the matrix. This finding indicates
that smaller compounds are weaker competitors at foreign
sites, while the relative competitive affinity of the larger
compounds is better at foreign sites, as well. However,
beyond system 28, the competitive efficiency seems to
decrease for any compound. This limit indicates that if the
binding site is large and has a native ligand of more than
ca. 300 Da, then the competitive strength of other ligands at
the site is smaller. The quantitative results presented in this
section are in agreement with the rational considerations:
small compounds with fewer interacting points are plausibly
weak competitors at sites of larger ligands. The crude trend
of decreasing binding free energies with an increasing
number of atoms of ligands (see Section “Molecular Interac-
tion Fingerprints” for details) indicates a similar trend, as
well. Summarily, the MAFs reflect a realistic picture of the
competition.

TheMAF2 matrix (Figure 2d) contains changes at similar
positions asMIF2. In some cases, a large shift to the positive
values can be observed (e.g. at ligand 37 - protein 14 or
ligand 39 - protein 17) after the second filtering.

CONCLUSIONS

In the present study, a docking approach of protein
screening was investigated. Based on a validated set of
reproduced crystal complexes, relative measures of molecular
interaction and affinity fingerprints were introduced and used

for the comparison of ligand-protein selectivity. MIF and
MAF patterns were found to be in good agreement with
rational considerations. As the generation of the correspond-
ing matrices is relatively fast (one docking job took an
average of a half an hour of CPU time on a PIV 1.7 GHz
processor), the data set can be expanded with further proteins
and ligands in an effective way. Furthermore, using the same
scoring function, the results on 1209 complexes remain
comparable. This statement is highly important, as the
number of the available experimental inhibition constants
or binding free energy values is very limited, and sometimes
the measured values are not comparable with each other due
to the different experimental setups.10 Thus, protein screening
would be impossible if to use only the available experimental
binding affinity values. An additional advantage of the
computational docking approach is that the docked com-
plexes can be precisely compared to the original crystal
complex of the site and in the case of the other ligands,
structural information of the place of subsite can be involved
in the evaluation (filtering) together with the corresponding
energy values. Moreover, if no data exist for the reference
crystal complex, the binding site can be found by methods
based on pocket search31 or by blind docking.5

However, general problems of docking applications,
protein flexibility32 and the role of structural waters,5,18 should
be considered in future protein screening studies. The error
of docking caused by structural waters can be reduced with
the above-mentioned filtering using subsite information. The
elimination of the induced effects is more problematic.33

Practically, MIFs can be used for comparison (selection)
of protein targets involved in drug side effects and toxicity,
while MAFs contain information on the competitive affinity
of a compound at a site and therefore may be applied for
relative estimation of the possibility of interference of a drug
with others at their corresponding binding sites (proteins).

Generally, MIFs and MAFs calculated on the basis of a
larger free energy database may aid the exploration of the
appropriate biochemical interaction route of any compounds,
e.g. by automated comparison of their fingerprints with those
of ligands of elucidated biochemistry.
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ABSTRACT: We introduce an indirect approach to estimate
the solvation contributions to the thermodynamics of non-
covalent complex formation through molecular dynamics
simulation. This estimation is demonstrated by potential of
mean force and entropy calculations on the binding process
between β-cyclodextrin (host) and four drug molecules puerarin,
daidzin, daidzein, and nabumetone (guest) in explicit water,
followed by a stepwise extraction of individual enthalpy (ΔH)
and entropy (ΔS) terms from the total free energy. Detailed analysis on the energetics of the host−guest complexation
demonstrates that flexibility of the binding partners and solvation-related ΔH and ΔS need to be included explicitly for accurate
estimation of the binding thermodynamics. From this, and our previous work on the solvent dependency of binding energies
(Zhang et al. J. Phys. Chem. B 2012, 116, 12684−12693), it follows that calculations neglecting host or guest flexibility, or those
employing implicit solvent, will not be able to systematically predict binding free energies. The approach presented here can be
readily adopted for obtaining a deeper understanding of the mechanisms governing noncovalent associations in solution.

■ INTRODUCTION

Correct estimation of thermodynamic parameters governing
supra-molecular complexation from empirical calculations is of
crucial importance for a better understanding of processes in
biomolecules and for virtual screening in structure−function
analysis and molecular design. For a host−guest complex both
enthalpic and entropic contributions from the binding partners
and their environment determine the overall binding free
energy. Solvent acts not solely as an inert, bulk medium but
also as an active partner during the noncovalent complexation.
Various methods have been published to evaluate binding free
energy profiles, such as molecular mechanics−Poisson−
Boltzmann surface area (MM−PBSA),1 thermodynamic
integration (TI),2 free energy perturbation (FEP),3 and
potential of mean force (PMF) calculations.4 However,
evaluation of solvation enthalpy as well as configurational
entropy contributions still remains a challenge, in particular for
large biomolecules. Simplified treatments, such as using implicit
solvent models based on, for example, atomic fragmental
volumes and solvation parameters5 or treating the receptor as a
rigid body in whole or in part, have been proposed to enable
high-throughput virtual screening with the aid of docking
techniques.6,7 Efforts to improve the accuracy of scoring
functions by including the effects of solvation and receptor
flexibility continue as well.8

Cyclodextrins (CDs) are ideal candidates for host (or target)
molecules, and they have attracted much attention over the

years, particularly because of their pharmaceutical applications
in drug delivery.9 The lipophilic cavity and hydrophilic surface
of CDs also provide an enzyme-like environment allowing to
mimic protein−ligand interactions.10 Between natural CDs and
guest molecules van der Waals, hydrophobic, and hydrogen
bond interactions are major driving forces responsible for the
host−guest complexation.11 Release of strain energy in the CD
macrocycle and of “high-energy” (also known as enthalpy-rich)
water from the CD cavity upon complexation has been
suggested to contribute to the binding as well.12,13 Induced
conformational changes of CDs upon binding to a guest have
been proposed and detected by experimental and theoretical
studies.14−19 Inoue et al. reported a compensatory enthalpy−
entropy relationship in [CD:guest] complexes, based on
thermodynamic measurements of CDs with a series of guest
molecules via calorimetric titration.20,21 They stated that steric
hindrance in the complex formation may lead to an entropy
loss and cancel out the enthalpy gain in part.21 These
observations indicate that solvation-related changes such as
desolvation and/or configurational fit play a role in [CD:guest]
associations and must be taken into account during calculation
of the complexation thermodynamics. Although a number of
studies involving free energy calculations of CD-containing
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complexes have been published,22−27 few reports focus on the
solvation problem mentioned above.
Here, we introduce an indirect approach for quantification of

solvent contribution to the energetics of noncovalent complex-
ation by molecular dynamics (MD) simulation. This approach
is demonstrated on the complex formation between β-CD and
four drug molecules (puerarin, daidzin, daidzein, and
nabumetone) as host and guest molecules, respectively, using
water as explicit solvent. These four drug molecules have been
reported to possess potential medicinal values.28−30 Steered
molecular dynamics (SMD)31 was used to generate a formation
process of the [CD:guest] complex, along which potentials of
mean force (PMFs, i.e., free energy profiles) were computed
with umbrella sampling.32 More details on the SMD and PMF
techniques are given in refs 24, 31, and 33−37. On the basis of
PMF calculations, the total enthalpy and entropy change are
evaluated and further decomposed into individual items in
order to quantify the energetics of binding in detail. The results
assist in understanding thermodynamic properties of biological
processes such as drug encapsulation and release from CDs.
Implications for prediction of receptor−ligand binding affinities
in general are discussed at the end of this paper.

■ METHODS

Simulation Setup. The initial coordinates of the β-CD
(host) were extracted from the RCSB protein data bank (PDB
code: 1DMB). Drug molecules of puerarin, daidzin, daidzein,
and nabumetone (guests) were constructed using the Chem3D
software. Structures of the host and guest molecules are shown
in Figure 1. The q4md-CD force field was used to model β-CD;
this force field has been validated for CD-based systems38 and
for use39 in the GROMACS suite.40,41 The generalized Amber
force field (GAFF)42 was chosen to parametrize the guest
molecules. Restrained electrostatic potential (RESP)43 charges
of guest molecules were derived by fitting partial charges to
electrostatic potentials calculated using Gaussian 0344 at the
HF/6-31G* level of theory. Puerarin, daidzin, and daidzein
complexes were simulated at 300 K and nabumetone at 293 K
to allow direct comparison with experimental data. Constraints
were applied for bond lengths of host and guest molecules with
the LINCS algorithm,45 and for bond lengths and angles of
water molecules with SETTLE,46 allowing a time step of 2 fs.
All the simulations were performed with the TIP3P water
model,47 using the GROMACS package (version 4.5.5).40,41

Long-range electrostatic interactions were treated using the
particle mesh Eward (PME) approach48,49 with a switching
distance of 1.0 nm. Further details of the simulation protocol
have been presented in ref 16.
Each system contained one host, one guest, and approx-

imately 3300 water molecules in a cubic box of 5 × 5 × 4 nm3.
The host molecule was centered in the box with the Z-
coordinate of its seven glycosidic oxygen atoms approximately
located at Z = 2 nm with the cavity axis of β-CD parallel to the
Z-axis. The distance between the center of mass (COM) of the
B-ring of the guest and that of the seven glycosidic oxygens of
β-CD along the Z-axis was defined as the reaction coordinate ξ
(Figure 2). The initial (i) and final (f) values of the reaction
coordinate were set to ξi = −2 nm and ξf = 2 nm, respectively.
Prior to each production we performed an equilibration
simulation of 200 ps in which the pressure was maintained at
1 bar with the semi-isotropic Parrinello−Rahman barostat,50

scaling the box in the X−Y plane only but keeping the box size
in the Z-direction fixed. During production simulations the box

size was kept unchanged with no pressure coupling. A periodic
pulling simulation was carried out in GROMACS,40,41 allowing
the distance to be larger than half the box size, to obtain a
formation event of 1:1 [β-CD:guest] complexes. The seven
glycosidic oxygen atoms of β-CD were harmonically restrained
with an isotropic force constant of 1000 kJ mol−1 nm−2 and
used as an immobile reference for pulling simulations. The B-
ring of the guest was pulled through β-CD cavity from the
primary or secondary rim, corresponding to the BP or BS
arrangement in Figure 1c, respectively, along the Z-axis over
800 ps with a harmonic force constant of 2000 kJ mol−1 nm−2

and a pulling rate of 0.005 nm ps−1. In some cases the guest did
not go inside but rather outside the cavity, giving a BO
arrangement (Figure 1c). The COM distance and reaction
coordinate as a function of the simulation time for these three
arrangements of [β-CD:puerarin] complexes are shown in
Figure S1 in the Supporting Information. Finally the guest
sampled 4 nm covering the entire [ξi, ξf] interval. In the [ξi, ξf]

Figure 1. (a) Stick model of β-CD. Hydrogen atoms are omitted for
clarity. Primary and secondary hydroxyls are situated at the primary
(P) and secondary (S) rim, respectively. (b) Molecular structure of
puerarin (R1 = H, R2 = Glucose), daidzin (R1 = Glucose, R2 = H),
daidzein (R1 = H, R2 = H), and nabumetone. A, B, and C denote
relevant ring groups. Four dihedral angles (ψi, i = 1...4) involving non-
hydrogen atoms are defined here to describe guest rotations around
corresponding bonds. (c) Structural arrangement of the [β-CD:guest]
complex formation. BP indicates B-ring of guest inserting into β-CD
cavity from the P rim; BS from the S rim. BO means the B-ring
locating outside the cavity.

Figure 2. Definition of the reaction coordinate ξ.
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reaction coordinate interval we selected 81 windows with a
distance of 0.05 nm between adjacent positions and these
windows were then used for umbrella sampling simulations.
Following the same scheme, we simulated four guest molecules
with three different arrangements and therefore obtained 12
potential of mean force (PMF) profiles in total. In order to
detect the ultimate entropy loss of a guest inside a rigid cavity,
one more PMF for the [β-CD:nabumetone] complex with the
BS arrangement was computed with position restraints of all
the non-hydrogen atoms of β-CD. The total simulation time for
a single PMF profile was 810 ns (10 ns for each window).
Thermodynamic Calculation. After removing the first 2

ns for equilibration, we constructed the PMFs with a periodic
version of the weighted histogram analysis method
(WHAM).51,52 As noted by Kumar and co-workers,51 the
integrated autocorrelation times of the umbrella windows were
incorporated into the WHAM iteration procedure to yield a
more accurate estimate for the PMF, in particular for a periodic
PMF in nonhomogeneous systems.52 Statistical uncertainties of
the PMFs were estimated using the Bayesian bootstrap of
complete histograms.52 All the PMFs were defined to zero at ξi
and ξf where host−guest interactions vanish, and thus, we can
quantify the free energy difference (ΔG) with respect to the
separated state of the binding partners.
The simulated system was first equilibrated at 1 bar and then

the volume was kept constant, so the enthalpy of the system
roughly amounts to its internal energy. The temperature is
controlled throughout our simulations and thus the kinetic
energy has a constant contribution to the internal energy. The
enthalpy change (ΔH) therefore reasonably equals the
potential energy difference with respect to a completely
separated state between host and guest (eq 1).37 Note that all

ξ ξ ξΔ = −H V V( ) ( ) ( )i (1)

thermodynamic variables are functions of ξ. For simplicity, we
omit this functional dependence in the forthcoming text. The
entropy change (ΔS) of the system was then computed by
subtracting the ΔH part from ΔG (eq 2).

− Δ = Δ − ΔT S G H (2)

An enthalpic profile of the system was further decomposed
into eight terms (eq 3) where the

Δ = Δ + Δ + Δ + Δ

+ Δ + Δ + Δ

+ Δ

− −

− − −

−

H H H H H

H H H

H

host guest host host guest guest

sol sol host guest host sol

guest sol (3)

first two terms contain bonded interactions (bond angle and
dihedral angle) and the rest are intra- and intermolecular
nonbonded interactions. The bond stretching terms of host and
guest molecules amount to zero since all the bond lengths were
constrained during the simulation. For the rigid water model
TIP3P,47 bond lengths and angles are fixed and there are no
bonded interactions. The nonbonded interaction energy is
defined as the sum of respective Lennard-Jones and Coulomb
interactions. Decomposition of electrostatic interactions in the
reciprocal space when using the PME approach48,49 is given in
the Supporting Information. Error estimates of enthalpy were
calculated using a binning analysis.53

The configurational entropies of host and guest molecules
were computed from the covariance matrices of their atomic
fluctuations using the quasiharmonic approximation.54 We first

calculated entropy changes of host and guest with respect to the
unbound state separately and then subtracted them from ΔS to
obtain the solvent entropy change involved with, for instance,
solvent rearrangements during desolvation of host and guest
molecules upon binding (eq 4).

Δ = Δ − Δ − ΔS S S Ssol host guest (4)

Since the error in ΔH would propagate to ΔS, all entropy terms
here were assumed to have the same errors as ΔH.

■ RESULTS

Complex Arrangement. Potential of mean force (PMF)
profiles for the formation process of 1:1 [β-CD:puerarin]
complexes with BP, BS, and BO arrangements and
representative states (A...G) in the reaction coordinate ξ are
presented in Figure 3. The three structural arrangements refer

to Figure 1c. BP and BS in our simulations indicate that the B-
ring of guest inserts into CD cavity along the +ξ and −ξ
direction, respectively.
As shown in Figure 3, periodic PMFs ensure equality of the

guest located at ξ = −2 and 2 nm. All the PMFs approach to
zero and level off on both sides of the reaction coordinate
where there is no interaction between β-CD and puerarin. The
A- and D-states with B- and C-rings of puerarin inside the β-
CD cavity give the most stable inclusion configuration for BP
and BS, respectively. When the A-ring of puerarin approaches
the cavity, such as in the B- and E-states, an energy barrier is
observed and this barrier might prevent puerarin from further
penetrating into the CD cavity. The C- and F-states with the
glucose unit of puerarin inside the cavity form local minima in
the PMFs. As expected, there is no obvious barrier and a
weaker binding is observed for the BO arrangement, as in the
G-state, due to a less efficient contact of hydrophobic moieties
between host and guest, compared to the inclusion complexes
such as BP and BS. For the G-state, puerarin binds to the outer
surface of β-CD with its isoflavone skeleton (i.e., the A, B, and
C rings in Figure 1b) perpendicular to the glucopyranose
residue of β-CD; this way the hydrophobic contact area appears
to be maximized. The D-state is more energetically favorable
than the A-state and therefore is the most probable

Figure 3. Potential of mean force (PMF) profiles for the [β-
CD:puerarin] complex formation in three structural arrangements
(BP, BS, and BO). Representative configurations along ξ are shown
using line model. β-CD is colored in black and puerarin in the same
color as the arrangement.
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configuration, in good agreement with the experiment where a
very similar [β-CD:puerarin] inclusion complex (such as the D-
state) was detected in aqueous solution by NMR spectrosco-
py.55

PMF profiles (ΔG) for puerarin and daidzin are presented in
Figure 4. Daidzin behaves similar as puerarin, whereas it can

insert into β-CD cavity more deeply than puerarin in the BS
arrangement (Figure 4, panels b and e). PMF profiles (ΔG) for
daidzein and nabumetone are given in Figure S2 in the
Supporting Information. For daidzein and nabumetone no
pronounced energy barriers are observed, and both BP and BS
are thermodynamically stable although BS is preferred slightly
over BP. NMR experiments have identified these two possible
[β-CD:nabumetone] inclusion complexes.56 When hydro-
phobic moieties of the guest (such as daidzin, daidzein, and
nabumetone) stay inside β-CD cavity, the PMF profiles display
a flat landscape (Figure 4 and Supporting Information Figure
S2), implying that there is almost no energy barrier and the
guest can shuttle freely inside the cavity to some extent. A
shuttling motion of puerarin and daidzin inside β-CD cavity in
the BS pattern has indeed been detected by MD simulations.57

System Thermodynamics. Thermodynamic profiles (ΔG,
ΔH, and ΔS) of the system along ξ for the four guests with BP,
BS, and BO arrangements are shown in Figure 4 and
Supporting Information Figure S2. Here entropy is presented
as −TΔS. From these profiles we can derive contributions of
enthalpy and entropy to ΔG. A reduced enthalpy (more
favorable) is observed for all the guests upon complexation,
while entropy increases in some cases and decreases in other.
The thermodynamic stability of these complexes can be
therefore attributed to a combination of both ΔH and ΔS.
As shown in Figure 4a, for instance, both enthalpy and entropy
gains favor a stable complex (i.e., the A-state in Figure 3), which
corresponds to the global minimum of the PMF. When
puerarin enters the β-CD cavity more deeply with its glucose
unit inside the cavity (such as the C-state in Figure 3), ΔH

reaches a maximum, whereas an entropy loss cancels out this
enthalpy gain, giving a moderate ΔG (Figure 4a). Unlike the C-
state, the D-state in Figure 3 is a maximum of enthalpy gain and
has an entropy gain, forming a global minimum of ΔG (Figure
4b). The other three guest molecules display similar enthalpy−
entropy relationships to puerarin for BP and BS (Figure 4 and
Supporting Information Figure S2). For BO, enthalpy gain and
entropy loss are detected for puerarin and daidzin (Figure 4,
panels c and f), whereas for daidzein and nabumetone the
complex stability seems to result exclusively from the enthalpy
(Supporting Information Figure S2, panels c and f).
Interestingly, puerarin, daidzin, and daidzein share the same
isoflavone skeleton and have similar enthalpy gains upon
binding to the outer surface of β-CD, but an entropy loss
decreases the binding of puerarin and daidzin. This entropy loss
may be due to the limited movement of the glucose unit when
interacting with the β-CD surface. Daidzein does not have such
glucose group (Figure 1b), and there is no significant change in
entropy, leading to a relatively stronger binding (Supporting
Information Figure S2c).
Now, we turn to the standard thermodynamics of the entire

binding reactions for [β-CD:guest] associations. A cylinder
approximation22,58−60 was used to evaluate the standard
binding free energies. When a guest enters the β-CD cavity,
the sampled volume for the guest is restrained to a small
cylinder defined by the area accessible for guest movement in
the X−Y plane. The average radius of that cylinder, r(ξ), was
obtained from COM positions of the guest at each window.
The association equilibrium constant Ka is written as

∫π ξ ξ ξ= −ΔK N r G RT( ) exp[ ( )/ ]da A
2

(5)

where NA is Avogadro constant and R the ideal gas
constant.58,59 The thermodynamics of binding can therefore
be calculated using

Δ = −G RT K Cln( )0
a

0
(6)

∫

∫

ξ ξ ξ ξ

ξ ξ ξ

Δ =

=
Δ −Δ

−Δ

H RT
d

T
K C

r G G RT

r G RT

d
ln( )

( ) ( ) exp[ ( )/ ]d

( ) exp[ ( )/ ]d

0 2
a

0

2

2
(7)

− Δ ° = Δ ° − Δ °T S G H (8)

where C° is the standard concentration of 1 mol/L.61 Note that
ΔG° here is the standard free energy of the binding process,
while ΔG(ξ) denotes free energy profiles obtained from PMF
calculations. The integration is limited to the interval over
which host and guest molecules associate. As noted by Bonal
and co-workers,60 the integration was computed from each side
of the PMF profile (where host and guest have no interaction)
to the central maximum and they averaged over these two
reaction pathways to obtain the thermodynamic parameters. A
similar treatment is adopted in our calculation to define the
integration interval in eqs 6 and 7. For the cases where there is
no obvious central maximum in the PMF, such as daidzein
(Supporting Information Figure S2a) and nabumetone (Figure
S2e), we perform the integral over the whole PMF.
Table 1 lists the calculated ΔG° for the four drugs studied.

For daidzein and nabumetone, ΔG° compares well with the
experiment, while the calculation overestimates the binding
strength between β-CD and puerarin. The results depend on

Figure 4. Thermodynamic profiles (ΔG, ΔH, and −TΔS) of the
system for the complex formation of β-CD with puerarin and daidzin
in three patterns BP, BS, and BO.
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the interval used for integration for sure; a shorter interval gives
a weaker binding. If β-CD in the simulation is more rigid that in
the experiment, there would exist energy barriers preventing
the guest from further accessing some part of the binding site.
That is, a more rigid host would lead to a shorter integration
interval. If so, we can get much closer to the experiment by
adjusting the host flexibility artificially. Another factor
responsible for the source of error could probably be the
force field used. Data for ΔH° and ΔS° are given in Tables S2
and S3 in the Supporting Information. For nabumetone, there
is some discrepancy between calculated and observed ΔH° and
ΔS° (in exp. 2 and 3, but not 1, Table S3).
Enthalpy Decomposition. For a better understanding of

the distinct shape of an enthalpic profile, we decomposed it
into eight terms including bonded and nonbonded interactions
(eq 3). Figure 5 shows the ΔH decomposition for the [β-

CD:puerarin] complex formation. For BP and BS, changes in
ΔHhost and ΔHguest upon binding are positive, which means that
the bonded term of binding partners tends to disfavor host−
guest inclusion complexations, indicated by black and red lines
(Figure 5, panels a and b). For BO (Figure 5c), no significant
changes are observed for ΔHhost and ΔHguest. ΔHhost−host and
ΔHguest−guest (green and blue lines, panels a and b in Figure 5)
tend to favor host−guest complexations (negative values).
There are significant enthalpy changes in intramolecular

interactions of the host (ΔHhost−host) for BP and BS; no
obvious changes for BO.
When a guest travels from the bulk into the CD cavity, the

solvent molecules entrapped inside the cavity will be expelled, a
process such as the release of “high-energy” water. Another
contribution to the energetics is due to release of water
molecules that participate in host and guest solvation. As a
result, the water−water enthalpy ΔHsol−sol becomes more
negative (the cyan line in Figure 5, panels d−f). Unsurprisingly,
the strength of the intermolecular interaction between host and
guest (ΔHhost−guest) increases when forming a complex, as
indicated by the magenta line. Accompanied by desolvation, the
strength of the interaction between host (or guest) and solvents
decreases (positive ΔH, dark yellow and orange lines in Figure
5). When accommodating puerarin as a guest, β-CD reaches a
desolvation maximum (ΔHhost−sol, panels d and e in Figure 5)
where the A- and C-rings of the guest are inserted into the
cavity and the glucose unit stays very close to the cavity, such as
in the B- and E-states in Figure 3. When the glucose unit of
puerarin goes further and stays inside the cavity (C- and F-
states in Figure 3), host desolvation gets weakened and guest
desolvation maximized (Figure 5, panels d and e). The guest
bound to β-CD outer surface also affects (de)solvation of host
and guest molecules, but to a lesser degree (Figure 5, panels d−
f). Similar observations are detected as well for β-CD
complexes with daidzin, daidzein, and nabumetone, as shown
in Figures S3−S5, respectively, in the Supporting Information.
Since daidzein and nabumetone do not possess a glucose unit,
they give more symmetrical profiles of the ΔH decomposition
(Figures S4 and S5).

Entropy Decomposition. In order to distinguish individ-
ual entropy contributions clearly, the total entropy was
decomposed into three single terms corresponding to host,
guest, and solvent molecules (eq 4) and presented as −TΔS.
Figure 6 shows the entropy decomposition for β-CD complexes
with puerarin and daidzin; data for daidzein and nabumetone
are given in Figure S6 in the Supporting Information. An

Table 1. Comparison of Calculated Binding Free Energy
(kJ/mol) with Experimental Determinations

−ΔG0
cal

guest T (K) −ΔGexp BP BS

puerarin 300 19.0a 26 32

daidzin 300 24 29

daidzein 300 16.6b 19 22

nabumetone 293 19.2c /19.7d /18.7e 18 21
aTaken from ref 55. bRef 62. cRef 56. dRef 63. eRef 64.

Figure 5. Enthalpy decomposition for the complex formation of β-CD
with puerarin in three patterns BP, BS, and BO.

Figure 6. Entropy decomposition for the complex formation of β-CD
with puerarin and daidzin in three patterns BP, BS, and BO.
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obvious entropy loss of the host and a slight loss of the guest
are observed for puerarin with BP and BS arrangements (Figure
6, panels a and b). For daidzin there are pronounced entropy
losses for both the host and guest (Figure 6, panels d and e),
due to loss of flexibility in host and guest molecules upon
complexation. For puerarin, daidzin, and nabumetone in BP
and BS patterns, the solvent in contrast tends to gain entropy
(positive ΔS), favoring the complexation. No obvious changes
in ΔS are detected for the [β-CD:daidzein] inclusion (Figure
S6, panels a and b). Binding of a guest to the outer surface of β-
CD may also result in an entropy change to a certain extent
(Figure 6 and Supporting Information Figure S6).
Figure S7 in the Supporting Information presents thermody-

namic profiles for the BS [β-CD:nabumetone] inclusion with a
flexible or rigid host. Compared to the flexible host, the rigid
one gives more minima in the PMF and has a weaker binding
to nabumetone due to a less favorable enthalpy gain
(Supporting Information, Figure S7, panels a and b), as
indicated by the ΔH decomposition (Supporting Information,
Figure S7, panels c−f). As expected, the rigid host displays little
entropy loss upon binding to the guest since all the non-
hydrogen atoms are harmonically fixed. When entrapped inside
a rigid cavity, nabumetone shows larger entropy loss and
solvent molecules give a larger entropy gain (Supporting
Information, Figure S7, panels g and h).
For a quantitative determination of the energetics, individual

contributions of ΔH(ξ) and −TΔS(ξ) are weighted by their
Boltzmann factors (eq 9)

∫

∫

ξ ξ ξ

ξ ξ
⟨Δ ⟩ =

Δ −Δ

−Δ
E

E G RT

G RT

( ) exp[ ( )/ ]d

exp[ ( )/ ]d (9)

where ΔE represents ΔH or −TΔS. Weighted values for the
actual binding reactions are tabulated in Table 2, showing
similar observations to what was mentioned above.
Guest Rotation. The configurational entropy here was

determined from covariance matrices of atomic fluctuations.54

A guest entrapped inside the CD cavity probably cannot rotate
as freely as it is in the bulk, which may limit structural
fluctuations of the guest and hence cause an entropy loss. To
detect guest rotations in the free and complex state, four
dihedral angles were defined in Figure 1b. Dihedral potentials
of the four angles taken from the GAFF parameters42 are given
in Figure S8 in the Supporting Information. A large energy
barrier exists for ψ1, meaning that it is not easy for ψ1 to rotate.
There are smaller barriers for ψ3 and ψ4; no barrier for ψ2. It

should be noted that Supporting Information Figure S8 shows
the intrinsic barrier only and dihedral rotations also depend on
the environment of the molecule.
Distributions of these dihedrals (ψi, i = 1...4) during the

formation process of β-CD with puerarin and daidzin in the BP
pattern are presented in Figure 7. Free states for puerarin and

daidzin locate at ξ = −2.0 nm. The B-ring of guest inserted into
β-CD cavity at ξ = 0.5 nm; the glucose unit of guest stays inside
the cavity at ξ = 1.0 nm. For puerarin and daidzin in the free
and complex state, there is no significant difference for ψ1, and
the same goes for daidzein (not shown here). The glucose
rotation (ψ2) for puerarin is almost not affected when
entrapped inside the cavity, and it is similar to the free state,
which may explain the small entropy change of guest in Figure
6a. Hydrogen-bonding interactions between the hydroxyl group
connected to A-ring and the glucose unit of puerarin are

Table 2. Individual Contribution (kJ/mol) of ΔH and ΔS Weighted by Boltzmann Factors for the Actual Binding Reactions
between β-CD and Guest Molecules with BP and BS Arrangements (Standard Deviations in Parentheses)

puerarin daidzin daidzein nabumetone

⟨ΔE⟩ BP BS BP BS BP BS BP BS

ΔHhost 2(1) 1(1) 1(1) −1(1) 1(1) 1(1) −1(1) 0(1)

ΔHguest 3(1) 1(1) 0(1) −1(1) 0(1) 0(1) 0(1) 0(1)

ΔHhost−host −17(3) −13(3) −9(2) −8(2) −9(2) −10(3) −12(3) −10(2)

ΔHguest−guest −1(1) −1(1) −4(2) 0(1) 0(1) 1(1) −2(1) −3(1)

ΔHsol−sol −136(8) −130(7) −123(7) −123(6) −98(7) −106(6) −96(7) −111(8)

ΔHhost−guest −176(8) −170(7) −163(4) −164(5) −129(9) −128(7) −123(8) −126(7)

ΔHhost−sol 168(9) 155(8) 142(6) 145(6) 119(7) 119(8) 131(8) 132(8)

ΔHguest−sol 127(7) 123(7) 119(5) 117(5) 86(6) 85(6) 80(6) 85(6)

−TΔShost 42(4) 24(3) 24(3) 14(3) 14(3) 9(2) 21(3) 18(3)

−TΔSguest 4(2) 7(2) 13(3) 23(4) 0(1) 0(1) 11(2) 14(2)

−TΔSsol −55(4) −38(4) −38(3) −41(4) −12(3) −14(3) −33(5) −33(4)

Figure 7. Distribution of dihedral angles for puerarin (ψ1 and ψ2) and
daidzin (ψ1, ψ3, and ψ4) with the BP arrangement along ξ. Dihedral
distribution for daidzein (ψ1) is similar to that for puerarin and
daidzin.
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observed in the simulation, which may limit the rotation of ψ2.
For daidzin, the glucose unit rotates freely in the free state (ξ =
−2.0 nm), as indicated by ψ3 and ψ4, whereas their rotations are
evidently limited when the glucose unit stays inside the cavity at
ξ = 1.0 nm (Figure 7). This finding explains the large entropy
loss of daidzin upon binding to β-CD in Figure 6d.

■ DISCUSSION

When typical cyclodextrins (α-, β-, and γ-CD containing six,
seven, and eight glucopyranose residues in a ring, respectively)
form 1:1 complexes with asymmetrical guest molecules, three
possible arrangements (BP, BS, and BO in Figure 1c) may be
adopted and they are expected to be different in energy due to
the guest orientation. Much attention has been paid to BP and
BS inclusion patterns both in academic research and industrial
applications, since the CD cavity is a specific binding site and
the outer surface is not. The asymmetric free energy profiles for
the BP and BS arrangements in our simulations (Figures 3 and
4) indicate the difference in the specific binding and in two
types of inclusion complexes. Many compounds have been
reported to show two possible inclusion models with CDs, such
as surfactants with typical CDs18,65 and steroid drugs,22

flavanols,66,67 and aziadamantane derivatives68 with β-CD.
Host−guest complexes are often used as models to gain

general insights on the thermodynamics of binding, due to their
small size and simplicity compared to protein−ligand systems.
Many projects have been devoted to studying the thermody-
namics of cyclodextrin complexation using PMF calcula-
tions.39,60,69−72 Cai and co-workers reported a decomposition
of the PMF profile into van der Waals (host−guest),
electrostatic (host−guest), and host−solvent interactions.69−71

In addition, Kovalenko et al. proposed a spatial decomposition
analysis for the cyclodextrin complexation and decomposed the
thermodynamics into the excluded volume and solvation shell
terms.73 In a very recent study, Wickstrom et al. indicated that
the binding free energy can be decomposed into the
reorganization free energy and the average binding energy.74

In this work, we introduce another decomposition to
characterize the total and individual contributions (ΔH and
ΔS) from the binding partners as well as their solvation
environment, as described in detail in the Methods section.
Thermodynamic profiles of the system (Figure 4 and

Supporting Information Figure S2) show that both enthalpy
and entropy contribute to the binding between the model host
β-CD and the guests studied. Such binding reactions are
predominantly enthalpy-driven and in some cases an entropy
loss weakens the binding. Decomposition of the total enthalpy
(ΔH) provides more information on individual contributions
from intra- and intermolecular interactions, as shown in Figure
5 and Supporting Information Figures S3−S5. As expected,
desolvation of host and guest molecules gives an unfavorable
ΔH and the complex formation produces a favorable ΔH. The
solvent favors the complex stability as well with enthalpy gains.
Surprisingly, the numerical values of these four terms
(ΔHhost−sol, ΔHguest−sol, ΔHhost−guest, and ΔHsol−sol) are an
order of magnitude larger than that for the thermodynamic
parameters of the entire binding reactions, as shown in Tables 1
and 2 and Supporting Information Tables S2−S3, which
implies that these contributions to the binding need to be
considered with care. Moreover, changes in intramolecular
energies of the binding partners (ΔHhost, ΔHguest, ΔHhost−host,
and ΔHguest−guest), in particular for nonbonded interactions of
the host (ΔHhost−host), indicate that host molecules adjust their

configurations to the binding environment, and so do guest
molecules. This adjustment (configurational fit) reflects
fluctuations in atomic positions, known as guest-induced
effects,14 leading to changes in the potential energy and thus
to ΔH between 8 and 17 kJ/mol. Dolenc et al. investigated the
effect of receptor flexibility on the binding affinity and reported
that neglecting the receptor flexibility affected the model
structures of the complex and enthalpy contributions to the
binding, in particular for a flexible receptor such as DNA.23

Since the contributions from conformational changes are on the
same order of magnitude as the standard thermodynamics of
binding (Tables 1 and 2 and Supporting Infomation Tables
S2−S3), these need to be considered explicitly when
computing binding energies.
For the entropy (ΔS) decomposition in Figure 6, most of

entropy changes take place when flexible moieties of the guest
are included inside the CD cavity or interact with the CD
surface. Both host and guest may lose entropy upon binding,
depending on the guest and orientation. The solvent, however,
tends to have an entropy gain, favoring the complex formation.
Desolvation of the binding partners liberates solvent molecules
participating in the solvation, allowing a greater degree of
freedom for motion of these water molecules and hence
increased entropy, in line with common perception of the
hydrophobic effect.75,76 Daidzein, the most hydrophobic and
rigid molecule among the tested guests, has weaker interactions
with water molecules and undergoes smaller fluctuations in
structure. Inclusion of daidzein to the CD cavity should perturb
the binding-site waters and displace them from the cavity. For
the solvent, this process ought to give favorable ΔS. However,
no significant ΔS for β-CD, daidzein, and water molecules is
observed upon complexation in the simulation (Supporting
Information Figure S6). This finding could be ascribed to the
fact that rigidity of daidzein leads to a weaker (de)solvation and
does not affect the surrounding environment too much.
As ideal host−guest models, the [CD:drug] complexes

studied in this work hold valuable implications for the
receptor−ligand binding. It has been realized for a long time
that for truly predictive estimates of ligand−binding energies
free energy methods are crucial.77 However the (high-
throughput) virtual screening concept has remained popular,
despite suggestions that it may not live up to the hype.78

Docking and binding-site predictions can yield good candidates
for binding sites,79 but the built-in scoring functions are not
necessarily predictive of binding strength,80 and docking codes
are therefore regarded with some skepticism.81 For high-
throughput virtual screening to work, an accurate estimation of
the contribution from solvation and from conformational
changes would be needed, without the computational cost
associated with free energy calculations. Based on our
calculations, changes in intramolecular interactions due to
configurational fit contribute significantly to the complexation
thermodynamics (Figure 5 and Supporting Information Figures
S3−S5). Moreover, we observe a large enthalpy gain of the
solvent environment for both flexible and rigid hosts, and this
contribution most likely cannot be evaluated accurately when
neglecting the solvent or using implicit solvent.
Entropy estimation, especially for the solvent environment, is

another difficulty faced by high-throughput virtual screening. A
detailed review for theory of free energy and entropy in
noncovalent binding has been presented by Zhou and Gilson.82

In this work, we used a quasiharmonic approximation54 to
calculate the configurational entropy; the Schlitter formula was
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also tested.83 We note that the quasiharmonic method is an
approximation, which does not approach the true entropy even
in the limit of infinite sampling, but these two methods were
reported to be useful for ΔS estimation of ligands in binding
processes.84 For our cases, the two methods yield very similar
results for the relative ΔS (which is very important in this
analysis presented), although the absolute values differ (not
shown here). The entropy of the host and guest can be
computed readily, and this has been incorporated in methods
for estimating the binding energy of complexes.6,7,85 In our
calculations, the solvent entropy is computed indirectly using
eq 4, and its accuracy depends on the estimation of ΔG and
ΔH and the values of −TΔS depend heavily on the guest,
varying between −12 to −55 kJ/mol (Table 2). The results
show that the solvent tends to gain entropy and cancel out
most of the entropy losses of the binding partners. Neglecting
either of the flexibility or the entropy items would yield an error
with the same order of magnitude as the entire binding energy.
It is therefore difficult to imagine that the accuracy of scoring
functions for use in virtual screening (e.g., pharmaceutical
design and biotechnology projects) can be increased sufficiently
to systematically reach an accuracy comparable to free energy
calculations.77

■ CONCLUSION

In this work, all possible complex arrangements between a
model host (β-CD) and four drug guests (puerarin, daidzin,
daidzein, and nabumetone) were evaluated through steered
molecular dynamics and potential of mean force calculations.
The total and individual contribution of enthalpy and entropy
to the stability of such noncovalent complexes were analyzed in
terms of binding mode, solvation, and structural flexibility. Our
results show that host flexibility, solvent enthalpy, and solvent
entropy play important roles in host−guest complexation, and
these items need to be included explicitly for accurate
calculation of the binding thermodynamics. We have previously
demonstrated that the binding energy of [host:guest]
complexes in different organic solvents is only weakly
correlated to solvent properties such as the dielectric constants
or Log P.39 An implicit solvent model can provide a useful
estimate of solvation free energy only if used under the
conditions it was parametrized for (temperature, solvent) and if
there are no very specific hydrogen bonds. Implicit models are
not suitable to provide detailed information on how that free
energy is partitioned into enthalpy and entropy. Full molecular
dynamics (MD) simulations using explicit solvents are
therefore required for precise estimation of thermodynamic
parameters of molecular complexation.
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ABSTRACT: Dimerization of cyclodextrin (CD) molecules is an elementary step in the
construction of CD-based nanostructured materials. Cooperative binding of CD cavities to
guest molecules facilitates the dimerization process and, consequently, the overall stability
and assembly of CD nanostructures. In the present study, all three dimerization modes
(head-to-head, head-to-tail, and tail-to-tail) of β-CD molecules and their binding to three
isoflavone drug analogues (puerarin, daidzin, and daidzein) were investigated in explicit
water surrounding using molecular dynamics simulations. Total and individual
contributions from the binding partners and solvent environment to the thermodynamics
of these binding reactions are quantified in detail using free energy calculations.
Cooperative drug binding to two CD cavities gives an enhanced binding strength for
daidzin and daidzein, whereas for puerarin no obvious enhancement is observed. Head-to-
head dimerization yields the most stable complexes for inclusion of the tested isoflavones
(templates) and may be a promising building block for construction of template-stabilized
CD nanostructures. Compared to the case of CD monomers, the desolvation of CD dimers and entropy changes upon
complexation prove to be influential factors of cooperative binding. Our results shed light on key points of the design of CD-
based supramolecular assemblies. We also show that structure-based calculation of binding thermodynamics can quantify
stabilization caused by cooperative effects in building blocks of nanostructured materials.

■ INTRODUCTION

Cyclodextrins (CDs) are promising building blocks extensively
used in the construction of nanostructured materials with
sophisticated structures and functions.1,2 CDs belong to a class
of cyclic oligosaccharides with more than six D-glucopyranose
residues linked together via α-1,4 glycosidic bonds and
arrangement of these residues in a ring endows CDs with a
somewhat hydrophobic cavity and a hydrophilic surface.3,4 This
property permits association of varied guest molecules with
suitable size to form stable host−guest complexes or supra-
molecular assemblies, which leads to a variety of fascinating
applications in many fields like pharmaceutical research.5−7 In
recent years, construction of one- and multidimensional
nanoarchitectures using CDs as building blocks has attracted
much attention, particularly due to their alluring potential in
molecular machines8−10 and functional materials.11−13 CD-
based nanostructures integrate together a number of functional
groups that have been already captured by CD cavities. These
functional groups along with CD cavities provide multiple
binding sites for substrates, allowing one to mimic the
cooperative multimode complexation existing in biological
systems widely. CD-based nanoarchitectures are therefore
acknowledged to be ideal candidates for drug or gene
carriers14−16 and artificial enzyme models.17

Cooperative binding of at least two CD monomers to a
template (also known as guest) molecule is the driving force
responsible for self-assembly processes in the construction of
CD-based nanoarchitectures. For the case without template, the
assembly is usually driven by hydrophobic interactions between
substituent arms of CD derivatives with the neighboring
cavities of other CDs.1 The following text will focus on the
former case with template. Polymer chains such as poly-
(ethylene glycol) (PEG) and poly(propylene glycol) (PPG) are
often used as a template to thread several CD cavities for the
construction of one-dimensional nanoarchitectures like
(pseudo)polyrotaxanes.2,14,18 Furthermore, CDs can be grafted
covalently to the polymer chain as a bulky stopper for
polyrotaxanes, and cooperative binding of two bulky CD
cavities to one template molecule (like C60)

19 allows
construction of long nanowires based on the polyrotaxanes.
Starting from CD-based polyrotaxanes, one can prepare
nanotubes by covalent reactions of neighboring CD units
with short cross-linking agents such as epichlorohydrin,
followed by the cutoff of bulky ends and removal of the
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polymer thread.20 These tubular polymers are capable of
including long guest molecules like 1,6-dimethylhexatriene
inside the molecular tube efficiently. Randomly cross-linked
CDs without preassembly by a polymer chain cannot form a
tube easily and hence do not possess such an inclusion ability.2

Typical CDs used as the building blocks contain 6, 7, and 8
glucopyranose residues, denoted as α-, β-, and γ-CD,
respectively. Harada and co-workers characterized topology
structures of α-CD/PEG, β-CD/PEG, and β-CD/PPG
(pseudo)polyrotaxanes using X-ray crystallography and re-
ported that all CD monomers are oriented as head-to-head
(HH) and tail-to-tail (TT) dimers through threading onto the
polymer chain.21−23 They indicated that secondary hydroxyl
groups of CDs hydrogen-bond to each other forming a tight
hydrogen-bonding network and that the interactions between
primary hydroxyls are weak. Mavridis et al. observed an unusual
crystal of β-CD trimers in HH and head-to-tail (HT) fashions
which cooperatively bind to two guest molecules.24 HT
orientations were found in the crystal packing of γ-CDs as
well.25 Figure 1a depicts β-CD dimers in the three orientations
of HH, HT, and TT taken from Mavridis’s work;24 head
indicates the wide (secondary) rim of β-CD and tail the narrow
(primary) rim.

Because of the outstanding performance of CD-based
nanoarchitectures, it is highly desirable to find out the
mechanism underlying cooperative effects of CD-based
assemblies. Molecular dynamics simulation serves as a powerful
tool for exploring the mechanism associated with CD-based
systems and has contributed valuable explanations for
experimental observations.26−30 Association of two CD
monomers (i.e., dimer) is an essence for cooperative binding
of CD cavities. Many theoretical reports focused on the relative
stability of noncovalent CD dimers in HH, HT, and TT
fashions (Figure 1a) and revealed that hydrogen-bonding (HB)
interactions between hydroxyl groups of adjacent CD
monomers are a key factor determining the dimer
stability.31−36 Cai and co-workers recently examined dimeriza-
tion of α-CDs onto a PEG chain using free energy calculations
and Monte Carlo simulations.37 They indicated that the
dimerization is driven primarily by HB interactions between
two α-CDs and that HH is preferred over HT and TT. Pineiro
et al. evaluated α-, β-, and γ-CD complexes with sodium
dodecyl sulfate (SDS) in ratios of 1:2 and 2:1 through MD
simulations and reported that [CD2:SDS] in the HH
orientation seems a potential building block for nanotubular
polymers.27 Marrink and co-workers performed potential of
mean force (PMF) calculations to investigate the mechanism of
cyclodextrin-mediated extraction of cholesterol from model
membranes.38,39 In previous work, we investigated the
dissociation of β-CD HH dimer through PMF calculations
and concluded that the dimer binding depends on the guest
and solvent properties.40

Here we present an extensive free energy examination on
cooperative binding of β-CD dimers (HH, HT, and TT) to
three isoflavone analogues (puerarin, daidzin, and daidzein)
through molecular dynamics (MD) simulation. The three
isoflavone components (guest molecules) have potential use in
medicinal therapies,41,42 and a more efficient encapsulation of
these drugs by β-CD dimers promotes their practical
applications. Also, structural properties of the isoflavone
skeleton with/without glucose motivated us to choose them
as template molecules to examine hydrophobic and hydrophilic
interactions that constitute the main driving forces responsible
for the construction of CD-based nanostructures. A number of
free energy calculations have been implemented to evaluate 1:1
and 2:1 [CD:guest] complexes,27,37−40,43−47 while few reports
consider all possible cooperative binding of CD cavities. In this
work free energy profiles governing all possible formation
processes of [β-CD2:guest] complexes were calculated with
umbrella sampling.48 Center of mass (COM) pulling49 was
employed to generate configuration sequences for umbrella
sampling simulations. Details on COM pulling and PMF
techniques have been presented in refs 46 and 49−54. From
PMF and entropy calculations, total and individual contribu-
tions from enthalpy and entropy were quantified in detail using
a recently proposed method for 1:1 binding.55 The results
exhibit a comprehensive thermodynamic and energetic
characterization for cooperative effects of CD dimers toward
guest molecules. As a fundamental step in the construction of
nanostructures with cooperatively bound units (like CDs),
dimerization of CD molecules studied here offers a generalized
picture on molecular assemblies of CDs by cooperative binding
to a template. Implications for design of template molecules
and CD assembly models in building blocks of nano-
architectures are discussed at the end of this work.

Figure 1. Molecular structure of (a) β-CD dimers and (b) isoflavone
guests and possible [host:guest] binding modes with stoichiometric
ratios of (c) 1:1 and (d) 2:1. Head means the secondary rim of β-CD
and tail the primary rim. The guest molecules include puerarin (R1 =
H, R2 = glucose), daidzin (R1 = glucose, R2 = H), and daidzein (R1 =
H, R2 = H). A, B, and C denote relevant isoflavone rings. The arrow
indicates the guest molecule and the orientation that the guest
penetrates into β-CD cavity.
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■ METHODS

The initial coordinates of β-CD dimers (HH, HT, and TT)
were taken from the Cambridge Crystallographic Data Center
(CCDC no. 648855)24 where β-CD trimers formed a channel-
like structure (Figure 1a). Molecular structures of isoflavone
guests (puerarin, daidzin, and daidzein) are shown in Figure 1b.
All the binding modes of 1:1 and 2:1 [CD:guest] complexes are
given in Figures 1c and 1d, respectively. The q4md-CD force
field56 was used to model β-CD and the generalized Amber
force field (GAFF)57 for the guests. The rigid model TIP3P58

was used for water molecules. All the simulations were carried
out at 300 K with GROMACS (version 4.5.5).59−61 System
equilibrations were performed in the NPT ensemble (P = 1
bar) and production simulations in the NVT ensemble. Other
simulation protocols were the same as in the refs 55 and 62.
Each system contained one β-CD dimer, one guest, and

approximately 4100 water molecules in a simulation cell of 5 ×
5 × 5 nm3. The dimer was centered in the box with Z-
coordinates of its glycosidic oxygen atoms approximately
located at Z = −0.3 or +0.3 nm for the two monomers,
respectively, making the cavity axis of β-CD dimer parallel to
the Z-axis. The distance between the center of mass (COM) of
the B-ring of the guest and that of 14 glycosidic oxygens of the
dimer along the Z-axis was defined as the reaction coordinate ξ.
Figure 2 shows the definition of ξ for the HT dimer with

daidzein in the BHTS mode (see Figure 1d for nomenclature).
Glycosidic oxygen atoms of β-CD dimers were harmonically
restrained and used as an immobile reference for pulling
simulations. The B-ring of the guest was pulled through the
dimer cavity from the primary (P) or secondary (S) rim along
the Z-axis over 1 ns with a pulling rate of 0.005 nm ps−1. All the
pulling parameters were the same as in the ref 55 where the 1:1
binding modes (BP and BS, Figure 1c) have been evaluated. In
this work, the guest sampled 5 nm covering the entire ξ of
[−2.5, 2.5], and a formation process for 2:1 inclusion
complexes was detected during the pulling simulation. We
then selected 101 windows in the [−2.5, 2.5] interval with a
distance equal to 0.05 nm between adjacent positions and these
windows were used for umbrella sampling simulations.
Following the same procedure, we simulated three guest
molecules in the four binding modes of BHHP, BHTP, BHTS,
and BTTS (Figure 1d) and therefore obtained 12 PMF profiles
in total. The total simulation time for a single PMF was 1.01 μs.
For each window the first 2 ns was removed for equilibration,
and the rest (2−10 ns) was used for all the data analysis. Details
on the calculation of thermodynamic parameters (ΔG, ΔH, or
−TΔS) are given in the Supporting Information.

■ RESULTS

Binding Modes. PMF profiles for the formation process of
[β-CD2:guest] inclusion complexes with the three isoflavone
guests along ξ in the BHHP mode are shown in Figure 3a. The

guest approaches the dimer from the primary rim of β-CD,
penetrates into the channel-like cavity, and then gets out of the
cavity along the +ξ direction. All the PMFs on both sides of ξ
amount to zero and level off corresponding to the completely
separated state of the binding partners.
Representative configuration states (A−G) in the PMFs are

marked in Figure 3a and given in Figure 3b. As the isoflavone
skeletons (hydrophobic moieties) of the guests get close to the
β-CD cavity, the PMF curves drop and become negative (i.e.,
thermodynamically favorable). When the isoflavone skeleton is
located inside the channel-like cavity, leaving the glucose group
(hydrophilic) outside, the most stable inclusion configurations
of [β-CD2:puerarin] and [β-CD2:daidzin] complexes are
sampled, namely the A- and B-states (Figure 3b), respectively.
Approaching the cavity for the hydrophilic glucose further
results in an upward trend for the PMFs (Figure 3a), revealing
a thermodynamically unfavorable state. The most unfavorable
states (central maxima in the PMFs) is that with the glucose
group being entrapped inside the cavity of one β-CD monomer,

Figure 2. Definition of the reaction coordinate ξ for the BHTS mode
with daidzein. Figure 3. (a) Potential of mean force (PMF) profiles for the [β-

CD2:guest] complex formation in the BHHP binding mode and (b)
representative inclusion configurations along ξ. β-CD dimer and guest
molecules are shown with stick and space-filling models, respectively.
The glucose group of guest is colored in blue and isoflavone skeletons
in orange.

The Journal of Physical Chemistry C Article

dx.doi.org/10.1021/jp412041d | J. Phys. Chem. C 2014, 118, 7163−71737165

               hetenyi.csaba_83_23



while the hydrophobic isoflavone skeleton of the guest still
interacts with the β-CD cavity, as in the D- and E-states (Figure
3b). When the hydrophilic glucose stays approximately in the
center of mass (COM) of β-CD dimer, such as the F- and G-
states (Figure 3b), local favorable minima in the PMFs are
observed, indicating that the COM region of the dimer is
somewhat hydrophilic. The most stable configuration of [β-
CD2:daidzein] is similar to puerain and daidzein; see the C-
state (Figure 3b) where daidzein is almost completely
encapsulated by the β-CD head-to-head dimer. Unlike puerarin
and daidzin, the PMF for daidzein however does not display an
obvious central maximum (Figure 3a). For convenience, the
inclusion models similar to A- and B-states are shortened for
GO (glucose outside), to D- and E-states for GIM (glucose
inside monomer), and to F- and G-states for GID (glucose
inside dimer) in the forthcoming text.
PMF profiles (ΔG) for all three guests in the four binding

modes of BHHP, BHTP, BHTS, and BTTS are presented in
Figure 4. In our simulations all the guests are inserted into the
dimer cavity from the primary or secondary rim of β-CD along
the +ξ or −ξ direction, respectively, unless stated otherwise. In

the PMFs a central maximum resulted from inclusion of the
glucose unit inside the β-CD cavity (model GIM) and a local
minimum from inclusion of the glucose unit in the dimer center
(model GID) are observed for all binding modes of puerarin
(Figure 4, panels a−d). Inclusion models for GIM are located
approximately at ξ = +0.5 nm or −0.5 nm for BHHP and
BHTP or BHTS and BTTS, respectively; models for GID at ξ =
∼1.0 nm or −1.0 nm. For BHHP and BHTP the most stable
states are similar to model GO (Figure 4, panels a and b), while
for BHTS and BTTS the glucose unit positioned in the COM
region of the dimer (model GIM) form the most stable states
(Figure 4, panels c and d). Daidzin behaves similar to puerarin,
while the most stable states adopt a GO model for all binding
modes (Figure 4, panels e−h). The PMFs of daidzein for all
binding modes do not show clear central maxima, and the
inclusion modes with the isoflavone skeleton completely
enclosed in the dimer are the most stable (Figure 4, panels
i−l).

Binding Energetics. Enthalpy (ΔH) and entropy (ΔS)
profiles of the system for the [β-CD2:guest] complex formation
along ξ are also given in Figure 4. Here entropy is given as

Figure 4. Thermodynamic profiles (ΔG, ΔH, and −TΔS) of the system for the complex formation of β-CD dimers with puerarin, daidzin, and
daidzein in the binding modes of BHHP, BHTP, BHTS, and BTTS.

Table 1. Thermodynamic Parameters (kJ/mol) Calculated at 300 K for the Guests Studied

dimer monomera ⟨ΔE⟩b

guest energy BHHP BHTP BHTS BTTS BP BS dimer monomer

puerarin ΔG0
−30 −19 −31 −27 −26 −32 −30 −32

ΔH0
−43 −21 −41 −39 −36 −41 −41 −41

−TΔS0 13 2 10 12 10 9 11 9

daidzin ΔG0
−38 −31 −36 −29 −24 −29 −37 −28

ΔH0
−49 −45 −52 −38 −32 −38 −50 −37

−TΔS0 11 14 16 9 8 9 13 9

daidzein ΔG0
−35 −18 −20 −18 −19 −22 −35 −21

ΔH0
−48 −28 −33 −26 −28 −29 −48 −29

−TΔS0 13 10 13 8 9 7 13 8
aTaken from ref 55. bWeighted on all binding modes using eq 1.
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−TΔS. These profiles depict how enthalpy and entropy
changes contribute to the binding energy and assist in
understanding the thermodynamics of binding. For puerarin
and daidzin clear enthalpy loss (positive ΔH) and entropy gain
(positive ΔS) are observed in most cases, particularly when the
glucose unit of the guest stays inside the β-CD cavity (Figure 4,
panels a−h). In some cases the host−guest complexation is
enthalpy-driven (negative ΔH), like GO models of puerarin in
BHTS and BTTS modes (Figure 4, panels c and d). For
daidzein, no obvious entropy changes (ΔS) are observed, and
the binding seems to be exclusively driven by ΔH. Notice that
the calculations force the guest artificially to access some region
of the binding sites that are thermodynamically unstable, like
the GIM model of puerarin (Figure 4, panels a−d), which
allows us to sample the configuration space as much as possible.
Standard thermodynamic parameters (ΔG0, ΔH0, and ΔS0)

for all binding modes of dimer and monomer are given in Table
1 (see eqs S1−S4 in the Suppporting Information for
calculation of ΔG0, ΔH0, and ΔS0). For a quantitative
evaluation these parameters are weighted by their Boltzmann
factors using eq 1

⟨Δ ⟩ =
∑ Δ −Δ

∑ −Δ
E

E G RT

G RT

exp[ / ]

exp[ / ]
i i i

i i (1)

where ΔE can be ΔG, ΔH or, −TΔS. The weighted values are
listed in Table 1 as well. A good agreement between calculated
and experimental ΔG0 for 1:1 associations have been shown in
the ref 55, which validates the veracity of our calculations. No
experimental data for 2:1 associations are available for direct
comparison with the calculations yet. Similar to the monomer,
the dimer binding to its guest is predominantly enthalpy-driven,
and entropy loss cancels out about one-quarter of enthalpy
gain. Cooperative binding of the dimer to puerarin does not
result in an obvious increase in the binding strength and even in
a decrease for the BHTP mode. However, cooperative effects of
the two monomers give a clear increase by ∼30% (for daidzin)
and 60% (daidzein) in binding free energies (ΔG0). BHHP
seems the best mode for such guest binding, followed by BHTS
and by BHTP and BTTS.
Decomposition of Energy Terms. For a deeper insight

into the enthalpy and entropy profiles, ΔH and ΔS are
decomposed into individual contributions from the binding
partners and solvent environment. The decomposition refers to
eqs S6 and S7 in the Supporting Information. Figure 5 shows
the ΔH decomposition for [β-CD2:guest] complexes with
puerarin, daidzin, and daidzein along ξ in the BHHP mode.
ΔHhost and ΔHguest are bonded interactions (torsion energies of
bond angle and dihedral angle) of host and guest molecules
(indicated by black and red lines), respectively. ΔHhost−host and
ΔHguest−guest (green and blue) belong to intramolecular
nonbonded interactions of the binding partners. These four
items quantify the changes in potential energies of host and
guest resulting from the fluctuations in atomic positions.
Bonded interactions of the rigid TIP3P58 water amount to zero
and ΔHsol‑sol (cyan) thus contains nonbonded intra- and
intermolecular interactions between water molecules only. The
other three terms, ΔHhost−guest, ΔHhost−sol, and ΔHguest−sol

(magenta, dark yellow, and orange), describe nonbonded
intermolecular interactions between different kinds of mole-
cules.
As shown in Figure 5a, the bonded items (ΔHhost and

ΔHguest) tend to disfavor [β-CD2:puerarin] complexation

(positive values), while the nonbonded ones of the binding
partners (ΔHhost−host and ΔHguest−guest) in contrast favor the
complexation (negative). By inclusion of puerarin, the
interaction between host and guest is strengthened (negative
ΔHhost−guest), and both host and guest molecules are desolvated,
as indicated by more positive ΔHhost−sol and ΔHguest−sol. Water
molecules are shown to gain enthalpy (negative ΔHsol−sol)
favoring the binding. Similar observations were found for
daidzin (Figure 5b) and daidzein (Figure 5c). Without the
glucose unit (Figure 1b), daidzein shows more symmetric
profiles and a relatively small change in ΔHguest−sol, ΔHhost−guest,
and ΔHsol−sol (Figure 5c).
Considering Figures 3 and 5, the most stable [β-CD2:guest]

complexes with puerarin or daidzin (model GO, ξ = 0.0−0.2
nm) do not correspond to the states where the global minima
of ΔHhost−guest and ΔHsol−sol are achieved (ξ = 0.5−1.0 nm). At
ξ = 0.5−1.0 nm, the contributions from the unfavorable
enthalpy items of ΔHhost, ΔHguest, ΔHhost−sol, and ΔHguest−sol

seem to be maximized and reduce the enthalpy gain (Figure 5,
panels a and b). The most unstable complexes at ξ = 0.4 nm
(puerarin) or 0.76 nm (daidzin), such as the D- and E-states
(model GIM) in Figure 3, occur in coincidence with the states
in which the host desolvation (ΔHhost−sol) reaches its
maximum. For the most stable [β-CD2:daidzein] complex all
enthalpy components get very close to their maximum or
minimum values, either favoring the complexation or not.

Figure 5. Enthalpy decomposition for the complex formation of β-CD
dimers with (a) puerarin, (b) daidzin, and (c) daidzein in the BHHP
mode.
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Figure 6 presents the ΔS decomposition for puerarin (Figure
6a), daidzin (Figure 6b), and daidzein (Figure 6c) in the BHHP

binding mode. Here configurational entropies of host and guest
molecules were calculated from the covariance matrices of
atomic fluctuations using the quasi-harmonic approximation.63

A length of at least 8 ns is needed for our simulations to ensure
the convergence of such entropy calculations, as shown in
Figures S1 and S2 of the Supporting Information. An obvious
entropy loss of the host (positive −TΔS) and compensating
entropy gain of the solvent (negative −TΔS) is observed.
When included inside the CD cavity, daidzin shows a significant
entropy loss (Figure 6b), but this is not observed for puerarin
(Figure 6a) and daidzein (Figure 6c). As discussed in previous
work on the monomer binding,55 the glucose rotation of
daidzin was affected much more than that of puerarin when
entrapped inside the CD cavity, and daidzein did not display
any obvious entropy change due to its structural rigidity. In this
work, similar entropy changes for these three guests inside the
dimer were found (Figure 6). Daidzein gives more symmetric
ΔS profiles than either of puerarin or daidzin. As can be seen
from Figures 3 and 6, configurational changes of β-CD are
greatly affected by guest inclusion (in particular, when the
glucose unit of the guest stays inside the cavity), and the most
stable complexes (those with the lowest ΔG) do not
correspond to the states with maximum or minimum values
of the three ΔS components.

Hydrogen Bonding. Polar moieties of the guests like the
glucose units are observed to hydrogen bond to β-CD dimers.
The number of hydrogen bonds (HBs) between the binding
partners along ξ was analyzed to explore the role of HBs in the
complex formation (Figure 7).

Here we use a geometrical criterion for HB definition, based
on distance and angle cutoffs of 0.35 nm and 30°.64 No obvious
HB interactions are observed at ξ < −0.5 nm (Figure 7) where
the B-ring of the guest approaches the dimer cavity step by
step, implying that the hydroxyl group connected to the B-ring
contributes little to the binding. For puerarin and daidzin, the
most stable states (Figure 3a) have just one HB (ξ = 0.0−0.5
nm in Figure 7, panels a and b). This HB is formed between the
glucose unit of guest and the primary rim of β-CD. At the
central region of the dimer (ξ = 1.0−1.5 nm), a stronger HB
interaction (about two HBs) is observed for puerarin and
daidzin (Figure 7, panels a and b) due to efficient contacts
between polar moieties of the binding partners. These HB
interactions are expected to contribute to the overall
stabilization process by lowering down the PMF curves
somewhat.65 Few influences of HBs on the binding are
detected for daidzein (Figure 7c). It should be noted, however,
that the stability of HBs, which is the activation energy needed
to break HBs, is virtually independent of the environment.66

Comparison of Monomer with Dimer. PMF profiles for
inclusion complexes of the β-CD monomer in the BP and BS
modes and of β-CD dimer in the BHHP mode with the studied
guests along ξ are shown in Figure 8. Here the guest passes
through the host cavity along +ξ from the primary rim of β-CD
for BP and BHHP modes and from the secondary rim for BS.
Because of differences in the definition of ξ between the
monomer and dimer systems, the PMFs for BP and BS are
shifted by 0.3 nm along −ξ and +ξ, respectively, allowing for

Figure 6. Entropy decomposition for the complex formation of β-CD
dimers with (a) puerarin, (b) daidzin, and (c) daidzein in the BHHP
mode.

Figure 7. Hydrogen bonding strength during the complex formation
of β-CD dimers with (a) puerarin, (b) daidzin, and (c) daidzein in the
BHHP mode. The bold black lines represent trend curves smoothed
by 10-point-window adjacent averaging.
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direct comparison with the dimer. The most stable states for
puerarin complexes with the β-CD monomer (BP) and dimer
(BHHP) are located approximately in the same position of ξ =
∼0.0 nm, and the dimer only gives a small increase in the
binding strength (Figure 8a). However, there exists an obvious
enhancement in the binding affinity of the head-to-head dimer
to daidzin (Figure 8b) and daidzein (Figure 8c).
The cavity of one β-CD monomer does not encapsulate an

isoflavone skeleton efficiently, leaving the skeleton in part

exposed to the aqueous environment (Figure 3b). The
presence of another monomer donating its hydrophobic cavity
allows enclosing the exposed moieties of guest. Two β-CD
monomers seem enough for encapsulation of such an
isoflavone skeleton and cooperative binding of the two
monomers forms a more stable inclusion complex (Figures 3
and 8). As seen from panels a and b in Figure 8, approaching
the β-CD cavity for the glucose unit of puerarin and daidzin is
disfavored thermodynamically (indicated by the central
maxima), either in complexation with the monomer or with
the dimer, whereas inclusion of the glucose unit inside the
cavity seems somewhat favorable (indicated by the local
minima). The energy barrier that prevents the glucose unit
from further entering the β-CD cavity is higher for puerarin
than for daidzin (Figure 8, panels a and b). No significant
energy barriers for daidzein binding are detected (Figure 8c).
For evaluation of individual contributions to the binding

affinity, the ΔH and ΔS components (see eqs S6 and S7 in the
Supporting Information) are weighted by their Boltzmann
factors using eq 1 and listed in Table 2. Increment factors (I)
relative to the monomer are computed and given in Table 2 as
well for comparison. I = 0 means that there is no significant
difference between monomer and dimer; I = 1 that the energy
contribution is exactly doubled. As shown in Table 2, ΔHhost

and ΔHhost−host for the dimer are strengthened significantly with
an increment factor (I) larger than 2 in most cases, indicating
that atomic positions of host molecules changes obviously (i.e.,
the host molecule adjusts its configuration for a better
encapsulation of its guest), in line with the observed entropy
changes of the host (−TΔShost, I = 1.6−8.3). Configurations of
guest molecules do not change that much upon complexation
and smaller values for ΔHguest, ΔHguest−guest, and −TΔSguest are
observed (Table 2).
Water−water enthalpy (ΔHsol−sol) increases by ∼50% for

puerarin and daidzin and doubles for daidzein (I = 1). The
cooperative effects of two monomers does not make the
interaction between host and guest molecules (ΔHhost−guest)
exactly twice as large, with an increment factor of I = 0.4−0.7.
Upon binding, two β-CD monomers in the dimer are
desolvated more intensively (ΔHhost−sol, I = 1.6−8.3), while
the guests just show small desolvation increments (ΔHguest−sol, I
= 0.3−0.5). As a result of the desolvation, the water entropy
increases correspondingly (−TΔSsol, I = 2.2−10.7).

Figure 8. PMF comparison of β-CD monomer in the BP and BS
modes with the dimer in the BHHP mode for the complex formation
with (a) puerarin, (b) daidzin, and (c) daidzein. PMFs for BP and BS
were taken from ref 55.

Table 2. Individual Contributions (kJ/mol) of ΔH and ΔS Weighted by Boltzmann Factors for the BHHP Binding Mode
(Standard Deviations in Parentheses)

puerarin daidzin daidzein

⟨ΔE⟩a BHHP Ib BHHP Ib BHHP Ib

ΔHhost 23(3) 14.0 18(3) 17.0 28(4) 27.0

ΔHguest −3(1) 0.0 3(1) 0.0 0(1) 0.0

ΔHhost−host −58(6) 2.9 −11(2) 0.3 −37(4) 2.9

ΔHguest−guest 4(2) 5.0 −2(1) 0.0 0(1) 0.0

ΔHsol−sol −214(9) 0.6 −181(9) 0.5 −203(10) 1.0

ΔHhost−guest −238(6) 0.4 −254(8) 0.6 −215(8) 0.7

ΔHhost−sol 333(9) 1.1 243(8) 0.7 291(10) 1.4

ΔHguest−sol 165(8) 0.3 152(6) 0.3 131(7) 0.5

−TΔShost 102(5) 2.1 49(3) 1.6 107(6) 8.3

−TΔSguest 17(3) 2.1 32(4) 0.8 13(2) 12.0

−TΔSsol −181(6) 2.9 −128(4) 2.2 −152(6) 10.7

aWeighted on all complex states along the entire ξ of [−2.5, 2.5] using eq 1. bIncrement I = (d − m)/|m| where d is the energy item for dimer and m
the value averaged on monomers BP and BS. Values for the monomers were taken from ref 55.
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■ DISCUSSION

Cyclodextrin (CD) dimer is a basic building block for the
construction of diversified nanoarchitectures such as inclusion
complexes, molecular necklaces, nanotubes, nanowires, and
vesicles.2,8,67−69 The cooperative binding of guest molecules to
CD cavities is one of the most important driving forces in the
assembly and stabilization of these architectures. In order to
achieve such a cooperative effect, two CD monomers can be
bridged together by a linker,47,70−73 mostly through covalent
reactions of primary hydroxyls with the linker. Bridged
bis(CD)s with functional linkers lead to an increase in the
binding strength and molecular selectivity compared to native
CD monomers.72 Here we focused on the noncovalent case of
2:1 stoichiometry [CD:guest] complexes, which reveals a
thermodynamic background for the stabilization of CD
assemblies by cooperative binding of CD cavities to a guest
(template) molecule.
Three isoflavone analogues (puerarin, daidzin, and daidzein)

were tested as template molecules in this work. The former two
are isomers belonging to isoflavone glycosides; puerarin is 8-C-
glucoside of daidzein and daidzin 7-O-glucoside of daidzein
(Figure 1b). The differences in the position of the glucose unit
result in different molecule shapes and hence in different
binding affinities to the β-CD dimer. Puerarin displays as a
branch-like structure and daidzin a stick-like one. The glucose
unit induces a high-energy barrier and hinders the tested
template from further penetrating into the CD cavity, as
indicated by the barriers in the PMFs (Figures 3, 4, and 7). As
shown in Table 1 and Figure 8, there is no obvious increase in
the binding strength of the dimer to puerarin, indicating that a
second monomer is not necessary if a stable inclusion of
puerarin is of interest. For daidzin and daidzein, further
penetration into another monomer’s cavity is indeed essential
for increased stability. Stick-like template molecules are
therefore recommended to induce cooperative effects of CD
cavities and to offer a stronger binding force for dimerization of
CD monomers. The calculated PMFs detect local minima
where the glucose unit locates in the COM region of the dimer.
Hydrogen bonds (HB) may induce these favorable minima and
hence favor the binding to some extent (Figure 7). Hydroxyl
groups of adjacent CDs face each other in this region, yielding a
somewhat hydrophilic environment. Thus, a hydrophobic stick-
like template with a central hydrophilic moiety is expected to
give enhanced binding to CD dimers.
For such isoflavone binding, head-to-head (HH) dimer

outperforms the other two orientations of head-to-tail (HT)
and tail-to-tail (TT). For HH, the two wide rims of β-CDs
associate together face to face, thereby maximizing the
hydrophobic cavity and allowing efficient encapsulation of
template molecules. Thus, BHHP gives the strongest binding.
BHTP and BTTS modes disfavor the binding to some extent
because the guests encounter two narrow and hydrophilic rims
of β-CDs (Figure 1d) when forming an inclusion complex and
therefore a barrier to entry which means lower kon in case
binding rates are of importance. Moreover, the wide rim of CDs
makes the template binding easier than the narrow rim and
template stabilization of CD dimerization using two wide rims
is more thermodynamically favorable. The head-to-head
packing therefore appears as a better model for building blocks
of CD-based nanostructured materials, in line with Pineiro’s
report.27

The free energy of head-to-head dimerization of β-CDs in
water was calculated to be −12 kJ/mol using the same force
field as in this work;40 this value is very close to Lopez’s work of
−14 kJ/mol (although the force fields used were different).39

Considering the thermodynamic cycle for the binding reaction
in Scheme 1, we calculated the binding free energy for each step

(Table 3). An obvious cooperative effect for binding of daidzin
and daidzein is observed (negative values for ΔG4 − ΔG1 =
ΔG2 − ΔG3 in Table 3). To assess whether the guest (G) is
indeed a template for the preferred formation of the CD dimer,
one can compare the situation of 2 [CD:G] complexes versus
[CD2:G] complex + G. As shown in the last column of Table 3,
we come to a conclusion that only daidzein has a templating
effect (ΔG1 + ΔG2 − 2ΔG3 = −5), although an enhanced
binding strength was observed for all the three guests in some
cases.
Template stabilization of CD assemblies can be quantified by

the structure-based calculation of binding, which reveals the
thermodynamic foundation of the cooperative effects induced
by adjacent CD cavities. Upon host−guest complexation CD
and template molecules adjust their configurations to minimize
the global free energy, leading to fluctuations in atomic
positions. For the binding partner, the bonded and torsion
energy terms disfavor the complexation, whereas nonbonded
interactions tend to favor the binding. The movements of both
CD and template molecules are restricted when associated
together, leading to entropy loss. For both 1:1 and 2:1 cases,
the simulation captured restricted rotations of glucose unit of
the guest inside the CD cavity and showed that entropy
contributions from the change in flexibility of the molecules in
the binding are of crucial importance for proper prediction of
free energy differences. Entropic effects are ubiquitous in
molecular assembly; however, reliable estimation of entropy for
complex systems remains a challenge.74 In order to establish
whether there is any correlation between the free energy and
entropy changes, we plot ΔG versus −TΔShost, −TΔSguest, and
−TΔSsol as well as −TΔSguest versus −TΔShost for [β-
CD2:daidzin] in the BHHP mode, as shown in Figures S3a−
d, respectively. It is found that the entropy contribution is not

Scheme 1. Thermodynamic Cycle for CD Dimer Binding
Reactions

Table 3. Binding Free Energy (kJ/mol) for the
Thermodynamic Cycle in Scheme 1

ΔG1
a

ΔG2
b

ΔG3
c

ΔG4

ΔG4 −

ΔG1
d

ΔG1 + ΔG2 −

2ΔG3
e

puerarin −12 −30 −32 −10 2 22

daidzin −38 −28 −22 −10 6

daidzein −35 −21 −26 −14 −5
aHH dimerization. bBHHP binding. c1:1 binding. dCooperative effect.
eTemplating effect.
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correlated to the binding free energy (R2 = 0.2). The weak
correlation of −TΔShost with −TΔSguest (R

2 = 0.4) seems to
agree with the finding that entropy loss of guest molecules is
accompanied by entropy loss of host molecules, and vice versa
(Figure 6).
Desolvation of the binding partner upon binding occurs as

well and induces an enthalpy loss (positive ΔHhost−sol and
ΔHguest−sol). Water molecules that are entrapped inside CD
cavity or participate in host and guest solvation are released to
the bulk media, yielding a favorable ΔHsol−sol. The liberation of
solvent molecules also allows a greater degree of freedom for
water movements and hence an increased ΔSsol. Both these
findings are in agreement with the common principle of
hydrophobic effect.75,76 By comparison of the monomer with
the dimer, the enthalpic contributions resulting from structural
changes and desolvation of host molecules and the entropy
contributions from the binding partners and the solvation
environment constitute the crucial factors that affect cooper-
ative binding of β-CD dimers to the template molecules, as
indicated by the higher increments in Table 2. These factors
need to be considered carefully in the design of CD-based
supramolecular assemblies based upon cooperative binding.
Thermodynamic analysis on the tested templates shows that

the most stable binding states with β-CD dimers do not always
correspond to the states where all (un)favorable energy terms
achieve their maxima or minima, which confirms our previous
conclusion that calculations neglecting flexibility of the binding
partners and/or employing implicit solvent will not be able to
predict the thermodynamics of complex binding systemati-
cally.40,55 This finding highlights the complexity in molecular
assembly and disassembly of CDs in general and is conducive
to the regulation of CD-involved aggregates by e.g. template
molecules. An in-depth thermodynamic analysis of the binding
process described in the present study sets a theoretical
foundation for cooperative binding in building blocks of CD-
based nanoarchitectures. Such calculations can readily be
applied in the design and construction of nanostructures with
cooperatively bound units.
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István Horváth 1, Norbert Jeszenői 2, Mónika Bálint 3, Gábor Paragi 4,5 and Csaba Hetényi 3,*
1 Chemistry Doctoral School, University of Szeged, Dugonics tér 13, 6720 Szeged, Hungary
2 Institute of Physiology, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary
3 Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12,

7624 Pécs, Hungary
4 MTA-SZTE Biomimetic Systems Research Group, Dóm tér 8, 6720 Szeged, Hungary
5 Institute of Physics, University of Pécs, Ifjúság útja 6, 7624 Pécs, Hungary
* Correspondence: hetenyi.csaba@pte.hu

Received: 5 August 2019; Accepted: 4 September 2019; Published: 6 September 2019
����������
�������

Abstract: Optimization of the enthalpy component of binding thermodynamics of drug candidates is
a successful pathway of rational molecular design. However, the large size and missing hydration
structure of target-ligand complexes often hinder such optimizations with quantum mechanical
(QM) methods. At the same time, QM calculations are often necessitated for proper handling of
electronic effects. To overcome the above problems, and help the QM design of new drugs, a protocol
is introduced for atomic level determination of hydration structure and extraction of structures of
target-ligand complex interfaces. The protocol is a combination of a previously published program
MobyWat, an engine for assigning explicit water positions, and Fragmenter, a new tool for optimal
fragmentation of protein targets. The protocol fostered a series of fast calculations of ligand binding
enthalpies at the semi-empirical QM level. Ligands of diverse chemistry ranging from small aromatic
compounds up to a large peptide helix of a molecular weight of 3000 targeting a leukemia protein were
selected for systematic investigations. Comparison of various combinations of implicit and explicit
water models demonstrated that the presence of accurately predicted explicit water molecules in the
complex interface considerably improved the agreement with experimental results. A single scaling
factor was derived for conversion of QM reaction heats into binding enthalpy values. The factor links
molecular structure with binding thermodynamics via QM calculations. The new protocol and scaling
factor will help automated optimization of binding enthalpy in future molecular design projects.

Keywords: peptide; interaction; design; affinity; optimization; binding; water; structure; correlation

1. Introduction

Determination of structure and binding thermodynamics of target-ligand complexes is a key step
in drug design [1]. Thermodynamic quantities can be measured by experimental methods such as
isothermal titration calorimetry (ITC [2–11]). Experimental measurements are often restricted by the
lack and high cost of pure and concentrated target (protein) samples. Molecular structures and binding
thermodynamics can be also predicted [12–16] by fast and cheap molecular mechanics methods. At the
same time, molecular mechanics has serious limitations of calculation of electronic effects in complex
structures. Such effects are present in almost all intermolecular interactions including ‘exotic’ cases
such as cation-π interactions between aromatic and charged side-chains [4,17] or polarization effects at
structural water molecules [18]. Quantum mechanical (QM) approaches can properly handle electronic
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effects of intermolecular interactions. However, hydration and large size of target-ligand complexes
impose further challenges on QM methods as detailed in the following paragraphs.

Hydration largely affects the structure and function of various biomolecules and their
complexes [19,20]. Water molecules of the complex interface contribute to the stability and specificity
of target-ligand interactions [21–28] by building hydrogen bonding networks [29,30], restraining
interatomic distances, and filling cavities [19,31]. Despite their importance, determination of positions
of interfacial water molecules is not trivial [32]. Available water positions have been determined
mostly [33] by X-ray crystallography. However, even this well-established technique suffers from
numerous limitations. Assignation of electron density peaks to possible interface water positions is
still not a routine job due to inherent mobility of water and large number of degrees of freedom [34]
and the quality of the structure depends on the solute size [35]. Protein hydration in the crystal is
not the same as in solution [36] which is further complicated by cryo-artefacts [36]. Overfitting of
electron density data and misleading identification of water sites were found to be a bad practice [25].
Other experimental techniques such as nuclear magnetic resonance spectroscopy or cryo-electron
microscopy have produced a relatively small number of structures with water positions assigned.
To overcome the above limitations of experimental methods, theoretical approaches were developed to
help the assignation of water positions. These approaches either assign water positions based solely
on solute structures [37] or involve calculation of dynamics [38–45] of water–water interactions. In the
present study, a molecular dynamics-based method MobyWat [32,46] will be applied for completion of
hydration structures of target-ligand interfaces.

Besides hydration, system size is another challenge of calculation of large complexes at the QM
level. Such investigations would require large computer resources if the entire target molecule was
calculated. A decomposition of the target-ligand complex into tractable sub-systems can handle this
problem. There are at least two approaches to conduct such a decomposition. The first approach applies
QM for the binding site and molecular mechanics simulations to the rest of the system [47–52]. Another
branch of methods is based on skillful fragmentation of the target and applies QM for the sub-system of
target fragments and the ligand. For example, Zhang and Zhang [53] developed a method for molecular
fractionation where the protein is decomposed into individual capped fragments. They performed
ab initio HF and DFT QM calculations for the target-ligand complexes. Nikitina et al. [54,55] cut the
heavy atoms of the target at a distance equal or less than 5 Å from any heavy atom of the ligand.
They also used structural water molecules determined by X-ray analysis, inserted new ones according
to H-bonding valences of the solute molecules [54] and also proposed an iterative scheme [55] of in
silico hydration. They developed correlations for binding enthalpy (∆Hb) on sets of 8 [54], and 12 [55]
complexes, respectively. The complexes included protein targets with small ligands of molecular
weight (MW) up to 700 and the calculations were conducted at semi-empirical QM level using the PM3
parametrization. Dobes, Hobza et al. [56] investigated the small-molecule purine inhibitor Roscovitine
in complex with cyclin-dependent kinase 2 at B3LYP/6–31G** and MP2 levels of theory. They cut the
chains of the kinase target into small fragments of a few amino acids at the Cα-N bond. The peptide
bond was maintained and they considered only amino acids and crystal water molecules located
within 5 Å from the ligand.

Structure-based calculation of thermodynamic properties such as ∆Hb is a central issue of
engineering of efficient drug candidates. Enthalpic optimization of new lead molecules [57–59] is a
successful pathway of drug design and requires determination or prediction of ∆Hb of target-ligand
complexes. Despite the need for ∆Hb data, there are only a few QM studies on fragment-based
calculation of target-ligand binding thermodynamics. Available studies of the previous paragraph
mostly work with ligand molecules of moderate size. Complexes of large (peptidic) ligands with
numerous hydration sites have not been studied extensively. Moreover, development of automated
tools for extraction of structures of complex interfaces and a reliable hydration scheme would be also
helpful for such fragment-based QM investigations.
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A new protocol was introduced and tested in the present study to help the enthalpic design of
drug candidates by answering the above challenges of automation of structure-based calculation of
complexes of large ligands. For this purpose, an end-point approach was adopted for the calculation
of ∆Hb according to Equations (1) and (2). As the reaction occurs in a biological environment, T and L
water molecules hydrate the target and the ligand, respectively. Waters can also remain bound to the
partners (s= 0), join the complex from the surrounding bulk (s> 0) or leave (s< 0) during ligand binding.
The reaction heat (∆rH) of the binding process of Equation (1) can be calculated [14,15,54,55,60–62]
according to Hess’s law (Equation (2)), where ∆fH represents the calculated heat of formation of a
reactant or a product as indicated in brackets.

Target[H2O]T + Ligand[H2O]L + s H2O = Target:Ligand[H2O]T+L+s (1)

∆rH = ∆fH(Target:Ligand[H2O]s) − ∆fH(Target) − ∆fH(Ligand) − s∆fH(H2O) (2)

This end-point approach is simple and it has been successfully applied in previous
publications [14,15,54,55,60–62]. In the present study, it was particularly useful for screening of
various solvent models and conducting several trials in reasonable time. In the forthcoming sections,
the fine-tuning of the corresponding protocol, and the development of a relationship between calculated
reaction heats and experimental binding enthalpy values will be described.

2. Results and Discussion

2.1. Fragmenter

As it was discussed in the Introduction, involving the entire target structure in a QM calculation
is not feasible within a reasonable calculation time. Thus, QM calculation of the above ∆fH values
(Equation (2)) necessitates an extraction of the interface region of the target-ligand complex. However,
extraction of the complex interface and automated fragmenting of the target protein has no trivial
solution. In the present study, a new protocol was elaborated including a fragmentation method,
Fragmenter, to standardize the extraction of target-ligand interfaces (Figure 1). Fragmenter works on a
complex structure including a target, a ligand and several water molecules. Amino acids of fragments
are selected according to their intermolecular distance cut-off (dTL, Table 1). A brief overview of
Fragmenter and the data stream are sketched in Figures S1 and S2 and technical details are provided
in Methods.

Fragmenter focuses on the neighboring parts of the target protein which have considerable
interactions with the ligand and the interfacial water molecules. The whole ligand molecule and
protein residues of interface regions of the complexes are extracted. The residues of the target molecule
are preferably extracted as peptide fragments instead of single amino acids. The main goal is to obtain
the shortest but continuous peptide chains from the target protein in a standardized way.

Thus, there is still a benefit of a considerably reduced target part, and continuity is also kept
wherever it is possible. Parameter n specifies how many adjacent amino acids are added to the fragment
chain of amino acids extracted according to dTL. After some experimenting (Table S2), it was found
that n = 0 produces good correlations (as seen in the following sections), and it was not necessary to
investigate n = 1 for the systems of the present study. Fragmenter was implemented as a free web
service (Figure S4). It provides the extracted complex interface structure (target fragments, ligand and
water molecules) as an interactive image, also downloadable as PDB and Mopac input files from the
‘results’ tab (Figure S5) and also displays a list of estimates of per-residue intermolecular interaction
energy (Einter) values to indicate unwanted close contacts.
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Figure 1. Fragmenter extracts a hydrated interface (bottom) from the target-ligand complex (top).
Target (fragments) and ligand are shown in light blue, and green, respectively. System 2roc contains the
largest ligand investigated in the present study. In this example, Fragmenter extracted target residues
with (dTL = 5.0 Å) considerably reducing the system size used for QM calculation. Interfacial water
molecules (dW = 5.0 Å, sticks) are also retained. Steps of extraction of target fragments are shown in
atomic details for the C-terminal region (asterisk) in Figure S3 as an example. Fragmenter is available
free of charge as a web service at www.fragmenter.xyz.

2.2. Dry Systems and an Implicit Water Model

Having the Fragmenter protocol developed and implemented, ∆fH calculations of the (hydrated)
target-ligand complex interfaces were conducted in a simplified and standardized way. Fragmenter
was applied on all systems of Table 1 for extraction of the complex interfaces. All systems were prepared
for Fragmenter using standard molecular mechanics energy minimization and explicit hydration
protocols as described in Methods. The ∆fH values were calculated for the individual reactant (ligand
and target fragments) and product (complex interface) structures, respectively. The calculations
were performed at semi-empirical level using PM7 parameterization, with and without the Mozyme
approach (Methods). The resulted, raw energy values are listed in Table S4.

Within the end-point approach (Introduction), calculation of ∆fH of the reaction participants
(Equation (2)) and a linear scaling (Equation (3)) of ∆rH to known experimental ∆Hb(exp) values is
necessary for calculation of ∆Hb.

∆Hb(exp)i = α∆rHi + β + εi = ∆Hb(calc)i + εi, where i = 1, 2, . . . , N (3)

In the present study, 15 systems (N = 15) of Table 1 were involved in the derivation of regression
coefficients (α, β) yielding ∆Hb(calc) values and residuals (ε). Statistical parameters obtained for
the dry complexes and various solvent models are listed in Table 2. Nine of the 15 systems with
small ligands up to a MW of 550 were considered in a previous paper [55] as well. In the present
study, additional six systems with large peptide ligands were included in the set as they often impose
a challenge during lead optimizations due to their size and extensive hydration. Thus, the set of
15 systems involves various ligands with MW up to 3318, two orders of magnitude larger than the
previous set. The experimental ∆Hb values cover a wide range between −2.935 and −15.5 kcal/mol
(Table 1).
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Table 1. Target-ligand systems.

System a Res b (Å) Target Ligand Water Count ∆Hb(exp) d

Name MW c Shell 1 Shell 2 Shell 3 kcal mol−1

3ptb_ben 1.7 beta-trypsin benzamidine 121.2 1 6 7 −4.507 [2]

3ptb_pme 1.7 beta-trypsin p-methylbenzamidine 135.2 1 5 6 −4.412 [2]

3ptb_pam 1.7 beta-trypsin p-aminobenzamidine 136.2 3 4 7 −6.417 [2]

3ptb_pmo 1.7 beta-trypsin p-methoxybenzamidine 151.2 1 6 7 −3.742 [2]

3ptb_pad 1.7 beta-trypsin p-amidinobenzamidine 164.2 2 8 10 −2.935 [2]

1k1l 2.5 bovine trypsin NAPe-piperazine 467.6 5 10 15 −7.863 [4]

1k1m 2.2 bovine trypsin NAP e
−4-acetyl-piperazine 508.6 4 12 16 −8.222 [4]

1k1i 2.2 bovine trypsin NAP e-D-pipecolinic acid 508.6 2 13 15 −10.899 [4]

1k1j 2.2 bovine trypsin NAP e-isopipecolinic acid methyl ester 523.6 3 13 16 −9.465 [4]

1jyr 1.55 Grb2 SH2
domain APS-PTR e-VNVQN 1069.0 1 14 15 −7.94 [6]

1rlq NA
C-src tyrosine

kinase SH3
domain

RALPPLPRY 1084.3 2 25 27 −10.2 [7]

2ke1 NA autoimmune
regulator ARTKQTARKS 1150.3 12 15 27 −9.2 [8]

2bba 1.65 EphB4
receptor NYLFSPNGPIARAW 1606.8 12 15 27 −15.5 [9]

1jgn NA
human

poly(A)-binding
protein

VVKSNLNPNAKEFVPGVKYGNI 2389.8 14 34 48 −14.8 [10]

2roc NA

induced
myeloid

leukemia cell
differentiation

protein
homolog

EEEWAREIGAQLRRIADDLNAQYERRM 3317.6 14 38 52 −14.3 [11]

a System codes are derived from the PDB identifiers, and abbreviated ligands names (where applicable).
b Resolution (available for crystallographic structures). c Molecular weight. d Experimental binding enthalpy
values are given at their original level of precision except those with three decimal digits converted from
kJmol−1, where 1 J = 4.184 cal. Sources of values are indicated as references in superscript. e NAP:
N-alpha-(2-naphthylsulfonyl)-N-(3-amidino-L-phenylalaninyl); PTR: o-phosphotyrosine.

In the first step of the present investigations, no solvent models were applied (s = 0 in Equations (1)
and (2)). That is, dry input structures without explicit water molecules were calculated in vacuo.
The complete lack of water models resulted no correlation between the calculated and experimental
∆Hb values (column Vacuum/Dry in Table 2, Figure 2). The application of an implicit water model
(COnductor-like Screening MOdel, COSMO [63]) increased the correlation (column COSMO/Dry in
Table 2). However, this correlation can still be improved as reflected by the cross-validation. In general,
the use of COSMO proved advantageous if compared with the vacuum/dry results (Table 2). There was
a single case of System 2ke1 where ∆Hb(exp) could not be converted to 298.15 K and the original
value at 296.15 K (Table S3) was used for the regressions of Table 2. To check the influence of this data
point on the results, linear regressions were performed without System 2ke1, as well. The statistical
parameters showed (Table S5) that leaving out System 2ke1 did not improve the results in vacuo and
COSMO yields considerable correlation.
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Table 2. Per-system residuals (ε) and statistical parameters of linear regressions obtained with different
water models.

System

Vacuum COSMO

Dry Shell 1 Shell 2 Shell 3 Dry Shell 1 Shell 2 Shell 3 Shell 3 b

|ε| a

3ptb_ben 3.70 3.18 2.90 1.93 3.73 2.33 2.45 1.18 0.85
3ptb_pme 3.60 3.09 3.05 2.03 0.53 1.12 2.48 0.95 1.22
3ptb_pam 1.74 1.29 0.88 0.03 0.01 0.02 0.44 0.92 3.03
3ptb_pmo 4.45 3.91 3.71 2.64 3.59 3.25 3.32 2.24 0.33
3ptb_pad 5.65 5.11 5.04 4.25 3.03 3.12 4.32 3.22 1.37

1k1l 0.56 0.39 0.10 0.10 2.59 1.05 0.56 0.43 1.74
1k1m 0.16 0.56 0.36 0.79 2.71 1.17 0.75 1.50 3.12
1k1i 2.67 3.19 2.95 3.51 2.80 3.62 2.88 3.34 4.60
1k1j 1.43 1.81 1.60 2.10 0.57 2.60 1.47 2.32 3.75
1jyr 0.78 0.28 0.53 0.09 1.73 0.36 0.40 0.53 0.36
1rlq 0.67 0.64 0.27 0.33 0.37 2.13 0.61 0.24 0.16
2ke1 2.54 4.67 4.66 5.28 4.38 4.21 5.73 2.46 2.89
2bba 7.25 6.38 7.21 6.23 4.34 2.13 6.58 3.77 3.31
1jgn 5.88 5.24 4.75 2.56 1.61 0.27 3.25 0.25 1.36
2roc 4.96 4.11 3.74 1.26 2.76 1.24 3.05 1.71 3.92
R2 0.06 0.18 0.19 0.44 0.51 0.65 0.33 0.73 0.93

R2(cv) c 0.00 0.01 0.02 0.22 0.34 0.54 0.07 0.65 0.91
F 0.81 2.77 3.14 10.20 13.46 24.28 6.36 34.55 179.66

RMSE a 4.02 3.76 3.72 3.10 2.90 2.45 3.40 2.17 2.65
tα 0.90 1.66 1.77 3.19 3.67 4.93 2.52 5.88 13.40
tβ −5.56 −5.04 −4.68 −3.90 −2.18 −3.99 −4.24 −2.81 -

a Unit: kcalmol−1. b Linear regression with β = 0 (last column), and β , 0 (other columns). c Leave-one-out
cross-validated coefficient of determination.

 

Figure 2. Correlation plots obtained without (Vacuum/Dry) and with (COSMO/Shell3) the hybrid
water model.
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2.3. Explicit Hydration and a Hybrid Model

A systematic investigation on explicit hydration was conducted to further improve the correlations
of the previous section. It is challenging to give a straightforward definition for the origin of water
molecules in the complexes, and prediction of ligand-bound water molecules is rather uncertain
due to the relatively small binding surface of ligands. Thus, T = L = 0 was set and all interface
water molecules were considered as if they had originated from the surrounding bulk solvent (s > 0,
in Equations (1) and (2)). Hydration structure of the target-ligand complex was built up by the
MobyWat method [32] and extracted by Fragmenter as part of the interfaces. MobyWat can produce
complete, void-free hydration structures of complex interfaces. This is guaranteed by a soaking
step during the systematic evaluation of a series of snapshots of molecular dynamics simulations
accounting for water–water interactions besides solute-water ones. Thus, MobyWat can find all
experimental reference water positions in many cases [32] and assign water positions not detectable by
experimental [25,33,34,64,65] measurements.

In the present study, three shells were defined according to dw (Table 1 and Table S1) using
interfacial water molecules (Figure 3A). Shell 1 contains water molecules closest to the solutes
(dw = 3.5 Å). Shell 2 holds waters with intermediate positions (3.5 Å < dw < 5.0 Å). Shell 3 consists of
all interfacial water molecules of Shells 1 and 2 with a dw = 5.0 Å.

 

Extracted complex interface of System 1k1l. (A) Initial structure equipped with water Figure 3. Extracted complex interface of System 1k1l. (A) Initial structure equipped with water
molecules and energy-minimized at the molecular mechanics level. Target fragments and ligand are
shown in ribbon and space filling representations, respectively. Water molecules in Shell 1 (dW = 3.5 Å,
sticks marked with asterisk) are positioned close to the solute partners and play a bridging role. The rest
of Shell 3 (dW = 5.0 Å) waters belong to Shell 2 (sticks without asterisks) and located at the edges of the
interface, close to the bulk. Shell 3 = Shell 1 + Shell 2. (B) A rotated close-up of the box in Panel A
showing the surrounding of the sulphonyl group of the ligand (sticks) and the neighboring residues
G216SG218 of the target (lines) where the numbering follows that of the crystallographic structure
(PDB ID 1k1l). Hydrogen bonds are marked with yellow dotted lines. (C) Structure in Panel B after
relaxation at semi-empirical level using PM7 parameterization and Mozyme. Water molecules with a
displacement above 1.5 Å after relaxation are marked with crosses.
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The use of explicit water molecules in vacuum improved the ‘dry’ correlations to an R2 of
0.44 (all systems, column Vacuum/Shell 3 in Table 2) and 0.65 (without System 2ke1, Table S5).
Cross-validation indicates that this improvement of correlation is robust only without System 2ke1.
At this point, it seemed reasonable to check whether a hybrid model using both implicit and explicit
hydration further improves the correlation. Indeed, the hybrid model (column COSMO/Shell 3 in
Table 2) provided the best agreement between calculated and experimental ∆Hb with an R2 of 0.73
(Figure 2) using all interfacial water molecules. Notably, Shell 1 waters also yielded considerable
correlation (R2 of 0.65). In both cases, the correlations survived the challenge of cross-validation.
The intermediate water positions alone (Shell 2) yielded a stable correlation only without System 2ke1
(Table S5).

To investigate the effect of ligand size and target diversity on the stability of the above correlation
(COSMO/Shell 3), the set of systems in Table 1 was split into two sub-sets according to ligand MW. The
first sub-set contains nine systems with small ligands of MW < 600. All these ligands have a common
target, beta trypsin. The second sub-set contained six systems with large ligands of MW > 1000 and
various targets. Linear regressions were performed separately for the two sub-sets and ∆Hb(calc)
values were calculated by the two regression equations, respectively. Overall statistical parameters
obtained (Table S6) were comparable to those of the regression for all systems (column COSMO/Shell 3
in Table 2) detailed above. Thus, stability of the correlations is not influenced by ligand size and target
diversity of the systems in the case of the hybrid model.

2.4. Scaling Factor

The above COSMO/Shell 3 model with β , 0 in Equation (3) is significant and robust regarding its
overall regression parameters. However, the tβ value (Table 2) indicates that the level of significance of
regression coefficient β is moderate (p = 0.015). Thus, a linear regression with β = 0 was also developed
and the corresponding statistical parameters are listed in the last column of Table 2 (Table S7). In this
way, a model of high significance (p < 0.01) of all parameters was obtained and Equation (3) was
simplified. The resulting Equation (4) includes only the value of regression coefficient α, which serves
as a single, unit-independent scaling factor for conversion of calculated ∆rH into ∆Hb.

∆Hb = 0.031 (±0.002) ∆rH (4)

A similar value of 0.032 (±0.002) was obtained for the scaling factor if System 2ke1 was not
involved in the regression. Via QM calculations, this factor serves as a direct link between molecular
structure and binding thermodynamics of molecular complexes.

2.5. Case Studies on Hydration Structures

In two-thirds of the 15 systems, application of Shell 1 or 3 explicit water molecules resulted in
the decrease of residuals (COSMO models in Table 2). Shell 2 waters have similar effect in one-third
of the cases. For example, in the case of System 1k1l, the residuals decreased from 2.59 (dry) to 0.43
(Shell 3, β , 0) and 1.74 kcal/mol (Shell 3, β = 0, Table 2), and a similar trend can be observed for the
vacuum values.

In the interface of System 1k1l extracted after molecular mechanics energy-minimization
(Figure 3A), Shells 1 and 2 contain 5 and 10 water molecules, respectively (Table 1). The water
molecules of Shell 1 (Figure 3A) are located at the bottom of the interface bridging between the target
and ligand (solute) partners. Shell 2 waters mostly occur at the opening of the interface towards the bulk
(right side of Figure 3A) waters/region. As it was expected, large clusters of waters gathered around
charged or polar groups. For example, the sulfonyl group (Figure 3B) of the ligand is surrounded by a
group of water molecules, and only one of them belongs to Shell 1. No interactions were observed
between the waters and the closest target fragment (G216SG218).
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During semi-empirical QM relaxation (Figure 3C), positions and orientations of some water
molecules were changed. For example, two water molecules (marked with crosses in Figure 3C)
were shifted by 3.2 and 1.8 Å. The orientation of Shell 1 water molecule (marked with asterisk in
Figure 3C) was changed to interact with the target fragment. Such changes resulted in an extensive
H-bonding network of water molecules stabilizing the target-ligand interaction around the sulfonyl
group. Formation of new hydrogen bonds imply that some of the Shell 2 water molecules became
Shell 1 (not marked in Figure 3C).

While the hydration structure underwent a remarkable transformation during semi-empirical
QM relaxation, the conformation of the target fragment was preserved. The above example of System
1k1l (Figure 3) showed how water molecules in the different shells contribute to the completion of the
target-ligand interface structure and a consequent decrease in residuals of calculated ∆Hb.

Besides small, rigid ligands like the phenylalanine derivative of System 1k1l, large peptide ligands
were also involved in the present study. For example, System 2bba (Figure 4) has a penta-decapeptide
ligand (Table 1) and a relatively extensive hydration structure of 27 water molecules in the extracted
interface. In the case of 2bba, the largest decrease from 4.34 to 2.13 kcal/mol of the residual (COSMO
models in Table 2) was obtained with Shell 1 water molecules. A detailed overview of the hydration
structure shows that water molecules of Shell 1 (asterisks in Figure 4) mostly positioned at the bottom
of the binding pocket and play a bridging role between the target and ligand partners. In this case,
application of Shell 2 waters in addition to Shell 1 ones was not beneficial as they increased the residual.
However, the final residual with Shell 3 is still below the dry model.

Beyond bridging and space filling roles presented in Figures 3 and 4, interfacial hydration
also exerts a shielding effect [66] on target-ligand intermolecular interactions, as well. Despite the
importance of the hydration structure, crystallography often does not supply crucial water positions or
erroneously assigns waters in close contact (see also Introduction). This leads to limitations of the use
of experimental complex structures in drug design.

Extracted complex interface of System 2bba after relaxation at semi-empirical level using Figure 4. Extracted complex interface of System 2bba after relaxation at semi-empirical level using
PM7 parameterization and Mozyme. Target fragments and ligand are shown in light blue space filling
and green cartoon representations, respectively. Water molecules (sticks) in Shell 1 are marked with
asterisks. Non-marked waters belong to Shell 2.

The present study has overcome such limitations of experimental determination of hydration
structures, and calculation of ∆Hb was possible using complete interfacial hydration structures
resulted exclusively by MobyWat calculations (see Methods). Besides hydration structures, missing
ligand positions of four Systems (3ptb_pad, 3ptb_pam, 3ptb_pme, 3ptb_pmo) were also produced
by computational modeling. Thus, modeling provided atomic resolution data reliably completing
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experimental structures and yielding robust correlations of the present study. Notably, modeling steps
(Figure 5) of building the hydration structure and the full complex require only moderate computational
resources, and can be accomplished on a single workstation. With the application of a parallelized
MD engine and a supercomputing facility, the calculation time can be reduced to a couple of hours.
The Fragmenter step takes some seconds.

 

Figure 5. Modeling steps used for preparation of hydrated target-ligand interface for QM calculations Figure 5. Modeling steps used for preparation of hydrated target-ligand interface for QM calculations
shown on the example of System 1jgn. The procedure starts from the complex of the target (grey)
and ligand (green) molecules. Program MobyWat [32,46] provides accurate hydration structure with
MD-based calculations of positions of water molecules (red and white) in the interface. MobyWat
is downloadable free of charge at www.mobywat.com. Finally, Fragmenter, a web service extracts
the complex interface with considerably reduced target part for subsequent use in QM calculations.
Fragmenter was introduced in the present study and available at www.fragmenter.xyz.

3. Methods

3.1. Preparation of Complexes

The primary input structures of all systems (Table 1) were obtained from the Protein Databank
(PDB [67]). All crystallographic water molecules were removed. Missing atoms of solute side chains
(both protein and ligand) were reconstructed with Swiss PDB Viewer [68]. In the case of missing
terminal and non-terminal amino acids, acetyl and amide capping groups were added with the
Schrödinger Maestro program package v. 9.6 [69] to the N-and C-terminus, respectively. In cases of
homodimer structures, chain A was selected for calculations.

3.2. Parameters of Non-Amino Acid Ligands

For non-standard (non-amino-acid) ligands or residues molecular mechanics force field parameters
were obtained from the GAFF force field [70]. Considering a non-standard residue, it was first capped on
both terminals, with Ace- and -NHMe groups and pre-minimized with PC Model 9 [71] using MMFF94
force field [72]. Subsequently, semi-empirical quantum mechanics optimization was performed with
MOPAC-2009 [73] using the PM6 parameterization with a 0.001 gradient norm [74]. In all cases,
the force constant matrices were positive definite. Then, the completely minimized molecules were
uploaded to RED server [75] to perform ab initio geometry optimization to obtain partial charges by
RESP-A1B charge fitting (compatible with the AMBER99SB-ILDN force field). The calculations were
performed with the Gaussian09 software [76], using HF/6-31G* split valence basis set [77]. The caps
on the termini were excluded from charge derivation, charge restraints were applied on these atoms.
Normal mode analysis was performed using GAMESS [78] to ensure that the final geometry is in energy
minimum. Bond stretching, angle bending, and torsional parameters were assigned with the parmchk
utility of AmberTools 1.5 [79] and used together with the partial charges to build GROMACS [80,81]
residue topology entries for the non-standard residues.

3.3. Calculation of Interfacial Hydration Structure

MobyWat [46] predictions along with GROMACS MD simulations were used for calculation of
water positions in the target-ligand complex. A uniform procedure was followed based on Method 3
of a previous study [32] briefly described in the following points. An overview of the modeling steps
described in the forthcoming sections is provided in a flow chart of Figure 5.

               hetenyi.csaba_83_23



Int. J. Mol. Sci. 2019, 20, 4384 11 of 19

3.4. Molecular Mechanics Energy-Minimization during MobyWat Predictions

For pre-MD minimization, the target or complex structure was placed in a cubic box using a
distance criterion of 1 nm between the solute and the box. Void spaces of the box were filled up by
explicit TIP3P water molecules [82] with the standard gmx solvate routine of GROMACS. Counter-ions
(sodium or chloride) were added to neutralize the system. A uniform, procedure was applied in all
cases prior to the MD steps, including a steepest descent (sd) followed by a conjugate gradient (cg) step.
Exit tolerance levels were set to 103 and 10 kJ·mol−1

·nm−1 while maximum step sizes were set to 0.5
and 0.05 nm, respectively. Position restraints were applied on solute heavy atoms at a force constant
of 103 kJmol−1nm−2. All calculations were performed with programs of the GROMACS software
package [81], using the AMBER99SB-ILDN force field [83]. The above energy-minimization was
performed twice, once for the target and once for the re-assembled target-ligand complex (see below).

3.5. Molecular Dynamics of the Protein Target

After energy-minimization, 5-ns-long NPT MD simulations were carried out with a time step
of 2 fs. For temperature-coupling the velocity rescale [84] and the Parrinello–Rahman algorithm
were used. Solute and solvent were coupled separately with a reference temperature of 300 K and a
coupling time constant of 0.1 ps. Pressure was coupled by the Parrinello–Rahman algorithm [85–87]
and a coupling time constant of 0.5 ps, compressibility of 4.5 × 10−5 bar−1 and reference pressure of
1 bar. Particle Mesh-Ewald summation was used for long range electrostatics. Van der Waals and
Coulomb interactions had a cut-off at 11 Å. Coordinates were saved at regular time-intervals of 1 ps
yielding 1.001 × 103 frames. Position restraints were applied on solute heavy atoms at a force constant
of 103 kJ·mol−1

·nm−2. Periodic boundary conditions were treated before analysis to make the solute
whole and recover hydrated solute structures centered in the box. Each frame was fit to the original
protein crystal structure using Cα atoms. The final trajectory including all atomic coordinates of all
frames was converted to portable binary files. The target structure, and the surrounding (surface)
water molecules were extracted as the last frame of the 5-ns-long MD simulation. At this point, there is
a difference between the present study and Method 3 applied previously [32]. In Method 3, surface
water molecules had been provided by MobyWat using 1-ns-long MD simulation. In the present study,
the final frame of a 5-ns-long MD simulation was applied.

3.6. Re-Assembly of the Target-Ligand Complex

The target-ligand complex was re-assembled. For this, the target part of the holo and the hydrated
apo systems were fitted on the top of each-other and the ligand was used together with the hydrated
target (soaking), and interfacial water molecules were extracted. A water molecule was considered
interfacial if intermolecular distance was smaller than/equal to a pre-defined maximal threshold (dmax)
of 5 Å for both the ligand and target partners. Water molecules conflicting with the ligand structure
were excluded using the editing mode of MobyWat at a minimum distance limit (dmin) of 1.75 Å prior
the second MD simulation.

3.7. Molecular Dynamics of the Target-Ligand Complex

The MD simulation protocol described above for protein targets was performed for the
re-assembled target-ligand complex structure, as well. In this case, all frames of the final trajectory
of the target-ligand complex (in a water box) were used in the next step for production of interfacial
water positions.

3.8. Production of Interfacial Water Positions

After the MD simulation of the target-ligand complex, MobyWat prediction of interfacial water
positions was performed with dmax, clustering and prediction tolerances of 5.0, 3.0, and 3.0 Å,
respectively. The MER clustering algorithm of MobyWat was applied. At this point, the present
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procedure differs from Method 3 [32]. As a result, a list of predicted water oxygen positions was
produced by MobyWat in PDB format.

3.9. Molecular Mechanics Energy-Minimization after MobyWat

The MobyWat-supplied oxygen atoms of predicted water positions were equipped with hydrogen
atoms and energy minimization was performed for the hydrated complexes. A four-step protocol was
applied for energy minimization of complexes with predicted water positions following an sd-cg-sd-cg
pattern with parameters of sd and cg methods described above. During the first two steps, all solute
heavy atoms and the oxygen of the predicted interfacial water molecules were position restrained
and bulk waters and ions were released. In the last two steps, position restraints were not applied on
predicted waters, only solute heavy atoms were position restrained. Other details were the same as
described in Section 3.4 above.

3.10. Extraction of Target-Ligand Interfaces by Fragmenter

Fragmenter automatically extracts target-ligand interfaces of large complexes and is freely available
as a web service at www.fragmenter.xyz. Algorithm details and connections between input, algorithm,
implementation, and output scripts are presented in Figures S1 and S2. In brief, the extraction is based
on the selection determined by the target-ligand (dTL) and the water-solute (dw) distances as well as
the inter-residual distance (n). In the main loop (Figure S1), a target amino acid residue is extracted if
it has at least one heavy atom with dcls ≤ dTL, where dcls is the spatial distance measured between
the closest heavy atoms of the actual target and ligand molecules. The maximal distance allowed
between the closest heavy atoms of the target and the ligand (dTL) can provided by the user and a
default value is set to 3.5 Å. The same distance between solute partners and water molecules (dW) is
also defined and applied for extraction of interfacial waters. Connecting amino acids and terminating
groups are also inserted. The length of fragment peptides is influenced by the maximal inter-residual
topological distance (n) of the target. Parameter n specifies how many adjacent amino acids are added
to the fragment chain of amino acids extracted above by the dTL criterion. If n > 0, then the fragment
was grown by adding n connecting amino acid residues. If n = 0 only amino acids with dcls ≤ dTL are
added to the fragment chain. If n = 1, the sequential first neighbors are also attached to the terminus
(termini) of the fragment chain, even if the attached amino acids have a dcls > dTL, etc. (Table S2).

3.10.1. Input

The actual content of the query form of the ‘submit’ tab of the web interface (Figure S4) is saved
as a single input file (project_ID.inp) generated according to a template inputfile.inp (Figure S6).
This template contains the system variables, php path, the path of the createqinput.sh, and the template
for the input parameters from the website. The ‘submit’ tab allows setting distance (dTL, dW, and n)
and other parameters of Table S1. Fragmenter offers an option to freeze (restrain) atomic positions by
labeling certain groups of heavy atoms such as backbone Cα-atoms, heavy atoms, all heavy atoms
in the Mopac input file. The definition of these restraints, additional Mopac parameters, and other
administrative details are also collected in the project_ID.inp file. The latter parameters include
the path and the file name of the complex structure, the process name (for the SLURM workload
manager), the path of the php executable and Fragmenter scripts the mopac license file (for SLURM)
and the path of the mopac and php executable. Using the above path and file information, setting of
system variables is performed by script genqinput.sh. The user does not need to care about server
configuration (e.g., server specific php executable path), it is stored on the server. Clicking on the
‘submit’ button the script calculate.php checks the integrity of the complex structure (Figures S1 and S2)
by a PDB to PDB file conversion using OpenBabel [88]. In the case of conversion errors Fragmenter
terminates and the errors are displayed on a separate page. Then it collects and transforms the input
parameters from inputfile.inp and from the site from the user for the script createqinput.sh and calls
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createqinput.sh. Script genqinput.sh requires only one input file (project_ID.inp), which contains all
necessary parameters for the run (Figure S6).

3.10.2. Main Algorithm

Having all input data in project_ID.inp, script createqinput.sh calls script fragment.php, the main
engine of Fragmenter and creates the output files using other php classes (point.php, atom.php,
charge.php, ligand.php). Among the classes (i) atom.php represents the atom objects with coordinates,
type; (ii) module charge.php calculates the charge the ligand and generated fragment chains; (iii) module
ligand.php handles a ligand object, contains the atoms, bonds, it reads and writes the pdb files;
(iv) Point.php is a small class reserved for the coordinates of the atoms. Utils.php collects technical
parameters, for example operating system dependent information, config file handling, etc.

Script fragment.php (Figure S2) includes steps for input processing, fragmenting, and working
with output files. Target and ligand objects are obtained from the input steps, target, ligand residues, and
water molecules are detected based on their chain IDs and residue types (WAT, SOL, H2O), respectively.
Accordingly, the input structure is split into ligand, target and water molecules, the residues are
sorted by their residue IDs and only heavy atoms of the target are examined. In the main loop of
fragment.php, the target amino acid residues are selected according to dTL and n by ligand.php and
point.php. Single residue-gaps are excluded by connecting two neighboring fragments by selecting the
connecting residue, as well.

Having all target fragments produced in the previous steps, each of them are terminated by a
uniform procedure as represented by the cycle of fragment.php (Figures S1 and S2). In the case of
a free N-terminus a protonated amino group is built automatically by adding hydrogen atoms in a
correct geometry. Similarly, in the case of a free C-terminus, a carboxylate anion is left unchanged.
After merging ligand and water molecules with the target fragments into a new PDB file, the total
charge of the complex is calculated and stored in the remark section of the file. For all cut target chains,
Ac- (at N-terminus) and -NHMe (at C-terminus) blocking groups are built on both or non-free ends
using atoms of previous and/or next amino acids of the chain and adding three hydrogen atoms to the
methyl group (Figure S3). Following the generation of all fragments, the interface water molecules are
extracted according to the intermolecular distance cut-off (dw, Table S1). After extraction of the water
molecules, their total net charges are calculated by charge.php using individual charges of amino acids
(Table S3) at pH 7. Special care was taken for disulfide bridges between side-chains of cysteine amino
acids. Following the main loop (Figure S1), Cys residues connected via disulfide bridges are also
selected and added to the fragments. Total net charge (Table S3) of the target fragments is calculated.
In the case of disulfide bridges or protonated sulfhydryl group the charge of Cys is automatically set to
zero, otherwise −1. The charge of His is calculated according to the protonation state of the imidazole
ring (−1, 0, +1).

3.10.3. Target-Ligand Intermolecular Interaction Energy

Fragmenter calculates target-ligand intermolecular interaction energy (Einter) for the extracted
interface, which is expressed as the sum of Lennard-Jones (LJ) and Coulomb potentials (Equation (5)).
For both the LJ and Coulomb potentials, Amber force field parameters are used [83,89]. A per-residue
list of the Einter is printed in the ‘results’ table. The list can be used for identification of target residues
colliding with the ligand as large Einter values. In such cases, further MM energy-minimization may be
required to achieve a complex structure appropriate for QM investigations.

Einter = ELJ + ECoulomb =
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where, εij is the potential well depth at equilibrium between the ith (ligand) and jth (target) atoms; ε0 is
the permittivity of vacuum; εr = 1, relative permittivity; Rij is the inter-nuclear distance at equilibrium
between ith (ligand) and jth (target) atoms; q is the partial charge of an atom; rij is the actual distance
between the ith (ligand) and jth (target) atoms; NT is the number of target atoms; NL is the number of
ligand atoms.

3.10.4. Output

Fragmenter stores the output files in an output directory and provides a download link to all of
them in the ‘results’ site (Figure S5). The ligand, the selected water molecules and the target fragments
are downloadable as a complex in PDB format. The final charge of the complex is stored in the remark
section of the PDB file. Fragmenter also provides additional separate PDB files and also converts them
into downloadable Mopac input files. These files include the structures of the complex with/without
water molecules, separate ligand, or target fragments. The ‘output’ tab also features the fragmented
complex in a small window and it can be manipulated by the user. The visualization and rotation is
performed by JSmol [90] implemented in the web page.

3.11. Calculation of Heats of Formation

Mopac 2012 [91] was used for structural relaxation and calculation of heats of formation of the
extracted complex structures, separate ligand, water molecules, and target fragments. Hamiltonian of
the Parametric Method number 7 (PM7 [92]) was applied. The exit criterion of the energy-minimization
was defined as a gradient norm of 1.0. The value was set according to the instructions of the Mopac
Support Team, and it is a magnitude smaller than the value of 10 suggested by the Manual [92].
There were only four vacuum calculations where the final gradient norm was slightly higher than 1,
and the largest one of the four was 2.5. To reduce computational cost, the localized molecular orbital
approach of Mozyme [93] was applied. Total net charges of the molecules were calculated from
individual net charges of the amino acids (Table S3). The charges were indicated in the command line,
checked manually and automatically with keyword GEO-OK. To prevent unwanted termination of
calculations, keyword PREC was applied. Eigenvector following [94] was used as a default geometry
optimization. Molecular mechanics correction to peptide bonds was applied by keyword MMOK.
Except the cases of in vacuo calculations, the COSMO (COnductor-like ScreeningMOdel) model [63]
was used. For this, a value of 78.3 was set at the EPS key word which is the dielectric constant of water
at 293.15 K and 101325 Pa. ∆fH of water was calculated with the above keywords in vacuum and
using the COSMO model, respectively. In the cases of four systems, integrity of disulphide bridges
was conserved by restraining the coordinates of S atoms during COSMO calculations.

3.12. Statistics

Simple linear regressions were performed between calculated ∆rH and experimental ∆Hb(exp)
values in all cases of Table 2 and Tables S4–S7. ∆Hb(exp) values were obtained from various publications
as listed in Table 1. Statistical parameters of the regressions including regression coefficients (α and β

in Equation (3)), coefficients of determination (R2), t-values, F-values, residuals and root mean square
error (RMSE) values are listed in Table 2. Leave-one-out cross-validated R2 values were also calculated
to check the stability of the correlations. Significance values of regression coefficients mentioned in the
main text were calculated by two-sided t-test. For correlation plots, ∆Hb(calc) values were calculated
using ∆rH values and the regression coefficients (Equation (3)).

4. Conclusions

Structure-based calculation of binding thermodynamics is challenging at the QM level.
To overcome the limitations of system size and hydration, a new protocol was introduced combining
a MobyWat-based prediction of hydration structure with Fragmenter, a tool designed for extraction
of the target-ligand interface with peptide fragments representing the target molecule. The protocol
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allowed fast QM calculations on a series of target-ligand interfaces with systematically adjusted
hydration models. High correlations were achieved with a hybrid model involving a shell of explicit
water molecules of calculated positions and the implicit solvation method COSMO. At semi-empirical
QM level, and PM7 parameterization, a single, statistically significant scale factor was obtained for
conversion of calculated reaction heats into experimental binding enthalpy values. The results of the
present study will be particularly helpful in enthalpic optimization of drugs and in the molecular
design of stable complexes and new ligands, in general. Further development and tests of the protocol
have been also initiated for applications at the highest level of QM theory.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/18/
4384/s1.
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COSMO Conductor-like screening model
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QM Quantum mechanical
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58. Ferenczy, G.G.; Keserű, G.M. Thermodynamics guided lead discovery and optimization. Drug Discov. Today

2010, 15, 919–932. [CrossRef]
59. Hann, M.M.; Keserü, G.M. Finding the sweet spot: The role of nature and nurture in medicinal chemistry.

Nat. Rev. Drug. Discov. 2012, 11, 355–365. [CrossRef]
60. Zhang, D.W.; Xiang, Y.; Zhang, J.Z.H. New Advance in Computational Chemistry: Full Quantum Mechanical

ab Initio Computation of Streptavidin—Biotin Interaction Energy. J. Phys. Chem. B 2003, 107, 12039–12041.
[CrossRef]

61. Zhang, D.W.; Xiang, Y.; Gao, A.M.; Zhang, J.Z.H. Quantum mechanical map for protein-ligand binding with
application to β-trypsin/benzamidine complex. J. Chem. Phys. 2004, 120, 1145–1148. [CrossRef]

62. Brown, S.; Shirts, M.; Mobley, D. Free-energy calculations in structure-based drug design. Drug Des. Struct.

Ligand Based Approaches 2010, 2010, 61–86.
63. Klamt, A.; Schüürmann, G. COSMO: A New Approach to Dielectric Screening in Solvents with Explicit

Expressions for the Screening Energy and its Gradient. J. Chem. Soc. Perk. Trans. 1993, 2, 799–805. [CrossRef]
64. Weichenberger, C.X.; Afonine, P.V.; Kantardjieff, K.; Rupp, B. The solvent component of macromolecular

crystals. Acta Cryst. D Biol. Cryst. 2015, 71, 1023–1038. [CrossRef]
65. Halle, B. Biomolecular cryocrystallography: Structural changes during flash-cooling. Proc. Natl. Acad.

Sci. USA 2004, 101, 4793–4798. [CrossRef]
66. Schmidtke, P.; Barril, X.; Luque, F.J.; Murray, J.B. Shielded hydrogen bonds as structural determinants of

binding kinetics: Application in drug design. J. Am. Chem. Soc. 2011, 133, 18903–18910. [CrossRef]
67. Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E.

The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [CrossRef]
68. Guex, N.; Peitsch, M.C. SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein

modeling. Electrophoresis 1997, 18, 2714–2723. [CrossRef]
69. Schrödinger Release 2019-3: Maestro; Schrödinger, LLC: New York, NY, USA, 2019.
70. Wang, J.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A. Development and testing of a general Amber

force field. J. Comput. Chem. 2004, 25, 1157–1174. [CrossRef]
71. Gille, A.L.; Dutmer, B.C.; Gilbert, T.M. PCMODEL 9.2. J. Am. Chem. Soc. 2009, 131, 5714. [CrossRef]
72. Halgren, T. Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94.

J. Comput. Chem. 1996, 17, 490–519. [CrossRef]
73. Stewart, J.J.P. MOPAC2009, 2009; Steward Computational Chemistry: Colorado Springs, CO, USA, 2008.
74. Stewart, J.J.P. Optimization of parameters for semiempirical methods V: Modification of NDDO

approximations and application to 70 elements. J. Mol. Model. 2007, 13, 1173–1213. [CrossRef]
75. Vanquelef, E.; Simon, S.; Marquant, G.; Garcia, E.; Klimerak, G.; Delepine, J.C.; Cieplak, P.; Dupradeau, F.Y.

R.E.D. Server: A web service for deriving RESP and ESP charges and building force field libraries for new
molecules and molecular fragments. Nucleic Acids Res. 2011, 39, W511–W517. [CrossRef]

76. Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.;
Mennucci, B.; Petersson, G.A.; et al. Gaussian 09; Gaussian, Inc.: Wallingford, CT, USA, 2009.

77. Krishnan, R.; Binkley, J.S.; Seeger, R.; Pople, J.A. Self-consistent molecular-orbital methods. XX. Basis set for
correlated wave-functions. J. Chem. Phys. 1980, 72, 650–654. [CrossRef]

               hetenyi.csaba_83_23



Int. J. Mol. Sci. 2019, 20, 4384 19 of 19

78. Schmidt, M.W.; Baldridge, K.K.; Boatz, J.A.; Elbert, S.T.; Gordon, M.S.; Jensen, J.H.; Koseki, S.; Matsunaga, N.;
Nguyen, K.A.; Su, S.J.; et al. General atomic and molecular electronic-structure system. J. Comp. Chem. 1993,
14, 1347–1363. [CrossRef]

79. Case, D.; Darden, T.; Cheatham Iii, T.; Simmerling, C.; Wang, J.; Duke, R.; Luo, R.; Walker, R.; Zhang, W.;
Merz, K. AmberTools, 15; Amber; University of California: San Francisco, CA, USA, 2015.

80. Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance
molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1,
19–25. [CrossRef]

81. Pronk, S.; Pall, S.; Schulz, R.; Larsson, P.; Bjelkmar, P.; Apostolov, R.; Shirts, M.R.; Smith, J.C.; Kasson, P.M.;
van der Spoel, D.; et al. GROMACS 4.5: A high-throughput and highly parallel open source molecular
simulation toolkit. Bioinformatics 2013, 29, 845–854. [CrossRef]

82. Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of simple potential
functions for simulating liquid water. J. Chem. Phys. 1983, 79, 926–935. [CrossRef]

83. Lindorff-Larsen, K.; Piana, S.; Palmo, K.; Maragakis, P.; Klepeis, J.L.; Dror, R.O.; Shaw, D.E. Improved
side-chain torsion potentials for the Amber ff99SB protein force field. Proteins 2010, 78, 1950–1958. [CrossRef]

84. Bussi, G.; Donadio, D.; Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 2007,
126, 014101. [CrossRef]

85. Darden, T.; York, D.; Pedersen, L. Particle Mesh Ewald—An N.log(N) method for Ewald sums in large
systems. J. Chem. Phys. 1993, 98, 10089–10092. [CrossRef]

86. Nose, S.; Klein, M.L. Constant pressure molecular-dynamics for molecular systems. Mol. Phys. 1983, 50,
1055–1076. [CrossRef]

87. Parrinello, M.; Rahman, A. Polymorphic transitions in single-crystals—A new molecular-dynamics method.
J. Appl. Phys. 1981, 52, 7182–7190. [CrossRef]

88. O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An open
chemical toolbox. J. Cheminform. 2011, 3, 33. [CrossRef]

89. Wang, J.; Cieplak, P.; Li, J.; Cai, Q.; Hsieh, M.J.; Luo, R.; Duan, Y. Development of polarizable models for
molecular mechanical calculations. 4. van der Waals parametrization. J. Phys. Chem. B 2012, 116, 7088–7101.
[CrossRef]

90. Hanson, R.M.; Prilusky, J.; Renjian, Z.; Nakane, T.; Sussman, J.L. JSmol and the Next-Generation Web-Based
Representation of 3D Molecular Structure as Applied to Proteopedia. Isr. J. Chem. 2013, 53, 207–216.
[CrossRef]

91. Stewart, J.J.P. Openmopac Online Manual. 2016. Available online: http://www.openmopac.net (accessed on
1 March 2013).

92. Stewart, J.J.P. Optimization of parameters for semiempirical methods VI: More modifications to the NDDO
approximations and re-optimization of parameters. J. Mol. Model. 2013, 19, 1–32. [CrossRef]

93. Stewart, J.J.P. Application of localized molecular orbitals to the solution of semiempirical self-consistent field
equations. Int. J. Quant. Chem. 1996, 58, 133–146. [CrossRef]

94. Baker, J. An Algorithm for the Location of Transition States. J. Comp. Chem. 1986, 7, 385. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

               hetenyi.csaba_83_23



   

       

               hetenyi.csaba_83_23



   

D270       

               hetenyi.csaba_83_23



   

       

               hetenyi.csaba_83_23



31714 |  Phys. Chem. Chem. Phys., 2023, 25, 31714–31725 This journal is © the Owner Societies 2023

Cite this: Phys. Chem. Chem. Phys.,

2023, 25, 31714

Target–ligand binding affinity from single point
enthalpy calculation and elemental composition†

Viktor Szél, Balázs Zoltán Zsidó, Norbert Jeszen +oi and Csaba Hetényi *

Reliable target–ligand binding thermodynamics data are essential for successful drug design and mole-

cular engineering projects. Besides experimental methods, a number of theoretical approaches have

been introduced for the generation of binding thermodynamics data. However, available approaches

often neglect electronic effects or explicit water molecules influencing target–ligand interactions. To

handle electronic effects within a reasonable time frame, we introduce a fast calculator QMH-L using a

single target–ligand complex structure pre-optimized at the molecular mechanics level. QMH-L is

composed of the semi-empirical quantum mechanics calculation of binding enthalpy with predicted

explicit water molecules at the complex interface, and a simple descriptor based on the elemental

composition of the ligand. QMH-L estimates the target–ligand binding free energy with a root mean

square error (RMSE) of 0.94 kcal molÿ1. The calculations also provide binding enthalpy values and they

were compared with experimental binding thermodynamics data collected from the most reliable iso-

thermal titration calorimetry studies of systems including various protein targets and challenging, large

peptide ligands with a molecular weight of up to 2–3 thousand. The single point enthalpy calculations

of QMH-L require modest computational resources and are based on short runs with open source and/

or free software like Gromacs, Mopac, MobyWat, and Fragmenter. QMH-L can be applied for fast,

automated scoring of drug candidates during a virtual screen, enthalpic engineering of new ligands or

thermodynamic explanation of complex interactions.

Introduction

Prediction of the binding affinity of target–ligand complexes is
a cornerstone of drug design and molecular engineering.
Correct estimation of binding affinity is a key to identification
of potent ligands in the early (screening) stages and also saves
time by reducing the amount of costly synthesis and testing
steps.1–3 The binding affinity of a target–ligand complex is
expressed in terms of binding free energy (DGb).

4–6 The calcu-
lated DGb also guides the ranking and selection of the best
binding modes during computational docking of the ligand to
the target. DGb is composed of binding enthalpy (DHb) and
entropy (DSb) according to DGb = DHb ÿ TDSb (where T is the
thermodynamic temperature). While DSb measures the change
of energy partitioning among available degrees of freedom7

(change of the degree of disorder), DHb accounts for the change
of interactions8,9 between the ligand, the surrounding target,
and the water molecules.

Numerous scoring methods have been introduced10–15 and
modified16 for the fast calculation of DGb using the formulae of
molecular mechanics (MM) force fields accounting for the
enthalpic contributions like van der Waals, electrostatic and
hydrogen-bonding interactions. The MM-based scoring func-
tions have improved a lot since the early 1990s,6,17–21 and are
fairly successful in ranking and selection of correct binding
modes during computational docking.10,11,22 At the same time,
they show a relatively large error22 if correlated with experimental
DGb data. These limitations of MM-based scoring functions may
originate from the lack of calculation of electronic effects, such as
polarization, hydrogen bonding, aromatic interactions,11,23 and
poor representation of entropic contributions.6 In addition,
despite the importance24 of explicit water molecules interacting
with the solute (target and ligand) partners, they are generally
absent during docking and scoring, and the implemented implicit
solvent models often cannot provide precise results.25

A recent increase in computational speed allowed the devel-
opment of quantum mechanics (QM) scoring approaches
for the handling of the above-mentioned electronic effects
(Table 1). However, relatively few QM-based studies performed
a systematic correlation of calculated and experimental DGb

(Table 1) values. It was shown that cutting out the interfacial
regions of the complex including the ligand and the
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surrounding interacting target residues (fragments) can help to
reduce system size and computational costs.23,26,27 This frag-
menting (Fig. 1) approximation was applied on twenty-five
complex structures for the estimation of DGb

23 with an inter-
action energy calculation at the Hartree–Fock (HF) and compo-
site hybrid PBEh-3c density-functional theory (DFT) levels, in
combination with a DFTB3-D3 thermostatic correction sup-
ported by a conductor-like screening model for real solvents
(COSMO-RS)36 for solvation effects. Other studies also applied
target fragmenting successfully,28,30,37 and therefore, it was
proved to be a valid approach of speeding up QM calculations
of ligand–target complexes. While target fragmenting consider-
ably speeds up calculations, the full optimization process at the
QM level still requires considerable time for large ligands even
at the semi-empirical level. While there are promising
studies,38 it has not been thoroughly investigated whether

single point self-consistent field (1SCF) calculations after fast
MM-preoptimization of the complex can substitute QM opti-
mization in DHb calculations.

Prediction of DHb alone is also important for at least two
reasons. Firstly, DHb is a component of DGb (dominant in a
large number of target–ligand complexes), and used as a
separate term in the scoring functions (see the footnotes of
Table 1). Such QM-based DGb calculators (Table 1) tend to
estimate DHb at the HF level with semi-empirical parametriza-
tions Austin Model 1 (AM1), Parametric Method 3 (PM3), PM6
or PM729,35,39–41 and classical approximations are introduced
for the estimation of entropic changes and implicit
solvation.27,39 Secondly, DHb is key to the efficiency and selec-
tivity of the ligands. A favourable (large negative) DHb likely
results in strong and specific interactions42 and drugs of
increased efficiency.43–46 Calculated DHb is also promising in

Table 1 Previous studies on quantum chemical calculation of binding thermodynamics quantities of target–ligand complexes

Study

Number of
systems
(sub-set)

MW of
largest
ligand

Calculated
quantity

Predicted
quantitya R2 (best)

Regression
errorb

(kcal molÿ1) Calculation method

Nikitina et al.
(2004)28

8 (full set) 700 DHb DHb — 1.85b PM3-M,d calculated water positions

Raha et al.
(2005)29

165 (full set) 1535 DGb DGb 0.55 1.98b PM3 interaction energy, Lennard-Jones term,
Poisson–Boltzmann solvation, empirical disper-
sion and conformational entropyf

57 (Wang subset) na DHb 0.46 — PM3
16 (SPI subset) 613 (na) 0.88 — PM3

Nikitina et al.
(2006)30

12 (full set) 507 DHb DHb 0.96 0.93b PM3-C,e calculated water positions

Fanfrlı́k et al.
(2010)31

11 (HIV-1 protease subset) 705 DGb DGb 0.71 — PM6-DH2-Md-Ce enthalpy, rigid-rotor harmonic
oscillator entropy, ligand desolvation (SMD)f

DHb 0.10 — PM6-DH2-Md enthalpy
Dobes et al.
(2011)32

15 (full set) 482 DGb DGb 0.52 4.31b PM6-DH2-Md-Ce enthalpy, rigid rotor harmonic
oscillator entropy, ligand desolvation (SMD)g

15 (full set) DHb 0.87 1.17b PM6-DH2-Md-Ce enthalpy
Gonzalez
et al. (2017)33

8 (HLA-DR1 subset) 1506 DHb ln(IC50) 0.81 — PM7-C,e crystallographic waters
Electronic
interaction
energy

0.81 — FMO-DFTB, crystallographic waters

14 (HLA-DR2 subset) DHb 0.61 — PM7-C,e crystallographic waters
Electronic
interaction
energy

0.75 — FMO-DFTB, crystallographic waters

Ehrlich et al.
(2017)23

25 (Fxa subset) 548 DGb DGb 0.47 2.8c HF-3c electronic energy, DFTB3-3D thermostatic
correction, Ce-RS solvation free energyh16 (TYK2 subset) 392 0.55 2.7c

Hylsová et al.
(2017)34

21 (full set) 562 DGb ln(IC50) 0.68 — DFT-D3 and PM6-D3X4-Ce combined, crystal-
lographic and predicted watersi

Pecina et al.
(2018)35

10 (full set) 391 DGb DGb 0.69 — DFTB3-D3H4X interaction energy, PM6-Md-C,e

crystallographic waters, based on 10 docked
poses

0.58 DFTB3-D3H4X interaction energy, PM6-Md-Ce

0.56 DFTB3-D3H4X interaction energy, PM6-Md-C,e

crystallographic waters, based on one
conformation

Horváth et al.
(2019)26

15 (full set) 3318 DHb DHb 0.93 2.65b PM7-Md-Ce, calculated waters

a A measured quantity correlated with the calculated quantity. b Root mean square error (RMSE). c Mean absolute deviation. d MOZYME linear
scaling method. e COSMO implicit solvation model. f

DGb = DHb + DLJ6 + DDGsolv + DSsolv + DSconf, where DHb is the enthalpy of binding, DLJ6 is the
Lennard-Jones term, DDGsolv is the solvation free energy change during complexation, DSsolv is the solvent entropy change, and DSconf is the
conformational entropy change. g

DGb = DHb + TDS + DEdef(ligand) + DDGsolv(ligand), where DHb is the binding enthalpy, TDS is the rigid rotor
harmonic oscillator entropic term, DEdef(ligand) is the deformation energy for the ligand, and DDGsolv(ligand) is the solvation free energy change
for the ligand. h

DGb = DEel + DGRRHO + DGsolv, where DEel is the electronic interaction energy, DGRRHO is the rigid rotor harmonic oscillator
entropic term, and DGsolv is the solvation free energy change. i

DGb ¼ DEint þ DDGsolv þ DG
0
w

conf
ðLÞ ÿ TDSsolv, where DEint is the gas-phase

interaction energy, DDGsolv is the interaction solvation/desolvation free energy, DG
0
w

conf
ðLÞ is the change of the conformational free energy of the

ligand, and DSsolv is the entropy of the explicit water molecules.
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prediction of binding selectivity. It has been shown47 that
relative differences in DHb values of a set of ligands calculated
by a PM7/MOZYME/COSMO combination correlated well (R =
0.7) with relative IC50 values measured on Src homology region
2 domain-containing phosphatase targets. This combination of
the semi-empirical QM approaches with COSMO implicit sol-
vent model for the calculation of DHb has been a choice in
various studies with PM3,28,30 PM648 and PM733,49 parametriza-
tions among which PM7 may be considered as the most robust
one.50 In a comparative study, PM7 outperformed PM6, PM6-
DH+, and PM6-D3 methods in differentiating between decoy
versus native docked poses based on single-point complex
formation enthalpies,51 and similar results were obtained with
PM7/COSMO.52

While the above studies (Table 1) hint that application of the
COSMO solvent model is useful in QM-based DHb calculations,
there are many situations in drug design25 where the use of
explicit water molecules would be advantageous.53 For example,
in the case of large, peptide or charged ligands with numerous
and/or highly occupied hydration sites, appropriate modeling of
the water structure is necessary. However, there are relatively few
studies26,28,30,34,53 that published correlations on target–ligand
complex structures equipped with explicit water molecules.

In the present study, we investigate if the estimation of DHb

is possible using an appropriately hydrated, MM-optimized
complex structure and 1SCF calculation at the semi-empirical
QM level. We also test the combination of the calculated DHb

with ligand-based descriptors to develop a DGb calculator for
fast scoring of target–ligand complex structures obtained from
experiments or docking calculations.

Methods
Systems and data

The selection of target–ligand complex systems was directed by
the availability of accurate isothermal titration calorimetry
(ITC) data (both DHb and DGb) and the related experimental

complex structure (preferably X-ray or NMR). The present study
aims at calculation of both DHb and DGb for all systems, and
ITC is the only method which measures both quantities.
Collections of only Kd, Ki, or IC50 values were not considered
for the present study. Thus, ITC databases or studies investigat-
ing protonation–deprotonation processes in different buffers
were preferred, since it is a crucial aspect of accurate thermo-
dynamic measurement.54 In a few cases, raw data were cor-
rected for the proton transfer (Table S1, ESI†). Most of ITC
measurements were conducted at 298.15 K, however in four
cases (1py1, 2v8c, 2v8f, 1axc) the temperature was 303.15 K and
in one case (2ke1) 296.15 K (Table S1, ESI†). Without measured
heat capacities these binding enthalpies could not be converted
to their respective values at 298.15 K. However for 3ptb systems
(3ptb, 3ptb_pme, 3ptb_pam, 3ptb_pmo, 3ptb_pad) recalculated
data were used (from 298.25 to 298.15 K) from the previous
study26 (Table S1, ESI†).

All target–ligand complex structures were obtained from the
Protein Databank (Table S1, ESI†). Fitted crystallographic water
and other solvent molecules, ions were removed. Missing
atoms of target residues were reconstructed with Swiss PDB
Viewer.55 In cases of homo-oligomer structures, chain A was
selected for calculations. In the case of 1axc, 1jyr, 2roc, 2v8c,
2v8f and 3ask missing ligand residues were reconstructed with
PyMol. For 1abo,1bbz, 1hcs, 1lcj, 4j9f, 4j9g and 4j9i acetyl and
amido caps were also added to ligands in agreement with ITC
measurements.

Non-standard amino acid residues among the systems were
phosphotyrosine, phosphoserine and trimethyllysine for which
molecular mechanics force field parameters were determined
as described in a previous study.26

MM energy-minimization and molecular dynamics

The following procedure (Fig. 2a) was applied on all systems in
Table S1 (ESI†) except the ones that were prepared in the same
way in our previous study.26 According to the MobyWat surface
and interface hydration procedures,56 the procedure was
applied first on the (dry) target and subsequently on the
target–ligand complex, respectively.

The MobyWat M3 procedure produces a void-free hydration
structure.56 Prior to molecular dynamics runs, the target
(complex) structures were energy-minimized with molecular
mechanics in a two-step fashion including steepest descent
(sd) and conjugate gradient (cg) algorithms. The hydrogenated
structures were placed in a cubic box using a distance criterion
of 1 nm between the solute and the edge of the container.
The box was filled up with explicit TIP3P water molecules and
(if it was necessary) counter-ions (sodium or chloride) were
added to neutralize the system. Exit tolerance levels were set to
103 and 10 kJ molÿ1 nmÿ1 while maximum step sizes were set
to 0.5 and 0.05 nm for the sd and cg steps, respectively. Position
restraints were applied on solute heavy atoms at a force con-
stant of 103 kJ molÿ1 nmÿ2. Calculations were performed with
programs of the GROMACS software package,57 using the
AMBER99SB-ILDN force field.58

Fig. 1 Fragmenting approaches generate target fragments (peptides or
amino acids) surrounding the ligand molecule. For example, in the present
study, the structure of human growth factor receptor bound protein 7 src-
homology 2 domain (Grb7 SH2) (target, blue cartoon) was one of the
targets investigated in complex with PQPE-pY-VNQPD peptide (ligand,
space filling or sticks). The ligand-binding pocket of the raw PDB structure
(grey dashed frame on the left, PDB ID 1mw4) was converted into the
hydrated, energy-minimized, and extracted interface structure (on the
right) containing fragments of the target. The conversion procedure was
performed by key programs MobyWat, Gromacs, and Fragmenter, used for
the prediction of water positions, energy-minimization, and fragmenta-
tion, respectively, as described in the Methods section.
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After energy-minimization, 1 ns-long NPT MD simulation
was carried out with a time step of 2 fs on both target (complex)
structures. Position restraints were applied on solute heavy
atoms at a force constant of 103 kJ molÿ1 nmÿ2 to limit their
movement and make the hydration spots directly comparable.
For temperature-coupling the velocity rescale and the Parri-
nello–Rahman algorithms59–61 were used. Solute and solvent
were coupled separately with a reference temperature of 300 K
and a coupling time constant of 0.1 ps. Pressure was coupled
using the Parrinello–Rahman algorithm and with a coupling
time constant of 0.5 ps, compressibility of 4.5 � 10ÿ5 barÿ1 and
reference pressure of 1 bar. Particle Mesh–Ewald summation
was used for long range electrostatics. van der Waals and
Coulomb interactions had a cut-off at 11 Å. Coordinates were
saved at regular time-intervals of 1 ps yielding 1 � 103 frames.
Periodic boundary conditions were treated before analysis to
make the solute whole and recover hydrated solute structures
centered in the box. Each frame was fit to the original protein
crystal structure using Ca atoms to make them suitable for
MobyWat. The final trajectory including all atomic coordinates
of all frames was converted to portable binary files.

Calculation and optimization of interfacial water positions

The interface water positions were calculated56 from the above
MD trajectories with the all-inclusive identity based (IDa) algo-
rithm of the program MobyWat.62 The maximum distances
from the target (dmax), prediction (ptol) and clustering toler-
ances (ctol) were set to 5, 2.5 and 1 Å, respectively. MobyWat

calculation of interface water molecules was performed in two
main steps. In the first main step, surface water positions were
calculated from MD trajectories of the hydrated target molecule.
For this, MobyWat first selected candidate water molecules for all
frames based on a desired distance limit (dmax) from the target,
then an occupancy list was constructed containing every different
water ID on different lines in decreasing order with respect to the
number of occurrences among all frames. Clustering was applied
to all rows (all different water IDs) of the occupancy list using the
ctol parameter to define the distance between elements of the
same cluster. The largest cluster was selected from all clusters to
give the first predicted water oxygen atom by averaging the spatial
coordinates of includedmolecules. In the next steps, clusters were
selected in a descending order of their sizes, and checked if their
distance was larger than the prediction tolerance (ptol) from
previously predicted water oxygen positions to give further pre-
dicted oxygen positions until all clusters are done. Finally target,
ligand and predicted water oxygen atoms were merged together
excluding clashing water oxygens with the Editing mode of
MobyWat to produce the starting for the second main step.

In the second main step, the whole previous procedure was
repeated for the assembled target–ligand complex equipped
with predicted water oxygens (surface) from the first step
including hydrogenation, minimization, molecular dynamics
and MobyWat prediction with dmax, ptol and ctol set to 5, 3,
and 3 Å, respectively, to obtain an appropriately hydrated
interface.

As a final MM optimization of the hydrated complex, hydro-
gen atoms were added to the system (including interface water
oxygens from MobyWat) and energy minimization was per-
formed according to a four-step protocol56 of sd-cg-sd-cg pat-
tern with parameters of sd and cg methods described
previously. During the first two steps, all solute heavy atoms
and the oxygen of the predicted interface water molecules were
position restrained and bulk waters and ions were released. In
the last two steps, position restraints were not applied on
predicted waters, only on solute heavy atoms.

Single point QM calculation

The interface regions of the above MM-optimized, hydrated
complex systems were extracted using the Fragmenter server.52

In the interface region, the Fragmenter retained peptide frag-
ments of the target together with bound ligand and interfacial
water molecules. In this way, the calculation time can be reduced,
using the extracted interface instead of the whole complex. In the
Fragmenter step, the target–ligand and solute-water cut-off dis-
tances were both set to 5 Å and edges were equipped with acetyl
(N-terminal) or methylamino (C-terminal) groups.

DfH values were calculated with Mopac 201663 using PM764

PM6-DH2X65,66 and PM6-D3H4X65,66 parametrizations. DfH

values were separately calculated for the extracted, hydrated
complex interface, the target fragments, and the ligand in their
bound conformations. Only one self-consistent field iteration
was applied with the 1SCF keyword. Charges of input structures
were assigned manually as the sum of consisting amino acid
and other charged groups (Table S2, ESI†). The non-vacuum

Fig. 2 (a) Key steps of the calculation of a reaction enthalpy value of
ligand binding from the target–ligand complex structure. The present
study focuses on the single-point (1SCF, thick arrows) alternative. (b) The
procedure used for generating, filtering and selecting ligand-based
descriptors for calculation of DGb.
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calculations were performed utilizing the COSMO67 solvation
model setting relative permittivity to 78.3 as a specific value for
aqueous medium. Calculation of larger systems (number of
atoms 41000) with COSMO also requires the faster localized
molecular orbital approach of MOZYME68 in Mopac. Notably,
in the case of single-point calculation, the results are essentially
identical with and without MOZYME. DfH of a single water
molecule was also calculated for the use in eqn (1). DfH(H2O) of
ÿ57.65, ÿ65.03, and ÿ65.20 kcal molÿ1 values were obtained in
the case of vacuum, COSMO solvent model after MM mini-
mization, and after QM minimization, respectively. All files of
single point QM calculations and raw DfH values are available
online (see the section on data availability).

QM minimization

For comparison with the results of single point calculations,
full QM energy minimization was also performed on the
molecules described in the previous section using PM7 para-
metrization with MOZYME, COSMO solvation and L-BFGS
optimization algorithm.63 The gradient norm for all calcula-
tions was set to 3 kcal molÿ1 Åÿ1 (keyword GNORM) which is a
reasonable limit taking into consideration that it is usually
reachable even for bigger systems, furthermore DfHs do not
change significantly (o1%) after the gradient drops below 3. In
some cases, the calculations were stopped even before reaching
the gradient limit, and DfH became stationary. All files of QM
minimizations and raw DfH values are available online (see the
section on data availability).

Generation of the descriptor pool

Descriptors were generated (Fig. 2b) for all ligands with the
PaDEL-Descriptor program package.69 Besides the original
‘‘parents’’, additional ‘‘daughter’’ descriptors were also derived
by normalization with the total number of atoms (NA) in the
molecule. 1444 unique descriptors were generated and further
investigated. The generation of 814 descriptors was incomplete
as the program was unable to produce values for all ligands in
their cases. These incomplete (na/infinity) or all-zero descrip-
tors were excluded from statistical analyses. The remaining
descriptors were further filtered into a sub-set if they had a
correlation of an R2 of at least 0.09 (|r| Z 0.30) with DGb, and a
correlation of a maximal R2 of 0.04 (|r| o 0.20) with DrH. The
R2 = 0.09 threshold was chosen according to the 95% confidence
interval for r is [ÿ0.30,0.30] assuming H0: r = 0 according to
Fisher’s method70 for N = 43 assuming normal distribution.
From among the remaining 31 descriptors (Fig. 2b) further
ones lacking generalizability with very specific atom and ring
counts were omitted. Finally the best 3 descriptors were
selected based on minimal correlation with DrH minimizing
collinearity for regression analysis (Table S3, ESI†). For the
historical record, we would mention that program Codessa (ver.
2.20)71,72 was also applied on the full data set for initial
guessing of the ligand-based descriptor as a second variable
in the DGb calculator equation. The MW/NA descriptor was
identified (where MW is the molecular weight) indeed with
Codessa and the (successful) idea of the above normalization of

parent descriptors by NA was inspired by this finding. Notably,
we could not use the executable of this ‘‘old’’ version of Codessa
on MSWindows, but it still worked under the wine-4.5 windows
emulator of Fedora Core Linux 29 with somewhat limited
functionality.

Statistics

Simple (eqn (2)) or multiple (eqn (3)) linear regression analyses
were performed with (b a 0) and without (b = 0) intercept
between the calculated (predictor, x) and experimental (outcome, y)
variables including all investigated systems. The program R73

was applied for all analyses. The goodness of fit was measured
by the coefficient of determination (R2) and the stability of the
models was featured by leave-one-out cross-validated R2 values.
The global error of the models was expressed as the root mean
squared error (RMSE). Significance (p-values) of the regression
coefficients (a and b) was calculated by a two-sided t-test at 0.05
significance level. Further detailed statistical parameters
including residuals (e) and errors of the regression coefficients
can be found in the respective tables in the ESI.†

A stepwise, systematic procedure was followed for the exclu-
sion of the outliers. The procedure started with fitting the
linear model (ba 0) to the full dataset and the data point with
the largest absolute residual (e) was excluded. The fitting and
exclusion steps were repeated for the reduced data sets until the
RMSE dropped below a pre-set limit of 2.65 kcal molÿ1 in the
case of model Hybrid 1. For comparability, the same number of
data points (No = 12 in Table S5, ESI†) were left out in all
tailored sets of all DHb models. In the case of DGb models, an
RMSE limit of 1.00 kcal molÿ1 was applied for the termination
of the procedure and finally the same 5 data points were
excluded in the cases of both descriptors in Table S14 (ESI†).

Results and discussion
Systems and models

The main criteria of the collection of a set of target–ligand
complexes (Table S1, ESI†) were the availability of both experi-
mental DHb and DGb values from high quality ITC measure-
ments, and atomic resolution structure of the same complex
system in the Protein Databank (PDB).74 Thus, our results are
based on experimental data both on the input (structure) and
output (DHb and DGb) sides. Additional structural calculations
using MobyWat56,62 contributed optimized water positions.

Notably, the number of systems fulfilling the above selection
criteria is rather limited especially at large, negative DHb values
that are essential for a solid correlation with a large data range.
Finally, a set of N = 43 systems (Table S1, ESI†) were collected
also including peptide ligands and 15 systems from our pre-
vious study.26

For each complex, an end-point approach was applied for
the estimation of DHb from the calculated enthalpy of reaction
(DrH, eqn (1)) of the binding process. A simple linear regression
(eqn (2), where a and b are regression coefficients, e is the
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residual, and N is the count of complex systems) was used as a
statistical model.

Target[H2O]x + ligand[H2O]y + z H2O = target:ligand[H2O]x+y+z

DrH = DfH(target:ligand[H2O]x+y+z) – DfH(target[H2O]x) –
DfH(ligand[H2O]y) – z DfH(H2O) (1)

DHb,i (exp) = DHb,i (calc) + ei = aDrHi + b + ei; i = 1, 2, . . ., N
(2)

DrH was obtained from the calculated enthalpy of formation
(DfH) values of the reaction partners according to Hess’s law
(eqn (1)). The energy-minimized, hydrated,56,62 and extracted
interface structures (Fig. 1) were used for calculation of DfH

values at the semi-empirical QM level with PM7 paramet-
rization.26 Interface structures from both MM and QM
energy-minimizations were used for calculation of DfH. In the
case of MM-minimized structures, a single-point QM calcula-
tion of DfH was performed (referred to as 1SCF calculations in
the present study). Hydration effects were included by the
COSMO implicit67 and hybrid (implicit + explicit26) water
models. Three hybrid models were investigated depending on
the assignation of explicit water molecules (Fig. S1, ESI†).
Vacuum calculations were also performed for comparison.
The technical details of the calculations are described in the

Methods section, the technical details of the protocol, the
resulted raw data files including input and output structures,
and DfH and DrH values are available online (see the section on
data availability).

Comparison of binding enthalpy models

In the first part of the study, the MM-minimized structures and
1SCF calculations were used to produce DrH for the linear
regressions of eqn (2) without intercept (b = 0). The final results
for a tailored set (N = 31) in terms of the squared correlation
coefficient (R2) and the root mean square error (RMSE) values
are shown in Fig. 3a. It was found that the hybrid water model
outperformed the implicit and explicit water models alone, and
vacuum calculations resulted in very weak correlations if any.
The best statistics (an RMSE of 2.84 kcal molÿ1 and an R2 of
0.93, Table S4, ESI†) were obtained for the Hybrid 1 model. This
is comparable to other results in the literature based on a
similar number of data points (Table 1, ESI†). The tailored set
was constructed by a systematic exclusion of data points using a
stepwise re-fitting procedure (Methods; Table S6, ESI†) from
the full set (N = 43). This exclusion of data points of large
residuals (ei in eqn (1)) is quite common and necessary to avoid
any unwanted influence of these points biasing the least
squares fit regression results. Large residuals may originate

Fig. 3 (a) Comparison of the performance of hydration models used for single point calculation of binding enthalpy. R2 (left) and RMSE (middle) values of
linear regressions (b = 0) between calculated and experimental binding enthalpies are shown for the tailored (N = 31) data set. On the right the correlation
plots between calculated and experimental binding enthalpies are also shown for the best model (Hybrid 1). Regression equations with the value a(�Da)
are displayed below. (b) Comparison of the results obtained using different semi-empirical parametrizations. Correlation plots between binding
enthalpies calculated (single point QM, Hybrid 3 model, b = 0, N = 43) with PM7 and PM6-D3H4X (left), or PM6-DH2X (right) methods.
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from the inaccuracy of the models and/or the error of isother-
mal titration calorimetric (ITC) measurements of the experi-
mental DHb values used for the linear regression (eqn (2)).
Although ITC is the most reliable source of available binding
thermodynamics data, the error of ITC measurements can be as
large as 20% of the measured value.54,75 This relatively large
experimental error is often rooted in the inaccuracy of deter-
mination of protein (target) concentration, which alone can be
as large as 10% as shown by an inter-laboratory study.76

Analytical studies show that the most reliable and advised
protein quantification methods are based on amino acid
analysis.77,78 Unfortunately, in ITC studies, amino acid analysis
has been very rarely (almost never) considered and the much
less accurate78 direct single UV spectrophotometric measure-
ment has been applied instead, which was also the case (Table
S6, ESI†) for the ITC data used in the present study. Thus, a
20% error of DHb can be expected which can be as large as
4–5 kcal molÿ1 if considering the system with the largest DHb in
our study (Table S1, ESI†). The results for the full set (N = 43,
Table S7 and Fig. S2, ESI†) also emphasize the best perfor-
mance of the hybrid models. It is important that the regression
coefficients (a in eqn (2)) obtained for the full (Fig. S2, ESI†)
and tailored (Fig. 3a) sets, respectively, have less than 15%
difference in their values also indicating the stability of the
linear model obtained. Simple linear regressions were also
performed with an intercept (b a 0) and resulted in similar
trends as the above results with b = 0. However, the relatively
high error of b (Tables S8 and S9, ESI†) shows that the use of
the intercept does not increase the significance and quality of
the models that was also concluded in our previous study.26

We also investigated if the time-consuming QM minimiza-
tion step formerly used in our26 and other31 studies further
improves the results or not. Thus, QM minimizations of the
extracted interfaces were performed for all systems (see the
Methods section). A comparison of the statistical results of
the 1SCF and QM-minimized approaches does not show (Table
S10, ESI†) any improvement after QM minimization in the DHb

calculation.
Finally, a comparison of the performance of different semi-

empirical QM parametrizations was performed, and the 1SCF
calculations were repeated using PM6-DH2X65,79,80 and PM6-
D3H4X65,66,79 parametrizations which were reported50 to pro-
duce slightly better intermolecular interaction energy values
than PM7. The correlation plots (Fig. 3b) and statistical para-
meters (Table S11, ESI†) show that there is no significant
difference in the 1SCF calculation results for the full and
tailored sets between the performance of PM7 and the other
two semi-empirical QM parametrizations. These results further
emphasize the reproducibility and robustness of the above DHb

calculation protocol based on a single-point MM minimization
followed by 1SCF QM scoring at the semi-empirical level.

Calculation of binding free energy

Accurate DGb values are inevitable for the selection of the best
drug candidates and also direct the computational docking
procedures (see the Introduction section). However, DGb

calculators are often challenged by the missing or incorrectly
assigned water structure around the ligand molecule. As the
Hybrid 1 model provided good correlations with experimental
DHb in the previous section, we speculated if the calculated,
QM-based DrH’s can be combined with ligand-based descrip-
tors for the construction of new DGb calculators similarly to
previous, MM-based scoring function developments.16,17,19 For
this, multiple linear regressions (MLR’s) were carried out
systematically using DrH (from the Hybrid 1 model) as a first
variable (eqn (3) where a1, a2, and b are regression coefficients, e
is the residual, and N is the count of complex systems). The
second variable (DL in eqn (3)) was selected from among 1444
ligand-based descriptors through systematic filtering of the
descriptor pool (Methods; Table S12, ESI†) resulting in 31
descriptors (Methods; Table S13, ESI†).

DGb,i (exp) = DGb,i (calc) + ei = a1DrHi + a2DLi + b + ei; i = 1,2, . . ., N
(3)

The final hits were shortlisted (Table S13, ESI†) and the top
descriptor NHA/NA was finally selected as DL according to its
significance, generalizability, and predictive power. NHA/NA is
a ‘‘daughter’’ obtained by normalization of a ‘‘parent’’ descrip-
tor (the number of heavy atoms, NHA) by the molecular size
(represented by the total number of atoms, NA). This normal-
ization is particularly important as the size-dependent (parent)
descriptors tend to correlate with DGb

81,82 and also with DrH

(Table S3, ESI†), as an increased ligand size often results in
more interactions with the target. However, a good MLR model
should avoid inter-correlation of the variables of eqn (3). This
requirement can be fulfilled by the daughter descriptor NHA/
NA that is size-independent and does not correlate with DrH but
is still descriptive for DGb (Fig. 4; Table S3, ESI†).

High correlations between NHA/NA and other descriptors
(Table S3, ESI†) suggest that other DL-s also predict DGb.
However, NHA/NA is the simplest choice as it can be readily
calculated from the chemical composition of the ligand. The
regressions of eqn (3) were performed with both b = 0 and ba 0
(Table S14, ESI†). After leaving out 5 outliers, the correlation
plots show an even distribution of data points around the main
diagonal indicating that our DGb calculators based on NHA/NA
(Fig. 4a and Table S14, ESI†) predict the experimental values
well. The ba 0 model showed overall better statistics and was
selected as the final equation for the new calculator named
QMH-L. (Abbreviations QMH and L refer to the QM-based
calculation of DHb, and the ligand-based descriptor, respec-
tively.) The regression metrics of our calculators (Fig. 4 and
Table S14, ESI†) are comparable to other studies using com-
bined QM-MM procedures augmented by PB(GB)SA solvation.83

The RMSE values below 1 kcal molÿ1 (Fig. 4) can be considered
as excellent.

Besides the above good statistical parameters, the physical
meaning of the terms of QMH-L can also be fully explained. As
it was shown in the previous section, DrH of eqn (3) accounts
for target–ligand interaction (and the DHb component of DGb).
The regression coefficients in the final equation (Fig. 4a) reflect
the expected physical meaning of the variables in the MLR.
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The positive sign of a1 means that a more negative DrH leads to
more favourable DGb as expected. As NHA/NA can be consid-
ered the density of heavy atoms in a ligand, the negative sign of
a2 implies that a higher density of heavy atoms contributes to a
more negative DGb (as NHA/NA 4 0 per def.). To understand

the physical meaning of NHA/NA and the negative sign of a2 at
a structural level, it is better to start with a related descriptor
NHB/NB (the ratio of the number of bonds between heavy
atoms and the number of all bonds) that can be considered
as the density of bonds between heavy atoms. NHB/NB

Fig. 4 Correlation plots between calculated and experimental binding free energies. Only DrH (single point QM, PM7, Hybrid 1 model) and an additional
ligand-based descriptor (DL) were used as variables in the regression models (b a 0, eqn (3)). (a) DL = NHA/NA and (b) DL = NHB/NB. The regression
equations are displayed below the plots, in both cases 5–5 outliers were left out (N = 38; Table S15, ESI†).

Fig. 5 The structure of three selected peptide ligands (green sticks and cartoon) in complex with their targets (blue cartoon). System IDs and values of
ligand-based descriptors are also tabulated. Kme3 and pY refer to a tri-methylated lysine, and phosphorylated tyrosine residue, respectively. While DrH

depends on molecular size (the larger the MW, the more negative the DrH), daughter descriptors NHA/NA and NHB/NB do not show correlation with
molecular size and DrH due to the normalization by NA. Long alkyl chains of K and R residues (3ql9) result in smaller NHA/NA if compared with the
relatively compact, thin ligand of system 1hcs containing side-chains with dehydrogenated, short E’s and a ring (in Y). In terms of NHA/NA, the side-chain
of K has a butylene (–C4H8–) group, which means a 1/3 contribution with a weight of 4 to the overall NHA/NA, while in E, the contribution of the ethylene
group is only 2 � 1/3 and E also has a carboxylate of a large 3/3 contribution. In Y, the phenylene ring also has a large contribution of 3/5.
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correlates with NHA/NA very well (R2 = 0.9) and also provides a
good correlation with DGb (Fig. 4b). Sample systems with
various ligands and descriptor values are shown in Fig. 5 and
a full list of descriptor values of all systems is provided in Table
S15 (ESI†). A comparison of the systems (Fig. 5) shows that
peptide ligands (Fig. 5) with several long side-chains (residues K
or R in system 3ql9) and long alkyl chains with numerous H
atoms have a small NHB/NB (or NHA/NA) while others with
compact and/or restrained side-chains, rings, unsaturated, aryl,
or carboxylate groups with no or fewer H atoms adopt inter-
mediate (0.5 in system 3ptb) or large (system 1hcs) values.
Thus, a higher NHB/NB (or NHA/NA) means a lower occurrence
of freely rotatable alkyl- or other (massively hydrogenated)
groups and describes a smaller loss of internal rotational
degrees of freedom of the ligand during binding to the target.
A value of 1/3 may be considered as a realistic lower limit of
NHA/NA which corresponds to an alkylene group (CnH2n). All-
in-all, a higher NHB/NB (or NHA/NA) corresponds to a smaller
decrease in molecular entropy (S), that is, a smaller negative
contribution to DSb, resulting in a larger negative contribution
to DGb (due to the negative sign of a2, Fig. 4). Besides internal
rotations, the loss of rotational S of the entire molecule is also
smaller for compact and thin molecules of higher NHA/NA.
Consequently, NHA/NA can be considered as an entropic term
describing the contribution of frozen rotations to DGb, which is
often approximated by the number of free torsions (Ntor) in
MM-based scoring functions. However, Ntor depends on the
ligand size (MW or NA), and therefore, it easily yields mean-
ingless positive DGb values for large, flexible ligands like
peptides, and erroneously correlates with the enthalpic term
(see the considerations above on the unwanted inter-
correlation of terms in the DGb equation). As NHA/NA is size-
independent, such limitations will not restrict its use, and
therefore, it can be considered to complement the enthalpic
terms (Coulomb, Lennard-Jones) in MM-based scoring func-
tions similar to the present case of DrH (Fig. 3a).

Conclusions

There are various MM-based methods available for calculation
of binding thermodynamics of target–ligand complexes. How-
ever, MM calculators can rarely handle electronic effects of
highly charged or polarizable systems. Interfacial water is often
involved in such effects due to its high dipole moment, further
complicating the estimation of target–ligand interactions at the
MM level. While QMmethods are expected to give a solution for
this problem, QM optimization often requires enormous com-
puter time for large target–ligand complexes. In the present
study, single point QM calculations and a hybrid water model
were tested on various systems including protein targets and
challenging, large peptide ligands with a MW up to 2–3
thousand (Fig. 5). The fragmented complex structures from
fast MM-based optimization were piped into single point QM
calculations of DHb. The precision of the present DHb calculator
is comparable to that of full length QM optimizations. At the

same time, the present approach reduced the computational
cost at least by three orders of magnitude if compared with the
full length QM minimizations. Binding data of the highest
quality ITC measurements were used for validation, and there-
fore, the test of the robustness of the calculators was possible
separately for DHb and DGb. The QM-calculated DrHs were first
tested for prediction of DHb, and then adopted for further
development of the DGb calculators. This successive building
of the calculators allowed the discovery and the elucidation of
the physical meaning of the descriptor NHA/NA which can be
simply obtained from the chemical composition of the ligand,
and completed the final calculator called QMH-L. Thus, the
final DGb equation includes only two variables, the DrH and a
ligand-based descriptor NHA/NA. Notably, NHA/NA may be
adopted by other (MM-based) scoring functions as an entropic
term complementing the enthalpic terms. The single-point
protocol and the calculators developed in the present study
offer a good compromise in terms of accuracy, applicability,
and computational cost. The calculated DHb and DGb values
involve electronic effects at the semi-empirical QM level, and
the protocol does not need further parametrization of the
ligands which is often a bottle-neck of drug screening projects.
The single point protocol requires modest computational
resources (under 1 min for the largest systems on a i5-8250U
1.6 GHz quad-core processor) and is based on short runs with
open source and/or free software like Gromacs, Mopac, Moby-
Wat, and Fragmenter. The calculators can be applied for fast,
automated scoring of drug candidates during a virtual screen,
engineering of new complexes or thermodynamic explanation
of target–ligand interactions.
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and S. M. Eyrilmez, et al., Ranking Power of the SQM/
COSMO Scoring Function on Carbonic Anhydrase II–Inhi-
bitor Complexes, Chem. Phys. Chem., 2018, 19(7), 873–879.

36 A. Klamt, Conductor-like screening model for real solvents:
A new approach to the quantitative calculation of solvation
phenomena, J. Phys. Chem., 1995, 99(7), 2224–2235.

37 C. N. Cavasotto, N. S. Adler and M. G. Aucar, Quantum
chemical approaches in structure-based virtual screening
and lead optimization, Front. Chem., 2018, 6(MAY), 1–7.

38 J. Liu, J. Wan, Y. Ren, X. Shao, X. Xu and L. Rao, DOX_BDW:
Incorporating Solvation and Desolvation Effects of Cavity
Water into Nonfitting Protein–Ligand Binding Affinity Pre-
diction, J. Chem. Inf. Model., 2023, 63(15), 4850–4863.

39 A. Pecina, R. Meier, J. Fanfrlı́k, M. Lepšı́k, J. Řezáč and
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ABSTRACT

Motivation: The efficiency indices (EI’s) have been derived from the

experimental binding affinities of drug candidates to macromole-

cules. These ‘two-in-one’ measures include information on both

pharmacodynamics and pharmacokinetics of the candidate mole-

cules. The time-consuming experimental measurement of binding

affinities of extensive molecule libraries may become a bottle-neck

of large scale generation and application of EI’s.

Results: To overcome this limitation, structure-based calculation of

new EI’s is introduced using the modified free energy function of the

popular program package AutoDock. The results are validated on

experimental binding data of biochemical systems such as potent

inhibitors bound to �-secretase, a key enzyme of Alzheimer’s

disease and various drug–protein complexes. Application of new

EI’s is tested. Thermodynamics of EI’s and their role in virtual high -

throughput screening of drugs and in the development of docking

programs are discussed.

Contact: csabahete@yahoo.com

Supplementary information: Accompanies this manuscript on the

publisher’s web site.

1 INTRODUCTION

The mechanism of drug action generally involves a long

chain of interactions with the molecules of the human body.

There are numerous experimental and in silico drug design tools

describing the terminal link of these chains, i.e. the estimation

of equilibrium binding affinities (BA) of drug candidates

(ligands) to the targeted macromolecules. Although BA is

undoubtedly a key property, other pharmacokinetic and non-

equilibrium links in the chain such as absorption, distribution

and excretion of the candidate molecules also affect drug-like-

ness (Swinney, 2004, 2006).

Accordingly, most of the current in silico molecular design

strategies (Lipinski and Hopkins, 2004) include modeling steps

for the equilibrium binding and also for the pharmacokinetics

of drugs. Atomic level techniques have been introduced for

structural calculation of binding in ligand–target complexes.

Computational molecular docking (Fig. 1) is the most advanced

among these techniques (Brooijmans and Kuntz, 2003).

The BA values of the ligands can be calculated directly from

docked ligand–protein complex structures with free energy

(scoring) functions. Another important step is the optimization

of pharmacokinetics and drug-likeness of ligand databases using

empirical rules of selection (Lipinski et al., 1997). These rules

define limit values of simple, size-dependent molecular descrip-

tors, e.g. the molecular weight (MW) which can be used for

filtering of compound databases.

Recently, new measures, the efficiency indices (EI) were intro-

duced (Abad-Zapatero and Metz, 2005; Hopkins et al., 2004)

linking the above mentioned different steps of drug design. EI’s

have promptly gained applications connecting structural diver-

sity and biological activity of drugs (Schuffenhauer et al., 2006)

and in optimization of synthetic receptors (Chen et al., 2006). The

introduction of EI’s was inspired by earlier studies (Kuntz et al.,

1999) showing the usefulness of normalization of BA with the

number of heavy atoms (NHAT) for drug design purposes.

In EI’s, the normalized quantities [Equation (1)] are repre-

sented by commonly used measures of BA such as the exper-

imental free energy of binding (�GE), the negative logarithms

of experimental dissociation constant (pKd), inhibition constant

(pKi) or inhibitor concentration at 50% inhibition (pIC50). The

above mentioned simple descriptors, i.e. MW (Abad-Zapatero

and Metz, 2005) or NHAT (Hopkins et al., 2004) are typical

examples of the size-dependent normalizing factors (SNF).

EI ¼
BA

SNF
ð1Þ

The EI’s were originally defined with experimental BA values

(Abad-Zapatero and Metz, 2005; Hopkins et al., 2004).

However, the use of structure-based, calculated binding free

energy (�GC) values from scoring (Hetényi et al., 2006) of

docked ligand–protein structures instead of �GE may become

successful alternative for obtaining EI’s. Remarkably, compu-

tational docking has an advantage of producing atomic level

protein–ligand complex structures within reasonable time.

The calculation of �GC (scoring) is either performed along

with the docking calculations or independently in post-docking

mode (Fig. 1). In both cases it requires negligible time and,

therefore, allows reduction of time-consuming and expensive

biochemical measurements of BA’s. Picking up the speed of

in silico docking and scoring, the calculation of EI’s can become

an essential part of high-throughput, structure-based virtual

compound screening and drug design. The aim of the present

study is to introduce and investigate rapid calculation of

various EI’s on the basis of a set of biologically relevant

structural and thermodynamic experimental data.*To whom correspondence should be addressed.
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2 METHODS

2.1 Binding data and structure-based free energy

calculation of protein–ligand systems

�GE and�GC values of 53 protein–ligand complexes were adopted from

a previous study (Hetényi et al., 2006) and listed in Supplementary

Material. Proteins having large, peptidic ligands (MW4350) and

physiological importance such as the �-secretase enzyme of

Alzheimer’s disease (Fig. 1), HIV-1 protease, streptavidin and immu-

noglobulins were prioritized for the study. The atomic coordinates of 41

of the complexes, were obtained from the Protein Databank (PDB,

Berman et al., 2000). The 12 �-secretase- inhibitor systems (om12, om13,

om14, om15, om16, om17, om18, om19, om22, om23, om24 and

om99-1) with no PDB structures available weremodeled bymodification

of the 1fkn structure. Details on the systems, modeling andminimization

of the complexes can be found in the previous paper (Hetényi et al.,

2006). Although the peptidic ligands of these systems may become

excellent lead compounds, they cannot be considered as drugs (Rishton,

2003). Thus, a set of an additional 20 drug–protein complexes (Table 1)

having both PDB structures and �GE values was collected and used in

the external validation and application tests of the new EI’s introduced

in this study. The sources and the procedure of collection of these data

are described in details in the Supplementary Material. Altogether the

53þ 20 ligands represent a wide range of compounds including larger,

lead-like non-drugs and actual drugs.

The �GC’s were calculated using the minimized protein–ligand

complexes, according to the modified AutoDock 3.0 (AD3, Morris

et al., 1998) and AutoDock4 (AD4, Huey et al., 2007) scoring functions

[Equation (2)].

�GC AD3ð Þ ¼ felec
X

i,j

qjqi

" rij
ÿ �

rij
þ fvdw

X

i,j

Aij

r12ij
ÿ
Bij

r6ij

 !

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�HC

þ fhbond
X

i,j

� tð Þ
Cij

r12ij
ÿ
Dij

r10ij

 !

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�HC

þ fsol
X

i,j

SiVj e

r2
ij

2�2

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�Gs,C

ð2Þ

Fig. 1. The pathway of in silico drug design connecting genome

and drug efficiency. Structural genomics projects generate new

protein structures at an unprecedented rate (Yang and Tung, 2006).

To efficiently use this increasing amount of 3D information for drug

design, high-throughput methods are necessary, which can reduce the

complexity of drug (ligand)–protein interactions to comparable

measures (indices). The sequence of gray boxes show, that starting

from the 2D Lewis structures of a ligand, 3D ligand–protein complexes

can be obtained via conversion, modeling and docking. In the present

study (beige boxes), a set of biologically relevant ligand–protein

complexes were used for calculation of binding free energy (�GC).

A representative complex of �-secretase (blue), a key enzyme of

Alzheimer’s disease and its potent peptidic inhibitor ligand,

GluValAsnLeu(	)AlaAlaGluPhe (red) is included in this figure.

Further references on the role of �-secretase can be found in works

of Hetényi et al. (2006) and Hong et al. (2000). Both 2D and

3D representation of the ligand molecules can be used for calculation

of size-dependent normalization factors (SNF). The ratio of �GC and

SNF is the efficiency index, which is a practical ‘two-in-one’ measure

of drug design. This figure was prepared using PyMol (DeLano, 2006).

Table 1. The 20 drug–protein complexes of the external validation set

PDB code Protein Drug

1aj6 Gyrase Novobiocin

1cea Plasminogen Aminocaproic acid

1dhi Dihydrofolate reductase Methotrexate

1dwc Alpha-thrombin (small subunit) Argatroban

1f5l Urokinase-type plasminogen activator Amiloride

1fkf Fk 506 binding protein Tacrolimus

1h61 Pentaerythitol tetranitrate reductase Hydrocortisone

1hvy Thymidylate synthase Raltitrexed

1hxw HIV protease Ritonavir

1j3j Dihydrofolate reductase Pyrimethamine

1jt1 FEZ-1, class B3 metallo-beta-lactamase Captopril

1m2z Glucocorticoid receptor Dexamethasone

1odi Purine nucleoside phosphorylase Adenosine

1ohr Aspartylprotease Nelfinavir

1p62 Deoxycytidine kinase Gemcitabine

1sqn Progesterone receptor Norethindrone

1t7j Drug resistant HIV protease Amprenavir

1uw6 Acetylcholine-binding protein Nicotine

2aou Histamine N-methyltransferase Amodiaquine

2gss Glutathione S-transferase P1-1 Ethacrynic acid

Structure-based calculation
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The f coefficients were determined empirically from a multi-linear

regression (MLR) to a set of 30 protein–ligand complexes (AutoDock

calibration set) with known binding constants (Morris et al., 1998).

The indices i and j correspond to ligand and protein atoms, respectively.

The Coulombic term includes the partial charges (q) and a distance-

dependent dielectric function (") (Morris et al., 1996). A, B, C and D are

the Lennard–Jones parameters in the dispersion/repulsion 12-6 and

H-bonding 12-10 formulas and r denotes the distance between the

atomic pairs. �(t) is a directional weight depending on angle t at the

H-bonds. S and V denote the solvation parameter and fragmental

volume, respectively, in the solvation function of Stouten et al. (1993).

In the scoring function of AutoDock 3.0, only the C atoms of the ligand

molecules are involved in the solvation model. The exponential term is

an envelope function with a constant-value of �¼ 3.5 Å. For simplicity,

the sum of Coulombic and Lennard–Jones (enthalpic) terms is marked

as�HC and the last, desolvation term is marked as�Gs,C. Remarkably,

the AutoDock4 scoring function has different parametrization of the

�GC(AD4) part, especially for the desolvation term. Details on the new

AD4 scoring function can be found in the original paper of Huey et al.

(2007). In the present study, all systems were re-scored using the epdb

command of AutoDock4. Besides the �GC(AD4), i.e. the intermole-

cular enthalpicþdesolvation terms, the full AD4 binding free energy

[�Gfull(AD4)] was also calculated and checked for applicability in EI

calculations.

2.2 Regression analyses

The LR’s were statistically analyzed and the SNF values were obtained

using the program package CODESSA (ver. 2.0) (Karelson et al., 1996;

Katritzky et al., 1995). Results of the regression analyses, i.e. mean

square errors and t-values of the regression coefficients, the F-values,

and the squares of the correlation coefficients (r2) of the regressions are

tabulated in section Results. The principal moments of inertia were

calculated for the binding conformations of ligand molecules using the

Analyze program of the TINKER software package (Ren and Ponder,

2003). Numerical values used in the calculations and the correlations

of SNF’s are tabulated in Supplementary Material.

3 RESULTS

3.1 Definition of new EI’s

The list and definitions of the SNF’s [Equation (1)] correspond-

ing to new, and formerly published (Abad-Zapatero and Metz,

2005; Hopkins et al., 2004) EI’s can be found in Table 2.

Some of these SNF’s are commonly applied as two-dimensional

(2D) descriptors in quantitative structure-activity relationship

(QSAR) equations (Devillers and Balaban, 1999) and show

relatively large degree of correlation with each other (Supple-

mentary Material). The more complicated SNF’s contain

information also on molecular complexity involving internal

(topological) distances and branching of the ligands resulting in

their more unique profile and, in some cases, moderate

correlations with each other. Whereas 2D descriptors are

derived solely from the Lewis formula, i.e. the empirical

connectivity list or molecular graph of the ligands, calculation

of �GC requires the knowledge of spatial atomic positions in

the protein–ligand complex. In a recent study (Hetényi et al.,

2006), it was found that �GE’s of even large, flexible peptides

(Fig. 1) can be predicted with a modified scoring function

(�GC) of the docking program package AutoDock 3.0 (Morris

et al., 1998). As �GC shows a significant correlation with the

�GE values (Hetényi et al., 2006) it was selected to represent

BA in the structure-based, calculated EI values throughout the

present investigations [BA¼�GC in Equation (1)].

3.2 Correlation of experimental and calculated EI’s

To test the reliability and predictive value of calculated EI’s,

simple linear regression (LR) analyses were performed with EI’s

obtained from the measured �GE values [Equation (3)].

�GE,k

SNFk

¼ �
�GC,k

SNFk

þ �þ "k ðk ¼ 1,2, . . . ,NÞ ð3Þ

Where �, and � represent the regression coefficient and the

intercept, respectively. The "k’s are the residuals at each data

point. The total number of data points (N), i.e. the number of

protein–ligand systems adopted from the previous study

(Hetényi et al., 2006) was 50. A systematic series of LR’s

were developed for EI’s based on the SNF’s of Table 2 and

�GC’s calculated with the scoring schemes of AutoDock3.0

and AutoDock4, respectively. The results and statistical para-

meters of the LR’s are summarized in Table 3 and in the

Supplementary Material.

All LR’s are statistically significant, and show higher

r2 values than the correlation (r2¼ 0.706) obtained between

�GE and �GC (Hetényi et al., 2006). Importantly, the high r2

values in Table 3 are not trivial consequences of this correlation

in the previous work, as the SNF values are different for the

50 different ligand molecules [Equation (3)].

An advantage of 2D descriptors such as the Wiener index

(W) involved in the best correlation (Fig. 2; Table 3) is that

they can be unambiguously and rapidly calculated from the

internal connectivity information coded in the molecular graph

(Table 2). For example, W involves a simple summation of

shortest topological distances in a molecule. Comparably good

correlations could be achieved at all other SNF’s including

Balaban index (J) which is also defined by internal topological

distances (Table 2) and was found to be useful as a QSAR

descriptor in prediction of the entropic parts of �GE (Hetényi

et al., 2006). In addition, even the three outlier protein–ligand

systems (1hhj, om22, om24) of the previous study (Hetényi

et al., 2006) could be involved in the models [N¼ 53 in

Equation (3)]. In case of W the level of correlation (r2¼ 0.962)

did not decrease when the three former outliers were included.

3.3 Cross-validation of the correlations

There were different methods applied for cross-validation of the

correlations presented in Table 3. The cross-validated correla-

tion coefficients (r2cv) of the leave-one-out (LOO) and leave-

50%-out (L50%O) methods (Table 3) shows that exclusion

of one or more data points from the models does not decrease

the level of correlation dramatically. A set of 20 drug–protein

complexes (Table 1) was used as an external validation set

(EXT). Most of the corresponding r2 values are above 0.5

showing that the models can predict the EI values for smaller,

drug ligands not included in the training set (50 systems).

Notably, �GC(AD4) produced higher r2cv;EXT values for the

external validation than �GC(AD3), probably due to the more

advanced solvation terms and the larger compound database

included in its parametrization. The �Gfull(AD4) function

did not result better EI-correlations (data not shown) than

C.Hetényi et al.
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�GC(AD4), and, therefore �GC(AD4) was selected for the final

evaluations (Table 3).

The results of the cross-validated correlations in Table 3

allow us to conclude that structure-based calculation of EI’s

works for both the ‘traditional’ (Abad-Zapatero and Metz,

2005; Hopkins et al., 2004) and the newly introduced 2D SNF’s

(W, �’s, J, etc.). The formulas in Equation (3) and Table 2

and the validated models can be coded and applied as

EI-calculators during the in silico drug design process

(Fig. 1). Direct implementation of EI-calculator algorithms in

docking/scoring program packages such as AutoDock is also

possible.

3.4 Applications

(1) To check the applicability of two new EI’s with the best

correlations (Table 3), the distributions of �GE and

EI values were compared for the sets including the

50 peptidic compounds (non-drugs) and the 20 drugs,

respectively. It was found (Fig. 3 and Supplementary

Material) that overlapping distributions of �GE’s

(Fig. 3A) of drugs and non-drugs are separated for the

EI’s (Fig. 3B). There are one or two orders of magnitude

difference (Table 4) in the median/average values of EI’s

for both W and IAIBIC and there are considerably large

gaps between the minimum values of drugs and non-

drugs, as well. These results emphasize the applicability

of the new EI’s in separation of drugs from non-drugs.

(2) The introduction of EI’s in a virtual screening process

improves the selectivity of screening. As a test case, the

binding pocket of progesterone receptor was used as a

target in the docking of 1760 compounds including

an abridged version of the NCI Diversity Set (NCI/NIH;

Lindstrom et al., 2003) and the native drug ligand

norethindrone (1sqn, Table 1). �GC’s were collected and

W- and IAIBIC-based EI’s were calculated. Details on

Table 2. Codes and definitions of size-dependent normalizing factors (SNF) of ligands used in the denominator of efficiency indices [Equation (1)]

Code Name of SNF Definition References

1D SNF’s

NAT Number of atoms Karelson (2000)

NHAT Number of heavy atoms Hopkins et al. (2004)

NB Number of �-bonds Karelson (2000)

MW Molecular weight Abad-Zapatero and Metz (2005)

2D SNF’s

W Wiener index W ¼ 1
2

PNSA

i,j

dij Wiener (1947)

0
� Randic index (n¼ 0)
1
� Randic index (n¼ 1) n� ¼

PNSB

nÿlengthpaths

�i1, . . . ,�inþ1ð Þÿ1=2 Randić (1975)
2� Randic index (n¼ 2)
3� Randic index (n¼ 3)
0
�
v Kier&Hall index (n¼ 0)

1�v Kier&Hall index (n¼ 1) n�v ¼
PNSB

nÿlengthpaths

�i1, . . . , �inþ1ð Þÿ1=2
; �i ¼

Zv
i
ÿHi

ZiÿZv
i
ÿ1

Kier and Hall (1976)
2�v Kier&Hall index (n¼ 2)
3
�
v Kier&Hall index (n¼ 3)

1
� Kier shape index (n¼ 1) n� ¼ NSA þ �ð Þ NSA þ �ÿ 1ð Þ2 nPþ �ð Þ2 Kier (1990)
2� Kier shape index (n¼ 2) n� ¼ NSA þ �ÿ 1ð Þ NSA þ �ÿ 2ð Þ2 nPþ �ð Þ2

3
� Kier shape index (n¼ 3)

n� ¼ NSA þ �ÿ 1ð Þ NSA þ �ÿ 3ð Þ2 nPþ �ð Þ2, if N SA is odd
n� ¼ NSA þ �ÿ 3ð Þ NSA þ �ÿ 2ð Þ2ðnPþ �Þ2, if N SA is even

�

� Kier flexibility index � ¼ ð1�2�Þ=NSA Kier (1990)

J Balaban index J ¼ q
�þ1

� �
Pq

i,j

sisj
ÿ �ÿ1=2

; � ¼ qÿ nþ 1 Balaban (1982)

3D SNF’s

IAIBIC Product of principal moments of inertia IAIBIC ¼
Q

x

Ix; Ix ¼
P

i

AM,ir
2
x,i; x ¼ A, B or Cð Þ Karelson (2000)

GIB Gravitation index (all bonds) GIB ¼
PNB

i5j

AM,iAM,j

r2
ij

Karelson (2000)

GIP Gravitation index (all pairs) GIP ¼
PNA

i5j

AM,iAM,j

r2
ij

Karelson (2000)

NSA: number of atoms in the molecular graph (hydrogens excluded); NSB: number of bonds in the graph; n: length of bonding path (topological distance, order of

descriptor); dij: entry of the distance matrix corresponding to the number of bonds in the shortest path connecting the pair of atoms i and j; �: coordination number

of atoms; v: valence of atom in a molecule; �: value of atomic connectivity; Zi: total number of electrons in atom i; Zv
i : number of valence electrons in atom i;

Hi: number of hydrogens directly attached to atom i; nP: number of paths of length n in the molecular graph; �: sum of all ratios of the ith atomic radius and radius of sp3

carbon atom for all atoms in the graph minus 1; q: number of edges in the molecular graph; m: number of vertices in the graph; �: cyclometric number; si and sj: distance

sums obtained by summation of row i and column i (or row j and column j) of the distance matrix; AM: atomic mass; rx,i: distance of the ith atom from principal axis x;

A, B, C: principal axes; NA: number of atoms; NB: number of bonds; rij: interatomic distance.

Structure-based calculation
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the methods of these procedures are described in the

Supplementary Material. It was found, that the use of

�GC’s alone ranked norethindrone to the best 10% of the

1760 compounds. Re-ranking of the best 10% according

to W- and IAIBIC-based EI’s resulted norethindrone in

the second and sixth best position (5top 0.5%) on the list

of the 1760 compounds, respectively. This test showed

that in a second ranking step these new EI’s can improve

the quality of selection of a real drug.

4 DISCUSSION

4.1 The background of the thermodynamics of EI’s

The binding free energy (�G) can be written as the sum of

experimental enthalpic (�H) and entropic (�S) binding

contributions [Equation (4)], where T is the thermodynamic

temperature.

�G¼�Hÿ T�S ð4Þ

As an additive quantity, �S can be further split into trans-

lational (�St), rotational (�Sr) and vibrational (�Sv) entropy

changes [Equation (5)] at the ligand molecule. In some articles

Table 3. Statistical parameters of linear regressions [Equation (3)] obtained for efficiency indices based on SNF’s of different dimensionality

SNF r2 r2cv,LOO r2cv,L50%O r2cv,EXT F-value r2 r2cv,LOO r2cv,L50%O r2cv,EXT F-value

AutoDock3.0 AutoDock4

1D SNF’s

NAT 0.857 0.845 0.852 0.493 286.90 0.839 0.826 0.835 0.718 250.28

NHAT 0.896 0.886 0.891 0.593 413.66 0.887 0.877 0.884 0.758 378.11

NB 0.865 0.854 0.863 0.522 308.23 0.848 0.835 0.844 0.731 266.98

MW 0.889 0.879 0.889 0.607 386.55 0.881 0.870 0.879 0.767 354.22

2D SNF’s

W 0.962 0.954 0.954 0.910 1216.46 0.960 0.953 0.952 0.931 1139.22
0
� 0.891 0.882 0.890 0.589 394.40 0.884 0.873 0.879 0.757 364.67

1
� 0.893 0.884 0.889 0.582 402.59 0.884 0.873 0.883 0.752 364.56

2� 0.918 0.910 0.911 0.686 540.18 0.913 0.905 0.908 0.803 503.64
3� 0.916 0.908 0.912 0.856 524.80 0.906 0.897 0.904 0.909 461.11
0
�
v 0.892 0.882 0.830 0.548 397.04 0.881 0.870 0.878 0.749 355.47

1
�
v 0.886 0.876 0.874 0.571 372.51 0.871 0.860 0.856 0.764 325.15

2�v 0.914 0.906 0.910 0.692 509.66 0.904 0.895 0.903 0.832 449.73
3
�
v 0.905 0.897 0.896 0.803 458.55 0.889 0.880 0.884 0.896 384.51

1
� 0.870 0.859 0.866 0.602 322.41 0.862 0.850 0.860 0.782 300.81

2� 0.791 0.774 0.788 0.603 181.45 0.777 0.759 0.776 0.801 167.30
3� 0.781 0.764 0.726 0.719 170.81 0.784 0.768 0.729 0.859 174.61

� 0.742 0.723 0.739 0.667 137.79 0.729 0.709 0.727 0.845 129.26

J 0.871 0.855 0.860 0.847 325.16 0.854 0.834 0.845 0.889 280.01

3D SNF’s

IAIBIC 0.966 0.929 0.938 0.961 1345.18 0.963 0.933 0.938 0.963 1246.91

GIB 0.900 0.891 0.890 0.660 432.20 0.892 0.882 0.887 0.787 396.71

GIP 0.927 0.919 0.926 0.796 606.68 0.921 0.914 0.917 0.863 563.02

r2: the squared correlation coefficient; r2cv: the square of the cross-validated correlation coefficient (LOO: leave-one-out method, L50%O: leave-50%-out method,

EXT: external validation set of 20 drug-protein systems). The boldfaced letters and values signify the best corelations.

Fig. 2. The correlation of experimental and calculated efficiency indices

(EI) using the Wiener index as a size-dependent normalizing factor

(AD3 scoring).
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(Noskov and Lim, 2001), further contributions are also

considered such as solvation/desolvation free energy (�Gs) of

the ligand and/or the protein molecules, etc. As the SNF’s

depend solely on the ligands, involvement of protein effects is

not necessary in the forthcoming discussion.

�G¼�Hÿ T �Stþ�Srþ�Svð Þþ�Gs ð5Þ

The use of statistical thermodynamics expressions (Carlsson

and Åqvist, 2005, Murray and Verdonk, 2002) for estimation of

components St, Sr (Table 5) and Sv of molecular entropy is

quite common. Sv depends on the frequencies of normal modes

of the ligand molecule, which cannot be connected with the

simple SNF’s of this study. �Gs includes both enthalpic and

entropic contributions (Zou et al., 1999) and partly depends on

the molecular size and shape of the ligand via the solvent

accessible surface area. Accordingly [Equation (5)], the division

of �GE [left side of Equation (3)] with SNF’s results in

normalized �HE’s and �SE’s.

On the right side of Equation (3) there is �GC Equation (6),

including three terms [Equation (2), Methods section], which

can be assigned (Brooijmans and Kuntz, 2003, Calderone

and Williams, 2001) to the enthalpic (�HC) contributions of

binding. The fourth term of �GC (�Gs,C) is an estimate of �Gs

which represents only a minor portion of �GC [Equation (6)].

�GC¼�HCþ�Gs,C: ð6Þ

Thus, the SNF-normalized �GC [Equations (3) and (6)]

contains mostly normalized �HC (and negligible �Gs,C).

Most importantly, there are no terms estimating �St, �Sr

and �Sv on the right side.

If assuming that experimental entropy (SE), i.e. St and Sr

becomes zero after ligand binding, then �St and �Sr will

include size-dependent factors, such as MW or the product

of principal moments of inertia (IAIBIC), respectively

(Table 5). However, it was correctly discussed (Carlsson and

Åqvist, 2005), that the assumption of zero final entropy is

rather hypothetical as the ligand does fluctuate around its

Fig. 3. Histograms showing the distribution of experimental binding

free energy (A) and Wiener index-based efficiency index (B) values for

drugs and non-drugs. (The scales cover the full range of values and the

same number of bins were applied for both histograms.)

Table 4. Statistics of the distribution of experimental binding free energy values and efficiency indices based on Wiener index (EIW) and IAIBIC
(EIIAIBIC) for drugs and non-drugs

Median Average Minimum Maximum

�GE

Drugs ÿ9.87 ÿ9.30 ÿ14.75 ÿ4.63

Non-drugs ÿ9.50 ÿ8.86 ÿ12.94 ÿ3.89

EIW
Drugs ÿ6.281� 10ÿ3 ÿ1.226� 10ÿ2 ÿ5.930� 10ÿ2 ÿ1.014� 10ÿ3

Non-drugs ÿ9.728� 10ÿ4 ÿ2.101� 10ÿ3 ÿ2.137� 10ÿ4 ÿ2.137� 10ÿ4

EIIAIBIC
Drugs ÿ3.151� 10ÿ10 ÿ6.564� 10ÿ9 ÿ6.783� 10ÿ8 ÿ4.644� 10ÿ12

Non-drugs ÿ4.190� 10ÿ12 ÿ3.579� 10ÿ11 ÿ3.283� 10ÿ10 ÿ1.677� 10ÿ13

�GE and EIW values are in kcalmolÿ1 units. EIIAIBIC has a dimension of kcalmolÿ1amuÿ3Åÿ6.

Table 5. Statistical thermodynamics formulas of molecular entropy

Molecular entropy Formula

Translational (St)

(Sackur–Tetrode)

St ¼ Nk ln Ve5=2

N
2�kTMW

h2

ÿ �3=2
h i

Rotational (Sr) Sr ¼ Nk ln 8�2

�
2�ekT
h2

ÿ �3=2
IAIBICð Þ1=2

h i

Note, that the Sackur–Tetrode equation used for discussion was originally

derived for gas phase. V: volume available for the molecule; N: number of

molecules; MW: molecular weight; k: Boltzmann’s constant; T: thermodynamic

temperature; h: Planck’s constant; �: symmetry number; IAIBIC: product of

principle moments of inertia (see also Table 1).
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binding position. Whereas the formulas of Table 5 can hardly

be applied for calculation of binding entropy of ligands in

their present forms, they obviously show the dependence of

molecular entropy on MW and IAIBIC of ligands. Thus,

normalization of �SE [left side of Equation (3)] with SNF’s

such as MW or IAIBIC can be expected to decrease the ligand-

dependency of the �SE terms resulting in a constant part of the

normalized �SE.

The constant part of SNF-normalized �SE does not affect

the level of correlation and the remaining SNF-normalized

enthalpic terms in Equation (3) correlate well with each other

(Table 3).

4.2 New 3D SNF’s

To test the prediction of the previous section, i.e. the usefulness

of IAIBIC as a 3D SNF, it was employed in Equation (3).

The statistical parameters of the corresponding LR (Table 3,

Supplementary Material) show an excellent correlation

(r2¼ 0.966) verifying the expectation. Remarkably, both the

3D IAIBIC and the 2D W involve the calculation of real or

topological internal lengths of the ligand molecules, and,

therefore their connection is trivial. Their correlation for the

50 ligands is r2¼ 0.864. Interestingly, the 2D W performed as

well (Table 3) as the obviously more elaborate 3D IAIBIC in

case of the 50 systems. It was also found, that IAIBIC works

even for smaller subsets of the 50 investigated systems resulting

in, e.g. an r2 of 0.973 for the 10 modeled �-secretase complexes

alone (AD3 scoring).

Other internal distance-based 3D SNF’s such as the

gravitation index (GI), a descriptor successful in prediction

of boiling points (Katritzky et al., 1996) also provided good

LR results in calculation of EI’s (Table 3).

4.3 Methodological aspects of the results

Scoring functions of docking programs are generally based on

correlations of �GE with �GC. However, during the develop-

ment of scoring functions, separate fit of experimental �HE

and �SE to the corresponding enthalpic and entropic terms

(Brooijmans and Kuntz, 2003) of the scoring functions would

be an ideal way (Murphy, 1999) to decrease errors coming from

overlapping and/or coupled terms. However, most of the

experimental thermodynamic BA data available are�GE values

or pK’s from which �GE’s can be calculated (Wang et al.,

2004). The amount of enthalpic data is limited as experimental

binding enthalpy (�HE) can be obtained only by additional

measurements with special techniques, e.g. isothermal titration

calorimetry (Campoy and Freire, 2005). The LR’s of the

previous sections showed, that the SNF-normalization of

�GE provides excellent correlation with the normalized �HC

without additional measurements of �HE, due to the high

enthalpic content of both sides of Equation (3) (see previous

sections for details).

It can also be recognized [Equation (3)], that the reciprocals

of the SNF’s are actual weights in the weighted least squares fit

of the calculated enthalpic terms to the experimental �GE’s.

By using these weights during development of scoring

functions, the degree of correlation and the accuracy of

computational docking-scoring methods can be increased.

4.4 Practical applications

The EI’s are simple indicators developed to aid rational drug

design and hit-to-lead approaches (Keseru¡¡ and Makara, 2006).

In the present study, new EI’s involving 2D and 3D SNF’s were

introduced. It was shown, that precise, structure-based calcu-

lation of EI’s is a real alternative of time-consuming measure-

ments and that the new EI’s can be used in separation of

drugs from non-drugs. The calculation of EI’s of a large set

of available drugs will allow the determination of reference

EI-limits for selection of drug-like candidates in the future.

The building of an EI database for the precise determination of

EI-limits has already been started in our laboratory. As the

proposed EI-calculators are fast and cost-effective, they will

help to reduce the number of experimental measurements

and can easily be combined with available methods in high-

throughput computational docking and scoring (Fig. 1).
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Abstract: A dataset of protein-drug complexes with experimental binding energy and crystal structure were ana-

lyzed and the performance of different docking engines and scoring functions (as well as components of these) for

predicting the free energy of binding and several ligand efficiency indices were compared. The aim was not to eval-

uate the best docking method, but to determine the effect of different efficiency indices on the experimental and pre-

dicted free energy. Some ligand efficiency indices, such as DG/W (Wiener index), DG/NoC (number of carbons),

and DG/P (partition coefficient), improve the correlation between experimental and calculated values. This effect

was shown to be valid across the different scoring functions and docking programs. It also removes the common

bias of scoring functions in favor of larger ligands. For all scoring functions, the efficiency indices effectively nor-

malize the free energy derived indices, to give values closer to experiment. Compound collection filtering can be

done prior or after docking, using pharmacokinetic as well as pharmacodynamic profiles. Achieving these better cor-

relations with experiment can improve the ability of docking scoring functions to predict active molecules in virtual

screening.

q 2009 Wiley Periodicals, Inc. J Comput Chem 31: 174–184, 2010

Key words: virtual screening; scoring function; drug design; docking; free energy of binding

Introduction

Many drugs have been developed with the use of structure-based

drug design and molecular docking.1–5 When used correctly,

docking can be an invaluable tool for drug discovery and design.

Commonly, docking is used as a complement to other techni-

ques such as high-throughput screening (HTS). However, as an

example, Pierce et al. show that it can also be the primary tech-

nique, predicting 4 kinase inhibitors with a 14-fold increase in

enrichment over HTS.6 The active molecules’ binding modes

predicted by docking were experimentally confirmed by X-ray

crystallography.

Docking scoring functions perform generally well for predict-

ing protein-ligand binding modes,1–5 although they are less accu-

rate for predicting binding free energy.1–5,7 Docking programs

employ at least one scoring function for calculating the fit or

energy of a protein-ligand association. Scoring functions are

usually derived from atomic parameters generated from empiri-

cal or knowledge-based approximations to the experimental

binding energy of protein-ligand complexes. Most scoring func-

tions are additive in nature, in the sense that the more functional

groups a ligand has, the more interactions it can have with the

protein and the greater the intermolecular energy is thus calcu-

lated. In the case of polar functional groups, this would normally

be offset by higher desolvation energies, which are unfavorable

to the overall binding free energy. However, these desolvation

energies, if included in the scoring function or docking program

at all, do not tend to reflect the real trends, and so the scoring

functions end up overestimating the binding energy for larger

ligands at the expense of smaller ligands.1 A similar situation

arises for large hydrophobic ligands because the larger the mole-

cule, the more van der Waals contacts are calculated. Again,

large molecules would also incur in entropy penalties when

binding and even if some scoring functions attempt to estimate

this entropy loss by a measure of the number of rotatable bonds

of a ligand, they are not accurate and end-up still favoring larger

molecules. The proper calculation of entropies of binding is also

a complex issue for scoring functions, unlikely to be solved by

simple rotatable bond counts.8
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An inaccuracy of only 1–2 kcal/mol represents already a dif-

ference of one or more orders of magnitude in the calculated

affinities of proteins for ligands. However, even within this level

of inaccuracy, docking should be able to classify ligands as hav-

ing milli-, micro-, or nanomolar affinity in order to have predic-

tive ability (a difference of 3 orders of magnitude is around

4 kcal/mol). In drug discovery and design, accuracy is arguably

a more critical value to achieve than extreme precision. In other

words, accurate relative ranking of diverse and unrelated active

and inactive compounds is more sought after than less accurate

but precise absolute binding energies. In any case, there is a

need for computed values with higher accuracy that can be com-

pared with experimental data. This would reduce the number of

false positive and false negatives that a virtual screen can pro-

duce. The development of better scoring functions and docking

methods is an active field of research,1,2 with improvements

likely to come from better descriptions and parameterizations of

binding,9–12 solvation interactions,13–17 as well as flexibility18–20

and entropy effects.8,21

Another method of improving the result from docking experi-

ments is postprocessing the results, such as combining the result

of several scoring functions, called ‘‘consensus scoring,’’7,22 or

rescoring the energy for docked poses with a different method,

such as molecular mechanics Poisson-Boltzmann (MM/PBSA)23

or generalized Born/Surface Area (MM/GBSA).24,25 Compari-

sons between scoring functions and related challenges have

been performed elsewhere,26,27 and it is not the objective of this

article.

Recently, ligand efficiency indices (E.I. 5 DG/Measure,

where DG is the binding free energy) have been proposed as a

method to normalize the experimental,28–31 as well as computa-

tional binding free energies of ligands.32–35 An efficiency index

measure can be any molecular measure of comparison between

ligands and can be related to the molecular size such as molecu-

lar weight (MW), number of heavy atoms (NHA), number of

carbons (NoC), or molecular or polar surface area. They can

also be related to the solubility and permeability of a ligand by

incorporating the logarithm of the octanol-water partition coeffi-

cient log P.34 They can provide a measure of how efficiently a

ligand binds to a biomolecule, even being able to determine the

compounds that may disrupt a protein–protein interaction if their

number of heavy atoms efficiency index, DG/NHA, is deeper

than 20.24 kcal/molNHA.35 The reason for this is that those

small molecules have a higher efficiency of binding per heavy

atom than the protein or peptide they displace, even with a sur-

face area as low as half that of the peptide or protein.35 There is

a well-known tendency of lead molecules to increase in size and

lipophilicity during optimization in search of higher affinity.36

But this increase in lipophilicity can also carry more risks in

associated side-effects and toxicity.36 The related measure of

pIC50 2 cLogP has also been introduced to try to define the lip-

ophilic space available to drug candidates.36

In this work, we explore how different docking programs and

scoring functions can correlate with experimental values, both

for free energy of binding, as well as to five different efficiency

indices. These efficiency indices are free energy of binding/mo-

lecular weight (DG/MW), free energy of binding/number of

heavy atoms (DG/NHA), free energy of binding/number of car-

bons (DG/NoC), logarithm of 2free energy of binding/partition

coefficient (log(2DG/P)), and free energy of binding/Wiener

index (DG/W).33,34 Achieving better correlations of scoring func-

tions with experimental values can increase the accuracy of scor-

ing functions, and therefore the reliability of docking programs

to predict active molecules in screening procedures.

Results

It is important to use drug compounds as test systems, because

their complexity as compared with standard compounds can be

challenging for scoring functions. Twenty-six protein-drug com-

plexes with known experimental free energy of binding were

obtained from comparing the PDBbind and DrugBank databases,

yielding a wide variety of drugs with different shapes, sizes and

chemical features. These complexes are given in the Supporting

Information Table S1, while the structures of the drugs are

shown in Table 1. Efficiency indices were also determined for

all cases. Molecular surface area and polar surface area were not

used because they can be sensitive to conformation.

The experimental free energies of binding were collected and

the calculated free energies of binding were computed for each

complex, using all the scoring functions as well as a selection of

their components. Care was taken to use the experimental struc-

ture for calculating the docking score and only relaxations of

this structure, or ‘‘docking in place’’ was performed, to maintain

the same binding mode and pose for all programs (achieving

complexes with electrostatic and van der Waals energies such as

that in Fig. 1).

The results for several scoring functions and components for

the 26 resulting protein-ligand complexes are shown in Table 2,

and plotted results are shown in Figure 2a. Table 2 and Figure

2a show the difference in values for the experimental and calcu-

lated free energy of binding for each protein-drug complex.

Chemscore and Goldscore are included in Figure 2a, even

though they have positive scales (they return a positive value

instead of a negative free energy). They were included as the

negative of their value, i.e., 2Goldscore (GS) and 2Chemscore

(CS), for the sake of comparison. XPc and SPc correspond to

the Coulomb 1 van der Waals components of XP and SP,

respectively. XP and SP correspond to XP and SP ‘‘refine’’ treat-

ment, whereas SPi refers to SP ‘‘in place.’’ ABE corresponds to

autodock binding free energy, AIE to autodock intermolecular

energy. DGe is the experimental calculated energy, DGb is a

component of CS called DGbindGOLD. Some scoring functions

have values that are closer to the experimental ones, and some

follow the trend of the experimental values better.

The efficiency indices were then calculated for each scoring

function value (as well as the selected components of the scor-

ing functions) substituting the value for DG in DG/MW, DG/

NHA, DG/NoC, log(2DG/P), and DG/W. The same efficiency

indices were calculated for the experimentally determined DG.

The means, medians, and 6 standard deviations for all systems,

as well as the complete tables are available in the Supporting In-

formation Tables S2–S6. The plotted results for the molecular

weight efficiency index for all scoring functions and experiment
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are shown in Figure 2b, while the Wiener index efficiency index

is shown in Figure 2c.

As can be seen from Supporting Information Tables S1–S5

and Figure 2b (DG/MW), there is still some variation between

the experimental efficiency indices and the calculated efficiency

indices. However, Figure 2c (DG/W) shows how the experimen-

tal and calculated efficiency indices are now quite close. The

linear regression correlation coefficients between the experimen-

tal and calculated binding energies, as well as between experi-

mental and calculated efficiency indices were computed for all

cases. They are shown in Table 3.

Table 1. Drug Structure Dataset.

Novobiocin, 1 Aminocaproic acid, 2

Methotrexate, 3 Argatroban, 4

Amiloride, 5 Tacrolimus, 6

Hydrocortisone, 7 Raltitrexed, 8

Ritonavir, 9 Pyrimethamine, 10

Acetazolamide, 11 Captopril, 12

Dexamethasone, 13 Lisinopril, 14

Table 1. (Continued).

Adenosine, 15 Nelfinavir, 16

Gemcitabine, 17 Marimastat, 18

Norethindrone, 19 Amprenavir, 20

Azelaic acid, 21 5-Flurouracil, 22

Nicotine, 23 Amodiaquine, 24

Ethacrynic acid, 25
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Some efficiency indices appear to be better than others for

correlating experimental and calculated values. From Table 3, it

can be seen that for some scoring functions, MW and NHA ei-

ther do not improve the results or provide only a modest

improvement over the correlations with experimental values.

The simple measure NoC (number of carbons) provides a good

correlation for some of the scoring functions. This efficiency

index is related to the nonpolar surface area, because the larger

NoC a compound has, the larger its nonpolar surface is likely to

be. Therefore, it may be providing an indirect measure of the

desolvation energy for a molecule. The efficiency index

log(2DG/P) provides good correlations for all scoring functions

between experimental and calculated values. This index is

directly related to the permeability of a molecule. The efficiency

index DG/W also improves all of the correlations. The p values

in Table 3 show the probability that the corresponding F-statistic

could have occurred by chance. All of them are below a 5

0.05, indicating that the regression models are useful in predict-

ing the linear relationship with the experimental values (at a

95% confidence level). Efficiency indices, therefore, also appear

to be able to introduce useful extra information in addition to

the free energy of binding into a derived measurement.

As examples of the good linear correlations between experi-

mental and calculated values, the plot of the experimental DG/

NoC versus calculated DG/NoC for DGb (DGbindGOLD, a

component of Chemscore) is shown in Figure 3a; experimental

log(2DG/P) versus calculated log(2DG/P) for the same DGb is

shown in Figure 3b; and the plot of the experimental DG/W ver-

sus calculated DG/W for DGb is shown in Figure 3c.

Figure 1. Complex of acetazolamide (11, sticks) with carbonic

anhydrase X11 (surface and sticks) obtained by docking on crystal

structure 1JD0. Nitrogen atoms in blue, oxygen in red, hydrogen in

white, sulfur in yellow, hydrogen bonds as yellow dashes.

Table 2. Experimental and Calculated Free Energies of Binding (kcal mol21).a

PDB code DGe ABE AIE GS CS DGb XP SP SPi

1aj6 28.07 29.97 28.85 244.84 214.52 217.88 27.07 27.69 25.93

1cea 26.76 26.82 26.82 240.12 220.72 222.17 28.18 25.58 26.86

1dhi 29.90 29.54 29.54 267.31 222.29 224.97 29.46 29.60 29.00

1dhj 28.93 27.86 210.56 272.54 225.83 227.29 28.72 28.72 27.60

1dwc 210.10 210.29 210.29 212.28 227.79 234.23 211.08 27.65 26.07

1f5l 27.19 27.12 27.52 235.58 217.86 218.48 26.92 27.16 26.57

1fkf 212.81 210.19 212.04 252.82 235.20 237.38 211.33 27.13 26.26

1h61 26.66 26.81 26.81 224.87 223.01 223.99 29.13 25.90 23.71

1hvy 28.42 28.33 27.24 246.14 216.59 217.50 25.77 26.87 26.04

1hxw 214.75 215.12 215.12 290.22 243.46 247.69 214.57 212.24 211.20

1j3j 210.92 27.50 27.50 252.20 221.48 225.36 28.15 26.55 25.83

1jd0 211.24 25.87 26.34 241.68 218.77 222.77 24.55 24.22 24.18

1m2x 25.66 214.66 215.50 253.91 222.66 224.30 27.05 29.82 29.30

1m2z 29.84 210.24 211.15 246.61 236.01 238.04 213.97 29.44 28.86

1o86 213.04 217.32 221.14 259.41 234.82 243.04 212.90 211.70 210.69

1odi 25.73 25.34 26.32 248.17 215.83 216.93 28.05 27.90 26.26

1ohr 211.86 212.57 213.93 252.87 236.34 239.09 211.16 29.43 29.48

1p62 26.35 25.73 25.73 246.16 218.62 221.90 212.56 27.33 25.76

1r55 29.26 29.37 211.69 252.77 222.75 235.60 210.56 29.47 29.43

1sqn 212.81 210.07 210.07 260.74 232.60 235.49 211.01 28.51 28.36

1t7j 211.86 210.34 213.05 272.31 225.23 229.21 29.35 27.68 26.50

1tuf 25.52 27.11 29.27 223.67 28.07 211.63 22.97 24.36 24.42

1upf 26.27 23.83 23.83 217.72 210.25 211.11 25.65 25.98 25.30

1uw6 210.01 26.53 26.78 241.36 225.63 228.06 24.97 25.85 25.94

2aou 210.54 210.35 210.35 224.79 236.79 239.81 210.22 29.00 28.68

2gss 26.73 26.39 27.63 228.72 218.02 219.77 26.45 25.40 25.57

aDGe, experimental binding free energy; ABE, autodock binding free energy; AIE, autodock intermolecular energy;

GS, 2Goldscore; CS, 2Chemscore; DGb, DGbindGOLD; XP, XPrefine; SP, SPrefine; SPi, SP in place.
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Since DGb is a component of CS, and therefore also of SP

and XP, it is interesting to note that a component can have bet-

ter correlation with experimental values than the full scoring

function. This can be due to the need of improvement in the

extra features of the scoring function, such as the desolvation

penalties and entropy corrections. As controls, the experimental

free energy of binding was correlated against the MW, NHA,

NoC, log P, and Wiener values. The results did not show any

strong linear correlation, with the R2 values being 0.323, 0.364,

0.404, 0.205, and 0.315, respectively. This means that the good

correlations found between experimental and calculated effi-

ciency indices are not spurious or redundant.

Linear regressions were also carried out between the simple

DGe and all of the calculated efficiency indices, and they

showed no linear correlation stronger than 0.1. Linear regres-

sions were also calculated for all the efficiency indices against

the molecular properties (MW, NHA, NoC, etc.) to test the dom-

inance of these in the derived efficiency index, showing no

strong linear correlation either, with most beneath 0.5, except

SPi and SP (most SPi and SP correlation R2s around 0.6, except

SPi/W and SP/W vs. W, R2
5 0.2). An exception for all the

scoring functions was log P, which showed strong correlation

between log(2DG/P) vs. log P of circa 0.99 in R2. However,

this effect was created by the logarithm function. If the simple

DG/P was calculated instead, then all of the scoring functions

had correlations between DG/P vs. P lower than 0.1. Indeed,

this efficiency index is better suited than log(2DG/P), and also

shows strong correlations between calculated and experimental

efficiency indices as seen in Table 4.

The improvements in going from DG to the different effi-

ciency indexes are shown in Figure 4, where it can be seen that

some of the efficiency indices (DG/NoC, log(2DG/P), DG/W,

and DG/P) produce better improvements than others.

Figures 5a–5g show box plots for all of the distributions

studied, and compares experimental and calculated efficiency

indices where the spread between and within each series of data

can be observed. The horizontal dark lines represent the median

of the distributions, while the dark diamonds represent outliers.

The plots of the free energy of binding have quite different

spreads between the experimental and the calculated values,

except for ABE, AIE, XP, SP, and SPi (Fig. 5a). DG/MW (Fig.

5b) and DG/NHA (Fig. 5c) indices do not change these spreads

very much, while DG/NoC (Fig. 5d) already provides closer

spreads between calculated and experimental values. Log(2DG/

P) (Fig. 5e), DG/W (Fig. 5f), and DG/P (Fig. 5g) all show

spreads that are now quite comparable between the experimental

and calculated efficiency indices.

Shapiro normality tests were conducted for all the distribu-

tions studied, and they are shown in Supporting Information Ta-

ble S8. Some of the distributions did not differ from a normal

distribution with a 95% confidence limit and for these, Welch,

independent, two-sided, t-tests were carried out between the ex-

perimental and calculated values (Table S9 in the Supporting In-

formation). In the case of free energy of binding, for DGe,

ABE, AIE, and XP, the test showed that the null hypothesis was

true, i.e., that the true difference in means between the calcu-

lated and the experimental distributions is equal to zero, and

they are comparable distributions. This was also the case for all

the experimental and calculated log(2DG/P) efficiency indices.

For all of the distributions, Mann-Whitney U tests (a non-

parametric test) were carried out to compare the experimental

Figure 2. (a) Free energy of binding (DG) for each complex and

several docking experiments, as well as determined by experiment.

(b) Comparison of free energy of binding/molecular weight (DG/

MW) efficiency indices for experiment and several scoring func-

tions. (c) Comparison of free energy of binding/Wiener index (DG/

W) efficiency indices for experiment and several scoring functions.
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and calculated distributions to assess whether two samples of

observations come from the same distribution, including for all

cases where the values were not normally distributed. The

results are shown in Supporting Information Table S10. For free

energy of binding, the test statistics W and p-values (p higher

than 0.05, 95% confidence level) showed that there was no stat-

istically significant difference between the experimental DG val-

ues and each of the calculated ABE, AIE, XP, and SP distribu-

tions. For DG/MW, there was no statistically significant differ-

ence between the experimental and each of the ABE, AIE, XP,

SP, and SPi calculated distributions. This was also true for DG/

NHA, DG/NoC, and DG/W index. For log(2DG/P) and DG/P,

all of the calculated distributions had no statistically significant

difference to the experimental one, for all of the scoring func-

tions studied.

The equations between experimental and calculated values

were then Y-scrambled with random numbers in the same range

of values. Nearly all the R2 values were markedly lower than for

the unscrambled models (below 0.6). The only exception were

the values of log(2DG/P) which remained high even in the

scrambled models. This indicates that this efficiency index is not

particularly good for improving the correlations, since it cannot

distinguish a true correlation from a random one, although the

logarithm function was responsible for that behavior. Impor-

tantly, the efficiency index DG/P had low correlation values for

the scrambled models, which indicates that it has reliability.

From these scrambling results, we can see that there is a small

component in the efficiency indices which improves the correla-

tions with experimental values due to mathematical correction

(that is, it is beneficial to have the values on the same scale),

but it does not account for all of the improvement. This suggests

that there may be physical underlying causes to the improve-

ments, which depend on the normalizing measure incorporated

into the efficiency index. The improvement effect may be due to

description of the entropic part of the free energy of binding,

through efficiency indices that describe the topology of a mole-

cule (such as W).32 Other efficiency indices such as NoC and P,

may provide improvement through a description of the desolva-

tion and of the permeability of a compound. For all scoring

functions, the best efficiency indices effectively normalize the

free energy derived indices, to give values closer to experiment.

Discussion

Efficiency indices can improve the outcome of docking scoring

functions because they provide a closer agreement with experi-

mental values. In addition, useful information related to the mo-

lecular properties of a molecule such as its lipophilicity P, or to-

pology (described by W), can be incorporated into a single indi-

cator. Some efficiency indices appeared to be better than others

at improving the correlations. DG/NoC, DG/W, and DG/P are

better than DG/MW or DG/NHA, and this effect was observed

for all scoring functions.

Table 3. Linear Regression Correlation Coefficients and Statistics Between Experimental and Calculated

Values for Binding Free Energy, (y 5 ax 1 b) as well as Five Efficiency Indices.a

ScorF DG DG/MW DG/NHA DG/NoC log(2DG/P) DG/W

DGe 1 1 1 1 1 1

DGb 0.676, 50.2,

p\ 0.001

0.684, 51.9,

p\ 0.001

0.673, 49.4,

p\ 0.001

0.842, 127.7,

p\ 0.001

0.997, 9065,

p\ 0.001

0.885, 184.5,

p\ 0.001

CS 0.634, 41.6,

p\ 0.001

0.644, 43.4,

p\ 0.001

0.626, 40.3,

p\ 0.001

0.798, 94.7,

p\ 0.001

0.997, 7216,

p\ 0.001

0.870, 161.4,

p\ 0.001

GS 0.310, 10.8, 0.003 0.473, 21.6,

p\ 0.001

0.490, 23.0,

p\ 0.001

0.712, 59.4,

p\ 0.001

0.992, 2916,

p\ 0.001

0.822, 110.9,

p\ 0.001

XP 0.315, 11.0, 0.0029 0.319, 11.3, 0.0026 0.299, 10.2, 0.0038 0.450, 19.6,

p\ 0.001

0.994, 4341,

p\ 0.001

0.819, 108.6,

p\ 0.001

XPc 0.357, 13.3, 0.0012 0.362, 13.6, 0.0011 0.416, 17.1,

p\ 0.001

0.769, 79.8,

p\ 0.001

0.996, 5545,

p\ 0.001

0.877, 171.6,

p\ 0.001

SP 0.246, 7.82, 0.010 0.415, 17.0,

p\ 0.001

0.390, 15.3,

p\ 0.001

0.511, 25.1,

p\ 0.001

0.996, 6009.8,

p\ 0.001

0.856, 142.7,

p\ 0.001

SPc 0.387, 15.1,

p\ 0.001

0.363, 13.6, 0.0011 0.389, 15.3,

p\ 0.001

0.696, 55.1,

p\ 0.001

0.996, 5417,

p\ 0.001

0.912, 248.9,

p\ 0.001

SPi 0.261, 8.5, 0.0077 0.497, 23.7,

p\ 0.001

0.466, 20.9,

p\ 0.001

0.550, 29.3,

p\ 0.001

0.996, 5817,

p\ 0.001

0.864, 152.2,

p\ 0.001

ABE 0.347, 12.8, 0.0015 0.290, 9.8, 0.0046 0.273, 9.0, 0.0061 0.512, 25.2,

p\ 0.001

0.996, 5373,

p\ 0.001

0.743, 69.5,

p\ 0.001

AIE 0.318, 11.2, 0.0027 0.228, 7.1, 0.013 0.219, 6.7, 0.016 0.474, 21.6,

p\ 0.001

0.995, 4542,

p\ 0.001

0.718, 61.2,

p\ 0.001

R2, F-statistic, and p values are given in the table.
aScorF, scoring function; DGe, experimental binding free energy; ABE, autodock binding free energy; AIE, autodock

intermolecular energy; GS, 2Goldscore; CS, 2Chemscore; DGb, DGbindGOLD; XP, XPrefine; XPc, XP_CvdW

(Coulomb and van der Waals components of XP); SP, SPrefine; SPc, SP_CvdW (Coulomb and van der Waals com-

ponents of SP); SPi, SP in place.
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To test the performance of efficiency indices with different

types of compounds, the 25 ligands (in 26 protein-ligand com-

plexes) were separated into two groups, small and large ligands

if they were below or above the average MW and also by taking

the 1st quartile (lowest 25%) and 3rd quartile (highest 25%).

The same separation was conducted for polar and nonpolar

ligands only now considering polar surface areas (PSA, in Å2).37

The sum of squares of the residuals (a measure of fitting error)

were then recorded for each ligand complex for the differences

between the calculated and the experimental value as: RSS 5

S(Experimental value 2 Predicted value)2/n, where n is the

number of ligands, and the summation is over all the members in

that group. The effect of molecular size on the efficiency indices

were most marked for ABE, AIE, XP, and SP, where there was a

large reduction of the difference between the errors for the small

ligands compared to the large ones, using both separation meth-

ods. On average, small ligands had RSS errors of 10.19 kcal2/

mol2 for binding free energy compared to 4.89 for large ligands.

The efficiency indices markedly reduced this disparity till having

equal differences between the errors for small and large ligands

(average differences in RSS between small and large ligands:

0.0002 gkcal/mol2 for DG/MW, 0.050 kcal/molNHA for DG/

NHA, 0.234 kcal/molNoC for DG/NoC, 0.021 for log(2DG/P),

and 0.0001 kcal/mol for DG/W). This applied to all efficiency

indices except DG/P where only SP/P produced the smallest dif-

ferences (0.91). Nonpolar ligands (i.e., those with a small polar

surface area) were also at a disadvantage compared to polar ones

(large polar surface area). Using the 1st and 3rd quartiles, the effi-

ciency indices (except DG/P) for ABE, AIE, XP, and SP cor-

rected this bias by reducing the differences in errors from aver-

ages of 9.59 kcal2/mol2 in binding free energy for nonpolar

ligands and 4.27 for polar ligands, so that the differences between

Figure 3. Experimental versus calculated values of the efficiency

indices: (a) DG/NoC (free energy of binding/number of carbons) for

DGb (DGbindGOLD) for 26 protein-drug complexes. R2
5 0.842.

(b) log(2DG/P) (logarithm of (2)free energy of binding/octanol-

water partition coefficient) for DGb for 26 protein-drug complexes.

R2
5 0.997. (c) DG/W (free energy of binding/Wiener index) for

DGb for 26 protein-drug complexes. R2
5 0.885.

Table 4. Linear Regression Correlation Coefficients and Statistics

Between Experimental and Calculated Values for Binding Free

Energy/Octanol-Water Partition Coefficient (DG/P) Efficiency Index.a

Scoring function

or component DG/P

Scoring function

or component DG/P

DGe 1 DGe 1

DGb 0.981, 1247.9, 3.31e222 SPc 0.936, 350.3,

8.9e216

CS 0.989, 2206.8, 3.9e225 SP 0.986, 1686.1,

9.47e224

GS 0.926, 299.7, 4.61e215 SPi 0.995, 4547,

7.09e229

XP 0.879, 174.9, 1.62e212 ABE 0.960, 578.1,

2.6e218

XPc 0.924, 292.8, 6.0e214 AIE 0.930, 317.2,

2.4e217

R2, F-statistic, and p values are given in the table.
aDGe, experimental binding free energy; ABE, autodock binding free

energy; AIE, autodock intermolecular energy; GS, 2Goldscore; CS,

2Chemscore; DGb, DGbindGOLD; XP, XPrefine; XPc, XP_CvdW (Cou-

lomb and van der Waals components of XP); SP, SPrefine; SPc,

SP_CvdW (Coulomb and van der Waals components of SP); SPi, SP in

place.

180 Garcı́a-Sosa, Hetényi, and Maran • Vol. 31, No. 1 • Journal of Computational Chemistry

Journal of Computational Chemistry DOI 10.1002/jcc

 1
0
9
6
9
8
7
x
, 2

0
1
0
, 1

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

0
0
2
/jcc.2

1
3
0
6
 b

y
 U

n
iv

ersity
 L

ib
rary

 o
f P

ecs an
d
 C

en
tre fo

r L
earn

in
g
, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [2

8
/0

7
/2

0
2
3
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p

licab
le C

reativ
e C

o
m

m
o
n
s L

icen
se

               hetenyi.csaba_83_23



the errors between experimental and predicted values were small

and similar for both classes of ligands (average differences in

RSS between nonpolar and polar ligands: 0.0003 gkcal/mol2 for

DG/MW, 0.027 kcal/molNHA for DG/NHA, 0.064 kcal/molNoC

for DG/NoC, 0.009 for log(2DG/P), and 0.0001 kcal/mol for DG/

W). Using below and above average PSA to divide the groups,

only ABE, AIE and XP showed this effect. The original bias may

have risen due to possible overestimation of ligand-protein hydro-

gen bonding interactions by the scoring functions, or due to inad-

equate desolvation energy calculation of the nonpolar ligands by

the scoring functions.

The drugs shown in Table 1 include large and small size

ligands. It is typical for scoring functions to overestimate the

binding energy of a compound because they are additive in na-

ture: the larger the ligand, the more protein-ligand interactions it

will have. However, the introduction of normalizing ligand effi-

ciency measures allow for the smaller size ligands to be com-

pared positively with larger size ligands because the binding

energy is divided by a value which can be related to the molecu-

lar size. In a docking or virtual screening experiment, molecules

with a large number of carbons are no longer favored. In this

way, efficiency indices can repair the errors introduced by the

bias of scoring functions toward large size ligands due to errors

in the calculation of entropy and desolvation energies. It is

promising that the effect was seen on all the scoring functions

and programs.

Molecules with extremely high or low values of hydropho-

bicity or hydrophilicity, that is, with extreme values of P or log

P, can be removed through filters before docking. The DG/P ef-

ficiency index will also penalize those with borderline values, in

addition to having low calculated free energy of binding. Thus,

molecules with unfavorable permeability values can be readily

detected, in combination with the binding free energy. If ranges

for values are established for the different efficiency indices (see

for example Hetényi et al.,33 and also in this present work),

these can tell whether a compound’s calculated efficiency index

is in a favorable range. New efficiency indices can be compared

and tested in a manner analogous to the present work.

Conclusions

We have shown that simple ligand efficiency indices can aid the

drug design process by providing better comparisons of calcu-

lated and experimental values of binding energy. This may

increase the accuracy and reliability of docking programs. We

observed that efficiency indices also add information to the bind-

ing free energy into a single indicator. Permeability of a com-

pound, for example, can be assessed at the same time as the

binding affinity in an efficiency index such as DG/P, especially

if filters are applied to remove compounds with extreme values.

Entropy of a compound may be assessed by DG/W values. DG/

NoC, although simple, is also an effective efficiency index for

improving the trend between experimental and calculated values.

DG/P and DG/W produced the best results, together with DG/

NoC. These efficiency indices can be applied across different

docking programs, scoring functions, or even components of

these. They can also be calculated quickly, likely on the fly.

Compounds can be ranked based on efficiency indices that may

include data such as absorption and metabolic properties in addi-

tion to the free energy of binding, and in this way allow for the

selection of molecules that satisfy several criteria in parallel.

Computational Methods

The structures of protein-drug complexes and their experimental

inhibition constants (Ki) were collected from the PDBbind data-

base v2005,38,39 which contains protein-ligand complex struc-

tural data from the Protein Data Bank (PDB)40 as well as experi-

mental Ki determined for those systems. The collection of all

small-molecule approved drugs was obtained from the DrugBank

database,41 which contains data on drugs approved by the FDA

(U.S. Food and Drug Administration agency). Programs written

in Python were used to extract the ligand names (HET-ID) from

the PDBbind database and to query them in the DrugBank col-

lection to identify those ligands that are approved drugs. All

results were verified visually. The experimental DG was com-

puted with DG 5 2RTlnK, using T 5 258C (298.15 K), and R

5 1.987 cal/Kmol. The program XLOGP v2.042 was used for

calculating the octanol/water partition coefficient (log P) by an

atom-additive method including correction factors.

Docking programs differ by the scoring functions they con-

tain, as well as the way of minimizing the function values. In

our present study, we focused on three main programs that are

widely available and used by computational and medicinal

chemists: GOLD v.3.1,43 Glide v.4.5,44 and Autodock4.45 Their

scoring functions and docking methods are shown in Supporting

Information Table S11. GOLD v.3.143 uses a genetic algorithm

to find the best ligand positioning in a binding site. It can use

two scoring functions: Goldscore43 and Chemscore.46 Chemscore

has a component called DGbinding (DGb), which was also used

for our correlations. Parameters for runs were: run_flag 5

Figure 4. Correlation between experimental and calculated effi-

ciency indices for DG, DG/MW, DG/NHA, DG/NoC, log(2DG/P),

DG/W, and DG/P for the scoring function component DGb

(DGbindGOLD) for 26 protein-drug complexes.
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RESCORE, in addition to default parameters for the genetic

algorithm. Waters were switched to ON.

Glide v4.5 (2007) uses a hierarchical search, and has the

scoring functions XP and SP,44 which are a proprietary modifi-

cation of Chemscore.46 In addition, we also employed the com-

ponent C_vdW (a combination of Coulomb and van der Waals

terms). Default parameters for runs were used.

Autodock v4.0 also uses a genetic algorithm to find for the

best solutions for docked ligands. It uses one scoring function,

which produces a binding free energy (ABE).47 We also

Figure 5. Box plot comparisons of free energies and efficiency indices for experiment and several

scoring functions: (a) Free energy of binding (DG). (b) Free energy of binding/molecular weight (DG/

MW). (c) Free energy of binding/number of heavy atoms (DG/NHA) efficiency index. (d) Free energy

of binding/number of carbons (DG/NoC) efficiency index. (e) Logarithm of the (changed sign) free

energy of binding/octanol-water partition coefficient (log(2DG/P)) efficiency index. (f) Free energy of

binding/Wiener index (DG/W) efficiency index. (g) Free energy of binding/octanol-water partition coef-

ficient (DG/P) efficiency index. DGe, experimental binding free energy; ABE, autodock binding free

energy; AIE, autodock intermolecular energy; GS, 2Goldscore; CS, 2Chemscore; DGb, DGbindG-

OLD; XP, XPrefine; XPc, XP_CvdW (Coulomb and van der Waals components of XP); SP, SPrefine;

SPc, SP_CvdW (Coulomb and van der Waals components of SP); SPi, SP in place.
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employed the component of intermolecular energy (AIE). Pa-

rameters used that were different than default values: spacing

5 0.375 Å, npts 5 40 40 40, ga_pop_size 5 150, ga_num_

evals 5 20,000,000, ga_num_generations 5 27,000, tran0 co-

ordinate equal to the ‘‘about coordinates’’, quat0 5 1. 0. 0. 0.,

and dihe 5 0.

Protein and ligand structures already contained hydrogens

from the PDBBind dataset. Protein structures were used

including the metal atoms and select water molecules that

were interacting with protein and ligand in the binding site.

The ‘‘toggle’’ setting was used for these special bridge water

molecules in GOLD. Docking runs were calculated both

including and excluding select crystallographic water mole-

cules. The case which produced a binding energy closest to

the experimental was kept. Most of the complexes which

included select water molecules had a small effect on the

binding energy and efficiency indices as they differed by less

than 1 kcal/mol from the ‘‘dry’’ cases in binding free energy,

as well as being in the same range and evenly distributed for

binding free energy and efficiency indices as the cases without

water molecules. The complete list of water molecules is

shown in Supporting Information Table S7. Water molecules

were included only if they had medium to low crystallographic

B-factors, made contacts with the protein, were within 4.5 Å

of the ligand, and were at least partially occluded from bulk

solvent since these tightly bound water molecules have a

higher chance of remaining bound to the protein (remaining

conserved in several protein structures),13–15 and can be con-

sidered an integral part of the protein-ligand complex. As

such, these specially selected crystallographic water molecules

are included in the binding free energy, as well as in the effi-

ciency indices. There was no additional water inclusion or re-

moval when calculating the efficiency indices, which take their

binding energy direct from the complex. Efficiency indices are

unique to each protein and each ligand in a biomolecular com-

plex, although general trends and ranges can be observed

across complexes. Methotrexate (3), for example, forms two

complexes with different proteins in the dataset, consequently

with different binding free energies and efficiency indices.

Most of the protein-drug structures which included bridge

water molecules mediating their interaction had high crystal

structure resolutions, from 1.4 Å and on average lower than 2

Å (median of 1.95 Å) which may increase the probability of

detecting reliable water molecule electron density.48 They

included a wide diversity of ligands, though the exposed, shal-

low complex of the small, relatively nonpolar aminocaproic

ligand (2) did not have bridging waters, nor did the completely

buried dexamethasone (13).
Complexes were prepared for the dockings by minimizing

in water with generalized Born (GB) implicit solvation and a

steepest descent method to a gradient threshold of 239 kcal/

molnm, followed by a minimization in water (GB) with a trun-

cated-Newton conjugated gradient method to a gradient thresh-

old of 143.4 kcal/molnm using MacroModel.49 Statistical tests

and box plots were performed using the package R for statisti-

cal computing.50 Marvin Calculator Plug-ins were used for the

calculation of ligand molecular formulas and molecular mass

(MW).37
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Molecular Property Filters Describing Pharmacokinetics and Drug Binding 
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Abstract: Drug-target binding affinity and pharmacokinetics are equally important factors of drug design. Simple molecular properties 
such as molecular size have been used as pharmacokinetic and/or drug-likeness filters during chemical library design and also correlated 
with binding affinity. In the present study, current property filters are reviewed, a collection of their optimal values is provided, and a 
statistical framework is introduced allowing calibration of their selectivity and sensitivity for drugs. The role of ligand efficiency indices 
in drug design is also described. It is concluded that the usefulness of property filters of molecular size and lipophilicity is limited as 
predictors of general drug-likeness. However, they demonstrate increased performance in specific cases, e.g. in central nervous system 
diseases, emphasizing their future importance in specific, disease-focused library design instead of general drug-likeness filtering. 

Keywords: Binding site, entropy, free energy, molecule, pocket, protein, structure, target, logP, Wiener index. 

1. INTRODUCTION 

The effects of drug molecules are produced by their interactions 
with one or more macromolecular targets [1, 2], constituents of the 
human body. Therefore, small molecule drug design strategies 
involve multiple screening steps [3, 4] using the structure [5] of 
drug candidates (ligands) in complex with targets and also the 
corresponding thermodynamic measures of equilibrium binding 
affinities [6], the free energy changes (ΔG). In general, an 
appropriate ΔG is a necessary but not a sufficient property of a 
successful candidate as pharmacokinetic, toxicological, etc. 
characteristics also influence drug-likeness [7]. 

Molecular properties of small compounds have been 
extensively used as descriptors in structure-activity relationships [8, 
9]. For example, molecular weight (MW) is atom-type sensitive and 
related to the molecular size; logP is a measure for partitioning of 
compounds between lipophylic and aqueous phase; number of 
heavy atoms (NHA) is the simplest molecular property providing a 
crude estimate of the size of a molecule; Wiener index, a 
topological descriptor characterizes the compactness of a molecule 
and is proportional to the molecular surface area [10, 11]. Such 
molecular properties were also adopted for the prediction of 
complex physiological properties and pharmacokinetics: absorption 
[12], or blood brain barrier penetration [13, 14], and their use 
culminated in the definition of general drug-likeness ranges. These 
empirical ranges of the properties were proved to be useful as 
property filters in the design of compound libraries of drug 
screening [15-20]. Notably, the selection of high quality (drug-like) 
compound libraries [3, 21-23] is a primary and key step of the 
screening process. 

Besides their connection to pharmacokinetics, it has been 
shown in numerous studies that the above size-dependent filters 
(MW, NHA) are also coupled to ∆G as they correlate with the 
(maximal) binding affinity achievable by a ligand. To decouple ∆G 
from ligand size, efficiency indices (EI, also called ligand 
efficiencies or binding efficiencies) have been defined dividing ∆G 
by NHA or MW [24].  

The present review sketches how complex phenomena of 
pharmacokinetics and equilibrium binding are coupled with the 
above molecular properties. An overview of their use is provided, 
and a summary of available correlations of ligand-based properties 
with ∆G is assembled. The role of EIs is discussed, and limitations 
of the general drug-likeness concept are analyzed. Selectivity and 
sensitivity of the property filters are defined, and a statistical 
decoupling of ∆G from the properties is suggested for 
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pharmacokinetics-focused analyses. Besides general drug-likeness, 
disease- and target-specificity is discussed and future perspectives 
are outlined.  

2. MOLECULAR PROPERTY FILTERS DESCRIBING 

DRUG-LIKENESS 

Filtering of large compound sets generated by combinatorial or 
other techniques [25, 26] is a central issue of library design. As 
Martin and Critchlow showed [27], merely random selection of 
compounds for high throughput screening (HTS) is poor both in 
structural diversity and in distribution of physicochemical 
properties. Random libraries are systematically biased toward 
heavy, flexible compounds that have very high or very low 
lipophilicity and possess inappropriate bioavailability. Thus, the 
need for effective filtering to produce ‘drug-like’ libraries was early 
recognized and several groups have developed filters based on the 
analysis of molecular property distribution in available drug 
databases. The present paper is focused on the analysis of simple 
molecular properties such as MW or logP coupled to both 
pharmacokinetics and ∆G (Introduction). Other filters including 
information on e.g. functional groups [28] are beyond the scope of 
this study. 

2.1. Definition of Drug-Likeness  

The first drug-likeness studies dealt with pharmacokinetic 
properties of drug candidates. Lipinski et al. [29] found that poor 
absorption or permeation is more likely if ligand properties such as 
MW or logP fulfill the ‘rule of 5’ (Ro5, Table 1) criterion. Fecik et 

al. [30] also analyzed the relationship between MW and oral 
bioavailability. Clark and Pickett [31] describe the term general 
drug-likeness filtering. According to their definition, such filters 
incorporate substructure searches for toxic or reactive groups and/or 
include limits on molecular properties which may be generally 
useful in drug design, i.e. non-specific for disease types. Other early 
reviews [28] also use the phrase drug-likeness for “molecules which 

contain functional groups and/or have physical properties 

consistent with the majority of known drugs”. Muegge [19] 
remarked that “Drug-likeness is mostly a statistical descriptor 

derived from databases of other compounds. It should, therefore, be 

used to evaluate the drug-likeness of other compound selections 

such as screening libraries, combinatorial libraries, or virtual 

libraries rather than that of a single compound.” Taking into 
account the general opinion formulated by the above studies the 
drug-likeness paradigm in the present review can be classified as (i) 
general drug-likeness (all diseases and mostly oral drug 
administration); and (ii) specific drug-likeness (classified by 
disease, administration, target, etc.). 
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Table 1. General Drug-Likeness Values of Property Filters 

 

Source Statistics Property Database 

Year Author Ref  NCC HBD HBA logP MW NHA NR NRB PSA Description N 

1997 Lipinski et al. 
(Ro5)  

[12] ∼90P  5 10 5(c) 

4.15(m) 

500     World Drug 
Index (WDI) 
filtered by 

USAN, INN 

names, etc. 

2245 

MEAN    2.3(a) 357     1999 Ghose  [33] 

SD    2.6(a) 174     

CMC 6304 

MEAN    1.73(c) 

1.94(m) 

332     2001 Sakaeda et al.  [34] 

SD    2.21(c) 

2.03(m) 

140     

Oral drugs 222 

MEAN 2.3 1.9 5.7 2.2(s) 340 23.5 2.6 5.6  2003 Feher and Schmidt  [39] 

MED 1 1 5 2.3(s) 312 22 2 5  

Chapman and 
Hall Dictionary 
of Drugs, The 
Merck Index 

10968 

MEAN  2.1 4.9 2.5(c) 337   5.9  

SD  2.4 3.6 2.5(c) 157   4.5  

2003 Wenlock et al.  [40] 

90P  4 8 5.5(c) 473   11  

The Physicians’ 
Desk 

Reference 1999 

594 

MEAN  1.81 5.14 2.27(c) 331  2.56 4.97 21.1% 2004 Leeson and Davis  [42] 

MED  1 4 2.31(c) 310  3 4 18.5% 

Oral drugs pre-
1982 

864 

MEAN  1.77 6.33 2.50(c) 377  2.88 6.42 21.0% 2004 Leeson and Davis  [42] 

MED  1 6 2.36(c) 357  3 6 19.4% 

Oral drugs 1983-
2002 

329 

MEAN  1.8 5.5 2.3(c) 343.7  2.6 5.4 78 2004 Vieth et al.  [43] 

90P  3 9 5.2(c) 475  4 10 134 

FDA Orange 
Book 

1193 

MEAN  3 4.5 2.5(c) 300     2004 Vieth et al.  [43] 

90P  3 8 5.3(c) 427.5     

Lipinski et al. 

recomputed 
based on the 

2001 edition of 
the WDI 

1791 

MEAN  1.5 5.1 2.5 333     2005 Proudfoot  [44] 

90P  3 9 4.8 469     

Oral drugs 1937-

1997 

1791 

MEAN  1.8 5.5 2.3(c) 345     2006 Vieth and 
Sutherland  

[48] 

90P  4 9 5.3(c) 478.4     

Vieth et al. 2004 
updated with 
FDA release 
after 2003 

1210 

MEAN  1.5 3.9 2.74(c) 335.5   5.6 64.7 

SD  1.5 2 2.22(c) 109.2   3.6 39.7 

2009 Tyrchan et al.  [49] 

MED  1 4 2.83(c) 318.5   5 59.1 

GVKBIO, IBEX 976 

Abbreviations. 90P: 90 th percentile; HBA: number of H-bond acceptors (O+N); HBD: number of H-bond donors (OH+NH); logP: logarithm of octanol/water partition coefficient 
(small letters in brackets denote different methods of logP calculation); MED: median; MW: molecular weight; N: number of drugs in database; NCC: number of chiral centers; NHA: 
number of heavy atoms; NR: number of rings; NRB: number of rotatable bonds; PSA: polar surface area; SD: standard deviation. 

2.2. General Drug-Likeness  

Ajay et al. [32] investigated the possibility of distinction 
between general drug-likeness and non-drug-likeness by one- or 
two-dimensional descriptors within neural network-based models. 
They used the Comprehensive Medicinal Chemistry (CMC) and the 
MACCS-II Drug Data Report (MDDR) as drug-like data sets and 
the Available Chemicals Directory (ACD) as a surrogate for non-
drugs. It was correctly remarked that using the above databases as 
drug/non-drug collections is an assumption as “the characteristics 
of drug molecules today may change in the future”. Therefore, the 
conclusions of dataset-based drug-likeness studies may always 
reflect the actual state of the common knowledge on drug-likeness 

and a priori include errors. This study can be regarded as a key 
analysis, which included not only drugs, but also quasi non-drugs in 
a truly comparative manner.  

However, most of the studies reporting drug-likeness thresholds 
(Table 1) deal only with drug (lead or bioactive) databases. Ghose 
et al. [33] based their analysis on the CMC database and provided 
drug-likeness thresholds for MW and logP. They also concluded the 
priority of some fragments (e.g. benzene ring) occurring in drug 
structures. The analysis of 222 commercially available oral drugs 
by Sakaeda et al. [34] supported the Ro5. However, the authors also 
remark that compounds with a sugar moiety, high atomic weight, 
and/or large cyclic structure were exceptions to the MW=500 upper 
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threshold. Veber et al. [35] also found that molecular weight cutoff 
at 500 does not itself significantly separate compounds with poor 
oral bioavailability from those with acceptable values. They 
analyzed the oral bioavailability of a large data set in rats 
containing more than 1000 compounds. It was also concluded that 
compounds of possibly good oral bioavailability possess 10 or 
fewer rotatable bonds (NRB) and polar surface area (PSA) equal to 
or less than 140 Å2 or 12 or fewer H-bond donors (HBD) and 
acceptors (HBA). Their analysis on artificial membrane permeation 
rates showed that reduced PSA correlated better with increased 
permeation rate than did ClogP, and an increased NRB had a 
negative effect on the permeation rate. Lu et al. [36] also 
investigated the predictive power of NRB and PSA on 434 
Pharmacia compounds and found that their correlations with 
bioavailability depended on the therapeutic class. 

Hann et al. [37] studied the differences in the properties of drug 
leads and optimized compounds. The data indicates that, on 
average, drug leads have lower MW, lower ClogP, fewer aromatic 
rings (NR), fewer HBA than the corresponding drugs. On the 
contrary, Proudfoot [38] found that most drugs are within 25% of 
the lead values with regard to MW, and nearly all are within one 
calculated MLogP unit.  

In another interesting comparative analysis of drugs, natural 
products and combinatorial libraries Feher and Schmidt [39] also 
emphasized the importance of properties beyond the often used 
MW and logP. For example, it was shown that the ‘number of 
chiral centers’ in a molecule has a great impact on its drug-likeness. 
They found that while chiral centers are normally present in drug 
and natural product molecules, they tend to diminish in 
combinatorial compounds, which is most probably a consequence 
of the oversimplified synthetic/construction steps in the generation 
of combinatorial libraries.  

Wenlock et al. [40] compared distributions of physico-chemical 
properties such as MW and logP of marketed oral drugs and of 
compounds in development. In their analysis, the mean MW of 
orally administered drugs in development decreased on passing 
through each of the different clinical phases and gradually 
converged towards the mean molecular weight of marketed oral 
drugs. In addition, the most lipophilic compounds diminished 
during development. They compared upper property thresholds 
below which 90 % of oral drugs in their data set with the results of 
the Ro5, and good agreement was found (Table 1).  

Besides the thresholds values, the historical trends of, e.g. MW 
of drug candidates, may be also useful as collected by Lipinski [41] 
for the period 1960–2004. It was demonstrated that advanced 
clinical candidates produced by a “rational drug design” approach 
of Merck had a time-dependent higher MW, higher H-bonding 
properties, unchanged logP, and poorer permeability. Early 
candidates from a HTS-based approach of Pfizer (Groton, CT) had 
higher molecular weight, unchanged H-bonding properties, and 
higher logP, i.e. poorer aqueous solubility. In another retrospective 
study, Leeson and Davis [42] showed that mean values of 
lipophilicity, percent of PSA and HBD had not changed in the 
period of 1983-2002. In contrast, mean values of MW and the 
numbers of O + N atoms, HBA, NRB, and number of rings have 
increased by 13-29%. Similarly, Vieth et al. [43] demonstrated that 
the mean property values for oral drugs do not vary substantially 
with respect to launch date. The limited change in the most 
important oral drug-like property values lead the authors to suggest 
that the range of acceptable oral properties is independent of the 
synthetic complexity or targeted receptor. Proudfoot [44] analyzed 
the very long period of 1937-1997. During this period a steady 
increase was observable in mean and median MW. Only seven 
marketed drugs with MW>500 were designed in the 15 year period 
1937–1951, and thirty two in the comparable period 1983–1997. 
Mean and median logP was unchanged in the 60 year period 

examined. Fewer than 5% of oral marketed drugs had more than 4 
H-bond donors and just 2% had MW>500 and >3 H-bond donors. 
An analysis by Leeson and Springthorpe [45] suggested that clogP 
is the most important molecular property, as it is changing less over 
decades in launched oral drugs than other properties. As ClogP 
plays a dominant role in promoting binding to unwanted drug 
targets, a high logP therefore carries increased risks of 
developmental attrition. They conclude that a 5% improvement in 
attrition would double the output of new medicines and that this 
might be achieved simply by lowering logP. Comparing sets of 
drugs and their originating leads, Perola [46] also found that on 
average, the two sets have similar logP, suggesting that the ability 
to maintain low levels of logP while increasing MW is one of the 
keys to a successful drug discovery program. 

Schneider et al. [47] investigated the combined use of drug-
likeness property filters in gradual filtering by decision trees. With 
rapidly computable properties such as MW, XlogP, molar 
refractivity, and several drug-likeness indices, up to 76% of all non-
drugs could be sorted out in the first filtering step. With the aid of 
sophisticated (quantum chemical) properties in the succeeding steps 
up to 92% of the initial non-drugs were filtered out, while less than 
19% of the actual drugs were lost. In addition to the above 
examples, Table 1 also lists threshold values given by Vieth and 
Sutherland [48] and Tyrchan et al. [49]. 

2.3. Limitations of the General Drug-Likeness Concept 

Although physicochemical properties are widely used as 
general drug-likeness filters (Section 2.2), there are several articles 
pointing to their limitations. As Walters et al. [28] envisioned, 
instead of dealing with the complex problem of drug-likeness, a 
viable alternative is the prediction of the various pharmacokinetic 
properties (logP, half-life, plasma protein binding, etc.) that 
contribute to a drug’s success. Remarkably, even the calculation 
and modeling of these properties themselves is rather complex [50] 
and extremely difficult in many cases.  

The lack of validated sets of drugs and decoy sets of non-drugs 
[51] also limits the usefulness of any drug-likeness filters as there 
are compounds, e.g., that can easily fall into either category. 
Moreover, the filters can only recognize those compounds that 
resemble existing drugs as drug-like – compounds from completely 
new classes could be misclassified [31]. Remarkably, the original 
publication of Lipinski [29], root of many others in this field, 
addressed the prediction of only pharmacokinetic properties 
(absorption and permeation) and not general drug-likeness. 

However, collecting sets of good and bad pharmacokinetic 
properties remains a challenge for property filters due to the above-
mentioned complexity of the properties themselves. In addition, the 
final decision on drug-likeness is just further postponed if a filter 
can provide information only on one drug-likeness property. In fact, 
there are several properties to be predicted which can easily give 
controversial results in ranking of a compound or a library and it is 
still unclear which property should be prioritized for the final 
decision, etc. For example, Kubinyi [52] finds that “inappropriate 

ADME (Absorption, Distribution, Metabolism, Excretion) 

characteristics have clearly made far less of a contribution to 

clinical failures than is widely supposed!”. At the same time, he 
also accepts that the application of the Ro5 aimed at prediction of 
“A” of ADME significantly aided improving early combinatorial 
libraries which had included “many large and greasy, biologically 

inactive molecules”. This example of the controversial judgment of 
the fairly well-studied ADME properties illustrates that it would be 
indeed very difficult to set the above-mentioned priority order of 
properties in a decision tree. The questions on the appropriate use 
of a property, i.e., “where and to which extent” seem to remain 
unanswered in general. 
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Similarly, an important study by Feher and Schmidt analyzing 
properties of natural products [39] concluded that: “Drug-like 
filters, such as the Lipinski rules, are very helpful in isolating likely 
problem molecules. However, overly strict adherence to it can have 
the adverse effect of restricting diversity … and hence also 
reducing similarity to natural products. … A large proportion of 
natural products is biologically active and has favorable ADME/T 
properties, despite the fact that they often do not satisfy ‘drug-
likeness’ criteria.” Furthermore, Ganesan [53] analyzed a total of 24 
unique natural products that led to an approved drug in the period 
1970–2006. They found an identical success rate of 50% both for 
the classes conforming or violating the Ro5. It was also found that 
natural products are successful in maintaining favorable logP and 
intermolecular H-bond donating potential even with high MW and 
large numbers of rotatable bonds. 

Lajiness et al [54] raise additional concerns regarding drug-
likeness studies. They claimed that there are very few studies 
accompanied by the data sets used for analysis, and therefore, 
reproducibility of the results is questionable. During collection of 
data in Table 1, we also found that in many cases authors refer to, 
e.g. in-house, company-owned data sets or other resources with no 
or reduced public availability or a non-defined sub-set of an 
available database. However there is no guarantee that proprietary 
collections are adequate for the analysis of general drug-likeness. 
For example, Lajiness et al. [54] mentioned that proprietary 
collections may be biased due to historical lead optimization efforts 
focused at particular chemical classes, such as steroids or 
benzodiazepines. They also concluded that comparing drug-likeness 
of groups instead of individual compounds was appropriate to 
achieve significant results. 

There are also methodological problems with the properties 
‘traditionally’ used as filters. For example, Bhal et al. [55] suggest 
the cautious use of logP in drug design due to its inability to 
account for the ionization of compounds under physiological 
conditions. They conclude that the pH-dependent logD is a more 
realistic descriptor of lipophilicity under physiological pH’s and, 
therefore, logD should be used preferentially over logP as the 
descriptor for lipophilicity, especially when working with ionizable 
compounds. Vistoli et al. [51] also mention the problems of pH-
dependent properties. 

In their seminal paper, Lipinski et al. [29] already claimed that 
antibiotics, antifungals, vitamins, and cardiac glycosides fell 
outside their Ro5, possibly due to transporter effects. The results of 
the study of Good and Hermsmeier [56] suggest further 
discontinuities in drug-like space, beyond those claimed by Lipinski 
et al. [29], in the context of classification. Giménez et al. [57] also 
concluded that Ro5 is very useful to select better compounds in 
chemical libraries, but it must be used carefully to avoid a possible 
exclusion of promising compounds. They evaluated the top 
pharmaceutical products in 2007. Among 60 drugs, 7 (atorvastatin, 
montelukast, docetaxel, telmisartan, tacrolimus, leuprolide and 
olmesartan) did not fit the Ro5, and 5 failed one of the threshold 
values. 

Zhang and Wilkinson [58] summarized their criticism of the 
overemphasis of Ro5 of drug-likeness from two points of view. 
Firstly, they claim that only 51% of all FDA-approved small 
molecule drugs are both used orally and comply with the Ro5. This 
does not even include the increasing number of biologicals of 
which several have reached ‘blockbuster’ status. Secondly, the Ro5 
does not cover natural product and semisynthetic natural product 
drugs, which constitute over one-third of all marketed small-
molecule drugs (see also Feher and Schmidt [39]). 

A further doubt arises from the finding (Dobson and Kell [7]) 
that general drug-likeness properties such as MW or logP, adequate 
for passive diffusion, have decreased ability for prediction of 

carrier-mediated and active uptake of drugs that are more common 
forms of transport than is usually assumed. For drugs transported by 
carriers, general property filters are not normally effective in 
individual cases, and specific data on interactions of drugs and 
transporters would therefore accelerate research in this field. 
Similarly to drugs, naturally occurring intermediary metabolites 
may also require solute carriers to enter cells. Thus, an evaluation 
of metabolite-likeness (Dobson et al.) [59] would be essential to 
understand the true physiological processes. However, estimation of 
metabolite-likeness is missing from most of the present drug-
likeness studies. 

2.4. Specific Drug-Likeness  

Considering the diversity of drug profiles, specific approaches 
of drug-likeness may become an alternative to the limited general 
concept reviewed in the previous Sections. Drugs achieve their 
effects through different mechanisms in the body, targeting 
different proteins, organs or even organisms, as in the case of anti-
infective agents. Moreover, dermatological agents used topically 
may require completely different pharmacokinetic properties than 
drugs which are inhaled, injected or administered orally. In 
addition, drugs that affect the central nervous system have to pass 
yet another obstacle, the blood-brain barrier (BBB). 

Besides their general analysis, (Section 2.2) Ghose et al. [33] 
also investigated the property profile (MW, logP, etc.) of seven 
different classes of drug molecules in the CMC such as central 
nervous system (CNS), cardiovascular, cancer, inflammation, and 
infectious diseases (Table 2). They provided drug-likeness ranges 
for the different classes and found considerable outliers from the 
general drug-likeness trend. For example, the antibacterial 
compounds formed a special class of biologically active compounds 
very different from regular drugs. The logP of anticancer drugs 
showed a high standard deviation possibly due to the complexity of 
cancer, which affects different parts of the body and tissues. On the 
other hand, the standard deviation of logP of CNS drugs was 
relatively small due to the requirement that they should cross the 
BBB. They concluded that for different drug classes the ranges may 
be considerably tighter than the general drug-likeness ranges. 
Leeson and Davis [42] also found that significant differences exist 
between the property distributions of different therapeutic areas of 
oral drugs of the 1983-2002 period. The distributions of MW and 
logP among antiinfectives show different trends from the other drug 
classes probably related to the need for their activity in a non-
human organism, and cell wall penetration in the case of antibiotic 
drugs. 

Vieth et al. [43] analyzed the differences between routes of 
administration (Table 2). It was observed that oral drugs tend to be 
lighter and have fewer H-bond donors, acceptors, and rotatable 
bonds than drugs with other routes of administration. These 
differences are particularly pronounced for oral vs. injectable drugs. 
However, they concluded that due to the substantial overlap in the 
range of properties found between the different drug classes, a 
particular drug cannot be adequately classified as either oral or 
injectable on the basis of simple physical property calculations. 
Tronde et al. [60] have studied the physicochemical properties and 
absorption qualities of inhaled drugs, finding that the pulmonary 
epithelium allows for higher PSA (up to 479 Å2) in compounds, as 
compared to the intestinal mucosa and BBB. They propose the lung 
route as an alternative to drugs poorly absorbed through the oral 
route. Ritchie et al. [61] also studied respiratory drugs administered 
through intranasal/inhaled routes, and found their calculated 
physicochemical properties to have lower lipophilicity, higher 
molecular weight, and higher PSA, when compared to drugs 
administered orally.  
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Table 2. Specific Drug-Likeness Values of Property Filters 

 

Source Disease/administration

/target family 

Statistics Property Database 

Year Author Ref   HBD HBA logP MW NR NRB PSA Description N 

MEAN   1.59(a) 332    cancer 

SD   2.5(a) 129    

349 

MEAN   1.97(a) 361    cardiovascular/ 

antiphypertensive SD   2.1(a) 123    

269 

MEAN   3.05(a) 291    CNS/antidepressant 

SD   1.5(a) 69    

208 

MEAN   4.10(a) 380    CNS/antipsychotic 

SD   1.5(a) 83    

105 

MEAN   2.20(a) 277    CNS/hypnotic 

SD   1.5(a) 99    

74 

MEAN   2.38(a) 339    infection 

SD   2.7(a) 139    

39 

MEAN   3.09(a) 335    

1999 Ghose et al.  [33] 

inflammation 

SD   1.5(a) 122    

CMC 

290 

MEAN 1.00 4.5 3.02(c) 313 2.36 5.00 20.8 % Cancer  

MED 1 4.5 3.01(c) 299 2 3.5 18.3 % 

14 

MEAN 1.46 6.73 3.05(c) 389 2.84 8.23 19.8 % cardiovascular 

MED 1 7 3.00(c) 396 3 8 18.6 % 

79 

MEAN 2.71 6.84 1.90(c) 378 2.32 7.63 26.7 % gastrointestinal and 

 metabolism MED 2 6 2.28(c) 357 2.5 7 20.7 % 

38 

MEAN 2.41 8.78 1.56(c) 456 3.45 6.83 24.6 % infection 

MED 2 7 0.94(c) 389 3 5 21.5 % 

64 

MEAN 1.50 4.32 2.50(c) 310 2.85 4.70 16.3 % nervous system 

MED 1 4 2.55(c) 307 3 4.5 14.3 % 

74 

MEAN 1.37 4.24 3.34(c) 396 3.02 5.52 20.5 % 

2004 Leeson and 
Davis 

[42] 

respiratory and 

 inflammation MED 1 4 2.90(c) 353 3 4.5 19.3 % 

Oral drugs 
1983-2002 

46 

MEAN 3 6.5 1.6(c) 392.3 2.5 7.9 100.5 absorbent 

10-90P 0-7 2-14 -2.3 to 4.8(c) 172-666 0-4 2-16 20-219 

116 

MEAN 4.7 11.3 0.6(c) 558.2 3.2 12.7 143.6 injectable 

10-90P 0-11 3-23 -3.3 to 4.9(c) 196-1085 1-6 2-27 28-311 

308 

MEAN 1.9 5 2.9(c) 368.5 2.9 5.3 75.4 

2004 Vieth et al.  [43] 

topical 

10-90P 0-3 2-8 -0.6 to 6.0(c) 188-495 1-5 1-9 21-114 

FDA Orange 

Book. 
Drugdex 

112 

MEAN 0.7 2.9 3.4 300.5    CYP450 

90 % 2 5 8.8 399.4    

12 

MEAN 1.3 4.2 2.8 326.8    GPCR-bio 

90 % 3 7 5.1 435.4    

216 

MEAN 1.8 5.0 5.5 414.9    GPCR-lipid 

90 % 3 9 8.5 586.2    

8 

MEAN 1.6 8.5 5.0 484.8    GPCR-pep 

90 % 2 12 7.5 600.2    

11 

MEAN 1.3 4.9 2.5 305.5    ion channel 

90 % 2 9 5.0 443.2    

115 

MEAN 2 7.0 4.6 439.4    kinase 

90 % 3 8 5.6 493.6    

5 

MEAN 1.4 3.8 4.1 381.8    NHR 

90 % 3 6 7.2 445.8    

58 

2006 Vieth and 
Sutherland  

[48] 

PDE MEAN 0.9 6.9 1.7 331.9    

Vieth et al. 
2004 updated 

with FDA 
release after 

2003 

15 
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(Table 2). Contd….. 

Source Disease/administration 

/target family 

Statistics Property Database 

Year Author Ref   HBD HBA logP MW NR NRB PSA Description N 

 90 % 2 10 4.2 480.2     

MEAN 4.5 7.2 2.3 430.6    protease 

90 % 5 11 5.9 636.6    

35 

MEAN 1.3 4.2 3.0 304.7    

   

transporter 

90 % 3 7 5.5 423.5    

 

37 

MEAN   2.8 354    

MED   2.9 351    

1999 Ajay et al. [64] CNS 

90 %   0.0-5.2 200-540    

CMC and 

MDDR 
1050 

+ 
16785 

MAX       120 Å2 1999 Kelder et al.  [65] CNS 

∼MEAN       60-70Å2 

Passively 
transported 
oral drugs 

776 

2009 Chico et al. [69] CNS ∼MAX   4 400   80 Å2 Brain-
penetrant 

small 
molecules 

448 

MEAN   2.67(c) 

2.80(m) 

285     CNS 

SD   2.03(c) 

1.98(m) 

91     

44 

MEAN   2.63(c) 

2.66(m) 

279     inflammation 

SD   1.37(c) 

1.47(m) 

107     

17 

MEAN   -0.18(c) 

-0.13(m) 

371     

2001 Sakaeda et al. [34] 

microbial 

SD   1.88(c) 

1.59(m) 

161     

48 

Abbreviations. 90P: 90 th percentile; HBA: number of H-bond acceptors (O+N); HBD: number of H-bond donors (OH+NH); logP: logarithm of octanol/water partition coefficient 
(small letters in brackets denote different methods of logP calculation); MED: median; MW: molecular weight; N: number of drugs in database; NHA: number of heavy atoms; NR: 
number of rings; NRB: number of rotatable bonds; PSA: polar surface area; SD: standard deviation. 

Another study of Vieth and Sutherland [48] investigated the 
distribution of drug-likeness property filters by targeted proteomic 
families. For proteases, nuclear hormone receptors, lipid and 
peptide G-protein-coupled receptors (GPCRs), the corresponding 
drugs significantly exceed Ro5 limits, while others targeting 
cytochrome P450s, biogenic amine GPCRs, and transporters had 
significantly lower values for certain properties. It is also an 
interesting question whether ligands targeting different proteomic 
families have statistical difference in their property ranges. 
According to the results of Morphy [62], the ligands of peptide 
GPCRs and integrin receptors, possess significantly higher median 
property values than those for aminergic targets, such as 
monoamine transporters and GPCRs. Agonists for monoamine 
GPCRs, opioid receptors and ion channels had smaller MW and 
clogP than the antagonists, but there was no difference between the 
agonists and the antagonists for peptide GPCRs and nuclear 
receptors. Paolini et al. [63] also found distinct differences in the 
distribution of molecular properties between sets of compounds 
active against different families. For example, they also found that 
the mean MW of ligands binding to aminergic GPCRs is 378(±93), 
whereas the mean MW of peptide GPCR ligands is greater at 
514(±202).  

The design of libraries of CNS-active compounds has been a 
goal of many research groups since the early applications of drug-
likeness property filters (Ajay et al. [64]) such as MW or logP. 
Kelder et al. [65] found a significant difference in the polar surface 

area distribution of 776 CNS and 1590 non-CNS drugs. It was 
concluded that orally active drugs with passive transcellular 
transport should not exceed a PSA of 120 Å2, and a 60-70 Å2 for 
appropriate BBB permeability. MW was identified as a good 
descriptor of BBB penetration [66, 67], and applied in fact as a key 
property filter together with logP in testing a 3042 compound 
screening library [68] for CNS-compatibility. Chico et al. [69] 
claimed that kinase inhibitor drugs for CNS indications required a 
modification of the property limits set by the Ro5. They found that 
most of the brain-penetrating small molecules had a MW<400, 
logP<4 and PSA<80Å2. In addition to above examples Table 2 
provides also threshold values fro three disease families by Sakaeda 
et al. [34]. 

3. MOLECULAR PROPERTY FILTERS DESCRIBING 

BINDING AFFINITY 

Besides the use of molecular properties (MW, NHA, logP, etc.) 
as filters (see previous Sections), several studies investigated the 
correlation between these properties and the binding affinity of a 
ligand to its macromolecular target (Eq. 1). Remarkably, during the 
formation of the [Ligand:Target] complex some water molecules (k 
in Eq. 1) may leave the binding interface, whilst others may join it 
[70, 71]. The binding affinity (also called ‘in vitro potency’) can be 
described in terms of thermodynamic equilibrium constants of 
association, dissociation or inhibition (Ka, Kd. Ki) which can be 
related to ∆G (Eq. 2). In some cases, the logarithm of inhibitor 
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concentration at 50 % inhibition (pIC50) is also applied as a measure 
of binding affinity, but pIC50 cannot be directly related to ∆G by 
Eq. 2. 

Ligand(H2O)n + Target(H2O)m  [Ligand:Target](H2O)n+m-k 
        + k H2O     Eq. 1 

∆G = −RTlnKa = RTlnKd/i        Eq. 2 

(R is the gas constant, T is the thermodynamic temperature) 

In a seminal article Kuntz et al. [72] plotted experimental ∆G 
values of a large set of complexes of macromolecular targets and 
their strongest-binding ligands against the NHA of the ligand 
molecules. They found that ∆G increases with NHA with an initial 
slope of ca. -1.5 kcal/mol (1cal = 4.18 J) per atom. Beyond 15 
NHAs the increase dropped dramatically suggesting a logarithmic 
relationship between ∆G and NHA for large molecules. Reynolds et 
al. [73, 74] found a similar, non-linear relationship when plotting 
the most potent ligands of the BindingDB database. The ‘maximal 
affinities’ as measured by pIC50 increased rapidly up to 20 heavy 
atoms, but a plateau existed beyond 25. A recent study of Ferenczy 
and Keserű [75] also presented a non-linear plot of pKd-NHA with 
a plateau starting from 40 heavy atoms. 

Ferrara et al. [76] calculated the Pearson R value between the 
experimental ∆G and the logarithm of the MW for different data 
sets (Table 3) and found significant correlations in many cases. The 
logarithmic function was chosen according to the above detailed 
logarithmic dependence of ∆G on NHA shown by the study of 
Kuntz et al. [72]. Velec et al. [77] also calculated a Spearman’s 
rank order correlation coefficient of 0.56 between experimental 
∆Gs of 100 complexes and the MWs of participant ligands. Affinity 

predictions purely based on the ligand’s MW gave in fact better 
results for the 100 complexes than many scoring functions 
involving other terms on, e.g. interaction with the target. Wells and 
McClendon [78] collected the ∆G of highest-affinity fragments and 
small molecules that target seven different protein–protein 
interfaces, and found an R=0.77 (R2=0.59) correlation between ∆G 
and NHA. Kim and Skolnick [79] published correlations between 
pK and logMW values of various data sets (Table 3). 

Olsson et al. [80] measured a considerable correlation of ∆G 
with apolar surface area burial (including both ligand and protein 
surface) upon complex formation (R2=0.65) and the change in 
ligand apolar solvent accessible surface area (ASA, R2=0.44) using 
a diverse set of 254 complexes of the SCORPIO database. Notably, 
binding pocket ASA was shown [81] to correlate with ligand MW 
at an R2=0.77 too. For peptide ligands, estimation of ∆H was 
considered using a linear combination of ∆ASA values [82]. 

The background of the correlations of ∆G (logK) with ligand-
based, size-dependent properties (MW and NHA, Table 3) has not 
been elucidated yet. According to Eq. 3, for the analysis of 
correlation of the properties with ∆G it may be a plausible idea to 
analyze their correlations with the binding enthalpy (∆H) and 
entropy (∆S) changes, respectively. Using the data set published by 
Reynolds and Holloway [83], no correlation can be observed 
between NHA and ∆H or T∆S, respectively, but with ∆G, a slight 
R2=0.28 can be calculated. This finding hints that such a dissection 
of ∆G into ∆H and T∆S may not help in finding the reasons of the 
correlations of Table 3. 

∆G = ∆H − T∆S         Eq. 3 

Table 3. Correlations Between Binding Affinity and Molecular Properties 

 

Source Correlated quantities R
2
 Database 

Year Author Ref Binding affinity Property  Description-target protein N 

0.36 LPDB-all 189 

0.23 LPDB-oxidoreductase 37 

0.81 LPDB-serine protease 25 

0.58 LPDB-metalloprotease 13 

0.50 LPDB-immunoglobulin 10 

0.18 LPDB-lyase 8 

2004 Ferrara et al.  [76] pKi 

 

logMW 

0.16 LPDB-L-arabinose binding protein 9 

2005 Velec et al. [77] pKd MW 0.31a Wang et al. 100 

2007 Wells and McClendon [78] ∆G NHA 0.59 Ligands of seven different targets 13 

0.38 CDSa(CDS1-7) 146 

0.24 CDS3-HIV-1 protease 28 

0.53 CDS5-Ribonuclease a 13 

0.76 CDS6-Thermolysin 10 

0.50 CDS7-Beta trypsin 47 

0.59 Protein Ligand Database v1.3 

CDS8-Beta trypsin 

7 

0.88 CDS9-Carbonic anhydrase II 15 

0.40 CDS11-HIV-1 protease 6 

2008 Kim and Skolnick [79] pKi/pKd logMW 

0.49 CDS12-Thrombolysin 9 

2011 Reynolds and Holloway [83] ∆G NHA 0.28b BindingDB 102 

logMW 0.14 

logW 0.15 

2012 Present study  ∆G 

logP 0.19 

Non-drugs 320 

Abbreviations. logP: logarithm of octanol/water partition coefficient; MW: molecular weight; N: number of data; NHA: number of heavy atoms; W: Wiener index. 
a)Spearman’s R2; b)Calculated using the data in the reference. 
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∆G ≈ ∆Hinter + ∆Hintra − T∆Sconfig + ∆Gsol      Eq. 4 

∆Hinter ≈ ∆ECoulomb + ∆ELJ + …       Eq. 5 

∆G can be approximated (Brooijmans and Kuntz) [84] further 
by separating the terms of Eq. 3 into enthalpy changes (Eq. 4) 
coming from changes of intra (∆Hintra)- and intermolecular (∆Hinter) 
interactions, configurational entropy change (∆Sconf), and a free 
energy change coupled to (de)solvation processes (∆Gsol), such as 
release of interface waters (Eq. 1) during binding. ∆Gs includes 
both enthalpic and entropic contributions of changes of solute-
solvent interactions during complex formation. (Notably, there is an 
unclosed debate in the literature on the separability of the entropic 
terms for individual (molecular) contributions which may affect the 
above separation of ∆Gs from other terms of ∆G [85, 86]. In many 
∆G calculators [84], ∆Hinter is estimated involving pair-additive 
potential terms such as the Coulomb (ECoulomb) or the Lennard-Jones 
(ELJ) formulas (Eq. 5) for electrostatic and van der Waals-
interactions, respectively. Jacobson and Karlén [87] found that ∆G 
calculators built mostly on such enthalpic terms of ligand-target 
interactions (Eq. 5) produced high correlations with NHA hinting 
that ∆Hinter accounting for protein-ligand interactions is partly 
described by NHA. One possible explanation is that NHA can be 
related to surface area, and hence, to van der Waals interactions 
and, therefore, a high NHA can translate into a high ∆Hinter. 

Besides ∆Hinter, some parts of the configurational entropy 
(Sconfig) can be also related to MW (Eq. 6) 

Sconfig = Strans + Srot + Svib         Eq. 6 

Strans + Srot = Rln(aMW)        Eq. 7 

where trans, rot, and vib denote respectively, the translational, 
rotational, and vibrational ∆S contributions to the configurational 
entropy change, and ‘a’ is a constant. Several studies [88-94] 
calculate Sconfig using classical formulas relating Strans and Srot to the 
logarithms of MW and the principal moments of inertia, 
respectively. As known, the principal moments of inertia are also 
dependent on molecular size (and shape). Simplified formulas [95, 
96] were also introduced (Eq. 7) showing the dependence of part of 
Sconfig on MW. However, this dependence was suggested to be very 
weak or zero for the change of Sconfig, i.e. for ∆Sconfig of the binding 
process [97, 98]. 

In summary, several studies have published relationships (Table 
3) at various correlation levels between experimental binding 
affinity and molecular property filters such as MW, NHA, etc. 
Since the article of Gilson et al. [97], which had also dealt with the 
∆G-MW correlation, experimental collections have been published 
presenting new data. A collection of recent correlations was 
provided in Table 3 and the thermodynamic background was 
sketched to illustrate the problems of explaining these correlations. 
While the above considerations suggest that individual components 
of ∆G such as ∆Hinter are related to molecular size, and some of 
them, such as ∆Sconf, are probably not correlated with MW, the final 
explanation on the moderate, but significant correlations of ∆G with 
ligand size is still awaiting. Notably, these relationships are 
probably not linear as quantities obtained by simple normalization 
of ∆G with, e.g. MW, are still dependent on MW (see next Section 
for details). 

4. THE CONCEPT OF LIGAND EFFICIENCY (EFFICI-

ENCY INDEX, EI) 

The dependence of binding affinity on ligand size (MW, NHA) 
discussed in the previous section raises the question whether it is 
possible to define a measure, the binding efficiency for comparison 
of ‘intrinsic’ binding affinities of ligands of any sizes via 
‘decoupling’ ∆G from molecular size. In an early work, Andrews et 

al. [99] hinted at the possibility of definition of such intrinsic ∆Gs 
for a limited number of functional groups of a molecule by using 

average values calculated from experimental ∆Gs. Later, DeWitte 
and Shaknovich [100] calculated the intrinsic binding affinity per 
heavy atom and correlated these values with experimental Ki-s. 
Kuntz et al. [72] also used this intrinsic measure and showed that 
∆G/NHA rapidly decreases up to ca. 15 NHA (see also previous 
Section). 

Based on the above results, Hopkins et al. [101] recommended 
the introduction of ligand efficiency in the following explicit form 
(Eq. 8). The work of Wells and McClendon [78] provides 
information on the actual values of ‘efficient’ molecules. They 
collected several potent small molecules inhibiting protein–protein 
interactions and obtained |EINHA| values of 0.2…0.4 for their data 
set. An alternative, idealized value of 0.5 has been recommended by 
others [63, 101, 102]. 

EINHA �
G

NHA
          Eq. 8 

To note, throughout this review we use the name ‘efficiency 
index (EI)’ instead of ‘ligand efficiency’ to emphasize that this 
measure of intrinsic ∆G is a rational definition of the efficiency of a 
ligand, however, it is not the only possible definition.  

Definition of other EIs was provided by Abad-Zapatero and 
Metz [24] using MW (EIMW) and PSA (EIPSA) in the denominator of 
Eq. 8 instead of NHA. A series of other EIs were introduced based 
on various size-dependent properties for normalization among 
which the Wiener-index (W) was found particularly useful in the 
form of EIW [103]. Leeson and Springthorpe [45] proposed a 
ligand-lipophilicity-based efficiency index (EIlipo, Eq. 9) to be used 
in “maximizing the minimally acceptable lipophilicity” per unit of 
binding affinity during drug design. They suggest that an average 
drug has an EIlipo of 5-7 or greater.  

EIlipo = pIC50 (or pKi) – clogP (or logD)       Eq. 9 

Although the definition of EIs involves normalization by ligand 
size (Eq. 8), Reynolds et al. [74] found that EINHA is still dependent 
on ligand size, as a very dramatic decline was observed in EINHA as 
size increases. Notably, Orita et al. [104], and Keserü and Makara 
[105] described a similar trend of EINHA vs. NHA. The drop in 
EINHA was large between ca. NHA=10…20, and flattened toward 
very large sizes (NHA>40). They found an interesting similarity 
between the maximal EINHA vs. NHA and the ASA vs. NHA curves 
suggesting that the primary driving forces behind the systematic 
decline in maximal EINHA with increasing molecular size is the 
reduced effective surface area for the larger compounds. In other 
words, large molecules possess relatively large buried surface area 
unavailable for binding. In a recent study, Reynolds and Holloway 
[83] concluded that the strong size dependence of EINHA (average or 
optimal) is mostly a consequence of the dependence of the 
enthalpic, and not the entropic part of EI. To eliminate the above 
size-dependency of EINHA, Reynolds et al. [74] introduced a new 
functional form called ‘fit quality’, and Nissink [106] derived a 
size-independent ligand efficiency measure of the form of binding 
affinity/NHA0.3. 

The concept of ligand efficiency is a simple way to merge 
binding and pharmacokinetic characteristics of a ligand into a single 
measure. EI has already been applied in many studies and it is 
suggested to become a useful tool of fragment-based drug discovery 
[102, 104, 107-109], lead optimization [46], and drug chemical 
(molecular) space localization for some diseases or organs [110] 

5. SENSITIVITY AND SELECTIVITY OF PROPERTY 

FILTERS 

Tables 1 and 2 list general or specific drug-likeness values of 
molecular properties. Most of these values are descriptive statistics 
(mean, median, percentile, etc.) of data sets including only drugs. 
That is, counter-examples of a set of non-drugs are generally not 
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considered. Notably, the strict definition of such sets is not obvious 
(Section 2.2) due to possible change/evolution of the drug/non-drug 
status of any compounds. However, if sets of drugs were collected, 
then it is fairly plausible to expect a non-drug set for comparison. 
Introduction of a new statistical term on the selectivity of the 
property filter is also necessary showing the ability of the property 
to distinguish drugs from non-drugs. Since the investigated 
molecular properties (MW, NHA) are coupled to both 
pharmacokinetic drug-likeness (Section 2) and ∆G (Section 3), it 
would be also advantageous to ‘switch off’ the ∆G-coupling in an 
analysis to investigate the properties’ selectivity only for drug-
likeness. In the forthcoming Sections, selectivity and sensitivity 
measures of drug-likeness filters are introduced using a 631-
compound database as an example.  

5.1. Data Sets 

Details of the collection of the data sets are provided in the 
Appendix and the sets are listed in the Supplementary Material. To 
decouple the ∆G-dependence (Section 3) of the property filters, the 
two sets (320 non-drugs and 311 drugs) were designed to have the 
same range of maximal experimental ΔG. To evaluate data sets and 
assess the similarity/dissimilarity of the distributions, a standard 
protocol of statistical analysis was followed (Appendix). The 
distribution of the data was checked, and it was found that the ΔG 
values in the sets and also in the entire database followed non-
normal distributions (p<0.001). To check the distribution of an even 
larger sample of available experimental ΔG data, the same tests 
were performed for a set of more than 4,000 binding affinity values 
from the BindingDB [111] database and it showed a non-normal 
distribution as well. As the normality tests failed for the ΔG data 
sets, two non-parametric tests were applied and showed equal 
medians and distributions of ∆G between the drug and non-drug 
populations (p>0.1, p>0.05). In addition to the statistical tests, a 
high degree of overlap between the distributions of the two ΔG 
populations can be seen from the plot of their histograms (Fig. 1a), 
and from the fitted mixed normal probability density functions 
(PDF, Fig. 1b). The comparison of descriptive statistics also 
emphasizes the equality of drug and non-drug ΔG populations. The 
medians of the samples are in good agreement (Δ ≈ 0.5 kcal/mol) 
and the median difference between percentiles of the two samples 
(Appendix) is a marginal 3 % (Fig. 1c). Details of the statistics are 
included as Supplementary Material. 

In conclusion, a database of drug and non-drug compounds was 
collected wherein the two sets have ΔG distributions of 
significantly high similarity. Importantly, such criterion was not 
applied for the distribution of molecular properties and EIs of the 

two sets. Thus, it could be tested if the properties can describe 
general drug-likeness ‘decoupling’ effects common with ΔG. The 
outcome of this test is summarized in the next Section. 

5.2. General Drug-Likeness Filters 

Similarly to the previous section, the results of normality tests 
indicate that most of the investigated drug-likeness property filters 
(MW, NHA, W, logP) and the corresponding EIs (Section 4 and 
Appendix, EIMW, EINHA, EIW) are not normally distributed 
(p<0.001). In contrast with the previous section, the non-parametric 
tests of equivalence resulted in a highly significant difference 
(p<0.001) between the property/EI distribution of the drug and non-
drug sets. There is a considerable increase in the medians of MW, 
NHA, and W with Δ≈150, 10, and 2000 units respectively, for non-
drugs compared with drugs. Similarly, the corresponding median 
percentile differences are in the range of 15-230%, which is 
significantly larger than that of ΔG (Fig. 1c). The histograms and 
Probability Density Functions (PDF’s) (Fig. 2a, b, e, & 
Supplementary Material) show a change in the shape of the 
distributions. Whereas the ΔG distributions (Fig. 1a, b) are rather 
rounded, well-defined peaks appear in the case of MW, NHA and 
logW, reflected also by a change in the kurtosis value from negative 
to positive. For drugs, a sharp peak and a high kurtosis value 
appear, while the non-drug histogram is flat with a long tail. 

A similar separation of the two sets can be observed using EIs 
(Fig. 2c, d & Supplementary Material). The EIMW histograms (Fig. 
2c) do not resemble the non-separable ΔG distributions of drugs 
and non-drugs (Fig. 1a). The partial separation of EI values seems 
to be a plausible consequence of the differentiating power of the 
parent MW. By definition, in EIs the populations of ΔG and MW or 
NHA are connected and the distributions of EIMW and EINHA reflect 
the shape of the one-peaked MW (Fig. 2a) or NHA distributions, 
which are more suitable candidates for statistical evaluations than 
the flat ΔG distributions with dual maxima (Fig. 1a, b). 

Whereas significant separation power of the filters can be 
concluded from the above analysis, a considerable overlap of the 
drug and non-drug histograms can also be observed especially in 
the cases of W and EIw where the distributions have an exponential 
shape (Supplementary Material). Notably, taking the logarithm of 
W (logW) resulted in separate peaks (Fig. 2e). For logP, (Fig. 2f) 
the drug population is centered in a well-defined peak in the 
hydrophobic region (logP>0), as can be expected for drugs [12, 42], 
whereas the distribution of non-drugs is similar to the case of ΔG. 
The considerable overlap of drug and non-drug populations in the 
hydrophobic region, along with a separate non-drug sub-population 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Comparison of binding affinity distributions of sets of drugs and non-drugs. The two compound sets with N=311 and 320 members respectively, were 
designed to be non-separable by ΔG. Overlapping histograms of ΔG values in part (a) and two-component normal mixture probability density functions fitted 
to the histograms in part (b) reflect the similarity of the two datasets. In part (c), the median differences between the series of percentiles of the two sets are 
shown. Whereas the difference is marginal in the case of ΔG, it is significant for the filters. Error bars represent median absolute deviations. 
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in the hydrophilic region (logP<0) explains the high spread of 
median differences at logP (Fig. 1c). 

5.3. Definition of Selectivity and Sensitivity of Drug-Likeness 

Filters 

As it was shown in the previous section, sharp borders cannot 
be drawn between the partly overlapping drug and non-drug 
populations for the properties investigated. To achieve a coherent 
formulation of selectivity and sensitivity, fits of Probability Density 
Functions (PDF) of continuous distributions (Weibull, Gumbel, 
Exponential) were performed for histograms of the properties (Figs. 
2b, d). Using these explicit forms of PDFs, an analytical 
comparison of the distributions of drugs and non-drugs has become 
possible for the EI’s and MW (Fig. 3 and Appendix). In the 
following discussion we will use the example of EIMW for the 
introduction of PDF-based sensitivity and selectivity of the filters. 

The probability that a drug adopts an EIMW larger than a 
minimum threshold (TMIN) is expressed as a percentage (Eqs. A4 
and A6) and named sensitivity (σ) as it reveals whether a large 
enough section of the entire drug population is included in the 
region under question. A σ=51% is represented by an shaded area 
in Fig. (2d). In this case, 51% of the total drug population is located 
in the region above TMIN. The larger the sensitivity of a filter, the 
fewer drugs are excluded erroneously above a minimum threshold 
TMIN. Detailed definitions of probabilities are shown in the 
Appendix. Decidedly,  is a necessary, but not a sufficient 
parameter of a property filter.  

Further inspection of the fitted PDFs of EIMW (Fig. 2d) reveals 
that in the region starting from TMIN, the probability that a drug 
adopts an EIMW is three times higher than this probability for non-
drugs. Thus, the ratio of the shaded area below the PDF curve of 
drugs and the striped area (Fig. 2d) corresponding to non-drugs is 

three. Generalizing the previous observations, we introduce another 
measure of selectivity (Eqs. A5 and A7), the Drug-likeness Ratio 
(DR), relating the population of drugs with that of non-drugs by the 
ratio of their probabilities. In terms of the above-mentioned 
example, DR equals 3 as there is a three-fold higher chance for a 
compound to be a drug than a non-drug above TMIN.  

After fitting the PDFs, thresholds can be fine-tuned for a drug-
likeness filter using the DR and  functions as calibration curves 
(Fig. 4a), i.e. the TMIN value can be read from the curve plot at a 
required level of DR or . According to the relative position of DR 
and σ functions, drug-likeness filters can be categorized into three 
types (see also Appendix for details): those with limits of TMIN (Fig. 
4a), both TMIN and a maximum threshold (TMAX, Fig. 4b), or only 
TMAX (Fig. 4c). EIMW can be categorized under the first type (Fig. 
4a). In the above-mentioned example (Fig. 2d), a TMIN of 2.8 
kcal/mol is a realistic lower EIMW threshold at levels of DR=3, and 

=51%. As  decreases with increasing DR (Fig. 4a), thresholds 
with DR>10 may have no practical importance. 

In Table 4, general thresholds calculated for all filters at DRs 
from 2 to 3, and σ>50% are listed. Compared with values from the 
literature (Table 1), it can be concluded that the calibrated range of 
129-369 for MW (Fig. 4b) correspond to drugs. Calibrated 
thresholds of NHA, EIMW and EINHA at similar DR and σ values are 
also located at the drug/lead border (Table 1). For logP there are 
various data published and our estimated range of 0.7-4.3 between 
TMIN and TMAX agrees well with the values from the literature 
(Table 1). The above results allow experimenting with calibration, 
and fine-tuning of thresholds at different DR and  levels 
depending on the nature of desired applications, i.e. if hits, leads or 
drugs are investigated requiring small/large selectivity and 
sensitivity criteria, etc. Example thresholds at various DR and  
levels and details of the calculations can be found in the 
Supplementary Material. Importantly, while the above description 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Separation of sets of drugs and non-drugs by drug-likeness filters. Histograms in parts (a), (c), (e), (f), and fitted probability density functions in parts 
(b) and (d) reflect separation of the two compound sets by various filters. Part (d) also features key terms of this study with an example of EIMW. The shaded 
area below the drugs group curve represents the sensitivity (σ) of EIMW above the threshold TMIN=2.8 kcal/mol. The ratio of this shaded area and the striped 
area below the non-drug curve shows that drugs can be found with three fold higher probability than non-drugs above TMIN and by definition this equals the 
drug-likeness ratio (DR=3). 
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Fig. (3). An example of the use of fitted probability density function (PDF, f) and the corresponding cumulated density function (CDF, F) for 
the analytical calculation of selectivity and sensitivity measures DR and σ of MW. As F(MW)≈0 for small MWs, TMIN was omitted from 
function DR. Gumbel distributions were fitted for both drugs (D) and non-drugs (ND) sets (see also Fig. 1). Notably, the general functional 
formulae are provided in this figure and different scale (α) and location (�) parameters were obtained for the two sets (see Supplementary 
Material for numerical values of the parameters and details of fit). The σ can be directly calculated (Eq. A6) from the CDFs according to 
σ=100[FD(TMAX)-FD(TMIN)]. Since the DR function has a maximum on the MW≤1500 domain investigated, TMIN and TMAX thresholds can be 
calculated (Fig. 4) for DR values up to ca. DR=3.75. Plausibly, a DR≥ 1 is of interest. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4). Calibration curves of drug-likeness thresholds. The shape and relative location of sensitivity (σ) and Drug-likeness Ratio (DR) functions facilitate 
calibration of the three types of drug-likeness thresholds (T) of filters. (a) In the case of EIMW, the DR function increases and σ decreases on the domain 
investigated. Thus, a minimum threshold (TMIN=2.8 kcal/mol) can be calibrated (following the previous example of Fig. 2d) with a DR=3, which is large 
enough that EIMW can separate drugs from non-drugs. At the same time, the sensitivity of EIMW is also acceptable (σ=51 %) for recognition of drugs above this 
threshold. (b) In case of MW, the DR function has a maximum, and therefore there are two thresholds (TMIN and TMAX) with the same DR value specifying a 
favorable MW interval with sufficiently high DR values. Here, σ=100[FD(TMAX)-FD(TMIN)], where FD is the cumulative distribution function of drugs. At higher 
DR values, i.e. narrower (TMIN, TMAX) intervals σ becomes smaller. (c) For a decreasing DR, the maximum of logW can be set (TMAX), below which the 
separation of drugs from non-drugs is possible by logW. To note, the logW-related curves are not continuous functions, the points are derived from raw 
histogram data. 

of filters with DR and  were used for drug/non-drug (drug-
likeness) separations, our present approach can easily be easily 
adopted to describe the filters in drug/lead or lead/hit relations 
(lead-likeness). 

5.4. Disease-Specific Drug-Likeness 

It is informative to characterize the discriminating power of the 
filters between drugs and non-drugs beyond general terms 
according to disease categories (Section 2.4). For this 
characterization, the set of drugs was divided into sub-sets by 
disease categories according to the classification of DrugBank 
[112]. Similarly to the case of general drug-likeness (Section 5.2), a 
non-drug companion with the closest ΔG was selected for each drug 

in each disease category. This method resulted in selected disease 
category sub-sets of non-drugs that are inseparable from the 
corresponding drugs by ΔG (Fig. 5). In all cases, statistical 
comparisons of sub-sets of drugs and non-drugs were performed for 
ΔG and for all 8 filters. The overall results on separation of inter-
quartile ranges are shown as a matrix (Fig. 5), other details can be 
found in the Supplementary Material. (Notably, due to the relatively 
small number of drug/non-drug members of the sub-sets  and DR 
were not calculated in this analysis by disease types. In forthcoming 
studies we plan to extend the selectivity and sensitivity calculation 
of the filters on large disease-specific data sets.) 

In 70% of the cases, separation of the sub-sets at different levels 
can be observed (Fig. 5), and in the remaining cases, the inter-
quartile ranges of drugs and non-drugs are completely overlapping. 
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There is a minority (10%) of cases in which a high separation 
(>90%) was found. The “worst performance” occurred in the 
categories of Antineoplastic agents and Anti-infectives, with cancer 
drugs presented in the former category. This finding implies that the 
failure of new drug discovery in these areas [113, 114] may be 
partly due to the inefficacy of drug-likeness filters investigated in 
this study. There are also numerous cases where only a partial 
separation was achieved as, e.g. the cardiovascular system 
compounds at MW (Fig. 5b).  

Based on these observations, drug-likeness thresholds (Table 4) 
were estimated for disease groups using the inter-quartile ranges of 
properties that provide the highest level of separation (>90%), 
which show agreement with Table 2. These disease-specific 
thresholds provide in some cases (MW, logP) narrower drug-
likeness ranges than the general thresholds found within reference 
values available in the literature.  

Whereas the evaluation of the above mentioned negative or 
partly successful cases is not an easy task, certain positive results 
can be readily explained. For example, logP, well-known to 

describe skin permeability [115-117], performed well for the 
category of dermatological drugs which require absorption through 
the skin (Fig. 5c). Similarly, MW, a good filter of nervous system 
drugs in this study (Fig. 5d), describes blood-brain barrier 
penetration [66, 67], an important issue of drug design for CNS 
diseases. The MW-threshold calculated for nervous system diseases 
(Table 4) is in good agreement with the MW<400 value 
recommended by other studies [34, 69]. 

Interestingly, the performance of EIs does not always 
correspond to their parent ligand-based properties (MW, NHA, W), 
emphasizing their different information contents. Besides the well-
known drug-likeness filters such as MW and logP, the recently 
introduced EIW

 [103] was one of the best separators according to 
the present analysis, emphasizing the benefits of using EIs.  

6. SUMMARY AND FUTURE OUTLOOK 

Molecular properties of drug candidates have been extensively 
used as drug-likeness filters of compound libraries. In the present 

Table 4. Calibrated Thresholds, Selectivity, and Sensitivity of Property Filters 

 

General thresholds Disease-specific thresholds 
Property filter 

TMIN
 TMAX

 DR σ  TMIN-TMAX
c 

MW 129 369 2.5 61 206-322d, 262-342e, 258-342f 

NHAa 9 27 2.0 67  

Wa - 2037 2.0 73 578-1180f 

logWa - 3.1 2.1 58 2.76-3.07f 

logPa 0.7 4.3 2.6 67 1.02-3.27g, 1.74-3.59d 

EIMW
b 2.8 - 3.0 51  

EINHA
b  4.2 - 3.0 52  

EIW
b  7.5 - 3.0 56 6.51-15.87e, 6.01-17.78h, 7.35-21.93f 

Abbreviations. DR: drug-likeness ratio (selectivity); EI: efficiency index; logP: logarithm of octanol/water partition coefficient (small letters in brackets denote different logP 
definitions); MW: molecular weight; NHA: number of heavy atoms; σ: sensitivity; T: threshold; W: Wiener-index. 
a)Calibrated values of this filter were estimated from histograms and not from fitted distributions. b)The dimension of EIs is –kcal/mol. c)TMIN-TMAX is a (modified) inter-quartile range 
of the drugs set (no DR and σ values are given). d)Musculo-skeletal system. e)Nervous system. f)Various. g)Dermatologicals. h)Respiratory system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (5). Disease-specificity of drug-likeness filters. The set of drugs (N=311) used in this study was split into sub-sets according to various disease categories. 
The number (N) of members of these sub-sets is marked in brackets on the left side of the shaded matrix (a). Sub-sets of non-drug compounds possessing the 
same ΔG distribution as the sub-sets of drugs were formed. Each cell of the shaded matrix shows the level of separation of the inter-quartile range of a sub-set 
of drugs from that of non-drugs according to ΔG or a filter. The separation is 0 % if the two ranges are completely overlapping. This is the situation for all 
disease categories in the ΔG column due to the aforementioned selection of sub-sets of non-drugs. The separation is between 0 and 100 % if there is a partial 
overlap between the ranges as shown in the box plot for cardiovascular system drugs according to MW (b). If there is no overlap in the ranges, then the 
separation is 100 %. The latter situation is featured in examples of box plots of dermatologicals according to logP (c), and nervous system drugs according to 
MW (d). 
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review, a distinction was made between general and specific drug-
likeness. While the investigated properties significantly 
differentiated between the sets of oral drugs and non-drugs in 
general, a considerable overlap remained between the two sets. 
Certain disease types or drug administration routes may require 
specific filter values instead of the broader, general ones. It was 
also discussed to which extent the molecular properties are coupled 
to ∆G. Statistical comparison of drug sets with non-drugs of similar 
binding affinity and use of selectivity and sensitivity measures were 
introduced as an improved description of the overlapping 
distributions of filter values. With the new measures filtering 
thresholds gain statistical meaning: namely, their selectivity against 
non-drugs (DR) and sensitivity for drugs (σ). In addition to the 
positive results of the general drug-likeness concept, relevant 
criticism and limits of its applicability were also surveyed.  

Filtering thresholds can help in the future design of 
standardized, compound libraries assembled for binding assays, 
HTS, or other in vivo tests. However, precise statistical calibration 
of filtering thresholds − as shown in this work − may be required 
beyond simple descriptive statistics (mean, median) to assess full 
reliability of the thresholds. Disease-, target-, or administration-
specific drug-likeness filters may help the design of focused 
libraries which may become a competitive alternative to general 
compound sets. Molecular property and EI-based filters have an 
increasing impact also in fragment-based design [101, 118], and in 
the chemical optimization of physico-chemical properties of natural 
products [113, 119] or other lead compounds. 

CONFLICT OF INTEREST 

None declared. 

ACKNOWLEDGEMENT 

This study was financed by the European Social Fund (grant 
agreement no. TAMOP-4.2.1/B-09/1/KMR-2010-0003), an 
Estonian Science Foundation grant JD80, an Estonian Ministry for 
Education and Research grant SF0140031Bs09, and an Innove 
Foundation grant 1.0101-0310. C.H.’s work was financed by a 
Bolyai Scholarship of the Hungarian Academy of Sciences. We are 
grateful to Professor David van der Spoel for critically reading of 
the manuscript and Professor David Meredith (Department of 
Mathematics, San Francisco State University) for providing the 
program Xplore. 

APPENDIX 

Collection and Verification of Compound Sets of Drugs and 

Non-Drugs 

The structure of 311 drugs and 320 non-drugs and their 
experimental binding affinities (mostly as inhibition equilibrium 
constants, Ki) were collected from the following sources: PDBbind 
v2005 [120], KiBank [121, 122], SCORPIO [123], and from a 
previous study [124]. The BindingDB [110] database was also used 
for normality test comparisons. Where it was necessary, ΔG 
(precisely the standard Gibbs free energy change, ∆Go − the 
standard sign is omitted in this study for simplicity) values were 
obtained from Ki by ΔG = RTlnKi, using T=25 oC (298.15 K). The 
complete sets of drugs and non-drugs, as well as their raw and 
converted ΔG values are available as Appendices of the 
Supplementary Material. Similarly to other studies [72, 81], 
maximal ΔG values, i.e. ligand binding affinities corresponding to 
the complex with the relevant, strongest binding protein partner 
were collected. In the case of drugs, ΔG values with the 
pharmacologically relevant targets were considered. Whereas ΔG 
correspond to a multi-molecular interaction between the ligand 
compound, target, and solvent shell, it has been shown that ΔG is 

also related to molecular properties (MW, NHA, logP) [72, 78, 81] 
of the ligand only, as these properties hold information on both 
enthalpic (ΔH) and entropic (ΔS) constituents [103] of ΔG (through 
ΔG = ΔH - TΔS). Consequently, there is a ligand-based part of ΔG 
explained by the above properties (see also Section 3), which is 
constant regardless of the actual target. Since a compound can bind 
as a ligand to various targets, it can adopt different ΔG values due 
to target-specific interactions (ΔH) and, therefore, the maximal 
experimental ΔG, i.e. the maximum ΔG value of a compound with 
its relevant target(s), were collected for both sets in the present 
study. Using these maximum ΔG values helps decreasing target-
specificity of the interaction (ΔH) part as they correspond to the 
ideal binding affinity of a compound. 

The selection procedures of the two sets are following. (i) The 
list of all small-molecule approved drugs was downloaded from the 
DrugBank database, which also contain disease-specific data on 
drugs approved by the FDA (U.S. Food and Drug Administration 
agency). A standard, programmed procedure was applied to ensure 
purity the two sets. (ii) The ligand names were extracted from the 
PDB files, and queried in the DrugBank [112] database to identify 
those ligands that are FDA-approved drugs, and to avoid 
contamination of drug molecules in the non-drug collection. (iii) 
The set of non-drugs was designed to have overlapping binding 
affinity distribution with the set of drugs (Figs 1a, b). While non-
drugs were selected with a similar ΔG as drugs, but such criterion 
was not applied for the filtering properties of the compounds. Thus, 
there were no circumstances in the sampling which affected the 
composition of non-drugs set so as to determine/guarantee its 
similar/different property (MW, NHA, etc.) distribution compared 
with the drugs set (Fig. 1c).  

Filters 

There are various properties applied in drug design as size, 
structural, or property filters. Whereas size filters such as molecular 
weight (MW) or number of heavy atoms (NHA) require solely the 
knowledge of a compound’s atomic composition, structural 
descriptors also involve intra-molecular connectivity. The Wiener 
index (W) is a typical structural descriptor reflecting the branching 
and complexity of the molecule. The W is a robust measure as it 
does not depend on the molecular conformation. To be able to 
calculate the W of a compound, knowledge of its Lewis-structure is 
sufficient (Eq. A1). In this study, its logarithm (logW) is also used. 

�

NHA

ji,
ijd

2

1
W       Eq. A1 

where dij is the number of bonds in the shortest path connecting the 
pair of atoms i and j in the molecule. There are also other property 
filters, e.g. the logarithm of octanol/water partition coefficient 
(logP) which is generally applied as a measure of hydrophobicity 
for a non-ionized compound. The binding affinity and the 
aforementioned size or structural properties have been combined 
into hybrid filters called the efficiency indices (EI). The EIs are 
ΔGs normalized by these filters (Eq. A2). Exponents of ten were 
used as multipliers in the formulae to obtain human-readable EI 
values. 
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      Eq. A2 

The program XLOGP v2.060 [125] was used to calculate the 
logarithm of octanol/water partition coefficient (logP) by an atom-
additive method including correction factors. The calculations of 
molecular formula and number of heavy atoms (NHA), molecular 
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weight (MW), and Wiener index were performed with Marvin 
Beans v4.1.861 [126]. The experimental ΔG’s, calculated 
physicochemical properties and EI’s are available as an Appendix 
in the Supplementary Material.  

Descriptive Statistics 

To check the similarity/dissimilarity of the distributions, a 
standard protocol of statistical analysis was followed for all ΔG and 
filter sets. A complete descriptive statistics including histogram 
(Figs. 2a, c, e, f), minimum, maximum, range, median, median 
absolute deviation, arithmetic mean, standard error of arithmetic 
mean, 95.0% confidence interval, trimmed mean (10%, two sided), 
standard deviation, variance, coefficient of variation, skewness, 
kurtosis and a data vector of percentiles (1, 5, 10, 20, 25, 30, 40, 50, 
60, 70, 75, 80, 90, 95, 99%) was calculated for all data sets with 
program package Systat 12 [127]. The median of differences (%, 
Fig. 1c) between vectors ( p ) of tabulated percentiles of two sets 
(drugs and non-drugs) was calculated according to Eq. A3.  

 |)}{p| ; |}{pmin(|

|}{p-}{p|  100
 }{p  ;  )p(median (%)Difference

iDRUGS-NONiDRUGS

iDRUGS-NONiDRUGS
iDIFFDIFF ��

         Eq. A3 

Where
DIFFp  is the difference vector and {p…}i denotes the 

element of a vector. The spread of 
DIFFp  was given as median 

absolute deviation. Results of descriptive statistics are tabulated in 
the Supplementary Material. 

Statistical Tests 

The Shapiro-Wilk [128], Kolmogorov-Smirnov [129], and 
Anderson-Darling [130] tests were applied to check if the data sets 
came from a normally distributed population (α=0.05). The null 
hypothesis was that the population is normally distributed. If the p-
value was smaller than significance level α, then the null 
hypothesis was rejected (the data are not from a normally 
distributed population). If the p-value was larger than α, then the 
null hypothesis that the data came from a normally distributed 
population was accepted. The statistics and p-values are tabulated 
in the Supplementary Material. As the data populations are not 
normally distributed, non-parametric tests are valuable, since they 
do not require assumptions on the distribution of the population and 
therefore are sometimes called distribution-free [131]. Thus, in the 
present study the non-parametric two-sided Kruskal-Wallis test 
(also called Wilcoxon rank sum test or Mann-Whitney [132] U test, 
α=0.1) and the two-sided Kolmogorov-Smirnov two sample test 
(α=0.05) were used to decide if two data sets came from the same 
population. The null hypothesis was that the two samples came 
from the same population and have the same distribution. If the p-
value was less than the α level, then the null hypothesis was 
rejected (the data are not from the same distribution). If the p-value 
was greater than α, then the null hypothesis that the data came from 
the same population was accepted. The statistics and p-values are 
tabulated in the Supplementary Material. All tests were performed 
with Systat 12, many cases were counterchecked and p-values were 
calculated in parallel with the program R [133].  

Fitting Distributions 

In all cases where the data allowed, PDF’s of the following 21 
distributions were fitted to histograms of each data sets (and their 
parameters estimated by the respective methods) using Systat 12. 
Beta, Chi-square, Erlang, Gamma, Gumbel, Logistic, Loglogistic, 
Smallest extreme value (method of moments); Normal, Lognormal, 
Logit normal, Exponential, Double exponential (Laplace), 
Gompertz, Inverse Gaussian (Wald), Pareto, Rayleigh, Weibull, 
Uniform, (maximum likelihood method); Cauchy (method of 

quantiles or order statistics); Triangular (modified maximum 
likelihood and moments). 

In all cases, 12 bin histograms were prepared for the fits. In the 
case of mixed normal distribution (Fig. 1b), and for refinement of 
some fits (especially for calculation of location parameters of 
Weibull distributions), the software Dataplot [134] along with the 
probability plot correlation coefficient plot (PPCC) method was 
used. Quality of fits was confirmed by Kolmogorov-Smirnov and 
Anderson-Darling tests with Systat 12. Only highly significant 
PDF’s (α=0.1) were selected for further use. The analytical form of 
PDFs (Fig. 2b, d) facilitated the mathematically accurate 
calculation of calibration of thresholds (Fig. 4a, b). Statistics of 
tests of fit, formulae of selected distributions and values of their 
location, shape and scale parameters of the PDF are listed in the 
Supplementary Material.  

Calibration of Thresholds 

The probability (PD) that a filter χ adopts a value between 
thresholds TMIN and TMAX for drugs is expressed as a percentage 
and named sensitivity (σ) in this study (Eq. A4), as it reveals 
whether a large enough section of the entire drug population is 

included in the region under question. The random variable 
 D

 

corresponds to the statistical event when a filter χ adopts a value for 
drugs (D). 
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The drug-likeness ratio (DR) is expressed (Eq. A5) as the ratio 
of PD and the corresponding probability for non-drugs (PND). 
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In the cases where fitted continuous PDFs are available for 
drugs (fD) and non-drugs (fND), the σ and DR of a filter χ can be 
expressed as Eqs. A6, and A7 respectively. 
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Eqs. A6 and A7 and the cumulative distribution functions could 
be used in cases of χ = EIMW, EINHA, EIW, and MW. 

Depending on the types of the DR and σ functions, i.e. the 
relative location of the f functions, there are three cases to consider 
(Fig. 4). (I) If DR is increasing on the investigated domain of filter 
χ, then TMAX=+∞ and a TMIN can be calculated. This situation was 
experienced at the EI’s. (II) If DR has a maximum on the domain 
then both TMIN and TMAX can be calculated as in the case of MW. 
(III) Finally, if DR is decreasing then TMIN=-∞ and TMAX can be 
calculated as for logW. 

The TMIN and/or TMAX thresholds were calculated by solution of 
Eqs. A6 and A7, for a set of different σ and DR values using the 
integral forms, i.e. the cumulative distribution functions of the 
respective PDF’s at χ = MW, EIMW, EINHA, EIW. The equations 
were solved with the aid of Xplore, a program by Prof. David 
Meredith (Department of Mathematics, San Francisco State 
University). In the cases where continuous PDF’s (χ = NHA, logP, 
W, logW) could not be fitted, the histograms were used to estimate 
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thresholds applying the definitions of Eqs. A4, and A5. The details 
of the calculations can be found in the Supplementary Material. 

Disease Specificity 

A set of 309 drugs of this study (excluding the very small 
molecules ethanol and piperazine) was divided into sub-sets 
according to the 14 disease categories of the DrugBank database. 
These 14 disease categories were: Alimentary tract and metabolism, 
Blood and blood forming organs, Cardiovascular system, 
Dermatologicals, Genito-urinary system and sex hormones, 
Systemic Hormonal preparations (excluding sex hormones and 
insulins), Antiinfectives for systemic use, Antineoplastic and 
immunomodulating agents, Musculo-skeletal system, Nervous 
system, Antiparasitic products, including insecticides and 
repellents, Respiratory system, Sensory organs, and others which do 
not fit in the above categories (Various). Non-drug molecules 
having the closest ΔG were selected for each member of each drug 
sub-sets using an in-house program. The difference in ΔG was set 
not to exceed 1 kcal/mol for the drug-non-drug pairs, and indeed it 
was much less for all cases. One non-drug was used only once for 
each sub-set. Thus, two sub-sets of compounds (drugs and non-
drugs) with overlapping ΔG distributions were available for a 
disease-specific analysis. Descriptive statistics (median, median 
absolute deviation, mean, standard deviation, 1st and 3rd quartiles, 
minimum and maximum) were calculated for all disease categories, 
and filters by the same program. Boxplots generated by the program 
R were used for visual comparison of distributions. Only sub-sets 
having N>10 members were used for final discussion (Fig. 5). 
Details of the disease-specific analysis can be found in the 
Supplementary Material. 

SUPPLEMENTARY MATERIAL  

Supplementary material is available on the publishers Web site 
along with the published article. 
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